
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

Redmine Helpdesk Web Application

Bc. Jakub Lukačín

Ing. Oldřich Malec

Informatics

Software Engineering

Department of Software Engineering

until the end of summer semester 2025/2026

Instructions

The goal of this thesis is to design and implement a web application that will serve as a

helpdesk portal for Redmine, a highly customizable project management and issue-

tracking tool. The primary objective of the application is to deliver a simplified user

interface optimized for users without technical expertise.

Tailor your solution towards the assignee's organization's requirements, but consider

interoperability in the sense of possible future distribution to third-party Redmine

instances.

Undertake the following steps:

 - Gather the user requirements.

 - Analyze existing competition software.

 - Design your solution.

 - Analyze possible technical approaches and choose the most suitable one.

 - Implement a functioning prototype of the application.

 - Deploy the prototype, perform its user testing, and evaluate the testing.

 - Remark on possible future improvements.

Electronically approved by Ing. Michal Valenta, Ph.D. on 21 February 2024 in Prague.

Master’s thesis

Redmine Helpdesk Web Application

Bc. Jakub Lukačín

Department of Software Engineering
Supervisor: Ing. Oldřich Malec

May 9, 2024

Acknowledgements

I would like to thank my supervisor, Ing. Oldřich Malec, for his time and
valuable advice. I would also like to thank my colleagues who assisted me with
the thesis. Last but not least, I’d like to thank my family and my friends for
their support during my studies.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in partic-
ular that the Czech Technical University in Prague has the right to conclude
a license agreement on the utilization of this thesis as a school work under the
provisions of Article 60 (1) of the Act.

In Prague on May 9, 2024

Czech Technical University in Prague
Faculty of Information Technology
© 2024 Jakub Lukačín. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of In-
formation Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Lukačín, Jakub. Redmine Helpdesk Web Application. Master’s thesis. Czech
Technical University in Prague, Faculty of Information Technology, 2024.

Abstrakt

Táto práca sa zaoberá designom a implementáciou helpdesku. Tento helpdesk
má pracovať so systémom Redmine, ktorý sa zameriava na riadenie projektov.
Začiatok práce predstavuje software Redmine a termín helpdesk. Táto časť
je nasledovaná popisom užívateľských požiadavkov a technológií použitých pri
implementácii. Medzi použité technológie patrí Express.JS, PostgreSQL, fra-
mework Vue a knižnica komponent Vuetify. Kapitola Design je nasledovaná
kapitolou Implementácia, kde je priblížených viacero zaujímavých oblastí im-
plementácie, ako napríklad autentifikácia, práca so súbormi a internacionali-
zácia aplikácie. Nasadenie prototypu aplikácie je diskutované pri konci práce
a využíva technológiu kontajnerizácie. Predposledná kapitola práce približuje
prevedené užívateľské testovanie a posledná kapitola je venovaná budúcnosti
projektu.

Klíčová slova Redmine, systém pro řízení projektů, helpdesk, Vue, Vuetify

vii

Abstract

This thesis focuses on the design and implementation of a help desk for a
project management tool called Redmine. The beginning of the thesis intro-
duces Redmine software and state-of-the-art in the help desk area. Afterward,
the user requirements and technological stack of the application are presented.
The main technologies are the Vue framework, Vuetify component library, Ex-
press.JS, and PostgreSQL. The design chapter is followed by the implemen-
tation, where several interesting areas, such as authentication, working with
files, and internationalization are discussed. The deployment of the prototype
is done with the help of containerization and is talked about near the end of
the thesis. The deployment is followed by a chapter on user testing and the
last chapter of the thesis talks about the possible future of the project.

Keywords Redmine, project management tool, helpdesk, Vue, Vuetify

viii

Contents

Introduction 1

1 State-of-the-art 3
1.1 An Overview of Redmine . 3

1.1.1 Who uses Redmine . 3
1.1.2 Features of Redmine . 4
1.1.3 Roles in Redmine . 5
1.1.4 Issue tracking feature of Redmine 6
1.1.5 Summary of the Redmine overview subsection 10

1.2 What is a help desk . 10
1.3 Competing helpdesk solutions for Redmine 11

1.3.1 RedmineUP’s Helpdesk Plugin 11
1.3.2 Lightweight helpdesk plugin for redmine 12
1.3.3 HelpDesk for Easy Redmine 13

1.4 Papers on Helpdesk with a similar use case 14
1.4.1 Colorado State University case study 14
1.4.2 Oregon State University case study 15

1.5 Competing helpdesk solutions outside Redmine 17
1.5.1 Zoho Desk . 17
1.5.2 Jira Service Desk . 18
1.5.3 Spiceworks help desk . 20

1.6 A brief outline of the state-of-the-art chapter 20

2 User requirements gathering 23
2.1 Background of the topic . 23
2.2 Theory on requirements . 23
2.3 Functional requirements . 24
2.4 Non-functional requirements . 25
2.5 A discussion with a colleague 25

3 Technological stack 27
3.1 Choosing the right technology for the application 27
3.2 Client-side JavaScript frameworks introduction 28

3.2.1 A brief history of client-side JS frameworks 28
3.2.2 Why do the frameworks exist? 28

ix

3.3 Client-side JavaScript framework choice 30
3.3.1 React . 30
3.3.2 Vue . 30
3.3.3 Svelte . 30
3.3.4 Comparison of the frameworks 31
3.3.5 The choice of the framework 31

3.4 Technologies bundle choice . 32
3.4.1 Composition API vs Options API 32
3.4.2 Single File Component 34
3.4.3 The script setup . 34
3.4.4 TypeScript or JavaScript 34
3.4.5 UI Component Library choice 35
3.4.6 Package manager choice 35

3.5 Conclusion of the technology choices 36

4 Design 39
4.1 Communication between helpdesk and Redmine 39

4.1.1 Authentication . 39
4.1.2 Handling the API key 39
4.1.3 A remark on the OAuth 2.0 41

4.2 Choosing the backend technology 41
4.3 UI design . 42

4.3.1 Homepage and the layout of the application 42
4.3.2 Report an issue screen 43

4.4 The configurable fields . 45
4.5 Handling the Helpdesk Configuration 46

4.5.1 Phase 1 - prototype deployment 46
4.5.2 Phase 2 - Redmine plugin 46
4.5.3 Phase 3 - Extending the Redmine plugin 47

5 Implementation 49
5.1 Start of the implementation . 49

5.1.1 Initializing the frontend 49
5.1.2 Initializing the backend 50
5.1.3 Initializing the database 50
5.1.4 A remark on the IDE choice 50

5.2 Authentication . 51
5.2.1 Registration . 51
5.2.2 Login . 52
5.2.3 Using the JWT in communication 52
5.2.4 Refreshing the JWT token 53

5.3 Formatting text in Redmine . 54
5.3.1 Generating textile . 55
5.3.2 Rendering textile . 56

5.4 Requesting files from Redmine 56
5.5 Uploading files to Redmine . 57
5.6 Handling the images in textile 60

5.6.1 Rendering the text containing images 60
5.6.2 Creating the text containing images 60

5.7 Routing in the frontend . 61

x

5.8 Internationalization of the application 62
5.9 Utilizing ESLint, auto-import and GitHub Copilot for a more

efficient coding . 62
5.9.1 ESLint . 62
5.9.2 Auto import . 63
5.9.3 GitHub Copilot . 63

6 Deployment of the prototype 65
6.1 Concept of containerization . 65
6.2 Leveraged containerization technology 65
6.3 A remark on the database change 66
6.4 Cooperation with my colleague 66

7 User testing 67
7.1 The agenda of the testing . 67
7.2 Participants profile . 68
7.3 The testing process . 68
7.4 Observations . 68
7.5 Fixing the observed issues . 71

8 Future of the project 73
8.1 Fixing the remaining known issues 73
8.2 Refactoring the Helpdesk Configuration 73
8.3 Shift in the email strategy . 74
8.4 Implementing new functionalities 74

Conclusion 77

Bibliography 79

A Acronyms 89

B Contents of attachments 91

xi

List of Figures

1.1 Status transition configuration example 7
1.2 Customers view when creating an issue 8
1.3 Customers view when editing an issue 8
1.4 Customers view of list of issues . 9
1.5 Issues list customization menu . 9
1.6 Jira Service Management form . 19

3.1 Vue framework v-for snippet . 29
3.2 Options API vs Composition API 33

4.1 Design of the architecture . 40
4.2 Final layout and homepage . 43

5.1 Frontend directory structure . 49
5.2 JWT refresh logic . 54
5.3 TinyMCE configuration . 55
5.4 Processing file with multer middleware 58
5.5 Vue Router Navigation Guard . 61
5.6 ESLint configuration for the FE 64

xiii

List of Tables

3.1 Comparison of React, Vue and Svelte 31
3.2 Quantified comparison of React, Vue and Svelte 32

xv

Introduction

The paper [1], titled “Issue Tracking”, was published in 2003 and mentions
that the term issue tracking is overtaking the term bug tracking, which was
more common in the past. This fact represents the idea that there is always
more to do in the software projects - bug fixes of existing problems, enhance-
ments of the current software with new functionalities, optimization of existing
code, and so on. This idea is further supported by the diploma thesis [2]
from 2009 titled “Issue tracking systems”. The author shares the idea that
changes are a constant feature of software development. He also presents ac-
tions that are usually done in a software life cycle. Moreover, he present the
term Configuration Management. It stands for the process of controlling
and documenting change to a developing program. The key part of Configura-
tion management is in author’s words Requirements Management, which
involves establishing and maintaining agreement between customer and devel-
oper on both technical and non-technical requirements. This agreement forms
the basis for estimating, planning, performing and tracking project activities
throughout the project and for maintaining and enhancing developed software.
Nowadays, the Requirements Management activity is done by software tools,
called Issue Tracking Systems, Trouble Tracking Systems, Bug Tracking Sys-
tems, etc; with the shared goal of collecting and managing the requirements,
as well as tracking progress on the requirements.

To be able to manage the requirements correctly, the tools have to cover
multiple aspects and also be able to hold information on multiple topics, such
as:

• What should be fixed or created?

• How should it work the right way?

• Who reported the request, who confirmed, analysed, implemented and
verified the solution?

• When was the request reported, when was the issue fixed and when was
it verified?

• What changes in code were made?

• How long it took to handle the request?

1

Introduction

These are only some of the functionalities of an issue tracking system, as per
Janák [2]. Some of these functionalities are rather technical, what serves well
the developer and project manager. Yet for the customer, it might present
a problem. As we read in the definition of Requirements Management, the
goal is establishing and maintaining an agreement between customer
and developer. This might be rather hard in case the customer doesn’t have
technical background and lacks basic digital skills. According to a post [3] from
Eurostat, 46% of EU citizens aged 16 to 74 didn’t have even basic digital skills
in 2021.

From the presented facts, it is plain to see that almost half of the active
population of Europe would face problems navigating Issue Management Sys-
tems, which are being used as the main form of communication and between
the developer and customer. This might not come as a problem to many, yet it
has its impacts. The struggling customer wants to solve his issue, and since he
can’t navigate the system correctly, he can decide to do one of the following:

• Call the project manager or developer directly. This action takes time
from both sides and can also negatively impact the life cycle of the issue,
if certain process flow has been agreed on by both sides.

• Try to use the system to the best of his skills. The result is, in most cases,
a poorly defined issue with multiple actions required from company side
before the development can begin.

I think we can agree that all of these actions present negatives for both sides. In
some cases, the customer might even feel that the customer service offered by
the software company is lacking, and this is highly problematic. The article [4]
from 2011 mentions that 70% of the customers leave a service provider not
because of the price or product quality issues, but because they don’t like the
quality of the customer service. The companies should therefore stride towards
a good-quality customer service, so that they are able to maintain their clients.

This is where my thesis comes into play. Redmine is an open-source project
management web application, as stated on its official documentation page [5].
The page also talks about multiple functionalities of Redmine, presenting it as
a technical and customizable tool. My goal is the design and implementation
of a web app that will serve as a Redmine client for a technically less-skilled
audiences. It should hide the technical part of the Redmine from them, yet
still allow them to communicate trouble-free with the people from the software
company. Such client application should provide a better customer service
to the clients, leaving them more happy, as well as saving time for both, the
developer and the customer sides. The name of such application is “help desk”
and I will try to describe these terms better in the following chapter.

2

Chapter 1
State-of-the-art

The chapter State-of-the-art will explore Redmine, as well as the idea of help
desk and existing help desk solutions for Redmine.

1.1 An Overview of Redmine

I’ve already mentioned Redmine couple times. It is one of those Issue Tracking
Systems, Bug Tracking Systems or Trouble Tracking Systems. For our pur-
poses, I will call it Issue tracking tool, as that’s what’s written on the English
Wikipedia site about Redmine [6], and it’s also the first term that comes to my
mind when I hear Redmine. In this section, I will present what the Redmine
is capable of. My main source will be the official Redmine documentation [5],
which describes the main Redmine features, but also contains several guides,
such as User’s guide and Developer’s guide.

1.1.1 Who uses Redmine
To bring a bit of merit to the Redmine tool, I will list a couple of projects that
use Redmine. Those projects are:

• Ruby language - the 17th most used programming language in the
world, as of April 2024, according to PYPL index [7]. This case is quite
interesting as the developers of the Ruby language use the Redmine sys-
tem to track the development process of Ruby language. On the other
hand, the Redmine software is built using Ruby on Rails framework,
which is based on the Ruby programming language. This information
was discussed on the official Redmine forums at [8].

• TYPO3 - a web content management system, prominent in Europe, with
around half a million installations declared on their Wikipedia entry at
the time of writing this thesis [9].

• Universities in France, Ukraine, Switzerland, Germany, United Kingdom,
USA.

• Several projects from different governments and ministries around the
world, such as French, Chile, USA and Japan.

3

1. State-of-the-art

• Kingdom Come: Deliverance [10], a realistic medieval RPG developed by
Warhorse studios [11], a Czech video game developer company.

There are more projects mentioned on the “Who uses Redmine?” page [12], an
official Redmine source. To talk about my own experience, I’ve used Redmine
during my studies at Czech Technical University at Prague, and also in my
work in the software industry. The goal of this subsection was to present the
fact that Redmine is a relatively widely used issue tracking tool.

1.1.2 Features of Redmine
Redmine offers a wide functionality and does not focus solely on the issue
tracking area. The functionalities are divided into modules. Each module
represents a singular unit of functionality. Examples of modules are Issue
tracking, Time tracking, News, Documents, Files. The modules are
configured per project, and they can be enabled and disabled whenever, with
the related data being stored in case of disablement. Some of the Redmine
functionalities include:

• Managing multiple projects - an instance of Redmine can handle
multiple projects at the same time. This means a software company
has a single instance of Redmine and is able to govern multiple projects
inside this single instance of Redmine. Each project has its own context
- issues, users, configuration. The software company operates in this
single instance of Redmine, customers have per project access. There is
also a support for sub-projects, creating a Child-Parent relations between
projects.

• Roles and permissions - roles are defined per project. A member
of a project can have one to multiple roles. A role is a collection of
permissions. Permissions dictate what actions can be performed, such as
managing projects, managing forums, documents, files, wiki pages and
all the operations with issues.

• Issue tracking - issue is the core entity of Redmine. It is always bound
to a project and can be owned by a user. Relations between issues, such as
“related to”, “duplicates”, “blocks”, “precedes” are supported. Watchers
are a second relations related functionality - list of users watching the
issue. If an update to the issue happens, those users will be notified.
Subtasks are a way of dividing an issue into a smaller tasks with more
control over the issue in mind.

• Gantt chart and calendar - provide time-based view of a project. The
Gantt chart is a bar chart and is one of the most popular and useful ways
of showing activities displayed [13]. Redmine uses the more advanced
version of Gantt charts which also display the inter-dependencies between
issues present in the chart.

• News, documents and Files management - the News are a post
about the project or sub-projects. The Documents can be used to store
the documentation, such as User documentation and Technical documen-
tation. Finally the Files are a way of storing the files that are related to
the project, yet don’t have a special relation to an issue.

4

1.1. An Overview of Redmine

• Per project wiki - the wiki is, in my experience, used to store developer-
focused knowledge about the project. There is a possibility for sub-pages,
locking certain pages, seeing history of the pages. Watching pages is also
possible, meaning a user gets notified whenever a page is updated, same
as watching issues.

• Versions - allows the user to plan and track changes in the project. The
issues are assigned to versions. A roadmap functionality allows for a
version-based view, where the user can see percentage of issues done, as
well as wiki pages, description, title and couple other attributes assigned
to the version.

This is by far not the definitive list of Redmine functionalities. I’ve just pre-
sented a couple of core Redmine modules and functionalities, which were listed
in the official Redmine documentation [5]. There is also a possibility to create
a module or a plugin of it’s own, a developer guide for such case exists [14]. A
plugin is a piece of software that enhances the existing functionality of Red-
mine, or adds a completely new one.

1.1.3 Roles in Redmine
Redmine has two system roles - Non member and Anonymous. According
to a blog post from RedmineUP [15], a service focused on Redmine plugins,
Redmine comes with a set of predefined roles, such as Manager, Developer and
Reporter. Thanks to the versatility of Redmine, we can edit and delete these
predefined roles, as well as add completely new ones. Each instance of Redmine
could have a different set of roles with different permissions attached to them.
For the simplicity, I will present several roles. From my experience and belief,
these roles should be applicable on most of the software projects:

• Manager - the responsible one from the software company. He should
have full access to all the functionalities of a project. This role should
also be able to configure the setting of the project.

• Developer - should be able to see the issues, alter it’s states. The
developer should also be able to access the wiki page of the project, the
Gantt chart and other project’s knowledge sources. He doesn’t need the
ability to alter the configuration of the project.

• Customer - the only roles for the other side of the spectrum. The
customer needs to see the issues, their status and progress. He also needs
the ability to report a new issue. Depending on the relation set between
customer and software company, the customer might also want to see the
time spent on each of the issue. He does not need the access to knowledge
sources nor the ability to configure the Redmine project entity.

For all the roles I’ve mentioned above, I will use a configuration that has
been used for a couple of years in my current place of work, a small software
development company. In this configuration, the customer role doesn’t have the
“see time spent” permission granted by default. This permission is rather added
additionally, by granting another role titled “+ time spent”. This approach
allows for a higher customization.

5

1. State-of-the-art

In the context of this thesis, I will work with the Redmine configuration
from current work. It is described in the paragraphs above. The customer will
be also granted the “+ time spent” role, unless explicitly stated otherwise.

1.1.4 Issue tracking feature of Redmine
Although many parts of Redmine are interesting, my main focus will be on the
Issue tracking, the part that is being used by the customer the most. It is is
also the part of Redmine my work will focus on. In the following paragraphs,
I will describe the core parts of Issue tracking.

Fields of Redmine issue

According to RedmineUp [16], a Redmine Issue has the following fields by
default:

• Tracker - category of issue, clarified later.

• Subject - name of the issue.

• Description - resume of the issue.

• Status - current state of the issue, once again, this attribute will be
clarified later.

• Priority - what is the priority of the issue. The predefined values are
Low, Normal, High, Urgent, Immediate, the manager can add more levels.

• Assignee - an issue can be assigned to either a single user or to a group
of users.

• Private - a flag reducing the visibility of the issue to a smaller list of
users.

• Parent task - select another issue as a parent issue of this one.

• Watchers - I’ve already mentioned them: it is a list of users who follow
the issue and receive e-mail notifications about the issue updates.

• Start / Due date - dates when the work on issue should start and when
the issue should be finished.

These are just the predefined fields of an issue, there is a possibility to add
custom fields. Both, the predefined and the custom fields, can be used as
a filter and as a searchable when using the Redmine search function. More
information on the custom attributes is available in the “Custom fields” part
of the Administrator guide [17].

Manager’s view of Issue tracking

The manager of the project is able to alter the configuration of the project.
This is in most cases the entry point of every project - the manager sets up the
configuration, of the project. The configuration consists of:

6

1.1. An Overview of Redmine

Figure 1.1: Status transition configuration example [18]

• Types of trackers - they allow for splitting issues into different cate-
gories, such as Bug, Feature, Test, Epic. The trackers are customiz-
able, the manager can define what issue fields it contains, what is the
default status and what is the workflow. The manager can also add new
types of trackers.

• Issue status - what status is the issue in. Each of the statuses has a
name and a flag indicating whether the status means the issue is closed.
These statuses are highly modifiable, as per nature of Redmine.

• % done - reflects the level of completion of the issue. It can be semi-
automatized with the use of issue statuses.

• Workflow - defines the status transitions allowed for the combinations
of role and tracker type. It is basically a 2D map where the manager
defines what transitions are allowed for each of the states. An example
of such map can be found in the figure 1.1.

• Field permissions - set special flags, such as read-only and required
for each field of the issue. These permissions are defined per state and
per field.

Customer’s view of the Issue tracking

When the customer wants to create a new issue, the screen from the figure
1.2 is displayed. In my opinion, there are several fields the customer does not
explicitly need to set, such as Tracker, Assignee, Checklist, Parent Task, Start
and Due dates as well as %Done. The “new issue” screen is very similar to the
“edit issue” screen from the figure 1.3, sharing the same fields. This is the first
area I’d like to improve the customer’s user experience in.

The second area, that would in my opinion deserve an improvement, is the
list of issues. An example is visible in the figure 1.4. The list is in my opinion
not that bad, yet it might contain too many columns. The columns in the

7

1. State-of-the-art

Figure 1.2: Customers view when creating an issue

Figure 1.3: Customers view when editing an issue

list are customizable per project and per user. This customization is rather
technical, as visible in the figure 1.5 and is not persisted per save. Therefore,
a lot more optimal approach would in my opinion be having a table with less
columns.

8

1.1. An Overview of Redmine

Figure 1.4: Customers view of list of issues

Figure 1.5: Issues list customization menu

Another area to improve in the issue list field are in my opinion the filters.
Applying a filter in the Redmine UI works in two steps:

1. From a drop-down list, select the filter you’d like to add. This list is
rather long, with more than 40 possible filter options, just in the default
issue configuration, without the use of any custom fields.

2. After selecting the desired filter, choose the operator1 and the value2.

1dependant on type, is, is not, smaller or equal, higher or equal, ...
2again, depending on type, could be a date, a type, a value, ...

9

1. State-of-the-art

The filtering is therefore rather complex. Don’t get me wrong, it works great if
you know what you’re looking for, as you are able to use any logical combination
of filters imaginable. This technical approach is extremely well-suited for the
project manager, as he can take full advantage of it. Yet, the customer does
not really need such control over the issues and this autonomy could bring
more problems than benefits. That’s why I’d like to simplify these filters in my
implementation.

1.1.5 Summary of the Redmine overview subsection
In this section, I’ve introduced the Redmine software. At the beginning, I’ve
tried to emphasize the fact that Redmine is not just a small unknown project,
but rather a widely and internationally used issue tracking tool. Afterwards,
I’ve represented it’s main features and architecture and roles. Finally, I delved
deeper into the Issue tracking feature of Redmine. I’ve presented the main
entity of this feature - the issue entity, as well as the areas where this entity is
used, displayed and filtered. During this presentation, I’ve pinpointed several
places that would benefit from a more simpler approach, an approach I’d like
to take in my solution.

1.2 What is a help desk

Besides Redmine, the word Helpdesk is second, rather non-generic word in
the title of my thesis Redmine Helpdesk Web Application. I’ll therefore
devote this section to the topic of help desk, trying to shed a bit of light on it.

First of all, there is the grammar side of things. According to Cambridge
dictionary [19], the word helpdesk exists and means “a service provided by a
company to help customers when they have problems with products they have
bought, for example, computers, or to give them information”. There is also
an entry for the phrase help desk in this dictionary [20], meaning “a service
that provides information and help to people, especially those using a computer
network”. Thanks to these two dictionary entries, as well as similarities in their
meanings, I’ll assume both of these entries can be used interchangeably. I’ll
therefore accept sources talking about both helpdesk as well as a help desk.
To keep things standardized though, I’ll try to stick to a word helpdesk in this
thesis.

Looking at the helpdesk entry in the English Wikipedia [21], the talk is
about a department or a person providing assistance and information, usually
for electronic and computer problems. This matches the Cambridge entries
with a small difference that the dictionary is talking about a service, rather
than a department or a person. What is interesting in the Wikipedia entry
is the following paragraph: “A main function of the Help desk is to separate
issues from defects. Many issues can be solved at the Help Desk level such as
password resets and simple misunderstandings. Some issues will be the result
of actual product defect which should be forwarded to a development team for
resolution.” After reading this bit of information, the talk about a person or
a department makes a lot more sense. An old-school helpdesk should serve as
the first level of service, where someone with limited privileges can perform
basic support. This basic support however doesn’t cover any changes in the

10

1.3. Competing helpdesk solutions for Redmine

provided software. The requests on the software changes should be forwarded
to the developers.

I’d like to discuss the application of this division on my current case. Red-
mine supports the trackers customization could be used to fulfill this division.
Despite this fact, I think I won’t implement this division in my solution. The
explanation is rather simple - introducing this division would require the cus-
tomer to correctly assign the right type of request - either a defect or an issue.
This might not be all the time possible from with the information accessible to
the customer. A better approach to this case is in my opinion a default value
for the tracker field, with the project manager setting the right tracker after
processing the issue inside Redmine.

1.3 Competing helpdesk solutions for Redmine

Taking into consideration the vast usage of Redmine, it doesn’t come as a
surprise that there already exists a bunch of Redmine helpdesk solutions. In
this section, I’ll analyse few of them, with the goal of exploring a couple of
interesting features suitable for my own solution. For each of the reviewed
plugins, I will present its features and my perspective on it.

1.3.1 RedmineUP’s Helpdesk Plugin
The first solution I looked into is named RedmineUP’s Helpdesk Plugin. This
plugin adds a new module to your instance of Redmine. It was developed by the
RedmineUP company, a software company focusing on plugins for Redmine.
The mentioned Helpdesk plugin is one of their flagships, along the CMS plugin.
The plugin itself costs 399 US dollars and in this price you also get twelve
months of updates and support. I’ve sourced the information about the plugin
from RedmineUP’s official site available at [22].

Features

• Customer information - display the information about the customer
at the “View Issue” screen. The customer information is further cus-
tomizable, with the usage of tags. Also supports “previous customer’s
issues” relation.

• Reply to the customer directly from the Issue’s page - the ability
to respond to the assigned customer directly from the mentioned “View
Issue” screen.

• Turn issues into tickets - extend the functionality of the Issues list,
adding a “filter by customer” functionality.

• Respond faster with auto-responders - the ability to create an auto-
responder for a customer’s first message.

• Helpdesk Widget with API - employees and customers can send in-
quiries or set tickets from any page. The fields inside this form can be
modified and prepopulated.

11

1. State-of-the-art

• Smart workflow automation - apply automatic e-mail processing to
sort incoming messages based on given rules and criteria. It is able to
modify the issue fields, as well as move the ticket to another project.

Conclusion

The main advantage of this plugin is in my opinion the auto-responder. From
my experience as a customer, it feels good to have a confirmation email. The
widget that allows a customer to create a new issue on the fly is also an in-
teresting idea, although a form is in my opinion a better suit for such case.
Overall, the plugin adds lots of functionality to Redmine, but is in my opinion
more focused towards enhancing the experience of the project manager. I will
nevertheless consider some of it’s features in my design.

1.3.2 Lightweight helpdesk plugin for redmine

The second existing solution I looked into is available at the [23] repository. It
is a lightweight helpdesk plugin. From my understanding, it is tightly coupled
with the “create issue from an email” functionality of Redmine. Since it is so
tightly coupled, it makes sense to cover this functionality first, before discussing
the plugin itself.

Create issue from an email functionality

This functionality is rather well defined in the administrator’s guide [24]. The
main idea is the fact that and issue can be created, as well as commented
on directly from an email. A customer sends an email to a predefined e-mail
address. The Redmine instance accesses this e-mail inbox and generates either
an Issue or a response to an issue. This functionality is available on Redmine
without any extra installation, a user, however, needs to set up a bunch of
configuration before this functionality works. A full guide on this functionality
available under the already mentioned guide [24].

Features

The mentioned lightweight helpdesk plugin adds a single feature to this func-
tionality - a first reply email, which is sent every time a new issue is processed
by this functionality. A user can define the body and footer of this email, as
well as use some of the issue fields in the response. The plugin is free to use,
has almost 200 stars on GitHub [23] and supports many versions of Redmine,
such as 3.0.x, 4.0.x, 4.2.x and 5.0.x.

Conclusion

Overall, the plugin seems to solve the one functionality it focuses on very
well. The problem is that it is dependant on the “Create issue from an email”
approach. I understand that the first response e-mail is an important concept
for a helpdesk solution, but it does not impact any other parts of my problem.
This plugin is therefore not really applicable to my problem.

12

1.3. Competing helpdesk solutions for Redmine

1.3.3 HelpDesk for Easy Redmine

HelpDesk for Easy Redmine is another competing solution. According to its
English Wikipedia entry [25], the initial release of the Easy Redmine software
was in 2007. It functions as an extension to Redmine. In the initial release, the
Easy Redmine had modules for project financing. Currently, it offers several
extensions of Redmine, such as Resource Management, Agile3, Finance
Management, Business2Business CRM and also HelpDesk. According
to their website about the HelpDesk plugin [27], more than 300 000 Redmine
users are supported via this HelpDesk plugin.

Features

The main features of the Easy Redmine helpdesk plugin are the following ones:

• SLA monitoring and reports - the project manager can see informa-
tion such as average first response, time to solve, SLA fulfilment. This
data is especially important for managers.

• Tickets from e-mail - this is the same functionality as the one I’ve
described in the previous subsection. My guess is that Easy Redmine
built a more accessible configuration over the setup of this functionality.

• Simplified UI - a PCMag review from 2021 [28] says the Easy Redmine
makes Redmine “slicker looking”. I have to agree on that, the UI images
available on the Easy Redmine websites are way nice than the default
Redmine UI. A cleaner UI is something I’d like to have in my solution.

• Sorting of tickets according to customer/products and keywords
- the ability to sort issues by customers was already mentioned in the
RedmineUP’s plugin. Easy Redmine goes a step further, allowing the
user to filter even by products and keywords.

• Customizable performance statistics - since this plugin focuses heav-
ily on the SLAs, dashboards depicting performance in this area are avail-
able.

This solution, however, does not come free. There are two types of pricing
methods available:

• A cloud-based solution - meaning the Easy Redmine will host the
solution on their servers for you. This is the pricier one, with the cost of
“Platform” tier, which includes the HelpDesk feature, being 23.9 euros
per user per month.

• On-premises - an approach where you host the solution on your own.
For this method, the pricing starts at 5.9 euros per user per month.

3software development model [26]

13

1. State-of-the-art

Conclusion

The Easy Redmine HelpDesk solution seems the most robust one out of the
three reviewed. This robustness, however, comes at a relatively high service
cost. Looking at it’s functionality, it is in my opinion more suited towards the
project managers, with the SLAs and time tracking being the main focuses of
the solution. An interesting thing I noticed is the fact that the solution includes
a template of a message that is sent to a user after a new issue is registered in
Redmine. This is a functionality that has been repeated in all three reviewed
plugins.

1.4 Papers on Helpdesk with a similar use case

I’ve made a literature review with keyword searches such as helpdesk solu-
tion, helpdesk software, helpdesk. I’ve found two papers talking about
cases similar to mine. I’ll talk about them in the following subsections. These
papers were using term ticket, an I will therefore clarify it before accessing it.
According to PCMag’s encyclopedia entry [29], a ticket is “a document that is
filled out to request technical support. The help desk ticket, which contains the
customer’s name and, if applicable, an account number, describes the problem
to be solved. The numbered ticket becomes part of the support workflow until
the case is resolved.” It has a very close relation to issue.

1.4.1 Colorado State University case study
The first paper [30] was published by people from the Engineering College
at Colorado State University. Their circumstances were as follows - provid-
ing computing support for a growing population of customers on a shrinking
budget. The helpdesk group consisted of eight full-time workers and around
25 part-time workers, supporting 2500 students and close to 500 faculty staff.
Looking at their case, I’ve found some interesting ideas:

• Centralize all desktop support work. - Don’t assign a department to
a single worker, rather pool all the incoming issues and allow the workers
to access this pool of tickets. On one hand, you might lose expertise, on
the other hand, you gain better work distribution and therefore hopefully
more happy clients.

• Create one central point of contact for the entire IT group. - As
I understood it, the main goal was to centralize the knowledge base and
communication between the IT group, by this expediting the problem
solving.

• If you are skilled enough to modify the software, go for open-
source. - Since the group has a technical background, it wasn’t hard for
them to customize the software to their liking. Therefore, an open-source
is a go to.

• Two types of notes on an issue. - Have a “public” note visible to
both the customer and the IT support group. Have a “private” note, that
is only visible to the IT support group.

14

1.4. Papers on Helpdesk with a similar use case

• Very simple usability for the customer. - A very simple web-based
and email interface that provides the same information was mentioned.
A creation of a ticket can create a ticket by either emailing a central
email address, or accessing the web-based tool. A custom form on the
website also allows for a ticket creation, without a need to enter the tool
interface.

Conclusion

Although the circumstances of the IT group were not the same as mine, I’m
confident I can apply some of the concepts of their paper in my own design.
Their “very simple usability for customer” concept already matches my view.
The “two types of notes” is an interesting idea, something I haven’t exactly
considered yet.

1.4.2 Oregon State University case study
Another study [31] I looked into also took place at a USA based university.
Their initial circumstances were a bit different to the Colorado ones - ap-
proximately half of the campus in Oregon was supported by one central IT
organization, while the other half of the campus was supported directly by the
individual colleges and departments. They had tried and failed to acquire sev-
eral commercial helpdesk software in the years past, and therefore decided for
a development of a scalable helpdesk solution that could be used by any unit
on campus.

In this paper, I’ve found several interesting concepts and I’ll address them
one by one in the following paragraphs.

The chosen approach

The constraints during the early phase development were low budget on the
financial side, as well as a call for both a web interface and an email interface
on the functional side. This is a a reoccurring pattern from the previous study.

The authors have decided to divide the helpdesk into several modules:

• Call Tracking module, focused towards the issue handling and data
persistence.

• Knowledgebase, a module focused on providing information to the
client without any interaction with the technical staff.

• Scheduling module, allowing the customer to schedule a meeting with
the technical staff.

• Inventory module, displaying information about the equipment of the
department.

• Service Level Agreements module. This module was added addition-
ally, not being developed before the paper publication.

I’ll cover the Call Tracking module as well as the Knowledgebase one in more
detail, as I think they are the most important ones for my project.

15

1. State-of-the-art

Call Tracking module

The decision of the group was to try Bugzilla as a core for the Call Tracking
module. Bugzilla is an open source bug tracking solution developed by the
Mozilla Organization. Significant modification had to be made by the develop-
ers. These modifications were mostly required to ensure the compliance with
federal laws, as well as to handle the personal information correctly.

The paper’s section titled “What It Looks Like” on the “Call Tracking
module” starts with a line “The customer interface has been kept as simple as
possible”. The authors of the paper later go on to explain that the customer can
log in to a request form, where their contact data is automatically populated.
They are free to fill up the affiliation, subject and description of their issue.
Once the user submits the form, a new issue is registered and the customer
is informed via email about the fact that a new support request has been
registered in their name. The technicians have much more control over the
tickets - they can filter them, edit their fields, ask for clarification, comment
the ticket.

There is once again a talk about the private comments, only visible to the
technicians. Another interesting functionality mentioned in the paper is linking
multiple tickets together, under the “related to” or “duplicates” relation. This
helps with the navigation, also allowing the more junior staff to handle a ticket
by simply following an approach used in the past. This could be quite easily
replicated in Redmine helpdesk with the relations between issues functionality
of Redmine.

Knowledgebase

The knowledgebase module is another module I’d like to briefly cover. An
initial implementation of this module allowed for comment copying from the
tickets to the knowledgebase document for editing. A year and a half after
the initial implementation, a major enhancement of the knowledgebase module
started. The UI was improved, but mostly the search capabilities of the module
were improved.

A standard use case for this module is described as follows: “Customer will
have the ability to enter a question in a sentence format. When they submit
the question a list of articles, ranked by relevance, will be displayed to them
to choose. They will also have the ability to browse the knowledgebase by
category and subject.” No architecture, nor technology, was mentioned in the
chapter about this module. That does not really matter, as the idea alone is
something I’m more than happy with. I didn’t really consider a non-interactive
part of helpdesk until now. It is another tool I can consider in the design part
of my work.

Conclusion

The paper talked about developing a robust, universally applicable helpdesk
solution divided into multiple modules. The idea of simple UI for customer,
as well as two-way issue registration4 were mentioned. An interesting part of

4email and form

16

1.5. Competing helpdesk solutions outside Redmine

the paper was the knowledgebase module, which is in my opinion very well
applicable for certain use cases.

1.5 Competing helpdesk solutions outside Redmine

Although I’m partially limited by the usage of Redmine, I think it’s a good
idea to also review some non Redmine-based helpdesk solutions. I might be
able to uncover some features of helpdesk that would serve my use case. I’ve
tried looking up a paper on helpdesk solutions comparison, yet I didn’t have
any luck with that. I’ve afterwards tried Google. There were couple posts that
sparked my interest, but most of them were self-promotions. In the end, the
post that I judged the most trust-worthy was the one titled “Best Help Desk
Software” [32] by Forbes Advisor, as Forbes is in my eyes a fairly reputable
organization. They’ve also declared that they earn a commission from partner
links on Forbes Advisor, but these commissions don’t affect the editors’ opinions
or evaluations. This post was from 2024, therefore very current. It presented
10 different solutions. I’ll briefly cover the most interesting ones in their own
subsections.

1.5.1 Zoho Desk
The Zoho Desk was marked as the best overall, getting full 5 out of 5 rating.
The reviewers praised mainly the fact that it is feature-packed, yet easy to
use. Another major advantage was the fact that bonus features such as live
chat and mobile app were available out of the box and were not hidden behind
second paywall. The pricing is 14 to 50 dollars per agent per month5.

Features

I’ve accessed the documentation of the Zoho Desk, available at [33]. The
description was rather vast, with standards like superb ticket management,
monitoring agent productivity, automation of repetitive activities and security.
Innovative features were:

• Contextual AI - share relevant solution from your knowledge base di-
rectly with customer. This relates to the Oregon’s university knowledge-
base, with an improvement in the used technology, as the Oregon’s paper
was published approximately twenty years ago. Some other improvements
delivered by the use of AI were auto-tagging tickets based on key aspects,
sentiment analysis, reply assistant with the use of knowledge base and an
AI based notifications that are fires in case an unusual activity in ticket
stream occurs.

• Self-Service was another big feature category I feel worth mentioning.
The main idea is once again the Knowledge Base which serves as a repos-
itory of solutions for commonly asked questions. Other than the knowl-
edge base, Guide Conversations can be configured as a platform for self-
service experience. The self-services are later embeddable into websites
and mobile apps outside of the main Zoho tool. An option to divide

5an agent is a person handling the incoming requests

17

1. State-of-the-art

these functionalities per-brand is also available, allowing for a distinct
self-service portal for each brand, in case the company owns more of
them.

• Extensibility - although extensibility is not a novelty, a single function-
ality caught my eye. Zoho offers an SDK that allows for a custom mobile
apps development. This is in my opinion an innovative approach. I don’t
think I’ll be able to replicate something like that in my project, but it oc-
curred as a rather progressive idea to me and I wanted to let the readers
know about such option.

Conclusion

The Zoho Desk is a very complex out of the box helpdesk solution, which seems
to be top of the class in the area of helpdesks. The solution also leverages
artificial intelligence, which is a big trend these years in many fields, such as
medicine [34], education [35], product development [36] and agriculture [37].
Many parts of the helpdesk are customizable to a high degree, with an option
of custom mobile app development available. Reports and dashboards seem to
be well covered as well. Over hundred thousand businesses worldwide use the
Zoho Desk, and the pricing doesn’t seem to be over the roof.

1.5.2 Jira Service Desk
Jira is a tool allowing for bug tracking, issue tracking and agile project manage-
ment [38]. It is therefore one of the issue tracking tools, same as Redmine. The
Jira Service Management6 is another, different product, offered by Atlassian,
the owner of Jira. One of the features of the Jira SM is Request Manage-
ment [39], and this feature offers a Service desk, corresponding to a helpdesk.
Thanks to this fact, the Jira SM was also included in the mentioned review of
helpdesks by Forbes, getting the “Best for enterprise service management” tag.
The pricing of the Jira SM is very similar to Zoho Desk, capping at around 50
dollars per user per month. The difference is that Jira SM also offers a free
tier, for up to three agents. All of this information was sourced at the official
Jira SM pricing site [40].

Features

Both the Request Management and the Service desk are able to leverage ma-
chine learning and AI to support the clients, as well as the staff. Standards like
self-service, reports, metrics and SLAs are all available in the Jira SM. Two
interesting features of the Jira SM are:

• Slack and Microsoft Teams support, allowing for a two-way sync be-
tween the communication software and the Jira SM. This reduces context
switching and information gaps for employees and agents.

• Dynamic forms - Jira offers a node-code/low-code form builder, which
provides dynamic forms that only surface the relevant fields to the em-
ployee. Over 300 pre-built form templates are available, and they allow
for a fast collection and validation of the information about a request.

6Jira SM for short

18

1.5. Competing helpdesk solutions outside Redmine

Figure 1.6: Jira Service Management form

I’ve actually seen one of the Jira SM forms before, as the ICT department at
my faculty leverages the Jira SM. The image of this form is available in the
figure1.6. I will analyse this form more in the design chapter, as I plan to take
inspiration from it. For now, I just wanted the reader to get an idea of how
does such a form look like.

The link between Jira and Jira SM

As I’ve already mentioned, both the Jira and Jira SM are a product of their
own. Each of them can function on their own. This implicates the fact that
the Jira SM has an own database of tickets. Of course, there is a possibility
that a company will use both products. In this case, an automation can be
used to create a link between a Jira issue and a Jira SM ticket. According
to an official post from Atlassian on the topic “How Jira Service Management
and Jira work together” [41], when running both the Jira and Jira SM, this
automation allows for comments sharing across these linked entities.

Conclusion

The Jira SM is an interesting solution, as it very closely resembles my case. The
SM synchronizes and works in in cooperation with Jira, an issue tracking tool,
where I’d like to implement a solution that works in cooperation with Redmine,

19

1. State-of-the-art

another issue tracking tool. Although I haven’t explicitly found any innovative
features of the Jira SM I’d like to consider in my design, I got information on
data architecture of the Jira SM - Jira, which is in my opinion a very valuable
insight.

1.5.3 Spiceworks help desk
The Spiceworks help desk is the third participant of the Forbes review that
caught my eye. The main reason as the fact that it was marked “Best free
option”. According to the Forbes review, it includes all the basic features you
need to get started, such as ticket management, remote support sessions, ticket
rules, monitoring, reports, customization, self-service and ticket collaboration.
It has no ticket nor admin limit an will remain free. This is due to the fact
that it has partnerships with complementary software. Many of these vendors
offer discounts and their service right inside Spiceworks tool, so that you can
further expand your toolkit.

Features

As I wanted to know what does a completely free solution of a helpdesk offer to
it’s customer, I’ve accessed the documentation of the software, available at [42].
Some of the interesting features are:

• Extremely Easy to use - the Spiceworks runs the software for you,
therefore there is no server procurement, nor any setup or maintenance
required. On one hand, this is extremely helpful for start-ups and small
companies. On the other hand, you as a customer are quite prone to a
vendor lock-in, a situation where you as a customer become dependant on
a vendor for products, unable to use another vendor without substantial
switching costs [43]. As already mentioned, this seems to be their business
model.

• Android and iOS native apps - mostly a standard.

• Automated responses and ticket tagging - leverage the automation,
just set up the configuration.

• Own customized knowledgebase - allows for sharing and creation of
multiple sets of information. Also supports custom articles creations.

Conclusion

Overall, the Spiceworks help desk might be a good software, but it didn’t
capture my interest in any way. Comparing it with Jira SM and Zoho Desk,
it seems rather lacking. This is further supported by the fact that they are
marketing the automated responses as one of the features - this was common
for the Redmine plugins, but not for an out of the box solution.

1.6 A brief outline of the state-of-the-art chapter

At the end of this chapter, I’d like to present a concise summary of presented
ideas. In the beginning of the chapter, I’ve discussed Redmine with all of it’s

20

1.6. A brief outline of the state-of-the-art chapter

major features. I went a bit deeper into issue tracking, an area my project
focuses on. After the Redmine introduction, I’ve also briefly introduced a con-
cept of helpdesk7. These sections were followed by the presentation of already
existing helpdesk solutions for Redmine. I’ve went over three possibilities, each
of them interesting on their own, yet none really handling the problem I’d like
to tackle. After analysing the competing Redmine solutions, I’ve looked at two
papers talking about a help desk development in university area. Although
scope of both of these projects was much bigger than mine, I’ve discover some
interesting ideas, such as Knowledgebase. As the final piece of content in this
chapter, I’ve presented three out of the box helpdesk solutions. The most in-
teresting one for me was the Jira Service Management one, as it allows for a
use case similar to mine - synchronising with an issue tracking tool. Moving
forwards, i plan to use knowledge acquired during the state-of-the-art analysis
to design a fitting solution for my use case.

7or a “help desk”

21

Chapter 2
User requirements gathering

2.1 Background of the topic

I’ve had few discussion with my supervisor, Ing. Malec, about the idea of
this project. He is the main project manager in the company I currently work
for. This company uses Redmine as an issue tracking tool, and demands their
customers to discuss and report their issues via the Redmine. Despite this
fact, both Ing. Malec and Ing. Hunka, both faces of the company, have to
handle the communication with customers via phone on almost daily basis.
This is not always undesirable, as sometimes the eye-to-eye8 communication
has it’s positives. But when the customer just wants to report a possible bug
or discuss a certain feature, it would be much more optimal to have the request
in a written form.

The company tried to push their customers towards the Redmine usage,
but often with mixed results. Due to technical aspect of the Redmine, the
customers are often not able to navigate it well, as I’ve discussed in the intro-
duction. I’ve also paid witness to several requests where the customer answered,
yet forgot to reassign the issue. This might look as a small problem, but when
a developer has twenty issues to cover, he can very quickly forget about the
one customer forgot to assign. The result is rather negative for both sides -
customer commented the issue, therefore he thinks the company should react.
The developer doesn’t have the issue assigned and possibly wasn’t even notified
about the comment - therefore he thinks the customer should react.

Since the issue lists and filters on Redmine are rather technical, Ing. Malec
had an idea of designing a simple, customer-oriented interface for Redmine.
The flow of the development - all the status, assignment changes as well as the
comments should stay inside Redmine. The customer should be accessing the
simple UI, and the activities performed there should affect the states of issues
in Redmine.

2.2 Theory on requirements

In the next sections, I’ll divide the requirements into two categories - the func-
tional ones and the non-functional ones. At first, I’ve come across this cate-

8“ear-to-ear” in this case

23

2. User requirements gathering

gorisation during my bachelor studies at the university. The English Wikipedia
entry [44] defines the functional requirement as a “function of a system or a
component, where a function is described as a summary or specification or
statement of behavior inputs and outputs.” They should define what the sys-
tem is supposed to accomplish. They are supported by non-functional require-
ments, also known as “quality requirements”. The non-functional requirements
impose constraints on the design or implementation, such as performance re-
quirements, security, or reliability. According to the Wikipedia entry [44], the
functional ones should be expressed as “system must do X”, while the non-
functional ones should be expressed as “system shall be X”. An interesting
point of view is also the fact that:

• The functional requirements drive the application architecture
of the system. – Implement what you have to do.

• The non-functional requirements drive the technical architec-
ture of the system. – Pick the right tools for your job.

2.3 Functional requirements

The main user of the helpdesk is the customer. The customer needs to:

• Report an issue.

• See the details of a reported issue.

• See the list of the reported issues.

• Be able to filter on the list of reported issues.

• See the issues assigned to me.

• See the issues waiting for my action.

• See the issues, comments and changes made in both Redmine and help
desk under his own account.

The company is another user of the helpdesk. They might not be using it
directly, yet it very much affects them, as it creates tickets in their project
management tool. The actions done by customer in the helpdesk application
should be reflected in Redmine. On the other hand, not all the changes done
in Redmine by the developer should be visible to the customer. Seeing an
information about a change of a a custom issue field value is in most cases
not required by the customer. Also the private comments, focused on the
communication between the developers, shouldn’t be shown in the issue detail.
Therefore, the requirements from the company’s point of view are as follows:

• See the reported issue in the project management tool as an issue.

• Have the helpdesk automatically inform client about the status updates
of the issue.

• The helpdesk should inform the user about the registration of an issue.

24

2.4. Non-functional requirements

• As a developer, have the ability to mark a comment on issue as a “team”
comment. This type of comment isn’t displayed to the customers.

The functional requirement might seem a bit empty to some, but in my opinion
they rather well represent the main idea of the Unix philosophy [45] - “Do one
thing well.” The one thing in this case is “Serve as a simple customer-focused
helpdesk integrated with Redmine.” Taking into consideration the state-of-
the-art as well as the needs of the company mentioned above, it is my strong
belief that building well a rather simple UI allowing the customer to report an
issue and view the issues reported by the customer is a very fitting plan.

2.4 Non-functional requirements

I’ve already briefly touched on the concept of non-functional requirements in
the beginning of this chapter. The article [46] from 2007 grouped exactly thir-
teen different definitions of non-functional requirements across multiple reliable
sources. A type of consensus we can find among these thirteen definitions is the
definition of what the non-functional requirements are not - they are not a not
concerned with a functionality of the system. They rather describe the non-
behavioural aspects of the system, such as performance of the system, quality
of service and system’s design. This definition tallies with the Wikipedia entry
definition presented. During my discussion with the supervisor, I’ve gathered
several non-functional requirements:

• The system supports multiple language mutations. This partic-
ular requirement has high priority due to the fact that the contracting
company has customers from multiple countries, such as Czech Republic,
Slovakia and Hungary. The help desk would not fulfill its purpose well if
it could not serve the customers in a language they understand.

• Store the data in the Redmine database. The instance of Red-
mine functions with its own database. As is customizable the instance of
Redmine, so is this database. An example of the database customization
is available in the Plugin Tutorial part [47] of the Redmine developer
guide. The user can therefore store data such as custom fields or new
module data in the default Redmine database. This approach allows the
helpdesk to be just a one-layer application, without a requirement for its
own database layer. It would ease up the deployment of the application,
as just a single application would be required to run. A disadvantage of
the mentioned approach is the fact that the potential logic and calcula-
tions would have to happen in this single layer, and that is not always
optimal.

2.5 A discussion with a colleague

After writing down all the user requirements in the sections above, I felt that
the list might not be final, as the count is not that high. I’ve therefore opted
to seek assistance from my colleague Libor.

Libor is a salesman and can relate to customer’s point of view, as he was
in their shoes once, being a customer of a software company. We had a call

25

2. User requirements gathering

together and I presented him the intended idea of the application. I’ve also
presented him the user requirements I had gathered. He liked the idea, and
presented me with couple interesting ideas of his own, such as:

• A full text search in the description and subject of the issues would be
helpful for the customers. This functionality should probably be located
on the issue list screen.

• The customers usually report two types of issues. A bug, for which they
want an immediate fix, and a new functionality request, which might take
couple weeks to be fully implemented. The user should be able to work
with both of these categories in help desk.

• The customer is mainly interested in two pieces of information: whether
the task is being worked on and when it will be ready. The customer
should therefore be able to see both of these details in the help desk.

The consultation was from my perspective quite helpful as I was able to de-
fine three more functional requirements for the help desk. Furthermore, I had
the opportunity to validate my concepts with an individual who previously be-
longed to my application’s target group - customers, which gives me confidence
in the accuracy of the gathered requirements.

26

Chapter 3
Technological stack

3.1 Choosing the right technology for the application

The one thing I’m sure about is the fact that I’ll be developing a web application
that will serve as a UI. According to this post [48] about Web standards by
Mozilla, there are three technologies present in the web development:

• HTML for structure and semantics.

• CSS for styling and layout.

• JavaScript for controlling dynamic behaviour.

Another important concept is a DOM - a shortcut for Document Object Model.
Sourcing the official Mozilla documentation on DOM [49], a DOM is an inter-
face that treats a HTML document as a tree structure, where each node is an
object representing a part of the document. The DOM has methods, which
allow for a programmatic access to the tree, where a change in structure, style
or document of the tree can be performed. Another Mozilla post titled “How
the web works” [50] describes how are these concepts interconnected. Imagine
you want to access a website from a browser on your computer. There are two
sides present in this action:

• Client - you, the side accessing the website.

• Server - a computer that stores web-pages, sites or apps.

When you as a client want to access a website, a copy of a website is down-
loaded from the server onto your machine and displayed in your browser. This
website can consist of multiple types of files - HTML, CSS, JavaScript, but
also images, videos, documents, ...These files are interconnected and their goal
is displaying a functional and “pretty” web-page. Looking at the Wikipedia’s
entry about web development [51], we can observe that much has happened
since the beginnings of the web development in 1990s. Currently, “JavaScript
frameworks are an essential part of modern front-end web development, pro-
viding developers with tried and tested tools for building scalable, interactive
web applications”. This citation was taken from post titled “Understanding
client-side JavaScript frameworks”. Before we continue further, I think an ex-
planation of the term “frontend” or “front-end” is due. In web development,

27

3. Technological stack

this term refers to “the development of the graphical user interface of a website
through the use of HTML, CSS, and JavaScript so users can view and interact
with the website”. This definition sums up very well the area I will navigate
in the following chapters. I will go a bit more into detail about the JavaScript
front-end framework in the following subsection.

3.2 Client-side JavaScript frameworks introduction

The JS frontend frameworks are a big trend. The information I’ll present in
this section is taken from Mozilla guide [52] on client-side JS frameworks and
its sub-chapters.

3.2.1 A brief history of client-side JS frameworks
JS debuted in 1996. It added a much needed interactivity and excitement to a
web that was, up until then, composed of static documents. This sparked a big
interest, as the web became a place to do things, not just to read things. The
developers working with JS started developing the reusable packages called
libraries. These libraries bundled functionality that solved the problems they
faced in JS development. This shared ecosystem of libraries helped to shape
the growth of the web.

Now, the JS is an essential part of the web, and is being used on 98% of
all websites. The web is an essential part of the modern everyday life. Web
users write blog posts, manage their finances, stream music, watch movies and
communicate with others, all of this done via the web, with the help of JS. All
these modern interactive websites are referred to as web applications.

The phrase “advent of modern JavaScript frameworks” sounds rather decent
and I’ve stumbled across it multiple times in the process of writing this thesis.
It refers to a time frame when multiple JS frontend frameworks were released.
I haven’t found an exact time frame for it, but taking into consideration the
release dates of the frameworks, years 2010 to 2020 are a good bet. What is
a framework, might you ask. A framework is a library that offers opinions
about how software gets built. These opinions allow for predictability and
homogeneity in an application. The predictability allows the software to scale
to enormous size and still be maintainable. The combination of predictability
and maintainability are essential for the health and longevity of software.

3.2.2 Why do the frameworks exist?
The main issue the frameworks are trying to solve is the following one: The
programmer has to access the DOM directly, in order to render the data. The
code achieving the rendering of elements is rather repetitive and long. Simple
action of populating and rendering a list of elements took almost thirty lines of
code in an example of the sourced guide [52]. The JS frameworks were created
to make this kind of work a lot easier - by this, providing a better developer
experience. They don’t bring any brand-new powers to JS, they just give you
an easier access to JS’s power so you can build.

The JS frameworks also offer a way to write UI’s more decoratively. That
basically means you write the code that describes how your UI should look, and
the framework makes it happen in the DOM behind the scene. This is done by

28

3.2. Client-side JavaScript frameworks introduction

Figure 3.1: Vue framework v-for snippet [52]

providing certain framework-specific snippets by the framework. An example
of such snippet is visible in the figure 3.1. The keywords v-for and v-bind:key,
as well as the curly braces are framework specific code and reduce almost thirty
lines of code down to six lines. Thanks to this framework, developer doesn’t
have to write the code, he just uses the framework’s keywords to describe how
should each item look like. I present couple other advantages of frameworks in
the following paragraphs.

Tooling

Popular frameworks have large and active communities. These communities
develop tools that improve the developer experience. These tools make it easy
to add things like testing9 and linting10 to the project.

Compartmentalization

Most major frameworks encourage the developers to abstract different parts of
their UI into components. The components are maintainable, reusable chunks
of code that can communicate with one another. A code for such component is
stored in a single specific file or a couple of specific files, so that the developer
exactly knows where to go and make a change.

Routing

Allowing user to navigate from one page to another is a very essential feature of
the web. That is due to the fact that web is a network of interlinked documents.
When user follows a link on a website, the browser communicates with a server
and fetches new content to display. As it does so, the URL11 in the address
bar changes. You can save this new URL and when you access it later or share
with others, you can easily find the same page. Browser also remembers the
user’s navigation and allows him to navigate back and forth. This approach is
called server-side routing. An alternative approach to this is called client-
side routing. It describes the case when the routing is handled by the client
application instead. This is mostly done in modern web applications that

9ensure your application behaves as it should
10ensure your code is error-free and stylistically consistent
11address on the Web, is a reference to a resource that specifies its location on a computer

network [53]

29

3. Technological stack

typically do not fetch and render new HTML files, they just load a single
HTML shell and continually update the DOM inside it. This approach is
referred to as single page app, SPA for short. It is, however, important to keep
the routing functionality even in the SPA, as that is what a user is used to.

3.3 Client-side JavaScript framework choice

The definition of JavaScript framework fits my use case very well. I’ll therefore
implement my application with the help of one of them. Now, the question
is which one to choose. There are several to choose from. I’ll consider three
options - React, Vue and Svelte.

3.3.1 React
The React is a free and open-source JS library maintained by Meta [54]. Its
initial release happened in May 2013. React is declarative and supports compo-
nents. It doesn’t come with a built-in routing, but third-party libraries can be
used to handle the routing. A rather specific functionality are “React hooks”.
These hooks allow the access to React state and life-cycle features from func-
tion components. They exist to make React codebase more intuitive. Looking
at a blog post about React usage [55], we can note that it was used in the
development process of Airbnb, Netflix, Uber Eats, Twitter, Paypal, Reddit
and also Facebook. All of these are major names in the online area, therefore
it is safe to assume that React is rather well functioning technology and should
be considered when looking for a JS framework.

3.3.2 Vue
According to the English Wikipedia entry on Vue [56], it was initially released in
February 2024, making it approximately one year younger than React. Citing
the author of Vue, the idea behind the Vue framework was to “extract the part
I liked about Angular and build something really lightweight” [56]. The word
Angular refers to AngularJS, an already discontinued JS web framework [57].
Vue is based on components. It also offers reactivity, meaning each component
keeps track of its reactive dependencies so the system knows precisely when
to re-render and which components to re-render. Multiple tools, such as Pinia
for state management and Vue router for routing exists as official libraries to
enhance the development experience in Vue. According to the post [58] from
2021, parts of Facebook are powered by Vue. Also Netflix uses Vue for several
internal projects. Some other important project developed with the help of
Vue are GitLab, Google, Apple and Trivago.

3.3.3 Svelte
Sourcing the Wikipedia entry on Svelte [59], we can see that its release date
is November 2016, making it the youngest of the three reviewed frameworks.
There is a difference between Svelte and the other two mentioned frameworks,
as Svelte compiles the HTML templates to specialized code that manipulates
the DOM directly. By this, it may reduce the size of transferred files and give a
better client performance. Application code is also processed by the compiler.

30

3.3. Client-side JavaScript framework choice

This avoids the overhead associated with runtime intermediate representations,
which is typical for React and Vue. The bulk of the work in the case of Svelte is
therefore done at the compilation time. In the case of React and Vue, the bulk
of the work is done at runtime - in the browser. Svelte also uses the concept
of components, more on the subject can be read in the official documentation
available at [60]. The modern best-practices of the web development that are
not UI focused are handled by SvelteKit. This includes routing, but also several
optimizations and different rendering types. More about this subject can be
read in the official SvelteKit documentation at [61]. Looking at a post titled
“Top 10 Big Companies Using Svelte” [62], the big companies that use the
Svelte in their projects are Apple, NBA, New York Times, IKEA, Spotify and
Cloudflare.

3.3.4 Comparison of the frameworks
The data for the comparison were sourced from the post “Choosing the Right
Frontend Framework” at [63], as well as the GitHub repositories of the respec-
tive projects at [64], [65] and [66].

The table 3.1 lists some important attributes of the three framework op-
tions. The learning curve is quite self explanatory. The bundle size refers to
the total amount of code and assets that your web application sends to the
browser [67]. The stars are a functionality of GitHub, where a user can star
a project he finds interesting [68]. I’ve also took into consideration the expe-
rience aspect - my own experience with the framework and the experience of
my company with the framework, as the former means I can develop faster
and the latter means I can be supported and helped better. The sourced post
described the three frameworks like this:

• React - a robust choice for large-scale applications.

• Vue - user-friendly and versatile.

• Svelte - excels in performance and simplicity.

3.3.5 The choice of the framework
The values in the table 3.2 are my take on the quantification of the values from
the table 3.1. The winner of the “contest” is the Vue, seconded by Svelte. These
results are acceptable to me. For a longer time, I’ve considered React a rather
heavy and enterprises focused framework. This was further supported by the
source blog post. As I’m a newcomer to the field of web frontend development,

Table 3.1: Comparison of React, Vue and Svelte

React Vue Svelte
Learning curve steep easier easy

Bundle size the largest medium the smallest
Stars on GitHub (in 1000s) 221 44.5 76.3

Own experience minimal low none
Company experience low excellent minimal

31

3. Technological stack

having a steep learning curve React out is good for me. The Vue and Svelte
are both marked as “relatively easy to learn”. Looking at the point in the table
3.2, the experience rows won it for Vue. This corresponds to the fact that I
had some small experience with Vue, and also many people in my company are
quite skilled with Vue. Svelte, on the other hand, got zero points as there is
no own and very minimal company experience with the technology.

3.4 Technologies bundle choice

Since I’ve decided to use Vue, I’ll be able to use whatever this framework and
it’s third party libraries have to offer. I’ve discussed the choice of Vue with my
supervisor Ing. Malec. He was happy with the choice, as he has rather vast
experience with the technology. We’ve agreed on the fact that I’ll be using
version 3 of Vue. The release notes of Vue [69] state that version 3 was initially
released in September 2020. It was also the latest major release at the time of
writing this thesis. It is always a good idea to stick to the latest major version
of the technology, as per Semantic Versioning 2.0.0 [70], a new major version
means an incompatible API change. Therefore, when you decide to choose the
latest major version, you should be working with the newest version of the
technology. Choosing the newest major version might not be the best idea in
cases when the version was released just recently, as there might not be enough
documentation on the subject. Second big disadvantage of the newest major
version choice can be the missing compatibility with external libraries. This
isn’t my case, as the major version 3 is out for almost four years.

3.4.1 Composition API vs Options API
A composition API is a new approach in Vue. According to the official com-
position API FAQ available at [71], it is built in feature of Vue3 and Vue2.7.
For the previous versions, it can be enabled with the use of plugin. There are
few advantages of the Composition API:

• Better logic reuse - Composition API enables clean, efficient logic reuse
in the form of composable functions12. The composables solve all the
drawbacks of mixins, the primary logic reuse mechanism of the older
Options API.

12composable is a function that encapsulates and reuses stateful logic. Stateful means
something that changes over time, e.g. the position of the mouse on the screen. More on the
composables can be read in the official documentation at [72].

Table 3.2: Quantified comparison of React, Vue and Svelte

React Vue Svelte
Learning curve 0 4 5

Bundle size 4 5 5
Stars on GitHub (in 1000s) 5 3 4

Own experience 0 1 0
Company experience 1 5 0

Summary 10 18 14

32

3.4. Technologies bundle choice

Figure 3.2: Options API vs Composition API [71]

• More Flexible Code Organization - This is mainly beneficial in the
cases when a single component has to handle multiple logical concerns.
The options API prescribed the place for each part of the code, and
the logically matching parts of code couldn’t be grouped together. The
composition API, on the other hand, allows for more flexible code orga-
nization, allowing the same logical concerns to be grouped. An example
of this advantage is visible in the figure 3.2, where the same color means
same logical concern.

• Better Type Interference - Allowing for adaptation of TypeScript,
helping to write more robust code, providing better development experi-
ence with IDE support.

Although my supervisor told me that the Composition API is a bit harder to
grasp than the Options one, I’ve decided to go with Composition API, as I’m
not scared of challenges.

33

3. Technological stack

3.4.2 Single File Component
While reading about the composition API, I stumbled across another feature of
Vue - Single File Component13. A full specification on this feature is available
at [73]. The feature allows the representation of a Vue component by a single
file. This file has “vue” file extension and an HTML-like syntax describing the
Vue component. There are three blocks in such file:

• template block, representing the HTML code of the component.

• script block, representing the JS code, usually defining the interactions
in the file.

• style block, encapsulating the styles for the current component.

An alternative to the “Single File Component” approach is dividing the content
into multiple files, such as one HTML file for the template block, one JS file for
the script block and one CSS file for the style block. I will, however, stick with
the Single File Component, which in my opinion offers better maintainability
and cleaner code.

3.4.3 The script setup
The script setup is a feature available in case the project used both the Com-
position API and the SFC. This feature brings a bunch of advantages over the
normal script syntax:

• More succinct code with less boilerplate.

• Better runtime performance.

• Better IDE type-interference performance.

As there were no explicit disadvantages of this approach mentioned in the
official documentation of the feature available at [74], I’ll stick to it in order to
achieve a cleaner codebase.

3.4.4 TypeScript or JavaScript
“TypeScript is an extension of JavaScript intended to enable easier develop-
ment of large-scale JavaScript applications. TypeScript enhances JavaScript by
offering a module system, classes, interfaces, and a rich gradual type system.”
This definition of TypeScript was fully taken from the paper [75] called “Un-
derstanding TypeScript”. Said in simple words, using the TypeScript allows
you to add types to JavaScript code. These types can detect many common
errors via static analysis at build time, as is said in the post about TypeScript
in Vue available at [76]. This reduces the chance of runtime errors in produc-
tions and also allows for a more confident large-scale changes in the code. The
final advantage of TypeScript is an improved developer experience via type-
based auto-completion in IDEs. In my history of using JS, I haven’t paid much
attention to TypeScript, but since it brings many advantages and promotes a
cleaner code, I’ll use in my application.

13SFC for short

34

3.4. Technologies bundle choice

3.4.5 UI Component Library choice

My supervisor also advised me to use a use an UI component library. As I’ve
mentioned, Vue is based on components. These components are self-contained
modules with markup, styles, and logic bundled with them. The UI component
libraries are collections of these reusable building blocks. They provide pre-
built base components like buttons, forms, inputs, cards and so on, which can
be easily integrated into project. Using such library has two main advantages:

• Ensuring a consistent UI experience. – That’s due to the fact that
popular libraries are developed and styled by people who know what they
do.

• Saving time and effort for the user. – Using already pre-built com-
ponents saves the effort needed to build and maintain the mentioned
components.

All of this information was sourced from a blog post talking about the Vue
component libraries available at [77]. The information provided matches with
the talk I had with my supervisor, as he explained to me that using a good
component framework enables a good user experience for your app, no matter
the device used. I’ve therefore use the already mentioned blog post [77] to
get to know possible options. In the end, I’ve decided to settle for Vuetify, a
material design based library. Material design is a design language developed by
Google to unify the user experience across different platforms and devices while
emphasizing clean, modern, and intuitive design. The decision was further
supported by my supervisor, as he knew the library and had some experience
developing with it. I’ve decided to settle go for version 3 of Vuetify. That was,
at the time of writing this issue, the latest major release [78]. This was also
the only major release that supported Vue version 3.

3.4.6 Package manager choice

As I’ve decided to use Vuetify, I’ll need to download the package of this li-
brary. This is done using Node.JS packages. According to a definition from
W3Schools [79], a package in Node.js contains all the files you need for a mod-
ule. Modules are JS libraries you can include in your project. These libraries
contain functionality, such as Vuetify UI components, etc... There are several
package managers that provide the functionality of downloading a library for a
JS project, and I will present the most used ones in the following subsections.

npm

A default package manager for Node.js. Besides the default package man-
agement functionality, it also offer a custom scripts options, which allows the
developer to define and use custom scripts. These scripts is used to automate
development tasks, such as building, testing and deployment. One of the main
disadvantages is versioning complexity, as managing the package versions and
dependency conflicts can be challenging, particularly in projects with complex
dependency trees.

35

3. Technological stack

Yarn

A package manager developed by Facebook. It tries to address some of the limi-
tations of npm, such as performance issues and versioning complexity. It comes
with a deterministic dependency resolution, which helps to prevent the depen-
dency conflicts and ensures consistency across different development environ-
ments. This deterministic dependency resolution brings management overhead,
as you need to take care of another configuration file. Another disadvantage of
yarn are compatibility issues, as although it is compatible with npm, there still
might occur occasional compatibility issues or behavior differences between the
two.

pnpm

The term pnpm is short for “Performant npm”. It emphasizes efficiency,
disk space optimization, and installation speed. The main perk of the pnpm
is a shared dependency model, where common dependencies across multiple
projects are stored in a single location on disk. It also introduces the deter-
ministic dependency resolution known from yarn, preventing the dependency
locking. The disadvantages of pnpm is lockfile handling - due to the determinis-
tic dependency resolution, you have to manage the file holding such configura-
tion. Although pnpm has gained some adoption within the Node.js community,
its community support might still not be as high as for npm and yarn. In few
cases, compatibility issues with npm and yarn are possible as well.

The decision

All the information on the package managers was taken from the blog post [80]
titled “Choosing the Right Node.js Package Manager in 2024”. The choice
of the package manager does not directly affect the performance of the ap-
plication, rather the developers experience. I’ve decided to use pnpm, as it
seems the most modern out of the three presented options. It also looks like
an overall better version of npm and currently, I’m not that scared of the lower
community support, nor compatibility issues, as I’m embarking on a greenfield
project.

3.5 Conclusion of the technology choices

In the previous sections, I’ve gone over and decided for multiple technologies
and concepts. This section groups all of these choices in one place, summarizing
my decisions.

• Approach: a web application

• Framework: Vue V3

• UI Component library: Vuetify V3

• API: Composition API

• SFC: yes

• script setup: yes

36

3.5. Conclusion of the technology choices

• TypeScript: yes

• Package manager: pnpm

37

Chapter 4
Design

In the Design chapter, I go over the design decisions I made before starting the
implementation. These decisions concern both the architecture of the applica-
tion, as well as the main functionality of the frontend.

4.1 Communication between helpdesk and Redmine

I’ve mentioned that the helpdesk will be an independent application. This
application has to communicate its requests to the Redmine instance. This
communication can be achieved with the help of REST API. The official doc-
umentation for this API is available at [81]. I’ll source this documentation for
the rest of this chapter, but also during the implementation process. The API
provides the access to most of the entities available at Redmine.

4.1.1 Authentication
As I’ve declared in the functional requirements “the customer should see the
issues, comments and changes made in both Redmine and helpdesk under his
own account”. Therefore, I will need to access this API in the name of the user
currently using the helpdesk. The API support this with the Authentication
feature. The Authentication can be done in two different ways:

• Using the regular login/password via HTTP Basic authentication.

• Using the API key.

The API key is much safer option, as it avoids putting the password in a script.
As I want to keep the data of my users as secure as possible. I will therefore
be using the API key alternative.

4.1.2 Handling the API key
While reading through a post titled “Best practices for working with API keys
in the frontend”, available at [82], the first thing that resonated with me is the
fact that there are no secrets in frontend. After being compiled14, frontend is

14compilation is “the action of taking source code and translating it into an executable
program” [83]

39

4. Design

Figure 4.1: Design of the architecture

just a bunch of HTML, JS and CSS files. Therefore, if there’s a key that JS
needs, it’s usually just hardcoded as a variable in JS code. An attacker can
simply inspect all the variables in memory and track down the key. Sometimes,
it is not even that difficult. The keys are used to call APIs, so it might be
enough to open the Network tab in the developer tools of your browser and
inspect the API key there.

As I don’t want to put the API key at risk, I can’t hold it in the frontend.
This idea was further supported in the discussion with my colleague Max, who
suggested that I should leverage a simple backend that will hold the API key
in the database. According to a definition from AWS at [84], the term backend
encompasses the data and infrastructure that make your application work. It
stores and processes application data for the user.

A diagram of the intended architecture is available in the figure 4.1. The
shortcut BE stands for backend, FE for frontend. My friend Viktor helped me
with the graphical side of the diagram.

As visible from the diagram, the database holds the API key. User accesses
the HelpDesk FE. The FE communicates with the HelpDesk BE, which is the
central part of the architecture, as it communicates in three ways:

• Process the requests from frontend, serve the data for frontend.

• Store and retrieve the user data, including the API key, from the database.

• Request the data from Redmine, with the use of API key, retrieved from
the database.

My frontend will not communicate directly with the Redmine, but rather with
the backend. Two distinct cases of requests can happen between frontend and
backend:

1. FE request Redmine data - in this case, the BE should authenticate
user, retrieve his API key token from the database, and request the data

40

4.2. Choosing the backend technology

from Redmine with the user’s API key. In this case, the BE functionality
is basically rerouting the request between FE and BE, while attaching
the key required for Redmine authentication.

2. User-based requests and authentication - the FE either request the
data about the current user, which are stored directly in the database,
or performs a login / registration request. No communication with the
Redmine server is required in this case.

This new architecture clashes with the idea that the solution should be 1-
layered, resulting in a more complex deployment. The multi-layered architec-
ture is a necessity though, as I want to handle the API key securely. The
API key will be required from the user during the registration, more on that
in the following chapter, where I’ll present the implementation process of the
authentication.

4.1.3 A remark on the OAuth 2.0
A possible upgrade to the API key approach would be the use of OAuth 2.0.
It is a modern standard for securing access to APIs. A simplified guide on this
standard in available at [85]. It works on the basis of granting applications
access to their account. Unfortunately, at the time of writing this thesis, there
is no official technical support for Redmine being an OAuth2.0 provider. An
official feature request titled “OAuth2 support for Redmine API Apps (OAuth2
Provider)” exists on the Redmine features request forum [86]. This request is
over seven years old at the time of writing this review, yet was marked as
a “Candidate for next major release” by a Redmine project release manager
about two years ago.

4.2 Choosing the backend technology

I want to keep the backend as light as possible. I also want to keep the technol-
ogy stack as low as possible. I’ve therefore decided to choose Express framework
as the technology for my backend. It is “a minimal and flexible Node.js web
application framework that provides a robust set of features for web or mobile
applications”. According to Express documentation at [87], Express provides
a myriad of HTTP utility methods, which makes creating a robust API quick
and easy. It also matches the technology I’d be using when communicating
with Redmine via the REST API.

For the database technology, I’ve decided to go with SQLite, a small, fast,
self-contained, high-reliability SQL15 database engine. According to its home
page [89], it is also the most used database engine in the world. It is built
into all phones and most computers and comes bundled inside countless other
applications that people use every day. This database matches my use case
very well, as I want something lightweight and at this point, I plan on storing
only the user data, and these shouldn’t be accessed that often.

15SQL stands for Structured Query Language. It is “a programming language for storing
and processing information in a relational database. A relational database stores information
in tabular form, with rows and columns representing different data attributes and the various
relationships between the data values. You can use SQL statements to store, update, remove,
search, and retrieve information from the database.” [88]

41

4. Design

4.3 UI design

This section presents the thoughts behind designing the important UI parts of
the helpdesk.

4.3.1 Homepage and the layout of the application
At the beginning of the design process, I was unsure what to put on the home-
page. I knew it was an important decision as homepage is the first page users
encounter after logging into the application. I had a clear vision of the func-
tionality I wanted the whole application to have: the ability to report an issue,
view the details of a reported issue, and view the list of all reported issues.
Yet, since I have very little background in the User Interface design, I didn’t
exactly know how to combine all these functionalities. I thought that designing
the homepage screen would solve my problem, therefore I’ve decided to start
the design process with this screen.

Despite reading several posts about screen design, I wasn’t sure how to
start. After some contemplation, an idea struck me. What about accessing
another product of my company, a product which has two strong bounds to
my application:

• Same component framework - Vuetify.

• Same focus group - the customer’s of the company I work for.

The user documentation for this product is publicly available at [90]. It also
includes several images showcasing the UI of the application. Having analysed
its UI, I’ve found out that the UI contains of three main components - an app
bar, a navigation drawer and the main screen. This division is quite smart, as
each of the components handles its own area:

• The app bar - contains a menu that lets the user set up personal pref-
erences and overall configuration of the application.

• The navigation drawer - stacks all the main functionalities of the appli-
cation, serving as navigation - clicking an option in this drawer redirects
you to the screen of the chosen functionality.

• The main screen - depicts the currently chosen functionality.

Having seen this division, I’ve decided to choose the same layout for my appli-
cation. The layout of my application will consist of:

• An app bar at the top of the application - this app bar will allow the
user to change the language mutation of the application and log out. If
more personalization features of the app get implemented in the future,
they’ll be stored here as well.

• A navigation drawer on the left side of the application - this drawer
will contain a home page link, a big “Report a bug” button and links to
issues tables and reports.

• A main screen - this doesn’t come as a surprise. The screen will serve
as the place where the main content is served to the user.

42

4.3. UI design

Figure 4.2: Final layout and homepage

Trying to design a home screen for my application, I’ve non-intentionally
managed to define its layout. This, however, also helped in the the homepage
design question. As I’ve placed all the main functionality to the navigation bar,
there is not a single functionality I explicitly need to include on the homepage.
This leaves me with some maneuvering space. In the end, I’ve decided to
include just two simple lists on the homepage screen:

• Updates since last login list, displaying the issues that got changed
since the last user’s login. In case there are no such issues to be displayed,
a information about this fact will be shown to the user instead. This
information component will be closeable by a button, allowing the user
to remove it from the homepage for the current session. This will provide
more space for the second component of the homepage.

• List of up to 10 issues reported by the current user, sorted by the
last updated one. The of this list might duplicate a bit the data in the
first list, but that in my opinion is not that much of a problem. Where
the first list should serve more as a notification about the updates that
took place, this list should serve more as an issues you’ve reported
recently showcase.

The described layout and homepage, created with the help of Vuetify, is
visible in the figure 4.2.

4.3.2 Report an issue screen
When creating an issue as a customer in the Redmine UI, the user can set
multiple fields, as I’ve already touched on in the introduction to Redmine

43

4. Design

section. In the following list, I will address these fields and also present my
decision on whether they should be visible on the ’report an issue’ screen of
my helpdesk system.

• tracker - this field is debatable. On one hand, you can say that the
customer can decide whether the problem is a bug or a new feature.
On the other hand, they usually have almost no technological knowledge
about the software in question. Due to this fact, I’m not keeping the field
in the form.

• subject - the subject of the issue is a core field and I’m definitely keeping
it in the form.

• description - the description is also an important field and I’m keeping
it in the form.

• status - in my opinion, it makes almost no sense letting the user select
the status of the reported issue. It should be defaulted to a “New” value,
or its equivalent for the Redmine instance.

• priority - While discussing this field, my supervisor made the remark
that from his experience, the customer often sets the priority to “Urgent”,
just because they want the issue to be solved as soon as possible. This
classification does not always match with the real priority of the task and
the project manager can often have a better insight. That is why I’ve
decided not to keep the priority field in the form.

• assignee - this field is in my opinion a prime example of the field that
shouldn’t be set up by the user, but rather by the project manager.

• parent task - there is no need letting the customer decide what is the
parent task of the newly created issue.

• start date - doesn’t make sense to fill by hand; Redmine defaults this
value to the day when the issue was created, which is good enough for
me.

• due date - in case I’d be handling “New feature” requests with the
helpdesk, this field could be interesting. Since I’m mostly focused to-
wards bugs now, I’m not keeping it in the form.

• %Done - this field is in my opinion purely IT team focused. It should
also start at 0% for a new issue, therefore I don’t see any advantage of
keeping it in the form.

• checklist - this functionality allows adding TO-DOs to an issue. The
TO-DOs are checkable as DONE. These TO-DOs are in my opinion much
more focused towards the developers, therefore I’m not including them
in the form.

• files - files are a crucial field within the form. They allow the customer
to include a screenshot of their problem.

44

4.4. The configurable fields

I’ve talked about all the default fields of a Redmine issue in the configuration
I was working with. I’ve decided to keep the subject, description and files field
in the form. The final field that I need to add is the project, under which the
issue should be categorized.

I’d also like to remark on the idea of configurable fields. The fields like
tracker, status and assignee in my opinion belong to this configurable cat-
egory. This configurable flag should group the fields that depend on the
project manager’s decision. The use case would be as follows - for project A,
the developer John should be the user defaultly assigned to a new issue. For
project B, it should be Patrick. I’ll discuss the idea of configurables and how
to implement them in the following section of this chapter.

4.4 The configurable fields

While discussing the “Report a new issue” screen, I’ve presented the idea of
configurable fields. As I see it, the configurable fields should be a subset of
a bigger set. Let’s call this bigger set Helpdesk Configuration, or HC for
short. The HC configuration should “personalize” the helpdesk application, so
that it works correctly with more than one instances of Redmine. This require-
ment sparks from the configurable essence of Redmine. Suppose I’d implement
the helpdesk in a way that each time an issue created on the “Report a new
Issue” screen, it automatically receives the “New” status. What if the instance
of Redmine doesn’t have the “New” status? How should the helpdesk function?
That’s when the HC comes in. Instead of defaulting to the “New” status, the
helpdesk should look at the values in the HC, and assign the pre-configured
status to each created issue. This also allows for a further customization of the
helpdesk. The question now is, how should such functionality be implemented.
I can see few possible implementation approaches to the HC:

• The .env file - this is the most “programmer-focused” approach. The
values would be set directly in the environment files of the project and
would be read during the deployment of the application. No explicit
database besides the .env files would be required. The values would,
however, be hard to modify and it also isn’t a very elegant approach,
therefore I won’t be opting for it.

• Helpdesk based configuration - modifying the configuration would
be available directly in the helpdesk application. This approach would
be probably the best from the user perspective, but would bring non-
desired complexity to the system, as I’d have to take care of admin role
and privileges for the helpdesk application. In my current plan, all the
users of the helpdesk will have the same “role”, and therefore they’d be
able to access the same pages. This apporach would leverage the database
of the helpdesk itself.

• Redmine module - the third option is implementing a Redmine plugin
that will add a new module to the Redmine instance. When you would
add this module to your Redmine and enable it for the project, you would
be able to configure the HC directly in the Redmine UI. The disadvantage
of this approach is the call for completely new technology, the Ruby

45

4. Design

language. The database used with this approach would be the default
database used by Redmine.

In my opinion, the best of these three approaches is the Redmine module one.
Despite the fact that it asks for a plugin implementation, it is in my opinion the
cleanest and best option out of the three presented. It also sticks to the idea
presented earlier, that I want to hold as much data as possible in the default
Redmine database.

4.5 Handling the Helpdesk Configuration

The Redmine module plan is in my opinion a good idea, yet I’ve agreed with
my supervisor that the complexity of it exceeds the intended scope of my thesis.
Therefore, I only present the plan on how to work with HC during the different
phases of the project.

4.5.1 Phase 1 - prototype deployment
I will deploy the prototype of my solution before the thesis hand in date. In
this phase, the HC will be hardcoded in the implementation. This will allow
the solution to function with one instance of Redmine. This limitation is not
a problem for the prototype phase.

4.5.2 Phase 2 - Redmine plugin
In the second phase, I’ll transform the solution to the Redmine plugin approach.
This phase will include:

• Implementing the Redmine plugin. – The first step of the phase will
be the implementation of the Redmine plugin. The plugin implementa-
tion will consist of two parts - the Redmine part, written in Ruby, and
the database migrations, which will modify the database.

• Deploying the new plugin to Redmine instance. – The second
stage of the Phase 2 should be installing the plugin. This will provide
the required changes in the database of the Redmine instance and also
add the module to the Redmine instance.

• Enabling the plugin for a project. – Once the plugin is successfully
installed, the project manager will be able to enable it for the desired
projects.

• Setting the HC values for a project. – In the projects, where the
module will be enabled, the manager will have to fill up the required
fields of the Helpdesk Configuration.

• Refactoring the application to work with the module. – The final
step of Phase 2 will be the refactor of frontend and backend to a module-
based approach. This means removing the hardcoded values from the
backend and frontend code and implementing the HC requests in the
existing code.

46

4.5. Handling the Helpdesk Configuration

Overall, the most time consuming operations of the Phase 2 will be implement-
ing the plugin and refactoring the application. The other parts seem rather
straightforward.

4.5.3 Phase 3 - Extending the Redmine plugin
There are options for several improvements to the Redmine plugin once the
plugin is in use. The most interesting one in my opinion is the confirmation
email functionality. As I’ve mentioned in the state-of-the-art review, all three
existing helpdesk plugins for Redmine allow sending the confirmation email to
the address reporting the issue. This could be also implemented by my plugin
solution - either as the part of the plugin handling the HC, or as a completely
new plugin.

Another interesting idea for the plugin extension are custom emails for the
Servitor users. In the default Redmine configuration, the user gets notified
about the change in the issue by an email that has a standard body, with links
leading to Redmine. The plugin might be able to change this swapping the
default Redmine email templates for a custom ones with links pointing to the
helpdesk.

47

Chapter 5
Implementation

In this chapter, I present several interesting areas and concepts I’ve encoun-
tered during the implementation process. The chapter does not cover the whole
implementation process. Instead, it tries to describe the most important deci-
sions made during the implementation, so that the reader can imagine how I
tackled the obstacles.

5.1 Start of the implementation

At the beginning of the implementation, I already knew the technologies I’d
like to use. I had to initialize the frontend project, initialize the backend project
and initialize the database.

5.1.1 Initializing the frontend

The initialization of the frontend was quite straightforwards. I’ve accessed the
official “Get started with Vuetify 3” guide available at [91] and I’ve initialized
the project with the pnpm create vuetify command. This command creates
an interactive dialogue. I’ve answered the dialogue’s questions in the fashion
that matches my technology choices presented at the end of Technological
stack chapter. The command created the Vuetify project based on the chosen
configuration.

Figure 5.1: Frontend directory structure

49

5. Implementation

My current frontend directory structure is visible in the figure 5.1. To
achieve this structure, I had to do three changes to the pre-generated structure:

• Creating the composables directory. This directory will group the share-
able logic functionality of the application.

• Renaming the store directory to stores directory. The new name in
my opinion fits better.

• Creating the types directory, which will group the types usable by Type-
Script language.

Having a well standardized project structure is in my opinion vital for almost
any software project. I’ll therefore stick to this predefined structure for the
rest of my implementation.

5.1.2 Initializing the backend

Initialization of the backend was rather simple. I’ve read over the Express
JS documentation available at [87] and tinkered a bit with the configuration.
As I’ve decided to use TypeScript for the FE, I’ve also decided to use it for
the backend. This will keep the technological stacks similar and hopefully the
whole project easier to maintain.

5.1.3 Initializing the database

I’ve initialized the SQLITE database structure with a simple SQL script that
got called once the backend connected to the database. The database itself got
created by another function call of the JS code. As its not really important, I
won’t be going into more detail on this topic.

5.1.4 A remark on the IDE choice

The shortcut IDE stands for Integrated Development Environment. According
to a definition sourced from Amazon at [92], the IDE is “a software application
that helps programmers develop software code efficiently. It increases devel-
oper’s productivity by combining capabilities such as software editing, building,
testing and packaging in an easy-to-use application.” The IDE makes the pro-
grammers life easier. There are several IDEs, a programmer can even not use
one and be productive.

I’ve started implementing the application in a JS-focused IDE called Web-
storm. That was due to the fact that I’ve implemented several JS tasks in
this IDE during my studies. When developing the frontend using this IDE,
I’ve soon come to a realisation that it doesn’t properly support Typescript and
Vue, the technologies I’ve intended to use. I’ve therefore decided to try another
IDE called Visual Studio Code. This IDE is not focused on a single language,
rather supports multiple. From my experience, it supported the Typescript
and Vue development much better than the Webstorm. Due to this fact, I
would advise using Visual Studio Code for similar use cases.

50

5.2. Authentication

5.2 Authentication

In the previous chapter, I’ve declared that I want to communicate with Red-
mine as an existing Redmine user. I’ve also decided to use API key as the
Authentication approach. This API key will be stored in the database, and
utilized by the backend for communication with Redmine.

Yet, I need another layer of authentication - between the FE and BE. I’ll
further call it helpdesk authentication. This authentication will leverage the
JWT concept, where JWT stands for JSON Web Tokens. The JWT is an open
standard that defines a compact and self-contained way of securely transmit-
ting information between parties as a JSON16 object. The parties in question
are the server - backend and the client - frontend. According to Auth0 docu-
mentation [94], the JWT contains all the required information about an entity
to avoid querying the database more than once.

5.2.1 Registration
During registration, the user will have to provide three distinct data values -
email, password and an API key. The API key is accessible under the user’s
profile in Redmine. The user will be asked to provide it just once - at the time
of registration. These three credentials will be passed from FE to BE. The BE
will perform two validations:

1. Check, whether the email is not already in use.

2. Check, whether the API key is valid. This validation is done by querying
the Redmine API.

If any of the validations fail, the registration process is marked as unsuccessful
and finishes. If the validation checks pass, a new user entry has to be added
to the database. The entry contains:

• Email

• Password - the password provided by the user, in a hashed format. The
hashing will be done with the use of an existing cryptography library.

• API key

• Redmine ID of the user - this data will be queried in the validation
request and saved for a future use.

• Last login date - initialized to year 1970, this value will be updated
each time the user logs in. Its value can be leveraged to show the most
important issues on the frontend.

Once this entry is created, the registration process is successful. The FE is
informed about the success with a 201 HTTP code, which indicates “Created”
status. The HTTP codes are used to indicate whether a specific request has
been successfully completed, as per their Mozilla Developer Network docu-
mentation available at [95]. For my use case, they will serve as an information
handler between the backend and frontend.

16JSON is “a light-weight data-interchange format” [93]

51

5. Implementation

5.2.2 Login
Login is another important step in the authentication process. The user enters
email and password to a form on the FE, the FE sends the data to the BE.
The BE uses already mentioned cryptography library to compare, whether the
password matches the hashed one. If the check succeeds, the login is successful.
As a response to a successful check, the BE sends back a 201 HTTP response
code along with the session data. The session data consist of:

• Email

• Redmine user ID - required by FE logic, e.g. to decide whether the
task is assigned to the current user.

• Redmine instance URL - required by FE to enable redirecting to a
specific Redmine page.

• Last login date - for FE logic.

• Expiration - indicating how long the token is valid.

• JWT

All this data should be saved by the FE. In my FE implementation, I’m using
Pinia stores. According to its official documentation available at [96], a store
allows the developer to share a state across components and pages. That’s
exactly what I need in my application, as I want the data acquired by the login
to be shareable across the whole application. When using Pinia, the developer
can define multiple stores in his application, where each store handles its own
data. A successful login initializes the data in the user store for my frontend.

5.2.3 Using the JWT in communication
After logging in, the user is allowed to access the “protected” part of the fron-
tend. Where the “non-protected” part is simply the Login and Registration
page, the “protected” part of the application is every other page of the appli-
cation. A further discussion about the protected and non protected parts of
the frontend will be in the section about Routing.

All the operations in the protected part of the application, either requesting
or modifying the data, require the JWT to be accepted by the BE. When
performing these protected operations, the FE accesses the user store, retrieves
the JWT token, bundles it with the request and sends this request to the BE.
The BE validates the provided JWT and if the token matches, handles the
operation in the name of the user. This process might seem a bit complicated,
yet thanks to already mentioned store, it is quite simple from the frontend
part.

In the backend part, the Express framework offers a middleware function-
ality, mentioned in their official documentation at [97], to make the validation
and similar processes easier. The middleware functionality has the access to
both the incoming request and the potential response, even before these two
are processed by the intended receiver. For my use case, I’ve leveraged the
middleware functionality in the following fashion:

52

5.2. Authentication

• Developing the authenticate token middleware function. This func-
tion accesses the authorization header17, the place where the FE stores
the JWT. After retrieving the JWT, the function performs the verifica-
tion. In case the verification fails, the middleware function can directly
send an invalid response code and end the processing of the request. In
case the verification is successful, the middleware function can bundle
additional data and pass the request and response for further processing
to the intended receiver.

• Declaring which BE functionalities should be protected by the mentioned
authenticate token middleware function. In Express, this is done by
simply referencing the middleware function in the functionality declara-
tion.

The process mentioned above has a good impact on the overall quality of the
code - the developer declares the authorization process at a single place and
references it in the other parts of the application. Any further changes to the
authorization process can be done at a single place, while having impact on the
whole application. My application uses the npm library jsonwebtoken for all
the JWT logic.

5.2.4 Refreshing the JWT token

The BE provides the expiration time of the token along the JWT. An expired
token doesn’t provide anything, therefore the FE has to control the expiration
and request a new token once the old one nears the end of its lifetime. While
handling this task, I’ve sourced a blog post by Jason Watmore, available at [99].
In this post, titled “Vue 3 + Pinia - JWT Authentication with Refresh Tokens
Example & Tutorial”, Jason presents a way of handling and refreshing the
JWTs in a project using Vue3 and Pinia. As that is my technological stack, I’ve
taken inspiration from this blog post and implemented a simplified approach
of his design for my frontend.

The idea is based on timeouts, implemented inside the user store and visible
in the figure 5.2. When user logs in, a countdown is started. This countdown
runs out approximately thirty seconds before the expiration time of the token.
This action fires a request to backend, asking for a new JWT. Once BE responds
with a new JWT, the session data is updated and the countdown timer is
reinitialized. A function clearing the session data, along with stopping the
refresh token timer, is also provided by the user store. This function is called
once the user logs out of the helpdesk.

A better approach to refreshing the JWT would be using a refresh token in
the process. This would introduce another layer of security, but also another
layer of complexity to the application. I’ve decided to stay away from the
refresh tokens for now, as I’m implementing only a prototype at this point. In
the future, it would be smart to consider refactoring the refresh token process.

17a header is “a part of a request, it lets the client and the server pass additional infor-
mation” [98]

53

5. Implementation

Figure 5.2: JWT refresh logic

5.3 Formatting text in Redmine

The official Redmine User guide [100] declares that Redmine supports two syn-
taxes of formatting based on configuration - either Textile or Markdown.
I’ve found out that the first Redmine instance I’d be synchronizing with uses
Textile, therefore I’ve decided for the textile support in my helpdesk applica-
tion. I’ve got to handle two cases - generating the textile and rendering the
textile. I’ll discuss each of these in a separate subsection.

54

5.3. Formatting text in Redmine

5.3.1 Generating textile

Figure 5.3: TinyMCE configuration

It is common to use a text editor to enhance the experience of writing the
text. The Redmine instance in question offers the user an improved text editor,
which is a bit more user friendly than the default one. I’ve talked about this
with my supervisor and we came to a conclusion that offering such editor in
the helpdesk could improve the user experience. I’ve performed analysis and
found out that the improved editor in question is called TinyMCE editor.
According to the official page of this project [101], it is a WYSIWYG editor,
and more than hundred million products use it. The TinyMCE boasts over
twelve integrations with other technologies, such as already discussed Vue,
Svelte, and React.

I’ve decided to implement a reusable component that will offer TinyMCE
editor for my frontend. The implementation of this component will leverage
the already mentioned Vue integration, known as tinymce-vue npm package.
According to the technical reference of the mentioned integration, available
at [102], the two possible outputs are either html or text. Yet, the Redmine is
expecting textile. To solve this issue, the BE will perform the html to textile
transformation. I’ve employed the to-textile npm package on the backend to
perform this transformation.

A remark on integrating the TinyMce Vue editor

Using the tinymce-vue integration out of the box solution didn’t work for me,
as it required a license key to run the editor. I didn’t want to get constrained
by any licenses, therefore I’ve opted for an alternative approach - self hosting
the editor. I’ve sourced few existing blog posts and websites on how to self
host the editor in your own project with no success. In the end, a comment by
the user larrykkk, under an issue [103] titled “How can I self host this” on the

55

5. Implementation

GitHub repository of the official Vue integration helped me out. I had to do
the following:

• Install the official tinymce-vue package with the help of pnpm.

• Copy the content of this package into the public directory of my frontend
application.

• In the Vue code, link the source script of the tinymce from the public
directory. The configuration of the editor is visible in the figure 5.3.

A user can further extend the functionality and interface of the editor with the
help of plugins. For my project, I’ve performed the following:

• Wrap the editor in a custom Vue component. This groups the
whole configuration of the editor in a single place and allows the user
to simply include the editor anywhere in the project, working out of the
box.

• Install the initial plugins for the editor. I’ve installed three plug-
ins, namely lists, links and codesample. These three plugins match the
functionality of the editor used on Redmine and also the intended func-
tionality of the helpdesk.

• Design the toolbar. The toolbar of the editor is heavily customizable.
I’ve designed it in a way that matches the Redmine editor but also offers
all the functionalities the helpdesk user would find useful.

5.3.2 Rendering textile
To render the textile to HTML presentable by the FE, I’ve employed another
textile focused npm package called textile-js, available at [104]. This fully-
featured textile parser seemed to work rather well for my use case, despite not
being updated for more than three years at the time of writing this thesis. The
transformation happens once again on the BE. The idea behind moving the
transformations to the backend is the fact that the BE should handle most of
the processing logic of the application.

Not being able to find an npm package that would single handedly perform
the transformation both ways was sad for me, and I’ll have to consider revisiting
the transformation of texts in the future.

5.4 Requesting files from Redmine

The Redmine’s issues, as well as the journals of the issues, can contain attach-
ments - the files user uploads along with them. These attachments can often
be images, describing the issue visually, and as I want my application to be
just a simpler UI for the Redmine, it should be able to show these files to
the user. Yet, due to the fact that the Redmine API key is not handled by the
FE, accessing these files has to be routed through the BE. I’ll discuss in steps
how I managed to get this attachment routing to work:

56

5.5. Uploading files to Redmine

1. The FE requests an attachment from the BE. – The attachment
is defined by the its identifier and filename. The request’s Content-Type
header is set to application/octet-stream.

2. The BE request the attachment from Redmine. – The response
type option of the request configuration is set to the arraybuffer value.
Sourcing the Mozilla page on arraybuffer at [105], the arraybuffer is
used to represent a generic raw binary data buffer. This option therefore
tells axios18 to await a data buffer rather than a standardized object.
Setting this option was crucial, as without it, the routing didn’t work.

3. The BE sends the data received from Redmine to FE. – When
sending this response, two headers have to be set up:

• Content-Type header, getting it’s value from the Redmine response
header Content-Type. This basically means that the BE looks what
type of data Redmine sent and informs the FE that the data routed
is of such type. An interesting problem I’ve encountered while work-
ing with this header was that despite the fact that the IDE tells the
programmer to access the header Content-Type on the provided
response, only lower cased version spelled content-type works.

• Content-Transfer-Encoding set to binary. This indicated to the
frontend that the incoming data is not a standardized text, but a
data buffer.

When both these headers are set up, all that’s left to do is using the
response with the send function, providing the Redmine response data
as the argument.

4. The FE receives the data from BE. – In case of a success, the received
entity is of interface Response from the Fetch API. Looking at the official
Mozilla documentation at [106], the Response interface offers a blob
method, which takes the response stream - the mentioned data buffer
and reads it to completion. This enables the frontend to use fetch images
and files as an instance of Blob, documented at [107]. An instance of
Blob represents a “file-like” object of immutable, raw data, which can be
read as text or binary data. In my further FE implementation, I leverage
these Blob objects to render the images and allow the downloading of the
attachments.

5.5 Uploading files to Redmine

The user also needs to be able to upload an attachment along with a newly
reported issue, or a comment of an issue. As you can guess, the whole upload
process has to be routed through the backend, due to the API key. The guide
on uploading the files via the Redmine Rest API is available in the “Attaching
files” section of the Redmine API documentation, available at [81]. The process
for uploading an issue with an attachment is done in two steps:

18axios is a HTTP client, as per [105]

57

5. Implementation

Figure 5.4: Processing file with multer middleware

• Upload the file with a request to uploads endpoint.19 – The re-
quest body should be the content of the file and the Content-Type header
should be set to application/octet-stream value. This request should
have a query parameter20 with key filename and value the filename of
the file. In case of a successful upload, the Redmine responds with a
token for the uploaded file.

• Create the issue using the upload token – Send the request to create
and issue, while indicating in the body of the request that the file should
be treated as the attachment of the issue. The attachment reference is

19endpoint is “the place where the APIs send the request and where the resources
live” [108]

20“Query parameters are a defined set of parameters (key-value pair) attached to the end
of a URL used to provide additional information to a web server when making requests.” [109]
An URL is the address of a unique resource on the internet. It is one of the key mechanisms
used by browsers to retrieve published resources, such as HTML pages, CSS documents,
images, and so on, as per [110]

58

5.5. Uploading files to Redmine

created with the use of token from the first step. The user has to also
declare the filename and content type attributes of the attached file.

The workflow of uploading the files in my helpdesk works as follows:

1. The FE sends the upload file request to BE. – No special headers
are required for this case. On FE, I’m using the FormData interface
to send the file. As written in the FormData documentation by Mozilla
at [111], this interface provides a way to construct a set of key/value pairs
representing form fields and their values, which can be sent via several
JS methods. A programmer can pass a Blob as the field, essentially
attaching the content of Blob to the request. In my case, I’m appending
a Blob representing the uploaded file, along with its filename and key file
to an instance of a FormData. This FormData is later passed as the body
of the request to the BE.

2. The BE processes the upload file request. – This is done with the
help of multer npm package, documented at [112]. It is a middleware,
primarily used for uploading files. The usage is quite simple, visible in
the figure 5.4. First, I had to install and import the multer package. Af-
terwards, I’ve initialized it with a destination directory, as visible on the
line 201. The third parameter of the app.post call on line 203 represents
passing the call of the single function on line 205 as the middleware
function for the POST uploads endpoint. I’m passing the file attribute
to this call. The value matches the key file passed to FormData by FE.
The single call, along with the displayed multer configuration, stores on
the file system in the uploads directory. This allows me to access the
file property of the req instance on lines 215 and 221, respectively. The
displayed code also showcases that I’m accessing and validating the query
parameter filename on lines 207-214. The filename, along with the file, is
passed to uploadFile method on line 221.

3. The BE sends the file to Redmine. – This is done by the function
uploadFile, mentioned in the above step. The request to Redmine has
the Content-Type header set to application/octet-stream value and
the body as an fs.ReadStream instance, which is instantiated by calling
the createReadStream on the file argument. The fs is a Node.js module
documented at [113]. It enables the programmer to interact with the file
system. The file is basically read from the file system and passed to the
request. Once this part is finished, the BE removes the sent file from its
file system, freeing up the space.

4. The BE reroutes the token to the FE. – After a successful upload,
the Redmine responds with a token for the file. BE routes this token to
the FE.

5. The FE receives the token. – FE stores the received token in memory.
The token can be later passed to the body of a create request, linking the
created entity and file. The create request also requires the filename and
content type of the file. These attributes can be accessed on the Blob
instance, mentioned in the first step of this flow.

59

5. Implementation

I’ve delivered quite a comprehensive overview of the file upload process. It may
have been tiring to read through, yet I chose to include it as it represents one
of the more complex aspects of my implementation. It could also benefit other
developers, who are facing similar challenges with the file uploads.

5.6 Handling the images in textile

The textile allows including the images as a part of the text, while holding
the source URL of these images. The problem is that this URL might not be
accessible all the time. In the following subsections, I’ll discuss this problem
from two points of view.

5.6.1 Rendering the text containing images
Suppose the project manager responds to a customer on Redmine, and decides
to include an image in the text of his response. As a result, an attachment is
created on Redmine with a source URL X, and the image tag is inserted into
the created textile code, with the src attribute of this tag pointing to X. The
issue arises when this text is rendered for the customer on Redmine. While the
backend correctly converts the image tag to HTML, the src URL remains X,
which is inaccessible on the frontend because it refers to a resource located on
Redmine and requires authentication to be accessed.

As mentioned, I’ve already implemented a way of routing the attachments
from Redmine to the FE via BE. The problem is that images routed in such
way are only accessible under a new dynamic URL, which gets initialized at the
time of the Blob initialization. Therefore, I need to perform the src attribute
remapping for the texts rendered on the FE.

I’ve implemented this remapping with the help of a mapping array. The
logic is quite simple - for each attachment, when initializing its Blob, create a
pair of old URL - Blob URL. Go over all the texts that should get rendered,
and replace the old URL by Blob URL in them. Although this approach looks
rather simple, it works very well for the specified use case.

5.6.2 Creating the text containing images
Now, let’s consider the reverse situation. The customer uses the helpdesk’s
TinyMCE editor to report a problem and pastes an image into the text. The
image is rendered in the editor on helpdesk, and once the text is sent to Red-
mine, the image is sent to Redmine in its base64 representation. Once the
project manager accesses such comment on Redmine, he doesn’t see the ren-
dered image, but only its base64 text representation. To solve this issue, I’ve
come up with a two-phase plan:

• In the first phase, disable the pasting of images into the editor on help
desk. This will force the users to use the upload file functionality, which
works fine.

• In the second phase, reprogram the logic of the TinyMCE editor paste
option, so that it integrates with the upload image to Redmine. The plan
is that pasting an image to the editor would also upload it to Redmine

60

5.7. Routing in the frontend

and hold the token. Once the user submits the text, the frontend would
remap the content of the text, so that it matches well the uploaded file
and is displayed well on both platforms. This part won’t be implemented
in the prototype, as it is quite complex.

5.7 Routing in the frontend

Figure 5.5: Vue Router Navigation Guard

According to Vue’s official documentation of Routing at [114], using the
officially supported Vue Router library is recommended for most SPAs. As
I’ve got almost no experience with the frontend development I’ve decided to go
the recommended way. The usage is quite straightforward, as described in the
docs at [115]. The user defines the base configuration for the router - defining
what URL path should be mapped to what component. In the Vue component,
the user can access the useRoute and useRouter functionalities to navigate the
user to a different path.

As I got my whole application generated by the call of pnpm create vuetify
command, I’ve also got some predefined configuration. This configuration in-
cludes the file system based routing. The file system based routing eliminates
the need for the developer to explicitly set up the basic routing configuration.
The developer only needs to create Vue files within a main pages directory.
Each Vue file within this directory corresponds to a specific route. The file’s
content serves as the component accessible at the route, while the filename
itself defines the route.

61

5. Implementation

Another functionality of the Vue Router are the Navigation Guards. The
developer can define a function that gets executed whenever a navigation is
triggered. This function has the ability to cancel or reroute the navigation.
My usage of this functionality is available in the figure 5.5. I’m declaring an
array of public pages. In case the user tries to access a non public page without
being logged in, he gets redirected to login. Otherwise, he is free to proceed. I
see these navigation guards as a quite simple, yet strong functionality.

5.8 Internationalization of the application

I’ve declared that the application should support multiple language mutations
in the non-functional requirements for my application. To achieve this, I’ve
used the Vue I18n plugin. It is an internationalization plugin focused on Vue.
I’ve used it as an npm package. The full documentation of this plugin is
available at [116]. According to this official documentation, it is easy to use. I
can only agree with this statement, as using it during the implementation was
almost effortless.

The plugin defines two important functions - one for template part of the
Vue code, one for the JS part, used usually in the script part of the Vue
component. Calling these functions with a single parameter - the phrase to
translate - is all the programmer has to do to internationalize the phrase in
the Vue component. There is, though, second part of the job to be done -
provide the translations of these texts. The translations are held in separate
files. My frontend project had one file per one language at the time of writing
this section. To be honest, I haven’t manually modified the content of these
files even once. Instead, I’ve leveraged a plugin for the Visual Studio Code IDE
called i18n Ally. This plugin offers several features, such as highlighting the
phrases with missing translations and an on-hover functionality that allows the
programmer to provide the translation directly in the Vue component, without
the need to open the translations file. I would recommend this plugin to any
programmers using Visual Studio Code and handling the internationalization,
as from my experience it helps a lot.

The FE also displays few phrases that are taken directly from the Redmine.
An example of this phrase is a name of an issue status. This should not be
problematic, as the BE requests the data in the name of the currently logged
user, and the Redmine serves the data in the language configured by that user.

5.9 Utilizing ESLint, auto-import and GitHub Copilot
for a more efficient coding

My colleague Dan recommended me to use ESLint and auto-import to improve
the overall quality of the project. As both of these features were helpful during
the implementation process, I’ll mention them here, along with the GitHub
Copilot.

5.9.1 ESLint
ESLint statistically analyzes the code to quickly find the problems. As stated
in its documentation at [117], it is available in most text editors. The user can

62

5.9. Utilizing ESLint, auto-import and GitHub Copilot for a more efficient
coding

define a predetermined set of rules to adhere to in their project, and ESLint will
notify them if they deviate from these rules. My set of rules for the frontend
project is visible in the figure 5.6, and I’ve also got something similar for the
backend. The core of this configuration was passed to me directly by Dan and
I’ve decided to use them, while only tweaking couple of setting to be able to
fully use the ESLint.

A very good feature of ESLint is auto fix - the ESLint can automatically
correct certain errors in your files to conform to the predefined rules. This
can be done with the call of eslint –fix. An even cooler functionality is the
“lint on save” one. When you configure well your IDE or the text editor, every
time you save your file, the file gets fixed by the ESLint. This functionality
alone saved me couple of hours during the development process and I highly
recommend it to everyone in the JS development area. The initial set up of
the ESLint might be a bit tricky, but the pay off is immense.

5.9.2 Auto import
Another interesting feature I got recommended was the unplugin auto im-
port package. This npm package, available at [118], allows for an auto import
of multiple components. This leads to a much cleaner code, as many of the boil-
erplate import statements can be eliminated with the use of this functionality.
For this package to work with the ESLint, a proper configuration is required.
The configuration in question is described on the official pages of the package
at [118]. I would once again recommend all the developers to have a look at
this package, as its advantages are in my opinion well worth it.

5.9.3 GitHub Copilot
During the development of my application, I’ve also used the GitHub Copilot
- an AI tool. The copilot can be used directly in the IDE, with the help of the
GitHub Copilot plugin. After downloading this plugin, a login to a GitHub
PRO account is required. I’ve got this account thanks to my student status.

The two main features of the Copilot are the code completion and chat. I
haven’t leveraged the code completion much, but I’ve tested the chat feature
quite extensively. A very good perk of the GitHub Copilot is the fact that
it can directly access your files, and so you can discuss the contents of the
file with him. From my experience, the Copilot worked quite well when I
discussed the configuration files with him. Especially when setting up the
ESLint, I’ve encountered several problems. Although he didn’t directly solve
these problems, he came up with several possibilities that would take me half
an hour to source out. I’d therefore highly recommend it as a discussion partner
for the development and configuration process.

63

5. Implementation

Figure 5.6: ESLint configuration for the FE

64

Chapter 6
Deployment of the prototype

I’ve worked on the deployment of the prototype with my colleague Max. The
prototype was hosted at the server of the company I worked for at the time
of writing this thesis. In this chapter, I’ll talk about the containerization - a
concept I’ve decided to leverage for the deployment.

6.1 Concept of containerization

As per AWS, the containerization “is a software deployment process that bun-
dles an application’s code with all the files and libraries it needs to run on any
infrastructure. Traditionally, to run any application on your computer, you
had to install the version that matched your machine’s operating system. For
example, you needed to install the Windows version of a software package on
a Windows machine. However, with containerization, you can create a single
software package, or container, that runs on all types of devices and operating
systems.” [119]

The definition of the containerization in the paragraph above describes
mainly the portability benefit of the containerization - the ability to deploy
applications in multiple environments without rewriting the program code.
This portability can be leveraged not only for the production releases, but
also for local development. I’ve worked on several projects that leveraged
the containerization. For me as a programmer, this meant I didn’t have to
download specific versions of the programming languages and libraries just to
be able to start the project locally. All I had to do was to download a single
software - the containerization software. This software handled all the language
and library versions for me.

6.2 Leveraged containerization technology

The containerization software I had experience with was the Docker. Due to
this fact, I’ve decide to leverage Docker for this project as well. With the
help of online resources, GitHub Copilot and trial-and-errors, I’ve managed to
prepare a Dockerfile for both the FE and BE. For the BE, I’ve also prepared
a docker-compose - a file that groups several containers and allows them to
communicate with one another.

65

6. Deployment of the prototype

I’ve used the docker-compose file to group the backend with the database
container. Near the end of the implementation process, I’ve decided to ex-
change the SQLite database technology for PostgreSQL. The docker-compose
file I’ve created allows the user to initialize both the database and the back-
end with few command pasted to his terminal. It is another case where the
portability of the containerization is perfectly leveraged.

6.3 A remark on the database change

According to the PostgreSQL official website at [120], the PostgreSQL is a pow-
erful open source object-relational database system with over thirty five years of
active development. I’ve used it for several projects in the past and I also have
experience with its containerization. It was therefore a really good fit for my
use case. The change from SQLite to PostgreSQL was not that complicated in
the backend part, as both the SQLite and PostgreSQL use the SQL dialect and
have similar sets of data types. As for the libraries used, I’ve gone with npm
package pg as the database client and npm package node-pg-migrate for the
migration management. Using a migration management library standardizes
the database schema changes and improves the development process.

6.4 Cooperation with my colleague

My colleague Max refactored the Dockerfile for FE prepared by me, as he was
able to optimize it better for the deployment. He has also managed to prepare
auto deploy scripts, which allow for automatized deployment of the backend
and frontend. The first functional version of the prototype was online on May
3, 2024.

66

Chapter 7
User testing

I’ve performed a user testing of the prototype. In this chapter, I’ll go over the
testing agenda, talk about the participant recruitment and present the insights
gathered.

7.1 The agenda of the testing

Creating a well thought agenda was the first step of the user testing process.
The final agenda consisted of four parts, namely:

1. A general introduction – Thank the person for participating. Talk a
few sentences about the project and the user testing that is taking place.

2. A screener – Quick questionnaire focused on determining whether the
user fits the application user base. A user didn’t fit the study in case
his he had no prior experience with project management tools and also
had no prior experience with a helpdesk. In case of such participant, the
testing would end here.

3. A task introduction – Talk about the testing taking place. I’ve also
told them that I’m in no way evaluating their performance, but I’m rather
trying to gather information on the application in question. I also made
a request to them to think-aloud if possible, as that would greatly benefit
me.

4. The testing – Consisting of four scenarios. A scenario represents a real-
istic situation, where a person performs a list of tasks using the product
being tested. I’ve decided to have a “Registration” scenario, a “Report a
bug” scenario, a “Is the task solved” scenario and a “See the developer’s
reaction” scenario. These should encompass the most common actions
performed in the system. A more detailed description of these tasks is
available in the attachment utAgenda.pdf.

5. A post-test questionnaire – Conducted as the last part of the user
testing. It was aimed to gather even more feedback on the prototype
from the participants.

67

7. User testing

Some of the information presented in the list above was sourced from a presen-
tation titled “User Interface Testing” [121], which is a part of “User Interface
Design” course. I’ve taken this course during my master studies.

7.2 Participants profile

As for the recruitment process, I’ve recruited some of my friends and also a
customer of the company I’ve been working for at the time of writing this
thesis. There were three participants in total. All of the participants had a
technical background, with two being IT students and the third one working
in a warehouse. All three of the participants had some previous experience
with the use of help desks, but only one had ever used Redmine before. My
exclusion criteria was “User has never used a help desk before.” and since all
of the participants had some experience, they were able to participate.

7.3 The testing process

The testing took place in-person twice and once over the internet, via Google
Meet software, with the help of screen sharing functionality. The in-person
testing was more valuable from my point of view, as I was able to observe more
aspects than in the online case. I’ve used the mentioned User testing agenda
to moderate the testing process. In the following section, I will discuss the
observations made during the testing.

7.4 Observations

I’ve noted down multiple observations. Some were explicitly voiced out by the
participants of the study, some were observed by me and further confirmed with
the participant and some were gathered during the post-test questionnaire. The
full list is as follows:

1. Using the go back functionality of the browser to a return to a
page containing a data table should keep the previously applied
filters applied. The filters should stay applied, as this would lead to a
better user experience.

2. After uploading an image describing the issue, the user might
not know what to write to the description field. An indication of
the fact that description is not required in this case could smooth out the
user experience.

3. The status filter values and status column values in the issue
table don’t match. The filter contains only values New, Open and
Closed, but the table’s column can contain all the possible Redmine sta-
tuses such as To clarify, In development, ... A unification should be done,
either by providing all the possible statuses as a filter, or by simplifying
the status values presented in the data table.

4. The enter button click should trigger the login button on the
login screen. This issue was observed multiple times.

68

7.4. Observations

5. The comment functionality buttons are not clear in their func-
tionality. The comment functionality contained three buttons in case
the issue was assigned to the client. The not clear buttons were Add a
comment and Comment and reassign.

6. The idea whether the list of issues on homepage and the table
of issues from the navigation drawer represent the same entities
is not clear.

7. The upload file modal is designed poorly.

8. Missing the auto-upload functionality. The idea that the file has to
be explicitly uploaded is not communicated well enough. An auto upload
or a notification for case when the file is inserted but not uploaded could
solve this issue.

9. The subject field on the Report a bug screen could be styled to
look more important.

10. The link on the Issue detail screen leading to Redmine is poorly
designed. The redirect is not intuitive and the clickable area is
way too big. A solution could be switching to a button titled “Open in
Redmine”.

11. The attributes on the issue detail page are not well positioned.
The status is the most important attribute for the customer, so it should
be presented in such way. The customer doesn’t really care about the
created on attribute.

12. The modal indicating no updates happened doesn’t match the
rest of the design, due to it’s background color.

13. The list on the homepage could introduce a drop down button
that would present a more detailed look on the issue.

14. The information that an attachment belongs to a comment is
not communicated on the issue detail screen.

15. The mark as resolved functionality on the issue detail page is
not clear. One of the participants didn’t exactly know what it was
meant to represent.

16. Creating an issue and a comment shouldn’t redirect to a list of
issue, but rather to a detail issue of the current page.

17. The FRESH tasks idea is not communicated well. One of the
participants didn’t understand what do the fresh tasks means, what is
the time span. A hover information stating that those are the tasks
updated in the last two weeks could solve this issue.

18. The “Is waiting” status is not clear enough. One of the participants
mentioned that from his point of view, the status “Is waiting” is not clear
enough, as it doesn’t explicitly state who should perform the next action.
The customer may be able to determine who should perform the next

69

7. User testing

action by looking at the assignee field of the issue. If the assignee is
the customer, then he should provide more info, but in such case, the
“Is waiting” status doesn’t seem that optimal and the software company
side should choose something else, such as “To specify”. This is overall
an interesting observation, as per my knowledge, the mentioned status is
a custom Redmine status. It promotes two ideas:

• Showing all the custom Redmine statuses to the customer might
not be optimal. This matches the 3rd item of this list, where the
Redmine and helpdesk statuses didn’t match. Creating a set of
statuses visible on helpdesk and mapping all the existing Redmine
statuses there might be an option to solve this.

• The information about the fact that an action is required from the
customer is not communicated well enough in the prototype.

19. The watchers field is missing on the issue detail screen. The
watchers of the issue refer to the users who have activated notifications
to receive updates about any changes made to the issue. One participant
told me that for him, it is essential to know whether his boss knows about
the changes made to the issue, which is communicated by the watchers
field in Redmine. In my design of helpdesk, I’ve left this feature out.

20. Missing tracker field on report a bug screen. As per my design,
I’ve removed the tracker field from the report a bug form, as I’ve been
of an impression that the project manager can better decide this field.
In a discussion with one of the participants, he revealed that often, he
doesn’t exactly know, whether he encountered a bug or he simply can’t
navigate the software in question. He also doesn’t want to offend the
software company by explicitly stating that it is a bug. I see two possible
solutions to this problem:

• Define three categories, such as Bug - an error with software, Re-
quest - a request for a new functionality, Support - a request to
help navigating the software. These categories would be linked with
appropriate Redmine tracker types.

• Rename the bugs and issues to tickets in the helpdesk. “Creating
a ticket” instead of “Reporting a bug” might have a better psycho-
logical impact on the customer, as ticket sounds more neutral than
a bug.

I think that the second option is better, as it would keep the project
manager’s hands free and overall bring less complexity to the system.

21. Missing the options to set the priority on the report a bug
screen. I’ve also removed the option to set a priority of the created
issue from the report a bug form. The reasoning behind this removal
was similar to the tracker field - the customer often wants it as soon
as possible, so he goes for a high priority. After some discussion with
a participant, I’ve come to a conclusion that the priority field should be
kept, but maybe in a more simpler way. The user simply needs to be able
to express whether the issue is urgent or not. A simple checkbox on the

70

7.5. Fixing the observed issues

frontend side could solve this. On the backend part, either mapping this
to a Redmine priority option - Normal for non-urgent tasks and Urgent
for urgent tasks, or adding a flag attribute called “Urgent in customer’s
eyes” to the Redmine issue.

22. Information about the estimated time of fix would be valuable
for the customer. After reporting an issue, it would be useful for the
customer to see the information about an estimated time of fix. This
would especially help in cases when the reported issue is critical and
impacts the customer’s ability to perform the work. The solution would
be introducing a new attribute to the issue, where such estimate would
be held.

23. A better communication of the issues for which an action from
the user’s side is required would be helpful. While accessing the
list of issues, a participant told me that sometimes, he doesn’t really
know whether an action is required on his part, or the issue is already
closed. From my observation, this ties to two things:

• The Redmine state “Solved” being unclear to the customer. Al-
though it sounds like a closed state, it doesn’t have such attribute
in the Redmine instance I’ve been using. From customer’s perspec-
tive, the solved might mean that the issue is already closed. From
the perspective of the software company, it might mean that the
customer is required to confirm the issue being solved by changing
the state to the “Closed” value. This relates to the idea about a set
of statuses specific for helpdesk presented above.

• The actions required from user not being communicated well enough.
Once again, this has already been mentioned above, yet I mention
it here, as it is in my opinion quite important. A solution could be
introducing a list of issues, something like “Awaiting your reaction”
to the homepage.

7.5 Fixing the observed issues

I’ve chosen several issues mentioned in the list above and fixed them. More
precisely, the changes I’ve made are:

• Persisting the previously applied filters, sort and pagination in
the issue table. In my eyes, this was a significant problem, I’ve therefore
prioritized it. The fix was done with the help of query parameters. The
configuration of the data table is persisted as the query parameters in
the URL. When user visits another page and afterward returns to the
issue table, he returns to an URL containing query parameters. These
parameters are processed by the Vue logic and applied correctly to the
table. Due to the complexity of this component, I’ve also decided to
use the debounce functionality. This has allowed me to have a better
control over the requests sent to the backend. I’ve leveraged the lodash
debounce npm package and I’ve sourced the post “How to Debounce
Input in Vue3”, available at [122].

71

7. User testing

• Allow the submission of login and register form with the Enter
button click. I’ve prioritized this problem as well, as it was observed
during two user testing sessions. The fix was quite straightforward, I’ve
simply used the @submit functionality of the Vuetify’s form component
and mapped it to the correct button.

• Move the “See in Redmine” functionality from the page title
to a button on the Issue detail screen. One of the participants
had problem with the clickable area around the title on the Issue detail
screen. I’ve decided to fully remove the title. The “See in Redmine”
functionality is however retained, but I’ve moved it to a button titled
“See in Redmine”, which is in my opinion a more user friendly approach.
I’ve also moved the issue Id to the issue detail’s card.

• Fix redirection on new bug and new comment. In the previous
version, adding a new comment to an issue and also reporting a new bug
both redirected to the issues list. In the new version:

– When adding a comment to an issue the user already is on the issue
detail screen. I’ve removed the redirection and added the BE call to
reload the data source, when the user adds a new comment. This
leaves the user on the detail of the current issue, but renders the
newly added comment.

– After reporting a bug, the user is redirected to the issue detail page
of the newly reported bug.

• Fix the issue attributes design on the Issue detail screen. The
attributes of issue were not prioritized well on the mentioned screen. I’ve
decided to restructure them and I’ve also changed the created attribute
to show time in a more user friendly way.

Overall, I’ve managed to fix four out of five functional problems observed during
the user testing. The only observed functional problem left to be fixed is the
upload file modal one. An auto-upload would probably fit best, but I’ll have
to analyse it and decide on the most optimal approach. Most of the observed
non functional problems require some type of the design decision and that’s
why I haven’t fixed them directly. I plan to address all observed problems in
the weeks following the submission of the thesis.

72

Chapter 8
Future of the project

There are several options for the future of the project. I’ve touched on some
in the previous chapters, and I’ll try to summarize them here.

8.1 Fixing the remaining known issues

During the user testing, I’ve observed multiple issues with the system. Some
of them, I’ve already solved, some are yet to be solved. In addition to these
observed issues, I’ve also encountered several UI and functional issues during
the development process. Those issues were:

• Redmine text not always rendering correctly in the help desk.
This is a data related issue, meaning text gets often rendered correctly,
but for some cases, it doesn’t. This might be due to specific tags used
by Redmine, or due to the incompetence of the libraries used for the
transformation.

• TinyMCE editor not working well with images inside the text.
As I’ve mentioned, the TinyMCE editor and the way I’m required to
handle the file uploads don’t really match. I’ve tried to disable the option
of pasting an image to the editor, but my solution didn’t function in all
the cases I’ve tested. I’ve therefore decided to undo the disablement. A
better approach to this problem – one that will cooperate well with the
file uploads and also allow the pasting of images to the editor – should
be looked into and implemented.

These issues should be in my opinion the number one priority, as they are
already known and were marked problematic by the user’s during the testing
process.

8.2 Refactoring the Helpdesk Configuration

At the end of the Design chapter, I’ve touched on the idea of Helpdesk Config-
uration, an approach where a set of configurable variables should be introduced.
These variables should personalize the functionality of the software. The ap-
proach presented in the mentioned chapter describes the Redmine plugin plan,
which should in my opinion be a second step taken in the future of this project.

73

8. Future of the project

Once this Helpdesk Configuration plugin is implemented and properly tested,
the help desk will be able to function with multiple instances of Redmine, con-
sidering these instances will use this plugin with a proper configuration. At this
point, a possibility to market the solution and offer it as a service to potential
customers is open.

8.3 Shift in the email strategy

Changing the notification email sent to the customers is another area that
can be looked into. In the current state, a customer is informed about the
change by a standard Redmine email, which contains links to Redmine. The
idea would be to exchange these default templates for a custom ones with a
more user friendly content and links leading directly to help desk. An email
indicating that a bug report was done successfully would also be useful. From
the technical standpoint, the mailer used by Redmine should be leveraged. This
approach points towards another plugin for Redmine. There is a possibility to
group it with the Helpdesk Configuration plugin, but I’d say a new plugin is a
cleaner approach.

8.4 Implementing new functionalities

I’ve managed to implement almost all of the requirements in the prototype,
but there are few things missing:

• The ability to mark comment as a team one. - These comments
should be visible only by the developers. Should be implemented with
the help of the HC plugin.

• Full text search in issues. - The Redmine developer guide informs
that the search is supported and can be performed with the use of query
parameters. Vuetify also supports a search input on its data table com-
ponent. These two functionalities could therefore be leveraged together
to support the full text search.

• Display the estimated completion time to customer. - Currently,
the help desk does not display the information on the estimated time of
the issue completion. This attribute should be firstly added via the HC
plugin to Redmine, and afterward displayed on proper places.

• The ability to work with both bug and feature request in help
desk. - Although this is supported, the current version of the help desk’s
UI is more suited towards the bugs. A partial redesign might be suitable
here, as this requirement also matches the observation number 20 from
the user testings, where the participants mentioned that in some cases
he isn’t able to decide on the category of his request.

Besides the functionalities mentioned in the user requirements, there is also an
option of introducing completely new ones. Looking back at the the analysis
of existing help desk solutions, some interesting improvements could be:

1. SLA monitoring - helping the project manager handle the project bet-
ter.

74

8.4. Implementing new functionalities

2. Knowledgebase module - providing support to the customers without
the need of human interaction. Either in a way of most frequently asked
questions list, or some type of a chat bot.

3. Introducing machine learning - providing the information from the
already solved issues as well as open issues to the AI models would be
helpful in more than one way. Firstly, this model could be leveraged to
generate more precise answers for the chat bot. Secondly, such model
could also be leverages by the project managers and developers when
handling the issues.

4. Allowing to report a bug without being logged in - some of the
analysed solutions, such as Jira Helpdesk, offer this functionality. Some
existing processes would have to be analysed and improved upon to al-
low for such functionality, but with the help of HC plugin, it would be
possible.

75

Conclusion

The goal of this thesis was to design and implement a web application that
will serve as a helpdesk portal for Redmine, a project management tool. The
primary goal of this web application was a simplified user interface.

In the introduction, I’ve presented the idea that changes are a constant
feature of a software development, and software called project management
tools are a way of managing these changes.

The introduction was followed by the state-of-the-art chapter, where in the
beginning I presented the Redmine software and the notion of a help desk.
In this chapter, I’ve also performed an analysis of a few existing helpdesk
solutions - three solutions specific to Redmine, two solutions described in a
scholar literature and three out-of-the-box solutions.

The second chapter, titled “User requirements gathering”, presented the
background of the topic of my thesis, followed by the presentation of sixteen
user requirements gathered from the discussions with my supervisor, analysis
of existing solutions and a consultation with a colleague.

The third chapter presented the technological stack suitable for the web
application. It starts with a brief introduction to web development and client-
side JavaScript frameworks. Afterward, three popular JavaScript frameworks
are presented and compared. In the end, the Vue framework comes out as the
winner. The rest of the third chapter focuses on the Vue framework technology
and its features. In the end, I conclude the chosen technological stack.

The “Technological stack” chapter is followed by the “Design” chapter. In
this chapter, I introduced the way of communication between helpdesk and
Redmine. I also presented the architecture of the application. The chapter
further presented the choice of the technology for the backend. This section
was followed by the UI design section, where I talked about the ideas behind the
layout of the application, as well as two screens. I finished the “Design” chapter
with the talk about the configurable fields and Helpdesk Configuration, a utility
that would allow for the distribution of the helpdesk to multiple instances of
Redmine.

In the fifth chapter, I talked about interesting areas and concepts I’ve en-
countered during the implementation. These areas included the initialization of
the projects, authentication, handling the text encoding, working with files and
images, routing in the frontend, internationalization, and leveraged developer
productivity tools.

77

Conclusion

The deployment of the prototype was described in the sixth chapter. Con-
tainerization was leveraged in this process, and my colleague Max assisted me
with the deployment. Together, we managed to get the prototype online, so
that the user testing can be performed on it.

The deployment chapter was followed by the “User testing” chapter, where
I talked about the agenda of testing and introduced the profile of the partici-
pants. I finished this chapter with the list of observations done during the user
testing and the improvements made to fix the observed issues.

In the last chapter of the thesis, I talked about the future of the project,
touching on the topics like fixing the remaining known issues, shift in the email
strategy and adding new functionalities.

Overall, I’ve managed to fulfill all the goals of the thesis, by analysing,
designing, implementing, deploying, and user-testing a prototype of a help
desk for Redmine. This helpdesk supports internationalization and promotes a
simple user interface suited and optimized for users without technical expertise.

78

Bibliography

[1] Johnson, J.; Dubois, P. Issue tracking. Computing in Science & Engineer-
ing, volume 5, no. 6, 2003: pp. 71–77, doi:10.1109/MCISE.2003.1238707.

[2] Janák, J. Issue tracking systems. Dissertation thesis, Masarykova uni-
verzita, Fakulta informatiky, 2009.

[3] Eurostat. How many citizens had basic digital skills in 2021? c1995-2024.
Available from: https://ec.europa.eu/eurostat/en/web/products-
eurostat-news/-/ddn-20220330-1

[4] Wang, D.; Li, T.; et al. iHelp: An Intelligent Online Helpdesk Sys-
tem. IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), volume 41, no. 1, 2011: pp. 173–182, doi:10.1109/
TSMCB.2010.2049352.

[5] Redmine Team. Redmine. c2006-2023. Available from: https://
www.redmine.org/

[6] Wikipedia contributors. Redmine — Wikipedia, The Free Encyclope-
dia. https://en.wikipedia.org/w/index.php?title=Redmine&oldid=
1215858257, 2024, [Online; accessed 19-April-2024].

[7] PYPL team. PYPL PopularitY of Programming Language. c2023. Avail-
able from: https://pypl.github.io/PYPL.html

[8] Redmine boards contributors. Can you please explain me about redmine
application ? c2006-2023. Available from: https://www.redmine.org/
boards/1/topics/27559

[9] Wikipedia contributors. TYPO3 — Wikipedia, The Free Encyclo-
pedia. https://en.wikipedia.org/w/index.php?title=TYPO3&oldid=
1212034273, 2024, [Online; accessed 14-April-2024].

[10] Warhorse Studios s.r.o. Kingdom Come: Deliverance 2. c2024. Available
from: https://www.kingdomcomerpg.com/

[11] Warhorse Studios s.r.o. About us. c2019. Available from: https://
warhorsestudios.cz/about/

79

https://ec.europa.eu/eurostat/en/web/products-eurostat-news/-/ddn-20220330-1
https://ec.europa.eu/eurostat/en/web/products-eurostat-news/-/ddn-20220330-1
https://www.redmine.org/
https://www.redmine.org/
https://en.wikipedia.org/w/index.php?title=Redmine&oldid=1215858257
https://en.wikipedia.org/w/index.php?title=Redmine&oldid=1215858257
https://pypl.github.io/PYPL.html
https://www.redmine.org/boards/1/topics/27559
https://www.redmine.org/boards/1/topics/27559
https://en.wikipedia.org/w/index.php?title=TYPO3&oldid=1212034273
https://en.wikipedia.org/w/index.php?title=TYPO3&oldid=1212034273
https://www.kingdomcomerpg.com/
https://warhorsestudios.cz/about/
https://warhorsestudios.cz/about/

Bibliography

[12] Redmine team. Who uses Redmine? c2006-2023. Available from: https:
//www.redmine.org/projects/redmine/wiki/WeAreUsingRedmine

[13] Gantt.com team. What is a Gantt Chart? c2024. Available from: https:
//www.gantt.com/

[14] Redmine team. Developer guide. c2006-2023. Available from: https://
www.redmine.org/projects/redmine/wiki/Developer_Guide

[15] RedmineUP team. Redmine Tutorial: How to Get Started and Make
Profit. c2010-2024. Available from: https://www.redmineup.com/
pages/blog/how-to-install-redmine-and-launch-projects?ssp=
1&darkschemeovr=1&setlang=en&cc=CZ&safesearch=moderate

[16] RedmineUP team. Create Issues. c2010-2024. Available from: https:
//www.redmineup.com/pages/help/redmine/create-issues?ssp=
1&darkschemeovr=1&setlang=en&cc=CZ&safesearch=moderate

[17] Redmine Team. Custom fields. c2006-2023. Available from: https://
www.redmine.org/projects/redmine/wiki/redminecustomfields

[18] Redmine Team. Issue tracking system. c2006-2023. Available
from: https://www.redmine.org/projects/redmine/wiki/
redmineissuetrackingsetup

[19] Cambridge University Press. Helpdesk. c2024. Available from: https:
//dictionary.cambridge.org/dictionary/english/helpdesk

[20] Cambridge University Press. Help desk. c2024. Available from: https:
//dictionary.cambridge.org/dictionary/english/help-desk

[21] Wikipedia contributors. Help desk — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/w/index.php?title=Help_desk&oldid=
1204970376, 2024, [Online; accessed 15-April-2024].

[22] RedmineUP team. Redmine Helpdesk plugin. c2010-2024. Available from:
https://www.redmineup.com/pages/plugins/helpdesk

[23] qutic development GmbH. Redmine Helpdesk. https://github.com/
jfqd/redmine_helpdesk, c2012-2022, [Online; accessed 15-April-2024].

[24] Redmine Team. Receiving emails. c2006-2023. Available from: https://
www.redmine.org/projects/redmine/wiki/RedmineReceivingEmails

[25] Wikipedia contributors. Easy Redmine — Wikipedia, The Free
Encyclopedia. https://en.wikipedia.org/w/index.php?title=Easy_
Redmine&oldid=1193557030, 2024, [Online; accessed 15-April-2024].

[26] Wikipedia contributors. Agile software development — Wikipedia, The
Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=
Agile_software_development&oldid=1216852586, 2024, [Online; ac-
cessed 15-April-2024].

[27] Easy Software Ltd. Redmine Help Desk plugin. c2005-2024. Available
from: https://www.easyredmine.com/redmine-helpdesk

80

https://www.redmine.org/projects/redmine/wiki/WeAreUsingRedmine
https://www.redmine.org/projects/redmine/wiki/WeAreUsingRedmine
https://www.gantt.com/
https://www.gantt.com/
https://www.redmine.org/projects/redmine/wiki/Developer_Guide
https://www.redmine.org/projects/redmine/wiki/Developer_Guide
https://www.redmineup.com/pages/blog/how-to-install-redmine-and-launch-projects?ssp=1&darkschemeovr=1&setlang=en&cc=CZ&safesearch=moderate
https://www.redmineup.com/pages/blog/how-to-install-redmine-and-launch-projects?ssp=1&darkschemeovr=1&setlang=en&cc=CZ&safesearch=moderate
https://www.redmineup.com/pages/blog/how-to-install-redmine-and-launch-projects?ssp=1&darkschemeovr=1&setlang=en&cc=CZ&safesearch=moderate
https://www.redmineup.com/pages/help/redmine/create-issues?ssp=1&darkschemeovr=1&setlang=en&cc=CZ&safesearch=moderate
https://www.redmineup.com/pages/help/redmine/create-issues?ssp=1&darkschemeovr=1&setlang=en&cc=CZ&safesearch=moderate
https://www.redmineup.com/pages/help/redmine/create-issues?ssp=1&darkschemeovr=1&setlang=en&cc=CZ&safesearch=moderate
https://www.redmine.org/projects/redmine/wiki/redminecustomfields
https://www.redmine.org/projects/redmine/wiki/redminecustomfields
https://www.redmine.org/projects/redmine/wiki/redmineissuetrackingsetup
https://www.redmine.org/projects/redmine/wiki/redmineissuetrackingsetup
https://dictionary.cambridge.org/dictionary/english/helpdesk
https://dictionary.cambridge.org/dictionary/english/helpdesk
https://dictionary.cambridge.org/dictionary/english/help-desk
https://dictionary.cambridge.org/dictionary/english/help-desk
https://en.wikipedia.org/w/index.php?title=Help_desk&oldid=1204970376
https://en.wikipedia.org/w/index.php?title=Help_desk&oldid=1204970376
https://www.redmineup.com/pages/plugins/helpdesk
https://github.com/jfqd/redmine_helpdesk
https://github.com/jfqd/redmine_helpdesk
https://www.redmine.org/projects/redmine/wiki/RedmineReceivingEmails
https://www.redmine.org/projects/redmine/wiki/RedmineReceivingEmails
https://en.wikipedia.org/w/index.php?title=Easy_Redmine&oldid=1193557030
https://en.wikipedia.org/w/index.php?title=Easy_Redmine&oldid=1193557030
https://en.wikipedia.org/w/index.php?title=Agile_software_development&oldid=1216852586
https://en.wikipedia.org/w/index.php?title=Agile_software_development&oldid=1216852586
https://www.easyredmine.com/redmine-helpdesk

Bibliography

[28] Duffy, J. Redmine - Review 2021. c1996-2024. Available from: https:
//uk.pcmag.com/project-management/120844/redmine

[29] PC Mag Editors. Help desk ticket. c1996-2024. Available from: https:
//www.pcmag.com/encyclopedia/term/help-desk-ticket

[30] Herrick, D. R.; Metz, L.; et al. Effective zero-cost help desk software.
In Proceedings of the 40th annual ACM SIGUCCS conference on User
services, 2012, pp. 157–160.

[31] Sinnett, C. J.; Barr, T. OSU helpdesk: a cost-effective helpdesk solution
for everyone. In Proceedings of the 32nd Annual ACM SIGUCCS Con-
ference on User Services, SIGUCCS ’04, New York, NY, USA: Associa-
tion for Computing Machinery, 2004, ISBN 1581138695, p. 209–216, doi:
10.1145/1027802.1027851. Available from: https://doi.org/10.1145/
1027802.1027851

[32] Haan, K. Best Help Desk Software (2024). c2024. Available
from: https://www.forbes.com/advisor/business/software/best-
help-desk-software/

[33] Zoho Corporation. Features | Zoho Desk. c2024. Available from: https:
//www.zoho.com/desk/features.html

[34] Lee, P.; Goldberg, C.; et al. The AI revolution in medicine: GPT-4 and
beyond. Pearson, 2023.

[35] Chan, C. K. Y.; Tsi, L. H. The AI Revolution in Education: Will
AI Replace or Assist Teachers in Higher Education? arXiv preprint
arXiv:2305.01185, 2023.

[36] Cooper, R. G. The Artificial Intelligence Revolution in new-product de-
velopment. IEEE Engineering Management Review, 2023.

[37] Bhat, S. A.; Huang, N.-F. Big data and ai revolution in precision agri-
culture: Survey and challenges. Ieee Access, volume 9, 2021: pp. 110209–
110222.

[38] Wikipedia contributors. Jira (software) — Wikipedia, The Free
Encyclopedia. https://en.wikipedia.org/w/index.php?title=Jira_
(software)&oldid=1215859843, 2024, [Online; accessed 17-April-2024].

[39] Atlassian. ITSM software features | Request Management. c2024. Avail-
able from: https://www.atlassian.com/software/jira/service-
management/features/itsm

[40] Atlassian. Jira Service Management pricing. c2024. Available from:
https://www.atlassian.com/software/jira/service-management/
pricing

[41] Atlassian. How Jira Service Management and Jira work together.
c2024. Available from: https://www.atlassian.com/software/
jira/service-management/product-guide/tips-and-tricks/jira-
service-management-and-jira-software

81

https://uk.pcmag.com/project-management/120844/redmine
https://uk.pcmag.com/project-management/120844/redmine
https://www.pcmag.com/encyclopedia/term/help-desk-ticket
https://www.pcmag.com/encyclopedia/term/help-desk-ticket
https://doi.org/10.1145/1027802.1027851
https://doi.org/10.1145/1027802.1027851
https://www.forbes.com/advisor/business/software/best-help-desk-software/
https://www.forbes.com/advisor/business/software/best-help-desk-software/
https://www.zoho.com/desk/features.html
https://www.zoho.com/desk/features.html
https://en.wikipedia.org/w/index.php?title=Jira_(software)&oldid=1215859843
https://en.wikipedia.org/w/index.php?title=Jira_(software)&oldid=1215859843
https://www.atlassian.com/software/jira/service-management/features/itsm
https://www.atlassian.com/software/jira/service-management/features/itsm
https://www.atlassian.com/software/jira/service-management/pricing
https://www.atlassian.com/software/jira/service-management/pricing
https://www.atlassian.com/software/jira/service-management/product-guide/tips-and-tricks/jira-service-management-and-jira-software
https://www.atlassian.com/software/jira/service-management/product-guide/tips-and-tricks/jira-service-management-and-jira-software
https://www.atlassian.com/software/jira/service-management/product-guide/tips-and-tricks/jira-service-management-and-jira-software

Bibliography

[42] Spiceworks Inc. What is Spiceworks Cloud Help Desk? c2006-2024. Avail-
able from: https://www.spiceworks.com/free-cloud-help-desk-
software

[43] Wikipedia contributors. Vendor lock-in — Wikipedia, The Free Encyclo-
pedia. https://en.wikipedia.org/w/index.php?title=Vendor_lock-
in&oldid=1212388775, 2024, [Online; accessed 17-April-2024].

[44] Wikipedia contributors. Functional requirement — Wikipedia, The
Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=
Functional_requirement&oldid=1212851555, 2024, [Online; accessed
17-April-2024].

[45] Raymond, E. S. Basics of the Unix Philosophy. Available from: http:
//www.catb.org/~esr/writings/taoup/html/ch01s06.html

[46] Glinz, M. On Non-Functional Requirements. In 15th IEEE International
Requirements Engineering Conference (RE 2007), 2007, pp. 21–26, doi:
10.1109/RE.2007.45.

[47] Redmine Team. Plugin Tutorial. c2006-2023. Available from: https://
www.redmine.org/projects/redmine/wiki/Plugin_Tutorial

[48] MDN Web Docs Contributors. Web standards. c1998-2024. Available
from: https://developer.mozilla.org/en-US/curriculum/core/
web-standards/

[49] MDN Web Docs Contributors. Document Object Model (DOM). c1998-
2024. Available from: https://developer.mozilla.org/en-US/docs/
Web/API/Document_Object_Model

[50] MDN Web Docs Contributors. Web standards. c1998-2024. Available
from: https://developer.mozilla.org/en-US/docs/Learn/Getting_
started_with_the_web/How_the_Web_works

[51] Wikipedia contributors. Web development — Wikipedia, The Free
Encyclopedia. https://en.wikipedia.org/w/index.php?title=
Web_development&oldid=1216918289, 2024, [Online; accessed 17-
April-2024].

[52] MDN Web Docs Contributors. Understanding client-side
JavaScript frameworks. c1998-2024. Available from: https:
//developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/
Client-side_JavaScript_frameworks

[53] Wikipedia contributors. URL — Wikipedia, The Free Ency-
clopedia. https://en.wikipedia.org/w/index.php?title=URL&oldid=
1210046855, 2024, [Online; accessed 17-April-2024].

[54] Wikipedia contributors. React (JavaScript library) — Wikipedia, The
Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=
React_(JavaScript_library)&oldid=1219382752, 2024, [Online; ac-
cessed 17-April-2024].

82

https://www.spiceworks.com/free-cloud-help-desk-software
https://www.spiceworks.com/free-cloud-help-desk-software
https://en.wikipedia.org/w/index.php?title=Vendor_lock-in&oldid=1212388775
https://en.wikipedia.org/w/index.php?title=Vendor_lock-in&oldid=1212388775
https://en.wikipedia.org/w/index.php?title=Functional_requirement&oldid=1212851555
https://en.wikipedia.org/w/index.php?title=Functional_requirement&oldid=1212851555
http://www.catb.org/~esr/writings/taoup/html/ch01s06.html
http://www.catb.org/~esr/writings/taoup/html/ch01s06.html
https://www.redmine.org/projects/redmine/wiki/Plugin_Tutorial
https://www.redmine.org/projects/redmine/wiki/Plugin_Tutorial
https://developer.mozilla.org/en-US/curriculum/core/web-standards/
https://developer.mozilla.org/en-US/curriculum/core/web-standards/
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://developer.mozilla.org/en-US/docs/Learn/Getting_started_with_the_web/How_the_Web_works
https://developer.mozilla.org/en-US/docs/Learn/Getting_started_with_the_web/How_the_Web_works
https://en.wikipedia.org/w/index.php?title=Web_development&oldid=1216918289
https://en.wikipedia.org/w/index.php?title=Web_development&oldid=1216918289
https://developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/Client-side_JavaScript_frameworks
https://developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/Client-side_JavaScript_frameworks
https://developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/Client-side_JavaScript_frameworks
https://en.wikipedia.org/w/index.php?title=URL&oldid=1210046855
https://en.wikipedia.org/w/index.php?title=URL&oldid=1210046855
https://en.wikipedia.org/w/index.php?title=React_(JavaScript_library)&oldid=1219382752
https://en.wikipedia.org/w/index.php?title=React_(JavaScript_library)&oldid=1219382752

Bibliography

[55] Patel, S. 13 Most Popular Websites Built With React in 2023-2024.
c2024. Available from: https://www.cmarix.com/blog/most-popular-
websites-built-with-react/

[56] Wikipedia contributors. Vue.js — Wikipedia, The Free Encyclo-
pedia. https://en.wikipedia.org/w/index.php?title=Vue.js&oldid=
1216191150, 2024, [Online; accessed 18-April-2024].

[57] Wikipedia contributors. AngularJS — Wikipedia, The Free
Encyclopedia. https://en.wikipedia.org/w/index.php?title=
AngularJS&oldid=1217368237, 2024, [Online; accessed 18-April-2024].

[58] Kugell, A. 15 Global Websites Using Vue.js in 2024. c2024. Available
from: https://trio.dev/websites-using-vue/

[59] Wikipedia contributors. Svelte — Wikipedia, The Free Encyclo-
pedia. https://en.wikipedia.org/w/index.php?title=Svelte&oldid=
1210470585, 2024, [Online; accessed 18-April-2024].

[60] Svelte contributors. Svelte components. c2023. Available from: https:
//svelte.dev/docs/svelte-components

[61] Svelte contributors. Introduction SvelteKit. c2023. Available from:
https://kit.svelte.dev/docs/introduction

[62] Ahinon, J. Top 10 Big Companies Using Svelte. Okupter. Available from:
https://www.okupter.com/blog/companies-using-svelte

[63] kiraaziz. Choosing the Right Frontend Framework: React vs. Vue
vs. Svelte. c2016-2024. Available from: https://dev.to/kiraaziz/
choosing-the-right-frontend-framework-react-vs-vue-vs-
svelte-2n48

[64] facebook. react. https://github.com/facebook/react, c2024.

[65] contributors, E. Y. . V. vuejs/core. https://github.com/vuejs/core,
c2013-2024.

[66] contributors, S. svelte. https://github.com/sveltejs/svelte, c2024.

[67] LinkedIn team. How do you reduce bundle size and improve user expe-
rience? c2024. Available from: https://www.linkedin.com/advice/3/
how-do-you-reduce-bundle-size-improve-user

[68] GitHub team. Saving repositories with stars. c2024. Available from:
https://docs.github.com/en/get-started/exploring-projects-
on-github/saving-repositories-with-stars

[69] Vue.js team. Release v3.0.0 One Piece. c2013-2024. Available from:
https://github.com/vuejs/core/releases/tag/v3.0.0

[70] semver contributors. Semantic Versioning 2.0.0. Available from: https:
//semver.org/

[71] Vue.js team. Composition API FAQ. c2014-2024. Available from: https:
//vuejs.org/guide/extras/composition-api-faq.html

83

https://www.cmarix.com/blog/most-popular-websites-built-with-react/
https://www.cmarix.com/blog/most-popular-websites-built-with-react/
https://en.wikipedia.org/w/index.php?title=Vue.js&oldid=1216191150
https://en.wikipedia.org/w/index.php?title=Vue.js&oldid=1216191150
https://en.wikipedia.org/w/index.php?title=AngularJS&oldid=1217368237
https://en.wikipedia.org/w/index.php?title=AngularJS&oldid=1217368237
https://trio.dev/websites-using-vue/
https://en.wikipedia.org/w/index.php?title=Svelte&oldid=1210470585
https://en.wikipedia.org/w/index.php?title=Svelte&oldid=1210470585
https://svelte.dev/docs/svelte-components
https://svelte.dev/docs/svelte-components
https://kit.svelte.dev/docs/introduction
https://www.okupter.com/blog/companies-using-svelte
https://dev.to/kiraaziz/choosing-the-right-frontend-framework-react-vs-vue-vs-svelte-2n48
https://dev.to/kiraaziz/choosing-the-right-frontend-framework-react-vs-vue-vs-svelte-2n48
https://dev.to/kiraaziz/choosing-the-right-frontend-framework-react-vs-vue-vs-svelte-2n48
https://github.com/facebook/react
https://github.com/vuejs/core
https://github.com/sveltejs/svelte
https://www.linkedin.com/advice/3/how-do-you-reduce-bundle-size-improve-user
https://www.linkedin.com/advice/3/how-do-you-reduce-bundle-size-improve-user
https://docs.github.com/en/get-started/exploring-projects-on-github/saving-repositories-with-stars
https://docs.github.com/en/get-started/exploring-projects-on-github/saving-repositories-with-stars
https://github.com/vuejs/core/releases/tag/v3.0.0
https://semver.org/
https://semver.org/
https://vuejs.org/guide/extras/composition-api-faq.html
https://vuejs.org/guide/extras/composition-api-faq.html

Bibliography

[72] Vue.js team. Composables. c2014-2024. Available from: https://
vuejs.org/guide/reusability/composables

[73] Vue.js team. SFC Syntax Specification. c2014-2024. Available from:
https://vuejs.org/api/sfc-spec

[74] Vue.js team. <script setup>. c2014-2024. Available from: https://
vuejs.org/api/sfc-script-setup.html

[75] Bierman, G.; Abadi, M.; et al. Understanding typescript. In ECOOP
2014–Object-Oriented Programming: 28th European Conference, Upp-
sala, Sweden, July 28–August 1, 2014. Proceedings 28, Springer, 2014,
pp. 257–281.

[76] Vue.js team. Using Vue with TypeScript. c2014-2024. Available from:
https://vuejs.org/guide/typescript/overview

[77] Bonisteel, S. 10 Vue Component Libraries You’ll Want to Know. c2013-
2024. Available from: https://kinsta.com/blog/vue-component-
libraries/

[78] Vuetify team. The Vuetify roadmap. c2016-2024. Available from: https:
//vuetifyjs.com/en/introduction/roadmap

[79] W3Schools team. Node.js NPM. c1999-2024. Available from: https://
www.w3schools.com/nodejs/nodejs_npm.asp

[80] NodeSource team. Choosing the Right Node.js Package Manager
in 2024: A Comparative Guide. c2024. Available from: https:
//nodesource.com/blog/nodejs-package-manager-comparative-
guide-2024/

[81] Redmine Team. Redmine API. c2006-2023. Available from: https://
www.redmine.org/projects/redmine/wiki/rest_api

[82] CORINA. Best practices for working with API keys in the frontend.
c2024. Available from: https://jsramblings.com/best-practices-
for-working-with-api-keys-in-the-frontend/

[83] J Zeil, S. Compiling Programs. c2023. Available from: https:
//www.cs.odu.edu/~zeil/cs252/latest/Public/compilation/
index.html

[84] Amazon Web Services team. What’s the Difference Between Fron-
tend and Backend in Application Development? c2024. Available
from: https://aws.amazon.com/compare/the-difference-between-
frontend-and-backend/

[85] Parecki, A. OAuth 2.0 Simplified. Available from: https://
www.oauth.com/

[86] Redmine issues contributors. Feature #24808: OAuth2 support for Red-
mine API Apps (OAuth2 Provider). c2006-2023. Available from: https:
//www.redmine.org/issues/24808

84

https://vuejs.org/guide/reusability/composables
https://vuejs.org/guide/reusability/composables
https://vuejs.org/api/sfc-spec
https://vuejs.org/api/sfc-script-setup.html
https://vuejs.org/api/sfc-script-setup.html
https://vuejs.org/guide/typescript/overview
https://kinsta.com/blog/vue-component-libraries/
https://kinsta.com/blog/vue-component-libraries/
https://vuetifyjs.com/en/introduction/roadmap
https://vuetifyjs.com/en/introduction/roadmap
https://www.w3schools.com/nodejs/nodejs_npm.asp
https://www.w3schools.com/nodejs/nodejs_npm.asp
https://nodesource.com/blog/nodejs-package-manager-comparative-guide-2024/
https://nodesource.com/blog/nodejs-package-manager-comparative-guide-2024/
https://nodesource.com/blog/nodejs-package-manager-comparative-guide-2024/
https://www.redmine.org/projects/redmine/wiki/rest_api
https://www.redmine.org/projects/redmine/wiki/rest_api
https://jsramblings.com/best-practices-for-working-with-api-keys-in-the-frontend/
https://jsramblings.com/best-practices-for-working-with-api-keys-in-the-frontend/
https://www.cs.odu.edu/~zeil/cs252/latest/Public/compilation/index.html
https://www.cs.odu.edu/~zeil/cs252/latest/Public/compilation/index.html
https://www.cs.odu.edu/~zeil/cs252/latest/Public/compilation/index.html
https://aws.amazon.com/compare/the-difference-between-frontend-and-backend/
https://aws.amazon.com/compare/the-difference-between-frontend-and-backend/
https://www.oauth.com/
https://www.oauth.com/
https://www.redmine.org/issues/24808
https://www.redmine.org/issues/24808

Bibliography

[87] expressjs.com contributors. Express. c2017. Available from: https://
expressjs.com/

[88] Amazon Web Services team. What is SQL (Structured Query Language)?
c2024. Available from: https://aws.amazon.com/what-is/sql/

[89] SQLite team. SQLite Home Page. 2024. Available from: https://
www.sqlite.org/

[90] JAGU team. Užívatelská dokumentace. c2024. Available from: https:
//manual.sklady.jagu.cz/user-documentation/guide/

[91] Vuetify team. Get started with Vuetify 3. c2016-2024. Available from:
https://vuetifyjs.com/en/getting-started/installation/

[92] Amazon Web Services team. What is an IDE (Integrated Development
Environment)? c2024. Available from: https://aws.amazon.com/what-
is/ide/

[93] Crockford, Douglas. Introducing JSON. Available from: https://
www.json.org/json-en.html

[94] Okta team. JSON Web Tokens. c2024. Available from: https://
auth0.com/docs/secure/tokens/json-web-tokens

[95] MDN Web Docs Contributors. HTTP response status codes. c1998-
2024. Available from: https://developer.mozilla.org/en-US/docs/
Web/HTTP/Status

[96] Pinia team. Introduction. c2019-2024. Available from: https://
pinia.vuejs.org/introduction.html

[97] expressjs.com contributors. Writing middleware for use in Express apps.
c2017. Available from: https://expressjs.com/en/guide/writing-
middleware.html

[98] MDN Web Docs Contributors. HTTP headers. c1998-2024. Avail-
able from: https://developer.mozilla.org/en-US/docs/Web/HTTP/
Headers

[99] Watmore, Jason. Vue 3 + Pinia - JWT Authentication with
Refresh Tokens Example & Tutorial. c2024. Available from:
https://jasonwatmore.com/vue-3-pinia-jwt-authentication-
with-refresh-tokens-example-tutorial

[100] Redmine Team. Text formatting. c2006-2023. Available from: https:
//www.redmine.org/projects/redmine/wiki/redminetextformatting

[101] Tiny Technologies team. TinyMCE. c2024. Available from: https://
www.tiny.cloud/

[102] Tiny Technologies team. TinyMCE Vue.js integration technical refer-
ence. c2024. Available from: https://www.tiny.cloud/docs/tinymce/
latest/vue-ref

85

https://expressjs.com/
https://expressjs.com/
https://aws.amazon.com/what-is/sql/
https://www.sqlite.org/
https://www.sqlite.org/
https://manual.sklady.jagu.cz/user-documentation/guide/
https://manual.sklady.jagu.cz/user-documentation/guide/
https://vuetifyjs.com/en/getting-started/installation/
https://aws.amazon.com/what-is/ide/
https://aws.amazon.com/what-is/ide/
https://www.json.org/json-en.html
https://www.json.org/json-en.html
https://auth0.com/docs/secure/tokens/json-web-tokens
https://auth0.com/docs/secure/tokens/json-web-tokens
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://pinia.vuejs.org/introduction.html
https://pinia.vuejs.org/introduction.html
https://expressjs.com/en/guide/writing-middleware.html
https://expressjs.com/en/guide/writing-middleware.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers
https://jasonwatmore.com/vue-3-pinia-jwt-authentication-with-refresh-tokens-example-tutorial
https://jasonwatmore.com/vue-3-pinia-jwt-authentication-with-refresh-tokens-example-tutorial
https://www.redmine.org/projects/redmine/wiki/redminetextformatting
https://www.redmine.org/projects/redmine/wiki/redminetextformatting
https://www.tiny.cloud/
https://www.tiny.cloud/
https://www.tiny.cloud/docs/tinymce/latest/vue-ref
https://www.tiny.cloud/docs/tinymce/latest/vue-ref

Bibliography

[103] GitHub issues contributors. How can I self host this? c2024. Available
from: https://github.com/tinymce/tinymce-vue/issues/20

[104] Þorsteinsson, B. textile-js: A fully featured Textile parser in JavaScript.
https://github.com/borgar/textile-js, 2024.

[105] Axios. Axios Documentation. https://axios-http.com/docs/intro,
accessed: 2024-04-29.

[106] MDN Web Docs Contributors. Response: blob() method - Web APIs.
https://developer.mozilla.org/en-US/docs/Web/API/Response/
blob, accessed: 2024-04-29.

[107] MDN Web Docs Contributors. Blob - Web APIs | MDN. https://
developer.mozilla.org/en-US/docs/Web/API/Blob, c2024, accessed:
2024-04-29.

[108] SmartBear Software. API Endpoints. https://support.smartbear.com/
zephyr-scale-cloud/docs/en/rest-api/rest-api--overview-
.html, c2024, accessed: 2024-04-29.

[109] Branch team. Query Parameters. c2024. Available from: https://
www.branch.io/glossary/query-parameters/

[110] MDN Web Docs Contributors. What is a URL? c1998-2024. Available
from: https://developer.mozilla.org/en-US/docs/Learn/Common_
questions/Web_mechanics/What_is_a_URL

[111] Mozilla Developer Network. FormData - Web APIs | MDN. https:
//developer.mozilla.org/en-US/docs/Web/API/FormData, c2024, ac-
cessed: 2024-04-29.

[112] Multer Contributors. Multer. Available from: https://www.npmjs.com/
package/multer

[113] OpenJS Foundation. Node.js fs Module. https://nodejs.org/api/
fs.html, accessed: April 29, 2024.

[114] Vue.js team. Routing. c2014-2024. Available from: https://vuejs.org/
guide/scaling-up/routing

[115] Vue Router team. Vue Router | The official Router for Vue.js. https:
//router.vuejs.org/, accessed: 2024-04-29.

[116] vue-i18n contributors. Vue I18n. c2020. Available from: https://
kazupon.github.io/vue-i18n/

[117] OpenJS foundation. ESLint. https://eslint.org/, accessed: April 29,
2024.

[118] Fu, A. unplugin-auto-import: Auto import APIs on-demand for
Vite, Webpack, and Rollup. https://github.com/unplugin/unplugin-
auto-import, 2024.

[119] Amazon Web Services team. What is containerization? c2024. Available
from: https://aws.amazon.com/what-is/containerization/

86

https://github.com/tinymce/tinymce-vue/issues/20
https://github.com/borgar/textile-js
https://axios-http.com/docs/intro
https://developer.mozilla.org/en-US/docs/Web/API/Response/blob
https://developer.mozilla.org/en-US/docs/Web/API/Response/blob
https://developer.mozilla.org/en-US/docs/Web/API/Blob
https://developer.mozilla.org/en-US/docs/Web/API/Blob
https://support.smartbear.com/zephyr-scale-cloud/docs/en/rest-api/rest-api--overview-.html
https://support.smartbear.com/zephyr-scale-cloud/docs/en/rest-api/rest-api--overview-.html
https://support.smartbear.com/zephyr-scale-cloud/docs/en/rest-api/rest-api--overview-.html
https://www.branch.io/glossary/query-parameters/
https://www.branch.io/glossary/query-parameters/
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/Web_mechanics/What_is_a_URL
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/Web_mechanics/What_is_a_URL
https://developer.mozilla.org/en-US/docs/Web/API/FormData
https://developer.mozilla.org/en-US/docs/Web/API/FormData
https://www.npmjs.com/package/multer
https://www.npmjs.com/package/multer
https://nodejs.org/api/fs.html
https://nodejs.org/api/fs.html
https://vuejs.org/guide/scaling-up/routing
https://vuejs.org/guide/scaling-up/routing
https://router.vuejs.org/
https://router.vuejs.org/
https://kazupon.github.io/vue-i18n/
https://kazupon.github.io/vue-i18n/
https://eslint.org/
https://github.com/unplugin/unplugin-auto-import
https://github.com/unplugin/unplugin-auto-import
https://aws.amazon.com/what-is/containerization/

Bibliography

[120] PostgreSQL Global Development Group. PostgreSQL: The World’s Most
Advanced Open Source Relational Database. c1996-2024. Available from:
https://www.postgresql.org/

[121] Pavlicek, J. User Interface Testing. https://docs.google.com/
presentation/d/1t-4kCvHJSqpzqff30JhoAzPvaJQQElJ990geai3K9e8/
edit#slide=id.ga8c1693005_0_368, 2023, [Online; accessed 4-May-
2024].

[122] Garrett-Smith, A. How to Debounce Input in Vue 3. c2024. Available
from: https://codecourse.com/articles/debounce-input-in-vue-3

[123] Yamaoka, H.; Yamamoto, K.; et al. Case Study of Implementing an
IT Service Desk Ticketing System at Small Computer Center. In Pro-
ceedings of the 2019 ACM SIGUCCS Annual Conference, SIGUCCS
’19, New York, NY, USA: Association for Computing Machinery, 2019,
ISBN 9781450357746, p. 140–144, doi:10.1145/3347709.3347820. Avail-
able from: https://doi.org/10.1145/3347709.3347820

[124] pnpm contributors. Pnpm. c2015-2024. Available from: https://
pnpm.io/

[125] MDN Web Docs Contributors. ArrayBuffer - JavaScript. https:
//developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Global_Objects/ArrayBuffer, accessed: 2024-04-29.

87

https://www.postgresql.org/
https://docs.google.com/presentation/d/1t-4kCvHJSqpzqff30JhoAzPvaJQQElJ990geai3K9e8/edit#slide=id.ga8c1693005_0_368
https://docs.google.com/presentation/d/1t-4kCvHJSqpzqff30JhoAzPvaJQQElJ990geai3K9e8/edit#slide=id.ga8c1693005_0_368
https://docs.google.com/presentation/d/1t-4kCvHJSqpzqff30JhoAzPvaJQQElJ990geai3K9e8/edit#slide=id.ga8c1693005_0_368
https://codecourse.com/articles/debounce-input-in-vue-3
https://doi.org/10.1145/3347709.3347820
https://pnpm.io/
https://pnpm.io/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/ArrayBuffer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/ArrayBuffer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/ArrayBuffer

Appendix A
Acronyms

AI Artificial Intelligence

API Application Programming Interface

AWS Amazon Web Services

BE BackEnd

CRM Customer Relationship Management

CSS Cascading Style Sheets

DOM Document Object Model

FAQ Frequently Asked Question

FE FrontEnd

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

ICT Information and Communication Technology

IDE Integrated Development Environment

IT Information Technology

JS JavaScript

JWT JSON Web Token

NBA National Basketball Association

URL Uniform Resource Locator

REST REpresentational State Transfer

SDK Software Development Kit

SFC Single File Component

SLA Service Level Agreement

89

A. Acronyms

UI User Interface

WYSIWYG What You See Is What You Get

90

Appendix B
Contents of attachments

readme.txt the file with CD contents description
documents

utAgenda.pdf....................the agenda used during user testing
src

app
backend....................the source code of the backend project
frontend the source code of the frontend project

thesis..............the source code of the thesis in the LATEX format
text

thesis.pdf................................thesis in the PDF format

91

	Introduction
	State-of-the-art
	An Overview of Redmine
	Who uses Redmine
	Features of Redmine
	Roles in Redmine
	Issue tracking feature of Redmine
	Summary of the Redmine overview subsection

	What is a help desk
	Competing helpdesk solutions for Redmine
	RedmineUP's Helpdesk Plugin
	Lightweight helpdesk plugin for redmine
	HelpDesk for Easy Redmine

	Papers on Helpdesk with a similar use case
	Colorado State University case study
	Oregon State University case study

	Competing helpdesk solutions outside Redmine
	Zoho Desk
	Jira Service Desk
	Spiceworks help desk

	A brief outline of the state-of-the-art chapter

	User requirements gathering
	Background of the topic
	Theory on requirements
	Functional requirements
	Non-functional requirements
	A discussion with a colleague

	Technological stack
	Choosing the right technology for the application
	Client-side JavaScript frameworks introduction
	A brief history of client-side JS frameworks
	Why do the frameworks exist?

	Client-side JavaScript framework choice
	React
	Vue
	Svelte
	Comparison of the frameworks
	The choice of the framework

	Technologies bundle choice
	Composition API vs Options API
	Single File Component
	The script setup
	TypeScript or JavaScript
	UI Component Library choice
	Package manager choice

	Conclusion of the technology choices

	Design
	Communication between helpdesk and Redmine
	Authentication
	Handling the API key
	A remark on the OAuth 2.0

	Choosing the backend technology
	UI design
	Homepage and the layout of the application
	Report an issue screen

	The configurable fields
	Handling the Helpdesk Configuration
	Phase 1 - prototype deployment
	Phase 2 - Redmine plugin
	Phase 3 - Extending the Redmine plugin

	Implementation
	Start of the implementation
	Initializing the frontend
	Initializing the backend
	Initializing the database
	A remark on the IDE choice

	Authentication
	Registration
	Login
	Using the JWT in communication
	Refreshing the JWT token

	Formatting text in Redmine
	Generating textile
	Rendering textile

	Requesting files from Redmine
	Uploading files to Redmine
	Handling the images in textile
	Rendering the text containing images
	Creating the text containing images

	Routing in the frontend
	Internationalization of the application
	Utilizing ESLint, auto-import and GitHub Copilot for a more efficient coding
	ESLint
	Auto import
	GitHub Copilot

	Deployment of the prototype
	Concept of containerization
	Leveraged containerization technology
	A remark on the database change
	Cooperation with my colleague

	User testing
	The agenda of the testing
	Participants profile
	The testing process
	Observations
	Fixing the observed issues

	Future of the project
	Fixing the remaining known issues
	Refactoring the Helpdesk Configuration
	Shift in the email strategy
	Implementing new functionalities

	Conclusion
	Bibliography
	Acronyms
	Contents of attachments

