

Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Measurement

Offloading of route planning from autonomous vehicle to
edge serves in mobile networks

Master’s thesis

Bc. Adam Jáneš

 Study program: CyberneƟcs and RoboƟcs

 Supervisor: prof. doc. Ing. Zdeněk Bečvář, Ph. D

Prague, May 2024

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

492356 Personal ID number: Jáneš Adam Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Measurement

Cybernetics and Robotics Study program:

II. Master’s thesis details

Master’s thesis title in English:

Offloading of route planning from autonomous vehicle to edge serves in mobile networks

Master’s thesis title in Czech:

Plánování trasy pro autonomní vozidlo se zpracováním informací na hraně mobilní sítě

Guidelines:

Study principles and possibilities of computation processing for autonomous vehicles at the edge of the mobile network
(multi-access edge computing, MEC) and with usage of mobile networks for vehicles to infrastructure communication.
Implement a suitable existing map-based route planning algorithm for a model of the autonomous vehicle. Also, implement
an existing algorithm for a detection of characteristics of moving obstacles (e.g., movement direction, speed, obstacle
size, obstacle location). Furthermore, implement an existing algorithm determining an alternative route in the event of the
obstacle detection.
Compare a delay and a success rate of these implemented algorithms for the case of their processing directly in the vehicle
and for the case when these algorithms are processed in the MEC server. Consider, for example, quality of the
communication channel and an availability of computing resources in the vehicle and in the MEC server. Test the effect
of the place of processing (in the vehicle or in the MEC server) on the traveling time of the vehicle.

Bibliography / sources:

[1] P. Mach and Z. Becvar, “Mobile Edge Computing: A Survey on Architecture and Computation Offloading,” IEEE
Communications Surveys & Tutorials, volume 19, no. 3, 2017.
[2] F. Borrelli, A. Bemporad, M. Fodor, and D. Hrovat, "An MPC/hybrid system approach to traction control. IEEE Trans.
Control Systems Technology," volume 14, no. 3, pp. 541–552, May 2006.
[3] T. Verschoor, V. Charpentier, N. Slamnik-Krijestorac and J. Marquez-Barja, "The testing framework for Vehicular Edge
Computing and Communications on the Smart Highway," IEEE Consumer Communications & Networking Conference
(CCNC), 2023.
[4] J. Dolezal, Z. Becvar and T. Zeman, "Performance Evaluation of Computation Offloading from Mobile Device to the
Edge of Mobile Network," IEEE Conference on Standards for Communications & Networking (IEEE CSCN 2016), 2016.

© ČVUT v Praze, Design: ČVUT v Praze, VIC Page 1 from 2 CVUT-CZ-ZDP-2015.1

Name and workplace of master’s thesis supervisor:

prof. Ing. Zdeněk Bečvář, Ph.D. Department of Telecommunications Engineering FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 24.05.2024 Date of master’s thesis assignment: 06.02.2024

Assignment valid until:
by the end of summer semester 2024/2025

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signature prof. Ing. Zdeněk Bečvář, Ph.D.
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC Page 2 from 2 CVUT-CZ-ZDP-2015.1

Declaration
I hereby declare that I have completed this thesis on my own and that I have only used the cited
sources. I have no objecƟon to use of this work in compliance with the act "§60 Zákon č. 121/2000 Sb."
(copyright law), and with the rights connected with the copyright act including the changes in the act.

Prague, 24. May 2024

                                  

Signature

Prohlášení
Prohlašuji, že jsem předloženou práci vypracoval samostatně a že jsem uvedl veškeré použité
informační zdroje v souladu s Metodickým pokynem o dodržování eƟckých principů při přípravě
vysokoškolských závěrečných prací.

V Praze dne 24. května 2024

                                 

Podpis

Acknowledgement
I would like to express my deepest graƟtude to my thesis supervisor, prof. Ing. Zdeněk Bečvář, Ph.D.,
for his unwavering support, guidance, and encouragement throughout the development of this thesis.
His experƟse and insights were invaluable, and I feel incredibly fortunate to have had the opportunity
to learn from him.

Abstract
This thesis focuses on the implementaƟon of algorithms for autonomous driving with the ability to
offload processing of these algorithms from the vehicle to the edge of the mobile network. Three
algorithms for path planning, namely A*, Rapidly exploring Random Tree (RRT) and RRT* algorithms
are implemented and evaluated. Furthermore, dynamic obstacle detecƟon is invesƟgated and
implemented to the autonomous vehicle. The obstacle detecƟon is performed based on a comparison
of the map and lidar data. Tracking of the planned path is provided by Pure Pursuit algorithm and Model
PredicƟve Control (MPC). The algorithms are tested on a model of autonomous vehicle enhanced with
communicaƟon capabiliƟes to offload processing to the edge servers via 5G mobile network. The aim
of this paper is to invesƟgate whether it is suitable to process algorithms for autonomous driving at the
network edge. The conducted experiments show that path planning algorithms are suitable for
offloading due to the high computaƟonal intensity. Algorithms for dynamic obstacle detecƟon and path
following are offloadable within a specified deadline, but the results are highly dependent on the
current communicaƟon channel state.

Keywords:
Offloading, edge compuƟng, 5G mobile network, path planning, obstacle detecƟon, path following

Anotace
Tato práce se zaměřuje na implementaci algoritmů pro autonomní řízení s možnosơ přenést zpracování
těchto algoritmů z vozidla na hranu mobilní sítě. Jsou implementovány a vyhodnoceny tři algoritmy pro
plánování trasy, a to algoritmy A*, Rapidly exploring Random Tree (RRT) a RRT*. Dále je zkoumána a do
autonomního vozidla implementována detekce dynamických překážek. Detekce překážek se provádí na
základě porovnání mapy a lidarových dat. Sledování naplánované trasy je zajištěno algoritmem Pure
Pursuit a Model PredicƟve Control (MPC). Algoritmy jsou testovány na modelu autonomního vozidla
rozšířeném o komunikaci přes 5G mobilní síť s možnosơ zpracovávat úlohy na hraně mobilní sítě. Cílem
této práce je zkoumat, zda je vhodné zpracovávat algoritmy pro autonomní řízení na hraně mobilní sítě.
Uskutečněné experimenty ukazují, že algoritmy plánující trasu jsou vhodné pro offloadování z důvodu
vysoké výpočetní náročnosƟ. Algoritmy pro detekci dynamických překážek a sledování trasy je možné
offloadovat, avšak výsledky jsou velmi závislé na současném stavu komunikačního kanálu.

Klíčová slova:
Offloading, zpracování na hraně sítě, 5G mobilní síť, plánování trasy, detekce překážek, sledování trasy

Překlad názvu:
Plánování trasy pro autonomní vozidlo se zpracováním informací na hraně mobilní sítě

Table of Contents
1 IntroducƟon ... 1
2 Related works .. 2
3 System model and background ... 4

3.1 5G network .. 4
3.2 MEC server ... 4

4 Autonomous Vehicle ... 6
4.1 Architecture of autonomous vehicle.. 6
4.2 Traxxas TRX-6 Mercedes G 63 6x6 .. 7
4.3 Arduino UNO .. 7
4.4 Power supply .. 8
4.5 Rplidar A1M8 ... 8
4.6 Raspberry Pi 4 Model B .. 9
4.7 5G module .. 9

5 Implemented algorithms ... 10
5.1 Lubuntu .. 10
5.2 Robot OperaƟng System (ROS) .. 10
5.3 ROS nodes interconnecƟon .. 10
5.4 ROS nodes .. 11

5.4.1 Sensor nodes ... 11
5.4.2 Laser Scan Matcher node .. 11
5.4.3 Slam Toolbox node ... 12
5.4.4 PosiƟon Publisher node ... 13
5.4.5 Path planning nodes .. 13

5.4.5.1 A* algorithm.. 14
5.4.5.2 Rapidly exploring Random Tree (RRT) algorithm .. 15
5.4.5.3 Ackermann model ... 16
5.4.5.4 K-Dimensional (K-D) tree... 16

5.4.6 Emergency Brake node .. 18
5.4.7 Detect Obstacles node ... 18
5.4.8 Path following nodes ... 19

5.4.8.1 Pure Pursuit node ... 19
5.4.8.2 MPC node .. 20
5.4.8.3 Control Motor node .. 21

5.4.9 CommunicaƟon nodes ... 22
5.4.9.1 Gateway node ... 22
5.4.9.2 Control node ... 23

6 Experiments ... 24
6.1 Scenarios and metrics .. 24
6.2 TheoreƟcal requirements for the communicaƟon channel ... 24
6.3 Path planning ... 25
6.4 Dynamic obstacle detecƟon ... 30
6.5 Path following .. 32
6.6 Dynamic experiment .. 35

7 Conclusion ... 37
8 Bibliography ... 38
9 Apendix .. 41

9.1 The InstallaƟon of Lubuntu .. 41
9.2 Overclocking CPU ... 41
9.3 Git repository ... 41

List of Figures
Figure 1: Comparison between Mobile Edge CompuƟng and Cloud CompuƟng [18] 5
Figure 2: Data and power connecƟon diagram ... 6
Figure 3: Vehicle components ... 7
Figure 4: Slamtec RoboStudio.. 8
Figure 5: Lidar data in RVIZ .. 8
Figure 6: Linkage between the ROS nodes .. 11
Figure 7: Occupancy grid represenƟng map in RVIZ ... 12
Figure 8: Dilatated obstacles in map ... 14
Figure 9: IllustraƟon of the Traxxas and TurtleBot dilataƟon .. 14
Figure 10: Original A* algorithm ... 15
Figure 11: Modified A* algorithm ... 15
Figure 12: RRT algorithm ... 16
Figure 13: RRT* algorithm ... 16
Figure 14: IllustraƟon of the computaƟon of the Ackermann steering ... 16
Figure 15: Progress of the insert funcƟon ... 17
Figure 16: Branch area and distances to reference points .. 18
Figure 17: Progress of the nearest neighbor search funcƟon ... 18
Figure 18: IllustraƟon of the Pure Pursuit algorithm ... 20
Figure 19: IllustraƟon of the MPC algorithm ... 21
Figure 20: ConnecƟon between the vehicle and the MEC server ... 22
Figure 21: Maps – path planning experiments .. 26
Figure 22: Average computaƟon Ɵmes – path planning ... 27
Figure 23: Success rate of algorithms for different deadlines – part 1.. 28
Figure 24: Success rate of algorithms for different deadlines – part 2.. 28
Figure 25: Comparison of path lengths ... 29
Figure 26: Third scenario tesƟng dynamic obstacle detecƟon .. 31
Figure 27: Comparison of computaƟon Ɵme of dynamic obstacle detecƟon 31
Figure 28: Success rate of obstacle detecƟon for different deadlines .. 32
Figure 29: Scenario tesƟng path following with obstacles .. 33
Figure 30: Comparison of computaƟon Ɵmes – path following without obstacles 33
Figure 31: Comparison of computaƟon Ɵmes – path following with obstacles 34
Figure 32: Success rate of control algorithms for different deadlines – without obstacles 34
Figure 33: Success rate of control algorithms for different deadlines – with obstacles 35
Figure 34: DemonstraƟon of offloading .. 36

List of Tables
Table 1: Time complexity of the shortest path algorithms [8], [9] .. 2
Table 2: List of the commands accepted by Control node .. 23
Table 3: Data rate requirements – without obstacles ... 25
Table 4: Data rate requirements – with obstacles ... 25
Table 5: Comparison of iteraƟons and reconnecƟons - vehicle .. 30
Table 6: Comparison of iteraƟons and reconnecƟons - server.. 30

1

1 Introduction
Modern cars incorporate increasing number of assistance systems and aspects of autonomous driving.
Every new assistance system or aspects of the autonomous driving in the vehicle requires addiƟonal
computaƟon power, which increases the cost of car producƟon. With the advent of the fiŌh-generaƟon
mobile networks, some computaƟonally demanding tasks can be offloaded. Compared to Long Term
EvoluƟon (LTE), 5G offers promising prospects due to enhanced data rate, lower latency and lower
power consumpƟon [1]. It clears the way for offloading the compuƟng tasks with strict Ɵme
requirements such as autonomous driving.

Autonomous driving algorithms that can be offloaded are route planning algorithms [2], camera
processing [3], or control algorithms. The advantage of offloading is the higher computaƟonal power
that the MulƟ-access Edge CompuƟng (MEC) server provides. The biggest performance increase is in
image processing, since the offloading unit usually does not have a graphics card. If the image is
offloaded to a server with a graphics card, the computaƟon speed is increased several Ɵmes. Offloading
requires a connecƟon with a sufficient data rate and, in the case of control algorithms, a low latency. If
these condiƟons are not met, algorithms that require fast response miss the deadline. Another
challenge of offloading algorithms that require fast response is the mobility management, since during
a handover the data is forwarded to another MEC server. Data forwarding creates addiƟonal delays
that can lead to missing Ɵme requirements [4].

The aim of this work is to implement path planning, dynamic obstacle detecƟon and control algorithms
with offloading capability on MEC server. The first part of the experiments compares the computaƟon
of path planning using the A* algorithm [5], Rapidly exploring Random Tree (RRT) and RRT*[6]
algorithms locally on the vehicle and on the MEC server. The second part of the experiments compares
the computaƟon of the dynamic obstacle detecƟon algorithm. The third part of the experiments
invesƟgates the offloading of Pure Pursuit algorithm and Model PredicƟve Control (MPC) [7] following
a planned path. The path planning represents applicaƟons with soŌ deadlines. The control algorithms
symbolize tasks with hard deadlines, since deadline violaƟons in control algorithms lead to vehicle
collisions.

This thesis explores the possibiliƟes of offloading over the 5G mobile network and evaluates which
autonomous driving tasks are suitable for offloading. The thesis focuses on meeƟng the deadlines of
each task. In addiƟon, it tests whether the MEC server is able to achieve more accurate results with the
same deadlines by varying the parameters of each algorithm, such as the search depth in MPC or the
reconnecƟon distance in the RRT* algorithm.

The next secƟon summarizes the recent works and results achieved in this field. The subsequent
secƟon of this thesis explains offloading and the advantages of the MEC server. The fourth secƟon
provides a descripƟon of the model of autonomous vehicle used in the thesis, covering mounted
components and implemented algorithms. The pracƟcal secƟon consists of experiments with a vehicle
driving autonomously. Experiments compare algorithms for path planning, detecƟng dynamic
obstacles and following the planned path computed locally and on the MEC server with regard to
latency and precision of the algorithm, such as higher depth of the MPC algorithm or larger area for
spoƫng dynamic obstacles. The concluding chapter summarizes whether it is possible to realize parƟal
or full offloading for autonomous driving uƟlizing 5G mobile network.

2

2 Related works
Autonomous driving is mainly composed of path planning to the desired desƟnaƟon and following the
planned path. Following the planned path should involve algorithms for monitoring the surrounding
environment to detect other traffic parƟcipants and road signs.

Path planning can be formulated as the shortest path problem. The problem is based on a graph with
edges between the verƟces. Every edge has a weight represenƟng the cost from one vertex to the
second vertex. The cost is determined by Euclidian distance and verƟces represent cells in the grid map.
The most famous algorithms for solving this problem are Dijkstra's algorithm, Floyd-Warshall algorithm,
and Bellman-Ford algorithm [8], [9]. Each menƟoned algorithm searches for the shortest path with
some difference. The first difference is that Dijkstra's algorithm does not support negaƟve cost of edges
as opposed to Floyd-Warshall algorithm and Bellman-Ford algorithm. Furthermore, Floyd-Warshall
algorithm searches for the shortest path between every pair of verƟces. For this reason, the Ɵme
complexity of Floyd-Warshall algorithm is higher than the Ɵme complexity of Dijkstra algorithm and
Bellman-Ford algorithm. The Ɵme complexity of these algorithm is shown in Table 1.

Table 1: Time complexity of the shortest path algorithms [8], [9]

Algorithm Dijkstra’s Floyd-Warshall Bellman-Ford
Time complexity O(man log n) O(nm) O(nଷ)

One of the implemented algorithms in this work is A*. The A* algorithm is based on Dijkstra's algorithm.
However, the A* algorithm has a concrete goal that should be reached. Furthermore, the A* algorithm
uses priority queue and heurisƟc, which helps to prioriƟze direcƟon to the goal posiƟon [5].

The significant disadvantage of the menƟoned algorithms is that the algorithms do not take into
account the dimension of the vehicle and steering restricƟons which can lead to collision. The algorithm
meeƟng this requirement is the RRT algorithm. However, the RRT algorithm searches for a path, which
is not necessarily the shortest one. Moreover, the algorithm is not complete, which means that the
exisƟng path is not found every Ɵme. On the other hand, with the increasing run Ɵme of the algorithm
the probability of path discovery increases as well. The asymptoƟcally opƟmal variant of the RRT
algorithm is the RRT* algorithm. The difference between RRT and RRT* algorithms is that the RRT*
algorithm allows rewiring exisƟng explored poses in proximity, which leads to shortening the resulƟng
path. Another approach to path planning is the ProbabilisƟc Roadmaps algorithm. This algorithm,
unlike the RRT and the RRT* algorithm, first creates a big amount of poses and then the poses are
connected based on distance. This approach is not implemented because it is not able to guarantee
steering restricƟons [6].

The main goal of the control algorithm is to ensure the vehicle follows the planned path. The
unsophisƟcated way to track the path is to determine points on the path and compute the angle
difference between the vehicle and the selected point. The Pure Pursuit algorithm [10] computes the
point in defined look ahead distance in front of the vehicle. The chase of look ahead point improves
behavior of path following because the vehicle reacts to turns in advance. In [10], the principles and
properƟes of the algorithm are described. If the vehicle is moving at a higher velocity, the look ahead
distance should be higher. For this reason, the vehicle cut corners on a curved path. The paper [11]
describes approach to minimize path tracking error in turns. In the paper, the authors reduce cuƫng
corners, which improves tracking performance. On the other hand, the experiments are not performed
on several different environments.

3

The more complex approach than the Pure Pursuit algorithm is MPC. In contrast to the Pure Pursuit
algorithm, MPC takes dynamic obstacles spoƩed in the surrounding environment into account. In [12],
the authors propose an improved MPC for path tracking. The proposed controller forecasts future
vehicle state to generate opƟmal steering. MPC can solve opƟmizaƟon problems not only for path
tracking. In [13], the MPC and l1-opƟmal hybrid controller is used to minimize slipping on challenging
road surfaces, such as polished ice. The authors of the paper [12] improved MPC controller which can
forecast future vehicle states. On the other hand, the controller has only been tested in simulaƟon and
it has not been tested how it works on real hardware.

ComputaƟon offloading represents a method for processing highly demanding tasks on the server. This
approach allows users to extend the baƩery lifeƟme of the user device and run sophisƟcated
applicaƟons even though the user device does not meet the hardware requirements. In this scenario,
the running of the applicaƟon requires a stable connecƟon to the server. In [14], the authors describe
possible mobile network architectures for offloading. Furthermore, the authors depict mobility
management when MEC server is exploited by the user and scenarios when it is suitable to compute
the task locally or to offload it. In [15], the authors formulate an opƟmizaƟon problem for offloading to
minimize the Ɵme between the start of the offloading and receiving the result from the server. The
paper [16] introduces implementaƟon of an offloading framework and evaluates it using an Augmented
Reality app. The result of the paper is that highly demanding tasks are recommended for offloading
with regard to latency of computaƟon and power consumpƟon. On the other hand, during the tesƟng
of the Augmented Reality app, no mobile connecƟon was used, but the results were provided using a
Wi-Fi network. Moreover, the calculaƟon did not have a deadline that should have been met.

The menƟoned related works describe algorithms for autonomous driving computed locally on the
vehicle or the authors introduce offloading in simulaƟon or for applicaƟon without deadlines.
Therefore, the aim of this work is to implement and test algorithms for autonomous driving on real
hardware with the ability to offload demanding tasks over 5G mobile network.

4

3 System model and background
The first subsecƟon briefly describes the arrangement of the 5G network. The second subsecƟon
focuses on the MEC server and its characterisƟcs. This is followed by a subsecƟon about the
communicaƟon channel and its impact on offloading.

3.1 5G network
The 5G network is divided into two parts. The first segment is the Next GeneraƟon Radio Access
Network (NG-RAN) responsible for establishing connecƟons with User Equipment (UE). NG-RAN
involves base staƟons (gNB) providing connecƟvity to UEs. The UEs are represented by devices such as
tablets, laptops, smartphones, industrial machines, autonomous vehicles, or IoT devices. Base staƟons
arrange wireless communicaƟon with UEs and transfer UEs' demands to the 5G Core network (5GC),
which is the second part of the 5G structure. The 5GC manages the cellular network and data rouƟng,
employing funcƟons such as Quality of Service (QoS), policy rules, and mobility management [17].

The UE communicates with the MEC server through the 5G network. The network adjusts channel
modulaƟon to maximize data rate and minimize error rate. The channel is influenced by its bandwidth,
signal level, noise level and interference level from other users in the network. Furthermore, the
communicaƟon channel is affected by user movement and demands covered by Quality of Service.

In the frame of this thesis, the autonomous vehicle communicates with the base staƟon for the purpose
of offloading. In the pracƟcal part of the thesis, we test whether the offloading implementaƟon is
serviceable for staƟonary and moving vehicle in terms of autonomous driving.

3.2 MEC server
In recent years, the number of highly demanding applicaƟons that users want to run on their devices
running on baƩery power has rapidly increased; for instance, augmented reality apps. This type of
applicaƟon implies that the baƩery lifeƟme is shortened. To miƟgate this issue, users can offload their
applicaƟons to a server, where the server handles the demanding tasks. At the beginning, the approach
was realized as a centralized cloud (CC) accessible via the Internet. The centralized cloud allows users
to use its high performance. On the contrary, user demands on the CC impose huge addiƟonal load on
the radio and backhaul of the mobile network. Furthermore, results from the CC are received with high
latency. Therefore, this approach is not suitable for real-Ɵme applicaƟons [14].

An alternaƟve approach introduces smaller distributed units situated in proximity to the UEs. Its
disadvantage is lower computaƟon performance compared to the CC. On the other hand, the backhaul
infrastructure is not loaded so much by user demands. Moreover, computaƟon demands on these units
are delivered with lower latency. In this approach, users can complete highly demanding tasks by
offloading using less energy consumpƟon and similar latency. Some implementaƟons of this aƫtude,
for instance cloudlets were not widely adopted due to the choice of technologies.

MEC is a concept of edge compuƟng integrated into mobile network architecture. AddiƟonally, many
companies, such as IBM, Vodafone, Nokia, Huawei, and Intel, support this approach. The leading
advantages of MEC servers are their proximity to users, integraƟon into cellular network infrastructure,
and sufficient performance. For this reason, the usage of MEC servers is a convenient approach to real-
Ɵme applicaƟons.

MEC server, providing higher performance than the autonomous vehicle, is capable of planning routes
with higher precision. Consequently, the MEC server realizes more possible steering in one iteraƟon

5

and executes a higher number of iteraƟons at the same Ɵme. Moreover, the vehicle conserves power
consumpƟon by execuƟng only essenƟal and simplified algorithms in scenarios when the connecƟon
to the MEC server is lost.

The most suitable use case for offloading is applicaƟons with highly demanding computaƟonal tasks
and the short length of input parameters. The benefit of this applicaƟon type is transfer speed to the
MEC server owing to data size. Furthermore, the server can uƟlize its performance to compute the
task, preferably using mulƟ-core performance. In this situaƟon, the task is completed faster remotely
using the MEC server than locally on the user's device.

Another suitable applicaƟon for offloading consists of many independent tasks. In this scenario, the
user exploits maximal MEC server performance. Independent tasks are convenient for edge compuƟng
because the device can offload the whole or only part of the computaƟon problem. Moreover, the
tasks can be computed in parallel to further reduce latency.

However, the uƟlizaƟon of MEC servers presents several challenges. In the opƟmisƟc scenario, the user
baƩery is discharged only by transmiƫng and receiving data, not by compuƟng the task. However, the
MEC server cannot process all user demands. For this reason, the script opƟmizing offloading should
be included. The script decides which tasks is offloaded based on QoS and available resources.

Another challenge is resource allocaƟon. The MEC server allocates resources for every user in terms of
computaƟon performance and Ɵme-frequency slots. It implies that as the number of users connected
to a single MEC server increases, the number of resources available to each user decreases.

Figure 1 illustrates the difference between MEC and server compuƟng uƟlizing CC. Using CC for server
computaƟon is inconvenient for real-Ɵme applicaƟons because the data goes through RAN, the Core
Network, and the Internet to the Data Center, where it is processed. MEC servers, posiƟoned between
RAN and the Core Network, reduce latency due to their proximity to users and minimize addiƟonal
network load.

Figure 1: Comparison between Mobile Edge CompuƟng and Cloud CompuƟng [18]

6

4 Autonomous Vehicle
This secƟon describes components mounted on the vehicle. At the beginning, all components are listed
and the connecƟons between them are depicted. AŌerwards, each component is described with regard
to its funcƟonality. The components were mounted on the vehicle with my colleague Bc. Jan Daňek as
part of the subject "Project" which is a subject intended for the preparaƟon of the diploma thesis. The
communicaƟon between the components and the implementaƟon of the algorithms for autonomous
driving is done individually within this thesis.

4.1 Architecture of autonomous vehicle
The vehicle used for tesƟng offloading and autonomous driving is a commercial remote-controlled car
modified for our purposes. The base vehicle is a chassis from Traxxas TRX-6 Mercedes G 63 6x6. The
vehicle has six wheels allowing it to carry heavy loads. The computaƟon part of the vehicle is
represented by Raspberry Pi 4 model B, Arduino Uno, power bank Viking Smartech II and Rplidar A1M8
mounted on the chassis. The primary purpose of the vehicle is to serve as a mobile compuƟng unit.
However, its onboard compuƟng capabiliƟes are not sufficient for handling advanced algorithms for
autonomous driving locally. Figure 2 depicts the connecƟon among the components situated on the
vehicle.

Figure 2: Data and power connecƟon diagram

Figure 3 depicts the arrangement of component situated on the vehicle. The Arduino is posiƟoned at
the front of the car due to its proximity to the antenna, the servo motor and the regulator XL-5HV. The
lidar is placed in an elevated posiƟon not to deem other components as obstacles. The posiƟon is
achieved by 3D printed construcƟon. Below the lidar, the 5G module is mounted in its 3D printed
holder. The locaƟon of the powerbank is in the middle of the vehicle because it is the heaviest applied
component. The remaining place is a convenient locaƟon for the Raspberry Pi 4B. 3D printed parts
conceal cables between components and facilitate their aƩachment.

7

Figure 3: Vehicle components

4.2 Traxxas TRX-6 Mercedes G 63 6x6
The vehicle is a remote-controlled model on a scale of 1:10. The original remote control transmits a
signal received by the antenna on the car. Consequently, the signal, in the form of Pulse Width
ModulaƟon (PWM), is sent to the original speed regulator XL-5HV or directly to the servo motor. The
servo motor controls vehicle turning. The regulator converts the PWM signal to voltage and current
suitable for DC motors. The DC motor located in the front of the vehicle controls movement forward
and backward. During autonomous driving, the remote control is used as an emergency brake.

The regulator allows the car to switch between several modes and two maximum speeds. Regulator
XL-5HV operates in Crawl Mode because it facilitates motor control. The principal benefit of this mode
is that motor control is independent of the current state of the DC motor. In this mode, moving the
lever forward or backward on the remote control causes car movement forward or backward.
Returning the lever to its iniƟal posiƟon acƟvates the car's braking. In other modes, pulling the lever
while the car is moving forward causes the vehicle to brake instead of reverse. The described behavior
in other modes makes autonomous driving more difficult [19].

4.3 Arduino UNO
The board Arduino UNO is a microcontroller based on the ATmega328P. The primary reason for
selecƟng the Arduino UNO is the large community and its own integrated development environment.
In addiƟon, the Arduino boards allow the use of analog PWM, which conserves significant computaƟon
power compared to digital PWM.

The Arduino UNO is uƟlized as a bridge between signals from remote control and scripts responsible
for autonomous driving and motors. When the autonomous mode is deacƟvated, the user can control
the vehicle through the remote control, with the antenna receiving the signal and transmiƫng it to the
Arduino UNO. In this scenario, the Arduino UNO duplicates and forwards the signal to the motors.
When the car drives autonomously, the Arduino receives steering and throƩle commands from the
script and adjusts the analog PWM signals accordingly. At the same Ɵme, the Arduino board monitors

8

the signal from the antenna. If the signal does not correspond to the remote control in the iniƟal
posiƟon, the board stops all analog PWM signals and deacƟvates the autonomous mode.

4.4 Power supply
Two power supplies are on the vehicle. The original Li-Po baƩery powers the regulator XL-5HV, the DC
motor, and the servo motors. The second power supply is the Viking Smartech II powerbank. The
principal purpose of the powerbank is to power all components for autonomous driving, including the
Raspberry Pi 4 model B, RPLIDAR and Arduino UNO. The powerbank contains 2x USB-A output, 1x USB-
C output, 1x DC output and 1x DC input port. The powerbank has high baƩery capacity and supports
the Quick Charge 3.0 protocol. AddiƟonally, the USB-A ports supply 5V/3A, which is essenƟal for the
trouble-free running of the Raspberry Pi 4B. Another crucial feature is a DC connector with output up
to 94 W, capable of supplying addiƟonal performance to components such as an Intel NUC if needed.
For these reasons, the powerbank Viking Smartech II was selected to power the computaƟon part of
the vehicle [20].

4.5 Rplidar A1M8
The RPLIDAR A1M8 is an affordable computer peripheral that provides informaƟon about the
surrounding environment using a laser beam. The acquired informaƟon is transferred to the host via
USB-A. Slamtec company provides an applicaƟon for the Windows system, which establishes a
connecƟon and tests the device.

Figure 4 depicts the Slamtec RoboStudio applicaƟon environment. Unfortunately, the applicaƟon is not
compaƟble with the Linux operaƟng system. Nevertheless, communicaƟon between Robot OperaƟng
System (ROS) and RPLIDAR is straighƞorward due to the availability of a preconfigured ROS node [21].
The node receives data from RPLIDAR and converts it to ROS messages. Therefore, data visualizaƟon is
not too complicated in the ROS environment. Figure 5 illustrates the lidar data in RVIZ, a visualizaƟon
tool for ROS.

Figure 4: Slamtec RoboStudio

Figure 5: Lidar data in RVIZ

The head of the lidar turns around 360 degrees and recognizes obstacles up to a distance of 12 meters.
The lidar captures more than 8000 samples per second of the surrounding environment and sends
acquired data each turn. The iniƟal speed of the lidar head is 5.5 Hz. For this reason, the angle between
the two samples is very small. However, latency is more criƟcal than the addiƟonal precision of data
samples during autonomous driving. As a result, increasing the turning frequency leads to a higher
frame rate of published data at the cost of resoluƟon. The increase in the turning frequency is achieved
by increasing the input voltage to the lidar. For this reason, the lidar is powered by the powerbank via
the power delivery USB-C module. The module allows the user to adjust the voltage. The output voltage

9

of the USB-C module was set to 9 V, the highest possible opƟon that sƟll saƟsfies the maximum input
voltage limit of 10 V [22].

4.6 Raspberry Pi 4 Model B
The Raspberry Pi 4B is a small desktop computer that can deal with two 4K displays. Model B features
8GB of RAM, 4x USB-A connectors and a gigabit Ethernet port. The crucial benefits of the Raspberry Pi
4B include high performance relaƟve to its small size and support of the Linux operaƟon system. The
operaƟon system was changed to Lubuntu, a lightweight version of the popular Ubuntu distribuƟon.
As a result, Lubuntu benefits from a similarly large community as Ubuntu.

The Raspberry Pi 4B serves as the core of autonomous driving. It collects and processes data from the
lidar, adjusts the lidar's rotaƟon speed and controls the motors by sending commands to the Arduino.
The CPU of the Raspberry Pi was overclocked to achieve higher performance for navigaƟon and motor
control. To maintain a sufficient temperature, the Raspberry Pi 4B is cooled down by a cooling shield.

4.7 5G module
CommunicaƟon with the server is provided by Quectel RM500Q-GL 5G HAT [23]. The module is
connected to the Raspberry Pi 4B via a USB-A port. The board is also connected to the base staƟon of
the cellular network using 5G. The USB-C connector is uƟlized to power the board, as it can supply up
to 15W, compared to the 2.5W provided through the USB-A connector. The higher power supply
obtained from the powerbank results in a stronger signal and a more stable connecƟon.

The module features 2 SIM slots, USB-A and USB-C ports, and four antenna connectors. In our setup,
we use two antennas in a square case because the original antennas obstruct laser beams from the
lidar. AddiƟonally, the square antennas have more suitable emiƫng characterisƟcs for our purpose
since the base staƟon's antennas are situated in the ceiling. The board supports Windows, Linux and
Android operaƟng systems. Moreover, the chip is configurable using AT commands via terminal.

10

5 Implemented algorithms
This secƟon describes the Lubuntu operaƟng system used on the Raspberry Pi 4B. AŌerwards, the ROS
environment and the nodes developed in frame of the thesis for autonomous driving are described.
The nodes are divided into several groups according to their funcƟonality. At the end of this secƟon,
the connecƟon used in this thesis between the MEC server and the vehicle is described. All
implemented algorithms are available on the git repository [24]. For a more detailed descripƟon of the
git repository or the installaƟon of the operaƟng system using Ubuntu server and overclocking the CPU,
see the appendix.

5.1 Lubuntu
Lubuntu is a complete operaƟng system based on Ubuntu. It is known for being a lightweight version
of Ubuntu, requiring less computaƟonal power. AddiƟonally, plenty of applicaƟons and soŌware are
supported due to the Linux kernel. Furthermore, the Ubuntu community is one of the largest
communiƟes within the Linux distribuƟon ecosystem. For these reasons, Lubuntu is chosen as an
operaƟng system to run on the Raspberry Pi 4B.

5.2 Robot Operating System (ROS)
Fundamentally, ROS consists of soŌware libraries and tools designed to facilitate the development of
robot applicaƟons. Each ROS distribuƟon is tailored to a specific Linux version of the operaƟng system.
In our case, we uƟlize Lubuntu 20.04 LTS, thus necessitaƟng the use of the ROS NoeƟc distribuƟon
designed for it. We have not chosen the latest version of the Lubuntu distribuƟon because it should
mean uƟlizing ROS 2 which has plenty of unsuitable soluƟons and errors. For this reason, we use ROS
in this thesis.

The primary advantage of ROS and ROS2 is their ability to divide applicaƟons into smaller components
and facilitate communicaƟon between them. They support two types of communicaƟon: messages and
services. Every script creates a new node in the ROS environment. Nodes communicate with each other
using topics, which are deified by name and the type of messages that occur in them. Each node can
act as a publisher, subscriber or both in a topic. CommunicaƟon in topic can be reliable (TCP type) or
unreliable (UDP type). The type of communicaƟon is chosen during establishing a subscripƟon to the
topic. Last but not least, the ROS environment supports graphical tools, facilitaƟng visualisaƟon of
acquired data from sensors.

5.3 ROS nodes interconnection
This subsecƟon depicts the connecƟon between parƟcular nodes in the ROS environment, see Figure
6 . At the beginning, the acquired data from sensors are published into the ROS environment. The Laser
Scan Matcher Node publishes odometry data from received lidar data. Slam Toolbox node creates a
map from received odometry and lidar data. PosiƟon Publisher node simplifies transformaƟons
between frames and publishes informaƟon about the current vehicle posiƟon. A* and RRT nodes plan
a path from the current posiƟon to the desired desƟnaƟon marked in RVIZ. The Detect Obstacles node
and the Emergency Brake node detect dynamic obstacles from lidar data in the surrounding
environment. According to the created path and spoƩed obstacles, the Pure Pursuit and MPC nodes
track the path and publish commands for motors. Control Motor node converts ROS messages to string
commands for Arduino UNO. Gateway and Control nodes communicate with server for the purpose of
offloading and remote control of ROS environment on the vehicle. All nodes except Lidar node, Laser
Scan Matcher node and Slam Toolbox node are implemented as part of this thesis. The server has a

11

similar node structure, but the nodes that publish sensor data, create the map, and control the engines
are not included in the server.

Figure 6: Linkage between the ROS nodes

5.4 ROS nodes
This secƟon describes the individual nodes in the ROS environment and the algorithms that run in
them.

5.4.1 Sensor nodes
This subsecƟon consists of lidar and camera nodes. Both nodes transform data streams from the
sensors into ROS messages and publish acquired data about the surrounding environment.

InformaƟon about the surrounding environment is acquired solely by the lidar. The Lidar node converts
distance measurements into ROS messages. This node providing conversion is prepared by the
producer on their GitHub. ROS messages published to the scan topic contain informaƟon about data
length, the angle range or the Ɵme of publicaƟon.

The camera node takes data from the camera sensor and converts it into ROS messages. The ROS
messages allow us to visualize the camera stream in RVIZ. AddiƟonally, ROS messages provide a
convenient format for subsequent processing.

5.4.2 Laser Scan Matcher node
The Laser Scan Matcher node subscribes to the scan topic to receive lidar data. From this data, the
Laser Scan Matcher node generates data similar to odometry data. The odometry data are required for
using the Slam Toolbox node, which creates maps.

AlternaƟvely, odometry data can be reached by an IMU sensor as well. However, our experiments show
that using the IMU sensor results in less accurate odometry data compared to those generated by the
Laser Scan Matcher node. Odometry data contain informaƟon about posiƟon and rotaƟon. For this

12

reason, the IMU sensor has to integrate measured values twice, which brings inaccuracy to the final
values.

The data containing each transformaƟon between parƟcular frames are published to the ƞ topic. The
frames determine several coordinate systems, such as lidar frame, odometry frame, vehicle frame or
map frame.

5.4.3 Slam Toolbox node
The Slam Toolbox node is responsible for creaƟng a map. The principal purpose of the node is to store
informaƟon about the environment explored up to now. InformaƟon about the environment is stored
in the form of a grid, see Figure 7. The black cells of the grid represent obstacles on the map, the white
ones denote free space, and the grey area depicts unexplored space.

Figure 7: Occupancy grid represenƟng map in RVIZ

Throughout Ɵme, the color of the boxes may change, for instance, when an obstacle disappears or
changes its posiƟon. Map data are published to the map topic containing informaƟon about the size of
the grid, the Ɵme of publicaƟon, resoluƟon, map origin, etc. The grid, represented by an array, includes
integers from -1 to 100. -1 indicates an unexplored cell. A number between 0 and 100 represents the
probability of an obstacle's presence in that cell. AŌer each opƟmizaƟon loop of the map, laser beams
change the likelihood of obstacles in the cells according to the following equaƟon:

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑙𝑎𝑠𝑒𝑟 𝑏𝑒𝑎𝑚𝑠 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑒𝑙𝑙

𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑 𝑏𝑒𝑎𝑚𝑠 + # 𝑏𝑒𝑎𝑚𝑠 𝑡ℎ𝑎𝑡 𝑝𝑎𝑠𝑠𝑒𝑑 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑡ℎ𝑒 𝑐𝑒𝑙𝑙
 (1)

AddiƟonally, the node determines the vehicle's posiƟon. During each opƟmizaƟon loop, the node
minimizes the distance between acquired laser data and obstacles depicted in the grid to reach the
best esƟmate of the vehicle's posiƟon. Slam Toolbox uses a graph-based approach to creaƟng and
opƟmizing a pose graph [25]. For this reason, the Slam Toolbox node is one of the most power-
consuming parts of autonomous driving.

We conducted tests with several simultaneous localizaƟon and mapping (SLAM) packages. In our
experiments, the Slam Toolbox outperformed Google Cartographer and Hector SLAM. Hector SLAM
had trouble expanding the map. Probably, it happened because Hector SLAM is based on a local
approach. Google Cartographer accomplishes more accurate calculaƟons than Hector SLAM. However,
higher resoluƟon causes higher computaƟon load, which the Raspberry Pi 4B cannot offer. The
precision and resoluƟon of the map were decreased to lower the computaƟon load. As we reduced
computaƟon demands, Google Cartographer had problems with localizaƟon on the straight corridors,
which are a substanƟal part of the tesƟng area. The Slam Toolbox provides a decent outcome without

13

noƟceable issues in the same space with regard to computaƟon demand. For this reason, the Slam
Toolbox node is implemented for the best accuracy-to-demand raƟo. Similar results are achieved in
[26].

5.4.4 PosiƟon Publisher node
The PosiƟon Publisher node subscribes to ƞ and map topics to publish informaƟon about vehicle
posiƟon in a more convenient way for other nodes. Its primary objecƟve is to subscribe to posiƟon
informaƟon, convert it and publish it with minimum latency. The current posiƟon of the vehicle can be
accessed through two methods.

The first method subscribes to the slam_toolbox/pose topic published by the Slam Toolbox node. It is
an effortless method to obtain the posiƟon, but this method suffers from significant latency, making it
unsuitable for our requirements. The alternaƟve method subscribes to frame transformaƟons to reach
a relaƟve posiƟon between the map origin and the vehicle. TransformaƟons are published much more
frequently than slam_toolbox/pose messages, allowing us to achieve the same precision with
considerably lower latency. To minimize latency further, we subscribe to transformaƟons unreliably,
which may result in occasional message loss. On the other hand, transformaƟons are published in tens
or hundreds of hertz. It follows that the unreliability of the communicaƟon does not cause
inconvenience. The unreliable communicaƟon can be set by the following line:

ros::Subscriber subTf = n.subscribe("tf", 1, &Class::tfCb, this, ros::TransportHints().unreliable().tcpNoDelay());

This type of communicaƟon is not provided for Python scripts. For this reason, the majority of scripts
are wriƩen in C++ language. AddiƟonally, C++ is faster than Python in most scenarios [27].

In the transformaƟon callback, we uƟlize transform listener [28] to compute the relaƟve posiƟon and
rotaƟon between the vehicle and the map origin. The obtained posiƟon's X and Y axes are recorded
since the vehicle operates in a 2D environment. The rotaƟon between the frames is converted from
quaternion notaƟon to Euler angle notaƟon. We focus solely on the yaw angle due to the 2D nature of
the world. Lidar posiƟon is also determined using the transform listener. In the case of lidar, it is not
necessary to compute lidar rotaƟon because the yaw angle of the lidar is the same as the vehicle angle.
Eventually, we append informaƟon about the map's origin and the car's posiƟon in the grid.

5.4.5 Path planning nodes
This secƟon delineates algorithms for path planning. The A* represents a well-suited algorithm for local
processing due to its relaƟvely low computaƟonal demands. The RRT algorithm based on the Ackemann
model and K-dimensional (K-d) tree structure is more computaƟonally intensive and it is convenient to
offload the algorithm on the MEC server.

Path planning according to the explored area is a fundamental aspect of autonomous driving. Firstly,
the user specifies the finishing posiƟon for a path. The posiƟon is given by the graphical tool RVIZ. RVIZ
visualizes ROS messages and allows users to observe the vehicle's current posiƟon with laser data in
the grid. AddiƟonally, RVIZ publishes ROS messages based on user interacƟons. To be concrete, the
user picks the tool "2D Pose EsƟmate" or "2D Nav Goal" and clicks on the map. Subsequently, RVIZ
publishes the clicked posiƟon to the move_base_simple/goal or iniƟalpose topic. The iniƟalpose topic
is dedicated to adding new checkpoints to the path. The slam_toolbox/goal topic closes the path and
iniƟates path computaƟon.

14

5.4.5.1 A* algorithm
A* is a fundamental algorithm for path planning working with the grid provided by the Slam Toolbox
node. The advantage of A* is that the algorithm finds the shortest path with permiƩed moves in the
grid. Therefore, the algorithm is complete and opƟmal.

In the algorithm, the vehicle is considered a moving point without physical dimensions. It follows that
the collision detecƟon problem should have been solved previously. As a result, the obstacles on the
map are dilated at the beginning of the algorithm. Therefore, the resulƟng path avoids collisions. This
approach is convenient for round robots because they have an equal distance between the coordinate
system's origin situated in the center and edge of the robot. The Traxxas vehicle has the shape of a
rectangle. Furthermore, the coordinate system's origin of the vehicle is not located in the vehicle's
center but on the front axle. The posiƟon of the origin facilitates the car's maneuvering because the
rear axles follow the front axle. However, the origin's locaƟon noƟceably increases the radius of the
obstacle dilaƟon. Therefore, the dilaƟon is higher than necessary, and the path is not found in some
scenarios. Because of this, the algorithm is not complete in this situaƟon. On the other hand, the
resulƟng paths do not cause collisions.

In Figure 8, we see dilated obstacles on the map prevenƟng collisions. Figure 9 depicts excessive
dilaƟon related to the car's shape compared to Turtle Bot.

Figure 8: Dilatated obstacles in map

Figure 9: IllustraƟon of the Traxxas and TurtleBot

dilataƟon

The route planned by the A* algorithm is designed primarily for robots without steering constraints.
The ideal example of the menƟoned approach is TurtleBot because it can rotate on the spot. Moreover,
the robot is round, a felicitous feature for map dilataƟon.

The Traxxas vehicle has constraints in the form of a turning radius. Therefore, the A* algorithm should
be adjusted for 4-wheel and 6-wheel vehicles. The original A* algorithm does not take into account
limited turning; consequently, the output path contains bends, which are challenging for a 6-wheel car,
as depicted in Figure 10. The majority of the problem occurrence is in the proximity of the checkpoints.

To adapt the algorithm for 6-wheel cars, we introduce penalizaƟon for inconvenient moves. The
algorithm's policy used for determining the shortest path is based on Euclidean distance. The added
penalty for changing direcƟon should minimize the number of turns. The second penalty is applied
when the direcƟon changes are close behind. This penalty should prevent exceeding the maximum
turning radius. These modificaƟons help to design a suitable path for a 6-wheel vehicle between 2
poses. The difference between the original and modified A* algorithm represents Figure 10 and Figure
11. The tuning of the A* algorithm is performed in several different environments, but the experiments
are conducted in a single space to achieve constant condiƟons.

15

Figure 10: Original A* algorithm

Figure 11: Modified A* algorithm

5.4.5.2 Rapidly exploring Random Tree (RRT) algorithm
The more suitable algorithm than A* for planning paths designed for 4-wheel and 6-wheel vehicles is
the RRT algorithm. The advantage of the RRT algorithm is its ability to work with a specific vehicle
model, resulƟng in a path directly tailored to the car.

The RRT algorithm starts by defining the start and end posiƟons. Before the beginning, the maximum
computaƟon Ɵme is set, which influences the resulƟng path. Although the RRT algorithm is not
complete, with increasing number of iteraƟons, the probability of finding a path also increases. The
RRT* algorithm enhances the RRT algorithm by introducing the possibility to refine the resulƟng path.

At the beginning of each iteraƟon, the script generates a random pose on the map and searches for
the nearest pose in the tree built from the start posiƟon. The Euclidean distance is computed in three
dimensions: x coordinate, y coordinate and yaw angle. The nearest pose in the tree to the random pose
serves as the starƟng point for the next move. Subsequently, the model simulates several maneuvers
from the starƟng point to new posiƟons. The new posiƟon with minimal distance from the random
pose becomes a new leaf of the tree. At the end of the iteraƟon, the script verifies whether the new
leaf is closer to the goal posiƟon than the given limit. If the distance is lower than the limit, the RRT
algorithm stops and publishes the obtained path.

The RRT* algorithm has a slightly different iteraƟon flow than the RRT algorithm. AŌer adding a new
leaf to the tree, the RRT* algorithm inspects nodes in close proximity. If the path length to the nearby
poses is shorter through the newly added leaf than the original path, the pose is reconnected to the
new leaf. Consequently, the RRT* algorithm shortens the resulƟng path.

In Figure 12, the path generated by the RRT algorithm is depicted, while Figure 13 illustrates the
resulƟng path computed by the RRT* algorithm. The following subsecƟons describe a uƟlized vehicle
model and the data structure of the tree.

16

Figure 12: RRT algorithm Figure 13: RRT* algorithm

5.4.5.3 Ackermann model
The simplified Ackerman model is uƟlized to calculate vehicle maneuvers, parƟcularly suitable for 4-
wheel cars. We implement the Ackermann model to determine the subsequent posiƟon given a specific
steering angle.

The subsequent posiƟon of the vehicle is computed in the funcƟon ackemanMove. The iniƟal segment
of the code computes a simple maneuver without steering. If the steering is non-zero, the script
calculates the circle radius. The circle imagines a path for the rear axle. AŌerward, the circle center is
determined. At the end, we compute the subsequent vehicle posiƟon using the circle center and the
center angle. The center angle is equal to the steering angle [29].

The move is divided into several secƟons to verify whether the maneuver is collision-free. The collision-
free posiƟon does not intersect with obstacles on the map. The algorithm inspects the grid cells spread
around the edge of the vehicle. Figure 14 illustrates the computaƟon of the subsequent vehicle
posiƟon.

Figure 14: IllustraƟon of the computaƟon of the Ackermann steering

5.4.5.4 K-Dimensional (K-D) tree
K-D tree is a data structure convenient for handling mulƟ-dimensional data, commonly used for
searching for the nearest node within the structure. The K-D tree follows a tree-based structure with a
root node serving as the starƟng point. Each node, except for the root, has one parent node and a
maximum of two children nodes, making it a binary tree. If the node has no successor, it is a leaf of the
tree. In our case, the K-D tree searches for the nearest point in the tree to the random point within the
RRT algorithm. While both linear search and K-D tree methods have a worst-case Ɵme complexity of
O(n) for nearest neighbor search, the K-D tree offers the advantage of pruning, resulƟng in an average
Ɵme complexity close to (2^K + log(n)), where K is number of dimensions and n is number of nodes.
The searching for the nearest neighbor using the K-D tree is efficient when 2^K is significantly smaller
than the number of nodes. In our scenario, the algorithm works with three dimensions, and the tree
includes thousands of nodes, which means that the condiƟon is saƟsfied [30].

17

We implemented our K-D tree because the libraries for C++ and Python only support storing mulƟ-
dimensional data. Our applicaƟon requires adding informaƟon about the path to tree nodes, which is
not permiƩed by libraries.

The K-D tree consists of nodes represented by struct Node. The node struct contains informaƟon about
leŌ and right children and the node's posiƟon. The posiƟon in the format of x coordinate, y coordinate,
and yaw angle is stored in the Pose struct among the informaƟon about the previous posiƟon on the
way and the length of the path up to now. The fundamental operaƟons of the tree are inserƟng nodes,
searching nodes in the tree, and finding the nearest point to the reference. Our implementaƟon
incorporates the rebalancing and clearing funcƟons. The remaining funcƟons support the menƟoned
fundamental operaƟons and the correct behavior of addiƟonal funcƟons, such as reconnecƟng nodes.

The insert funcƟon adds a new node to the tree according to the rules. Nodes are compared based on
one of the dimensions at a given depth. The leŌ child node has a smaller or equal value of the given
dimension than its parent. The given dimension of the right child node is higher than its parent's value.
Dimensions, determining characterisƟc parameters for a given level, change in the following order: x
coordinate, y coordinate, yaw angle, x, y, yaw, etc. First of all, the funcƟon inspects the root node. If
the root node is empty, it is a primiƟve occurrence. In this scenario, we insert the first node into the
tree. Otherwise, the funcƟon compares the root node and the new node according to the given
dimension. If the child node exists, the new node is compared with the child node. Progress conƟnues
unƟl an empty child slot is found. Figure 15 draws the progress of the insert funcƟon. On the side, the
characterisƟc dimension is marked.

Figure 15: Progress of the insert funcƟon

The search funcƟon is similar to the insert funcƟon. Firstly, we compare the reference node and the
parent node. If the nodes are not equal, we compare the reference node and the right or leŌ child node
based on the given dimension. The funcƟon conƟnues unƟl we find the searched node in the tree or
reach the leaf of the tree.

The nearest neighbor search funcƟon is based on a depth-first search algorithm [31]. Firstly, we dive
deep into the tree similarly to the insert funcƟon and record the minimum distance from a reference
point. AŌerward, the algorithm returns and inspects unexplored branches. If the minimal possible
distance of the branch area to the random point is higher than the recorded minimum distance, the

18

branch is pruned. This pruning process ensures efficiency in the nearest neighbor search problem.
Figure 16 represents the branch area and its distance to the reference point. In Figure 17, the progress
of nearest neighbor search funcƟon is depicted.

Figure 16: Branch area and distances to reference points

Figure 17: Progress of the nearest neighbor search
funcƟon

Our implementaƟon does not contain a funcƟon for deleƟng nodes because there is no need for node
deleƟon in our scenario. Every Ɵme the RRT algorithm starts, a new K-D tree is built. The clearing
funcƟon is uƟlized to clear the whole tree. The rebalancing funcƟon is called when the difference
between the minimum and maximum depth of the tree exceeds the given limit. The rebalancing
funcƟon erases the original structure and builds a new balanced tree. Rebalancing minimizes the depth
of the tree and improves structure efficiency because the efficiency of the balanced tree is much higher
than that of the imbalanced one. The imbalanced state happens when the starƟng posiƟon is close to
the map edge. In this situaƟon, the number of leŌ children nodes is much higher than the number of
right children nodes or vice versa.

The reconnecƟon funcƟon is applied to shorten the resulƟng path. When a new posiƟon is added to
the tree, the funcƟon finds nodes in the tree close to the inserted node. The found nodes are inspected
if the path through the inserted node to the found node is shorter than the exisƟng one. The funcƟon
also takes into account the model constraints.

5.4.6 Emergency Brake node
The node for emergency braking subscribes only to the scan topic to receive informaƟon about
surrounding obstacles, focusing on imminent collision avoidance. The size of the vehicle is known;
therefore, we can disƟnguish the laser points located in front of the car and define a limit, ensuring
collision-free movement. The algorithm compares the distance between the disƟnguished points and
the given limit that ensures collision-free movement. If any point is closer than the limit, the car stops
unƟl the obstacle disappears. If the space in front of the vehicle is not cleared in 15 seconds, the car
returns to the map origin.

5.4.7 Detect Obstacles node
The node detects dynamic obstacles using the map and scan topics. The lidar data are transformed into
the map frame. Consequently, the subscribed grid and transformed data are combined into one grid
by using the XOR logical operator. The result of the merge is a map represenƟng only dynamic obstacles
that are not depicted in the original grid.

In the next step, the algorithm disƟnguishes parƟcular obstacles. One obstacle is represented by cells
in the grid, which have a common side or vertex. The connecƟon of the cells is reached by implemented

19

the "two-pass" algorithm [32]. We have opƟmized the algorithm to inspect each cell only once. For this
reason, the Ɵme complexity is O(n). The algorithm inspects the cell and its surrounding cells. If the cell
represents a dynamic obstacle, the algorithm gives the cell a number symbolizing the ID of the obstacle.
If the cell adjoins cell represenƟng different obstacle, the obstacles are merged by the "union-find"
approach [33]. The benefit of the "union-find" approach is that we do not copy cells, only reconnect
the head of the first obstacle to the head of the second obstacle.

The previous step assigned cells to obstacles. The next part of the algorithm computes characterisƟc
obstacle features, such as posiƟon and radius. AŌerward, the algorithm associates the obstacles with
historical data, minimizing the sum of distances between current and previous posiƟons. The
connecƟon to historical data improves the predicƟon and monitoring of dynamic obstacles.

The node publishes an array containing informaƟon about dynamic obstacles to the dyn_obs topic.
Each new dynamic obstacle increases the length of the array, with informaƟon about the obstacle
inserted into a new cell. If the spoƩed obstacle is connected to historical data, the features are updated
in the proper cell of the array. If informaƟon about the obstacle is not updated, the node publishes an
empty cell. For this reason, the length of the message during driving is increasing. The array is cleared
when no dynamic obstacles are spoƩed.

5.4.8 Path following nodes
This secƟon delineates nodes following the planned path. The Pure Pursuit node represents a low
computaƟonally demanding task convenient for local processing. The MPC node represents a more
sophisƟcated algorithm because it takes into account the reference path and dynamic obstacles
published by the Detect Obstacles node. Furthermore, the MPC node uƟlizes the Ackermann model for
path tracking which increases computaƟon load. The Control Motor node transforms ROS messages
into string commands for Arduino UNO.

5.4.8.1 Pure Pursuit node
The Pure Pursuit node focuses on tracking the planned path. For this reason, the node subscribes to
the robot_posiƟon and path topics. The robot_posiƟon topic provides informaƟon about the current
vehicle posiƟon, while the path topic includes informaƟon about the planned path that the car should
follow. The output of the node is published commands for motors.

When the node receives a new planned path, the vehicle starts to follow it. The principle for path
tracking is based on the "follow-the-carrot" algorithm [34]. The name derives from the situaƟon when
camels pursue carrots, which are in front of them on a string. The similarity with this situaƟon is that
the vehicle follows the point on the path in front of it. Furthermore, as well as the camel, the car never
reaches the chasing point, except the end posiƟon.

The algorithm starts aŌer receiving a new path. AŌerward, the node prepares a list of breaking points
along the path. These points are flagged once the vehicle approaches within a specified distance
threshold. To determine the chasing point, the algorithm calculates the intersecƟon between the circle
with a given radius and the path nearby the current vehicle posiƟon. The circle center is located in the
vehicle and the circle radius determines the distance between the chasing point and the car.

Once the chasing point is computed, the algorithm calculates the angle between the vehicle's
orientaƟon and the chasing point. AŌerward, the angle is uƟlized as the input parameter for a regulator.
We apply the proporƟonal-integral (PI) regulator for its simplicity and lower computaƟonal overhead
compared to more complex methods like MPC. At the end of the algorithm, the node publishes

20

commands for motors generated by the regulator to the controlMotor topic. Figure 18 depicts the
computaƟonal process of the "Pure Pursuit" approach.

Figure 18: IllustraƟon of the Pure Pursuit algorithm

5.4.8.2 MPC node
The MPC node represents a more sophisƟcated approach to path tracking compared to the Pure Pursuit
node. The node subscribes to the robot_posiƟon topic, the path topic and the map topic. AddiƟonally,
the node subscribes to the dyn_obs topic, which contains informaƟon about dynamic obstacles
processed by the Dynamic Obstacles node. The principal advantage of this approach is that the MPC
node takes into account avoiding dynamic obstacles. The Pure Pursuit node is not able to dodge a
dynamic obstacle. When the Pure Pursuit node is used to follow the path, only the Emergency Brake
node prevents collision in the immediate vicinity. On the contrary, the MPC node registers surrounding
obstacles, esƟmates their movements and tries to avoid them.

The implemented MPC algorithm is based on the depth first search (DFS) approach. The higher depth
causes that the algorithm opƟmizes the longer part of the path in front of the vehicle. The longer
opƟmized path improves the car's behavior in terms of avoiding dynamic obstacles and following the
reference path. On the other hand, the higher depth means that the task is more computaƟonally
demanding. Furthermore, the too long path hardly changes the opƟmized path because most of the
path is far from the current posiƟon and does not affect the next vehicle move. In our case, the
algorithm executes at a maximum of eight layers in depth, which poses 1.6 m of path.

The algorithm begins at the current vehicle posiƟon. The subsequent vehicle posiƟon is computed
using the Ackermann model. The input parameter of the model is the steering angle reached by
dividing the vehicle's steering range. The division of the range determines the possible steering uƟlized
for the next iteraƟon. Therefore, the possible tracks are branching symmetrically.

When the new possible subsequent posiƟon is computed, the algorithm verifies whether the posiƟon
is feasible. If the posiƟon collides with an obstacle, the branch is closed. Otherwise, the cost of the
posiƟon is determined. The computaƟon of cost contains the distance from the reference path and the
distance from dynamic obstacle. The distance from reference path should be as small as possible. The
distance from a dynamic obstacle should be higher than the given limit. If the distance from the

21

obstacle is exceeded, the cost of the posiƟon is penalized. Figure 19 depicts possible tracks with two
layers and three possible steering angles. Moreover, the picture illustrates the distances uƟlized for the
cost computaƟon.

Figure 19: IllustraƟon of the MPC algorithm

The DFS approach enables efficient pruning of the track tree, opƟmizing computaƟonal resources.
When the algorithm reaches the tree leaf, it records the cost of the leaf. If the following computed cost
of subsequent posiƟons is higher than the recorded cost, the tree branch is pruned. Otherwise, if the
cost of the posiƟon is lower than the recorded cost, the value of the recorded cost is changed to the
lowest computed one. To support the pruning of the tree, we prioriƟze posiƟons with minimal cost and
maximal depth. In the case of no dynamic obstacles, only one route of the tree should be explored,
and other routes should be pruned.

5.4.8.3 Control Motor node
The Control Motor node is a bridge between computaƟon nodes and the Arduino Uno microcontroller.
The node subscribes to the controlMotor topic containing control commands for the motors from the
MPC node, the Pure Pursuit node or the Emergency Brake node.

At the beginning of the node, a connecƟon with the Arduino is established. The subscribed messages
are converted into commands suitable for the Arduino. These commands are categorized into three
types: enabling and disabling autonomous driving mode, adjusƟng steering, and controlling forward
speed. For compaƟbility with the Arduino, commands follow a specific format.

The commands start with a leƩer that determines the motor. The leƩer 's' represents steering, and 'v'
changes vehicle velocity. The leƩer is followed by white space. The subsequent part of the command
is a number between -100 and 100, represenƟng power in percentage. In the context of speed control,
the posiƟve number determines the power of movement forward, whereas the negaƟve number
indicates movement backwards. In the case of steering, the negaƟve number represents turning leŌ,
and the posiƟve number represents turning right. Each command concludes with an end-of-line
character.

22

5.4.9 CommunicaƟon nodes
The vehicle is connected to a 5G cellular network via a 5G module. If the algorithm for path planning,
detecƟng dynamic obstacles or path following is offloaded, the vehicle sends all necessary informaƟon
for the offloaded algorithm to the gNB. The communicaƟon between the vehicle and the gNB is
arranged by a script on the vehicle. The script establishes a TCP connecƟon and receives server's
decision which algorithm will be offloaded. When the gNB obtains the necessary data from the vehicle,
the gNB forwards it to the MEC server. When the MEC server receives all the necessary informaƟon,
the algorithm is started. Once the algorithm finishes, the MEC server transfers the result to the gNB
which forwards it to the vehicle.

Each algorithm for autonomous driving is computed in ROS environment. On the MEC server, the ROS
environment is launched in Docker. Docker allows users to run scripts on the device regardless of the
operaƟng system and installed soŌware libraries. On the other hand, Docker does not support a
graphical interface. It follows that the user cannot set a desired desƟnaƟon for the autonomous car
from the graphical RVIZ applicaƟon in Docker.

For this reason, on the computer controlling gNb is installed ROS2 environment without Docker,
because the operaƟon system of the computer is Ubuntu 22.04 LTS which already does not support
ROS environment. This soluƟon for experiments is applied because the autonomous vehicle cannot
connect to the 5G cellular network and Wi-Fi simultaneously. Wi-Fi was used for controlling the ROS
environment on the vehicle through SSH. For this reason, the vehicle also communicates with the MEC
server for the purpose of launching and shuƫng down ROS nodes. In a real car, controlling the system
will be ensured by a display mounted on the car dashboard. The diagram of the connecƟon is displayed
in Figure 20.

Figure 20: ConnecƟon between the vehicle and the MEC server

5.4.9.1 Gateway node
The Gateway node acts as a crucial link between the ROS environment and the server. At the beginning,
a connecƟon to the server is established. AŌerward, the node expects a offload decision message from
the server. The message determines the list of nodes that are going to be offloaded. When the offload
decision message is received, the menƟoned nodes are muted. The muted node computes no tasks
and does not react to the subscribed topic except the offload decision. For offloaded nodes, all

23

subscribed topics are rerouted to the server for processing. For this reason, the gateway node
subscribes to nearly all topics within the ROS environment.

When the offload decision message from the server is received, the node publishes the informaƟon to
the controlNode topic to mute the node menƟoned in the message. AŌerward, the node starts
resending ROS messages intended for the offloaded node. The process of resending is divided into two
steps. In the first step, the node converts the ROS message into JSON format. Furthermore, the node
appends the name of the topic to the JSON message. Subsequently, the JSON message is transmiƩed
to the server. On the server, the JSON message is converted to the ROS message and published to the
parƟcular topics.

The last task of the node is listening to the server. When the server sends the offloading result, the
node converts the JSON message to the ROS message and publishes the result to the proper topic.

5.4.9.2 Control node
The node is responsible for communicaƟon with the server and management of the ROS environment.
If the vehicle does not uƟlize the 5G module, the vehicle is handled by the SSH protocol. However, the
simultaneous use of the SSH protocol and the 5G module is not feasible. For this reason, the Control
node establishes a connecƟon with the server using the 5G module. Commands received from the
server are interpreted and executed within the ROS environment. The list of possible commands is
depicted in Table 2.

Table 2: List of the commands accepted by Control node

Command DescripƟon
run <node> Launch the node or the launch file if the program is not running yet
kill <node> Stop the node or the launch file if the node is running
reset Shut down the ROS environment and launch new ROS master node
q Shut down the ROS environment and terminate the control script

The node uƟlizes the library roslaunch represenƟng API for ROS environment. The principal benefit of
the ROS API is the appropriate behavior of nodes in the environment. The alternaƟve method to launch
and terminate nodes involves the Popen funcƟon in the subprocess library. However, if a node or the
ROS master is terminated by the subprocess library, the node process is sƟll running in the Linux
environment. For this reason, the node process has to be closed by the command pkill node as well.
The second approach is less elegant than the first one because the nodes are terminated by brute force.
Furthermore, the second approach causes trouble in systems with several ROS environments or when
the ROS environment includes mulƟple anonymous same nodes.

When the command sent by the server is executed, the newly launched node broadcasts the status of
its launch. The described behavior applies to all nodes except SLAM, lidar and scan_matcher nodes.
The menƟoned nodes are encapsulated and it is not facilate to add code to verify the node launch. In
that case, the Control node waits for a message from the newly launched node. The lidar node should
publish a message to the scan topic, the scan_matcher node should provide a new transformaƟon to
the ƞ topic and the Slam Toolbox node should distribute an occupancyGrid message to the map topic.
If the proper message is not posted within ten seconds aŌer launch, the Control node reports an error
to the server. Otherwise, the node informs the server that the node is launched correctly.

The vehicle is controlled by a server in the research phase. However, in a real-world scenario, the node
would communicate with a local device in the car, such as a touch screen mounted on the car
dashboard. This local approach enhances cyber security by minimizing reliance on external server
commands.

24

6 Experiments
This secƟon describes the experiments, which are divided into three categories. The first category
focuses on path planning and compares the path planning using the A* algorithm and RRT algorithm.
The second category describes experiments working with the algorithm detecƟng dynamic obstacles.
The third category of experiments examines the pure pursuit algorithm and the MPC algorithm. The
experiments in all categories are performed both locally on the car and by offloading to the MEC server.

6.1 Scenarios and metrics
The experiments invesƟgate the behavior of algorithms for path planning, dynamic obstacle detecƟon,
and tracking the planned path computed locally and on the server. The experiments compare the
computaƟon Ɵme of the algorithms locally and on the server. The computaƟon Ɵme is defined as the
difference of Ɵmes between the start and the end of the algorithm. Total offloading Ɵme is the
difference between the Ɵme of sending the offloading request to the server and the Ɵme of receiving
the result from the server. Total offloading Ɵme can be divided into the actual computaƟon Ɵme on the
server and the communicaƟon Ɵme, which is the Ɵme taken to send data to and from the server. In
addiƟon to comparing the individual computaƟon and total offloading Ɵmes, it is examined whether
the given Ɵmes meet predetermined deadlines. A deadline is met if the Ɵme is shorter than a
predetermined deadline. The resulƟng paths of each algorithm are compared with respect to their
length. The path length represents the length of the trajectory of the planned path between the start
and the goal posiƟon.

A*, RRT and RRT* algorithms are compared in path planning. The RRT* algorithm is invesƟgated with
different reconnecƟon distances. The reconnecƟon distance refers to the maximum distance around a
newly added point at which the points are reconnected to shorten the path. The RRT* algorithm is
invesƟgated with a reconnecƟon distance of 0.4 m, 0.7 m and 1.0 m. The dynamic obstacle detecƟon
algorithm is compared with different maximum distances from the vehicle at which dynamic obstacles
are spoƩed. The maximum distances for dynamic obstacle detecƟon are given as 2 m, 5 m, 8 m and no
limit. The algorithms compared for path tracking are Pure Pursuit and MPC. MPC is launched in two
modes. The modes differ as to whether MPC takes dynamic obstacles into account. MPC is tested for
different maximum depths during the experiments. Maximum depths of 1, 3, 5 and 8 steps are
invesƟgated in the experiments.

6.2 Theoretical requirements for the communication channel
If the user offloads the algorithm, it sends the necessary data to the server. For this reason, the quality
of the network maƩers a lot. If the network is not able to provide low enough latency and high enough
transfer rates, this results in deadlines not being met and put road users at risk.

Table 3 and Table 4 depict the calculaƟon for the minimum bit rate. The parameters are calculated for
a scenario where the user offloads path tracking computaƟon with and without dynamic obstacles.
Path planning is not considered in the examples because the path planning algorithm is usually
executed only once. Moreover, we assume that we are moving through a mapped environment and
therefore we just need to send the map once at the beginning. For this reason, only posiƟon and lidar
data are sent to the server. The current posiƟon and lidar data are sent at the maximum frequency so
that the control algorithm is not negaƟvely affected. The response from the server is a control
command that sets the motors on the vehicle. Control commands are sent in response to a received
vehicle posiƟon. If we consider the computaƟon Ɵme to be constant, the control commands will be
sent at the same frequency as the current posiƟon messages.

25

All values in the table are measured during the experiments. We consider a deadline of 2 s for route
planning, 100 ms for dynamic obstacle detecƟon and 50 ms for the control algorithm. For the
calculaƟon, we consider that the downlink has twice the speed of the uplink. Algorithm computaƟon
Ɵme is taken as the average Ɵme of the most complex measured algorithm from the experiments
described in the following secƟons. Thus, RRT* of 1.0 m is used for path planning, we do not crop the
map for obstacle detecƟon, and we consider MPC with a maximum depth of 8 steps for control. The
worst case opƟon is considered for calculaƟng the transfer rate. So during the smallest deadline for
message transmission, all other possible messages are placed before it.

Table 3: Data rate requirements – without obstacles

Message Frequency [Hz] Message Size
[kb]

Maximum
transmission Ɵme

[ms]

Minimum data rate
[kb/s]

PosiƟon 20 2 38.89 51.44
Control motor 20 0.5 4.86 102.88

Table 4: Data rate requirements – with obstacles

Message Frequency [Hz] Message size
[kb]

Maximum
transmission Ɵme

[ms]

Minimum data rate
[kb/s]

PosiƟon 20
68.23 43.59 1565.03

Scan 10
Control motor 20 0.5 0.16 3125

Table 3 presents a simple example of an offloading control algorithm without dynamic obstacles. Since
only messages containing the current locaƟon are sent to the server periodically, the minimum data
rate is obtained as a quoƟent of 1000 and the maximum transmission Ɵme and mulƟplied by the size
of one message. The downlink is calculated in the same way, which should be twice as large.

Table 4 presents a more complex problem where dynamic obstacle detecƟon is considered in addiƟon
to the control algorithm. In the worst case, the request is sent both lidar data and posiƟon to the server
at the same Ɵme. Since the control algorithm responds to the posiƟon, the server should receive
68.23 kb (66.23 kb lidar data and 2 kb posiƟon) before compuƟng. We sƟll assume that the downlink
rate is twice as fast as the uplink rate. This implies that 68.23 kb should be transferred in 43.59 ms.
Using a similar calculaƟon as in Table 3, the minimum data rate for uplink is 1565 kb/s and downlink is
3125 kb/s.

6.3 Path planning
This subsecƟon explores path planning using A*, RRT and RRT* algorithms. In order to run the
experiments under constant and controlled condiƟons, the rosbags are recorded before the
experiments. The rosbags are files in ROS environment which subscribe to selected topics and record
all the published data to them. Therefore, the ROS environment can simulate the same situaƟon by
playing rosbag files. A great advantage of rosbag is that all data recorded are acquired from the real
environment. The rosbag files include informaƟon about mapped surrounding environment, current
posiƟon and user request for the goal desƟnaƟon. The experiments are performed on five different
maps, which are shown in Figure 21.

26

A: Map1 - path planning experiments

B: Map2 - path planning experiments

C: Map3 - path planning experiments

D: Map4 - path planning experiments

E: Map5 - path planning experiments

Figure 21: Maps – path planning experiments

The maps are chosen to test several different scenarios that the vehicle could get into. Each map shows
the current vehicle locaƟon (coordinate axes), which does not change during the path planning
experiments. The red arrow indicates the user desƟnaƟon. In addiƟon to the X and Y coordinates, the
user specifies the rotaƟon of the vehicle at the desƟnaƟon.

The first map tests the reacƟon to obstacles and verifies if the dilataƟon of the obstacles is sufficient.
The second map represents the situaƟon of passing through a narrow space. Narrow passage creates
a challenge for the planning algorithms [35]. Due to the forced dilataƟon, the A* algorithm cannot plan
a path through these narrow passages. On the other hand, algorithms using random points to branch
the search tree such as RRT algorithms usually need a larger number of iteraƟons to overcome the
narrow passage. The third map tests how greedy the given algorithms are and try to follow the target
as the crow flies. Both of the two algorithms follow the target, but a part of the algorithms involves
searching the map that is not exactly between the start and goal posiƟons. The fourth map verifies the
algorithms work with the final vehicle rotaƟon. The final fiŌh map contains several scaƩered obstacles
that make the overall path finding more difficult.

The experiments are repeated 15 Ɵmes for each scenario by playing rosbag. The number of iteraƟons
plays almost no role for the A* algorithm, because the A* algorithm is determinisƟc and therefore
always finds the same path. In contrast, RRT and RRT* select a random point to which the algorithm
searches for a point in the K-D tree with the minimum distance. For this reason, in some cases, the path
is not found. Moreover, the RRT and RRT* algorithms publish different paths with a different length.
One of the aspects of experiment is the percentage of met the maximum Ɵme (deadline) to find the

27

path. The deadlines for path planning are set to 0.5 s, 1.0 s, 1.5 s, 2.0 s, 2.5 s, and 3.0 s. Another aspect
of measurement is the length of the path. The MEC server should return a shorter path because the
higher performance of the MEC server ensures more executed iteraƟons in the same amount of Ɵme.
The higher number of iteraƟons increases the probability of finding the path or shortening it.

Figure 22 compares the average computaƟon Ɵme for each algorithm processed locally on the vehicle,
on the server, and total offloading Ɵme.

Figure 22: Average computaƟon Ɵmes – path planning

The A* algorithm runs 5.2 Ɵmes faster on the server, and aŌer adding the Ɵme spent sending and
receiving data from the server, the result is obtained 23.5% (349 ms) earlier than the local computaƟon.
In addiƟon to the fact that the user gets the result sooner, the Raspberry Pi is only used to send the
request and, therefore, the power consumpƟon should be reduced. The RRT algorithm runs 41% faster
on the server and aŌer including the Ɵme taken to send data, the result is received 37.5% (633 ms)
earlier than the local computaƟon. Similar results occurred for the RRT* algorithm, which returns the
result from the server 24.7% (416 ms), 8.8% (158 ms), and 16.8% (297 ms) earlier than local
computaƟons for 0.4 m, 0.7 m, and 1.0 m reconnecƟon distances.

In Figure 23 and Figure 24, the success rate of finding the path within the given Ɵme limit is depicted.
The results show that computaƟon on the server do not improve the path finding success rate using
the A* algorithm except for a deadline of 0.5 s. The A* algorithm provides a path to the target in only
88%, because the obstacle dilataƟon in the narrow passage on map 2 obstructs the path to the target.
On the other hand, the algorithm returns the informaƟon in the deadline that a path to the target does
not exist using the A* algorithm and therefore the maximum success rate is 100% not 88%. The RRT
and RRT* algorithms running on the server increase the success rate of the path found within the
specified deadline in all cases. This is due to the fact that the server has a more powerful CPU, which
allows a higher number of iteraƟons to be performed in the same amount of Ɵme, thus increasing the
probability of finding a path.

28

Figure 23: Success rate of algorithms for different deadlines – part 1

Figure 24: Success rate of algorithms for different deadlines – part 2

29

Figure 25 compare the average path lengths found by each algorithm.

A: Map 1-path lengths

B: Map 2-path lengths

C: Map 3-path lengths

D: Map 4-path lengths

E: Map 5-path lengths

Figure 25: Comparison of path lengths

According to Figure 25, the shortest paths are achieved by the A* or RRT* algorithm. In general, the A*
algorithm returns the shortest possible path. In our case, this is the shortest path including penalƟes
for inappropriate behaviour in terms of vehicle dynamics. The longest paths are generated using the
RRT algorithm. During iteraƟons, the RRT* algorithm reconnects the points in the built K-D tree and
thus reduces the final path length. The higher the reconnecƟon distance of RRT* algorithm leads to the
shorter final path on average. The lengths of the paths found by the RRT* algorithm with a reconnecƟon
distance of 1 meter are close to the paths found by the A* algorithm or they are shorter. In addiƟon,
the RRT* algorithm works with the vehicle model, unlike the A* algorithm, and therefore the path
planned by RRT* should be beƩer adapted to vehicle dynamics.

Figure 25 show that the average length of the path found on the server is shorter than the path
computed by the same algorithm locally in 14 out of 20 cases (marked with green numbers in Figure
25 above the bars). This is due to the fact that the higher computaƟonal power of the MEC server
guarantees more iteraƟons at the same Ɵme.

The higher the distance for reconnecƟon in the RRT* algorithm, the shorter paths are achieved on
average. On the other hand, point reconnecƟon is a very challenging operaƟon. First, the points in the
neighborhood are found, then checked if the connecƟon is possible without collision and without
violaƟng vehicle dynamics. For this reason, the one iteraƟon Ɵme in RRT* algorithm is increased. In
Table 5 and Table 6, we see the average Ɵme of one iteraƟon for RRT and RRT* algorithms, the average
number of iteraƟons per second and the average number of reconnecƟons for each configuraƟon of
RRT* algorithm computed on the vehicle and on the server. The tables summarize informaƟon about
the iteraƟon Ɵme and number of reconnecƟons that are related to the resulƟng path length. The A*

30

algorithm is determinisƟc, so the iteraƟon Ɵme does not affect the resulƟng path length. For this
reason, the A* algorithm is not included in Table 5 and Table 6.

Table 5: Comparison of iteraƟons and reconnecƟons - vehicle

Algorithm One iteraƟon Ɵme
[ms]

Number of iteraƟons
per second

Average number of
reconnecƟons

RRT 1.503 665.335 0
RRT* 0.4m 2.318 431.406 1559.6
RRT* 0.7m 2.995 333.889 3451.4
RRT* 1.0m 3.879 257.798 4727.8

Table 6: Comparison of iteraƟons and reconnecƟons - server

Algorithm One iteraƟon Ɵme
[ms]

Number of iteraƟons
per second

Average number of
reconnecƟons

RRT 0.826 1210.653 0
RRT* 0.4m 1.157 864.304 1623.2
RRT* 0.7m 1.704 586.854 5243.0
RRT* 1.0m 2.492 401.284 10164.6

The tables demonstrate that the server can process 56% to 100% more iteraƟons than the Raspberry
Pi can process locally. The path finding success rate increased by 16% on average in specified deadlines.
The measured path lengths computed on the server are on average 6.3% (0.46m) shorter than paths
computed locally. Hence, the main benefit of higher performance on the server is a slight increase in
the success rate of the RRT and RRT* algorithms.

6.4 Dynamic obstacle detection
The tesƟng of the dynamic obstacle detecƟon is conducted in a similar manner to the tesƟng of the
path planning algorithms. In the experiments, the environment is mapped using a Slam Toolbox. The
vehicle stands sƟll in the space collecƟng lidar data. Under these condiƟons, the rosbag is recorded to
achieve constant and controlled condiƟons during the experiments. Three courses are recorded. In the
first run, there is only a single person moving in the space. In the second case, the dynamic obstacle is
represented by two walking people. In the last scenario, there are 3 people moving around the room.
The movement of dynamic obstacles is random at arbitrary distances from the vehicle. Figure 26
demonstrates the mapped environment. The red points indicate the data measured by the lidar. The
figure shows the third scenario where 3 people are moving around the vehicle (marked with a blue
ellipses).

31

Figure 26: Third scenario tesƟng dynamic obstacle detecƟon

AŌer receiving the lidar data, the algorithm checks if there is a dynamic obstacle around the vehicle.
The size of the examined area is determined by the distance of half of the side of the square, where
the vehicle is located in the middle of the menƟoned figure. The length determining the size of the
examined area is set to 2 m, 5 m, 8 m and infinity. A larger space helps to beƩer predict the movement
of dynamic obstacles. On the other hand, the algorithm working with larger space represents a more
computaƟonally demanding task. Due to the 9V power supply (see secƟon 4.5), data from the lidar
arrives every 100 ms, so the computaƟon Ɵme should not exceed 100 ms. If the lidar is powered by
USB from a Raspberry Pi, due to the lower voltage, data would come in at 5.5 Hz, which would represent
182 ms between messages. In our experience, we can set the lidar message frequencies up to 15.5 Hz.
For these reasons, the deadlines for dynamic obstacle detecƟon are set to 64ms, 100ms and 182ms.

Figure 27 demonstrates the average computaƟon Ɵmes for dynamic obstacle detecƟon computed
locally and on the server. Total offloading Ɵme is depicted in Figure 27 as well.

Figure 27: Comparison of computaƟon Ɵme of dynamic obstacle detecƟon

32

Figure 27 demonstrates that the computaƟon on the server itself is on average 4.3 Ɵmes faster than
on the vehicle. On the other hand, the average total offloading Ɵme is lower than the local computaƟon
only when algorithm operates with a whole map. The figure shows that the largest part of the total
offloading Ɵme is the communicaƟon part. Moreover, the values of total offloading Ɵme are not
monotonic because the task is not computaƟonally demanding enough, and therefore the results
rather indicate the current channel quality. For this reason, the average total offloading Ɵme is 76.4%
(53.9 ms) longer than the local computaƟon.

Figure 28, depicƟng the detecƟon success rate for each deadline, demonstrates that some of the results
had large delays, hence the high average offloading Ɵme.

Figure 28: Success rate of obstacle detecƟon for different deadlines

The results shown in Figure 28 indicate that in only 2 cases is the deadline met by offloading with a
higher success rate than when the algorithm is executed locally. These are cases where the deadline is
short and the problem is enough computaƟonally demanding. Therefore, the vehicle does not meet
the deadline even once and offloading meets some deadlines.

During the experiment, the shortest offloading Ɵme is 26 ms and the longest offloading Ɵme is 1.5 s.
The high delay was due to the degradaƟon of the transmission speed. An algorithm that opƟmizes the
offloading decision should respond to this situaƟon by reducing the number of messages sent to the
server. This algorithm is not used in the experiments because in that case the deadline of each offload
performed would have been met, thus significantly affecƟng the results.

6.5 Path following
Recorded rosbags are used to test tracking of the planned path and avoidance of dynamic obstacles.
Firstly, the surrounding environment is mapped. AŌerwards, a path is created which the car starts to
follow. During the following the path, a dynamic obstacle appears. The dynamic obstacle is simulated
by walking human. Figure 29 illustrates the scenario of the experiments.

33

Figure 29: Scenario tesƟng path following with obstacles

The behaviour of the Pure Pursuit algorithm and the MPC algorithm is invesƟgated on the recorded
data. Pure Pursuit is a simple version of the algorithm that follows a planned path. The disadvantage
of the Pure Pursuit algorithm is its inability to respond to dynamic obstacles. To compare the MPC and
Pure Pursuit algorithms, the MPC algorithm is launched in two modes. In the first mode, it does not
react to dynamic obstacles and only follows the planned path in the map. This mode is closest to the
Pure Pursuit algorithm except for the fact that MPC works with a vehicle model. The second mode
responds to dynamic obstacles, increasing its computaƟonal and Ɵme complexity.

The MPC algorithm searches in depth all possible routes from the current locaƟon. The greater the
depth to which MPC searches, the beƩer the algorithm responds to the surrounding environment and
dynamic obstacles. For this reason, MPC is run with four different maximum depths. The depths are
1,3,5 and 8 steps, where 1 step plans 20 cm ahead. The maximum Ɵme to execute the algorithm is 100
ms because new informaƟon about dynamic obstacles arrives in this Ɵme interval.

Figure 30 compares the Pure Pursuit algorithm and MPC disregarding dynamic obstacles computed
locally and on the server. Figure 31 compares different depths of MPC taking into account dynamic
obstacles. Total offloading Ɵme is included in the comparison as well.

Figure 30: Comparison of computaƟon Ɵmes – path following without obstacles

34

Figure 31: Comparison of computaƟon Ɵmes – path following with obstacles

The computaƟon of algorithms itself is 2.18 Ɵmes faster on the server than locally. Because the
computaƟon of the control algorithms is very fast, the transmission of data makes up the largest part
of offloading. Moreover, the values of total offloading Ɵme are not monotonic because the task is not
computaƟonally demanding enough, and therefore the results rather indicate the current channel
quality. For this reason, the average offloading Ɵmes are 17.5 Ɵmes (56.3 ms) longer than the local
computaƟon.

Figure 32 and Figure 33 demonstrate the success rate of the algorithms for each deadline. Figure 32
compares algorithms that do not take dynamic obstacles into account. Figure 33 compares MPC
algorithms that take dynamic obstacles into account. The MPC algorithms differ in the maximum depth
of the opƟmal path search.

Figure 32: Success rate of control algorithms for different deadlines – without obstacles

35

Figure 33: Success rate of control algorithms for different deadlines – with obstacles

The results of both experiments are similar. With rare excepƟons, all local computaƟons meet the
specified deadlines. At most 1.7% are met by the shortest deadline of 25 ms. The second deadline are
met in up to 63.1%. During the 100 ms deadline, offloading is successfully executed in more than 91%.

Due to the low complexity of the task and the short Ɵme limits, the success rate of the algorithms
mainly based on the Ɵme it takes to transfer the data. This property is reflected in the figure comparing
the algorithms taking into account dynamic obstacles, where the most complex algorithm for deadlines
of 50 ms and 100 ms achieves the highest success rates. In order to achieve a higher success rate, an
offload decision algorithm that takes into account the quality of the transmission channel should be
used.

6.6 Dynamic experiment
During the dynamic experiment, a connecƟon is established with the MEC server where the user input
a request for the desƟnaƟon. Subsequently, a map and the current locaƟon of the vehicle is sent from
the car. The path computaƟon is performed on the MEC server. Once the route is planned, the car starts
following the planned path. Messages containing the current posiƟon and lidar data are periodically
sent from the vehicle to the MEC server. The computaƟon of the control algorithms is also performed
on the MEC server and the car only receives commands for the motors.

Dynamic tests are carried out, but no conclusion can be drawn from this because a controlled and
constant environment cannot be guaranteed. The demonstraƟon of the dynamic experiments is
captured on video [36]. Figure 34 illustrates the recorded course of dynamic experiments.

36

Figure 34: DemonstraƟon of offloading1

1 Video available on hƩps://www.youtube.com/watch?v=aPKcAR9Qli4

37

7 Conclusion
In this thesis, we have implemented algorithms for autonomous driving with the possibility of
offloading of various driving-related funcƟonaliƟes to the edge server. The autonomous driving is
divided into three parts: path planning, dynamic obstacle detecƟon and following the planned path.
Path planning is performed using modified A*, RRT and RRT* algorithms. Path planning is done in the
map that is created before the experiments. Dynamic obstacle detecƟon is performed using a "two-
pass" algorithm with a Union-Find approach. Then, MPC and Pure Pursuit algorithm is used for path
following.

During the offloading of path planning, the computaƟon result is received from the server on average
23.5% (349 ms) earlier than during the local computaƟon. In addiƟon, the RRT and RRT* algorithms
achieve a higher deadline success rate of 16% on average due to the higher computaƟonal power of
the MEC server, resulƟng in a higher number of executed iteraƟons. The higher number of iteraƟons
for the RRT and RRT* algorithms on the server also leads to 6.3% (0.46 m) shorter paths on average.
Dynamic obstacle detecƟon is faster using offloading only if it is a whole-map detecƟon. In other cases,
the average local computaƟon is faster than the offloading. The local computaƟon has a higher success
rate in meeƟng the specified deadline, except when the local computaƟon is not completed even once
within the specified Ɵme limit. The computaƟon of the control algorithm by the MEC server does not
outperform the local computaƟon in any experiment. The control algorithm is not computaƟonally
intensive enough to make the delay caused by transmiƫng data for processing in MEC server
worthwhile.

In future work, we will focus on dynamic experiments and more complex cooperaƟon between the
server and the autonomous vehicle. The K-D tree created during path planning can be stored and used
to reduce the Ɵme of the next run of the RRT and RRT* algorithms in the same environment. In
addiƟon, we will focus on the cooperaƟon of mulƟple autonomous cars in the same space. Vehicles
can share informaƟon between each other about a planned path, a mapped area or a future maneuver.
Furthermore, they can share communicaƟon and compuƟng resources.

38

8 Bibliography
[1] A. Gunawan, B. Geraldo, K. Honggiarto, and F. L. Cahyadi, “Understanding the Uses and PotenƟal
of IoT with 5G Technology Compared to 4G LTE: A SystemaƟc Literature Review,” Aug. 2023, doi:
hƩps://doi.org/10.1109/icimtech59029.2023.10277995.

[2] D. Spatharakis, M. Avgeris, N. Athanasopoulos, D. DechounioƟs and S. Papavassiliou, "A Switching
Offloading Mechanism for Path Planning and LocalizaƟon in RoboƟc ApplicaƟons," 2020 InternaƟonal
Conferences on Internet of Things (iThings) and IEEE Green CompuƟng and CommunicaƟons
(GreenCom) and IEEE Cyber, Physical and Social CompuƟng (CPSCom) and IEEE Smart Data
(SmartData) and IEEE Congress on CybermaƟcs (CybermaƟcs), Rhodes, Greece, 2020, pp. 77-84, doi:
10.1109/iThings-GreenCom-CPSCom-SmartData-CybermaƟcs50389.2020.00031.

[3] Y. Yamato, T. Demizu, H. Noguchi and M. Kataoka, "AutomaƟc GPU Offloading Technology for
Open IoT Environment," in IEEE Internet of Things Journal, vol. 6, no. 2, pp. 2669-2678, April 2019,
doi: 10.1109/JIOT.2018.2872545.

[4] P. Mach and Z. Becvar, “Cloud-aware power control for real-Ɵme applicaƟon offloading in mobile
edge compuƟng,” TransacƟons on Emerging TelecommunicaƟons Technologies, vol. 27, no. 5, pp.
648–661, Dec. 2015, doi: hƩps://doi.org/10.1002/eƩ.3009.

[5] T. Svoboda and M. Hoffmann, “Problem solving by search II,” 2021. [Online]. Available:
hƩps://cw.fel.cvut.cz/b202/_media/courses/b3b33kui/prednasky/03_search_live_withnotes.pdf
[Accessed: April 20, 2024]

[6] V. Vonásek, “MoƟon planning: sampling-based planners I.” [Online]. Available:
hƩps://cw.fel.cvut.cz/b222/_media/courses/aro/lectures/2023-planning-samplingi.pdf [Accessed:
April 19, 2024]

[7] “What is Model PredicƟve Control? - MATLAB & Simulink,” www.mathworks.com.
hƩps://www.mathworks.com/help/mpc/gs/what-is-mpc.html

[8] M. Kairanbay and H. M. Jani, “A review and evaluaƟons of shortest path algorithms,”
ResearchGate, Jan. 2013, [Online]. Available:
hƩps://www.researchgate.net/publicaƟon/310594546_A_Review_and_EvaluaƟons_of_Shortest_Pat
h_Algorithms [Accessed: May 10, 2024]

[9] Z. Hanzálek, “Shortest Paths IntroducƟon Problem Statement NegaƟve Weights YES and NegaƟve
Cycles NO,” 2022. [Online]. Available: hƩps://rƟme.ciirc.cvut.cz/~hanzalek/KOA/SPT_e.pdf [Accessed:
April 20, 2024]

[10] R. C. Coulter, “ImplementaƟon of the Pure Pursuit Path Tracking Algorithm,” 1992. Available:
hƩps://www.ri.cmu.edu/pub_files/pub3/coulter_r_craig_1992_1/coulter_r_craig_1992_1.pdf

[11] M. -W. Park, S. -W. Lee and W. -Y. Han, "Development of lateral control system for autonomous
vehicle based on adapƟve pure pursuit algorithm," 2014 14th InternaƟonal Conference on Control,
AutomaƟon and Systems (ICCAS 2014), Gyeonggi-do, Korea (South), 2014, pp. 1443-1447, doi:
10.1109/ICCAS.2014.6987787.

[12] H. Wang, B. Liu, X. Ping and Q. An, "Path Tracking Control for Autonomous Vehicles Based on an
Improved MPC," in IEEE Access, vol. 7, pp. 161064-161073, 2019, doi:10.1109/ACCESS.2019.2944894.

39

[13] F. Borrelli, A. Bemporad, M. Fodor and D. Hrovat, "An MPC/hybrid system approach to tracƟon
control," in IEEE TransacƟons on Control Systems Technology, vol. 14, no. 3, pp. 541-552, May 2006,
doi: 10.1109/TCST.2005.860527.

[14] P. Mach and Z. Becvar, "Mobile Edge CompuƟng: A Survey on Architecture and ComputaƟon
Offloading," in IEEE CommunicaƟons Surveys & Tutorials, vol. 19, no. 3, pp. 1628-1656, thirdquarter
2017, doi: 10.1109/COMST.2017.2682318.

[15] A. Ndikumana, K. K. Nguyen and M. Cheriet, "Age of Processing-Based Data Offloading for
Autonomous Vehicles in MulƟRATs Open RAN," in IEEE TransacƟons on Intelligent TransportaƟon
Systems, vol. 23, no. 11, pp. 21450-21464, Nov. 2022, doi: 10.1109/TITS.2022.3192098.

[16] J. Dolezal, Z. Becvar and T. Zeman, "Performance evaluaƟon of computaƟon offloading from
mobile device to the edge of mobile network," 2016 IEEE Conference on Standards for
CommunicaƟons and Networking (CSCN), Berlin, Germany, 2016, pp. 1-7, doi:
10.1109/CSCN.2016.7785153.

[17] A. Sultan, “5G System Overview,” www.3gpp.org, Aug. 08, 2022.
hƩps://www.3gpp.org/technologies/5g-system-overview

[18] Gigabyte.com, 2024.
hƩps://www.gigabyte.com/FileUpload/Global/ModelPlugin/ModelSecƟonChildItem/469/469.png?_=
33e442d4d68381a6462ed0e93ba6177b [Accessed: March 26, 2024].

[19] “MODEL 88096-4 owner’s manual MERCEDES-BENZ G 63 AMG 6X6.” [Online]. Available:
hƩps://traxxas.com/sites/default/files/88096-4-OM-EN-R01.pdf [Accessed: March 28, 2024].

[20] “VIKING SMARTECH II QC3.0 40000mAh User manual,” [Online]. Available: hƩps://www.best-
power.cz/user/related_files/user_manual_smartech_ii_en_cz_sk_de_hu-1.pdf [Accessed: March 28,
2024].

[21] “RPLIDAR ROS package,” GitHub, Jul. 16, 2022. hƩps://github.com/Slamtec/rplidar_ros.

[22] “RPLIDAR A1.” [Online]. Available: hƩps://bucket-
download.slamtec.com/d1e428e7eĩdcd65a8ea111061794ĩ8d4ccd3a0/LD108_SLAMTEC_rplidar_d
atasheet_A1M8_v3.0_en.pdf [Accessed: April 1, 2024].

[23] “RM500Q-GL 5G HAT - Waveshare Wiki,” www.waveshare.com.
hƩps://www.waveshare.com/wiki/RM500Q-GL_5G_HAT [Accessed: April 4, 2024].

[24] “Autonomous Driving” GitLab. hƩps://gitlab.fel.cvut.cz/mobile-and-wireless/autonomous-driving
[Accessed: May 10, 2024].

[25] S. Macenski and I. Jambrecic, “SLAM Toolbox: SLAM for the dynamic world,” Journal of Open
Source SoŌware, vol. 6, no. 61, p. 2783, May 2021, doi: hƩps://doi.org/10.21105/joss.02783.

[26] B. K. Luknanto, “A review of 2D SLAM algorithms on ROS,” M. S. thesis, School of Industrial and
InformaƟon Engineering, Milano, Italy, 2020.

[27] P. Fua and K. Lis, “Comparing Python, Go, and C++ on the N-Queens Problem,” arXiv.org, Jan. 08,
2020. hƩps://arxiv.org/abs/2001.02491

40

[28] “ƞ: ƞ::TransformListener Class Reference,” docs.ros.org.
hƩps://docs.ros.org/en/diamondback/api/ƞ/html/c++/classƞ_1_1TransformListener.html [Accessed:
April 1, 2024].

[29] J. Sprinkle, “How and why to use the Ackermann steering model,” YouTube. May 24, 2016.
[YouTube Video]. Available: hƩps://www.youtube.com/watch?v=i6uBwudwA5o [Accessed: April 7,
2024].

[30] M. Berezovský and R. Mařík, “Search trees, k-d tree,” Pokročilá Algoritmizace, vol. 4, no. 33,
2012, Available: hƩps://cw.fel.cvut.cz/old/_media/courses/a4m33pal/paska13.pdf

[31] A. Cormen, IntroducƟon to algorithms. Cambridge, Mass.: Mit Press, 2003.

[32] L. G. Shapiro and G. C. Stockman, Computer vision. Upper Saddle River PrenƟce Hall, 2001.

[33] J. Vyskočil and R. Mařík, “Advanced algorithms topological ordering, minimum spanning tree,
Union-Find problem,” 2012. [Online]. Available:
hƩps://cw.fel.cvut.cz/b221/_media/courses/b4m33pal/lectures/2011pal02.pdf [Accessed: April 2,
2024].

[34] Carnegie-Mellon University. RoboƟcs InsƟtute and R. Craig Coulter, “ImplementaƟon of the Pure
Pursuit Path Tracking Algorithm, ” 1992.

[35] Z. Sun, D. Hsu, T. Jiang, H. KurniawaƟ and J. H. Reif, "Narrow passage sampling for probabilisƟc
roadmap planning," in IEEE TransacƟons on RoboƟcs, vol. 21, no. 6, pp. 1105-1115, Dec. 2005, doi:
10.1109/TRO.2005.853485.

[36] 6Gmobile research lab, “Autonomous Driving with Offloading to MEC - Phase II,” YouTube, May
22, 2024. hƩps://www.youtube.com/watch?v=aPKcAR9Qli4 [accessed May 23, 2024].

41

9 Apendix

9.1 The Installation of Lubuntu
Firstly, the user should prepare the following items: the Raspberry Pi 4B, an Ethernet cable, a micro
HDMI cable, a keyboard, an SD card, and a computer. On the desktop, download the Ubuntu server
and soŌware for flashing SD cards, such as Rufus or Balena Etcher. AŌerward, flash the Ubuntu server
onto an SD card using Rufus or Balena Etcher applicaƟon.

In the next step, connect all peripherals to Raspberry Pi 4B and plug in the Ethernet cable. Insert a
flashed SD card into the Raspberry Pi and power on the device. Set name and password and type
following commands:

sudo apt-get update
sudo apt-get install lubuntu-desktop

Finally, reboot the device by typing the command sudo reboot.

9.2 Overclocking CPU
Overclocking involves increasing the CPU clock rate to boost computaƟonal power. When the user
overclocks the CPU, it tends to generate higher temperatures. For this reason, a cooling system is
necessary. In the described situaƟon, the cooling system consists of 2 fans and ribbing. The aluminium
fans acƟvely cool down CPU and RAM storage. The ribbing serves as passive cooling by enlarging the
device surface to enhance heat dissipaƟon.

When the operaƟon system is installed, the user should paste the following lines seƫng up voltage and
CPU frequency into the file /boot/firmware/config.txt.

over_voltage=6
arm_freq=2000

These lines specify that the CPU frequency should be 2000 MHz. The first line sets up the addiƟon
voltage to a value of 6.

9.3 Git repository
Algorithms run locally on the vehicle are located in the autonomous-driving/trax_repo/src folder. The
ROS package is located in this folder. Below is a list of what each package contains:

 camera - running the camera on the vehicle
 control_motor - communicaƟon with Arduino and motor control
 detect_obstacle -detect dynamic obstacles
 fake_odom - launchfiles and config files
 gateway - establishing a connecƟon to the server
 path_follower - trace the route (Pure Pursuit, MPC)
 rplidar_ros-master - launching lidar on the vehicle
 services - publisher of current posiƟon and definiƟon of custom messages
 slam_toolbox - create and maintain map

42

The individual scripts can be found in the autonomous-driving/trax_repo/src/[package]/src folder. The
msg folder in the package folder contains definiƟons of custom messages. The config folder in the
package folder contains config files defining parameters. The launch folder in the package folder
contains launch files that allow several ROS nodes to be launched at once.

The algorithms that are run on the server are in the autonomous-driving/MEC/ROS-
KaŅa/trax_repo/src folder. The structure of the packages and files is the same as in the repository
intended for local execuƟon.

