
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Generative Models for High Energy Physics
Measurements

Bc. Lukáš Viceník

Supervisor: doc. Boris Flach, Dr. rer. nat. habil.
Second supervisor: doc. Dr. André Sopczak
Study program: Cybernetics and Robotics
May 2024

ii

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

483424 Personal ID number: Viceník Lukáš Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Cybernetics

Cybernetics and Robotics Study program:

II. Master’s thesis details

Master’s thesis title in English:

Generative Models for High Energy Physics Measurements

Master’s thesis title in Czech:

Generativní modely pro měření ve fyzice vysokých energií

Guidelines:

The simulation of detector responses for signal and background events is an important tool for experimental High Energy
Physics research. In many cases, the complexity of these simulators does not allow the creation of sufficiently large
datasets for training advanced deep networks. The aim of this thesis is to design and learn latent variable models for
generating realistic detector responses that can be used to augment (enlarge) training data e.g. for deep network
event/background classifiers. The particular tasks for the diploma thesis are:
1. Familiarise with the current state of hierarchical variational autoencoders (VAE) and diffusion models as well as with
their learning approaches.
2. Design a hierarchical VAE model suitable for generating mixed type feature vectors with real valued/categorical
components as obtained from simulators of the CERN ATLAS detector.
3. Learn the model by the standard ELBO approach as well as by the recently proposed symmetric equilibrium learning
for VAEs.
4. Validate the generative capabilities of the learned models w.r.t. suitable distribution similarity criteria and w.r.t. physical
relationships between feature components.
5. Choose a deep network classifier for discriminating signal classes and background events. Learn it on data generated
by the simulation of detector responses. Augment (enlarge) the training set by data generated form the obtained hierarchical
VAE model. Compare the classifiers w.r.t. their sensitivity and achieved classification accuracies. Evaluate if the augmented
data set increases the sensitivity including systematic uncertainties.

Bibliography / sources:

[1] Kingma, Diederik P. and Welling, Max, An Introduction to Variational Autoencoders, Foundations and Trends in Machine
Learning: Vol. 12 (2019), eprint arXiv:1906.02691
[2] Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby, and Ole Winther. Ladder variational
autoencoders. NeurIPS 2016.
[3] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. NeurIPS 2020.
[4] Boris Flach, Dmitrij Schlesinger, Alexander Shekhovtsov, Symmetric Equilibrium Learning of VAEs, 2023, eprint
arXiv:2307.09883

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

Name and workplace of master’s thesis supervisor:

doc. Boris Flach, Dr. rer. nat. habil. Machine Learning FEE

Name and workplace of second master’s thesis supervisor or consultant:

doc. Dr. André Sopczak High Energy Physics, IEAP CTU in Prague

Deadline for master's thesis submission: 24.05.2024 Date of master’s thesis assignment: 19.01.2024

Assignment valid until: 21.09.2025

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Dr. Ing. Jan Kybic

Head of department’s signature
doc. Boris Flach, Dr. rer. nat. habil.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

Acknowledgements

Thank you, to my supervisors, doc. Boris
Flach and doc. André Sopczak, for their
invaluable time, guidance, and unwaver-
ing support throughout this thrilling and
unpredictable journey. I am also deeply
thankful to my family for their constant
encouragement and support.

Declaration

I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

In Prague, May 24, 2024

Lukáš Viceník

v

Abstract

In this thesis, we augmented Monte-
Carlo simulated data for charged Higgs
boson searches. Events are selected if they
have two light leptons (electron or muon)
of the same sign and exactly one hadroni-
cally decaying τ -lepton. For the data gen-
eration, a variational autoencoder model
was used with evidence lower bound and
symmetric equilibrium learning. Both
mentioned learning approaches were also
tested with hierarchical (Ladder) archi-
tecture. For the data quality assessment,
both qualitative and quantitative metrics
were taken into account. The standard
evidence lower bound (ELBO) learning
model was selected as the best-performing
option. The model was then used to gen-
erate data for the signal and background
separation analysis experiments. The de-
pendence of classifier performance on the
training dataset size was demonstrated
using two widely used machine learning
paradigms for tabular data classification:
gradient-boosted decision trees and deep
neural networks.

Keywords: CERN, ATLAS, Particle
physics, Higgs Boson, Data analysis,
ROOT, RDataFrame, Significance, Deep
learning, Generative AI, Variational
autoencoders, Hierarchical VAE, Ladder
VAE, Evidence lower bound, Symmetric
Equilibrium Learning, Multilayer
perceptron, XGBoost, t-SNE, χ2 test,
Wasserstein Distance

Supervisor: doc. Boris Flach, Dr. rer.
nat. habil.
Second supervisor: doc. Dr. André
Sopczak

Abstrakt

V této práci jsme augmentovali Monte-
Carlo simulovaná data pro výzkum nabi-
tého Higgsova bosonu. Jednotlivé eventy
jsou vybrány, pokud obsahují dva lehké
leptony (elektron, mion) stejného náboje
a přesně jeden hadronicky se rozpadající
tauon. Pro augmentaci dat byl zvolen jako
model variační autoenkodér s evidence
lower bound a symmetric equilibrium algo-
ritmem učení. Obě metody učení byly také
otestováný s hierarchickou (Ladder) archi-
tekturou. K posouzení kvality dat byly
voleny jak kvantitativní, tak kvalitatnivní
metriky. Standardní evidence lower bound
model byl zvolen jako nejlepší na základě
nejlepších dosažených výsledků. Model byl
dále zvolen pro augmentaci dat určených
pro experiment zaměřený na separaci sig-
nálu a pozadí. Závislost výkonu klasifiká-
toru na velikosti trénovacího datasetu byla
demonstrována za použití dvou obecně
známých paradigmat strojového učení pro
tabulková data: gradient-boosted decision
trees a hlubokých neuronových sítí.

Klíčová slova: CERN, ATLAS,
Částicová fyzika, Higgsův boson, Analýza
dat, ROOT, RDataFrame, Signifikance,
Hluboké strojové učení, Generativní UI,
Variační autoenkodéry, Hierarchické
VAE, Ladder VAE, Evidence lower
bound, Symmetric Equilibrium Learning,
Multilayer perceptron, XGBoost, t-SNE,
χ2 test, Wassersteinova vzdálenost

Překlad názvu: Generativní modely pro
měření ve fyzice vysokých energií

vi

Contents

1 Introduction 1

Part I
Theory

2 Physics 5

2.1 Definitions . 5

2.1.1 Cross-section 5

2.1.2 Luminosity 6

2.1.3 Pseudorapidity 6

2.2 CERN . 7

2.3 ATLAS detector 8

2.4 Charged Higgs boson 10

2.4.1 Higgs mechanism 10

2.4.2 Charged Higgs boson
production (tbH±) 11

2.5 Data representation 12

3 Classification 13

3.1 Multilayer perceptron 13

3.2 Boosted decision trees 15

3.2.1 Decision tree 15

3.2.2 Ensemble learning 16

3.2.3 Boosting 16

3.2.4 Gradient boosting 17

3.2.5 XGBoost 18

3.3 Significance and performance
assessment . 19

3.3.1 Counting experiments 19

3.3.2 Hypothesis testing 20

3.3.3 Approximate formula 21

4 Augmentation 23

4.1 VAE with evidence lower bound
learning . 23

4.1.1 Generative model 23

4.1.2 Evidence lower bound (ELBO) 25

4.1.3 Stochastic gradient descent
optimization 26

4.1.4 Reparametrization trick 26

vii

4.2 VAE with Symmetric Equilibrium
Learning (SEL) 27

4.2.1 Stochastic gradient descent
optimization 28

4.3 HVAE with evidence lower bound
learning . 28

4.3.1 Ladder variational autoencoder
(LVAE) . 29

4.3.2 ELBO extension for LVAE . . 30

4.3.3 Distribution parameter shift . 31

4.4 LVAE with symmetric equilibrium
learning . 32

4.5 Visualization and evaluation
metrics . 33

4.5.1 Stochastic Neighbor Embedding
(SNE) . 33

4.5.2 t-distributed Stochastic
Neighbor Embedding (t-SNE) . . . 34

4.5.3 Wasserstein Distance 35

4.5.4 χ2 test . 35

Part II

Methodology

5 Data preprocessing 39

5.1 Tools and libraries 39

5.1.1 GitHub 39

5.1.2 ROOT Framework 39

5.1.3 ROOT RDataFrame 40

5.1.4 Pandas 40

5.2 Data Conversion 41

6 Classification 43

6.1 Data preparation 43

6.2 Classifiers . 44

6.2.1 Multilayer perceptron 44

6.2.2 XGBoost 45

6.3 Evaluation Metrics 46

6.3.1 Weights 46

6.3.2 Significance 48

6.3.3 Accuracy 49

viii

6.3.4 Precision 50

7 Data augmentation 51

7.1 Standard models 51

7.1.1 The encoder and decoder
architecture 52

7.1.2 ELBO Loss function 52

7.1.3 SEL Loss function 53

7.1.4 Observations 53

7.2 Ladder models 54

7.2.1 Architecture 54

7.2.2 ELBO loss function 55

7.2.3 SEL loss function 55

7.2.4 SEL Implementation issues . . 56

7.3 Generative pipeline 56

Part III
Experimental results

8 VAEs data quality comparison 61

8.1 Feature selection 61

8.1.1 Feature importance 61

8.2 Generation time 63

8.3 Used metrics 64

8.3.1 Feature histograms 64

8.3.2 χ2 test . 66

8.3.3 Wasserstein distance 67

8.3.4 Feature corelation matrix . . . 68

8.3.5 t-SNE visualization 69

8.3.6 Cross validation 70

8.3.7 Conclusion 71

9 Augmented analysis 73

9.1 Simulated data augmentation . . 73

9.2 Gradient boosting decision tree . 74

9.3 Multilayer perceptron 75

9.4 Generated data only 76

10 Conclusion 79

Bibliography 81

ix

Appendices

A Generative model evaluation
results 87

A.1 Signal histograms 87

A.2 Background histograms 91

A.3 Corelation matrices 94

A.4 Training set results XGB 96

A.5 Training set results MLP 97

B Pre-selection formula 99

x

Figures

2.1 Cross-section values for important
production processes. 6

2.2 The pseudorapidity P measured in
LHC coordinate frame with origin in
CMS detector [4]. 7

2.3 Schematic depiction of the CERN
accelerator complex. 8

2.4 A schematic depiction of the most
important parts of the ATLAS
detector. 10

2.5 Left: Production of Higgs boson
and two top quarks. Right:
Production of the top quark, bottom
quark, and charged Higgs boson. . . 12

3.1 Decision tree based on particle
physics observables. Roots
correspond to conditions. Leaves
correspond to decisions. 16

4.1 Schematic depiction of a
variational autoencoder model [24]. 25

4.2 Without reparametrization 27

4.3 With reparametrization 27

4.4 Left: Path for backpropagation is
blocked since we cannot differentiate
f w.r.t. ϕ. It means that gradients
cannot be backpropagated through
the random variable z. Right:
Variable z is reparametrized to
become deterministic. The
randomness is ensured by the newly
introduced random variable ϵ. 27

6.1 Left: Number of unweighted events
for a given output probability. Right:
Number of weighted events for a
given output probability. 48

6.2 Left: Number of signal and
background events for all considered
thresholds. The best ratio is
highlighted by a dashed line. A cut is
applied if a number of weighted
events is too low to prevent
noticeable fluctuations of significance
Z2. Right: Four possible definitions
of significance and their
corresponding optima. Z1 :√

2
(
(S + B) ln (1 + S

B) − S
)
, Z2 :

S/
√

B, Z3 : S/
√

S + B, Z4 :
S/
√

B + 3/2. 49

7.1 Schematic visualization of LVAE
architecture. 54

8.1 Processing time as a function of
generated data. 63

8.2 Comparison of four chosen signal
features for all the models. 65

xi

8.3 Comparison of four chosen
background features for all the
models. 65

8.4 Feature correlation matrix for
signal. Left: Simulated data, Right:
Generated data by standard ELBO
learning model (signal sample) . . . 68

8.5 Feature correlation matrix for
background. Left: Simulated data,
Right: Generated data by standard
ELBO learning model (background
sample) . 69

8.6 Comparison of simulated and
generated data for all three
implemented models. 70

9.1 Left: Precision comparison for two
XGBoost configurations. Standard
deviation 0.0035 for 20 repetitions.
Right: Accuracy comparison for two
XGBoost configurations. Standard
deviation 0.0034 for 20 repetitions. 74

9.2 Left: Significance Z1 comparison
for two XGBoost configurations.
Standard deviation 0.9009 for 20
repetitions Right: Significance Z2
comparison for two XGBoost
configurations. Standard deviation
2.7141 for 20 repetitions. 75

9.3 Left: The precision comparison for
two MLP configurations. Standard
deviation 0.0035 for 20 repetitions.
Right: The accuracy comparison for
two MLP configurations. Standard
deviation 0.0038 for 20 repetitions. 75

9.4 Left: Significance Z1 comparison
for two MLP configurations.
Standard deviation 0.9233 for 20
repetitions Right: Significance Z2
comparison for two MLP
configurations. Standard deviation
2.9086 for 20 repetitions. 76

9.5 Left: The precision comparison for
basic XGBoost and MLP with 962
parameters. Right: The accuracy
comparison for basic XGBoost and
MLP with 962 parameters. 76

9.6 Left: Significance Z1 comparison
for basic XGBoost and MLP with
962 parameters. Right: Significance
Z2 comparison for basic XGBoost
and MLP with 962 parameters. . . . 77

A.1 Feature: HT 87

A.2 Feature: HT_lep 88

A.3 Feature: jets_pt_0 88

A.4 Feature: met_met 89

A.5 Feature: MtLepMet 89

A.6 Feature: taus_pt_0 90

A.7 Feature: HT 91

A.8 Feature: HT_lep 91

A.9 Feature: jets_pt_0 92

xii

A.10 Feature: met_met 92

A.11 Feature: MtLepMet 93

A.12 Feature: taus_pt_0 93

A.13 Standard Symmetric Equilibrium
Learning - Signal 94

A.14 Standard Symmetric Equilibrium
Learning - Background 94

A.15 Ladder Evidence lower bound
learning - Signal 95

A.16 Ladder Evidence lower bound
learning - Background 95

A.17 Precision measured on the
training dataset for XGB. 96

A.18 Accuracy measured on the
training dataset for XGB. 96

A.19 Precision measured on the
training dataset for MLP. 97

A.20 Accuracy measured on the
training dataset for MLP. 97

B.1 The full version of the pre-selection
2lSS + 1τ in Python code. 99

Tables

5.1 Summary of the reactions used for
the analysis. 41

5.2 ROOT n-tuples IDs corresponding
to particular reactions. The year
column indicates directories in which
the particular dataset IDs can be
found. 41

5.3 Number and percentage of
remaining events after preselection. 42

6.1 Feature names corresponding to
the IDs from the formula 6.1. 47

6.2 Number of weighted remaining
events after pre-selection for
corresponding reactions. 47

8.1 Chosen features with
corresponding χ2 values for the three
generative models (signal sample). 66

8.2 Chosen features with corresponding
χ2 values for all three generative
models (background sample). 66

8.3 Chosen features with corresponding
Wasserstein distance values for all
three generative models (Signal). . 67

8.4 Chosen features with
corresponding Wasserstein distance
values for all three generative models
(Background). 67

xiii

8.5 Cross validation results for all the
three implemented models. Standard
ELBO learning shows the best
results. 71

xiv

Chapter 1

Introduction

Nowadays, analyzing high-energy physics collider data is typically done by
machine learning approaches. These approaches used mainly for signal and
background separation require neural networks with complex architectures
and therefore large training datasets. The datasets are generated by Monte
Carlo (MC) simulations that are computationally costly and can run for a
very long time until the data sets are produced. Moreover, the additional
preselection significantly reduces the dataset size. To overcome these chal-
lenges, machine learning-based methods started to blossom even in the data
generation domain.

Data augmentation can be addressed by a plethora of machine learning
models applied on different levels of analysis. The subject of this thesis is
the development of a generative model based on the variational autoencoder
paradigm. The idea is to learn the underlying distribution from the already
simulated data, thus the MC simulation process is not involved. As a result,
a dataset of an arbitrary size can be generated from the learned distribution
in a very small fraction of MC simulation time.

The quality of the generated data is then verified with a variety of evaluation
metrics. After the evaluation, the best model is chosen to generate data for
data separation analysis. Results are then compared with the MC-generated
dataset.

1

2

Part I

Theory

3

4

Chapter 2

Physics

This chapter provides the definitions of basic physical quantities and the
process of data acquisition in the ATLAS detector. The chapter is enclosed
with the outline of the data transformation process preceding the analysis.

2.1 Definitions

Definitions in this section provide explanations necessary for the proper
understanding of the ATLAS detector functionality and the data acquisition.

2.1.1 Cross-section

In general, cross-section in particle and nuclear physics means the probability
that two particles approaching each other will interact with each other. From
the geometrical point of view, it can be understood as the area within which
a reaction will take place. Units of the cross-section are therefore units of an
area called bars defined as

1 barn = 10−24cm2. (2.1)

which is about the size of a uranium nucleus. The cross-section values for
important reactions are shown in Figure 2.1. For the W and Z boson, the

5

2. Physics
cross-section values are very high, therefore the interactions occur very often
compared to the Higgs boson. [1]

Figure 2.1: Cross-section values for important production processes.

2.1.2 Luminosity

The quantity that measures the ability of a particle accelerator to produce the
number of required events is called luminosity. Its relation to the production
cross-section reads as follows:

dR

dt
= L · σp, (2.2)

where on the left-hand side is a number of events per second and on the
right-hand side is a product of luminosity and the production cross-section.
The units are then consequently cm−2s−1.
In practice, however, what we are usually given is the integrated luminosity
because it directly relates to a number of observed events:

Lint =
∫ T

0
L(t)dt −→ R = Lint · σp. (2.3)

For detailed derivation, [2] can be consulted.

2.1.3 Pseudorapidity

Before we approach pseudorapidity, let us focus on its parental quantity called
rapidity. To explain its definition we need to define energy in a relativistic
way

E2 = p2
xc2 + p2

yc2 + p2
zc2 + M2c4, (2.4)

6

....................................... 2.2. CERN

where p is a momentum, c is the speed of light and M is the rest mass of the
particle. The rapidity is then defined as

y = 1
2 ln

(
E + pzc

E − pzc

)
. (2.5)

To appreciate the usefulness of such a quantity we need to understand that
particles produced after the collision are almost always directed in a plane
perpendicular to the beam direction, for these particles we obtain ln 1 meaning
y = 0. On the contrary, for particles aligned with the beam axis y → ±∞.
Unfortunately, in practice, it can be very difficult to measure rapidity for
highly relativistic particles that have very high momenta. For this reason, we
define a new concept that leads to very similar results

η = − ln tan θ

2 , (2.6)

which we call pseudorapidity. The θ parameter is an angle made by particle
trajectory with the beam pipe, meaning cos θ = pz/p. For highly relativistic
particles y ≃ η which is exactly the case of LHC. The full derivation of 2.4
and 2.6 can be found in [3]. Figure 2.2 shows the pseudorapidity denoted by
P in the Large Hadron Collider coordinate frame.

Figure 2.2: The pseudorapidity P measured in LHC coordinate frame with
origin in CMS detector [4].

2.2 CERN

Conseil européen pour la Recherche nucléaire known as CERN is international
scientific organisation for the purpose of collaborative research into high-energy
particle physics. It was founded in 1954 and its headquarters placed near
Geneva. Research achievements encompass a wide range of achievements
from Nobel prize-winning scientific discoveries to the invention of the World
Wide Web [5].

7

2. Physics
The accelerator complex at CERN is a succession of machines that accelerate

particles to increasingly higher energies. Each machine boosts the energy of
a beam of particles before injecting it into the next machine in the sequence.
The whole accelerator complex is shown in Figure 2.3. In the final stage, the

Figure 2.3: Schematic depiction of the CERN accelerator complex.

protons are transferred to the two beam pipes of the Large Hadron Collider.
After 20 minutes protons reach their maximal energy 6.5 TeV. Beams circulate
for many hours inside the LHC beam pipes under normal operating conditions.
The two beams are brought into collision inside four detectors called ATLAS,
CMS, ALICE, and LHCb where the total energy at the collision point reaches
energy 13 TeV [6].

2.3 ATLAS detector

ATLAS is a general-purpose detector built in purpose to answer questions
underlying the Standard Model of particles and its extensions. Its main goal
is thus to search for new particles or increase the precision of already achieved
discoveries. To perform the collision three types of constituent pairs can be
chosen. The first one is proton-proton (pp) collision with peak luminosity
L = 1034cm−2s−1 and center of mass energy

√
s = 13 TeV (one proton

has energy 6.5 TeV). Another two collisions contain lead-lead (Pb-Pb) and
proton-lead (p-Pb) constituents reaching peak luminosity L = 1027cm−2s−1

and center of mass energy
√

s = 5.5 TeV.

The detector is the dimension of a cylinder that is 46 meters long and
its width is 25 meters. These measures make it the largest detector in the
world. Its structure covers almost the entire solid angle around its collision

8

................................... 2.3. ATLAS detector

point and consists of several layers. The inner-most part is called the inner
tracking detector (ID) which serves as the primary tracking device where
the position and momentum of charged particles are measured with excellent
resolution. It covers measurements for both primary and secondary vertex
within the pseudorapidity range |η| < 2.5 (section 2.1.3). The whole device is
enveloped by a superconducting solenoidal magnet with 2 T field. The ID
itself consists of three sub-parts: the high-resolution Pixel detector which
is located just 3.3 cm from the beamline and measures with precision just
10 µm to obtain the position and momentum of a particle. The second part
is a semiconductor tracker used to reconstruct tracks of charged particles
coming from the collision. The last part is the Transition Radiation Tracker
consisting of thin tubes filled with a gas mixture. As the particles cross the
gas they ionize it and create a detectable electric signal used to reconstruct
their tracks [7].

Then follows electromagnetic, and hadronic calorimeters that measure
deposited energy lost by particles passing through the detector. They are
designed to stop a majority of particles except for muons and neutrinos. An
electromagnetic calorimeter measures the energy of electrons and photons. A
hadronic calorimeter quantifies the energy of hadrons as their atomic nuclei
interact with the detector. The whole calorimetry system covers |η| < 4.9. The
electromagnetic calorimeter consists of a barrel and endcap part that operates
within |η| < 3.2 with the use of lead/Liquid Argon (LAr) and is preprocessed
with presampler covering |η| < 1.8 for corrections. Hadron calorimetry
makes use of materials like steel/scintillator-tile for three barrel segments
within |η| < 1.7 and copper/LAr for an endcap calorimeter. The coverage is
finalized with a forward copper/LAr calorimeter for electromagnetic and a
tungsten/LAr calorimeter for hadronic measurements.

The outer and the thickest part of the detector is called the muon spectrom-
eter. Its purpose is to measure the curvature of the muon tracks, particles
with mass 105.7MeV (electron has mass 0.511MeV). It has a separate trigger
and high-precision tracking chamber able to measure the track curvature of
muons in a magnetic field generated by superconducting toroidal magnets
with 2 to 6 T across the detector. More about the parameters of the detector
can be found in [8]. The schematic depiction of the detector is shown in
Figure 2.4.

9

2. Physics

Figure 2.4: A schematic depiction of the most important parts of the ATLAS
detector.

2.4 Charged Higgs boson

In this work, we demonstrate our results on the data simulating a charged
Higgs boson which is a hypothetical particle beyond the Standard model that
has not been discovered yet. Before the data itself is described let us reveal a
glimpse of the theory behind the particle to better understand the structure
of the data.

2.4.1 Higgs mechanism

Brout-Englert-Higgs (BEH) mechanism was postulated to remedy the conse-
quences of the gauge invariance principle stating that W and Z gauge bosons
should be massless [9]. The mechanism defines so-called Higgs field which is
a scalar SU(2) (special unitary group) doublet

Φ = 1√
2

(
ϕ†

ϕ0

)
(2.7)

with Higgs potential

V (Φ) = λ
(
Φ†Φ

)2
+ µ2

(
Φ†Φ

)
. (2.8)

For µ2 < 0 the state with minimum energy is that with Φ = 0 which correctly
describes massless photon [10]. However, for µ2 > 0 the field Φ obtains a

10

................................. 2.4. Charged Higgs boson

vacuum expectation value

〈
Φ
〉

=

√
−2µ2

λ
, (2.9)

which leads to spontantenious symmetry breaking and acquisition of mass by
gauge bosons (except for photon).

An extension called 2 doublet Higgs Model introduces a second Higgs
doublet (Φ1, Φ2). The consequence of such an extension is the existence of
five physical Higgs bosons:

. two neutral CP-even scalars: h (SM Higgs) and H (heavy Higgs);

. two charged Higgs bosons H±;

. one neutral CP-odd pseudoscalar A.

The free parameters of the model are the mass of the Higgs bosons and
tan β = ν2/ν1 =

〈
Φ2
〉
/
〈
Φ1
〉

[11].

2.4.2 Charged Higgs boson production (tbH±)

The production of the charged Higgs boson during the pp collisions can be
separated into two regions defined by top quark mass mt. For the masses
mH± < mt, the H± is mainly a product of t decay to H±b in tt production.
The mH± < mt, the H± region is dominated by two channels H± → tb and
H± → τν [11].However, the subject of our interest is a more exotic channel
H± → hW .

To better understand why is this specific tbH± channel important let
us compare it with the ttH decay channel. The comparison is shown in
Figure 2.5, indicating the final state for both reactions, ttH and tbH± →
tbWH (H → ττ) . The final states for both reactions are identical.

11

2. Physics

Figure 2.5: Left: Production of Higgs boson and two top quarks. Right:
Production of the top quark, bottom quark, and charged Higgs boson.

2.5 Data representation

In the previous section properties of tbH± were described and it was shown
why one particular decay channel is of interest. In this thesis, we are focused
on reactions belonging to a specific channel called 2lSS + 1τ . It means that
the final state of all the reactions has to contain two leptons with the same
charge and one τ particle. It was already pointed out that ttH and tbH±

belong to this channel. We can however introduce more of them: a pair of top
quark and anti-top quark (tt), a pair of top quarks with W boson (ttW), and
a pair of top quarks with Z boson (ttZ). All five reactions can be registered
with the same final state in the detector and the question arises of how they
can be distinguished if we don’t know anything about the intermediate states.
In general, events corresponding to the given reactions can be described by
a plethora of observables that can be detected. These observables tend to
have different values based on the original reaction they correspond to. This
means that statistical tools can be employed to properly assign the events to
their reactions. Representation of these observables is explained in section
5.2.

For the purpose of the analysis, the particle we are searching for is called a
signal. Except for the signal that might not even be present in reality, many
other processes called background occur during data taking. For this thesis,
tbH± (tbH+) has been chosen as the signal and the background constitutes
out of the remaining reactions, namely ttH, ttW , ttZ and tt. At this point
we could train a classifier and ultimately distinguish between the signal and
background events, to do so, however, it is needed to explain the principles
of machine learning classification first.

12

Chapter 3

Classification

In machine learning, classification can be viewed as a task in which we are
given a vector x together with a corresponding target variable y, and the
goal is to predict y given a new value for x. As an example, we can consider
our search for a new particle. We want to determine if an input vector
x, represented as an event occurring in the detector, is a consequence of
the new particle’s presence which would be modeled by variable y. The y
variable is then represented as a binary variable where if y = 0 then the event
corresponds to class C1 and if y = 1 the event is assigned to class C2. We
then need to solve an inference problem or in other words, find a distribution
p(x, y) that gives a complete probabilistic description of the variables [12,
Chapter 5]. Once we have the probabilistic description we need to take a
decision step. It means deciding whether the event corresponds to the new
particle or not. This chapter describes how the mentioned problems were
tackled and what models were used to achieve the results.

3.1 Multilayer perceptron

Let us consider a simple linear regression model function

y(x,w) = wT x + w0, (3.1)

where x is the input data, w is a weight vector and w0 is bias. To transform
the model to solve the classification task we need to apply a non-linear

13

3. Classification.....................................
function f(·) to obtain

y(x,w) = f(wT x + w0). (3.2)

Another step to improve the model would be to consider a vector of basis
functions ϕ(x) which correspond to the application of fixed nonlinear transfor-
mation. By application of such a function, we can achieve linear separability
in the new feature space ϕ(x) even if in the original space x the decision
boundaries were not linear. The formula for the linear basis function model
then reads as follows:

y(x, w) = f

 M∑
j=1

wjϕj(x) + w0

 . (3.3)

In general, we could expect that a sufficiently large set {ϕj} would be able to
describe arbitrarily complicated function. Unfortunately, significant short-
comings like the curse of dimensionality arise from the assumption of a fixed
basis [12, Chapter 5].

The underlying idea behind neural networks is to choose a basis functions
ϕj(x) that are not fixed but themselves have learnable parameters. The most
successful choice for the basis functions so far has been a linear combination of
inputs similar to 3.3. This assumption can be extended recursively and result
in a hierarchical learnable structure. The first layer of the neural network
can then be modeled as

aj =
D∑

i=1
wjixi + wj0, j = 1, . . . , M, (3.4)

where M is the number of linear combinations. The wij are called weights,
the wj0 represent biases, and the aj are referred to as pre-activations. The
aj are then used as arguments for differentiable activation functions

zj = h(aj), (3.5)

which represent the output of basis functions and in the context of neural
networks are called hidden units.

Next, let us do the following. For the formula 3.4 we can define x0 = 1 to
include the bias w0 in the linear combination to obtain

aj =
D∑

i=0
wjixi. (3.6)

Based on this simplification the formula for a two-layer neural network reads
as follows:

yk(x, w) = f

 M∑
j=0

wkjh

(
D∑

i=0
wijxi

) , (3.7)

14

................................ 3.2. Boosted decision trees

which can be also written in the compact matrix form as

y(x, w) = f(W(2)h(W(1)x)). (3.8)

At this point, we can easily generalize the formula and obtain

z(l) = h(l)(W(l)z(l−1)), (3.9)

where l is a number of layers [12, Chapter 6]. This is a function describing
the multilayer perception network. We can conclude that the multilayer
perceptron corresponds to a recursively nested hierarchy of linear combinations
of weight and input vectors activated by nonlinear differentiable functions.

3.2 Boosted decision trees

The previous section explained the theoretical idea behind fully connected
deep neural networks. Now is the time to introduce the second type of
classifier deployed in the thesis called XGBoost. We start our explanation
with decision trees and their ensembling. These concepts can then be extended
to gradient boosting and finally XGBoost itself. This section is a refined
version of the same explanation from [13].

3.2.1 Decision tree

A decision tree can be described as a predictor h : X → Y. It predicts the
target y for a given input vector x by evaluating the conditions moving from
the root node to the leaf of the tree. On this path a child is chosen based
on a splitting of the input space [14, Chapter 18]. The splitting is based on
one of the features defining the data. A leaf then corresponds to a specific
label. Figure 3.1 shows a schematic example of the binary classifier used in
this thesis.

15

3. Classification.....................................
Charge?

nJets?Background

BackgroundSignal
Figure 3.1: Decision tree based on particle physics observables. Roots correspond
to conditions. Leaves correspond to decisions.

3.2.2 Ensemble learning

Ensemble learning is a machine learning paradigm where multiple models
are trained to solve the same problem and combined to get better results.
The main hypothesis is that when weak models are correctly combined, we
can obtain more accurate models. The tree main classes of ensemble learning
machines are bagging, stacking, and boosting [15]. In our case, we will focus
on the boosting method.

3.2.3 Boosting

The boosting is a type of ensembling that uses a generalization of linear
predictors to address mainly two important issues. The first one is the
bias-complexity tradeoff. It means a better balance between approximation
and estimation error of an Empirical Risk Minimization (ERM) learner [14,
Chapter 2.2]. The second issue is the computational complexity of learning.
It is sometimes infeasible to find ERM hypothesis therefore boosting amplifies
the accuracy of a high number of weak learners. Weak learner usually
performs just slightly better than a random guess and comes from simple
classes. However, if implemented efficiently and aggregated with more similar
learners it can achieve good prediction accuracy for even difficult classes [14,
Chapter 10].

16

................................ 3.2. Boosted decision trees

3.2.4 Gradient boosting

In gradient boosting, models are fit using any arbitrary differentiable loss
function and gradient descent optimization algorithm. This gives the tech-
nique its name, as the loss gradient is minimized as the model is fit, it is very
similar to how neural networks work. The theoretical idea behind gradient
boosting is the following.

We are given some data (xi, yi)n
i=1 where x is a vector of input variables

and y is a target vector. Usually, a negative log-likelihood is taken as a loss
function but in general, it can be any differentiable loss function in a form

L(y, F (x)), (3.10)

where y is observed and F (x) is a function equivalent to predicted value.
Minimization formula is then

F0(x) = arg min
p

n∑
i=1

L(y, p), (3.11)

where F0(x) is initial model value and p corresponds to predicted value. To
minimize the loos function, we compute

rim = −
[

∂L(yi, F (xi))
∂F (xi)

]
F (x)=Fm−1(x)

for i = 1, ..., n, (3.12)

where rim is the diferentiated pseudo-residual for sample i and tree m that
we are building. This step corresponds approximately to the subtraction of a
predicted value from the observed value.

Now we have to fit the regression and classification trees (CART) to pseudo-
residuals and label terminal regions, Rjm where j is a number of regions that
correspond to leaves of the tree. To determine the output values, we compute,

pjm = arg min
p

∑
xi∈Rij

L(yi, Fm−1(xi) + p), (3.13)

which is the same formula as 3.11 but the previous prediction is now consid-
ered. To compute the output value for each leaf, we pick only y values that
correspond to this region. Then we are looking for p that minimizes the term.
The final step is to make a new prediction, as

Fm(x) = Fm−1(x) + ν
Jm∑
j=1

pjmI(x ∈ Rjm), (3.14)

17

3. Classification.....................................
where ν is a learning rate. It means we take the original prediction and
add corresponding leave values from our newly built tree multiplied by the
learning rate. Then, we continue with the next iteration. It is desirable to
mention that this step represents the boosting method described in 3.2.3.
More information can be found in [16].

3.2.5 XGBoost

XGboost is a scalable end-to-end tree boosting system allowing to achieve
state-of-the-art results on many machine learning tasks. Novel techniques
are sparse-aware algorithm for sparse data and weighted quantile sketch for
approximate tree learning. More insight on cache access patterns is achieved
to build a scalable tree boosting system[17].

Let us briefly explain how XGBoost builds its trees and what new ideas
it offers compared to the gradient boosting algorithm. We start with an
objective function

L(ϕ) =
∑

i

l(yi, pi) +
∑

k

Ω(fk),

where Ω(f) = γT + 1
2λ||w||2.

(3.15)

Here l is a differentiable convex loss function, T is a number of leaves in a
tree and Ω is a regularization term that helps to prevent overfitting. i is
the instance number. The formula 3.15 can not be optimized by standard
optimization methods, therefore it is solved in additive manner

L(t) =
n∑

i=1
l
(
yi, ŷ(t−1) + ft(xi)

)
+ Ω(ft), (3.16)

where ft(xi) is the best choice function for t-th iteration. After second-order
Taylor approximation and removal of the constant term, we obtain

L(t) ≈
n∑
1

[
gift(xi) + 1

2hif
2
t (xi)

]
+ Ω(ft), (3.17)

where g is gradient ant h corresponds to hessian.
If we define Ij = {i|q(xi) = j}, then we can write

L̃ =
T∑

j=1

∑
i∈Ij

gi

wj + 1
2

∑
i∈Ij

hi + λ

w2
j

+ γT. (3.18)

Here outer sum just iterates over all leaves. The first inner sum is an expansion
of sum from 3.17, where we sum all the gradients belonging to one leaf and

18

........................ 3.3. Significance and performance assessment

multiply them by the corresponding leaf output value w. The second sum is
the same, except for λ the term that came from the expansion of Ω. When
we minimize ∑

i∈Ij

gi

wj + 1
2

∑
i∈Ij

hi + λ

w2
j (3.19)

by standard method, we obtain

w∗
j = −

∑
i∈Ij

gi∑
i∈Ij

hi + λ
. (3.20)

Now we just plug w∗
j in equation 3.18 and obtain

L̃(q) = −1
2

T∑
j=1

∑
i∈Ij

gi∑
i∈Ij

hi + λ
+ γT. (3.21)

Let us reiterate that gi and hi are gradients and Hessians corresponding to
chosen loss function l that we could substitute for some particular example
as negative log-likelihood. Equation 3.21 measuring the quality of a tree
structure q. The greedy algorithm is then used to iteratively add nodes while
aiming to reduce the loss. The algorithm is called greedy because the overall
structure is not considered when building the trees. The tree is built in such
a way that the condition is chosen according to the division made by this
condition, even though there could be a better one if combined with another
consequential condition. More information about XGBoost features and full
derivation is given in [16].

3.3 Significance and performance assessment

To assess the performance of our classifiers, we use various techniques from
the machine learning background like precision, f1 score, or accuracy. For
particle physics purposes, however, a different metric called significance is
used. In the following section, we describe the theory behind it and how it
relates to our classification results.

3.3.1 Counting experiments

In experimental particle physics, the appearance of events in time and position
of the detector follows a Poisson distribution. A discrete random variable can
be described by a Poisson distribution if the following conditions are fulfilled:

19

3. Classification.....................................
. Individual events are represented by integers. If an event occurs, it does not affect the occurrence of another event..The average rate at which events occur is independent of any occurrences.

A probability mass function is then given like

f(n) = λne−λ

n! , n ∈ N, (3.22)

where n is a number of occurrences and λ > 0 is a parameter corresponding
to expected values of n. It is desirable to point out that for a large value of λ
a Poisson distribution transforms into a Normal distribution with mean and
variance given by λ. We can then write

Poisson(λ) ≈ N (µ = λ, σ2 = λ), for large λ. (3.23)

This result offers us a useful simplification for the data. We no longer need
to assume the Poisson distribution but instead, utilize the advantages of
Gaussian distribution properties.

3.3.2 Hypothesis testing

The particle physics analysis is usually based on hypothesis testing. When we
are looking for a new particle beyond the Standard model our hypothesis H1
could be stated as the existence of such a particle. The corresponding null
hypothesis H0 then assumes the correctness of the Standard model meaning
that the particle beyond the Standard model does not exist [18].

To test the hypothesis a test statistic is defined as a quantity derived
from the data that can indicate whether the hypothesis is true or not. In
the previous section, we explained that the data is described by a Poisson
distribution but for a large number of events, there is an entanglement with a
Gaussian distribution described by 3.23. The level of agreement with a given
hypothesis H is then obtained by computing the p-value. It is a probability,
under the assumption of H, of finding data of equal or greater incompatibility
with the predictions of H. The hypothesis is excluded if the obtained p-value
is below a specific threshold. In particle physics, a quantity called significance
is usually used instead. It is defined as

Z = Φ−1(1 − p), (3.24)

where Φ−1 is the quantile.

20

........................ 3.3. Significance and performance assessment

3.3.3 Approximate formula

Now let us assume that for each event from the signal, a variable x is measured
and these values are used to construct a histogram n = (n1, . . . , nN). The
expectation value is then given as

E[ni] = µsi + bi, (3.25)

where si and bi are numbers of entries in the ith bin from signal and back-
ground and µ is a parameter determining a signal strength. The µ = 0
then states the background only hypothesis and µ = 1 the nominal signal
hypothesis. Usually, µ is assumed to be non-negative.

To test a hypothesized value of µ we use the profile likelihood ratio defined
as

λ(µ) = L(µ,
ˆ̂
θ)

L(µ̂, θ̂)
, (3.26)

where the numerator is a profile likelihood function. The quantity ˆ̂
θ represents

the value of θ that maximises L for the specific µ. The denominator is the
maximized likelihood function. The test statistic is then defined as

tµ = −2 ln λ(µ). (3.27)

From the definition 3.26 we can infer 0 ≤ λ ≤ 1. If λ is close to 1, good
agreement with the data can be assumed.

If only one bin histogram is assumed for simplicity we can put these
assumptions together and define test statistics q0 for the discovery of a
positive signal and known background as

q0 =

−2 ln L(0)
L(µ̂) , µ̂ ≥ 0,

0, µ̂ < 0,
(3.28)

where the likelihood function is defined as follows

L(µ) = (µs + b)n

n! e−(µs+b). (3.29)

It can be shown that

Z0 = √
q0 =

√

2(n ln n
b + b − n), µ̂ ≥ 0,

0, µ̂ < 0.
(3.30)

21

3. Classification.....................................
Median significance for the nominal signal hypothesis can then be approxi-
mated by stating n = s + b to obtain

Z0,med =
√

2
(

(s + b) ln (1 + s

b
) − s

)
. (3.31)

After the expansion of the logarithm in s/b we get

Z0,med = s√
b
(1 + O(s

b
)) ≈ s√

b
. (3.32)

which can be used if s ≪ b.

Definitions 3.31 and 3.32 are commonly used approximations of significance
and therefore were also used in the thesis to measure the separation power of
the classifier. The original proof paper [19] provides a more detailed derivation
of the significance formulas.

22

Chapter 4

Augmentation

In this chapter, the data augmentation approach is explained. As already
mentioned in the introduction, the generative model called variational au-
toencoder was chosen for the purposes of this thesis. [20]. Firstly the focus
is put on a standard learning approach with evidence lower bound (ELBO)
maximization. Then the novel approach called Symmetric equilibrium learn-
ing (SEL) [21] is introduced and the final part discusses the extension of these
algorithms for hierarchical (Ladder) VAEs [22].

4.1 VAE with evidence lower bound learning

Derivation of the standard evidence lower bound learning is mostly inspired
by [20].

4.1.1 Generative model

Firstly, let us explain the underlying theory in general. Given the training
data X ⊂ Rm ×{0, 1}m drawn from the dataset, we want to find a distribution
pθ(x) parametrized by θ that maximizes the probability of observed data
x ∈ X . The standard approach how to do so is to introduce an unobservable
latent variable denoted by z from Z ⊂ Rn and learn the relations between

23

4. Augmentation
them and the datapoints x ∈ X [23]. In general, there is not a precise
definition of what the z should look like, therefore we have to make an
assumption by defining p(z) which is called the prior distribution and usually
corresponds to N (0, 1). At this point, we can write the following relation

pθ(x, z) = pθ(x|z)p(z), (4.1)

which states that the probability of a given x occurring with a specific latent
z is computed as a product of likelihood pθ(x|z) (a probability of x belonging
to a specific z and prior p(z)). The likelihood is also called a stochastic
decoder and can be represented by a neural network with parameters θ. It is
already known to us that even though every x corresponds to some z we can
never observe z directly, meaning pθ(x, z) can be learned only by trying all
the possible z’s written as

log pθ(x) = log
∑
Z

pθ(x, z), (4.2)

which is unfortunately intractable for larger z and can not be computed
directly. The only other option is to substitute precise computation by
sampling which can be done with the help of already defined prior p(z). We
can apply 4.1 and obtain

log
∑
Z

pθ(x, z) = log
∑
Z

pθ(x|z)p(z) = log
[
Ep(z)pθ(x|z)

]
. (4.3)

A lower bound can then be found by applying Jensen’s inequality

log
[
Ep(z)pθ(x|z)

]
≥
∑
Z

p(z) log pθ(x|z) = Ep(z) log pθ(x|z). (4.4)

It is important to point out that at this moment we are no longer optimizing
p(x) but its lower bound which can be sometimes considerably far from the
true value. The following approach minimizes the gap between the lower
bound and the true value.

To find a tighter lower bound we need to explain a notion of posterior
distribution denoted by p(z|x) for which applies the following identity:

pθ(z|x) = pθ(x, z)
pθ(x) . (4.5)

From 4.2 we already know that that pθ(x, z) is intractable which implies
intractability for pθ(z|x). To obtain a tractable problem we introduce an entity
called approximate posterior or stochastic encoder denoted by qϕ(z|x) where
ϕ indicates its parameters. The distribution qϕ(z|x) can be parametrized by
a neural network in which case ϕ corresponds to the weights and biases of
the network. The schematic structure of the model is shown in Figure 4.1.

24

.........................4.1. VAE with evidence lower bound learning

Figure 4.1: Schematic depiction of a variational autoencoder model [24].

4.1.2 Evidence lower bound (ELBO)

The optimization objective of the variational autoencoder is the evidence
lower bound, abbreviated as ELBO and sometimes also called a variational
lower bound. For an arbitrary inference model qϕ(z|x) with parameters ϕ we
have

log pθ(x) = log
[∑

Z
pθ(x, z)

]
= log

[∑
Z

pθ(x|z)p(z)
]

. (4.6)

So far, we have only expanded the expression. Now let us multiply both the
numerator and denominator by qϕ(z|x) to obtain:

log pθ(x) = log
[∑

Z

[
qϕ(z|x)
qϕ(z|x)pθ(x|z)p(z)

]]
. (4.7)

The sum can then be replaced by an expected value

log pθ(x) = log
[
Eqϕ(z|x)

[
1

qϕ(z|x)pθ(x|z)p(z)
]]

. (4.8)

Thanks to Jensen’s inequality we can move the logarithm inside and obtain

log pθ(x) ≥
[
Eqϕ(z|x) log

[
pθ(x|z) p(z)

qϕ(z|x)

]]
, (4.9)

which can be rewritten as

log pθ(x) ≥ Eqϕ(z|x) [log pθ(x|z)] + Eqϕ(z|x)

[
log p(z)

qϕ(z|x)

]
. (4.10)

25

4. Augmentation
The first term is called reconstruction loss and in the second term, we can
recognize KL divergence of the qϕ(z|x) and p(z). The final equation for the
ELBO reads:

log pθ(x) ≥ Eqϕ(z|x) [log pθ(x|z)] + DKL (q(z|x)||p(z)) . (4.11)

4.1.3 Stochastic gradient descent optimization

Given the dataset with i.i.d. data, the ELBO objective is the sum or average
of the individual data points

Lθ,ϕ(T) =
∑
x∈T

Lθ,ϕ(x). (4.12)

The gradient of individual datapoint ∇θ,ϕLθ,ϕ(x) is in general intractable
but good and unbiased estimator ∇̃θ,ϕLθ,ϕ(x) can be found. An unbiased
gradient of ELBO w.r.t. parameter θ is easy to obtain from

∇θLθ,ϕ(x) = ∇θEqϕ(z|x) [log pθ(x, z) − log qϕ(z|x)] (4.13)

since the ELBO expectation does not depend on θ, the gradient can be moved
inside. Expectation value can then be substituted by random sampling from
qϕ(z|x) to obtain

∇θLθ,ϕ(x) ≃ ∇θ(log pθ(x, z) − log qϕ(z|x)) = ∇θ(log pθ(x, z). (4.14)

For gradient w.r.t. ϕ however the differentiation is not that simple since the
expectation depends on this parameter. In general, estimation is needed, but
in the case of continuous latent variables, we can approach the problem using
a change of variables.

4.1.4 Reparametrization trick

To ensure the ability to differentiate w.r.t. both ϕ and θ a technique called
reparametrization trick is used. The first step is to express z as a differentiable
transformation of random variable ϵ:

z = g(ϵ, ϕ), (4.15)

where the distribution is independent of x or ϕ. Expectation dependency can
then be rewritten as

Eqϕ(x|z)[f(z)] = Ep(ϵ) [f(z)]. (4.16)

26

..................... 4.2. VAE with Symmetric Equilibrium Learning (SEL)

Computation of the gradient is now feasible and a simple Monte Carlo
estimator can be formed:

∇ϕEp(ϵ) [f(z)] = Ep(ϵ) [∇ϕf(z)] ≃ ∇ϕf(g(ϵ, ϕ)). (4.17)

Figure 4.4 shows the graphical comparison of the original and reparametrized
versions.

f

z ∼ qϕ(z|x)

ϕ

f

z = g(ϕ, z)

ϕ ϵ ∼ p(ϵ)

Figure 4.4: Left: Path for backpropagation is blocked since we cannot differenti-
ate f w.r.t. ϕ. It means that gradients cannot be backpropagated through the
random variable z. Right: Variable z is reparametrized to become deterministic.
The randomness is ensured by the newly introduced random variable ϵ.

4.2 VAE with Symmetric Equilibrium Learning
(SEL)

The second learning approach considered in the thesis is called Symmetric
Equilibrium Learning [21]. Symmetric means treating the encoder and decoder
evenly, which contrasts with the standard learning approach that optimizes
ELBO using the encoder only for auxiliary purposes.

The goal of the algorithm is the same as in the previous case, jointly learn
an encoder-decoder pair qϕ(z|x) and pθ(x|z) by optimizing the likelihood of
the observed data but also enforcing the encoder and decoder consistency at
the same time. The task is then formulated symmetrically as finding a Nash
equilibrium of a two-player game. The decoder corresponds to the first-player
strategy and the encoder corresponds to the second-player strategy. The
utility function of a player is the likelihood of the training data w.r.t. its
strategy. Consequently, training examples are completed by the other player’s

27

4. Augmentation
strategy. The utility functions are modeled as follows:

Lp(θ, ϕ) = Eqϕ(z|x) [log pθ(x|z)] (4.18)
Lq(θ, ϕ) = Epθ(x|z) [log qϕ(z|x)] . (4.19)

A Nash equilibrium of the game is then a pair (θ∗, ϕ∗) such that

Lp(θ∗, ϕ∗) ≥ Lp(θ, ϕ∗) ∀θ (4.20)
Lp(θ∗, ϕ∗) ≥ Lq(θ∗, ϕ) ∀ϕ (4.21)

which describes a point at which neither player can improve its objective
function.

4.2.1 Stochastic gradient descent optimization

Considering the gradient descent algorithm, each player tries to improve its
utility w.r.t. its strategy

∇θLp(θ, ϕ) = ∇θEqϕ(z|x) [log pθ(x|z)] (4.22)
∇ϕLq(θ, ϕ) = ∇ϕEpθ(x|z) [log qϕ(z|x)] . (4.23)

An unbiased gradient estimates are obtained by differentiating Monte-Carlo
estimates of the expectations as described for ELBO learning. In comparison
to the ELBO, ∇θLp(θ, ϕ) does not need to be differentiated w.r.t. ϕ, and
the same is true for the ∇ϕLq(θ, ϕ) and differentiation w.r.t. θ. This notion
completely eliminates the need for reparametrization in the case of continuous
variables or special estimation in other cases.

4.3 HVAE with evidence lower bound learning

So far, we have explained variational autoencoders with just one latent variable.
However, in practice, these can be chained to achieve improved results in
several domains. For hierarchical VAE we can choose a very straightforward
extension of the standard VAE that would look as follows.

At the beginning let us define two latent variables z1 and z2. The joint
distribution we want to learn is then factorized as

p(x, z1, z2) = p(x|z1)p(z1|z2) (4.24)

28

........................ 4.3. HVAE with evidence lower bound learning

which implies the generative process that starts with sampling of z2 from
N (0, 1) and continues by sampling z1 and x given their predecessors. We
already know that computing true posterior is intractable therefore we define
a family of variational posteriors Q(z1, z2|x). Factorization is then performed
in the reverse direction as follows:

Q(z1, z2|x) = q(z1|x)q(z2|z1, x) (4.25)

This extension seems to be very straightforward but in some cases can lead to
suboptimal behavior. A broader discussion can be found in [25, Chapter 4.5].
For the purposes of this thesis, another approach was chosen that we explain
in the following section.

4.3.1 Ladder variational autoencoder (LVAE)

In the standard HVAE approach, the dependencies of the generative and
variational paths are in reverse order 4.25. The idea behind the Ladder
variation autoencoder is to change the order in which the inference is done
to provide a tighter connection through a shared parametrization. It was
introduced in [22]. The class of variational posteriors changes as follows:

Q(z1, z2|x) = q(z1|z2, x)q(z2|x). (4.26)

The definition of the inference and generative path can be generalized into a
model where the z variable is split into N layers. The generative part reads
as follows:

pθ = pθ(zN)
N−1∏
i=1

pθ(zi|zi+1). (4.27)

pθ(zi|zi+1) = N (zi|µp,i(zi+1), σ2
p,i(zi+1), pθ(zN) = N (zN |0, 1) (4.28)

pθ(x|z1) = N (x|µp,0(z1), σ2
p,0(z1)), pθ(x|z1) = B(x|µp,0(z1)). (4.29)

The definition is also given for Bernoulli distribution since it is utilized in
this thesis. The inference path is then defined similarly

qϕ = qϕ(z1|x)
N∏

i=2
qϕ(zi|zi−1). (4.30)

qϕ(z1|x) = N (z1|µq,1(x), σ2
q,1(x)) (4.31)

qϕ(zi|zi−1) = N (zi|µq,i(zi−1), σ2
q,i(zi−1)). (4.32)

To summarize, let us go back to our simplified model with just z1 and
z2. We have a top-down generative path that stays the same defined by

29

4. Augmentation
p(x|z1), p(z1|z2) and p(z2). µ and σ parameters are given by deep neural
networks as usual. On the contrary, the bottom-up inference path introduces
a new concept of deterministic paths that transforms the input data x by a
function d1 = f1(x) and d2 = f2(d1) and recursively corrects the generative
distribution. The function f is defined by a deep neural network that serves
as input for an additional network that produces modifications in µ and σ
parameters. From this point forward, we will refer to the HVAE architecture
as LVAE to emphasize the approach utilized.

4.3.2 ELBO extension for LVAE

In the section 4.1.2 we derived the ELBO for standard variational autoen-
coder. This time, however, we must consider an extended form of the joint
distribution we aim to learn, as well as a new family of variational posteriors
discussed at the beginning of this section. Now let us go back to equation 4.8
where we stated the ELBO representation using Jensen’s inequality. We can
rewrite it considering the LVAE paradigm as

log pθ(x) = log
[∫

Q(z1,z2|x)

q(z1|z2, x)q(z2|x)
q(z1|z2, x)q(z2|x)p(x|z1)p(z1|z2)p(z2)

]
. (4.33)

Now let us rewrite the expression in the form of expectation value to obtain

log pθ(x) = log
[
EQ(z1,z2|x)

[1
q(z1|z2, x)q(z2|x)p(x|z1)p(z1|z2)p(z2)

]]
(4.34)

and rewrite it to a better readable form

log pθ(x) = log
[
EQ(z1,z2|x)

[
p(x|z1) p(z1|z2)

q(z1|z2, x)
p(z2)

q(z2|x)

]]
. (4.35)

At this point, we apply Jensen’s inequality to obtain

log pθ(x) ≥ EQ(z1,z2|x) [log p(x|z1)] +

+EQ(z1,z2|x)

[
log p(z1|z2)

q(z1|z2, x)

]
+ EQ(z1,z2|x)

[
log p(z2)

q(z2|x)

]
. (4.36)

The final equation for LVAE ELBO then reads as

log pθ(x) ≥ EQ(z1,z2|x) [log p(x|z1)] +

EQ(z1,z2|x)

[
log p(z1|z2)

q(z1|z2, x)

]
+ EQ(z1,z2|x)

[
log p(z2)

q(z2|x)

]
, (4.37)

which can be rewritten as

log pθ(x) ≥ EQ(z1,z2|x) [log pθ(x|z1)] +
+DKL (q(z1|z2, x)||p(z1|z2)) + DKL (q(z2|x)||p(z2)) . (4.38)

30

........................ 4.3. HVAE with evidence lower bound learning

The final equation can be easily extended for N latent variables as

log pθ(x) ≥ EQ(z1,...,zN |x) [log pθ(x|z1)] +

+
N−1∑
i=1

DKL (q(zi|zi+1, x)||p(zi|zi+1)) + DKL (q(zN |x)||p(zN)) . (4.39)

4.3.3 Distribution parameter shift

The modification of parameters can be done in several ways. We will follow
the original approach from [22] that derives the update from the exponential
family representation of the Gaussian distribution.

Given a measure η, we define an exponential family of probability distribu-
tions as those distributions whose density (relative to η) have the following
general form [26]:

p(x|η) = h(x) exp
[
ηT T (x) − A(η)

]
, (4.40)

where η is the canonical parameter, T (x) is referred to as sufficient statistics
and A(η) is knows as the cumulant function.

Let us start with the Gaussian density function that can be written as
follows:

p(x|µ, σ2) = 1√
2πσ

e
(x−µ)2

2σ2 (4.41)

which can be expanded as

p(x|µ, σ2) = 1√
2π

exp
[

µ

σ2 x − 1
2σ2 x2 − 1

2σ2 µ2 − log σ

]
. (4.42)

Then in exponential family form, we have

p(x|µ, σ2) = 1√
2π

exp
[〈(

x
x2

)
,

(
µ/σ2

−1/2σ2

)〉
− µ2

2σ2 − log σ

]
. (4.43)

For the canonical parameter η we can write(
η1
η2

)
=
(

µ/σ2

−1/2σ2

)
, (4.44)

which can be rewritten for µ and σ2 like(
µ
σ2

)
=
(

−η1/2η2
−1/2η2

)
. (4.45)

31

4. Augmentation
Now let us assume an increment in η

η̃ = η + η̂, (4.46)

we can plug in the derived value for η and obtain

η̃1 = µ

σ2 + µ̂

σ̂2 (4.47)

η̃2 = − 1
2σ2 − 1

2σ̂2 . (4.48)

To compute increment in µ and σ2 we plug 4.47 second equation in 4.45
second equation and after algebraic manipulation obtain

σ̃2 = σ2σ̂2

σ2 + σ̂2 . (4.49)

The µ parameter is computed similarly. The result looks as follows:

µ̃ = µσ̂2 + µ̂σ2

σ2 + σ̂2 . (4.50)

The expression 4.49 and 4.50 represent the modified parameters of Gaussian
distribution. The µ̂ and σ̂2 carry the inference bottom-up information whereas
µ and σ carry the generative top-down prior information. This parametriza-
tion has a probabilistic motivation by viewing µ̂ and σ̂2 as the approximate
Gaussian likelihood that is combined with a Gaussian prior µ and σ2 from
the generative distribution. Together these form the approximate posterior
distribution qθ(z|z, x) using the same top-down dependency structure both
in the inference and generative model.

4.4 LVAE with symmetric equilibrium learning

In [21] authors mention the possibility of extending the standard model to a
hierarchical one. "The principles of the learning algorithm remain the same,
however, refinement needs to be made in utility functions. In the general
LVAE form, they look as follows:

Lp(θ, ϕ) = Eqϕ(z|x) [log pθ(x, z)] (4.51)
Lq(θ, ϕ) = Epϕ(x|z) [log qϕ(z|x)] . (4.52)

In general encoder and decoder factorize as

p(x, z) = p(zm)
m−1∏
i=1

p(zi|zi+1)p(x|z1) (4.53)

q(x|x) = q(zm|x)
m∏

i=1
q(zi|zi+1, x). (4.54)

32

.......................... 4.5. Visualization and evaluation metrics

For the two-layer latent space, the equation is simplified as

p(x, z) = p(z2)p(z1|z2)p(x|z1) (4.55)
q(x|x) = q(z2|x)q(z1|z2, x). (4.56)

Now we can plug the factorization into the utility functions and obtain

Lp(θ, ϕ) = Eqϕ(z|x) [log pθ(x|z1) + log pθ(z1|z2)] (4.57)
Lq(θ, ϕ) = Epϕ(x|z) [log qϕ(z2|x) + log qϕ(z1|z2, x)] . (4.58)

4.5 Visualization and evaluation metrics

In this section, we discuss how to visualize data with a high number of
dimensions. Dimension reduction is a technique that maps high-dimensional
space Hn to lower dimensional space Lm where usually m = 2. The goal
of the algorithm is then to perform the embedding in such a way that the
internal structure of the data remains preserved as much as possible [27].

Let us start our explanation with the original method called Stochastic
Neighbor Embedding. Once we understand the basics we can move to a more
advanced approach. The SNE explanation is based on [28] and the t-SNE
explanation on [29].

4.5.1 Stochastic Neighbor Embedding (SNE)

The first step of the algorithm is to compute asymmetric high-dimensional
probabilities. It means for every object i and its potential neighbor j compute
probability p(i|j) defined as

p(i|j) = e−d2
ij∑

k ̸=i e−d2
ik

. (4.59)

The quantity d2
ij is called dissimilarity and is defined as

d2
ij = ||xi − xj ||2

2σ2
i

, (4.60)

which is Euclidean distance between high dimensional points xi and xj scaled
by parameter σ. The parameter is then found by computation of

H = −
∑

p(i|j) log2 p(i|j) = log2 k, (4.61)

33

4. Augmentation
where parameter k is called perplexity and is chosen by hand. Once the
perplexity is chosen, the σ is found to make the entropy of the distribution
equal to log2 k. The second step is to calculate low-dimensional probabili-
ties from the high-dimensional ones. This time Gaussian neighborhood is
computed with a fixed variance. The induced probability is a function of
low-dimensional images yi of the original points and is given as

q(i|j) = e−||yi−yj ||2∑
k ̸=i e−||yi−yk||2 , (4.62)

If the point is correctly placed in the low-dimensional space the difference
between p and q is small. The similarity of the distributions is measured by
the already mentioned KL divergence. The cost function is therefore defined
as DKL over all points ∑

i

∑
j

DKL(p(i|j)||q(i|j)). (4.63)

4.5.2 t-distributed Stochastic Neighbor Embedding (t-SNE)

t-SNE is the extension of the original SNE algorithm addressing the difficulty
of cost function optimization and crowding problems. The first improvement
over the original version is the symmetrization of the conditional probabilities.
So far the probability that a point xi considers another point xj as its neighbor
is not the same. We therefore define pairwise probabilities in high-dimensional
space as

pij = p(j|i) + p(i|j)
2n

. (4.64)

The crowding problem is related to distortion of the distances in the low-
dimensional space. For example, in n dimensional space we can have n + 1
equidistantly placed points but it certainly ca not be achieved in 2D space.
The crowding problem is defined as follows: The area of the two-dimensional
map that is available to accommodate moderately distant data points will
not be nearly large enough compared with the area available to accommodate
nearby data points. Therefore, points that should be close to each other can
be placed at high distances. To solve this issue the Student t-Distribution is
introduced

qij = (1 + ||yi − yj ||2)−1∑
k ̸=l(1 + ||yk − yl)||2)−1 . (4.65)

At this point, both pair-wise probabilities are symmetric which is a significant
advantage when computing the gradients of the loss function.

34

.......................... 4.5. Visualization and evaluation metrics

4.5.3 Wasserstein Distance

The Wasserstein Distance (Sometimes called Earth Mover’s distance) is a tool
proposed to compare probability measures and distributions on Rd through
the knowledge of a metric on Rd. The general definition is the following:

Given an exponent p ≥ 1, the definition of the p-Wasserstein distance
reads: For p ∈ [1, ∞) and Borel probability measures P,Q on Rd with finite
p-moments, their p-Wasserstein distance is

Wp(P, Q) =
(

inf
π∈Γ(P,Q)

∫
Rd×Rd

||X − Y ||pdπ

)1/p

, (4.66)

where Γ(P, Q) is the set of all joint probability measures on Rd × Rd whose
marginals are P,Q, i.e. such that all subsets A ∈ Rd we have π(A×Rd) = P (A)
and π(Rd × A) = Q(A) [30].

Given two 1D probability density functions and p = 1 (Expected value),
the Wasserstein distance between the distributions is

W1(P, Q) = inf
π∈Γ(P,Q)

∫
R×R

|x − y|dπ(x, y), (4.67)

where π(x, y) is a coupling or transport plan but can also be viewed as a
joint distribution that has P and Q as its marginals. The |x − y| is a cost
function corresponding to the Euclidean distance between point x coming
from the support of the P distribution and y coming from the support of the
Q distribution [31].

In other words, if we have two measures P and Q supported by R, the
Wasserstein distance is computed as a minimization process over all transport
plans integrating all products of the distance between coupled points and the
amount of mass that needs to be transported.

4.5.4 χ2 test

χ2 or chi-square is a commonly used quantity to test whether a given set of
data is well described by a hypothesized function. Such a determination is
called a chi-square test for goodness of fit. If ν independent variables xi are
each normally distributed with mean µi and variance σ2

i , then the quantity

35

4. Augmentation
known as χ2 is defined as follows:

χ2 =
ν∑

i=1

(xi − µi)2

σ2
i

. (4.68)

If χ2/DoF = 1, where DoF corresponds to a number of bins, only statistical
fluctuations are present. If χ2/DoF > 1, also systematic differences in the
distributions are measured [32].

36

37

4. Augmentation

Part II

Methodology

38

Chapter 5

Data preprocessing

Before performing an analysis in high energy physics (HEP), the data needs
to be preprocessed. The goal of this chapter is to describe how to transform
the output of the Monte Carlo simulations to input acceptable by machine
learning frameworks. The explanation will start with an overview of methods
and libraries that are needed for this purpose and the rest of the chapter will
be aimed at the pre-processing itself.

5.1 Tools and libraries

5.1.1 GitHub

The GitHub platform was used as a version control system for the whole
thesis. The current state of the work can be found at https://github.com/
LukVic/vae-generator-for-particle-physics.

5.1.2 ROOT Framework

ROOT [33] is the object-oriented framework developed to solve the challenges
of HEP. A typical application is processing both real and simulated data

39

https://github.com/LukVic/vae-generator-for-particle-physics
https://github.com/LukVic/vae-generator-for-particle-physics

5. Data preprocessing
consisting of many events with the same structure. For the purpose of this
thesis, we are particularly interested in the way how data is stored within
the framework. ROOT uses vertical data partitioning of arbitrary user-
defined objects, implemented in a structure called TTree. TTrees are then
partitioned into branches (TBranch) that can be accessed independently
during the reading process due to separate buffers allocated for every branch.
The leaves of this tree-like structure correspond to histograms of individual
observables that can usually represent basic physical quantities like invariant
mass or transverse momentum but also more sophisticated ones related to
the geometry of the detector.

In our analysis, ROOT trees are stored separately for each year of data
taking and for each reaction. The first task is therefore to extract the data
from the root n-tuples to representation better suitable for machine learning
applications.

5.1.3 ROOT RDataFrame

To efficiently transform the ROOT n-tuples TTree structure into a more suit-
able tabular format for use with Pandas DataFrame, the ROOT RDataFrame
can be employed. RDataFrame is a high-level framework designed to an-
alyze data produced by HEP experiments like LHC. A common struggle
at the beginning of the analysis is to properly load the data that can be
significantly larger than that of the available memory. The framework aims
at this issue and efficiently aggregates the given entries. It means that the
process of transformation, filtering, and final storage of the data can be done
altogether without intermediate substeps. More details about the features of
the framework can be found in [34].

5.1.4 Pandas

Pandas is a Python language library used for data analysis and manipulation.
It offers data structures and operations for manipulating numerical tables
and time series. The most important data structure for data analysis and
machine learning is DataFrame.

A DataFrame consists of rows and columns. Each row typically represents
a different observation or record, while each column represents a different

40

................................... 5.2. Data Conversion

attribute or variable. Rows and columns are labeled for easy access and
manipulation. It can be heterogeneous which means columns can contain
different data types. It is also compatible with other Python libraries such as
NumPy, Matplotlib, and SciPy [35].

5.2 Data Conversion

In this section, we will continue explaining the origin and structure of the
used data. As already mentioned in section ??, the data contains events from
five reactions: tbH+, ttH, ttW , ttZ, and tt, where tbH+ corresponds to the
signal and the rest to the background. All of them have a final state belonging
to analysis channel 2lSS + 1τ . Table 5.1 summarizes the description.

Name Description class

tbH+ top quark, bottom quark, charged Higgs boson Signal
ttH top quark, anti-top quark, Higgs boson Background
ttW top quark, anti-top quark, W boson Background
ttZ top quark, anti-top quark, Z boson Background
tt top quark, anti-top quark Background

Table 5.1: Summary of the reactions used for the analysis.

Next, let us have a look at how the data is represented. The data coming
from the MC simulation is stored on the CERN grid servers in directories
separated by the year of the run and then by type of reaction. The file IDs
are shown in Table 5.2.

Reaction ID Year

tbH+ 800 GeV 510375AF mc16a, mc16d, mc16e
ttH 346343, 346344, 346345 mc16a, mc16d, mc16e
ttW 700168, 700205 mc16a, mc16d, mc16e
ttZ 700309 mc16a, mc16d, mc16e
tt 410470 mc16a, mc16d, mc16e

Table 5.2: ROOT n-tuples IDs corresponding to particular reactions. The year
column indicates directories in which the particular dataset IDs can be found.

Each file represents an n-tuple filled with a certain number of entries that
can be viewed as histograms of observables. For machine learning purposes,

41

5. Data preprocessing
it is needed to transform the n-tuple to data format with exactly defined
rows and columns. The entries (events) have identical structures and are
described by the same observables. Therefore, we can assign the events
to be stored in rows as data samples described by observables defining the
columns. Application of channel means dropping events or rows from the
table. RDataFrame can do two steps at once, transform the n-tuple to
columnar format, and filter unwanted events providing us with a data format
conveniently prepared for Pandas DataFrame. the simplified pre-selection
formula reads as

l2SS1tau & nJets_OR > 3 & nJets_OR_DL1r_70 > 0, (5.1)

which is putting a restriction on three observables stored in the n-tuples. The
full formula is shown in Appendix B. After applying the pre-selection criteria,
only a fraction of the original events remain. Table 5.3 shows how many
events remain after pre-selection with the corresponding percentage.

Reaction Σ simulated Σ pre-selected %

tbH+ 800 GeV 132130 10449 7.908
ttH 1477351 15567 1.054
ttW 730528 3187 0.436
ttZ 2532296 8819 0.348
tt 494461 38 0.008

All 5366766 38060 0.709

Table 5.3: Number and percentage of remaining events after preselection.

The reaction datasets belonging to the background are then concatenated
together to provide one unified background dataset. This means we will need
a separate trained VAE model for signal and background datasets.

42

Chapter 6

Classification

This chapter describes the practical aspects of the classification process used
in the thesis which is used for the final evaluation of the generated data. The
first part of the chapter aims to explain the implementations of the used
classifiers. The second part then outlines the metrics implemented to assess
the separation power of the classifier.

6.1 Data preparation

The data coming from the pre-processing part is separated into files based on
corresponding reactions and is described by 71 features. For the generative
purposes is this number too high since we would need to check each histogram
individually. To avoid this complication we proceed as follows. At first, the
separation is performed with all the features. Feature importance is computed
afterward to determine which features strongly affect the classification results.
Once we possess such a piece of information we choose the 10 most important
features. The data distribution represented by these features is then learned
by VAEs. The simulated dataset can be augmented at this point. This
process is supported by [36] where the author noticed only small reduction in
performance (5% on average) if 5 most important features are selected.

43

6. Classification.....................................
6.2 Classifiers

The theory behind the chosen classifiers was described in chapter 3 which
discusses multilayer perceptrons and gradient-boosting decision trees. This
section describes implementation details.

6.2.1 Multilayer perceptron

The data augmentation provides us with ability to significantly increase the
size of the training dataset. It means that neural networks with a proportion-
ally higher number of parameters and depth can be utilized. Keeping this in
mind two architectures were chosen for the analysis. Their architectures are
the following:..1. Parameters: 962

x ∈ X D → Linear[D, 64] → BatchNorm → ReLU → Dropout(0.1)
→ Linear[64, M],..2. Parameters: 70146

x ∈ X D → Linear[D, 256] → BatchNorm → ReLU → Dropout(0.1)
→ Linear[256, 256], → BatchNorm → ReLU → Dropout(0.1)
→ Linear[256, M].

Other important hyperparameters are:

.Optimizer: Adam. Learning rate: 1e-3, 1e-4. Number of Epochs: 1000. Early stopping: 20. Batch Size: 2048

44

...................................... 6.2. Classifiers

6.2.2 XGBoost

The scikit-learn library implementation of XGBoost was used for the analysis.
The following parameters can affect the performance the most:

. n_estimators: Specifies the number of decision trees to be boosted..max_depth: It limits how deep each tree can grow..min_child_weight: minimum sum of instance weight (hessian) needed
in a child. If the tree partition step results in a leaf node with the sum of
instance weight less than min_child_weight, then the building process
will give up further partitioning.. reg_alpha: Is the L1 regularization parameter, increasing its value makes
the model more conservative.. gamma: Is the regularization parameter for tree pruning. It specifies the
minimum loss reduction required to grow a tree.. learning_rate: Is a regularization parameter that shrinks feature weights
in each boosting step.. colsample_bytree: The algorithm will randomly select a subset of features
on each iteration (tree).. subsample: It represents the subsample ratio of the training sample.. scale_pos_weight: his parameter is useful in case we have an imbalanced
dataset, particularly in classification problems, where the proportion of
one class is a small fraction of total observations.

We chose two XGBoost instances based on the solution found by the
hyperparameter optimization framework Optuna [37]. Their parameters are:..1. XGB 0: default parameters..2. XGB 1:. n_estimators: 1102. learning_rate: 0.03. colsample_bytree: 0.9. gamma: 0.0005. subsample: 1.0. reg_alpha: 0.0029. reg_lambda: 0.00032

45

6. Classification.....................................
6.3 Evaluation Metrics

In the case of a binary classifier, the learned model predicts probabilities
for every event x being assigned to signal P (x ∈ S) and background P (x ∈
B). This section discusses the output probabilities utilized for computing
significance and explores how this metric relates to more familiar metrics
commonly employed in the machine learning community.

Evaluation metrics are usually based on four building blocks called True
Positive (TP), True Negative (TN), False Positive (FP), and False Negative
(FN). Their meaning is the following:

.TP: Is an outcome where the model correctly predicts the positive class..TN: Is an outcome where the model correctly predicts the negative class.. FP: Is an outcome where the model incorrectly predicts the positive
class.. FN: Is an outcome where the model incorrectly predicts the negative
class.

6.3.1 Weights

Significance, apart from other metrics like Accuracy or Precision needs to be
in our case computed with the use of specific weights to reflect a true number
of particles appearing in the detector. In practice, the validation data can be
weighted based on the type of reaction (tbH+, ttH, . . .) or individually for
each event. In this thesis, individual events are weighted for the purpose of
analysis. To compute the weights the following formula is used:

w = Y (ef0) · ef1 · ef2 · ef3 · ef4 · ef5 · ef6 · ef7 · ef8 · ef9

ef7

, (6.1)

where w is the computed weight and Y is the luminosity corresponding to
the year of production defined as

Y (ef0) =

36205.66, if ef0 = 2015 ∨ ef0 = 2016
44307, if ef0 = 2017
58450, if ef0 = 2018.

(6.2)

46

.................................. 6.3. Evaluation Metrics

Particular factors efi
from equation 6.1 are described in Table 6.1.

Index Feature name

f0 RunYear
f1 custTrigSF_LooseID_FCLooseIso_DLT
f2 weight_pileup
f3 jvtSF_customOR
f4 bTagSF_weight_DL1r_70
f5 weight_mc
f6 xs
f7 totalEventsWeighted
f8 lep_SF_CombinedTight_0
f9 lep_SF_CombinedTight_1

Table 6.1: Feature names corresponding to the IDs from the formula 6.1.

As already mentioned, the meaning of the weights is to obtain the correct
number of particles corresponding to the real detected collision. For the
purpose of the thesis, the xs feature value was manually set to 0.11 for the
signal since the value is unknown in reality. Moreover, weights have to be
multiplied by filtering efficiency which is 40.3%2 for tbH+ 800 GeV. The final
formula for the signal weight vector is

ws = w · 0.1
ef0

· 0.403. (6.3)

Table 6.2 shows the number of weighted events after pre-selection for all
considered reactions.

Reaction Σ simulated Σ pre-selected Σ weighted

tbH+ 800 GeV 132130 10449 38.861
tt̄H 1477351 15567 12.649
tt̄W 730528 3187 9.046
tt̄Z 2532296 8819 12.561
tt̄ 494461 38 4.605

All 5366766 38060 77.720

Table 6.2: Number of weighted remaining events after pre-selection for corre-
sponding reactions.

1Representing a production crosssection of 0.1 pb.
2This percentage is the filter efficiency in the MC event generation.

47

6. Classification.....................................
6.3.2 Significance

The theoretical derivation of the significance was provided in section 3.3.3.
The derived formulas are

Z1 =
√

2
(

(S + B) ln (1 + S

B
) − S

)
, (6.4)

Z2 = S√
B

. (6.5)

As the output of the classification, we obtain probabilities for each event x
belonging to either signal S or background B where S ∪ B ⊆ V and V is the
validation dataset. To perform the assignment we take all the events and
decide where they belong based on a given threshold ξ. For single event x
we can write P (x ∈ S) ≥ ξ → x ∈ S and P (x ∈ S) < ξ → x ∈ B. Now let
us split the events based on their true labeling Vs ∪ Vb ⊆ V. Based on the
chosen threshold a certain proportion of events from both of these subsets will
be assigned to S. We can define S =

∑|Vs⊂S|−1
i=0 wi and B =

∑|Vb⊂S|−1
i=0 wi,

where wi are weights defined in 6.3.1. These quantities can be plugged into
equations 6.4 or 6.5. We can also state that S = TP (ξ) and B = FP (ξ).

Figure 6.1 shows the separate distributions for signal and background
labeled testing events based on the output probabilities P (x ∈ S). Due to
the binning on the output we can see correspondence with the definition 3.3.3
that applies on a binned histogram.

0.0 0.2 0.4 0.6 0.8 1.0
Classifier threshold

0

2000

4000

6000

8000

10000

12000

14000

16000

Nu
m

be
r o

f e
ve

nt
s

Signal
Background

0.0 0.2 0.4 0.6 0.8 1.0
Classifier threshold

0

5

10

15

20

Nu
m

be
r o

f w
ei

gh
te

d
ev

en
ts

Signal
Background

Figure 6.1: Left: Number of unweighted events for a given output probability.
Right: Number of weighted events for a given output probability.

If ξ = 0 we obtain only true positives and false positives since for each
x holds P (x ∈ S) > 0. Once we start increasing the ξ, the number of false
positives decreases rapidly since a majority of true background events have a

48

.................................. 6.3. Evaluation Metrics

low probability of being assigned as signal events (We are summing over bins
of the weighted histogram from ξ to 1). At a certain point, however, we start
to detect false negatives since for higher thresholds signal events start to be
misclassified as background. Figure 6.2 shows the summed weighted events
from threshold to 1 and highlights the maximum w.r.t. the given significance
formula. Four significance definitions are evaluated. Z1 and Z2 correspond to
the definition 6.4 and 6.5. The most reliable result provides the Z1 definition.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Threshold

0

5

10

15

20

25

30

35

40

Ex
pe

ct
ed

 e
ve

nt
s

30.202

4.335

S - tbH classifed as tbH
B - background classified as tbH

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Threshold

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Si
gn

ifi
ca

nc
e

Ap
pr

ox
im

at
io

n

12.100

16.450

5.258

8.432

Z1
Z2
Z3
Z4

Figure 6.2: Left: Number of signal and background events for all considered
thresholds. The best ratio is highlighted by a dashed line. A cut is applied if a
number of weighted events is too low to prevent noticeable fluctuations of signifi-
cance Z2. Right: Four possible definitions of significance and their corresponding
optima. Z1 :

√
2
(
(S + B) ln (1 + S

B) − S
)
, Z2 : S/

√
B, Z3 : S/

√
S + B, Z4 :

S/
√

B + 3/2.

6.3.3 Accuracy

Accuracy is one of the standard evaluation metrics. Its formal definition is
the following:

Accuracy = Number of correct predictions
Total number of predictions .

For binary classifiers which is our case, the Accuracy can be defined in terms
of positives and negatives as follows:

Accuracy = TP + TN

TP + TN + FP + FN

Accuracy is a good indicator of model performance. However, it can give
misleading results for datasets with imbalanced classes.

49

6. Classification.....................................
6.3.4 Precision

By defining the Precision we are asking what proportion of positive identifi-
cations was actually correct. The formal definition is following:

Precision = TP

TP + FP
.

From the definition, it can be inferred that the Precision metric depends only
on the classification of the positive class. This attribute is common with (for
us) the most important metric, significance, which was already discussed.

50

Chapter 7

Data augmentation

In chapter 4 we described the theory behind the models and learning algo-
rithms that were implemented to perform data augmentation. This segment
will be focused on the practical side of the matter. In the forthcoming sections,
we will underline the implementation of the specific models and the associated
challenges.

7.1 Standard models

In section 4.1 and 4.2 we described the theoretical basics behind the standard
ELBO learning and SEL VAE respectively. The model consists of two neural
networks, the encoder which transforms input data into latent representation,
and the decoder giving the data back its original meaning. The parameters
of the networks are then learned by ELBO maximization or by finding Nash
equilibrium. Architectures were kept the same for both learning algorithms
to ensure the objectivity of the results. The only difference was the use of
Layer normalization in the case of ELBO and the Batch normalization in the
case of SEL.

51

7. Data augmentation
7.1.1 The encoder and decoder architecture

We chose the same architecture for both the encoder and decoder, with only
one difference that will be explained later. The architecture is following:

x ∈ X D → Linear[D, 4096] → LayerNorm → ReLU

→ Linear[4096, 1024] → LayerNorm → ReLU

→ Linear[1024, 2 · M] → split → µ ∈ RM , log σ2 ∈ RM ,

where D is a number of features and M is the size of the latent space. Each
linear layer is coupled with batch normalization and ReLU activation function.
The last layer output is split into two parts to produce µ and log σ2 for qϕ(z|x)
which is modeled as the normal distribution.

The decoder architecture is very similar up to one difference. The structure
looks as follows:

z ∈ ZM → Linear[M, 1024] → LayerNorm → ReLU

→ Linear[1024, 4096] → LayerNorm → ReLU

→ Linear[4096, 2 · D + 1] → split → µ ∈ RD, log σ2 ∈ RD, sigmoid(p) ∈ [−1, 1].

The structure looks very similar except for parameters being produced for
pθ(x|z) distribution. The difference is hidden in the p parameter which is
a parameter of the Bernoulli distribution. If we want to learn a different
distribution than the normal one the decoder is the place where the parameters
need to be separated. It is also important to mention that the loss function
needs to be enhanced by the Binary cross-entropy term. The approach would
be very similar for categorical features as for the binary ones since we need
to one-hot encode them.

7.1.2 ELBO Loss function

To compute ELBO based on the theory, we require a prior distribution p(z),
approximate posterior distribution qϕ(z|x) and likelihood pθ(x|z). Prior
distribution is in our case standard normal distribution therefore sampling
from it is straightforward. The encoder and decoder neural networks learn
the parameters for the approximate posterior and likelihood, which are then
utilized to construct the respective distributions. A reparametrization trick
needs to be used to allow backpropagation through the sampling part of the
algorithm. The order of actions looks as follows:

x ∈ X D → Encode(x) → qϕ(z|x) → RSample → z ∈ ZM → Decode(z)
→ pθ(x|z),

52

................................... 7.1. Standard models

where RSample stands for reparametrized sampling. At this point all the
necessary components of ELBO are accessible and we can easily compute
DKL(p(z)||qϕ(z|x)) and log pθ(x|z). For the binary part of the decoder output,
binary cross-entropy is used and added to the common loss formula.

7.1.3 SEL Loss function

The algorithm consists of two steps, thus the loss function is separated into
two parts that are learned separately. the first one reads as follows:

x ∈ X D → Encode(x) → qϕ(z|x) → Sample → z ∈ ZM → Decode(z)
→ pθ(x|z),

which is very similar to ELBO learning. There is just one difference which is
an omission of parametrization for sampling since the expected value does
not depend on θ. In the case of discrete distributions, this step also contains
an additional binary cross-entropy term.

The second step is similar:

z ∈ ZM → Decode(x) → pθ(x|z) → Sample → x ∈ X D → Encode(x)
→ qϕ(z|x),

this time samples are coming from likelihood and approximate posterior
is learned. At this point, the log-likelihoods for the losses can be easily
computed.

7.1.4 Observations

. Smaller size of the latent space ZM improves the learning capabilities.. It is better to build architecture with a lower number of layers but a
high number of neurons.. Layer normalization leads to better stability compared to Batch normal-
ization for ELBO learning.. Learning of Symmetric learning algorithm is more robust and allows
higher learning rates.

53

7. Data augmentation
7.2 Ladder models

The theory behind LVAE with ELBO learning is explained in section 4.3

7.2.1 Architecture

The architecture of the Ladder VAE is significantly more complex than that
of the standard VAE. In the case of two-level LVAE shown in Figure 7.1 every
arrow corresponds to a neural network, meaning already six neural networks
are needed. It was already mentioned in the theoretical part that architecture
can be split into two parts. The first part is the bottom-up deterministic path
and is shown on the left in Figure 7.1. It consists of two deterministic neural
networks with outputs y1, y2 ∈ YD2 and two networks that we could call
encoders that produce parameter shifts for learned distribution. The second
part is called top-down and contains two networks. The upper one resembles
encoder in architecture and is based on z2 samples. it supplies parameters for
z1 sampling. The lower network corresponds to the decoder in architecture.

Figure 7.1: Schematic visualization of LVAE architecture.

The architectures of encoder and decoder networks is kept the same as for
the standard VAEs. The deterministic networks are new in this case and

54

.................................... 7.2. Ladder models

their architecture is following:

x ∈ X D1 → Linear[D1, 2048] → LayerNorm → ReLU

→ Linear[2048, 1024] → LayerNorm → ReLU

→ Linear[1024, D2] → split → y ∈ YD2 .

7.2.2 ELBO loss function

The loss function of LVAE is modeled similarly to the case of standard 7.1.2.
However, the path to the goal is slightly longer. The chain of deterministic
steps looks as follows:

x ∈ X D1 → Transform(x) → y1 ∈ YD2 → Transform(y) → y2 ∈ YD2 .

At this point the algorithm branches to produce parameters for qϕ(z2|x) and
qϕ(z1|z2, x). We proceed with

y2 ∈ YD2 → Encode(y2) → ∆µ2, ∆ log σ2
2

y1 ∈ YD2 → Encode(y1) → ∆µ1, ∆ log σ2
1.

At this point, we have prepared the parameter shifts. To obtain z2 and z1
recomputation described in 4.3.3 is performed. The parameter shift could be
explained by

0, 1
∆µ2, ∆ log σ2

2

}
qϕ(z2|x) → RSample → z2 ∈ ZM

µ1, log σ2
1

∆µ1, ∆ log σ2
1

}
qϕ(z1|z2, x) → RSample → z1 ∈ ZM ,

where the upper path shifts the standard normal distribution. The final step
is then to compute the likelihood as

z1 ∈ ZM → Decode(z1) → pθ(x|z1). (7.1)

At this point, we have all the terms needed to construct the extended ELBO
loss.

7.2.3 SEL loss function

The process again consists of two parts. This time we avoid detailed step-by-
step explanation since it is similar to 7.2.2. Let us focus more on the idea

55

7. Data augmentation
behind the approach.

At the beginning of the first step, we have our data x. It is ten used to
obtain z1 and z2 in the following way:

x ∈ X D → qϕ(z2|x) → Sample → z2 ∈ ZM → qϕ(z1|z2, x) → Sample → z1 ∈ ZM

→ {x, z1, z2}.

Since we have x, z1 and z2 in our hands we can compute

log pθ(x|z1) = log pθ(x|z1) + log pθ(z1|z2).

The second step is similar, but we start with z0 sampled from the prior
distribution. The process is following:

p(z2) → Sample → z2 ∈ ZM → pθ(z1|z2) → Sample → z1 ∈ ZM

→ pθ(x|z1) → Sample → x ∈ X D → {x, z1, z2}.

The learning phase then reads as

log qϕ(z1|x) = log qϕ(z2|x) + log qϕ(z1|z2, x).

7.2.4 SEL Implementation issues

Let us describe a complication that occurred during the implementation of
the first part. Particularly, the second term in the first loss function 7.2 that
reads

log pθ(z1|z2) (7.2)

is included to learn the parameters of neural network producing parameters for
pθ(z1|z2) distribution. Unfortunately, learning these parameters always led
to divergence of the overall loss function. For smaller network architectures,
the diverging tendencies were weaker but the best solution was to remove the
term from the loss formula. Based on these complications it was decided to
omit the Ladder SEL from evaluation experiments.

7.3 Generative pipeline

.The data is transformed into a tabular format where columns correspond
to chosen observables (features) and rows correspond to simulated events.

56

.................................. 7.3. Generative pipeline

.The chosen VAE model is trained on the prepared dataset. A separate
VAE is prepared for signal and background.. Using the learned model arbitrary number of new events can be generated..The quality of the newly generated data is assessed by both qualitative
and quantitative metrices.

57

58

Part III

Experimental results

59

60

Chapter 8

VAEs data quality comparison

The idea behind the first part of the generated data quality assessment is an
evaluation with well-known qualitative and quantitative metrices. Data from
all three models is evaluated and compared at the end. The final evaluation
is performed using the best-scoring model, which is consequently employed
for the analysis of charged Higgs boson separation.

8.1 Feature selection

Section 6.1 mentions that the number of features used for the data augmen-
tation has been reduced from 71 to 10 which significantly helps with data
quality evaluation and the decrease in performance is negligible. This section
describes the process in more detail.

8.1.1 Feature importance

It is important to point out that it is complicated to choose n the most
important features, where n stands for an arbitrary number of features.
Importance is usually significantly different for GBDTs and MLPs. It also
depends on chosen hyperparameters and architecture. Our objective was to
select features that were frequently evaluated as highly important, but also

61

8. VAEs data quality comparison
ensure that at least one feature is non-real valued. The approach was the
following:

.MLP and XGBoost were used as classifiers.. From the simulated dataset 0.2, 0.5 and 1.0 fractions were extracted.. 20 different seeds were used for extraction. It means 20 different datasets
for each extracted fraction.. Feature importance was computed for all datasets.. Features were ranked by achieved position in each run.. Individual scores were summed to obtain overall results.. Features that obtained the highest score were chosen.

To compute feature importance for the MLP, gradients of the output w.r.t.
the input features were calculated. Once the MLP model is learned, the
gradient of the output is computed with respect to the particular feature.
The gradients are averaged over all data instances. The features with larger
corresponding gradient values are the most important [38].

Regarding the XGBoost, feature importance for a single decision tree is
determined by the improvement in the performance achieved by the split
point of each attribute, weighted by the number of observations done by
the node. It can also be interpreted as how much splitting on each feature
allows to reduce the impurity across all the splits in the tree. The feature
importances are then averaged across all of the decision trees [39]. The
scikit-learn function was used to compute feature importance.

The list of chosen features is:

. total_charge: The sum of the electric charges of all light leptons in the
event..MtLepMet: The transverse mass of a lepton and the missing transverse
energy vector..DRll01: The ∆R =

√
∆η2 + ∆ϕ2 distance between the two leading

leptons.. HT_lep: The scalar sum of the transverse momenta of all leptons in the
event.

62

................................... 8.2. Generation time

.MLepMet: The invariant mass of a lepton and the missing transverse
energy vector.. jets_pt_0: The transverse momentum of the leading jet.. taus_pt_0: The transverse momentum of the leading tau..met_met: The missing transverse energy in the event..minDeltaR_LJ_0: The minimum ∆R distance between the leading
lepton and a jet in the event.. HT: The scalar sum of the transverse momenta of all jets in the event.

8.2 Generation time

In this experiment, we measured how long it takes to generate a certain
amount of data. Since the time to generate each sample is constant we expect
O(n) time complexity. Figure 8.1 shows the experimental results. It can be
inferred that 107 samples can be generated in ≈ 26 seconds. After this number
of samples, the generative process started to be very memory-demanding.
Still, from the obtained data we can extrapolate the run time even for the
higher number of samples.

0.2 0.4 0.6 0.8 1.0
Number of samples (1e7)

5

10

15

20

25

Ti
m

e
[s

]

Figure 8.1: Processing time as a function of generated data.

63

8. VAEs data quality comparison
8.3 Used metrics

To evaluate the data quality, a variety of metrices were implemented. These
metrics can be categorized as follows:

. Joint: The metrics evaluate the dataset as a whole.

.Marginal: The distribution of the dataset is marginalized into separated
feature histograms which are subsequently evaluated.

. Qualitative: The data is evaluated subjectively by the search for patterns
in usually visualized output.

. Quantitative: Precise numbers are output to accurately assess the result.

8.3.1 Feature histograms

This method is straightforward. After the data is generated, individual
feature vectors are used to plot histograms. For this experiment, the same
number of events is generated as present in the simulated dataset. Normalized
histograms of simulated and generated data are then plotted together to
visually compare the shapes. For each model, the three randomly chosen
features, as well as the binary feature, are shown. Figures 8.2 and 8.3 show
the signal and background features comparisons. The rest can be found in
appendices A.1 and A.2.

64

.....................................8.3. Used metrics

0 1 2 3 4 5 6

DRll01

0

0.02

0.04

0.06

0.08

0.1

 e
ve

nt
s

(n
or

m
al

iz
ed

)

Simulated

Gen. ELBO Standard

Gen. SEL Standard

Gen. ELBO Ladder

0 200 400 600 800 1000 1200

310×

MLepMet

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

 e
ve

nt
s

(n
or

m
al

iz
ed

)

Simulated

Gen. ELBO Standard

Gen. SEL Standard

Gen. ELBO Ladder

0 1 2 3 4

minDeltaR_LJ_0

0

0.01

0.02

0.03

0.04

0.05

0.06

 e
ve

nt
s

(n
or

m
al

iz
ed

)

Simulated

Gen. ELBO Standard

Gen. SEL Standard

Gen. ELBO Ladder

2.5− 2− 1.5− 1− 0.5− 0 0.5 1 1.5 2 2.5

total_charge

0

0.1

0.2

0.3

0.4

0.5

 e
ve

nt
s

(n
or

m
al

iz
ed

)

Simulated

Gen. ELBO Standard

Gen. SEL Standard

Gen. ELBO Ladder

Figure 8.2: Comparison of four chosen signal features for all the models.

0 1 2 3 4 5

DRll01

0

0.01

0.02

0.03

0.04

0.05

0.06

 e
ve

nt
s

(n
or

m
al

iz
ed

)

Simulated

Gen. ELBO Standard

Gen. SEL Standard

Gen. ELBO Ladder

0 200 400 600 800 1000 1200 1400 1600

310×

MLepMet

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

 e
ve

nt
s

(n
or

m
al

iz
ed

)

Simulated

Gen. ELBO Standard

Gen. SEL Standard

Gen. ELBO Ladder

0.5− 0 0.5 1 1.5 2 2.5 3 3.5

minDeltaR_LJ_0

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

 e
ve

nt
s

(n
or

m
al

iz
ed

)

Simulated

Gen. ELBO Standard

Gen. SEL Standard

Gen. ELBO Ladder

2.5− 2− 1.5− 1− 0.5− 0 0.5 1 1.5 2 2.5

total_charge

0

0.1

0.2

0.3

0.4

0.5

 e
ve

nt
s

(n
or

m
al

iz
ed

)

Simulated

Gen. ELBO Standard

Gen. SEL Standard

Gen. ELBO Ladder

Figure 8.3: Comparison of four chosen background features for all the models.

65

8. VAEs data quality comparison
8.3.2 χ2 test

χ2 test is a metric well-known in particle physics for evaluating 1D feature
histograms. The goal is to compare the histogram of the simulated feature
with the generated one. The theory behind the metric is described in section
4.5.4. The results for signal histograms are summarized in Table 8.1. The
results for the background histograms are shown in Table 8.2. The ROOT
framework function [40] was used to produce the results.

Feature name Std. ELBO Std. SEL Ldr. ELBO

tauspt0 1.491 12.158 1.625
MtLepMet 1.133 1.24 1.126

metmet 1.595 1.515 1.46
DRll01 3.528 3.744 2.838

MLepMet 1.431 1.432 0.994
minDeltaRLJ0 1.925 4.438 8.491

jetspt0
1.249 2.505 0.941

HT 1.728 1.683 0.976
HTlep 1.892 2.07 0.86

totalcharge 0.103 2.928 2.744

Table 8.1: Chosen features with corresponding χ2 values for the three generative
models (signal sample).

Feature name Std. ELBO Std. SEL Ldr. ELBO

tauspt0 1.638 5.320 8.148
MtLepMet 1.112 2.555 1.269

metmet 1.078 1.959 1.255
DRll01 1.572 3.859 2.291

MLepMet 1.066 2.293 1.226
minDeltaRLJ0 1.344 2.203 6.799

jetspt0
0.997 2.684 1.410

HT 0.793 1.870 0.927
HTlep 1.027 2.444 1.002

totalcharge 0.144 1.473 0.152

Table 8.2: Chosen features with corresponding χ2 values for all three generative
models (background sample).

On average, the standard ELBO performs the best. While the Ladder
ELBO learning shows better results for some features, it performs significantly
worse for a few others. From performed experiments, we could assess that this
is probably caused by the interplay of two KL divergence terms. Results for

66

.....................................8.3. Used metrics

the total_charge feature are not necessarily very precise since it is computed
only for 2 bins and χ2 can significantly fluctuate under such circumstances.

8.3.3 Wasserstein distance

The purpose of the Wasserstein distance is similar to that of the χ2 test but
is used more broadly. The theory explaining the metric can be seen in section
4.5.3. Table 8.3 and 8.4 show the distance for all three models. The SciPy
function [41] was used.

Feature name Std. ELBO Std. SEL Ldr. ELBO

tauspt0 4.309e-07 1.736e-07 4.221e-07
MtLepMet 1.206e-07 2.051e-07 1.539e-07

metmet 1.031e-07 2.380e-07 2.442e-07
DRll01 0.021 0.024 0.043

MLepMet 1.439e-07 2.180e-07 1.624e-07
minDeltaRLJ0 0.027 0.062 0.013

jetspt0
9.411e-08 5.127e-08 9.608e-08

HT 6.678e-08 1.057e-07 5.125e-08
HTlep 1.393e-07 1.539e-07 6.781e-08

totalcharge 0.0081 0.0085 0.0015

Table 8.3: Chosen features with corresponding Wasserstein distance values for
all three generative models (Signal).

Feature name Std. ELBO Std. SEL Ldr. ELBO

tauspt0 3.884e-07 7.076e-07 7.278e-07
MtLepMet 2.118e-07 2.690e-07 1.052e-07

metmet 5.171e-08 2.750e-07 1.706e-07
DRll01 0.013 0.028 0.034

MLepMet 2.122e-07 2.611e-07 1.093e-07
minDeltaRLJ0 0.011 0.027 0.011

jetspt0
6.325e-08 4.987e-08 4.304e-08

HT 4.102e-08 1.264e-07 1.746e-08
HTlep 3.060e-07 2.472e-07 1.116e-07

totalcharge 0.0023 0.0065 0.0028

Table 8.4: Chosen features with corresponding Wasserstein distance values for
all three generative models (Background).

The results from this experiment are very similar to each other for the

67

8. VAEs data quality comparison
three evaluated models. An interesting observation is a significantly higher
score for DRll01 and minDeltaRLJ0 features.

8.3.4 Feature corelation matrix

The idea behind this experiment is the following. The features of the dataset
can be analyzed by computing the correlation between any pair of features.
The usually used correlation coefficients are Pearson, Spearman’s Rank,
Kendall Rank, and Point Biserial coefficient. In our case, we chose the
Pearson correlation coefficient [42]. The correlation matrix is computed
separately for the simulated and the generated dataset. The matrices are
compared to assess whether the pairwise correlations remain consistent in
the generated data. Figures 8.4 and 8.5 show results generated by standard
ELBO learning for signal and background, respectively. Color closer to red
indicates a high correlation. Color closer to blue indicated a lower or negative
correlation. The remaining results can be found in appendix A.3.

Figure 8.4: Feature correlation matrix for signal. Left: Simulated data, Right:
Generated data by standard ELBO learning model (signal sample)

68

.....................................8.3. Used metrics

Figure 8.5: Feature correlation matrix for background. Left: Simulated data,
Right: Generated data by standard ELBO learning model (background sample)

From the Figures, we can see good preservation of feature correlations.
From a classification perspective, one interesting fact can be noted. The
total_charge feature shows strong correlations with certain features in the
signal sample but shows a very neutral correlation with all features in the
background sample. This behavior may explain the high importance of the
feature.

8.3.5 t-SNE visualization

The t-SNE algorithm is used to qualitatively compare the similarity of the
whole dataset distributions. It is impossible to visually compare features in
10-dimensional space thus embedding into lower-dimensional space is needed.
A deeper explanation of the theory behind the embedding is given in section
4.5.2. Figure 8.6 shows the comparison of simulated and generated data in
the data space for 3000 samples. All the point clouds seem to be well aligned.

69

8. VAEs data quality comparison

75 50 25 0 25 50 75
t-SNE Component 1

60

40

20

0

20

40

60

t-S
NE

 C
om

po
ne

nt
 2

Data space - Standard ELBO
Simulated Data
Generated Data

100 75 50 25 0 25 50 75
t-SNE Component 1

60

40

20

0

20

40

t-S
NE

 C
om

po
ne

nt
 2

Data space - Standard SEL

Simulated Data
Generated Data

75 50 25 0 25 50 75
t-SNE Component 1

60

40

20

0

20

40

60

t-S
NE

 C
om

po
ne

nt
 2

Data space - Ladder ELBO

Simulated Data
Generated Data

Figure 8.6: Comparison of simulated and generated data for all three imple-
mented models.

8.3.6 Cross validation

This experiment aims to investigate the difference between the simulated
and the generated data. Both datasets are split into training and validation
subsets. The following experiments are performed for simple MLP with 962
parameters:

.Train: Simulated × Validate: Simulated.Train: Simulated × Validate: Generated.Train: Generated × Validate: Generated.Train: Generated × Validate: Simulated

Table 8.5 shows the mean values after 20 repetitions. There is almost no
difference between simulated and generated data by standard and Ladder

70

.....................................8.3. Used metrics

ELBO learning. The discrepancy is noticeable for the standard SEL which is
expected since the algorithm focuses more on the balance between latent and
data space.

Standard ELBO Simulated validate Generated validate

Simulated train 0.862 0.861
Generated train 0.860 0.864
Standard SEL Simulated validate Generated validate

Simulated train 0.862 0.841
Generated train 0.853 0.856
Ladder ELBO Simulated validate Generated validate

Simulated train 0.862 0.859
Generated train 0.858 0.862

Table 8.5: Cross validation results for all the three implemented models. Stan-
dard ELBO learning shows the best results.

8.3.7 Conclusion

Based on the performed experiments, the standard ELBO learning approach
was chosen to perform the data augmentation experiment for the signal and
background analysis.

71

72

Chapter 9

Augmented analysis

This chapter concludes the thesis by integrating data augmentation and data
analysis.

9.1 Simulated data augmentation

To properly investigate the impact of data augmentation, the following steps
were carefully considered:

.MLP and XGBoost classifiers were employed to examine the effect of
the data augmentation on different models.. First, models were trained on 0.2, 0.4, 0.6, 0.8, and 1.0 fractions of the
simulated data to determine a baseline performance.. 0.2, 0.4, 0.6, 0.8, and 1.0 were extracted from the generated dataset,
which is five times larger than the simulated dataset..This process was repeated 20 times with different train-validation splits
each time to reduce fluctuations in results..Mean values after 20 repetitions were visualized and standard deviation
between them was noted.

73

9. Augmented analysis..................................
In the following sections, MLP and XGBoost classifiers results are shown
separately due to differences in the analysis process and results.

9.2 Gradient boosting decision tree

Two different configurations of XGBoost parameters were chosen for the
final experiment (section 6.2.2). Four metrics are monitored to assess the
effect of the data augmentation. Figure 9.1 shows precision on the left and
accuracy on the right. The green band indicates simulated data and the
purple region corresponds to generated data addition. Both matrices show a
similar increasing tendency with added generated data.

0 1 2 3 4 5 6

Fractions

0.884

0.886

0.888

0.89

0.892

0.894

0.896

0.898

0.9

T
es

t p
re

ci
si

on

XGB 0

XGB 1
Filter efficiency: 40.3%
Cross Section: 0.1 pb

0 1 2 3 4 5 6

Fractions

0.845

0.85

0.855

0.86

0.865

T
es

t a
cc

ur
ac

y

XGB 0

XGB 1
Filter efficiency: 40.3%
Cross Section: 0.1 pb

Figure 9.1: Left: Precision comparison for two XGBoost configurations. Stan-
dard deviation 0.0035 for 20 repetitions. Right: Accuracy comparison for two
XGBoost configurations. Standard deviation 0.0034 for 20 repetitions.

The second pair of plots in Figures 9.2 shows the significance of Z1 and Z2
metrics. The XGB 1 classifier has optimized hyperparameters (section 6.2.2)
therefore it saturates earlier but both classifiers achieve similar performance
with a sufficient amount of generated data.

74

................................. 9.3. Multilayer perceptron

0 1 2 3 4 5 6

Fractions

12.2

12.4

12.6

12.8

13

S
ig

ni
fic

an
ce

 Z
 1

XGB 0

XGB 1
Filter efficiency: 40.3%
Cross Section: 0.1 pb

0 1 2 3 4 5 6

Fractions

17

17.5

18

18.5

19

19.5

S
ig

ni
fic

an
ce

 Z
 2

XGB 0

XGB 1
Filter efficiency: 40.3%
Cross Section: 0.1 pb

Figure 9.2: Left: Significance Z1 comparison for two XGBoost configurations.
Standard deviation 0.9009 for 20 repetitions Right: Significance Z2 comparison
for two XGBoost configurations. Standard deviation 2.7141 for 20 repetitions.

It is visible that the data augmentation causes improvement of all the
measured quantities. The reason is probably a strong overfitting of the
algorithm that is difficult to overcome. However, a higher volume of data
helps with its reduction. This claim is supported by the performance measured
on the training dataset shown in A.4.

9.3 Multilayer perceptron

In this section, we do the same comparison as in the previous one just with
MLPs instead of XGBoost. Figure 9.3 shows results for precision and accuracy
and Figure 9.4 shows results for the significance.

0 1 2 3 4 5 6

Fractions

0.89

0.892

0.894

0.896

0.898

0.9

0.902

0.904

0.906

T
es

t p
re

ci
si

on

MLP 962

MLP 70146

Filter efficiency: 40.3%
Cross Section: 0.1 pb

0 1 2 3 4 5 6

Fractions

0.859

0.86

0.861

0.862

0.863

0.864

0.865

0.866

0.867

T
es

t a
cc

ur
ac

y

MLP 962

MLP 70146

Filter efficiency: 40.3%
Cross Section: 0.1 pb

Figure 9.3: Left: The precision comparison for two MLP configurations. Stan-
dard deviation 0.0035 for 20 repetitions. Right: The accuracy comparison for
two MLP configurations. Standard deviation 0.0038 for 20 repetitions.

75

9. Augmented analysis..................................

0 1 2 3 4 5 6

Fractions

12.75

12.8

12.85

12.9

12.95

13

13.05

13.1

13.15

S
ig

ni
fic

an
ce

 Z
 1

MLP 962

MLP 70146

Filter efficiency: 40.3%
Cross Section: 0.1 pb

0 1 2 3 4 5 6

Fractions

19

19.2

19.4

19.6

19.8

20

S
ig

ni
fic

an
ce

 Z
 2

MLP 962

MLP 70146

Filter efficiency: 40.3%
Cross Section: 0.1 pb

Figure 9.4: Left: Significance Z1 comparison for two MLP configurations.
Standard deviation 0.9233 for 20 repetitions Right: Significance Z2 comparison
for two MLP configurations. Standard deviation 2.9086 for 20 repetitions.

The results are not as good as the ones presented in the previous section.
Precision and accuracy slightly increase but significance stays almost constant.
We can also see that the difference between 0.2 and 1.0 of simulated data
is negligible. This time overfitting is not present which can be the reason
for a reduction in improvements A.5. The best-achieved scores are however
very similar to XGBoost which could indicate certain performance boundaries
given by the expressiveness of either simulated or generated data.

9.4 Generated data only

This section demonstrates the use of only generated data for chosen XGBoost
and MLP implementations. Figures 9.5 and 9.6 show the result. Standard
deviations between runs were similar to ones from the previous sections.

2 2.5 3 3.5 4 4.5 5 5.5 6

Fractions

0.895

0.896

0.897

0.898

0.899

0.9

0.901

T
es

t p
re

ci
si

on

MLP 962

XGB 0

Filter efficiency: 40.3%
Cross Section: 0.1 pb

2 2.5 3 3.5 4 4.5 5 5.5 6

Fractions

0.859

0.86

0.861

0.862

0.863

0.864

T
es

t a
cc

ur
ac

y

MLP 962

XGB 0

Filter efficiency: 40.3%
Cross Section: 0.1 pb

Figure 9.5: Left: The precision comparison for basic XGBoost and MLP with
962 parameters. Right: The accuracy comparison for basic XGBoost and MLP
with 962 parameters.

76

................................. 9.4. Generated data only

2 2.5 3 3.5 4 4.5 5 5.5 6

Fractions

12.7

12.75

12.8

12.85

12.9

12.95

13

13.05

13.1

S
ig

ni
fic

an
ce

 Z
 1

MLP 962

XGB 0

Filter efficiency: 40.3%
Cross Section: 0.1 pb

2 2.5 3 3.5 4 4.5 5 5.5 6

Fractions

18.8

19

19.2

19.4

19.6

19.8

20

S
ig

ni
fic

an
ce

 Z
 2

MLP 962

XGB 0

Filter efficiency: 40.3%
Cross Section: 0.1 pb

Figure 9.6: Left: Significance Z1 comparison for basic XGBoost and MLP with
962 parameters. Right: Significance Z2 comparison for basic XGBoost and MLP
with 962 parameters.

The results suggest that the performance closely resembles that achieved
by a combination of simulated and generated data. Hence, there is no need
to include simulated data to improve performance. Simulated data can be
used to cross-check and estimate the related systematic uncertainties by using
data augmentation.

77

78

Chapter 10

Conclusion

A method for the augmentation of charged Higgs boson simulated data
belonging to the analysis channel 2lSS + 1τhad based on a variational autoen-
coder model was developed. Two learning algorithms, Evidence lower bound
maximization and Symmetric Equilibrium Learning were implemented with
standard architectures. Effects of hierarchical architecture in the form of
Ladder VAE were investigated. All three models were evaluated by individual
features histograms, Wasserstein distance, χ2 test, t-SNE algorithm, and
cross-validation. Standard ELBO learning showed the best results and the
fastest learning.

The generator chosen by metrics evaluation was used to generate an ar-
tificial dataset defined by 10 most important features with a size five times
larger than the simulated one. Multilayer perceptron and XGBoost algo-
rithm configurations were trained on simulated, generated, and mixed data.
The accuracy, precision, and significance metrics were used to monitor the
performance of the classifier. It was observed that the generated data can
increase the classifier performance and can to a certain extent replace the
simulated data. In the future, the impact of systematic uncertainties on the
data analysis needs to be studied.

79

80

Bibliography

[1] ATLAS. Cross section and luminosity. May 2024. url: https://cds.
cern . ch / record / 2800578 / files / CrossSectionandLuminosity %
5CPhysics%20CheatSheet.pdf.

[2] W. Herr and B. Muratori. “Concept of luminosity”. In: (Nov. 2006).
doi: 10.5170/CERN- 2006- 002.361. url: http://cds.cern.ch/
record/941318.

[3] E. Daw. “Lecture 7 - Rapidity and Pseudorapidity”. In: (Mar. 2012).
url: https://www.hep.shef.ac.uk/edaw/PHY206/Site/2012_
course_files/phy206rlec7.pdf.

[4] CMS Wiki Pages. cms_coordinate_system.png. July 2017. url: https:
//wiki.physik.uzh.ch/cms/_detail/latex:cms_coordinate_
system.png?id=latex%3Atikz.

[5] CERN. About CERN. May 2024. url: https://home.cern/about.
[6] CERN. The Large Hadron Collider. May 2024. url: https://home.

cern/science/accelerators/large-hadron-collider.
[7] ATLAS. “The Inner Detector”. In: (May 2024). url: https://atlas.

cern/Discover/Detector/Inner-Detector.
[8] ATLAS Collaboration. The ATLAS Experiment at the CERN Large

Hadron Collider: A Description of the Detector Configuration for Run
3. May 2023. arXiv: 2305.16623 [physics.ins-det].

[9] G. Weiglein. Standard Model and Higgs Physics. Sept. 2014. url: https:
//www.desy.de/~weiglein/mlaach_smhiggs_14.pdf.

[10] K. Nguyen. The Higgs Mechanism. July 2009. url: https://www.
theorie . physik . uni - muenchen . de / lsfrey / teaching / archiv /
sose_09/rng/higgs_mechanism.pdf.

81

https://cds.cern.ch/record/2800578/files/CrossSectionandLuminosity%5CPhysics%20CheatSheet.pdf
https://cds.cern.ch/record/2800578/files/CrossSectionandLuminosity%5CPhysics%20CheatSheet.pdf
https://cds.cern.ch/record/2800578/files/CrossSectionandLuminosity%5CPhysics%20CheatSheet.pdf
https://doi.org/10.5170/CERN-2006-002.361
http://cds.cern.ch/record/941318
http://cds.cern.ch/record/941318
https://www.hep.shef.ac.uk/edaw/PHY206/Site/2012_course_files/phy206rlec7.pdf
https://www.hep.shef.ac.uk/edaw/PHY206/Site/2012_course_files/phy206rlec7.pdf
https://wiki.physik.uzh.ch/cms/_detail/latex:cms_coordinate_system.png?id=latex%3Atikz
https://wiki.physik.uzh.ch/cms/_detail/latex:cms_coordinate_system.png?id=latex%3Atikz
https://wiki.physik.uzh.ch/cms/_detail/latex:cms_coordinate_system.png?id=latex%3Atikz
https://home.cern/about
https://home.cern/science/accelerators/large-hadron-collider
https://home.cern/science/accelerators/large-hadron-collider
https://atlas.cern/Discover/Detector/Inner-Detector
https://atlas.cern/Discover/Detector/Inner-Detector
https://arxiv.org/abs/2305.16623
https://www.desy.de/~weiglein/mlaach_smhiggs_14.pdf
https://www.desy.de/~weiglein/mlaach_smhiggs_14.pdf
https://www.theorie.physik.uni-muenchen.de/lsfrey/teaching/archiv/sose_09/rng/higgs_mechanism.pdf
https://www.theorie.physik.uni-muenchen.de/lsfrey/teaching/archiv/sose_09/rng/higgs_mechanism.pdf
https://www.theorie.physik.uni-muenchen.de/lsfrey/teaching/archiv/sose_09/rng/higgs_mechanism.pdf

10. Conclusion
[11] J. Eysermans, M. I. P. Morales, and on behalf of the CMS Collaboration.

“Charged Higgs Analysis in CMS”. In: Journal of Physics: Conference
Series 761.1 (Oct. 2016), p. 012030. doi: 10.1088/1742-6596/761/
1/012030. url: https://iopscience.iop.org/article/10.1088/
1742-6596/761/1/012030/pdf.

[12] Ch. M. Bishop and H. Bishop. Deep Learning - Foundations and Con-
cepts. Ed. by Springer Cham. 1st ed. 2023. isbn: 978-3-031-45468-4.
doi: https://doi.org/10.1007/978-3-031-45468-4.

[13] L. Vicenik. “Machine Learning for the Leptoquark Search Using CERN
ATLAS Data”. Presented Jun 2022. Prague, Tech. U, 2022. url: https:
//cds.cern.ch/record/2812370.

[14] S. Shalev-Shwartz and S. Ben-David. Understanding Machine Learning
- From Theory to Algorithms. Cambridge University Press, 2014, pp. I–
XVI, 1–397. isbn: 978-1-10-705713-5. url: https://www.cs.huji.
ac . il / ~shais / UnderstandingMachineLearning / understanding -
machine-learning-theory-algorithms.pdf.

[15] J. Brownlee. A Gentle Introduction to Ensemble Learning Algorithms.
Apr. 2021. url: https://machinelearningmastery.com/tour-of-
ensemble-learning-algorithms/.

[16] J. Starmer. Statquest An epic journey through statistics and machine
learning. May 2024. url: https://statquest.org/video-index/.

[17] T. Chen and C. Guestrin. “XGBoost”. In: Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. ACM, Aug. 2016. doi: 10.1145/2939672.2939785. url:
https://doi.org/10.1145%5C%2F2939672.2939785.

[18] R.J. Barlow. “Practical statistics for particle physics”. en. In: CERN
Yellow Reports: School Proceedings Vol. 5 (2020 2020), 12–25 Septem-
ber 2018. doi: 10.23730/CYRSP-2020-005.149. url: https://e-
publishing.cern.ch/index.php/CYRSP/article/view/1124.

[19] Glen C. et al. “Asymptotic formulae for likelihood-based tests of new
physics”. In: The European Physical Journal C 71.2 (Feb. 2011). issn:
1434-6052. doi: 10.1140/epjc/s10052- 011- 1554- 0. url: http:
//dx.doi.org/10.1140/epjc/s10052-011-1554-0.

[20] D. P. Kingma and M. Welling. “An Introduction to Variational Autoen-
coders”. In: Foundations and Trends® in Machine Learning 12.4 (June
2019), pp. 307–392. issn: 1935-8245. doi: 10.1561/2200000056. url:
http://dx.doi.org/10.1561/2200000056.

[21] B. Flach, D. Schlesinger, and A. Shekhovtsov. Symmetric Equilibrium
Learning of VAEs. July 2024. arXiv: 2307.09883 [cs.LG].

[22] C. K. Sønderby et al. Ladder Variational Autoencoders. May 2016.
arXiv: 1602.02282 [stat.ML].

[23] J. Morris. Introduction to variational autoencoders. Oct. 2021. url:
https://jxmo.io/posts/variational-autoencoders.

82

https://doi.org/10.1088/1742-6596/761/1/012030
https://doi.org/10.1088/1742-6596/761/1/012030
https://iopscience.iop.org/article/10.1088/1742-6596/761/1/012030/pdf
https://iopscience.iop.org/article/10.1088/1742-6596/761/1/012030/pdf
https://doi.org/https://doi.org/10.1007/978-3-031-45468-4
https://cds.cern.ch/record/2812370
https://cds.cern.ch/record/2812370
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf
https://machinelearningmastery.com/tour-of-ensemble-learning-algorithms/
https://machinelearningmastery.com/tour-of-ensemble-learning-algorithms/
https://statquest.org/video-index/
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145%5C%2F2939672.2939785
https://doi.org/10.23730/CYRSP-2020-005.149
https://e-publishing.cern.ch/index.php/CYRSP/article/view/1124
https://e-publishing.cern.ch/index.php/CYRSP/article/view/1124
https://doi.org/10.1140/epjc/s10052-011-1554-0
http://dx.doi.org/10.1140/epjc/s10052-011-1554-0
http://dx.doi.org/10.1140/epjc/s10052-011-1554-0
https://doi.org/10.1561/2200000056
http://dx.doi.org/10.1561/2200000056
https://arxiv.org/abs/2307.09883
https://arxiv.org/abs/1602.02282
https://jxmo.io/posts/variational-autoencoders

...................................... 10. Conclusion

[24] L. Weng. From Autoencoder to Beta-VAE. Aug. 2018. url: https:
//lilianweng.github.io/posts/2018-08-12-vae/.

[25] J. M. Tomczak. Deep Generative Modeling. Springer Nature, Feb. 2022.
url: https://jmtomczak.github.io/dgm_book.html.

[26] Michael I. J. The exponential family: Basics. May 2024. url: https:
//people.eecs.berkeley.edu/~jordan/courses/260-spring10/
other-readings/chapter8.pdf.

[27] F. Castillo. Reduction of Dimensionality: Top Techniques Overview –
SNE, t-SNE, and UMAP. Sept. 2023. url: https://arize.com/blog-
course/reduction-of-dimensionality-top-techniques/.

[28] G. E. Hinton and S. Roweis. “Stochastic Neighbor Embedding”. In:
Advances in Neural Information Processing Systems. Ed. by S. Becker,
S. Thrun, and K. Obermayer. Vol. 15. MIT Press, Jan. 2002. url:
https://proceedings.neurips.cc/paper_files/paper/2002/
file/6150ccc6069bea6b5716254057a194ef-Paper.pdf.

[29] L. van der Maaten and G. Hinton. “Visualizing Data using t-SNE”. In:
Journal of Machine Learning Research 9.86 (Nov. 2008), pp. 2579–2605.
url: http://jmlr.org/papers/v9/vandermaaten08a.html.

[30] A. Ramdas, N. Garcia, and M. Cuturi. On Wasserstein Two Sample
Testing and Related Families of Nonparametric Tests. Sept. 2015. arXiv:
1509.02237 [math.ST].

[31] Z. Goldfeld. Scaling Wasserstein Distances to High Dimensions via
Smoothing. Feb. 2021. url: http://people.ece.cornell.edu/zivg/
Scaling_Talk2021.pdf.

[32] P. Scott. Chi-square: testing for goodness of fit. May 2024. url: http:
//maxwell.ucsc.edu/~drip/133/ch4.pdf.

[33] R. Brun and F. Rademakers. “ROOT — An object oriented data
analysis framework”. In: Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and As-
sociated Equipment 389.1 (Apr. 1997). New Computing Techniques
in Physics Research V, pp. 81–86. issn: 0168-9002. doi: https://
doi.org/10.1016/S0168- 9002(97)00048- X. url: https://www.
sciencedirect.com/science/article/pii/S016890029700048X.

[34] Piparo, D. et al. “RDataFrame: Easy Parallel ROOT Analysis at 100
Threads”. In: EPJ Web Conf. 214 (Sept. 2019), p. 06029. doi: 10.1051/
epjconf/201921406029. url: https://doi.org/10.1051/epjconf/
201921406029.

[35] W. McKinney et al. “Data structures for statistical computing in
python”. In: Proceedings of the 9th Python in Science Conference.
Vol. 445. Austin, TX. Jan. 2010, pp. 51–56. url: http://conference.
scipy.org.s3-website-us-east-1.amazonaws.com/proceedings/
scipy2010/pdfs/mckinney.pdf.

83

https://lilianweng.github.io/posts/2018-08-12-vae/
https://lilianweng.github.io/posts/2018-08-12-vae/
https://jmtomczak.github.io/dgm_book.html
https://people.eecs.berkeley.edu/~jordan/courses/260-spring10/other-readings/chapter8.pdf
https://people.eecs.berkeley.edu/~jordan/courses/260-spring10/other-readings/chapter8.pdf
https://people.eecs.berkeley.edu/~jordan/courses/260-spring10/other-readings/chapter8.pdf
https://arize.com/blog-course/reduction-of-dimensionality-top-techniques/
https://arize.com/blog-course/reduction-of-dimensionality-top-techniques/
https://proceedings.neurips.cc/paper_files/paper/2002/file/6150ccc6069bea6b5716254057a194ef-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2002/file/6150ccc6069bea6b5716254057a194ef-Paper.pdf
http://jmlr.org/papers/v9/vandermaaten08a.html
https://arxiv.org/abs/1509.02237
http://people.ece.cornell.edu/zivg/Scaling_Talk2021.pdf
http://people.ece.cornell.edu/zivg/Scaling_Talk2021.pdf
http://maxwell.ucsc.edu/~drip/133/ch4.pdf
http://maxwell.ucsc.edu/~drip/133/ch4.pdf
https://doi.org/https://doi.org/10.1016/S0168-9002(97)00048-X
https://doi.org/https://doi.org/10.1016/S0168-9002(97)00048-X
https://www.sciencedirect.com/science/article/pii/S016890029700048X
https://www.sciencedirect.com/science/article/pii/S016890029700048X
https://doi.org/10.1051/epjconf/201921406029
https://doi.org/10.1051/epjconf/201921406029
https://doi.org/10.1051/epjconf/201921406029
https://doi.org/10.1051/epjconf/201921406029
http://conference.scipy.org.s3-website-us-east-1.amazonaws.com/proceedings/scipy2010/pdfs/mckinney.pdf
http://conference.scipy.org.s3-website-us-east-1.amazonaws.com/proceedings/scipy2010/pdfs/mckinney.pdf
http://conference.scipy.org.s3-website-us-east-1.amazonaws.com/proceedings/scipy2010/pdfs/mckinney.pdf

10. Conclusion
[36] M. Rames. “Search for tbH+(ττ) with Performance Optimisation for

Signal and Background Separation Using Machine Learning with AT-
LAS Data”. Presented Jun 2023. Prague, Tech. U., June 2023. url:
https://cds.cern.ch/record/2862250.

[37] Takuya A. et al. “Optuna: A Next-generation Hyperparameter Op-
timization Framework”. In: Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.
July 2019. url: https://arxiv.org/abs/1907.10902.

[38] S. Kabir and L. Farrokhvar. “Non-Linear Feature Selection for Predic-
tion of Hospital Length of Stay”. In: 2019 18th IEEE International
Conference On Machine Learning And Applications (ICMLA). Dec.
2019, pp. 945–950. doi: 10.1109/ICMLA.2019.00162.

[39] E. K. Marsh. Calculating XGBoost Feature Importance. Jan. 2023. url:
https://medium.com/@emilykmarsh/xgboost-feature-importance-
233ee27c33a4.

[40] L. Moneta N. Gagunashvili D. Haertl. chi2test.C File Reference. May
2024. url: https://root.cern/doc/master/chi2test_8C.html.

[41] Scipy. scipy.stats.wasserstein_distance. url: https://docs.scipy.
org/doc/scipy/reference/generated/scipy.stats.wasserstein_
distance.html.

[42] M. Stojiljković. NumPy, SciPy, and pandas: Correlation With Python.
May 2024. url: https://realpython.com/numpy-scipy-pandas-
correlation-python/.

84

https://cds.cern.ch/record/2862250
https://arxiv.org/abs/1907.10902
https://doi.org/10.1109/ICMLA.2019.00162
https://medium.com/@emilykmarsh/xgboost-feature-importance-233ee27c33a4
https://medium.com/@emilykmarsh/xgboost-feature-importance-233ee27c33a4
https://root.cern/doc/master/chi2test_8C.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wasserstein_distance.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wasserstein_distance.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wasserstein_distance.html
https://realpython.com/numpy-scipy-pandas-correlation-python/
https://realpython.com/numpy-scipy-pandas-correlation-python/

85

10. Conclusion

Appendices

86

Appendix A

Generative model evaluation results

A.1 Signal histograms

500 1000 1500 2000 2500

310×

HT

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

 e
ve

nt
s

(n
or

m
al

iz
ed

)

Simulated

Gen. ELBO Standard

Gen. SEL Standard

Gen. ELBO Ladder

Figure A.1: Feature: HT

87

A. Generative model evaluation results...........................

100 200 300 400 500 600 700 800 900

310×

HT_lep

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
 e

ve
nt

s
(n

or
m

al
iz

ed
)

Simulated

Gen. ELBO Standard

Gen. SEL Standard

Gen. ELBO Ladder

Figure A.2: Feature: HT_lep

0 200 400 600 800 1000

310×

jets_pt_0

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

 e
ve

nt
s

(n
or

m
al

iz
ed

)

Simulated

Gen. ELBO Standard

Gen. SEL Standard

Gen. ELBO Ladder

Figure A.3: Feature: jets_pt_0

88

.................................. A.1. Signal histograms

0 100 200 300 400 500 600 700

310×

met_met

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

 e
ve

nt
s

(n
or

m
al

iz
ed

)

Simulated

Gen. ELBO Standard

Gen. SEL Standard

Gen. ELBO Ladder

Figure A.4: Feature: met_met

0 200 400 600 800 1000 1200

310×

MtLepMet

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

 e
ve

nt
s

(n
or

m
al

iz
ed

)

Simulated

Gen. ELBO Standard

Gen. SEL Standard

Gen. ELBO Ladder

Figure A.5: Feature: MtLepMet

89

A. Generative model evaluation results...........................

0 100 200 300 400 500 600

310×

taus_pt_0

0

0.02

0.04

0.06

0.08

0.1

0.12
 e

ve
nt

s
(n

or
m

al
iz

ed
)

Simulated

Gen. ELBO Standard

Gen. SEL Standard

Gen. ELBO Ladder

Figure A.6: Feature: taus_pt_0

90

................................A.2. Background histograms

A.2 Background histograms

500 1000 1500 2000 2500 3000

310×

HT

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

 e
ve

nt
s

(n
or

m
al

iz
ed

)

Simulated

Gen. ELBO Standard

Gen. SEL Standard

Gen. ELBO Ladder

Figure A.7: Feature: HT

100 200 300 400 500 600 700 800 900

310×

HT_lep

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

 e
ve

nt
s

(n
or

m
al

iz
ed

)

Simulated

Gen. ELBO Standard

Gen. SEL Standard

Gen. ELBO Ladder

Figure A.8: Feature: HT_lep

91

A. Generative model evaluation results...........................

200 400 600 800 1000 1200 1400 1600

310×

jets_pt_0

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

 e
ve

nt
s

(n
or

m
al

iz
ed

)
Simulated

Gen. ELBO Standard

Gen. SEL Standard

Gen. ELBO Ladder

Figure A.9: Feature: jets_pt_0

0 100 200 300 400 500 600 700 800

310×

met_met

0

0.02

0.04

0.06

0.08

0.1

0.12

 e
ve

nt
s

(n
or

m
al

iz
ed

)

Simulated

Gen. ELBO Standard

Gen. SEL Standard

Gen. ELBO Ladder

Figure A.10: Feature: met_met

92

................................A.2. Background histograms

200 400 600 800 1000 1200 1400 1600

310×

MtLepMet

0

0.02

0.04

0.06

0.08

0.1

0.12

 e
ve

nt
s

(n
or

m
al

iz
ed

)

Simulated

Gen. ELBO Standard

Gen. SEL Standard

Gen. ELBO Ladder

Figure A.11: Feature: MtLepMet

0 100 200 300 400 500 600 700

310×

taus_pt_0

0

0.05

0.1

0.15

0.2

0.25

0.3

 e
ve

nt
s

(n
or

m
al

iz
ed

)

Simulated

Gen. ELBO Standard

Gen. SEL Standard

Gen. ELBO Ladder

Figure A.12: Feature: taus_pt_0

93

A. Generative model evaluation results...........................
A.3 Corelation matrices

Figure A.13: Standard Symmetric Equilibrium Learning - Signal

Figure A.14: Standard Symmetric Equilibrium Learning - Background

94

..................................A.3. Corelation matrices

Figure A.15: Ladder Evidence lower bound learning - Signal

Figure A.16: Ladder Evidence lower bound learning - Background

95

A. Generative model evaluation results...........................
A.4 Training set results XGB

0 1 2 3 4 5 6

Fractions

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1
T

ra
in

 p
re

ci
si

on

XGB 0

XGB 1
Filter efficiency: 40.3%
Cross Section: 0.1 pb

Figure A.17: Precision measured on the training dataset for XGB.

0 1 2 3 4 5 6

Fractions

0.9

0.92

0.94

0.96

0.98

1

T
ra

in
 a

cc
ua

ra
cy

XGB 0

XGB 1
Filter efficiency: 40.3%
Cross Section: 0.1 pb

Figure A.18: Accuracy measured on the training dataset for XGB.

96

............................... A.5. Training set results MLP

A.5 Training set results MLP

0 1 2 3 4 5 6

Fractions

0.89

0.895

0.9

0.905

0.91

T
ra

in
 p

re
ci

si
on

MLP 962

MLP 70146

Filter efficiency: 40.3%
Cross Section: 0.1 pb

Figure A.19: Precision measured on the training dataset for MLP.

0 1 2 3 4 5 6

Fractions

0.86

0.862

0.864

0.866

0.868

0.87

0.872

0.874

0.876

T
ra

in
 a

cc
ua

ra
cy

MLP 962

MLP 70146

Filter efficiency: 40.3%
Cross Section: 0.1 pb

Figure A.20: Accuracy measured on the training dataset for MLP.

97

98

Appendix B

Pre-selection formula

Figure B.1: The full version of the pre-selection 2lSS + 1τ in Python code.

99

	Introduction
	Theory
	Physics
	Definitions
	Cross-section
	Luminosity
	Pseudorapidity

	CERN
	ATLAS detector
	Charged Higgs boson
	Higgs mechanism
	Charged Higgs boson production (tbHpm)

	Data representation

	Classification
	Multilayer perceptron
	Boosted decision trees
	Decision tree
	Ensemble learning
	Boosting
	Gradient boosting
	XGBoost

	Significance and performance assessment
	Counting experiments
	Hypothesis testing
	Approximate formula

	Augmentation
	VAE with evidence lower bound learning
	Generative model
	Evidence lower bound (ELBO)
	Stochastic gradient descent optimization
	Reparametrization trick

	VAE with Symmetric Equilibrium Learning (SEL)
	Stochastic gradient descent optimization

	HVAE with evidence lower bound learning
	Ladder variational autoencoder (LVAE)
	ELBO extension for LVAE
	Distribution parameter shift

	LVAE with symmetric equilibrium learning
	Visualization and evaluation metrics
	Stochastic Neighbor Embedding (SNE)
	t-distributed Stochastic Neighbor Embedding (t-SNE)
	Wasserstein Distance
	2 test

	Methodology
	Data preprocessing
	Tools and libraries
	GitHub
	ROOT Framework
	ROOT RDataFrame
	Pandas

	Data Conversion

	Classification
	Data preparation
	Classifiers
	Multilayer perceptron
	XGBoost

	Evaluation Metrics
	Weights
	Significance
	Accuracy
	Precision

	Data augmentation
	Standard models
	The encoder and decoder architecture
	ELBO Loss function
	SEL Loss function
	Observations

	Ladder models
	Architecture
	ELBO loss function
	SEL loss function
	SEL Implementation issues

	Generative pipeline

	Experimental results
	VAEs data quality comparison
	Feature selection
	Feature importance

	Generation time
	Used metrics
	Feature histograms
	2 test
	Wasserstein distance
	Feature corelation matrix
	t-SNE visualization
	Cross validation
	Conclusion

	Augmented analysis
	Simulated data augmentation
	Gradient boosting decision tree
	Multilayer perceptron
	Generated data only

	Conclusion
	Bibliography

	Appendices
	Generative model evaluation results
	Signal histograms
	Background histograms
	Corelation matrices
	Training set results XGB
	Training set results MLP

	Pre-selection formula

