
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

Probabilistic and Machine Learning Models for Anomaly

Detection in Time Series Data

Bc. Anna Husieva

Ing. Vojtěch Šalanský, Ph.D.

Informatics

Knowledge Engineering

Department of Applied Mathematics

until the end of summer semester 2024/2025

Instructions

1) Review and compile relevant research articles and papers on both probabilistic and

machine learning methods for anomaly detection in time series data such as [1, 2].

2) Implement at least two probabilistic models and two machine learning models

tailored for time series data and evaluate their performance on several public available

datasets such as [3, 4, 5].

3) Investigate the strengths and weaknesses of choosen models across diverse anomaly

scenarios.

4) Propose and implement a method that combines probabilistic and machine learning

models. Determine its effectiveness in enhancing anomaly detection performance

across different types of anomalies. Compare the results of the proposed method with

the selected models mentioned above.

[1] Schmidl, Sebastian, Phillip Wenig and Thorsten Papenbrock. “Anomaly Detection in

Time Series: A Comprehensive Evaluation.” Proc. VLDB Endow. 15 (2022): 1779-1797.

[2] Braei, Mohammad and Sebastian Wagner. “Anomaly Detection in Univariate Time-

series: A Survey on the State-of-the-Art.” ArXiv abs/2004.00433 (2020)

[3] Lavin, Alexander and Subutai Ahmad. “Evaluating Real-Time Anomaly Detection

Algorithms -- The Numenta Anomaly Benchmark.” 2015 IEEE 14th International

Conference on Machine Learning and Applications (ICMLA) (2015): 38-44.

Electronically approved by Ing. Magda Friedjungová, Ph.D. on 22 December 2023 in Prague.

[4] Phillip Wenig, Sebastian Schmidl, and Thorsten Papenbrock. TimeEval: A

Benchmarking Toolkit for Time Series Anomaly Detection Algorithms. PVLDB, 15(12): 3678

- 3681, 2022

[5] A Labeled Anomaly Detection Dataset (ydata-labeled-time-series-anomalies-v1_0),

Yahoo! Webscope Program. 2020 http://labs.yahoo.com/

Electronically approved by Ing. Magda Friedjungová, Ph.D. on 22 December 2023 in Prague.

Master’s thesis

Probabilistic and Machine Learning
Models for Anomaly Detection in Time
Series Data

Bc. Anna Husieva

Department of Applied Mathematics
Supervisor: Ing. Vojtěch Šalanský, Ph.D.

May 8, 2024

Acknowledgements

First and foremost, I would like to express my heartfelt appreciation to my
thesis supervisor, Ing. Vojtěch Šalanský, Ph.D., whose invaluable guidance
and insightful advice, as well as his patience and willingness to help, have
significantly contributed to the success of my research.

I would also like to extend my deepest gratitude to my family, whose unwa-
vering support has been instrumental in enabling me to have the opportunity
to achieve this milestone. A special thanks to my father, whose resilience and
determination always inspired me to never give up.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on May 8, 2024

Czech Technical University in Prague
Faculty of Information Technology
© 2024 Anna Husieva. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Husieva, Anna. Probabilistic and Machine Learning Models for Anomaly De-
tection in Time Series Data. Master’s thesis. Czech Technical University in
Prague, Faculty of Information Technology, 2024.

Abstrakt

Tato práce zkoumá účinnost pravděpodobnostních technik a technik strojo-
vého učení při detekci anomálií v časových řadách. Přehled příslušné literatury
vytváří základ pro implementaci a vyhodnocení dvou pravděpodobnostních
modelů a tří modelů strojového učení. Prostřednictvím experimentování na
reálných i syntetických souborech dat jsou identifikovány silné a slabé stránky
těchto modelů v různých typech anomálií. Je navržen a implementován hyb-
ridní přístup, který integruje prvky z pravděpodobnostních metod a metod
strojového učení. Jeho účinnost při zvyšování výkonnosti detekce anomálií je
dál posuzována.

Klíčová slova Detekce anomálií, časové řady, pravděpodobnostní metody,
strojové učení, hybridní modely

Abstract

This thesis examines the effectiveness of probabilistic and machine learning
techniques in anomaly detection within time series data. A review of relevant
literature lays the groundwork for implementing and evaluating two probabilis-
tic and three machine learning models. Through rigorous experimentation on

vii

both real-world and synthetic datasets, the strengths and weaknesses of these
models are identified across various anomaly types. A hybrid approach is
proposed and implemented, integrating elements from both probabilistic and
machine learning frameworks. Its efficacy in enhancing anomaly detection
performance is assessed.

Keywords Anomaly detection, time series, probabilistic methods, machine
learning, hybrid models

viii

Contents

Introduction 1
Aim of the Thesis . 2
Structure of the work . 2

1 Fundamentals 3
1.1 Time series . 3

1.1.1 Properties of time series 3
1.2 Anomalies in time series . 6
1.3 Previous work . 7

2 Statistical anomaly detection approaches 11
2.1 ARIMA . 11

2.1.1 Autoregressive model . 11
2.1.1.1 Parameter estimation using least squares . . . 12
2.1.1.2 Training and anomaly detection 12

2.1.2 Moving average . 13
2.1.3 Autoregressive Integrated Moving Average Model 14

2.1.3.1 Stationarity testing 15
2.1.3.2 Determining the order of AR and MA 16
2.1.3.3 Seasonal ARIMA 17

2.2 Exponential Smoothing . 18
2.2.1 Single Exponential Smoothing 18

2.2.1.1 Weighted average form 19
2.2.1.2 Component form 20
2.2.1.3 Optimisation and anomaly detection 20

2.2.2 Holt’s linear trend method 21
2.2.2.1 Damped trend method 21

2.2.3 Holt-Winters’ seasonal method 22
2.2.3.1 Holt-Winters’ additive method 22

ix

2.2.3.2 Holt-Winters’ multiplicative method 23

3 Machine Learning and Deep Learning approaches 25
3.1 Gaussian mixture model . 25

3.1.1 Parameter estimation 26
3.1.2 Anomaly detection . 27

3.2 Isolation Forest . 28
3.3 Long-short term memory network 31

3.3.1 Artificial neural network 31
3.3.2 Feed-forward and recurrent network architecture 33

3.3.2.1 Feed-forward neural networks 34
3.3.2.2 Recurrent neural networks 35

3.3.3 LSTM architecture . 36
3.3.4 Model training . 38
3.3.5 LSTM-based anomaly detection 39

4 Experiments 41
4.1 Used tools . 41
4.2 Datasets Overview . 42

4.2.1 Yahoo Finance Dataset 42
4.2.2 Numenta Anomaly Benchmark Dataset 43
4.2.3 Synthetic GutenTAG Dataset 44

4.3 Experiment Design . 45
4.3.1 Data preprocessing . 45
4.3.2 Configuration of evaluated detection methods 46

4.3.2.1 ARIMA . 46
4.3.2.2 Exponential smoothing 47
4.3.2.3 Gaussian Mixture Model 47
4.3.2.4 Isolation Forest 47
4.3.2.5 LSTM . 48

4.3.3 Ensemble models output computation 49
4.3.4 Evaluation metrics and performance validation 49

4.4 Experiment results . 51
4.4.1 Results on Yahoo Finance dataset 52
4.4.2 Results on NAB dataset 54
4.4.3 Results on synthetic dataset 55

4.4.3.1 Point anomalies 55
4.4.3.2 Collective anomalies 57
4.4.3.3 Contextual anomalies 58

4.4.4 Discussion . 60

5 Conclusion 61

Bibliography 63

x

A Acronyms 67

B Contents of enclosed CD 69

xi

List of Figures

1.1 Types of anomalies. 7

3.1 The artificial neuron structure. 32
3.2 Feed-forward Architecture. 34
3.3 Recurrent Architecture. 35
3.4 Architecture of a typical LSTM block [1]. 36

4.1 Example of anomalies in Yahoo Finance dataset. 43
4.2 Example of anomalies in NAB dataset. 43
4.3 Example of anomalies in synthetic dataset. 44
4.4 Comparison of Precision-Recall Curve Scores for Statistical, Ma-

chine Learning, and Hybrid Models on the Training Set of Yahoo
Finance Dataset. 52

4.5 Comparison of Precision-Recall Curve Scores for Statistical, Ma-
chine Learning, and Hybrid Models on the Testing Set of Yahoo
Finance Dataset. 52

4.6 Comparison of Precision-Recall Curve Scores for Statistical, Ma-
chine Learning, and Hybrid Models on the Training Set of NAB
Dataset. 54

4.7 Comparison of Precision-Recall Curve Scores for Statistical, Ma-
chine Learning, and Hybrid Models on the Testing Set of NAB
Dataset. 54

4.8 Comparison of Precision-Recall Curve for Statistical, Machine Learn-
ing, and Hybrid Models on the Training Set of Synthetic Dataset
with Point Anomalies. 55

4.9 Comparison of Precision-Recall Curve for Statistical, Machine Learn-
ing, and Hybrid Models on the Testing Set of Synthetic Dataset
with Point Anomalies. 55

xiii

4.10 Comparison of Precision-Recall Curve for Statistical, Machine Learn-
ing, and Hybrid Models on the Training Set of Synthetic Dataset
with Collective Anomalies. 57

4.11 Comparison of Precision-Recall Curve for Statistical, Machine Learn-
ing, and Hybrid Models on the Testing Set of Synthetic Dataset
with Collective Anomalies. 57

4.12 Comparison of Precision-Recall Curve for Statistical, Machine Learn-
ing, and Hybrid Models on the Training Set of Synthetic Dataset
with Contextual Anomalies. 59

4.13 Comparison of Precision-Recall Curve for Statistical, Machine Learn-
ing, and Hybrid Models on the Testing Set of Synthetic Dataset
with Contextual Anomalies. 59

xiv

List of Tables

4.1 Basic statistics about used datasets. 42
4.2 Confusion matrix. 49
4.3 Comparison of F1 Scores for Statistical, Machine Learning, and

Hybrid Models on the Training Set of Yahoo Finance Dataset. . . 52
4.4 Comparison of F1 Scores for Statistical, Machine Learning, and

Hybrid Models on the Testing Set of Yahoo Finance Dataset. . . . 52
4.5 Comparison of F1 Scores for Statistical, Machine Learning, and

Hybrid Models on the Training Set of NAB Dataset. 54
4.6 Comparison of F1 Scores for Statistical, Machine Learning, and

Hybrid Models on the Testing Set of NAB Dataset. 54
4.7 Comparison of F1 Scores for Statistical, Machine Learning, and

Hybrid Models on the Training Set of Synthetic Dataset with Point
Anomalies. 56

4.8 Comparison of F1 Scores for Statistical, Machine Learning, and
Hybrid Models on the Testing Set of Synthetic Dataset with Point
Anomalies. 56

4.9 Comparison of F1 Scores for Statistical, Machine Learning, and
Hybrid Models on the Training Set of Synthetic Dataset with Col-
lective Anomalies. 57

4.10 Comparison of F1 Scores for Statistical, Machine Learning, and
Hybrid Models on the Testing Set of Synthetic Dataset with Col-
lective Anomalies. 57

4.11 Comparison of F1 Scores for Statistical, Machine Learning, and
Hybrid Models on the Training Set of Synthetic Dataset with Con-
textual Anomalies. 59

4.12 Comparison of F1 Scores for Statistical, Machine Learning, and
Hybrid Models on the Testing Set of Synthetic Dataset with Con-
textual Anomalies. 59

xv

Introduction

Time series data, characterized by its sequential nature, presents unique chal-
lenges in the realm of anomaly detection. Outlier detection has become a
field of interest for many researchers and practitioners and is now one of the
main tasks of time series data mining. Outlier detection has been studied in
a variety of application domains such as credit card fraud detection, intrusion
detection, or fault diagnosis [2].

These anomalies can take various forms, including point anomalies, where
individual data points deviate significantly from the norm, and contextual
anomalies, where deviations occur in the context of specific conditions or
events. Additionally, collective anomalies involve deviations that occur collec-
tively in a group of data points, reflecting systemic abnormalities or patterns.

The number and variety of anomaly detection algorithms have grown sig-
nificantly over time. Since many of these solutions have been developed inde-
pendently and by different research communities, evaluating and comparing
the different approaches remains a challenge. For this reason, choosing the
best detection technique for a given anomaly detection task is a difficult chal-
lenge [3].

In recent years, researchers have turned to probabilistic and machine learn-
ing models to address the challenges associated with anomaly detection in time
series data [4]. Probabilistic models leverage statistical principles to model the
underlying distribution of normal behavior and identify deviations indicative
of anomalies. Machine learning algorithms offer powerful tools for learning
complex patterns and detecting anomalies in time series data [5].

The integration of probabilistic and machine learning frameworks presents
a promising avenue for enhancing anomaly detection performance in time se-
ries data. By combining these methodologies, researchers aim to leverage their
complementary strengths and address the diverse forms of anomalies present
in time series datasets [6].

The main goal of this thesis is to contribute to the advancement of anomaly
detection techniques in time series data by comprehensively reviewing existing

1

Introduction

literature, implementing and evaluating state-of-the-art models, investigating
their strengths and weaknesses across three anomaly types, and proposing
a novel hybrid approach. By addressing the challenges inherent in anomaly
detection within time series data, this research aims to provide practical solu-
tions and insights that can inform the development of more effective anomaly
detection systems in various domains.

Aim of the Thesis
The primary aim of this thesis can be summarized as follows:

1. Review and compile relevant research articles and papers on both prob-
abilistic and machine learning methods for anomaly detection in time
series data.

2. Implement at least two probabilistic models and two machine learning
models tailored for time series data and evaluate their performance on
several publicly available datasets.

3. Investigate the strengths and weaknesses of chosen models across diverse
anomaly types.

4. Propose and implement a method that combines probabilistic and ma-
chine learning models. Determine its effectiveness in enhancing anomaly
detection performance across different types of anomalies. Compare
the results of the proposed method with the selected models mentioned
above.

Structure of the work
This work is structured into five chapters. Chapter 1 covers the fundamentals
of time series data, anomaly detection, and the overview of previous work.
Chapter 2 focuses on statistical anomaly detection approaches. Chapter 3 ex-
plores machine learning techniques for anomaly detection. Chapter 4 presents
experimental investigations, detailing methodology, dataset selection, model
implementation, evaluation metrics, results, and analysis. Finally, Chapter 5
concludes the study by summarizing key findings.

2

Chapter 1
Fundamentals

1.1 Time series
Time series data is a fundamental component of many fields, including finance,
economics, signal processing, and environmental science. Understanding and
analyzing time series data is crucial for making predictions, identifying pat-
terns, and detecting anomalies. This chapter explores the concept of time
series data, its attributes, and its significance across different fields.

Time series is a set of observations Xt. The index t of Xt is referred to
as time, and Xt is considered as the state or output of a stochastic system at
time t.

Definition 1.1.1. Let (Ω,F ,P) be a probability space, where Ω is a set of
all possible outcomes, F is an event space, P is a probability function, and
T be a set of indices interpreted as time. A time series is defined as the set
Xt, t ∈ T , where Xt are random variables from (Ω,F ,P) [7].

1.1.1 Properties of time series
It is imperative to establish certain a priori structural assumptions regard-
ing the time series. If the variables Xt were entirely arbitrary, the sequence
(X1, . . . , Xn) would represent a single observation from an entirely unknown
distribution in Rn. Drawing conclusions about this distribution, let alone
predicting the distribution of future values Xn+1, Xn+2, . . ., would be insur-
mountably challenging.

One fundamental form of structure is stationarity, which manifests in two
primary types.

Definition 1.1.2. A time series is said to be strictly stationary if the joint
distribution of any finite subset of Xt1 , Xt2 , . . . , Xtn is invariant to shifts in
time. Mathematically, it holds that for all k, h and all t1, t2, . . . , tk ∈ T ,
(Xt1 , Xt2 , . . . , Xtk

) has the same distribution as (Xt1+h, Xt2+h, . . . , Xtk+h) [8].

3

1. Fundamentals

Definition 1.1.3. A time series {Xt}nt=1 is said to be weakly stationary if it
satisfies the following conditions:

• The expected value of the time series, denoted as µ, remains constant
over time.

µ = E(Xt) = E(Xt+h) for all t ∈ T, h ∈ N (1.1)

• The variance of the time series, denoted as σ2, remains constant over
time.

σ2 = Var(Xt) = Var(Xt+h) for all t ∈ T, h ∈ N (1.2)

• The autocovariance function, denoted as γ(h), depends only on the lag
h and remains constant over time. Mathematically, it holds that

Cov(Xt, Xt+h) = γ(h) = γ(−h) for all t ∈ T, h ∈ N (1.3)

where Cov(Xt, Xt+h) represents the covariance between the time series
values at times t and t + h [8].

The assumption of stationarity simplifies the modeling process by provid-
ing a stable foundation for analyzing past observations and making predic-
tions. In the context of anomaly detection, stationary time series allow for
the development of models that can effectively capture normal patterns and
behaviors.

However, many real-world time series exhibit non-stationary characteris-
tics due to various factors, including trends, seasonal patterns, and structural
changes. These non-stationarities pose significant challenges for anomaly de-
tection algorithms, as they may lead to false alarms or missed detections if
not properly accounted for [8].

Definition 1.1.4. A trend in a time series {Xt}nt=1 refers to a systematic
change or long-term pattern observed in the data over time. Mathematically,
a trend can be represented by a function f(t) that captures the underlying
trend component of the time series [9].

Definition 1.1.5. A linear trend is characterized by a constant rate of change
over time. It can be expressed as:

f(t) = αt + β, (1.4)

where:

• α represents the slope of the trend line,

• β represents the intercept of the trend line.

4

1.1. Time series

Definition 1.1.6. A non-linear trend exhibits a more complex pattern of
change over time, which cannot be captured by a simple linear function. It
may involve polynomial functions, exponential growth or decay, or other non-
linear patterns.

f(t) =
k∑

i=1
αigi(t), (1.5)

where gi(t) are basis functions representing different components of the non-
linear trend [9].

Linear trends are characterized by a constant rate of change over time,
represented by a straight line in the time series plot. On the other hand,
non-linear trends exhibit more complex patterns of change, which may in-
volve polynomial functions, exponential growth or decay, or other non-linear
patterns.

Anomaly detection algorithms need to account for trends to identify devia-
tions from the expected trend and flag potential anomalies. Machine learning
models, such as regression algorithms or time series decomposition techniques,
can be employed to capture and model trends in the data, enabling accurate
detection of anomalies associated with abrupt changes or shifts in the under-
lying trend.

Definition 1.1.7. Seasonality in a time series refers to periodic fluctuations
or patterns observed in the data at fixed intervals. These patterns typically
repeat over regular time intervals, such as daily, weekly, or yearly cycles [8].

Seasonality introduces additional complexity to the modeling process as it
reflects predictable patterns that need to be accounted for. Anomalies may
coincide with normal seasonal variations, making it challenging to differentiate
between expected and unexpected behavior. There are two main types of
seasonality.

Definition 1.1.8. Additive seasonality implies that the seasonal variations
remain constant regardless of the level of the time series [8]. Mathematically,
it can be expressed as:

Xt = mt + st + ϵt, (1.6)

where:

• mt represents the trend component.

• st represents the seasonal component.

• ϵt represents the error term or random noise.

5

1. Fundamentals

Definition 1.1.9. Multiplicative seasonality implies that the seasonal varia-
tions are proportional to the level of the time series. Mathematically, it can
be expressed as:

Xt = mt × st × ϵt, (1.7)

where:

• mt represents the trend component.

• st represents the seasonal component.

• ϵt represents the error term or random noise [8].

In summary, trends and seasonality are critical components of time series
data that significantly influence anomaly detection. Understanding and mod-
eling trends and seasonality accurately is essential for distinguishing between
normal variations and anomalous behavior in the time series data.

1.2 Anomalies in time series

In time series data, an anomaly or outlier can be termed as a data point which
does not follow the common collective trend or seasonal or cyclic pattern of
the entire data and is significantly distinct from the rest of the data. By
significant, most data scientists mean statistical significance, which in other
words, signifies that the statistical properties of the data point are not in
alignment with the rest of the series [10].

A time series anomaly is a sequence of data points (Xt1 , Xt2 , . . . , Xtk
) of

length j − i + 1 ≥ 1 that deviates concerning some characteristic embedding,
model, or similarity measure from frequent patterns in the time series [3].

There are different classifications of anomalies in time series data. The
most popular and used one was proposed in this article [11]. Visual repre-
sentation of these anomaly types is depicted in Figure 1.1. Point anomalies
represent individual data points that stand out from the rest of the dataset due
to factors such as measurement errors, sensor failures, or isolated events. Con-
textual anomalies occur when data points deviate from the expected pattern
within specific contexts or conditions. For instance, a sudden temperature
spike during the winter season would be considered a contextual anomaly.
Collective anomalies involve groups of data points exhibiting abnormal be-
havior collectively, indicating systemic issues or patterns within the dataset,
such as a surge in network traffic during a cyberattack. The former classifi-
cation features classes of anomalies that are not mutually exclusive, because
a collective anomaly can also be a contextual anomaly.

6

1.3. Previous work

0 20 40 60 80 100
Time

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Va
lu
e

Point anomaly

0 20 40 60 80 100
Time

−1.0

−0.5

0.0

0.5

1.0

Va
lu
e

Collective Anomalies

0 20 40 60 80 100
Time

−1.0

−0.5

0.0

0.5

1.0

Va
lu
e

Contextual Anomalies

Figure 1.1: Types of anomalies.

Understanding the characteristics of anomalies in time series data is essen-
tial for effective detection and analysis. However, it is imperative to consider
the quantification of anomaly severity. Anomaly scores serve as pivotal tools
in this regard, offering a quantitative measure of the degree of anomaly exhib-
ited by each data point. These scores are calculated based on various factors,
including the deviation from the expected pattern, significance relative to the
rest of the data, and contextual information.

1.3 Previous work
This chapter offers a thorough review of the existing literature, comprising
seminal research articles and survey papers that contribute significantly to
understanding anomaly detection techniques. Additionally, it emphasizes the
importance of hybrid approaches in addressing the challenges associated with
anomaly detection tasks.

Shaukat et al. (2021) [12] conducted a comprehensive review that cate-
gorizes anomaly detection techniques based on different types of anomalies.
Their analysis provides valuable insights into the strengths and limitations of
various methodologies, laying the groundwork for future research directions.

In the domain of time series forecasting, Zhang (2003) [13] introduced
a pioneering hybrid model that combines Autoregressive Integrated Moving
Average (ARIMA) with neural networks. While Zhang’s study primarily em-
phasizes forecasting applications, the hybrid methodology holds significant
relevance for anomaly detection tasks. Zhang’s findings underscore the effec-
tiveness of hybrid methodologies in capturing intricate temporal dynamics,
thereby paving the way for similar approaches in anomaly detection. How-
ever, it is worth noting that Zhang’s approach primarily utilizes feed-forward
neural networks (FFNN) in conjunction with ARIMA. In contrast, this thesis
will innovate by implementing a recurrent neural network (RNN) as part of
the hybrid model.

Braei and Wagner (2020) [7] conducted a comprehensive evaluation of var-
ious methodologies, providing valuable insights into their performance charac-

7

1. Fundamentals

teristics. Specifically, Braei and Wagner observed that statistical methods not
only exhibited superior anomaly detection accuracy but also boasted shorter
training and prediction durations compared to machine learning and deep
learning techniques. This advantage stems from the inherently simpler opti-
mization process of statistical algorithms, which entail fewer hyperparameters
to fine-tune.

Furthermore, Braei and Wagner’s investigation revealed a critical insight
regarding the performance of statistical methods in detecting different anomaly
types. While statistical approaches surpassed in identifying point and collec-
tive anomalies, they encountered challenges with contextual anomalies. In
contrast, deep learning approaches, particularly neural networks, showcased
greater adaptability in optimizing models for diverse anomaly types, result-
ing in higher AUC values, especially in scenarios dominated by contextual
anomalies.

The comparison conducted in Braei and Wagner’s study between statis-
tical, classical machine learning, and deep learning approaches provided a
comprehensive benchmark for evaluating anomaly detection techniques in uni-
variate time series data. This thesis at hand seeks to expand upon this work
by incorporating multiple hybrid models. By comparing the performance of
these hybrid approaches against traditional statistical and machine learning
methods, the thesis aims to offer a more nuanced understanding of anomaly
detection techniques across different anomaly types and datasets.

An empirical investigation conducted by Schmidl et al. (2022) [3] offers
valuable insights into the performance characteristics of various anomaly de-
tection techniques. In their comprehensive study, Schmidl et al. collected and
re-implemented 71 anomaly detection algorithms, representing a diverse spec-
trum of techniques. Through rigorous evaluation of 976 time series datasets,
they assessed the effectiveness, efficiency, and robustness of these algorithms.

Following related studies, Schmidl et al. found that despite the higher
computational effort required for training, deep learning approaches are not
yet competitive. The study also corroborates the notion that simple methods
yield performance almost as good as more sophisticated methods [3]. However,
the absence of a single algorithm that clearly outperforms others underscores
the need for further research in several key areas.

The study emphasizes the necessity for research on holistic and hybrid
anomaly detection systems. Such systems can leverage existing strengths to
detect a wider range of anomalies in time series data with varying character-
istics. Additionally, the study underscores the importance of enhancing the
reliability of anomaly detection algorithms, particularly in terms of robust-
ness and scalability. The sensitivity of most anomaly detection algorithms to
parameter settings highlights the need for research on auto-configuring and
self-tuning algorithms.

In summary, the incorporation of these seminal articles provides a concrete
understanding of existing methodologies in anomaly detection within time

8

1.3. Previous work

series data. By synthesizing existing literature and offering concrete insights,
this chapter lays the foundation for the proposed thesis’s contributions, aiming
to advance the field of anomaly detection and address real-world challenges.

9

Chapter 2
Statistical anomaly detection

approaches

Statistical anomaly detection approaches leverage methods to identify anoma-
lies in data by modeling the inherent stochastic nature of the underlying pro-
cesses. These methods prove particularly effective when dealing with dynamic
systems where normal behavior exhibits random variations. While acknowl-
edging the existence of other models within this domain, such as Hidden
Markov Models, it is important to note that their exploration falls beyond
the scope of this thesis.

2.1 ARIMA

2.1.1 Autoregressive model

One of the most basic stochastical models for univariate time series is the
Autoregressive model (AR).

Definition 2.1.1. The autoregressive model AR(p) determines the value yt

of a process at an arbitrary time step t using a linear combination of the p-last
values:

yt = c + ϕ1 · yt−1 + ϕ2 · yt−2 + ... + ϕp · yt−p + εt, (2.1)

where p is the order of the AR model.The weights ϕ = [c, ..., ϕp]T of the linear
combination are the model parameters. Furthermore, an AR model assumes
that this process is superimposed by white noise; i.e. the εt are assumed to
be uncorrelated with each other in time and identically distributed, with an
expected value of zero and finite variance σ2. This model is abbreviated as
AR(p) [14].

11

2. Statistical anomaly detection approaches

2.1.1.1 Parameter estimation using least squares

The autoregressive coefficients can be estimated using the least squares method,
a mathematical optimization technique that minimizes the sum of squared dif-
ferences between observed and predicted values.

Definition 2.1.2. Consider a time series comprising positive real values, and
our objective involves characterizing it using an autoregressive model of order
p. The aim is to estimate the regression coefficients denoted by ϕ [7]. Let X
represent the design matrix, Y denote the measurement vector, and ϵ stand
for the vector encompassing noise terms, specified as follows:

X =

1 x0 · · · xp−1
1 x1 · · · xp
...
1 xN−p · · · xN−1

 , Y =

xp

xp+1
...

xN

 , ϵ =

εp

εp+1
...

εN

 , ϕ =

c

ϕp
...

ϕ1

 . (2.2)

Then Y can be denoted as:
Y = Xϕ + ϵ. (2.3)

The least squares estimate of ϕ is given by:

ϕ̂ = (XT X)−1XT Y. (2.4)

2.1.1.2 Training and anomaly detection

AR models assume that the data is stationary. Thus, it is important to analyze
the data and transform it if necessary.

Following the training process of an Autoregressive model, the prediction
for each time point t, denoted as X̂t, can be obtained as the solution to the
AR model equation:

X̂t = ĉ +
p∑

i=1
ϕ̂iXt−i. (2.5)

Subsequently, the residual εt at time t is calculated as the difference between
the observed value Xt and the predicted value X̂t:

εt = Xt − X̂t. (2.6)

This residual, εt, serves as an indicator of the deviation between the model’s
prediction and the actual observation at time t [7]. The anomaly score ASt

for each time point is defined as the magnitude of the residual:

ASt = |εt|. (2.7)

12

2.1. ARIMA

The anomaly score quantifies the discrepancy between the predicted and
observed values, providing a measure of how anomalous the current observa-
tion is according to the trained AR model. A higher anomaly score suggests
a greater deviation and, consequently, a higher likelihood of the presence of
an anomaly.

In summary, the anomaly score (ASt) for each time point t in the time
series is calculated as the absolute value of the residual εt, reflecting the degree
of anomaly according to the Autoregressive model’s predictions.

2.1.2 Moving average
While the AR model considers Xt as a linear transformation of the last p
observations of a time series, the moving average Model (MA) considers the
current observation Xt as a linear combination of the last q random shocks.

Moving average processes find widespread use across diverse domains, no-
tably within econometrics. In this context, stochastic disruptions are ascribed
to governmental determinations, scarcities of pivotal resources, and, more con-
temporarily, elements such as unconventional events. These stochastic per-
turbations are prone to diffusion into subsequent temporal instances, albeit
not through direct means, as observed in the Autoregressive (AR) model.

Definition 2.1.3. The MA model with a preceding window of length q is also
called the MA process of order q or MA(q).

Xt = µ + εt + θ1εt−1 + θ2εt−2 + . . . + θqεt−q. (2.8)

In this model, µ is the mean of the time series, εt is the white noise error term,
and θ1, θ2, . . . , θq are parameters reflecting the weights of past error terms[7].

To apply Moving average models for anomaly detection, the parameters µ,
θ1, θ2, . . . , θq need to be estimated. This is typically done through statistical
methods such as Maximum Likelihood Estimation (MLE) or other optimiza-
tion techniques [7].

Once the model is trained, predictions X̂t for future time points can be
made using the estimated parameters. The residual at time t is then calculated
the same as for the AR model.

Anomalies are often associated with large residuals, indicating deviations
from the predicted values.

An anomaly score (ASt) can be defined based on the standard deviation
of residuals:

ASt = εt

σε
, (2.9)

where σε is the standard deviation of residuals.

13

2. Statistical anomaly detection approaches

2.1.3 Autoregressive Integrated Moving Average Model
Autoregressive Moving Average (ARMA) model is a fundamental tool in time
series analysis, often employed in various fields such as economics, finance,
and signal processing. Combining the concepts of autoregressive (AR) and
moving average (MA) models, ARMA seeks to capture the underlying pat-
terns and dynamics present in sequential data. The AR component accounts
for the linear dependency of a variable on its past values, reflecting the no-
tion that current observations are influenced by preceding ones. Meanwhile,
the MA component captures the dependency of the current observation on
past white noise errors, indicating short-term fluctuations or shocks affecting
the series, which is especially useful for modeling financial or economic data.
By integrating both components, ARMA aims to provide a comprehensive
framework for modeling and forecasting time series data, offering insights into
the inherent structure and behavior of the observed phenomena. Its versatil-
ity and effectiveness make it a cornerstone in statistical modeling, facilitating
rigorous analysis and prediction in diverse applications.

Definition 2.1.4. A time series {xt; t = 0,±1,±2, . . .} is ARMA(p, q) if it is
stationary and

xt = ϕ1xt−1 + · · ·+ ϕpxt−p + wt + θ1wt−1 + · · ·+ θqwt−q, (2.10)
with ϕp ̸= 0, θq ̸= 0, and σ2

w > 0. The parameters p and q are called the
autoregressive and the moving average orders, respectively. If xt has a nonzero
mean µ, α = µ (1− ϕ1 − · · · − ϕp) and the model is denoted as

xt = α + ϕ1xt−1 + · · ·+ ϕpxt−p + wt + θ1wt−1 + · · ·+ θqwt−q, (2.11)
where wt ∼ wn

(
0, σ2

w

)
. As previously noted, when q = 0, the model is called

an autoregressive model of order p, AR(p), and when p = 0, the model is called
a moving average model of order q, MA(q) [15].

Box and Jenkins [16] developed a practical approach to building ARIMA
models, which has a fundamental impact on the time series analysis and fore-
casting applications. The Box–Jenkins methodology includes three iterative
steps of model identification, parameter estimation, and diagnostic checking.
The basic idea of model identification is that if a time series is generated from
an ARIMA process, it should have some theoretical autocorrelation properties.
By matching the empirical autocorrelation patterns with the theoretical ones,
it is often possible to identify one or several potential models for the given
time series. Box and Jenkins [16] proposed to use the autocorrelation function
and the partial autocorrelation function of the sample data as the basic tools
to identify the order of the ARIMA model [13]. In the identification step, data
transformation is often needed to make the time series stationary. When the
observed time series presents trend and heteroscedasticity, differencing and
power transformation are often applied to the data to remove the trend and
stabilize the variance before an ARIMA model can be fitted [13].

14

2.1. ARIMA

2.1.3.1 Stationarity testing

This section introduces the concept of test statistics for assessing stationar-
ity. A notable challenge when testing stationarity in observations of natural
systems is the limited availability of realizations of the system under study,
rather than direct access to the system itself. Stationarity, as a property, per-
tains to the underlying process. Consequently, each test implicitly assumes
that the time series is representative of the system, offering only an upper
limit on the extent of stationarity violation.

Ascertaining the stationarity of a time series constitutes a routine pro-
cedure in autoregressive models. Mastery of the Augmented Dickey-Fuller
(ADF) test and the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test is imper-
ative for conducting thorough time series analysis.

The ADF test is a frequently employed statistical method utilized to ex-
amine the existence of a unit root within a time series. A unit root denotes
a feature of a time series process characterized by the perpetual increase in
both mean and variance over time, resulting in the series failing to converge
to a constant value, thus rendering it non-stationary [17].

∆yt = Φ0yt−1 + Φ1∆yt−1 + · · ·+ Φp∆yt−p + εt =

= Φ0yt−1 +
p−1∑
i=1

Φi∆yt−i + εt,
(2.12)

where, Φ0 = (Φ1 + Φ2 + · · ·+ Φp) − 1, Φi = (Φi+1 + Φi+2 + · · ·+ Φp) and∑p−1
i=1 Φiyt−i + εt is a lagged dependent variable.

H0 : Φ0 = 0 meaning time series contains a unit root.
H1 : Φ0 < 0 meaning time series does not contain a unit root.

(2.13)

The examination adheres to an asymmetric t distribution, wherein the
majority of values are expected to be negative. Subsequently, the calculated t
value is juxtaposed with the simulated critical values provided by Fuller. The
rejection of the null hypothesis is indicated by small values, as evident from
the hypotheses, where the alternative proposes values less than zero.

The KPSS test serves as a contrasting approach to the ADF test for assess-
ing stationarity and relies on linear regression. It decomposes the time series
into components such as deterministic trend, random walk, and stationary
error [17].

yt = rt + βt + εt, (2.14)

where, rt is random walk, βt is deterministic trend and, εt is stationary error
with zero mean.

rt = rt−1 + vt, (2.15)

15

2. Statistical anomaly detection approaches

where vt is i.i.d.
(
0, σ2)

.
If the random walk component is present, indicating non-stationarity, the

null hypothesis posits that the variance σ2 = 0, rendering the time series, yt,
trend stationary. Subsequently, the KPSS test examines whether a unit root
exists in rt when β ̸= 0. The corresponding hypotheses for this test are:

H0 : The time series is trend stationary.
H1 : The time series contains a unit root.

(2.16)

In scenarios where β = 0, the null hypothesis shifts to the time series being
level stationary.

When the data is stationary, it exhibits a constant intercept or remains
stationary around a fixed level. The test employs OLS regression to derive
the equation, with slight variations depending on whether one aims to test for
level stationarity or trend stationarity [8].

Both tests are used to test stationarity, but in some cases, they both give
contradictory results. There are 4 possible combinations of KPSS and ADF
test results.

1. If KPSS and ADF agree that the series is stationary, consider it station-
ary.

2. ADF finds a unit root, but KPSS finds that the series is stationary
around a deterministic trend. Then, the series is trend-stationary, and
it needs to be detrended, meaning differentiation should be applied.
Alternatively, a transformation may rid it of its trend.

3. ADF does not find a unit root, but KPSS claims that it is non-stationary,
then the series is difference stationary, meaning differentiation should be
applied.

4. If KPSS and ADF agree that the series is non-stationary, consider it
non-stationary, meaning differentiation should be applied.

2.1.3.2 Determining the order of AR and MA

One central task of the ARIMA model building is to determine the appropriate
model order (p, q) [13]. Autocorrelation analysis plays a crucial role in identify-
ing patterns and assessing randomness within data. Its significance becomes
particularly pronounced when considering the utilization of an autoregres-
sive moving average (ARMA) model for forecasting, as it aids in parameter
determination. This analysis entails examining plots of the Autocorrelation
Function (ACF) and Partial Autocorrelation Function (PACF).

Definition 2.1.5. The Autocorrelation Function (ACF) at lag k, denoted as
ρ(k), is a statistical measure that quantifies the linear relationship between

16

2.1. ARIMA

observations in a time series separated by a lag of k time periods. It is defined
as:

ρ(k) = Cov(Xt, Xt−k)√
Var(Xt) ·Var(Xt−k)

, (2.17)

where Xt represents the observation at time t, and Cov(Xt, Xt−k) and Var(Xt)
denote the covariance and variance of the time series, respectively [13].

Definition 2.1.6. The Partial Autocorrelation Function (PACF) at lag k,
denoted as ϕ(k), measures the correlation between Xt and Xt−k with the
linear dependence on {Xt−k+1, . . . , Xt−1} removed. It is defined recursively
as:

ϕ(1) = ρ(1),

ϕ(k) = Cov(Xt − X̂t, Xt−k − X̂t−k)√
Var(Xt − X̂t) ·Var(Xt−k − X̂t−k)

,
(2.18)

where X̂t and X̂t−k represent the predictions of Xt and Xt−k, respectively,
based on a linear regression model involving the intervening observations [13].

It is firmly established that the examination of ACF and PACF offers
valuable intuition regarding the selection of AR and MA orders in time series
modeling. However, it is imperative to acknowledge that the determination
of these orders from ACF and PACF is a nuanced process, often involving
meticulous analysis and interpretation guided by statistical rigor and domain
expertise.

Therefore, while ACF and PACF undeniably offer crucial insights into
the selection of AR and MA orders, the methodology for extracting such
information warrants careful consideration. However, this thesis will not delve
into the specifics of how exactly to determine the order from ACF and PACF.

2.1.3.3 Seasonal ARIMA

In practice, the data often exhibits relationships between successive obser-
vations and those occurring at fixed seasonal intervals. Within the ARIMA
framework, these relationships are accommodated by introducing lag terms
into the model components. This approach enables the model to capture
the temporal dependencies inherent in the data, both in terms of immediate
sequential observations and those occurring at predefined seasonal intervals.

Definition 2.1.7. The seasonal ARIMA model incorporates non-seasonal and
seasonal factors in a multiplicative model. The SARIMA model is noted as:

ARIMA(p, d, q)× (P, D, Q)S, (2.19)

with p is a non-seasonal AR order, d is a non-seasonal differencing, q is a non-
seasonal MA order, P is a seasonal AR order, D is a seasonal differencing, Q

17

2. Statistical anomaly detection approaches

is a seasonal MA order, and S is a time span of repeating seasonal pattern
[17].

2.2 Exponential Smoothing
Exponential smoothing is another widely used technique in time series anal-
ysis, particularly in forecasting and anomaly detection tasks. This chapter
delves into the application of exponential smoothing methods for detecting
anomalies in time series data.

2.2.1 Single Exponential Smoothing
Single exponential smoothing (SES) is a fundamental technique that aims
to capture the underlying trend of a time series by assigning exponentially
decreasing weights to past observations.

Using the simplest method, all future forecasts are derived solely from the
most recent observation in the series:

ŷT +h|T = yT , for h ∈ N. (2.20)

Here, the simplest method operates under the assumption that only the last
observed value holds significance for future forecasts, with no consideration
given to prior observations. This approach effectively assigns all weight to the
most recent observation, resulting in a simplistic forecast [18].

Utilizing the averaging method, future forecasts are determined by com-
puting the arithmetic mean of all observed data:

ŷT +h|T = 1
T

T∑
t=1

yt, for h ∈ N. (2.21)

In contrast to the simplest method, the averaging method treats all observa-
tions equally, assigning identical weights to each when generating forecasts.

However, there exists a desire for a more nuanced approach, one that places
greater emphasis on recent observations while still considering historical data.
Simple exponential smoothing precisely addresses this requirement. Forecasts
are computed using weighted averages, with exponentially decreasing weights
assigned to observations based on their recency:

ŷT +1|T = αyT + α(1− α)yT −1 + α(1− α)2yT −2 + . . . , (2.22)

where 0 ≤ α ≤ 1 represents the smoothing parameter. This formulation
calculates the one-step-ahead forecast for time T +1 as a weighted average of all
preceding observations in the series y1, . . . , yT . The parameter α governs the
rate of weight decay, allowing for adaptable forecasting based on the recency
of observations [18].

18

2.2. Exponential Smoothing

For any α value ranging between 0 and 1, the weightings assigned to ob-
servations exhibit an exponential decrease as one traverses back through time,
thus lending the technique its designation as exponential smoothing. A smaller
α value (near 0) allocates greater weight to observations from the distant past,
whereas a larger α value (close to 1) bestows more significance upon recent
observations. In the extreme scenario where α = 1, ŷT +1|T = yT , resulting in
forecasts identical to those generated via the simplest method.

2.2.1.1 Weighted average form

The forecast at time T + 1 is determined by a weighted average between the
most recent observation yT and the previous forecast ŷT |T −1:

ŷT +1|T = αyT + (1− α)ŷT |T −1, (2.23)

where 0 ≤ α ≤ 1 represents the smoothing parameter. Similarly, the fitted
values can be expressed as:

ŷt+1|t = αyt + (1− α)ŷt|t−1, for t = 1, . . . , T. (2.24)

The process initiates with the first fitted value at time 1, denoted by ℓ0
(which requires estimation) [18]. Then,

ŷ2|1 = αy1 + (1− α)ℓ0,

ŷ3|2 = αy2 + (1− α)ŷ2|1,

ŷ4|3 = αy3 + (1− α)ŷ3|2,

...
ŷT |T −1 = αyT −1 + (1− α)ŷT −1|T −2,

ŷT +1|T = αyT + (1− α)ŷT |T −1.

(2.25)

Substituting each equation into the subsequent equation yields:

ŷ3|2 = αy2 + (1− α) [αy1 + (1− α)ℓ0]
= αy2 + α(1− α)y1 + (1− α)2ℓ0,

ŷ4|3 = αy3 + (1− α)
[
αy2 + α(1− α)y1 + (1− α)2ℓ0

]
= αy3 + α(1− α)y2 + α(1− α)2y1 + (1− α)3ℓ0,

...

ŷT +1|T =
T −1∑
j=0

α(1− α)jyT −j + (1− α)T ℓ0.

(2.26)

19

2. Statistical anomaly detection approaches

2.2.1.2 Component form

An alternative perspective involves representing exponential smoothing meth-
ods in component form. For simple exponential smoothing, the only compo-
nent considered is the level, denoted by ℓt. Other methods, explored later
in this chapter, may incorporate additional components such as trend bt and
seasonal component st.

The component form entails a forecast equation and a smoothing equation
for each component involved in the method. For simple exponential smooth-
ing, the component form is expressed as:

ŷt+h|t = ℓt, (2.27)
ℓt = αyt + (1− α)ℓt−1, (2.28)

where Eq. 2.27 is a forecast equation and Eq. 2.28 is a smoothing equation.
Here, ℓt represents the level (or smoothed value) of the series at time t. When
h = 1, the fitted values are obtained, while t = T yields true forecasts beyond
the training data.

The forecast equation reveals that the forecast value at time t + 1 is the
estimated level at time t. The smoothing equation for the level, often referred
to as the level equation, provides the estimated level of the series at each
period t [17].

By substituting ℓt with ŷt+1|t and ℓt−1 with ŷt|t−1 in the smoothing equa-
tion, the weighted average form of simple exponential smoothing is regained.

While the component form of simple exponential smoothing may not be
directly applicable, it serves as a foundational framework for incorporating
additional components in more complex models [17].

2.2.1.3 Optimisation and anomaly detection

For the application of any exponential smoothing method, selecting the ap-
propriate smoothing parameters and initial values is imperative. Specifically,
for simple exponential smoothing, determining the values of α and ℓ0 is es-
sential. Once these values are known, forecasts can be computed from the
data. However, for more complex methods, there may be multiple smoothing
parameters and initial components to be chosen.

While subjective methods may involve the forecaster specifying the smooth-
ing parameters based on prior experience, a more objective approach involves
estimating these parameters from the observed data. Similar to the estimation
of coefficients in a regression model, exponential smoothing parameters and
initial values can be estimated by minimizing the sum of squared residuals
(SSE).

The residuals εt = yt − ŷt|t−1 for t = 1, . . . , T are used to specify SSE as:

SSE =
T∑

t=1
ε2

t =
T∑

t=1

(
yt − ŷt|t−1

)2
. (2.29)

20

2.2. Exponential Smoothing

Unlike the regression scenario where formulas exist to compute regression
coefficients minimizing SSE, this poses a non-linear minimization problem,
necessitating the use of optimization techniques to solve it effectively.

Similar to the ARIMA model, anomaly scores for the Holt-Winters ES
model are determined based on the prediction errors. The anomaly score de-
fined in Eq. 2.7, represents the deviation between the observed and predicted
values, quantifying the abnormality of each data point in the time series.

2.2.2 Holt’s linear trend method
Holt [19] introduced an extension to simple exponential smoothing to accom-
modate data exhibiting a trend. This method incorporates a forecast equation
and two smoothing equations, one for the level and one for the trend:

ŷt+h|t = ℓt + hbt, (2.30)

ℓt = αyt + (1− α)(ℓt−1 + bt−1), (2.31)

bt = β∗(ℓt − ℓt−1) + (1− β∗)bt−1, (2.32)

where Eq. 2.30 is a forecast equation, Eq. 2.31 is a level equation and Eq.
2.32 is a trend equation. ℓt represents the estimated level of the series at
time t, while bt denotes the estimated trend (slope) at time t. The smoothing
parameter for the level α and the smoothing parameter for the trend β∗ are
constrained to the range 0 ≤ α ≤ 1 and 0 ≤ β∗ ≤ 1.

Similar to simple exponential smoothing, the level equation expresses ℓt

as a weighted average of the observation yt and the one-step-ahead training
forecast for time t, given by ℓt−1 + bt−1. The trend equation indicates that bt

is a weighted average of the estimated trend at time t based on ℓt − ℓt−1 and
bt−1, the previous estimate of the trend [19].

Unlike in simple exponential smoothing, the forecast function now exhibits
a trend. The h-step-ahead forecast is determined by the last estimated level
plus h times the last estimated trend value. Consequently, the forecasts follow
a linear function of h [19].

2.2.2.1 Damped trend method

Holt introduced a parameter to address the tendency of linear forecasting
methods to exhibit a constant trend indefinitely into the future. This param-
eter ”dampens” the trend to a flat line at some point in the future. Models
incorporating a damped trend have demonstrated notable success and are
widely used when automated forecasts are required for numerous series [8].

In addition to the smoothing parameters α and β∗ (both ranging from 0
to 1, akin to Holt’s method), this approach introduces a damping parameter
0 < ϕ < 1:

21

2. Statistical anomaly detection approaches

ŷt+h|t = ℓt + (ϕ + ϕ2 + · · ·+ ϕh)bt (2.33)

ℓt = αyt + (1− α)(ℓt−1 + ϕbt−1) (2.34)

bt = β∗(ℓt − ℓt−1) + (1− β∗)ϕbt−1 (2.35)

When ϕ = 1, the method mirrors Holt’s linear approach. However, for values
between 0 and 1, ϕ moderates the trend towards a constant value in the
future. As h → ∞, the forecasts converge to ℓT + ϕbT

1−ϕ for any 0 < ϕ < 1.
Consequently, short-term forecasts exhibit a trend while long-term forecasts
stabilize. In practice, ϕ seldom falls below 0.8 due to its substantial impact at
lower values. Values of ϕ close to 1 render a damped model indistinguishable
from a non-damped one [17].

2.2.3 Holt-Winters’ seasonal method
Holt and Winters expanded upon Holt’s method to accommodate seasonal
patterns. The Holt-Winters seasonal method involves a forecast equation and
three smoothing equations — one each for the level ℓt, the trend bt, and the
seasonal component st, each with respective smoothing parameters α, β∗, and
γ. Here, m denotes the frequency of seasonality [17].

This method offers two variations depending on the nature of the seasonal
component. The additive method is suitable when seasonal variations remain
relatively constant throughout the series, whereas the multiplicative method
is preferable when seasonal variations change proportionally to the series level.
In the additive method, the seasonal component is expressed in absolute terms,
reflecting the scale of the observed series. Consequently, the series is seasonally
adjusted by subtracting the seasonal component in the level equation. Within
each year, the seasonal component approximately sums to zero. Conversely,
in the multiplicative method, the seasonal component is expressed in relative
terms and the series is seasonally adjusted by dividing through by the seasonal
component. In this case, the seasonal component sums to approximately m
within each year [3].

2.2.3.1 Holt-Winters’ additive method

The component form for the additive method is as follows:

ŷt+h|t = ℓt + hbt + st+(h−m(k+1)), (2.36)

ℓt = α (yt − st−m) + (1− α) (ℓt−1 + bt−1) , (2.37)

bt = β∗ (ℓt − ℓt−1) + (1− β∗)bt−1, (2.38)

st = γ (yt − ℓt−1 − bt−1) + (1− γ)st−m, (2.39)

22

2.2. Exponential Smoothing

where k represents the integer part of (h− 1)/m, ensuring that the estimates
of the seasonal indices used for forecasting come from the final year of the
sample [18].

The level equation signifies a weighted average between the seasonally
adjusted observation (yt − st−m) and the non-seasonal forecast (ℓt−1 + bt−1)
for time t. The trend equation mirrors Holt’s linear method. The seasonal
equation represents a weighted average between the current seasonal index
(yt − ℓt−1 − bt−1) and the seasonal index of the same season last year (i.e., m
periods ago).

The equation for the seasonal component can be alternatively expressed
as:

st = γ∗(yt − ℓt) + (1− γ∗)st−m. (2.40)

Substituting ℓt from the smoothing equation for the level into the seasonal
component’s equation yields:

st = γ∗(1− α)(yt − ℓt−1 − bt−1) + [1− γ∗(1− α)]st−m, (2.41)

which aligns with the specified smoothing equation for the seasonal compo-
nent, where γ = γ∗(1 − α). The typical parameter constraint is 0 ≤ γ∗ ≤ 1,
translating to 0 ≤ γ ≤ 1− α [18].

2.2.3.2 Holt-Winters’ multiplicative method

The component form for the multiplicative method is outlined as follows:

ŷt+h|t = (ℓt + hbt)st+(h−m(k+1)) (2.42)

ℓt = αytst−m + (1− α)(ℓt−1 + bt−1) (2.43)

bt = β∗(ℓt − ℓt−1) + (1− β∗)bt−1 (2.44)

st = γyt(ℓt−1 + bt−1) + (1− γ)st−m (2.45)

Similar to the additive method, k represents the integer part of (h − 1)/m,
ensuring that the estimates of the seasonal indices used for forecasting come
from the final year of the sample [18].

The level equation indicates a weighted average between the seasonally
adjusted observation αytst−m and the non-seasonal forecast (ℓt−1 + bt−1) for
time t. The trend equation remains consistent with Holt’s linear method.
The seasonal equation now signifies a weighted average between the current
observation yt and the seasonal index of the same season last year, with the
additional multiplication by the level and trend components.

23

Chapter 3
Machine Learning and Deep

Learning approaches

3.1 Gaussian mixture model
The Gaussian mixture model (GMM) is a weighted linear combination of mul-
tiple Gaussian components, which is often used to solve the problem that data
contains multiple different distributions. GMM can smoothly approximate the
density distribution of arbitrary shapes and can be applied to complicated ob-
ject modeling [20].

Definition 3.1.1. A Gaussian Mixture Model is a parametric probability
density function represented as a weighted sum of Gaussian component den-
sities. GMMs are commonly used as a parametric model of the probability
distribution of continuous measurements or features in a biometric system,
such as vocal tract related spectral features in a speaker recognition system
[21].

A Gaussian mixture model is a weighted sum of M component Gaussian
densities as given by the equation,

p(x | λ) =
M∑

i=1
wig (x | µi, Σi) , (3.1)

where x is a D-dimensional continuous-valued data vector (i.e. measurement
or features), wi = 1, . . . , M , are the mixture weights, and g (x | µi, Σi) , i =
1, . . . , M are the component Gaussian densities. Each component density is a
D-variate Gaussian function of the form,

g (x | µi, Σi) = 1
(2π)D/2 |Σi|1/2 exp

{
−1

2
(x− µi)′ Σ−1

i (x− µi)
}

, (3.2)

25

3. Machine Learning and Deep Learning approaches

with mean vector µi and covariance matrix Σi. The mixture weights satisfy
the constraint that ∑M

i=1 wi = 1.
The complete Gaussian mixture model is parameterized by the mean vec-

tors, covariance matrices, and mixture weights from all component densities.
These parameters are collectively represented by the notation,

λ = {wi, µi, Σi} i = 1, . . . , M (3.3)

3.1.1 Parameter estimation
Given training vectors and a GMM configuration, the parameters, λ, are esti-
mated which, in some sense, best match the distribution of the training feature
vectors. There are several techniques available for estimating the parameters
of a GMM. By far the most popular and well-established method is maximum
likelihood estimation [21].

Maximum likelihood estimation aims to find the model parameters λ which
maximize the likelihood of the GMM p(X | λ) given the training data. For
a sequence of T training vectors X = {x1, . . . , xT }, the GMM likelihood,
assuming independence between the vectors, can be written as,

p(X | λ) =
T∏

t=1
p (xt | λ) . (3.4)

This expression is a non-linear function of the parameters, meaning the direct
maximization is not possible. However, ML parameter estimates can be ob-
tained iteratively using a special case of the expectation-maximization (EM)
algorithm [22].

The basic idea of the EM algorithm is, beginning with an initial model
λ, to estimate a new model λ̄, such that p(X | λ̄) ≥ p(X | λ). The new
model then becomes the initial model for the next iteration and the process is
repeated until some convergence threshold is reached. On each EM iteration,
the following re-estimation formulas are used which guarantee a monotonic
increase in the model’s likelihood value,

w̄i = 1
T

T∑
t=1

Pr (i | xt, λ) , (3.5)

µi =
∑T

t=1 Pr (i | xt, λ) xt∑T
t=1 Pr (i | xt, λ)

, (3.6)

σ̄2
i =

∑T
t=1 Pr (i | xt, λ) x2

t∑T
t=1 Pr (i | xt, λ)

− µ̄2
i , (3.7)

where σ2
i , xt, and µi refer to arbitrary elements of the vectors σi

2, xt, and µi,
respectively.

The a posteriori probability for component i is given by:

26

3.1. Gaussian mixture model

Pr (i | xt, λ) = wig (xt | µi, Σi)∑M
k=1 wkg (xt | µk, Σk)

. (3.8)

3.1.2 Anomaly detection
The proposed adaptation of the GMM model [23] initially starts with splitting
data into bins. The selection of bins on the data’s intrinsic characteristics and
the analyst’s discretion. For each bin m in M , the data observations are
represented as sm, constituting a set of N observations. Mathematically, this
can be expressed as:

sm = {x1, x2, ..., xN}, (3.9)

where xi represents the i-th observation in the m-th bin.
Gaussian Mixture Models are constructed for each bin m, denoted as Gm,

forming the set G = {G1, G2, ..., GM}. The GMMs capture the underlying
distribution of data within each bin and are crucial for modeling seasonal
patterns.

It is important to note that the complexity of the GMMs can vary across
bins. Some bins may require only one Gaussian component to adequately
model the data distribution, while others may necessitate multiple Gaussians
to capture higher variability. This variation in complexity is essential for
accurately representing the diverse patterns present in the network traffic
data. This systematic approach, rooted in mathematical principles, provides
a robust framework for effectively modeling time series data.

To enhance the discriminative power between outliers and low-probability
data points, a strategy is employed to amplify this discrepancy. Specifically,
by applying the natural logarithm function to the probabilities associated with
the data points, the relative differences in probability values are magnified.
This logarithmic transformation serves to augment the contrast between out-
liers and data points with comparatively lower probabilities, thereby facilitat-
ing more effective discrimination between anomalous and regular observations.
The anomaly score is then defined as follows:

ASx = (log(p(x)))2f , (3.10)

where ASx is the anomaly score, p(x) is the probability density function of
the data point in x, and f is some factor used to scale the log of probabilities.
Increasing f increases the difference between the scores for the normal and
anomalous data points [23].

Gaussian Mixture Models operate as unsupervised clustering algorithms,
eliminating the necessity for human intervention in determining the optimal
number of mixture components. An additional advantage lies in their in-
herent capability to incorporate the seasonal characteristics inherent in the

27

3. Machine Learning and Deep Learning approaches

dataset. This intrinsic feature enables GMMs to capture and model the sea-
sonal patterns present in the data effectively, contributing to their robustness
in anomaly detection tasks.

3.2 Isolation Forest
Isolation Forest emerges as an unsupervised anomaly detection approach in-
troduced by Prof. Zhi-hua Zhou et al. in 2008 [5]. Later, Ding et al. imple-
mented an algorithm for anomaly detection of streaming data based on the
isolated forest algorithm and the sliding window technique [24]. The design of
Isolation Forest is attributed to two special characteristics of abnormal data:
(i) anomaly is defined as the outlier that is easily isolated, and (ii) the amount
of abnormal data is very small. In the isolated forest, a data set is recursively
randomly partitioned until each point is isolated. The abnormal point is closer
to the root node of the isolation tree (iTree), while the normal point is far from
the root node of iTree [25].

Definition 3.2.1. Isolation Tree (iTree). Assuming T is a node of an isolation
tree. T is either a leaf node without sub-nodes or an internal node with only
two sub-nodes (Tl, Tr). Each step of the split consists of a feature q and a
split value p. The data with q < p will be divided into Tl while the data with
p < q will be divided into Tr.

At first, the time series training data set X is divided into the data blocks
having the same time interval and the same number of instances in a data
block, which are named window data block and can be described in detail as
follows. X = {X1, X2,Xi, . . .} with the follow forms:

Z1 = z1, z2, . . . , zM

Z2 = zM+1, zM+2, . . . , z2M

...
Zi = z(i−1)M+1, z(i−1)M+2, . . . , ziM ,

(3.11)

where M denotes the size of the sliding window, Zi the i-th time series data
block. The main task of anomaly detection for streaming data is to examine
whether anomalous instances exist based on the anomaly detector.

When processing time series data, the initial step involves feeding it into a
sliding window with a predetermined size. Determining the size of the sliding
window poses the first challenge during the training stage of the detector.
Unfortunately, there is no specific theoretical guideline for this parameter,
and it is typically selected based on prior knowledge and experimentation.

Once several windows of data are collected, an initial detector is trained
using the iForest Algorithm 1. In the subsequent test stages, each instance

28

3.2. Isolation Forest

within the sliding window undergoes examination by the anomaly detector to
ascertain whether it qualifies as an anomaly based on its anomaly score.

Upon completing the instances within a sliding window, a statistical anal-
ysis ensues. If the anomaly rate within a sliding window’s data falls below the
predefined threshold, it indicates that no concept drift has occurred. Conse-
quently, the trained anomaly detector remains unchanged.

However, if a concept drift occurs, indicating a discrepancy between the
previous training and the current data concepts, immediate action is neces-
sary. Failure to promptly update the trained detector may result in degraded
detection performance. Therefore, to maintain the efficacy of anomaly detec-
tion, it becomes imperative to either retrain the model or update it based on
the incoming dataset [25].

For the time series dataset Xi, the initial anomaly detection model is
built, at first, the iTrees in terms of the bootstrap sampling from the Zi is
built. The ensemble detection model E is composed of L iTrees, namely,
E = {E1, E2, . . . EL}, which is built from the data in i-th sliding window.

Algorithm 1: iForest(X, L, N)
Input : X - input dataset, L - number of trees, N -

subsampling size in the sliding window.
Output : Set of L iTrees.

// Initialize Forest
1 E← {}

// Set iTree height
2 h← ⌈log2 N⌉
3 for i← 1 to L do
4 X ′ ← sample(X, N);
5 E← E ∪ iTree(X ′, 0, h);
6 end
7 return E

An Isolation Forest is a collection of isolation trees, which are constructed
by randomly selecting attributes and their corresponding values. At each
node within these isolation trees, the dataset is partitioned based on ran-
domly chosen attributes and their associated values. This random selection
process includes the choice of attributes and the split value, which is deter-
mined randomly between the minimum and maximum values of the selected
attribute.

Anomalies in the dataset are typically identified as instances with attribute
values significantly divergent from those of normal instances. These anomalous
instances tend to be more easily separated during the isolation process and
are thus located closer to the root of the trees, facilitating their division.

29

3. Machine Learning and Deep Learning approaches

To address the inherent randomness introduced during the construction of
the Isolation Forest, the average depth of instances across multiple isolation
trees is computed. This average depth serves as the anomaly score for each
instance, with lower scores indicating a higher likelihood of being an anomaly.
The creation of the isolation trees is a critical aspect of the iForest algorithm,
and detailed procedures for generating iTree are outlined in this work [5].

In the realm of time series data analysis, the phenomenon known as con-
cept drift frequently arises. Detecting concept drift promptly is essential for
effective data processing. To achieve this, the anomaly rate is computed once
all instances within a sliding window have been identified. Initially, a ranking
of all instances in the sliding window is established. Each instance is assigned
a score based on its probability of being an anomaly, determined by its aver-
age depth within the isolation trees of the forest. The anomaly score, denoted
as AS(x, N), is then calculated using the equation:

AS(x, N) = 2
E(h(x))

c(N) , (3.12)
where

E(h(x)) = 1
L

L∑
i=1

hi(x), (3.13)

and N denotes the subsampling size. hi(x) denotes the length of the i-th
iT ree, E(h(x)) is the average of h(x) from a collection of iTrees, and c(N) is
the average of h(x) given N .

Because iTree has the same structure as the Binary Search Tree (BST),
the estimation of average h(x) for external nodes is the same as that of the
unsuccessful searches in BST. The method to calculate the average path length
of unsuccessful searches in BST is given as:

c(n) =

2H(n− 1)− 2(n− 1)/n for n > 2
1 for n = 2
0 otherwise

, (3.14)

where H(i) is the harmonic number that can be estimated by ln(i) + γ(γ
represents Euler’s constant), c(n) denotes the average of h(x) given n, which
is used to normalize h(x) [25].

The statistical outcome provides insights into the anomaly rate within
the sliding window. If the anomaly rate within the current window exceeds
the predefined threshold, indicating a deviation from the expected anomaly
rate based on prior knowledge, a concept drift occurs in the streaming data.
Consequently, the existing anomaly detector becomes ineffective, prompting
its immediate replacement with a newly trained detector.

Considering the concept of drift, employing a fixed sliding window size
proves inadequate. If the window size is excessively large, the model trained
on it fails to accurately capture the concept drift. Conversely, if the window

30

3.3. Long-short term memory network

size is too small, insufficient data is available to construct a precise model.
Unfortunately, no standardized method exists for setting this parameter, typ-
ically, it is determined through trial and error specific to the application under
study.

One of the key advantages of Isolation Forests is their ability to handle
anomalies in various domains without requiring extensive parameter tuning.
Moreover, they surpass in detecting anomalies in large datasets, where other
methods might struggle due to computational complexity.

However, Isolation Forests also have limitations. They may not perform
optimally when anomalies are densely populated or when the data distribution
is highly imbalanced.

3.3 Long-short term memory network
The application of artificial neural networks (ANNs) has emerged as a powerful
tool for tackling a wide array of complex problems, owing to their capability
to comprehend non-linear systems and discern the intrinsic behaviors and
dependencies inherent in the data they receive.

In the realm of time series analysis, the integration of deep learning tech-
niques, particularly through such architectures as Long Short-Term Memory
(LSTM) networks, represents a relatively recent yet promising avenue. The
flexibility of deep learning renders it advantageous for temporal data analy-
sis, notably offering the potential to model intricate and non-linear temporal
patterns without the need to make assumptions about functional forms. This
paradigm shift holds the promise of revolutionizing nonstatistical forecasting
methods.

In this chapter, the principles and applications of LSTM networks for
anomaly detection in time series data are explored, delving into their capa-
bilities in deciphering complex temporal patterns and identifying anomalous
behavior amidst sequential data. Through a comprehensive examination of
LSTM-based anomaly detection techniques, the potential of these neural net-
work architectures in addressing the challenges posed by anomalies in time
series datasets is illuminated.

3.3.1 Artificial neural network
Artificial neural network architectures have been devised based on established
models of biological nervous systems, drawing inspiration from the intricate
workings of the human brain. These networks comprise computational units
known as artificial neurons, which is visualized in Figure 3.1, which serve
as simplified counterparts to their biological counterparts. These artificial
neurons typically exhibit non-linearity and offer continuous outputs, execut-
ing basic functions such as signal aggregation from input sources, integration

31

3. Machine Learning and Deep Learning approaches

based on predefined operational functions, and generation of responses guided
by their inherent activation functions.

Figure 3.1: The artificial neuron structure.

An artificial neuron is comprised of seven fundamental components.

Definition 3.3.1. Input signals (x1, x2, ..., xn) represent the samples or sig-
nals originating from the external environment, embodying the values assumed
by the variables pertinent to a specific application. These input signals are
typically normalized to bolster the computational efficiency of learning algo-
rithms [26].

Definition 3.3.2. Synaptic weights (w1, w2, ..., wn) are the values assigned
to each input variable, facilitating the quantification of their importance con-
cerning the neuron’s functionality [26].

Definition 3.3.3. The linear aggregator (∑) accumulates all input signals
weighted by the synaptic weights to generate an activation voltage [26].

Definition 3.3.4. The activation threshold or bias (θ) is a parameter used to
specify the requisite threshold for the output produced by the linear aggregator
to trigger a response from the neuron [26].

Definition 3.3.5. The activation potential (u) is determined by the disparity
between the linear aggregator and the activation threshold. A positive value
of u (u ≥ θ) results in excitatory potential, whereas a negative value indicates
inhibitory potential [27].

Definition 3.3.6. The activation function (g) constrains the neuron output
within a reasonable range of values, defined by its functional image. Common
activation functions include sigmoid, hyperbolic tangent (tanh), and rectified
linear unit (ReLU), each serving to introduce different properties into the
network’s decision-making process [27].

32

3.3. Long-short term memory network

Definition 3.3.7. The output signal (y) denotes the final value generated by
the neuron given a specific set of input signals, potentially serving as input
for other sequentially interconnected neurons [26].

The synaptic weighting in the neural network is manifested within the ar-
tificial neuron through a collection of synaptic weights (w1, w2, ..., wn). Like-
wise, the significance of each input signal (xi) to the neuron is gauged by
multiplying it with its corresponding synaptic weight (wi), thereby weight-
ing all incoming external information. Consequently, the output (u) of the
artificial neuron is discerned as the weighted summation of its inputs.

As information flows through a network, neurons are organized into layers,
forming a hierarchical structure that enables the network to learn complex
patterns [7].

Layers in a neural network are akin to functional units, each serving a
specific purpose in the information processing pipeline. The input layer acts
as the entry point for data, receiving input signals from external sources and
transmitting them to subsequent layers for processing. Subsequent layers,
known as hidden layers, perform intricate computations on the input data,
extracting features and representations relevant to the task at hand. The
final layer of the network, known as the output layer, generates predictions or
classifications based on the processed information.

As the network learns from data through a process called training, the
synaptic connections between neurons, represented by synaptic weights, are
adjusted to minimize the disparity between predicted and actual outputs.
This optimization process, driven by mathematical techniques such as gradient
descent and backpropagation, fine-tunes the network’s parameters to improve
its performance on the given task [7].

Through this iterative process of learning and optimization, artificial neu-
ral networks can model complex relationships in data, paving the way for
advancements in various domains such as image recognition, natural language
processing, and financial forecasting. In the following sections, the difference
between feed-forward neural networks and recurrent neural networks will be
provided, explaining the advantage of the second for time series anomaly de-
tection use case.

3.3.2 Feed-forward and recurrent network architecture
Two primary categories of neural networks emerge feed-forward neural net-
works (FFN) and recurrent neural networks (RNN). FFNs, prevalent in neural
network architectures, consist of layered nodes where data progresses unidi-
rectionally, from the input layer to the output layer. Conversely, RNNs in-
troduce feedback loops, enabling a bidirectional flow of information between
network layers. This bidirectional communication fosters enhanced capacity
for temporal analysis and dynamic sequence processing within RNNs. RNNs

33

3. Machine Learning and Deep Learning approaches

are a type of artificial neural network that were specifically designed to process
sequential data or time series data [7].

3.3.2.1 Feed-forward neural networks

Feed-forward neural networks represent the prevailing archetype among neu-
ral networks. Structured as layers of nodes, these networks facilitate unidi-
rectional data flow, progressing seamlessly from the input layer through inter-
mediary nodes to the output layer. Each node undertakes a straightforward
computation, transmitting its output to subsequent nodes within the layer.
At the network’s culmination lies the output layer, generating the network’s
predictive outcome.

The prevailing method for training neural networks is the error backpropa-
gation algorithm, which employs gradient descent to adjust the weights within
multilayer networks. This process unfolds iteratively, commencing from the
output layer and proceeding backward toward the input layer. An essential
condition is that the activation function of each neuron remains differentiable.
Typically, the weights of a feed-forward neural network are initialized with
small, normalized random values alongside bias values. Subsequently, error
backpropagation processes all training samples through the neural network,
calculating the input and output of each unit across all hidden and output
layers [26].

Feed-forward neural networks are characterized by their absence of loops
and full connectivity, which is shown in Figure 3.2. In such networks, every
neuron within a layer provides input to each neuron in the subsequent layer,
while none of the weights convey input to neurons in the preceding layers.

Figure 3.2: Feed-forward Architecture.

The primary advantage of feed-forward neural networks lies in their sim-
plicity and efficiency, rendering them adept for various tasks. Their straight-

34

3.3. Long-short term memory network

forward architecture facilitates ease of training, making them an appealing
option for numerous applications. However, feed-forward neural networks ex-
hibit limitations in handling sequential data compared to recurrent neural
networks, which surpass tasks requiring temporal analysis and dynamic se-
quence processing [7].

3.3.2.2 Recurrent neural networks

Recurrent neural networks (RNNs) constitute a neural network variant char-
acterized by feedback loops, enabling bidirectional information flow across
network layers depicted in Figure 3.3. This unique architecture empowers
RNNs to effectively process sequential data, speech recognition, and machine
translation.

Figure 3.3: Recurrent Architecture.

Typically structured akin to feed-forward neural networks, RNNs comprise
stacked layers interconnected in a loop configuration, facilitating feedback of
each layer’s output to its own input. This recurrent connectivity enables the
network to discern temporal relationships inherent in the data [26].

Recurrent neural networks (RNNs) exhibit dynamism as they maintain an
internal state at every time step during classification. This is attributed to
the presence of circular connections between neurons across different layers
and the availability of self-feedback connections. Such feedback mechanisms
empower RNNs to convey information from prior events to ongoing processing
stages, thereby encoding a memory of temporal sequences within time series
data.

Nonetheless, training RNNs can pose challenges, and their computational
demands may necessitate substantial resources for implementation. Another
limitation of simple RNNs is their short-term memory, which restricts their
ability to retain information over long sequences. To overcome this, more ad-
vanced RNN variants have been developed, including Long Short-Term Mem-
ory [28].

35

3. Machine Learning and Deep Learning approaches

3.3.3 LSTM architecture
Standard RNNs encounter limitations in bridging more than 5–10 time steps
due to the tendency of back-propagated error signals to either escalate or
diminish with each successive time step. Across numerous time steps, this
phenomenon results in the error signals either escalating excessively, leading
to oscillating weights, or diminishing to such an extent that learning becomes
impractically slow or fails altogether. The LSTM model is a powerful recur-
rent neural system specially designed to overcome the exploding/vanishing
gradient problems that typically arise when learning long-term dependencies,
even when the minimal time lags are very long [28].

The LSTM architecture consists of a set of recurrently connected sub-
networks, known as memory blocks. The idea behind the memory block is to
maintain its state over time and regulate the information flow through non-
linear gating units. Figure 3.4 displays the architecture of the LSTM block,
which involves the gates, the input signal x(t), the output y(t), the activation
functions, and peephole connections. The output of the block is recurrently
connected back to the block input and all of the gates [1].

Figure 3.4: Architecture of a typical LSTM block [1].

To illustrate the functionality of the LSTM model, consider a network
consisting of N processing blocks and M inputs. The forward pass in this
recurrent neural system unfolds as follows:

Block input This step is devoted to updating the block input component,
which combines the current input x(t) and the output of that LSTM unit y(t−1)

in the last iteration. This can be done as depicted below:

z(t) = g
(
Wzx(t) + Rzy(t−1) + bz

)
, (3.15)

where Wz and Rz are the weights associated with x(t) and y(t−1), respectively,
while bz stands for the bias weight vector [1].

36

3.3. Long-short term memory network

Input gate During the input gate step, the update process involves combin-
ing the current input x(t), the output of that LSTM unit y(t−1) and the cell
value c(t−1) from the previous iteration. This operation is formulated as:

i(t) = σ
(
Wix

(t) + Riy
(t−1) + pi ⊙ c(t−1) + bi

)
, (3.16)

where σ represents the sigmoid function applied element-wise to a vector, ⊙
denotes point-wise multiplication of two vectors, Wi, Ri and pi are the weights
associated with x(t), y(t−1) and c(t−1), respectively, while bi represents for the
bias vector associated with this component [7].
In the preceding steps, the LSTM layer determines the information to retain
within the network’s cell states c(t). This included the selection of the can-
didate values z(t) which may potentially be incorporated into the cell states,
and the activation values i(t) of the input gates.

Forget gate In this step, the LSTM unit determines which information to
discard from its previous cell states c(t−1). Consequently, the activation values
f (t) of the forget gates at time step t are computed based on the current input
x(t), the outputs y(t−1) and the state c(t−1) of the memory cells at the previous
time step (t−1), the peephole connections, and the bias terms bf of the forget
gates [1]. This calculation is expressed as:

f (t) = σ
(
Wf x(t) + Rf y(t−1) + pf ⊙ c(t−1) + bf

)
, (3.17)

where Wf , Rf and pf are the weights associated with x(t), y(t−1) and c(t−1),
respectively, while bf denotes for the bias weight vector.

Cell This step computes the cell value, combining the block input z(t), the
input gate i(t) and the forget gate f (t) values, with the previous cell value [1].
This computation is represented as:

c(t) = z(t) ⊙ i(t) + c(t−1) ⊙ f (t). (3.18)

Output gate This step calculates the output gate, which combines the cur-
rent input x(t), the output of that LSTM unit y(t−1) and the cell value c(t−1)

in the last iteration. This can be done as depicted below:

o(t) = σ
(
Wox(t) + Roy(t−1) + po ⊙ c(t) + bo

)
, (3.19)

where Wo, Ro and po are the weights associated with x(t), y(t−1) and c(t−1),
respectively, while bo denotes for the bias weight vector [1].

Block output Finally, the block output is calculated, which combines the
current cell value c(t) with the current output gate value as follows:

y(t) = g
(
c(t)

)
⊙ o(t). (3.20)

37

3. Machine Learning and Deep Learning approaches

In the above steps, σ, g, and h denote point-wise non-linear activation func-
tions [1]. The logistic sigmoid σ(x) = 1

1+e1−x is used as a gate activation
function, while the hyperbolic tangent g(x) = h(x) = tanh(x) is often used as
the block input and output activation function.

3.3.4 Model training

The LSTM model employs full gradient training to adjust the learnable param-
eters (weights) within the network. Specifically, Backpropagation Through
Time is utilized to compute the weights connecting the various components in
the network [29]. Consequently, during the backward pass, pass, the cell state
c(t) receives gradients from y(t) as well as the next cell state c(t+1). Those
gradients are accumulated before being backpropagated to the current layer.

In the final iteration T , the change δ
(T)
y corresponds to the network error

∂E/y(T), where E represents the loss function. Otherwise, δ
(t)
y represents the

vector of delta values passed down ∆(t) from the layer above, including the
recurrent dependencies. This can be mathematically expressed as follows:

δ(t)
y = ∆(t) + RT

z δ(t+1)
z + RT

i δ
(t+1)
i + RT

f δ
(t+1)
f + RT

o δ(t+1)
o . (3.21)

In the second step, the changes in the parameters associated with the gates
and the memory cell are calculated as:

δ(t)
o =δ(t)

y ⊙ h
(
c(t)

)
⊙ σ′

(
ô(t)

)
(3.22)

δ(t)
c = δ(t)

y ⊙ o(t) ⊙ h′
(
c(t)

)
+ po ⊙ δ(t)

o +

+ pi ⊙ δ
(t+1)
i + pf ⊙ δ

(t+1)
f + δ(t+1)

c ⊙ f (t+1)
(3.23)

δf (t) = δ(t)
c ⊙ c(t−1) ⊙ σ′

(
f̂ (t)

)
(3.24)

δi(t) = δ(t)
c ⊙ z(t) ⊙ σ′

(
î(t)

)
(3.25)

δz(t) = δ(t)
c ⊙ i(t) ⊙ g′

(
ẑ(t)

)
, (3.26)

where ô(t), î(t), ẑ(t) and f̂ (t) represent the raw values associated with the output
gate, input gate, block input, and forget gate, respectively, before transforming
by the corresponding transfer function.

The delta values for the inputs are only required if there is a layer below
that needs to be trained, thus:

δ(t)
x = W T

z δ(t)
z + W T

i δ
(t)
i + W T

f δ
(t)
f + W T

o δ(t)
o . (3.27)

38

3.3. Long-short term memory network

Finally, the gradients for the weights are calculated as follows:

δW∗ =
T∑

t=0
δ

(t)
∗ ⊗ x(t) δpi =

T −1∑
t=0

c(t) ⊙ δ
(t+1)
i

δR∗ =
T −1∑
t=0

δ
(t+1)
∗ ⊗ y(t) δpf

=
T −1∑
t=0

c(t) ⊙ δ
(t+1)
f

δb∗ =
T∑

t=0
δ

(t)
∗ δpo =

T∑
t=0

c(t) ⊙ δ(t)
o ,

(3.28)

such that ⊗ represents the outer product of two vectors, whereas ∗ can be any
component associated with the weights: the block input ẑ, the input gate î,
the forget gate f̂ or the output gate ô [1].

3.3.5 LSTM-based anomaly detection
In the context of anomaly detection, LSTM networks are utilized to learn
the underlying patterns in time series data and identify deviations from the
expected behavior.

The time series data is represented as input sequences (x(1), x(2), ..., x(T)),
where T denotes the total number of time steps. Each x(t) represents the
feature vector at time step t. The LSTM model is trained on instances of the
time series data to learn the temporal patterns and dependencies. The training
process involves adjusting the weights and biases of the LSTM network using
backpropagation through time (BPTT) to minimize the prediction error. Once
the LSTM model is trained, it is used to predict the next data point in the
sequence based on the preceding data points. The predicted values ŷ(t) are
compared with the actual values y(t).

The residual error, or the difference between the predicted and actual
values, is computed at each time step and then is used as an anomaly score:

Residual(t) = AS(t) = |y(t) − ŷ(t)| (3.29)

A threshold ϵ is set to distinguish between normal and anomalous behav-
ior. Data points with residual errors exceeding the threshold are classified as
anomalies:

Anomaly(t) =
{

1, if AS(t) > ϵ

0, otherwise
(3.30)

The performance of the LSTM-based anomaly detection model is evaluated
using appropriate metrics such as precision, recall, F1-score, and area under
the receiver operating characteristic (ROC) curve. These metrics assess the
model’s ability to accurately detect anomalies while minimizing false positives
and false negatives.

39

3. Machine Learning and Deep Learning approaches

One disadvantage of using LSTM for anomaly detection is its computa-
tional complexity, especially when dealing with large-scale datasets. Training
LSTM models requires significant computational resources and time, particu-
larly when optimizing hyperparameters and fine-tuning the network architec-
ture. Additionally, the training process may suffer from overfitting, where the
model learns to memorize the training data rather than generalize to unseen
examples, leading to poor performance on new data [1].

Another drawback is the interpretability of LSTM models. While LSTM
networks surpass at capturing complex temporal patterns, understanding the
underlying reasons for anomalous behavior detected by the model can be chal-
lenging. The black-box nature of deep learning models like LSTM makes it
difficult to interpret the features or variables driving the anomaly detection
decisions, limiting the model’s explainability and interpretability [26].

Furthermore, LSTM-based anomaly detection may struggle with handling
long-range dependencies and capturing subtle changes in the data. Standard
LSTM architectures have been reported to have difficulty in remembering
information over long time intervals, which can result in the model overlooking
important contextual information leading to false positives or false negatives
in anomaly detection.

Despite these challenges, ongoing research efforts focus on addressing these
limitations and enhancing the effectiveness and efficiency of LSTM-based
anomaly detection approaches. By exploring techniques such as model regu-
larization, attention mechanisms, and architecture modifications, researchers
aim to overcome the shortcomings of LSTM models and improve their perfor-
mance in anomaly detection tasks.

40

Chapter 4
Experiments

This chapter focuses on practically applying and comparing the methods re-
searched. The techniques outlined in Chapters 2 and 3 are implemented,
and ensemble models comprising both statistical and machine learning ap-
proaches are constructed and assessed. Specifically, statistical models includ-
ing ARIMA and ES are employed, alongside ML models such as LSTM, iFor-
est, and GMM.

Experiments are conducted on three distinct datasets. The synthetic
dataset is partitioned into three segments, each represents a different anomaly
type, to facilitate a more comprehensive evaluation of model performance.

The computations were performed on an Intel (R) Xeon(R) CPU running
at 2.20 GHz with x86_64 ISO architecture. The processor supports both 32-
bit and 64-bit operating modes and operates as a single-core processor with
two threads. No additional hardware accelerators such as GPU were utilized.
The system has 13 GB of RAM.

4.1 Used tools
Python was chosen as the primary programming language for implementation
primarily due to its widespread adoption in the field of machine learning.
This decision was made considering Python’s extensive array of dedicated
frameworks and libraries, which were utilized in the implementation. Such
libraries and frameworks were used:

• Pandas: data manipulation control.

• NumPy: data manipulation and high-level math functions.

• Matplotlib: data visualization.

• Seaborn: data visualization.

41

4. Experiments

• Scikit-learn: machine learning.

• TensorFlow: machine learning and artificial intelligence. Used for
LSTM model implementation.

• Statsmodels: statistical models. Used for ARIMA and exponential
smoothing implementation.

• PyOD: library for detecting anomalous objects and patterns.

• pmdarima: automatically discover the optimal order for an ARIMA
model.

• GutenTAG: Synthetic data generator.

4.2 Datasets Overview
Each anomaly detection method and its parameters underwent testing on
three distinct fully labeled datasets. The first dataset originates from Yahoo!
Research [30], while the second dataset is sourced from the Numenta Anomaly
Benchmark (NAB) corpus [31]. The final dataset is a synthetic one generated
using the GutenTAG framework [32]. These datasets encompass both real-
world and synthetic data, offering a diverse and comprehensive evaluation
platform for assessing the efficacy of anomaly detection algorithms. Table 4.1
shows a number of data points and anomalies in each dataset.

Dataset Number of Datapoints Number of Anomalies
Yahoo S5 142100 466

NAB 22695 588
GutenTAG 100000 1667

Table 4.1: Basic statistics about used datasets.

4.2.1 Yahoo Finance Dataset
The Yahoo S5 Benchmark dataset serves as a valuable resource for evaluating
anomaly detection algorithms, providing real and synthetic time series data
with tagged anomaly points. This dataset facilitates the testing of detection
accuracy across various anomaly types, including outliers and change points.
The synthetic data includes time series with diverse characteristics such as
trend, noise, and seasonality, while the real data comprises time series metrics
from different Yahoo services [30].

Figure 4.1 illustrates the diverse anomalies present in the dataset. It is
worth noting the dataset encompasses various anomaly types, particularly
highlighting contextual anomalies. However, there is a significant prevalence

42

4.2. Datasets Overview

of point anomalies characterized by notable deviations from established pat-
terns. These anomalies lack explicit labeling according to their types but are
rather marked as anomalous occurrences. Primarily, the observed anomalies
manifest as global outliers, displaying substantial deviations from established
norms. Moreover, a discernible seasonality pattern is evident, underscoring
the necessity for preprocessing before applying analytical techniques.

0 200 400 600 800 1000 1200 1400
Time index

5000

10000

15000

20000

25000

Va
lu
e

is_anomaly
0.0
1.0

0 200 400 600 800 1000 1200 1400
Time index

0

100

200

300

400

500

600

Va
lu
e

is_anomaly
0.0
1.0

Figure 4.1: Example of anomalies in Yahoo Finance dataset.

4.2.2 Numenta Anomaly Benchmark Dataset
NAB, standing for Numenta Anomaly Benchmark, represents a cutting-edge
benchmark designed specifically for assessing algorithms tailored for anomaly
detection in streaming, real-time applications. This benchmark comprises over
50 labeled time series data files, encompassing both real-world and artificial
datasets. The dataset predominantly consists of real-world data sourced from
various domains, including AWS server metrics, Twitter volume, advertise-
ment clicking metrics, and traffic data, among others [31].

For the evaluation of models, the machine temperature system failure
dataset was utilized. This dataset contains temperature sensor data from
an internal component of a large industrial machine. This dataset provides a
practical scenario for evaluating the effectiveness of anomaly detection algo-
rithms in identifying critical events and potential system failures in real-world
applications.

0 200 400 600 800 1000 1200 1400
Time index

0

2000

4000

6000

8000

10000

12000

14000

Va
lu
e

is_anomaly
0.0
1.0

Figure 4.2: Example of anomalies in NAB dataset.

43

4. Experiments

Furthermore, upon closer inspection of the dataset depicted in Figure 4.2,
it becomes apparent that the anomalies within it primarily manifest as cohe-
sive clusters of collective anomalies, rather than discrete individual anomalies.
This observation underscores the significance of algorithms capable of detect-
ing anomalies within such collective patterns.

4.2.3 Synthetic GutenTAG Dataset

GutenTAG is an extensible tool designed to generate time series datasets
with and without anomalies. A GutenTAG time series consists of either a
single (univariate) or multiple (multivariate) channels, each containing a base
oscillation with anomalies at different positions and of varying kinds [32].

The tool was employed in this study to create a labeled dataset featuring
various anomaly types. This approach aimed to improve the evaluation of
selected algorithms by providing them with a dataset covering a wide range of
anomaly scenarios. By incorporating anomalies of different types at different
positions within the time series, the generated dataset facilitated a more com-
prehensive assessment of the algorithms’ performance across diverse anomaly
types.

18820 18840 18860 18880 18900
Time index

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

Va
lu
e

is_anomaly
0
1

Figure 4.3: Example of anomalies in synthetic dataset.

The dataset in question contains all types of anomalies, each labeled ac-
cording to its respective type. However, it is worth noting that the deviations
from the established patterns are comparatively lower, making anomalies more
challenging to detect compared to datasets like NAB or Yahoo Finance. This
deliberate generation of anomalies with reduced deviation from the pattern
serves a crucial purpose in this study. By creating anomalies that are harder
to detect, the evaluation of selected algorithms becomes more rigorous and
realistic. Figure 4.3 provides a visual representation of the generated anoma-
lies.

44

4.3. Experiment Design

4.3 Experiment Design
This chapter outlines the experiment design and methodology employed to
evaluate the performance of various anomaly detection models. The experi-
ment involves training and testing both statistical and machine learning mod-
els, including ARIMA, exponential smoothing, LSTM, Isolation Forest, and
Gaussian Mixture Model.

In addition to evaluating individual models, six ensemble models were cre-
ated by combining different combinations of statistical and machine learning
approaches. These ensemble combinations include:

1. Gaussian Mixture Model with ARIMA (GMM_ARIMA).

2. Gaussian Mixture Model with Exponential Smoothing (GMM_ES).

3. Isolation Forest with ARIMA (iForest_ARIMA).

4. Isolation Forest with Exponential Smoothing (iForest_ES).

5. LSTM with ARIMA (LSTM_ARIMA).

6. LSTM with Exponential Smoothing (LSTM_ES).

By combining the anomaly scores from machine learning models with predic-
tion errors from statistical models, these ensemble models aim to leverage the
complementary strengths of both approaches to enhance anomaly detection
performance.

4.3.1 Data preprocessing
In the preprocessing phase, each dataset underwent a series of transforma-
tions to ensure its suitability for modeling. Stationarity tests, as discussed in
section 2.1.3.1, were conducted for each dataset to assess their temporal char-
acteristics. These tests included the Augmented Dickey-Fuller (ADF) test
and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test. These tests provided
insights into the presence of trends and seasonality within the data.

For datasets exhibiting non-stationarity, particularly the Yahoo Finance
dataset, differencing was applied based on the results of the stationarity tests.
Differencing involves computing the difference between consecutive observa-
tions to stabilize the mean and variance of the time series data. The differ-
enced series is often more amenable to modeling, especially for methods like
ARIMA which require stationarity.

Following differencing, the preprocessed data were standardized and nor-
malized to ensure consistency and comparability across different datasets and
models. Standardization involves transforming the data such that it has a
mean of zero and a standard deviation of one, typically achieved using the
formula:

45

4. Experiments

z = x− µ

σ
, (4.1)

where x represents the original data, µ is the mean, σ is the standard deviation,
and z is the standardized value.

Normalization, on the other hand, scales the data to a fixed range, usually
between 0 and 1, using the formula:

x′ = x−min(x)
max(x)−min(x)

, (4.2)

where x′ represents the normalized value, min(x) is the minimum value in the
dataset, and max(x) is the maximum value.

These preprocessing techniques ensure that the data are appropriately
transformed and standardized, making them suitable for consumption by a
wide range of models, including machine learning algorithms like LSTM and
Gaussian Mixture Models.

4.3.2 Configuration of evaluated detection methods
This section delves into the meticulous process of configuring and preparing
the various anomaly detection methods employed in the study. Each method,
whether statistical models like ARIMA and exponential smoothing or machine
learning algorithms such as LSTM, Isolation Forest, and Gaussian Mixture
Models, requires careful configuration to ensure optimal performance.

4.3.2.1 ARIMA

ARIMA configuration was selected with pmdarima Python library. It is uti-
lized for the automated selection of optimal model parameters, minimizing
criteria such as the Akaike Information Criterion.

Definition 4.3.1. The Akaike Information Criterion (AIC) quantifies the
relative quality of statistical models, balancing goodness of fit with model
complexity. It is calculated as:

AIC = −2× log(L) + 2k, (4.3)

where L is the likelihood of the model given the data, and k is the number of
parameters [33].

Once the optimal parameters are determined, the ARIMA or seasonal
ARIMA models are fitted to the training data, utilizing maximum likeli-
hood estimation. Once trained, the models are applied to the test dataset
for prediction. During the prediction phase, the models perform one-step-
ahead forecasting without updating the parameters based on the observed
outcomes. This approach ensures that the models maintain consistency and

46

4.3. Experiment Design

do not adapt to the test data, preserving their generalization capabilities and
avoiding overfitting [15]. The error of the prediction and anomaly score is
computed for each data point as described in section 2.1.1.2.

4.3.2.2 Exponential smoothing

Parameter selection for the Holt-Winters ES model involves determining the
smoothing parameters. Additionally, the seasonal period m must be specified
to capture the recurring patterns in the data.

The Holt-Winters ES model is trained using historical time series data to
estimate the level, trend, and seasonal components. The ‘statsmodels‘ library
provides robust functionality for implementing the Holt-Winters ES model.

Once trained on the training data, the Holt-Winters ES model performs
one-step ahead prediction on the test data. During prediction, the model
utilizes the estimated level, trend, and seasonal components to forecast future
values. The error of the prediction and anomaly score are computed for each
data point as described in section 2.2.1.3.

4.3.2.3 Gaussian Mixture Model

For the Gaussian mixture model such parameters as a number of components
and length of the bin were tuned. The number of components parameter
determines the complexity of the Gaussian mixture model by specifying the
number of Gaussian distributions used to model the data. This parameter was
selected from this set of values n_components ∈ {1, 2, 3, 4, 5}. The length of
bins parameter denoted in Eq. 3.9, which determines the size of the bins
used for discretizing the time series data was selected from these values N ∈
5, 10, 12, 24, 48.

4.3.2.4 Isolation Forest

To optimize the performance of the iForest model, several key parameters are
tuned, including the length of sliding window Eq. 3.11, maximum tree depth,
and the number of trees in the forest.

By varying the sliding window length, different subsets of the time series
are considered, allowing the model to capture temporal patterns at varying
granularities. The sliding window length parameter was tuned across such
values M ∈ {5, 10, 15, 20, 25, 50, 100}. The maximum tree depth parameter
controls the depth of the isolation trees constructed within the iForest al-
gorithm. Deeper trees can capture more intricate patterns in the data but
may also lead to overfitting, while shallower trees may fail to capture com-
plex anomalies. Various values for the maximum tree depth were considered
during the parameter tuning process max_depth ∈ {2, 5, 10, 25, 50, 100, 200}.
The number of trees parameter defines the size of the ensemble forest in the
iForest algorithm. Increasing the number of trees in the forest can enhance

47

4. Experiments

the robustness of anomaly detection by aggregating predictions from multiple
trees. However, a larger number of trees may also lead to higher computa-
tional costs. The parameter tuning process involved experimenting with such
values n_trees ∈ {5, 10, 25, 50, 100, 250} This parameter tuning process was
conducted individually for each dataset to accommodate the specific charac-
teristics and temporal dynamics of the data.

4.3.2.5 LSTM

The Long Short-Term Memory model was configured with the following pa-
rameters:

• Number of Layers: The LSTM architecture experimented with dif-
ferent numbers of layers, ranging from 3 to 9. The selected number of
layers was 5.

• Number of Neurons per Layer: Each LSTM layer had a varying
number of neurons, with configurations ranging from 32 to 128 neurons
per layer.

• Sliding Window Length: The sliding window length, denoted by w,
determined the number of previous time steps used as input to predict
the next time step. Different window lengths of w ∈ {5, 10, 15, 20} time
steps were considered.

• Activation Functions: ReLU , Sigmoid, and Tanh, were tested to
introduce non-linearity into the LSTM layers.

• Batch Size: Different batch sizes, such as 32, 64, 128, and 256, were
experimented with.

• Loss Function: The loss function used during training was the Mean
Absolute Error (MAE) to measure the difference between the predicted
and actual values.

• Optimizer: The AdamW optimizer, an extension of the Adam op-
timizer with weight decay, was used to update the model parameters
during training.

The LSTM model was trained on the training dataset using these config-
urations, and one-step-ahead predictions were generated for the test dataset.
Anomaly scores were computed based on the LSTM model’s predictions using
the same method as for the ARIMA and ES models.

48

4.3. Experiment Design

4.3.3 Ensemble models output computation
To devise ensemble models, the combination of outputs from both machine
learning and statistical models was orchestrated to enhance anomaly detec-
tion. This approach aimed to capitalize on the distinct capabilities of each
model type, thereby refining the overall detection performance. Specifically,
the ensemble strategy involved combining the predictive errors from statistical
models such as ARIMA and exponential smoothing with the anomaly scores
generated by ML algorithms like Isolation Forest and Gaussian mixture mod-
els.

The ensemble architecture comprised six distinct models, each comprising
a coupling of one statistical and one ML model. Four ensembles were fashioned
by pairing ARIMA or ES with iForest or GMM. Within these ensembles,
the amalgamation process involved computing the weighted average of the
prediction error from the statistical model and the anomaly score from the
ML model at each data point.

The ensemble incorporating LSTM and statistical models adopted a dif-
ferent methodology. For this configuration, an additional feature was intro-
duced, derived from the statistical model’s outputs. Specifically, this feature
represented the aggregated output from the statistical model, computed as
the average prediction error over a window of the previous n data points. The
window size n corresponded to the training window size employed for training
the LSTM model.

4.3.4 Evaluation metrics and performance validation
Anomaly detection often deals with datasets where anomalies are rare com-
pared to normal data points, leading to class imbalance. Anomaly detection
can be seen as a kind of binary classification problem on highly imbalanced
data.

Definition 4.3.2. Confusion matrix for binary anomaly classification is de-
picted in Table 4.2:

Predicted Class

A
ct

ua
lC

la
ss Negative

(Normal)
Positive

(Anomalous)
Negative
(Normal) TN FP

Positive
(Anomalous) FN TP

Table 4.2: Confusion matrix.

Values TP, FP, TN, and FN correspond to:

49

4. Experiments

True Negative (TN): Actual event is normal and predicted as normal

False Positive (FP): Actual event is normal, but predicted as anomalous

False Negative (FN): Actual event is anomalous, but predicted as normal

True Positive (TP): Actual event is anomalous and predicted as anomalous

Definition 4.3.3. The precision is described with the next equation:

TP

TP + FP
. (4.4)

Definition 4.3.4. The recall is described with the following equation:

TP

TP + FN
. (4.5)

The F1 score is a way to measure how well a model balances precision and
recall. Precision looks at the proportion of true positive predictions out of all
positive predictions made by the model, while recall looks at the proportion
of true positive predictions out of all actual positive instances. The F1 score
combines these two metrics to give an overall assessment of a model’s perfor-
mance, especially useful when there is an imbalance between the number of
normal and anomalous data points.

Definition 4.3.5. The F1 score is defined as the harmonic mean of precision
and recall [34]. F1 score can be described with next equation:

TP

TP + F N+F P
2

. (4.6)

The precision-recall curve shows the trade-off between precision and recall
at different decision thresholds used in classification. Precision is plotted on
the y-axis, while recall is plotted on the x-axis. This curve helps visualize
how precision and recall change as the decision threshold shifts. A higher area
under the precision-recall curve indicates better overall performance of the
model in identifying anomalies across different thresholds.

Definition 4.3.6. A precision-recall curve depicts the relationship between
precision and recall across various classification thresholds.

Definition 4.3.7. PR-AUC is an area under the interpolated precision-recall
curve, obtained by plotting (recall, precision) points for different values of the
classification threshold.

In the context of anomaly detection, where anomalies are typically rare
compared to normal instances, the PR-AUC provides a more informative as-
sessment of model performance. It quantifies the ability of a model to balance

50

4.4. Experiment results

precision (the fraction of relevant instances among the retrieved instances)
and recall (the fraction of relevant instances that have been retrieved over the
total amount of relevant instances) across various decision thresholds [35].

The F1 score and PR-AUC metrics are widely recognized and easily inter-
pretable measures, making them ideal choices for assessing anomaly detection
performance. Consequently, they have been selected for evaluating all con-
ducted experiments. The F1 score is utilized as the primary criterion for
ranking the detection algorithms.

Each dataset underwent time series cross-validation with a parameter of
n_split = 3. This cross-validation technique was implemented using the
sklearn.model_selection.T imeSeriesSplit module.

Time series cross-validation is particularly suited for sequential data like
time series because it preserves the temporal order of the data during valida-
tion. The TimeSeriesSplit function divides the dataset into sequential folds,
ensuring that data in each fold comes after the data in preceding folds. This
prevents data leakage and ensures that the model is evaluated on unseen data.
During each fold of cross-validation, the model is trained on a portion of the
dataset and evaluated on the subsequent portion.

4.4 Experiment results

This section encompasses the outcomes derived from the conducted experi-
ments, with a particular emphasis on the combination of statistical models
with machine learning approaches, aimed at assessing the efficacy of ensemble
models. Structurally, it is divided into two key segments. Initially, the spot-
light is on showcasing the most effective models identified for each method
across the various datasets. Subsequently, a comprehensive overview of the
results across all methods and datasets is provided, allowing for a comparative
analysis, including an assessment of the ensemble models’ performance.

The primary assessment metric employed throughout the analysis remains
the F1 score. Within each method-dataset pairing, the model configuration
yielding the highest F1 score is highlighted, facilitating a comprehensive cross-
method comparison. Additionally, as supplementary metrics, PR-AUC and
precision-recall curve for each method and dataset are documented. It is im-
portant to note that the focus extends beyond individual models to encompass
the effectiveness of ensemble models, which combine statistical and machine
learning techniques. This holistic approach ensures a thorough evaluation of
the model’s effectiveness, shedding light on the potential advantages offered
by ensemble methodologies in the realm of anomaly detection.

51

4. Experiments

4.4.1 Results on Yahoo Finance dataset

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

Statistical Models

ES: PR-AUC=0.72
ARIMA: PR-AUC=0.63

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

Machine Learning Models

iForest: PR-AUC=0.69
GMM: PR-AUC=0.7
LSTM: PR-AUC=0.8

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

Ensemble Models

LSTM_ARIMA: PR-AUC=0.84
LSTM_ES: PR-AUC=0.66
GMM_ES: PR-AUC=0.71
GMM_ARIMA: PR-AUC=0.88
iForest_ES: PR-AUC=0.71
iForest_ARIMA: PR-AUC=0.87

Figure 4.4: Comparison of Precision-Recall Curve Scores for Statistical, Ma-
chine Learning, and Hybrid Models on the Training Set of Yahoo Finance
Dataset.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

Statistical Models

ES: PR-AUC=0.83
ARIMA: PR-AUC=0.66

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

Machine Learning Models

iForest: PR-AUC=0.81
GMM: PR-AUC=0.82
LSTM: PR-AUC=0.83

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0
Pr
ec
isi
on

Ensemble Models

LSTM_ARIMA: PR-AUC=0.88
LSTM_ES: PR-AUC=0.72
GMM_ES: PR-AUC=0.83
GMM_ARIMA: PR-AUC=0.91
iForest_ES: PR-AUC=0.83
iForest_ARIMA: PR-AUC=0.91

Figure 4.5: Comparison of Precision-Recall Curve Scores for Statistical, Ma-
chine Learning, and Hybrid Models on the Testing Set of Yahoo Finance
Dataset.

Table 4.3: Comparison of F1 Scores
for Statistical, Machine Learning,
and Hybrid Models on the Training
Set of Yahoo Finance Dataset.

ES ARIMA
0.7577 0.7437

GMM 0.7456 0.7577 0.8772
IForest 0.7322 0.7577 0.8398
LSTM 0.8081 0.7078 0.8725

Table 4.4: Comparison of F1 Scores
for Statistical, Machine Learning,
and Hybrid Models on the Testing
Set of Yahoo Finance Dataset.

ES ARIMA
0.8306 0.7807

GMM 0.8172 0.8306 0.9101
IForest 0.5401 0.8306 0.8984
LSTM 0.8208 0.7532 0.8696

The comparison of precision-recall curve scores for statistical, machine
learning, and hybrid models on the training set can be found in Figure 4.4,

52

4.4. Experiment results

while the comparison on the testing set is presented in Figure 4.5.
Table 4.3 and Table 4.4 displays the F1 score performance of various mod-

els on the training and testing set. The first column corresponds to the F1
scores of machine learning (ML) models, while the first row represents the F1
scores of statistical models. The intersection of rows and columns denotes the
F1 score performance of hybrid models

ES demonstrates commendable performance with an F1 score of 0.8306,
indicating its efficacy in capturing anomalies. ARIMA, with a slightly lower
F1 score of 0.7807, nonetheless exhibits respectable performance, albeit trail-
ing behind ES. ES and ARIMA, as conventional statistical models, prevail
in modeling linear trends and seasonal patterns. Their performance suggests
that anomalies within the Yahoo Finance dataset may exhibit some degree of
predictability and adherence to established patterns. GMM yields a compet-
itive F1 score of 0.8172, showcasing its ability to capture complex data dis-
tributions. GMM’s performance indicates proficiency in identifying anomalies
characterized by distinct clusters or seasonal patterns, suggesting potential
separability within the feature space. iForest exhibits a comparatively lower
F1 score of 0.5401, signaling overfitting or challenges in isolating anomalies
effectively. iForest’s performance suggests anomalies within the dataset may
not be as easily separable or isolated in feature space, posing difficulties in
detection. LSTM achieves an F1 score of 0.8208, underscoring its capabil-
ity to capture temporal dependencies and patterns. LSTM’s effectiveness in
modeling intricate temporal patterns aligns with the dataset’s characteristics,
which likely exhibit complex temporal dynamics.

The ensemble models exhibit notable enhancements in detection accuracy
compared to individual models. This improvement underscores the efficacy of
combining multiple algorithms to capitalize on their complementary strengths.
Each ensemble variant, whether integrating the Gaussian Mixture Model, Iso-
lation Forest, or Long Short-Term Memory, showcases distinct performance
characteristics. Notably, the ensemble models that incorporate ARIMA along-
side GMM or iForest demonstrate particularly robust performance, with F1
scores exceeding those of standalone models. This suggests that combining
the predictive capabilities of ARIMA with the clustering or isolation strengths
of GMM or iForest contributes significantly to anomaly detection accuracy.
However, it is important to note that not all ensemble combinations yield
substantial improvements. For instance, ensemble models incorporating Ex-
ponential Smoothing (ES) alongside GMM or iForest exhibit mixed results,
with some variants failing to surpass the performance of their individual coun-
terparts.

53

4. Experiments

4.4.2 Results on NAB dataset

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

Statistical Models

ES: PR-AUC=0.78
ARIMA: PR-AUC=0.7

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

Machine Learning Models
iForest: PR-AUC=0.77
GMM: PR-AUC=0.79
LSTM: PR-AUC=0.7

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

Ensemble Models

LSTM_ARIMA: PR-AUC=0.98
LSTM_ES: PR-AUC=0.98
GMM_ES: PR-AUC=0.79
GMM_ARIMA: PR-AUC=0.9
iForest_ES: PR-AUC=0.77
iForest_ARIMA: PR-AUC=0.78

Figure 4.6: Comparison of Precision-Recall Curve Scores for Statistical, Ma-
chine Learning, and Hybrid Models on the Training Set of NAB Dataset.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

Statistical Models
ES: PR-AUC=0.82
ARIMA: PR-AUC=0.73

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

Machine Learning Models

iForest: PR-AUC=0.76
GMM: PR-AUC=0.81
LSTM: PR-AUC=0.83

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

Ensemble Models

LSTM_ARIMA: PR-AUC=0.96
LSTM_ES: PR-AUC=0.96
GMM_ES: PR-AUC=0.82
GMM_ARIMA: PR-AUC=0.79
iForest_ES: PR-AUC=0.82
iForest_ARIMA: PR-AUC=0.79

Figure 4.7: Comparison of Precision-Recall Curve Scores for Statistical, Ma-
chine Learning, and Hybrid Models on the Testing Set of NAB Dataset.

Table 4.5: Comparison of F1
Scores for Statistical, Machine
Learning, and Hybrid Models on
the Training Set of NAB Dataset.

ES ARIMA
0.7875 0.7689

GMM 0.7937 0.7937 0.8986
IForest 0.6385 0.7891 0.8833
LSTM 0.6829 0.9555 0.9635

Table 4.6: Comparison of F1
Scores for Statistical, Machine
Learning, and Hybrid Models on
the Testing Set of NAB Dataset.

ES ARIMA
0.8516 0.8545

GMM 0.8019 0.8395 0.8686
IForest 0.7009 0.8737 0.8623
LSTM 0.7991 0.9370 0.9490

The comparison of precision-recall curve scores for statistical, machine
learning, and hybrid models on the training set can be found in Figure 4.6,
while the comparison on the testing set is presented in Figure 4.7. Table 4.5
and Table 4.6 displays the F1 score performance.

54

4.4. Experiment results

Both ES and ARIMA exhibit competitive performance, indicating their
suitability for detecting anomalies in this dataset. Despite exhibiting slightly
lower performance compared to ES and ARIMA, GMM demonstrates profi-
ciency in identifying anomalies. The performance of iForest suggests chal-
lenges in effectively isolating anomalies within cohesive clusters, potentially
due to the collective nature of anomalies in the dataset. LSTM’s effective-
ness in modeling non-linear patterns aligns with the dataset’s characteristics,
which likely exhibit complex dynamics.

Notably, ensemble models that combine LSTM with ES or ARIMA show-
case substantial improvements, with F1 scores nearing or exceeding 0.9. This
highlights the synergistic effects of combining LSTM’s ability to capture de-
pendencies with the predictive power of ES or ARIMA in detecting anomalies
within cohesive clusters. However, not all ensemble combinations yield sig-
nificant improvements. Variants, incorporating Gaussian Mixture Model or
Isolation Forest alongside ES or ARIMA, exhibit more modest improvements
in detection accuracy.

4.4.3 Results on synthetic dataset
4.4.3.1 Point anomalies

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

Statistical Models

ES: PR-AUC=0.71
ARIMA: PR-AUC=0.91

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

Machine Learning Models

iForest: PR-AUC=0.66
GMM: PR-AUC=0.66
LSTM: PR-AUC=0.92

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

Ensemble Models

LSTM_ARIMA: PR-AUC=0.93
LSTM_ES: PR-AUC=0.93
GMM_ES: PR-AUC=0.67
GMM_ARIMA: PR-AUC=0.71
iForest_ES: PR-AUC=0.68
iForest_ARIMA: PR-AUC=0.69

Figure 4.8: Comparison of Precision-Recall Curve for Statistical, Machine
Learning, and Hybrid Models on the Training Set of Synthetic Dataset with
Point Anomalies.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

Statistical Models
ES: PR-AUC=0.61
ARIMA: PR-AUC=0.86

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

Machine Learning Models

iForest: PR-AUC=0.56
GMM: PR-AUC=0.58
LSTM: PR-AUC=0.9

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

Ensemble Models

LSTM_ARIMA: PR-AUC=0.92
LSTM_ES: PR-AUC=0.91
GMM_ES: PR-AUC=0.61
GMM_ARIMA: PR-AUC=0.86
iForest_ES: PR-AUC=0.61
iForest_ARIMA: PR-AUC=0.87

Figure 4.9: Comparison of Precision-Recall Curve for Statistical, Machine
Learning, and Hybrid Models on the Testing Set of Synthetic Dataset with
Point Anomalies.

55

4. Experiments

Table 4.7: Comparison of F1 Scores
for Statistical, Machine Learning,
and Hybrid Models on the Training
Set of Synthetic Dataset with Point
Anomalies.

ES ARIMA
0.7821 0.8180

GMM 0.7303 0.7814 0.8150
IForest 0.7318 0.7814 0.8124
LSTM 0.8220 0.8335 0.8313

Table 4.8: Comparison of F1 Scores
for Statistical, Machine Learning,
and Hybrid Models on the Testing
Set of Synthetic Dataset with Point
Anomalies.

ES ARIMA
0.6908 0.7703

GMM 0.6855 0.6908 0.7716
IForest 0.6222 0.6908 0.7546
LSTM 0.7958 0.8057 0.8195

The comparison of precision-recall curve scores for statistical, machine
learning, and hybrid models on the training set can be found in Figure 4.8,
while the comparison on the testing set is presented in Figure 4.9. Table 4.7
and Table 4.8 displays the F1 score performance.

Point anomalies, characterized by individual data points deviating sig-
nificantly from the rest of the dataset, may be effectively captured by ES
and ARIMA. These models dominate in modeling trends and seasonality,
enabling them to detect deviations from expected patterns. However, the
performance improvement of ARIMA over ES suggests that ARIMA’s ability
to capture temporal dependencies may provide an advantage in identifying
isolated events. GMM’s performance lags behind ES and ARIMA, indicating
potential challenges in capturing anomalies characterized by subtle deviations
from the established pattern.

iForest’s performance in detecting point anomalies is comparatively lower,
suggesting limitations in isolating anomalies within the feature space. Point
anomalies may not always exhibit clear isolation in the feature space, po-
tentially hindering iForest’s effectiveness. It was not expected that iForest’s
performance in detecting point anomalies would be comparatively lower. How-
ever, this outcome could be attributed to the lower deviation of point anoma-
lies in this dataset. This lack of distinctiveness can potentially hinder iForest’s
effectiveness in isolating anomalies within the feature space. Similar to previ-
ous results LSTM demonstrates strong performance.

Ensemble models incorporating LSTM variants showcase superior perfor-
mance, with F1 scores nearing or exceeding 0.8. This highlights the effective-
ness of leveraging LSTM’s ability to capture temporal dependencies and se-
quential patterns in detecting point anomalies within the GutenTAG dataset.
Some variants, particularly those incorporating Gaussian Mixture Model or
Isolation Forest alongside ES or ARIMA, exhibit more modest improvements
in detection accuracy. Overall, while ensemble models offer promising avenues

56

4.4. Experiment results

for enhancing anomaly detection accuracy, the performance gains may vary
depending on the combination of constituent models.

4.4.3.2 Collective anomalies

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

Statistical Models
ES: PR-AUC=0.45
ARIMA: PR-AUC=0.67

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

Machine Learning Models
iForest: PR-AUC=0.48
GMM: PR-AUC=0.49
LSTM: PR-AUC=0.64

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

Ensemble Models
LSTM_ARIMA: PR-AUC=0.64
LSTM_ES: PR-AUC=0.63
GMM_ES: PR-AUC=0.49
GMM_ARIMA: PR-AUC=0.52
iForest_ES: PR-AUC=0.48
iForest_ARIMA: PR-AUC=0.62

Figure 4.10: Comparison of Precision-Recall Curve for Statistical, Machine
Learning, and Hybrid Models on the Training Set of Synthetic Dataset with
Collective Anomalies.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

Statistical Models
ES: PR-AUC=0.42
ARIMA: PR-AUC=0.53

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

Machine Learning Models
iForest: PR-AUC=0.43
GMM: PR-AUC=0.43
LSTM: PR-AUC=0.59

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

Ensemble Models
LSTM_ARIMA: PR-AUC=0.58
LSTM_ES: PR-AUC=0.59
GMM_ES: PR-AUC=0.43
GMM_ARIMA: PR-AUC=0.56
iForest_ES: PR-AUC=0.43
iForest_ARIMA: PR-AUC=0.51

Figure 4.11: Comparison of Precision-Recall Curve for Statistical, Machine
Learning, and Hybrid Models on the Testing Set of Synthetic Dataset with
Collective Anomalies.

Table 4.9: Comparison of F1 Scores
for Statistical, Machine Learning,
and Hybrid Models on the Training
Set of Synthetic Dataset with Col-
lective Anomalies.

ES ARIMA
0.5643 0.6865

GMM 0.6165 0.6132 0.6927
IForest 0.6001 0.6173 0.6868
LSTM 0.6726 0.6990 0.6976

Table 4.10: Comparison of F1
Scores for Statistical, Machine
Learning, and Hybrid Models
on the Testing Set of Synthetic
Dataset with Collective Anomalies.

ES ARIMA
0.5409 0.5401

GMM 0.5680 0.5636 0.6402
IForest 0.5528 0.5688 0.6287
LSTM 0.5977 0.6112 0.6061

57

4. Experiments

The comparison of precision-recall curve scores for statistical, machine
learning, and hybrid models on the training set can be found in Figure 4.10,
while the comparison on the testing set is presented in Figure 4.11. Table 4.9
and Table 4.10 displays the F1 score performance.

Collective anomalies pose challenges for traditional statistical models like
ES and ARIMA. These models may struggle to detect anomalies that manifest
as cohesive clusters within the dataset, particularly when the deviations from
the established pattern are subtle. GMM’s performance in detecting collective
anomalies is marginally better than ES and ARIMA. Its ability to model com-
plex data distributions and seasonal patterns may aid in capturing collective
anomalies. Isolation Forest’s performance in detecting collective anomalies is
comparable to GMM, suggesting that its inherent ability to isolate anomalies
within the feature space may provide some advantages. However, the per-
formance improvement is modest, indicating potential challenges. LSTM’s
ability to capture temporal dependencies and sequential patterns makes it
better suited for detecting collective anomalies compared to traditional sta-
tistical models. Its performance improvement over ES and ARIMA highlights
the importance of considering temporal dynamics in anomaly detection.

Ensemble models incorporating LSTM variants showcase relatively bet-
ter performance, with F1 scores nearing or exceeding 0.6. This highlights
the importance of leveraging LSTM’s ability to capture temporal dependen-
cies and non-linear trends. Notably, ensemble models that combine GMM or
Isolation Forest with LSTM variants exhibit promising performance improve-
ments. This suggests that integrating the clustering or isolation capabilities of
GMM or iForest with LSTM’s ability to capture temporal dependencies can
enhance detection accuracy for collective anomalies. However, it is important
to note that ensemble performance varies depending on the combination of
constituent models. Some combinations may yield only marginal improve-
ments in detection accuracy, underscoring the importance of careful model
selection and configuration.

4.4.3.3 Contextual anomalies

The comparison of precision-recall curve scores for statistical, machine
learning, and hybrid models on the training set can be found in Figure 4.12,
while the comparison on the testing set is presented in Figure 4.13. Table 4.11
and Table 4.12 displays the F1 score performance.

ARIMA’s proficiency in modeling temporal dependencies and patterns en-
ables it to effectively capture contextual anomalies. Its ability to adapt to
changes in data patterns over time may contribute to its superior perfor-
mance in detecting deviations from expected patterns within specific contexts.
GMM’s performance in detecting contextual anomalies is comparable to ES,
indicating potential challenges in capturing nuanced contextual dependencies.

58

4.4. Experiment results

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

Statistical Models

ES: PR-AUC=0.44
ARIMA: PR-AUC=0.82

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

Machine Learning Models
iForest: PR-AUC=0.45
GMM: PR-AUC=0.46
LSTM: PR-AUC=0.79

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

Ensemble Models

LSTM_ARIMA: PR-AUC=0.79
LSTM_ES: PR-AUC=0.78
GMM_ES: PR-AUC=0.47
GMM_ARIMA: PR-AUC=0.52
iForest_ES: PR-AUC=0.46
iForest_ARIMA: PR-AUC=0.46

Figure 4.12: Comparison of Precision-Recall Curve for Statistical, Machine
Learning, and Hybrid Models on the Training Set of Synthetic Dataset with
Contextual Anomalies.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

Statistical Models

ES: PR-AUC=0.4
ARIMA: PR-AUC=0.73

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

Machine Learning Models
iForest: PR-AUC=0.38
GMM: PR-AUC=0.4
LSTM: PR-AUC=0.8

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

Ensemble Models

LSTM_ARIMA: PR-AUC=0.8
LSTM_ES: PR-AUC=0.8
GMM_ES: PR-AUC=0.41
GMM_ARIMA: PR-AUC=0.74
iForest_ES: PR-AUC=0.4
iForest_ARIMA: PR-AUC=0.74

Figure 4.13: Comparison of Precision-Recall Curve for Statistical, Machine
Learning, and Hybrid Models on the Testing Set of Synthetic Dataset with
Contextual Anomalies.

Table 4.11: Comparison of F1
Scores for Statistical, Machine
Learning, and Hybrid Models on
the Training Set of Synthetic
Dataset with Contextual Anoma-
lies.

ES ARIMA
0.5522 0.8045

GMM 0.5938 0.6004 0.8089
IForest 0.5647 0.5953 0.8055
LSTM 0.7804 0.7830 0.7854

Table 4.12: Comparison of F1
Scores for Statistical, Machine
Learning, and Hybrid Models
on the Testing Set of Synthetic
Dataset with Contextual Anoma-
lies.

ES ARIMA
0.5062 0.7977

GMM 0.5274 0.5333 0.8047
IForest 0.4843 0.5230 0.8061
LSTM 0.7574 0.7807 0.7539

The limitations observed in the GMM’s ability to detect contextual anoma-
lies may stem from its fundamental approach. The segmentation of data into
seasonal bins by the GMM model implies a partitioning that may overlook sub-
tle contextual anomalies existing across these divisions. Contextual anomalies
may not always exhibit clear isolation in the feature space, posing challenges

59

4. Experiments

for iForest in detecting such anomalies effectively. LSTM demonstrates the
second highest F1 score after ARIMA.

Ensemble models that combine ARIMA with other models, such as GMM
and ARIMA or iForest and ARIMA, showcase relatively better performance,
with F1 scores exceeding 0.8. Ensemble models incorporating LSTM variants
also demonstrate competitive performance. This suggests that LSTM’s ability
to contribute to improved detection accuracy for contextual anomalies.

4.4.4 Discussion
Based on the experimental results, several notable observations and conclu-
sions can be drawn regarding the performance of anomaly detection models
in time series data.

Firstly, statistical models such as Exponential Smoothing and Autoregres-
sive Integrated Moving Average consistently demonstrated robust performance
across various datasets and anomaly types. These models, leveraging statis-
tical principles, showcased effectiveness in capturing temporal patterns and
identifying anomalies, particularly point and collective anomalies.

Machine learning models, including the Gaussian Mixture Model, Isolation
Forest, and Long Short-Term Memory networks, exhibited varying degrees of
success in anomaly detection. GMM showed competitive performance, partic-
ularly when combined with ES or ARIMA in ensemble models. iForest demon-
strated effectiveness in detecting anomalies, albeit with some limitations in
handling contextual anomalies. LSTM networks, while powerful in capturing
complex temporal dependencies, exhibited mixed performance across datasets
and anomaly types.

Ensemble models combining multiple techniques showcased promising re-
sults, often outperforming individual models. The fusion of statistical and
machine learning frameworks in ensemble models, such as GMM combined
with ES or ARIMA, offered enhanced anomaly detection capabilities, lever-
aging the complementary strengths of each approach.

In conclusion, while no single model emerged as a clear winner in anomaly
detection, the experimental findings highlight the strengths and limitations
of different techniques and emphasize the efficacy of hybrid and ensemble
approaches in enhancing anomaly detection performance in time series data.

60

Chapter 5
Conclusion

The advent of time series data has brought forth a myriad of challenges in
anomaly detection, necessitating the development of robust and adaptive tech-
niques. Anomaly types, ranging from point anomalies to contextual and collec-
tive anomalies, present unique obstacles, requiring specialized methodologies
for effective detection.

Traditional statistical models, such as Exponential Smoothing (ES) and
ARIMA, offer foundational frameworks for anomaly detection but may exhibit
limitations in capturing complex patterns inherent in time series data. Con-
versely, machine learning algorithms, exemplified by Long Short-Term Mem-
ory, demonstrate prowess in capturing temporal dependencies and sequential
patterns, offering promising avenues for anomaly detection.

However, the disparate nature of anomaly types and the limitations of
individual models underscore the need for a novel approach. In response to this
challenge, a hybrid methodology is proposed in this thesis, combining elements
of both machine learning and statistical models. This hybrid approach aims
to leverage the complementary strengths of each paradigm, offering a more
robust and adaptive framework for anomaly detection in time series data.

By integrating machine learning’s capacity for pattern the proposed hy-
brid approach seeks to overcome the limitations of traditional methodolo-
gies. Through empirical evaluation and comparative analysis, the efficacy of
this hybrid approach is demonstrated, highlighting its potential in enhancing
anomaly detection performance across different anomaly types.

In summary, this thesis contributes to the advancement of anomaly de-
tection techniques in time series data by addressing the challenges inherent
in anomaly detection and proposing a novel hybrid approach. By bridging
the gap between machine learning and statistical models, this research lays
the groundwork for the development of more effective and adaptive anomaly
detection systems in various domains.

61

Bibliography

[1] Van Houdt, G.; Mosquera, C.; et al. A review on the long short-term
memory model. Artificial Intelligence Review, volume 53, no. 8, Dec.
2020: pp. 5929–5955, ISSN 0269-2821, doi:10.1007/s10462-020-09838-1.

[2] Teng, M. Anomaly detection on time series. In 2010 IEEE International
Conference on Progress in Informatics and Computing, Jan 2010, pp.
603–608, doi:10.1109/PIC.2010.5687485.

[3] Schmidl, S.; Wenig, P.; et al. Anomaly detection in time series: a com-
prehensive evaluation. Proc. VLDB Endow., volume 15, no. 9, may 2022:
p. 1779–1797, ISSN 2150-8097, doi:10.14778/3538598.3538602. Available
from: https://doi.org/10.14778/3538598.3538602

[4] Nassif, A.; Abu Talib, M.; et al. Machine Learning for Anomaly Detec-
tion: A Systematic Review. IEEE Access, volume PP, 05 2021: pp. 1–1,
doi:10.1109/ACCESS.2021.3083060.

[5] Liu, F. T.; Ting, K. M.; et al. Isolation-Based Anomaly Detection. ACM
Trans. Knowl. Discov. Data, volume 6, no. 1, Mar 2012, ISSN 1556-
4681, doi:10.1145/2133360.2133363. Available from: https://doi.org/
10.1145/2133360.2133363

[6] Gunning, D.; Stefik, M.; et al. XAI—Explainable artificial intelli-
gence. Science Robotics, volume 4, Dec 2019: p. eaay7120, doi:10.1126/
scirobotics.aay7120.

[7] Braei, M.; Wagner, S. Anomaly Detection in Univariate Time-series: A
Survey on the State-of-the-Art. CoRR, volume abs/2004.00433, 2020,
2004.00433. Available from: https://arxiv.org/abs/2004.00433

[8] Shumway, R.; Stoffer, D. Time Series Analysis and Its Applications: With
R Examples. Springer Texts in Statistics, Springer New York, 2010, ISBN

63

https://doi.org/10.14778/3538598.3538602
https://doi.org/10.1145/2133360.2133363
https://doi.org/10.1145/2133360.2133363
2004.00433
https://arxiv.org/abs/2004.00433

Bibliography

9781441921253. Available from: https://books.google.cz/books?id=
ahdvcgAACAAJ

[9] Hamilton, J. D. Time Series Analysis. Princeton University Press, 1994,
ISBN 9780691042893. Available from: https://www.worldcat.org/
title/time-series-analysis/oclc/1194970663&referer=
brief_results

[10] Bhattacharya, A. Effective Approaches for Time Series Anomaly
Detection. Towards Data Science [online], 2020, [Cited 2021-12-
12]. Available from: https://towardsdatascience.com/effective-
approaches-for-time-series-anomaly-detection-9485b40077f1

[11] Chandola, V.; Banerjee, A.; et al. Anomaly Detection: A Survey. ACM
Comput. Surv., volume 41, 07 2009, doi:10.1145/1541880.1541882.

[12] Shaukat Dar, K.; Mahboob Alam, T.; et al. A Review of Time-Series
Anomaly Detection Techniques: A Step to Future Perspectives. 04 2021,
ISBN 978-3-030-73099-4, doi:10.1007/978-3-030-73100-7_60.

[13] Zhang, P. Time Series Forecasting Using a Hybrid ARIMA and Neu-
ral Network Model. Neurocomputing 50, 159-175. Neurocomputing, vol-
ume 50, 01 2003: pp. 159–175, doi:10.1016/S0925-2312(01)00702-0.

[14] Ullrich, T. On the Autoregressive Time Series Model Using Real and
Complex Analysis. Forecasting, volume 3, no. 4, 2021: pp. 716–728,
ISSN 2571-9394, doi:10.3390/forecast3040044. Available from: https:
//www.mdpi.com/2571-9394/3/4/44

[15] Shumway, R. H.; Stoffer, D. S. ARIMA Models. Cham: Springer
International Publishing, 2017, ISBN 978-3-319-52452-8, pp. 75–163,
doi:10.1007/978-3-319-52452-8_3. Available from: https://doi.org/
10.1007/978-3-319-52452-8_3

[16] Box, G.; Jenkins, G. M. Time Series Analysis: Forecasting and Con-
trol. Holden-Day series in time series analysis and digital process-
ing, Holden-Day, 1976, ISBN 9780816211043. Available from: https:
//books.google.cz/books?id=1WVHAAAAMAAJ

[17] Montgomery, D.; Jennings, C.; et al. Introduction to Time Series Anal-
ysis and Forecasting. Wiley Series in Probability and Statistics, Wiley,
2008, ISBN 9780471653974. Available from: https://books.google.cz/
books?id=IY6OQgAACAAJ

[18] Fildes, R.; Harvey, A.; et al. Forecasting, Structural Time Series Models
and the Kalman Filter. The Journal of the Operational Research Society,
volume 42, 11 1991: p. 1031, doi:10.2307/2583225.

64

https://books.google.cz/books?id=ahdvcgAACAAJ
https://books.google.cz/books?id=ahdvcgAACAAJ
https://www.worldcat.org/title/time-series-analysis/oclc/1194970663&referer=brief_results
https://www.worldcat.org/title/time-series-analysis/oclc/1194970663&referer=brief_results
https://www.worldcat.org/title/time-series-analysis/oclc/1194970663&referer=brief_results
https://towardsdatascience.com/effective-approaches-for-time-series-anomaly-detection-9485b40077f1
https://towardsdatascience.com/effective-approaches-for-time-series-anomaly-detection-9485b40077f1
https://www.mdpi.com/2571-9394/3/4/44
https://www.mdpi.com/2571-9394/3/4/44
https://doi.org/10.1007/978-3-319-52452-8_3
https://doi.org/10.1007/978-3-319-52452-8_3
https://books.google.cz/books?id=1WVHAAAAMAAJ
https://books.google.cz/books?id=1WVHAAAAMAAJ
https://books.google.cz/books?id=IY6OQgAACAAJ
https://books.google.cz/books?id=IY6OQgAACAAJ

Bibliography

[19] Holt, C. Forecasting seasonals and trends by exponentially weighted
moving averages, volume 20. International Institute of Forecast-
ers, 2004, 5-10 pp., doi:https://doi.org/10.1016/j.ijforecast.2003.09.015.
Available from: https://www.sciencedirect.com/science/article/
pii/S0169207003001134

[20] Liu, J.; Zhu, H.; et al. Anomaly detection for time series using temporal
convolutional networks and Gaussian mixture model. Journal of Physics,
volume 1187, no. 4, Apr. 2019: p. 042111, doi:10.1088/1742-6596/1187/
4/042111. Available from: https://doi.org/10.1088/1742-6596/1187/
4/042111

[21] Douglas, R. Gaussian Mixture Models. Boston, MA: Springer US, 2009,
ISBN 978-0-387-73003-5, pp. 659–663, doi:10.1007/978-0-387-73003-5_
196. Available from: https://doi.org/10.1007/978-0-387-73003-5_
196

[22] Dempster, A. P.; Laird, N. M.; et al. Maximum Likelihood from Incom-
plete Data via the EM Algorithm. Journal of the Royal Statistical Soci-
ety. Series B (Methodological), volume 39, no. 1, 1977: pp. 1–38, ISSN
00359246. Available from: http://www.jstor.org/stable/2984875

[23] Reddy, A.; Ordway-West, M.; et al. Using Gaussian Mixture Models to
Detect Outliers in Seasonal Univariate Network Traffic. In 2017 IEEE
Security and Privacy Workshops (SPW), 2017, pp. 229–234, doi:10.1109/
SPW.2017.9.

[24] Sun, L.; Versteeg, S.; et al. Detecting Anomalous User Behavior Using an
Extended Isolation Forest Algorithm: An Enterprise Case Study. 2016,
1609.06676.

[25] Zhong, S.; Fu, S.; et al. A novel unsupervised anomaly detection
for gas turbine using Isolation Forest. 2019, 1-6 pp., doi:10.1109/
ICPHM.2019.8819409.

[26] Alpaydin, E. Introduction to Machine Learning. Adaptive Computation
and Machine Learning, Cambridge, MA: MIT Press, third edition, 2014,
ISBN 978-0-262-02818-9.

[27] Bishop, C. M. Neural Networks for Pattern Recognition. USA: Oxford
University Press, Inc., 1995, ISBN 0198538642.

[28] Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural
Computation, volume 9, no. 8, 11 1997: pp. 1735–1780, ISSN 0899-
7667, doi:10.1162/neco.1997.9.8.1735, https://direct.mit.edu/neco/
article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf.

65

https://www.sciencedirect.com/science/article/pii/S0169207003001134
https://www.sciencedirect.com/science/article/pii/S0169207003001134
https://doi.org/10.1088/1742-6596/1187/4/042111
https://doi.org/10.1088/1742-6596/1187/4/042111
https://doi.org/10.1007/978-0-387-73003-5_196
https://doi.org/10.1007/978-0-387-73003-5_196
http://www.jstor.org/stable/2984875
1609.06676
https://direct.mit.edu/neco/article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf
https://direct.mit.edu/neco/article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf

Bibliography

[29] Werbos, P. Backpropagation through time: what it does and how to do
it. Proceedings of the IEEE, volume 78, no. 10, 1990: pp. 1550–1560,
doi:10.1109/5.58337.

[30] Laptev, N.; Amizadeh, S. Yahoo anomaly detection dataset s5. 2015.

[31] Lavin, A.; Ahmad, S. Evaluating real-time anomaly detection algorithms
- the Numenta Anomaly Benchmark. Nov 2015. Available from: https:
//arxiv.org/abs/1510.03336

[32] Wenig, P.; Schmidl, S.; et al. TimeEval: A Benchmarking Toolkit for
Time Series Anomaly Detection Algorithms. Proceedings of the VLDB
Endowment (PVLDB), volume 15, no. 12, 2022: pp. 3678 – 3681, doi:
10.14778/3554821.3554873.

[33] Akaike, H. A new look at the statistical model identification. IEEE Trans-
actions on Automatic Control, volume 19, no. 6, 1974: pp. 716–723, doi:
10.1109/TAC.1974.1100705.

[34] Korstanje, J. The F1 score. [online], Aug 2021, [cit. 2022-02-
02]. Available from: https://towardsdatascience.com/the-f1-score-
bec2bbc38aa6

[35] Davis, J.; Goadrich, M. The relationship between Precision-Recall
and ROC curves. In Proceedings of the 23rd International Conference
on Machine Learning, ICML ’06, New York, NY, USA: Association
for Computing Machinery, 2006, ISBN 1595933832, p. 233–240, doi:
10.1145/1143844.1143874. Available from: https://doi.org/10.1145/
1143844.1143874

66

https://arxiv.org/abs/1510.03336
https://arxiv.org/abs/1510.03336
https://towardsdatascience.com/the-f1-score-bec2bbc38aa6
https://towardsdatascience.com/the-f1-score-bec2bbc38aa6
https://doi.org/10.1145/1143844.1143874
https://doi.org/10.1145/1143844.1143874

Appendix A
Acronyms

AR Autoregressive

MA Moving average

ADF test Augmented Dickey–Fuller test

KPSS test Kwiatkowski–Phillips–Schmidt–Shin test

ARIMA Autoregressive integrated moving average

ES Exponential smoothing

AI Artificial intelligence

ML Machine learning

iForest Isolation Forest

GMM Gaussian mixture model

FFNN Feed-forward neural network

RNN Recurrent neural network

LSTM Long short-term memory

NAB Numenta Anomaly Benchmark

PR Precision-Recall

AUC Area under the curve

67

Appendix B
Contents of enclosed CD

readme.txt.........................the file with CD contents description
implementation.............the directory of code of the implementation
thesis..the thesis text directory

thesis.pdf............................the thesis text in PDF format
src..................the directory of LATEX source codes of the thesis

69

	Introduction
	Aim of the Thesis
	Structure of the work

	Fundamentals
	Time series
	Properties of time series

	Anomalies in time series
	Previous work

	Statistical anomaly detection approaches
	ARIMA
	Autoregressive model
	Parameter estimation using least squares
	Training and anomaly detection

	Moving average
	Autoregressive Integrated Moving Average Model
	Stationarity testing
	Determining the order of AR and MA
	Seasonal ARIMA

	Exponential Smoothing
	Single Exponential Smoothing
	Weighted average form
	Component form
	Optimisation and anomaly detection

	Holt’s linear trend method
	Damped trend method

	Holt-Winters’ seasonal method
	Holt-Winters’ additive method
	Holt-Winters’ multiplicative method

	Machine Learning and Deep Learning approaches
	Gaussian mixture model
	Parameter estimation
	Anomaly detection

	Isolation Forest
	Long-short term memory network
	Artificial neural network
	Feed-forward and recurrent network architecture
	Feed-forward neural networks
	Recurrent neural networks

	LSTM architecture
	Model training
	LSTM-based anomaly detection

	Experiments
	Used tools
	Datasets Overview
	Yahoo Finance Dataset
	Numenta Anomaly Benchmark Dataset
	Synthetic GutenTAG Dataset

	Experiment Design
	Data preprocessing
	Configuration of evaluated detection methods
	ARIMA
	Exponential smoothing
	Gaussian Mixture Model
	Isolation Forest
	LSTM

	Ensemble models output computation
	Evaluation metrics and performance validation

	Experiment results
	Results on Yahoo Finance dataset
	Results on NAB dataset
	Results on synthetic dataset
	Point anomalies
	Collective anomalies
	Contextual anomalies

	Discussion

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

