
F3 Faculty of Electrical Engineering
Department of Cybernetics

Master’s Thesis

Utilization of 3D Vision System for
Robotic Sanding with Force
Feedback Control

Bc. Václav Kubáček
Study programme: Cybernetics and Robotics

May 2024
Supervisor: Ing. Tomáš Jochman





Acknowledgement / Declaration

I would like to express my genuine
thanks to my supervisor, Ing. Tomáš
Jochman, for his continuous support,
guidance, and insightful advice through-
out the development of this thesis. His
expertise and encouragement were in-
valuable in the successful completion
of this thesis. I also extend my thanks
to Pavel Burget, Ph.D., the head of
the Testbed for Industry 4.0, where
this research was conducted. His sup-
port and the resources provided by
the department were essential for the
practical implementation and testing of
the system.

I declare that the presented work
was developed independently and that
I have listed all sources of information
used within it in accordance with the
methodical instructions for observing
the ethical principles in the preparation
of university theses.

In Prague, May 24, 2024

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

iii



Abstrakt / Abstract

Tato diplomová práce se zabývá vývo-
jem autonomního robotického systému
pro broušení a leštění konvexních po-
vrchů s využitím systému 3D vidění a
zpětnovazebního řízení. Hlavním cílem
je zvýšit adaptabilitu a efektivitu ro-
botického procesu broušení, zejména v
prostředí s častými změnami výrobků.
Systém integruje systém 3D vidění pro
generování mračna bodů povrchu dílu,
která jsou následně zpracována pro
vytvoření přesných robotických drah.
Dráhy jsou generovány ve formě kli-
katých a spirálových vzorů, aby bylo
zajištěno komplexní pokrytí a konzis-
tentní povrchová kvalita s ohledem
na kolmé vedení brusného vřetena. K
udržování konstantní přítlačné síly se
používá senzor síly a momentu, který
dynamicky upravuje dráhu robota na
základě zpětné vazby v reálném čase,
aby se přizpůsobil změnám povrchu.
Mezi klíčové úspěchy patří vývoj ro-
bustních algoritmů zpracování mračna
bodů, zpětnovazebního řídicího mecha-
nismu pro udržování konstantní síly a
použití komunikačního protokolu OPC
UA pro plynulý a bezpečný přenos
dat mezi součástmi systému. Zavedení
rozšířené reality (AR) prostřednictvím
soupravy Hololens 2 zlepšuje interakci s
uživatelem a umožňuje operátorovi vi-
zualizovat brousící dráhy v reálném čase
a interagovat s pracovní stanicí. Účin-
nost systému byla ověřena v reálném
průmyslovém prostředí a prokázala jeho
potenciál pro zlepšení procesů robotic-
kého broušení a leštění ve flexibilních
výrobních prostředích.

Klíčová slova: robotické broušení,
systém 3D vidění, zpětnovazební řízení
síly, zpracování mračna bodů, rozšířená
realita

This thesis presents the develop-
ment of an autonomous robotic system
for sanding or polishing convex sur-
faces using a 3D vision system and
force feedback control. The primary
objective is to enhance the adaptabil-
ity and efficiency of robotic sanding
processes, especially in environments
with frequent product changes. The
system integrates a 3D vision system
to generate point cloud data of the
workpiece surface, which is then pro-
cessed to create precise robotic paths.
The paths are generated in the form
of zig-zag and spiral patterns to ensure
comprehensive coverage and consistent
surface quality concerning the per-
pendicular alignment of the sanding
spindle. A force-torque sensor is em-
ployed to maintain a constant pressing
force, dynamically adjusting the robot’s
path based on real-time feedback to
accommodate surface variations. Key
achievements include the development
of robust point cloud processing algo-
rithms, a feedback control mechanism
for maintaining uniform force, and
the application of the OPC UA com-
munication protocol for seamless and
secure data exchange between system
components. The introduction of aug-
mented reality (AR) via the Hololens
2 headset enhances user interaction,
allowing operators to visualize sanding
paths in real-time and interact with the
workstation. The system’s effective-
ness was validated in a real industrial
setting, demonstrating its potential for
improving robotic sanding and polish-
ing processes in flexible manufacturing
environments.

Keywords: robotic sanding, 3D vi-
sion system, force feedback control,
point cloud processing, augmented
reality
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Chapter 1
Introduction

This master thesis explores solutions to Scan & Sand problem with an industrial robotic
manipulator. This task involves the sanding or polishing of manufactured objects whose
shapes and specifications are not previously known. Typically, objects created through
processes such as turning or 3D printing require such finishing to attain a smooth
surface. Similarly, this approach is also applicable for stripping old paint or varnish
from objects. Such objects often have complex shapes and require a skilled person
to sand them.

1.1 Motivation
Despite the precision with which robots can follow a set trajectory, equipped with a pol-
ishing spindle, their application is currently limited. The trajectories must be metic-
ulously programmed by an operator using CAD/CAM software, significantly reducing
the robot’s flexibility to adapt to new and varied objects. If the path is predefined, it is
difficult for the robot to react to unexpected changes on the workpiece. In the produc-
tion process, it is likely that the products will easily deviate from each other and will
have their own imperfections. In such a case, the robot would not be able to maintain
constant pressure, which is very important.

Beyond material processing, these robotic systems could revolutionize additive man-
ufacturing. Printing on any arbitrarily curved surface remains a complex task[1]. How-
ever, a robot equipped with an extruder and a depth camera could easily overcome
these limitations. When printing material onto an existing part, the surface must have
a suitable adhesion and a smooth surface that can be achieved by sanding.

Another focal point of this thesis is the integration of appropriate visualization
method, such as augmented reality (AR) headset within robotic workspace. There is
a growing belief that AR technology could significantly enhance industrial operations,
especially in robotic manufacturing [2]. For instance, unskilled operators could receive
real-time, detailed guidance about workplace devices and their operation through an AR
headset. Specifically, in sanding applications, operators could view the robot’s sanding
paths projected directly onto the object’s surface. This feature allows for on-the-fly
adjustments to the sanding pattern’s density or the applied pressure, significantly en-
hancing the process’s efficiency and effectiveness.

1.2 Goals
The primary goal of this thesis is to develop an autonomous robotic cell capable of sand-
ing an unknown convex object with desired force. This process leverages a point cloud
obtained by a depth camera, with visualization and user interaction facilitated through
the AR headset. This thesis outlines the methods employed and their implementation
in an actual industrial setting. The real workplace where the solution was implemented
is located in the Testbed for Industry 4.0 at the Czech Institute of Informatics, Robotics
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and Cybernetics, CTU in Prague1. Although the fundamental difference between sand-
ing and polishing lies in the amount of material removed, this project is structured as
a proof of concept; therefore, the specific application—whether for sanding or polish-
ing—is secondary.

A core component of the methodology is an algorithm that processes data from
a 3D Vision system. It consists of processing the point cloud and then generating
two sanding patterns, namely zig-zag and spiral patterns. The pattern consists of the
robot’s positions and the end-effector’s orientations in such a direction that the spindle
is always perpendicular to the object’s surface. Between each point the robot traverses
in linear motions. Since the presented algorithm must be aware of the robot kinematics,
a forward and inverse kinematic problem for a 6-DOF (Degrees of Freedom) robotic
manipulator is introduced.

Furthermore, to maintain a constant pressing force—a critical factor in effective
sanding—a feedback mechanism adjusts the robot’s position based on real-time force
measurements. This also requires the development of a straightforward process that
determines the gravitational force compensation in the steady state of the tool attached
to the force-torque sensor.

Last but not least, the OPC UA (OPC Unified Architecture) communication pro-
tocol is briefly introduced. It is used for communication and data transfer between
the application computer and the robot controller, as well as for communication and
data transfer between the robot and the AR headset.

The implementation section provides a comprehensive overview of the automated
sanding process pipeline. Where at the beginning, it is necessary to calibrate
the workspace, i.e., to find out the transformation matrix between the robot coordinate
system and the depth camera coordinate system. Followed by the detailed steps from
point cloud processing to generating executable robot code for the KR C4 controller.
Then, a concrete implementation of the feedback control of the pressing force in the RSI
(Robot-Sensor Interface) is presented. The possibility of simulating a robot program
in RoboDK software is also investigated, which is especially useful for path verifica-
tion and collision control. Moreover, all the communication protocols that are used
in the data transfer between the individual components of the workplace are described.
There is even a description of the process of developing an application for AR Headset
in Unity with emphasis on the alignment of the whole scene to a specific part being
sanded.

1 https://ricaip.eu/testbed-prague/
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Chapter 2
Related Work

This chapter provides a comprehensive review of the state of the art in robotic sys-
tems for sanding and polishing, with a particular focus on the integration of 3D vision
systems and force feedback control. It examines key developments in robotic path
planning, dynamic force control, and real-time 3D vision applications. The synthesis
of this literature not only outlines the evolution of robotic capabilities but also frames
the technological backdrop against which this thesis proposes enhancements to robotic
sanding systems.

2.1 Approach to sanding
In their study on automatic polishing for curved surfaces, Fengjie Tian et al. [3] in-
troduce a force control strategy that adeptly manages the application of consistent
polishing force through both active and passive compliance mechanisms. Key to this
approach is the incorporation of gravity compensation to neutralize the impact of the
tool’s weight and an explicit force control based on position, ensuring uniform applica-
tion of force. This is mathematically represented in the paper as 𝐹𝑚(𝑖) = 𝐹𝑐(𝑖) + 𝐹𝑔,
where 𝐹𝑚(𝑖) is the measured force, 𝐹𝑐(𝑖) is the polishing force, and 𝐹𝑔 is the gravita-
tional force on the polishing tool.

A central element of their methodology is the development of a material removal
model, which is crucial for achieving uniform material removal across the workpiece.
This model is formulated to understand the interaction between the polishing tool and
the curved surface, enabling the determination of optimal path spacing. The material
removal profile along the vertical feed direction is described by 𝑧(𝑦) = 𝑎𝑦2 + 𝑏, where
𝑧(𝑦) is the material removal depth, and 𝑎 and 𝑏 are model parameters that account for
the tool-workpiece interaction dynamics.

Moreover, Tian et al. propose an optimal path spacing algorithm derived from their
material removal model to ensure even material removal and high-quality surface fin-
ishes. The algorithm’s foundation lies in the equation for path spacing 𝑆 = √2𝑏/𝑎,
which plays a pivotal role in minimizing material removal depth variations and achieving
the desired surface quality [3].

The paper by Joshua Nguyen, Manuel Bailey, Ignacio Carlucho, and Corina Bar-
balata [4] presents an innovative system for automated sanding. This system is distin-
guished by its ability to adjust the manipulator’s velocity based on real-time assessment
of surface quality, which is inferred from vibration data captured by a force-torque sen-
sor at the end-effector. This methodology leverages two primary control strategies:
a variable velocity generation law and a pose regulation-based law. The former dy-
namically adjusts the robot’s speed along the tangential direction of the sanding path,
conditional upon the amplitude and frequency of the force signal, indicative of surface
roughness.

Their methodology mainly focuses on the correlation between the sanding process’s
vibrational characteristics and the resultant surface finish. By analyzing the force

3
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signal in the frequency domain using FFT (Fast Fourier Transform), the system can
distinguish the surface’s smoothness through variations in frequency and amplitude,
thus enabling real-time adjustments to the sanding velocity.

One technical contribution is the detailed formulation of the vibration-driven con-
trol law, which is inversely proportional to the vibration frequency and amplitude, as
observed during the sanding process. This law ensures that the robot spends more
time on rougher surfaces and accelerates over smoother areas, optimizing the sanding
operation’s efficiency. Their Variable Velocity Generation Law is as follows:

𝑣𝑡 = 1
𝑢𝜆 + 𝑢𝐴 + 𝜖

,

where 𝑣𝑡 is the velocity of the manipulator in the tangential direction, 𝑢𝜆 is a term
that adjusts the velocity based on the difference in the measured sanding frequency 𝜆𝑚
from a predefined target sanding frequency 𝜆𝑑, 𝑢𝐴 adjusts the velocity based on the
difference in the measured amplitude 𝐴𝑚 from a predefined target amplitude 𝐴𝑑 and
lastly 𝜖 is a small constant to prevent division by zero [4].

The research paper by Alberto García et al. [5] introduces a human-robot cooperation
system designed to automate surface treatment operations such as sanding, deburring,
and polishing. The core of their methodology hinges on synergistic cooperation where
the human operator dictates the regions of the workpiece for treatment, using the
robot’s precision and power for execution. The system utilizes a camera network for real-
time, accurate localization of the workpiece within the robot’s workspace, facilitating
dynamic adjustments to changes, including workpiece repositioning.

The technical foundation of this work is built upon a multi-tiered control strategy,
prioritizing

1. a smooth approach and boundary adherence to keep the robot tool within a desig-
nated area near the workpiece,

2. maintaining tool orientation to ensure perpendicular contact with the workpiece sur-
face and

3. flexible operational modes for manual and automatic surface treatment.

Specifically, the smooth approach control employs a robust system regulating the
tool’s approach velocity to decrease as the tool nears the workpiece, adhering to a
predefined safety margin. Boundary constraints are enforced through a control system
that confines the robot tool within an allowable proximity to the workpiece, thereby
preventing unnecessary movements and potential collisions with workspace objects.

Orientation control is achieved through a real-time feedback instrument ensuring the
tool’s perpendicular alignment with the workpiece surface. Lastly, the integration of
manual and automatic operational modes enhances the system’s flexibility, allowing
operators to manually guide the tool for specific treatments or enabling the robot to
autonomously service pre-determined areas [5].

2.2 Paths generation
The paper by Manuel Amersdorfer and Thomas Meurer [6] introduces an innovative
equidistant tool path and Cartesian trajectory planning strategy for robotic machining
of curved freeform surfaces, leveraging arc-length parameterization. Central to their
method is the transformation between 3D Cartesian coordinates and 2D parameters
based on surface arc-lengths, facilitating the generation of equidistant machining paths

4
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that maintain consistent distances regardless of local geometric or surface curvature
variations. This approach is particularly beneficial for applications requiring uniform
coverage, where traditional iso-scallop [7] or iso-planar [8] methods may fall short due
to their dependence on the local curvature or the complexity in handling equidistant
paths across varying surface geometries.

This transformation is articulated as:

𝑢 = ∫
𝑥

𝑥𝑟𝑒𝑓

√1 + (∂𝑓𝑧
∂𝑥

)
2
𝑑𝑥, 𝑣 = ∫

𝑦

𝑦𝑟𝑒𝑓

√1 + (∂𝑓𝑧
∂𝑦

)
2
𝑑𝑦,

where 𝑢 and 𝑣 represent the transformed parameters in the arc-length domain, with ∂𝑓𝑧
∂𝑥

and ∂𝑓𝑧
∂𝑦 denoting the partial derivatives of the surface function 𝑓𝑧 with respect to 𝑥 and

𝑦, respectively. This transformation enables the planning of equidistant paths within a
parameter space that is inherently independent of the surface’s local curvature.

Further refining their strategy, they introduce an inverse interpolation scheme em-
ploying cubic splines to map the planned paths back into Cartesian coordinates, ensur-
ing that the equidistance property is preserved across larger path intervals. This metic-
ulous approach to trajectory planning also includes the consideration of centripetal
acceleration limits, ensuring constant velocity along the path through the equation:

̇𝜏 (𝑡) = 𝑣𝑑
‖𝛾′(𝜏(𝑡))‖

,

where 𝜏(𝑡) denotes the path parameter as a function of time, 𝑣𝑑 is the desired constant
velocity, and 𝛾′(𝜏(𝑡)) represents the derivative of the path with respect to 𝜏, indicating
the path’s curvature [6].

The paper High Precision Trajectory Planning on Freeform Surfaces for Robotic
Manipulators by Renan S. Freitaset et al. [9] presents a comprehensive methodology
for off-line automatic trajectory generation for robotic manipulators operating on 3D
freeform surfaces.

Central to their methodology is the use of the Radial Basis Function (RBF) [10] for
high-precision surface modeling and a marching method algorithm for path generation.
The RBF interpolation, a necessary component of their approach, is defined as:

𝑓(𝑥) =
𝑁

∑
𝑖=1

𝜆𝑖𝜙(‖𝘅 − 𝘅𝗶‖),

where 𝜙 is the basis function such as Gaussian 𝜙(𝑟) = 𝑒−𝑐𝑟2 or triharmonic spline
𝜙(𝑟) = 𝑟3, 𝘅𝗶 are the centers of the RBF, and 𝜆𝑖 are the weights determined to fit the
surface. This formulation is crucial for accurately modeling the complex geometries of
freeform surfaces.

The marching method algorithm [11], utilized for generating paths on these modeled
surfaces, iteratively calculates intersection points between the surface and a cutting
plane, creating a trajectory path. This method’s iterative nature allows for generating
precise and continuous paths across the surface of the workpiece.

For trajectory planning, the paper emphasizes the need for discretizing the CAD
model and estimating object normal vectors, computing an implicit representation with
RBF, and generating paths through the marching method algorithm [9].

Gang Wang et al. in the paper Trajectory Planning and Optimization for Robotic
Machining Based On Measured Point Cloud [12] introduces a methodology for robotic
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2. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
machining path planning, particularly suited for large, complex parts that are predis-
posed to deformation. The foundation of this method is the transformation of point
cloud data, obtained through onsite measurements of deformed parts, into a machining
path that compensates for the part’s actual deformed geometry.

A key aspect of their methodology is the generation of dual Nonuniform Rational
B-Spline (NURBS) curves [13] from the point cloud data. These curves represent the
machining path points and the tool axis points, effectively smoothing the initial rough
path derived directly from the point cloud. This process involves a least-squares NURBS
curve fitting algorithm, formulated as follows:

𝐶(𝑢) =
∑𝑚

𝑗=0 𝑤𝑗𝑁𝑗,𝑘(𝑢)𝗱𝗷

∑𝑚
𝑗=0 𝑤𝑗𝑁𝑗,𝑘(𝑢)

where 𝐶(𝑢) is the curve prescription, 𝑁𝑗,𝑘(𝑢) are the basis functions, 𝗱𝗷 are the control
points, and 𝑤𝑗 are the weights and 𝑘 = 3 to keep the second derivative of the curve
continuous. The prescription of curve 𝐶(𝑢) is used to generate both NURBS curves
𝐶𝑃, 𝐶𝑄 for the tool path points and tool axis points, respectively.

To ensure the smoothness and accuracy of the generated path, an objective function
for smoothness optimization is established. This function aims to minimize the defor-
mation energy while considering the constraints of deviation from the initial measured
path. The optimization integrates both geometric continuity and fidelity to the actual
part geometry, which is crucial for maintaining the desired machining quality.

Furthermore, the methodology extends to robot pose optimization, focusing on the
dexterity and stiffness of the robotic arm during machining. This step is vital for
enhancing the stability and quality of the machining process, ensuring the robot main-
tains optimal configurations that avoid kinematic limits and ensure efficient material
removal [12].

6



Chapter 3
Methodology

This chapter explains the state-of-the-art methodologies employed in this thesis to en-
hance the functionality and efficiency of robotic sanding systems through the integration
of a 3D vision system and force feedback control. The methods are designed to be as
general as possible so that they can be implemented in different workplaces, even with
modified tasks. The core of the workplace is a robotic manipulator with 6-DOF. A
force-torque sensor and a sanding spindle must be attached to it. The workstation
also includes a work table to which the part to be sanded is attached. The part is to
be scanned by a 3D vision system, which creates a point cloud on which the sanding
paths for the robot are generated. The diagram in Figure 3.1 shows all the essential
components of the workstation.

Robotic
manipulator

Sanding
spindle Force-Torque

sensor

3D Vision
system

Part to be sanded

Work table

Figure 3.1. Overview of the workstation with fundamental components.

The work process begins with the 3D spatial data acquisition using a depth camera,
which serves as the foundation for generating precise robotic paths tailored to the unique
contours of each workpiece. The core of the methodology chapter discusses the use of
path generation algorithms, specifically the development of zig-zag and spiral sanding
patterns that adapt to complex convex geometries.

Subsequent sections explore the dynamic force control strategies implemented to
maintain constant pressure during the sanding process, crucial for achieving uniform
material removal. This includes an in-depth examination of real-time feedback mecha-
nisms and their integration with the robotic control system to adjust the sanding force
dynamically in response to real-time data from the force-torque sensor.

Additionally, the chapter describes the application of the OPC UA communication
protocol for data exchange between the robot controller and other system components,
enhancing the overall responsiveness and reliability of the sanding operation.

The methodology also covers the calibration processes necessary for aligning the
robot’s coordinate system with that of the 3D vision system, ensuring accuracy and
consistency in the execution of sanding paths.
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3.1 Point cloud processing and path generation
This section describes how the point cloud, obtained from a depth cameras, is processed
for the purpose of robotic sanding. The algorithms that extract the sanding paths from
the point cloud are also presented. These paths are generated in terms of patterns,
namely zig-zag and spiral patterns. The concrete process of obtaining the point cloud
from the camera is explained in section 4.3.1. It is now assumed that it is being worked
with some point cloud of the scene, which has a resolution of approximately 1 𝑚𝑚.

3.1.1 Point cloud processing
The entering point cloud may look like the one in picture 3.2. As it can be seen in
the picture, the point cloud is in the camera coordinate system, so it is necessary to
transform it into the robot coordinate system first.

Figure 3.2. Input point cloud into the process of generating robot sanding paths.

This is done by applying a transformation matrix to each point of the point cloud.
The transformation matrix 𝗧 is obtained by the process of workspace calibration, which
is described in section 3.5. Such a matrix consists of a rotation matrix R and a transla-
tion t between the coordinate system origins. It is important to note that such a matrix
T transforms homogeneous coordinates. Each point must, therefore, be expanded into
4D, transformed, and then returned to 3D; this is achieved by adding 1 as the fourth
coordinate. In the following equation, there is such a matrix T and how the 𝑖-th point
of the point cloud is transformed from the camera coordinate system (𝗽𝗰

𝗶 ) to the robot
coordinate system (𝗽𝗿

𝗶 ) [14]:

𝗧 =
⎛⎜⎜⎜
⎝

𝗥 𝘁

0 0 0 1

⎞⎟⎟⎟
⎠

⟶
⎛⎜⎜⎜
⎝

𝗽𝗿
𝗶

1

⎞⎟⎟⎟
⎠

= 𝗧
⎛⎜⎜⎜
⎝

𝗽𝗰
𝗶

1

⎞⎟⎟⎟
⎠

. (1)

Once the point cloud is transformed into the robot’s coordinate system, it is possible
to discard unnecessary objects, i.e., the floor and the table on which the workpiece is
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mounted. This is done simply by thresholding, knowing how high the table is relative
to the robot, i.e., all points of the point cloud that have a 𝑧 coordinate less than a
certain threshold are removed.

Further, the outliers are removed, which are typically located on the edges of the
workpiece, where the camera can see poorly. These points would spoil the algorithm
for generating the sanding pattern. They are removed using the statistical removal
method. This means that points that are more distant from their neighbours than the
average distance of the point cloud are removed [15].

The last thing needed is to estimate the normals. For this, a method has already
been prepared in the Open3D library. The covariance analysis algorithm is used there.
It is based on Principal Component Analysis (PCA), which estimates surface normals
by analyzing the local geometric distribution of points around each point of interest
in a point cloud. For each point, it defines a neighborhood either through K near-
est neighbors or a radius-based search, then calculates the covariance matrix of these
neighborhood points to capture their spread in 3D space. By performing eigenvalue
decomposition on this covariance matrix, the algorithm identifies the eigenvector asso-
ciated with the smallest eigenvalue as the surface normal, since this direction represents
the axis of least variance, effectively perpendicular to the local surface. An additional
step is unifying the orientation of the estimated normals towards a consistent viewpoint.
A virtual point with coordinates ( 1300 200 −1000 )𝑇 is created, all the normals must be
pointing towards this point [15].

The processed point cloud, which serves as input to the functions for creating sanding
patterns, is shown in Figure 3.3. It can be seen that the points are in the robot’s
coordinate system, most of the outliers are removed, and all the normals are pointing
downwards. For clarity, there is also a zoomed-in detail of the point cloud.

Figure 3.3. Processed point cloud, prepared for a generation of sanding patterns.

3.1.2 Zig-zag pattern creation

The algorithm for creating a zig-zag pattern from a given point cloud for robotic ma-
nipulator sanding operations is a process that effectively organizes a complex set of 3D
data points into a structured path. This path is designed to guide a robotic arm across
a surface in a zig-zag motion, optimizing coverage and efficiency.

The output is an array of transformation matrices as in Equation (1). This defines
both the positions and orientations of the tool in the robot coordinate system and is
independent of the conventions used by different robot manufacturers. The algorithm
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is divided into two main functions: one that generates the positions of the path and
a second that adds orientation to each point in the path based on the closest point’s
normal vector in the point cloud. The pseudo-code of the zig_zag_pattern function
is provided here:

Function zig_zag_pattern(poinct cloud: pcd, tool radius: r):
Initialize: tolerance_x = r * 0.33
Initialize: voxel_radius = r * 0.5
Downsample pcd using voxel_radius to create pcd_voxel_grid
Convert pcd_voxel_grid points to a numpy array: points

Initialize: path = []
Initialize: going_right = True

While points are not empty:
Find the point with the minimum x-coordinate: min_x_point
Points within tolerance_x of min_x_point form: stripe
Remove stripe from points array

Average the x-coordinates of stripe points: x_avrg
Assign x_avrg to all stripe points
Sort stripe points by y-coordinate

If not going_right:
Reverse the order of stripe points

Toggle the value of going_right
Append stripe points to path

Return add_orientation_to_path(path, pcd)

The zig_zag_pattern function starts by defining a tolerance for the 𝑥 coordinate
and a radius for voxel downsampling. Voxel downsampling is a technique used to reduce
the resolution of the point cloud by grouping nearby points into voxels, or 3D pixels,
based on the specified radius [15]. These voxels generalize the neighborhood into which
the sanding spindle should be driven in order to sand all the surrounding points.

With the point cloud simplified, the function proceeds to generate the zig-zag pattern.
It initializes a loop that continues until all points in the downsampled point cloud have
been processed. Within each iteration, the algorithm identifies the point with the
minimum 𝑥 coordinate, which serves as a reference for creating a stripe, a row of
points. These stripes are formed by selecting points within a certain 𝑥 coordinate
tolerance from the reference point. This grouping creates a row parallel to the 𝑦 axis.
The procedure progresses from the closest points to the robot to the most distant ones.

Once a stripe is defined, its points are sorted based on their 𝑦 coordinates, ensuring
they are organized in a linear fashion from one end of the stripe to the other. The
algorithm then checks the current direction of movement (left or right) and reverses
the order of points in the stripe if necessary. This reversal is what creates the zig-zag
pattern: as the path progresses, it alternates direction with each new stripe, mimicking
the back-and-forth pattern of a zig-zag.

The array of coordinates must be added with orientations. This is done in the
function add_orientation_to_path, which is described by the following pseudo-code:

10
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Function add_orientation_to_path(Nx3 array: path, poinct cloud: pcd):
Create a KD Tree from the pcd: pcd_tree
Initialize: trafos with shape Nx4x4 filled with zeros

For each point p in path:
Find the closest point in pcd_tree to p and its normal vector n
Normalize n

Define a project vector x as [-1, 0, 0]
Project x onto the plane defined by n to get x_proj
Normalize x_proj

Calculate y as the cross product of n and x_proj
Normalize y

Construct a rotation matrix R from x_proj, y, and n
Assign R and p to the corresponding space in trafos
Set the last diagonal cell of the matrix to 1

Return trafos

This function’s role is to assign an orientation to each point along the path, ensuring the
robotic manipulator approaches each point with the correct alignment. The orientation
is determined based on the normal vectors of the closest points in the original, high-
resolution point cloud.

For each point in the path, the algorithm uses a KD Tree to efficiently find the closest
point in the original point cloud [15]. The normal vector n of this closest point is then
used as a basis for calculating the orientation. The process involves projecting a vector
𝘅 = ( −1 0 0 )𝑇 onto a plane defined by the normal vector:

𝘅𝑝𝑟𝑜𝑗 = 𝘅 − (𝘅 · 𝗻)𝗻. (2)

Thus, it is guaranteed that the tool will point towards the robot at all points. The last
component of the rotation is created by the dot product of n and 𝘅𝑝𝑟𝑜𝑗 :

𝘆 = 𝗻 × 𝘅𝑝𝑟𝑜𝑗. (3)

The rotation matrix R is formed by composing into a matrix these normalized vectors,
which are orthogonal to each other [14]:

𝗥 = ( 𝘅𝑝𝑟𝑜𝑗 𝘆 𝗻 ) . (4)

This rotation matrix, along with the point’s coordinates, forms a transformation ma-
trix 𝗧 that represents the manipulator’s position and orientation in 3D space. These
transformation matrices are compiled for each point along the path, providing a com-
prehensive guide for the robotic manipulator to follow the zig-zag pattern with proper
orientation at each step.

This array of transformation matrices, as a designed path for the robot, is shown in
Figure 3.4, and its zoom is in Figure 3.5, where the individual points are better visible.
The individual coordinate systems are suitable for visualization because it is possible
to see how the sanding spindle should be oriented. It can be seen that the tool (𝑧 axis)
is always perpendicular to the object’s surface, and the tool’s 𝑥 axis is always pointing
towards the robot.
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Figure 3.4. Generated path for robot as zig-zag pattern.
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Figure 3.5. Zoomed path for robot as zig-zag pattern.

3.1.3 Spiral pattern creation
Another pattern that is suitable for robotic sanding or polishing is the spiral pattern,
where the robot starts at the outer part of the object to be sanded and gradually
spirals toward its center. The sequence of points to be traversed by the robot is
first properly determined, and then the orientation of the tool is calculated. The
algorithm consists of the main function spiral_pattern and auxiliary functions
distance_point_to_segment, is_point_near_hull. First, the auxiliary functions
are shown:

Function distance_point_to_segment(point: p, p1, p2):
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v = p2 - p1 // Line segment vector from p1 to p2
w = p - p1 // Vector from p1 to point p

// Project w onto v
c1 = dot_product(w, v)
If c1 is less or equal to 0:

Return norm(p - p1) // p projects before p1 on the line
c2 = dot_product(v, v)
If c2 is less or equal to c1:

Return norm(p - p2) // p projects beyond p2 on the line

// Calculate the projection point p along the line segment
b = c1 / c2
pb = p1 + (b * v) // Projection p on the segment

Return norm(p - pb)

This function calculates the shortest distance from a point 𝑝 to a line segment defined
by two points, 𝑝1 and 𝑝2. It employs the projection of 𝑝 onto the line segment and
determines the closest point on the segment to 𝑝, returning the Euclidean distance
between 𝑝 and this closest point. The function handles boundary cases where the
closest point on the line defined by 𝑝1 and 𝑝2 falls outside the segment, in which case
the distance to the nearest endpoint (𝑝1 or 𝑝2) is returned. The vector 𝘃 = 𝑝2 − 𝑝1
defines the line segment. The vector from 𝑝1 to 𝑝 is denoted as 𝘄 = 𝑝 − 𝑝1. The
projection scalar is calculated: 𝑐1 = 𝘄·𝘃, and the squared magnitude of 𝘃 is calculated:
𝑐2 = 𝘃 · 𝘃. The projection point 𝑝𝑏 on the line is found using the scalar projection
𝑏 = 𝑐2/𝑐1, resulting in 𝑝𝑏 = 𝑝1 + 𝑏 · 𝘃. The distance from 𝑝 to the segment is the
Euclidean distance between 𝑝 and 𝑝𝑏: 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = ‖𝑝 − 𝑝𝑏‖.

The second help function is described here:

Function is_point_near_hull(point: p, hull_vertices, tolerance):
For each vertex i in hull_vertices:

p1 = hull_vertices[i]
p2 = hull_vertices[(i + 1) % len(hull_vertices)] // Next vertex

If distance_point_to_segment(p, p1, p2) is less than tolerance:
Return True // p is within tolerance distance of the hull

Return False // p is not near the hull

This function assesses whether a given point is within a specified tolerance distance from
any edge of a convex hull defined by hull_vertices [16]. It iterates over each segment
of the hull, utilizing distance_point_to_segment to compute the distance from the
point to the current segment. If the distance is less than the specified tolerance, the
function concludes that the point is near the hull. This determination is essential for
identifying points that are close to the boundary of a layer in the spiral path generation
process.

The previous function is used in the algorithm to create a spiral path for a robot
from the point cloud. Its pseudo-code and detailed description is presented here:

Function spiral_pattern(pont cloud: pcd, radius: r):
tolerance = r * 0.25
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voxel_radius = r * 0.5
Downsample pcd using voxel_radius to create pcd_voxel_grid

Convert pcd_voxel_grid points to a numpy array: points
Initialize: path = []

While there are at least 3 points remaining:
project points to XY plane: points_xy
Compute the convex hull of the points_xy
Extract the boundary points: hull_vertices

Initialize: layer_points = []
For each point in the points_xy:

If is_point_near_hull(point, hull_vertices, tolerance):
Add the point to layer_points

Remove layer_points from the points // use 3D points

Sort layer_points clockwise relative to their centroid
Append sorted layer_points to path // use 3D points

Return add_orientation_to_path(path, pcd)

The spiral_pattern function is the core of the spiral path generation algorithm.
Its arguments on the input are a point cloud pcd and a radius r, which influences the
granularity of the voxel downsampling and the tolerance used for path generation. The
process begins by converting the point cloud into a voxel grid, reducing the complexity
of the cloud by merging nearby points into voxels.

The function then enters a loop that continues as long as there are enough points (at
least 3) to form a convex hull. Within each iteration, it computes the convex hull of
the remaining points, using these hull vertices to identify a layer of the spiral. Points
near this hull, determined by the is_point_near_hull function, are considered part of
the current layer. These points are then removed from the consideration for subsequent
layers, effectively peeling the point cloud layer by layer.

Points in each layer are sorted in a clockwise direction based on their angles relative
to the layer’s centroid. This sorting is crucial for generating a spiral path that navigates
around the layer in a coherent, continuous manner. When working with a convex hull,
the points are projected into the 𝑋𝑌 plane. Only when sorted points are added to the
path are their 3D equivalents added.

The sorting process organizes the points in a clockwise direction based on their
angular positions relative to the centroid 𝐶 = (𝐶𝑥, 𝐶𝑦) of the layer. It is computed as
the arithmetic mean of the coordinates of all points in the layer:

𝐶𝑥 = 1
𝑁

𝑁
∑
𝑖=1

𝑥𝑖, 𝐶𝑦 = 1
𝑁

𝑁
∑
𝑖=1

𝑦𝑖, (5)

where (𝑥𝑖, 𝑦𝑖) are the coordinates of the 𝑖-th point in the layer, and 𝑁 is the total
number of points in the layer. For each point 𝑝𝑖 = (𝑥𝑖, 𝑦𝑖) in the layer, its angular
position 𝜃𝑖 relative to the centroid 𝐶 is calculated using the 𝑎𝑟𝑐𝑡𝑎𝑛2 function, which is
a variant of the 𝑎𝑟𝑐𝑡𝑎𝑛 function that considers the sign of both arguments to determine
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the correct quadrant of the angle:

𝜃𝑖 = 𝑎𝑟𝑐𝑡𝑎𝑛2(𝑦𝑖 − 𝐶𝑦, 𝑥𝑖 − 𝐶𝑥). (6)

Once all angular positions 𝜃 are calculated, the points in the layer are sorted based
on these values. This sorting arranges the points in a clockwise direction around the
centroid.

After sorting, the points of the current layer are added to the path. This process
repeats, layer by layer, until all points are incorporated into the path. Finally, orienta-
tions are added to each path point using the add_orientation_to_path function from
the previous section. It is again obtained an array of transformation matrices, which is
visualized in Figure 3.6, and its zoom is in Figure 3.7.
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Figure 3.6. Generated path for robot as spiral pattern.

3.2 Controller of the sanding force
A force-torque (F/T) sensor is a device capable of measuring the forces and torques
applied along multiple axes. In the context of industrial robots, F/T sensors are integral
for tasks requiring precision, such as assembly, machining, and delicate manipulation.
They provide robots with the necessary feedback to adjust their actions in real-time,
enabling them to perform complex tasks with high precision and adaptability.

Force-torque sensors typically operate on the principle of strain measurement. They
consist of a series of strain gauges arranged in a specific configuration. These strain
gauges, which are essentially resistors whose resistance changes under the application
of strain (deformation), are bonded to a flexible material or structure within the sensor.
When an external force or torque is applied, it causes deformation in the sensor material,
leading to a change in the resistance of the strain gauges. This change in resistance
is then converted into a signal, which is processed to calculate the magnitude and
direction of the applied forces and torques. There are six degrees of freedom along
which force and torque can be measured: three linear axes (𝑥, 𝑦, and 𝑧) for forces and
three rotational axes (around 𝑥, 𝑦, and 𝑧) for torques [17].
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Figure 3.7. Zoomed path for robot as spiral pattern.

In picture 3.8, such a sensor is shown, and its coordinate system is also illustrated.
The 𝑧 axis is essential for the sanding application, which is the direction in which the
end-effector is mounted to the F/T sensor. Both 𝑧 axes are aligned to each other in this
way. In this and all subsequent cases, the axes of the coordinate system are indicated
in color: red, green, and blue for the 𝑥, 𝑦, and 𝑧 axes. In the case of robotic sanding,
only the measured forces on the axes are relevant because it is assumed that the robot
runs at a constant speed during the sanding process, and its purpose is to maintain a
constant pressing force.

Figure 3.8. The coordinate system of a force-torque sensor.

3.2.1 Sensor Gravity compensation

An essential aspect of working with force-torque sensors is compensating for the effects
of gravity. Gravity compensation is necessary because the weight of the sensor itself
and any attached tooling or payloads can introduce constant bias in the measurements,
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affecting the accuracy of force and torque readings. Gravity compensation involves
subtracting the gravitational forces from the sensor readings [18].

This can be achieved through calibration processes where the sensor is oriented in
various known positions to measure the gravitational effects. These measurements are
then used to mathematically model the gravitational bias, which can be subtracted
from subsequent readings to obtain accurate force and torque measurements.

The calibration of the sensor is performed by moving the robot with the attached
force-torque sensor and the tool to positions where only one axis is actually measuring,
and the other two are not active and measure zero force. In addition, the forces in both
the positive and negative directions of sensitivity are measured for each axis. Thus,
six values are measured: 𝐹 +

𝑥 , 𝐹 −
𝑥 , 𝐹 +

𝑦 , 𝐹 −
𝑦 , 𝐹 +

𝑧 and 𝐹 −
𝑧 . These are the forces on each

axis in both positive and negative directions. The offset compensation is based on the
assumption that for an ideal sensor it holds (𝐹 + + 𝐹 −)/2 = 0. However, for a real
sensor, this is not true, so it is necessary to find an offset that corrects this to zero.
The individual offsets on the axes are obtained as follows:

𝑜𝑓𝑓𝑠𝑒𝑡𝑥 = 𝐹 +
𝑥 + 𝐹 −

𝑥
2

, 𝑜𝑓𝑓𝑠𝑒𝑡𝑦 =
𝐹 +

𝑦 + 𝐹 −
𝑦

2
, 𝑜𝑓𝑓𝑠𝑒𝑡𝑧 = 𝐹 +

𝑧 + 𝐹 −
𝑧

2
. (7)

These offset values must be subtracted from the raw force-torque sensor measure-
ments.

However, it is also required to ensure that the total force acting on the sensor at a
standstill is zero. Again, these six measuring positions are traversed, this time with
compensated offsets, and the individual forces are logged. The absolute value is taken,
and the arithmetic mean is calculated:

𝑜𝑓𝑓𝑠𝑒𝑡𝑛𝑜𝑟𝑚 = |𝐹 +
𝑥 | + . . . + |𝐹 −

𝑧 |
6

. (8)

Afterward, the magnitude of the force applied on the force-torque sensor is zero
in arbitrary position of the tool. This compensates for the gravitational force being
applied to the tool and the force-torque sensor. In the sanding process, the force vector
norm of all three components must first be calculated, and then 𝑜𝑓𝑓𝑠𝑒𝑡𝑛𝑜𝑟𝑚 must be
subtracted from it to obtain the real force that the sanding spindle is pressing on the
object.

Before logging values from the force-torque sensor, it is useful to wait for a little
while until the robot’s movement stops and values have stabilized.

3.2.2 Controller for applying a constant pressing force
The purpose of this controller is to hold a constant force (𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒) for the whole
time the robot is sanding the specified object. It can happen that some defect occurs
on the object, which is not accented in the path planning, and at the same time, it
controls the force between the points to be traversed by the robot. It should run at the
highest possible frequency to achieve the best results. A diagram of the entire control
loop is shown in Figure 3.9.

The control loop receives the current values of the forces on the individual axes of the
force-torque sensor (𝑅𝑎𝑤 𝐹𝑥, 𝐹𝑦, 𝐹𝑧). From these raw values the corresponding offsets
are subtracted, which were computed in the previous section and are stored directly
in the robot controller. From the values of the forces on the axes, the magnitude of
the total force vector is calculated: 𝐹 = √𝐹 2

𝑥 + 𝐹 2
𝑦 + 𝐹 2

𝑧 . Even if it is assumed that
the force-torque sensor will be active only in the 𝑧 axis direction, all axes are used
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Figure 3.9. Controller for keeping constant pressing force on an object.

to calculate the force vector, especially to avoid inaccuracies in the gravitational force
offset. In addition, it is useful for safety. If a force is detected on the 𝑥 or 𝑦 axis of
the sensor that is not accounted for, the robot will react by moving away from the
workpiece.

The magnitude of the force is then filtered by a low pass filter. The output of the
force-torque sensor is noisy, and the controller would react too wildly. In a concrete
implementation, an Infinite Impulse Response filter with a Bessel second-order function
is used [19]. After this signal smoothing, the contribution of the gravitational force
(𝑂𝑓𝑓𝑠𝑒𝑡𝑛𝑜𝑟𝑚) is subtracted from the force.

The modified input signal in the form of the force applied to the workpiece is sub-
tracted from the reference force, which is requested by the operator to be constant
throughout the sanding process, i.e. it is a reference tracking task. The subtraction of
the forces produces the error 𝑒𝑧, which the controller should keep at zero. This error is
used as an input to the PI controller [20]. It is chosen for the reason that it converts the
force magnitude proportionally to the position and, in addition, keeps the information
about the error from the past due to the integration component. The output of the
controller is therefore the 𝐶𝑜𝑟𝑟𝑧 magnitude, which is the value by which it should be
shifted in the 𝑧 axis in the end-effector coordinate system. Kuka robots can work di-
rectly with this value and can incorporate it into the robot’s motion [21]. The controller
is set up so that when the error is greater than zero, the robot approaches the object.
This means that it is not applying enough force to the object, and its 𝑧 tool coordinates
must be decremented. Conversely, when 𝑒𝑧 is less than zero, the robot applies too much
force to the workpiece and has to move away from it.

The concrete results of the controllers are in the section 4.6. The specific values of
the PI controller and the time sequence of the pressing force, when it is controlled in
the feedback loop, are given there.

3.3 Forward and Inverse kinematic task for a 6-DOF
robotic manipulator

For the automated generation of robot paths, the path generation algorithm needs to
know the kinematics of the robot. Two kinematic tasks are defined: a forward and
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an inverse task. These mathematical frameworks are essential for understanding and
programming the movements of a robot to achieve desired positions and orientations in
space. In the context of robotic manipulators, kinematics focuses on the relationship
between the joint parameters (such as angles for revolute joints or displacements for
prismatic joints) and the position and orientation of the robot’s end-effector [22].

In this application, a robotic manipulator with six revolute joints is used, and a
sanding spindle is attached to the flange as an end-effector. There are two possibilities
how to assign a tool to the robot. The first is that the coordinate system of the
flange and the tool is offset only in the 𝑧 axis. The second option is to attach the tool
perpendicular to the flange.

The first option is shown in Figure 3.10. From the image, it is evident that the sixth
axis is not used since the sanding spindle is symmetrical about the 𝑧 axis and, therefore,
does not depend on the rotation of the axis 6. However, the advantage is that it is a
more straightforward mathematical description of such a system, and the end-effector is
only offset in the 𝑧 axis from the flange so that the inverse kinematic task can be solved
analytically quite easily. Another advantage is the simple force control. It is clearly
determined that the 𝑧 axis of the force-torque sensor is always perpendicular to the
surface and a simple force reading is ensured. Figure 3.10 further shows all significant
coordinate systems (csys) on the robot and the tool.

Figure 3.10. Kinematic system with parallel attachment of the tool to the robot flange
offset only in the 𝑧 axis.

Picture 3.11 shows a more complex mounting of the tool to the flange. Its disadvan-
tages are both a more complex description of the kinematics and a more complex task
of correcting the robot position with respect to the force-torque sensor measurement.
The main advantage is the versatility in angling. Mounting the spindle perpendicular
to the flange allows the robot to approach the workpiece from various angles more eas-
ily, enhancing the versatility of sanding different surface orientations. Typically, when
traversing an edge, it is sufficient to apply axis 6. However, with the previous kine-
matics, all other axes would have to be engaged, and their joint speeds would increase
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Figure 3.11. Kinematic system with perpendicular attachment of the tool to the robot
flange.

significantly to achieve a constant tool velocity, which significantly increases the robot’s
power consumption.

The first approach was chosen because of the simplicity of the description of both
the kinematic model of the system and the measurements on the force-torque sensor.
However, it would be interesting to modify the system to the second case in future work
because it can provide greater variability in robotic sanding.

3.3.1 Forward kinematic task

The objective of forward kinematics is to compute the position and orientation of the
robot’s end-effector from its joint parameters (angles for revolute joints) [22]. This task
is crucial as it allows the control system to determine where the end-effector will be
positioned in the workspace after certain joint movements.

A robotic arm with 6 joints, described by a set of joint parameters 𝗾 = (𝑞1, . . . , 𝑞6),
should be considered, where each 𝑞𝑖 represents the joint angle for revolute joints or joint
displacement for prismatic joints. The goal is to compute the transformation matrix
𝗧 that maps these joint parameters to the pose of the end-effector. Matrix 𝗧 contains
translations between the robot’s origin and TCP (Tool center point), as well as the
rotation of the tool.

The Denavit-Hartenberg (DH) convention is used to obtain the matrix 𝗧. The DH
notation is a standardized method to systematically represent the kinematic chains of
robots. It simplifies the mathematical modeling of robotic arms by using a minimal set
of parameters. It enables the calculation of transformation matrices between consecu-
tive joint coordinate frames. The parameters 𝜃𝑖, 𝑑𝑖, 𝑎𝑖, and 𝛼𝑖 are defined as follows
for each joint 𝑖 from 1 to 6 in a 6-DOF robot:

. 𝜃𝑖: The joint angle, which is the rotation around the 𝑧 axis of the previous joint’s
frame to align the 𝑥 axis with the common normal.
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. 𝑑𝑖: The link offset, which is the distance along the previous 𝑧 axis to the common
normal. This is effectively the translation along the 𝑧 axis of the previous joint’s
frame.

. 𝑎𝑖: The link length, which is the distance from the previous 𝑧 axis to the current 𝑧
axis, measured along the common normal (𝑥 axis).

. 𝛼𝑖: The link rotation, which is the angle from the previous 𝑧 axis to the current 𝑧
axis, measured around the common normal (𝑥 axis).

In DH notation, each joint in the robotic manipulator is associated with a coordinate
frame. The frames are set as follows:
. The 𝑧 axis of each frame is aligned with the axis of the joint (axis of motion).
. The 𝑥 axis is aligned along the common normal between the current 𝑧 axis and the

next 𝑧 axis. If the axes are parallel, the common normal that provides the shortest
distance is selected.

. The origin of each frame is placed at the intersection of the 𝑥 axis with the 𝑧 axis of
the previous joint.

Each joint 𝑖 contributes a transformation 𝗧𝗶 based on its parameters using the DH
convention. The final transformation is the transformation between the robot flange
and TCP. The resulting matrix is then obtained as

𝗧 = 𝗧𝟭 ⋅ . . . ⋅ 𝗧𝟲 ⋅ 𝗧𝗧𝗖𝗣. (9)

Each joint 𝑖 contributes a transformation 𝗧𝗶 based on its parameters using the DH
convention. This local transformation from joint 𝑖 to joint 𝑖 + 1 is given by:

𝗧𝗶 = 𝗥𝗼𝘁𝘇(𝜃𝑖) ⋅ 𝗧𝗿𝗮𝗻𝘀𝗹𝘇(𝑑𝑖) ⋅ 𝗧𝗿𝗮𝗻𝘀𝗹𝘅(𝑎𝑖) ⋅ 𝗥𝗼𝘁𝘅(𝛼𝑖), (10)

where Rot denotes the matrix of rotation, either about the 𝑧 axis or about the 𝑥 axis
and Transl denotes the matrix of translation in the 𝑧 axis or in the 𝑥 axis. These
matrices are as follows:

𝗥𝗼𝘁𝘇(𝜃𝑖) =
⎛⎜⎜⎜
⎝

𝑐𝑜𝑠(𝜃𝑖) −𝑠𝑖𝑛(𝜃𝑖) 0 0
𝑠𝑖𝑛(𝜃𝑖) 𝑐𝑜𝑠(𝜃𝑖) 0 0

0 0 1 0
0 0 0 1

⎞⎟⎟⎟
⎠

, 𝗧𝗿𝗮𝗻𝘀𝗹𝘇(𝑑𝑖) =
⎛⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 𝑑𝑖
0 0 0 1

⎞⎟⎟⎟
⎠

,

𝗧𝗿𝗮𝗻𝘀𝗹𝘅(𝑎𝑖) =
⎛⎜⎜⎜
⎝

1 0 0 𝑎𝑖
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟
⎠

, 𝗥𝗼𝘁𝘅(𝛼𝑖) =
⎛⎜⎜⎜
⎝

1 0 0 0
0 𝑐𝑜𝑠(𝛼𝑖) −𝑠𝑖𝑛(𝛼𝑖) 0
0 𝑠𝑖𝑛(𝛼𝑖) 𝑐𝑜𝑠(𝛼𝑖) 0
0 0 0 1

⎞⎟⎟⎟
⎠

.

After multiplying these matrices the matrix 𝗧𝗶 is obtained[22]:

𝗧𝗶 =
⎛⎜⎜⎜
⎝

𝑐𝑜𝑠(𝜃𝑖) −𝑠𝑖𝑛(𝜃𝑖)𝑐𝑜𝑠(𝛼𝑖) 𝑠𝑖𝑛(𝜃𝑖)𝑠𝑖𝑛(𝛼𝑖) 𝑎𝑖𝑐𝑜𝑠(𝜃𝑖)
𝑠𝑖𝑛(𝜃𝑖) 𝑐𝑜𝑠(𝜃𝑖)𝑐𝑜𝑠(𝛼𝑖) −𝑐𝑜𝑠(𝜃𝑖)𝑠𝑖𝑛(𝛼𝑖) 𝑎𝑖𝑠𝑖𝑛(𝜃𝑖)

0 𝑠𝑖𝑛(𝛼𝑖) 𝑐𝑜𝑠(𝛼𝑖) 𝑑𝑖
0 0 0 1

⎞⎟⎟⎟
⎠

. (11)

It is important to mention that these 𝜃𝑖 are de facto 𝜃𝑖 offsets because if the axis
coordinates 𝗾 are taken into account in the DH notation, they are added to these theta
parameters (𝜃𝑖 = 𝜃𝑖 + 𝑞𝑖). Therefore, the 𝑧 axis must always be an axis of motion.

Since the process of constructing DH parameters depends on the specific dimensions
of the robot, it is not meant to present some general process of how to get DH param-
eters. However, it is preferable to show a concrete solution as an example. There may

21



3. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
even be more valid solutions to describe a robot using DH parameters. The solution
presented is for a robot with a sanding tool on which this thesis was developed.

The manufacturer’s datasheet (3.12) is used to determine the DH parameters, where
the dimensions of the robot are given. In the process of acquiring the DH parameter,
it is simply necessary to obey the rules presented in the previous paragraphs. Then the
solution may look like this:

𝜃𝑖 [𝑟𝑎𝑑] 𝑑𝑖 [𝑚𝑚] 𝑎𝑖 [𝑚𝑚] 𝛼𝑖 [𝑟𝑎𝑑]

𝗧𝟭 0 450 0 𝜋
𝗧𝟮 0 0 150 𝜋

2
𝗧𝟯 0 0 810 0
𝗧𝟰

𝜋
2 0 -20 − 𝜋

2
𝗧𝟱 0 -660 0 𝜋

2
𝗧𝟲 0 0 0 − 𝜋

2
𝗧𝗧𝗖𝗣 0 -290 0 𝜋

Table 3.1. DH parameters of the robot at the workplace.

Figure 3.12. Dimensions of the robot in the workplace [23].

It is essential to mention that the offset of the tool from the flange, which is 210 𝑚𝑚,
is already taken into account in this case. Furthermore, the robot in Figure 3.12 does
not have all the axis coordinates set to zero, but 𝑞2 = − 𝜋

2 𝑟𝑎𝑑 and 𝑞3 = 𝜋
2 𝑟𝑎𝑑.

The process of obtaining the DH parameters can be clarified in Figure 3.13, which
shows the coordinate systems of all robot axes. Also the joint coordinates of axes 2 and
3 are added to appear as in the datasheet image.
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End effector 

Axis 5

Axis 6

Axis 3

Axis 4

Axis 1

Axis 2

Robot Base

Figure 3.13. Coordinate systems of all robot axes and robot base and end-effector coordi-
nate frame.

Thus, a mathematical description of the kinematics of the tool robot was obtained,
where from an arbitrary configuration of the joint coordinates 𝗾, the position and
rotation of the tool in the robot base can be obtained.

3.3.2 Inverse kinematic task

The inverse kinematic task (IK) is, as the name suggests, the opposite of the forward
kinematic task. It solves the problem of determining the configuration of the robot
from the known position and orientation of the tool. The position and orientation of
the end-effector are given as a transformation matrix 𝗧, which should result in the
robot’s configuration as a sequence of joint coordinates 𝗾 [22].

The inverse kinematics problem is generally more complex than forward kinematics
due to its nature:
. Non-linearity and high degrees of freedom: Most robotic systems have multiple joints

and links, leading to non-linear equations with multiple possible solutions, or some-
times no solution at all.

. Redundancy: A robot with more joints than necessary for a task (redundant degrees
of freedom) can have a multiple or an infinite number of solutions. Choosing the
optimal solution among them based on criteria like minimizing energy use, avoiding
joint limits, or avoiding singular configurations is non-trivial.

. Existence and Uniqueness: Not all desired end-effector positions and orientations
may be achievable due to physical constraints, and some positions may be achievable
in multiple ways [22].

Various methods have been developed to solve the IK problem, each with its advan-
tages and limitations:
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. Analytical solutions: These are closed-form solutions derived using algebraic meth-

ods, providing exact joint configurations for given end-effector poses. Analytical
methods are fast and precise but only feasible for simpler robotic structures or spe-
cific configurations due to the mathematical complexity.

. Numerical solutions: When analytical solutions are not feasible, numerical methods
such as iterative algorithms are used. These methods approximate the solution by
minimizing the difference between the desired and the actual end-effector position
and orientation. Numerical methods can handle more complex robotic structures
and are more flexible but can be slower and may not always converge to a solution.

. Optimization-based methods: These involve formulating the IK problem as an op-
timization problem where an objective function is minimized. This function could
include terms for the distance from the desired position, joint limits, obstacle avoid-
ance, and other criteria.

. Heuristic and Learning-Based Approaches: Heuristics such or techniques like Arti-
ficial Neural Networks and Deep Learning are used, especially when dealing with
highly complex or poorly defined systems [24].

The system of a six-axis robot with all the joints revolute 3.12 is not so complex
that it cannot be solved analytically, therefore it is possible to construct algebraic
equations for solving IK. The procedure is demonstrated again on a concrete robot
since the system of equations again depends on the construction of the specific robot
and cannot be well generalized.

Now let consider the concrete analytical solution of IK. The problem will be divided
into two parts. In the first part, the possible values of the first three joints (𝑞1, 𝑞2,
𝑞3) are found. These determine the position of the wrist, which is the intersection
of motion axes 𝐴4, 𝐴5, 𝐴6 and is responsible for the position of the end-effector. In
figure 3.13, it is shown as the origin of axis 5 (𝐴5) or axis 6 (𝐴6). In the second
part, the values of the joint axes 𝐴4, 𝐴5, 𝐴6 are obtained (𝑞4, 𝑞5, 𝑞6). They are
responsible for the orientation of the tool. There is the procedure:
1. The wrist position is calculated by subtracting the effect of the last joint’s length

from the tool’s position, considering the orientation. So it is calculated according
to the equation

𝑥𝑤𝑟𝑖𝑠𝑡 = 𝑥𝑡𝑜𝑜𝑙 + 𝑑𝑇 𝐶𝑃 ⋅ 𝗥[: , 2], (12)

where 𝑥𝑡𝑜𝑜𝑙 and 𝗥 are parts of the transformation matrix 𝗧 that defines the position
and orientation of the end-effector and 𝑑𝑇 𝐶𝑃 is the value of the DH parameter
from Table 3.1. 𝗥[: , 2] indicates that only the last column of the rotation matrix is
used, i.e. the direction of the 𝑧 axis in the orientation of the end-effector. Normally
𝑑𝑇 𝐶𝑃 ⋅ 𝗥[: , 2] should be subtracted from 𝑥𝑡𝑜𝑜𝑙, but 𝑑𝑇 𝐶𝑃 is already in DH notation
with a negative sign. It is essential to note that it is possible to reach the position
of the wrist in up to four different configurations.

2. Joint 1 (Base Rotation): Joint coordinate of axis 1 (𝑞1) is derived from the 𝑥, and
𝑦 coordinates of the wrist relative to the robot base, using 𝑎𝑟𝑐𝑡𝑎𝑛2 for robust angle
calculation:

𝑞1 = −𝑎𝑟𝑐𝑡𝑎𝑛2(𝑥𝑤𝑟𝑖𝑠𝑡,𝑦, 𝑥𝑤𝑟𝑖𝑠𝑡,𝑥) (13)

The second possible configuration of the robot is adding 180° to the 𝑞1. Fig-
ure 3.14 visualizes the dependence of 𝑞1 on the wrist position.

3. Joint 2 and 3 (Shoulder and Elbow): Finding the values of 𝑞2 and 𝑞3 is more
difficult in the sense that suitable trigonometric relationships formed by the robot’s
shoulder, elbow, and wrist joint must be found. The sketch in Figure 3.15 serves
for a better understanding of trigonometric dependencies. Variable 𝑟 accounts for
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Robot base

Robot base

Figure 3.14. Visualization of how the position of the wrist is dependent on the 𝑞1 value of
axis 1.

the reach from the base to where the wrist would be horizontally, subtracting a
constant horizontal offset represented by 𝑎2 from DH notation:

𝑟 = √𝑥2
𝑤𝑟𝑖𝑠𝑡,𝑥 + 𝑥2

𝑤𝑟𝑖𝑠𝑡,𝑦 − 𝑎2. (14)

The variable 𝑠 quantifies the straight-line distance from the shoulder joint to the
wrist position. It is calculated as the hypotenuse of the triangle formed by the
vertical displacement from the base to the wrist (along the 𝑧 axis, offset by 𝑑1)
and the radial distance 𝑟:

𝑠 = √(𝑥𝑤𝑟𝑖𝑠𝑡,𝑧 − 𝑑1)2 + 𝑟2. (15)

The variable 𝑙 represents the effective length of the robot’s arm from the elbow to
the wrist. It’s the hypotenuse of a right triangle formed by 𝑎4 and 𝑑5:

𝑙 = √𝑎2
4 + 𝑑2

5. (16)

The angle 𝛼 is derived from the triangle formed by the vertical and horizontal
distances from the base (or shoulder) to the wrist:

𝛼 = 𝑎𝑟𝑐𝑡𝑎𝑛2(𝑥𝑤𝑟𝑖𝑠𝑡,𝑧 − 𝑑1, 𝑟). (17)

The angle 𝛽 represents the elbow angle and is determined using the law of cosines
within the triangle formed by the arm segments and the line from the shoulder to
the wrist (distance 𝑠). The law of cosines relates these three sides of the triangle
to the angle opposite 𝑙:

𝛽 = 𝑎𝑟𝑐𝑐𝑜𝑠 (𝑎2
3 + 𝑠2 − 𝑙2

2𝑎3𝑠
) . (18)

This equation uses again the law of cosines to calculate the angle between the
upper arm 𝑎3 and the hypotenuse 𝑙:

𝛾 = 𝑎𝑟𝑐𝑐𝑜𝑠 (𝑎2
3 + 𝑙2 − 𝑠2

2𝑎3𝑙
) . (19)

𝛿 is the angle of offsets in the joint connection, particularly from the forearm 𝑎4
to the wrist 𝑑5:

𝛿 = 𝑎𝑟𝑐𝑡𝑎𝑛2(𝑑5, 𝑎4). (20)
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By this all angles necessary to calculate the articulated coordinates 𝑞2 and 𝑞3 are

sufficiently described. The angle 𝑞2 (Shoulder joint angle) is primarily influenced
by 𝛼 and 𝛽. It is designed to lift and rotate the arm’s shoulder joint to align the
arm appropriately to reach the wrist position from the shoulder pivot point:

𝑞2 = −(𝛼 + 𝛽). (21)

The angle 𝑞3 (Elbow joint angle) connects the upper arm to the forearm and
positions them so that the wrist can be placed correctly, and it is calculated as
follows:

𝑞3 = 𝜋
2

− (𝛾 + 𝛿), (22)

where the term 𝜋
2 is used to normalize the angle 𝑞3, to start from a default position

according to the Figure 3.15.
For the second configuration of the shoulder, (𝑞2) and elbow (𝑞3) joints in a

robotic arm is also considered an alternative kinematic solutions that involve mir-
roring the elbow’s position relative to the shoulder, often referred to as elbow up
vs. elbow down configurations in robotic terminology. This approach allows the
arm to reach the same end-effector with the elbow positioned differently. The equa-
tions for the angles will be slightly different, but the essence of the composition
of the equations is the same. In combination with the two axis 1 configurations,
a total of four configurations are achieved in which the robot can reach the wrist
position [22].

Robot base

Robot base

Figure 3.15. Visualization of how the position of the wrist is dependent on the 𝑞2 and the
𝑞3 values.

4. When all the configurations of the wrist are determined, it is possible to proceed
to the determination of the joint coordinates 𝑞4, 𝑞5, and 𝑞6, which control the ori-
entation of the wrist and, ultimately, the end-effector. These angles are crucial for
ensuring that the end-effector aligns correctly with its desired target orientation.

It is based on the principle that the resulting rotation matrix 𝗥 can be divided
into two parts, that is,

𝗥 = 𝗥1−3 ⋅ 𝗥4−6, (23)
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where 𝗥1−3 depends on the contributions of the first three axes (A1, A2, A3),
and the 𝗥4−6 matrix needs to be further calculated. It can be obtained from the
following equation:

𝗥4−6 = 𝗥𝑇
1−3 ⋅ 𝗥, (24)

taking advantage of the fact that the inverse of a rotation matrix is its transpose
because it is an orthogonal matrix.

For computing 𝗥1−3 it can be used the robot’s kinematic chain (Denavit-
Hartenberg parameters) to calculate the rotation matrix from the base frame to
the third joint’s frame. This is done using FK up to joint 3: 𝗥1−3 = 𝗥1 ⋅ 𝗥2 ⋅ 𝗥3.
Each 𝗥𝑖 is a rotation matrix that depends on the corresponding 𝑞𝑖. These can be
easily obtained from equation (11) if only the first three rows and columns are
taken into account.

Once the matrix 𝗥1−3 and the rotational matrix 𝗥 are known, the concrete
matrix 𝗥4−6 is calculated, from which the joint coordinates 𝑞4, 𝑞5 and 𝑞6 must
be extracted. The equations for them are constructed by comparing the symbolic
solution of the matrix 𝗥4−6 and the numerical solution calculated. Again, the first
three rows of the three columns of equation (11) are taken, where values from
Table 3.1 are substituted for 𝛼𝑖 values, and the values of 𝜃𝑖 are left symbolic:

𝗥𝟰 = ⎛⎜
⎝

𝑐𝑜𝑠(𝜃4) 0 𝑠𝑖𝑛(𝜃4)
𝑠𝑖𝑛(𝜃4) 0 −𝑐𝑜𝑠(𝜃4)

0 1 0
⎞⎟
⎠

, 𝗥𝟱 = ⎛⎜
⎝

𝑐𝑜𝑠(𝜃5) 0 −𝑠𝑖𝑛(𝜃5)
𝑠𝑖𝑛(𝜃5) 0 𝑐𝑜𝑠(𝜃5)

0 −1 0
⎞⎟
⎠

,

𝗥𝟲 = ⎛⎜
⎝

𝑐𝑜𝑠(𝜃6) 𝑠𝑖𝑛(𝜃6) 0
𝑠𝑖𝑛(𝜃6) −𝑐𝑜𝑠(𝜃6) 0

0 0 −1
⎞⎟
⎠

.

Now, these matrices are multiplied between themselves: 𝗥4−6 = 𝗥𝟰 ⋅ 𝗥𝟱 ⋅ 𝗥𝟲. This
results in the following symbolic matrix (For excessive matrix size, the 𝑠𝑖𝑛𝑒 is
written only as 𝑠 and the 𝑐𝑜𝑠𝑖𝑛𝑒 as 𝑐):

𝗥4−6 = ⎛⎜
⎝

𝑐(𝜃4)𝑐(𝜃5)𝑐(𝜃6) − 𝑠(𝜃4)𝑠(𝜃6) 𝑐(𝜃4)𝑐(𝜃5)𝑠(𝜃6) + 𝑠(𝜃4)𝑐(𝜃6) 𝑐(𝜃4)𝑠(𝜃5)
𝑠(𝜃4)𝑐(𝜃5)𝑐(𝜃6) + 𝑐(𝜃4)𝑠(𝜃6) 𝑠(𝜃4)𝑐(𝜃5)𝑠(𝜃6) − 𝑐(𝜃4)𝑐(𝜃6) 𝑠(𝜃4)𝑠(𝜃5)

𝑠(𝜃5)𝑐(𝜃6) 𝑠(𝜃5)𝑠(𝜃6) −𝑐(𝜃5)
⎞⎟
⎠

.

(25)
The matrix 𝗥4−6 now contains the information needed to set axes 4, 5, and 6 to
achieve the required orientation, especially the third row and the third column.
The actual angles 𝑞4, 𝑞5, and 𝑞6 are derived from 𝗥4−6:

𝑞4 = 𝑎𝑟𝑐𝑐𝑜𝑠(𝗥4−6[2, 2]), (26)

𝑞5 = 𝑎𝑟𝑐𝑡𝑎𝑛2(𝗥4−6[1, 2], 𝗥4−6[0, 2]), (27)

𝑞6 = 𝑎𝑟𝑐𝑡𝑎𝑛2(𝗥4−6[2, 1], 𝗥4−6[2, 0]), (28)

where the elements of the matrix 𝗥4−6 are numbered as 𝗥4−6[𝑟𝑜𝑤, 𝑐𝑜𝑙𝑢𝑚𝑛] and
the indices start from zero.

In some cases, the calculation might hit a singularity, where certain orienta-
tions can’t be uniquely determined (𝑔𝑖𝑚𝑏𝑎𝑙 𝑙𝑜𝑐𝑘 𝑝𝑟𝑜𝑏𝑙𝑒𝑚). This happens when
𝗥4−6[2, 2] = 1 and thus 𝜃5 is in the zero position, then the axes 4 and 6 are simul-
taneously eclipsed and thus there are infinitely many solutions for 𝑞4 and 𝑞6. It
can be solved by arbitrarily setting one of the axes and calculating the remaining
one [22].
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Even in this case, there are two possible configurations of axes 4, 5, and 6. If

𝑞4 ≥ 0°, there is a second solution where 𝑞′
4 = 𝑞4−180°, 𝑞′

5 = −𝑞5 and 𝑞′
6 = 𝑞6−180°.

Otherwise, when 𝑞4 < 0°, the second solution is 𝑞′
4 = 𝑞4 + 180°, 𝑞′

5 = −𝑞5 and
𝑞′

6 = 𝑞6 + 180°. In the general case we get eight possible configurations of the
robot as an IK solution.

5. This could be considered a basic robot configuration. It is necessary to pay atten-
tion to the limits of the axes. It could happen that in the process of IK computa-
tion, some joint coordinates could fall out of their interval. Such a solution must
be marked as invalid. The robot in picture 3.12 has the following limitation on
the axes [23]:

𝑞1 = [−170°, 170°], 𝑞2 = [−185°, 65°], 𝑞3 = [−137°, 163°],
𝑞4 = [−185°, 185°], 𝑞5 = [−120°, 120°], 𝑞6 = [−350°, 350°].

From the limits of the joint coordinates it can be seen that axes 4 and 6 have a
larger interval than ±180°. This may add another possibility to each solution. To
give an example, if the joint coordinate is in the interval 𝑞4 ∈ [175, 180], the exact
same configuration is achieved with 𝑞4 ∈ [−185, −180].

3.4 OPC UA communication protocol
Open Platform Communications Unified Architecture (OPC UA) is a communication
protocol developed by the OPC Foundation [25], designed for industrial automation
and other control systems. It provides a robust, secure, and scalable framework
for information exchange in the manufacturing industry, and is integral in the drive
towards the Internet of Things (IoT) and Industry 4.0.

3.4.1 Overview of OPC UA
OPC UA is built around a client-server architecture, where the server exposes objects
that clients can access. The architecture is comprised of several layers:
. Abstract Interface Layer: Defines the high-level interface independent of imple-

mentation details.
. Services Layer: Where the core functionality of OPC UA is implemented, handling

data modeling, discovery, access, and historizing services.
. Communication Layer: Ensures secure and reliable messaging between clients and

servers.
. Transport Layer: Defines the protocols used for transmission of messages, typically

using TCP/IP, HTTP, or other protocol bindings.
The data modeling capabilities of OPC UA allow for the detailed and structured

representation of real-world processes. The basic building blocks of the OPC UA data
model are nodes, which represent variables, data types, and methods. These nodes’
attributes, such as value, status, and timestamps, describe their properties and
state. Nodes are interlinked through references, enabling the creation of complex
data structures.

OPC UA supports multiple types of communications. Client-server is the tra-
ditional model where clients request, and servers respond. The second option is
the Pub/Sub (publish-subscribe) model, which is a newer addition where data is
broadcasted by publishers and received by subscribers, suitable for high-speed and
large-scale communications.

Security is a cornerstone of OPC UA, designed to address authentication, confi-
dentiality, and integrity:
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. Authentication: Ensures that only authorized clients can access the server. It
supports certificates and user/password mechanisms.

. Encryption: Secures data against unauthorized access using algorithms such as
RSA (Rivest–Shamir–Adleman) and AES (Advanced Encryption Standard).

. Data Integrity: Utilizes digital signatures to ensure data has not been tampered
with during transmission [26].

3.4.2 Utilization of OPC UA at the sanding workplace
The OPC UA is used in two cases at the sanding robot workplace. After the paths
are generated by the algorithm in the application computer, an array of positions is
sent from the PC to the server, which is the robot controller. It works by overwriting
the already initialized variable in the dat files. Any variable or array can be there
overwritten, but the OPC UA server no longer has access to the src files. The second
part of the communication is between the robot and the AR headset. The AR headset
reads the paths from the server in the robot so that they can be visualized in the
headset. Furthermore, the headset writes to a variables in the robot’s controller
that indicates that the robot should start moving and traverse the path the operator
selects.

Design Paths
Request

Individual
Paths

Positions

Robot Controller
(OPC UA Server)

Individual Paths
Poses

Application Computer
(OPC UA Client)

Design
Paths

Request

Run
Path 1 or 2

AR Headset
(OPC UA Client)

Figure 3.16. Diagram of the use of communication at the workplace via OPC UA.

The communication between the robot and the application computer is introduced
first. This part is programmed in Python. In the beginning, the connection must
be established. An OPC UA client is created and connected to an OPC UA server
using the specified URL:

(opc.tcp://OpcUaOperator:kuka@xxx.xxx.xxx.xxx:xxxx/) // Replace
// 'xxx' with actual IP address and 'xxxx' with actual port number

This URL includes the protocol type (opc.tcp), user credentials (OpcUaOperator:
kuka), and server address with port (for example: 10.100.0.114:4840).

The next phase is fetching for nodes. Specific nodes on the server are accessed
using their Node IDs. These nodes represent various control points for a robot, such
as whether the robot can receive data (CanRecieveData), the coordinates of a path
(PathCoordinate), and the indices in an array (ArrayIndex), among others. The
script also retrieves nodes for the trajectory type (TrajectoryType), data readi-
ness (DataReady), and the end of the write operation (EndWrite). These are either
boolean or integer variables. Address of a specific node is shown here:
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node_can_write = opcua_client.get_node('ns=5;s=MotionDeviceSystem.
ProcessData.R1.Program.Scan_and_Sand.ScanAndSandTemplate.
CanRecieveData')

CanRecieveData is a variable of the robot, which indicates that the robot is ready
to accept individual positions of the path.

When this variable is True, the writing process is started. The script enters a loop
to send multiple positions to the robot. For each position it waits if the robot is
ready for writing, then it is initialized the variable of type uatype.Pos(), which is a
structure consisting of {𝑋, 𝑌 , 𝑍, 𝐴, 𝐵, 𝐶, 𝑆, 𝑇 }, where 𝑋, 𝑌, 𝑍 are the coordinates of
the end-effector, and 𝐴, 𝐵, 𝐶 are the Euler angles corresponding to the 𝑦𝑎𝑤, 𝑝𝑖𝑡𝑐ℎ,
𝑟𝑜𝑙𝑙 convention. S and T are Status and Turn, which indicate the configuration of the
robot. More about them is in the section about the processing paths for the robot
controller 4.4. Then the index to which the position is to be written and the type of
path, if it is a zig-zag or spiral pattern, is sent. Lastly, a flag is set to indicate that
the data are ready. This loop repeats until all positions of the path are written.

Even integer and boolean variables have their OPC UA variant and must be writ-
ten, for instance, as follows:

node_arr_idx.write_value(uatype.DataValue(uatype.
Variant(i, uatype.VariantType.Int32))) // integer i
node_data_ready.write_value(uatype.DataValue(uatype.
Variant(True, uatype.VariantType.Boolean))) // boolean True

To end the communication, the opcua_client.disconnect() command is only
called [27].

The second part involves OPC UA communication between the robot and the
Hololens 2 AR headset. The task now is to read the path positions from the robot so
that they can be displayed in the headset. After that, a command has to be written
to the robot, which pattern the robot has to execute. The AR headset application
was developed in Unity, whose native programming language is C#, so the OPC UA
library for C# had to be used for communication with the headset. Except for small
differences, it was the same as programming communication in Python [28].

After turning on the application in the headset, the connection to the OPC UA
server in the robot is immediately established. And then the array of positions is read.
The library has not been programmed with a structure for reading the array of POS
values, therefore only a one-dimensional array is read, where only the coordinates of
the path point are stacked. However, this array is read as string[], so it is necessary
to parse it into a 2𝐷 array of type Vector3[], where the elements are single path
positions of type float.

After displaying the paths in the headset, the user chooses which type of pattern
he wants the robot to perform, which is written as an integer value. The connection
to the server is terminated at the moment of shutting down the application in the
headset.

3.5 Workspace calibration
The workstation with the robot and the camera must be calibrated in the sense that
the transformation matrix between the robot base and the camera coordinate system
is known. The desired transformation matrix consists of the rotation matrix 𝗥 and
the translation vector 𝘁. It is necessary that the point cloud, which is obtained from

30



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5 Workspace calibration

the camera system, is aligned to the coordinate system of the workstation, which has
its origin in the robot base.

The workspace calibration’s foundation is computing the best-fit transformation
between two sets of points. Given two sets of corresponding points 𝗔 and 𝗕 in
3-dimensional space, where both 𝗔 and 𝗕 are represented as 3×𝑁 matrices, the
objective is to find a rotation matrix 𝗥 and a translation vector 𝘁 such that [29]:

min
𝑅,𝑡

𝑁
∑
𝑖=1

‖𝐵𝑖 − (𝗥 ⋅ 𝐴𝑖 + 𝘁)‖2. (29)

Here, 𝐴𝑖 and 𝐵𝑖 are the columns representing individual points in matrices 𝗔 and 𝗕,
respectively. The matrix norm is here meant in the sense of the Frobenius norm.

3.5.1 Obtaining the corresponding points
In order to solve problem (29), it is necessary to fill the matrices 𝗔 and 𝗕 with the
corresponding points that match each other. This is done by attaching a special
calibration artifact (Fig. 3.17) directly to the sanding spindle, which is supplied
directly by the manufacturer of the 3D vision system, Keyence. Alternatively, when
using a different depth camera, it is possible to use a different calibration artifact,
the camera only needs to be able to localize it in space.

Figure 3.17. Calibration artifact attached to the sanding spindle.

The point that needs to be obtained on the calibration artifact is its center, where
the apex of the cutout is. The coordinates of this point in the robot’s coordinate
system are easy to obtain. A new TCP, which is the center of the artifact, is defined
in its controller. Then it is only necessary to read the current position of the TCP
from the robot controller. By measuring from the robot, the elements of matrix 𝗕
are obtained, where the individual measured points are arranged in a row.

As already written, the work on this workstation is simplified by the fact that the
camera automatically detects the calibration artifact. In Figure 3.18, the interface for
the camera can be seen where the calibration takes place. The robot is programmed
to traverse a 3x3 matrix of points in three layers, making a total of 27 points. At each
point, the position of the calibration artifact is read from both the robot controller
and the camera. The calibration in Figure 3.18 contains grid points spaced 10 𝑚𝑚
apart in each coordinate [30]. This procedure is used to fill the matrix 𝗔, where the
columns contain the individual positions of the artifact measured by the camera.
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Figure 3.18. Procedure for obtaining a pairs of calibration artifact points.

3.5.2 Rotation matrix and translation extraction
Now, both matrices 𝗔 and 𝗕 are filled with calibration artifact points that belong
to each other. First the desired rotation matrix is obtained. It is necessary to shift
the points to a common origin first. This is done by calculating the centroids of the
two matrices and then subtracting each point in the matrix from the corresponding
centroid. The centroid is easily calculated as the mean of the points in each of the
coordinates individually:

𝐴𝐶 = 1
𝑁

(
𝑁

∑
𝑖=1

𝑥𝐴,𝑖,
𝑁

∑
𝑖=1

𝑦𝐴,𝑖,
𝑁

∑
𝑖=1

𝑧𝐴,𝑖)
𝑇

, 𝐵𝐶 = 1
𝑁

(
𝑁

∑
𝑖=1

𝑥𝐵,𝑖,
𝑁

∑
𝑖=1

𝑦𝐵,𝑖,
𝑁

∑
𝑖=1

𝑧𝐵,𝑖)
𝑇

.

(30)
The centroids now need to be subtracted from the individual points in the matrix.

This can be done by expanding the centroids into the whole matrix: 𝗔𝗖 = 𝐴𝐶 ⋅
( 1 1 ... 1 ), 𝗕𝗖 = 𝐵𝐶 ⋅ ( 1 1 ... 1 ) and subsequently subtracting it from the desired
matrix, resulting in the matrix 𝗔′ and 𝗕′:

𝗔′ = 𝗔 − 𝗔𝗖, 𝗕′ = 𝗕 − 𝗕𝗖. (31)

This transformed all points of the common coordinate system and now matrix A’
differs from matrix B’ only by some rotation. The problem is reformulated such that
it needs to be found the optimal rotation matrix 𝗥:

min
𝑅

𝑁
∑
𝑖=1

‖𝐵′
𝑖 − 𝗥 ⋅ 𝐴′

𝑖‖2. (32)

This problem is already well defined mathematically, it is called the Orthogonal Pro-
crustes problem. It is generally defined as a problem that seeks to find the orthogonal
matrix 𝗥 that most closely maps one set of points to another. Mathematically, it
can be formulated as:
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min
𝑅

‖𝗬 − 𝗥 ⋅ 𝗫‖, 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝗥𝑇𝗥 = 𝗜, (33)

where 𝗜 is the identity matrix, ensuring that 𝗥 is orthogonal [29]. This constraint
preserves lengths and angles, making it suitable for tasks where rigid transformations
(rotations and translations without scaling or shearing) are required. In the case of
searching for a rotation matrix, the matrices 𝗕′ and 𝗔′ can be substituted for 𝗬 and
𝗫. Moreover, the task of minimizing the norm or the second power of this norm has
the same solution. The solution of the substitution problem (33) is equivalent to the
solution of the problem of finding the nearest orthogonal matrix to a given matrix
𝗛 = 𝗔′𝑇𝗕′, i.e. solving the closest orthogonal approximation problem:

min
𝑅

‖𝗛 − 𝗥‖, 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝗥𝑇𝗥 = 𝗜. (34)

The solution of problem (34) leads to the use of the Singular Value Decomposition
(SVD) of the matrix 𝗛 [31]. To solve this problem:
1. Compute the cross-correlation matrix 𝗛 = 𝗔′𝑇𝗕′ between the translated (cen-

tered) matrices 𝗔′ and 𝗕′.
2. Decompose 𝗛 using SVD, 𝗛 = 𝗨Σ𝗩𝑇.
3. Calculate the optimal rotation matrix as 𝗥 = 𝗩𝗨𝑇.
4. Check the determinant of 𝗥 to ensure a proper rotation without reflection. If the

determinant of 𝗥 is −1, it suggests the transformation includes a reflection, which
is not desirable. The simplest way to adjust 𝗥 is to flip the sign of the last row of
the matrix 𝗩 (𝗩[2, : ] = −𝗩[2, : ]). Then, 𝗥 must be recalculated.
Thus, information was obtained about how the shifted points are rotated between

each other and even how the original points from matrices 𝗔 and 𝗕 are rotated be-
tween themselves. It now remains to be found the translations 𝘁 between these points.
For this purpose, the centroids (30) already computed are used, and the translation
between them is found. The translation vector 𝘁 is computed as follows [29]:

𝘁 = 𝐵𝐶 − 𝗥 ⋅ 𝐴𝐶. (35)

This procedure yields 𝗥 and t, satisfying the original problem (29). With the use
of this rotation matrix and translation all points obtained by the camera can be
efficiently transferred to the coordinate system of the robot base.
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Chapter 4
Implementation & Results

This chapter describes the implementation of the proposed solution developed in
previous chapter for the application of Scan & Sand in a specific robotic workplace.
The actual workplace where the solution was implemented is located in the Testbed
for Industry 4.0 laboratory in the building of the Czech Institute of Informatics,
Robotics, and Cybernetics.

Initially, the chapter outlines the setup of the experimental environment, including
detailed descriptions of the equipment used. The following is an introduction to the
entire automated Scan & Sand pipeline. This is viewed both from the operator’s point
of view, explaining what has to be done and also describing all the communication
and data transfer between the individual components of the workplace.

Following the setup, the process of data acquisition is described. This includes the
methodologies for capturing and processing the point cloud data. Then, the modi-
fication of the generated paths into a program for the Kuka robot and the transfer
of this data to its controller is shown. For verification of the paths and collision
detection, the simulation process in RoboDK is also explained in this chapter.

Last but not least, the specific parameters of the PI controller for maintaining
the constant pressing force during sanding and its results in a real operation are
presented. For the validation of the algorithm for the generation of robotic paths, its
results are also shown on a different workpiece than the one on which the algorithm
was developed. It turned out that working with a rotating sanding spindle caused the
most difficulties in real implementation, so it is also discussed how these problems
were solved. The idea of determining the dependence of the applied force on the
removed material is also examined, which would help to optimize the sanding process.
Lastly, the development of an AR headset app is presented, which serves as a user
environment and for the visualization of the generated sanding paths.

4.1 Workplace setup
First, it is necessary to describe the devices that were used for the implementation of
the solution. In picture 4.1 a real robotic workplace can be seen. The components are
the robotic manipulator, to which the force-torque sensor and the sanding spindle are
attached. There is also an 3D vision system above the workstation, which captures
the sanded object below it. For testing purposes, a wooden board was used as sanded
object, which is slightly bent in the middle.

The main component of the workstation is the KUKA KR 8 R1620 HP, a high-
performance industrial robotic arm notable for its precision, agility, and compact
design. The robotic manipulator has a maximum payload capacity of 8 𝑘𝑔 and a
maximum reach of 1620 𝑚𝑚. Its design emphasizes high-speed operation and re-
peatability, with an accuracy level that significantly enhances production efficiency
and quality. Its kinematics have already been described in section 3.3. The robot is
commanded by the Kuka KR C4 controller and is programmed in KRL (Kuka robot
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Figure 4.1. Actual workplace for the Scan & Sand application.

language) [32] and RSI (Robot-sensor interface) [21]. The program for the robot is
divided into two files: the first is the src file, which contain all the instructions, and
the second is the dat file, which is used to define variables, arrays, or poses.

The robot base also serves as the base of the whole workplace. On the stand in
front of the robot there is a marker, which is used to align the scene in the AR
headset, which will be further explained in section 4.9.

The force-torque sensor FT-AXIA from the manufacturer Schunk is connected be-
tween the flange of the robot and the sanding spindle [33]. It is connected via Ether-
CAT interface directly to the robot controller. Its detailed description has already
been included in section 3.2.

Also from the Schunk manufacturer is the sanding spindle of the AOV series [34].
It is a pneumatic random orbit sander, so the motor is air driven, and it employs a
random orbit sanding action where the sanding disk both rotates and oscillates in a
random pattern. The dust that is generated during sanding can be vacuumed out.
Polishing wheels can be easily replaced as they are attached via Velcro.

Keyence’s high-precision industrial imaging system is used to acquire a point cloud
at the workplace. It consists of an RB-1200 camera system [35] and a CV-X con-
troller [30]. This system produces images that combine high-resolution grayscale in-
formation with accurate depth data. The depth measurement is facilitated through
structured light or time-of-flight (ToF) technology, which projects a pattern onto the
object and analyzes how it deforms on surfaces. This method helps in calculating
the distance of various points on the object’s surface relative to the camera, enabling
precise 3D mapping.

The working area of the camera starts 2000 𝑚𝑚 below the midpoint of the camera,
and its measurement range is 1260 𝑚𝑚 x 1260 𝑚𝑚 x 1000 𝑚𝑚, where 1000 𝑚𝑚 is for
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the height (𝑧 axis) and the other two parameters for the 𝑥 and 𝑦 axes. The resulting
point cloud from this camera system has a resolution of 0.616 𝑚𝑚 in the 𝑥 and 𝑦
axes and a resolution of 0.04 𝑚𝑚 in the 𝑧 axis, i.e. in depth [35].

The CV-X controller processes the data from the RB-1200 with high speed and
accuracy. It supports advanced image processing tasks like edge detection, pattern
recognition, and automated measurement calculations, essential for precise manu-
facturing and quality control [30]. However, these possibilities are not used in the
workplace. The controller is used only to retrieve raw images from the camera and
send them to the application computer and for workspace calibration, which is de-
scribed in the following section.

4.2 Workstation pipeline
When all the devices, which are in the workplace, have been introduced, it can be
shown how they are interconnected and how they interact with each other. Further-
more, this section describes how the whole pipeline of the Scan & Sand solution looks
like, where at the beginning, there is a command for the camera to take a picture of
the workpiece, and at the end, there is a robot that sands the workpiece. A diagram
that shows the interactions between the individual workstation components is shown
in Figure 4.2.

Start
Part scan
command

AR headset
Hololens 2

Designed
paths

Design paths
requestRobotic manipulator

KRL
program

Data
request

KLR program +
Mesh

Application computer

Run
command

Raw
data

3D vision system

Validation

Simulation in
RoboDK

Force-Torque
sensor

Figure 4.2. Diagram of the interconnection of all devices in the workplace.

It all starts with the operator putting on the AR headset and running the Scan
& Sand application. In this application, a simple menu is created to interact with
the workplace. The menu appears in the palm of an operator’s hand. The palm
menu (Fig. 4.16) is displayed in section 4.9, which deals with the usage of AR at the
workplace. In that picture, it can be seen four icons:
. Part Scan: This initiates the whole process of designing sanding paths for the

robot.
. View Trajectories: Once the paths are loaded in the robot controller, they are also

transferred to the AR headset, and this button switches between the visualization
of the zig-zag and the spiral pattern.

. Run Trajectory 1: This commands the robot to run the zig-zag pattern.

. Run Trajectory 2: This commands the robot to run the spiral pattern.
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The communication between the AR headset and the robot controller is imple-
mented within the OPC UA protocol. The robot waits for one of the three com-
mands: Part Scan, Run Trajectory 1, or Run Trajectory 2. When it receives the
Part Scan command, its task is to send this information to the application computer
and then prepare to receive the requested poses from the application computer. And
when it receives one of the Run Trajectory commands, it simply runs through one of
the selected paths.

Now it will be presented how the path generation pipeline works. The Python
script main.py is executed on the application computer and includes all necessary
processes. Other auxiliary functions are programmed in other Python scripts. In
main.py, the DH notation of a specific robot is hardcoded together with its joint
limits. The transformation matrix 𝗧, derived in section 3.5, is also defined here.
This transforms the points from the robot coordinate system to the robot’s base
coordinate system.

Next, the create_pc function is called, which handles the acquisition of the point
cloud from the camera. It first requests the camera to take a picture of the scene
and send it to the computer application. And from these images it creates a point
cloud of the scene. A detailed description is given in the section 4.3.1.

Since the camera is very precise for this purpose, the resulting point cloud is too
dense, so it is then downsampled using voxel_down_sample(voxel_size=10) to a
computationally acceptable value. The transformation matrix is then applied to all
points of the point cloud. Then, unnecessary objects are removed from the scene so
that only the sanded workpiece remains in the point cloud. The procedure to create
the zig-zag and spiral patterning is then proceeded as described in sections 3.1.2
and 3.1.3. Lastly, a program for the robot controller is made from the designed
paths and transmitted to the robot controller. This topic is further explained in
section4.4 on the processing paths for the robot controller.

For the purpose of collision detection simulation, a mesh from the point cloud
must be generated. RoboDK does not support PLY files, only STL files. For
mesh generation, the Open3D library for Python was used, where the method
create_from_point_cloud_ball_pivoting is directly implemented, which recon-
structs the surface by „rolling a ball with a given radius over the point cloud,
whenever the ball touches three points a triangle is created [15].“

These are the tasks that are executed by the application computer. It is then con-
venient to validate the generated paths by sending them to the RoboDK simulation
program. There, both the prepared KRL programs and the mesh with the workpiece
are sent. The main task of RoboDK is to detect possible collisions with the mesh or
the robot itself during robot traversals. If the software simulates the paths success-
fully, the operator can be sure that no collision will occur in the real workplace and
that the code can be executed by the robot. This procedure is discussed further in
section 4.5. The transfer of designed paths to the robot controller and the structure
of the KRL program itself is described in section 4.4.

Once the paths are ready in the robot controller, the operator can now visualize
the two paths in such a way that the paths are displayed on a real workpiece to
get the best overview of the sanding process. Once the operator has viewed the two
paths, the operator chooses which path to run and then instructs the robot to run
that path. This command is again sent via the OPC UA.

After that, there is nothing else to do but to run the robot along the sanding path
and thus finish the workpiece. It must not be forgotten that the sanding spindle will
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maintain a constant pressure. It receives information about the pressure force from
the force-torque sensor and corrects the position of the sanding spindle in real-time.
As soon as the action has been performed, the robot is ready for the possible further
sanding of the new part.

4.3 Point cloud creation and processing
The 3D vision system, which consists of the CV-X controller and the camera and pro-
jector system RB-1200 from the Keyence manufacturer, is used in a real workplace.
First, the process of raw data acquisition from the camera system is introduced,
followed by editing into the final point cloud.

4.3.1 Obtaining data from the camera

The script initiates communication with the CV-X controller using the TCP/IP pro-
tocol. This is facilitated through the Python socket module, which allows for the
creation and management of network connections. The key parameters for this con-
nection are predefined constants: IP_ADDRESS set to ’10.100.0.115’, and PORT
set to 8500, which are specific to the CV-X device.

The custom made Send_command(COMM) function encapsulates the process of send-
ing commands to the controller. It starts by establishing a new socket connection
each time a command is sent. This involves setting up a socket with socket.AF_INET
and socket.SOCK_STREAM, which specify the use of IPv4 addresses and a reliable
stream-oriented service (TCP), respectively. Once the socket connects to the CV-X
controller, it sends the desired command (COMM). The function then listens for a
response from the controller using s.recv(BUFFER_SIZE), with the buffer size set to
32 𝑏𝑦𝑡𝑒𝑠, which is sufficient to capture the expected responses from the controller.
This response is important as it indicates whether the command was understood and
executed by the CV-X. After receiving the response, the socket is immediately closed
to free up resources, and the response is returned for further processing [36].

The script contains a dedicated function, trigger_camera, designed to ensure the
camera is in the correct operational mode and to trigger it for capturing images. The
function first checks whether the camera is in setup mode by sending the command
RM\r (Read Mode). The expected response, b'RM,0\r' , would confirm the camera
is in setup mode, prompting a command R0\r to switch the camera to run mode. The
camera actually has two modes: a run mode and a setup mode. In the setup mode, it
is possible to set the possible image processing, which is programmed directly by the
manufacturer, but none are used for this application. In the run mode, the camera
is ready to capture images.

Subsequently, the script verifies the active program on the CV-X by sending a PR\r
command. If the response indicates a different program is active (anything other
than b'PR,1,500\r' ), the script commands the camera to switch to the desired
program PW,1,500\r, where 1,500 is a specific program identifier for the Scan &
Sand application. The camera contains many programs, and it is possible to switch
between them quickly. This allows the camera to be deployed for multiple image
processing tasks on a single workstation.

Once the correct mode and program are set, the script sends a T1\r command to
physically trigger the camera. This is the final step in the command sequence, aimed
at initiating the actual image capture process [30].
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The camera has now taken a picture of the scene and it can be shown how to
transfer the captured data to the application computer. Between sending a command
to trigger the camera, it is necessary to wait some time before the camera takes a
picture of the scene and stores it in its memory. Sleep for three seconds should be
sufficient. The script uses the FTP protocol (File Transfer Protocol) to retrieve the
captured images. The download_pointcloud function handles this by establishing
an FTP connection to the same IP address, though on the default port 21, typical
for FTP operations.

Once connected, the script logs in as „anonymous“, a common practice for de-
vices allowing non-secure file access. It navigates to the specific directory on the
device where the images are stored. Here, it retrieves two specific files, HEIGHT.png
and GRAYSCALE.png, representing different types of data captures (heightmap and
grayscale images). Each file is downloaded in binary mode (retrbinary) and di-
rectly written to local files of the same names. This ensures that the captured data
is transferred efficiently and without corruption [37].

4.3.2 Creation of point cloud

The camera data processing function starts by loading two images: a grayscale image
(GRAYSCALE.png) and a depth image (HEIGHT.png). The HEIGHT.png image
is also in grayscale, which encodes the depth information. The darker the shade, the
farther the point is from the camera system. Both have a resolution of 2048x2048
pixels. These images are loaded using the Python Imaging Library (PIL), specifically
the Image.open().

Figure 4.3. The image on the left is the HEIGHT.png and the image on the right is
the GRAYSCALE.png.

Once loaded, these images are converted into numpy arrays, which allows for ef-
ficient mathematical manipulations. The grayscale image, which initially spans a
0-255 range (8 𝑏𝑖𝑡 values), is normalized to a 0-1 range by dividing by 255. This
normalization is necessary for the Open3D library, which is used to represent point
clouds and accepts their color in the 0-1 range. The depth image data, stored in a
16 𝑏𝑖𝑡 format, is converted into real-world measurements (millimeters in this case)
by multiplying each pixel value by 0.04, reflecting the physical depth measurement
per pixel increment.
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A new numpy array points_xyz is created, an array of 3D points that will serve

as a template for the resulting point cloud. The 𝑥 and 𝑦 coordinates of the point
cloud are scaled by a factor of 0.616 𝑚𝑚/𝑝𝑖𝑥𝑒𝑙, adjusting the spacing between the
points to match their actual physical spacing as captured by the camera. This scaling
converts the point coordinates from pixel space to real-world metric space. Each 𝑥
and 𝑦 coordinate is assigned a value from the heightmap.

Next, ( 630 630 500 )𝑇 is subtracted from all points to ensure that all points of the
point cloud are moved to the center of the camera workspace. The dimensions of the
workspace are, in fact, 1260 𝑚𝑚 x 1260 𝑚𝑚 x 1000 𝑚𝑚 [35, 30].

The script proceeds to create the base structure for a point cloud using
open3d.geometry.PointCloud(). This structure will be populated with the
3D coordinates and color information extracted from the depth and grayscale
images, respectively. Values from the points_xyz array are assigned to this point
cloud, and the color information for the point cloud is from the grayscale image. The
color for each point is assigned as an RGB (Red, Green, Blue) triplet, where each
component is equal to the grayscale value. Lastly, all points with a zero 𝑧 coordinate
are discarded from the point cloud (this indicates a zero or invalid height).

4.4 Path processing and uploading to the robot
controller

This chapter summarizes further processing of the designed paths so that they can be
executed by a specific Kuka robot. The input to this process is two arrays with trans-
formation matrices representing the paths of the two patterns. This was described
in the section 3.1.

4.4.1 Programs for the robot
The SaS_Control.src program must be running in the robot controller, which waits
in a loop for commands from the AR headset. The pseudo-code that describes the
structure of the program is presented here:

Def SaS_Control:
Set base and tool
Set ADVANCED = 5
Set APO.CVEL = 95
Set acceleration and velocity parameters
Move to HOME position

Initialize variables:
Command flags and counters
Initialize two coordinate arrays for 250 points

Main Loop:
Wait for command request

Switch (Command_Number):
Case 1: "Data Preprocessing"

Request Design paths
Call PreprocessData function
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Update command completion and readiness flags

Case 2: "ZIG ZAG Pattern"
Call ScanandSandTemplate with parameter 1
Update command completion and readiness flags

Case 3: "SPIRAL Pattern"
Call ScanandSandTemplate with parameter 2
Update command completion and readiness flags

Default:
Set error state

If no command is requested:
Reset command complete and error flags

Reset command ready flag

End

A dat file must be prepared for this src program, in which all synchronization flags,
Command_Number, path arrays and HOME position are defined. After starting the
SaS_Control.src program, the necessary Tool and Base are selected first. Next,
the internal variable $ADVANCED is set, which tells the robot controller how many
movements it should be loaded in advance so that these movements are made with-
out stopping and starting at individual points on the path, and the movements are
performed continuously. $APO.CVEL sets when the movement to the next point is
to be started depending on the change of speed when approaching the target point.
Specifically, when the speed drops to 95%, a new movement is started. Then it also
sets limits on speed, acceleration, and jerk on individual axes so that the robot does
not make too abrupt movements during the sanding process. The robot is then sent
to the HOME position using point-to-point (PTP) movement [32]. When it reaches the
position, the driving flags are initialized. These are used to synchronize communica-
tion between the AR headset and the robot, as well as the robot and the application
computer. These are boolean variables. Next, two arrays (PathCoordinates1[250],
PathCoordinates1[250]) of Pos variables are initialized to zero values, which con-
tain the individual path positions.

The main part of the program operates within an infinite loop, continuously mon-
itoring for command inputs. This loop reacts to different command numbers that
trigger specific operations such as a data preprocessing and executing zig-zag and
spiral patterns. These operations are managed through a switch-case structure,
which processes tasks based on the command number received. Each task within
the switch-case structure handles the robot’s busy state, waits for the robot to com-
plete its current action (monitored through asynchronous state checks), and updates
various flags to indicate the readiness and completion of tasks. Error handling is
also integrated, and error flags and command results are set as appropriate to ensure
robust operation management.

In the case event for preprocess data, the flag for requesting the path design is
first set on for the application computer. Next, the PreprocessData function is
switched to, which handles the receiving of positions from the application computer.
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It first waits until the Data_ready flag is set on, which indicates that the application
computer has already generated the paths and they are ready to be sent to the
robot controller. There, gradually, all positions in the two arrays that contain both
generated paths are filled. It is important to note that a single pattern does not
have to have exactly 250 positions but can have less. This means that the last cells
of arrays are copied with the last positions of the path. The robot controller can
determine by itself that it skips positions that are the same [32].

Case events ZIG ZAG Pattern and SPIRAL Pattern call the auxiliary function
ScanandSandTemplate with either parameter 1 or 2. This function performs the
execution of the path itself, which is stored in the PathCoordinates1 or PathCoordi-
nates2 array. Its pseudo-code is here:

Function ScanAndSandTemplate(TrajectoryType: Integer):

Switch (TrajectoryType):
Case 1:

Move PTP to the first coordinate in PathCoordinates1

Create and turn on the RSI Context for force control
For each coordinate from 1 to 250 in PathCoordinates1:

Move LIN the coordinate at constant velocity
Turn off and delete the RSI Context
Move LIN relative in Z by +100 mm

Case 2:
Move PTP to the first coordinate in PathCoordinates2

Create and turn on the RSI Context for force control
For each coordinate from 1 to 250 in PathCoordinates2:

Move LIN the coordinate at constant velocity
Turn off and delete the RSI Context
Move LIN relative in Z by +100 mm

End Function

When one or the other path is to be traversed, the first point of the path is first
reached by PTP movement. Then the RSI Context is created and activated, in which
the force controller from section 3.2.2 is implemented. Then all points in the selected
path are traversed. The points are traversed in linear motions (LIN), which differs
from PTP motion in that the path between the points must be strictly linear. The
points are traversed at the selected constant velocity, which is given in 𝑚𝑚/𝑠 [32].
Immediately after reaching the last point of the path, the RSI Context is deactivated
and deleted. Then, the robot moves away from the ground object by +100 𝑚𝑚 in
the 𝑧 coordinate.

4.4.2 Programs in the application computer
This section describes how in the application computer the array of transformation
matrices must be modified into an array of Pos structures and the protocol how to
transfer these arrays to the robot controller.

The Pos structure for Kuka robots is defined as follows: {X, Y, Z, A, B, C, S, T},
where X, Y, Z are the coordinates of the TCP, A, B, C gives information about the
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rotation, where A is the rotation around the 𝑧 axis, B is the rotation around the 𝑦
axis, and C is the rotation around the 𝑥 axis. S and T are Status and Turn, which
carries information about the specific configuration of the robot.

Position and orientation coordinates are 32 𝑏𝑖𝑡 floats. And both Status and Turn
are integers that are composed of bit values arranged one after the other and con-
verted to integers. The Status of a robot is calculated based on the positions of
various axes in relation to their coordinate systems or relative positions. This is how
the individual bits are determined:
. Bit 0 - Wrist Intersection Position (A4, A5, A6): If the 𝑥 value of the wrist

intersection, relative to the base coordinate system, is negative, it indicates the
robot is in the overhead area. The Bit 0 is set to 1. If the 𝑥 value is positive,
the robot is in the basic area, and the Bit 0 must be set to 0.

. Bit 1 - Axis A3 Position: Bit 3 defines the position of the elbow. If A3 is greater
than or equal to 1.74°, Bit 1 is set to 1. Otherwise, it is set to 0.

. Bit 2 - Axis A5 Position: Axis A4 serves as the reference for A5’s neutral position.
Assume A4 at 0° represents a horizontal line. If A5 is tilted upward relative to this
neutral line, Bit 2 is set to 1. In the opposite case, if A5 is either tilted downward
or at the neutral position (0° relative to A4), Bit 2 is set to 0.

. Bit 3: This bit is unused and should always be set to 0.

. Bit 4 - Accuracy of Robot: This depends on whether a so-called absolutely accurate
robot is used, whose accuracy must be certified directly by the manufacturer. In
this case, Bit 4 is set to 1. There is no absolutely accurate robot on the workstation
in Testbed, so Bit 4 must be set to 0.

These bits are assembled into a binary number in the sense of the bitwise OR operator.
In its position, it will be either 1 or 0. This number is then represented in decadic
form.

The Turn helps specify the rotational direction of the axes and supports motions
beyond the typical ±180° constraints. As a general rule, it applies that if the axis
angle is positive or 0°, the corresponding bit is set to 0. Opposing, if the axis angle is
negative, the corresponding bit is set to 1. For bit allocations, the following applies:
Bit 0 for A1, Bit 1 for A2, Bit 2 for A3, Bit 3 for A4, Bit 4 for A5, and Bit 5
for A6. Again, a single binary number is assembled using bitwise OR, which is then
represented decadically.

When it is known how to determine all the components of the Pos structure, it is
possible to proceed to its conversion from the transformation matrix. The process
of converting an array of transformation matrices begins by extracting the position
and rotation of the individual positions in the path. The position (X, Y, Z) is simply
taken from the translation vector. The information about the rotation is obtained
by converting the rotation matrix to Euler angles, in the convention A = yaw, B =
pitch, and C = roll [32].

When the positions and rotations are known, the whole path is converted into
joint coordinates. For each pose in the array, the corresponding joint configuration
𝗾 is computed using an inverse kinematics function. If the inverse kinematic task
has no solutions, it indicates that the robot cannot reach the pose. In this case, the
conversion of coordinates is terminated, and the previous position is taken as the last
one that can be reached. This case can occur quite easily when the algorithm for
path design uses positions that the robot cannot reach, for example, because they
are outside its working envelope.
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Typically, however, a situation arises where multiple valid configurations 𝗾𝑖 are

found, then it is iterated through them to select the best one. The best configura-
tion is determined by comparing each configuration to the previously selected one.
For the very first position, the HOME = {0°, -90°, 90°, 0°, 90°, 0 } position is the
reference. The criteria used is the sum of squared differences between the previous
configuration and each configuration 𝗾𝑖, effectively selecting the configuration closest
to the previous one in the joint space. The aim is to prevent the robot from recon-
figuring itself during the sanding process. Special consideration is given to the fifth
joint; if its value is close to zero, the configuration is skipped as it implies a singular
configuration, which can lead to control issues. This means that A4 and A6 are in
cover and the robot controller cannot handle such a situation [32].

Then, it is only necessary to take this array of joint coordinates and convert them
into an array of Pos structures. The TCP position and orientation are easily com-
puted using the forward kinematic task, and the Status and Turn are determined
according to the procedure shown in the paragraphs above.

Now, it is left to introduce how the two paths in the two arrays are transferred
to the robot’s controller. Every single position from each of the arrays is sent indi-
vidually. It is sent to the OPC UA server in the robot controller, where the arrays
must already be initialized. Within the loop over positions, there is a busy waiting
that continuously checks if data can be written to a node (node_can_write flag).
Once the node is ready for writing, a new Pos object of a custom type uatype.Pos
is created and populated with the corresponding coordinates {X, Y, Z, A, B, C, S,
T} from the path list. This Pos object is written to the server. Together with it, the
number to which field the Pos must be written (1 for zig-zag, 2 for spiral) and to
which index in this field is to be written. When the values are ready on the server,
the data_ready flag is sent to signal the robot that the new coordinates are ready to
be written. This process is repeated until all positions from both paths are written
to the robot controller.

4.5 Simulation of the path in RoboDK
RoboDK is a powerful simulation and offline programming software designed for
industrial robots. RoboDK boasts a comprehensive library that includes over 500
robots from more than 50 manufacturers, along with various tools and robot periph-
erals. Its main advantage lies exactly in offline programming. For a user who has to
develop a whole robotic cell, it is easier to create a digital version of it first. There,
he or she can add all the components of the workplace, program the robot paths,
detect collisions and optimize the overall production process. More robots can be
added to the workplace in RoboDK. This allows easy and intuitive synchronization
of the work cycle of individual robots. After preparing the robot workplace offline,
deploying previously developed robotic programs on real robots is easy [38].

Only collision detection and path validation are used in this work. It is convenient
to check if the paths generated by the presented algorithms are in a valid condition
and if the robot can execute them without collisions with the environment, the work-
piece, or itself. It can also reveal singularities in the generated paths. The real robots
could not pass through them and would stop in them.

The RoboDK environment is shown in figures 4.4 and 4.5. After starting RoboDK,
the robot and sanding spindle models need to be imported into the environment.
The spindle must then be selected as the robot’s tool. The generated mesh of the
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sanding workpiece is also imported. This must be selected as a child of the coordinate
system of the robot base. Since RoboDK allows API calls in Python, it is possible
to combine these initial imports into a single file, Prog1.py. This will perform the
necessary imports and alignment to the correct coordinate systems automatically
after RoboDK is started.

Figure 4.4. A simulation in RoboDK, where the robot traversed a designed path without
collision.

Figure 4.5. Simulation in RoboDK, where the robot is in collision with a workpiece.
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In the RoboDK library, there is available another pre-prepared Python script,

Import_KUKA_SRC_Program.py, which allows to import any src file. However, it
has limited possibilities, for example, it cannot handle the Status and Turn parame-
ters [39]. For this case, a simple program ScanAndSandTesting.src is created when
generating the robot paths, which stores only the individual points of the path, sim-
ply without the S and T parameters. In the tree structure on the left in RoboDK
( Figure 4.5) the individual models and the imported program from the robot are
visible. And the imported path is indicated there by a thin yellow line.

After importing the robot program and the part’s mesh into RoboDK, it is pos-
sible to run a simulation of the robot, where the virtual robot runs through all the
points in the program. The collision detection is activated by clicking on the Radi-
ation icon at the top bar of RoboDK. It is natural that the paths were generated
in such a way that the sanding spindle touches the part. Therefore, the points in
ScanAndSandTesting.src are moved 10 𝑚𝑚 upper in the 𝑧 axis. The program sim-
ulated in this way can be seen in Figure 4.4, where the robot reached the last point
without any issues. And it means that the generated path is valid. On the contrary,
if the necessary offset in the 𝑧 axis were not made, the robot would be in collision at
the very first the first point, as can be seen in Figure 4.5.

4.6 Testing the force feedback controller
The controller of the pressing force applied to the surface of the workpiece, which was
introduced in section 3.2, is in an actual workplace programmed in the Robot Sensor
Interface (RSI) framework. RSI is a real-time communication interface for KUKA
robots. RSI is designed to allow external devices such as sensors, computers, or
controllers to communicate with the KUKA robot controller at high speeds. This is
critical for applications requiring immediate response based on sensor feedback, such
as maintaining constant pressing force during sanding. RSI operates with a cycle time
of 4 𝑚𝑠 during the sanding application. RSI uses an XML format for data exchange
between the robot controller and external devices. The interface processes XML data
packets that contain both commands to the robot and feedback from the robot. RSI
is programmed in a graphical development environment within WorkVisual and is
then compiled into an XML file.

The RSI program, called the RSI context, is then embedded in the src file of the
robot program and is triggered each time when the robot reaches the first point of
the path on the workpiece and is turned off when the robot traverses the entire path.
The whole time it runs, it adjusts the path in real-time. This is achieved by the
PosCorr function block in the RSI context. The path increment that the robot is to
move enters into it. In this case, the 𝑧 coordinate is being adjusted, and it is relative
to the tool coordinate system, i.e., the sanding spindle. The input to the PosCorr
block is the output of the PI controller. It is the input to the position control loop,
which is solved within the internal Kuka system, that solves the interpolation in the
Cartesian coordinate system. This adds additional position control requirements in
parallel to the processed KRL code.

In a real application, the PI controller function block has the following re-
sponse [21]:

𝑦(𝑘) = 𝑦(𝑘 − 1) + 𝐾𝑅 ⋅ 𝑥(𝑘) − 𝐾𝑅 ⋅ (1 − 𝑠𝑒𝑛𝑠𝑜𝑟 𝑐𝑦𝑐𝑙𝑒
𝑇 𝑁

) ⋅ 𝑥(𝑘 − 1), (1)
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where 𝑦(𝑘) is the output of the controller, 𝑦(𝑘 − 1) is the output of the previous
cycle and 𝑥(𝑘) is the input to the controller, 𝑥(𝑘 − 1) is the input of the previous
cycle. The sensor cycle, in this case, is 4 𝑚𝑠. And the controller constants were
set to 𝐾𝑅 = 5.5 ⋅ 10−4 for the proportional component and 𝑇 𝑁 = 8 𝑠 for the
integration component. Both constants were achieved empirically. The constant of
the proportional component is set so that the robot does not react too aggressively
and does not overshoot the desired force value. On the other hand, it is set so that the
robot quickly returns to the desired force value when it is deviated. The integration
constant was derived to increase the control action when the controller still did not
reach the required force, but on the other hand, not to overstretch the proportional
component.

It is important to mention that in the actual implementation, the output from the
PI controller is not enabled for PosCorr until after 0.5 𝑠. This is because immediately
after the startup of the RSI context, the output of the low pass filter is saturated at
around 35 𝑁, which is an erroneous value. And it reaches the correct value after a
few cycles of the RSI contexts.

First the sanding program was run without controlling the applied force. The
measured force in this case is shown in Figure 4.6. There, the initial saturation can
be seen at 35 𝑁; then, it can be seen that most of the time, the sanding spindle barely
touches the surface of the part. However, there are also visible spikes in the measured
force, indicating that the sanding spindle has passed some surface inaccuracy.
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Figure 4.6. Measured force during sanding without the regulator on.

The reference used for testing was 10 𝑁. The robot had to maintain this value of
the pressing force throughout the entire run of the RSI context. This value is not
enough to talk about sanding but rather about polishing. However, it would have
been better to start with a smaller force first. This controller has been tested on a
zig-zag pattern path, as seen, for example, in picture 3.4. In Figure 4.7, the force
measured by the force-torque sensor can be seen. Furthermore, Figure 4.8 shows the
output of the PI controller, i.e., its control action.

As can be seen in Figure 4.7, the control of the pressing force is rather fluctuating.
On the other hand, it is worth mentioning that the input data is very noisy, this
is mainly due to the rotational motion of the spindle, which makes a random orbit
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Figure 4.7. Measured force on the force-torque sensor with the RSI context running.
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Figure 4.8. Output from the PI controller.

movement. This could be considered a great result, as it has proven its concept. In
addition, most of the time, the force was maintained in the range of ±5 𝑁, which is a
solid result. Furthermore, the controller compensates well for the inaccuracies of the
point cloud. When an increased force appears there, the regulator tends to intervene
in the opposite direction. And in spots where the force was originally almost zero,
the controller tries to maintain the 10 𝑁 of applied force.

The second graph (Fig. 4.8) shows the output of the controller. These are the
values by which the 𝑧 axis of the tool must be moved in one cycle of the RSI context.
These are relatively small increments; if they were a bit larger, there would be a
risk that the motion would be too dynamic and the robot would break because of
the speed overload on the axes. Another good feature is that the size of the control
action is immediately reflected in the size of the pressing force.
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4.7 Verification of the path generation algorithm
It is convenient to verify the algorithm that generates the sanding paths on different
parts than the ones on which it was developed and tested. Therefore, another work
table was brought to the workplace for this purpose, on which a new part was placed.
The part used to verify the algorithm was a plastic hemisphere. A picture of this
configuration can be seen in Figure 4.9. This part was chosen to be more curved
than the former pilot part and preferably to be curved in more directions, which this
hemisphere fulfills.

Figure 4.9. Spherical workpiece used for verification of the algorithm for the generation of
grinding paths.

However, during the initial scanning of the object, it was revealed that the hemi-
sphere was too shiny. This complicates the scanning process, as such a shiny object
scatters and reflects in uncontrollable directions the rays of the swept patterning
of the 3D vision system. This problem has been largely eliminated by applying a
chalk spray on the surface of the hemisphere, as it makes the surface matte. Minor
problems remained only around the rim of the hemisphere, which are almost verti-
cal surfaces oriented towards the camera and thus remain partially occluded by the
camera system.

Since the spherical object is slightly smaller than the former object, the inter-
nal radius parameters in the algorithm have been changed for better visibility of
the paths. Specifically, for the zig-zag pattern, voxel_radius = radius * 0.45
and tolerance_x = radius * 0.25. For the spiral pattern, the adjustments are
voxel_radius = radius * 0.5 and tolerance = radius * 0.1. It is also impor-
tant to mention that the threshold parameter which removes the work table from
the point cloud has been modified. This parameter had to be moved up towards the
camera system. Then, the resulting generated paths are for the zig-zag pattern in
Figure 4.10 and for the spiral pattern in Figure 4.11.

As can be seen on both paths, the necessary condition that the individual positions
for the robot’s end-effector are always perpendicular to the surface of the part has
been fulfilled. In the zig-zag pattern image, the single layers of the path going
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Figure 4.10. Generated zig-zag pattern on the sphere.
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Figure 4.11. Generated spiral pattern on the sphere.

from left to right can clearly be seen traversing the entire hemisphere. The spiral
pattern had some minor issues, such as some points around the rim of the hemisphere
missing, which disturbed the bottom contour of the spiral pattern, and this distortion
propagated to the inner layers. However, it is not a significant inaccuracy; it only
makes the spiral pattern slightly distorted, and the robot would have run the sanding
paths in order.
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4.8 Challenges encountered in the real workplace
When the proposed methods were transferred to an actual workplace, certain diffi-
culties occurred which could not be anticipated. It was, therefore, necessary to refine
the developed methods further and thus optimize the sanding process for the real
world.

4.8.1 Issues with the rotating spindle

The most significant problems arose from the rotation of the grinding spindle. It
turned out that the random orbit motion generates high-frequency noise. Both the
gravity compensation process and the force feedback controller did not take it into
account and produced poor results. Both programs in RSI had to be modified to
take this into account.

First, additional low-pass filters were added to the RSI context, which logs the
F/T sensor measurements on the individual axes. Low pass filters were added right
to each of the three sensor outputs. Again, they were employed with the Bessel
function, this time of the tenth order. This helped to get rid of the high-frequency
noise, but the outputs were still fluctuating a lot, even when the sensor was at rest
and the robot was not moving. So, the outputs were averaged in this window. When
the robot had settled down, instead of taking one reading, ten readings were taken
and then averaged. These adjusted values then entered the formulas (7), (8) for
determining the offsets 𝑜𝑓𝑓𝑠𝑒𝑡𝑥, 𝑜𝑓𝑓𝑠𝑒𝑡𝑦, 𝑜𝑓𝑓𝑠𝑒𝑡𝑧, 𝑜𝑓𝑓𝑠𝑒𝑡𝑛𝑜𝑟𝑚.

In such a way, the compensation of offsets that enter the regulator of the applied
force in the sanding process has been improved. Nevertheless, in the second RSI
context, which implements this controller from Figure 3.9, the same three low-pass
filters were added right at the outputs of the F/T sensor. The low pass filter of the
second-order from the diagram has been preserved; it still suppresses larger fluctua-
tions of the signal that enters the PI controller. Next, in the actual RSI context, a
protective function block was also added in comparison to the diagram in Figure 3.9,
which immediately stops the robot when the measured force on the F/T sensor ex-
ceeds 30 𝑁. Since the second-order low pass is saturated at the very beginning of the
RSI context, this function block is again active only after 0.5 𝑠 after the RSI context
had been started.

4.8.2 Correlation between applied force and removed material

In order to optimize the force that needs to be applied to the sanded part, it would be
helpful to find an exact relation between the force applied and the removed material.
It has been thought that a 3D vision system with a 𝑧 axis resolution of 0.04 𝑚𝑚
should produce point clouds on which the removed layer can be seen. However, it
turned out that this accuracy was not sufficient. In Figure 4.12, it is possible to see
the measured difference between the two point clouds before and after sanding. The
force applied to the part was again 10 𝑁.

In reality, one could see that the part was sanded, but in the point cloud differences,
only areas of the part at the beginning of the sanding path were visible. There,
the force displacement was larger than required, and in addition, the regulator was
fluctuating. More worrying, however, are the points with 𝑥 coordinates of 1350 𝑚𝑚
and more, which the robot could never run into because it is beyond its reach, and
there should have been a difference in sanding of exactly 0 𝑚𝑚. The 3D vision
system has difficulty with such small resolutions and produces noisy outputs. For a
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Figure 4.12. The difference between point clouds before and after sanding.

better study of the material removed, it is therefore necessary to use a more accurate
scanning device.

4.9 Hololens 2 app for path visualisation
This section provides an introduction to Augmented reality (AR) for industrial appli-
cations. Specifically for visualizing sanding or polishing patterns on a real workpiece
and as a user interface for controlling the workstation. By leveraging the headset’s ca-
pabilities, users can view, adjust, and refine the robotic paths in a three-dimensional
space, directly overlaying the virtual paths onto the actual target surfaces. This
method of visualization facilitates a more intuitive understanding of complex me-
chanical processes [2].

4.9.1 Introduction to Augmented Reality and Unity
Augmented reality is a technology that overlays digital content onto the real world,
enhancing one’s perception and interaction with their environment. Unlike virtual
reality, which replaces the real world with a simulated one, AR integrates digital
components into the user’s view of their surroundings.

The Microsoft HoloLens 2 (Fig. 4.13) is an AR headset that embodies the prac-
tical application of AR technologies. The HoloLens 2 offers a combination of high-
definition visuals, spatial mapping, and real-time interaction, making it an ideal tool
for projecting programmed trajectories onto a physical workpiece. It features a set of
see-through holographic lenses (waveguides) that utilize a projection system to render
digital holograms onto the user’s field of view. This headset is equipped with multi-
ple sensors, including depth cameras and an inertial measurement unit (IMU), which
facilitate spatial understanding and allow the device to accurately map and interact
with the physical environment. The HoloLens 2 operates on Microsoft’s custom-built
Holographic Processing Unit (HPU) and an ARM processor, which handles the ex-
tensive data processing required for real-time AR [40]. Its interaction model is based
on gaze, gesture, and voice inputs, making it exceptionally intuitive.

Unity is a versatile and widely used game engine and development platform that
supports the creation of both 2D and 3D content. Its set of features allows devel-
opers to create detailed environments, scripting in C#, and integrate various media
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Figure 4.13. Augmented reality headset Hololens 2 from Microsoft.

assets. Unity’s compatibility with multiple platforms and its comprehensive toolkit
for rendering, physics, and networking make it an excellent choice for developing AR
applications. Its integration with the HoloLens 2 is facilitated through a range of
plugins and SDKs (software development kit) provided by both Microsoft and third-
party developers, allowing for advanced features such as spatial mapping, gesture
recognition, and real-time interactions to be implemented effectively.

4.9.2 Hololens 2 app development in Unity
The process begins with setting up the Unity environment to support HoloLens
development. Unity provides a comprehensive platform for creating interactive 3D
applications, and with the addition of the Mixed Reality Toolkit (MRTK), developers
can use a suite of tools specifically designed to facilitate AR development for Hololens
2. Within Unity, the Universal Windows Platform (UWP) development build support
is essential, as it allows the application to run on Windows 10 and Windows 11
devices, including Hololens 2.

With Unity and MRTK set up, developers can start constructing the application.
This involves creating scenes, which are containers for all objects, lights, cameras,
and scripts in a Unity project. For Hololens 2 applications, the camera is configured
to follow the user’s head movements, providing a first-person view of the AR world.
Necessary objects can be added to the scene. These are the robot model with a
stand, the model of the sanding spindle, the palm menu, and the Vuforia marker.

The models are in OBJ format. The Palm menu is already pre-prepared by the
MRTK toolbox, and the icons and button labels can be modified. On pressing the
button events, functions are mapped from the script OPCUADataTransfer.cs [41–42].
In this script, the communication via OPC UA with the server in the robot controller
is also implemented, as described in section 3.4.2. The synchronization flags are
always sent, that an action must be performed, and together with them, the command
number is sent, which is used to control the case switch in the robot program. The
development environment in Unity is shown in Figure 4.14.

A Vuforia tag is now introduced, which is essential for aligning the scene with the
real environment when the application is running. Vuforia Engine is a SDK that
enables anchoring digital content in the physical world. Vuforia’s precise tracking
capabilities ensure that the holographic overlays remain aligned with the physical
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Figure 4.14. Screenshot from the Unity development environment.

machinery, regardless of environmental changes or different viewing angles. Vuforia
uses markers or targets to place and sustain AR content in the real world. The target
is some ArUco marker, which has to be added to the Vuforia database together with
its actual dimensions. This will ensure that when the AR headset sees this tag in the
real environment, all holographs are aligned to it in the real world. The advantage is
that even if the tag is subsequently occluded, the holographs remain still visible and
aligned [43]. The Vuforia tag locataed in the Unity scene and palm menu is shown
in Figure 4.15.

If the user has already requested path generation, it will also be possible to visualize
the sanding paths. The paths are visualized in the headset by rendering the individual
points as little spheres and are linked with line segments. In this way, it is possible
to see the points which the robot will traverse and how they are in sequence. In
demand to align everything correctly, the OBJ models and these spheres must be in
the tree hierarchy as children of this Vuforia tag.

Figure 4.15. Detail of Vuforia tag and Palm menu in Unity.
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4.9.3 Resulting visualization
The resulting visualization and user environment can now be presented in the AR
headset. When the application is built in Unity and uploaded to Hololens 2, a
stand-alone application is there created that runs separately from the application
computer.

The palm menu is shown in Figure 4.16 and is displayed whenever the user places
their palm in front of the AR headset. A hologram of the robot model and sand-
ing spindle is shown in Figure 4.17. These images are screenshots directly from
Hololens 2, so they show faithfully what the operator sees. Through the hologram
the Vuforia tag by which the scene was aligned is also visible. It shows that the
alignment inaccuracy is, at most, in the order of 𝑚𝑚, which is reasonably sufficient
to give the operator a good overview of the workplace.

Figure 4.16. A pop-up menu in the palm of the hand to control the workplace.

The projected holograms of the zig-zag and spiral patterns can be seen in Fig-
ures 4.18 and 4.19. The individual points as spheres, and the line segments connect-
ing them are clearly visible. Again, the inaccuracy is, at most, in the order of mm,
giving the operator an excellent overview of how the sanding path will be executed
by the robot.
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Figure 4.17. Holograms of the robot’s and sanding spindle’s models in Hololens 2 headset.

Figure 4.18. Hologram of zig-zag pattern projected onto real workpiece.
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Figure 4.19. Hologram of spiral pattern projected onto real workpiece.
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Chapter 5
Conclusion

The primary goal of this thesis was to enhance the efficiency and adaptability
of robotic sanding systems using a 3D vision system coupled with force feedback
control. Through meticulous research and development, this goal has been com-
prehensively achieved, marking a significant advancement in robotic automation
technologies. Such a developed system can be deployed in smaller production where
manufactured products are changed frequently. It can be used for sanding and
polishing, depending on the required quantity of material to be removed.

5.1 Results summary
Key achievements of this research include the development of a robust methodol-
ogy for point cloud processing and path generation, which ensures that the robotic
manipulator can adaptively conform to variable convex surface topographies with-
out human intervention. The implementation of zig-zag and spiral sanding patterns
through calculated robotic paths not only maximizes coverage but also maintains
a consistent force, which is critical for achieving uniform surface finishes. This capa-
bility significantly reduces the time and effort required to program the robot for new
objects, enhancing the system’s adaptability to varied manufacturing tasks.

The thesis established a robust control system that maintains a constant press-
ing force during the sanding process. This system dynamically adjusts the robot’s
path based on real-time feedback, ensuring consistent quality regardless of any im-
perfections or variations in the material being sanded. Together with this, a process
for compensating the gravitational force that affects the force-torque sensor at resting
state has been developed.

The research also highlighted the importance of precise workspace calibration.
The procedure of obtaining the transformation matrix between the depth camera’s
coordinate system and the robot base’s coordinate system, which serves as the base
of the whole workplace, was introduced. This is important for the individual point
clouds to be mapped to the common coordinate system.

Implementing the OPC UA protocol facilitated efficient and secure data transfer
between the robotic controller and the application interfaces. This not only enhances
the reliability of the system operations but also data integrity in industrial automa-
tion systems. This protocol is used to synchronize the process and data transfer be-
tween the AR headset and the robot controller and simultaneously for communication
between the robot controller and the application computer, where all calculations and
path generation take place.

Furthermore, the introduction of augmented reality (AR) technology in the form
of the Hololens 2 headset provides an innovative user interface, enabling operators
to visualize and dynamically adjust the sanding paths in real-time. This fusion of AR
with robotic control represents a notable leap forward in interactive manufacturing

58



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2 Future work

processes, potentially setting a new standard for industrial applications requiring
high precision and adaptability.

The utilization of RoboDK to simulate the robotic paths and operations was pivotal
in the project’s development phase. It provided a safe and effective environment
to test movements before running on a real robot, thereby minimizing the risks
of running into singular configurations or collisions with the environment, which
may have been neglected during path generation.

The methodologies and systems developed were rigorously tested in a real-world
environment, specifically designed to emulate industrial conditions. Even the in-
accuracies of the force-torque sensor measurements, caused by the random orbit
movement of the sanding spindle, were successfully suppressed. This practical appli-
cation demonstrated the system’s effectiveness and reliability, confirming its readiness
for broader industrial adoption.

5.2 Future work
The research presented in this thesis opens several routes for further exploration and
development. To enhance the capabilities of the robotic sanding system and extend
its applications.

Future work could also focus on developing algorithms that can generate sanding
paths for even more complex geometries, potentially using advanced computational
geometry techniques. It would be interesting to expand the range of possible pattern-
ing that advanced CAD/CAM software allows. It might also be useful to investigate
the optimization of the sanding pattern, aiming to minimize the traveled path, which
would lead to problems such as the Traveling salesman problem. This would be used
on complex surfaces that can be perforated and would minimize the robot’s travels
between perforations.

Future research could also focus on developing more sophisticated adaptive control
algorithms that further refine the force feedback mechanism. Implementing machine
learning techniques could enable the system to predict and compensate for variations
in material properties and wear on the sanding tools, optimizing the applied sanding
force and speed in real-time based on the data collected during operations.

A model of the relation between the applied pressing force and the removed ma-
terial would be needed. This would provide a better understanding of the robotic
sanding process, and the user could choose the sanding force according to the need
for the removed material. For this, a more accurate scanning device is needed. It
would be necessary to have a clear view of the removed material layer on the work-
piece before and after sanding.

It would also be useful to further expand the functionality of the AR headset app.
The operator would be able to edit the designed paths directly in the headset. Before
the robot executes the path, the operator could adjust the density of the patterning
and choose the pressing force to better suit his/her specific application. Next, it
would be useful to simulate the trajectory directly in the AR headset. The kinematics
of the robot is well described in this thesis and could be used for this. In Unity, it is
easy to animate the robot model, and the user can simulate the whole sanding cycle
before sending a command to the real robot to run the path. This would bypass
the simulation in RoboDK, which cannot be fully automated.
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