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Abstract: 
This thesis is focused on road sign detection and investigates the possibility of the road sign 
detection and classification locally in an autonomous vehicle and in the edge of mobile network, 
represented by multi-access edge computing (MEC) server. First, the thesis focuses on the 
analysis of existing methods for road sign detection and classification to select the most suitable 
techniques for this task. Due to the lack of suitable datasets for a complex neural network, the 
detection and the classification of the road signs are handled via two independent neural 
networks, one for the road sign detection and the other for the road sign classification. Both neural 
networks are designed and implemented for road sign detection and classification on a model of 
the autonomous vehicle and in the MEC server. Dataset for neural network training for detection 
purposes is created, as the existing datasets are unsuitable and do not provide sufficiently 
accurate results for own created road signs. The experiments are performed on real data collected 
from a model of the autonomous vehicle equipped with a camera. Classification accuracy, 
processing time, and energy consumption are evaluated for both local processing and offloading 
to MEC server via mobile network. The results of experiments demonstrate that neural network-
based processing of images from the vehicle on the MEC server significantly reduces the time 
required to identify the road sign compared to local data processing on the autonomous vehicle. 
Additionally, the findings reveal that low communication channel quality increases the vehicle's 
energy consumption for recognition of one road sign.  

Key Words:  
Edge computing, mobile network, autonomous vehicle, road sign, detection, classification, 
neural networks. 

  



 
 

  



 
 

Abstrakt: 
Tato práce se zaměřuje na detekci a klasifikaci dopravních značek a zkoumá možnosti lokální 
detekce a klasifikace dopravních značek v autonomním vozidle a na hraně mobilní sítě, která je 
reprezentovaná multi-access edge computing (MEC) serverem. Práce se nejprve zaměřuje na 
analýzu stávajících metod detekce a klasifikace dopravních značek s cílem vybrat vhodné 
techniky pro tuto úlohu. Vzhledem k nedostatku vhodných datasetů pro naučení komplexní 
neuronové sítě je detekce a klasifikace dopravních značek řešena prostřednictvím dvou 
nezávislých neuronových sítí, jedné pro detekci dopravních značek a druhé pro klasifikaci 
dopravních značek. Obě neuronové sítě jsou navrženy a implementovány pro detekci a klasifikaci 
dopravních značek na modelu autonomního vozidla a v MEC serveru. Je vytvořen dataset pro 
trénování neuronových sítí pro účely detekce, protože stávající datasety jsou nevhodné a 
neposkytují dostatečně přesné výsledky pro značky použité v diplomové práci. Experimenty jsou 
prováděny na reálných datech získaných z modelu autonomního vozidla vybaveného kamerou. 
Přesnost klasifikace, doba zpracování a spotřeba energie jsou vyhodnoceny jak pro lokální 
zpracování, tak pro přenesení na server MEC prostřednictvím mobilní sítě. Výsledky experimentů 
ukazují, že zpracování obrázků pomocí neuronových sítí na MEC serveru významně zkracuje dobu 
pro určení dopravní značky oproti lokálnímu zpracování dat v autonomním vozidle. Kromě toho 
zjištění ukazují, že špatná kvalita komunikačního kanálu zvyšuje spotřebu energie vozidla 
potřebnou k rozpoznání jednoho snímku. 

Klíčová slova: 
Výpočty na hraně sítě, mobilní síť, autonomní vozidlo, dopravní značka, klasifikace, detekce, 
neuronové sítě. 
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1. Introduction 
In today's digital era, automatic object detection and classification in images and videos 
introduce significant challenges and opportunities in various fields. This includes detection and 
classification of road signs, crucial for enhancing road safety and advancing autonomous vehicles 
[1]. Detection is the process of finding the bounding box of road sign, classification is process get 
information about road sign type and recognition is the process of detection and classification the 
road sign. Autonomous vehicles, or self-driving cars, have an immense potential to revolutionize 
transportation globally. The autonomous vehicles rely on a sophisticated array of sensors, such 
as cameras, lidar, or global positioning system (GPS), to perceive their surroundings and navigate 
without human intervention [2]. However, achieving reliable autonomous driving poses significant 
challenges. A key challenge is a precise object detection and classification. This encompasses 
classification road signs, pedestrians, vehicles, and obstacles, crucial for safe navigation through 
dynamic environment [1]. Furthermore, the robustness of autonomous systems should be 
ensured across diverse conditions like changing weather, varying lighting, or unpredictable road 
traffic situations [3]. Overcoming these obstacles demands advanced and computationally 
complex algorithms capable of interpreting a wide range of real-world scenarios with adaptability 
and resilience. 

The problem computational complexity of road sign detection and classification on autonomous 
vehicles can be facilitated via edge computing. The edge computing enables fast processing of 
data closer to its source [4]. While centralized clouds offer a high computing power, transmitting 
data to and from the centralized cloud incurs significant latency [5]. In contrast, edge servers 
positioned at the network edge, albeit with lower computing power, mitigate latency issues. In the 
realm of the autonomous vehicles, edge computing can reduce latency, optimize resource 
utilization, and enhances scalability and reliability [6]. This capability enables the autonomous 
vehicles to execute real-time decisions efficiently, even within the confines of limited onboard 
computational resources, thereby enhancing overall performance and responsiveness. 

This thesis aims to explore the efficacy of modern machine learning and deep learning techniques 
for detection and recognition of road signs for the application in the autonomous vehicles. 
Leveraging the evolution of mobile networks and edge computing, the thesis focuses on 
implementing neural networks for road sign detection and classification in the autonomous 
vehicle. The data for neural networks are obtained by camera mounted on vehicle.  

The goal of this thesis is to test performance of neural network for road signs detection and 
classification in the scenario with available connectivity of the vehicle via mobile network and 
availability of multi-access edge computing (MEC) server to process data using neural networks.   

The possibility of controlling autonomous vehicles using deep neural networks is explored in [7]. 
The authors create a small neural network to control vehicles steering by recognition of the 
guidelines and specific road signs. We do not aim to directly control our vehicle using a neural 
network. Instead, our objective is to gather the necessary data for autonomous driving systems 
and preprocess it by using neural networks.  Notably, the main innovation in this diploma thesis 
lies in incorporating mobile networks and edge servers, a facet not addressed in [7].  

In [8], the authors work on self-driving car in simulation by cloning the behavior of human driver 
by neural network. The car is able to clone this human behavior and can detect objects like traffic 
lights, guidelines etc. The challenge addressed in this work stems from its reliance solely on 
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simulation. Our objective is to evaluate the performance of our autonomous vehicle, particularly 
its road sign recognition capabilities, under real-world conditions, where computational 
resources are limited, and sensor data is corrupted by a measurement noise, as in the case of 
blurred camera images. 

Furthermore, in [9], researchers focus on classification of road signs using neural networks. 
Unlike our approach, which involves processing images of the surrounding environment, the 
authors exclusively work with isolated images of individual road signs extracted from larger 
scenes. While we adopt a similar classification method, we also include a detection process for 
classification road signs using an additional neural network making the whole processing 
significantly more demanding in terms of computation. 

For the offloading purposes, the autonomous vehicle should communicate with the gNB to 
transfer the data to be processed to the MEC server. The latency and performance of the 5G 
network with MEC server is investigated in [10] in testbed in Antwerp. The testbed is the highway 
with several gNBs close to the road. Researchers in the study work with real data and 5G network 
infrastructure, but the data does not have an impact on vehicle and researchers measure the 
latency with communication to MEC server. In our case, we evaluate the possibility to offload 
neural networks for road sign recognition. Unlike in [10], we evaluate on MEC server and we 
investigate latency of the local and MEC server processing related to the time to react to road 
signs. 

In practice, the detection and classification parts of neural network are solved together. But there 
is not sufficient dataset for complex neural network. Therefore, we solve both problems with two 
separate neural networks for which the required datasets are available [11], [12], [13]. The 
detection phase is commonly solved using Faster R-CNN [14], Single Shot Detection (SSD) [14], 
You Only Look Once version 3 (YOLOv3) [14], [15]. The Faster R-CNN introduces a Region Proposal 
Network (RPN) to efficiently generate region proposals area. Detectable objects are searched for 
in a region proposal area. The object detection process is divided into two stages. First, the 
algorithm identifies region proposal areas, and then it detects objects within these areas. This 
two-stage approach allows Faster R-CNN to achieve a higher accuracy than other neural 
networks. Single Shot Detection (SSD) network, unlike two-stage methods, adopts a single-shot 
approach directly predicting object bounding boxes and class probabilities from a single pass 
through the network. Look Once version 3 (YOLOv3) is also a one-stage method. Like many other 
neural networks, YOLOv3 is based on DarkNet-53 [16]. The principle of object detection and 
classification of YOLOv3 is to divide the input image into a grid of cells and predict bounding boxes 
and object class probabilities for each cell simultaneously. The image classification is commonly 
solved via, for example, Residual Network (ResNet) [17] Visual Geometry Group-16 (VGG-16) [18], 
Inception Networks (GoogLeNet) [19], or AlexNet [18].  

The main contributions of this work include: 

• Road sign detection and classification are implemented to the autonomous vehicle 
along with the support for offloading of the computation to MEC server.  

• The possibility of processing related to the road sign detection and recognition directly 
on the autonomous vehicle or in the MEC server is investigated with real data. 

• New approach to road sign recognition with separated detection and classification 
parts is explored. 

• Experiments with offloading and local processing of road sign detection and 
classification demonstrate an energy saving on autonomous vehicle when we reduced 
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the power consumption to 1/7 per evaluated image. During offloading, we aim to 
transfer the entire amount of camera data to the MEC server and evaluate the data 
using neural networks on it. 

• All developed codes and software are publicly available at Gitlab 1. 

The rest of this thesis is structured as follows. First, in Chapter 2, we introduce background and 
details of aspects related to the thesis, including mobile networks, MEC, and YOLOv3. Then, in 
Chapter 3, we outline data flow from autonomous vehicle to MEC server and a high-level design 
of the system. Chapter 4 provides an overview of the autonomous vehicle on which we conduct 
experiments and its capabilities for communication via the mobile network. The used datasets is 
described in Chapter 5 along with the process of creation new datasets for the detection 
purposes. Subsequently, we describe the process of implementing neural networks, choosing the 
YOLOv3 for the detection part and a custom-made neural network for the classification part in 
Chapter 6. The performance is evaluated in Chapter 7. Last, the thesis is concluded, and future 
directions are outlined in Chapter 8.   

 
1 https://gitlab.fel.cvut.cz/mobile-and-wireless/autonomous-driving  

https://gitlab.fel.cvut.cz/mobile-and-wireless/autonomous-driving


4 
 

2. Background 
This chapter introduces background for main components considered in the thesis including 
mobile network used for the offloading of computation to the MEC servers, MEC concept, and 
neural network YOLOv3 for detection part of road sign recognition, and principle of distance 
measurement using camera. 

2.1. Communications and edge computing for sensor data processing  
In this section, we describe the mobile network and concept of multiple access edge computing 
for processing of data from an autonomous vehicle. The mobile network ensures communication 
between autonomous vehicle and MEC server. Communication and edge computing are key 
elements enabling efficient processing and analysis of data close to the source, leading to faster 
and accurate decision-making with a high scalability in terms of computing resource availability 
allowing to reduce cost of the vehicles.  

2.1.1.  Mobile network 
This chapter provides an overview of the fifth generation (5G) mobile networks [20], [21], adopted 
for experiments in the thesis. The 5G network promises high data rates, low latency, and massive 
device connectivity, towards application in various industries [22]. Due to performance 
improvements, 5G networks are suitable also for sensor data processing on MEC server in scope 
of autonomous vehicle.  

The 5G networks offer several key features that are particularly beneficial for autonomous 
vehicles. These include low latency in the order of ms, ensuring minimal delay in data 
transmission and enabling responsiveness for critical driving decisions [23]. High reliability 
ensures consistent connectivity, crucial for the continuous exchange of data between vehicles 
and infrastructure. Wide bandwidth allows for the efficient transmission of large volumes of data, 
such as video streams from onboard sensors.  

The architecture of 5G networks comprises two parts [24]: Radio Access Network (RAN) and Core 
network. At the forefront of 5G, the RAN consists of base stations known as gNodeB (gNB), which 
communicate wirelessly with user equipment (UE), such as smartphones, IoT devices, or 
autonomous vehicle. The core network is responsible for routing data between various network 
elements and providing services such as authentication, billing, and policy enforcement.  

The radio interface in the 5G network, also known as the RAN [21], enables fast and reliable 
communication between UE and the mobile network infrastructure. Channel quality in the 5G 
radio interface is reflected in the level of interference, noise, and signal reflections, which can 
affect the stability and value of datarate. Higher channel quality means less interference and 
better conditions for data transmission with lower losses and a higher datarate. Modulation and 
coding (MCS) [25] are techniques used for data transmission in radio networks. Higher MCS 
allows transmission of a larger amount of data using the same amount of spectrum or vice versa, 
transmission of the same amount of data with less spectrum. Selecting the right MCS depends 
on the current channel conditions and the required bitrate value. 
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2.1.2. Multi-access edge computing server 
The MEC server plays a crucial role in enabling efficient and responsive autonomous driving 
applications [4]. The MEC is facilitated via a distributed computing architecture that brings 
computational resources closer to the UEs, typically to the gNBs or aggregation points. At its core, 
the MEC server consists of high-performance computing resources, including processors, 
memory, and storage.  

In terms of functionality, the MEC server hosts software applications and services that leverage 
its computational resources to perform various tasks related to autonomous driving [26]. These 
tasks may include real-time sensor data processing, object detection and classification, path 
planning, and decision-making algorithms. 

One of the key features of the MEC server architecture is its support for both partial and full 
offloading of computational tasks from autonomous vehicles [4]. Partial offloading involves 
offloading specific tasks or data processing to the MEC server while retaining some processing 
capabilities onboard the vehicle. Full offloading, in contrast, involves delegating the entire 
computation to the MEC server, allowing the vehicle to focus solely on data acquisition and 
communication. In our case we only do full offloading or local data processing.  

2.2. Description of You Only Look Once version 3 
In this chapter, we discuss the YOLOv3 [14], [15] neural network as it is used in this thesis to detect 
road signs. We focus on YOLOv3 model and loss function used in training process. YOLOv3 is a 
deep convolutional neural network used for object detection in images. YOLOv3 is a one-stage 
method such as SSD. Like many other neural networks, YOLOv3 is based on DarkNet-53  [16]. One 
of the key aspects of YOLOv3 is its ability to detect objects in the real time with a high accuracy.  

The main principle of YOLOv3 is to divide the image into a grid and apply a single convolutional 
neural network to the entire image. This division creates cells. The division is repeated three times 
at grid sizes of 13x13, 26x26, and 52x52 cells [15]. The network produces predictions for various 
classes and bounding boxes simultaneously for every grid division and every cell separately. 

 
Figure 1: Architecture of You Only Look Once v3  
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Model of YOLOv3 is in Figure 1. Residual blocks, also known as residual connections, are 
fundamental building blocks of deep neural networks that enable the training of deep models. 
Residual blocks address the problem of vanishing gradients [27] by adding skip connections, 
which transmit information directly from one layer to distant layers of the model. This prevents 
information loss and allows for more efficient training and higher performance in deep networks. 
Residual blocks are made from two convolutional blocks. The first block halves the number of 
channels and the second layer increases the number of channels to the original value. So, no 
information is lost. 

In the scope of this thesis, the convolutional block includes a convolutional layer, a batch 
normalization layer, and a leaky ReLU layer [28]. Leaky ReLU is an activation function that helps 
neural networks react to nonlinear features and inputs, without this function neural networks can 
react only to linear problems.  

The scale Prediction layer is responsible for generating predictions at different spatial scales, 
enabling the detection of objects of various sizes and locations in the image. Having predictions 
at multiple scales allows for detecting objects at different sizes and distances from the camera 
and capturing various details in the image. The scale prediction layer combines outputs from 
different layers with different resolutions to provide comprehensive object predictions. In this 
thesis, we used blocks called Scale Prediction blocks. These blocks are made up of one residual 
block, one convolution block, and a scale prediction layer.  

The prediction layer is followed by upsampling. Upsampling is a method to increase the spatial 
dimensions of an input feature map. Upsampling involves interpolating the values of the input 
feature map to generate a larger output feature map with a higher spatial resolution.  

YOLOv3 also uses anchor boxes [14], which are bounding boxes with fixed size that help to find 
objects with different sizes. They work like sliding windows that scan the image and if they see the 
search object, they mark the cell where they see this object. There are different sizes of anchor 
boxes because we want to search for objects of different sizes and proportions. The size of anchor 
boxes is different in each grid size and is obtained by experiments and has the size representing 
the proportion of the search objects. 

The loss function of YOLOv3 combines object detection with object classification. This function 
aims to minimize the difference between the actual and predicted bounding boxes, classify 
objects in the image and is used in the process of learning. The loss function is divided into four 
categories, namely no object loss, object loss, box candidates loss and class loss, which are 
added together using weights [15] , [29].  

The no object loss 𝐿𝑛𝑜𝑜𝑏𝑗  is assigned to cells that do not have a search object in them and 
penalizes YOLOv3 if YOLOv3 finds an object that is not there. It is calculated by following formula: 

𝐿𝑛𝑜𝑜𝑏𝑗 =
1

𝑁 ∑  𝟙𝑛=1
𝑛𝑜𝑜𝑏𝑗

𝑎,𝑖,𝑗

∑ ∑ − [𝑦𝑛,𝑎,𝑖,𝑗
𝑜𝑏𝑗

× log 𝜎 (𝑡𝑛,𝑎,𝑖,𝑗
𝑜𝑏𝑗

)

𝑎,𝑖,𝑗∈ 𝟙𝑛=1
𝑛𝑜𝑜𝑏𝑗

𝑁

𝑛=1

+ (1 − 𝑦𝑛,𝑎,𝑖,𝑗
𝑜𝑏𝑗

) × log (1 − 𝜎(𝑡𝑛,𝑎,𝑖,𝑗
𝑜𝑏𝑗

))], 

(1) 

 

where 𝑖, 𝑗 are the coordinates of concrete cell in the grid, the variable 𝑎 is the index of the anchor 

box and 𝑁 is the batch size,  𝟙𝑛=1
𝑛𝑜𝑜𝑏𝑗 is at the binary tensor, which has a value of 1 if the anchor box 
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is not assigned to an object and zero otherwise, the output of the network for the correct cell is 
denoted as 𝑡 and the correct value is given by 𝑦. Function 𝜎 is sigmoid function and is given by: 

𝜎(𝑥) =
1

1 + 𝑒−𝑥
. 

(2) 

 

The object loss 𝐿𝑜𝑏𝑗 penalizes the neural network if it does not find an object that is in the cell and 
is calculated by: 

𝐿𝑜𝑏𝑗 =
1

𝑁 ∑  𝟙𝑛=1
𝑜𝑏𝑗

𝑎,𝑖,𝑗

∑ ∑ − [�̂�𝑛,𝑎,𝑖,𝑗
𝑜𝑏𝑗

× log 𝜎 (𝑡𝑛,𝑎,𝑖,𝑗
𝑜𝑏𝑗

)

𝑎,𝑖,𝑗∈ 𝟙𝑛=1
𝑜𝑏𝑗

𝑁

𝑛=1

+ (1 − �̂�𝑛,𝑎,𝑖,𝑗
𝑜𝑏𝑗

) × log (1 − 𝜎(𝑡𝑛,𝑎,𝑖,𝑗
𝑜𝑏𝑗

))]. 

(3) 

 

The previous equation is very similar to the equation for no object loss. The only difference is in 

the binary operator  𝟙𝑛=1
𝑜𝑏𝑗 , this binary tensor has ones when the anchor box is assigned to a target 

bounding box and �̂�𝑛,𝑎,𝑖,𝑗
𝑜𝑏𝑗  is an intersection over union (IOU), between the output value and 

computed bounding box by following formulas: 

𝑏𝑥 = 𝜎(𝑡𝑥) + 𝑐𝑥 , (4) 

𝑏𝑦 = 𝜎(𝑡𝑦) + 𝑐𝑦, (5) 

𝑏𝑤 = 𝑝𝑤𝑒𝑡𝑤 , (6) 

𝑏ℎ = 𝑝ℎ𝑒𝑡ℎ. (7) 

 

where 𝑝ℎ and 𝑝𝑤  are anchor box sizes 𝑐𝑥 and 𝑐𝑦 is offset given by cell, 𝑡𝑥, 𝑡𝑦, 𝑝𝑤  and 𝑝ℎ is the 
position of the bounding box related to the concrete cell, see Figure 2.  

 
Figure 2: Bounding box location [15] 
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Box coordinates loss 𝐿𝑏𝑜𝑥  penalizes the found bounding box, respectively its dimensions and 
position, it is calculated by: 

𝐿𝑏𝑜𝑥 =
1

𝑁 ∑  𝟙𝑛=1
𝑜𝑏𝑗

𝑎,𝑖,𝑗

∑ ∑ [(𝜎(𝑡𝑛,𝑎,𝑖,𝑗
𝑥 ) − 𝑦𝑛,𝑎,𝑖,𝑗

𝑥 )2

𝑎,𝑖,𝑗∈ 𝟙𝑛=1
𝑜𝑏𝑗

𝑁

𝑛=1

+ ((𝜎(𝑡𝑛,𝑎,𝑖,𝑗
𝑥 ) − 𝑦𝑛,𝑎,𝑖,𝑗

𝑦
)

2
+ ((𝜎(𝑡𝑛,𝑎,𝑖,𝑗

𝑤 ) − 𝑡𝑛,𝑎,𝑖,𝑗
�̂� )

2

+ ((𝜎(𝑡𝑛,𝑎,𝑖,𝑗
ℎ ) − 𝑡𝑛,𝑎,𝑖,𝑗

ℎ̂ )
2

] , 

(8) 

 

where indexes 𝑥 and 𝑦 denote the dimensions and 𝑤 and ℎ are the height and the width of 
bounding boxes, 𝑡 denotes true bounding boxes and 𝑡�̂� and  𝑡ℎ̂ are computed by: 

𝑡�̂� = log (
𝑦𝑤

𝑝𝑤
), (9) 

𝑡ℎ̂ = log (
𝑦ℎ

𝑝ℎ
). (10) 

 

Class loss 𝐿𝑐𝑙𝑎𝑠𝑠 is denoted for the classification of object and incurs penalized when the object 
is classified incorrectly, calculated by: 

𝐿𝑐𝑙𝑎𝑠𝑠 =
1

𝑁 ∑  𝟙𝑛=1
𝑜𝑏𝑗

𝑎,𝑖,𝑗

∑ ∑ − log (
exp(𝑡𝑛,𝑎,𝑖,𝑗

𝑐 )

∑ exp (𝑡𝑛,𝑎,𝑖,𝑗
𝑘 )𝑘

)

𝑎,𝑖,𝑗∈ 𝟙𝑛=1
𝑜𝑏𝑗

𝑁

𝑛=1

, 
(11) 

 

where 𝑡𝑐  is the predicted class and 𝑡𝑘 is the true class.   

Complete loss 𝐿 is found in next formula: 

𝐿 = 𝜆𝑛𝑜𝑜𝑏𝑗𝐿𝑛𝑜𝑜𝑏𝑗 + 𝜆𝑜𝑏𝑗𝐿𝑜𝑏𝑗 + 𝜆𝑏𝑜𝑥𝐿𝑏𝑜𝑥 + 𝜆𝑐𝑙𝑎𝑠𝑠𝐿𝑐𝑙𝑎𝑠𝑠, (12) 

 

where 𝜆𝑛𝑜𝑜𝑏𝑗, 𝜆𝑜𝑏𝑗, 𝜆𝑏𝑜𝑥 and 𝜆𝑐𝑙𝑎𝑠𝑠 are constants that gives a weight to losses. In the original paper 
[15] are constants set to ones.  

The loss calculated in (12) is propagated backward through the YOLOv3 model during training. 
This backpropagation step involves adjusting the model's weights based on the calculated loss, 
which iteratively refines the network's ability to make accurate predictions. This iterative process 
of updating the model's parameters based on the computed loss is fundamental to training 
YOLOv3, allowing it to learn and improve its performance over time. 
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2.3. Camera principle 
We adopt following principle to measure the distance 𝑑 between the vehicle (camera) and the 
detected object, in our case road sign.  An illustration of the principle is shown in Figure 3.  

 

Figure 3: Proportional measurement of distance of road sign 

 

The camera's lens projects the scenery onto the CMOS sensor, which converts light into a digital 
representation of the image. By considering several parameters, we can estimate the distance of 
a real object from the camera. The θ angle is computed as follows: 

𝑎

𝑓
= tan 𝜃 =

ℎ

𝑑
,  

(13) 

 

where 𝑎 is captured object size in pixels, 𝑓 is focal length also in pixels, distance 𝑑 denotes the 
distance between the camera and the real object and ℎ is its height, both in centimeters. Focal 
length 𝑓 is known value or is determined through experiments. Based on this we write equation 
for 𝑑 as follows:   

𝑑 =
ℎ × 𝑓

𝑎
.  

(14) 
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3. High level design 
In this chapter, we introduce the setup of MEC server in our laboratory, as well as discuss why we 
need to separate the detection and classification parts of neural networks. 

3.1. Setup of MEC server and 5G network 
In this section, we describe the configuration of our MEC server and the 5G network setup used in 
our experiments. MEC server is created by Intel NUC11PHKi7CAA2 (Intel NUC) with processor i7-
1165G7, 16 GB RAM and graphic card Nvidia RTX 2060. Every task, such as a neural network, has 
a separate Docker container [30] on the MEC server. This ensures that each research participant 
can simply encapsulate their codes into individual containers that do not interact with each other. 
The only exception is the transfer of data between them using Apache Kafka. The flow of camera 
data to the MEC server and processed data back to autonomous vehicle follows the path 
described in Figure 4. The local data flow in case of local computation is in bottom part of Figure 
4.  The function of each node in this figure is described below: 

- Camera: The input data originates from a camera Niceboy STREAM. 
- Camera Node: This Robot Operating System (ROS) node captures images from the 

camera and adjusts their resolution as required and sends this image to ROS environment 
as ROS message. Robot Operating System is a flexible framework for writing robot 
software. 

- Gateway Sender: This ROS node Intercept ROS message with image and sends camera 
data to the 5G network from autonomous vehicle. This node also encodes the image to 
reduce the transmitted size using .jpg quality reduction. 

- Modem: The Quectel RM500Q modem is designed to encode and decode messages 
according to the 5G standard. When transmitting data, it encodes the message and 
broadcasts it to the surrounding area using an antenna. On the receiving end, the antenna 
picks up the signal, and the modem decodes the message back into its original form. In 
both cases accordance with the 5G standard. 

- Software Defined Radio (SDR): The SDR USRP N310 is used together with a computer as 
a gNB in RAN. The gNB receives data, which is then decoded. On the way from the server, 
the data is encoded and broadcasted to the surrounding environment. 

- Core Network: In this stage the data is only forwarded to the MEC server or to the RAN. We 
use OpenAirInterface (OAI) [31] to emulate 5G network in our laboratory. OAI is an open-
source software framework for research and development of next-generation networks, 
including 5G and its successors. OAI is a flexible and extensible tool that allows 
researchers and developers to conduct advanced experiments and test new technologies 
in next-generation networks. For our network, we used a bandwidth of 20 MHz. 

- TCP-Gateway: The first part is the MEC server. This gateway only receives data from the 
core network and forwards them based on their type to specific Docker containers or 
collects data from Docker containers and sends them to the core network. 

- CNN-Container: The final destination of the camera data is a Docker container running 
YOLOv3 for road signs detection and custom make convolutional neural network for road 
signs classification. Information about classified road signs is then sent back to TCP-
Gateway. 

- Control algorithms: Algorithms for vehicle autonomous driving. 
- CNN node: ROS node that runs the neural network for local image processing.  
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Figure 4: Flow of camera data to MEC server and back  

 

3.2. Road sign detection and classification using neural networks 
In this thesis, it is essential to separate the detection and classification parts of the neural 
network. In this section, we examine the motivation behind splitting the detection and 
classification functionalities of the neural network in this thesis. Detection is the process of find 
the bounding box of road sign, classification is process get information about road sign type and 
recognition is the process of detection and classification the road sign. 

The decision to split the detection and classification tasks is based on following reasons. First, 
the availability of a comprehensive dataset plays a key role in training robust neural network 
models. However, in this context, acquiring a dataset that adequately covers both detection and 
classification is complicated. Despite effort, the dataset available for road signs detection and 
classification falls short in terms of diversity and volume, making it insufficient for training a 
unified model to handle both tasks effectively. For example, German Traffic Sign Detection 
Benchmark (GTSDB) [13] has 43 classes and only 600 training images, which means about 20 
images per class. This amount of training images is insufficient. Neural networks such as YOLOv3 
need about 1000 images in the worst case per class to correctly learn, but it is recommended to 
use about 1500 images to train the YOLOv3 neural network [32]. The number of images per class 
is also possible to increase by image transformation. However, from 20 images, it is not feasible 
to make 1000 unique images. This problem is described, for example, in the paper [33]. 

Creating a dataset for classification tasks poses significant challenges, particularly in terms of 
time and resource constraints. In our case, we aim to classify approximately 10 different classes, 
requiring a dataset of about 15 000 images. Based on our experiments, which involve creating a 
small dataset with road signs, we estimate that we would need a total of 25 000 images, requiring 
approximately 7 hours to capture, not including setup time. Additionally, the process of separating 
the images is time-consuming, taking about 9 hours. Each image should be manually labeled by 
a human, which, even with the use of specialized software, takes an average of 20 seconds per 
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image. Therefore, labeling 15 000 images would require approximately 84 hours. Considering all 
these factors, the total time required to create the dataset amounts to 100 hours. Given these 
constraints, it becomes evident that the task of creating a proper dataset within our timeframe is 
not feasible. 

Moreover, the inherent limitations of the YOLOv3 model further necessitate the separation of 
detection and classification. While YOLOv3 excels in real-time object detection tasks, it may not 
deliver optimal performance in class estimation. Class estimation achieves greater precision with 
a specialized neural network. 

In summary, the decision to split the detection and classification tasks arises from the 
unavailability of a suitable dataset, time constraints, and limitations in the precision of the 
YOLOv3 model, collectively highlighting the importance of approaching these tasks separately to 
achieve satisfactory outcomes. 
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4. Implementation of autonomous vehicle 
In this chapter, we introduce the developed model of the autonomous vehicle and all components 
including the power supply system, computation logic, and sensors. The hardware preparation of 
the autonomous vehicle was conducted as part of the project that directly preceded this thesis. 

4.1. Assembly of and architecture autonomous vehicle  
In the thesis, we work with a model of Mercedes-Benz G63 with chassis TRX-6 [34], see Figure 5.  
The chassis has a gearbox that changes the speed of the vehicle, and two gears are available. One 
gear is faster, but with low torque. The second gear is for a low speed, but with a higher torque. 

 
Figure 5: Photo of the vehicle model 

 

The autonomous vehicle's communication and control architecture with all components is 
depicted in Figure 6. In this figure, blue rectangles depict physical components, red lines 
represent power connections, and blue lines are data connections. Physical implementation of 
the components is then shown in Figure 7. 

 
Figure 6: Scheme of autonomous vehicle 
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The Raspberry PI 4 Model B (Raspberry Pi) serves as the primary computational unit for 
autonomous tasks and sensor data collection. The Raspberry Pi handles tasks such as 
Simultaneous Localization and Mapping (SLAM), which involves vehicle localization in space, 
path planning between the start and end points, and subsequent navigation along the planned 
path. The power bank supplies power to computational logic, sensors, and 5G modem. The Light 
Detection And Ranging (lidar) captures information about the surrounding environment for 
navigation purposes, while the USB-C PD 3.0 delivers power to the lidar’s motor from the power 
bank with 9V output. The camera captures images of the environment for purposes of road sign 
detection and navigation. Furthermore, Arduino is deployed to provide interface between the 
Raspberry Pi and motors for the purposes of the motor control by the Raspberry Pi. The 
Transmitter and Receiver facilitate a manual control of the vehicle. A servo motor steers the front 
axle of the vehicle and the XL-5 HV regulator adjusts the vehicle speed based on commands from 
the Raspberry Pi or transmitter. The motor propels the vehicle and a LiPo battery powers the 
motor, servo motor, and receiver. We deploy the 5G modem RM 500 Q, that is directly connected 
to the Raspberry Pi, to ensure 5G connection to the 5G network. This modem has a total power 
consumption of 15 W. 

 

  
Figure 7: Description of autonomous vehicle a) computation power b) motors 

 

4.2. Power supply system 
The vehicle is powered by two separate batteries. The first battery is used for computation logic. 
This battery is a laptop powerbank Viking smartech II with a capacity of 40 000 mAh [35]. This 
powerbank has several outputs like two USB-A, one USB-C with power delivery 3.0, and one 
output with adjustable voltage from 5V up to 20V. This power bans supplies Raspberry Pi with 5V 
and at least 3A. We select this power bank due to its ample capacity to ensure enough time for 
experiments. Estimated power supply is at maximum 39 W. Raspberry Pi consumes 15 W as well 
as 5G modem RM 500 Q. The lidar motor consumes at maximum 9 W to ensure the rotation of 
lidar.  
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The powerbank lifetime 𝑡 for our setup is determined as follows: 

𝐸𝑝 =  𝐶𝑝 × 𝑈𝑝 = 40 × 3.7 = 148 [𝑊ℎ],  (15) 

𝑡 =
𝐸𝑝

𝐸𝐶
=

148

39
= 3.8 [ℎ].  (16) 

  

where 𝐸𝑝 stands for the energy of the powerbank in watt-hours, 𝐶𝑝 denotes the capacity of the 
powerbank in amper-hours, and 𝑈𝑝 is the voltage at which the capacitance is specified, 𝐸𝐶  
represents the energy required for the setup to operate for one hour. 

The second battery in the vehicle powers the Titan 550 21T DC electric motor, which takes care of 
the vehicle's movement. This battery is a 2-cell LiPo battery with a nominal voltage of 7.4 V and a 
capacity of 7600 mAh [2]. The battery for the motor is connected directly to the speed controller 
XL-5 HV.  

4.3. Computation logic  
The main computing power of the vehicle is concentrated in Raspberry Pi 4 Model B - 8GB RAM 
[36]. This computer is the main control computer on the vehicle. The current version of 
autonomous vehicles uses 𝐴∗ algorithm [37] with the several modifications for pathfinding and 
classical carrot-following [38] algorithm is used for path following. This means that 𝐴∗  finds the 
path between the start and end point. The carrot-following algorithm then guides the vehicle along 
the found path. Modification in 𝐴∗ are there because we want a path, which can represent a 
vehicle dynamic and does not have a sharp curve. We penalized this sharp change of direction.  

Raspberry Pi is equipped with a 1.5 GHz quad-core ARM Cortex-A72 processor. The ARM 
architecture imposes challenges related to the missing official build of some libraries in Python, 

for example library TensorFlow. The main advantage of this computer is 8 GB RAM which is 
necessary for SLAM. SLAM is a complex algorithm that makes a map of surrounding space based 
on lidar data and the localized position of the vehicle in the map which corresponds with the 
position in the real world. 8 GB RAM is required for storing the map and its associated information, 
enabling optimization to accurately describe the real environment. A microSD with a capacity of 
256 GB is used to store files. Raspberry Pi can generate two independent hardware pulse-width 
modulations (PWMs). This is useful for motor and lidar control.  

4.4. Sensors deployed at the vehicle 
The vehicle learns about the surrounding environment via various sensors connected to 
Raspberry Pi. Two main sensors are currently installed on the vehicle: lidar and camera. In this 
section, we describe the general information about these sensors and how these sensors are 
integrated into the vehicle for autonomous driving.  

4.4.1. Lidar 
In this subsection, we describe the lidar in detail. We look at the principle of lidar function, its 
parameters, and how we utilize the lidar in autonomous vehicle. The autonomous vehicle uses 
lidar RPLIDAR A1M8 [39].  Lidar contains one laser diode for sending a light beam and a 
photodiode that subsequently captures the reflected beam of light sent from the diode. In the 
case of the RPLIDAR A1M8 lidar, the beam is emitted in the infrared spectrum. The lidar operates 
on a time-of-flight basis. An illustration of this process is in Figure 8.  
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The distance 𝑑 of the obstacle from the lidar is determined based on the time it takes for the beam 
to reach the obstacle as: 

𝑑 =
𝑡

2𝑐
, (17) 

 where 𝑡 is the time of flight between the LED and the photodiode, and 𝑐 is the speed of light in air 

and is equal to 299 792 458 𝑘𝑚
𝑠⁄ .  

The lidar rotates on its axis and therefore the diodes rotate and scan the space in whole 360 
degrees. Each scan makes the 2D point of obstacle in the created map. This gives us a 2D image 
in the form of a map of the surrounding space. 

 
Figure 8: Illustration of how lidar works  

 

The lidar rotates on its axis and therefore the diodes rotate and scan the space in whole 360 
degrees. Each scan makes the 2D point of obstacle in the created map. This gives us a 2D image 
in the form of a map of the surrounding space. Each round involves approximately 1450 scans of 
the surrounding environment leading to the angle resolution of 0.25 degrees. The range of the laser 
is 12 meters, and the minimal measurable distance is 0.15 meters. Distance precision is 1% of 
the measured distance and angular precision is 1 degree [39].  

The lidar RPLIDAR A1M8 rotates in the basic setting only at a frequency of 5 Hz. This frequency 
might be insufficient for some localization algorithms. However, the slow rotation of the lidar, 
inherent to the vehicle's design and its computing power, is leveraged as an advantage. The limited 
amount of data is compensated by utilizing the SLAM setting of the SLAM Toolbox [5]. Improving 
the localization process involves increasing the frequency of lidar rotation. 

The frequency of lidar rotation is controlled by pin CTRL_MOTOR on lidar. In basic configuration is 
lidar motor powered by 5 V and the maximum frequency of rotation is only 5 Hz. This frequency is 
controlled by a pin CTRL_MOTOR and is set in the range from 0 Hz up to 5 Hz. According to [39], it 
is possible to power up the lidar motor up to 10 V to increase the maximum frequency of lidar 
rotation up to 17 Hz. We power the lidar motor with 9 V using a power bank and a USB-C PD/QC 
device, which enables direct extraction of 9 V from the power bank output. The power bank only 
allows the device to be powered with specific voltages. That is why we chose to power the lidar 
motor with 9V instead of 10V. 

The input pin CTRL_MOTOR is controlled by PWMs, where the rotation speed is adjusted by varying 
the duty cycle of this PWMs signal. The generated PWMs has a frequency of 192 000 Hz and a duty 
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cycle ranging from 0% to 100%. This setup allows for fine adjustment of the lidar's rotation speed, 
ranging from 0 Hz to 15 Hz in an almost linear function.  

The main challenge arises from the absence of the original connector between the lidar and the 
computer. This connector powers up the lidar as well as the lidar’s motor by the 5 V and there is a 
special pin connected to the pin CTRL_MOTOR, which allows to change of the frequency of lidar 
rotation. The lidar communicates with the computer via a simple UART protocol, facilitating the 
use of a UART-USB converter TTL CP2102 [40]. However, this converter presents a limitation, since 
the direct control of the input pin CTRL_MOTOR, as with the original connector, is not feasible.  

To address this limitation, a simple bridge is established between the Raspberry Pi and lidar in the 
form of two separate data cables, see Figure 9. In the figure G denotes ground, the number in blue 
circle denotes the data output of Raspberry Pi and red circle denotes power output.  The bridge 
connects the input pin CTRL_MOTOR and pin GPIO12 in Raspberry PI, while the lidar pin ground 
power is linked to Raspberry Pi pin GPIO14. GPIO14 serves as the ground pin, while GPIO12 can 
generate hardware PWMs. This PWMs can simulate the behavior of the original connector and can 
control the lidar speed. The lidar rotation control script, written in C, adjusts the duty cycle of 
PWMs using hardware PWMs. This approach offers the advantage of reducing CPU load, thereby 
enabling independent operation from other tasks on the Raspberry Pi. 

 
Figure 9: Bridge between lidar and Raspberry PI 

 

The lidar is integrated with Robot Operating System (ROS) in order to enable easy control of the 
vehicle. ROS is an open-source framework that facilitates the development of robotic 
applications by providing essential libraries, tools, and packages [41]. It enables seamless 
integration and synchronization of various functionalities, including sensor communication, 
planning, control, and autonomy, through the concept of packages.  

Integration of the lidar A1M8 to ROS is facilitated by the ROS package RP Lidar [42]. This package 
translates UART-formatted information received from the USB port of the Raspberry Pi into a ROS 
message, which is then sent to another package. 
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4.4.2. Camera  
The camera is primarily utilized for capturing video of the surrounding environment to detect road 
signs and determine the type of sign. We installed a Niceboy STREAM webcam at the front part of 
the vehicle. This camera features an aperture of f/2.2 and can capture video up to a resolution of 
1280x720 with a field of view of 90 degrees.  In this thesis, we work with images with resolution of 
832x832, 416x416, 224x224, and 128x128. The first image resolution must be interpolated using 
the OpenCV library to ensure the correct resolution of the image in the second dimension. The 
camera is connected to Raspberry Pi via a USB cable. 

4.5. Control system 
In this section, we introduce the basics of the control system and the interface between the 
Raspberry Pi and Traxxas control systems with the custom-made protocol for controlling this 
interface. 

To enable autonomous driving of the vehicle, an interface is developed. Raspberry Pi sends 
commands to this interface, which then relays commands to the servo for rotating the front axle 
and the regulator. To facilitate autonomous or manual control of the vehicle, different modes are 
introduced. In the autonomous mode, indicated by a green light at the front of the car, see Figure 
10, the vehicle is controlled by the Raspberry Pi. In the manual mode, signaled by no light at the 
front, the vehicle is controlled only by a human via a remote transceiver.  

 
Figure 10: Light that signalized the autonomous mode 

    
The mode change from autonomous to manual is initiated by turning the knob on the transmitter. 
Conversely, to switch from the manual to the autonomous mode, a special command is sent to 
the interface from the Raspberry Pi. To accommodate these modes, a microcontroller 
ATmega328P onboard Arduino Uno is placed between the receiver and the XL-5 HV controller. 

Incorporating a microcontroller alongside the Raspberry Pi is essential due to several factors. 
Although the Raspberry Pi offers 2 hardware PWMs, a minimum of 3 separate PWMs is required 
to control various functions such as vehicle speed, front axle rotation, and lidar rotation speed. 
Additionally, this approach allows for the separation of control logic. While the Raspberry Pi 
generates control commands, the Arduino Uno handles the processing. Moreover, the Arduino 
enables remote stopping of the vehicle via the transmitter during autonomous operation, 
providing an additional layer of safety to mitigate any potential software bugs that could 
compromise the model's ability to stop safely. 
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4.5.1. Arduino Uno 
The addition of the Arduino Uno adds another level of safety to the autonomous vehicle by 
separating the control and computational logic. This section explains its integration into an 
autonomous vehicle. The Arduino Uno is a widely used development board featuring the 
ATmega328P microcontroller, offering a straightforward and cost-effective method to incorporate 
microcontroller functionality into autonomous vehicles. With its array of input-output pins, USB 
interface for programming, and a user-friendly coding environment, the Arduino Uno facilitates 
seamless code development. 

The Arduino Uno is linked to the Raspberry Pi through a USB connection, establishing 
communication via UART, and utilizing a dedicated text protocol. This custom text protocol is 
detailed in the Section 4.5.2. Additionally, the Arduino Uno is powered by the same USB cable 
used for communication with the Raspberry Pi, as the Arduino Uno's power consumption is 
approximately 50mA, allowing direct power supply from the Raspberry Pi. 

To Arduino’s GPIO are connected the outputs from the receiver and inputs are connected to the 
steering servo and speed controller. The Arduino Uno behavior is different in every mode. In 
manual mode, it simply takes signals on input pins and mirrors them on output pins. The vehicle 
is so fully controlled by the transceiver and operator. In autonomous mode, Arduino takes 
command from the Raspberry Pi. Arduino Uno generates two PWM, one for speed control and the 
second for steering control. 

4.5.2. Communication protocol 
This subsection introduces a simple text communication protocol between Raspberry Pi and 
Arduino Uno. This protocol is only one way in the direction of Raspberry Pi to Arduino Uno. The 
communication protocol is described below.  

“m\n” – Change from manual to autonomous mode. 

“n\n” -  Change from autonomous to manual mode. 

“s\n” – Stop the vehicle. 

“s xxx\n” – Command to steer front axle. The xxx is the percentage of steering (-100, 100) -
> (max right, max left)   

“v xxx\n” – Command to set speed. The xxx is the percentage of speed (-100, 100) -> (max 
speed backward, max speed frontward) 

The crucial aspect to note is that each message must end with "\n" to ensure proper transaction 
termination, as the Arduino firmware requires this symbol to correctly finalize transactions. 
Without it, new commands will not be properly processed or evaluated. Between two commands 
from Raspberry Pi, there must be a space of about 50ms, to correctly evaluate command and 
change the duty cycle of PWMs. When this space is shorter Arduino Uno starts to act 
unpredictably and there is a risk of damage to the vehicle.  After the transition from autonomous 
mode, the vehicle stops moving and is imminently controlled by the transceiver. This feature 
prevents damage to the vehicle or surrounding objects during testing. 
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5. Dataset in this work 
This chapter explores the datasets used in the development of neural networks for road sign 
detection and classification. As discussed in Section  3.2, road sign recognition is divided into 
road sign detection and sign classification. For this reason, using two completely different 
datasets is also necessary. Additionally, in this chapter is a discussion about the sources, 
characteristics of each dataset and a discussion of the usefulness of these datasets for our 
purposes. Due to unsatisfactory results achieved with commonly used datasets for the detection 
part, we opted to create our own dataset. The problem of unsatisfactory result is more concreted 
in Section 5.2.  The process of creating this dataset is also detailed in this chapter.  

5.1. Detection part of datasets 
This subsection delves into the application of neural networks for detection tasks, primarily 
focusing on road sign detection. Here, we provide a comprehensive overview of the datasets 
utilized throughout this analysis. The examined datasets are Open Images Dataset, and German 
Road sign Detection Benchmark.  

5.1.1. Open Images Dataset V7 
The Open Images Dataset V7 [11], managed by Google, stands out as one of the largest datasets 
available and offers different versions for different research needs. With 600 classes, it covers a 
wide array of objects, it provides a complex resource for training and evaluation purposes. The 
range of classes is wide from people to various insect species to vehicles. People can easily 
choose which classes they want and only these classes download. This is the biggest advantage 
over other datasets, which are usually downloaded with all classes. Within this study, the focus is 
directed only toward the road sign class from this dataset. In this class are about 1100 images for 
training and 18 images for validation. This class has biggest disadvantage is that most of the 
images are photos of road signs coming from Asian countries and therefore their applicability in 
Europe is very limited, see Figure 11 and Figure 12.  

  
Figure 11: Road sign from Open Images Dataset v7 

I. 
Figure 12: Road sign from Open Images Dataset v7 

II. 

5.1.2. German Road sign Detection Benchmark (GTSDB) 
The German Road sign Detection Benchmark [13] (GTSDB) was developed in 2012 by Ruhr-
Universität Bochum Institut Für Neuroinformatik and includes a total of 600 training images and 
300 validation images, each annotated with bounding boxes and class names. This dataset 
encompasses 43 different classes of road signs commonly found on German roads, such as stop 
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signs, yield signs, and no-passing signs. This dataset is commonly used in various benchmarks 
focused on road signs in Europe. 

Notably, the road signs in this dataset tend to be smaller in size compared to those in the Open 
Images Dataset V7. This poses a challenge, as the road signs in our case occupy a larger area in 
the camera picture than those in this dataset. This imbalance may lead to the neural network 
erroneously learning to detect them. 

  
Figure 13: Picture from GTSDB I. Figure 14: Picture from GTSDB II. 

5.2. Custom dataset for detection of road signs 
Open Images Dataset V7 has many different road signs mainly from Asian countries and the USA, 
not identical (in some cases even not similar) to European road sings. Additionally, there are also 
billboards and directional boards in this road sign class in this dataset. The second issue is the 
insufficient quality of labels. Many labels are missing or do not correspond to real road signs. This 
is because the Open Images Dataset V7 is open, and every registered user can add new images 
and labels to this dataset.  

GTSDB has a problem with an insufficient number of images for training. Even if training and 
validation data is connected into a big training set, the number of pictures is only 900 and YOLOv3 
needs about 1500 labeled images per class. The second problem is bigger because data 
augmentation addresses the size of the road signs on images. Images are photos from a car 
perspective and the road signs occupy a small place in these photos and do not fully represent 
the data obtainable from the autonomous vehicle’s camera.  

Therefore, we create a small dataset comprising 40 labeled images from validation captured from 
a vehicle camera. Using the previously mentioned datasets, we trained YOLOv3 to detect road 
signs. Subsequently, we applied YOLOv3 to the validation dataset to detect the road signs. The 
results, presented in Table 1, are evaluated in terms of mean average precision (mAP) by IoU 
between the predicted label and ground true label at 0.45. The network is trained in two different 
image resolution: 416 pixels and 832 pixels, with the training process sustained at 200 epochs. 

Table 1: Validation results of neural network accuracy learned on different datasets 
Dataset  Image resolution 416 pixels Image resolution 832 pixels 
Open Images Dataset V7 60.8 65.4 
GTSDB 20.1 47.9 
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For autonomous vehicle properties, we need precision as high as possible and mAP 65% is not 
sufficient for utilization in autonomous driving. There is a danger when the road signs are 
recogized incorrectly to damage the surrounding environment or cause loss of human life. 
Considering these factors outlined above, the decision is made to develop a new dataset that 
accurately reflects the vehicle's environment.  

5.2.1. Selection of road signs for dataset creation 
In this chapter, we discuss the selection process of road signs for our autonomous vehicle 
system. We selected 7 types of road signs. This selection includes: 

- Speed limitations 20 km/h, 50 km/h, and 80 km/h 
- End speed + passing limits  
- No vehicles 
- Priority road 
- Stop 

We have selected these road signs to represent frequently used road signs. At the same time, we 
wanted these road signs to be represented in the dataset used for road sign classification. Several 
speed limits are chosen because they are similar and therefore it is interesting to compare how 
accurately they are classified. Finally, it is considered that the individual signs can interact with 
the autonomous vehicle. They could limit their maximum speed or modify the rules to avoid 
obstacles. The frequency of use of road signs in the real environment play an additional role. This 
frequency of use is related to the occurrence of signs in the GTSRB dataset that is used to learn 
the neural network for road sign classification, as we wanted to test whether even road signs with 
lower number of training images would be reliably recognized. 

We draw the individual road signs in Canva and then we create cardboard stands for them, see 
Figure 15. The stands are created to be as stable as possible and therefore do not fully represent 
traditional road sign stands, which is anchored into the ground and therefore do not need such a 
large base. 

 
Figure 15: Cardboard stand for road signs 
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5.2.2. Process of creation of the new dataset 
Photos for this dataset are created using an autonomous vehicle and a webcam mounted on it. 
The vehicle is driving across the rooms at the Faculty of Electrical Engineering at the Czech 
Technical University., and every second camera took a picture. We have captured over 2600 
images representing the environment where the vehicle operates, including road signs. Afterward, 
a selection process is undertaken, resulting in the selection of 1303 images. These excluded 
images typically lacked road signs or are too blurred to recognize any features. For this task, we 
created a Python script. This script loads and show in window every image in certain folder. By 
pressing key “s” is image deleted and by pressing “a” or “d” we can move in the images. 

After this procedure, we need to create a bounding box for every image. For this labeling process, 
we use the software Roboflow for making bounding boxes in these images [43]. After creating 
dataset, we divide the dataset into training and validation images using a ratio of 95:5. Images 
from the created dataset are shown in Figure 16 and Figure 17. 

  
Figure 16: Images from own dataset I. Figure 17: Images from own dataset II. 

5.3. Classification part of dataset 
This chapter explores dataset for classification tasks to classification of road signs. The dataset 
used in this thesis is German Traffic sign Recognition Benchmark (GTSRB). GTSRB [44]  is a 
comprehensive dataset comprising 39 209 images of road signs, categorized into 43 classes. 
These images are sourced from German roads and serve as a benchmark for training and 
validating algorithms for road sign classification. This dataset was developed by Ruhr-Universität 
Bochum Institut Für Neuroinformatik in 2012. Each image in this dataset is manually annotated, 
providing information about the sign class. This dataset is used for training neural networks for 
road sign classification because is the biggest and the most coveted among the named datasets. 
The main advantage of this dataset is that it contains a large number of road signs images under 
different lighting conditions. The disadvantage, on the other hand, is the uneven representation of 
individual road signs [12].  In every image, only one road sign is included and nothing more, hence, 
there is not enough context for YOLOv3 to detect position of the road sign on more complex 
pictures. Therefore, we need to employ two neural networks how is described in Section 3.2. 
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6. Implementation of neural network 
In this chapter, we discussed the selection of neural networks for detection and classification. We 
also show implantation details of neural networks for road signs detection and classification as 
well as the pipeline for the road sign detection and classification. The structure of implemented 
codes is in Appendix B. 

6.1. Neutral networks for detection task 
In this section, we select the neural network for road sign detection that best fits our requirements 
for use on an autonomous vehicle. To benchmark neural networks, we utilized two metrics mAP, 
which indicates the ratio of correctly detected objects to all detectable objects, and Frames Per 
Second (FPS), which measures the rate at which images are evaluated per second using the 
neural network on the reference graphics card. The Nvidia Titan X is used as the reference graphics 
card in this case. These metrics for Faster R-CNN, SSD and YOLOv3 are in Table 2. Three neural 
networks mentioned above represent commonly used networks for object detection in images. 

Table 2: Neural network for detection comparison [14] 
 mAP [%] FPS [Hz] 
Faster R-CNN 83.8 0.4 
SSD 76.8 19 
YOLOv3 78.6  40 

 

By comparing networks, we choose the YOLOv3 to implement in this thesis for road signs 
detection, because it has higher accuracy than SSD and is much faster than Faster R-CNN. It 
makes a compromise between network speed and precision. 

6.2. Neutral networks for classification task 
In this section, we select the neural network for road sign classification that best fits our 
requirements for use on an autonomous vehicle. Commonly used networks are ResNet-152 [17], 
VGG-16 [18], GoogleNet [19], and AlexNet [18]. We compare These neural networks at the base of 
accuracy of corrected classified image and number of layers. These parameters are in  Table 3. 

Table 3: Neural network for classification comparison 
 accuracy [%] number of layers [-] 
ResNet-152 87 153 
VGG-16 71.5 16 
GoogleNet 78.2  22 
AlexNet 57 8 

 

Visual Geometry Group (VGG) and AlexNet are not feasible for our work, because these do not 
achieve high accuracy in image classification. In contrast, GoogLeNet and ResNet are very deep 
and computationally heavy. For these reasons we create a custom neural network for road signs 
classification. This neural network is shallower than the neural networks described above and 
achieves better accuracy by tuning the network to classify specifically road signs. 
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6.3. Implementation of YOLOv3 
This chapter delves into the implementation of YOLOv3 neural networks, covering support 
functions, metrics, network structure, learning processes, and hyperparameter settings. Our 
focus on object detection in images led us to select YOLOv3 for its speed and accuracy, especially 
in detecting multiple objects simultaneously. It achieves 40 fps and 78.2 % mAP. While there are 
numerous existing implementations of YOLOv3, we opted to customize one for our specific needs 
in optimizing road sign detection for our autonomous vehicle system. 

Given the abundance of available implementations optimized for speed and performance, it 
seemed impractical to develop our own from implementation. Instead, we chose to leverage an 
existing implementation and modify it to our requirements. We selected an implementation 
referenced in [45] for its thorough documentation. However, upon testing, we encountered several 
bugs resulting mainly from compatibility issues with updated Python and supporting libraries. 
Despite the difficulties, we decided to fix the existing implementation rather than invest time in 
familiarizing ourselves with a new one. The original implementation does not consist of an 
evaluation script. So, we need to create a new one. 

6.3.1. Description of supported function 
In this subsection, we describe the support function used in the process of YOLOv3 training and 
evaluation, that we take from original implementation. 

6.3.1.1. Intersection over union 
The provided Python function intersection_over_union() calculates the IoU metric, which 
measures the overlap between predicted bounding boxes and ground truth bounding boxes. The 
function takes two sets of bounding boxes as input: boxes_preds containing predicted bounding 
boxes and boxes_labels containing ground truth bounding boxes. These bounding boxes are 
represented in the midpoint format with center position and width and height (𝑥𝑐 , 𝑦𝑐 , 𝑤, ℎ). 

The IoU computation is performed by first extracting the coordinates of the bounding box from the 
input tensors. Then, the function calculates the corners of the bounding boxes using this formula: 

box1x1 = 𝑥𝑐1 − 𝑤1/2, (18) 

𝑏𝑜𝑥1𝑦1 = 𝑦𝑐1 − ℎ1/2, (19) 

box1x2 = 𝑥𝑐1 + 𝑤1/2, (20) 

𝑏𝑜𝑥1𝑦2 = 𝑦𝑐1 + ℎ1/2, (21) 

box2x1 = 𝑥𝑐2 − 𝑤2/2, (22) 

𝑏𝑜𝑥2𝑦1 = 𝑦𝑐2 − ℎ2/2, (23) 

𝑏𝑜𝑥2𝑥2 = 𝑥𝑐2 + 𝑤2/2, (24) 

𝑏𝑜𝑥2𝑦2 = 𝑦𝑐2 + ℎ2/2,  (25) 

 

where 𝑥𝑐1, 𝑦𝑐1, 𝑥𝑐2 and  𝑦𝑐2 are coordination of bounding boxes centers and ℎ1, 𝑤1, ℎ2 and 𝑤2 
denotes the height and width of bounding box.  
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Then, the function calculates the coordinates of the intersection rectangle between the predicted 
and ground truth bounding boxes using the formula: 

x1 = max(𝑏𝑜𝑥1𝑥1, 𝑏𝑜𝑥2𝑥1), (26) 

y1 = max(𝑏𝑜𝑥1𝑦1, 𝑏𝑜𝑥2𝑦1), (27) 

𝑥2 = min(𝑏𝑜𝑥1𝑥2, 𝑏𝑜𝑥2𝑥2), (28) 

𝑦2 = min(𝑏𝑜𝑥1𝑦2, 𝑏𝑜𝑥2𝑦2),  (29) 

 

where 𝑥1, 𝑦1, 𝑥2 and 𝑦2 are coordinates of corners of intersection rectangle. Subsequently, the 
function computes the intersection area 𝑖 by: 

𝑖 = (𝑥2 − 𝑥1)(𝑦2 − 𝑦1),  (30) 

 

and the area of the union 𝑢 by: 

𝑢1 = (𝑏𝑜𝑥1𝑥2 −  𝑏𝑜𝑥1𝑥1)(𝑏𝑜𝑥1𝑦2 −  𝑏𝑜𝑥1𝑦1),  (31) 

𝑢2 = (𝑏𝑜𝑥2𝑥2 −  𝑏𝑜𝑥2𝑥1)(𝑏𝑜𝑥2𝑦2 −  𝑏𝑜𝑥2𝑦1),  (32) 

𝑢 = 𝑢1 + 𝑢2 − 𝑖.  (33) 

 

Finally, we can compute the IoU: 

IoU =
𝑖

𝑢 + 10−6
.  

(34) 

 

Note that a small epsilon value 10−6 is added to the denominator to avoid division by zero errors. 

6.3.1.2.  No max suppression 
The non-maximum suppression (NMS) algorithm is a post-processing step commonly used in 
object detection tasks to filter out redundant bounding boxes. YOLOv3 found many bounding 
boxes of same objects, the NMS algorithm removes overlapping bounding boxes and retains only 
those with high confidence scores. 

The NMS function begins by filtering out bounding boxes with confidence scores below a specified 
threshold, called CONF_THRESHOLD. Next, the remaining bounding boxes are sorted based on 
their confidence scores in descending order. The algorithm iterates through the sorted list of 
bounding boxes, selecting the box with the highest confidence score called the chosen box at 
each iteration, then removes all other bounding boxes with the same class that have a higher IoU 
with the chosen box than threshold NMS_IOU_THRESH. This prevents significant overlap of 
bounding boxes with the same class. After iterating through all bounding boxes, the function 
returns a list of bounding boxes that have passed the NMS process, ensuring that redundant 
detections are eliminated. 
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6.3.2. Code structure 
In this subsection, we describe the whole process of training or evaluating the neural network. For 
clarity, the code is divided into several modules, and we describe each of them individually. The 
main modules are model, dataset, loss, training, and evaluation. Support function play config file 
and utils where are implemented function from Section 6.3.1. In config file, every constant for the 
YOLOv3 neural network is specified. For code structure see Figure 18. 

 
Figure 18: Structure of YOLOv3 imp 

 

6.3.2.1. Model 
The model is taken over from original paper [15] without modification.  At the beginning of this 
module, the neural network in text format, is described in Figure 1. The main code intenerates 
through this text description and adds blocks or layers to the neural network model. The blocks 
are described in Section 2.2. The forward function is straightforward and is implemented with the 
skip connections.  

6.3.2.2. Dataset 
This module defines the class YOLODataset. This class loads the dataset for YOLOv3 training in 
the correct format. Class YOLODataset is based on a class dataset from the library PyTorch and 
inherits the methods __len__() and __getitem(index)__. These methods are modified to use with 
new datasets. The dataset format is described in Appendix A, together with the adaptation of 
Open Image V7 and GTSDB datasets. First, we describe the methods and then we describe the 
transformations in this dataset which is the main part we must correct because the original 
transformation did not work.  

6.3.2.2.1.  __init__() 
Method initializes the YOLODataset class. It accepts several arguments, including the paths to 
images and labels, as well as the path to a CSV file, image resolution, number of classes, anchor 
boxes, scale of anchor boxes, and an argument to allow or block transformation. Previous 
arguments are stored as class variables for future reference. Image names and corresponding 
labels are loaded from CSV files using the Pandas library and the read_csv() function. 
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6.3.2.2.2. __len__() 
Method is included here for comprehensive understanding. It calculates the total number of items 
in the dataset based on the length of the class variable annotations. The variable annotations is 
an array containing pairs of image filenames and their respective labels, loaded during the 
initialization process using the __init__() method. 

6.3.2.2.3. __getitem(index)__() 
Method __getitem(index)__() must be rewritten because the original implementation does not 
work and has several deficiencies. The index says which item should be loaded.  First, the method 
loads the image and corresponding label. The image is loaded with the help of the Python library 
PIL. The image is resized to the corresponding resolution set by the class variable initialized during 
class initialization. Block of code that transforms the image to provide greater dataset diversity is 
used, after resizing. Transformations are described in the Section 6.3.2.2.4. Then is image 
transformed to Numpy array. After the image transformation, we need to re-arrange the image 
dimension from image resolution x image resolution x 3 to a resolution 3 x image resolution x 
image resolution. We need to re-arrange the original image shape because of the convolutional 
layer, that accepts only images in this resolution. Re-arrangement is done in three for cycles. After 
for cycles is image ready to be put into the neural network and we need to load the labels.  

Target values are crucial for model training as they specify the expected outputs for each input 
image. The algorithm iterates through each bounding box in the input data, determining which grid 
cell the box's center belongs to. Algorithm then selects the corresponding anchor box based on 
the overlap with predefined anchor boxes. If the selected anchor box is free and does not already 
contain another box, information about the box is stored. If the overlap with the anchor box 
exceeds a specified threshold ignore_iou_thresh, the anchor box is marked as ignored. This 
process of image and label preprocessing is repeated for each input image, resulting in a set of 
target values used during training the YOLOv3 detection model. 

6.3.2.2.4. Transformations  
Transformations are a crucial aspect of preprocessing data in computer vision. Transformations 
help increase the diversity of training data, thereby enhancing the model's ability to generalize 
new data. We used several common image transformations, including horizontal and vertical 
flipping, adding noise, changing brightness, and changing contrast. Each transformation is 
applied randomly with a certain probability, ensuring that each training image is biased in multiple 
ways, which increases data diversity and helps the model adapt better to various situations. 

The code initiates by randomly selecting whether to perform horizontal, vertical, or both flipping 
of the image, or leave it unchanged, with equal probabilities assigned to each option. If 
transformation is chosen, the image is modified by using functions ImageOps.mirror or 
ImageOps.flip from the Python library PIL. Subsequently, the code randomly decides whether to 
introduce noise, adjust brightness, or modify contrast. Each transformation is applied 
independently, contributing to the diversity of the training data, with a 50% probability for each 
transformation. To adjust brightness and contrast, the images are loaded using the function 
ImageEnhance.Brightness() and ImageEnhance.Contrast(). Recent functions are then followed by 
a call .enhance() with a random argument determining the transformation's effect on the image. 
Adding noise involves generating an array of the same size as the original image, filled with random 
values, which are then added to the original image. 

After applying horizontal or vertical flipping to the image, the bounding box coordinates are 
adjusted to ensure consistency between the image and its description. However, the bounding 
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boxes remain unchanged for contrast, brightness, and noise transformations. When a horizontal 
flip is applied, the change in the center coordinates of the bounding box is determined by the 
following equations: 

𝑥1 = 1 − 𝑥2,  (35) 

𝑦1 = 𝑦2,  (36) 

 

where 𝑥1 and 𝑦1 denote the original coordinates of the center of the bounding box, and 𝑥2 and 𝑦2 
denote the new coordinates of the bounding box. The change in the coordinates of the center of 
the bounding box, to which the vertical flip is applied, is determined by the following equations: 

𝑥1 = 𝑥2,  (37) 

𝑦1 = 1 − 𝑦2.  (38) 

 

6.3.2.3. Loss  
The loss function is straightforward implantation of equitations described in Section 2.2. We 
mainly change the constant 𝜆𝑐𝑙𝑎𝑠𝑠 in loss function because we only classify one class, we put 
𝜆𝑐𝑙𝑎𝑠𝑠 to zero and do not consider a class loss. Setting 𝜆𝑐𝑙𝑎𝑠𝑠 to zero helps us to put more effort 
into other losses, especially to box loss. The loss function is implemented as a class with two 
methods __init__() and forward(). Method __init__() prepares a function of loss by (11). Method 
forward() takes as arguments predicted and true bounding boxes as well as anchor boxes and 
computes a numerical value of loss by function initialized in the previous method.  

6.3.2.4. Training 
Module training starts with loading the model of the YOLOv3 network and initializing the optimizer. 
The task of the optimizer is to find the optimal values of the model parameters to achieve the 
highest results when predicting unknown data. After optimizer initialization, the loss function and 
scaler are initialized. Scaler [46] is a special method from the library PyTorch that helps with 
numerical stability in the learning process. After initialization are loads datasets for training and 
validation as well as the initialization weights. Initialization weights are loaded from a file or 
randomly initialized. The last initialization function is preparing the anchor boxes by scaling 
anchor boxes to the appropriate size for every of three grid sizes.  

Training is done in for cycle. The number of repeats of for cycle is typically in the lower hundreds. 
The training procedure is looped over the images. The images and labels are converted to float 
format and are moved to the graphic card (GPU) if Cuda is enabled, if not they are moved to the 
processor (CPU). Then image is sent to the network and the predicted output with labels is sent 
to the loss function separately for every grid size. After this, loss is backpropagate through the 
network.  

The process of backpropagation looks as follows. Firstly, optimizer.zero_grad() is called to reset 
the gradients of all model parameters to zero before computing gradients for the next batch of 
training data. Then, scaler.scale(loss).backward() computes the gradients of the loss concerning 
the model parameters, scales the loss value using the gradient scaler, and performs the backward 
pass to calculate the gradients. The scaler.step(optimizer) method updates the model's 
parameters using the gradients and the optimization algorithm specified by the optimizer. Finally, 
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scaler.update() adjusts the scale factor used for the next iteration based on whether gradient 
values overflowed or underflowed during the computation, ensuring numerical stability. 

After the process of training, every 10 epochs is the process of validation. Before evaluating we 
need to change the mode to evaluation mode by call model.eval() and after evaluating we need to 
change the mode to training mode by call model.train(). The rest of the validation process is 
described in Section 6.3.2.5, but we used the weights from learning and did not load the new one. 
After validation, we calculate the mAP, based on predicted and true bounding boxes. We save the 
checkpoint every 10 epochs and note the weights with the largest mAP. 

6.3.2.5. Evaluation script 
The correctness of the predicted classes should also be checked. However, since we have only 
one class to predict, we do not perform classes checked. In the process of validation are loaded 
the validation images with their labels as well as checkpoint specified in the config file. The 
images as well as labels are moved to GPU. Then, the model generates predictions for the input 
data. Predictions are processed to extract bounding boxes for each image. Bounding boxes are 
generated for each grid size of the model's output and are consolidated to form a single list for 
each image. Additionally, the true bounding boxes are obtained from the ground truth labels. NMS 
is applied to the predicted bounding boxes to filter out redundant detections, based on an IOU 
threshold and confidence threshold. Filtering by NMS is done because the YOLOv3 network finds 
several bounding boxes from different grind sizes, and we try to find the most suitable one for each 
search object. After getting true and predicted bounding boxes we compute the mAP. The process 
of computing the mAP is mathematically described in Section 7.3.1.1. To this point is the 
validation the same as in training.  

Now we want to draw the true and predicted bounding boxes in the images. That is possible to 
make it by library OpenCV and its function rectangle(), which draws rectangles into images.  
Function rectangle() takes as the argument the corners of the bounding boxes in pixels and the 
array that represents the image. The process of computing the coordinate of corners 𝑥1, 𝑦1, 𝑥2 and 
𝑦2 is follows: 

𝑥1 = (𝑥𝑐 −
ℎ

2
) × 𝑠,  

(39) 

𝑦1 = (𝑦𝑐 −
𝑤

2
) × 𝑠,  (40) 

𝑥2 = (𝑥𝑐 +
ℎ

2
) × 𝑠,  

(41) 

𝑦2 = (𝑦𝑐 +
𝑤

2
) × 𝑠,  (42) 

 

where 𝑥𝑐 and 𝑦𝑐  are relative coordinates of center of the bounding box, variable ℎ and 𝑤 are height 
and width of the bounding box and 𝑠 is the resolution of the picture in pixels. The program first 
loads the image and computes the corners of bounding boxes in pixels, draws the rectangles in 
the image, and then stores the result, see Figure 19, where red rectangles are ground true 
bounding boxes and yellow rectangles are predicted bounding boxes. 
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Figure 19: Example of road sign detection script output 

 

6.3.3. Process of training and setting the hyperparameters 
The process of training is essential for the performance of neural networks. The neural network 
learning process runs on an Intel NUC with an Nvidia RTX 2060 graphics card. This process is 
influenced by selecting so-called hyperparameters. We describe hyperparameters and their 
function in this subsection. First, we need to select a suitable optimizer for our task. The most 
used methods are Stochastic Gradient Descent (SGD) and Adaptive Moment Estimation (Adam). 
When utilizing both optimizers, we observed a similar reduction in loss throughout the training 
epochs, without experiencing the common occurrence of loss oscillating around a certain value.  

SGD has two tunable parameters, the learning rate and momentum. We achieved the highest 
result by using the learning rate 5e-5 and the momentum is set to value 0.9. Adam also has two 
tunable parameters learning rate and weight decay. We set these parameters to 5e-5 and 5e-4. 
The chosen learning rates are relatively small, prioritizing precision in learning. However, this 
precision comes with the trade-off of longer training times. We also set the confidence threshold 
to 30%, which means that YOLOv3 must be at least 30% confident with the bounding box found. 
Confidence is one of the outputs of YOLOv3 and NMS threshold is set to 0.15. 

The next parameter we adjust is the image resolution. Given the architecture of the network and 
the dimensions of the camera images, we have several options: the original resolution of 416 
pixels or the newly created resolution of 832 pixels. We compare the accuracy of road sign 
detection for both resolution, as shown in Table 1.  We also train weights for image resolution 224 
and 128 pixels for experiments with payload size on 5G network. The achieve mAP are about 95% 
with IoU 0.5 for both images resolutions.  The choice of image resolution is closely linked to the 
batch size, which determines how many images are processed by the YOLOv3 simultaneously. 
With an image resloution of 416 pixels, we can use a batch size of up to 8 images, but with a 
resolution of 832 pixels, only a batch size of 2 is feasible. Batch size limitation is due to the size of 
the VRAM in the GPU and the caching of images. A larger batch size helps prevent overfitting and 
improves the efficiency of gradient backpropagation [47]. The last parameter connected to the 
image is the number of workers which say how many threads load the image and we use 4. The 
images are loaded in random order. 
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The last thing that we need to tune are the dimensions of anchor boxes. For this design, we based 
it on the original anchor box setup [29]. Unfortunately, the anchor box sizes are not mentioned in 
the original paper. This original anchor is edited to be mainly square because the bounding boxes 
of road signs are mainly square. This may not be directly visible from the size of the anchor boxes 
as they are square at the original resolution. However, when preprocessing, the image size is 
resized asymmetrically in both dimensions and thus the size of the anchor boxes is also resized 
asymmetrically.  This resizing of the bounding box helps with the learning rate, and the neural 
network learns within 100 epochs to a value of 80% IoU per mAP of 99% instead of the original 
0.98 at 200 epochs on image resolution of 832 pixels. Trained weights for YOLO with created 
dataset are available on OneDrive2. 

6.4. Implementation of neural network to road sign classification 
In this chapter, we introduce the neural network for road sign classification, we also describe 
neural network architecture, neural network implementation, process of training and evaluation 
as well as discussion about the results. Our goal is to create a lightweight neural network with a 
high level of confidence in the predicted class. Neural networks described in Chapter 6.2 are very 
deep or have a small level of corrected predicted class. The insufficient accuracy is caused 
because the mentioned neural networks are very generative. From the newly created neural 
network, we are able to better train it on the specific features contained in road signs.  

Neural networks accurately classify various road signs, including speed limits or stop signs from 
visual input captured by onboard cameras. Capability of recognition road signs enables 
autonomous vehicles to interpret and respond to traffic regulations and road conditions 
effectively, contributing to safer and more reliable autonomous driving experiences. 

6.4.1. Architecture of neural network 
In this chapter, we discussed the model of a neural network and its layers. We also slightly 
describe the process of modeling the neural network. The architecture of the neural network is in 
Figure 20. 

 
Figure 20: Model of YOLOv3 

 
2https://campuscvut-
my.sharepoint.com/:f:/g/personal/danekja5_cvut_cz/EuRQ8S9fe5tItubM9KMra9QBv0EVYAgu3X3989riBV
Qe4g?e=xQ2Rzd  

https://campuscvut-my.sharepoint.com/:f:/g/personal/danekja5_cvut_cz/EuRQ8S9fe5tItubM9KMra9QBv0EVYAgu3X3989riBVQe4g?e=xQ2Rzd
https://campuscvut-my.sharepoint.com/:f:/g/personal/danekja5_cvut_cz/EuRQ8S9fe5tItubM9KMra9QBv0EVYAgu3X3989riBVQe4g?e=xQ2Rzd
https://campuscvut-my.sharepoint.com/:f:/g/personal/danekja5_cvut_cz/EuRQ8S9fe5tItubM9KMra9QBv0EVYAgu3X3989riBVQe4g?e=xQ2Rzd
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The output of neural network is a one-dimensional array of the size of the number of classified 
classes. Each entry in the array contains the probability of how closely a given index matches a 
classified road sign with the same ID as the element in the index array. 

In Figure 20 number above max pooling layer is kernel size, number above dropout layer is dropout 
ratio and number above dens layer is output size. Max pooling is a technique used to reduce the 
spatial dimensions of an input feature map by selecting the maximum value from each local 
region. This process helps to extract the most important features while discarding irrelevant 
information. Dropout is a regularization technique used to prevent overfitting by randomly setting 
a fraction of input units to zero during training. This process helps to reduce the reliance of the 
model on specific features. As a result, dropout improves the generalization ability of the network 
and increases its performance on unknown data. The flatten function reshapes a multi-
dimensional tensor into a one-dimensional tensor, typically used to convert the output of a 
convolutional layer into a format suitable for feeding into a fully connected layer. In the dense 
layer, also known as the fully connected layer, is each neuron connected to every neuron in the 
previous layer, propagating information from all input neurons to all output neurons. Dense layer 
is used for learning complex patterns in data.  

When designing the network, we started from the back. First, we specified the format of the inputs 
as an array of probabilities. This is to be taken care of by the flatten function. However, since the 
flatten function is not sufficient and would only extract the probabilities of the features from the 
previous layers, it is necessary to link these features to specific road signs, and two fully 
connected layers took care of this since one proved insufficient. Two classic convolutional blocks 
are used to extract the features, each containing 3 convolutional layers and one max pool layer. 
These blocks are standard in image classification using a convolutional network. Since overfitting 
is occurring during learning, it is necessary to add dropout layers to help reduce overfitting. These 
layers are added at the end of each convolutional block. 

Activation function ReLU is chosen for each convolutional layer. ReLU function is used because it 
can highlight individual features in a computationally inexpensive way. The last dense layer has 
an activation function softmax. Softmax function normalizes the output of the layer so that the 
sum of its output adds up to 1 to produce the probability values for each class. The rate values for 
the dropout layer are determined empirically based on the observed outputs and received 
accuracy. 

Given the size of the bounding boxes found in the road sign detection, we decide that the input 
image resolution for this neural network would be 30x30 pixels. Since the road signs occupy the 
entire image area, we decide to use a 5x5 kernel for the first convolutional block to extract the 
large features and then we use a 3x3 kernel in the second convolutional block to find the smaller 
features in more detail. The number of filters for each block is then determined as a compromise 
between model complexity and classification accuracy. Based on empirical findings, the values 
are determined as 32 filters for the first convolutional block and 64 filters for the second 
convolutional block. The remaining values in the convolutional network are computed so that the 
layers are dimensionally related to each other. 
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6.4.2. Implementation  
In this section, we describe the implementation of a neural network for road sign classification. 
Neural network is implemented in Keras. Keras is more suitable for small neural network than 
PyTorch, where we need to make complex structures for dataset loader or even to create a neural 
network model. Unlike in YOLOv3, implementation of neural network for road sign classification 
is not divided into modules and the network is sustained from two files, each representing the 
Python script. The first script loads the dataset and creates the model, then the script trains the 
model, and there is an evaluation process to validate the neural network on validation data from 
the dataset.  In the second script load the images and then go through the process of evaluation. 
The second script is made for evaluating the images without known class.  

6.4.2.1. Training script: Load the dataset 
The GTSRB dataset is used to train the neural network. The format of the dataset is folded-based. 
All the labels of a given class are placed in one folder which is named according to the class ID. 
This dataset contains a total of 43 classes. 

Training script first loads images from the dataset directory, which contains folders labeled with 
numbers from 0 to 42, each representing a different class. Images are loaded using library PIL and 
resized to a dimension of 30x30 pixels. Images are stored in the data list, and the corresponding 
labels are stored in the labels list. 

Subsequently, the data and labels are converted into Numpy arrays and then split into training 
and validation datasets using the train_test_split() function from the Python library Sklearn. Split 
is made in a ratio of 80% for training data and 20% for validation data. Both split data is used in 
the process of training. By splitting data we see if the probability of successful prediction 
increases during training of this network. Then the labels are converted into the format suitable 
for learning by using the function to_categorical() from the library Keras. 

6.4.2.2. Training script: Initialize and training of neural network 
To initialize the neural network, we use the function sequential(), and then by using the function 
.add() we add to network the layers from Figure 20. The process of training the neural network is 
simpler than in the case of the YOLOv3 network. After initializing the network, we compile neural 
network model by using the function .compile(). We specified the optimizer and loss function in 
.compile(). We selected Adam as the optimizer and the cross entropy as a loss function. Cross 
entropy loss function is commonly used in image classification and cross entropy loss function is 
mathematical formulated in similar way as class loss from YOLOv3 described in (11). We don’t 
need to adjust the learning hyperparameters because the default setting is sufficient for our 
purposes. We start the process of learning by calling function .fit() on the model. In function .fit() 
we specify the batch size as 32 and the number of epochs as 15. We also pass to .fit() function on 
to the load data including the labels. This is enough to train the neural network. We train neural 
network on CPU i5 13th generation. Each epoch takes approximately 1 minute to process. After the 
successful training of the neural network, the whole network is stored in the file for further use.  

6.4.2.3. Training script: Evaluation of neural network 
We used the different images, in this part of the script, for the validation part and to test the final 
accuracy. The GTSRB dataset provides a folder with images for validation. The process of 
validation begins by loading the test dataset from a CSV file by using the library Pandas. This CSV 
file contains information about the images and image’s corresponding labels. Then, script iterates 
through each image in the test dataset and makes the same preprocessing of images as in the 
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training part, the code feeds these images into the trained neural network model to make 
predictions about their labels. 

Following the predictions, the script determines the predicted label for each image by selecting 
the class with the highest probability from the model's output. Once all predictions are obtained, 
the code compares them with the true labels from the test dataset to calculate the accuracy of 
the model's predictions by using the function accuracy_score() from Sklern. Finally, the achieved 
accuracy score is printed to the console, providing an evaluation of how well the model performs 
on unknown data. Trained model of neural network for road sign classification is available on 
OneDrive3. 

6.4.2.4. Evaluation script 
The evaluation script for evaluating unknown data is almost the same as the part for testing the 
images in the previous part. To difference is in loading the model from the file by using the function 
load(). Images with unknown labels are loaded and fed into the load model. Subsequently, the 
code determines the predicted label for each image by selecting the class with the highest 
probability from the model's output and writing the predicted class to the console.  

6.5. Pipeline of neural networks and implementations on the 
autonomous vehicle 

In this section, we discuss the implementation of the pipeline of the neural network for road sign 
recognition. We start by obtaining images of the environment with road signs from the camera and 
end by sending information about localized road signs to control algorithms. The scope of this 
thesis does not include control algorithms. Control algorithms are for path planning and path 
following or avoiding dynamic obstacles.  The Raspberry Pi, utilized within an autonomous 
vehicle, lacks sufficient computational power to execute real-time neural network-based 
detection and classification of road signs.  

For completeness, the road sign detection neural network runs on a Raspberry Pi for an average 
of 26 seconds per image, and on a computer with an RTX Nvidia 2060 graphics card it runs for an 
average of 1.1 seconds. A response time of 26 seconds is insufficient for autonomous driving. 
Time for detection do not counting the time to classify road signs, which on the Raspberry Pi is 
about 400 ms per sign. During the evaluation of the captured image, it is not possible to utilize the 
Raspberry Pi processor, as the neural network computation fully occupies it. Consequently, there 
are no computational resources available for the control algorithms. For this reason, it is decided 
that the captured images are sent to the MEC server using the 5G network. In this scenario, partial 
offloading is not feasible, and all data for the neural network must be consistently offloaded to 
the server. This ensures that the complete evaluation of the neural network occurs on the server. 
But for test purposes we also implemented the possibility to perform road sign detection and 
recognition on autonomous vehicle. The Camera node (describe for MEC processing in Section 
6.5.1) is corrected for testing purposes. According to the message from the manger, which 
controls the offloading process, and is out of scope this thesis, camara node decide whether to 
process the pipeline of neural network (describe in Section 6.5.2) locally in the vehicle or send the 
image to the MEC server for evaluation. 

 
3https://campuscvut-
my.sharepoint.com/:f:/g/personal/danekja5_cvut_cz/EuRQ8S9fe5tItubM9KMra9QBv0EVYAgu3X3989riBV
Qe4g?e=xQ2Rzd  

https://campuscvut-my.sharepoint.com/:f:/g/personal/danekja5_cvut_cz/EuRQ8S9fe5tItubM9KMra9QBv0EVYAgu3X3989riBVQe4g?e=xQ2Rzd
https://campuscvut-my.sharepoint.com/:f:/g/personal/danekja5_cvut_cz/EuRQ8S9fe5tItubM9KMra9QBv0EVYAgu3X3989riBVQe4g?e=xQ2Rzd
https://campuscvut-my.sharepoint.com/:f:/g/personal/danekja5_cvut_cz/EuRQ8S9fe5tItubM9KMra9QBv0EVYAgu3X3989riBVQe4g?e=xQ2Rzd
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A pipeline for road sign detection and classification on MEC is made of this part: 

- Capture an image of the surrounding environment 
- Send the image to the MEC server 
- Road sign detection 
- Road sign classification 
- Estimation of the position of the road sign 
- Send obtained data to control algorithms on the vehicle control algorithms 

We discussed the individual parts of this and how we modify them to run on the MEC server in the 
fastest possible time given by the implementation pipeline in the rest of this chapter. 

6.5.1. Capture the images with a camera mounted on an autonomous 
vehicle 

This part of the pipeline implements the camera functionality for an autonomous vehicle using 
Raspberry Pi 4, camera Niceboy stream, and the ROS framework and is implanted as a stand-
alone node. The Camera class is initialized to handle image acquisition from the camera 
connected to the Raspberry Pi 4 device. It utilizes the OpenCV library for camera access and 
processing. Captured images are resized to a predefined resolution based on input resolutin of 
YOLOv3 to decrease the size of the payload sent through the 5G network.  The cv_bridge package 
is utilized to convert the OpenCV image format to ROS image messages, allowing seamless 
integration with other ROS nodes and display in RVIZ. The message containing the image is sent 
through the ROS environment to the ROS node called gateway which encodes the image and 
sends it to the MEC server through the path described in Section 3.1. Note that Gatway does not 
send every image to the server, but only sends an image when it receives a response to the last 
image sent.  We encode the 3D array values captured by the camera into .jpg format and 
experiment with various compression ratios. The selection of image resolution and compression 
ratio is the subject of the experiments in the 8 chapter. 

6.5.2. Road signs detection and classification 
Apache Kafka receives the message from the core network of the 5G network. This message is 
encoded in JSON format and contains information about the image and the image itself. This 
message is then forwarded to a Docker container [30]  dedicated to the neural networks. To 
Docker container is also forwarded the message with the encoded position of the autonomous 
vehicle in JSON format. Based on a key header in JSON we decide if the message is a position or 
image. If it is position, we save the actual position of the vehicle for further computation of the 
road sign position.  If it is the image we decode the image from .jpg format to a 3D array with RGB 
values. The rest of road sign detection and classification is almost the same, like in Sections 
6.3.2.5 and 6.4.2.4. First, we found the bounding boxes of road signs by employing YOLOv3, after 
this we crop the image to get only the images of road signs. Small images of road signs are then 
put to costume make neural network to obtain road sign class. We need to enlarge the original 
bounding box to 1.4 times the original resolution, for visual approximation to the GTSRB.  

6.5.3. Estimating the road sign position 
Measuring the position of road signs is key to identifying road signs validity areas, allowing the 
autonomous vehicle to adapt its behavior and react according to the applicable traffic laws and 
road conditions. A road sign visible on the camera is not always valid for an autonomous vehicle. 
We chose a method described in Section 2.3 in which we work with bounding boxes dimensions.  
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Since the determination of bounding boxes proved to be sufficiently accurate in most cases. 
Unfortunately, this method is not accurate, as the experiments performed in the Section 7.5 
prove. Unfortunately, for more accurate measurements we would need 2 cameras that work on 
the principle of the human eye called synchronous stereo cameras, which are more expensive.  

We know the 𝑎 what is the height of the bounding box surrounding the road sign in (14). We 
chose height because it is not influenced by the rotation of the road sign with respect to the 
camera. Because the road signs are standardized, we know road sign size in the real world. In 
our case, these road signs have the size of 12 centimeters in diameter. The only unknown value 
in (14) is 𝑓.  But previous parameter is constant for a given camera and it is possible to compute 
focal length value based on reference measurements with known 𝑎, ℎ and 𝑑 based on the 
following equation: 

𝑓 =
𝑎

ℎ × 𝑑
= 1 380.  (43) 

 

Only the distance between the camera and road signs is not sufficient to get the road sign 
position. We also need to obtain the angle between the camera and road signs. To obtain the 
angle, we use a proportion based on the vertical position of the center of the bounding box of the 
road sign, as follows: 

𝛼 =
90 × (𝑥𝑐 −

𝑠
2

)

𝑠
,  

(44) 

 

𝛼 is the angle between the camera and the road sign, value 𝑠 denotes the resolution of the image 
in pixels and 𝑥𝑐 means the position of the bounding box center in pixels on the x-axis, the range of 
𝛼 is from -45° to 45° where 0° corresponds to the center of the image. 

Based on computed data and data about vehicle position 𝑥, 𝑦 and 𝑦𝑜𝑤 obtained from the vehicle, 
we compute the position of the road sign 𝑥𝑚 and 𝑦𝑚 with respect to the created map by Slam. 
Equations are as follows: 

𝑥𝑚 = 𝑥 + 𝑑 × cos (yow − α),  (45) 

𝑦𝑚 = 𝑦 + 𝑑 × sin(yow − α). (46) 

 

Computed data about road sign ID and computed position in the map of the road sign is then sent 
to the vehicle in JSON format through Apache Kafka and the 5G network. 
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7. Performance evaluation  
In this chapter, we introduce the scenario of experiments, we discuss performance metrics for 
evaluating the neural network and achieved result for both neural network. We also introduce 
metrics for evaluating the capability of MEC server or local processing in autonomous vehicle. We 
estimated the accuracy of road sign recognition.  We also focused on experiments with MEC 
server as processing time. During the entire measurement, we are use 5G networks, and we want 
to avoid causing heavy loads. Therefore, we limit the size of the transmitted data by image 
resolution and compression. We measured the energy consumption of autonomous vehicle at 
several values of bitrate, and we also estimate deadlines for recognition of road sign from time 
image is capture to time autonomous vehicle knows about road sign based on vehicle speed. 

7.1. Setup of experiments 
In our experiments, we use a Raspberry Pi 4 Model B equipped with a quad-core ARM Cortex-A72 
processor running at a core frequency of 1.5 GHz for local computation. The Raspberry Pi has 8GB 
of RAM. The processor in the Raspberry Pi has a performance of 9.69 GFLOPS [48]. The Intel 
NUC11PHKi7CAA2 serves as the MEC server, which is equipped with an i7-1165G7 processor, 
16GB of RAM, and an Nvidia RTX 2060 graphics card. The processor in the Intel NUC has 4 cores 
on frequency of 4.7 GHz and achieves 20.4 GFLOPS [49]. The graphics card in the Intel NUC, on 
the other hand, achieves 52 TFLOPS [50]. For local computations, only the Raspberry Pi's 
processor is used. In the case of computations on the MEC server, the graphics card also 
participates and handles the neural networks processing. 

7.2. Scenario for experiments 
In this section, we look at the scenarios and execution of the experiments. All experiments, 
including the capture of images for the datasets, is provided using a real model of an autonomous 
vehicle, described in Section 4, hereafter referred to as an autonomous vehicle or vehicle, and a 
real MEC server connected to an emulated 5G network. The only change to the autonomous 
vehicle is the connection of the second antenna to the modem. The lab, where we make 
experiments, features an emulated network using OAI, with the gNB located in the ceiling above 
the lab. The autonomous vehicle moves in an area no more than 7 m away from the gNB. The 
bitrate measurements in the uplink and downlink directions are obtained with minimum values of 
5 Mb/s and 40 Mb/s, when the vehicle is moving. To ensure the stability and reproducibility of the 
experiment, we limited the bitrate values on the autonomous vehicle to 4 Mb/s in uplink and 40 
Mb/s in downlink. 

Next, we need to determine the speed of the vehicle to perform the experiments. The average 
speed of a car in the city is 30-40 km/h [51], when we convert this speed to our model, which is in 
1:10 scale, we get a speed of 3-4 km/h which corresponds to 1 m/s. For this reason, we conducted 
the experiments at vehicle speed 1 m/s. Higher speeds, which reflect driving outside the city or on 
the highway, are not possible due to the design of the model and the layout of the laboratory in 
which the experiments are performed.   

To ensure the regularity of the experiments, the images of the road signs are taken before the 
experiments and then processed on the vehicle or sent to the MEC server for processing. They are 
processed in the order in which they are taken, because in the experiments we are not interested 
in the exact timing of the images, but rather in evaluating what the road signs are in the images, 
possibly determining the processing time on the Raspberry Pi or on the MEC server, along with the 
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energy consumed. Due to the lack of a camera, it is necessary to take images when the vehicle is 
not moving. In the case of a moving vehicle, the captured images are often too blurry for the neural 
networks to accurately detect and classify road signs. This issue is not attributed to the limitations 
of the neural networks or the chosen solution but rather to the inadequacy of the camera system. 
Consequently, the camera's limitations significantly impact our results in case of moving vehicle. 
In total, two datasets are taken, for a stationary vehicle. One to determine the distances of each 
road sign between 30 and 600 cm, with values increasing from 60 cm by 60 cm. For each distance, 
27 photos of different road signs were taken, so that all 7 classified road signs are equally 
represented in the whole dataset. The second dataset contains 7 road signs with 27 images of 
each. The road signs are positioned 60-180 cm in front of the vehicle, so that road signs are evenly 
distributed in the area captured by the vehicle's camera.  

The distance dataset is evaluated, both on the Raspberry Pi on the vehicle and on the MEC server, 
to determine the accuracy of road sign recognition at each distance. The same dataset is used to 
evaluate the accuracy of the distance determination. 

The road sign classification dataset is then compressed using several JPG quality parameter 
values in the openCV library. Based on this, the average size of the image at a given compression 
ratio is then determined, as well as the average compression ratio for given JPG quality. Based on 
the compression size, we then search for the most appropriate file size to transfer to the MEC 
server by creating a classification accuracy for each JPG quality value. Subsequently, confusion 
matrices are created to discuss the effect of compression. All evaluations are made locally on the 
vehicle on the Raspberry Pi and on the MEC server. After finding a suitable compression size, only 
images with suitable compression are further processed for the rest of the experiments. In these 
experiments, the autonomous vehicle is not driven because we are not interested in the 
processing time of the image, but rather what is in the image, which does not affect the network 
and changing networks parameters while driving. 

Next, we evaluate the energy consumed to process one image. We measure only the energy 
consumed by vehicle in both cases, local image processing in vehicle and image processing on 
the MEC server. In these experiments, the vehicle moves at a constant speed of 1 m/s. To 
investigate the effect of the network on the consumed energy, the bitrate of the vehicle is limited 
to several values and the measurement of the consumed energy is also performed during local 
processing. The measurement of the consumed energy is done by using special USB meters [52] 
that measure the consumed energy from the power bank that is used to power the Raspberry Pi 
and the 5G modem. 

We then process the collected data and determine the deadline threshold for road sign 
recognition to avoid missing a road sign without reacting to that road sign. We perform this 
evaluation based on the stop distance of the real car, converted to the size of our vehicle. 

7.3. Performance metrics  
In this section, we first define metrics for detection and classification tasks. Next, in the metrics, 
we focus on the accuracy of determining the distance of a road sign from an autonomous vehicle. 
Next, metrics that tell us about the usability of computation at the network edge, such as power 
consumption and deadlines or process times.  
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7.3.1. Detection 
In this subsection, we introduce a detailed exploration of testing methodologies specifically 
created for evaluating the performance of detection models. Detection is the process of 
searching objects in images.  

7.3.1.1. Mean Average Precision 
The mAP [53] is a widely used metric for evaluating object detection algorithms. It is calculated 
by first determining the Average Precision (AP) for each class, which is the area under the 
precision-recall curve (PR curve) for that class. Precision and recall are defined as: 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, 

(47) 

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, 

(48) 

 

where  𝑇𝑃 is true positive, denotes the number of correctly predicted positive instances, 𝐹𝑃 is 
false positives means the number of incorrectly predicted positive instances and 𝐹𝑁 is false 
negative denotes the number of positive instances that were not correctly identified. The mAP is 
then computed as the mean of the AP values across all classes: 

𝑚𝐴𝑃 =
1

𝑁
∑ 𝐴𝑃𝑖

𝑁

𝑖=1

, 
(49) 

 

where 𝑁 is the total number of classes and 𝐴𝑃𝑖 is the Average Precision for a specific class.
  

7.3.1.2. Intersection over union 
The second metric considered in the thesis is IoU [53]. His metric measures the overlap between 
two bounding boxes and is calculated as the ratio of the intersection area to the union area: 

𝐼𝑂𝑈 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
. 

(50) 

 

The IoU values range from 0 to 1, where 1 indicates full overlap and 0 indicates no overlap. The IoU 
is often used as a criterion for evaluating the accuracy of object detection, where a suitably 
chosen IOU threshold influences the number of success detection between the ground true 
bounding box and predicted bounding box. Thus, as the IoU threshold increases, the mAP value 
tends to decrease. 

7.3.2. Classification 
In this subsection, we delve into the realm of classification testing methodologies, essential for 
evaluating the efficiency and performance of classification models. Classification is the process 
of assigning the class to examined image. 
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7.3.2.1. Classification Accuracy  
Classification accuracy 𝐶𝐴 [54] is mathematically described as follow: 

𝐶𝐴 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
, 

(51) 

 

Top-1 classification accuracy identifies whether the model correctly predicts the most probable 
class for a given input, while top-5 classification accuracy considers whether the correct class is 
among the top five predictions. However, since our focus is on accurately classifying road signs, 
we only consider top-1 accuracy in the whole thesis. 

7.3.2.2.  Confusion Matrix 
The confusion matrix [53], [55] provides a detailed overview of a classification model's 
performance across various classes. Confusion matrix compares the model's predictions with 
the actual labels in the test dataset, highlighting correct predictions along the diagonal and 
misclassifications off-diagonal in matrix. By analyzing confusion matrix, we can pinpoint the 
model's strengths and weaknesses points. The confusion matrix shows that, for example, the 80-
speed limit sign is often misclassified as a no vehicles sign. By leveraging this information, we can 
further adapt the neural network to enhance neural network classification accuracy. 

7.3.3. Distance estimation error  
The distance, in centimeters (cm), is the distance between the vehicle camera and the road sign 
using Euclidean distance. The autonomous vehicle calculates distance based on the image data 
taken by the camera and the bounding boxes found, see more in Section 6.5.3. Our goal is to 
analyze and determine the accuracy of this calculation by comparing the actual distance with the 
distance calculated by the vehicle. The distance estimation error is defined as the difference 
between the actual distance of road sign and the calculated distance of road sign.  

7.3.4. Energy consumption 
The energy consumption is measured in watt-hours (mWh) and provides an overview of the 
amount of energy consumed during the processing of the camera data. In thesis, we are not 
directly interested in energy consumption as a function of time, but we are primarily concerned 
with the energy consumption to evaluate a single image, and thus consumed energy is not 
affected by the runtime of different algorithms at different points in the network, such as when 
offloading data to an MEC server or local processing. Our primary focus is on saving energy on the 
vehicle side rather than on the MEC server side, as the server is connected to the electrical 
network. Specifically, for the local measurements, we only consider the energy consumed by the 
Raspberry Pi and add together the energy consumed by the Raspberry Pi and the 5G modem when 
processing data on the MEC server. 

7.3.5. Maximum distance of successful recognition 
The maximum distance of successful recognition refers to the longest distance, in centimeters 
(cm), over which neural networks accurately recognize and classify a road sign, with a certain level 
of confidence or classification accuracy. The measurements help in evaluating the system's 
ability to detect and classify road signs from different distances and provide insights into the 
effectiveness of road sign recognition.  
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7.3.6. File size 
The file size metric indicates the amount of digital storage space required to store a single image 
after processing or compressing them. This metric is measured in kilobytes (kB). In the context of 
our experiments, file size is a key metric because it directly affects the amount of data transferred 
over the network. Decreasing the file size usually leads to a reduction in the transmission time. By 
analyzing the file size, we can evaluate the tradeoffs between image quality and road sign 
recognition efficiency, which leads to reduced network traffic load. 

7.3.7.  Deadlines 
Deadline in the context of autonomous vehicles is the critical time, in milliseconds (ms), for a 
vehicle to recognize and start to react to a road sign. Vehicles have a certain stop distance, and 
the road sign should be safely recognized before the vehicle is closer to the road sign than the 
vehicle’s stop distance. Thus, as seen the deadline depends on the speed of the vehicle. 

7.3.8. Processing time 
Processing time, in milliseconds (ms), encompasses the duration needed for road sign 
recognition on MEC server or locally in autonomous vehicle. In local processing, processing time 
reflects the autonomous vehicle's processing duration, calculated from image capture to end of 
calculation of the recognition result. In MEC server processing, processing time reflects the time 
between receiving an image to recognize from vehicle and sending back to the vehicle a message 
about a detected road sign. Communication time on MEC server is time in ms and means the time 
between the vehicle sending the image to MEC server and vehicle receive the message with 
information about road sign. Latency, in this scenario, signifies the time data requires to traverse 
the network distance between the autonomous vehicle and the MEC server with the image, and 
vice versa, between the MEC server and the autonomous vehicle with the recognition message. 
The integration of latency into MEC processing time is pivotal for precise assessment and 
scheduling of performance within MEC systems. 

7.3.9. Bitrate 
Bitrate, expressed in kilobits per second (kb/s), is a key parameter in mobile networks because it 
determines the speed at which data is transferred over the network. A higher bitrate means faster 
data transfer, which is important for real-time applications. Bitrate is also divided into uplink, the 
speed of uploading data to the MEC server from the vehicle, and downlink, which is the speed of 
downloading data from the MEC server to the autonomous vehicle. 

7.3.10. Image resolution 
Image resolution refers to the amount of detail an image holds, measured in pixels (px). Higher 
resolution means more pixels, resulting in greater image detail and clarity, which is crucial for 
tasks processing image in neural networks. Conversely, lower resolution reduces image detail, 
making the image appear more pixelated or blurry. 

7.3.11. JPG quality 
JPEG quality refers to the compression level applied to a JPEG image, which affects both the file 
size and image quality. Higher JPEG quality results in less compression, maintaining more detail 
and clarity but producing larger file sizes. Lower JPEG quality increases compression, reducing 
file size at the cost of image detail, potentially introducing visible artifacts, and reducing overall 
image quality. 
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7.4. Achieve mAP of YOLOv3 results 
The presentation of YOLOv3 results is here, as YOLOv3 forms a significant part of the road sign 
recognition in the in our image processing pipeline. Without proper road sign detection, it is not 
possible to correctly determine the type of road sign or its distance from the camera. For road sign 
classification, it is important to find road sign’s bounding box correctly. Figure 21 presents mAP 
calculated by different IoU between predicted bounding box and ground true bounding boxes on 
own validation images. The YOLOv3 is train on own dataset described in Section 5.2, This is taken 
in consultation with the thesis supervisor. 

 
Figure 21: Dependency of mAP on IoU between ground true bounding box and predicted bounding box  

 

7.5. Classification accuracy based on distance and image resolution 
Now, we investigate how distance between the camera and road sign affect classification 
accuracy. The results of this experiment are depicted in Figure 22. For each distance, results are 
based on 27 captured and recognized images. 

 
Figure 22: Impact of distance of the vehicle from the road sign and of image resolution on classification 

accuracy. 
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Since the MEC server and the Raspberry Pi run the same neural network pipeline with the same 
weights, and the evaluated images are identical to maintain consistent conditions, the 
classification accuracy remains the same, as depicted in Figure 22.  In Figure 22 Local mean the 
processing on Raspberry Pi in vehicle and MEC means processing on MEC server.  

Figure 22 reveals that the images with a resolution of 832x832 pixels reach the highest accuracy 
(above 0.9 up to a distance of 360 cm). The classification accuracy in general decreases with the 
resolution, as expected. The classification accuracy of at least 0.9 is reached also for the 
resolution 416x416 pixels, but only for a lower distance (up to 120 cm). The impact of the distance 
on classification accuracy for all resolutions is non-monotonic. When the distance is 30 or 60 cm, 
the road signa small too close to the vehicle's camera and the neural networks are not able to 
recognize the road sign accurately, since such a small distance is not included in training. The 
highest accuracy is generally achieved when the road sign is between 60 and 180 cm from the 
camera.  

7.6. Classification accuracy based on file size 
Since transferring a high resolution images can impose a load on mobile network and can prolong 
the overall image processing, we investigate also possibility to reduce resolution of the image, but 
this has not proved robust enough as demonstrated in Figure 22. Alternative option to reduce 
volume of data for offloading is to use image compression. We used the JPEG quality compression 
from openCV2 for compression original images. It is not feasible to determine the file size of a new 
file directly from the JPEG quality, because there is stochastic equation for compression. We 
compressed 27 images at different JPEG quality levels using the OpenCV2 library, offering 
valuable insights for this purpose. We also calculate the ratio to determine the ratio of 
compressed image resolution to the original image resolution, see Table 4. The dependence of the 
size of an image of 832x832 pixels on the JPEQ Quality is shown in  Figure 23 and Figure 24. Note 
that we focus on the images with resolution of 832x832 pixels, because based on the results from 
Figure 22, lower resolutions lead to a significant degradation in classification accuracy and further 
compression would not allow to recognize road signs accurately enough. The images from the 
Figure 22 are not compressed and images have an average file size 66 kB. Classification accuracy 
in Figure 24 is based on the 27 images for every of 7 road signs. 

Table 4: JPEG Quality setting to file size  
JPEG Quality setting [-] Approximate Compression Ratio [-] 
90 0.90 
80 0.80 
70 0.70 
60 0.60 
50 0.40 
40 0.18 
30 0.15 
20 0.13 
10 0.10 
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 Figure 23: JPEG quality vs. file size Figure 24: Dependency of correct prediction probability on 

JPEG image compression 

 

From experiment with file size, we see that the compression has almost no effect on the 
classification accuracy up to JPG quality 20, where the classification accuracy is at least 0.95. 
Subsequently, for compressions with JPG quality 20 and lower, the achieved classification 
accuracy drops significantly down to a value of 0.72, see in Figure 24. It can also be noticed that 
the largest reduction in file size takes place between JPG quality values of 95 and 60, see Figure 
23. Between JPG quality 20 to 5, the file size does not decrease as much, but the classification 
accuracy decreases significantly. 

Subsequently, we create 27 testing images for each class of classified road sign, and based on 
how accurately they are classified, we generate a confusion matrix for image sizes of 832x832 
pixels and compression ratios of 95, 20, and 5. Results are in Table 5, Table 6 

  and Table 7 for the respective compression ratios. The generated confusion matrixes are the 
same for the evaluating on the MEC server as well as on the vehicle. Tables compare the impact 
of the compression ratio on recognition of the road signs. Based on experiments with file size, we 
concluded to transmit on MEC server images with JPG quality 30 for data processing on the server, 
because the achieve a classification accuracy 0.95 and the file size is significantly smaller 
compared to the JPG quality 95. Reduction in file size is 54 kB.   

Analysis of Table 5 revealed that the most common errors in road sign recognition are due to 
misclassification as not classified or not found. That is, the sign is not classified or not found at 
all. No vehicle and priority road signs are confused with each other in 2 cases and stop and no 
vehicle road signs are confused with each other in 1 case.  The end of speed limit sign shows a 
higher rate of misclassification, particularly as not found, indicating problems with its visibility in 
the chosen environment. 

Analysis of the Table 6 revealed similar trends to the Table 5, with a few differences.  For the end 
of speed limit sign, there are repeated classification errors, mostly as not found. An improvement 
is seen for the 50 km/h road sign, which shows only one error compared to the  Table 6. The no 
vehicle road sign shows the same level of accuracy in both matrices. However, the stop marker 
has improved and now shows 100% classification accuracy. And classification accuracy is lower 
in case of priority road. 
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Analysis of Table 7 revealed several differences and similarities compared to Table 5. The 20 km/h, 
50 km/h and 80 km/h road signs showed a reduction in the number of correctly recognized signs, 
with a larger proportion of errors are classified as not classified and not found. The expected result 
was that the road signs 20 km/h, 50 km/h and 80 km/h should be misclassified among 
themselves, which did not occur. The end of speed limit sign showed a similar trend to Table 5, 
with a higher number of errors classified as not found. The stop and priority road signs show 
similar errors to the Table 5, suggesting that the road signs are unique enough in shape to be 
correctly classified, even if they are not completely sharp. Overall, road sign classification errors 
are largest in Table 7, while the errors were comparable for the Table 5 and Table 6. 

Table 5: Confusion matrix for resolutions 832x832 and JEPG Quality of 95, where each class consists of a 
total of 27 images 

20 km/h 26 0 0 0 0 0 0 1 0 
50 km/h 0 25 0 0 0 0 0 2 0 
80 km/h 0 0 25 0 0 0 0 1 1 

end of 
speed limit 0 0 0 23 0 0 0 1 3 
no vehicle 0 0 0 0 25 2 0 0 0 

priority 
road 0 0 0 0 0 27 0 0 0 
stop 0 0 0 0 1 0 26 0 0 

 
20 

km/h 
50 

km/h 
80 

km/h 
end of 

speed limit 
no 

vehicle 
priority 

road stop 
not 

classified 
not 

found 
 

Table 6: Confusion matrix for resolution 832x832 and JEPG Quality of 20, where each class consists of a 
total of 27 images 

20 km/h 27 0 0 0 0 0 0 0 0 
50 km/h 0 26 0 0 0 0 0 1 0 
80 km/h 0 0 25 0 0 0 0 1 1 

end of 
speed limit 0 0 0 21 0 1 0 1 4 
no vehicle 0 0 0 0 25 2 0 0 0 

priority road 0 0 0 0 1 26 0 0 0 
stop 0 0 0 0 0 0 27 0 0 

 
20 

km/h 
50 

km/h 
80 

km/h 
end of 

speed limit 
no 

vehicle 
priority 

road stop 
not 

classified 
not 

found 
 

Table 7: Confusion matrix for resolution 832x832 and compression ratio of 5, where each class consists of 
a total of 27 images 

20 km/h 16 0 1 0 0 0 1 2 7 
50 km/h 0 15 0 1 0 0 0 5 6 
80 km/h 0 0 20 0 0 0 1 3 3 

end of 
speed limit 0 0 0 13 0 1 0 6 7 
no vehicle 0 0 0 0 22 2 0 2 1 

priority road 0 1 0 0 0 21 0 1 4 
stop 0 0 0 1 1 0 25 0 0 

 
20 

km/h 
50 

km/h 
80 

km/h 
end of 

speed limit 
no 

vehicle 
priority 

road stop 
not 

classified 
not 

found 
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7.7. Time of processing the image 
In Figure 25, we see the average processing time of one image depending on the resolution of 
images. The processing is done using a pipeline of neural network for road sign detection and 
classification, both on the MEC server and locally on the Raspberry Pi in the vehicle. This 
measurement is evaluated as the average classification time of 1 image when 27 images are 
recognized. 

 
Figure 25: Dependency of processing time on image resolution 

 

Figure 25 also illustrates the time between the start of image transmission by vehicle and 
subsequent reception of message with recognized road sign by vehicle (orange bar) with the JPEG 
quality of 30.  

7.8. Energy consumption 
We evaluate the energy required to process camera data, whether locally on the vehicle by 
Raspberry Pi or offloaded to the MEC server. The average energy consumption for processing one 
images is shown in Figure 26. For the second case, we considered both the energy consumption 
of the Raspberry Pi and the 5G modem. However, in the case of local processing, we only consider 
the energy consumed by the Raspberry Pi, as communication is not necessary for local 
computation. We try several bitrates for transfer the image to MEC server and to transfer message 
with information about road sign back to vehicle. We set the same maximum bitrates for uplink 
and downlink. The examined values of bitrate are 0, 25, 50, 100, 200, 300 kb/s. 0 kb/s refers to the 
fact that the image is not transferred to the MEC server, and the image is processed locally in the 
vehicle. As shown in Figure 26, the energy consumption during offloading is significantly affected 
by bitrates.  The lower the bitrate is the more power is consumed on the vehicle as it takes longer 
to transfer images to the MEC server. The average energy consumption by processing one image 
decreases 15 times when we compare the local processing in vehicle to transfer the image to MEC 
server with bitrate 300 kb/s. Even if we compare the local processing with the slowest bitrate of 25 
kb/s we decrease the energy consumption by 2-times. When we compare the fastest bitrate 300 
kb/s and slowest bitrate 25 kb/s we see that decrease the energy consumption by 7-times.  It is 
worth noting that the energy reduction between bitrates of 200 kb/s and 300 kb/s is not significant 
because the computation time on the server outweighs the time saved in image and message 
transmission. This experiment is based on processing 27 images. 
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Figure 26: Bitrates vs. average energy consumption of processing one image 

7.9. Error in distance estimation 
In this experiment, we look at the accuracy of determining the distance of the road sign from the 
camera. Distance from a road sign is an important metric because we can use distance to 
determine position in space as shown in Section 6.5.3. This determination of the position in 
space, and thus the distance, allows us to define the boundary of the validity of the road sign, from 
which point in space the road sign is valid. Moreover, as seen from Figure 22 and Figure 27 the 
determination of the distance of a road sign proved to be more accurate than its classification 
and, for this reason, it is possible to filter out signs that are too far away to be reliably classified. 
The accuracy of this distance determination is shown in Figure 27. The error in the distance 
estimation typically ranges around 10 cm in absolute values, with a maximum of 55 cm, while the 
average error of 14.32 cm. For the chosen distance measurement method, this result is accurate 
above expectations. The determination of the distance with an average error of 14.32 is accurate 
enough for our scale. For a maximum successful detection distance of 360 cm, the relative error 
is 4%. Error in distance evaluation is based on the 27 images for every real distance. This dataset 
is same as in Classification accuracy based on distance and image resolution in Section 7.5. Data 
computed on vehicle and on MEC server are same, therefore we plot only one of them for better 
clarity. 
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Figure 27: Dependency of calculated distance on real distance 

 

7.10. Time to react to road sign 
In this section we focus on evaluating the results from the previous sections, but first we need to 
determine the stop distance of the vehicle. This provides the vehicle with ample distance to 
respond to the road sign, enabling it to stop precisely at the road sign's location. The average 
vehicle speed in cities is around 30-40 km/h [51]. Considering the size of our model to the real car 
that is 1:10. We interpret this to average speed 3-4 km/s, which corresponds to 0.83-1.11 m/s. For 
this reason, we decided to investigate situations where the autonomous vehicle travels 0.5, 1 and 
1.5 m/s, corresponding to average speeds in cities and speeds slightly higher and lower. A table 
of stop distances converted to the size of our vehicle is in Table 8. In our case, the stop distances 
are smaller, but we use the braking distances of real cars for reference. 

Table 8: Stop distances at a given vehicle speed [56], [57] 
Vehicle speed [m/s] Stop distance [cm] 
0.5 40 
1 80 
1.5 140 

 

Maximum distance of successful recognition is in Table 9 is based on results from Figure 22. 
Confidence or classification accuracy for maximum distance of successful recognition is set to 
90% because this percentage provides a sufficient level of safety and reliability for the  
autonomous vehicle moving in the lab. The higher result was achieved with a resolution of 832 
pixels, while the worst were images with a resolution of 224 and 128 pixels, as they did not surpass 
the required threshold in classification accuracy of 90%. 

Table 9: JPEG image resolution to maximum distance of successful recognition 
Image resolution [px] Maximum distance of successful recognition [cm] 
832 360 
416 120 
224 NaN 
128 NaN 

 

We determine the maximum time 𝑡𝑚 for image processing image, before it is too late to react to 
road sing as follows:  

𝑡𝑚 =
𝑑𝑚−𝑑𝑠

𝑣
 , (52) 
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where 𝑑𝑠 denotes stopping distance, 𝑑𝑚 means maximum distance of successful recognition, 
𝑑𝑚 − 𝑑𝑠  denotes the maximal distance, that vehicle can travel before vehicle must have 
information about road sign. Time 𝑡𝑚 is also call deadline. Results are in Figure 28 and 𝑡𝑚 is show 
as text above the computed points. Only results for image resolution 832 and 416 px are shown, 
because for lower image resolution we do not recognize the road sign accurately enough, see Table 
9, as well as the result for image resolution 416 px and vehicle speed 1.5 m/s are unfeasible 
because stop distance is bigger than maximum distance of successful recognition.   

 
Figure 28: Vehicle speed vs. deadline vs. image resolution 

 
Base on Figure 25 we determined the feasible vehicle speed and images resolution. Processing 
time on autonomous vehicle is 27559 ms for image with resolution of 832 px and 6207 ms for 
image with resolution 416 px, base on this fact local processing is not feasible for this vehicle 
speed and image resolution. Consider an image resolution of 416 px and the fact that a vehicle at 
very low speeds has a stop distance of 10 cm [56], so an autonomous vehicle would have to travel 
at 0.18 m/s to be able to recognize a road sign. Similarly, for 832 px the vehicle speed is 0.01 m/s.   

The complete time it takes to recognize road sign on the MEC server for image with a resolution of 
832 px is 1632 ms, or for images with a resolution of 416 px is this time 547 ms. Considering 
comunication time in MEC server is possible to classify the images with resolution 832 px and 
vehicle speed 0.5 and 1 m/s, and the images with resolution 416 px only for vehicle speed 0.5 m/s. 
Unfortunately, the vehicle speed of 1.5 m/s is too high to react reliably to road signs in our setup.  

Based on our results from this chapter, images with a resolution of 832 px and a JPG quality of 30 
appear to be the most suitable for transfer to the MEC server. These images achieve a high level 
of classification accuracy, see Figure 24, have the largest maximum distance of successful 
recognition at set classification accuracy 0.9, see Figure 22, and there is a time safety margin [58] 
when processing images at MEC server at vehicle speeds of 0.5 and 1 m/s. 

7.11. Demonstration of the road sign recognition 
The demonstration4 of the thesis result showing the entire autonomous vehicle system in action. 
The autonomous system is activated, including path planning, and driving along the computed 
path. The algorithm in the MEC server dynamically decides which tasks to compute locally and 
which to offload on MEC server, choosing to perform image processing on the MEC server for 
whole video. We instruct the vehicle to drive to a specific point on the other side of the lab. As the 

 
4https://www.youtube.com/watch?v=aPKcAR9Qli4   

https://www.youtube.com/watch?v=aPKcAR9Qli4
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vehicle moves, its camera captures the surroundings, and upon detecting a road sign, a 
corresponding message is displayed on the terminal, as shown in Figure 29. In Figure 30, it is 
possible to see the autonomous vehicle. 

 
Figure 29: Demonstration of road sign recognition I. 

 

 
Figure 30: Demonstration of road sign recognition II. 
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8. Conclusion 
The diploma thesis has addressed the road sign detection and classification in the context of 
autonomous driving systems. In this thesis, we have developed functionalities enabling to offload 
the road sing recognition at the edge of the mobile network represented by MEC server  

For performance evaluation, a custom dataset covering seven road signs is developed. YOLOv3, 
chosen for detection due to its 40 FPS and mAP of 78.6%, running locally in the vehicle equipped 
with limited computing resources (Rapsberry Pi 4) can not handle the road sign detection and 
classification in required time, as the autonomous vehicle model would have to travel at a 
maximum speed of 0.08 m/s to obtain the information about the road sign in the sufficient time in 
advance to be able to react to the road sign. The processing time of YOLOv3 on the vehicle with 
Raspberry Pi is 26 seconds for 832 px images. However, offloading to MEC reduces processing 
time to 1.7 seconds, allowing the vehicle to travel at 1 m/s, while the autonomous vehicle has time 
to react to a recognized road sign. In the case of the local processing, no road sign is recognized 
early enough for the model of the vehicle moving with the speed of 1 m/s.  In the same scenario, 
MEC processing achieves up to 95% classification accuracy. Additionally, the experiments show 
that the energy spent for offloading is up to seven-times lower than if the processing takes place 
locally in the vehicle, depending on network bitrate.   

The developed concept for autonomous driving with road sign recognition is presented in the form 
of video, where autonomous vehicle drives in laboratory and detects and classifies the road signs.  

As future work, the dataset should be expanded to include more road signs. Another extension is 
the implementation of the acquired information on the road sign into control algorithms enabling 
autonomous vehicles to react to the road signs. Furthermore, testing an advanced camera 
providing more clear images of the road signs even at high speed and at wider range of distances 
of the vehicle to the road sign together should be tested in order to improve accuracy of the road 
sign detection and classification.  Investigation of possible energy saving and lower road sign 
detection and recognition time via multi-exit architecture and split of the neural networks should 
be explored as well. Further extension should consist in management of communication and 
computing resources for scenario with multiple vehicles and MEC servers. 
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Appendix A: Re-arrange and modify the labels in the 
dataset for detection part 
This part of appendix discusses the scripts written in Python that we write to reannotate or re-
arrange the original datasets to datasets used in this thesis. First, we learn about the dataset 
format used by our YOLOv3 implementation and then we discuss the modification process of 
Open Image Dataset v7 and GTSDB. 

A.1. Dataset format 

The neural network for detection utilized in this thesis is the You Only Look Once version 3 
(YOLOv3). It takes an image of resolution 32 × 𝑥, where 𝑥 is a natural number as input and 
generates a list of labels indicating the location and size of the road signs. These bounding boxes 
are defined using relative coordinates to the image resolution, comprising four coordinate 
numbers. The first two represent the relative position of the bounding box's center, while the next 
two denote its relative width and height. Each label consists of five numbers, including the four 
coordinates and a class identifier. Although in this thesis is only one class, YOLOv3 retains the 
ability to classify image classes for compatibility reasons across datasets. The relative 
coordinates are described in Figure 31.  

 
Figure 31: Relative coordinates 

 

The images are stored in JPEG format. The labels are stored in a conventional .txt file format. In 
cases where there is more than one road sign in the image, a corresponding label is attached to 
each road sign. Each training and validation image typically has a corresponding text file, with the 
filename often matching that of the image, albeit with a different file extension. However, this 
naming convention may not always be strictly followed. Within each text file, every row represents 
a single label, formatted as follows: Class ID, the relative position of the bounding box center for 
the X and Y coordinates, and the relative height and width of the bounding box. 

The PyTorch dataloader used for training YOLOv3 requires a specific CSV file format. Each row in 
this CSV file contains the name of an image file along with the corresponding name of the text file 
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containing the labels. These two names are separated by coma. Two separate CSV files are used, 
one for training the neural network and the other for validation purposes. All images for both 
training and validation are stored in a single large folder, and the same applies to the labels. Each 
dataset includes two folders and two corresponding CSV files. 

A.2. Create datasets from Open Images Dataset V7 

The dataset is divided into two separate folders, one containing images for validation purposes 
and the other for training purposes. The labels come in two CSV files, first with labels for training 
and second with labels for validation. Each row of these files contains the name of the image and 
the label in this image. Labels consist of class ID, position of the top left, and the top right corners 
of the bounding box. These positions are in relative coordinates to the resolution of the picture. 
Some additional information about the relationship between bounding boxes is also presented on 
this label. This information is not used for creating datasets for YOLOv3. The biggest challenge in 
this dataset is the number of bounding boxes because images and their annotations are 
downloaded also with other labels than road signs. For the new dataset, we only chose labels that 
represent the road sign class, and we assigned the class ID 0 to these bounding boxes. On every 
picture with road signs are also other labeled objects like cars or others and these things are also 
written in CSV file.  

Conversion between the notation used in YOLOv3 and Images Dataset V7 is described below:  

𝑥𝑐 =
𝑥1 + 𝑥2

2
, 

(53) 

𝑦𝑐 =
𝑦1 + 𝑦2

2
, 

(54)  

𝑤 = 𝑥2 − 𝑥1, (55) 

ℎ = 𝑦2 − 𝑦1, (56) 

 

where the 𝑥𝑐 and 𝑦𝑐  are relative positions of the center of the bounding box, 𝑥1, 𝑦1, 𝑥2 and 𝑦2 are 
relative positions of the top-left and bottom-right corners, the variable 𝑤 denotes the width of the 
bounding box and ℎ means the height of the bounding box. By doing the dataset the images are 
also resized to 832 pixels. This step is done because we want to save time in the loading process 
in a neural network, but the data loader can resize the images too. 

This process is facilitated by a simple Python script. Initially, the script parses through the CSV file 
line by line. Each row is then split by commas to extract individual items. Subsequently, the script 
filters out rows containing the class code "/m/01mqdt", indicative of a road sign class and it works 
only with these filtered labels. For each of these rows, the first item denotes the image name to 
which the label belongs. Initially, an attempt is made to locate in the image folder a corresponding 
.txt file with the same name as the image. In cases where the .txt file is not found; a new one is 
created. Following this, information from the fifth to eighth item, representing the coordinates 
(𝑥1, 𝑦1, 𝑥2, 𝑦2) in sequence, is extracted. These bounding box coordinates are then recalculated to 
confrom to the YOLOv3 format using (53)-(56). The class ID is added to these coordinates. In our 
case, it is 0 for every label. Finally, this updated information is appended to the corresponding .txt 
file associated with the image labels. Script is run separately for the training and the validation 
folder with the corresponding CSV file. 
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Now we need to create a CSV file with the names of the images and corresponding labels and then 
we need to put the images and labels into separate folders common for training and validating.  
The Python script assumed that both images and labels are stored in a single folder. Since the 
data for training and validation are divided into two separate folders, the script first loaded the 
names of all files in a specified folder. These names are then divided into two groups: one for 
images and the other for text files containing labels. Next, the script iterated over the image 
names, checking for corresponding text files. If a matching text file is found, the script wrote the 
file names into the CSV in the format: "image.jpg, label.txt". Files with different extensions are 
skipped, and if a corresponding text file is not found for an image file, a warning is logged to the 
console.  

The second Python script initially created two folders named "labels" and "images". Subsequently, 
it loaded all file names from the training and validation folders. Using the load names, the script 
then copied the files and stored them in the respective folders. JPEG images are copied to the 
"images" folder, while text files containing labels are stored in the "labels" folder. Any other files 
present in the original folders are not copied by the script. Open Image Dataset v7 consists of two 
separate folders, one for validation and one for training purposes. This helps us to create a two 
separate CSV files. 

A.3.  Create datasets from GTSDB 

This dataset is structured similarly to the Images Dataset V7, with the primary distinction lying in 
the label notation. It utilizes bounding box descriptions, specifying the absolute positions of the 
top-left and bottom-right corners in pixels within the image. Additionally, it contains only classes 
relating to road sign types. During the dataset preprocessing for YOLOv3 compatibility, all classes 
are unified under a single class labeled "road signs" with a class ID of 0.  

Recalculation of bounding boxes to the relative distance used in YOLOv3 from an absolute 
position is described as follows: 

𝑥𝑐 =
𝑥1 + 𝑥2

2 ∙ 𝑤𝑝
, 

(57) 

𝑦𝑐 =
𝑦1 + 𝑦2

2 ∙ ℎ𝑝
, 

(58) 

𝑤 = 𝑥2 − 𝑥1, (59) 

ℎ = 𝑦2 − 𝑦1, (60) 

 

where the 𝑥𝑐 and 𝑦𝑐  relative positions of the center of the bounding box, 𝑥1, 𝑦1, 𝑥2 and 𝑦2 are 
absolute positions of the top-left and bottom-right corners. 𝑤 is the width of the bounding box 
and ℎ is its height. 𝑤𝑝 and ℎ𝑝 are the width and height of the image in pixels.  

The challenge lies in the image format, as the pictures are in .ppm format, which is 
unconventional. However, Python's OpenCV library can readily convert them to the JPEG format 
used in this project. During the image loading process in Python scripts, we also resize them from 
their variable resolution to 832 pixels by 832 pixels. This resizing is done because YOLOv3 accepts 
input images of this resolution, allowing us to save time in the YOLOv3 pipeline in the training 
process. 
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We need to create the CSV files and re-arrange images and labels into separate folders called 
“images” and “labels”. These scripts are the same as the scripts used at the end of Appendix A.2. 
for the same purpose. 

A.4. Adapting own dataset 

The own dataset downloaded from Robotflow is in the YOLO darknet format as it closely aligns 
with our desired format. In this format, labels are correctly structured and stored in text files 
corresponding to the image names. However, there is no CSV file for training and validation of the 
YOLOv3 network. Moreover, all images are stored in two separate folders. The first folder includes 
validation images and the second covers training images. In both folders, there are images 
together with their labels. We developed a Python script to generate CSV files, and another script 
is created to organize the labels and images into two separate folders, one for validation and one 
for training. Scripts are the same as the scripts used at the end at the end of Appendix A.2. for the 
same purpose. 
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Appendix B: Git repository structure  
In this appendix we describe the structure of the work at GIT5, mainly focused on debugging neural 
network with is in branch NeuralNetwork and implantation to MEC server and autonomous 
vehicle is in branch Main. 

B.1. NeuralNetwork branch: 
 Main branch for development of neural networks. 

 B.1.1. YOLO directory: 
  Implantation of YOLOv3 for the road sing detection. Partly taken from [45].  
  config.py - Information about YOLOv3 configuration  

dataste.py - Load dataset from directory 
eval.py - Main file for evaluating - input is file with trained YOLOv3  
loss.py - Implement YOLOv3 loss function  
train.py - Main file to train YOLOv3 - output is file with trained weights  
utils.py - Implementation of support function 

B.1.2. NeuralNetworkForClasification/new directory: 
  Implementation of neural network for the road sign classification. 
  eval.py - Main file for evaluating - input is file with trained model 

train.py - Main file to train neural network- output is file with trained model 

B.1.3. helpUtilities directory: 
 Implementation of help scripts to work with datasets. 

compressonJpg.py - Compress all images in directory to desire JPG quality  
csvCreate.py - Create a CSV file to ensure YOLOv3 format 
drawBoundigBox.py - Open image and show bounding box  
kamera.py - Open camera port and capture the images  
numberOfImages.py - Calculate the number of images and plot them in graph  
porvnej.py - Compare two images in image1_path and image2_path  
redirect.py - Redirect the .txt and .jpg to two separate folders  
rename.py - Rename the name of .jpg to more suitable format  
renotate.py – Re-annotate dataset to YOLOv3 format  
resizePicture.py - Resize picture in input directory and save in output directory  
showAndDiscard.py – Load image and show it with bounding boxes 

B.1.4.  pipeline directory: 
Implementation of pipeline of neural networks for the road sign detection and 
classification.  
config.py - Information about YOLOv3 configuration  
eval.py - Test file for evaluating YOLOv3 with Nural network for image classification  
model.py - Implement YOLOv3 architecture  
utils.py - Implementation of support function 

 

  

 
5 https://gitlab.fel.cvut.cz/mobile-and-wireless/autonomous-driving/-/tree/main?ref_type=heads 
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B.2. Main branch: 

Main branch of project autonomous vehicle. 

B.2.1. MEC/CNN-Kafka directory: 
Implementation of pipeline of neural networks for the road sign detection and 
classification on MEC server in Docker composer.  
config.py - Information about YOLOv3 configuration  
eval.py - Test file for evaluating YOLOv3 with Nural network for image 
classification, developed together with Anastas Nikolov   
model.py - Implement YOLOv3 architecture  
utils.py - Implementation of support function 

B.2.2. trax_repo/src/camera/src 
Implementation of local processing of neural networks for autonomous vehicle. 
camera.py – Take image by camera and send them to ROS environment. 
camera2.py-Load images from folder and send them to ROS environment, 
designed for test purposes 
camera3.py-Rake images from camera, based on a message from the manager, it 
decides whether to send the image to the ROS environment for processing on the 
MEC server or to process the image locally in the autonomous vehicle. 
config.py - Information about YOLOv3 configuration  
model.py - Implement YOLOv3 architecture  
utils.py - Implementation of support function 
 
 

 
  


