
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

Multi-agent Path Finding in Continuous Environment

Bc. Kristýna Janovská

prof. RNDr. Pavel Surynek, Ph.D.

Informatics

Knowledge Engineering

Department of Applied Mathematics

until the end of summer semester 2024/2025

Instructions

The aim of the work is to propose techniques for multi-agent pathfinding (MAPF) in a

continuous environment, where the task is to find a collision-free movement plan for a

group of agents. An obstacle to an agent can be both a static object and another agent.

As an innovation, we want to allow agents to move along smooth curves. Current

approaches for MAPF that consider continuity only consider continuous time and not

environment [1]. As objective functions, the duration of the plan can be considered, but

also, for example, the visual quality of the plan (smooth movement of agents).

The tasks for the student are as follows:

1. Study algorithms for multi-agent pathfinding considering continuity, then focus on

single-agent pathfinding algorithms in a continuous space [3, 4].

2. Design an algorithm or a modification of an existing algorithm for multi-agent

pathfinding that will consider a continuous environment. For example, a modification of

the CCBS algorithm [1] can be tried, where the collision between agents would be

eliminated not by waiting, but by an evasive maneuver along a smooth curve.

3. Implement your design in the form of a software prototype and verify experimentally

in relevant test scenarios.

Electronically approved by Ing. Magda Friedjungová, Ph.D. on 20 December 2023 in Prague.

[1] Anton Andreychuk, Konstantin S. Yakovlev, Pavel Surynek, Dor Atzmon, Roni Stern:

Multi-agent pathfinding with continuous time. Artif. Intell. 305: 103662 (2022)

[2] Cao N, Yi G, Zhang S, Qiu L. A multiobjective path-smoothing algorithm based on node

adjustment and turn-smoothing. Measurement and Control. 2023;56(7-8):1187-1201. doi:

10.1177/00202940221139327

[3] Karaman, S.; Frazzoli, E. Sampling-based Algorithms for Optimal Motion Planning.

CoRR, volume abs/1105.1186, 2011, 1105.1186. Available from: http://arxiv.org/abs/

1105.1186

[4] Garrido Carpio, Fernando. (2018). Two-staged local trajectory planning based on

optimal pre-planned curves interpolation for human-like driving in urban areas.

Electronically approved by Ing. Magda Friedjungová, Ph.D. on 20 December 2023 in Prague.

Master’s thesis

Multi-agent Path Finding in Continuous
Environment

Bc. Kristýna Janovská

Department of applied mathematics
Supervisor: prof. RNDr. Pavel Surynek, Ph.D.

May 9, 2024

Acknowledgements

I would like to thank my family, friends, and my supervisor prof. RNDr. Pavel
Surynek, Ph.D., for support during the writing of this thesis. I also thank apes
for making it possible for us humans to evolve and Darwin for figuring it out.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46 (6) of the Act, I hereby grant a nonexclusive autho-
rization (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any way
(including for-profit purposes) that does not detract from its value. This au-
thorization is not limited in terms of time, location and quantity. However, all
persons that makes use of the above license shall be obliged to grant a license
at least in the same scope as defined above with respect to each and every
work that is created (wholly or in part) based on the Work, by modifying the
Work, by combining the Work with another work, by including the Work in
a collection of works or by adapting the Work (including translation), and at
the same time make available the source code of such work at least in a way
and scope that are comparable to the way and scope in which the source code
of the Work is made available.

In Prague on May 9, 2024

Czech Technical University in Prague
Faculty of Information Technology
© 2024 Kristýna Janovská. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of In-
formation Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Janovská, Kristýna. Multi-agent Path Finding in Continuous Environ-

ment. Master’s thesis. Czech Technical University in Prague, Faculty of Infor-
mation Technology, 2024.

Abstrakt

Tato práce je zaměřena na vývoj modelu pro bezkolizńı multi-agentńı
hledáńı cest ve spojitém prostoru, kde se agenti pohybuj́ı po množinách hladkých
křivek. Agenti mezi sebou komunikuj́ı za použit́ı algoritmu Continuous Envi-
ronment Conflict-Based Search (CE-CBS), který je v této práci navržen.

Jsou zde studovány r̊uzné parametry modelu a typy prostřed́ı a nasta-
veńı agent̊u, aby bylo zjǐstěno, jak se agenti chovaj́ı v závislosti na náročnosti
prostoru a jak se měńı kvalita řešeńı. Výsledky těchto experiment̊u ukazuj́ı
schopnost agent̊u pohybovat se po bezkolizńıch hladkých cestách, kdy zároveň
optimalizuj́ı délky těchto cest.

Kĺıčová slova MAPF, spojitý prostor, CCBS, CE-CBS, B-spline křivky,
RRT*

vii

Abstract

This work sets to develop a model of collision-free multi-agent path finding in
continuous environment, where agents move on sets of smooth curves. Agents
communicate between themselves using the Continuous Environment Conflict-
Based Search (CE-CBS) algorithm proposed in this work.

Various parameters of this model and different types of environment and
agent setting are studied to determine how agents behave based on the difficulty
of the environment setting and how the solution quality changes. The results of
these experiments show the ability of agents to move on non-colliding smooth
paths while also optimising the path costs.

Keywords MAPF, continuous environment, CCBS, CE-CBS, B-spline curves,
RRT*

viii

Contents

Introduction 1

1 Background 3
1.1 Multi-agent Path Finding . 3

1.1.1 Discrete MAPF . 3
1.1.2 Continuous Time MAPF 4

1.1.2.1 Smooth Continuous MAPF - SC-MAPF 4
1.2 Discrete CBS algorithm . 6
1.3 CCBS - Continuous Time CBS 7

1.3.1 SMT-CBS and COBRA algorithms 8
1.4 RRT and RRT* algorithms . 8

1.4.1 RRT* modifications . 9
1.5 Path smoothing . 11

1.5.1 B-spline curves . 11
1.5.2 Existing path planning algorithms using smoothing . . . 12

2 Proposed model 15
2.1 CBS in continuous environment 15

2.1.1 Redefining conflicts . 17
2.2 RRT* . 18

2.2.1 CE-CBS and kinematic constraint satisfaction 19
2.2.1.1 Minimum angle constraint 20

2.2.2 Path smoothing . 22
2.3 Implementational details . 23

3 Experimental evaluation 27
3.1 Parameters . 27
3.2 Maps . 28
3.3 Measures of solution quality . 29
3.4 Experiments . 30

3.4.1 Empty space with increasing number of agents - grid pat-
tern . 30

3.4.2 Empty space with increasing number of agents - star pat-
tern . 31

3.4.3 Maximal number of RRT* nodes ηmax - empty space . . 33

ix

3.4.4 Maximal number of RRT* nodes ηmax - large spaces be-
tween obstacles . 36

3.4.5 Agents on the same path - changing radius 38
3.4.6 Smoothing parameter s - empty space 39
3.4.7 Smoothing parameter s – large obstacles 42
3.4.8 Increasing minimal angle αmin - 2 agents 44
3.4.9 Increasing minimal angle αmin - 4 agents 45
3.4.10 Path planning in narrow crossing space 47
3.4.11 Agents on the same path – hall map 50

3.5 Discussion . 55

Conclusion 57

Bibliography 59

A List of used shortcuts 63

B Contents of attachments 65

x

List of Figures

1.1 An example of how a B-spline curve is created on a path consisting
of 6 points. 11

2.1 A visualization of a non-conflicting set of smooth paths (in green)
for a set of agents going from their start positions (blue dots) to
their goal positions (green dots). 15

2.2 A goal-based agent as defined in [Russell and Norvig, 2020] 16
2.3 A case where two agents successfully plan non-conflicting smooth

paths from their start positions (blue) to their goal positions (green).
Their respective paths are highlighted green. 16

2.4 An example of RRT* algorithm. Red lines represent all edges in the
graph and a green line represents the final path. 19

2.5 A path with an acute angle leading to collision with an obstacle
after smoothing. 21

2.6 A smooth path avoiding a narrow obstacle successfully. 22
2.7 An example of RRT* algorithm with the green path already being

smoothed. Red lines represent all lines in the RRT* tree. 24
2.8 UML class diagram. 25

3.1 Examples of two maps with multiple agents crossing through them. 28
3.2 Output examples for two different values of n. Agent starting posi-

tions are marked as blue points, goal positions as green points and
paths as green lines. 30

3.3 Boxplot graph depicting results of experiment 3.4.1. Each box is
for a different number of agents, with y axis representing average
path costs for one agent. 31

3.4 Output examples for two different values of n. Agents’ paths are
arranged in a star-like pattern to provide one common conflict spot. 32

3.5 Boxplot graph depicting results of experiment 3.4.2. Each box is
for a different number of agents, with y axis representing average
path costs for one agent. 33

3.6 Figure depicting results of experiment 3.4.3 showing relationship
between average path length per agent and ηmax. 34

xi

3.7 Output examples for six different values of ηmax. Agent paths are
arranged in a star-like pattern as in experiment 3.4.2, with 3 agents
being present in the environment. 35

3.8 Figure showing how the number of CE-CBS iterations changed
based on different ηmax. 36

3.9 Boxplot graph depicting results of experiment 3.4.4. Each box rep-
resents sums of costs depending on values of ηmax. 37

3.10 Output examples for six different values of ηmax. 38
3.11 Results of experiment 3.4.5 with increasing value of agent radius r. 40
3.12 Output examples for four different values of r. 40
3.13 Output examples for two different values of s. Agents’ paths are

arranged in a star-like pattern to provide one common conflict spot. 41
3.14 Boxplot graph depicting results of experiment 3.4.6. 42
3.15 Boxplot graph depicting results of experiment 3.4.7 concerning pa-

rameter s. 43
3.16 Output examples for two different values of s. Agents move in

direction against each other in an environment with several obstacles. 43
3.17 Boxplot graph depicting results of experiment 3.4.8 concerning pa-

rameter αmin. 45
3.18 Output examples for four different values of αmin. 46
3.19 Output examples for cases with one agent, ηmax = 10000 and

αmin = 125◦. The black line represents the paths found; the red
lines connect the vertices of the RRT* tree. 47

3.20 Results of experiment 3.4.9 concerning parameter αmin. 48
3.21 Output examples for four different values of αmin in experiment

3.4.9 with four agents. 49
3.22 Examples of four cases with different ηmax. 50
3.23 Result of experiment 3.4.10 depicting the relationship between the

sum of costs and ηmax. 51
3.24 Result of experiment 3.4.10 depicting the relationship between num-

ber of CE-CBS iterations and ηmax. 51
3.25 Result of preliminary experiment for experiment 3.4.11 depicting

the relationship between the sum of costs and ηmax. 52
3.26 Result of preliminary experiment for experiment 3.4.11 depicting

the relationship between number of CE-CBS iterations and ηmax. . 53
3.27 Resulting sum of costs of experiment 3.4.11. 53
3.28 Resulting numbers of CE-CBS iterations of experiment 3.4.11. . . 54
3.29 Examples of four cases with different width of the hallway y. . . . 54

xii

List of Tables

3.1 Parameters of experiment 3.4.1 concerning parameter n 30
3.2 Parameters of experiment 3.4.2 concerning parameter n 32
3.3 Parameters of experiment 3.4.3 concerning parameter ηmax 34
3.4 Parameters of experiment 3.4.4 concerning parameter ηmax 37
3.5 Parameters of experiment 3.4.5 concerning parameter r 39
3.6 Parameters of experiment 3.4.6 concerning parameter s. 41
3.7 Parameters of experiment 3.4.7 concerning parameter s 42
3.8 Parameters of experiment 3.4.8 concerning parameter αmin. 44
3.9 Parameters of experiment 3.4.9 concerning parameter αmin. 47
3.10 Parameters of experiment 3.4.10. 48
3.11 Parameters of experiment 3.4.11 52

xiii

Introduction

In recent years, the problem of path planning has changed from move-
ment on a discrete graph to movement in a continuous space. The multi-agent
path finding problem, in which several agents, or robots, move at once in an
environment without colliding. For a discrete problem, this means that two
agents are not present in the same vertex at the same time step. However, in
a continuous problem that aims to realistically solve real-life scenarios such as
warehouse logistics or even autonomous vehicle movement, both time and space
are continuous. The agents themselves should also be represented by a rigid
body. Collisions between agents should therefore mean that two agents over-
lap at a given time. It is also possible to take various kinematic and dynamic
constraints into account which constrain the agent’s movement.

The goal of this work is to create a software prototype that allows con-
tinuous movement in both time and space for multiple agents at once. Agents
will move on a set of smooth curves that will create their paths. These paths
will be constrained so that no agents collide at the same time. As agents are
rigid circular bodies in this work, a collision will occur if two agents over-
lap at any time. An algorithm based on existing Continuous Conflict-Based
Search [Andreychuk et al., 2022] will be proposed. This algorithm works in
continuous time, but the proposed modification will also work in a continuous
environment. Unlike CCBS, agents will plan their paths using the RRT* algo-
rithm [Karaman and Frazzoli, 2011], whose output will then be smoothed with
B-spline curves. Single-agent methods for smooth path planning have already
been studied. This work will build on them to provide a non-conflicting smooth
multi-agent solution.

The work is sectioned as follows. Firstly, the theoretical background
of this problem will be studied. This will contain the problem of continu-
ous multi-agent path finding, the most important algorithms such as CCBS
[Andreychuk et al., 2022] or RRT*[Karaman and Frazzoli, 2011], and smooth-
ing with B-spline curves, as well as selected related works to all of these topics
will be discussed. Next, the proposed model consisting of several base parts will
be explained. These parts will include a constrained single-agent path finding
algorithm, a smoothing mechanism, and a multi-agent algorithm for path find-
ing in a continuous environment called CE-CBS. In the last part, performed
experiments are discussed, with several important parameters being introduced
and their impact on the model’s performance being studied.

1

Chapter 1
Background

1.1 Multi-agent Path Finding

This work focuses on guiding a set of artificial agents, entities that are
capable of observing their environment through sensors and acting based on
this input through actuators. Actions which agents are to take are described
by their agent functions, which maps percept sequences - input of sensors - to
actions. An agent function is implemented by an agent program, which together
with an architecture completes an agent. Architecture saves information about
the environment around an agent [Russell and Norvig, 2020].

In this work, agent-based modelling (ABM) [Bonabeau, 2002] is used to
describe a collection of agents. Each of these agents makes their own decisions,
although they are controlled centrally and communicate and take other agents
into account. The agents used here are goal-based agents with prior knowledge
of the environment [Russell and Norvig, 2020].

1.1.1 Discrete MAPF

Definition 1.1.1 (Multi-agent Path Finding). Let G = (V, E) be an undi-
rected graph and let R = {r1, r2, ..., rv} be a set of agents, v < |V |.

The initial arrangement of agents is defined by a simple function S0
R :

R→ V , S0
R(r) ̸= S0

R(s) for each r, s ∈ R, r ̸= s.
The goal arrangement of agents is a simple function S+

R : R → V ,
S+

R (r) ̸= S+
R (s) for each r, s ∈ R, r ̸= s.

A problem of multi-agent path finding is the task of finding a number ζ
and a sequence SR = [S0

R, S1
R, ..., Sζ

R], where Sk
R : R → V is a simple function

for each k = 1, 2, ..., ζ. This sequence must satisfy the following constraints:

(i) Sζ
R = S+

R ; meaning all agents reach their goal vertices.

(ii) Let Sk
R(r) = Sk+1

R (r), or {Sk
R(r), Sk+1

R (r)} ∈ E for each r ∈ R a k =
1, 2, ..., ζ − 1; that is, an agent may stay at its vertex or move to a neigh-
bouring vertex between two time steps.

(iii) If Sk
R(r) ̸= Sk+1

R (r) (agent r makes a move between time steps k and k+1)
and Sk

R(s) ̸= Sk+1
R (r) ∀s ∈ R such that s ̸= r (that is, no other agent

s is present in the goal vertex in time step k), then movement of agent

3

1. Background

r in time step k k is called allowed (agent r moves into an unoccupied
neighbouring vertex).
If Sk

R(r) ̸= Sk+1
R (r) and it exists s ∈ R such that s ̸= r ∧ Sk

R(s) =
Sk+1

R (r) ∧ Sk
R(s) ̸= Sk+1

R (s) (agent r is moving into a vertex, which is
currently being freed by an agent s) and the movement of agent s in time
step k is allowed, then the movement r in time step k is also allowed.
All the movements of agents in all the time steps must be allowed. Ana-
logically, this condition along with the simplicity condition of functions
consisting of SR implies that no two agents can enter the same vertex in
the same time step.

The instance of the MAPF problem is formally a quadruple Σ = (G, R, S0
R, S+

R).
The solution Σ can be noted as SR(Σ) = [S0

R, S1
R, ..., Sζ

R]. [Surynek, 2010]

1.1.2 Continuous Time MAPF
The problem of continuity in multi-agent path finding can be addressed

from several viewpoints – with continuous representation of time, or a con-
tinuous representation of environment. In discrete problems, time would be
represented as discretised time steps, and the environment where agents are
present is represented as a graph in whose vertices the agents are situated.

MAPFR is a version of the MAPF problem with continuous time. Al-
gorithms that address this problem are, for example, CCBS, E − ICTS or
ECBS−CT [Andreychuk et al., 2022, Walker et al., 2018, Cohen et al., 2021].
Of these, only CCBS provides a solution without the need for any discretiza-
tion of time.

Definition 1.1.2 (MAPFR). is the tuple E = [G = (V, E),M, S, G, coord,A],
where G represents a graph,M a metric space, S the start function, and G the
goal function with coord mapping every vertex in G to a coordinate in M and
A being a finite set of possible move actions.

Every action a ∈ A in MAPFR is defined by a duration aD and a
motion function aφ : [0, aD] :→M which maps time to metric space. aφ(t) is
the coordinate of an agent in the metric space M at a time t while executing
an action a. [Andreychuk et al., 2022]

This definition allows for non-constant speed of movement of agents,
which can also differ from agent to agent.

Definition 1.1.3 (Conflict in MAPFR). Two single agent plans πi and πj

have a conflict if ∃t ∈ [0, max(πiD, πjD)] : IsCollision(i, j, πiφ(t), πiφ(t)).
[Andreychuk et al., 2022]

1.1.2.1 Smooth Continuous MAPF - SC-MAPF

In this work, both continuous environment and time are assumed. The
agents are to find non-conflicting paths satisfying several properties. The paths
are defined as smooth curves and have to satisfy certain kinematic constraints.
Here, that constraint is the minimal angle constraint, setting a minimal value
to angles between path segments before smoothing takes place. Agent’s paths
can cross, but the agents themselves cannot collide - they cannot overlap at any

4

1.2. Discrete CBS algorithm

time. The movement of agents on their paths in time is represented by their
trajectories, which are checked for conflicts. As in standard MAPF, agents
start in pre-set starting position and they try to reach their goal positions.

The following definition is based on existing definitions by [Surynek, 2010,
Čáp et al., 2015, Neto et al., 2010, Čáp et al., 2013, Andreychuk et al., 2022].

Definition 1.1.4 (Smooth Continuous MAPF - SC-MAPF). Let M be a
metric space, and R = {r1, r2, ..., rv} a set of agents.

SC-MAPF is the tuple E = [G = (V, E),M, S, G, coord,A], where G
represents a graph, M a metric space, S the start function and G the goal
function with coord mapping every vertex in G to a coordinate in M and A
being a finite set of possible move actions. Every edge E in G represents a set
of smooth curves that connect two vertices in G. A set of curves belonging to
an edge e ∈ E is denoted as ce.

Every action a ∈ A in MAPFR is defined by a duration aD and a
motion function aφ : [0, aD] :→ M that maps time to metric space. This
motion function corresponds to a smooth curve. aφ(t) is the coordinate of an
agent in the metric space M at a time t while executing an action a.

The agent body is defined as a shape in metric space.
The initial configuration of agents is defined by a simple function SR :

R→ V , SR(r) ̸= SR(s) for each r, s ∈ R, r ̸= s.
The goal configuration of agents is a simple function GR : R → V ,

GR(r) ̸= GR(s) for each r, s ∈ R, r ̸= s.
A problem of smooth continuous multi-agent path finding is a task of

finding a set of smooth curves - a sequence of actions, each choosing a curve c
from a set of curves ce belonging to a respective edge e, for each agent so that
no agents collide.

A conflict is defined as a 5-tuple C = [αi, a(αi), αj , a(αj), t], where α is
an agent, a(α) is the action agent α performs at the time the conflict occurs
and t is the beginning of the time interval when the conflict occurs. This means
that two agents overlap. Solving a conflict means forbidding the agents to move
on certain curves which would traverse through the conflicting position at a
conflicting time.

The solution of this problem is a set of actions of a set of agents satisfying
the following constraints:

(i) SR = GR; meaning all agents reach their goal positions.

(ii) An agent moves at a set speed.

(iii) An agent’s trajectory is a smooth curve, which satisfies given kinematic
constraints.

(iv) A sequence of actions can be valid only if no two agent bodies overlap at
any time.

In this work, agent bodies are defined as circles with fixed radius.

5

1. Background

Algorithm 1: Higher level of CBS [Sharon et al., 2014]
Input: MAPF instance

1 R.constraints = ∅;
2 R.solution = set of individual agent paths;
3 R.cost ← compute cost(R.solution);
4 OPEN ← R;
5 while OPEN not empty do
6 P ← lowest cost node(OPEN);
7 first conflict ← validate(P);
8 if first conflict = ∅ then
9 return P.solution;

10 for agenti in first conflict do
11 N ← new node;
12 N.constraints ← P.constraints ∪ new constraint(agenti,

vertex, time);
13 N.solution ← P.solution;
14 N.solution.update(new constraint());
15 N.cost ← compute cost(N);
16 Insert N to OPEN;

1.2 Discrete CBS algorithm

The CBS algorithm is a cost-optimal MAPF algorithm. The goal of this
algorithm is to find a set of paths for a set of agents, so that no agents collide
at any step of their paths, if a solution exists, since it is a solution-complete
algorithm [Andreychuk et al., 2022]. The objective is to find a conflict-free plan
that minimises the makespan, which is the maximum of agents’ path costs.
CBS is a discrete algorithm; the environment is represented by a graph, and
time is discretised into time steps. In every time step, an agent may perform
one action, either a movement into a neighbouring vertex or a waiting action,
that is, staying in its current vertex.

This algorithm consists of two levels; the lower level computes a path for
each agent with the help of a single-agent path finding algorithm such as A*.
This path must satisfy the constraints provided by the higher level of CBS.

A constraint arises from collision solving, which takes place at the higher
level. A constraint includes an agent a, a vertex v, and a time step t, which
means that the specific agent a cannot be present in v at step t.

The higher level of CBS first computes paths for all agents and then
checks each step of these paths for collisions. Collision is a situation where two
or more agents are present in a vertex at a time.

CBS searches for a conflict-free solution by constructing and searching
a constraint tree, a binary tree where each node contains a set of constraints,
a solution, and the total cost of that solution. Two new nodes are created
when a node is searched and a conflict is found within its solution. A conflict
is between two agents, so it can be resolved in two ways - either one agent
is constrained from entering that vertex at a given time, or the second agent.
Therefore, two new possible sets of constraints are created and both have to

6

1.3. CCBS - Continuous Time CBS

be verified. New paths containing one of the new constraints are found, and
two new nodes are created.

If a solution of a node is found to be conflict-free, it will be the final
solution.

1.3 CCBS - Continuous Time CBS

Algorithm 2: Higher level of CCBS [Andreychuk et al., 2022]
Input: Graph G = (V, E), starting configuration S, goal

configuration G
1 for agenti do
2 πi ← A∗(G, S(i), G(i)) ;
3 N.constraints = ∅;
4 N.solution = (π1, ..., πk);
5 N.cost ← compute cost(N.solution);
6 OPEN ← N;
7 while OPEN not empty do
8 N ← lowest cost node(OPEN);
9 if conflicts = ∅ then

10 return N.solution;
11 (i, j, (ai, ti), (aj , tj))← find conflict(N.solution);
12 for agent l in {i, j} do
13 Nl ← new node();
14 [tl, tu

l)← unsafe interval(l);
15 Nl.constraints ← N.constraints ∪ {l, al, [tl, tu

l)};
16 π′

l ← CSIPP(G, S(l), G(l), Nl.constraints);
17 Nl.solution[l] ← π′

l;
18 Nl.cost ← compute cost(N);
19 Insert Nl to OPEN;

The CCBS algorithm is analogous to CBS with the exception being the
definition of a conflict and its resolution. In CCBS, the objective is also to
minimise the makespan, defined as a maximum of costs of individual agents’
paths. It is also a solution-complete algorithm, finding a solution if it exists,
while unable to detect if a solution does not exist [Andreychuk et al., 2022].

In CBS, a conflict is typically represented as a tuple of an agent, a
vertex, and a time step. As CCBS operates with continuous time, this is no
longer viable. Instead of a vertex and a time step, CCBS takes into account an
action of an agent l in a calculated unsafe interval [tl, tu

l). A CCBS conflict is
defined using pairs of timed actions (a, t). Timed action means that an action
a is executed from time t. A conflict of two agents i and j occurs if they
execute their respective timed actions and collide. Therefore, a CCBS conflict
is defined as a tuple (i, j, (ai, ti), (aj , tj)).

An unsafe interval of a timed action (ai, ti) is defined with respect to
another timed action (aj , tj) as the maximal continuous time interval starting

7

1. Background

from ti, in which if agent i would perform the action ai, it would have a conflict
with timed action (aj , tj).

As for computing unsafe intervals, exact computation may prove too
computationally demanding. It is possible to search for a conflict several times
with increasing times, and when no conflict is found, an endpoint of an unsafe
interval is set. To further shorten that unsafe interval, a binary search can be
used to find a more accurate endpoint.

Although initial path planning is done by A∗ algorithm [Hart et al., 1968]
in CCBS, the CSIPP algorithm is used for re-planning given paths according
to newly defined constraints.

For the low level of CBS, the authors proposed a modification of the
SIPP algorithm, CSIPP - Constrained Safe Interval Path Planning. It is used
to calculate safe time intervals based on constraints passed to it by CCBS.
[Andreychuk et al., 2022]

1.3.1 SMT-CBS and COBRA algorithms

In [Surynek, 2020], a novel solution for the MAPFR problem was pro-
posed. The SMT-CBSR provides a makespan-optimal solution to this problem
considering continuous space and time with geometric agents. It combines CBS
algorithm with satisfiability modulo theory using lazy construction of incom-
plete encodings. That way, not all constraints are introduced in the model,
which makes it consider a subset of solutions. The produced solution can then
be further refined if needed. This makes it possible for the solution to be found
before complete specification of the model, thus saving computational time.
Unlike the original CBS, SMT-CBSR does not branch after encountering a
conflict, and instead refines the propositional model with a conflict elimination
disjunctive constraint (a mutex). The results of this approach are comparable
to those of CCBS.

The authors of [Čáp et al., 2015] proposed the COBRA algorithm, a
complete decentralised algorithm for on-line multi-robot trajectory planning.
Individual robots plan an optimal trajectory for themselves and synchronise
information about trajectories with other robots via a distributed token-passing
mechanism, where a token is used as a synchronised shared memory which holds
current trajectories of all robots. The robots obtain relocation tasks from the
user, and after obtaining a token which can be held by one robot at a time,
it plans a trajectory to find a new best-response trajectory fulfilling the task.
This trajectory needs to avoid collisions with the trajectories provided by the
token. If this path is found, the token is updated and released to other robots,
and the robot starts following its new trajectory. Once it reaches the goal, it
can accept new relocation tasks. This approach was compared to an ORCA
reactive technique and was shown to be up to 48% faster than this approach.

1.4 RRT and RRT* algorithms

A classic algorithm for path planning in a continuous metric space is the
RRT algorithm (Rapidly-Exploring Random Trees) [LaValle, 1998]. A rapidly
expanding random tree is constructed with iterative expansion by randomly
sampling points that do not collide with an obstacle and connecting them to

8

1.4. RRT and RRT* algorithms

the nearest point in the tree. Expansions are biased towards unexplored parts
of the search space. An RRT is probabilistically complete [LaValle, 1998], but
the constructed paths are not guaranteed to be optimal. An improved version,
RRT*, aimed to solve this problem by introducing the A* cost function into
the original algorithm. Thus, the algorithm makes paths converge to optimal
solutions [Karaman and Frazzoli, 2011].

In the original RRT, a new point is connected to its nearest point in
the tree, while in RRT*, a point is added in a way that ensures its lowest
possible distance from the start. To select a point to which to add, the k-
nearest neighbours method is used to find several possible adepts. Then all
possible ways to connect the new point via all of the neighbours are tried, and
the path which proves to be the shortest is used, and the point is connected to
the neighbour which lies on that path.

While RRT would end an iteration with connecting a new point, RRT*
then goes on to validate the quality of paths of the new point’s nearest neigh-
bours. As was before done for the new point, an alternative path to all the
neighbours leading through the new point is tried. If this path is shorter
than the previous path, an edge that connected that neighbour to its orig-
inal path is deleted, and a new edge is created in its place, connecting the
neighbour and the newly added point. This method ensures that the algo-
rithm’s paths converge to optimal paths if an infinite number of nodes are
added [Karaman and Frazzoli, 2011].

1.4.1 RRT* modifications

In [Čáp et al., 2013], the authors proposed a multi-agent variant of the
RRT * algorithm, MA-RRT *. The agents in this model moved on a discrete
motion graph in Euclidean space. As the environment was discrete, the graph
version of RRT*, G-RRT* was used. The main difference between the two
variants is the steering technique, which in G-RRT* is done using heuristic-
guided greedy search. In MA-RRT*, greedy search generates a sequence of
joint actions of all agents. After each action is generated, the set of actions is
checked for possible conflicts. This approach was evaluated to be more efficient
than A* in joint-state space when path finding is carried out in sparse, large
environments, at the cost of slight solution quality.

[Li et al., 2014] introduced a RRT-A* variant for non-holonomic robots.
Non-holonomic robots are constrained in a way which limits their movement.
These kino-dynamic constraints pose a problem for motion planning, although
the RRT algorithm is able to take them into account. However, it fails to
optimize its planned paths. Therefore, the authors introduced the A* cost
function into non-holonomic RRT and evaluated several metric functions. The
improved algorithm effectively decreased path lengths, although it proved to
not be efficient in environments containing local minima.

The authors of [Ayawli et al., 2019] presented ORRT-A*, an optimised
version of the RRT-A* algorithm. Robots in this case move in a partially known
environment, and therefore obtaining and processing of the map is necessary
at the beginning. Then, an RRT road map is computed. Modified goal-biased
RRT is used to ensure rapid generating towards the goal position. After ob-
taining an initial path, this path is further optimised using the A* heuristic
function. After creating a path, it is smoothed via a cubic spline. Every data

9

1. Background

Algorithm 3: RRT* [Karaman and Frazzoli, 2011]
Input : V ← {xinit}; E ← ∅; radius r
Output: G=(V,E)

1 for i = 1 to n do
2 xrand ←SampleFreei();
3 xnearest ←Nearest(G=V,E), xrand);
4 xnew ←Steer(xnearest, xnew);
5 if ObstacleFree(xnearest, xnew) then
6 Xnear = Near(G=(V, E), xnew, r);
7 V ← V ∪ {xnew};
8 xmin ← xnearest ;
9 cmin ←Cost(xnearest + c(Line(xnearest, xnew));

10 for xnear in Xnear do
11 if CollisionFree(xnear, xnew)∧Cost(xnear +

c(Line(xnear, xnew)) < cmin then
12 xmin ← xnear ;
13 cmin ←Cost(xnear + c(Line(xnear, xnew));
14 E ← E ∪ {(xmin, xnew)} ;
15 for xnear in Xnear do
16 if CollisionFree(xnew, xnear)∧Cost(xnew +

c(Line(xnew, xnear)) < cmin then
17 xparent ←Parent(xnear);
18 E ← (E \ {(xparent, xnear)} ∪ {(xnew, xnear)};

19 return G = (V, E);

point interval is represented using different cubic functions and in this way the
interpolation technique smooths the path with the generation of more data
points. During the course of a robot’s motion in the environment, re-planning
of its path is necessary to account for dynamic changes of the environment and
newly discovered parts of the map. Experiments suggested that ORRT-A*
enhances path quality in comparison to goal-biased RRT and RRT-A*.

The MA-RRT*FN algorithm was proposed in [Jiang and Wu, 2019],
which aimed to increase the efficiency of the MA-RRT * algorithm by limiting
the number of nodes stored in a tree to a fixed number. To avoid reaching this
limit of nodes, all nodes are evaluated, and those which are unlikely to reach
the goal are removed from the path. This solution does not exceed MA-RRT*
concerning path quality, although the results are close, but it is much more
efficient considering memory usage.

[Verbari, 2017] focuses on decentralized multi-agent path finding using
RRT* algorithm. The author proposes Multi-RRT* algorithm, an approach
aiming to find a Pareto optimal solution with using a priority order method.
The problem is solved agent by agent by sorting them through a performance
measure. It removes agents less involved in a collision from the problem, there-
fore solving each iteration in a smaller problem. Each agent computes its own
trajectory with respect to solutions of other agents, which are considered as
known, time-varying obstacles.

10

1.5. Path smoothing

1.5 Path smoothing

In a real-life scenario, where an agent would be a vehicle, the vehicle
would be sensitive for example to changes in acceleration, which would have to
occur if it were to perform a sudden change of direction, such as a sharp turn.
This could have an impact on the time that it spends on that path. Because of
this, the differences in the different closely laid segments of the path should be
limited [Lan and Di Cairano, 2015, Savla et al., 2005, Váňa and Faigl, 2015].
A possible solution is to introduce a smoothing mechanism, therefore making
the path a smooth curve. The curvature of the path can then be constrained
to prevent sudden turning changes. Because of these real-life implications, it
is advantageous to work not only with continuous time, but with continuous
environment, too, as it can introduce movement on smooth curves and therefore
take various kinematic or dynamic constraints into account.

A path generated by RRT* can contain sharp turns when going from
one path segment to another. To improve the quality of a path, many smooth-
ing mechanisms were proposed, starting with [Dubins, 1957]. This work uses
smoothing via B-spline curves, so as to be able to represent the complex nature
a path in an environment with many obstacles can have. A B-spline curve is
fitted onto a path with concrete path points being curve control points, and
additional points are then interpolated laying on the smooth curve.

Figure 1.1: An example of how a B-spline curve is created on a path consisting
of 6 points.

1.5.1 B-spline curves

A B-spline curve is a piecewise polynomial curve. A spline is a piecewise
polynomial of degree n with segments Cn−1. It can be thought of as a method
to define a sequence of degree n Bézier curves that automatically join with
Cn−1, regardless of the placement of the control point. It can be used in
problems too complex to be modelled with a Bézier curve. [Sederberg, 2012]

11

1. Background

Definition 1.5.1 (B-spline basis function). Let U = {u0, ..., um} be a non-
decreasing sequence of real numbers. The ui are called knots, and U is the
knot vector. The i-th B-spline basis function of p degree, denoted as Ni,p(u) is
defined as

Ni,0(u) =
{

1 ui ≤ u < ui+1

0 otherwise

Ni,p(u) = u− ui

ui+p − ui
Ni,p−1(u) + ui+p+1 − u

ui+p+1 − ui+1
Ni+1,p−1(u)

(1.1)

[Piegl and Tiller, 1996]

A B-spline curve is then defined as a linear combination of control points
and B-spline basis functions.

Definition 1.5.2 (B-spline curve). A p-th degree B-spline curve is defined as:

C(u) =
n∑

i=0
Ni,p(u)Pi (1.2)

where a ≤ u ≤ b, Pi are control points, and {Ni,p(u)} are p-th degree B-
spline basis functions defined on non-periodic knot vector U = {a, ..., a, up+1, ...,
um−p−1, b, ..., b}. [Piegl and Tiller, 1996]

1.5.2 Existing path planning algorithms using smoothing

[He et al., 2016] focused on MAPF with continuous time. Agents are
controlled globally and use general linear dynamics. The authors focus on
navigating agents through complicated environment such as crowded areas or
narrow spaces. These challenging parts are called bridges, and they repre-
sent collision-free regions of the environment with certain geometric navigation
characteristics. Trajectory of each agent is computed with kinodynamic RRT*,
and it moves an agent along an interpolated path in the bridge. It is possible
for multiple agents to be present at one bridge at the same time, as a scheduling
system is present to ensure efficient and collision-free motion.

In [Cao et al., 2023], a novel approach to path smoothing was proposed,
called the point adjustment algorithm and smoothing. Agents in the modelled
environment moved on a rasterised 2D space and were represented as a mass
point in space. After the initial path is obtained via a path planning algorithm,
a path point adjustment is run. This is done to increase the angles between
the path segments and also to reduce the length of the original path. This is
done with the line-of-sight algorithm, which removes unnecessary turns in a
path. Then, a rotate line algorithm is run which enlarges the angles between
path segments by adjusting the positions of path points. The last step of point
adjustment is the parallel line algorithm, which ensures that all angles on a
path follow a minimum angle requirement, 90 degrees. The second part of
this algorithm, turn-smoothing, smooths a processed path via B-spline curves.
B-spline curves are inserted in turns, and the control points of the curve are
adjusted for the path to meet certain robotic requirements, path continuity,
path safety, and maximum path curvature.

12

1.5. Path smoothing

The authors of [Eshtehardian and Khodaygan, 2022] worked with non-
holonomic vehicles in a continuous environment and proposed a model for
smooth movement with combination of RRT* for path planning and B-spline
curves for additional path smoothing. The initial path planning used RRT*,
whose result was then optimised to account for non-holonomic constraints re-
stricting the turn angle of assumed vehicles. Therefore, some nodes of this
initial path were removed, which made for a smoother and shorter path. Then,
B-spline interpolation was used to smooth the path by generating a curve, thus
fulfilling non-holonomic constraints.

The authors of [Neto et al., 2010] proposed an approach to path plan-
ning for non-holonomic vehicles using seventh-order Bézier curves. This ap-
proach allows for the use of simple kinematic and dynamic constraints and
ensures path smoothness. The main constraint considered in this model is the
minimal curvature that a vehicle can execute. The path is generated by a vari-
ant of the RRT algorithm. Curves are established between the states generated
by RRT. These curves are compositions of seventh-order Bézier functions that
satisfy all the constraints considered. This approach reduces the number of ver-
tices on a path, especially in an environment with a low number of obstacles,
where many vertices can become obsolete.

In [Garrido Carpio, 2018], the author proposed a local path planning
model that combines pre-planning and real-time planning, which generates
continuous paths in order to minimise curvature and abrupt changes. The first
step of this model is to preplan optimal Bézier curves considering physical and
kinematic constraints. Then, a real-time algorithm is applied, resulting in a
continuous path which is created by joining the pre-planned curves. It can be
used in both static and dynamic environments, as the dynamic path planning
algorithm aims to generate smooth avoidance paths efficiently.

[Lai et al., 2023] proposed improved A* algorithm, which aims to shorten
the computational time and reduce redundant nodes, adding a dynamic weight-
ing factor to the heuristic function of A*. This allows for dynamic focus change
during the course of the algorithm. Then, a fusion algorithm was proposed
which combined this improved A* and segmented second-order Bézier curves,
resulting in smooth paths.

13

Chapter 2
Proposed model

2.1 CBS in continuous environment

This works builds on the Continuous Conflict-Based Search algorithm
proposed by [Andreychuk et al., 2022]. Here, a modification called Contin-
uous Environment Conflict-Based Search (CE-CBS) is proposed. Its aim is
to minimise the necessary discretization of the environments. It operates in
a continuous environment with continuous time. Each agent in this multi-
agent simulation performs path finding via the RRT* algorithm proposed by
[Karaman and Frazzoli, 2011], which is modified to both solve constraints pro-
vided by CE-CBS and provide a path which is then smoothed using B-spline
curves. The goal is to find a conflict-free solution while minimising the criterion
sum of costs, which is the total sum of the paths of all agents.

Figure 2.1: A visualization of a non-conflicting set of smooth paths (in green)
for a set of agents going from their start positions (blue dots) to their goal
positions (green dots).

Agents in this model are defined as circular bodies with fixed radius
and speed, both of which are input parameters. They are modelled as goal-

15

2. Proposed model

based agents [Russell and Norvig, 2020] moving in a known environment. This
model can be seen in figure 2.2. These agents aim to plan a set of paths from
start positions to goal positions while avoiding both static obstacles, which are
represented here as rectangles of varying sizes, and dynamic obstacles, which
are constraints set by CE-CBS to avoid collisions between agents.

Figure 2.2: A goal-based agent as defined in [Russell and Norvig, 2020]

In the base design of this work, agents are set to find smooth paths in a
way that they can move continuously without ever stopping and waiting before
reaching their goal position.

Figure 2.3: A case where two agents successfully plan non-conflicting smooth
paths from their start positions (blue) to their goal positions (green). Their
respective paths are highlighted green.

As with CCBS, the cost of a solution is the sum of the costs of each

16

2.1. CBS in continuous environment

agent’s individual path. [Andreychuk et al., 2021] The length ρ of a path is
measured as the sum of distances between neighbouring points on a path. The
metric used is the Euclidean distance:

ρi =
√

(xi+1 − xi)2 + (yi+1 − yi)2 (2.1)

The goal of the algorithm is to minimise this sum of costs while keeping
the plan conflict-free.

2.1.1 Redefining conflicts

A conflict in this work is defined as a 5-tuple C = (ai, tai , ai+1, tai+1 , pi,
pi+1), where ai, ai+1 are two conflicting agents, tai

, tai+1 are the respective
times of the agent to reach the conflict position and pi, pi+1 are the conflict
coordinates for each agent.

Whether two agents are in a conflict is determined in two steps. For
each pair of agents, it is checked if their planned trajectories intersect. If so,
a time is computed that represents the moment when the two agents reach
the intersection. This is done with the basic formula of t = s

v , where t is
the resulting time, s is the length of the agent’s path from the start to the
intersection point, measured as a sum of Euclidean distances for each path
segment, and v is a constant speed of an agent.

It is also necessary to account for agent bodies, for which checking if
paths intersect does not suffice. It is therefore also checked if the distance
between every pair of path segments from different paths is closer to each
other than the agent radius. If so, the points at which those segments are
closest are tested to see at which time agents arrive at these positions. If these
times fall into an unsafe interval of another agent, a conflict is present.

An unsafe interval is created from these time variables, which is neces-
sary to take the agent mass into account. If the time when agent a1 reaches
the intersection point falls into the unsafe interval of agent a2 or vice versa, a
conflict is present.

Algorithm 4: Get first conflict
Input : paths P , agents A
Output: conflict c

1 C ← ∅;
2 for ai ∈ A do
3 for ai+1 ∈ A do
4 crossing, positions←CrossingCloseTrajectories(Pai

, Pai+1);
5 if crossing then
6 for posi, posi+1 ∈ positions do
7 tai

←TimeToReach(Pai
, posi);

8 tai+1 ←TimeToReach(Pai+1 , posi+1);
9 if TimesTooClose(tai , tai+1) then

10 C ← C ∪ Conflict(ai, tai
, ai+1, tai+1 , posi, posi+1);

11 return SelectFirst(C);

17

2. Proposed model

The conflict which is returned by the GetF irstConflict function as seen
in algorithm 4 is that in which one of the agents’ time is the lowest from all
the times of all conflicts.

2.2 RRT*

The lower level of CE-CBS is performed by RRT* enhanced by several
steps from the original algorithm proposed by [Karaman and Frazzoli, 2011].
The lower level, as seen in the algorithm 5, operates in two basic steps: path
planning and interpolation. Each part has to be checked for validity to ensure
the resulting path being as conflict-free and obstacle-free as possible, although
it returns a path breaking these constraints if no other was found.

Algorithm 5: Lower level of CE-CBS
Input : agent a, obstacles O, constraints C, maximum nodes

value m
Output: path p

1 valid← False;
2 p← ∅;
3 n = m;
4 while not valid do
5 p, valid←RRTstar(a, O, C, n);
6 if valid or n ≤ m/5 then
7 p, valid←Interpolate(p, O, C);
8 n = n−m/10;
9 return p;

The first step is the RRT* path planning, which in itself validates the
path as described below. If the path found is not valid, meaning not only that
it is conflict-free and obstacle-free, but that all angles between neighbouring
path segments are larger than 90 degrees, RRT* is re-planned with a lower
value of maximum nodes to sample. If a valid solution is found, interpolation
with a B-spline curve can take place. The path resulting from interpolation is
then validated in the same manner as the path resulting from RRT*, and inter-
polation can also be done multiple times with different values of the smoothing
parameter s to try and find a sufficient path without the need to re-planning
the entire path by RRT*.

Figure 2.4 shows the result of RRT* before smoothing. The start of the
path is noted by a red dot and the goal location by a green dot. All the sampled
coordinates with lines connecting them to the tree are drawn in red while
the final path, found as the shortest from all available paths, is drawn green.
Although RRT* converges to optimal solution [Karaman and Frazzoli, 2011],
that solution may not be found in cases where not enough nodes are sampled.
This work counts with sub-optimality of solutions provided by RRT*, as the
computational time has to be taken into account.

Experiment-based modifications Based on result of experiment 3.4.8,
which studies various values of parameter αmin, which denotes the minimal

18

2.2. RRT*

Figure 2.4: An example of RRT* algorithm. Red lines represent all edges in
the graph and a green line represents the final path.

angle all neighbouring path segments must hold, algorithm 5 was modified to
ensure valid results are returned for instances in a difficult setting. The ex-
periment showed it is necessary to be able to dynamically set the lower bound
of maximal number of nodes expanded by RRT* ηmax, so that the entire en-
vironment can be searched even if this value is lowered. Therefore parameter
ηmin is introduced, representing the denominator used for counting the lower
bound. Another newly introduced parameter is parameter σ, which controls
the rate by which ηmax is lowered. To ensure that RRT* does not return a
solution which is either incomplete or breaking an angle constraint, iterating
continues after reaching the lower bound, but it does not lower ηmax further.
This modification only impacts cases where a valid solution wouldn’t be found
otherwise, and is used in experiments 3.4.9 and below. The modified algorithm
is showed in algorithm 6.

2.2.1 CE-CBS and kinematic constraint satisfaction

The RRT* algorithm takes a set of constraints on input. A constraint is
defined as a 4-tuple c = (a, p, unsafefrom, unsafeto), where a specifies an agent
to which that constraint applies, p is a particular coordinate of a conflict and
(unsafefrom, unsafeto) denotes the unsafe time interval. If an agent crossed
p in a time within the unsafe interval, it would mean breaking that constraint.

While path planning, RRT* has to take two types of obstacles into
account – both static predefined rectangular obstacles which remain obstacles
throughout the whole course of the planning, and constraints provided by CE-
CBS, which serve as dynamic obstacles and only present a threat in a certain
time frame specified by the unsafe interval.

19

2. Proposed model

Algorithm 6: Modified Lower level of CE-CBS
Input : agent a, obstacles O, constraints C, maximum nodes

value m
Output: path p

1 valid← False;
2 p← ∅;
3 n = ηmax;
4 while not valid do
5 p, valid←RRTstar(a, O, C, n);
6 if valid then
7 p, valid←Interpolate(p, O, C);
8 if n > ηmax

ηmin
then

9 n = n− ηmax

σ

10 return p;

If a path segment is to be added to the RRT* tree, it first needs to be
checked for validity, so that the line segment formed by adding a new point
does not intersect an obstacle or break a constraint.

Algorithm 7: Validate
Input : path p, obstacles O, constraints C
Output: True or False

1 segment← (p0);
2 for i in length(p)− 1 do
3 segment← segment + pi+1;
4 line← pi, pi+1;
5 if not ObstacleFree(line, O) then
6 return False;
7 cost←PathCost(segment);
8 if not ConstraintFree(line, cost, C) then
9 return False;

10 return True;

The algorithm 7 shows the function validate. This function checks if
any line segment defined by two neighbouring points intersects an obstacle or
a constraint. Intersecting a constraint means that the agent would arrive at a
given position in a time specified by the unsafe interval of the constraint.

2.2.1.1 Minimum angle constraint

A sufficient path must satisfy the given kinematic constraints. In this
work, angles between path segments (pre-smoothing) are constrained to be
bigger than 90 degrees to ensure that a simulated robot would be able to
preform the turn. This constraint number was preliminarily chosen so as to
eliminate acute angles from paths and can be changed in further experiments.

20

2.2. RRT*

Using the cosine formula for the dot product, the angle θ between two
line segments represented by two vectors v, w can be written as:

θ = cos−1(v · w
||v|| · ||w||

) (2.2)

When RRT* planning starts, it is given a constraint for the maximum
number of nodes it is able to sample. This number is provided in the input.
RRT* is the run with this number. Preliminary experiments have shown that
in some edge cases where an obstacle is narrow and a sharp turn is path length
optimal, a path with an acute angle will be generated as seen in figure 2.5.

Figure 2.5: A path with an acute angle leading to collision with an obstacle
after smoothing.

A path segment can be modified in a number of ways to correct this,
as described below, but this approach may sometimes not suffice. In that
case, a new iteration of RRT* is run with a lower number of maximum node
number. This iteration may opt for a less optional path, but this setback can
be beneficial in keeping all angles larger than the limit. If one re-planning does
not suffice, more iterations follow, each with a lower maximum node parameter
value, until an obstacle and conflict-free path has been found or a minimal value
of this parameter is hit, if ending the search this way is allowed. Figure 2.6
shows a path successfully navigating in a problematic environment.

When a path is constructed by RRT*, it is validated before being passed
on to be smoothed. This validation checks all angles between pairs of neigh-
bouring path segments and tries to correct them if they are too small. This
method is shown in Algorithm 8. If an acute angle (in the base design, a differ-
ent bound can be used as a minimal angle, as shown in lines 3 and 6) is found,
the algorithm first tries to eliminate the vertex which is shared by the two
path segments and connect the other two vertices instead - checked by func-
tion Eliminate(path, index, obstacles, constraints) on line 4. If a vertex can

21

2. Proposed model

Figure 2.6: A smooth path avoiding a narrow obstacle successfully.

be eliminated, it is not added to the new path q. This will not only shorten the
original path but will account for increasing the previously acute angle to 180
degrees. This is only possible if there are no obstacles or constraints preventing
connecting the other two path segments.

If a shared vertex cannot be eliminated, the algorithm then tries to move
it closer to the other two vertices to increase the angle size. This is done by the
function MoveCloser(path, index, obstacles, constraints) on line 5. The point
moves along a perpendicular to line segment formed by the other two vertices.
The final position must be as close to the intersection point of these lines as
possible without colliding with an obstacle or violating any constraints.

If neither of these approaches enlarges the angle enough, RRT* runs
again with a smaller value of the maximum node value to find a possibly less
optimal path that may satisfy the constraint.

2.2.2 Path smoothing

As with the path planning itself, smoothing takes several steps. The
interpolation itself is performed first. Given path points resulting from RRT*,
a B-spline curve representation is found using the splrep function of the scipy
library [SciPy, 2023b]. Knots and coefficients returned by this function then
serve as input for the splev function from the scipy library [SciPy, 2023a],
which returns length(path) ∗ max distance points along this B-spline curve,
where max distance is the highest distance in which a point can be sampled
from its nearest neighbour; this way, a new point is interpolated for at least
each unit of path length. Although a smooth path is found at this stage, it still
needs to be validated using the validate function as shown in the algorithm 7 to
check if this new representation satisfies all constraints and avoids all obstacles.
If it does not succeed, the interpolation is then tried again with a larger value

22

2.3. Implementational details

Algorithm 8: Adjust Angles
Input : path p, obstacles O, constraints C, angle a
Output: True or False, path q

1 q ← (p0);
2 for i in length(p)− 2 do
3 if Angle((pi+1, qlast), (pi+1, pi+2)) < a then
4 if not Eliminate(p, i + 1, O, C) then
5 moved pos←MoveCloser(p, i + 1, O, C);
6 if Angle((moved pos, qlast), (moved pos, pi+2)) < a then
7 return (False, p);
8 q ← q + moved pos;

9 else
10 q ← q + pi+1;

11 q ← q + plast;
12 return (True, q);

of the smoothing parameter s, which is initialised as s = 0. This is repeated if
necessary for s ≤ 5.

If no path is found, even then, the interpolation ends with a fail. If RRT*
did not previously plan its path with a borderline low value of maximum node
number ηmax, it can be replanned with a smaller value and interpolated again,
as shown in the algorithm 5. After modifying the algorithm as discussed in
section 2.2, the algorithm continues to search for a valid solution even after
decreasing ηmax to the minimum allowed number ηmin. The search continues
with ηmax = ηmin until a valid solution is found.

Figure 2.7 shows how a smooth path resulting from RRT* and subse-
quent interpolation looks. RRT* with smoothing performed well in this case
concerning a narrow passage where collisions with corners of objects would be
possible.

2.3 Implementational details

The implementation of this model consists of six main classes. The
CECBS class operates the higher level of the CE-CBS algorithm and stores
nodes of the conflict tree. Each node is an object of class CECBSNode, which
directs the low-level search of the agents’ paths and stores their solutions. The
low-level search takes place mainly in the RRTstar class, which contains all
the methods necessary to calculate the path of an individual agent. The main
method in this class is the rrt star() method, whose results is a non-conflicting
path, which is yet to be smoothed. The nodes of the RRT tree are represented
by the RRTNode class. All smoothing takes place in the functions located
in the module support functions.py. The environment itself is stored in the
RRTMap class, which also orchestrates visualisation of the map and found
paths. The parameters passed to the algorithm from a configuration file, such
as the maximal amount of RRT* node ηmax or agent radius r are stored in the
Params class. The UML class diagram is shown in Figure 2.8.

23

2. Proposed model

Figure 2.7: An example of RRT* algorithm with the green path already being
smoothed. Red lines represent all lines in the RRT* tree.

This model has been programmed in the Python programming language
using Numpy, SciPy, Shapely, and PyGame libraries. The SciPy library is used
for the B-spline computation and interpolation, while Shapely and Numpy li-
braries are used for the computation of geometric elements, for example, check-
ing the distance between path segments and obstacles or providing support-
ing calculations during computations of angles between path segments. The
PyGame library serves for the visualisation of the environment, consisting of
obstacles, agent start and goal coordinates, and the paths between said coor-
dinates.

24

2.3. Implementational details

Figure 2.8: UML class diagram.

25

Chapter 3
Experimental evaluation

This part focuses on the model’s behaviour in several types of environ-
ment. It evaluates both performance depending on the number of agents and
parameters, such as the maximal number of nodes RRT* can expand. This is
evaluated using both the standard sum of costs and computational time. This
is done to find out how path re-planning affects the computation. The individ-
ual costs of agent paths are also discussed in some experiments concerning an
increasing number of agents in one plan, whose individual optimal path lengths
would be equal.

3.1 Parameters

Maximal number of nodes in RRT* ηmax: The value of this pa-
rameter sets an upper boundary to expansion of the RRT* tree. Increasing
this value may lead to increased computational time, but also to a path closer
to the optimal path. Preliminary experiments have shown that, in some cases,
more optimal paths can create sharp turns unsolvable by node adjustment, and
therefore paths have to be re-planned, further leading to increased runtime. If
more iterations of RRT* with decreasing ηmax are run, the speed at which
it decreases is controlled by the reducing rate σ, which is in the base design
set to σ = 10. If a current value of the maximum number of RRT* nodes in
a given iteration is denoted as n, the formula by which it decreases is set as
n = n− ηmax

σ . The value of n is initialised as ηmax.
Minimal number of nodes in RRT* ηmin: This parameter sets the

lower boundary to the expansion of the RRT* tree. It is used in a case where
multiple iterations of re-planning have taken place. Setting this value too low
can prevent the algorithm from finding a path, or the algorithm can find a
path that much less optimal than the shortest path. Lowering the number of
expanded nodes may lead to decreased computational time. The value of this
parameter is tied to ηmax, as its value is set as ηmin = ηmax

5 .
Minimal angle in a path αmin: Denotes an angle boundary. If an

angle between two adjoining path segments is below this boundary, this angle
has to be adjusted if possible. If this is not possible, re-planning has to occur.
In the base design of this model, this value is set as αmin = 90◦, prohibiting
acute angles on paths and therefore preventing agents from taking sharp turns.

27

3. Experimental evaluation

Number of agents n: The number of agents in an environment. All of
these agents participate in CE-CBS and are goal-based agents with knowledge
of the environment. Each one of them starts in a unique location and has
a unique goal location. The utility function used to evaluate their paths is
the sum of costs, or in some cases, average of the costs if this number varies
between individual iterations of this algorithm.

Smoothing parameter s: The parameter s is used in smoothing a
path resulting from RRT*. It is used to control the trade-off between the
smoothness of the path and the closeness to the original path. Higher s
means more smoothing, thus possibly straying further from the original path
[SciPy, 2023b].

Agent radius r: This parameter determines the size of agent body,
which is circular. Increasing the size of agent body may make it more difficult
to plan a set of paths where no agents overlap at any time, as it is necessary
to check not only if their trajectories cross, but the possible body overlap in
cases, where different agents’ path segments get close to each other.

3.2 Maps

Open environment: An environment without any static obstacles is
experimented with to determine the quality of the path in cases where a straight
line with length denoted by a Euclidean distance from a starting position to
a goal position would be the optimal solution (not concerning other agents).
These experiments are done to determine how path quality in this model dif-
fers from the optimal solution and how it evolves, when it becomes necessary
to modify some of the paths to account for solving conflicting paths, which
inevitably lead to modifying at least one of the original paths.

(a) A map with several obstacles (b) A maze map with narrow obstacles

Figure 3.1: Examples of two maps with multiple agents crossing through them.

Several large obstacles: In an environment pictured in figure 3.1a,
two agents are moving along a similar path, but in opposite direction. The
starting position of one agent is the other agent’s goal position. This means
that approximately in the centre of the map, agents meet and have to avoid
each other without their bodies overlapping. This map is therefore used for
testing among other parameters agent behavior based on agent radius r.

28

3.3. Measures of solution quality

Maze: This type of environment can be used to determine ideal values
for some of the parameters such as minimal angle αmin, which, as discussed
in Section 2.2.1.1, can encounter problems in plans where a sharp turn would
make a path shorter. In figure 3.1b, a maze map is pictured. Many narrow
obstacles are present, and agents are forced to make several turns in opposite
directions, creating a possibility of breaking angle constraints.

Narrow passages: Maps with one narrow passage represent a situation
where there are limited possibilities of movement, thus making avoiding other
agents more difficult. Agents will be forced to plan paths avoiding each other
without overlapping at any time, which can prove challenging in a narrow
space.

3.3 Measures of solution quality

Sum of costs (SOC): In this work, the objective is to minimize the
sum of costs of all agents’ paths, while keeping the set of paths collision-free.
This measure is used in a majority of experiments where the number of agents
does not differ between experiments. For experiments where number of agents
n vary, an average of SOC per agent is made and compared. Another method
which can be used to evaluate the plan quality is the makespan, which is the
maximum of all agents’ individual path costs.

Scatter ζ: To evaluate consistency of each plan, it is studied how
different solutions of one instance vary. Lesser ζ means the algorithm is able
to reproduce a result close to an average result more often. With higher ζ,
results run on the same one instance differ more than if there would be lower
scatter. For example, in figure 3.6 belonging to experiment 3.4.3, high ζ can be
observed with lower values of ηmax, particularly with ηmax = 1000, decreasing
significantly afterwards.

Number of CE-CBS iterations and execution time: From a tech-
nical standpoint, the total execution time of the algorithm is an important
measure, as it can be telling about the computational load of the model. Pre-
liminary experiments have shown that the computational time depends largely
on the number of CE-CBS iterations run, as the part that takes the longest to
compute is the method checking the validity of a CE-CBS solution. Due to the
hardware limitations while testing, execution times can vary from a couple of
minutes to several hours, depending on the difficulty of problem that is being
solved. As some experiments are run on multiple machines, it can be noted that
the execution time is hardware dependent. For this reason, mainly the number
of CE-CBS iterations is discussed in this chapter. The model takes less exe-
cution time when running on the CloudFIT platform [FIT ČVUT, 2024] than
when running on the author’s machine with AMD Ryzen 5 5600H CPU and
16GB RAM.

The number of CE-CBS iterations can also be interesting from the point
of view concerning path quality, as in cases with many conflicts being solved,
the space becomes more constrained, allowing for example RRT* to search the
non-constrained parts more.

29

3. Experimental evaluation

3.4 Experiments

3.4.1 Empty space with increasing number of agents - grid
pattern

The first experiment shows how an increasing number of agents n affects
the individual path lengths of the agents in an environment without static
obstacles. Each of the agent’s paths has the same optimal length denoted by
Euclidean distance from a start position to a goal position, not considering
other agents.

Environment dimensions (540, 540)
Number of agents n {2, 4, 6, 8, 10}
Max nodes ηmax 4000
Min nodes ηmin ηmax/5
Reducing rate σ 10
Min angle αmin 90
Smoothing s 0
Radius r 5

Table 3.1: Parameters of experiment 3.4.1 concerning parameter n

Parameter setting The tested values of n were 2, 4, 6, 8 and 10. For each
of these values, 20 iterations were run. These are shown in the box plot below.

Hypothesis As the number of agents grows, it should become more compli-
cated for them to avoid collisions, thus needing more iterations of CE-CBS to
be run. The collisions created by them may prevent agents from taking the
shortest path possible, and thus with a higher number of agents, the average
path length should rise.

(a) A case with n = 4 (b) A case with n = 10

Figure 3.2: Output examples for two different values of n. Agent starting
positions are marked as blue points, goal positions as green points and paths
as green lines.

30

3.4. Experiments

Figure 3.3: Boxplot graph depicting results of experiment 3.4.1. Each box is
for a different number of agents, with y axis representing average path costs
for one agent.

Results Figure 3.3 shows a boxplot graph resulting from this experiment.
The graph shows that in cases with fewer agents, such as n = 2, lower average
path costs were achievable, although the values were more scattered compared
to higher values such as n = 8 or n = 10.

Interpretation Although lower average path lengths were achieved, the lower
the value of n, the worst-case path length first decreased with increasing n, then
began to rise again with n > 6. It is possible that changing the values of some
parameters, such as the maximum number of RRT* nodes ηmax could affect the
scatter that occurred during experiments in the lower n. Further experiments
below focus on examining this possibility.

3.4.2 Empty space with increasing number of agents - star
pattern

Smaller numbers of agents were used in this experiment compared to
experiment 3.4.1, as the goal of this experiment was to test a scenario in which
all agents should collide at the same time in the same position, if they planned
an optimal path for themselves. Preliminary experiments have shown that for
more than 4 agents, this is a computationally expensive task, as large numbers
of conflicts arise from this scenario. Thus, cases with n = 2, 3, 4 agents were
tested.

31

3. Experimental evaluation

Environment dimensions (540, 540)
Number of agents n {2, 3, 4}
Max nodes ηmax 4000
Min nodes ηmin ηmax/5
Reducing rate σ 10
Min angle αmin 90
Smoothing s 0
Radius r 5

Table 3.2: Parameters of experiment 3.4.2 concerning parameter n

Parameter setting In this experiment, a similar setting as in the experiment
3.4.1 is used, with the difference being a pattern in which agents should move.
Their individual optimal solutions are arranged in a star-like manner, so that
they should collide at once in the centre of the map. Their initial and goal
positions are coordinates evenly spaced on a circle, with its centre being the
colliding position through which all agents should pass.

For this experiment, three different values of n were tested, with 10
iterations running for each of them.

(a) A case with n = 3 (b) A case with n = 4

Figure 3.4: Output examples for two different values of n. Agents’ paths are
arranged in a star-like pattern to provide one common conflict spot.

Hypothesis In the previous experiment, since paths were arranged in a grid-
like pattern, only pairs of agents were to collide at one time at one position.
This experiment sets to make them collide all at once. The hypothesis is that
the average path lengths will overall be higher than in the previous experiment,
as agents will need to avoid more collisions at once, therefore straying them
further from their optimal path.

Results Figure 3.5 shows that in case of n = 4, scatter between reached
values was significantly smaller than in the other cases. Although cases with
n = 3 were able to reach shorter path lengths, the smallest average of average
path lengths was reached in n = 4. Examples of two test runs for n = 3 and
n = 4 can be seen in figure 3.16.

32

3.4. Experiments

Figure 3.5: Boxplot graph depicting results of experiment 3.4.2. Each box is
for a different number of agents, with y axis representing average path costs
for one agent.

Interpretation One possible explanation for the overall success of n = 4
could possibly be attributed to the space pruning caused by CE-CBS. This al-
gorithm, by adding constraints prohibits RRT* nodes to be created at positions
which would break constraints. They therefore explore more of the remaining
space, allowing the path to be more optimised, as if a large number of con-
straints is present, a larger area is restricted and not searched through. The
more agents present in a test scenario, the more conflicts appeared, creating
more constraints.

3.4.3 Maximal number of RRT* nodes ηmax - empty space

Parameter ηmax is essential not only for the computational time of the
algorithm, but most importantly for increasing the path quality. The more
RRT* is allowed to search the environment, the more it optimises its paths and
approaches convergence to the optimal solution. As running RRT* without a
constrained value of ηmax could lead to potentially infinite computational time,
it is necessary to compromise between computational time and path quality.
This and the following experiments are set to determine which value of ηmax

maintains a realistic computational time, represented here by the number of
CE-CBS iterations on which it is directly dependent, while keeping the paths
as short as possible.

Parameter setting The agent setting is the same as in experiment 3.4.2
with n = 3, as 3 agents are also used in this experiment. 8 values of ηmax are

33

3. Experimental evaluation

Environment dimensions (540, 540)
Number of agents n 3
Max nodes ηmax {1000, 2000, ..., 8000}
Min nodes ηmin ηmax/5
Reducing rate σ 10
Min angle αmin 90
Smoothing s 0
Radius r 5

Table 3.3: Parameters of experiment 3.4.3 concerning parameter ηmax

Figure 3.6: Figure depicting results of experiment 3.4.3 showing relationship
between average path length per agent and ηmax.

tested, with 10 iterations per value.

Hypothesis The RRT* algorithm is proved to converge to an optimal solu-
tion with ηmax =∞ [Karaman and Frazzoli, 2011]. However, with constraints
in place, the paths should be longer than the optimal single-agent solution to
avoid collision, which is set to happen in the middle of the map. Therefore,
with increasing ηmax, the paths should generally become smoother. It is also
worth studying how the number of conflicts that arise will change depending
on ηmax. As lower values should result in paths prone to detours, collisions
may not occur at all, whereas paths closer to optimal solutions could provoke
more conflicts to arise.

Results As can be seen in Figure 3.6, sum of costs (y axis) decreases with
increasing ηmax. The scatter between values also decreases with increasing
ηmax. These changes become less apparent after ηmax ≥ 5000. The opposite

34

3.4. Experiments

(a) A case with ηmax = 1000 (b) A case with ηmax = 2000

(c) A case with ηmax = 3000 (d) A case with ηmax = 4000

(e) A case with ηmax = 6000 (f) A case with ηmax = 8000

Figure 3.7: Output examples for six different values of ηmax. Agent paths
are arranged in a star-like pattern as in experiment 3.4.2, with 3 agents being
present in the environment.

35

3. Experimental evaluation

Figure 3.8: Figure showing how the number of CE-CBS iterations changed
based on different ηmax.

appears to be true for the number of CE-CBS iterations, which means that
the number of CE-CBS nodes expanded during the course of the algorithm.
The dependence of CE-CBS iterations on ηmax is shown in Figure 3.8. As
ηmax increases, so does the number of iterations, also with higher scatter. This
becomes more apparent with ηmax ≥ 5000, with a large jump in both the values
reached and the scatter in ηmax = 7000. Examples of six outputs for six values
of ηmax are shown in Figure 3.22

Interpretation As higher values allow RRT* to explore the environment
more, it is able to provide a more path closer to the optimal path. With
paths approaching optimum however more often come situations where col-
lisions arise, as the setting of this experiment suggests. With lower values
of ηmax, agents did not collide as often because of frequent detours they take.
With more conflicts appearing, the space becomes more constrained and allows
RRT* to also explore non-constrained parts more.

3.4.4 Maximal number of RRT* nodes ηmax - large spaces
between obstacles

This experiment focuses on parameter ηmax as well as experiment 3.4.3.
This experiment, however, deals with an environment with several obstacles,
with two agents starting at each other’s goal locations. This means that their
optimal individual path should be the same, only reversed. However, this is
impossible, as they would collide in the middle. CE-CBS has to ensure that
no collisions happen, and thus at least one agent’s path has to be detoured

36

3.4. Experiments

to avoid the other agent. Collisions occur when two paths intersect and both
agents arrive at the intersection at a similar time, denoted by unsafe intervals.

Parameter setting Two agents are used in this scenario, with three obsta-
cles between them. Ten values of ηmax are tested, with 10 iterations per value.

Environment dimensions (550, 300)
Number of agents n 2
Max nodes ηmax {1000, 2000, ..., 10000}
Min nodes ηmin ηmax/5
Reducing rate σ 10
Min angle αmin 90
Smoothing s 0
Radius r 5

Table 3.4: Parameters of experiment 3.4.4 concerning parameter ηmax

Hypothesis As in 3.4.3, path lengths should decrease with increasing value
of ηmax. The scatter between them should decrease too, as when higher ηmax

will be set, larger space will be searched, decreasing the occurrence of detours.

Figure 3.9: Boxplot graph depicting results of experiment 3.4.4. Each box
represents sums of costs depending on values of ηmax.

Results Figure 3.9 shows that with increasing value of ηmax decrease both
the average path length and the scatter between individual results for each

37

3. Experimental evaluation

value. The most apparent differences are in the range 1000 ≤ ηmax ≤ 5000,
after which the decrease in path lengths slows down.

(a) A case with ηmax = 1000 (b) A case with ηmax = 2000

(c) A case with ηmax = 4000 (d) A case with ηmax = 6000

(e) A case with ηmax = 8000 (f) A case with ηmax = 10000

Figure 3.10: Output examples for six different values of ηmax.

Interpretation As the two agents approach each other, conflicts appear only
if they are close to each other in both position and time. With larger ηmax,
paths of both agents become more similar, as in an optimal case, and when
solving only a single-agent scenario, those paths should be the same. This can
be seen in figure 3.10. The two agents can meet in the central position on the
map. to ensure they avoid, paths take different directions around this position.

3.4.5 Agents on the same path - changing radius
This experiment visualises a scenario in which two agents would opti-

mally share a path, a starting node of one agent being the goal node of the
second agent and vice versa. As agents should collide along the middle of their
paths, they would have to navigate to avoid this area, but in a way which does
not create another area of conflict, meaning the two agents would not be able

38

3.4. Experiments

to dodge in the same direction. Agents have to take into account their bodies
and plan a path so that they don’t overlap at any time. This experiment stud-
ies different sizes of agent bodies to show how paths change depending on this
parameter.

Parameter setting Increasing sizes of agent bodies represented by the ra-
dius parameter r were tested. Ten iterations were performed for each tested
value. Several obstacles were present in the environment and agents were placed
in a way which made starting position of one agent the goal position of the
other agent. This was to make them plan a path that avoids overlapping with
the other agent body.

Environment dimensions (550, 300)
Number of agents n {2, 4, 6, 8, 10}
Max nodes ηmax 4000
Min nodes ηmin ηmax/5
Reducing rate σ 10
Min angle αmin 90
Smoothing s 0
Agent radius r {5, 6, ..., 10}

Table 3.5: Parameters of experiment 3.4.5 concerning parameter r

Hypothesis Increasing the radius r should make it more difficult for the
agents to not overlap at any time. They should plan longer detours, the larger
they are to accommodate their bodies. This should lead to increased path
lengths with higher values of r.

Results Sum of costs increased with increasing r without any exceptions.
The scatter between values decreased slightly.

Interpretation As radius r increased, agents did in fact plan longer detours
around the part of the environment where they would meet to accommodate
their sizes. The slight decrease in scatter could be attributed to the fact that
with larger bodies, agents have to both maintain larger distance from static
obstacles and set larger unsafe intervals, thus pruning the search space more
with increasing r.

3.4.6 Smoothing parameter s - empty space

This experiments tests the minimal value of the smoothing parameter
s. The higher its value, the smoother the path, although it is farther from the
original path planned by RRT*. This does not necessarily have to be a disad-
vantage, as in all scenarios tested in this work, a constrained value of maximal
number of RRT* nodes is set. This may keep the algorithm from converging
to an optimal solution, and additional path smoothing could potentially help
shorten these sub-optimal paths.

39

3. Experimental evaluation

Figure 3.11: Results of experiment 3.4.5 with increasing value of agent radius
r.

(a) A case with r = 5 (b) A case with r = 7

(c) A case with r = 8 (d) A case with r = 10

Figure 3.12: Output examples for four different values of r.

40

3.4. Experiments

Environment dimensions (540, 540)
Number of agents n 3
Max nodes ηmax 3000
Min nodes ηmin ηmax/5
Reducing rate σ 10
Min angle 90
Smoothing s {0, 1, ..., 4}
Radius r 5

Table 3.6: Parameters of experiment 3.4.6 concerning parameter s.

Parameter setting For this experiment, the lower value of ηmax = 3000
was purposefully used to illustrate how increasing s will manage paths prone
to frequent detours. Ten iterations were performed for each value of s. Agents
were once again set to move in a star-shaped manner, forcing them to collide
were they to plan a path converging to optimum.

Hypothesis It is possible that combining higher value of s and lower value
of ηmax may yield similar results in terms of path quality as cases studied
previously, where higher ηmax and s = 0 values were used. This means that
with increasing s, average path lengths should be shorter.

(a) A case with s = 0 (b) A case with s = 4

Figure 3.13: Output examples for two different values of s. Agents’ paths are
arranged in a star-like pattern to provide one common conflict spot.

Results Highest scatter is present in s = 0, with averages of average sum
of costs decreasing with increasing s, with the exception of s = 0. Both the
lowest reached average sum of costs and average of these values was reached in
s = 4.

Interpretation Although changes in path lengths between different values
of s are not as high as for example changes in values of ηmax, results suggest
that increasing s does shorten paths. It is though necessary to point out that
this is in an environment without static obstacles which may require paths to

41

3. Experimental evaluation

Figure 3.14: Boxplot graph depicting results of experiment 3.4.6.

contain several turns. In those environments, smoothing could potentially lead
to increased collisions with static environment. These cases are studied below.

3.4.7 Smoothing parameter s – large obstacles

Parameter setting Parameters in this experiment are set the same as in
experiment 3.4.6, but using a map with several obstacles in which two agents
move in direction against each other, start position of each agent being the
goal position of the other agent.

Environment dimensions (550, 300)
Number of agents n 3
Max nodes ηmax 3000
Min nodes ηmin ηmax/5
Reducing rate σ 10
Min angle 90
Smoothing s {0, 1, ..., 4}
Radius r 5

Table 3.7: Parameters of experiment 3.4.7 concerning parameter s

Hypothesis Experiment 3.4.6 has shown that increasing s might shorten the
paths. Environment used in this experiment however includes several static
obstacles, which may influence how the path quality evolves.

42

3.4. Experiments

Figure 3.15: Boxplot graph depicting results of experiment 3.4.7 concerning
parameter s.

(a) A case with s = 0 (b) A case with s = 4

Figure 3.16: Output examples for two different values of s. Agents move in
direction against each other in an environment with several obstacles.

Results The sum of costs on average decreased between s = 0 and s = 1, but
after that it continued to increase again. The least amount of scatter between
values is in s = 2, but is apparent in all other values tested.

Interpretation Contrary to experiment 3.4.6, path lengths showed rising
trend in this experiment with the exception of s = 0 having higher average
sum of costs than s = 1 and s = 2. This may mean that while some values of
s > 0 may be suitable for this setting, but unlike in a setting with no obstacles
high values of s do not yield better results. Therefore it might be better to
refrain from using higher values of s in scenarios with static obstacles present.

43

3. Experimental evaluation

3.4.8 Increasing minimal angle αmin - 2 agents
The parameter αmin signifies the lowest possible angle between the two

neighbouring path segments. The higher it is, the less sharp turns there should
be on the path.

Environment dimensions (540, 540)
Number of agents n 2
Max nodes ηmax 10000
Min nodes ηmin ηmax / 5
Reducing rate σ 10
Min angle αmin {80, 85, ...120}
Smoothing s 0
Radius r 5

Table 3.8: Parameters of experiment 3.4.8 concerning parameter αmin.

Parameter setting In this scenario, two agents were used. Nine different
values of αmin were tested, with 10 iterations run per instance. The base value
of αmin was set as αmin = 90◦ in other experiments. Agents move in a maze
map with several low-width obstacles. This environment should force agents
to plan a path containing sharp turns, should the value of αmin allow them to.

Hypothesis The sum of costs could increase with increasing αmin, as with
lower values, agents may use sharper turns around the narrow obstacles to
traverse a shorter path.

Results Figure 3.20 shows, that between values of 80 and 110, both sum of
costs and scatter have oscillated, providing no definite result. However, between
the values of αmin ∈ {110, 115, 120}, the sum of costs has notably risen, with
the scatter in value αmin = 120◦ being higher than the lower values.

Interpretation The results suggest that up until a certain value, parameter
αmin could have little influence over the path length. This could be beneficial
for allowing the movement to be more constrained, with agent using less sharp
turns. However, as a sharp path cost rise can be noted in αmin > 110, an
upper bound could be set should path lengths and variability between reached
values get to significantly higher values, as is the case with αmin = 120◦.

This experiment was the first where more iterations of RRT* had to be
run because the algorithm was unable to adjust an angle. In these cases, ηmax

is lowered to produce a less optimal result, which on the other hand might
bypass an obstacle from a greater distance, avoiding the sharp angle problem.
This was discussed in Section 2.2.1.1. However, as these experiments have
shown, mainly due to values of ηmin, faulty cases were produced in some runs
where αmin was set to large values such as αmin = 120◦. As the iterations were
lowered too much and too quickly, no valid path was found before ηmax was
lowered to a value that made it impossible for RRT* to find the goal position.
To combat this, ηmin can be increased so that a valid result is guaranteed.
Another way is to slow down the pace by which ηmax is lowered. This was

44

3.4. Experiments

Figure 3.17: Boxplot graph depicting results of experiment 3.4.8 concerning
parameter αmin.

previously a static value, and the new ηmax was set as ηmax = ηmax − ηmax

10 .
A new parameter reducing rate σ is introduced instead of the denominator 10
to make the tuning of this process possible.

With this, it may still be possible for RRT* to return a path that breaks
an angle constraint if it is still unable to adjust all angles and αmin is set high.
As these results appeared mainly in cases with αmin ≥ 120◦, it sets an upper
bound to the range of αmin.

To ensure that the angle conditions are met every time, a modification
was made to the lower level of the CE-CBS function, originally shown in the
algorithm 5. Now after lowering ηmax the maximal amount, RRT* would not
return a final result, but iterate again until it finds a suitable solution. This
only influences the cases where a solution would not be found otherwise.

Figure 3.19 presents two examples of a single-agent run, where in case of
3.19a angles were adjusted successfully, but in case of 3.19b ηmax was lowered
too much and no solution was found.

3.4.9 Increasing minimal angle αmin - 4 agents

This experiment follows modifications suggested in experiment 3.4.8,
where in response to an emerging issue causing RRT* searching too small of a
portion of the environment, algorithm 6 was modified to ensure that the space
is searched properly until a solution is found. This experiment is the first to
use this setting along with the user modifiable parameter σ, which controls
how fast ηmax decreases between iterations if a solution is not found.

45

3. Experimental evaluation

(a) A case with αmin = 80◦ (b) A case with αmin = 95◦

(c) A case with αmin = 110◦ (d) A case with αmin = 120◦

Figure 3.18: Output examples for four different values of αmin.

Parameter setting The experiment 3.4.8 suggested an upper bound of αmin =
120◦, in which the algorithm had problems in achieving a viable solution. As
this was resolved by modifying the algorithm 6, the maximum value of αmin

studied here was raised to αmin = 125◦.
Four agents are present at the start in each corner of the map, and for

each of these agents, their goal positions lie on a diagonal in an opposite corner
of the map. For example, if an agent’s starting position is placed at (20, 20),
its goal position is (520, 520). This means that two pairs of agents arise, where
one agent’s start position is the other agent’s goal position, and vice versa.

Hypothesis Based on results of experiment 3.4.8, the values here could os-
cillate around the same value and the scatter range, with an increase around
αmin = 120◦. However, a pair of agents will also have to avoid themselves
when traversing a similar path in opposite directions, thus possibly altering
the result.

46

3.4. Experiments

(a) An example where αmin condition was
successfully met.

(b) An example where a solution was not
found.

Figure 3.19: Output examples for cases with one agent, ηmax = 10000 and
αmin = 125◦. The black line represents the paths found; the red lines connect
the vertices of the RRT* tree.

Environment dimensions (540, 540)
Number of agents n 4
Max nodes ηmax 6000
Min nodes ηmin ηmax / 2
Reducing rate σ 20
Min angle αmin {80, 85, ...125}
Smoothing s 0
Radius r 5

Table 3.9: Parameters of experiment 3.4.9 concerning parameter αmin.

Results The highest sums of costs were reached in αmin = 80◦, where the
overall average of these values was the highest. In addition, the lowest scatter
was observed in this case, with values being progressively more spaced out,
with the exception of αmin = 105◦.

Interpretation Unlike experiment 3.4.8, the values here do not show a defi-
nite increase in the sum of costs and show a higher scatter and a wider range of
values reached. This can be attributed to the two pairs of agents on the same
path, which may have a higher impact on path costs and provide a higher vari-
ety of results. Despite this, it seems that except for values such as αmin = 105◦,
the averages of the sum of costs have a mostly decreasing trend, with scatter
slightly increasing with increasing αmin.

3.4.10 Path planning in narrow crossing space
This experiment is to test path planning in a setting where a conflict

is probable and difficult to avoid. This is represented by a map with two
perpendicular narrow passages crossing in the middle. Two agents are present
in this experiment, one traversing each narrow passage. If they were to plan

47

3. Experimental evaluation

Figure 3.20: Results of experiment 3.4.9 concerning parameter αmin.

an optimal path that did not take the other agent into account, they would
collide in the middle of the map. As there are limited possibilities of collision
avoidance, this experiment aims to study the model’s behaviour in this type of
environment.

Parameter setting Two agents are moving in two narrow hallways crossing
in the centre of the environment. Six different values of ηmax are tested here to
see how well they can avoid each other based on the quality of their individual
paths. Ten iterations were run for each instance.

Environment dimensions (240, 240)
Number of agents n 2
Max nodes ηmax 150, 200, ..., 400
Min nodes ηmin ηmax / 2
Reducing rate σ 20
Min angle αmin 90
Smoothing s 0
Radius r 5

Table 3.10: Parameters of experiment 3.4.10.

Hypothesis As previous experiments have shown, the sum of costs tends
to decrease with increasing ηmax, which can also lead to an increased amount
of collisions. It is therefore necessary to find a middle ground between path
quality and computational load. If several hundreds of CE-CBS iterations were
necessary, that iteration would take hours to complete.

48

3.4. Experiments

(a) A case with αmin = 80◦ (b) A case with αmin = 95◦

(c) A case with αmin = 110◦ (d) A case with αmin = 125◦

Figure 3.21: Output examples for four different values of αmin in experiment
3.4.9 with four agents.

Results Figure 3.23 shows that with increasing ηmax, the sum of costs first
increases from ηmax = 150 to ηmax = 200, then begins to decrease. However,
these changes are only in the matter of units. Scatter is also significantly lower
with higher ηmax, starting with ηmax = 250. Figure 3.24 shows the number
of CE-CBS iterations performed for instances with different ηmax. In case of
values from ηmax = 150 to ηmax = 300, the whole computation would take tens
of seconds to several minutes, as the number of iterations was lower. However,
from ηmax = 350, the number of CE-CBS iterations increased in some cases to
hundreds of iterations, making the computation take over eight hours in the
outlaying case.

Interpretation From these results it seems that an upper bound must be
set to ηmax to prevent long computational times. The optimal value should
depend on the environment. Here, from figure 3.24 it seem that ηmax should
be no more than 300, while from 3.23, it seems that better, more consistent
results are reached with ηmax ≥ 250. Therefore, the best value of ηmax in this

49

3. Experimental evaluation

(a) A case with ηmax = 150 (b) A case with ηmax = 250

(c) A case with ηmax = 300 (d) A case with ηmax = 400

Figure 3.22: Examples of four cases with different ηmax.

environment could be ηmax ∈ [250, 300].

3.4.11 Agents on the same path – hall map

In this experiment, two agents are placed against each other in an
obstacle-free path, a narrow hallway. These agents should switch positions,
meaning that one agent’s start position is the other agent’s goal position. As
previous experiments have shown, this is easily achievable. This experiment
will focus more on the computational load than on the sum of costs itself. The
focus is on the dimension marking the width of the hall, which denotes how
much space the two agents have to avoid each other. The lower it is, the closer
they have to get to each other. The goal of this experiment is to find out how
the number of CE-CBS iterations which directly influences the computational
time changes based on the amount of free space agents that get to have around
them.

Parameter setting Previous experiments have established that if the di-
mensions of the environment change, so must ηmax, to keep balance between
the sum of costs and the number of CE-CBS iterations, and thus the com-
putational time. To get an idea of what these values may be in the case of
the narrow hall environment, a preliminary experiment was performed on the
case where the width of the environment was set to y = 200. The results of

50

3.4. Experiments

Figure 3.23: Result of experiment 3.4.10 depicting the relationship between the
sum of costs and ηmax.

Figure 3.24: Result of experiment 3.4.10 depicting the relationship between
number of CE-CBS iterations and ηmax.

this experiment can be seen in figures 3.25 and 3.26. It can be seen that the
sum of costs decreases with increasing ηmax, but these differences are mainly

51

3. Experimental evaluation

Environment dimensions (200, {25, 50, ..., 200})
Number of agents n 4
Max nodes ηmax {750, 1000, ..., 2500}
Min nodes ηmin ηmax/2
Reducing rate σ 20
Min angle αmin 90
Smoothing s 0
Radius r 5

Table 3.11: Parameters of experiment 3.4.11

Figure 3.25: Result of preliminary experiment for experiment 3.4.11 depicting
the relationship between the sum of costs and ηmax.

in units. For the number of CE-CBS iterations, this value sharply increases
with ηmax ≥ 3000. Due to this, the value of ηmax was set as ηmax = 2500 for
the highest value studied of y = 200. For lower values, ηmax was chosen to
decrease by 10 units for each point of width y. This means that for the lowest
value of y = 25, ηmax = 750.

Hypothesis As ηmax is adjusted for every y, both the sums of costs and
the iterations of CE-CBS should reach similar values for different y. If this
is not the case, then the relationship between ηmax and y should be defined
differently to better represent the different search scenarios.

Results Figure 3.27 shows the values reached for the sum of costs. It can be
seen that the values move mostly in the range of (555, 560). This is the case for
all values of y without severe outliers. On the other hand, figure 3.28, depicting

52

3.4. Experiments

Figure 3.26: Result of preliminary experiment for experiment 3.4.11 depicting
the relationship between number of CE-CBS iterations and ηmax.

the number of CE-CBS iterations shows that with y = 25, significantly higher
values and scatter were reached. Example runs are shown in figure 3.29.

Figure 3.27: Resulting sum of costs of experiment 3.4.11.

53

3. Experimental evaluation

Figure 3.28: Resulting numbers of CE-CBS iterations of experiment 3.4.11.

(a) A case with y = 25 and ηmax = 750 (b) A case with y = 50 and ηmax = 1000

(c) A case with y = 125 and ηmax = 1750 (d) A case with y = 200 and ηmax = 2500

Figure 3.29: Examples of four cases with different width of the hallway y.

Interpretation Due to the difference between the number of CE-CBS iter-
ations in the case of y = 25 and other values studied, it seems that the chosen
ηmax = 750 for this case was set too high, as it is the only case with high
computational time, as in other cases, the number of CE-CBS iterations was
mostly kept below 10. This suggests that ηmax was chosen appropriately for
these cases, as this value is very low and the sums of costs themselves vary only
by units. Another possible cause of the outlaying y = 25 is the fact that, espe-
cially in this most narrow environment, agents have little space to avoid each

54

3.5. Discussion

other, as they both have a diameter of 10. This makes it more likely for them
to collide, although they do not seem to share this issue in y = 50, which is the
second most narrow map. These results suggest that it is indeed necessary to
have ηmax depend on the size of the environment to obtain consistent results
both in path costs and computational time.

3.5 Discussion

The experiments have shown that the model can adapt to several differ-
ent types of environment and that the parameters of the model can be adjusted
to solve a specific scenario. It was shown that of the parameters studied, the
parameter of the maximum number of RRT * nodes ηmax had the highest
impact on the quality of the solution. The computational time is tied to the
number of CE-CBS iterations, so when more conflicts arise while planning,
the computational load is higher, as RRT* is re-planned several times. The
duration of this computation is also influenced by ηmax. It was shown that in
cases with a higher number of collisions, ηmax can be supplemented to some
extent, as collisions prune the search space and allow RRT* to search more of
the unconstrained part of the environment.

Based on the results of the experiments, it seems that agents are able to
navigate both narrow hallways and spaces where multiple conflicts can occur
at once without colliding, while still searching for the shortest path. The
agents can move on smooth curves while satisfying various angle constraints
and avoiding both other agents and static obstacles.

55

Conclusion

The goal of this work was to propose a method for collision-free multi-
agent path finding in continuous environment. A Continuous-Environment
Conflict-Based Search (CE-CBS) algorithm was proposed, which is based on ex-
isting CCBS [Andreychuk et al., 2022] and RRT* [Karaman and Frazzoli, 2011]
algorithms while also using a smoothing mechanism. Agents in this model
communicate via CE-CBS and plan conflict-free paths. Individual paths are
planned using RRT*, which is modified to take CE-CBS constraints and kine-
matic constraints into the account. The output of this algorithm is then
smoothed with B-spline curves.

Various parameters of the proposed model were studied to determine
how its behavior changes based on both their setting and on the environment
and agent positioning. Agents were shown to be able to navigate planned
sets of smooth curves while keeping the path free from any obstacles, both
static and dynamic, where dynamic obstacles are other agents present in the
environment.

Future work should entail extending the model to contain a wider range
of kinematic constraints, but also nonholonomic constraints, to more closely
approach reality-based scenarios, where for example several autonomous non-
holonomic vehicles may be present.

57

Bibliography

[Andreychuk et al., 2021] Andreychuk, A., Yakovlev, K., Boyarski, E., and
Stern, R. (2021). Improving continuous-time conflict based search.

[Andreychuk et al., 2022] Andreychuk, A., Yakovlev, K., Surynek, P., Atzmon,
D., and Stern, R. (2022). Multi-agent pathfinding with continuous time.
Artificial Intelligence, 305:103662.

[Ayawli et al., 2019] Ayawli, B., Mei, X., Shen, M., Appiah, A., and Kyeremeh,
E. F. (2019). Optimized rrt-a* path planning method for mobile robots in
partially known environment. Information Technology And Control, 48:179–
194.

[Bonabeau, 2002] Bonabeau, E. (2002). Agent-based modeling: Methods and
techniques for simulating human systems. Proceedings of the National
Academy of Sciences, 99(suppl 3):7280–7287.

[Cao et al., 2023] Cao, N., Yi, G., Zhang, S., and Qiu, L. (2023). A multi-
objective path-smoothing algorithm based on node adjustment and turn-
smoothing. Measurement and Control, 56(7-8):1187–1201.

[Cohen et al., 2021] Cohen, L., Uras, T., Kumar, T. K. S., and Koenig, S.
(2021). Optimal and bounded-suboptimal multi-agent motion planning. In
Symposium on Combinatorial Search.

[Dubins, 1957] Dubins, L. E. (1957). On curves of minimal length with a
constraint on average curvature, and with prescribed initial and terminal
positions and tangents. American Journal of Mathematics, 79(3):497–516.

[Eshtehardian and Khodaygan, 2022] Eshtehardian, A. and Khodaygan, S.
(2022). A continuous rrt*-based path planning method for non-holonomic
mobile robots using b-spline curves. Journal of Ambient Intelligence and
Humanized Computing, 14.

[FIT ČVUT, 2024] FIT ČVUT (2024). CloudFIT.

[Garrido Carpio, 2018] Garrido Carpio, F. (2018). Two-staged local trajectory
planning based on optimal pre-planned curves interpolation for human-like
driving in urban areas. PhD thesis.

59

Bibliography

[Hart et al., 1968] Hart, P. E., Nilsson, N. J., and Raphael, B. (1968). A
formal basis for the heuristic determination of minimum cost paths. IEEE
Transactions on Systems Science and Cybernetics, SSC-4(2):100–107.

[He et al., 2016] He, L., Pan, J., and Manocha, D. (2016). Efficient multi-agent
global navigation using interpolating bridges. CoRR, abs/1607.07472.

[Jiang and Wu, 2019] Jiang, J. and Wu, K. (2019). Cooperative pathfinding
based on memory-efficient multi-agent RRT. CoRR, abs/1911.03927.

[Karaman and Frazzoli, 2011] Karaman, S. and Frazzoli, E. (2011). Sampling-
based algorithms for optimal motion planning. CoRR, abs/1105.1186.

[Lai et al., 2023] Lai, R., Wu, Z., Liu, X., and Zeng, N. (2023). Fusion algo-
rithm of the improved a* algorithm and segmented bézier curves for the path
planning of mobile robots. Sustainability, 15:2483.

[Lan and Di Cairano, 2015] Lan, X. and Di Cairano, S. (2015). Continuous
curvature path planning for semi-autonomous vehicle maneuvers using rrt.
In 2015 European Control Conference (ECC), pages 2360–2365.

[LaValle, 1998] LaValle, S. M. (1998). Rapidly-exploring random trees : a new
tool for path planning. The annual research report.

[Li et al., 2014] Li, J., Liu, S., Zhang, B., and Zhao, X. (2014). Rrt-a* motion
planning algorithm for non-holonomic mobile robot. In 2014 Proceedings of
the SICE Annual Conference (SICE), pages 1833–1838.

[Neto et al., 2010] Neto, A. A., Macharet, D. G., and Campos, M. F. M.
(2010). Feasible rrt-based path planning using seventh order bézier curves.
In 2010 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, pages 1445–1450.

[Piegl and Tiller, 1996] Piegl, L. and Tiller, W. (1996). The NURBS Book.
Springer-Verlag, New York, NY, USA, second edition.

[Russell and Norvig, 2020] Russell, S. and Norvig, P. (2020). Artificial Intelli-
gence: A Modern Approach. Prentice Hall, 4 edition.

[Savla et al., 2005] Savla, K., Frazzoli, E., and Bullo, F. (2005). On the point-
to-point and traveling salesperson problems for dubins’ vehicle. volume 2,
pages 786 – 791 vol. 2.

[SciPy, 2023a] SciPy (2023a). Scipy.interpolate.splev - SciPy v1.11.4. Manual.

[SciPy, 2023b] SciPy (2023b). Scipy.interpolate.splprep - SciPy v1.11.4. Man-
ual.

[Sederberg, 2012] Sederberg, T. W. (2012). The NURBS Book. Brigham Young
University.

[Sharon et al., 2014] Sharon, G., Stern, R., Felner, A., and Sturtevant, N. R.
(2014). Conflict-based search for optimal multi-agent pathfinding.

[Surynek, 2010] Surynek, P. (2010). An optimization variant of multi-robot
path planning is intractable. In AAAI.

60

Bibliography

[Surynek, 2020] Surynek, P. (2020). Swarms of mobile agents: From discrete
to continuous movements in multi-agent path finding. In 2020 IEEE In-
ternational Conference on Systems, Man, and Cybernetics (SMC), pages
3006–3012.

[Čáp et al., 2013] Čáp, M., Novák, P., Vokř́ınek, J., and Pěchouček, M. (2013).
Multi-agent rrt*: Sampling-based cooperative pathfinding (extended ab-
stract). CoRR, abs/1302.2828.

[Čáp et al., 2015] Čáp, M., Vokř́ınek, J., and Kleiner, A. (2015). Complete
decentralized method for on-line multi-robot trajectory planning in valid
infrastructures. CoRR, abs/1501.07704.

[Verbari, 2017] Verbari, P. (2017). Multi-RRT* : a sample-based algorithm for
multi-agent planning. PhD thesis.

[Váňa and Faigl, 2015] Váňa, P. and Faigl, J. (2015). On the dubins traveling
salesman problem with neighborhoods. pages 4029–4034.

[Walker et al., 2018] Walker, T. T., Sturtevant, N. R., and Felner, A. (2018).
Extended increasing cost tree search for non-unit cost domains. In Pro-
ceedings of the Twenty-Seventh International Joint Conference on Artificial
Intelligence, IJCAI-18, pages 534–540. International Joint Conferences on
Artificial Intelligence Organization.

61

Appendix A
List of used shortcuts

CBS Conflict-Based Search

CCBS Continuous Conflict-Based Search

CE-CBS Continuous-Environment Conflict-Based Search

MAPF Multi-Agent Path Finding

RRT Rapidly Exploring Random Tree

63

Appendix B
Contents of attachments

readme.txt.........................the file with attachments description
src..the directory of source codes

impl....................................the directory of the program
thesis...............the directory of LATEX source codes of the thesis

img....................................the thesis figures directory
*.tex.....................the LATEX source code files of the thesis

text...the thesis text directory
thesis.pdf the Diploma thesis in PDF format

65

	Introduction
	Background
	Multi-agent Path Finding
	Discrete MAPF
	Continuous Time MAPF
	Smooth Continuous MAPF - SC-MAPF

	Discrete CBS algorithm
	CCBS - Continuous Time CBS
	SMT-CBS and COBRA algorithms

	RRT and RRT* algorithms
	RRT* modifications

	Path smoothing
	B-spline curves
	Existing path planning algorithms using smoothing

	Proposed model
	CBS in continuous environment
	Redefining conflicts

	RRT*
	CE-CBS and kinematic constraint satisfaction
	Minimum angle constraint

	Path smoothing

	Implementational details

	Experimental evaluation
	Parameters
	Maps
	Measures of solution quality
	Experiments
	Empty space with increasing number of agents - grid pattern
	Empty space with increasing number of agents - star pattern
	Maximal number of RRT* nodes max - empty space
	Maximal number of RRT* nodes max - large spaces between obstacles
	Agents on the same path - changing radius
	Smoothing parameter s - empty space
	Smoothing parameter s – large obstacles
	Increasing minimal angle min - 2 agents
	Increasing minimal angle min - 4 agents
	Path planning in narrow crossing space
	Agents on the same path – hall map

	Discussion

	Conclusion
	Bibliography
	List of used shortcuts
	Contents of attachments

