
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

Web Components UI Library

Bc. Dominik Fryč

Ing. Josef Pavlíček, Ph.D.

Informatics

Web Engineering

Department of Software Engineering

until the end of summer semester 2023/2024

Instructions

Front-end development is a complex process of creating a user interface between

humans and applications. Developers often utilize component libraries to save time, not

repeat themselves and achieve consistency. This diploma project aims to build a Web

Components library based on a custom design system. Components should be

standards-based, performant, accessible and extensible. The design language is

expected to be customizable by modifying design tokens. The library should implement

enough components to build a web admin interface.

Requirements for the thesis:

- Explore design systems and UI components

- Compare and analyze existing JavaScript UI libraries

- Analyze web components technology and frameworks

- Create a design system including tokens, components and templates

- Implement, document and test a component library based on the design system

- Deploy and distribute the library under an open-source license

- Demonstrate the actual usage of created components in an application

- Evaluate the result and discuss the possibilities for further development

Electronically approved by Ing. Jaroslav Kuchař, Ph.D. on 24 February 2023 in Prague.

Master’s thesis

Web Components UI Library

Bc. Dominik Fryč

Department of Software Engineering
Supervisor: Ing. Josef Pavlíček, Ph.D.

February 15, 2024

Acknowledgements

I would like to express my gratitude to my thesis advisor Ing. Josef Pavlíček,
Ph.D. for helpful advice during consultations. Also, I would like to thank my
family and close ones for their support during the whole studies.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Section 2373(2) of Act No. 89/2012 Coll., the Civil Code,
as amended, I hereby grant a non-exclusive authorization (licence) to utilize
this thesis, including all computer programs that are part of it or attached
to it and all documentation thereof (hereinafter collectively referred to as the
”Work”), to any and all persons who wish to use the Work. Such persons are
entitled to use the Work in any manner that does not diminish the value of
the Work and for any purpose (including use for profit). This authorisation
is unlimited in time, territory and quantity.

In Prague on February 15, 2024

Czech Technical University in Prague
Faculty of Information Technology
© 2024 Dominik Fryč. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Fryč, Dominik. Web Components UI Library. Master’s thesis. Czech Techni-
cal University in Prague, Faculty of Information Technology, 2024.

Abstract

In today’s dynamic web development landscape, a well-designed and well-
crafted UI library can significantly enhance web designers’ and developers’ ef-
ficiency and productivity. Web Components, a modern technology standard,
offer a promising approach to creating reusable and encapsulated UI com-
ponents that can seamlessly integrate across different web frameworks. This
diploma thesis aims to create a component library, establish a custom design
system, provide comprehensive documentation, and distribute the package
to a public repository. It dives into the comprehensive process of designing
and building a component library, containing exploration and analysis, design
system creation, component library implementation, testing, distribution and
usage. It creates a valuable resource for any developer interested in developing
the Web Components UI library.

Keywords components, web components, custom elements, component li-
brary, UI components, design system, Lit, Vite, TypeScript, Storybook

vii

Abstrakt

V dnešní dynamické době vývoje webu může dobře navržená a dobře vytvo-
řená knihovna uživatelského rozhraní výrazně zvýšit efektivitu a produktivitu
webdesignérů a vývojářů. Web Components, moderní technologický standard,
nabízí slibný přístup k vytváření opakovaně použitelných a zapouzdřených
komponent uživatelského rozhraní, které se mohou bezproblémově integro-
vat napříč různými webovými frameworky. Tato diplomová práce má za cíl
vytvořit knihovnu komponent, založit vlastní design systém, poskytnout kom-
plexní dokumentaci a distribuovat balíček do veřejného repozitáře. Zabývá se
celým procesem návrhu a stavby knihovny uživatelského rozhraní, která ob-
sahuje průzkum a analýzu, vytváření design systému, implementaci knihovny
komponent, testování, distribuci a její použití. Představuje cenný zdroj pro
každého vývojáře, který má zájem o vývoj vlastní knihovny uživatelského roz-
hraní pomocí technologie Web Components.

Klíčová slova components, web components, custom elements, component
library, UI components, design system, Lit, Vite, TypeScript, Storybook

ix

Contents

Introduction 1

1 Exploration and Analysis 3
1.1 Design Systems . 4
1.2 Component Libraries . 6
1.3 Web Components Technology 9
1.4 Web Components Frameworks 12

2 Design System 15
2.1 Motivation . 16
2.2 Principles . 16
2.3 Realization . 18
2.4 Design Tokens . 19
2.5 Components . 28

3 Implementation 35
3.1 Project Structure . 36
3.2 Build Process . 37
3.3 Documentation . 40
3.4 Linting and Formatting . 42
3.5 Forms and Validation . 43
3.6 Accessibility . 44

4 Testing 47
4.1 Strategies and Types . 48
4.2 Used Tools . 50
4.3 Test Cases . 50

xi

5 Distribution and Usage 55
5.1 Release . 56
5.2 Components Usage . 59
5.3 Customization . 63

Conclusion 69

Bibliography 71

A List of Abbreviations 79

B Contents of Attachments 81

xii

List of Figures

1.1 Stencil vs. Lit downloads in past 2 years on npm [31] 13

2.1 Design tokens: Primitive color palette 21
2.2 Design tokens: Color aliases . 22
2.3 Components: Alert . 29
2.4 Components: Button . 30
2.5 Components: Checkbox, Switch, and Radio 31
2.6 Components: Choice Group . 32
2.7 Components: Input and Textarea 33
2.8 Components: Label . 34
2.9 Components: Spinner . 34

3.1 Project file structure . 36
3.2 Component file structure . 37

5.1 Comparison between light and dark theme 65
5.2 Custom theme example . 66

xiii

List of Tables

2.1 Design tokens: Font family . 23
2.2 Design tokens: Font size . 24
2.3 Design tokens: Font weight . 24
2.4 Design tokens: Line height . 25
2.5 Design tokens: Border radius . 25
2.6 Design tokens: Box shadow . 26
2.7 Design tokens: Spacing . 26
2.8 Design tokens: Transitions . 27
2.9 Design tokens: Z-index . 27
2.10 Design tokens: Forms . 28

xv

List of Listings

1.1 Simple web component definition 12

3.1 TSDoc annotation example for Custom Elements Manifest 42

4.1 Test case: Checkbox is defined . 51
4.2 Test case: Spinner renders with default values 52
4.3 Test case: Label renders with custom attributes correctly 53
4.4 Test case: Input passes the accessibility audit 53
4.5 Test case: Button fires dfx-click event when clicked 54

5.1 Conventional Commits format . 56
5.2 Example of conventional commit 57
5.3 Component usage in React . 61
5.4 Component usage in Vue . 62
5.5 Component usage in Angular . 63
5.6 Custom theme usage . 66
5.7 CSS Custom Properties example 67
5.8 CSS Shadow Parts example . 67

xvii

Introduction

Design systems and components play an essential role in modern software
development. A design system is a collection of components, principles, and
templates that create consistency and efficiency in the design and development
process. It provides a unified visual language and a set of rules for building
user interfaces. Components are self-contained, reusable elements that can be
combined to create complex user interfaces. It simplifies workflow for designers
and developers, improves collaboration, and delivers consistent, high-quality
user experiences across different platforms.

Finding a reliable and efficient component library could be a struggle.
Existing libraries often come with challenges that block the development pro-
cess. One common problem is the need for more customization options. Many
libraries offer limited pre-designed components, making it challenging to tai-
lor them to specific project requirements. Additionally, compatibility issues
arise when integrating these libraries with existing codebases, leading to time-
consuming debugging and refactoring tasks. Another issue is the lack of docu-
mentation, which could cause the learning curve and troubleshooting process.
These problems highlight the need for a powerful and flexible component li-
brary that addresses these pain points and supports developers in creating
highly customizable user interfaces.

Usually, a suitable component library comes in handy when working on
a new front-end project. First, I started using popular UI libraries to build
a solid foundation for my work. However, I soon realized that none of them
met my expectations. So, I started creating custom components that fit my
needs for a particular project. For new projects, all those components were
copied from previous ones, but when a component was changed in one project,

1

Introduction

I had to distribute the changes to all other projects. It wasn’t effective and
sustainable at all. Moreover, I started working on a project using a different
front-end framework, so my existing components weren’t compatible. That’s
why I chose to create a custom component library.

This thesis aims to create a component library that will be compatible with
all front-end frameworks and easy to use and customize. Components should
be efficient, accessible by default, and standards-based, following W3C Web
Components specifications [1]. The project will be accompanied by a design
system providing design tokens, components, and templates demonstrating
components composition. Modifying design tokens should customize the de-
sign language. Documentation should provide information about all compo-
nents and their usage. The library will be distributed as a package at a public
repository and published under an open-source license.

The thesis follows a logical structure, starting with analyzing and exploring
web components technology. This initial section provides a complete under-
standing of the technologies and their relevance in modern software develop-
ment. Following the analysis, the thesis dives into creating a design system,
individual design tokens, and components. Implementation focuses on the
practical aspects of building a JavaScript component library. This section
covers the design and development process, including the tools and technolo-
gies used. The following section describes the testing strategies and test cases.
Next, the thesis covers the distribution and usage of the component library.
This section explores how the library can be easily installed and integrated into
different front-end frameworks and how to customize it for various projects.
Finally, the thesis concludes with a project evaluation that reflects on the
challenges faced during the development process. It includes a summary of
the achieved goals and future project improvements.

2

Chapter 1
Exploration and Analysis

This chapter explores and analyzes various aspects of front-end development,
focusing on design systems, component libraries, and web components technol-
ogy. Developing a design system that creates efficient and consistent UI de-
velopment requires a robust foundation. I will describe and compare key
technologies and tools that will serve as the building blocks for my project.

In the first section, I will discuss the purpose and benefits of design systems
in modern web development. I explore how these systems establish a sin-
gle source of truth for design principles, UI components, and development
practices, leading to faster development, improved consistency, and enhanced
maintainability.

The second section will introduce component libraries and a comparative
analysis of development approaches with existing solutions. I describe the
strengths and weaknesses of different component library options, including
framework-specific and framework-agnostic libraries. This comparative anal-
ysis will inform my choice of the most suitable approach for my design system.

Next, I dive into the heart of my chosen approach: web components tech-
nology. This section demystifies the key concepts that power custom elements,
including Shadow DOM, HTML templates, CSS custom properties, CSS parts,
slots, and events. Understanding these mechanisms is crucial for building ro-
bust web components.

Finally, I write about the landscape of web component frameworks. I ex-
plore the advantages and disadvantages of libraries Lit and Stencil, considering
their underlying implementation approach, ease of use, community support,
and performance characteristics. This analysis will guide me in selecting the
most suitable framework for my project’s needs.

3

1. Exploration and Analysis

By the end of this chapter, I will provide a firm understanding of the
technologies and tools that will form the foundation for my component li-
brary. This exploration will prepare me to dive into the project’s design and
implementation phases.

1.1 Design Systems

A design system is a set of components and principles that reflect a brand or
product’s visual language and user experience standards. It serves as a single
source of truth for the whole team, providing a common language and clear
guidelines for all team members. Design systems typically include design
tokens, components, and templates, which work together. [2] There are few
reasons why design systems matter [3]:

Accessibility – The Design system should make sure that it uses an acces-
sible color palette with sufficient contrast ratios, large enough font sizes
for all texts, and that all components are usable with a keyboard or
a screen reader.

Consistency – One of the key advantages of design systems is that they
promote consistency in user interfaces. By reusing components and fol-
lowing defined standards, a design system can provide a consistent user
experience across different parts of an application or even different ap-
plications.

Updates – A design pattern or specific component can be updated at one
place within the system, and the change will propagate to each product
after a library update. This could also be a disadvantage since some
changes could break existing behavior, and developers must fix it.

Onboarding – Well-documented design systems are a great source for on-
boarding new team members. Having one source of truth can make
understanding the whole system faster and easier.

Speed – With a stable release of the design system, designers and developers
can prototype new applications rapidly.

1.1.1 Design Tokens

One of the key elements of design systems is the concept of design tokens.
Design tokens abstract design properties such as color, typography, spacing,

4

1.1. Design Systems

motion, and elevation into reusable and platform-agnostic variables. By defin-
ing these properties at a higher level and using them in place of hard-coded
values, design tokens maintain consistency across various platforms and de-
sign tools while allowing for easy customization and adaptation to different
contexts. [4][5]

1.1.2 Patterns and Templates

Patterns and templates are integral parts of design systems that encapsulate
commonly used design solutions and layouts. Patterns represent reusable solu-
tions to recurring design problems, while templates provide predefined struc-
tures for specific page layouts or interface elements. By incorporating patterns
and templates into design systems, teams can correctly and consistently im-
plement design solutions, reducing user cognitive load and streamlining the
design and development process. [6]

1.1.3 Components

Components are the fundamental units of any design system to create visual
and functional consistency. They are reusable, self-contained pieces of user
interface that serve a specific function. Components can range from simple
elements like buttons and inputs to complex elements like data tables and
modals. Components are supposed to be modular, so they can be combined
and composed together to create more complex user interfaces. [7]

Each component in the library is a self-contained unit of code, typically
consisting of HTML, CSS, and JavaScript. A design system should have el-
ements that are reusable, customizable, and accessible. Reusability ensures
that the components can be used in a variety of contexts. Customizability al-
lows the components to be adapted to fit different requirements. Accessibility
ensures that the components can be used by any user, including those with
disabilities.

There are some examples of high-quality design systems:

• Nord by Nordhealth

• Orbit by Kiwi

• Polaris by Shopify

• Fluent 2 by Microsoft

• Primer by GitHub

5

https://nordhealth.design/
https://orbit.kiwi/
https://polaris.shopify.com/
https://fluent2.microsoft.design/
https://primer.style/

1. Exploration and Analysis

1.2 Component Libraries

The component library is the implementation of the design system. It repre-
sents a coded, tested, and well-documented collection of reusable UI compo-
nents that follow the principles and guidelines established within the design
system and are ready to be used inside a project. Using component libraries,
developers can reuse code across multiple projects, reducing the time required
to create new applications. This is particularly beneficial in large teams where
consistency in design and functionality is crucial. [8] [9]

1.2.1 Framework-specific vs. agnostic library

The most challenging part about creating a new component library is deciding
which development approach should be used. There are multiple ways to im-
plement a component library. It could be a framework-specific approach when
the components only work with a particular JavaScript framework. On the
other hand, it could be a framework-agnostic approach, so the library works
within any JavaScript project. Let’s compare the advantages and disadvan-
tages of both methods.

Framework-specific approach

This option makes the most sense for teams that have selected a single frame-
work for all their applications or as their preferred option for new apps. This
could be due to various reasons, such as the framework’s robustness, ease of
use, or specific features that align with the company’s needs.

Framework-specific component libraries offer several key advantages.
Firstly, they provide seamless integration with the framework’s ecosystem,
including its tools, components, and libraries, simplifying the development
process. Secondly, these libraries are designed to fully utilize the framework’s
features and optimizations. This leads to efficient rendering and minimal
overhead, enhancing the performance of the applications built with them.
Another significant advantage is the speed of the development process. These
libraries’ ready-made components save valuable development time and ensure
consistency with the framework’s conventions. Lastly, these libraries often
come with extensive documentation and community support specific to the
framework, making it easier for developers to learn and debug problems. [10]

6

1.2. Component Libraries

They also come with certain limitations. One of the main downsides is the
lack of portability. These libraries are not usable outside the chosen frame-
work, which limits their reuse potential across different projects. This leads to
another issue known as framework lock-in, where the project becomes tied to
a specific framework. This could potentially hinder future technology shifts
and limit flexibility. Additionally, there’s a learning curve associated with
these libraries. Users who are unfamiliar with the framework may face chal-
lenges when adopting and customizing components from the library. Lastly,
these libraries often come with an opinionated structure. They may enforce
specific design patterns, or ways of working that may not fit all needs, poten-
tially limiting creativity and adaptability. [11]

Here are some examples of framework-specific component libraries:

• Chakra UI

• Material UI

• Mantine

• Angular Material

• Vuetify

Framework-agnostic approach

This approach relies on web components APIs [12] supported by all modern
browsers, ensuring their future-proof relevance. It involves creating compo-
nents based on web standards, such as HTML, CSS, and JavaScript, without
relying on any specific framework like React, Angular, or Vue. As a result,
components can be used in any JavaScript application, regardless of its frame-
work or library, or even without any framework.

Web components offer a unique set of advantages due to their encapsula-
tion. This encapsulation ensures that their implementation is self-contained,
preventing styles and scripts from leaking out or being influenced by the rest
of the application. This leads to a high degree of flexibility, offering more con-
trol over design and behavior without the constraints of a specific framework.
Furthermore, web components leverage native browser APIs, which ensures
broad compatibility and consistent behavior across all modern browsers. [13]

While web components offer numerous advantages, they also present spe-
cific challenges. Firstly, the learning curve of developing and maintaining
web components can be steep for some developers. This is because it requires

7

https://chakra-ui.com/
https://mui.com/
https://mantine.dev/
https://material.angular.io/
https://vuetifyjs.com/

1. Exploration and Analysis

a deeper understanding of web standards and browser APIs, which can in-
crease the complexity of the development process. Secondly, web components
might require additional setup and configuration compared to framework-
specific libraries. This could slow the initial development phase and increase
the complexity of integrating these components into an application [14].
Lastly, the community support for web components might be smaller than
popular frameworks. Fewer resources might be available for learning and
troubleshooting, which could pose challenges for developers, especially those
new to web components.

These examples represent the framework-agnostic approach:

• Shoelace

• FAST

• Ionic

• Clarity

• Baklava

The ideal choice depends on specific needs and constraints. In modern
front-end development, there are many popular choices of frameworks, and
new ones are released every year. Even though the most popular library,
React, will not disappear from one day to another, the ”best” framework
could change, and every developer has a different opinion. Large companies
often use various frameworks for different applications based on a specific
team, their experience, and project needs. [15] [16]

In conclusion, one of the features of my design system is compatibility
with any JavaScript framework or no framework at all, so for that reason,
I tend to use framework-agnostic web components technology. I want to keep
the component library future-proof so I can use it no matter what current
popular technology stack I will be using. Thanks to the integration of web
components in modern browsers, I have the assurance of future compatibility.

1.2.2 Single vs. multi-package library

Another aspect to consider during the component library development is how
end-users will use it in their application. Should they consume the library
as a single package or multiple component packages? Each approach has

8

https://shoelace.style
https://www.fast.design
https://ionicframework.com
https://clarity.design
https://baklava.design

1.3. Web Components Technology

advantages and disadvantages, and the choice often depends on the project’s
specific needs. [17]

Most libraries are distributed as a single-versioned package, meaning all
components are bundled into a single package. This approach simplifies the
process of versioning and dependency management, as there is only one version
of the library to maintain. It makes the most sense for tightly coupled libraries,
where components depend on each other. There could be a concern about
application bundles containing unused components. The Open WC offers best
practices for publishing web components, one of which recommends exporting
the library as ESM. Doing so means the consumer application can remove
unused code using a bundler during the build process [18]. One disadvantage
could be that updating a single component requires creating a new version for
the whole component library.

On the other hand, the multi-package approach, often implemented in
a monorepo using tools like Lerna, involves creating a separate package for
each component. This approach allows consumers only to install the compo-
nents they need, leading to potentially smaller bundle sizes. It also allows for
independent versioning of each component, which can be beneficial when dif-
ferent components evolve at different rates. However, this approach can com-
plicate dependency management and increase the library’s overhead, as each
component needs to be versioned and published separately. [19]

Since most of my components are composed of other components, there
is a strong dependency between them, so adding all components into a single
package makes more sense. My component library’s main consumer use case
for development is to utilize most components rather than just one component.
Also, as mentioned, versioning and publishing a single package is much easier
than maintaining a monorepo with multiple component packages. [20]

1.3 Web Components Technology

Web Components are a groundbreaking technology in web development, al-
lowing developers to package HTML, CSS, and JavaScript to make a cus-
tom element reusable across browsers and other web technologies. They are
made of existing standards and Web APIs browsers have implemented over
the years. They now have enough use and maturity to challenge the exist-
ing popular frameworks. Web Components contain several key specifications,
including Custom Elements, Shadow DOM, and HTML Templates. [1] [12]

9

1. Exploration and Analysis

The concept of web components started in the early 2010s [21]. Web com-
ponents initially held the promise of standardized reusable UI components.
However, their adoption was initially limited by browser inconsistencies and
a lack of robust tooling. The turning point arrived in 2018 with W3C stan-
dardization of Custom Elements v1, which became available in every ever-
green browser: Chrome, Safari, and Firefox. Despite initial challenges such
as browser support and ecosystem maturity, web components have gained
significant momentum, with major browsers now offering full support [22].

1.3.1 Custom Elements

Custom Elements are a key feature of Web Components, enabling developers
to define and use new types of DOM elements in a document. They extend the
set of HTML elements available in the browser, allowing developers to create
reusable components with encapsulated functionality. Custom Elements are
implemented as classes that extend HTMLElement or the interface you want
to customize. The specification provides a flexible approach to component-
based development, allowing developers to define custom elements with their
lifecycle callbacks, properties, attributes, methods, and events. [23]

1.3.2 Shadow DOM

The Shadow DOM (Document Object Model) encapsulates styles and func-
tionality within custom elements. At its core, the Shadow DOM provides
a scoped subtree for a custom element, isolating its internal structure, styling,
and behavior from the rest of the document. This encapsulation ensures that
the styles defined within the Shadow DOM are scoped to the component,
preventing unintended conflicts. As a result, developers can create custom el-
ements with consistent styling and behavior, even in the presence of complex
CSS frameworks or third-party libraries. [24]

Shadow DOM, while powerful, does have some challenges associated with
it. One of the main issues is that Shadow DOM can cause layout shifting
during the page load or show a flash of unstyled content (FOUC) before the
Shadow Root’s stylesheets are fully loaded [25]. Declarative Shadow DOM
is a web platform feature that addresses some of these limitations [26]. It
introduces a new way of defining a shadow tree directly in HTML, which
is particularly useful for server-side rendering of Web Components and in
contexts where JavaScript is disabled. A Declarative Shadow Root can be
created by a <template> element using a shadowrootmode attribute. When

10

1.3. Web Components Technology

an HTML parser detects it, it sets the content as the shadow root of its parent
element. This feature removes the limitation of expressing Shadow Roots in
the server-generated HTML, making Shadow DOM more accessible for server-
side rendering and static HTML generation.

Customizing the Shadow DOM from outside can be achieved through two
primary methods: CSS Custom Properties and CSS Parts. CSS Custom
Properties are reusable values that can be used throughout the stylesheet.
It enables developers to define custom properties within the Shadow DOM
that can be dynamically changed from outside the component. Outside of
CSS variables, only color and font properties are inherited inside the Shadow
DOM. CSS Parts offer a mechanism for exposing specific elements within the
Shadow DOM to the parent document, allowing the styling of these elements
from outside. Developers can specify which elements should be exposed and
customizable by defining CSS Parts within the Shadow DOM. This provides
a precise and controlled way to customize the component’s appearance with-
out breaking encapsulation. [27]

1.3.3 HTML Templates

Templates are a fundamental part of web components. They provide a declar-
ative way to define the structure that can be used to populate the Shadow
DOM of a web component. An HTML template is determined using the
<template> element. The content inside this element is not rendered in the
DOM, but it can be referenced and used in JavaScript to append it to the
Shadow DOM. [28]

Moreover, HTML templates also support <slot> elements, which are
placeholders that can be filled with any markup projected inside the tem-
plate. This slot-based content distribution mechanism adds flexibility to the
templates, making them more reusable and customizable to adapt to different
use cases and contexts.

Let’s create a simple web component to demonstrate the technologies men-
tioned above. First, I made a class HelloWorld which extends HTMLElement.
Inside the constructor, I added an HTML template with one default slot.
Then, I attached Shadow DOM to the class in open mode and set my
template as content. This web component can then be used in HTML
as <hello-world>John</hello-world> element, which renders ”Hello John!”.

11

1. Exploration and Analysis

Listing 1.1: Simple web component definition

class HelloWorld extends HTMLElement {
constructor() {
super();
const template = document.createElement('template');
template.innerHTML = `Hello <slot>world</slot>!`;
this.attachShadow({ mode: 'open' });
this.shadowRoot.append(template.content.cloneNode(true));

}
}

customElements.define('hello-world', HelloWorld);

1.4 Web Components Frameworks

Since web components are built on web standards and technologies, they could
be written in plain JavaScript. The most significant advantage is that this
approach does not rely on external dependencies, so no framework knowledge
is required. Plus, the developer has complete control over the component’s
behavior. On the other hand, there is a massive overhead of unnecessary code.
Writing custom elements in vanilla JavaScript could become more lengthy. [29]

There are about 60 other ways to write web components besides plain
JavaScript [30]. One uses a front-end framework like React, Angular, or Vue
to generate web components. React users can use a simple wrapper, Angular
uses Angular Elements API, and Vue has a defineCustomElement method.
While this method seems useful, web component generation could be bloated
by the framework and its dependencies, which could strongly affect rendering
performance. Although these frameworks can generate web components, they
are not built for it in the first place.

A better option is using a library designed to create custom elements. The
most significant advantage of this approach is the library’s abstraction, tool-
ing, and conventions. A few years ago, the most popular choice was Stencil.
It is a compiler that generates web components in plain JavaScript. This
tool is built by Ionic team, which develops software to support multi-platform
development. According to Figure 1.1, Lit is the most used option for creat-
ing web components nowadays. It is maintained by Google, and it became

12

1.4. Web Components Frameworks

a successor of the deprecated framework Polymer. I won’t mention other li-
braries because they are too small compared to Lit and Stencil, so there are
insufficient resources and small or nonexistent communities.

Figure 1.1: Stencil vs. Lit downloads in past 2 years on npm [31]

1.4.1 Stencil

Stencil is a modern web component compiler offering much out of the box.
Component code is defined in classes, encapsulating HTML structure, CSS
styles, and TypeScript logic within a single unit. Template syntax is us-
ing JSX. It is converted into lightweight standards-compliant JavaScript code
that can run in any modern web browser. Stencil provides robust testing
tools, a comprehensive build process, and integration with popular front-end
frameworks, making it easy for developers to get started.

Stencil uses a compiler-based approach to generate optimized code and
provide good performance thanks to its efficient rendering engine utilizing
a virtual DOM. While Stencil aims to simplify the creation of web compo-
nents, there may be knowledge required for developers unfamiliar with its
architecture and tooling. The virtual DOM implementation might introduce
a small performance overhead compared to vanilla JavaScript solutions. Sten-
cil has a smaller community and ecosystem than other front-end frameworks
and libraries, which could impact the availability of third-party plugins, ex-
tensions, and support resources. [32]

13

1. Exploration and Analysis

1.4.2 Lit

Lit is a tiny library for building web components. Thanks to its small size,
the library loads fast and minimizes the bundle size of the package. It builds
on top of web components standards, so the template looks similar to plain
JavaScript. It offers features like TypeScript support and hot module reload-
ing. The project setup can be adjusted since it doesn’t include any build or
testing tools, but the ecosystem is broad, and Lit is easy to integrate with all
popular libraries.

It doesn’t use a virtual DOM. Instead, it directly manipulates the real
DOM for efficient updates. It uses template literals with HTML-like syntax
for defining component templates, offering a familiar and declarative approach
with efficient rendering capabilities. Directives are JavaScript decorators that
enable developers to define reactive behavior, event handlers, and data bind-
ings within a component. By combining templates and directives, developers
can create web components with minimal overhead.

Its easy-to-understand syntax, performant DOM updates, and focus on
maintainability make it a robust library for creating web components. An
active community provides a rich ecosystem of resources, tutorials, and third-
party libraries. One of the drawbacks is the lack of routing or state manage-
ment, which could be found in other libraries. There may be a learning curve
for developers unfamiliar with its template and directive syntax. [33]

1.4.3 Conclusion

Lit has grown in popularity for the last two years while Stencil has stagnated.
Most of the component libraries of big companies like Spectrum from Adobe,
Material Web from Google, and Lion from ING use Lit, while I haven’t found
almost any open-source projects that use Stencil. I read an article from Cory
LaViska, the creator of the popular web component library called Shoelace,
who explains why they moved from Stencil to Lit [34]. Some reasons in-
clude a lack of documentation, difficulty debugging, and a closed-source bug-
reporting system. It is quite a complex tool, and using it could feel like
a black box. The benefits of Lit he mentioned include more control over the
build process, the use of standard web technologies, and a more open develop-
ment community. I will use Lit to implement my component library for this
and other mentioned reasons.

14

Chapter 2
Design System

This chapter dives into creating and implementing a custom design system, ex-
ploring its motivation, principles, realization, design tokens, and components.
It serves as a guide for understanding the system’s structure, functionality,
and benefits, which using the design system can bring.

The motivation behind creating this design system originated from the in-
ability to find an existing system that would fit the needs of particular projects.
The desire for a more tailored solution led to the development of a unique de-
sign system that could adapt to specific requirements and preferences.

The following section introduces principles that guide this design sys-
tem, including adaptability, modularity, efficiency, customizability, usability,
transparency, and accessibility. These principles form the system’s founda-
tion, ensuring it is flexible, efficient, user-friendly, and accessible to all users.

The design system was realized using Figma, a versatile design tool known
for its collaborative features and robust functionality. The pros and cons of
Figma and its role in implementing the design system are discussed in detail.
The structure of the design system file is also described.

This section focuses on design tokens and explains three token types, nam-
ing conventions, and my decisions during creation. These tokens cover cate-
gories such as color, typography, border radius, box shadow, spacing, transi-
tions, z-index, and forms.

Finally, the section about components discusses the various elements im-
plemented in the design system. These include Label, Spinner, Button, Alert,
Input, Textarea, Checkbox, Radio, and Choice Groups. Each component is de-
signed with the system’s principles in mind, ensuring consistency and usability
across the design.

15

2. Design System

2.1 Motivation

Third-party design systems and component libraries are already implemented,
documented, and tested. Some of the good ones are even open-sourced. At
first, it seems like a good start for a project. But I couldn’t find the one that
would exactly meet my expectations. There are a few aspects that stopped me
from using those. No matter how good the component library was, those solu-
tions were designed for a particular product’s or company’s needs. It resembles
someone else’s brand. They follow their design principles and guidelines to
accomplish their goals, which usually aren’t the same as my goals.

The second issue is that all components have a specific default styling and
behavior. To ensure the best developer experience, I want to use components
out of the box, but if I don’t sympathize with their default state, I can’t use
them without any changes. Most offer some level of customization, but there
is usually a case that is not covered. I used to end up in situations when I used
80 percent of components as they were, but those last 20 percent were heavily
customized or hacked for my particular use case. There is a point when the
initial benefits of using a third-party library are outweighed by the time spent
on modifying and rewriting the library.

Even though my component library will probably suffer from these issues
too, I’ll try to minimize their impact. The goal is to make it as aesthetic-
agnostic as possible and provide a wide variety of options for customization.
Eventually, this design system is created for my needs and wants, so it fits my
projects perfectly in the first place. However, some developers or organizations
could share the same key values of design principles, so I decided to open it
to the public.

2.2 Principles

In the first chapter of this thesis, I mentioned the advantages of design systems
and why they matter. Those are general observations, and they apply to most
projects. However, different design systems have different goals and priorities.
I would like to dedicate this section to explaining my design principles. Each of
those seven categories is crucial for creating this design system, and together,
they create the foundation that helped me make important decisions during
the design and development.

16

2.2. Principles

Adaptability – Components should be built on modern web standards, mak-
ing them future-proof and long-lasting. They should be able to inte-
grate with any web technology. The design system should follow the
new trends and technologies to support innovations while maintaining
a standards-based approach.

Modularity – The design system should be modular and scalable. Compo-
nents should function as independent units so they can be composed to
create more complex elements. Each component should be extensible to
add custom behavior.

Efficiency – All components should be built as minimal and lightweight.
They should use the web platform to the maximum extent possible to
ensure the best performance. The library should ideally have no depen-
dencies. Most of the tasks and processes should be automatized.

Customizability – Components should come with a minimum of styles
so they can be extensively customized to match the brand of the project
or organization. Modifying design tokens should adjust the design
language to maintain consistency and quality of UI elements.

Usability – The library usage should be easy and enjoyable to offer a great
developer experience. This could be achieved by setting good default
aesthetics and predictable behavior to use components out of the box.
Documentation should be understandable and intuitive without deep
understanding and support maintainability.

Transparency – Sharing knowledge and understanding should be a high
priority. The design system should be built transparently to increase
visibility and openness. The project should be published under an open-
source license to encourage contributions and collaboration.

Accessibility – The library should ensure the user interface is highly ac-
cessible to everyone. Users with special needs should have the same
experience as others. The design system should be user-centered and in-
clusive. Components should be internationalized to remove all language
barriers.

17

2. Design System

2.3 Realization

I chose Figma as my primary tool to create the design system. It is the most
popular design tool for creating interface design. The main features are vector
editing, real-time collaboration, and prototyping. Figma has a large plugin
ecosystem, so it is possible to extend its functionality. It offers a dev mode,
which provides tools for translating design into code. Figma is an excellent
option for creating design systems. Designers can create reusable components,
styles, and variables that can be used throughout the project. You can also
build a library to distribute the design system to other projects. It helps set
guidelines and ensure consistency in design. [35]

The most significant advantage is its cross-platform compatibility. Since
it is a cloud-based tool, you can use it on any system using the web browser.
Figma has an automatic version control, so it is possible to track and revert
changes or switch to different branches. The UI of the application is user-
friendly and easy to understand. On the other hand, the free plan is not un-
limited, and paid plans can be expensive. It requires internet access, so there
is no offline functionality. While the web-based solution is excellent, there
could be performance issues with big projects on slower devices. Are there
any alternative tools? Not really. Sketch is only available on a Mac, so I can’t
use it, and the main Figma competitor, Adobe XD, just got discontinued [36].

My Figma project follows a logical structure. The first page is a cover
image for the design system, including the logo. The next page is all about
design tokens. Each section contains a category for styles like color, typogra-
phy, border radius, and box-shadow. There are also icon definitions, which
are used across the project. After that, there is a page with all the designed
components. A component section contains its name, description, and vari-
ants with different states. Last but not least is the template page. It shows
the usage and composition of multiple components together to create pages.

These are the projects that inspired me during the design process:

• Polaris Components by Shopify

• Vitamin - Web UI kit by Decathlon

• UI Kit by Strapi

• Material 3 Design Kit by Google

• Design System by Vaadin

18

https://www.figma.com/community/file/1293611962331823010
https://www.figma.com/community/file/1116652932009947171
https://www.figma.com/community/file/1050701975985000987
https://www.figma.com/community/file/1035203688168086460
https://www.figma.com/community/file/843042473942860131

2.4. Design Tokens

2.4 Design Tokens

Design tokens are design decisions that create the visual style of the design
system. They use semantic names to store visual design attributes instead
of hard-coded values. It establishes a clear relationship between style choices
and their correct usage. Using the same design tokens creates consistency
between design and implementation, even when the color value assigned to
a token changes. Style updates will propagate through an entire product or
the whole organization.

Design language customization or custom theme creation could be achieved
using design tokens. Users can set their preferences in the operating system
or web browser, and the design system should reflect them. For example,
a larger font size or a higher contrast ratio could help people with low vision.
My design system uses rem units, which are relative to the default font size in
the browser.

Tokens are platform-agnostic, but they are typically used in platform-
specific code. In my component library, they are represented as CSS custom
properties. Based on my research [37], I decided to use three different types
of design tokens:

Global tokens – Global tokens are context-agnostic and hold raw values,
like hex colors, sizes in pixels, or font weights. They define the design
language of the design system, like color, typography, spacing, shadow,
or shape. These tokens do not change based on the context.

Alias tokens – There are also alias tokens that point to global tokens. They
add semantic meaning to the static values easily recognizable by their
names. The advantage is their usage doesn’t require knowing the token’s
exact value. They change their values by context, enabling customiza-
tion and creation of custom themes.

Component tokens – Component tokens are alias tokens but represent de-
sign attributes of a particular element. Each component token maps
to a global token with a concrete value. All component tokens must
have a default value because components can be used without including
global design tokens.

The design system needs a good naming strategy for design tokens. I cre-
ated this pattern: Prefix-Category-Concept-Variant-State. This is an
example of a design token CSS variable: --dfx-form-border-error-active.

19

2. Design System

First, I realized multiple CSS libraries could be used simultaneously (even
though this is not ideal, it could happen when integrating a library into an
existing project). Therefore, I added a Prefix dfx to my design token names
to avoid overriding existing variables. The second part of the name is a Cat-
egory. It represents a design language category or a specific component. For
example, it could be a color, font, size or button, input, or label. The category
is followed by Concept. The concept is a detailed specification of the target
variable. It has a Variant, which could be a type or value. Finally, there is an
optional State, which is self-explanatory.

2.4.1 Color

Color is a vital part of any design system. It helps communicate the brand, set
a hierarchy, and create a sense of unity. To create a theme, you need a color
palette. I could not find a good color palette that would play nicely with
my theme and could be easily customized for alternative schemes. The usual
problem was that the color contrast of one shade was not equal or similar
to other colors. This caused the aesthetics to look bad and complicated the
creation of custom themes since there could be contrast issues in accessibility.
For that reason, I decided to create a tailored color palette.

To ensure I have the same or similar contrast between different colors,
I used OKLCH. It is a perceptually uniform color space designed to imitate
human perception of color. It provides a more consistent and intuitive rep-
resentation of color compared to other color spaces like RGB or HSL. But it
is not a perfect solution. There could still be some inconsistencies, especially
at extreme chroma levels. It uses these parameters to define a color:

• L represents perceived lightness (0% to 100%).

• C represents chroma or saturation (0 to theoretically unbounded, but
practically around 0.5).

• H represents the hue angle (0° to 360°).

• A is optional and represents alpha or opacity (0% to 100%). [38]

The color palette of my design system includes four colors, each having
eleven shades. Every color palette needs a neutral color. It consists of white,
black, and gray shades in between. These colors are used for text, back-
grounds, layouts, and all other places across the design system. Neutral colors

20

2.4. Design Tokens

form a visual hierarchy of different surfaces. It helps the user’s eye navigate
to the essential areas on the screen.

The primary color is critical for representing brand identity. I chose a vi-
brant shade of blue because it attracts the human eye and aligns with the
rest of the palette. It is used for primary actions or to mark a selected item.
Semantic colors are used to provide feedback, status, or urgency. They should
not be used for decoration. They are based on real-world associations: green
for positive feedback and red for danger.

Primitives

The design palette is built on a foundation of color primitives. These are the
core colors that are used throughout the system. Primitives should only be
used for theme definition referenced by aliases and not directly in components
because of their context-agnostic approach. Figure 2.1 shows the color palette
with primitive color tokens.

Figure 2.1: Design tokens: Primitive color palette

Gray --dfx-color-gray-<value>

Blue --dfx-color-blue-<value>

Green --dfx-color-green-<value>

Red --dfx-color-red-<value>

50 100 200 300 400 500 600 700 800 900 950

21

2. Design System

Aliases

Aliases are used to provide semantic meaning to colors. They are used to
communicate the intent of the color rather than the specific color itself. Aliases
should be used in components instead of primitives. When creating a custom
theme, aliases should be modified by changing their reference primitive. Each
of these aliases has four variants. The dark and light variants represent
the primary color values for different elements based on context. On the
other hand, the dark-variant and light-variant are alternative shades
that provide additional flexibility and contrast within each theme.

Figure 2.2: Design tokens: Color aliases

Background --dfx-color-background-<value>

gray-50 gray-100 white gray-50

Popover --dfx-color-popover-<value>

white gray-50 white gray-50

Border --dfx-color-border-<value>

gray-400 gray-500 gray-200 gray-300

Text --dfx-color-text-<value>

gray-800 gray-900 gray-600 gray-700

Contrast --dfx-color-contrast-<value>

white gray-50 gray-900 gray-800

Neutral --dfx-color-neutral-<value>

gray-700 gray-800 gray-50 gray-100

Primary --dfx-color-primary-<value>

blue-600 blue-700 blue-50 blue-100

Success --dfx-color-success-<value>

green-600 green-700 green-50 green-100

Danger --dfx-color-danger-<value>

red-600 red-700 red-50 red-100

dark dark-variant light light-variant

22

2.4. Design Tokens

The tokens Background, Popover, and Border are used for defining the
visual aspects of surfaces and layouts. The Text token is explicitly used for ty-
pography, ensuring that the text elements are legible and aesthetically aligned
with the overall design. The Contrast token is used on surfaces where the con-
trast between the foreground and background would be low, typically light text
on a dark background in a light theme and dark text on a light background in
a dark theme. This helps in maintaining readability and accessibility across
different themes. Lastly, the tokens Neutral, Primary, Success, and Danger
carry semantic meanings, representing different states or actions in the in-
terface. For instance, Primary could be used for main actions, Success for
positive outcomes, and Danger for alerts or errors. Alias color tokens are
shown in Figure 2.2.

2.4.2 Typography

Typography creates visual consistency across different platforms and prod-
ucts. It involves carefully selecting typefaces, font sizes, font weights, and line
heights that align with the brand’s identity. A well-defined typographic hier-
archy in a design system can assist users in navigating through the content,
making it more accessible and easier to understand.

Font family

The selected primary typeface for this design system is Inter, a versatile and
modern sans-serif typeface designed specifically for digital screens. Its wide
range of weights and styles make it adaptable to various design contexts,
contributing to a cohesive and harmonious visual language. However, the
design system is flexible and allows using a different font when necessary
by adjusting the design token value. Additionally, my component library
supports the use of the system font stack, which represents San Francisco
on Apple devices, Segoe UI on Windows, Roboto on Android, and Arial on
other platforms. It can help ensure optimal performance and native aesthetics
across different operating systems and devices.

Table 2.1: Design tokens: Font family

Variable Value

--dfx-font-family Inter, -apple-system, BlinkMacSystemFont,
’Segoe UI’, Roboto, Arial, sans-serif

23

2. Design System

Font size

Font sizes promote harmonious typographic hierarchy by standardizing these
sizes into design tokens to enhance readability. This system uses eight vari-
ants, represented by intuitive T-shirt sizes, to cover all use cases. These sizes
range from 10px to 32px, providing a comprehensive scale that fits various
typographic needs. This range ensures that every textual element can be
displayed with optimal legibility and aesthetic appeal.

The simplicity of T-shirt sizes is used in some of the design tokens. I use
them for sizing, making it comprehensible for technical and non-technical indi-
viduals to understand the distinctions while maintaining consistency. I always
utilize the abbreviated form (s, m, l), simplifying references for developers.
The default size is m, serving as the standard or base value.

Table 2.2: Design tokens: Font size

Variable Value
--dfx-font-size-xs 0.625rem (10px)
--dfx-font-size-s 0.75rem (12px)
--dfx-font-size-m 0.875rem (14px)
--dfx-font-size-l 1rem (16px)
--dfx-font-size-xl 1.25rem (20px)
--dfx-font-size-2xl 1.5rem (24px)
--dfx-font-size-3xl 1.75rem (28px)
--dfx-font-size-4xl 2rem (32px)

Font weight

Font weight design tokens manage the visual weight of typography. Four
different weights are used, ranging from 400 to 700. These weights align with
the standard font-weight naming convention, which includes regular for 400,
medium for 500, semibold for 600, and bold for 700.

Table 2.3: Design tokens: Font weight

Variable Value
--dfx-font-weight-regular 400
--dfx-font-weight-medium 500
--dfx-font-weight-semibold 600
--dfx-font-weight-bold 700

24

2.4. Design Tokens

Line height

Line height design tokens improve readability and the overall aesthetic of
the text. For simplicity, I use three line height variants, each represented by
a T-shirt size. The s variant is used for headlines, providing a compact presen-
tation. The m variant is used for regular paragraphs, offering a balanced line
spacing. Lastly, the l variant is used for introduction paragraphs, providing
a more open and inviting layout that draws the reader in.

Table 2.4: Design tokens: Line height

Variable Value
--dfx-line-height-s 1.25
--dfx-line-height-m 1.5
--dfx-line-height-l 1.75

2.4.3 Other styles

Border radius

Border radius design tokens define the radius of element corners. Tokens are
represented by three T-shirt sizes: s, m, and l, each corresponding to a specific
corner radius, from subtle curvatures to more pronounced ones. Additionally,
a unique token for a pill or circle shape provides a fully rounded border, ideal
for elements like buttons or tags.

Table 2.5: Design tokens: Border radius

Variable Value
--dfx-border-radius-s 0.25rem (4px)
--dfx-border-radius-m 0.375rem (6px)
--dfx-border-radius-l 0.5rem (8px)
--dfx-border-radius-full 62.438rem (999px)

Box shadow

Box shadow represents the shadow effects of elements to create depth and
visual interest. Three T-shirt sizes represent design tokens, and each size
corresponds to a specific shadow effect, with s providing a subtle shadow, m
offering a moderate shadow, and l creating a more pronounced shadow.

25

2. Design System

Table 2.6: Design tokens: Box shadow

Variable Value
--dfx-box-shadow-s 0 0.125rem 0.5rem 0 rgba(0, 0, 0, 0.1)
--dfx-box-shadow-m 0 0.25rem 1rem 0 rgba(0, 0, 0, 0.1)
--dfx-box-shadow-l 0 0.5rem 2rem 0 rgba(0, 0, 0, 0.1)

Spacing

Spacing ensures consistent space between elements across the interface. These
tokens can be used for various purposes, including margins, paddings, gaps,
density, or other sizes. I defined 13 different sizes, ranging from 1px to 64px,
to cover all use cases in components. The sizes are represented by intuitive
T-shirt sizes, making it easy for designers to select the appropriate spacing
while maintaining consistency across the design.

Table 2.7: Design tokens: Spacing

Variable Value
--dfx-size-5xs 0.0625rem (1px)
--dfx-size-4xs 0.125rem (2px)
--dfx-size-3xs 0.25rem (4px)
--dfx-size-2xs 0.5rem (8px)
--dfx-size-xs 0.75rem (12px)
--dfx-size-s 0.875rem (14px)
--dfx-size-m 1rem (16px)
--dfx-size-l 1.25rem (20px)
--dfx-size-xl 1.5rem (24px)
--dfx-size-2xl 2rem (32px)
--dfx-size-3xl 2.5rem (40px)
--dfx-size-4xl 3rem (48px)
--dfx-size-5xl 4rem (64px)

Transitions

Transition design tokens consistently approach animations, motion, and in-
teractivity. This system uses three types of transitions, each categorized by
speed: fast, medium, and slow. These speed categories allow designers to
create responsive, deliberate, and gradual animations. Each of these tokens
uses an ease-in-out easing function. It means the animation starts slowly,

26

2.4. Design Tokens

speeds up in the middle, and then slows down towards the end, which provides
a smooth and natural-feeling transition.

Table 2.8: Design tokens: Transitions

Variable Value
--dfx-transition-fast 0.1s ease-in-out
--dfx-transition-medium 0.2s ease-in-out
--dfx-transition-slow 0.4s ease-in-out

Z-index

Z-index elevation design tokens are used for layering elements on the Z-axis.
This system uses five z-index types, each assigned a value depending on their
context. Overlays start with the first and lowest value, creating a level of depth
that allows them to cover the underlying content. Dialogs appear above most
other elements, including overlays. They could include popovers, which should
be displayed on top. Notifications are visible over other elements to draw user
attention immediately. Lastly, tooltips have the highest value, ensuring they
show on top of everything else. This approach to z-index elevation ensures
a logical stacking order that enhances usability and visual hierarchy without
manual z-index manipulation.

Table 2.9: Design tokens: Z-index

Variable Value
--dfx-z-index-overlay 100
--dfx-z-index-dialog 200
--dfx-z-index-popover 300
--dfx-z-index-notification 400
--dfx-z-index-tooltip 500

Forms

Form design tokens provide a consistent approach to styling form controls.
The opacity of disabled form control communicates its inactive state to users.
The outline offset of focused form control adjusts the space between the outline
and the border of control. Then, there are tokens for setting the box shadow
of form controls. The first is for the default state when there is no user

27

2. Design System

interaction. Active state highlights the current field and guides the user’s
attention. Lastly, the error state provides a clear visual cue to users that their
input has an issue.

Table 2.10: Design tokens: Forms

Variable Value
--dfx-form-disabled-opacity 0.5
--dfx-form-outline-offset 0.2rem

--dfx-form-border inset 0 0 0 0.05rem
var(–dfx-color-border-dark)

--dfx-form-border-active inset 0 0 0 0.1rem
var(–dfx-color-contrast-background)

--dfx-form-border-error inset 0 0 0 0.05rem
var(–dfx-color-danger-dark)

--dfx-form-border-error-active inset 0 0 0 0.1rem
var(–dfx-color-danger-dark)

2.5 Components

Components are the building blocks that construct the user interface. This
section dives into the details and characteristics of components within this
design system. There are two types of components: atomic and composed.
Atomic components are the most basic UI elements that cannot be broken
down further. Composed components, on the other hand, are complex UI el-
ements containing multiple atomic components.

All components have a semantic meaning and can be used independently.
Together, they create a composable UI, allowing for a wide range of UI de-
signs with a consistent look and feel. A key feature of components is their
adaptability. Each element can have variants, themes, or states, allowing for
various visual and functional adaptations to different contexts and user inter-
actions. The following section will discuss the anatomy, properties, layout,
and behavior of each component.

In the design system, a total of 30 components have been precisely de-
signed, each serving a unique purpose. Ten components have been fully imple-
mented in code and are ready to be used in real-world applications. A notable
achievement is the implementation of core form components, which together
create a powerful and flexible form system. More components will be imple-
mented in future development.

28

2.5. Components

2.5.1 Alert

The Alert component includes three essential parts: an icon, content, and
a close button. The icon visually represents the type of alert, the content pro-
vides the alert message, and the close button allows users to dismiss the alert.
This component depends on the Button component, which is used as a close
button. The layout of the Alert component is responsive and horizontally
stacked. The inner content, however, is vertically stacked. Several attributes
characterize the Alert component:

• closable – Determines whether the alert can be dismissed.

• hidden – Controls the visibility of component.

• theme – Sets theme as primary, neutral, success, or danger.

• hide-icon – Controls the visibility of the icon.

The component also includes a default slot for content projection, allowing
custom content to be inserted into the alert. Additionally, if desired, there
is an icon slot for inserting a custom icon.

If the alert is closable, a close button is rendered. The close button
is keyboard-focusable, so users can navigate to it using the keyboard or nar-
rator. When clicked, this button triggers an event that closes the alert. The
content of the alert could also contain a button that triggers a custom action,
providing additional interactivity.

Figure 2.3: Components: Alert

Default Description of the alert

With T itle
Title of the alert
Description of the alert

With Action

Title of the alert
Description of the alert

Action

29

2. Design System

2.5.2 Button

The Button component consists of horizontally stacked content, which could
be a text, an icon, or a combination of both. The only dependency is the
Spinner component, which is used when the button is in a loading state. There
are three slots: default for the main content in the middle, start for content
at the beginning, and end for content at the end. The button component has
these properties:

• variant – Sets variant as filled, tonal, outlined, or text.

• theme – Sets theme as primary, neutral, success, or danger.

• label – Is used for accessibility when the content is only an icon.

• disabled – Controls state which turns off interaction.

• loading – Controls state that turns off interaction and shows a spinner.

• loading-text – Provides the displayed text during the loading state.

The button fires an event when clicked, providing interactive feedback to
the user. The button has multiple states: default (with no interaction), hover
(when the mouse hovers over it), active (when clicked or pressed), loading
(when the action is being processed), and disabled (when it is not possible to
click the component). If the button is not in a loading or disabled state, it
must be keyboard-focusable.

Figure 2.4: Components: Button

Filled Tonal Outlined Text

Default Button Button Button Button

Hover Button Button Button Button

Active Button Button Button Button

Loading

Disabled Button Button Button

30

2.5. Components

2.5.3 Checkbox, Switch, and Radio

Checkbox, Switch, and Radio have very similar anatomy. The component
comprises three main parts: the text content, the input control, and a helper
or error label. The text content provides the label for the checkbox through the
default slot, the input control is the actual checkbox/switch/radio that users
interact with, and the helper or error label provides additional information
or feedback to the user. The only dependency is the Label component. It
uses a horizontal layout for the text content and input control, but the helper
or error label is positioned under the main text content. These properties
characterize the component:

• checked – Determines whether the control is checked or unchecked.

• disabled – Controls whether the control is interactive or not.

• helper-text – Provides additional information.

• required (only for Checkbox and Switch) – Sets control as required.

Checkbox and Switch have the same behavior. When the input control
is clicked, it fires a change event and toggles the state between checked and
unchecked, providing immediate visual feedback to the user. With Radio, the
click does not toggle the checked value. It stays checked until another radio
control is selected. When the component is disabled, the control cannot be
clicked or focused by the keyboard, ensuring that the user cannot interact with
it. When the control is marked as required, it shows an error when validated.

Figure 2.5: Components: Checkbox, Switch, and Radio

Checkbox Switch Radio

Unchecked
Label

Additional label

Label

Additional label

Label

Additional label

Checked
Label

Additional label

Label

Additional label

Label

Additional label

D isabled
Label

Additional label

Label

Additional label

Label

Additional label

31

2. Design System

2.5.4 Choice Group

Choice Group is created by two main parts: the label and a set of check-
box/switch/radio controls. The label describes the group, and controls are
provided through the default slot. The only dependency is the Checkbox,
Switch, or Radio component. The component uses a vertical layout, arrang-
ing the controls in a column. It has the following properties:

• label – Provides a descriptive label for the group.

• disabled – Indicates whether the controls in the group are disabled.

• helper-text – Provides additional information.

• required – Indicates whether at least one control must be selected.

When the control is marked as disabled, none of the inner controls can
be selected. Checkbox and Switch controls can be navigated using the Tab
key while navigating through Radio controls using arrow keys. This is the
standard behavior of the web platform.

Figure 2.6: Components: Choice Group

C h e c k b ox S w i tc h R a d i o

D e fa u lt

Group label

Label

Label

Label

Group label

Label

Label

Label

Group label

Label

Label

Label

2.5.5 Input and Textarea

The Input and Textarea components share common parts: a label describes
the control, the control is the actual input field, and the helper or error text
provides additional information or feedback. The Input component can also
have inner buttons or a loading indicator. Both components depend on the
Label component, while the Input component also depends on the Button and
Spinner components. Both components use a vertical layout, but the Input
control uses horizontal stacking of inner elements, which could be inserted
through start and end slots. The properties of the components include:

32

2.5. Components

• label – Provides a descriptive label for the control.

• disabled – Indicates whether the control is interactive or not.

• read-only – Indicates whether the control is writable or read-only.

• placeholder – Provides a placeholder, which disappears on focus.

• helper-text – Provides additional information.

• hide-label – Controls the visibility of the label.

• type (only for Input) – Sets input type like text, password or number.

When the control is disabled, it does not allow any input and cannot be
focused by the keyboard. Writing single characters fires an input event while
changing the value, and losing focus of the field fires a change event. Both
components have validation rules like required, minlength, or maxlength,
which show the error label when the field is invalid.

Figure 2.7: Components: Input and Textarea

Input Textarea

Default

Label

Text

Label

Text

Active

Label

Text

Label

Text

Error

Label

Text

Error label

Label

Text

Error label

D isabled

Label

Label

Text

33

2. Design System

2.5.6 Label

The Label component has no dependencies, making it a simple atomic compo-
nent. The central part of the component is the text, which is inserted via the
default slot. The Label component has a single attribute type, which deter-
mines the role of the label. The value control provides a descriptive label for
the control, error provides an error message, and helper includes additional
information for the form control.

Figure 2.8: Components: Label

Control Helper Error

Default Label Helper label Error label

2.5.7 Spinner

The Spinner component is an atomic component, meaning it has no dependen-
cies. The central part of the component is an SVG image with an animation
that symbolizes that a process is ongoing. It has two attributes: size can
be set to small, medium, or large, allowing the spinner to adapt to differ-
ent contexts and layouts, and label sets the text for the spinner, providing
additional information to the user about the ongoing process.

Figure 2.9: Components: Spinner

Small Medium L arge

Default

With L abel
Loading... Loading... Loading...

34

Chapter 3
Implementation

This chapter dives into the intricate details of the project’s implementation. It
begins with the Project Structure, which provides a comprehensive overview
of the project’s architecture, including the purpose and relation of various
folders and files. It also describes individual files which are used together to
create a component.

The subsequent section, Build Process, clarifies the differences between
building an application and a library. It highlights the benefits of using Type-
Script and the importance of providing correct typings for consumers. This
section also outlines the workflow employed to build the library package.

The Documentation section expresses the three primary objectives of the
documentation. It introduces the tools for generating component documen-
tation, namely Storybook and Custom Elements Manifest. It describes the
structure and content of the documentation, including the specifics of each
component documentation page.

The Linting and Formatting distinguishes between these two procedures
and discusses the tools used, ESLint and Prettier. It emphasizes their integral
role in the development process.

The Forms and Validation section explains how constraint validation is im-
plemented with custom elements. It details the technologies and APIs that
associate components with forms, apply validation rules, and describe the
custom form validators.

The final section focuses on accessibility in web components. It discusses
semantic markup, keyboard handling, and color contrast across the library.
The overarching goal is to enhance accessibility for all users, demonstrating
a commitment to inclusivity in web development.

35

3. Implementation

3.1 Project Structure

Figure 3.1 shows the project structure, which includes several directories, each
with a specific purpose. The GitHub directory contains GitHub-specific files
like issue and pull request templates, Actions workflows, and community files,
including code of conduct, contributing guide, or security policy. The Husky
folder contains pre-commit and commit-msg git hooks. The Storybook di-
rectory includes main, manager, and preview configurations with an assets
folder. The VS Code folder has project recommendations for extensions and
settings. Inside the demo folder, there is a simple application demonstrating
component usage. The documentation folder consists of markdown files, sto-
ries, and assets. The scripts folder contains a single script for generating new
components. The source folder includes an entry point for all components,
individual component implementations, themes (default and dark), utilities
(events and validators), and assets (SVG icons).

Figure 3.1: Project file structure

/
.github/.....................................GitHub repository files
.husky/...Husky hooks
.storybook/.................................Storybook configuration
.vscode/....................................Visual Studio Code files
demo/..Demo application
docs/..Documentation files
scripts/..Library scripts
src/...Library implementation
.editorconfig..................................Editor configuration
.gitignore..Git ignore list
LICENSE.md...License file
README.md...Read me file
package.json................Project configuration and dependencies
pnpm-lock.yamlVersions of dependencies
tsconfig.build.json.............TypeScript configuration for build
tsconfig.json.............TypeScript configuration for development
vite.config.js...................................Vite configuration
web-test-runner.config.mjsWeb Test Runner configuration

36

3.2. Build Process

In addition to these directories, there are several important files. Coding
styles for different IDEs are defined in .editorconfig, and .gitignore lists
files for Git to ignore. The project’s license and overview are in LICENSE.md
and README.md, respectively. package.json contains project metadata and
dependencies, and pnpm-lock.yaml specifies exact dependency versions.
TypeScript configurations are in tsconfig.build.json and tsconfig.json,
including one for the library build process and one for development. In
vite.config.js, there are Vite configurations for library build. Web Test
Runner configuration is located in web-test-runner.config.mjs file.

The file structure for each component in this project, illustrated by Figure
3.2, is designed to support a modular and maintainable codebase. It consists
of five essential files. The word component is replaced by the actual compo-
nent tag name. components.css contains the CSS styles that define the look
and feel of the component. File component.stories.ts is used for Storybook
documentation, providing a visual testing playground for the component and
containing stories for different component states. component.test.ts in-
cludes the Web Test Runner tests to ensure the component’s functionality.
The actual implementation of the Lit component is found in component.ts.
Lastly, index.ts serves as the component’s entry point for imports. It also
includes custom element definitions and TypeScript typings.

Figure 3.2: Component file structure

component/
component.css.............................Component styles in CSS
component.stories.ts....................Storybook documentation
component.test.ts...........................Web Test Runner tests
component.ts.........................Lit component implementation
index.ts......................Component entry point and definition

3.2 Build Process

First, let’s have a look at what involves building a JavaScript application.
It usually requires using a bundler, which is a crucial tool for optimizing
the application for production use. A bundler’s primary job is to compile
JavaScript or TypeScript files from a format that is easy to work with during
development to an efficient format for browsers to interpret and run. This

37

3. Implementation

could involve transforming modern JavaScript code into a version that can be
understood by a wide range of browsers (a process known as transpilation)
and combining multiple JavaScript files into one or more bundles (a process
known as bundling). [39]

Webpack, Rollup, and Vite are popular choices for this task. They take in
various resources like JavaScript, CSS, and HTML files, and transform them
into an optimal format for the end-user. This includes minification, which
removes unnecessary characters (like spaces and comments) from the source
code to reduce its size and load time. In addition, bundlers also perform tree
shaking [40]. It is a process of eliminating unused code from the final bundle.
This results in a smaller, more efficient bundle that loads faster and consumes
less memory.

Another important feature of these tools is code splitting [41]. This is split-
ting the application’s code into multiple chunks that can be loaded on demand.
For instance, code for a rarely visited page can be split into a separate chunk
from the main bundle, and only loaded when the user navigates to that page.
This can improve the initial loading speed of the application, as the browser
only needs to download the minimal amount of code necessary to display the
initial view to the user.

3.2.1 Building a Library

Building a JavaScript library in the modern web ecosystem involves a different
approach than building an application. The focus is creating reusable code
easily integrated into other projects. Over the past years, browsers have im-
proved significantly. All modern browsers now support standard ES modules,
which include import and export statements. This is an excellent fit for web
components, as it allows developers to leverage technology already supported
by the browser, reducing the need for additional tools or libraries. [42]

Open WC, an organization that provides resources for web component de-
velopment, suggests in their publishing guidelines to publish only the latest
browser-compatible JavaScript (standard ECMAScript) [18]. This ensures the
library can be used in many modern environments without requiring transpi-
lation. One of the key concepts in modern JavaScript library development
is the idea of going ”buildless”. This means the files do not need a build pro-
cess and can work out of the box in the browser, simplifying the development
process. [43]

38

3.2. Build Process

It is important to note that tasks such as bundling, minifying, and opti-
mizing the code should be left to the developers consuming the library. These
are considered application-level concerns, and by leaving these tasks to the
consumer, the library can remain lightweight and flexible, allowing developers
to optimize their applications according to their specific needs. [18]

3.2.2 Using TypeScript

In recent years, TypeScript has significantly grown in popularity among de-
velopers. TypeScript shares the syntax of JavaScript and adds typing rules
on top of it. It provides a runtime with compile-time type checking. This
means that TypeScript checks the types of variables, function parameters,
and return values during the compilation process rather than at runtime.
TypeScript runtime also preserves the behavior of the JavaScript runtime,
meaning JavaScript code will run in TypeScript in the same way. Once Type-
Script has checked the types’ validity, it removes the types and compiles the
code into plain JavaScript. This enables developers to produce more robust
and maintainable code by detecting errors earlier in development. [44]

When developing a JavaScript component library, TypeScript can provide
several benefits. Providing TypeScript typings offers solid guarantees for com-
ponent consumption, helping prevent bugs and improve code understanding.
It can offer type information for properties, methods, and events, which can
be beneficial whether the consumer application uses TypeScript or not. This
type information can also enable code auto-completion in modern IDEs such
as VS Code, making the development process more efficient. [45]

3.2.3 Build Workflow

My component library’s build process is a well-thought-out procedure that
leverages modern tools and practices for optimal results. Initially, I wanted to
use buildless approach since I aim for the latest browsers only, but the build
workflow for my library is a bit more complicated, and using bundler makes it
much easier and straightforward. I use Vite as a bundler for the development
server and build for several reasons:

TypeScript transpilation – While this could be done by tsc (TypeScript’s
compiler), Vite uses esbuild under the hood, which is significantly faster.

Assets import – CSS and SVG files are imported directly into TypeScript
as text, and then methods unsafeCSS and unsafeSVG from Lit transform

39

3. Implementation

them into objects. As there is currently no native way to do this in the
browser, Vite is used for this purpose. It allows me to have CSS styles
and SVG assets in separate files.

Copying static styles – My library includes default and dark themes, which
include design tokens. They are represented by static CSS styles, which
must be copied separately into the build folder. I might use SCSS in the
future, which requires a bundler anyway.

After Vite builds the library, Custom Elements Manifest and TypeScript
typings are added. The directory with build artifacts then gets packaged up
and published to a software registry. It is an excellent example of a modern,
efficient, and effective build process for a JavaScript component library.

3.3 Documentation

Creating documentation for a component library is essential to the develop-
ment process. Good documentation guides users and developers, providing
clear information about using the library’s components and what to expect
from them. It also helps maintain and expand the library in the future [46].
I set 3 main goals for my documentation:

1. The primary goal is to describe the components and their states. This
includes clearly explaining what each component does, its properties,
methods, and events, and the different states it can be in. This infor-
mation helps users understand how to use the components and what to
expect from them.

2. Another important goal is to include examples and use cases. Practical
examples showing how to use the components in real-world scenarios
can benefit users. These examples cover common use cases and demon-
strate handling different component states. Including code snippets and
screenshots can make these examples even more helpful.

3. Finally, it is essential to keep the documentation up to date with the
Figma design. The corresponding Figma file is the source of truth for
the design, and the documentation must reflect any changes made there.
This ensures consistency between the design and the actual components,
making it easier for users to understand how the components should look
and behave.

40

3.3. Documentation

3.3.1 Storybook and Custom Elements Manifest

Storybook is a popular tool for documenting and developing UI components.
It provides an isolated development environment to build and test compo-
nents, making developing and maintaining complex user interfaces easier. One
of the key features is stories, which represent visual test cases that showcase
various states and variations of a component. Storybook isolates components
for independent development and testing and provides auto-generating docu-
mentation from stories. It also has a rich ecosystem of plugins, allowing for
easy extension and customization of its functionality. [47]

The Custom Elements Manifest is a file format describing a project’s cus-
tom elements [48]. It provides rich information to tooling and IDEs about the
custom elements inside a project. It generates a custom-elements.json file
containing metadata about the custom elements in a project: their properties,
methods, attributes, events, slots, CSS shadow parts, and CSS custom prop-
erties. Storybook can integrate Custom Elements Manifest to auto-generate
API references of components, which could be used to control elements in the
live preview. It helps in keeping the documentation of the project up-to-date.

3.3.2 Content Structure

The documentation primarily serves as a code reference for developers us-
ing the library. It provides detailed information about the code structure
and usage of the components in the library. The documentation includes the
following pages:

Getting started – This section starts with a brief introduction about the
library, its purpose, benefits, and what it offers. It also includes instruc-
tions on installing and using the library in a project.

Design tokens – This section describes the design tokens used in the library.
Every token is represented by its variable name, value, description, and
example, if available.

Customization – This section provides information on how to customize the
components in the library. This includes details on how to use default
and dark themes, create a custom theme, and modify the appearance of
components via CSS custom properties and CSS shadow parts.

41

3. Implementation

Contributing – This component library is an open-source project, so it is vi-
tal to include guidelines for contributing. This contains ways to con-
tribute, contributing workflow, release flow, commit rules, coding con-
ventions, and how to get started locally with the library development.

Component pages – Every component in the library has a page that in-
cludes a description of the component, API reference, and examples.

Each component is documented with TSDoc, a popular tool for generat-
ing API documentation comments in TypeScript. This includes all component
attributes, methods, events, slots, CSS properties, and CSS parts. Every prop-
erty is represented by name, description, type, and default value, if available.
The documentation page of the component includes a story (variant) for each
attribute, demonstrating how it works and how it should be used. Every story
is accompanied by an interactive live preview and its source code.

Listing 3.1: TSDoc annotation example for Custom Elements Manifest

/**
* Alert informs the user about important changes or results
* of an operation.
*
* @element dfx-alert
* @slot icon - Slot for icon
* @attr {boolean} closable - Renders close button
* @fires {Event} dfx-close - Fires when the alert is closed
* @cssprop [--dfx-alert-padding=var(--dfx-size-m)] - Padding
* @csspart close-button - Close button element
*/
export class Alert extends LitElement {}

3.4 Linting and Formatting

Code linting is a static analysis technique to identify problematic code pat-
terns that do not adhere to specific coding guidelines. One of the most popular
linting tools in JavaScript is ESLint. It is used to find and fix problems in
code, making the code more consistent and avoiding bugs. ESLint does this
by analyzing code without executing it. It is highly configurable by using cus-
tom rules or extending other coding guides. My project extends ESLint, Web

42

3.5. Forms and Validation

Components, Lit, Accessibility, Storybook, TypeScript, and Prettier configu-
rations to align with all the tools and technologies I use. Most code editors
have plugins for ESLint, which can highlight errors and warnings while writing
the code. [49]

On the other hand, code formatting enhances readability and maintain-
ability by ensuring that code follows a consistent style. Prettier is one of the
most popular JavaScript code formatters. It removes all original styling and
enforces that all outputted code conforms to a consistent code style. While
Prettier is opinionated, it is possible to customize its behavior. It set it to
avoid function parentheses, set print width to 100 characters, and use single
quotes instead of double quotes. Most code editors support Prettier integra-
tion to run code formatting whenever a file is saved. [50]

I decided to enforce the project’s linting and formatting rules by automat-
ing these procedures. A lint-staged utility runs ESLint and Prettier as a pre-
commit Husky hook against staged git files and will not let the user commit
unless the linter passes. It ensures that all committed code sticks to my de-
fined coding standards. I also run linting and format checking as part of my
continuous integration pipeline. This helps catch issues early and keeps the
codebase clean.

3.5 Forms and Validation

HTML5 forms are the native way in the browser to collect user input. These
forms are designed to provide improved data entry controls and validation
mechanisms. The <form> element contains input elements, such as a text field,
checkbox, radio, or submit button. The built-in form validation is achieved by
using specific attributes on form elements. For instance, the type attribute of
input control, such as email or number, will let the browser check user input
and provide feedback if the input is incorrect. There are also validation-related
attributes like required, minlength, maxlength, or pattern. The form can
only be submitted once all the form controls are valid. [51]

This client-side browser validation is using Constraint Validation API
[52]. Submitting a form triggers a validation of all form-associated elements.
The checkValidity() method can check if an input field contains valid
data according to its validation rules. If the field is valid, the method re-
turns true; otherwise, it returns false and fires an invalid event. In contrast,
the reportValidity() method additionally reports any constraint failures

43

3. Implementation

to the user. Setting the novalidate attribute on the form element pre-
vents interactive validation of the constraints (validation bubble). Calling the
submit() method on the form element does not trigger constraint validation,
but requestSubmit() does. The validity property returns a ValidityState
object, which contains several properties related to the validity of an input ele-
ment. These properties can be used to check for specific types of validation er-
rors. The Constraint Validation API also includes the setCustomValidity()
method, which can be used to set a custom validation message.

In my implementation, I utilize the @open-wc/form-control package,
which provides a FormControlMixin base class for my Lit elements [53]. This
integration allows my custom elements to be form-associated. It leverages
the features of the ElementInternals API [54], which is now widely sup-
ported across all modern browsers. This package provides several methods.
For example, the setValue() method sets the form value of the element, the
resetFormControl() method cleans up the form control’s values by setting
the initial state, and the validationTarget property sets validation on an
element inside the shadow DOM.

My library creates two custom validators:

1. innerInputValidators utilizes built-in validators for input elements
to set the validity based on validity-related attributes like required,
minlength, maxlength, and pattern.

2. groupRequiredValidator is used for choice groups (checkbox or radio),
which use the required attribute to ensure the user selects at least one
of the options

Both of these custom validators provide validation messages that are au-
tomatically localized by browsers. My form elements display an error message
when they are invalid, and their value has changed, or the form has been sub-
mitted. This approach ensures robust client-side validation and a user-friendly
form experience.

3.6 Accessibility

In HTML, elements can be defined using roles. The beauty of using native
elements is that there is no need to define a role, as these elements inherently
receive all relevant aria mappings [55]. However, when it comes to custom ele-
ments, developers must manually add all relevant accessibility attributes. This

44

3.6. Accessibility

is where my library comes into play. It eliminates this manual labor by auto-
matically applying all relevant accessibility attributes for a specific component
in the shadow DOM when my elements are used. I follow the recommended
ARIA patterns for creating components [56]. Furthermore, the components in
my library provide multiple accessibility-related attributes, which can be uti-
lized to increase accessibility within the context of each application. I focused
on the following areas:

Semantic markup – The tabindex attribute is used with values of either
0 or 1, ensuring a logical and efficient keyboard navigation order. The
system refrains from using the autofocus and title attributes to pre-
vent unexpected focus changes and redundancy in screen reader output.
The <a> element is strictly used for links, while the <button> element
is used for buttons, maintaining the integrity of native HTML seman-
tics. Decorative SVG icons are marked with aria-hidden="true" to
ensure assistive technologies ignore them. All input elements are asso-
ciated with a label element, enhancing the clarity of the form controls.
Additionally, the library provides helper text for further description.

Keyboard handling – All controls are designed to be accessible via mouse,
keyboard, and touch inputs. All interactive elements have a visible focus
style to enhance user interaction. The keyboard focus order matches the
visual layout, ensuring a seamless navigation experience, and is designed
to follow a “z” pattern, moving from left to right and top to bottom,
mimicking the natural reading flow. The system lacks any invisible fo-
cusable elements, preventing any unexpected focus shifts. Buttons are
made accessible using the space or enter keys, while radio buttons utilize
arrow keys for navigation, sticking to standard accessibility practices.

Color contrast – The minimum contrast ratio between the standard text
and background must be 4.5:1. For larger text, the contrast ratio should
be at least 3:1. This rule also applies to interactive and non-textual com-
ponents such as icons, which must preserve the same contrast ratio of
at least 3:1. These measures ensure that the contrast is perceivable by
individuals with low visibility or color blindness. It is also important to
note that color is not the exclusive way of communication. It is supple-
mented by text, icons, and other indicators to provide information in
many ways, enhancing overall accessibility.

45

3. Implementation

My component library is dedicated to delivering accessible components
to everyone, regardless of their abilities or the technology they utilize. I am
engaged in an ongoing effort to enhance accessibility, ensuring equal access
for every user. My goal is to promote accessibility and meet the WCAG
2.2 level AA guidelines, and I persistently strive towards achieving this. My
components are designed with the prerequisites for screen reader support,
leveraging the support of HTML, ARIA, and WCAG standards. This aids
individuals who use screen reader software, further emphasizing my dedication
to accessibility. [57][58]

46

Chapter 4
Testing

In this chapter, we dive into the world of testing, a critical aspect of soft-
ware development that ensures the code’s functionality, reliability, and per-
formance. This chapter is divided into the following sections: Strategies and
Types, Web Test Runner, and Playwright and Test Cases.

The first section demystifies the difference between manual and automated
testing, providing insights into their respective advantages and use cases. It
further explores various types of testing, including unit, integration, and end-
to-end testing, each with its unique role in the software development lifecycle.
The section concludes with an explanation of the component testing strategy,
a focused approach to testing web components.

The next section introduces the testing tool used in the project, specifically
Web Test Runner. It provides a detailed overview of its features and benefits,
including the integration of Playwright headless browsers, which allows for
automated testing in a browser environment without a user interface.

The final section outlines the practical application of the testing strategies
and tools discussed earlier. It describes the comprehensive testing approach
adopted, which includes manual testing, the creation of a testing suite contain-
ing 56 total tests, and the generation of code coverage metrics. The tests are
run concurrently in three evergreen browsers, ensuring broad compatibility.
The section also delves into specific test cases for testing various aspects of
web components, including their definition, default values, custom attributes,
shadow DOM accessibility, and interactive events.

By the end of this chapter, we will have a solid understanding of the
importance of testing, the different strategies and types, the tools that can
facilitate the process, and how to create and execute practical test cases.

47

4. Testing

4.1 Strategies and Types

Testing plays a vital role in the process of software development. It involves
the evaluation of software applications to detect differences between existing
and required conditions (bugs) and to evaluate the features of the software
applications. The main goal of testing is to guarantee that all functionalities
of a software application are working as expected. [59]

Manual Testing – Actual people conduct manual testing. It involves exe-
cuting test cases without the use of any automation tools. Testers sim-
ulate the end-user behavior and validate whether the system behaves
as expected. This method is helpful for exploratory, usability, and ad-
hoc testing. However, it can be time-consuming, prone to human error,
and difficult to manage when dealing with large codebases or complex
features.

Automated Testing – On the other hand, automated testing is conducted
by computer. It involves using software tools to run predefined test
cases. The main advantage of automated testing is its speed and con-
sistency. Tests can be run quickly and repeatedly at any time, reducing
the time and effort required. It is beneficial for regression testing, load
testing, and repetitive tasks. However, writing automated tests requires
technical skills and can be costly up-front.

While manual testing allows for human intuition and adaptability, it can
be slow and inconsistent due to human error. On the other hand, automated
testing is fast and reliable but may need to catch up on unanticipated errors
or usability issues that a human tester could catch. Therefore, a balanced
approach that utilizes manual and automated testing per the project’s re-
quirements and context often delivers the best results. Let me divide test
automation into different types for a better understanding:

Unit Testing – Unit testing represents the most detailed level of testing,
where each code segment is tested individually. Developers should prac-
tice unit testing, essentially testing every function they write. The con-
cept is straightforward - for every piece of code we create, we should
verify its functionality and existence. Each line of code should be ob-
served to ensure it behaves as expected. As developers sharpen their unit
testing skills over time, they better understand the code they write.

48

4.1. Strategies and Types

Integration Testing – Integration testing involves examining the interac-
tion between multiple components. This broader concept builds on unit
testing as we continue to test our code and integrate those tests with
other components and systems. An example of an integration test could
be testing a feature composed of several components and ensuring these
components interact harmoniously. Testing this integration is crucial to
ensure our application functions as intended.

End-to-end Testing – Finally, end-to-end testing involves testing an en-
tire application or feature as an end user would. While this approach
may seem impractical and not necessarily essential, it has its merits.
It resembles manual testing but with the added benefit of automation.
Being able to write robust end-to-end tests implies that the applica-
tion is straightforward and logical. However, for some applications, the
benefits of end-to-end tests may not justify the effort required.

Each testing method has strengths and weaknesses, often combined to
achieve a comprehensive testing strategy. Unit testing is excellent for catching
minor, isolated issues early, while integration testing helps to catch issues that
only arise when different components interact. End-to-end testing, while more
time-consuming and complex, helps ensure that the system works together to
fulfill its requirements. [60]

Component testing is a specific form of testing that fits into the broader
categories of unit, integration, and end-to-end testing. A component could be
considered as a ”unit” in unit testing. All component properties, attributes,
or events are tested separately during component testing. It could also be
considered integration testing since most components are composed of other
components, so it tests their combined behavior and interaction between them.
End-to-end testing has a strong connection with component testing because
components are tested in a browser environment, the same environment as real
users will use them in production applications. [61]

As mentioned, component testing should ideally be conducted in a browser
environment. It provides the most accurate environment for testing the be-
havior and interaction of components. It is also worth noting that using DOM
shimming calls is not recommended for web component testing [62]. While
tools like JSDOM can simulate a browser environment, they might not ideally
mimic the actual browser behavior, leading to inconsistencies and potential
issues that might not be caught during testing. Instead, utilizing a head-
less browser engine for component testing is possible and often more effective.

49

4. Testing

This means tests can be run in a browser environment without visibly opening
a browser, significantly speeding up the testing process. It could be beneficial
for automation, especially for continuous integration pipelines. [63]

4.2 Used Tools

Web Test Runner is a modern, lightweight test runner specifically engineered
for testing web components and JavaScript projects in a real browser environ-
ment. This tool is developed by the Open WC team, which offers recommen-
dations and defaults to aid developers in building web components. It supports
headless browsers from Puppeteer, Playwright, Selenium, and WebdriverIO,
allowing running tests without a visible UI. One of its notable features is its
support for ES modules, which allows components to be tested without the
need for prior compilation. Utilizing the latest browser features, it executes
tests concurrently, so it can significantly reduce test durations. Web Test
Runner is powered by esbuild and rollup plugins, offering fast build times
and a wide range of compatibility with various JavaScript features. [64]

Web Test Runner integrates seamlessly with Playwright, a powerful
browser automation library. Playwright is designed to enable reliable and
efficient end-to-end testing for modern web applications. One of the standout
features of Playwright is its ability to test across multiple browsers. With
its integration in Web Test Runner, it can test web components in headless
browsers such as Chromium, Firefox, and WebKit. This ensures components
function correctly across different browser environments, enhancing the over-
all compatibility and robustness of the web application. Additionally, it comes
with built-in debugging support, making it easy to pause tests and inspect
components using the browser’s developer tools. [65]

4.3 Test Cases

In my approach to manual component testing, I employ a variety of techniques
to ensure comprehensive coverage. This includes interacting with components
using different inputs such as a mouse, keyboard, and touch. To test accessibil-
ity, I utilize a magnification tool to zoom up to 400 % and adjust the browser
font size to 200 %. I also make use of assistive technologies, specifically the
Narrator in Windows and TalkBack in Android, to ensure the components
are accessible to all users. Additionally, I conduct manual visual regression
testing to identify any visual deviations from the intended design.

50

4.3. Test Cases

It is crucial to cover all states and scenarios when creating automated
component test cases. I created a comprehensive suite of 56 different tests
to evaluate each component in the library. These tests are designed to cover
a wide range of scenarios and edge cases, ensuring that each component be-
haves as expected under different conditions. The test setup also computes
code coverage, a metric that provides insight into the degree to which the
program’s source code has been tested. Currently, the code coverage stands
at 89.74 %, indicating that the tests have covered a significant portion of the
code. However, there is always room for improvement, and efforts will be
made to increase this percentage in the future.

One of the standout features of my testing setup is the ability to run all
tests concurrently in evergreen browsers: Chromium, Firefox, and WebKit.
This cross-browser testing ensures that my components work correctly across
different browser environments, enhancing the web application’s overall com-
patibility and user experience.

Test cases of my implementation inspired by [66] cover the following com-
ponent characteristics: custom element definition, default values, custom at-
tributes, shadow DOM accessibility, and interactive events.

4.3.1 Definition

It is crucial to verify whether a custom component is defined correctly. This
involves creating an instance of the component and checking if it is an instance
of the expected class. For example, consider a Listing 4.1. The test scenario
would involve creating a custom element dfx-checkbox and asserting that
this element is an instance of the Checkbox class. This test ensures that the
Checkbox component is correctly defined and can be instantiated as expected.

Listing 4.1: Test case: Checkbox is defined

describe('Checkbox', () => {
it('is defined', () => {

const element = document.createElement('dfx-checkbox');

expect(element).to.be.instanceOf(Checkbox);
});

});

51

4. Testing

4.3.2 Defaults

This testing scenario verifies that a component renders with its default values.
This involves creating an instance of the component and checking if its prop-
erties match the expected default values. For instance, consider a test where
a dfx-spinner component is created. The test would then assert that this
element’s size property equals medium, which is its default value, and that the
label property is undefined. This test ensures that the Spinner component
is correctly initialized with its default values when rendered. Verifying that
a property matches its default value might seem redundant, but it establishes
a fundamental baseline before proceeding with further tests.

Listing 4.2: Test case: Spinner renders with default values

describe('Spinner', () => {
it('renders with default values', async () => {
const element = await fixture<Spinner>(html`

<dfx-spinner></dfx-spinner>
`);

expect(element.size).to.equal('medium');
expect(element.label).to.be.undefined;

});
});

4.3.3 Customization

Testing scenarios often include verifying that a component renders correctly
with custom attributes. This involves creating an instance of the component
with the custom attributes and checking if its properties match the expected
values. For instance, consider a test where a dfx-label component is created
with a custom attribute type set to error. The test would then assert that
this element’s type property equals error, which is the custom value provided.
This test ensures the Label component correctly initializes and renders with
the provided custom attributes.

52

4.3. Test Cases

Listing 4.3: Test case: Label renders with custom attributes correctly

describe('Label', () => {
it('renders with custom attributes correctly', async () => {
const type = 'error';

const element = await fixture<Label>(html`
<dfx-label type=${type}></dfx-label>

`);

expect(element.type).to.equal(type);
});

});

4.3.4 Accessibility

The final scenario verifies the accessibility of a component’s shadow DOM. For
instance, consider a test where a dfx-input component with a label is created.
The test would then perform an accessibility audit on the component’s shadow
DOM. The expectation is that the shadow DOM of the component passes this
audit. The test will fail if I remove the label attribute from the component.
This kind of test ensures that the Label component is accessible.

Listing 4.4: Test case: Input passes the accessibility audit

describe('Input', () => {
it('passes the accessibility audit', async () => {
const element = await fixture<Input>(html`

<dfx-input label="Label"></dfx-input>
`);

await expect(element).shadowDom.to.be.accessible();
});

});

53

4. Testing

4.3.5 Interactivity

The following scenario verifies that a component fires the correct events when
interacted with. For instance, consider a test where a dfx-button component
is created and a click event is simulated. The test would then listen for the
custom dfx-click event that should be fired when the button is clicked. The
expectation is that this event does indeed occur and that the type of the event
detail equals click. This test ensures that the Button component correctly
emits custom events in response to user interactions.

Listing 4.5: Test case: Button fires dfx-click event when clicked

describe('Button', () => {
it('fires dfx-click event when clicked', async () => {
const element = await fixture<Button>(html`

<dfx-button></dfx-button>
`);
const button = element.shadowRoot?.querySelector('button');

setTimeout(() => button?.click());
const event = await oneEvent(element, 'dfx-click', false);

expect(event).to.exist;
expect(event.detail.type).to.equal('click');

});
});

54

Chapter 5
Distribution and Usage

This chapter dives into the distribution and usage of the web components
UI library developed as part of this diploma thesis. It summarizes the distri-
bution process, components usage, and customization possibilities of the web
components UI library. It equips readers with the necessary knowledge to
effectively utilize and adapt the library to their requirements.

The Release section outlines the process of preparing the library for dis-
tribution. It discusses the conventional commit rules and the tools to enforce
them, ensuring a consistent and meaningful commit history. It also explains
the principles of semantic versioning and the individual steps of the GitHub
Actions release workflow. These steps include installing dependencies and
browsers, checking types and formatting, linting, building, testing, and fi-
nally, releasing the package to the npm repository. The section also touches
upon the concept of release branches and documentation deployment.

The Components Usage section provides a comprehensive guide on in-
stalling, importing, and using the library’s components. It introduces a demo
application designed to showcase all the components in action. Furthermore,
it elaborates on the usage and configurations of web components in different
web frameworks, including React, Vue, and Angular, providing a versatile
understanding of the library’s applicability.

The final section, Customization, focuses on the adaptability of the library.
It explains how to use the default and dark themes included in the component
library and describes the ability to create a custom theme. It also details how
to customize individual components using CSS custom properties and CSS
shadow parts, allowing users to tailor the components to their specific needs.

55

5. Distribution and Usage

5.1 Release

A release workflow is a crucial part of the software development process that
automates the steps involved in releasing a new version of your software. It
often includes building the software, running tests, and deploying it to a pro-
duction environment. Conventional commits and semantic versioning are vital
aspects of a robust release workflow. Together, they can streamline the release
workflow and make it easier to automate.

5.1.1 Conventional Commits

Conventional Commits is a specification that adds meaning to commit mes-
sages [67]. This convention allows for readable messages that are easy to follow
when looking through the project history, and it also enables the automatic
generation of changelogs and release notes. A conventional commit message
follows this format:

Listing 5.1: Conventional Commits format

<type>(<scope>): <subject>
<BLANK LINE>
<body>
<BLANK LINE>
<footer>

Type – This represents the nature of the changes and has to be one of the
following: feat (feature), fix (bug fix), docs (documentation), style
(formatting), refactor (code refactoring), test (testing), build (build
process), ci (continuous integration), perf (performance), chore (main-
tain), and revert (commit reverts).

Scope – This is optional and should be used when the change affects only
a specific component or a part of the project.

Subject – The brief description of the changes, written in the imperative,
present tense: ”change”, not ”changed”, nor ”changes”, does not capi-
talize the first letter, and does not have a dot (.) at the end.

Body and Footer – These are optional and used for more detailed explana-
tory text, including indicating breaking changes or specific issue fixes.

56

5.1. Release

Listing 5.2: Example of conventional commit

feat(button): add loading state

My project uses specific tools to enforce commit rules [68]. Commitlint
is a tool that checks if the commit messages meet the rules of Conventional
Commits. By setting up Husky with a pre-commit hook, it can automatically
lint commit messages before they are committed. The commit will be rejected
if the message does not follow the Conventional Commits format.

On the other hand, Commitizen is a command-line tool that helps to cre-
ate commit messages that adhere to the Conventional Commits rules. When
you commit using Commitizen, it prompts you to fill out any required commit
fields. This ensures that every commit meets the standards set by Conven-
tional Commits.

Adhering to the Conventional Commits format makes versioning more effi-
cient and consistent, making it easier for developers and contributors to follow
changes in the project. It also helps to automate the release flow and generate
changelog notes.

5.1.2 Semantic Versioning

Semantic Versioning, abbreviated as SemVer, is a versioning scheme that aims
to provide information about the underlying changes in a release. A semantic
version number is composed of three parts MAJOR.MINOR.PATCH:

MAJOR version increment indicates that there are incompatible changes in
the API, and developers may need to modify the code of the application
to accommodate these changes.

MINOR version increment indicates that new features have been added in
a backward-compatible manner. Users can use the new features without
altering existing code.

PATCH version increment indicates that backward-compatible bug fixes
have been introduced. These fixes do not add or change new features
but rather fix issues with existing features.

57

5. Distribution and Usage

An optional pre-release or build metadata identifiers can be appended to
the version. For example, 1.0.0-beta.1 or 1.0.0-next.10. Semantic version-
ing provides a clear contract to the users of your software, allowing users to
comprehend the potential consequences of upgrading to a new version. It
is widely adopted in the open-source community and is used by many package
managers, including npm. [69]

5.1.3 Release Workflow

My component library uses GitHub Actions. It is a powerful tool for im-
plementing a continuous integration (CI) pipeline directly within a GitHub
project. It automates software workflows, including building, testing, and de-
ploying applications. Multiple events, such as push or pull requests, can trigger
workflows. CI workflows are defined in code using YAML syntax, so they are
version-controlled and reviewed as part of pull requests. The GitHub Actions
release workflow for my component library consists of the following steps:

1. Install dependencies – This step installs the project dependencies. It
ensures that the exact versions of dependencies specified in the lockfile
are installed.

2. Install Playwright browsers – This step installs the browsers needed
for the Playwright tool, a Node.js library used for browser automation.

3. Check types – This step checks the types in the project, ensuring there
are no type errors. This is typically used in TypeScript projects.

4. Check formatting – This step checks the formatting of the code, ensur-
ing it adheres to the specified style guide.

5. Lint – This step lints the code, checking for syntax errors and enforcing
code style rules.

6. Build – This step builds the component library, including generating
TypeScript types and Custom Elements Manifest.

7. Test – This step runs the project’s test suite concurrently in headless
browsers, ensuring all tests pass.

8. Release – This step runs semantic-release to automate the versioning and
package publishing process.

58

5.2. Components Usage

The project uses semantic-release to automate the release flow. It follows
semantic versioning rules. When a commit is marked as BREAKING CHANGE in
the commit message, that push creates a major release in the current channel.
Backward incompatible changes should have breaking change commits. When
some commits have a feat prefix in the message, that push creates a minor
release. Finally, when some commits have a fix prefix in the message, and
there are not any feat commits, that push creates a patch release. Every
commit triggers a release flow based on the branch:

• main: Every push makes a stable release in latest npm channel.

• next: Every push makes a preview release in next npm channel.

With every release, the new version is published to the npm repository.
The semantic-release also automatically creates a GitHub Release with auto-
generated release notes, including all commits since the last release. I do not
directly push changes to the main and next branches. The main branch will
only be updated by a PR from the next branch that contains features/fixes
that we are ready to release as a stable release. All changes for the current
version will be submitted in PRs targeting the next branch. PRs are not
making any releases.

As a last step of my release workflow, Storybook documentation is built
and deployed as a static site to Netlify. Custom Elements Manifest is generated
before the Storybook is built to provide metadata for all components. Once
the build process is complete, the workflow deploys the static Storybook site to
Netlify, a popular platform for hosting static websites. This automated process
ensures that your Storybook documentation is always up-to-date, providing
a valuable resource for developers.

5.2 Components Usage

Using components from my library in a JavaScript or TypeScript project in-
volves the following steps:

1. Installation – Ensure the latest Node.js is installed on the machine. Use
a package manager (such as npm, yarn, or pnpm) to install the compo-
nent library from npm repository:

npm install diffix

59

5. Distribution and Usage

2. Import – Import the target component you want to use in the project
from diffix/components/component-name. Import automatically reg-
isters the custom element (causes a side effect).

import 'diffix/components/button';

Or import all components at once:

import 'diffix';

3. Usage – My components are designed to be used as Web Components.
This means you import the target component in the script and then use
it in the HTML, JavaScript, or JSX like a standard HTML element:

<dfx-button>Button</dfx-button>

There is a simple application using Vite in demo folder inside the library
implementation. It showcases the usage of individual components and im-
plements features like a theme toggle, saving the preferred theme outside the
current session, or auto-detecting the user system preference.

5.2.1 Usage in Frameworks

Web Components enjoy robust support across all major browsers, enhancing
their appeal for modern web development [22]. Their design allows for easy in-
tegration into contemporary front-end frameworks, providing developers with
a versatile tool for creating reusable, encapsulated components. However, it
is essential to note that the level of integration ease can vary, as only some
frameworks facilitate a seamless integration process for Web Components. [70]

React

In React, you can use Web Components just like any regular HTML element.
However, due to the difference in event handling between React and native
DOM, you need to use React’s ref API to attach event listeners to Web
Components. Some components provide React wrappers for Web Components
so you can use props and handle events just like any other React component.
I do not provide these wrappers at the moment. A planned future release of
React will improve support for using Web Components, which will make the
wrapper components unnecessary. [71]

In an example shown in Listing 5.3, a dfx-button component is rendered,
and a ref is attached to it. Inside the useEffect hook, an event listener

60

5.2. Components Usage

Listing 5.3: Component usage in React

import React, { useEffect, useRef } from 'react';
import 'diffix/components/button';

function MyComponent() {
const ref = useRef();

useEffect(() => {
const element = ref.current;
const handleClick = (event) => {
console.log('dfx-click event fired!', event.detail);

};

element.addEventListener('dfx-click', handleClick);

return () => {
element.removeEventListener('dfx-click', handleClick);

};
}, []);

return <dfx-button ref={ref}>Button</dfx-button>;
}

is added to the button for the dfx-click event. When the dfx-click event
is fired, the handleClick function will be called, and the event’s details will
be logged to the console. The event listener is cleaned up when the component
is unmounted to prevent memory leaks. This is a common pattern for using
Web Components with custom events in React.

Vue

Vue provides excellent support for the consumption of custom elements. This
is beneficial whether integrating custom elements into an existing Vue appli-
cation or starting from scratch. The process of using custom elements within
a Vue application is largely similar to using native HTML elements, with
a few considerations. By default, Vue tries to resolve a non-native HTML
tag as a registered Vue component before it resorts to rendering it as a cus-
tom element. To ensure Vue treats certain elements as custom elements and

61

5. Distribution and Usage

bypasses component resolution, the compilerOptions.isCustomElement op-
tion should be specified. If Vue is being used with a build setup, this option
should be passed via build configurations as it’s a compile-time option. [72]

In Listing 5.4, the dfx-button component is used in the Vue template.
The @dfx-click directive is used to listen for the dfx-click event. When
the dfx-click event is fired, the handleClick method will be called, and the
event’s details will be logged into the console.

Listing 5.4: Component usage in Vue

<template>
<dfx-button @dfx-click="handleClick">Button</dfx-button>

</template>

<script>
import 'diffix/components/button';

export default {
methods: {
handleClick(event) {

console.log('dfx-click event fired!', event.detail);
},

},
};
</script>

Angular

Angular provides excellent support for Web Components, and its architecture
allows seamless integration. This can be achieved using Angular’s schema
CUSTOM_ELEMENTS_SCHEMA to recognize and enable custom elements in An-
gular templates. Furthermore, Angular’s change detection mechanism works
well with properties and events of Web Components, allowing for efficient data
binding and event handling. [73]

In Listing 5.5, the dfx-button component is used in the Angular template.
The (dfx-click) syntax is used to listen for the dfx-click event. When the
dfx-click event is fired, the handleClick method will be called, and the
event’s details will be logged into the console.

62

5.3. Customization

Listing 5.5: Component usage in Angular

import { Component } from '@angular/core';
import { CUSTOM_ELEMENTS_SCHEMA } from '@angular/core';
import 'diffix/components/button';

@Component({
selector: 'app-root',
standalone: true,
template: `
<dfx-button (dfx-click)="handleClick($event)">
Button

</dfx-button>
`,
schemas: [CUSTOM_ELEMENTS_SCHEMA]

})
export class AppComponent {
handleClick(event: CustomEvent) {
console.log('dfx-click event fired!', event.detail);

}
}

5.3 Customization

Design System can be customized at a high level through design tokens. This
gives the developer control over theme colors and general styling. It is possi-
ble to utilize component variables to target individual components for more
advanced customizations.

One of the core principles of Web Components is the encapsulation. The
HTML and styles are encapsulated in the Shadow DOM. This avoids con-
flicts with any CSS styles used in the rest of the application but also makes
customization harder. However, styling Web Components is easily achievable
thanks to CSS Custom Properties, which flow down inside the Shadow DOM
and CSS Shadow Parts.

5.3.1 Default Theme

Design tokens are accessed through CSS custom properties defined in the
:root block of theme styles. Because design tokens are global, they’re always

63

5. Distribution and Usage

prefixed with --dfx to avoid collisions with other libraries. To use the default
theme, import the CSS file:

• Using an application bundler (Webpack, Rollup, Vite, etc.):

import 'diffix/themes/default.css';

• Or using a <link> tag:

<link href="/node_modules/diffix/dist/themes/default.css"
rel="stylesheet" />

5.3.2 Dark Theme

The dark theme is a color scheme that uses light color for text, icons, and
graphical user interface elements on a dark background. It is a popular feature
in many operating systems, applications, and websites. The benefits of using
a dark theme include reduced eye strain, especially in low-light conditions,
potential energy savings on OLED displays, and it can be easier on the eyes
for some users. Additionally, it can provide a visually appealing alternative
to traditional light themes, offering a different aesthetic experience. [74]

To use the dark theme, import the CSS file of the default theme (for
general design tokens) and the dark theme (changing semantic colors):

• Using an application bundler (Webpack, Rollup, Vite, etc.):

import 'diffix/themes/default.css';
import 'diffix/themes/dark.css';

• Or using a <link> tag:

<link href="/node_modules/diffix/dist/themes/default.css"
rel="stylesheet" />
<link href="/node_modules/diffix/dist/themes/dark.css"
rel="stylesheet" />

The dark theme is not applied automatically. Use the data-theme at-
tribute on the <html> element to switch between the light and dark themes.
Let’s have a look at the light and dark mode comparison at Figure 5.1. It
is possible to use an attribute on different element than <html>, so that the
theme is only applied to the inner content.

64

5.3. Customization

Figure 5.1: Comparison between light and dark theme

Custom Theme

The theme is a set of CSS Custom Properties. It is possible to customize and
use them in the application with pure CSS, no preprocessor required. There
are two similar ways to create a custom theme:

1. Create a custom theme by extending the default theme. Import the
CSS file of the default theme and then your custom styles. You can
extend the default theme by defining the same CSS custom properties
with different values inside your styles.

2. Create a custom theme from scratch. Copy the content of the default
theme and change the values of the variables. Then, import the CSS file
of the custom theme instead of the default theme.

My design system uses Inter as the default typeface. It is imported into the
default theme. However, you don’t have to use Inter. You can use any font
you prefer by setting the --dfx-font-family CSS custom property inside
your theme styles. It is recommended to use a font optimized for the web.
There are many options:

• Use a widely available font in browsers, such as system fonts (e.g., Arial)
or the system font stack. It uses Segoe UI on Windows, San Francisco
on macOS and iOS, and Roboto on Android and Chrome OS. If you
don’t import the default theme, components will fall back to the system
font stack. Or you can set it manually in your theme:

--dfx-font-family: -apple-system, BlinkMacSystemFont,
'Segoe UI', Roboto, Arial, sans-serif;

65

5. Distribution and Usage

• You can use the @font-face rule to import your locally hosted font.
That’s the way the default theme imports Inter.

• Use external font services such as Google Fonts. The most effective way
is to import the font using the <link> tag in the <head> of your HTML.

The default theme is automatically applied because it is declared in the
:root block. If you want to use more themes in your application, you can
import them and switch between them using the data-theme attribute.

Figure 5.2: Custom theme example

Listing 5.6: Custom theme usage

<article data-theme="custom">
<dfx-checkbox-group label="Checkbox group" value="1">
<dfx-checkbox value="1">Option 1</dfx-checkbox>
<dfx-checkbox value="2">Option 2</dfx-checkbox>
<dfx-checkbox value="3">Option 3</dfx-checkbox>

</dfx-checkbox-group>
<dfx-button variant="filled">Button</dfx-button>

</article>

<style>
[data-theme='custom'] {
--dfx-font-family: -apple-system, BlinkMacSystemFont,

'Segoe UI', Roboto, Arial, sans-serif;
--dfx-color-neutral-dark: #fbbf24;
--dfx-color-neutral-dark-variant: #f59e0b;
--dfx-color-contrast-text: #09090b;

}
</style>

66

5.3. Customization

5.3.3 Customizing Components

Web Components offer a powerful way to create reusable, encapsulated com-
ponents. Customizing the styling of these components can be achieved through
two primary methods: CSS Custom Properties and CSS Shadow Parts.

CSS Custom Properties

CSS Custom Properties allow defining custom properties that can be reused
throughout CSS. This is particularly useful in Web Components, as it al-
lows component styles to be easily customized. My components provide
variables that exist at the component level. They start with the prefix
--dfx-component-name. For example, dfx-button component exposes a cus-
tom property --dfx-button-border-radius for customization of a compo-
nent’s border-radius. This allows the border radius to be easily changed
without having to rewrite the component’s CSS.

Listing 5.7: CSS Custom Properties example

dfx-button.rounded {
--dfx-button-border-radius: var(--dfx-border-radius-full);

}

CSS Shadow Parts

CSS Shadow Parts provide a way to style specific parts of a component’s
Shadow DOM from outside the component. This is done by exposing parts of
the component’s internal structure, which can be targeted with CSS shadow
part selector ::part(). For example, a dfx-button component exposes a but-
ton element as a shadow part, allowing it to be styled directly.

Listing 5.8: CSS Shadow Parts example

dfx-button.underline::part(button) {
text-decoration: underline;

}

67

Conclusion

The diploma thesis aimed to create a component library, establish a custom de-
sign system, provide comprehensive documentation, and distribute the pack-
age to a public repository. These goals were accomplished by creating a per-
formant, customizable, open-source UI library. It provides a set of reusable
components that enable the building of web applications with a consistent
user experience. It integrates seamlessly with any JavaScript framework, such
as React, Vue, or Angular. The project follows the W3C Web Component
standards, ensuring a highly performant and accessible web experience. It
also allows customizing the design language for individual projects by modi-
fying design tokens.

The thesis started with a comprehensive exploration and analysis of de-
sign systems, component libraries, web components technology, and web com-
ponents frameworks. The motivation, principles, realization, design tokens,
and components that formed the foundation of a robust design system were
discussed. The implementation phase outlined the project structure, build
process, documentation, linting, formatting, forms, and accessibility consider-
ations. Various testing strategies, tools, and specific test cases were explored,
emphasizing the importance of testing. Finally, the distribution and usage
of the library were discussed, including the release process, how to use the
components, and customize them.

Despite the lack of resources and the rapid obsolescence of articles older
than about three years, I found a solid solution. I chose the Lit framework for
implementation, and the library was written in TypeScript, with Vite used for
the build process. Tests run in Web Test Runner utilizing Playwright headless
browsers. Each component was documented in the Storybook, linted with

69

Conclusion

ESLint, and formatted by Prettier. Commits are checked with Commitlint
and created with Commitzen. The component library uses semantic-release
utility for automatic release workflow and deployment.

The future development and improvements of the component library are
promising. The first step is implementing the rest of the designed components,
further expanding the library’s capabilities. The documentation will receive
enhancements, including a section for migration and a roadmap of planned
features, providing users with a clear path to the library’s evolution. The
testing process will also be upgraded, with testing of shadow DOM snapshots
and visual regression testing. I consider using a CSS preprocessor, which
aims to streamline working with styles, coupled with the establishment of
CSS linting rules to maintain code quality. Form controls are set to gain
the ability to set custom invalid text. Lastly, I want to experiment with the
server-side rendering capabilities of the components.

In conclusion, this diploma thesis has successfully delivered a modern, cus-
tomizable, and user-friendly web components UI library. The library is well-
documented and readily available in a public npm repository, ready to be used
out-of-the-box in existing front-end projects. This accomplishment fulfills the
goals set out at the beginning of the thesis and contributes a valuable tool to
the web development community.

70

Bibliography

1. Web Components. W3C Wiki [online]. 2014 [visited on 2024-01-06]. Avail-
able from: https://www.w3.org/wiki/WebComponents/.

2. SISK, Kolby. Design Systems Demystified [online]. [visited on 2024-01-
06]. Available from: https://www.designsystem.tools/.

3. Why design systems matter [online]. [visited on 2024-01-06]. Available
from: https://fem- design- systems.netlify.app/why- design-
systems-matter.

4. Design Tokens Format Module. Design Tokens Community Group
[online]. 2023 [visited on 2024-01-06]. Available from: https : / / tr .
designtokens.org/format/.

5. Design tokens – Spectrum [online]. [visited on 2024-01-06]. Available from:
https://spectrum.adobe.com/page/design-tokens/.

6. CURTIS, Nathan. UX Patterns � UI Components. Medium [online].
2017 [visited on 2024-01-06]. Available from: https://medium.com/
eightshapes-llc/patterns-components-2ce778cbe4e8.

7. CAPOZZI, Mae. The 5 layers of a design system [online]. 2020 [visited on
2024-01-06]. Available from: https://maecapozzi.com/blog/layers-
of-abstraction-in-design-systems.

8. LANGVAD, Rasmus. What Is a Component Library [online]. 2020 [vis-
ited on 2024-01-08]. Available from: https://langvad.dev/blog/what-
is-a-component-library/.

9. DYSZKIEWICZ, Joanna. What is a UI component library and when
to use it? Pagepro [online]. 2022 [visited on 2024-01-08]. Available from:
https://pagepro.co/blog/what-is-a-ui-component-library/.

71

https://www.w3.org/wiki/WebComponents/
https://www.designsystem.tools/
https://fem-design-systems.netlify.app/why-design-systems-matter
https://fem-design-systems.netlify.app/why-design-systems-matter
https://tr.designtokens.org/format/
https://tr.designtokens.org/format/
https://spectrum.adobe.com/page/design-tokens/
https://medium.com/eightshapes-llc/patterns-components-2ce778cbe4e8
https://medium.com/eightshapes-llc/patterns-components-2ce778cbe4e8
https://maecapozzi.com/blog/layers-of-abstraction-in-design-systems
https://maecapozzi.com/blog/layers-of-abstraction-in-design-systems
https://langvad.dev/blog/what-is-a-component-library/
https://langvad.dev/blog/what-is-a-component-library/
https://pagepro.co/blog/what-is-a-ui-component-library/

Bibliography

10. VANTOLL, TJ. The Ultimate Guide to Building a UI Component
Library—Part 1: Creating a Plan. Telerik [online]. 2021 [visited on 2024-
01-08]. Available from: https://www.telerik.com/blogs/ultimate-
guide-to-building-ui-component-library-part-1-plan.

11. KHOSRAVI, Kasra. Web components vs. React. LogRocket [online]. 2023
[visited on 2024-01-08]. Available from: https://blog.logrocket.com/
web-components-vs-react/.

12. Web Components. MDN Web Docs [online]. 2023 [visited on 2024-01-08].
Available from: https://developer.mozilla.org/en-US/docs/Web/
API/Web_components.

13. GORE, Anthony. What makes a great component library. Retool [online].
2022 [visited on 2024-01-08]. Available from: https://retool.com/
blog/what-makes-a-great-component-library.

14. Guide to Building Design Systems With Web Components. Ionic [on-
line]. 2022 [visited on 2024-01-08]. Available from: https : / / ionic .
io/resources/articles/building- design- systems- with- web-
components.

15. FROST, Brad. Let’s talk about web components [online]. 2022 [visited
on 2024-01-08]. Available from: https://bradfrost.com/blog/post/
lets-talk-about-web-components/.

16. PORTS, Kevin. 5 Reasons Web Components Are Perfect for Design Sys-
tems. Ionic [online]. 2019 [visited on 2024-01-08]. Available from: https:
//ionic.io/blog/5-reasons-web-components-are-perfect-for-
design-systems.

17. KAROULLA, Andrico. Scaffolding the repo for your UI library [online].
2021 [visited on 2024-01-18]. Available from: https://blog.andri.co/
001-scaffolding-the-repo-for-your-ui-library/.

18. Developing Components: Publishing [online]. [visited on 2024-01-18].
Available from: https://fluent2.microsoft.design/design-tokens.

19. FROST, Brad. Design system versioning: single library or individual
components? [online]. 2022 [visited on 2024-01-18]. Available from:
https://bradfrost.com/blog/post/design-system-versioning-
single-library-or-individual-components/.

20. CAPOZZI, Mae. Should you version components separately or as a uni-
fied system? [online]. 2020 [visited on 2024-01-18]. Available from: https:
//maecapozzi.com/blog/version-bundling.

72

https://www.telerik.com/blogs/ultimate-guide-to-building-ui-component-library-part-1-plan
https://www.telerik.com/blogs/ultimate-guide-to-building-ui-component-library-part-1-plan
https://blog.logrocket.com/web-components-vs-react/
https://blog.logrocket.com/web-components-vs-react/
https://developer.mozilla.org/en-US/docs/Web/API/Web_components
https://developer.mozilla.org/en-US/docs/Web/API/Web_components
https://retool.com/blog/what-makes-a-great-component-library
https://retool.com/blog/what-makes-a-great-component-library
https://ionic.io/resources/articles/building-design-systems-with-web-components
https://ionic.io/resources/articles/building-design-systems-with-web-components
https://ionic.io/resources/articles/building-design-systems-with-web-components
https://bradfrost.com/blog/post/lets-talk-about-web-components/
https://bradfrost.com/blog/post/lets-talk-about-web-components/
https://ionic.io/blog/5-reasons-web-components-are-perfect-for-design-systems
https://ionic.io/blog/5-reasons-web-components-are-perfect-for-design-systems
https://ionic.io/blog/5-reasons-web-components-are-perfect-for-design-systems
https://blog.andri.co/001-scaffolding-the-repo-for-your-ui-library/
https://blog.andri.co/001-scaffolding-the-repo-for-your-ui-library/
https://fluent2.microsoft.design/design-tokens
https://bradfrost.com/blog/post/design-system-versioning-single-library-or-individual-components/
https://bradfrost.com/blog/post/design-system-versioning-single-library-or-individual-components/
https://maecapozzi.com/blog/version-bundling
https://maecapozzi.com/blog/version-bundling

Bibliography

21. CRUTCHLEY, Corbin. Web Components 101: History. Unicorn Utter-
ances [online]. 2021 [visited on 2024-01-08]. Available from: https://
unicorn-utterances.com/posts/web-components-101-history.

22. Can I use web components? [online]. [visited on 2024-01-08]. Available
from: https://caniuse.com/?search=web%20components.

23. WHATWG. Custom elements. HTML Spec [online]. 2024 [visited on
2024-01-11]. Available from: https : / / html . spec . whatwg . org /
multipage/custom-elements.html.

24. WHATWG. Interface ShadowRoot. DOM Spec [online]. 2024 [visited
on 2024-01-26]. Available from: https : / / dom . spec . whatwg . org /
#interface-shadowroot.

25. LAVISKA, Cory. Flash of Undefined Custom Elements (FOUCE).
A Beautiful Site [online]. 2021 [visited on 2024-01-11]. Available from:
https://www.abeautifulsite.net/posts/flash-of-undefined-
custom-elements/.

26. MILLER, Jason; FREED, Mason. Declarative Shadow DOM. Chrome for
Developers [online]. 2023 [visited on 2024-01-11]. Available from: https:
//developer.chrome.com/docs/css-ui/declarative-shadow-dom.

27. Using Web Components: Styling Components Using Shadow DOM. Web
Components Community Group at W3C [online]. 2022 [visited on 2024-
01-11]. Available from: https://web-components-cg.netlify.app/
articles/using/styling-shadow/.

28. WHATWG. The template element. HTML Spec [online]. 2024 [visited
on 2024-01-11]. Available from: https://html.spec.whatwg.org/
multipage/scripting.html#the-template-element.

29. CRUTCHLEY, Corbin. Web Components 101: Framework Comparison.
Unicorn Utterances [online]. 2021 [visited on 2024-01-12]. Available from:
https://unicorn-utterances.com/posts/web-components-101-
framework-comparison.

30. All the Ways to Make a Web Component. WebComponents.dev [online].
2022 [visited on 2024-01-12]. Available from: https://webcomponents.
dev/blog/all-the-ways-to-make-a-web-component/.

31. @stencil/core vs lit – npm trends [online]. [visited on 2024-01-12]. Avail-
able from: https://npmtrends.com/@stencil/core-vs-lit.

73

https://unicorn-utterances.com/posts/web-components-101-history
https://unicorn-utterances.com/posts/web-components-101-history
https://caniuse.com/?search=web%20components
https://html.spec.whatwg.org/multipage/custom-elements.html
https://html.spec.whatwg.org/multipage/custom-elements.html
https://dom.spec.whatwg.org/#interface-shadowroot
https://dom.spec.whatwg.org/#interface-shadowroot
https://www.abeautifulsite.net/posts/flash-of-undefined-custom-elements/
https://www.abeautifulsite.net/posts/flash-of-undefined-custom-elements/
https://developer.chrome.com/docs/css-ui/declarative-shadow-dom
https://developer.chrome.com/docs/css-ui/declarative-shadow-dom
https://web-components-cg.netlify.app/articles/using/styling-shadow/
https://web-components-cg.netlify.app/articles/using/styling-shadow/
https://html.spec.whatwg.org/multipage/scripting.html#the-template-element
https://html.spec.whatwg.org/multipage/scripting.html#the-template-element
https://unicorn-utterances.com/posts/web-components-101-framework-comparison
https://unicorn-utterances.com/posts/web-components-101-framework-comparison
https://webcomponents.dev/blog/all-the-ways-to-make-a-web-component/
https://webcomponents.dev/blog/all-the-ways-to-make-a-web-component/
https://npmtrends.com/@stencil/core-vs-lit

Bibliography

32. Stencil: A Web Components Compiler. Stencil [online]. 2024 [visited
on 2024-01-12]. Available from: https : / / stenciljs . com / docs /
introduction.

33. What is Lit? Lit [online]. 2023 [visited on 2024-01-12]. Available from:
https://lit.dev/docs/.

34. LAVISKA, Cory. Moving from Stencil to LitElement. A Beautiful
Site [online]. 2021 [visited on 2024-01-12]. Available from: https :
/ / www . abeautifulsite . net / posts / moving - from - stencil - to -
lit-element/.

35. Design System Software [online]. [visited on 2024-01-16]. Available from:
https://www.figma.com/design-systems/.

36. Adobe XD Learn & Support [online]. [visited on 2024-01-16]. Available
from: https://helpx.adobe.com/support/xd.html.

37. Design tokens [online]. [visited on 2024-01-16]. Available from: https:
//fluent2.microsoft.design/design-tokens.

38. SITNIK, Andrey; TURNER, Travis. OKLCH in CSS: why we moved
from RGB and HSL. Evil Martians [online]. 2022 [visited on 2024-01-16].
Available from: https://evilmartians.com/chronicles/oklch-in-
css-why-quit-rgb-hsl.

39. JavaScript Module Bundlers [online]. 2021 [visited on 2024-01-21]. Avail-
able from: https://byby.dev/js-module-bundlers.

40. WAGNER, Jeremy. Reduce JavaScript payloads with tree shaking [on-
line]. 2018 [visited on 2024-01-21]. Available from: https://web.dev/
articles/reduce-javascript-payloads-with-tree-shaking.

41. DJIRDEH, Houssein. Reduce JavaScript payloads with code splitting
[online]. 2018 [visited on 2024-01-21]. Available from: https://web.
dev/articles/codelab-code-splitting.

42. Going Buildless: ES Modules [online]. [visited on 2024-01-18]. Available
from: https : / / modern - web . dev / guides / going - buildless / es -
modules/.

43. KAROULLA, Andrico. How to build (and maybe bundle) your UI li-
brary’s packages [online]. 2021 [visited on 2024-01-18]. Available from:
https://blog.andri.co/004-how-to-build-and-maybe-bundle-
your-UI-library/.

74

https://stenciljs.com/docs/introduction
https://stenciljs.com/docs/introduction
https://lit.dev/docs/
https://www.abeautifulsite.net/posts/moving-from-stencil-to-lit-element/
https://www.abeautifulsite.net/posts/moving-from-stencil-to-lit-element/
https://www.abeautifulsite.net/posts/moving-from-stencil-to-lit-element/
https://www.figma.com/design-systems/
https://helpx.adobe.com/support/xd.html
https://fluent2.microsoft.design/design-tokens
https://fluent2.microsoft.design/design-tokens
https://evilmartians.com/chronicles/oklch-in-css-why-quit-rgb-hsl
https://evilmartians.com/chronicles/oklch-in-css-why-quit-rgb-hsl
https://byby.dev/js-module-bundlers
https://web.dev/articles/reduce-javascript-payloads-with-tree-shaking
https://web.dev/articles/reduce-javascript-payloads-with-tree-shaking
https://web.dev/articles/codelab-code-splitting
https://web.dev/articles/codelab-code-splitting
https://modern-web.dev/guides/going-buildless/es-modules/
https://modern-web.dev/guides/going-buildless/es-modules/
https://blog.andri.co/004-how-to-build-and-maybe-bundle-your-UI-library/
https://blog.andri.co/004-how-to-build-and-maybe-bundle-your-UI-library/

Bibliography

44. TypeScript: JavaScript With Syntax For Types [online]. [visited on 2024-
01-21]. Available from: https://www.typescriptlang.org/.

45. ATTARDI, Joe. Understanding TypeScript’s benefits and pitfalls [on-
line]. 2022 [visited on 2024-01-21]. Available from: https : / / blog .
logrocket.com/understanding-typescripts-benefits-pitfalls/.

46. CURTIS, Nathan. Documenting Components [online]. 2018 [visited on
2024-01-22]. Available from: https://medium.com/eightshapes-llc/
documenting-components-9fe59b80c015.

47. Why Storybook? [online]. [visited on 2024-01-22]. Available from: https:
//storybook.js.org/docs/get-started/why-storybook.

48. Getting Started: Custom Elements Manifest [online]. [visited on 2024-
01-22]. Available from: https://custom-elements-manifest.open-
wc.org/analyzer/getting-started/.

49. Core Concepts - ESLint [online]. [visited on 2024-01-22]. Available from:
https://eslint.org/docs/latest/use/core-concepts.

50. Why Prettier? [online]. [visited on 2024-01-22]. Available from: https:
//prettier.io/docs/en/why-prettier.

51. Client-side form validation [online]. [visited on 2024-01-22]. Available
from: https://developer.mozilla.org/en-US/docs/Learn/Forms/
Form_validation.

52. Constraint validation [online]. [visited on 2024-01-22]. Available from:
https : / / developer . mozilla . org / en - US / docs / Web / HTML /
Constraint_validation.

53. @open-wc/form-control [online]. [visited on 2024-01-23]. Available from:
https://github.com/open-wc/form-participation/tree/main/
packages/form-control.

54. EVANS, Arthur. More capable form controls [online]. 2019 [visited on
2024-01-23]. Available from: https : / / web . dev / articles / more -
capable-form-controls.

55. WAI-ARIA basics | MDN [online]. [visited on 2024-01-23]. Available
from: https : / / developer . mozilla . org / en - US / docs / Learn /
Accessibility/WAI-ARIA_basics.

56. Patterns | APG | WAI | W3C [online]. [visited on 2024-01-23]. Available
from: https://www.w3.org/WAI/ARIA/apg/patterns/.

75

https://www.typescriptlang.org/
https://blog.logrocket.com/understanding-typescripts-benefits-pitfalls/
https://blog.logrocket.com/understanding-typescripts-benefits-pitfalls/
https://medium.com/eightshapes-llc/documenting-components-9fe59b80c015
https://medium.com/eightshapes-llc/documenting-components-9fe59b80c015
https://storybook.js.org/docs/get-started/why-storybook
https://storybook.js.org/docs/get-started/why-storybook
https://custom-elements-manifest.open-wc.org/analyzer/getting-started/
https://custom-elements-manifest.open-wc.org/analyzer/getting-started/
https://eslint.org/docs/latest/use/core-concepts
https://prettier.io/docs/en/why-prettier
https://prettier.io/docs/en/why-prettier
https://developer.mozilla.org/en-US/docs/Learn/Forms/Form_validation
https://developer.mozilla.org/en-US/docs/Learn/Forms/Form_validation
https://developer.mozilla.org/en-US/docs/Web/HTML/Constraint_validation
https://developer.mozilla.org/en-US/docs/Web/HTML/Constraint_validation
https://github.com/open-wc/form-participation/tree/main/packages/form-control
https://github.com/open-wc/form-participation/tree/main/packages/form-control
https://web.dev/articles/more-capable-form-controls
https://web.dev/articles/more-capable-form-controls
https://developer.mozilla.org/en-US/docs/Learn/Accessibility/WAI-ARIA_basics
https://developer.mozilla.org/en-US/docs/Learn/Accessibility/WAI-ARIA_basics
https://www.w3.org/WAI/ARIA/apg/patterns/

Bibliography

57. Web Content Accessibility Guidelines (WCAG) 2.2 [online]. 2023-10-05.
[visited on 2024-01-23]. Available from: https: / / www . w3 . org / TR /
WCAG22/.

58. Accessible Rich Internet Applications (WAI-ARIA) 1.2 [online]. 2023-06-
06. [visited on 2024-01-23]. Available from: https://www.w3.org/TR/
wai-aria-1.2/.

59. SCHWERING, Ramona. Three common types of test automation [on-
line]. 2023 [visited on 2024-01-25]. Available from: https://web.dev/
articles/ta-types.

60. SOLOMON, Andrew. Introduction to Automation Testing [online].
2023 [visited on 2024-01-25]. Available from: https://medium.com/
@andysolomon/introduction-to-automation-testing-ed50ac969bd2.

61. KNIGHT, Andrew. Testing Storybook Components in Any Browser –
Without Writing Any New Tests! [online]. 2022 [visited on 2024-01-
25]. Available from: https : / / applitools . com / blog / storybook -
components-cross-browser-testing/.

62. Testing – Lit [online]. [visited on 2024-01-25]. Available from: https:
//lit.dev/docs/tools/testing/.

63. KAROULLA, Andrico. Defining your UI library’s testing strategy [on-
line]. 2021 [visited on 2024-01-25]. Available from: https://blog.andri.
co/005-defining-your-UI-librarys-testing-strategy/.

64. Web Test Runner [online]. [visited on 2024-01-25]. Available from: https:
//modern-web.dev/docs/test-runner/overview/.

65. Test Runner: Browsers [online]. [visited on 2024-01-25]. Available from:
https://modern-web.dev/guides/test-runner/browsers/.

66. JOHNSON, Westbrook. Testing Web Components with @web/test-
runner [online]. 2023 [visited on 2024-01-25]. Available from: https :
//dev.to/westbrook/testing- web- components- with- webtest-
runner-51g6.

67. Conventional Commits [online]. [visited on 2024-02-03]. Available from:
https://www.conventionalcommits.org/en/v1.0.0/.

68. PENG, David. Add Commitlint, Commitizen, Standard Version, and
Husky to SvelteKit Project [online]. 2022 [visited on 2024-02-03]. Avail-
able from: https://dev.to/davipon/add-commitint-commitizen-
standard-version-and-husky-to-sveltekit-project-14pc.

76

https://www.w3.org/TR/WCAG22/
https://www.w3.org/TR/WCAG22/
https://www.w3.org/TR/wai-aria-1.2/
https://www.w3.org/TR/wai-aria-1.2/
https://web.dev/articles/ta-types
https://web.dev/articles/ta-types
https://medium.com/@andysolomon/introduction-to-automation-testing-ed50ac969bd2
https://medium.com/@andysolomon/introduction-to-automation-testing-ed50ac969bd2
https://applitools.com/blog/storybook-components-cross-browser-testing/
https://applitools.com/blog/storybook-components-cross-browser-testing/
https://lit.dev/docs/tools/testing/
https://lit.dev/docs/tools/testing/
https://blog.andri.co/005-defining-your-UI-librarys-testing-strategy/
https://blog.andri.co/005-defining-your-UI-librarys-testing-strategy/
https://modern-web.dev/docs/test-runner/overview/
https://modern-web.dev/docs/test-runner/overview/
https://modern-web.dev/guides/test-runner/browsers/
https://dev.to/westbrook/testing-web-components-with-webtest-runner-51g6
https://dev.to/westbrook/testing-web-components-with-webtest-runner-51g6
https://dev.to/westbrook/testing-web-components-with-webtest-runner-51g6
https://www.conventionalcommits.org/en/v1.0.0/
https://dev.to/davipon/add-commitint-commitizen-standard-version-and-husky-to-sveltekit-project-14pc
https://dev.to/davipon/add-commitint-commitizen-standard-version-and-husky-to-sveltekit-project-14pc

Bibliography

69. Semantic Versioning 2.0.0 [online]. [visited on 2024-01-29]. Available
from: https://semver.org/.

70. Custom Elements Everywhere [online]. [visited on 2024-01-29]. Available
from: https://custom-elements-everywhere.com/.

71. HELLBERG, Marcus. Exploring React’s new web component support
[online]. 2021 [visited on 2024-01-29]. Available from: https://dev.to/
marcushellberg/exploring-reacts-newly-added-web-component-
support-19i7.

72. Vue and Web Components [online]. [visited on 2024-01-29]. Available
from: https://vuejs.org/guide/extras/web-components.html.

73. RYLAN, Cory. Using Web Components in Angular [online]. 2019 [visited
on 2024-02-03]. Available from: https://coryrylan.com/blog/using-
web-components-in-angular.

74. SCAGLIONE, Jenna. Why do people use dark mode? [online]. 2022 [vis-
ited on 2024-01-29]. Available from: https://blog.superhuman.com/
why-do-people-use-dark-mode/.

77

https://semver.org/
https://custom-elements-everywhere.com/
https://dev.to/marcushellberg/exploring-reacts-newly-added-web-component-support-19i7
https://dev.to/marcushellberg/exploring-reacts-newly-added-web-component-support-19i7
https://dev.to/marcushellberg/exploring-reacts-newly-added-web-component-support-19i7
https://vuejs.org/guide/extras/web-components.html
https://coryrylan.com/blog/using-web-components-in-angular
https://coryrylan.com/blog/using-web-components-in-angular
https://blog.superhuman.com/why-do-people-use-dark-mode/
https://blog.superhuman.com/why-do-people-use-dark-mode/

Appendix A
List of Abbreviations

API Application Programming Interface

ARIA Accessible Rich Internet Applications

CI/CD Continuous Integration and Continuous Deployment

CLI Command Line Interface

CSS Cascading Style Sheets

DOM Document Object Model

ESM ECMAScript Modules

FOUC Flash of unstyled content

HSL Hue Saturation Lightness

HTML Hypertext Markup Language

JSX JavaScript XML

OLED Organic Light-Emitting Diode

OS Operating System

PR Pull Request

RGB Red Green Blue

SVG Scalable Vector Graphics

UI User Interface

79

A. List of Abbreviations

UX User Experience

WC Web Components

WCAG Web Content Accessibility Guidelines

W3C World Wide Web Consortium

XML Extensible Markup Language

YAML Yet Another Markup Language

80

Appendix B
Contents of Attachments

readme.txt......................................contents of attachments
implementation/

documentation/...........................Storybook documentation
library/ .. library source codes
package/...library package
design_system.fig..........................design system in Figma

text/
src/..LATEX source codes
DP_Fryc_Dominik_2024.pdf.......................thesis text in PDF

81

	Introduction
	Exploration and Analysis
	Design Systems
	Component Libraries
	Web Components Technology
	Web Components Frameworks

	Design System
	Motivation
	Principles
	Realization
	Design Tokens
	Components

	Implementation
	Project Structure
	Build Process
	Documentation
	Linting and Formatting
	Forms and Validation
	Accessibility

	Testing
	Strategies and Types
	Used Tools
	Test Cases

	Distribution and Usage
	Release
	Components Usage
	Customization

	Conclusion
	Bibliography
	List of Abbreviations
	Contents of Attachments

