
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Graphics and Interaction

Scene optimization for RTX

Bc. Tomáš Bilák

Supervisor: doc. Ing. Jiří Bittner, Ph.D.
Field of study: Open Informatics
Subfield: Computer Graphics
May 2024

ii

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

435592 Personal ID number: Bilák Tomáš Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Computer Graphics and Interaction

Open Informatics Study program:

Computer Graphics Specialisation:

II. Master’s thesis details

Master’s thesis title in English:

Scene optimization for RTX

Master’s thesis title in Czech:

Optimalizace scény pro RTX

Guidelines:

Bibliography / sources:

[1] Meister, Daniel, and Jiří Bittner. 'Parallel locally-ordered clustering for bounding volume hierarchy construction.' IEEE
transactions on visualization and computer graphics 24.3 (2017): 1345-1353.
[2] Carsten Benthin, Sven Woop, Ingo Wald, and Attila T. Áfra. 2017. Improved two-level BVHs using partial re-braiding.
In Proceedings of High Performance Graphics (HPG '17). Association for Computing Machinery, New York, NY, USA,
Article 7, 1–8.
[3] Wald, I., Morrical, N., Zellmann, S., Ma, L., Usher, W., Huang, T., & Pascucci, V. (2020). Using Hardware Ray Transforms
to Accelerate Ray/Primitive Intersections for Long, Thin Primitive Types. Proceedings of the ACM on Computer Graphics
and Interactive Techniques, 3(2), 1-16.

Name and workplace of master’s thesis supervisor:

doc. Ing. Jiří Bittner, Ph.D. Department of Computer Graphics and Interaction

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 24.05.2024 Date of master’s thesis assignment: 16.02.2023

Assignment valid until: 22.09.2024

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signature doc. Ing. Jiří Bittner, Ph.D.
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

iv

Acknowledgements

I want to express my special thanks to my
supervisor doc. Ing. Jiří Bittner, Ph.D.
for his guidance and patience throughout
the entire course of this project.

I sincerely thank everyone who sup-
ported me during my everlasting studies.
My loving parents in the first place, who
are always supportive. My dear partner
Babu, formally second, but certainly not
in second place, for her love, care, and
understanding during the completion of
this work.

Declaration

I hereby declare that the presented thesis
is my own work and that I have cited
all sources of information in accordance
with the Guideline for adhering to ethical
principles when elaborating an academic
final thesis.

In Prague, 24. May 2024

v

Abstract

Ray tracing complex scenes in real-time
is possible today and with technologi-
cal advancement even fairly performant.
Hardware ray tracing in consumer graphic
cards is one of the newest additions. This
thesis researches RTX architecture in par-
ticular with aim to optimize scene for Op-
tiX acceleration structure builder. Our
method is focusing on reducing overlaps
between objects by splitting or merging
them based on certain rules and con-
traints.

Keywords: ray tracing, RTX, OptiX,
scene optimization, instancing,
acceleration structures

Supervisor: doc. Ing. Jiří Bittner,
Ph.D.

Abstrakt

Sledovanie lúčov v komplexných scénach
v reálnom čase je dnes možné a s tech-
nologickým pokrokom dokonca pomerne
výkonné. Hardvérové sledovanie lúčov v
spotrebiteľských grafických kartách je jed-
ným z najnovších prírastkov. Táto práca
sa zaoberá najmä architektúrou RTX s cie-
ľom optimalizovať scénu pre tvorbu akce-
leračnej štruktúry knižnicou OptiX. Naša
metóda sa zameriava na zníženie prekrýva-
nia medzi objektmi ich rozdelením alebo
zlúčením na základe určitých pravidiel a
obmedzení.

Kľúčové slová: sledovanie lúčov, RTX,
OptiX, optimalizácia scény,
inštancovanie, akceleračné štruktúry

Preklad názvu: Optimalizácia scény pre
RTX

vi

Contents

1 Introduction 1

1.1 Goals . 2

2 Analysis 5

2.1 Ray tracing 5

2.2 Acceleration data structures 7

2.3 Cost function 10

2.4 Instancing geometry 11

2.5 RTX architecture 12

2.6 OptiX . 13

2.7 OWL - OptiX 7 wrapper library 15

3 Related work 19

3.1 Scene layout optimalization 19

3.2 Using instancing as hardware OBB
test . 20

3.3 Partial rebraiding of two-level
BVH . 22

4 Implementation 25

4.1 Scene optimization 25

4.2 Visual tools 27

4.3 GUI . 30

4.4 Automation scripts 32

4.5 Third-party libraries 35

5 Results 37

5.1 Configurations tests 38

Experiment 1: Parameters
comparison for BVH method 39

Experiment 2: Parameters
comparison for Overlap method . 39

Experiment 3: Performance
comparison of rendering animated
geometry . 41

5.2 Scene optimization performance 43

Experiment 4: Perfomance
comparison of implemented
methods on chosen scene setups . 43

6 Conclusion 47

A Bibliography 49

vii

Figures

1.1 Dürer’s door 1

2.1 Ray tracing diagram 6

2.2 Hard vs. soft shadows 7

2.3 Example of a BVH 9

2.4 Scene organization 11

2.5 Overlapping of BLASes 11

2.6 Pascal vs. Turing BVH search . . 12

2.7 Graph of OptiX 7 programs
relationship . 13

2.8 Shallow IAS vs. multi-level IAS 14

3.1 Single BLAS 20

3.2 BLAS per object 21

3.3 OBB test with masquerading
technique . 21

3.4 Illustration of re-braiding method 22

4.1 Transparent model view 28

4.2 Heatmap model view 29

4.3 AABB model view 30

4.4 GUI tabs . 31

5.1 Tracing performance of BVH’s . 39

5.2 Scene fragmentation comparison 40

5.3 Skip threshold comparison on all
scenes . 40

5.4 SoM thresholds tracing
performance . 41

5.5 105 instances traversal
performance . 43

5.6 Instanced scene comparison 43

5.7 Traversal comparison of all
methods on Fireplace scene 44

5.8 Traversal comparison of all
methods on Conference scene 44

5.9 Traversal comparison of all
methods on Sibenik scene 45

5.10 Traversal comparison of all
methods on Sponza scene 45

5.11 Traversal comparison of all
methods on Powerplant scene 46

5.12 Traversal comparison of all
methods on San Miguel scene 46

viii

Tables

2.1 Build flags properties 15

4.1 Scene file parameters 33

4.2 Environment file parameters . . . 34

5.1 Geometric complexity of the tested
scenes . 37

5.2 Build performance of BVH’s . . . 39

5.3 Skip thresholds build statistics . 42

ix

Chapter 1

Introduction

Creating a visualization of the scene using ray tracing is known from the 16th
century. At the time, ray tracing was mechanical with the tool called Dürer’s
door. Ray was cast with a thread hanging on the hook through the wooden
frame of Dürer’s door to a point in the scene. This technique brought dotted
outlines of an object in the manner of hours [Hof90].

Figure 1.1: Illustration of Dürer’s door by Dürer himself [Dür25].

1

1. Introduction
Later, at the turn of the sixties and seventies of the 20th century, computer

scientists created the first computer programs to render the surface of simple
objects of the scene using ray tracing [App68]. In 1979 Turner Whitted
formulated the first recursive ray tracer, which bounced rays between objects
of the scene and made visualization of reflection and refraction possible.
Working with the hardware limitations of the time simple scene with one glass
sphere and one metal sphere on a checkered plane took 74 minutes to render.
Dimensions of the rendered image were 480 by 640 pixels with Warnock-type
sampling. Further on, according to Whitted [Whi80], time spent by the
program was divided into three categories: 13% Overhead, 75% Intersection,
and 12% Shading. For complex scenes, the report states that 95% of the time
takes the intersection part.

Other problems surfaced: fast intersection tests and the organization of
the scene. Various intersection problems are described by Hanrahan [Han89].
Intersection tests compute whether the ray hits a primitive in the scene. Ray-
triangle is probably the most common intersection test pair. Fast computation
and low memory requirement of this problem were proposed by Möller and
Trumbore [MT97], which might be especially useful in today’s hardware-
implemented intersection tests. For the second problem mentioned, many
different acceleration structures exist for various purposes. Even after a few
decades of research, it is a very active topic in computer graphics and is the
primary focus of this thesis.

1.1 Goals

The primary objectives of this master thesis revolve around two pivotal ideas.
The first idea is based on prior experimental testing, which showed that
the quality of RTX Application Programming Interface’s (API) acceleration
structure depends on scene organization. The basis of this critical idea is
described in Section 3.1. The second idea is to exploit instancing transforma-
tions to boost hardware ray-bounding box intersection tests. More details
are described in Section 3.2.

The common objective of both ideas is ultimately to reduce the time of
finding the closest intersection between the ray and the triangle. While the
first idea aims to do that by preparing the scene before it is handled by RTX
API to increase the quality of the resulting acceleration structure, the second
idea intends to reduce search space by using appropriate transformation to
minimize the area of the object’s bounding volume.

2

.. 1.1. Goals

Before the mentioned ideas are further explored, it is essential to set out
all goals. We have identified these critical goals:

. Research related work and RTX architecture. Develop prototype application. Explore and test analyzed ideas. Compare the results of the original scene with the optimized one

3

4

Chapter 2

Analysis

This chapter describes the fundamentals of the explored domain. In the open-
ing section, the basics of ray tracing are explained. Later defines acceleration
data structures and explains cost function in the two following sections. The
further section illustrates the concept of instancing using two-level acceler-
ation structures. The last three sections are dedicated to RTX from the
bottom to the most abstract level. The first of three sections zooms in on
the hardware architecture. OptiX ray tracing API is outlined in the second
section, and the final section of this chapter is about OWL, the OptiX 7
wrapper library.

2.1 Ray tracing

Ray is a half line; it is described by starting point RO, also called origin, and
its direction vector −→

RD. Direction is usually normalized (|−→
RD| = 1). The

parametric equation can express any point on the ray:

P = RO + t ∗
−→
RD, t ≥ 0

The ray tracing fundamentally shoots rays from the camera through the
projection plane into the scene and looks for the closest hit. The naive
approach to finding the closest hit tests each primitive for an intersection.
That induces testing for an intersection between each primitive and each

5

2. Analysis

Light Source

Scene Object

Shadow Ray
View Ray

Image

Camera

Figure 2.1: Ray tracing diagram. Image courtesy of Henrik [Hen08].

ray. For a full image of w by h pixels, at least NR = w ∗ h rays have to be
shot. The total complexity of this method for a scene with NO objects is
O(NR ∗ NO), and the intersection test is computed for every ray-primitive
pair. If we consider that we only solved hits for primary rays and usually
secondary rays are needed at the minimum, depending on the shading model,
the naive algorithm is obviously infeasible for any performance-oriented use.

Secondary rays have a crucial role in simulating complex lighting interac-
tions and optical effects to achieve realistic image synthesis. They are used
mainly for simulating the shading of reflective and refractive materials and
global illumination.

Shadow rays compute the contribution of light sources from the scene,
and they can be terminated early if anything is hit before reaching the light
source. Sampling each light source with multiple shadow rays is a technique
commonly applied with area lights. Each sample directs shadow ray at a
different point of the area light’s surface. If all shadow rays reach a light
source without being interrupted by other objects, the surface is fully lit.
Partial occlusion of shadow rays creates soft shadows and the region where
all surface points have only a portion of the light source visible is called the
penumbra. Furthermore, if all shadow rays intersect scene objects before
hitting the light source, that light is totally excluded, and the region of such
surface points is called the umbra. The difference between hard shadows and
soft shadows is depicted in Figure 2.2.

6

.............................. 2.2. Acceleration data structures

umbra

penumbra

occlusion object

hard shadow

point light area light

surface
soft shadow

Figure 2.2: Hard shadows with umbra only from point light on the left, soft
shadows from area light on the right.

2.2 Acceleration data structures

Grouping the scene’s geometry into subsets helps prune the search space
when traversing the scene with a ray. For fast trace, a structure with good
quality is needed, but dynamic scenes need refitting or rebuilding of the
structure every few frames. Arvo and Kirk [AK89] name a multitude of ray
tracing acceleration techniques in their survey, but in relation to acceleration
structures, they organized solutions into two categories: Bounding volumes
and hierarchies and 3D spatial subdivisions. The second-mentioned can be
further broken down into Uniform spatial subdivision and Nonuniform spatial
subdivision. Meister et al. [Mei+21] state that bounding volume hierarchy
(BVH) has been the dominant acceleration data structure used for ray tracing
in the last decade. As the reasons for BVH’s popularity, the authors identify
four key attributes:

. Predictable memory footprint. Robust and efficient query. Scalable construction. Dynamic geometry

Memory complexity of BVH can be calculated in advance, for example,
binary BVH would consist of 2n − 1 nodes maximally, where n is the number

7

2. Analysis
of scene primitives. Finding intersections without acceleration structure
means linearly testing every primitive in the set, while time complexity using
acceleration structures decreases to logarithmic on average.

BVH construction can be classified based on its approach to organizing and
partitioning the spatial hierarchy. Broadly speaking, there are three main
categories:

. top-down construction. bottom-up construction. incremental construction

Top-down construction initially holds all primitives at the root node and
recursively splits every node into two subnodes until one of the termination
criteria is met. It may be desirable to terminate the algorithm based on a
number of primitives in the node, maximum tree depth, maximum memory
quota, or a combination of these criteria. An example of such a top-down
algorithm is shown with pseudocode in Listing 2.1.

1 root contains all scene primitives
2 push root onto the stack
3 while stack is not empty do
4 pop node from the top of the stack
5 if termination criteria for node are met then
6 make node leaf
7 else
8 split primitives in node into children
9 assign children as child nodes of node

10 foreach child in node do
11 push child onto the stack

Listing 2.1: The basic top-down construction algorithm. Algorithm courtesy of
Meister et al. [Mei+21]

Bottom-up construction, on the other hand, starts with all primitives as
leaves and incrementally groups pairs (or more) of nodes together until one
root node is formed. Both methods require all primitives before construction.
Incremental construction doesn’t have this requirement, which is beneficial if
primitives are streamed on demand, but the quality of such trees is expected
to be suboptimal.

8

.............................. 2.2. Acceleration data structures

1 push root onto the stack
2 while stack is not empty do
3 pop node from the top of the stack
4 if ray intersects node then
5 if node is not leaf then
6 foreach child in node do
7 push child onto the stack
8 else
9 foreach prim in node do

10 test whether ray intersects prim

Listing 2.2: The basic stack-based traversal algorithm. Algorithm courtesy of
Meister et al. [Mei+21]

Traversal of BVH usually starts at the root of the hierarchy and progresses
downward through nodes. Ray is tested for intersection with the node’s
bounding volumes and continues inside if they intersect while skipping the
entire node otherwise. When the ray reaches a leaf node and intersects
primitive, the distance from the origin is noted. Any following intersection
tests may be terminated prematurely if the distance to the node’s bounding
volume is greater than the nearest hit noted so far. The traversal ends when
there are no nodes left to test, either because nodes were pruned or already
tested. In some cases, early termination may occur after any hit is found, for
example, when light source occlusion is tested with shadow rays. An example
of a stack-based traversal algorithm is demonstrated in Listing 2.2.

Figure 2.3: An example of a BVH built over four primitives. BVH nodes contain
bounding volumes (axis-aligned bounding boxes), and primitives are referenced
in leaves. While traversing the BVH to find the ray/scene intersection, we cull
the entire subtree of node C since the ray does not intersect the associated
bounding box. Image courtesy of Meister et al. [Mei+21].

9

2. Analysis
Spatial subdivision methods are also used as acceleration data structures,

namely uniform grids, octrees, and kd-trees. Kd-trees are known for forming
good-quality trees, but their build times are long and cannot be refitted if
the geometry is dynamic.

2.3 Cost function

The cost function is a metric used to evaluate the effectiveness of a particular
split or partitioning strategy during the construction process. The goal is
to find an optimal spatial hierarchy that minimizes the expected cost of
traversing the hierarchy and intersecting rays with the contained geometry.
The most widely used cost function in BVH construction is the Surface Area
Heuristic (SAH). Goldsmith and Salmon [GS87] formulated this heuristic,
where the key idea is in evaluating the cost of the hierarchy as a ratio between
the sum of surface areas of inner nodes and leaf nodes to the surface area
of the root node. The equation for hierarchy cost, sometimes referred to as
quality, is:

C = 1
Sroot

∗ ((
leaves∑

l=1
Sl ∗ Ci ∗ Nl) + (

nodes∑
n=1

Sn ∗ Ct))

where Sroot is the surface area of the root node, leaves is the number of leaves
in the BVH, Nl is the number of primitives in the leaf, nodes is the number
of inner nodes in the BVH, Ci is constant for the cost of intersection test with
primitive, and Ct is constant for the cost of intersection test with bounding
volume.

The SAH is typically used in a recursive fashion during a top-down BVH
construction process. The algorithm evaluates different split candidates and
selects the split that minimizes the overall SAH cost. This process is applied
recursively until termination criteria are met, and the hierarchy is constructed.
Finding the optimal BVH is, according to Karras and Aila [KA13], an NP-hard
problem.

Other cost functions were proposed to overcome the shortcomings of the
SAH, but mostly they either address specific scenarios or are not as robust
as the SAH.

10

................................. 2.4. Instancing geometry

2.4 Instancing geometry

Instancing geometry means creating the bottom level acceleration structure
(BLAS) for one geometry group and then using the same group instance
in the top level acceleration structure (TLAS) multiple times. Instancing
geometry helps minimize memory consumption and overhead time needed
for copying smaller buffers between CPU and GPU. Yet each instance node
can still have separate data describing the instance’s material, scale, rotation,
and translation.

Figure 2.4: Independent BLAS instances with overlapping bounding boxes (left)
and one merged BLAS instance (right). Image courtesy of Sjoholm [Sjo22].

Instancing reduces memory usage, but sometimes for the sake of faster trace.
Bad mesh organization may lead to ineffective traversing of the scene. It is
recommended to cluster multiple instances into a single geometry group should
their bounding boxes overlap heavily, as seen in Figure 2.4. In Figure 2.5, on
the other hand, splitting into smaller separate groups is best practice if there
is a lot of empty space in the geometry group [Sjo22].

Figure 2.5: Geometries in two BLASes with overlapping bounding boxes with
a lot of empty space (left). After geometries are split into four independent
BLASes, the bounding boxes no longer overlap (right). Image courtesy of
Sjoholm [Sjo22].

11

2. Analysis
2.5 RTX architecture

New RTX architecture with the code name Turing designed by NVIDIA was
described as “the biggest architectural leap forward in over a decade” [Kil+18].
The major innovation of the Turing GPU is the new architecture of the
streaming multiprocessor, which contains eight Tensor Cores and one RT
Core. Tensor Cores are focused on matrix computations essential for deep
learning operations, such as deep learning supersampling. RT Cores are
specified for quick ray-box and ray-triangle intersection tests. Figure 2.6
compares older Pascal architecture using software emulation and newer Turing
architecture using RT Core’s hardware acceleration search in BVH [Kil+18].

Figure 2.6: Ray tracing pre-Turing (top), Turing ray tracing with RT cores
(bottom). Image courtesy of NVIDIA [Kil+18].

12

..2.6. OptiX

2.6 OptiX

NVIDIA OptiX is a general-purpose, highly programmable ray tracing API.
In contrast with previous versions, OptiX 7.0+ offers developers a new low-
level CUDA-centric API with direct control of memory, compilation, and
launches [NVI22b]. When referring to OptiX in this report, further on
OptiX 7.6 is explicitly meant. Particular shading operations are computed
in executable code on the GPU called a program, also known as a shader
in DXR and Vulkan. Traversal of the scene is one of eight interconnected
programs. The relationship of programs is visualized in Figure 2.7, where
gray represents user programs and green fixed-function, hardware-accelerated
operations.

Figure 2.7: Relationship of NVIDIA OptiX 7 programs. Green represents fixed
functions; gray represents user programs. Image courtesy of NVIDIA [NVI22a].

Geometric data is connected to programs via the Shader Binding Table
(SBT). The SBT consists of records. Each record has two regions, header
and data. The record header serves OptiX to describe programs available for
specific primitives. The record data is used by programs to retrieve primitive
or program-specific parameter values.

Ray tracing queries are initiated with optixTrace call. The ray payload
may be passed to other programs through optixTrace, but the payload is lim-
ited to thirty-two 32-bit integer values. Each one can be read from and written
to by getter/setter functions (optixGetPayload_x and optixSetPayload_x,
xϵ[0, 31]). If the payload is not sufficiently large, a pointer to stack-based
variables or application-managed global memory can be encoded in it.

Acceleration structures in OptiX are built on the device. Their implemen-
tation and data layout is GPU architecture-specific but based on the BVH
model. Two basic types are provided, geometry acceleration structure (GAS)
and instance acceleration structure (IAS). GAS is built over primitives and is
the same as BLAS in DXR or VulkanRT. IAS is similar to TLAS in DXR and

13

2. Analysis
VulkanRT with the advantage of supporting multi-level instancing. Keep-
ing IAS shallow is recommended because traversing multiple layers of IAS
brings round trips between streaming multiprocessors and RT Cores [Har19].
Figure 2.8 shows conceptual execution models of shallow IAS, where every
program runs on RT Core, and multi-level IAS, where transforms have to be
computed back on streaming multiprocessor.

Figure 2.8: Comparison of program conceptual execution models between shallow
(2-level scene, top) versus deeper multi-level IAS (3-level scene, bottom). Image
courtesy of Hart [Har19].

Building acceleration structures with OptiX 7 doesn’t allow for extensive
control over the choice of BVH algorithm construction, but it may be affected
by build flags. Two mutually exclusive flags are PREFER_FAST_TRACE
and PREFER_FAST_BUILD. Allowing refitting with ALLOW_UPDATE
is useful for dynamic geometry. Table 2.1 summarizes possible build flag
options and states what properties should acceleration structure hold. AL-
LOW_COMPACTION build flag is most efficient with static geometry and
might be reasonable with dynamic geometry, which doesn’t update often and
has a long lifetime. Compaction requires another build pass, and spending
additional build time on dynamic geometry every few frames will bring no
benefit, but the opposite [Dun19].

14

............................ 2.7. OWL - OptiX 7 wrapper library

FT FB AU Properties Example

1. ✗ ✓ ✗

Fastest possible build.
Slower trace than 3.

and 4.

Fully dynamic geometry
like particles, destruction,
changing prim counts, or
moving wildly (explosions,
etc.), where a per-frame

rebuild is required.

2. ✗ ✓ ✓

Slightly slower build
than 1., but allows
very fast update.

Lower LOD dynamic
objects, unlikely to be hit
by too many rays but still

need to be refitted per
frame to be correct.

3. ✓ ✗ ✗

Fastest possible trace.
Slower build than 1.

and 2.

Default choice for static
level geometry.

4. ✓ ✗ ✓

Fastest trace against
updateable AS.

Updates are slightly
slower than 2. Trace a

bit slower than 3.

Hero character, high-LOD
dynamic objects that are
expected to be hit by a

significant number of rays.

Table 2.1: Combination of flags with their properties and examples. FT - Fast
trace, FB - Fast build, AU - Allow update [Dun19].

2.7 OWL - OptiX 7 wrapper library

OptiX 7 wrapper library (OWL) is an abstraction layer on top of OptiX 7 cre-
ated by Ingo Wald. [Wal20a; Wal20b] It is a productivity-oriented library and
aims to make it easier to write OptiX programs. OWL provides higher-level
abstractions than OptiX with CUDA for operations such as creating device
buffers, uploading data, building shader programs and pipelines, building
acceleration structures, etc. Although there are some features currently not
supported by OWL most of the key concepts are supported, such as:

. Buffers realized via CUDA allocated memory.Abstraction for geometries and geometry types. Creation of groups and acceleration structures. Instancing and multi-level instancing through Instance Groups.Abstraction/Automatic creation of SBT, Programs, etc..Multi-device rendering

15

2. Analysis
. Parametrization of device-side Geometries, Launch Params, etc. via

Variables. Support for launch parameters, asynchronous launches, and CUDA
interop

Passing information from the host program to the device counterpart is
performed via the OWL variables concept. Variables are used to specify
data for Geometries and their Closest-Hit, Any-Hit, Intersect, and Bounds
programs, RayGen programs, Miss programs, and Launch Parameters. Setting
up variables consists of four steps:..1. Declaring the device-side C++/CUDA class or struct that the program(s)

operate on the device...2. Creating an OWLRayGen, OWLMissProg, OWLGeoType, etc. on the host
that describes this device-side struct, and what Variables/members this
class has...3. Assigning values to these objects’ variables on the host side...4. OWL takes care of getting these values to the device(s), putting them
into the SBT or OptiX Launch Parameters, etc.

The initial two steps are shown in Listings 2.3, 2.4, where a simple struct
with triangle mesh and material data is declared for the device data in the for-
mer example and declaring of the set of variables using an array of OWLVarDecl
is declared in the latter one. After declaring an array of OWLVarDecl, it is
used for the creation of OWLGeomType. Launch Params are created in the same
fashion but with their respective objects and functions. OWLGeomType has
OWLParams counterpart and is created via call to owlParamsCreate function
with same input layout as owlGeomTypeCreate.

1 struct TriMesh {
2 float3 *vertices;
3 float3 *normals;
4 int3 *indices;
5 struct {
6 float3 diffuseColor;
7 cudaTextureObject_t texture;
8 } material;
9 };

Listing 2.3: Example of simple struct declaration for device data

16

............................ 2.7. OWL - OptiX 7 wrapper library

1 OWLVarDecl triMeshVars[] = {
2 { "vertices", OWL_BUFPTR,
3 OWL_OFFSETOF(TriMesh,vertices) },
4 { "normals", OWL_BUFPTR,
5 OWL_OFFSETOF(TriMesh,normals) },
6 { "indices", OWL_BUFPTR,
7 OWL_OFFSETOF(TriMesh,indices) },
8 { "diffuseColor", OWL_FLOAT3,
9 OWL_OFFSETOF(TriMesh,material.diffuseColor) },

10 { "texture", OWL_TEXTURE,
11 OWL_OFFSETOF(TriMesh,material.texture) },
12 { nullptr /* sentinel to mark end of list */ }
13 };
14
15 OWLGeomType triMeshGT = owlGeomTypeCreate(context,
16 OWL_GEOM_TRIANGLES,
17 sizeof(TriMeshVars),
18 triMeshVars,
19 -1);

Listing 2.4: Example of declaring OWLVarDecl and creating of OWLGeomType
for the triangle mesh struct

Most of the types, like OWL_FLOAT, OWL_INT3, etc., are copied to the device,
but for objects as buffers and textures, additional translation is needed.
OWL_BUFPTR member is formed as OWLBuffer on the host, and OWL will
assign the correct address for data on the device side. Likewise, OWL_TEXTURES
is set to OWLTexture and is written to cudaTextureObject_t on the device
side. It is important to notice that OWL does not type-check if underlying
data corresponds to declared types, so undefined behavior may occur if the
same-sized types are used. However, setting values with totally incompatible
types will result in error.

The third step is to assign values to variables. OWL provides helper func-
tions with naming convention owl<Object>Set<Type>. Objects which have
member variables (e.g. an OWLParams, an OWLRayGen, or an OWLGeom) may
have those variables set using said helper functions. Assigning OWL_FLOAT3 to
OWLRayGen would be accomplished with function call owlRayGenSet3f(...).
Frequently changed data like camera position and direction should be set
using Launch Params as changing and copying them is quick and inexpensive.
On the contrary, Geometries, Miss programs, RayGen programs, etc., are
placed in the SBT, which means that any changes would be visible only
after rebuilding the SBT. For the scenes with a large number of Geometries,
rebuilding the SBT ever so often would incur significant performance tax.

17

2. Analysis
The last step, after successfully arranging variables and building the SBT,

is accessing variables on the device side of the code. Gathering objects’ data
from SBT might be achieved with direct optixGetSbtDataPointer() or with
owl wrapper calls as shown in the Listing 2.5. Launch Params reside in global
__constant__ memory optixLaunchParams.

1 OPTIX_CLOSEST_HIT_PROGRAM(TriMesh_ClosestHit)
2 {
3 const TriMesh &mesh = owl::getProgramData<TriMesh>();
4 int3 indices = mesh.indices[optixGetPrimitiveIndex()];
5 ...
6 }
7
8 OPTIX_RAYGEN_PROGRAM()
9 {

10 ...
11 const Camera &camera = optixLaunchParams.camera;
12 ...
13 }

Listing 2.5: Example of accessing SBT data and Launch Params in the device
programs

18

Chapter 3

Related work

This thesis focuses on effectively organizing the scene, leveraging the maximum
potential of RTX architecture with OptiX API. In this chapter, three main
ideas are analyzed.

3.1 Scene layout optimalization

The first article investigates the possibilities of automatic optimization of
scene structure prior to building acceleration structure using modern graphics
APIs. Káčerik and Bittner [KB23] focus on the performance differences
between rendering times of scenes built as a hierarchy provided by the scene
author with one BLAS per instance and a scene as one compact BLAS.
Different layouts of said approaches can be seen in Figures 3.1, 3.2.

Merging all scene geometry and its information into a single BLAS brings
benefits to acceleration structure builder. Knowing the positions and relations
of all objects in the scene has the potential to improve the resulting AS. While
it may be extremely efficient, especially in scenes with clusters of different
objects overlapping or in small localities, it also makes elements like instancing,
refitting, or object-specific shading essentially unusable.

According to the research done by authors on eight static scenes with six
different configurations (three builder flag configurations with two BLAS

19

3. Related work.....................................

Figure 3.1: Scene graph structure in one BLAS. Image courtesy of Káčerik and
Bittner [KB23].

methods), creating a single BLAS was mostly a superior approach in terms of
generating rays per second. On average, a single BLAS setup was shooting 1.3
times more rays per second than a BLAS per object setup. Regarding build
times, the latter method was faster, which authors expect to be achieved by a
concurrent build of BLASes and O(n ∗ log(n)) complexity of the acceleration
structure construction algorithm.

From the testing of various scenes and setups, one specific scene stood
out. In the Fireplace scene, BLAS per object strategy with the PRE-
FER_FAST_TRACE build flag reached better results in both ray tracing
speed and build time. This finding hints that there might be such an arrange-
ment of the scene objects, that is at the same level with a single BLAS strategy
in performance yet has the ability to use features that are not supported by
the other approach. Two directions for advancement are discussed:

.Minimization of nodes’ overlaps. Finding suitable rotation of BLAS to reduce overlaps

3.2 Using instancing as hardware OBB test

The second analyzed article uses OptiX for hardware-accelerated visualization
of long, thin primitive types. That is an exceptional case of the scene because it
might lead to many overlapping and poorly aligned objects, which most likely

20

......................... 3.2. Using instancing as hardware OBB test

Figure 3.2: Scene graph structure in BLAS per object. Image courtesy of
Káčerik and Bittner [KB23].

leads to an acceleration structure with significantly suboptimal performance.
The idea formulated by Wald et al. [Wal+20] uses instancing to perform the
transformation to effectively get an oriented bounding box (OBB) without
switching context from RT Core to streaming multiprocessor as is illustrated
in Figure 3.3.

Figure 3.3: Illustration of masquerading technique using instance transforms as
OBB test. Image courtesy of Wald et al. [Wal+20].

Speed up is gained by potentially reducing the number of rays that actually
hit the bounding box of encapsulated primitive. After the ray hits the
bounding box context switch is required since the primitive inside is not a
triangle, and thus intersection test is not hardware-accelerated. Another
downside of this approach is that instancing is used for instantiating the OBB
rejection test and can not be used as intended. That might be extremely

21

3. Related work.....................................
beneficial for bounding boxes of thin and long primitives but might not
improve performance in most cases.

3.3 Partial rebraiding of two-level BVH

Two-level BVHs are often built in a way that separates levels with top-level
BVH consisting of logical objects and not geometric primitives. Consequently,
two-level BVHs reduce build times at the cost of increased traversal times
compared to flat BVHs. Benthin et al. [Ben+17] claim that performance-wise
traversal is typically worse by a factor of 1.5–2x in comparison with flat BVH
due to overlaps of top nodes.

Figure 3.4: Illustration of re-braiding method: (a) two objects (green and blue),
each with their own BVH; with their topologies (top), and their spatial extents
(bottom). As the objects spatially overlap and the top-level BVH (brown) has to
treat them as monolithic entities a significant BVH node overlap in the spatial
domain occurs, leading to low traversal performance. (b) Re-braiding method
allows the top-level BVH to look into the object BVHs, and to “open up” object
nodes where appropriate. This allows the top-level BVH to create new top-level
nodes (red) that address individual subtrees in the object BVHs, resulting in
improved BVH quality. Image courtesy of Benthin et al. [Ben+17].

Authors [Ben+17] propose a way to tackle the ineffective traversal at the
top nodes by incorporating new method after classic two-level BVH build.
They describe overview of the BVH build in three steps:..1. start with object BVHs in the same way a traditional two-level BVH

would;

22

........................... 3.3. Partial rebraiding of two-level BVH..2. find a suitable “cut” through each object’s BVH such that the resulting
set of BVH subtrees has low(er) overlap;..3. build a top-level BVH over those resulting subtrees.

Finding the optimal cut is a difficult and time-consuming task. Commonly,
various heuristics are used to significantly reduce time complexity in spite
of getting sub-optimal results. Benthin et al. [Ben+17] use BVH node build
references (BRefs), which is their structure used in the re-braiding method.
Listing 3.1 shows BRef’s structure contents, where ref is a reference/pointer
to a BVH node inside an object BVH (initialized with the root BVH node),
bounds contains world-space bounding information including instance trans-
formation and objectID is the ID of object/instance the BVH node belongs
to. The variable numPrims is the estimated number of primitives in the
subtree, which the builder uses as a coefficient in the SAH cost estimation of
the bounding box and the binning step.

1 struct BRef {
2 BVHNodeReference ref;
3 AABB bounds;
4 unsigned int objectID;
5 unsigned int numPrims;
6 };

Listing 3.1: BRef structure used in the re-braiding method [Ben+17]

The article states that the construction algorithm used for top-level BVH
merges with the second step in a recursive top-down fashion. At the beginning,
a list of BRefs is formed, one per each object. This initial list forms one
whole segment, which is then recursively partitioned in these four steps:..1. Open BRefs in the current segment according to some opening heuristic;..2. Replace opened BRefs with BRefs to their children;..3. Apply a SAH-based binning on the current segment and split it into

sub-segments;..4. Apply these steps to left and right sub-segments until termination criteria
are met.

To sum up, the main advantage of this method over classical two-level BVH is
the ability to open up and intertwine bottom-level BVHs, which, according to

23

3. Related work.....................................
the study [Ben+17], significantly reduces big overlaps of upper nodes. While
RTX API provides BVH builder as a black box, the re-braiding method and
its approach to finding cuts between GASes (bottom-level) and IAS (top-level)
in OptiX will be further explored.

24

Chapter 4

Implementation

In this chapter, implementation details of the experimental application are
described. The first section breaks down algorithms for scene optimization.
The subsequent section provides more information about visual tools used
during experimentation. The following section explains the usage of UI
elements and their connection to rendering and scene organization algorithms.
The next section presents scripts used for the automation of tasks related
primarily to the testing. Finally, the last section states which third-party
libraries were used and how they were incorporated.

4.1 Scene optimization

Every scene has its specific object organization based on how the author
created or processed it. Some scenes contain many objects for the convenience
of the artist’s manipulation and creation; others may be optimized by the
exporter and grouped by materials or based on groups in the modeling tool.
Such arrangements might be efficient for human readability but may hinder
the building of acceleration structures.

Four approaches to scene optimization for OptiX GAS builder are explored
in this thesis. The first two use the initial object layout from the OBJ
Wavefront file. The tinyobjloader library [Fuj+24] provides OBJ file loading
and stores vertices, normals, and texcoord information in attrib_t structure.
Face indices are stored in shape_t and material information in material_t.

25

4. Implementation....................................
Loaded data are then processed into TriangleMesh structures. Every shape
is divided into these meshes by unique material. The first method uses all
meshes as build inputs for one owlGroupBuildAccel call, while the second
approach calls builder for each object. The former is later addressed as ’Single
GAS’, while the latter is ’Multi GAS’ or ’GAS per object’.

The third approach is processing the scene further by applying binned SAH
BVH builder on each object. The builder has a constraint on the maximum
number of available nodes, which is proportional to the number of triangles in
the scene. At the beginning of the algorithm node for each object is pushed
in the queue, and then while cycle starts and pops one node at a time. The
node is split; if the total node limit is not reached, the current node has
more than eight triangles, and the area of its bounding box is bigger than
the threshold value. Splitting is done on the axis with the greatest extent
of the node’s bounding box and uses sixteen bins for the triangle centroids.
After the binning process, the best-splitting plane is chosen, and the mesh
is split accordingly. Implementation is based on Bikker’s article [Bik23] on
real-time ray tracing.

1 while True
2 for i = 0 to object.size()
3 for j = i + 1 to object.size()
4 if overlaps(O_i,O_j)
5 and intersection_area(O_i,O_j) > skipThreshold
6 push (overlap, i, j) in priority_queue
7 total_overlap += overlap
8 overlap_ratio = total_overlap / model_area
9 if overlap_ratio < termination_criterium return

10
11 while priority_queue is not empty
12 pop (overlap, i, j) from priority_queue
13 if i or j in dirty_set continue
14 pair_overlap_ratio = overlap / bounds(O_i, O_j)
15 if pair_overlap_ratio < split_and_merge_threshold
16 if pair_overlap_ratio < split_threshold
17 split(O_i)
18 split(O_j)
19 else
20 split_and_merge_overlap(O_i, O_j)
21 else
22 merge(O_i, O_j)
23 append i, j to dirty_set
24 clear dirty_set

Listing 4.1: Overview of the overlap reduction method in pseudocode

26

..................................... 4.2. Visual tools

The last method explicitly addresses the problem of object bounds overlap-
ping. We are calling it the ’Overlap reduction’ method. An overview of the
method is in the Listing 4.1. The algorithm runs while there are overlaps to
split or merge, or until termination criteria are met. Overlap of each object
pair is pushed to the priority queue if the overlap is greater than a specified
threshold. After populating of the priority queue with tasks another cycle
starts. In every loop pair with biggest overlap is popped from the queue
and gets processed, if both objects were not modified yet. Three branches
follow depending on the ratio between overlap and unified bounds of objects:
splitting of both objects, splitting of both objects with merge on the overlap,
and merge of both objects. After modification, object id is noted and that
object can not be modified until new overlap is found.

For object splitting, spatial median split in the dimension of greatest extent
is used. Firstly, the centroids of the triangles are calculated, and then triangles
are arranged in two subsets accordingly.

Split and merge branch does the splitting phase with the overlap in the
process. Triangle centroids are split into two sets; one contains triangles
inside overlap, and the other contains the ones outside. If one of the sets is
empty, object is split with spatial median split method. Merge phase follows,
which is same as in merge branch.

Merging two objects is straightforward as long as they have the same
material. If the material differs between objects, one material is chosen.
Materials with textures need texcoord information. If one object does not
have texcoords, texcoord vector is padded with zeroes.

4.2 Visual tools

In the experimental phase, where the influence of the parameters has been
investigated to obtain an overview of their threshold values and trends, visual
tools played an important role. We have implemented several different views
of the scene for various purposes. Part of the views are similar to rendering
options in Nsight Compute’s Acceleration Structure Viewer, but can be used
directly in the running app and changed on demand. In the early stages of
this thesis, some of the Nsight Compute’s features were not available or not
fully functional with OptiX 7.6. Our views, which are described further in
this section in greater detail, are:

27

4. Implementation....................................
.Transparent model view. Heatmap view.AABB preview

The first visualization from the list above is the transparent model view.
Figure 4.1 is an example of a view over the Sibenik scene with random colored
material set to every leaf node of the BVH build. This view is implemented
as special ray type, which has its own ray generation program and dedicated
closest hit and miss programs. The core of the ray generation program is a
loop, which terminates if a miss program was called or our defined maximum
of 1024 hits was reached. Each step of the loop calls optixTrace function.
After tracing, color from the payload is accumulated, the last hit position is
noted for use in the next call of optixTrace in the consequent step of the
loop, and finally boolean if anything was hit is set.

Figure 4.1: Example of transparent model view with BVH build configuration
on Sibenik scene.

After the loop terminates, accumulated color is divided by our math
function according to the number of hits in the loop. The function is defined
as (Nhits/1024) + 1/32) ∗ 32, where Nhits is the number of triangles hit in the
scene by the ray.

The closest hit program is very simple and minimal. Firstly, it collects data
from the shader binding table for the primitive that is hit. Afterward, the
color is set in the payload structure, the surface position of the intersection
is calculated and stored in the payload, and the hit flag is set.

28

..................................... 4.2. Visual tools

The miss program sets the background to the checkered pattern, as is usual
in many graphical applications where transparency is used. Tiling is based
on the launch index, which is fetched by optixGetLaunchIndex function.

The next visual tool is based on the timing of optixTrace function. In
the ray generation programs, before first tracing, a timestamp is marked
by the clock function. After the tracing is finished, another timestamp is
marked, and the time delta is calculated. This value is scaled by a user-defined
arbitrary scaling factor, which can be adjusted at the runtime. The scaled
value is finally passed to the color mapping function, resulting in the heatmap
of the scene, as can be seen in Figure 4.2.

Figure 4.2: Example of heatmap model view with BVH build configuration on
Sibenik scene. Render is accumulated over a few seconds.

The third and final implemented visual tool is the AABB model view,
which is based on creating bounding boxes for each object or node of the
BVH tree. This set of bounding boxes is used to construct single GAS, and
OptiX visibility masks are utilized to differentiate between scene, AABB and
instances set. Users can set masks at runtime to choose which groups are
visible. Each bounding box is made of 12 right-angled triangles, two for each
side of the box. There is no dedicated ray generation program for this view.
In the closest hit program for bounding box objects, the distance from the
intersection point to the catheti is calculated, and if it is greater than the
threshold value in both cases, traversal continues. Figure 4.3 shows example
of the view with visibility mask set only to the AABB objects group.

29

4. Implementation....................................

Figure 4.3: Example of AABB model view with BVH build configuration on
Sibenik scene.

4.3 GUI

The graphical user interface implementation uses the Dear ImGui library and
is divided into three parts. The first part consists of the performance report
information in a tab on the left side of the application window. Standard
C++ chrono library calls are employed to measure the time performance of
individual tasks, such as AS build, scene update, render, and draw times.
The number of traced rays is counted and reported in the performance tab
between renderings. The other two parts are in two tabs on the right side of
the application window and serve as an interactive interface.

The refresh rate of the reporting tab can currently be set only from the
source code, and its default value is 0.1s. Every tenth of a second, new values
of these eight stats are presented:

FPS Number of frames render divided by seconds since last update

Update t Measured time of most recent animation matrices calculation

UpdateAS t Measured time of most recent IAS build/refit

Render t Measured time of most recent tracing scene

Display t Measured time of most recent OpenGL draw

Pri MRays/s Primary rays divided by seconds since last update and 106

30

.. 4.3. GUI

Sha MRays/s Shadow rays divided by seconds since last update and 106

Sec MRays/s Secondary rays divided by seconds since last update and 106

The interactive part of the GUI on the right side is split into two logical
parts. The upper tab is tied to the scene overlap reduction method. The
current number of meshes, overlap ratio, and current SAH (if BVH is used)
are reported at the top of the tab. Two sliders follow, with the first affecting
the reduction method’s threshold between splitting and merging branches.
The second slider sets the threshold for overlap skipping. Button Reduce
overlap calls the reduction method with a termination threshold set to infinity,
which effectively means that the reduction method will make a single loop,
allowing the user to apply reduction with different parameters in each step.

Figure 4.4: Detailed view of implemented GUI tabs. Reporting tab on the
left, Overlap info and adjustments in the middle, and rendering options on the
right.

The bottom tab of the interactive part is connected to rendering options.
The first ImGui ListBox comprises two ray generation programs, which are
radiance and transparent view programs. The second ListBox allows to choose
one of the three rendering modes: render, heatmap with the jet scheme, and
heatmap with the cividis scheme. The heatmap view has an adjustable
heat scale, which may be altered by the slider. Next, pixel samples may be
increased or decreased by arrow buttons. The same applies to adjusting the
number of light samples. Tracing of secondary rays can be toggled with a

31

4. Implementation....................................
checkbox. Camera animation around the point of interest set in the scene
configuration file can be toggled with another checkbox. Lastly, a group of
three checkboxes manages the visibility mask of tracing for the scene model,
AABB of objects, and instances.

4.4 Automation scripts

At the heart of the automation are two types of configuration files for the
application. One configuration file describes the scene, while the other
regulates application environment. Both file types are laid out one variable
per line in key-value pairs separated by ‘=’. Implementation of both underlying
structures is same and uses variables mapped to enum, which is employed
in parsing of configuration files. Extensions ‘.scn’ and ‘.env’ are used for the
scene and environment files, respectively.

Scene structure provides means to set models, camera settings, lighting
information and more. All parameters that can be used are listed in Table 4.1.
Environment structure holds information about scene optimization, build
configuration and visualization settings. List of all parameters is in Table 4.2.
Additionally, the environment file contains a list of N positions (3x float) for
each instance and M lines for an animation description (7x float) of each
animated instance.

1 {
2 "actions": [
3 {
4 "type": "run",
5 "scenes": ["san_miguel.scn",
6 "san_miguel_1000.scn",
7 "san_miguel_10000.scn",
8 "san_miguel_100000.scn"],
9 "envs": ["singleGAS.env",

10 "multiGAS.env",
11 "bvh_1e-3.env",
12 "reduce_greedy.env"]
13 }
14]
15 }

Listing 4.2: Example of JSON configuration file for automation scripts

32

.................................. 4.4. Automation scripts

Parameter Key Description Value

SCENE_NAME Name of scene file used in the
log’s filename

string

MODEL_FILE_NAME .obj file name for the scene
model

string

INSTANCE_FILE_NAME .obj file name for the instances
model

string

CAMERA_POSITION Initial position of the camera 3x float
CAMERA_POI Initial camera point of interest 3x float
CAMERA_ROTATION_SPEED Frequency of camera revolutions

around point of interest
float

ANIMATE_CAMERA Boolean for camera animation bool (0/1)
INSTANCE_COUNT Number of instances in the scene int
ANIM_INSTANCE_COUNT Number of animated instances

in the scene
int

LIGHT_ORIGIN Area light’s position of lower cor-
ner

3x float

LIGHT_SIZE Length of area light’s sides float
LIGHT_POWER Area light’s emission power float

Table 4.1: All scene file parameters with description and value types.

All automation scripts and helper functions are written in Python. Scripts
serve three purposes: scene generation, automated testing, and presentation
of results. There is a separate module for each purpose so that they may
be used separately, but there is also a config module that functionally glues
them together.

The config module must be provided with a ‘.json’ description file to run.
The actions property at the root of the JSON file holds a list of all actions
to be executed. Each action must have type property set to call the desired
module. Three types are currently valid: generate, run, and plot. Example
of a JSON file that runs San Miguel scene in four configurations and four
environments can be seen in Listing 4.2

Generate action type operates on the scene files and, with the parameters
provided, generates location and animation data for the instances. Parameters
are coupled in a dictionary accessible with key params. The dictionary must
contain model_mask key with a list of indexes to scene models, n_all and
n_anim_all lists with numbers of location and animation data, respectively,
to be generated. Base velocity and velocity deviation must be specified by
v and v_dev if any animation data are expected. The same applies to base
distance and distance deviation.

33

4. Implementation....................................
Parameter Key Description Value

BUILD_FLAGS Optix build flag value int
SCENE_REBUILD_INTEREVAL Number of frames until IAS re-

build
int

ENVIRONMENT_NAME Name of environment file used
in log’s filename

string

WIDTH Width of application window int
HEIGHT Height of application window int
HEATSCALE Value of heatscale range float
PIXEL_SAMPLES Number of samples per pixel int
SECONDARY_RAYS Boolean for secondary rays bool (0/1)
LIGHT_SAMPLES Number of samples per light int
SOM_THRESHOLD Threshold for split or merge

branches in overlap reduction
float

SKIP_OVERLAP_THRESHOLD Threshold for overlap’s size to
skip

float

OVERLAP_THRESHOLD Termination threshold for over-
lap reduction

float

MIN_SIZE Minimal number of triangles in
the mesh before splitting

int

SINGLE_GAS Boolean for GAS build algo-
rithm

bool (0/1)

USE_BVH Boolean for scene optimization bool (0/1)
NODES_TO_TRIS Ratio of BVH’s nodes to scene

triagles
float

Table 4.2: All environment file parameters with description and value types.

Run action type needs two lists on input: one containing scene files and the
other environment files. Application is then executed Nscenes ∗ Nenvs times
with each distinct pair. Between each run, the script waits for the decrease
of GPU temperature below 60°C. Nvidia_smi module is used to read GPU
temperature data. After the application is executed, the log filename is added
to the list of logs for further usage.

The plot action type may employ the list of log files from previous actions
and/or use log files from scenes and environments provided as two lists in the
same way as for the run type. The plot_type specifies how are data expected
to be presented, whether with a line graph or a bar chart. Plots are created
with the Mathplotlib library, and plot_metadata carries a dictionary with
all necessary annotation information, such as title, axis labels, and output
filename. The most important part of metadata is value_data because it
specifies which data from the log file are processed in the graph.

34

..................................4.5. Third-party libraries

4.5 Third-party libraries

Experimental application written in C++ uses six third-party libraries alto-
gether, namely:

OptiX 7.6 Backbone of application’s rendering domain

OWL Efficient abstraction layer of OptiX library

GLFW3 Support for window handling and input capture

TinyObjLoader Loading of models in OBJ file format

stb_image Provides reading of textures and writing of images

Dear ImGui Graphical user interface library

Automation scripts implemented in Python use these 3rd party modules:

NumPy Array data handling and math operations

NVidia_SMI GPU temperature reading

Matplotlib Graphs and charts generation

35

36

Chapter 5

Results

In the beginning of this chapter chosen scenes are presented. The description
of test environment and configurations follows. Each experiment is introduced
and evaluations described and supplemented with graph or table.

Scene
Fireplace Conference Sibenik Sponza Powerplant San Miguel

Objects 24 41 15 393 56 2203
Triangles 580,486 331,179 75,283 289,405 12,759,225 9,978,412
Overlap 7.272 17.447 10.124 12.878 8.944 222.422

Table 5.1: Geometric complexity of the tested scenes. Objects are counted
as groups/objects in the .obj file, each split into separate objects per material.
Overlap is the ratio calculated as the sum of the surface areas of the overlapping
volume of each pair of objects to the surface area of the scene’s bounding
volume.

Altogether, six scenes were chosen to test the performance of our imple-
mentation. A list of scenes with their complexity information is presented
in Table 5.1. The view of the scene was always chosen with two conditions
in mind. The first condition was to choose a spot overlooking most of the
scene. The second requirement was to contain some object at a relatively
close distance.

As previously established, the overlap between the object’s bounding boxes
directly affects performance. The relation between overlap ratio and rendering

37

5. Results
performance is one of the main focuses of the tests. We measure the overlap
ratio as a single value by computing surface areas of overlapping volumes of
each object pair. The sum is then divided by the surface area of the scene’s
bounding volume. A formula can express it:

Overlap =
∑objects−1

i=1
∑objects−1

j=i+1 Surface(Overlap(Vi, Vj))
Surface(Vscene) ,

where Overlap() is a function calculating the overlapping volume of two
bounding volumes and Surface() is a function returning the surface area of
volume. Overlap ratios for selected scenes prior to any optimization are in
Table 5.1.

Every test is run with a config script in a batch of scenes and environments.
The batch run executes a timed application build, which automatically stops
after 10 seconds. GPU temperature threshold to start the application is set
to a maximum of 60°C. The following experiments were all conducted on a
laptop with these hardware specifications:

CPU Intel Core i7-11800H @ 2.3GHz

GPU NVIDIA GeForce RTX 3070 Laptop GPU @ 1110 MHz:. 8 GB GDDR6 memory @ 1750 MHz.Ampere architecture.TGP 115 W. 5120 cores, 40 SM units, 40 RT cores (1 per SM)

RAM 2x 16GB Samsung DDR4 @ 3200 MHz

SSD Samsung PM9A1 M.2 1TB

5.1 Configurations tests

Four setups are used in the tests in the context of geometry instancing. One
setup uses only a static scene model with no additional instances; the other
three gradually add a number of animated instances. The first setup has 1,000
instances; the second uses 10,000 instances, and the last 100,000 instances.

38

..................................5.1. Configurations tests

Experiment 1: Parameters comparison for BVH method

Results of the BVH method depend on the number of nodes provided to the
builder. This experiment tests four values for the ratio of nodes to triangles
and compares the results. The tested values are: 10−1,10−2,10−3, and 10−4.
All scene variants are tested. Most significant difference was measured on the
San Miguel scene and from the results in Figure 5.1 ratio of 10−3 is the best
in terms of tracing performance. Table 5.2 shows build information for the
San Miguel scene.

San Miguel San Miguel with 103 Instances San Miguel with 104 Instances San Miguel with 105 Instances
0.0

0.5

1.0

1.5

2.0

2.5

Av
er

ag
e

#r
ay

s t
ra

ce
d

pe
r s

ec
on

d
[G

Rs
1]

1.39 1.35

1.13

0.59

(1.03)
1.44 (1.05)

1.41
(1.04)
1.17

(1.02)
0.6

(1.45)
2.02 (1.42)

1.91

(1.37)
1.55

(1.21)
0.71

(1.15)
1.6 (1.11)

1.5
(1.13)
1.28

(1.21)
0.71

Comparison of BVH's traversal performance in rays traced per second
BVH 10 1 nodes to tris BVH 10 2 nodes to tris BVH 10 3 nodes to tris BVH 10 4 nodes to tris

Figure 5.1: Comparison of BVH’s traversal performance on San Miguel scene.
All types of rays are counted. Higher value is better.

We have also tested building GASes per object with BVH splits, but the
tracing results were almost identical to building GASes per object without
pre-processing.

Build method BVH 10−1 BVH 10−2 BVH 10−3 BVH 10−4

Optimization t[s] 10.657 10.575 6.536 2.963
GAS Build t[ms] 12558.8 11387.4 2164.86 1305.87
GAS Size [MB] 817.753 803.459 713.371 706.997
IAS Build t[ms] 32.126 31.139 19.941 18.056
IAS Size [MB] 16.875 14.966 1.789 0.910

Table 5.2: Comparison of BVH’s build performance and AS sizes on static San
Miguel scene. The best results are in bold.

Figure 5.2 depicts the difference between the original scene and BVH’s
fragmentation. Every unique mesh is shaded with a random diffuse color.

39

5. Results

Figure 5.2: Fragmentation of the San Miguel scene is shown in random diffuse
color per mesh. Left original scene, center BVH 10−4, right BVH 10−1

Experiment 2: Parameters comparison for Overlap method

Overlap method has multiple constraints that control how are scene objects
processed. Two parameters are exposed and their effects are measured in this
experiment. Skip threshold controls the size of overlap that is acceptable for
split or merge. SoM threshold chooses which action to take.

Fireplace Conference Sibenik
0

1

2

3

4

5

Av
er

ag
e

#r
ay

s t
ra

ce
d

pe
r s

ec
on

d
[G

Rs
1]

3.68

4.7

3.04

(1.03)
3.78

(1.02)
4.78

(1.07)
3.24

(1.15)
4.22

(0.98)
4.61

(0.99)
3.02

(1.16)
4.26

(0.98)
4.6

(1.25)
3.79

(1.16)
4.25

(0.96)
4.51

(1.18)
3.59

(1.17)
4.29

(0.94)
4.42

(1.14)
3.48

Comparison of Skip thresholds traversal performance in rays traced per second
Reduce Skip 0.1 Reduce Skip 0.05 Reduce Skip 0.01 Reduce Skip 0.005 Reduce Skip 0.001 Reduce Skip 0.0005

Sponza Powerplant San Miguel
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Av
er

ag
e

#r
ay

s t
ra

ce
d

pe
r s

ec
on

d
[G

Rs
1]

2.52

1.99

1.3

(1.04)
2.62

(1.02)
2.04

(1.15)
1.49

(1.0)
2.51

(1.01)
2.01

(1.0)
1.3

(1.09)
2.74

(1.03)
2.05

(1.55)
2.02

(1.09)
2.76

(1.0)
1.99 (1.49)

1.94

(1.03)
2.6

(0.88)
1.76 (1.29)

1.67

Comparison of Skip thresholds traversal performance in rays traced per second
Reduce Skip 0.1 Reduce Skip 0.05 Reduce Skip 0.01 Reduce Skip 0.005 Reduce Skip 0.001 Reduce Skip 0.0005

Figure 5.3: Tracing performance of skip threshold values. Fireplace, Conference,
and Sibenik in the top chart. Sponza, Powerplant, and San Miguel in the bottom
chart. All types of rays are counted. Higher value is better.

Figure 5.3 presents results of skip threshold set to 0.1 (blue), 0.05 (orange),
0.01 (green), 0.005 (yellow), 0.001 (pink), and 0.0005 (red). Tracing results

40

..................................5.1. Configurations tests

are in favor of 0.005 with the best results in the more complex Powerplant
and San Miguel scenes. In Table 5.3 are statistics of build with chosen skip
threshold. Lower overlap is achieved for all scenes except for Sponza and
Powerplant.

Seven values of SoM threshold were tested ranging from 0.2 to 0.8. Highest
achieved tracing performance was with value set to 0.5, as can be seen in
Figure 5.4. Sponza scene was outlier again with same performance for every
value.

San Miguel San Miguel with 103 Instances San Miguel with 104 Instances
0.0

0.5

1.0

1.5

2.0

2.5

Av
er

ag
e

#r
ay

s t
ra

ce
d

pe
r s

ec
on

d
[G

Rs
1]

2.21
2.1

1.6

(0.84)
1.85 (0.84)

1.76
(0.91)
1.45

(0.83)
1.84

(0.86)
1.81

(0.91)
1.45

(0.88)
1.95 (0.91)

1.91

(0.95)
1.51

(0.88)
1.94

(0.91)
1.91

(0.96)
1.53

(0.89)
1.97 (0.91)

1.9

(0.96)
1.53

(0.89)
1.97 (0.91)

1.91

(0.95)
1.51

(0.89)
1.97 (0.91)

1.91

(0.93)
1.49

Comparison of different SoM thresholds traversal performance in rays traced per second
Scene GAS Reduce SoM 0.2 Reduce SoM 0.3 Reduce SoM 0.4 Reduce SoM 0.5 Reduce SoM 0.6 Reduce SoM 0.7 Reduce SoM 0.8

Figure 5.4: Comparison of traversal performance on San Miguel scene with
different SoM thresholds. All types of rays are counted. Higher value is better.

Experiment 3: Performance comparison of rendering animated
geometry

Every dynamic scene test uses uniformly random distributed instances in the
scene model bounds. Density of the instances in the scene increases with
their count, as they are scaled proportionally to the scene model, not the
number of instances. In this experiment we measure tracing performance of
animated geometry only and then compare the results with the selected scene
model with instances.

Figure 5.5 shows that every scene performs roughly the same as the scene
with instances only. It suggests that instances prevail in the IAS complexity.
If we look at the render with so many instances, almost exclusively, instances
are visible. Figure 5.6 depicts a comparison of the instanced Sibenik scenes.
We went further and scaled the instanced model down. With the reduction of
instances clustering, the performance of the test with instances only increased,
but accordingly so in the scenes with instances. Scenes with 105 instances
will not be tested in further experiments, setting our limit to 104 instances in
the subsequent tests.

41

5. Results
Skip threshold 0.1 0.05 0.01 0.005 0.001 0.0005

Fireplace

Optimization t[ms] 89.2 103.197 476.653 1204.66 1786.17 1817.28
Overlap 6.69451 5.355 2.545 1.897 1.835 1.854
Split/Merge 67/0 107/4 348/90 1015/571 2603/1897 3307/2481
GAS Build t[s] 31.525 40.129 76.278 119.247 167.443 192.591
GAS Size [MB] 10.214 10.27 10.613 10.973 11.517 11.764
IAS Build t[s] 20.797 20.816 20.872 20.784 20.863 20.942
IAS Size [MB] 0.029 0.039 0.085 0.139 0.216 0.251

Conference

Optimization t[ms] 50.667 56.715 109.647 140.115 218.107 286.401
Overlap 10.509 10.09 9.211 9.358 8.753 8.753
Split/Merge 48/0 64/0 198/0 403/0 1339/0 1914/0
GAS Build t[s] 33.101 37.991 74.465 127.789 292.474 402.736
GAS Size [MB] 23.411 23.465 23.606 24.093 26.03 27.28
IAS Build t[s] 20.714 20.7965 20.754 21.385 17.922 21.225
IAS Size [MB] 0.027 0.033 0.072 0.132 0.407 0.575

Sibenik

Optimization t[ms] 93.74 116.368 172.822 210.518 687.249 5078.14
Overlap 21.756 18.104 8.545 7.097 5.115 5.112
Split/Merge 102/0 208/0 866/0 1362/0 3860/172 7585/1503
GAS Build t[s] 40.669 66.707 197.883 291.531 662.414 1055.8
GAS Size [MB] 5.445 5.537 6.897 8.058 13.369 18.888
IAS Build t[s] 20.931 21.133 20.339 21.029 21.425 18.873
IAS Size [MB] 0.036 0.067 0.26 0.406 1.088 1.791

Sponza

Optimization t[ms] 14.611 26.529 48.004 59.833 287.464 558.708
Overlap 54.644 52.284 54.492 55.429 58.169 59.395
Split/Merge 58/0 108/0 407/0 683/0 2921/0 3930/0
GAS Build t[s] 130.316 140.413 202.548 264.644 659.853 856.791
GAS Size [MB] 19.21 19.303 19.857 20.523 25.247 27.068
IAS Build t[s] 21.223 19.86 20.828 20.921 19.46 20.01
IAS Size [MB] 0.134 0.148 0.237 0.318 0.974 1.27

Powerplant

Optimization t[ms] 460.489 1614.45 4811.33 8272.43 29961 33136.8
Overlap 8.509 11.017 20.902 19.477 10.756 9.513
Split/Merge 10/0 32/0 233/0 791/0 5524/0 8780/0
GAS Build t[s] 203.532 228.349 333.791 480.082 1688.01 2773.05
GAS Size [MB] 892.695 892.784 893.55 895.272 901.87 906.412
IAS Build t[s] 17.373 20.693 17.85 17.87 19.086 20.31
IAS Size [MB] 0.021 0.027 0.086 0.25 1.639 2.595

San Miguel

Optimization t[ms] 716.276 1288.56 3313.51 3713.25 6325.15 76054.9
Overlap 237.112 110.966 28.497 25.332 23.672 18.42
Split/Merge 90/0 224/0 948/0 1608/0 6800/124 27592/5907
GAS Build t[s] 1138.8 1072.8 1326.7 1481.1 2611.13 6857.55
GAS Size [MB] 705.15 705.606 707.654 708.129 717.435 751.162
IAS Build t[s] 18.245 18.392 18.827 19.394 20.602 24.733
IAS Size [MB] 0.675 0.714 0.926 1.12 2.607 7.012

Table 5.3: Statistics of chosen skip threshold values.

42

............................ 5.2. Scene optimization performance

105 Bunnies only Fireplace 105 Conference 105 Sibenik 105 Sponza 105 Powerplant 105 San Miguel 105
0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

#r
ay

s t
ra

ce
d

pe
r s

ec
on

d
[G

Rs
1]

0.58 0.6 0.57
0.63

0.86

0.65
0.73

Performance of every scene with 105 instances in rays traced per second

Figure 5.5: Traversal performance of every scene with 105 instances compared
with instances only. All types of rays are counted. Higher value is better.

Figure 5.6: Sibenik scene with 103 instances of Stanford bunny model on the
left, 104 instances in the middle, and 105 instances on the right

5.2 Scene optimization performance

Experiment 4: Perfomance comparison of implemented
methods on chosen scene setups

In the final experiment we are comparing all implemented methods on selected
scenes. Four methods are tested: Single GAS per scene, GAS per object,
BVH with 10−3, and Overlap reduction with Skip threshold set to 0.005
and SoM threshold set to 0.5. Scenes are tested with static geometry only,
with 103 animated instances and 104 animated instances. In static Sponza
scene was our method best among the tested methods. That was unexpected
because the overlap ratio achieved with our method in the Sponza scene was
always higher than the initial overlap. The best performance has a 58.1689
overlap ratio. That is approximately 4.5 times higher than the initial ratio of

43

5. Results
12.8781. BVH method scored overlap ratio of 16.1623.

Fireplace Fireplace with 103 Instances Fireplace with 104 Instances
0

1

2

3

4

5

Av
er

ag
e

#r
ay

s t
ra

ce
d

pe
r s

ec
on

d
[G

Rs
1]

4.36

3.31

1.58

(0.97)
4.21

(1.0)
3.3

(0.99)
1.56

(0.94)
4.09

(0.97)
3.22

(0.98)
1.55

(0.97)
4.23

(1.0)
3.31

(0.98)
1.54

Comparison of different build's traversal performance in rays traced per second
Scene GAS GAS per object BVH 10 3 nodes to tris Overlap reduction

Figure 5.7: Traversal performance of all methods on Fireplace scene. All types
of rays are counted. Higher value is better.

Conference Conference with 103 Instances Conference with 104 Instances
0

1

2

3

4

5

6

Av
er

ag
e

#r
ay

s t
ra

ce
d

pe
r s

ec
on

d
[G

Rs
1]

5.13

3.9

1.63

(0.83)
4.24

(0.84)
3.28

(0.99)
1.62

(0.89)
4.59

(0.92)
3.59

(1.0)
1.63

(0.88)
4.51

(0.9)
3.49

(1.0)
1.63

Comparison of different build's traversal performance in rays traced per second
Scene GAS GAS per object BVH 10 3 nodes to tris Overlap reduction

Figure 5.8: Traversal performance of all methods on Conference scene. All types
of rays are counted. Higher value is better.

44

............................ 5.2. Scene optimization performance

Sibenik Sibenik with 103 Instances Sibenik with 104 Instances
0

1

2

3

4

Av
er

ag
e

#r
ay

s t
ra

ce
d

pe
r s

ec
on

d
[G

Rs
1]

3.99

3.39

1.66

(0.89)
3.56

(0.87)
2.95

(0.99)
1.65

(0.86)
3.43

(0.82)
2.77

(0.96)
1.59

(0.89)
3.56 (0.94)

3.18

(0.96)
1.59

Comparison of different build's traversal performance in rays traced per second
Scene GAS GAS per object BVH 10 3 nodes to tris Overlap reduction

Figure 5.9: Traversal performance of all methods on Sibenik scene. All types of
rays are counted. Higher value is better.

Sponza Sponza with 103 Instances Sponza with 104 Instances
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Av
er

ag
e

#r
ay

s t
ra

ce
d

pe
r s

ec
on

d
[G

Rs
1]

2.75
2.47

1.77

(1.0)
2.74 (1.0)

2.47

(1.0)
1.77

(0.98)
2.69

(0.96)
2.38

(0.98)
1.74

(1.01)
2.77

(0.94)
2.32

(0.94)
1.67

Comparison of different build's traversal performance in rays traced per second
Scene GAS GAS per object BVH 10 3 nodes to tris Overlap reduction

Figure 5.10: Traversal performance of all methods on Sponza scene. All types
of rays are counted. Higher value is better.

45

5. Results

Powerplant Powerplant with 103 Instances Powerplant with 104 Instances
0.0

0.5

1.0

1.5

2.0

2.5

Av
er

ag
e

#r
ay

s t
ra

ce
d

pe
r s

ec
on

d
[G

Rs
1]

2.08

1.83

1.13

(0.9)
1.87 (0.92)

1.69

(1.0)
1.13

(0.89)
1.86

(0.88)
1.62

(0.98)
1.1

(0.95)
1.99

(0.91)
1.66

(0.96)
1.08

Comparison of different build's traversal performance in rays traced per second
Scene GAS GAS per object BVH 10 3 nodes to tris Overlap reduction

Figure 5.11: Traversal performance of all methods on Powerplant scene. All
types of rays are counted. Higher value is better.

San Miguel San Miguel with 103 Instances San Miguel with 104 Instances
0.0

0.5

1.0

1.5

2.0

2.5

Av
er

ag
e

#r
ay

s t
ra

ce
d

pe
r s

ec
on

d
[G

Rs
1]

2.21
2.1

1.6

(0.47)
1.05 (0.47)

0.98 (0.56)
0.89

(0.91)
2.02 (0.91)

1.91
(0.97)
1.55

(0.88)
1.94 (0.9)

1.88
(0.95)
1.52

Comparison of different build's traversal performance in rays traced per second
Scene GAS GAS per object BVH 10 3 nodes to tris Overlap reduction

Figure 5.12: Traversal performance of all methods on San Miguel scene. All
types of rays are counted. Higher value is better.

46

Chapter 6

Conclusion

We have yet to come up with the solution we hoped for, that is, pre-processing
of the scene so that we would achieve better performance than building a
single GAS for the entire scene. We have found valuable insights on the scene
optimization. Creating structures that perform similarly to a single GAS per
scene but could be used dynamically is a partial success. It must be noted
that the reduction method still has flaws because of merging materials. That
could be further explored. We could create mesh groups instead of merging
meshes straightaway. Such postponed merging could also mean increasing
the performance of the algorithm. Mesh groups could further be used as a
single group for OptiX builder as a group of build inputs, or merged before
calling OptiX API.

47

48

Appendix A

Bibliography

[App68] APPEL, Arthur. Some Techniques for Shading Machine Ren-
derings of Solids. In: Proceedings of the April 30–May 2, 1968,
Spring Joint Computer Conference. Atlantic City, New Jersey:
Association for Computing Machinery, 1968, pp. 37–45. AFIPS
’68 (Spring). isbn 9781450378970. Available from doi: 10.1145/
1468075.1468082.

[AK89] ARVO, James; KIRK, David. An introduction to ray tracing. In:
Oxford, England: Morgan Kaufmann, 1989, chap. 6, pp. 201–262.
The Morgan Kaufmann Series in Computer Graphics.

[Ben+17] BENTHIN, Carsten; WOOP, Sven; WALD, Ingo; ÁFRA, At-
tila T. Improved two-level BVHs using partial re-braiding. In:
Proceedings of High Performance Graphics. Los Angeles, Califor-
nia: Association for Computing Machinery, 2017. HPG ’17. isbn
9781450351010. Available from doi: 10.1145/3105762.3105776.

[Bik23] BIKKER, Jacco. jbikker/bvh_article [https://github.com/
jbikker/bvh_article]. Github, 2023.

[Dun19] DUNN, Alex. Tips and Tricks: Ray Tracing Best Practices [https:
//developer.nvidia.com/blog/rtx-best-practices/]. 2019.
[Accessed 19-Jan-2023].

[Dür25] DÜRER, Albrecht. Underweysung der Messung, mit dem Zir-
ckel und Richtscheyt, in Linien, Ebenen unnd gantzen corporen.
Nüremberg: Hieronymus Andreae, 1525.

[Fuj+24] FUJITA, Syoyo et al. tinyobjloader/tinyobjloader [https : / /
github.com/tinyobjloader/tinyobjloader]. Github, 2024.

49

https://doi.org/10.1145/1468075.1468082
https://doi.org/10.1145/1468075.1468082
https://doi.org/10.1145/3105762.3105776
https://github.com/jbikker/bvh_article
https://github.com/jbikker/bvh_article
https://developer.nvidia.com/blog/rtx-best-practices/
https://developer.nvidia.com/blog/rtx-best-practices/
https://github.com/tinyobjloader/tinyobjloader
https://github.com/tinyobjloader/tinyobjloader

A. Bibliography.....................................
[GS87] GOLDSMITH, Jeffrey; SALMON, John. Automatic Creation of

Object Hierarchies for Ray Tracing. IEEE Computer Graphics
and Applications. 1987, vol. 7, no. 5, pp. 14–20. Available from
doi: 10.1109/MCG.1987.276983.

[Han89] HANRAHAN, Pat. An introduction to ray tracing. In: Oxford,
England: Morgan Kaufmann, 1989, chap. 3, pp. 79–120. The
Morgan Kaufmann Series in Computer Graphics.

[Har19] HART, David. OptiX Performance Tools and Tricks [https:
//on-demand.gputechconf.com/siggraph/2019/pdf/sig915-
optix-performance-tools-tricks.pdf]. 2019. [Accessed 19-
Jan-2023].

[Hen08] HENRIK. Ray trace diagram [https://commons.wikimedia.
org/wiki/File:Ray_trace_diagram.svg]. 2008. [Accessed
19-Jan-2023].

[Hof90] HOFMANN, G. R. Who invented ray tracing? The Visual Com-
puter. 1990, vol. 6, pp. 120–124.

[KB23] KÁČERIK, Martin; BITTNER, Jiří. On Importance of Scene
Structure for Hardware-Accelerated Ray Tracing. Computer Sci-
ence Research Notes. 2023, vol. 3301, pp. 361–367. issn 2464-4617.
Available from doi: 10.24132/CSRN.3301.60.

[KA13] KARRAS, Tero; AILA, Timo. Fast Parallel Construction of High-
Quality Bounding Volume Hierarchies. In: Proceedings of the
5th High-Performance Graphics Conference. Anaheim, California:
Association for Computing Machinery, 2013, pp. 89–99. HPG
’13. isbn 9781450321358. Available from doi: 10.1145/2492045.
2492055.

[Kil+18] KILGARIFF, Emmett; MORETON, Henry; STAM, Nick; BELL,
Brandon. NVIDIA Turing Architecture In-Depth [https : / /
developer.nvidia.com/blog/nvidia-turing-architecture-
in-depth]. 2018. [Accessed 19-Jan-2023].

[Mei+21] MEISTER, Daniel et al. A Survey on Bounding Volume Hierar-
chies for Ray Tracing. Computer Graphics Forum. 2021, vol. 40,
no. 2, pp. 683–712. Available from doi: 10.1111/cgf.142662.

[MT97] MÖLLER, Tomas; TRUMBORE, Ben. Fast, Minimum Storage
Ray-Triangle Intersection. Journal of Graphics Tools. 1997, vol. 2,
no. 1, pp. 21–28. Available from doi: 10.1080/10867651.1997.
10487468.

[NVI22a] NVIDIA CORPORATION. NVIDIA OptiX 7.6 - Programming
Guide [https : / / raytracing - docs . nvidia . com / optix7 /
guide/index.html]. 2022. [Accessed 19-Jan-2023].

50

https://doi.org/10.1109/MCG.1987.276983
https://on-demand.gputechconf.com/siggraph/2019/pdf/sig915-optix-performance-tools-tricks.pdf
https://on-demand.gputechconf.com/siggraph/2019/pdf/sig915-optix-performance-tools-tricks.pdf
https://on-demand.gputechconf.com/siggraph/2019/pdf/sig915-optix-performance-tools-tricks.pdf
https://commons.wikimedia.org/wiki/File:Ray_trace_diagram.svg
https://commons.wikimedia.org/wiki/File:Ray_trace_diagram.svg
https://doi.org/10.24132/CSRN.3301.60
https://doi.org/10.1145/2492045.2492055
https://doi.org/10.1145/2492045.2492055
https://developer.nvidia.com/blog/nvidia-turing-architecture-in-depth
https://developer.nvidia.com/blog/nvidia-turing-architecture-in-depth
https://developer.nvidia.com/blog/nvidia-turing-architecture-in-depth
https://doi.org/10.1111/cgf.142662
https://doi.org/10.1080/10867651.1997.10487468
https://doi.org/10.1080/10867651.1997.10487468
https://raytracing-docs.nvidia.com/optix7/guide/index.html
https://raytracing-docs.nvidia.com/optix7/guide/index.html

..................................... A. Bibliography

[NVI22b] NVIDIA CORPORATION. NVIDIA OptiX Ray Tracing SDK Re-
lease Notes [https://raytracing-docs.nvidia.com/optix7/
release_notes/OptiX_Release_Notes_7.6_01.pdf]. 2022.
[Accessed 19-Jan-2023].

[Sjo22] SJOHOLM, Juha. Best Practices for Using NVIDIA RTX Ray
Tracing (Updated) [https://developer.nvidia.com/blog/
best - practices - for - using - nvidia - rtx - ray - tracing -
updated/]. 2022. [Accessed 19-Jan-2023].

[Wal20a] WALD, Ingo. OWL - The Optix 7 Wrapper Library [https://owl-
project.github.io/]. 2020. [Accessed 19-Jan-2023].

[Wal20b] WALD, Ingo. OWL: A Node Graph "Wrapper" Library for Op-
tiX 7 [https://github.com/owl-project/owl/wiki]. 2020.
[Accessed 31-Dec-2023].

[Wal+20] WALD, Ingo et al. Using Hardware Ray Transforms to Accelerate
Ray/Primitive Intersections for Long, Thin Primitive Types. Proc.
ACM Comput. Graph. Interact. Tech. 2020, vol. 3, no. 2, Art. No.
17, 1–16. Available from doi: 10.1145/3406179.

[Whi80] WHITTED, Turner. An Improved Illumination Model for Shaded
Display. Commun. ACM. 1980, vol. 23, no. 6, pp. 343–349. issn
0001-0782. Available from doi: 10.1145/358876.358882.

51

https://raytracing-docs.nvidia.com/optix7/release_notes/OptiX_Release_Notes_7.6_01.pdf
https://raytracing-docs.nvidia.com/optix7/release_notes/OptiX_Release_Notes_7.6_01.pdf
https://developer.nvidia.com/blog/best-practices-for-using-nvidia-rtx-ray-tracing-updated/
https://developer.nvidia.com/blog/best-practices-for-using-nvidia-rtx-ray-tracing-updated/
https://developer.nvidia.com/blog/best-practices-for-using-nvidia-rtx-ray-tracing-updated/
https://owl-project.github.io/
https://owl-project.github.io/
https://github.com/owl-project/owl/wiki
https://doi.org/10.1145/3406179
https://doi.org/10.1145/358876.358882

	Introduction
	Goals

	Analysis
	Ray tracing
	Acceleration data structures
	Cost function
	Instancing geometry
	RTX architecture
	OptiX
	OWL - OptiX 7 wrapper library

	Related work
	Scene layout optimalization
	Using instancing as hardware OBB test
	Partial rebraiding of two-level BVH

	Implementation
	Scene optimization
	Visual tools
	GUI
	Automation scripts
	Third-party libraries

	Results
	Configurations tests
	Experiment 1: Parameters comparison for BVH method
	Experiment 2: Parameters comparison for Overlap method
	Experiment 3: Performance comparison of rendering animated geometry

	Scene optimization performance
	Experiment 4: Perfomance comparison of implemented methods on chosen scene setups

	Conclusion
	Bibliography

