
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

Haskell Framework for Webhooks Implementation

Bc. Vojtěch Balík

Ing. Marek Suchánek, Ph.D.

Informatics

Web Engineering

Department of Software Engineering

until the end of summer semester 2023/2024

Instructions

Webhooks provide a flexible way to integrate various applications through automated

messages triggered when something happens based on their configuration. This thesis

aims to design and implement a framework for Haskell that will support the webhooks

specification, triggering and sending messages in web applications. It should provide an

intuitive interface to programmers and versatility in configuration.

- Research briefly webhooks and their use in current well-known applications.

- Provide an overview of existing webhook-supporting frameworks and libraries.

- Specify requirements and design your solution that fulfils the requirements.

- Implement the framework based on the design and test it. Justify your selection of used

technologies. Provide examples of use as part of the documentation.

- Prepare the project for open-source distribution in the Haskell community.

- Evaluate your framework and compare it to existing solutions. Discuss possible future

development.

Electronically approved by Ing. Jaroslav Kuchař, Ph.D. on 22 June 2022 in Prague.

Master’s thesis

Haskell Framework for Webhooks
Implementation

Bc. Vojtěch Balík

Department of Software Engineering
Supervisor: Ing. Marek Suchánek, Ph.D.

February 15, 2024

Acknowledgements

I would like to thank my parents, to whom I owe so much. I also would like
to thank my supervisor, Ing. Marek Suchánek, Ph.D., for his patience, and
encouragement while advising me on this thesis, despite my shortcomings.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46 (6) of the Act, I hereby grant a nonexclusive autho-
rization (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any way
(including for-profit purposes) that does not detract from its value. This au-
thorization is not limited in terms of time, location and quantity. However, all
persons that makes use of the above license shall be obliged to grant a license
at least in the same scope as defined above with respect to each and every
work that is created (wholly or in part) based on the Work, by modifying the
Work, by combining the Work with another work, by including the Work in
a collection of works or by adapting the Work (including translation), and at
the same time make available the source code of such work at least in a way
and scope that are comparable to the way and scope in which the source code
of the Work is made available.

In Prague on February 15, 2024

Czech Technical University in Prague
Faculty of Information Technology
© 2024 Vojtěch Balík. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Balík, Vojtěch. Haskell Framework for Webhooks Implementation. Master’s
thesis. Czech Technical University in Prague, Faculty of Information Technol-
ogy, 2024.

Abstrakt

Webhooky jsou metoda umožňující vlastní zpětná volání ve webových aplika-
cích na základě protokolu HTTP. Webhooky jsou se stávají stále populárněj-
šími ve webových službách a byť se jejich implementace může na první pohled
zdát nenáročná, přinášejí s sebou specifické výzvy, zejména pokud se jedná o
zabezpečení a spolehlivost komunikace. Tato práce zkoumá webhooky a souvi-
sející nejlepší postupy a následně navrhuje framework, který poskytuje základ
pro integraci webhooků do webových aplikací za použití zmíněných nejlepších
postupů. Výsledkem práce je volně dostupný a snadno rozšiřitelný softwarový
balíček pro programovací jazyk Haskell.

Klíčová slova Webhooks, REST, API, events, Haskell, framework.

vii

Abstract

A webhook is a method of enabling custom callbacks in web applications over
the HTTP protocol. Webhooks are becoming increasingly popular in web ser-
vices. Although webhooks may seem easy to implement on the surface, they
come with a specific set of challenges, especially when it comes to securing
event deliveries and making them reliable. This thesis researches webhooks
and related industry best practices and designs a framework for integrating
webhooks in web applications that implements said best practices. The result
of this work is an open-source and easily extensible software package for the
Haskell programming language.

Keywords Webhooks, REST, API, events, Haskell, framework.

ix

Contents

Introduction 1

1 Goals and Methodology 3

2 Webhooks and State-of-the-Art 5
2.1 Events and Web APIs . 5
2.2 Webhooks Introduction . 6
2.3 Webhook Interactions . 6

2.3.1 Overview . 6
2.3.2 Subscribing To Events 7
2.3.3 Event Delivery . 7

2.3.3.1 Retry Mechanism 8
2.3.3.2 Event History 9

2.3.4 Event Data . 9
2.3.4.1 Thin vs Thick Event 10

2.4 Securing Webhooks . 12
2.4.1 Event Authenticity . 12
2.4.2 Webhook Consumer Authenticity and Encryption 12
2.4.3 Webhook Endpoint Idempotency 12
2.4.4 Replay Prevention . 13
2.4.5 Server-Side Request Forgery (SSRF) 13
2.4.6 Event Sender IP Whitelisting 13

2.5 Standard Webhooks . 14

3 Existing Frameworks and Libraries 15
3.1 Thorn . 16

3.1.1 Events . 16
3.1.2 Subscriptions . 16
3.1.3 Dispatchers . 16
3.1.4 Reliability . 17
3.1.5 Security . 17

3.2 Svix . 18
3.2.1 Reliability . 18
3.2.2 Security . 19

xi

3.2.3 Architecture . 19

4 Requirements 21
4.1 Functional requirements . 21
4.2 Non-functional requirements . 21

4.2.1 Ease of use . 21
4.2.2 Flexibility . 21
4.2.3 Reliability . 22
4.2.4 Security . 22
4.2.5 Usability . 22

5 Implementation 23
5.1 Whoopr Module . 23

5.1.1 Subscription Management 23
5.1.2 Task Queue . 24
5.1.3 Event Sender . 24

5.1.3.1 Caveats . 25
5.2 Whoopr.Basic Module . 26

5.2.1 Concretizing Subscription Management 26
5.2.2 Subscription API . 26

6 Evaluation 27
6.1 Example Application . 27

6.1.1 Defining Application Environment 27
6.1.2 Launching the Event Sender 28
6.1.3 Sending Events . 28

6.2 Assessment . 28
6.3 Further Work . 29

7 Distribution 31

Conclusion 33

Bibliography 35

A Contents of attachments 39

xii

List of Figures

2.1 GitHub form for registering a webhook for a repository. [1] 8
2.2 Sequence diagram of creating a webhook subscription. (Based on [2].) 9
2.3 Sequence diagram illustrating the delivery of single event notifica-

tion. (Based on [2].) . 10

3.1 Sequence diagram illustrating single event send through Svix. (Based
on [3].) . 19

xiii

Introduction

As modern web development evolves, so do the requirements for modern web
services. Applications that integrate with web services need to be responsive
and react to changes immediately. Thus, services must provide concepts such
as events and notifications, which poses a problem, as such concepts are not
supported by the common REST architecture [2].

A solution that is becoming more and more popular are webhooks. How-
ever, webhooks are not standardized, and so, for each webhook provider, the
answer to the question ”What are webhooks, exactly?” differs. General state-
ments, such as ”webhooks are event handlers for the web” or ”a webhook is an
HTTP callback”, can be agreed upon, but details such as the problem of veri-
fying webhooks not so much. This poses the question of what the advantages
and disadvantages of the different designs that can be found among webhook
providers are, and it is this question which the first part of this thesis tries to
find the answer to. [2, 4]

Embedding webhooks in any single application presents a specific set of
challenges due to this ambiguity. The second part of this thesis is concerned
with designing a solution to enable the embedding of webhooks in any applica-
tion. Attempting this only creates additional challenges, because one size does
not fit all. The additional challenge becomes the integration with different
pieces of technology and the need to accommodate different designs, without
overcomplicating things. All this is emphasized by the use of a statically typed,
lazy, and pure functional programming language like Haskell, as existing so-
lutions that work well in the popular imperative languages may not be easily
transferrable.

1

Chapter 1
Goals and Methodology

The goal of this thesis is to develop a framework for the Haskell programming
language to support webhook development in web applications. First, in the
Webhooks and State-of-the-Art chapter, I research existing literature and other
resources and provide a description of webhooks and how they fit in with web
applications. In the following chapter, Existing Frameworks and Libraries, I
review projects that solve similar problems.

Then, in the following chapters, I proceed according to the traditional
methodologies of software engineering. Using the findings of these two chap-
ters, in chapter Requirements I specify the requirements of my solution. The
Implementation chapter then provides a description of the design and imple-
mentation of the solution. In the Evaluation chapter, I provide an example us-
age of the solution, assess my solution, and outline avenues for possible future
work and improvements. Finally, chapter Distribution describes the process of
open-sourcing the solution and making it ready for use by others.

3

Chapter 2
Webhooks and State-of-the-Art

2.1 Events and Web APIs

Traditional RESTful APIs are built around operations on resources. These op-
erations correspond to HTTP verbs like GET, POST, DELETE, etc., with their
precise meaning more-or-less consistent across API providers. However, this
communication model does not fit well in situations where the API consumer
wants to be notified about a change on the side of the API provider in a timely
manner, or in other words, receive events. This stems from the synchronous
nature of the HTTP protocol, where a client sends a request and expects a re-
sponse immediately, while such notifications occur asynchronously 1 from the
point of view of the client.

There are numerous approaches to this problem, each with its own advan-
tages and disadvantages. With polling, the client simply repeats a request over
and over and checks every response for a change. Other approaches use HTTP
streaming, Server-Sent Events or WebSockets, where a single HTTP connec-
tion (or TCP connection in the case of WebSockets) between a client and the
server is maintained indefinitely. With this connection established, the server
can then send notifications to a client in an asynchronous manner. Compared
to polling, this offers reduced overhead and latency in communication.

Yet another approach is to reverse the client-server roles for the notifica-
tion communication. Here, the API consumer exposes an HTTP endpoint and
makes it known to the API provider. The API provider can then send notifi-
cations as HTTP requests to the API consumer, and thus the API consumer,
originally acting as an HTTP client, now acts as a server and vice-versa. It
is inversion of control, a push model of communication. This approach comes
with its own set of complications however, for example, due to security con-
cerns it may not be viable to expose such endpoint to a public network, or the
endpoint of the consumer may not be available at the time of the notification.
Nonetheless, this is the approach employed with webhooks. [2]

1Not to be confused with asynchronous programming models found in many modern
programming languages like JavaScript.

5

2. Webhooks and State-of-the-Art

2.2 Webhooks Introduction

The term ”webhook” was originally coined by Jeff Lindsey in a blog post titled
”Web hooks to revolutionize the web” [5]. Other terms used are also ”reverse
APIs” or ”push APIs” [6]. There is no formal description of webhooks, instead:
”What we call webhooks is merely a collection of concepts and a collection
of best practices based on these concepts” [2, pp. 35]. These concepts are
built around the approach to asynchronous communication mentioned above.
Red Hat [6] defines a webhook as: ”an HTTP-based callback function that
allows lightweight, event-driven communication between 2 APIs”.

Webhooks are similar to callbacks or event handlers – be it registering a
callback or subscribing to some event, the user is registering a hook. With
webhooks, the user (API consumer) creates a hook by registering an HTTP
endpoint with an API provider. [2]

The role reversal involved in webhook communication may lead to confusion
when it comes to terms like ”client” and ”server”, as the meaning changes de-
pending on the context. I will use the terms ”webhook consumer” and ”webhook
provider”, e.g.: when an event notification is sent to the webhook consumer, it
acts as an HTTP server and the webhook provider acts as an HTTP client.

2.3 Webhook Interactions

2.3.1 Overview
In ”Webhooks: Events for REST APIs” [2], Biehl provides a summary of the
roles and their respective responsibilities in webhook interactions. Webhook
consumers need to:

• implement the webhook endpoint, and

• register the webhook endpoint with the provider.

For the webhook providers, the responsibilities are to:

• define possible events,

• manage webhook subscriptions, and

• deliver events to subscribers.

Webhook providers define their events in their developer documentation,
usually alongside traditional API documentation. This definition includes the
types of events; for example, PayPal [7] defines an event for when an invoice
is created, another for when one is paid, and many more. It also includes de-
scriptions of the data and metadata included in the event notification payloads,
and offers information on how to properly handle these payloads, for example,
how to verify payload signatures. The documentation will also often include
an explanation of webhooks.

Webhook consumers implement webhook endpoints according to this doc-
umentation. To register these endpoints, i.e. subscribe to certain events, con-
sumers will use a dedicated subscription API or a webhook dashboard, a web
application, which provides webhook subscription management and is com-
monplace among webhook providers.

6

2.3. Webhook Interactions

Once a subscription is established, the webhook provider will deliver event
notifications to the webhook consumer.

2.3.2 Subscribing To Events
The only absolutely necessary part of creating a webhook subscription is to
let the webhook provider know where to send notifications, i.e. URL of the
webhook endpoint. However, providers also allow consumers to specify the
events they are interested in. While consumers may filter events as they receive
them, this approach allows consumers to manage the load imposed by sending
or receiving large quantities of notifications, as the provider might impose quota
or the consumer’s server may become overwhelmed. [2]

Another very common and important subscription configuration among
providers is a shared secret or a key that is required to ensure the security
of the notification (see Section 2.4.1).

Figure 2.1 is a screenshot showing an example of a webhook registration
form, where GitHub users can create a webhook for their repository. Here,
”payload URL” corresponds to the aforementioned webhook endpoint. Using
the ”which events would you like to trigger this webhook?” option, the webhook
consumer can select the events they are interested in, with one of the provided
options, and also a good example being Git pushes made to this repository.
These are sometimes called topics. The ”secret” field concerns security, and its
value is used to generate a hash-based message authentication code (HMAC)
for each notification; more on that later in Section 2.4. [1]

The subscription process may also involve the provider sending a special
notification to validate or verify the endpoint. For example, GitHub will send
a ”ping” event after creating the webhook by clicking ”Add webhook” in the
registration form. This ”ping” is a test that the webhook endpoint responds
correctly to the HTTP POST request of the notification by responding with a
2xx (200–299) status code. [1] Some webhook providers send a one-time veri-
fication challenge before sending any real notifications, which verifies that the
creator of the subscription owns the webhook endpoint. The challenge noti-
fication will, for example, include a random string in its payload, which the
webhook consumer must echo back in the response. This helps mitigate abuses
where a malicious party uses the webhook provider infrastructure to perform
unsolicited HTTP requests, such as distributed denial of service (DDoS) at-
tacks. [8]

Figure 2.2 shows an overview of the communication involved in creating a
subscription, including the optional one-time verification challenge.

2.3.3 Event Delivery
Figure 2.3 illustrates the HTTP communication involved in sending a single
event to a single webhook endpoint. Note that the diagram does not show
when does the consumer actually process the event. The preferred approach is
for the consumer to respond to the provider immediately and process the event
when convenient. This is because an untimely response, due, for example, to
the webhook consumer being under high load, may unnecessarily result in more
attempts at delivery, as will be described next. [2] (See also Section 2.4.3 on
webhook idempotency.)

7

2. Webhooks and State-of-the-Art

Figure 2.1: GitHub form for registering a webhook for a repository. [1]

2.3.3.1 Retry Mechanism

Event deliveries may fail due to a myriad of reasons. For example:

• the notification HTTP request or its corresponding response got lost dur-
ing transit, and the request reaches timeout on the webhook provider side,
or

• the processing of the event fails on the side of the webhook consumer,
and it responds with a 500 HTTP status code, or

• the webhook consumer was temporarily unavailable at the time of the
delivery,

• etc.

Most webhook providers recognize this, and to make the process of event
delivery more reliable, they will attempt to redeliver failed deliveries. Details
of how long the delay between individual attempts is and what the maximum
number of retries is vary between different webhook providers. A common and
recommended strategy is to decrease the rate of delivery attempts using an
exponential backoff algorithm (meaning that the delays between subsequent
attempts form a geometric progression) and stop attempts after some days of
retrying. [2, 8, 4]

8

2.3. Webhook Interactions

Figure 2.2: Sequence diagram of creating a webhook subscription. (Based
on [2].)

What happens after the maximum number of retries is reached and the
event remains undelivered varies between different webhook providers. If enough
deliveries fail, webhook providers will usually disable the corresponding sub-
scription, requiring attention and manual intervention from the consumer to
reestablish it. For example, Adobe Acrobat Sign [9] events will be irrecoverably
lost. Other providers implement some concept of event history. [2]

2.3.3.2 Event History

Some webhook providers store information about the events sent for each sub-
scription and expose this information to webhook consumers via an API and/or
the webhook dashboard. Using the API or the dashboard, consumers can in-
spect individual deliveries and their responses (useful for development and
debugging), or trigger another delivery even if the maximum number of retries
has already been reached (resynchronization). [2]

For example, Svix will retry with increasing delay for a little over a day. If
the maximum number of retry attempts is reached without successfully deliv-
ering the event, the subscription is disabled. Svix retains all events (not just
undelivered) for a duration of 90 days by default, during which the consumer
can manually resynchronize. [3]

2.3.4 Event Data
The data describing the event is specific to the domain and the webhook
provider; however, notifications share a lot in common across different providers
when it comes to the metadata, i.e. data about the event data. Apart from

9

2. Webhooks and State-of-the-Art

Figure 2.3: Sequence diagram illustrating the delivery of single event notifica-
tion. (Based on [2].)

the normally metadata included in HTTP headers, such as Content-Type, the
notification requests will include the information required by webhook con-
sumers to correctly process the event. These metadata may be included in the
notification HTTP request as custom headers or in the payload together with
the event data. Common metadata include a unique identifier for the event,
timestamp, type of the event, and signature.

Although event data may be sent in any format, as with REST APIs, JSON
is the de facto standard.

2.3.4.1 Thin vs Thick Event

When designing events, webhook providers are faced with the question: Which
data describing the change that has occurred in the system should be included
in the event notification payload and which data should be left out? If the
answer is to include the entirety of the affected resource and any relevant
information about the change, the provider uses thick events. On the other
hand, if the answer is to only include a URL of the affected resource and the
type of event, the provider uses thin events. 2 Listing 1 and Listing 2 illustrate
this on an event describing a new customer entity being created, showing an
example of a thick and a thin event payload, respectively.

Biehl [2] argues for thin events as the more advantageous design that miti-
gates some of the problems related to delivering webhook events. One reason
is security – no sensitive data is included in the payload; hence there is no
data to be compromised. Sensitive data, if needed, must be accessed through
a regular API. Standard Webhooks [4] and webhooks.fyi [8] also advocate for
thin events, citing advantages such as better performance due to smaller pay-

2One may also encounter terms like ”dataless notifications” for the concept of thin events,
or ”full events” for thick events.

10

2.3. Webhook Interactions

{
"eventType" : "customer.created",
"timestamp" : "2024-02-01T04:19:53Z",
"eventId" : "1234",
"data" : {

"id" : "5678",
"firstname" : "John",
"surname" : "Doe",
"address" : "Fake St. 1",
"email" : "john.doe@example.com",
"ssn" : "000-00-0000"

}
}

Listing 1: Example of a thick event payload.

{
"eventType" : "customer.created",
"timestamp" : "2024-02-01T04:19:53Z",
"eventId" : "1234",
"link" : "https://example.com/customers/5678"

}

Listing 2: Example of a thin event payload.

load sizes and flexibility. It is a more future-proof design, as more data can
be included as the webhooks provided evolve in a backward compatible way,
but not the other way around. Payload size should also be limited to some
reasonable amount (Standard Webhooks proposal recommends approximately
20 kb), so as not to overwhelm the API consumer. This, again, becomes a
non-issue with thin events, and traditional approaches like pagination may be
used for large quantities of data once the consumer queries the linked resource.

The major disadvantage of thin events is the additional implementation
complexity imposed on the webhook consumer, which needs to perform addi-
tional requests to gather the information necessary to process events.

Using thin or thick event payloads does not pose a binary decision for web-
hook providers; rather, they represent opposing ends of a spectrum. GitHub’s
event payloads, for example, fall somewhere in between; it is unrealistic for
the payload to include much, let alone all, information about the affected git
repositories due to their size, but it does include a lot more information than
just the event type and a URL. For instance, a push event, triggered when
a git push is performed on the repository, in its payload will include, along
with the URL of the resource of the commit, information like the hash of the
commit or a timestamp.

Stripe [10] uses thick events – the entire entity affected is sent together
with the event metadata. In the case where the object was updated, it also
sends the previous values of the affected fields. PayPal [7] event payloads,
which, although not entirely thin, will also contain links to related resources and
actions that the webhook consumer can perform on them, thus implementing

11

2. Webhooks and State-of-the-Art

the hypermedia as the engine of application state (HATEOAS) principles.

2.4 Securing Webhooks

2.4.1 Event Authenticity
Webhook consumers need to be able to ensure the authenticity of the event
and the integrity of the message. This can be achieved by signing the notifica-
tion. [2, 11]

The most popular approach is to create a hash-based message authenti-
cation code (HMAC) from the sensitive data and metadata of the event and
then include it in a header of the notification HTTP request. To create the
HMAC, both parties, the webhook provider and consumer, need to know the
same secret key. Recall the ”secret” field in the GitHub form for registering a
webhook: Figure 2.1. [8]

Some use cases may require non-repudiation of notifications. However, this
cannot be achieved with HMAC as there is a shared key; instead, asymmetric
keys should be used.

With asymmetric keys, the webhook provider generates a private and public
key pair, preferrably for every subscription. The provider then uses the private
key to sign the notification and uses some other channel to distribute the public
key; some, for example, will provide it in the webhook dashboard, and some
will offer a URL to retrieve it from in the notification request. Compared
to HMAC verification, this approach is more difficult to set up for webhook
consumers and it is also computationally more expensive to sign and validate
events.

Another option is to rely on mutual transport layer security (TLS) for
communication, where not only the identity of the server (webhook consumer)
is verified using a certificate, but also that of the client (webhook provider);
however, it is again difficult to set up, especially compared to signing with
HMAC, and due to this, it is not considered worthwhile for most use cases. [8]

2.4.2 Webhook Consumer Authenticity and Encryption
So that the webhook provider can ensure that event notifications with poten-
tially sensitive data are sent to their intended recipients, HTTPS should be
used. This requires the consumer to properly configure a TLS certificate. The
provider then needs to properly verify the certificates, e.g. treat self-signed
certificates as not trustworthy.

However, it is not always feasible for consumers to enable HTTPS for their
webhook endpoints, leaving the delivery process susceptible to man-in-the-
middle attacks. If encryption cannot be used, the events should not contain
sensitive data. Instead, event payloads should be designed to be thin, with
sensitive data accessible to the webhook consumer via an API on the side of
the webhook provider. [2]

2.4.3 Webhook Endpoint Idempotency
The same event may be delivered more than once. This can happen, for ex-
ample, when the webhook consumer does not respond to the first delivery in

12

2.4. Securing Webhooks

time, and so the provider attempts another delivery. Therefore, it is important
that webhook endpoints are idempotent [2]. If the provider includes a unique
event identifier in the notification that is consistent between delivery attempts,
consumers can store the identifier and use it to ensure that the same event is
not processed twice. [8]

2.4.4 Replay Prevention
In a replay attack, a malicious party records the HTTP request of the event
and sends it again to the webhook consumer.

If the strategy from the previous section is used and the event identifier
is included in the signature (Section 2.4.1), it can serve as replay prevention;
however, this would require the consumer to store the event identifiers indefi-
nitely.

A better strategy to help mitigate this is to include a timestamp with
each attempt to deliver the event. Again, this timestamp must be included
in the signature described in Section 2.4.1 to prevent tampering. When the
webhook consumer receives a notification from the provider, they verify that
the timestamp is within some predefined tolerance from the current time. It is
therefore needed that the timestamp of the current delivery attempt is used,
and not the timestamp of the original event. [2]

2.4.5 Server-Side Request Forgery (SSRF)
Extra care must be taken when sending requests to the user-defined webhook
endpoint URLs. Since event notification HTTP requests are sent from in-
side the network of the webhook provider, a malicious actor could use a web-
hook subscription to send HTTP requests to the internal infrastructure of the
provider. This can be especially dangerous in combination with tools to in-
spect events and their responses that webhook providers often include in their
webhook dashboards to aid development.

One way of mitigating this issue is to maintain a blacklist of sensitive IP
addresses, perform domain name resolution on webhook endpoint URLs using
domain name system (DNS), and filter out endpoints that correspond to black-
listed IPs. Since DNS records change, it is important to filter blacklisted IP
addresses before each event notification HTTP request, and not only once at
the time of subscription. Implementors should also be careful not to perform
domain name resolution again after the address was checked, as this could be
abused in a DNS re-binding attack. Any HTTP redirect could also point to a
blacklisted IP address and should be filtered out.[2, 11]

Another approach is to use a proxy for outgoing traffic that is isolated from
sensitive internal systems. There are existing solutions created specifically for
use with webhooks, such as Smokescreen [12] and Webhook-sentry [13].

2.4.6 Event Sender IP Whitelisting
Webhook providers often publish a list of static IP addresses that will be used to
send the notification HTTP requests from. As an additional security measure,
webhook consumers should configure their event receiver to block communica-
tions coming from non-whitelisted IP addresses. [2, 4]

13

2. Webhooks and State-of-the-Art

2.5 Standard Webhooks

At the time of writing this thesis, there is an ongoing effort to standardize
webhooks[4]. It is an attempt to codify industry best practices by some of the
major players in the industry. The proposal specifies requirements and rec-
ommendations, with the signature scheme (recall Section 2.4.1), together with
the headers needed to verify it, being the only requirement. This signature
scheme allows both symmetric and asymmetric signatures, and also multiple
signatures for a single event to support zero downtime secret rotation. The
Standard Webhooks repository also includes reference implementations of sig-
nature generation and verification for a number of programming languages.

The majority of the recommendations in the proposal have already been
discussed in this chapter.

14

Chapter 3
Existing Frameworks and Libraries

There are many tools for implementing webhook consumers, i.e. the receivers
of events. Often webhook providers themselves maintain libraries to correctly
receive their own flavor of webhooks; however, due to the differences between
these webhook flavors, a universal tool is not possible. Ngrok[14] is a good
illustration of this problem. It is a reverse proxy software that can be con-
figured to receive webhooks, verify them, and then send them to the actual
consumer application through a tunnel, one advantage of which is that the
actual consumer application does not need to be exposed to the public Inter-
net. However, ngrok needs to implement special handling for each webhook
provider, precisely because there are differences between each.3

The options for tools for implementing a webhook provider are limited.
There exist frameworks such as Thorn [?] and Django REST Hooks [15], which
integrate with Python and the Django web framework; however, they are
not actively maintained. There is the ActionHook [16] gem for Ruby, which
does not build on any framework, also without any recent commits to the
GitHub repository. A post on the Microsoft .NET blog [17] describes a rel-
evant ASP.NET related project; however, it is now obsolete and abandoned,
according to the Deveel Webhooks documentation [18], which is another .NET
framework providing such capabilities.

There is another category of tools that webhook providers can use: Webhook-
as-a-Service (WaaS) solutions. Here, the examples are Svix [3] and Hook0 [19].
They have the advantage of being programming language agnostic, although
perhaps not as flexible.

I decided to review one of the solutions based on an existing web frame-
work and one of the WaaS solutions. For the solution based on an existing web
framework, I chose Thorn. While it is not actively maintained, its documenta-
tion is the most extensive and complete, it is one of the more popular solutions
(judging by GitHub stars), it integrates with a web framework, which offers
interesting possibilities that are worth showcasing, and Django and Python are
the technologies that I am more familiar with compared to .NET or Ruby. For
a WaaS solution, I chose Svix using similar criteria.

3This is one of the problems motivating the Standard Webhooks [4] initiative.

15

3. Existing Frameworks and Libraries

3.1 Thorn

Thorn is a webhook framework for Python, perhaps most similar in concept to
the subject of this thesis out of the existing solutions reviewed in this chapter.
Although Thorn states that the framework can be extended to integrate with
any Python web framework, out of the box, only Django [20] is supported.
A convenient interface is provided to define events, send events, and manage
subscriptions.

This section is based on the information found in the documentation of
Thorn [21] and its source code [22].

3.1.1 Events

Events may be sent manually from anywhere; however, more interestingly,
Thorn allows users to define events on top of Django models through model
events.

A model in Django corresponds to the model in the Model-View-Controller
(MVC)4 architecture; it is responsible for managing the data in the application,
and each model usually maps to a single table in a relational database via
object-relational mapping (ORM). Changes to these models, and consequently
the database, can be easily set up to trigger events.

Users can also declaratively specify filters that narrow down the conditions
when certain model events are sent. Listing 3 illustrates usage of model events.

3.1.2 Subscriptions

Subscriptions are implemented as yet another Django model that is stored
in the relational database alongside other models of the Django application.
Users can choose to include a default REST API implementation to manage
subscribers in their Django application. By default, a subscription will be
owned by a user managed by the Django user authentication system.

3.1.3 Dispatchers

Thorn offers multiple pluggable dispatchers. The job of a dispatcher is to
perform the notification HTTP requests to registered webhook endpoints.

The ”default” dispatcher sends requests directly from the current process.
This has the disadvantage that the request that originally triggered some event
in the Django application cannot be finished until all notification requests have
been sent out to subscribed webhook endpoints and their responses processed.
For this reason, the default dispatcher should only be used in development
scenarios.

The dispatcher intended for production is the ”celery” dispatcher. Celery
is a distributed task queue software [23], and Thorn uses it to distribute the
work of a dispatcher over a pool of workers.

4Technically, Django uses Model-Template-View, however, these can be viewed as differ-
ent terminology for Model-View-Controller respectively.

16

3.1. Thorn

from django.db import models
from thorn import ModelEvent, webhook_model

@webhook_model
class Article(models.Model):

Django fields to define database columns for this model.
uuid = models.UUIDField()
title = models.CharField(max_length=128)
state = models.CharField(max_length=128, default='PENDING')
body = models.TextField()

This class is used to set up Thorn events.
class webhooks:

Declares an event that will be sent every time
an Article is changed and the value of the state
field is equal to 'PUBLISHED'.
on_publish = ModelEvent(

'article.published', # Event type/topic for the event.
state__eq='PUBLISHED', # Filter over the state field.

).dispatches_on_change() # Trigger on every change.

Defines the payload of the events.
Data from the model object may be used.
def payload(self, article):

return {
'title': article.title,

}

Listing 3: A Django model extended with Thorn model events. (Based on [21].)

3.1.4 Reliability
Celery can be configured to automatically retry a failed task, which Thorn takes
advantage of to enable a configurable retry mechanism for delivering events. If
event delivery fails, despite possible retries, Thorn will not react in any way
(e. g. the subscription associated with the webhook endpoint is not canceled).
More broadly, there does not appear to be any communication of the results of
the deliveries from the workers back to the main application5, and consequently
no concept of event history is provided by Thorn.

3.1.5 Security
Thorn signs notification requests using an HMAC as described in Section 2.4.1
and includes the signature in a custom HTTP header Hook-HMAC. The specific
hashing algorithm used is customizable. However, the request and signature do
not include a timestamp of the delivery attempt or a unique identifier for the
event, leaving recipients potentially vulnerable to replay attacks. Of course,

5Celery itself can facilitate this using ”backends”, e. g. a key-value store like Redis that
the task producer polls for task results.

17

3. Existing Frameworks and Libraries

users can include an event ID in the payload of each event themselves. However,
including delivery attempt timestamps would require a modification of the
source code of the framework.

Another security feature are ”validators”, which validate the recipient web-
hook endpoint URL before making the notification request. There are prede-
fined validators that check that the protocol is either HTTP or HTTPS, or
that the domain name does not resolve to an IP address in a reserved private
block. Custom validators may be provided.

3.2 Svix

Svix is a WaaS product. It is written in the Rust programming language and
a mostly compatible modified version of the software is open source, and thus
Svix can also be self-hosted [24].

Similarly to the previous section, this section is based on the Svix docu-
mentation [3] and the source code available on GitHub [24].

Svix differs from a framework like Thorn in that webhook-related function-
ality is separated from the main application into a standalone service. To send
an event6, webhook providers call the Svix REST API, and the Svix server
does the actual work of filtering and sending the event to registered webhook
endpoints. To manage subscriptions, inspect results of event deliveries, etc.,
webhook providers also use the Svix REST API – the provider’s webhook con-
sumers cannot communicate with Svix directly, and so such requests must be
sent to the provider first and then delegated. [3]

To inform the webhook provider about events, such as failure to deliver an
event, Svix provides operational webhooks.

Figure 3.1 illustrates the HTTP communication involved in sending a single
event through Svix.

Svix also maintains libraries to aid development for both the webhook
provider (e. g. wrappers around calls to the Svix REST API) and the webhook
consumer (e. g. functions to verify signatures) for many popular programming
languages.

3.2.1 Reliability
Unlike Thorn, Svix stores all messages sent, including information about each
delivery attempt for each endpoint. Webhook providers can access all this in-
formation using the Svix REST API and can also instruct Svix to make another
attempt at delivery. To allow webhook consumers to access this functionality,
additional work is required on the provider’s side, as they cannot call the Svix
REST API directly – the provider must do it on their behalf. Svix alleviates
this problem to an extent by providing a customizable autogenerated webhook
dashboard.

6Svix documentation uses different terminology, e. g. ”message” vs. ”event”. For the sake
of simplicity and consistency with the rest of this text, I map the concepts used in Svix onto
the concepts described here so far. For example, I ignore the Svix concept of ”applications”.
Instead of ”message”, ”create message”, etc., I use ”event”, ”send event”. Svix’s concept of
an ”endpoint” also corresponds well to what I described as subscriptions.

18

3.2. Svix

Figure 3.1: Sequence diagram illustrating single event send through Svix.
(Based on [3].)

3.2.2 Security
Svix recommends and uses HMAC verification by default; however, signatures
using asymmetric keys are also possible. As many providers do, Svix also
provides a list of IP addresses from which notification requests will be sent.
In general, Svix adheres to the Standard Webhooks (draft) specification 7 and
therefore implements current best security practices.

3.2.3 Architecture
Svix stores all information about events alongside the subscription data in a
single PostgreSQL database. This database is separate from the database the
webhook provider will certainly have, and so to enable relating entities between
these databases, Svix allows the provider to set a custom identifier for some
of its entities, which can then be used in communications with the Svix REST
API.

Unlike Thorn, with its Celery-based dispatcher, workers in the Svix server
run in the same process as asynchronous tasks and access the database directly

7The CEO of Svix is a member of the technical steering committee for Standard Web-
hooks.

19

3. Existing Frameworks and Libraries

to store the results of sending notifications. Similarly to Thorn, work (i. e. an
instruction to send an event to some endpoints) is distributed to workers using
a message queue (in-memory, Redis, or RabbitMQ) [24].

20

Chapter 4
Requirements

4.1 Functional requirements

• Must Have Ability to send events to subscribers accordingly.

• Must Have Subscriptions management.

• Should Have Subscriptions management REST API.

• Should Have Event history and accompanying REST API.

• Could Have Webhook dashboard (browser user interface to manage
webhook subscriptions and inspect event history).

• Won’t Have Means to declare possible event types.

Declaring possible event types is mainly useful for documentation. It is
only a necessity if the solution is to include features such as automatic docu-
mentation generation.

4.2 Non-functional requirements

4.2.1 Ease of use
The interface of the solution should fit well with the approaches commonly used
in Haskell web programming and in popular web programming libraries and
frameworks in the ecosystem. It should also be possible to fit the subscription
and the event history API with users’ APIs without much hassle.

4.2.2 Flexibility
As shown in Chapter 2, there is no single way to implement webhooks. Thin
vs. thick events, reconciliation strategies, different security requirements, etc. –
the framework should be customizable enough to support such different needs.

21

4. Requirements

4.2.3 Reliability
As described in Chapter 2, retry strategies and keeping a record of the dis-
patched events and the results of their corresponding requests are essential to
implement many of the reliability strategies. Using thin events is also men-
tioned; however, the content of actual payloads of events is up to the user of
the framework.

4.2.4 Security
As discussed in Section 2.4, some security features, such as server-side request
forgery (SSRF) protection, can be handled by a third-party software. On the
other hand, signing event payloads is essential and should preferrably follow
the scheme prescribed by Standard Webhooks [4].

4.2.5 Usability
There are two perspectives:

• the developers using the framework to create a webhook enabled web
application, and

• the consumers of that web application.

In the first case, usability means e. g. well-commented code and documented
functionality with examples. There should be a simple interface to trigger
events.

In the second case, this can mean providing features like the ping event so
that consumers can test their webhook endpoints, or providing an OpenAPI
specification for the subscription and event history APIs.

22

Chapter 5
Implementation

5.1 Whoopr Module

This section describes the top-level module of Whoopr, which implements the
core of the framework.

5.1.1 Subscription Management
An important aspect of any webhook provider is subscription management.
Whoopr is unique in that it should be able to integrate with any database
management system (DBMS) and it should support use cases such as Svix,
where the subscription data is kept in a database separate from the main
application, and also use cases such as Thorn, where the subscription data is
stored as part of a single application. Clearly, an abstraction is needed.

In Haskell, it is very common to structure programs around monads 8 and
monad stacks 9. Monads are also inherent to Haskell – all IO operations must
be carried out through the IO monad. The IO monad may, for example, be
combined with the Reader monad to provide the IO computations with some
context, such as the information needed to connect to a database and perform
a query. This is essentially the Session monad in Hasql [25], a PostreSQL
library for Haskell.

For the purposes of this section, monads encapsulate a computation and
some context. To define a common interface to the subscription data, a type
class is used, where operations such as getAllSubscribers are defined within
the terms of some monad. Users can therefore supplement any monad to
Whoopr, and thus arbitrary context, as long as it satisfies the necessary con-
straints. Listing 4 shows (a slightly simplified version of) the declaration for
this type class.

Notice that the type of the subscription s is also polymorphic in this dec-
laration. This leads to more flexibility for implementations since a specific
representation is not prescribed. Instead, Whoopr defines type classes such
as HasId or HasEndpointURI, which, in addition to flexibility, allow for more
granular constraints in different parts of the system.

8I will rather not attempt a proper explanation.
9A combination of multiple monads, allowing to use their joined functionalities.

23

5. Implementation

class (Monad m, HasId s) => MonadSubscriptions s m | m -> s where
getAllSubscriptions :: m [s]
getSubscription :: IdType s -> m (Maybe s)
createSubscription :: s -> m s
deleteSubscription :: IdType s -> m (Maybe s)

Listing 4: MonadSubscriptions type class definition.

Whoopr then declares a subclass of the MonadSubscriptions type class,
as shown in Listing 5, which is crucial when sending events. Its purpose is
to find relevant subscriptions for a specific event. Note the type parameter
fd, standing for filter descriptor, which describes the event for the purposes
of this filtering process. A naive implementation of this filtering functional-
ity would simply combine the results of getAllSubscribers with a common
higher-order function like filter; however, usually this filtering can be per-
formed in a database query, yielding better performance. This type class makes
both approaches possible.

The simplest example for fd is a simple string that contains the type of
event. How this string is then matched against the subscribers is up to the
instances of this type class. This declaration of MonadSubscriptionsFilter
also allows different instances for the same subscriber type, but with different
filtering. For instance, the simple event type string could be compared simply
by equality or hierarchically. (This hierarchical matching is used in Thorn [21],
where, for example, "user.*" matches "user.created".)

class (MonadSubscriptions s m)
=> MonadSubscriptionsFilter s m fd where

filterSubscriptions :: fd -> m [s]

Listing 5: MonadSubscriptionsFilter type class definition.

5.1.2 Task Queue
Whoopr’s architecture is organized around a central task queue. When a user
wants to send an event after a change has occurred in their system, a task is
created and inserted into the task queue. On the other end, there is a worker
running constantly in a separate lightweight thread, which will receive tasks
from the queue and process them. Whoopr defines a pair of type classes that
are used to work with the task queue in a manner that does not require a
concrete implementation. Listing 6 shows the definitions.

5.1.3 Event Sender
The job of the event sender is to take event data, find relevant subscribers,
and, for each one, construct the notification HTTP request and make sure it
is delivered. Generating notification metadata, such as signatures, and dealing
with retries is also in the scope of the event sender.

24

5.1. Whoopr Module

class TaskQueueProducer q a where
tqSend :: q -> a -> IO ()

class TaskQueueConsumer q a where
tqRecv :: q -> IO a

Listing 6: Task queue type class definitions.

Whoopr provides the function consumeTaskQueue, which is to be used to
launch the event sender. The function (Listing 7) takes as a parameter not
only the consuming end of the task queue, but also the producing end. The
main reason for this is that failed delivery attempts are re-inserted into the
task queue after the retry delay. The Proxy fd parameter is where Whoopr
pays the price for its flexibility; this parameter is only needed to help the
compiler. Finally, the runner :: m () -> IO () parameter is needed to run
the filtering monad (or, in other words, to provide the necessary context to the
filtering computation).

consumeTaskQueue :: (
TaskQueueConsumer cq (Task fd),
TaskQueueProducer pq (Task fd),
HmacSigner s, HasEndpointURI s,
MonadSubscriptionsFilter s m fd,
MonadIO m

) => Proxy fd -> (m () -> IO ()) -> cq -> pq -> IO ()
consumeTaskQueue proxy runner cq pq = do

task <- taskRecvHelper proxy cq
liftIO . async $ case task of

NotificationDeliveryTask nd -> ...
NotificationInitializationTask ni -> ...

return ()

Listing 7: Definition of the consumeTaskQueue function.

To initiate an event delivery, users must insert a notification initialization
task into the task queue, which encapsulates the event data and its filter de-
scriptor. Later, Chapter 6 shows how this can be performed and how it can be
wrapped into a more convenient interface.

As the type signature of this function suggests, Whoopr’s event sender
signs event deliveries using a HMAC. This signature is computed according to
the Standard Webhooks requirements [4] and will be included in the notifica-
tion HTTP POST request in the webhook-signature header, along with the
webhook-id and webhook-timestamp headers.

5.1.3.1 Caveats

Whoopr’s event sender does not implement security measures such as checking
that endpoint URLs do not resolve to private IP addresses. However, this is
not a fatal flaw – as mentioned in Section 2.4.5 users can use a proxy such as

25

5. Implementation

webhook-sentry [13] or smokescreen [12], which are made specifically for use
with webhooks, to protect their webhooks.

These checks would most conveniently be performed at the time of binding
a network socket (an IP address and port pair); however, this is very low-level
functionality, and not all HTTP client libraries expose it. Healthchecks [26]
solves this by using libcURL.

5.2 Whoopr.Basic Module

The definitions from the core module described in the previous section are not
very useful on their own. For that, instances for the abstract typeclasses need
to be provided. The definitions from this module can then, together with the
previous module, be put together to form a working webhoook provider.

5.2.1 Concretizing Subscription Management
Whoopr.Basic assumes that subscriptions are stored in-memory in a list and
that this list is accessible using the MonadReader interface. With these as-
sumptions in place, MonadSubscriptions can be instantiated (Listing 8).

Next, a concrete subscription type is provided and with the assumption
that strings containing the types of events will be used as a filter descriptor,
an instance of MonadSubscriptionsFilter is provided.

class HasSubscriptionsList env s | env -> s where
hslGetAllSubscriptions :: env -> MVar [s]

instance (HasSubscriptionsList env s,
MonadReader env m, MonadIO m,
HasId s, Integral (IdType s))

=> MonadSubscriptions s m where
...

Listing 8: MonadSubscriber instance from the Whoopr.Basic module

5.2.2 Subscription API
Using these concrete definitions and Servant, a Haskell library for writing web
applications [27], the Whoopr.Basic module provides a Web Application Inter-
face (WAI) [28] Application, which can be combined with other such appli-
cations, possibly created using other web frameworks built on top of WAI.

26

Chapter 6
Evaluation

6.1 Example Application

In this section, I describe an example web application, Whoopr-example, using
Whoopr to demonstrate its use. The application exposes a simple web API
built using Servant [27] to manage users. Any change to a user will trigger an
event and subscribers will be notified using the functionality Whoopr and the
Whoopr.Basic module provide.

6.1.1 Defining Application Environment
Listing 9 contains definition of the application environment and instantiates
HasSubscriptionsList for it using the subscription type from the Whoopr.Basic
module. This is enough to make a monad such as ReaderT AppEnv IO an in-
stance of the MonadSubscriber class, thanks to the instance definition also
from the module shown in Section 5.2.1.

The definition of AppEnv also shows that the application will use the stan-
dard Chan as the task queue. (The Whoopr module provides instantiations of
the related queue classes for Chan.) ByteString in the eventQueue type is the
type of the filter descriptor. The Whoopr.Basic module provides an instance of
MonadSubscriptionFilter for ByteString and BasicSubscription and the
compiler will automatically use it here.

data AppEnv = AppEnv {
subscriptions :: MVar [BasicSubscription],
userDb :: MVar [User],
eventQueue :: Chan (Task ByteString)

}

instance HasSubscriptionsList AppEnv BasicSubscription where
hslGetAllSubscriptions = subscriptions

runSubscriptionMonad :: AppEnv -> ReaderT AppEnv m a -> m a
runSubscriptionMonad env m = runReaderT m env

Listing 9: Application environment for Whoopr-example.

27

6. Evaluation

Listing 9 also defines an important function runSubscriptionMonad, which
converts from the subscription-enabled monad to a different one. This is needed
to pass the AppEnv context to the event sender (recall the runner parameter
mentioned in Section 5.1.3) and also to the subscription API, both of which
work in the context of a different monad m.

6.1.2 Launching the Event Sender
To run the event sender, the example application in its main function launches
a new worker thread, which performs the consumeTaskQueue function in an
infinite loop. Listing 10 show the important parts of the code.

main = do
...
let env = AppEnv { ... }
forkFinally (forever $ consumeTaskQueue' env) (\case

Right _ -> print "sender finished OK"
Left e -> print $ "sender finished with error: " ++ show e)

...

consumeTaskQueue' env@AppEnv{..} = consumeTaskQueue
(Proxy :: Proxy ByteString)
(runSubscriptionMonad env)
eventQueue
eventQueue

Listing 10: Launching event sender worker.

6.1.3 Sending Events
As described in Section 5.1.3, to initiate event delivery, users must insert a
NotificationDeliveryTask into the task queue. This is a tedious detail that
can be encapsulated in a monadic action using the same pattern as with the
MonadSubscriptions instance.

Listing 11 first defines constraints to describe a monad, in the context of
which events can be sent. Then, using these constraints, the notify function
is defined. This function takes the filter descriptor, i.e. the event type in the
case of this application, and the event data, which can be anything that can be
converted to JSON. Before creating the task, it modifies the event data so that
it also includes the event type, demonstrating that users are in full control of
the contents of their event payloads.

6.2 Assessment

The previous section demonstrates that Whoopr, despite its abstract core,
can be used to implement webhook support for a web application effectively,
with a small amount of boilerplate code, provided that there are intermediate
building blocks that can be used, such as the Whoopr.Basic module. Thanks

28

6.3. Further Work

class HasWebhooks env where
getTaskQueueProducer :: env -> TaskQueueType

instance HasWebhooks AppEnv where
getTaskQueueProducer = eventQueue

type (MonadWebhooks env m) = (MonadIO m, MonadReader env m, HasWebhooks env)

notify :: (MonadWebhooks env m, ToJSON ed) => ByteString -> ed -> m ()
notify fd ed = do

q <- getTaskQueueProducer <$> ask
let edWithEventType = object [

"eventType" .= decodeUtf8 fd,
"eventData" .= ed

]
let task = NotificationInitialization {

eventData = DynEventData edWithEventType,
filterDescriptor = fd

}
liftIO $ tqSend q $ NotificationInitializationTask task

Listing 11: Defining convenience functions to send events.

to the strong static type system of Haskell, it is difficult to make a mistake in
the boilerplate code if the types fit together.

Compared to the solutions reviewed in Chapter 3 Whoopr does not provide
as comprehensive and out-of-the-box experience; however, it is more flexible.

6.3 Further Work

There are many possible avenues in which to improve Whoopr.

• Whoopr does not implement any concept of event history described in
Section 2.3.3.2, and so, as with Thorn, if the maximum number of retries
is exceeded, the event is lost.

• The intermediate layer, now represented by the Whoopr.Basic module, is
rather limited. Whoopr would greatly benefit from having such a module
that builds on PostgreSQL, for example.

• A more complete example application demonstrating usage of Whoopr
using popular technologies would not only serve as an instructive resource
for users but also help validate the design of the framework.

• Generating a template for a webhook dashboard, binding automatically
to the subscriptions and event history APIs is also within the realm of
possibility.

• Implement protections against SSRF.

29

6. Evaluation

• Implement an asymmetric signature scheme according to Standard Web-
hooks, allowing users to choose.

• Tests for the framework and a CI/CD pipeline for the GitHub repository.

• And more. . .

30

Chapter 7
Distribution

The source code for the Whoopr package is available as a GitHub repository
under the MIT license 10. It has not yet been uploaded to a package repository
such as Hackage. To use it, users can instead download the repository and
using a cabal.project file make it visible to other local packages, which is
what was used to develop the Whoopr-example in Chapter 6.

Assuming the following directory structure:

cabal.project
whoopr

src
whoopr.cabal
· · ·

whoopr-example
app
whoopr-example.cabal
· · ·

If cabal.project includes the following line:

packages: */*.cabal

Then the Whoopr package becomes visible in whoopr-example.cabal as
any other regular package, e.g.:

executable whoopr-example
...

build-depends: whoopr, ...

...

Although this is perhaps not as convenient, it is not unexpected for users
to find themselves in a situation where they need to tweak Whoopr to fit their

10https://github.com/vojtechbalik/whoopr

31

https://github.com/vojtechbalik/whoopr

7. Distribution

needs, as the package is in the more experimental stages of development at this
moment.

The Whoopr-example package is also available as a GitHub repository 11

11https://github.com/vojtechbalik/whoopr-example/

32

https://github.com/vojtechbalik/whoopr-example/

Conclusion

This work investigates many different existing webhook providers, looking
closely at their similarities and differences. It also researches previous investi-
gations and analyses on the matter. The considerations that webhook providers
implementors need to make and the problems they face, particularly when it
comes to the security and reliability of webhook deliveries, are discussed to-
gether with the related best practices.

An overview of existing frameworks and libraries designed to aid in web-
hook provider development is provided, and they are divided into two main
categories. Out of each category, one solution is reviewed in detail. The at-
tributes of these solutions are also compared to the findings from the preceding
research chapter.

The specification of requirements builds on the researched best practices
and features that existing webhook providers offer, to which I assign priorities.
The subsequent design and implementation, albeit satisfying mostly only the
most prioritized of the outlined requirements, is a fully functional solution,
and also a solution that is extensible, on top of which missing less prioritized
features can be built. It is also likely the only solution in the Haskell space.

The solution, which I called ”Whoopr”, is then evaluated by building an
example webhook-enabled web application. A brief comparison with the exist-
ing solutions reviewed in detail is provided as well. Finally, the possible ways
in which Whoopr can be developed and improved are also discussed.

The repository containing the final version of the source code for the solution
is freely available under an MIT license.

33

Bibliography

[1] GitHub, Inc. GitHub Docs. https://docs.github.com/en, 2024, [Online;
accessed 28-January-2024].

[2] Biehl, M. Webhooks – Events for RESTful APIs. API-University
Series, CreateSpace Independent Publishing Platform, 2017, ISBN
9781979717069.

[3] Svix. Svix Documentation. https://docs.svix.com/, 2024, [Online; ac-
cessed 7-February-2024].

[4] Standard Webhooks. Standard Webhooks specification. https:
//github.com/standard-webhooks/standard-webhooks/tree/
5569aeae6fa0035bb01eb0167ab74bcaaeabedc1, 2023, [Online; accessed
18-January-2024].

[5] Lindsay, J. Web hooks to revolutionize the web. https:
//progrium.github.io/blog/2007/05/03/web-hooks-to-
revolutionize-the-web/, 2008, [Online; accessed 15-December-2023].

[6] Red Hat. What is a webhook? https://www.redhat.com/en/topics/
automation/what-is-a-webhook, 2024, [Online; accessed 15-January-
2024].

[7] PayPal. PayPal API reference. https://developer.paypal.com/api/
rest, 2024, [Online; accessed 24-January-2024].

[8] ngrok. Webhooks.fyi. https://webhooks.fyi, 2023, [Online; accessed 20-
January-2024].

[9] Adobe. Webhooks Overview. https://helpx.adobe.com/sign/
developer/webhook/overview.html, 2023, [Online; accessed 13-
February-2024].

[10] Stripe. Stripe API Reference. https://stripe.com/docs/api, 2024, [On-
line; accessed 6-February-2024].

[11] Lokare, A. Sending webhooks securely. https://www.ameyalokare.com/
technology/webhooks/2021/05/03/sending-webhooks-
securely.html, May 3 2021, [Online; accessed 21-January-2024].

35

https://docs.github.com/en
https://docs.svix.com/
https://github.com/standard-webhooks/standard-webhooks/tree/5569aeae6fa0035bb01eb0167ab74bcaaeabedc1
https://github.com/standard-webhooks/standard-webhooks/tree/5569aeae6fa0035bb01eb0167ab74bcaaeabedc1
https://github.com/standard-webhooks/standard-webhooks/tree/5569aeae6fa0035bb01eb0167ab74bcaaeabedc1
https://progrium.github.io/blog/2007/05/03/web-hooks-to-revolutionize-the-web/
https://progrium.github.io/blog/2007/05/03/web-hooks-to-revolutionize-the-web/
https://progrium.github.io/blog/2007/05/03/web-hooks-to-revolutionize-the-web/
https://www.redhat.com/en/topics/automation/what-is-a-webhook
https://www.redhat.com/en/topics/automation/what-is-a-webhook
https://developer.paypal.com/api/rest
https://developer.paypal.com/api/rest
https://webhooks.fyi
https://helpx.adobe.com/sign/developer/webhook/overview.html
https://helpx.adobe.com/sign/developer/webhook/overview.html
https://stripe.com/docs/api
https://www.ameyalokare.com/technology/webhooks/2021/05/03/sending-webhooks-securely.html
https://www.ameyalokare.com/technology/webhooks/2021/05/03/sending-webhooks-securely.html
https://www.ameyalokare.com/technology/webhooks/2021/05/03/sending-webhooks-securely.html

Bibliography

[12] Stripe. Smokescreen. https://github.com/stripe/smokescreen, 2023,
[Online; accessed 21-January-2024].

[13] Lokare, A.; Lissner, M.; et al. Webhook Sentry. https://github.com/
juggernaut/webhook-sentry, 2023, [Online; accessed 31-January-2024].

[14] ngrok. ngrok Docs. https://ngrok.com/docs, 2024, [Online; accessed 9-
February-2024].

[15] Zapier Inc. Django REST Hooks. https://github.com/zapier/django-
rest-hooks, 2016, [Online; accessed 9-February-2024].

[16] smsohan. ActionHook. https://github.com/smsohan/actionhook, 2020,
[Online; accessed 9-February-2024].

[17] Nielsen, H. F. Sending WebHooks with ASP.NET WebHooks Preview.
https://devblogs.microsoft.com/dotnet/sending-webhooks-with-
asp-net-webhooks-preview/, 2015, [Online; accessed 9-February-2024].

[18] Provenzano, A. Deveel Webhooks. https://github.com/deveel/
deveel.webhooks, 2024, [Online; accessed 9-February-2024].

[19] Hook0. The Hook0 Developer Hub. https://documentation.hook0.com/,
2024, [Online; accessed 13-January-2024].

[20] Django Software Foundation. Django documentation. https:
//docs.djangoproject.com, 2024, [Online; accessed 16-January-2024].

[21] Robinhood Markets, I. Thorn documentation. https://
thorn.readthedocs.io, 2016, [Online; accessed 16-January-2024].

[22] Robinhood Markets, Inc and individual contributors. Thorn reposi-
tory. https://github.com/robinhood/thorn, 2016, [Online; accessed 14-
February-2024].

[23] Solem, A.; contributors. Celery User Manual. https://
docs.celeryq.dev/, 2023, [Online; accessed 5-February-2024].

[24] Svix. Svix GitHub Repository. https://github.com/svix/svix-
webhooks, 2024, [Online; accessed 7-February-2024].

[25] Volkov, N. Hasql. https://github.com/nikita-volkov/hasql, 2014,
[Online; accessed 15-February-2024].

[26] Caune, P. Healthchecks. https://github.com/healthchecks/
healthchecks/, 2015, [Online; accessed 15-February-2024].

[27] Servant Contributors. Servant. https://docs.servant.dev/, 2022, [On-
line; accessed 15-February-2024].

[28] Snoyman, M. WAI. https://github.com/yesodweb/wai, 2017, [Online;
accessed 15-February-2024].

36

https://github.com/stripe/smokescreen
https://github.com/juggernaut/webhook-sentry
https://github.com/juggernaut/webhook-sentry
https://ngrok.com/docs
https://github.com/zapier/django-rest-hooks
https://github.com/zapier/django-rest-hooks
https://github.com/smsohan/actionhook
https://devblogs.microsoft.com/dotnet/sending-webhooks-with-asp-net-webhooks-preview/
https://devblogs.microsoft.com/dotnet/sending-webhooks-with-asp-net-webhooks-preview/
https://github.com/deveel/deveel.webhooks
https://github.com/deveel/deveel.webhooks
https://documentation.hook0.com/
https://docs.djangoproject.com
https://docs.djangoproject.com
https://thorn.readthedocs.io
https://thorn.readthedocs.io
https://github.com/robinhood/thorn
https://docs.celeryq.dev/
https://docs.celeryq.dev/
https://github.com/svix/svix-webhooks
https://github.com/svix/svix-webhooks
https://github.com/nikita-volkov/hasql
https://github.com/healthchecks/healthchecks/
https://github.com/healthchecks/healthchecks/
https://docs.servant.dev/
https://github.com/yesodweb/wai

Acronyms

DBMS database management system. 23

DDoS distributed denial of service. 7

DNS domain name system. 13

HATEOAS hypermedia as the engine of application state. 12

HMAC hash-based message authentication code. 7, 17, 19, 25

MVC Model-View-Controller. 16

ORM object-relational mapping. 16

SSRF server-side request forgery. 22, 29

TLS transport layer security. 12

WaaS Webhook-as-a-Service. 15, 18

WAI Web Application Interface. 26

37

Appendix A
Contents of attachments

src..directory of source codes
thesis................................LATEX source codes of the thesis
whoopr...............................whoopr package implementation
whoopr-example.............whoopr-example package implementation

text.....................................directory with text of the thesis
thesis.pdf......................................thesis in PDF format

39

	Introduction
	Goals and Methodology
	Webhooks and State-of-the-Art
	Events and Web APIs
	Webhooks Introduction
	Webhook Interactions
	Overview
	Subscribing To Events
	Event Delivery
	Retry Mechanism
	Event History

	Event Data
	Thin vs Thick Event

	Securing Webhooks
	Event Authenticity
	Webhook Consumer Authenticity and Encryption
	Webhook Endpoint Idempotency
	Replay Prevention
	Server-Side Request Forgery (SSRF)
	Event Sender IP Whitelisting

	Standard Webhooks

	Existing Frameworks and Libraries
	Thorn
	Events
	Subscriptions
	Dispatchers
	Reliability
	Security

	Svix
	Reliability
	Security
	Architecture

	Requirements
	Functional requirements
	Non-functional requirements
	Ease of use
	Flexibility
	Reliability
	Security
	Usability

	Implementation
	Whoopr Module
	Subscription Management
	Task Queue
	Event Sender
	Caveats

	Whoopr.Basic Module
	Concretizing Subscription Management
	Subscription API

	Evaluation
	Example Application
	Defining Application Environment
	Launching the Event Sender
	Sending Events

	Assessment
	Further Work

	Distribution
	Conclusion
	Bibliography
	Contents of attachments

