
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Graphics and Interaction

Interactive room detection

Bc. Martin Němec

Supervisor: doc. Ing. Jiří Bittner, Ph.D.
May 2024

ii

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

493248 Personal ID number: Němec Martin Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Computer Graphics and Interaction

Open Informatics Study program:

Computer Graphics Specialisation:

II. Master’s thesis details

Master’s thesis title in English:

Interactive Room Detection

Master’s thesis title in Czech:

Interaktivní detekce místností

Guidelines:

Review the existing algorithms for scene partitioning into cells and portals. Implement the Breaking the Walls algorithm
[1] to detect rooms and portals connecting them in 2D scenes. The implementation will be done inside the Unity framework.
The input of the algorithm will be a set of walls defined as 2D line segments. An important requirement for the implementation
is a fast response and the possibility of editing individual walls with the help of local data modifications. Suggest a way to
apply the algorithm to 3D data. Evaluate the implementation for computational complexity on at least five scenes of different
sizes. Use the acquired room information in a simple application using potentially visible sets (PVS).

Bibliography / sources:

[1] Lerner, Alon, Yiorgos Chrysanthou, and Daniel Cohen-Or. "Breaking the walls: Scene partitioning and portal creation."
11th Pacific Conference on Computer Graphics and Applications, 2003. Proceedings. IEEE, 2003.
[2] Lerner, Alon, Yiorgos Chrysanthou, and Daniel Cohen Or. "Efficient cells and portals partitioning." Computer Animation
and Virtual Worlds 17.1 (2006): 21-40.
[3] Haumont, Denis, Olivier Debeir, and François Sillion. "Volumetric cell and portal generation." Computer Graphics Forum.
Vol. 22. No. 3. Oxford, UK: Blackwell Publishing, Inc, 2003.
[4] Lefebvre, Sylvain, and Samuel Hornus. Automatic cell-and-portal decomposition. Dissertation thesis, INRIA, 2003.
[5] Oliva, Ramon, and Nuria Pelechano. "NEOGEN: Near-optimal generator of navigation meshes for 3D multi-layered
environments." Computers & Graphics 37.5 (2013): 403-412.

Name and workplace of master’s thesis supervisor:

doc. Ing. Jiří Bittner, Ph.D. Department of Computer Graphics and Interaction

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 24.05.2024 Date of master’s thesis assignment: 15.02.2024

Assignment valid until: 21.09.2025

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signature doc. Ing. Jiří Bittner, Ph.D.
Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

Acknowledgements
I would like to thank Doc. Ing. Jiří Bit-
tner, Ph.D. for leading this thesis and for
all the consultation and the help provided.

Declaration
I declare that this work is all my own work
and I have cited all sources I have used in
the bibliography.

Prague, May 24, 2024

Prohlašuji, že jsem předloženou práci
vypracoval samostatně, a že jsem uvedl
veškerou použitou literaturu.

V Praze, 24. května 2024

v

Abstract
The aim of this thesis is an implementa-
tion of an 2D algorithm for room detection
as well as creation of a Cells and Portals
partition using the Breaking the Walls
algorithm. The input consisting of sepa-
rate walls defined as line segments is first
processed into a half-edge data structure
from which the resulting Cells and Portals
partition is created. Finally, potentially
visible sets are generated for each room.
An important part of the algorithm is
also the ability to locally update the par-
tition without having to rebuild the whole
data structure. Using Unity engine, a pro-
totype has been implemented, allowing
for easy manipulation and creation of the
scenes, as well as control over different
steps and values of the algorithm or vi-
sualisation of the potentially visible sets.
This prototype works both in the Unity
editor and in the standalone version.

Keywords: Breaking the Walls, Cells
and Portals, Room detection, Potentially
visible sets, Unity

Supervisor: doc. Ing. Jiří Bittner,
Ph.D.
Praha 2,
Karlovo náměstí 13,
E-420

Abstrakt
Cílem této práce je implementace 2D al-
goritmu pro detekci místností a vytvoření
rozdělení na Buňky a Portály pomocí algo-
ritmu Breaking the Walls. Vstupem jsou
samostatné stěny definované jako úsečky,
které jsou nejprve zpracovány do datové
struktury half-edge. Z této struktury je
následně vytvořeno konečné rozdělení na
Buňky a Portály. Nakonec jsou pro kaž-
dou místnost vygenerovány potenciálně
viditelné množiny. Důležitou součástí al-
goritmu je také možnost lokální změny bez
nutnosti přestavby celé datové struktury.
V rámci Unity engine byl implementován
prototyp umožňující snadnou manipulaci
a tvorbu scén, stejně jako kontrolu nad
různými kroky a hodnotami algoritmu či
vizualizací potencionálně viditelných mno-
žin. Tento prototyp funguje jak v Unity
editoru, tak i ve samostatné verzi.

Klíčová slova: Breaking the Walls,
Buňky a Portály, Detekce místností,
Potencionálně viditelné množiny, Unity

Překlad názvu: Interaktivní detekce
místností

vi

Contents
1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 2
2 Analysis 3
2.1 Data structures 3

2.1.1 Indexed triangle mesh 3
2.1.2 Winged edge 4
2.1.3 Half-Edge data structure 5

2.2 Visibility culling 7
2.2.1 Potentially visible sets 8
2.2.2 From-region Cells and Portals 10
2.2.3 Point-based Cells and Portals 11
2.2.4 Volumetric Cells and Portals 11
2.2.5 Voronoi segmentation 13
2.2.6 Morphological segmentation . 13

2.3 Breaking the walls 16
2.3.1 Construction using BSP tree 16
2.3.2 Quality of the partition 17
2.3.3 Breaking the walls algorithm 18
2.3.4 Initial Partition 18
2.3.5 Refinement 19
2.3.6 Breaking the walls 20

3 Implementation 21
3.1 Interactive room detection 21
3.2 Game objects 22
3.3 Steps of execution 23

3.3.1 Splitting the walls 23
3.3.2 Calculating half-edges 27
3.3.3 Generating rooms 28
3.3.4 Mesh generation 30

3.4 Breaking the Walls 30
3.4.1 First pass 32
3.4.2 Second pass 34

3.5 Potentially visible sets 36
3.6 Usage for 3D 37
4 Results 39
4.1 Half-edge structure 40
4.2 Breaking the Walls algorithm . . 42
4.3 Potentially visible set 45
4.4 Final time 48
4.5 Local modification 49

5 Conclusion 51
Bibliography 53
A Additional Test Results 55
A.1 Cross . 56
A.2 Houses . 58
A.3 FEL . 60
A.4 Vienna . 62
A.5 Pompeii . 64
A.6 Soda Hall 66
B User Manual 69
B.1 Editor mode 69

B.1.1 Parameters 70
B.1.2 Preprocess 71
B.1.3 Algorithm execution 71
B.1.4 Mesh generation 72
B.1.5 Structure deletion 72
B.1.6 Input and output 73

B.2 Run-time mode 73
C Content of attached medium 75

vii

Figures
2.1 Description of a single winged edge

with all associated information. 4
2.2 Example of face ambiguity of

winged edge structure, where faces
can have differently directed edges. . 5

2.3 Description of a single half-edge
with all associated information. 6

2.4 Pseudocode for acquiring the
vertices and faces of a selected edge. 6

2.5 Pseudocode for acquiring all faces
and edges that use a selected vertex. 6

2.6 Pseudocode for acquiring all faces
and edges adjacent to a selected face. 7

2.7 Potentially visible sets of cell A:
cell A is shaded dark gray, visible
cells are light gray, and non-visible
cells are white. 8

2.8 Binary space partition for a scene
(left) shown as a tree (right). Planes
a[1-4] are used as splitting planes for
the BSP tree. Scene is split into cells
A[1-3], B, and C. 9

2.9 Stab tree [left], potentially visible
(light grey), visible sets (grey) of cell
A [middle] and graph depicting
connectivity of cells in the scene
[right]. 10

2.10 Distance field representation of an
architectural model, colour represents
distance to closest geometry. Source
of the image: [HDS03] 11

2.11 Different steps of the watershed
algorithm. Source of the image:
[HDS03]. 12

2.12 Stages of the Voronoi graph-based
segmentation algorithm: (i)
computation of the Voronoi graph,
(ii) set of extracted critical points,
(iii) critical lines, and (iv)
segmentation after merging Voronoi
cells. Source of the image:
[BJL+16]. 14

2.13 Stages of the morphological
segmentation algorithm: (i) initial
floor map, (ii) iteratively eroded map,
(iii) initial labelling of separated
rooms, and (iv) segmentation after
wavefront propagation. Source of the
image: [BJL+16]. 15

2.14 Example of a result of
morphological segmentation. Source
of the image: [BJL+16]. 15

2.15 Step-by-step creation of a BSP
partition and a tree over a scene. At
each step a splitting plane is chosen
and subspace is split. 16

2.16 Example of scene for a portal
creation (left), created BSP portals
(middle), ideal portal (right). 17

2.17 Traversal of an edge during
Breaking the Walls algorithm of wall
W. Wall Wadj is next traversed wall.
Wall Wcls can potentially be
connected by a portal (doted line).
Only walls in grey subspace are
tested considered to be potentially
connected. 19

2.18 Enclosed geometry (a) gets
connected by itself. Geometry (b)
needs to be manually connected with
the shortest portal. 19

2.19 (a) Input for BW algorithm. (b)
White cells are underestimated, light
grey are the ideal and dark grey are
overestimated. (c) Ideal partitions. 20

3.1 A HalfEdge test is can be added as
next half-edge of current one curr by
testing it against both test.prev and
curr.next. 23

3.2 Pseudocode for generation of
SkipIndex and Vertices arrays. 25

3.3 Example of the Vertices and
SkipIndex arrays for a multiple
intersection. 26

3.4 Pseudocode for the splitting of line
into line segments. 26

viii

3.5 Pseudocode for validation and
preparation of line segments for the
half-edge connecting. 27

3.6 (a) Walls to intersect. (b)
Intersected walls with half-edges. (c)
Groups of half-edges to be tested. . 28

3.7 Pseudocode for half-edge
connecting of two adjacent line
segments. 28

3.8 Pseudocode for the Shoelace
algorithm for testing CW or CCW
direction of a polygon. 29

3.9 Detection of surrounding room for
room A.out. Each room has inner
and outer part of itself. First inner
room intersected room without
having the outer room being
intersected is room B. 30

3.10 Testing the position of connecting
points for a half-edge. On point lies
of black line segment, the other point
can only lie in the gray area. 31

3.11 An example of input case, where
portal may be incorrectly constructed
without using linecast. 31

3.12 Pseudocode for testing the valid
portal between half-edges A,B. Points
A, B are the closest points on each
half-edge. 32

3.13 Pseudocode for the first pass of
Breaking the Walls algorithm. The
first pass generates partition by
creating portals between two valid
half-edges. 33

3.14 Pseudocode for the first part of
the second pass of Breaking the
Walls algorithm, which removes
invalid portals. 34

3.15 Pseudocode for the second part of
the second pass of Breaking the
Walls algorithm, which generates the
best valid portal in the whole room. 35

3.16 Computation of length of a split
room. The algorithm calculates
distance of each point from the
selected point (0). Then the length of
split room can be calculated as:
(distance of 3 - distance of 1) +
distance of portal along lines 1 and 4
+ portal length. The gray lines
represent distances for each vertex. 36

3.17 Pseudocode for the recursive
generation of PVS for a single room. 36

4.1 PVS generation time depending on
amount of rays. The tested values
were 10, 30, 60, 100, 250. 45

4.2 Resulting times of the partition,
split into half edge generation,
Breaking the Walls first and second
pass and PVS generation. 48

B.1 The room detection controller
window used in editor mode. 70

B.2 Parameters in the controller
window. 71

B.3 Algorithm execution in the
controller window. 71

B.4 Example of a visualised PVS of a
room. Dark red is selected room,
light red are visible rooms. 72

B.5 Visual and deletion functions in
the controller window. 72

B.6 I/O functions in the controller
window. 73

B.7 The UI controller for the run-time
mode. 73

ix

Tables
4.1 Preview of tested scenes. 39
4.2 Amount of geometry and

computation time for the half-edge
structure generation. 40

4.3 Resulting half-edge partitions and
resulting rooms. Red and blue arrows
represent next half-edge of front and
back half-edge for each wall. Green
represents the direction of a wall. . 41

4.4 Created and deleted portals for
each Breaking the Walls algorithm
phase as well as their computation
times. 42

4.5 Resulting Breaking the Walls
partition. Second pass with portal
ratio of 3. 43

4.6 Breaking the Walls partition with
different portal ratios. 44

4.7 Tested values of Potentially visible
set for different portal ratios. 46

4.8 Resulting PVS for selected (red)
cells. The visible cells are shown as
light red cells. 47

4.9 All measured times of the
algorithm in seconds, along with the
total time. 48

4.10 Total time for half-edge data
structure and Breaking the Walls
partition generation compared to the
local update. Potentially visible sets
generation is not part of the total
time. 49

A.1 Measured values for scene Cross 56
A.2 Step-by-step partition of scene

Cross. 57
A.3 Measured values for scene Houses 58
A.4 Step-by-step partition of scene

Houses. 59
A.5 Measured values for scene FEL. 60
A.6 Step-by-step partition of scene

FEL. 61
A.7 Measured values for scene Vienna 62
A.8 Step-by-step partition of scene

Vienna. 63
A.9 Measured values for scene

Pompeii . 64

A.10 Step-by-step partition of scene
Pompeii. 65

A.11 Measured values for scene Soda
Hall . 66

A.12 Step-by-step partition of scene
Soda Hall. 67

x

Chapter 1
Introduction

1.1 Motivation

In this technological age, rendering is an important aspect of computer science.
With faster computers and better hardware, there are attempts to increase
the quality of renderings, but even with the fastest hardware, it is often
impossible. If a scene with millions of different objects were to be rendered,
the time needed for a realistic render may be impossibly high. Therefore,
there is an attempt to decrease the number of objects needed to be rendered
at any point.

There are many methods to speed up rendering, but most of them are
trying to do one thing: reduce the amount of objects or geometry that needs
to be rendered by skipping the non-visible geometry. The technique that
accelerates rendering by removing unnecessary objects or geometry is called
occlusion culling [COCS01]. One of the methods is the Cells and Portals
[LG95] algorithm, which divides the scene into separate cells, from which
the visibility between them can be calculated. Cells are basically rooms,
defined as enclosed polygons. The portals then connect these rooms, similar
to doors or corridors. On top of this partition, an adjacency graph can be
built which represents connectivity of these rooms. The adjacency graph can
be used to determine visible cells for each room, which are called potentially
visible sets [Air90]. For potentially visible sets, it is typical to add any cell
that can be seen from any point in that specific room. Then during the
rendering, only the visible cells from the room in which the camera lies are
drawn. This approach is advantageous, since the visibility for static scenes
can be precomputed. However, the division into cells is only useful in enclosed
scenes, such as architectural plans of buildings. If this algorithm were to be
used on open scenes, where visibility would typically be very high, the more
efficient choice would be just rendering everything.

Cells and Portals only usage is not for occlusion culling. Splitting the
scene into smaller, more manageable cells makes the scene more natural and
logical. Instead of having large rooms, having a greater number of smaller
distinct rooms, where each room has its function and purpose, can be more
understandable. Other usage is for some advanced navigational algorithms,
such as the generation of navigational meshes [OP13]. By splitting the

1

1. Introduction
scene into smaller areas, navigation can be calculated for smaller rooms and
connected together using the Cells and Portals adjacency graph, enabling
faster and more precise navigation.

Additionally, when working with meshes and geometry, a quick way to
traverse its topology is also needed for many of the algorithms. Often, during
an algorithm’s run, the data structure must be traversed in an organised,
predetermined manner. For that reason, multiple data structures are created
to speed up the traversal by keeping important information about their
surroundings, which allows quick traversal over the geometry. These structures
are described in the beginning of the analysis chapter.

1.2 Goals

The main goal of this thesis is the implementation of a Cells and Portals
algorithm, specifically the Breaking the Walls [LCCO03] algorithm, which
generates the partition from a half-edge data structure instead of a typical
BSP tree. At the beginning, different data structures for storing geometry and
various implementations for the Cells and Portals are studied. Afterwards, an
algorithm for both the half-edge data structure generation and the Breaking
the Wall algorithm is proposed and implemented in the Unity engine. The
implementation also contains a method to update the entire structure without
rebuilding it, which both the half-edge structure and the Breaking the Walls
algorithm enable. For that, the half-edge data structure implementation
is also reworked into a dynamic one using the Unity physics system. The
algorithm will also contain a potential visible set generation, which will be
visualised in the simple application. A way to apply this algorithm on 3D
data will also be suggested. Lastly, the implementation will be tested on six
different scenes with different parameters for its computation complexity.

2

Chapter 2
Analysis

This chapter contains the analysis of different data structures used to save the
scene topology. It also provides an overview of the visibility culling technique
for decreasing the amount of geometry needed to be rendered in the scene.
Finally, different algorithms for generating the Cells and Portals partition
are presented along with an idea behind potentially visible sets, also used in
this thesis.

2.1 Data structures

There are multiple data structures, each useful for some different problem.
Some structures may not store information about topology, which can be useful
for the simple rendering of triangles. On the other hand, some structures keep
information about all neighbouring elements of each element, which is useful
for operations over the mesh itself. In general, every structure was created
for a specific use. These data structures vary in stored information and space
complexity, as they can save many times more data than some simpler ones.
Still, they compensate for their requirements in their computation speed.

2.1.1 Indexed triangle mesh

The indexed triangle mesh [HvDM+13] is the easiest way to store information
about the mesh, by using two separate arrays, one array of vertices and another
of faces, usually called the list of indices. While the vertex array saves simply
coordination of each vertex, the list of indices represents polygons, usually
triangles, as sequences of indices of the vertex array. There are different types
of indexation depending on the usage and efficiency of the mesh. Some of
those methods described for the amount of n vertices are as follows:.Triangle list. Sometimes also called Triangle soup is method of storing

independent polygons. Each vertex is used exactly once by polygons,
resulting in 3n vertices and indices..Triangle strip. Every triangle (except for the first one) shares exactly
two vertices with the previous triangle, resulting in a total of n + 2
indices.

3

2. Analysis
. Shared vertex. Similar to the triangle list, this method represents each

triangle from three independent vertices but removes the redundancy of
the vertices. In this way, each vertex can be used by multiple triangles
at once. The number of indices is still 3n, but the number of vertices
can decrease considerably.

Although the first three methods are not often used for their redundancy or
specific usage, the shared vertex method can be seen quite often, as it allows
for a spatially effective and simple representation. The indexed representation
can also easily be expanded with additional arrays, such as a normal or
a colour array.

2.1.2 Winged edge

Winged edge [Bau72] is an edge-centred structure that allows for a fast
traversal along the mesh of the object. This structure saves the topology of
the mesh which is centred around edges of the mesh. The structure saves
tables for every vertex, edge, and face. Although the vertices and faces tables
are simple, as they only need information about an edge, which uses them,
the edge contains information about:. PVT(E): previous (origin) vertex where edge E begins.. NVT(E): next (destination) vertex where edge E ends.. PCW(E): previous (left) edge in clockwise direction from edge E.. NCW(E): next (right) edge in clockwise direction from edge E.. PCCW(E): previous (left) edge in counterclockwise direction from edge

E.. NCCW(E): next (right) edge in counterclockwise direction from edge E.. PFACE(E): previous (right) face of edge E.. PFACE(E): next (left) face of edge E.

The winged edge can be seen in Figure 2.1.

PVT(E) NVT(E)

NCCW(E) NCW(E)
NFACE(E)

E

PCCW(E)PCW(E)
PFACE(E)

Figure 2.1: Description of a single winged edge with all associated information.

4

................................... 2.1. Data structures

The stored information allows for fast execution of different topological
queries or algorithms, such as the subdivisional surface or triangulation.
Although the structure is useful for many algorithms, it may contain some
inaccuracies. Depending on how the structure is designed, a problem may
arise when three edges share the same vertex. In that case, the orientation of
the faces will become ambiguous, visible in Figure 2.2. To ensure correctness,
it is necessary to choose a correct vertex during the traversal.

E1 E2

E3

PVT(E1)

NVT(E1) = PVT(E2) = PVT(E3)

NVT(E3)

NVT(E2)

Figure 2.2: Example of face ambiguity of winged edge structure, where faces
can have differently directed edges.

2.1.3 Half-Edge data structure

The half-edge data structure, also known as „Doubly connected edge list“
or „DCEL“, is an edge-centred data structure used to maintain information
about the mesh topology, including information on the incidence of the vertex,
edges, and faces. Every edge is split into two half-edges, each having an
opposite orientation. Each half-edge contains information about:. Vertex representing the end of half-edge.. Next half-edge representing the neighbouring edge in counterclockwise

order..Optionally Previous half-edge representing the neighbouring edge in
clockwise order.. Opposite/Sibling half-edge representing the other half-edge in which the
original edge was split.. incident Face, which the half-edge defines (if any).

visible in Figure 2.3.
Each face and vertex stores information only about one of its incident

half-edges edge, since all other parameters are easy to find from the topology
[Ket23]. Note that not every half-edge needs to have an incident face. Those
edges would represent a hole in the mesh in 3D or a border of the mesh in
2D.

5

2. Analysis

Figure 2.3: Description of a single half-edge with all associated information.

Additionally, due to the half-edge structure, some useful queries are stored
directly within the structure [McG00]..Which faces/vertices border an edge, see Figure 2.4.

face1 = edge.face;
face2 = edge.opposite.face;

vertex1 = edge.vertex;
vertex2 = edge.opposite.vertex;

Figure 2.4: Pseudocode for acquiring the vertices and faces of a selected edge.

With additional calculations, some more complex queries can be detected,
[McG00] such as:.Which faces/edges contain a vertex, see Figure 2.5.

starting_edge = vertex.edge
edge = starting_edge
do:

print(edge.face) # face using vertex
print(edge) # edge using vertex
edge = edge.next.sibling

while(edge != starting_edge):

Figure 2.5: Pseudocode for acquiring all faces and edges that use a selected
vertex.

6

................................... 2.2. Visibility culling

.Which edges/faces are adjacent to a face, see Figure 2.6.

starting_edge = face.edge
edge = starting_edge
do:

print(edge) # adjacent edges
print(edge.opposite.face) # adjacent face
edge = edge.next

while(edge != starting_edge):

Figure 2.6: Pseudocode for acquiring all faces and edges adjacent to a selected
face.

2.2 Visibility culling

When rendering a scene, drawing geometry, which the viewer cannot see is
unnecessary. For that purpose, an attempt is made to determine whether
a specific object is visible from the current view. Visibility culling aims to
quickly detect invisible geometry that does not need to be rendered.

Typical visibility culling starts with two basic culling methods:.Back-face culling which avoids rendering triangles not directed to the
viewer..Viewing-flustrum culling which avoids rendering geometry outside
the viewing flustrum.

The next technique, the occlusion culling technique, is used to avoid
rendering primitives occluded by other geometry. Their designs are more
complex, requiring knowledge of relationships between geometries of different
objects.

What these algorithms have in common is that they use the concept of
conservative visibility, which states that the output set must contain at least
all visible objects. That is, the set can also include invisible objects, but
there is an attempt to minimise their amount. Including that, this algorithm
cannot label any visible object as invisible, which guarantees the accuracy of
the output image [COCS01].

What makes visibility a complex problem is that in more extensive scenes,
a slight movement of the viewpoint can cause significant changes in the scene’s
visibility. Additionally, with more extensive scenes, there are more objects
that need to tested, making an ideal algorithm output sensitive. That means
that the speed of the algorithm depends on the amount of visible geometry
from the viewpoint.

Multiple algorithms are used to correctly and quickly calculate the problem
of occlusion culling. Their speed is typically tied to the number of additional

7

2. Analysis
invisible objects they produce on output or the scene in which they are used.
Some algorithms can be beneficial for some scenes, but not for others. An
example can be large convex occludes for scenes with large faces or Cells and
Portals for closed scenes.

2.2.1 Potentially visible sets

The method of potentially visible sets (shortened PVS) [Air90] splits the
scene into separate areas (usually much smaller than the whole scene) and
calculates which cells can be viewed from any point inside of this area, see
Figure 2.7.

A B

C D

E

F G

H

I

J

K L

Figure 2.7: Potentially visible sets of cell A: cell A is shaded dark gray, visible
cells are light gray, and non-visible cells are white.

By doing that, many of these cells, as well as all the objects lying inside of
these cells, can be automatically removed from rendering, since there is no
way for them to be visible.

There are two main goals for an ideal PVS:.Minimise size of potentially visible sets..Minimise the number of cells. Split cells only when the resulting child
cells have significantly smaller PVS.

In addition to that, there are other restrictions:. It needs to be easy to determine the cell for current viewpoint.. It must be generated automatically.

The restrictions indicate that a suitable data structure for range searching
is necessary, such as binary space partition, kd-tree, or regular grid. Binary
space partition being the most common choice, since it allows the splitting
plane to be any general plane [Tót05]. The ideal splitting plane would be one

8

................................... 2.2. Visibility culling

that is mostly opaque, meaning that it fully represents some wall or obstacle
in the model. An example of a split scene can be seen in Figure 2.8.

A1 B

A2

A3 C

a1

a3

a2

a4

a1
a3a2

a4A1 B A2
A3 C

Figure 2.8: Binary space partition for a scene (left) shown as a tree (right).
Planes a[1-4] are used as splitting planes for the BSP tree. Scene is split into
cells A[1-3], B, and C.

After the BSP is constructed, the potentially visible cells can be calculated.
If a cell is completely sealed, meaning that its boundary is composed of
opaque surfaces, only the cell itself is included in its PVS. However, if there
is an opening on its boundary called a portal, the PVS calculation becomes
more difficult. A portal can be, for example, a hole in a wall, an open door, or
a window. It’s geometry is defined as an absence of polygons on the boundary,
meaning it can be calculated using boolean operation on the cell boundary
and polygons lying on the cell’s boundary planes. The portals then connect
two different cells that are visible to each other, but if a sequence of cells is
selected, each connected by a portal, all the cells do not have to be visible
from the beginning. This problem can be reduced to the polygon visibility
problem, where polygons represent portals.

Calculating a PVS is equivalent to identifying the polygons that receive
direct illumination from an area light source, where the portal acts like a light
source. Overall, the exact solution for PVS is very complex, there exist many
approximate ones. The most common ones are:.Point sampling algorithm samples the polygon by a set of points

and tests point-polygon visibility, usually by ray casting. Although the
algorithm is simple, it can often underestimate the set of PVS cells..Occlusion relations polygons are based on the shadow volume al-
gorithm [AAM04]. It used only part of all scene polygons (usually the
largest ones) to test the visibility, which may overestimate the potentially
visible set of polygons.

Since scenes need to be mostly occluded, this method is not ideal for
open scenes. The best usage of this algorithm is for closed scenes, such
as buildings, cities, and other architectural scenes. The calculation will

9

2. Analysis
also return geometry that can be invisible, meaning it uses the concept of
conservative visibility.

Compared to other methods, this algorithm is usually used as a preprocess,
which means that it is calculated on a static scene beforehand. This has
significant advantages. Not only does the PVS information save computational
resources during the walk-through, but it also allows for the precalculation of
information about adjacent cells.

2.2.2 From-region Cells and Portals

The concept of Cells and Portals algorithm is similar to the potentially visible
sets. The scene is subdivided into convex cells using a BSP tree and the
main surfaces, such as the walls, are used as partitions to separate the cells.
Non-occluding or non-opaque spots, such as doors or entrances, are used as
the boundaries between the cells, called portals, to form the adjacency graph.
Other non-occluding objects inside cells are generally ignored [Tel92].

There are two structures that are used to represent the visibility of a cell.
First, an undirected graph that illustrates the connectivity between cells.
Secondly, the so-called „stab tree“ expresses the direction of traversal of cells
whose root contains the starting cell.

Figure 2.9: Stab tree [left], potentially visible (light grey), visible sets (grey) of
cell A [middle] and graph depicting connectivity of cells in the scene [right].

The resulting hierarchy can be represented as an adjacency graph, where
nodes represent a cell and edges connectivity between respective cells.

The visibility between the cells is determined by testing if there is a non-
colliding line between two points, each in their respective cell. If such a line
exists, it passes through the portals between these two cells. Therefore, all
that is needed to determine is whether the portals are visible for the cell to
be visible. Additionally, it is known that all visible cells are contained in the
potentially visible set. Putting all this together, when the cell is visible, all
cells on the path from the root to this cell inside the stab tree are also visible,
and a sightline exists through all the portals bordering these cells.

10

................................... 2.2. Visibility culling

2.2.3 Point-based Cells and Portals

Another approach to the Cells and Portals algorithm is that instead of
precomputing the potentially visible geometry for each cell, the visibility can
be calculated during the runtime using the recursive depth-first traversal of
cells [LG95].

The algorithm works by first rendering the cell that the viewer is inside.
Then, the visibility of connected portals is tested by projecting them into
screen space and comparing them to an axis-aligned 2D bounding box con-
taining the portal projection. Objects outside this bounding box cannot be
visible and can be safely culled. The object inside the bounding box can
possibly be seen through the portal, so they can be visible. As each successive
portal is traversed, its bounding box intersects the previous bounding box,
and the resulting box is used to cull the cell. During the traversal, objects
inside the cell can only be tested using the current bounding box, which
represents visible space inside their respective cell.

2.2.4 Volumetric Cells and Portals

This method for creating the Cells and Portals partition comes from a flood-
ing simulation as an adaptation of the 3D watershed transform. Flooding
originates from local minima, which is opaque geometry, such as walls or
other obstacles. As the flooding regions expand, they connect. Portals are
created in a way to avoid merging such regions. In a different way, a portal is
created at the point where two obstacles are closest to each other, since that
is where the flooded regions connect [HDS03]. Thanks to the distance field
representation, this method is not limited to only geometric representation
but also supports parametric, implicit, or volumetric representations.

The main idea of the algorithm is to sample the scene as a distance field,
which is a discrete scalar field, where each sample point stores the distance
to the closest geometry in the scene, visible in Figure 2.10.

Figure 2.10: Distance field representation of an architectural model, colour
represents distance to closest geometry. Source of the image: [HDS03]

11

2. Analysis
The watershed transformation [MB90] is then used. The watershed method,

often used in image processing, is a method used to separate different areas of
a field on the basis of its gradient, such as grey-scale colour of an image. The
watershed method can have different implementation approaches. The one
described in this section is the watershed by flooding [MB90]. The basic idea
consists of placing water sources in each regional minimum (walls in our case)
to flood the surrounding area and then building barriers when different water
sources meet. The watershed method proceeds at intervals, during which the
flooding of the scene increases, visible in Figure 2.11. The resulting barriers
then represent portals and a Cells and Portals partition can be created.

(a) : Representation of steps as flooding

(b) : Two basins connecting reveals an
opening. A portal is built to separate
them

Figure 2.11: Different steps of the watershed algorithm. Source of the image:
[HDS03].

The disadvantage of a scalar field representation is it’s memory needs. For
that purpose, the hierarchy representation was proposed, which allowed for
the decrease of memory required by combining blocks with the same values
together.

12

................................... 2.2. Visibility culling

2.2.5 Voronoi segmentation

Another way to detect a Cells and Portals partition is by using the Voronoi
diagram [BJL+16]. Although this is not necessarily a Cells and Portals
algorithm, but instead an algorithm for a room segregation, both cells and
portals can be extracted from the resulting partition.

A Voronoi diagram [O’R98, p. 155] is a geometric structure typically built
on a set of points. The diagram divides a 2D plane into the so-called sites,
where for each site S of point P is P the closest point of all the points
in the diagram. The boundaries between those sites are defined by line
segments. In the usual partition, lines, rather than points, are typically used
for a representation of walls. That is why instead of using the point Voronoi
diagram, the line-segment Voronoi diagram, where sites represent the set of
closest points to the line-segment, is used. The difference between point and
line-segment Voronoi graph is that, for the line-segments, the boundaries
between sites are not only line-segments, but also parabolic arcs, which are
created as a set of points equidistant from a line and a point.

After creating the Voronoi graph from the input lines, its leaves, which
are lines or arcs connecting to any of the input walls, collapse into the node
of their origin, visible in Figure 2.12, upper left image. Afterwards, every
point in the pruned Voronoi graph is tested to see whether it has exactly two
closest obstacle pixels, meaning that they lie between exactly two input walls.
If such a point exists, it is considered a candidate for a critical point. The
real critical points are then extracted from these candidates as the closest
point to an obstacle within a certain neighbourhood. These points are visible
in Figure 2.12, upper right image. The critical lines are then drawn into the
partition so that the critical line for each point connects the point to its two
obstacle points, visible in Figure 2.12, lower left image. The lines with a small
angle between the critical point and obstacle point are usually removed, as
they often lie in the corners of cells. The resulting partition can be seen in
Figure 2.12, lower right image.

The easiest way to transform this room segregation algorithm into a Cells
and Portals partition could be to instead of connecting the critical points
with obstacle points just connecting the two obstacle points together and
creating a single portal there. As the borders between rooms are close to
straight line segments, the partition would usually stay very similar.

2.2.6 Morphological segmentation

Another way to segregate the area into rooms is by using morphological
segmentation. By transforming the input into a grid map M1, whose pixels
are labelled accessible or inaccessible. At first, the only inaccessible pixels
in the map are those which lie on the input walls and pixels outside of the
tested area, visible in Figure 2.13, top left image. Afterwards, the walls of
M1 are iteratively grown by one pixel. In each step, it is analysed whether
the previously connected areas have become separated, visible in Figure
2.13, top right image. This process is repeated until a region has a certain

13

2. Analysis

Figure 2.12: Stages of the Voronoi graph-based segmentation algorithm: (i)
computation of the Voronoi graph, (ii) set of extracted critical points, (iii) critical
lines, and (iv) segmentation after merging Voronoi cells. Source of the image:
[BJL+16].

size between the lower and upper thresholds, which represents the desired
segment size. When that happens, all its cells are labelled as an individual
room in the second map M2, which is a copy of the original M1 map before
the morphological iterations. The labelling procedure is repeated until all
accessible cells are labelled as a room, visible in Figure 2.13, lower left image.
Afterwards, when all rooms are labelled, the rooms are iteratively expanded
using the wavefront propagation by usually expanding one pixel at a time
into the surrounding accessible pixels. The algorithm ends when there are no
accessible pixels in the map M2, visible in Figure 2.13, lower right image.

Compared to Voronoi segmentation, the morphological segmentation may
be harder to transform into a Cells and Portals partition, as the borders
between rooms are not line segments, but have some general shapes, visible
in Figure 2.14. It may be possible by tracing the boundary and connecting
the two endpoints, but even that will result in errors, meaning that some
additional transformation would be necessary. Another way to detect portals
may be during the room expansion, when if two separate rooms meet, the
breath-first search through the accessible pixels may find two closest wall
pixels, each on separate side of the connection pixel, where the rooms met.
These two pixels could be connection points for a portal.

14

................................... 2.2. Visibility culling

Figure 2.13: Stages of the morphological segmentation algorithm: (i) initial floor
map, (ii) iteratively eroded map, (iii) initial labelling of separated rooms, and
(iv) segmentation after wavefront propagation. Source of the image: [BJL+16].

Figure 2.14: Example of a result of morphological segmentation. Source of the
image: [BJL+16].

15

2. Analysis
2.3 Breaking the walls

Cells and Portals effectively decrease the amount of geometry to be rendered
inside architectural scenes, but the problem is to build a graph defining the
partition. These are two approaches:.Manual partitioning..Automatic partitioning.

Manual partitioning is often used in the game industry. The reason is that
the design has complete control over the partition and can ensure that the
portals are placed the best way. This takes a lot of time and effort to create
a suitable partition for a game designer, further scaling with the size and
number of scenes. Furthermore, even the best designer cannot be sure if the
partition created is optimal, as a single portal can drastically change the
quality of a partition.

However, creating automatic partitions is a complex problem. The other
problem is how the quality of the partition is defined, which can be viewed in
many ways. What is a good number of portals, how do you determine what
is a good position for a portal, etc.

2.3.1 Construction using BSP tree

The standard solution for automatic partitioning is a BSP tree, used in the
from-region Cells and Portals algorithm [Tel92]. BSP is a binary tree created
by recursively splitting the space into two subspaces using a splitting plane,
visible in Figure 2.15. A splitting plane is defined for each non-leaf node and
is chosen based on the defined walls. The tree is finished when every wall is
used as a splitting plane. Portals are represented as polygons on the splitting
planes and are created by recursively splitting themselves by traversing the
tree. After reaching the leaf, a valid portal is built on the boundary of two
leaf nodes that it has reached successfully [LCCO03].

Figure 2.15: Step-by-step creation of a BSP partition and a tree over a scene.
At each step a splitting plane is chosen and subspace is split.

16

.................................. 2.3. Breaking the walls

The biggest problem is choosing the splitting plane during the BSP tree
construction. The standard solution is to create a balanced tree and avoid
over-splitting the space. Since the BSP tree is not used after the Cells and
Portals graph is created, it is unnecessary to balance it. However, there are
no splitting criteria to choose the splitting plane. The most used criteria are
choosing the median splitting plane (plane with the same number of planes
on the left and right of itself), a plane splitting the least amount of walls, or
another similar approach.

The problem with the BSP tree is that the portal must lie on the splitting
plane, which results in it not capturing the natural partitions induced by
the model. In other words, the portal that could be placed naturally in a
doorway cannot be created as a portal by BSP tree, resulting in the problem
seen in Figure 2.16.

Figure 2.16: Example of scene for a portal creation (left), created BSP portals
(middle), ideal portal (right).

2.3.2 Quality of the partition

As previously stated, the partition quality is not well defined. Ideally, the
number of portals is proportional to the number of normal cells. This
means that most viewpoints will have to render fewer polygons. But how to
determine the specific amount? Too few portals and the cost of rendering
hidden polygons will be the cost of polygon culling. Too much and the cost
will outweigh the contribution of testing fewer portals.

According to [vdPS99], two cells with similar PVS can be merged while
maintaining nearly the same quality. That means that they are most likely
part of the bigger cell, which was split. It is assumed that the effective
partition contains cells that do not have similar PVSs and therefore cannot
be compressed. This knowledge can indicate whether a partition can still be
improved.

The measurement suggested to evaluate the portals by [LH03] is defined
for each portal as score (p) = visible volume (p) * balance (p). VisibleVolume
is an area within the model from which the portal is visible, and balance is
defined as balance(p) = |cost(cellA(p) - cellB(p)|, cost being cost of rendering
the cell. CellA/B are cells lying on each side of the portal p. The goal is to
minimise the score function for each portal. This can lead to problems, mainly
for the balance functions. Since the cost function is computed per portal, it
can quickly reduce the cost to zero at the expense of creating a non-optimal
portal.

17

2. Analysis
2.3.3 Breaking the walls algorithm

Input for the Breaking the Walls algorithm is a set of half-edges. These edges
can be extracted from a 2D floor plan. It is assumed that all walls are vertical,
as non-vertical walls are ignored. The portals are half-edged created during
the execution of the algorithm. For each portal, two opposite-orientated
half-edges are created [LCCO03].

The scene is divided into cells. A cell is defined as a polygonal region with
a boundary made up of a sequence of walls and valid portals. A cell is a valid
if the polygonal region does not contain walls inside. The cell is considered
optimal if it is valid and cannot be divided into several valid cells.

The Breaking the Walls algorithm works in two passes. The first pass
creates cells by traversing the wall and choosing the shortest possible step. It
is achieved by traversing or skipping some walls by creating a new portal and
enclosing the current cell. Since there is no previous knowledge, the decision
is only based on the length of the walls. For that reason, only relatively short
portals are created. The second pass is used to refine the cells. As the size
and shape of the cells is known, the walls can be split or merged to create
high-quality partitions. It is achieved by creating short portals relative to
the cell boundary length.

2.3.4 Initial Partition

The initial partition is created during the first pass of the algorithm. Most
formed cells will be valid during this pass but usually not optimal. The
algorithm starts at an arbitrarily half-edge. At each step of the traversal
it continues either to an adjacent half-edge or to the closest disjoint wall,
in which case a portal is created to connect those edges. When an already
visited wall is reached, a new cell is made with the correctly traversed path
as its boundary. Traversal continues until all half-edges are part of a cell.

The most important part of this algorithm is the selection of the next wall
traversed. Suppose that W is the current wall. According to [LCCO03], all
adjacent edges should be considered to the wall W. But since the half-edge
data structure is used, it is already known that the only possible edge to
traverse would be the next one W.next, which will be called Wadj . Note that
Wadj could be a wall or a portal defined previously. Wadj does not necessarily
have to be the best option. It may be possible to create a new portal between
W and the closest disjoint wall Wcls, so that the distance is shorter than
Wadj . Furthermore, for a wall to be valid, it must be located in the subspace
defined by the supporting lines of W and Wadj , visible in Figure 2.17.

Sometimes, a cell that encloses other geometry can be created when creating
partitions using this method. Such a cell is not allowed and needs to be
resolved. Ideally, such a cell will be resolved as the enclosed geometry is
traversed, connecting itself to the surrounding cell, as shown in Figure 2.18(a).
However, it is possible that such a connection will not be created, as in the
case in Figure 2.18(b). In that case, this is dealt with separately by connecting
it to the surrounding cell using the shortest portal.

18

.................................. 2.3. Breaking the walls

Figure 2.17: Traversal of an edge during Breaking the Walls algorithm of wall
W. Wall Wadj is next traversed wall. Wall Wcls can potentially be connected by
a portal (doted line). Only walls in grey subspace are tested considered to be
potentially connected.

Figure 2.18: Enclosed geometry (a) gets connected by itself. Geometry (b)
needs to be manually connected with the shortest portal.

2.3.5 Refinement

After the first pass, a Cells and Portals partition is created, which is probably
not ideal. An ideal partition is a partition that contains only portals with
a ratio of their length and the length of the cell boundary to which they belong
less than the predefined value alpha. Using this definition, the algorithm
controls which cells should be split or merged to create a good partition.

There are three types of cells, visible in Figure 2.19:. Underestimated cell.. Ideal cell..Overestimated cell.

The ideal cell is a cell that meets the criteria of ideal portals for all the
portals it contains. Such a cell is correct, and it is not necessary to do
anything with it.

The underestimated cell contains an invalid portal. This portal is too long
and can be safely removed. In other words, cells on opposite sides of the
portal can be merged.

19

2. Analysis
The overestimated cell can be split into two cells with a valid portal. This

type of split can occur only when two consecutive edges share an angle greater
than 180◦. To find the splitting portals, the algorithm traverses all edges
of the cell and, for each right-turn edge, detects the shortest portal. The
shortest portal is then picked and the cell is split using it. The two new split
cells can be further split as they may not be optimal. The optimal cell does
not have a potential portal that could split it.

(a) (b) (c)
Figure 2.19: (a) Input for BW algorithm. (b) White cells are underestimated,
light grey are the ideal and dark grey are overestimated. (c) Ideal partitions.

2.3.6 Breaking the walls

The algorithm is ideal for localised changes in the structure, since all compu-
tations depend on the topology of the half-edge data structure, allowing us
to change only part of the geometry without recalculating the whole system.
Using this knowledge, it is possible to easily add or remove walls from the
current partition.

If an edge needs to be removed, the cells to which this edge is connected
will be merged, the connected portals deleted, and the influenced edges will
be added for processing. For adding, the edges are added as unclassified edges
for processing, and in both cases the algorithm is run only for these changed
edges.

20

Chapter 3
Implementation

This chapter first describes the input and output of the whole algorithm as well
as its overall execution. Afterwards, the implementation of the „Interactive
room detection“ algorithm in the Unity Engine is explained. The engine was
used both for its functionality and for its usage in practice. Furthermore, the
algorithm uses the Unity physics engine to detect intersecting walls instead
of building the data structure as well as ray casting during specific parts of
the algorithm.

3.1 Interactive room detection

The steps for the algorithm, which, from the input of walls, detects rooms
and creates partitions using the Breaking the Walls algorithm, are explained
in this section. This algorithm was implemented in the Unity engine in a way
that allows it to be run in both the editor window and at runtime.. Initial data

The set of walls defined by their endpoints represents an input. These
walls are added to the Unity scene as predefined objects. The user can
create, delete, and move these objects. In addition, these objects can
also be saved along with the scene. Since precise movement of walls can
be complicated, users can use snapping of wall to other walls as well.
For simplification of adding many walls, the algorithm can load and write
walls from an input file. The file contains simple endpoints in the format
x1, y1, x2, y2 for a wall on each line. Users can start the algorithm in
the editor using a specific script or button in the user interface inside
the game..Resulting data
The output of the algorithm are the individual objects that define the
rooms. A room is defined as a polygon that surrounds a given room.
The algorithm will visually create these rooms as walls and floors made
of polygons by triangulation.
The resulting partition will contain a potentially visible sets partition
using the result of the Breaking the Walls algorithm. This partition

21

3. Implementation....................................
splits rooms using portals that are used to simplify the rendering of the
scene based on the visibility of the rooms..Algorithm execution
The script has two launch options, either in the editor or at runtime.
In the editor, the user can add objects directly to the editor and launch
the script for the room creation algorithm afterwards, and the output
of the algorithm will be inserted into the scene. The advantage of this
method is that both input and output can be saved in the scene, offering
acceleration of the game by preprocessing this information beforehand.
At runtime, users can work the same as in the editor. They can add
and edit wall objects and launch the algorithm for room creation. This
approach can read input created before launching the game from the
scene and data added during runtime, but the algorithm’s output cannot
be saved back into the scene. This approach is advantageous in games
or applications that allow building or room creation and require room
detection and partition features.

3.2 Game objects

The algorithm contains some predefined scripts and objects that can be added
to the scene anytime. Most used objects can be compared to half-edge data
such as vertices, edges, and faces. These objects consist of:.Wall Vertex represents a vertex of normal half-edge data structure. It

contains information on its position and reference to a single wall that
uses it..Wall Edit Object is an object used to define the wall on the input.
This object can only be created before the execution of an algorithm as
it is not used by the algorithm after the creation of the half-edge data
structure. It can only be used by the user to create, edit, or delete edges
of the data structure..Wall Half Edge Object represents a wall, which is a part of half-edge
structure, unlike the Wall Edit Object. These objects are created at
runtime and are used to store two instances of Half Edge class that
represent the front and back half-edge..Room Mesh Generator generates and manages a single room. Based
on a single half-edge, this script detects an enclosed polygon from which
it can generate a mesh using Unity procedural mesh. The mesh consists
of rectangles as walls and triangulated mesh for the ground. In addition,
it contains a function for the Breaking the Walls algorithm, since it is
usually detected once per room..Room Detector Controller is an object used as an interface to the
whole algorithm. It contains multiple functions that are used to start each

22

.................................. 3.3. Steps of execution

phase of the whole algorithm, such as half-edge data structure generation
or Breaking the Walls passes. In addition, it stores information about
all objects used, which this script can create and delete.

On the other hand, the HalfEdge class represents a single half-edge of
a half-edge data structure. The data it contains include:.Origin: instance of Wall Vertex representing an end of the half-edge.. Sibling: instance of Half Edge representing half-edge on the opposite

side of the wall..NextHalfEdge: instance of HalfEdge in a counterclockwise direction..PreviousHalfEdge: instance of HalfEdge in a clockwise direction..Room: object representing a room this HalfEdge defines.
Furthermore, it contains a function to set the NextHalfEdge, which tests

whether the HalfEdge on the input should be added as NextHalfEdge by testing
the angles between the current NextHalfEdge and the PreviousHalfEdge of
the tested one, visible in Figure 3.1.

curr curr.next

test

test.prev

Figure 3.1: A HalfEdge test is can be added as next half-edge of current one
curr by testing it against both test.prev and curr.next.

3.3 Steps of execution

The algorithm performs multiple steps to first separate the input walls into
non-crossing lines during which it creates a half-edge structure over the data.
Afterwards, it generates the partition using the Breaking the Walls algorithm.
The steps are described in this section and later in the implementation
section in detail. Note that the algorithm execution may not return the
same output even for the same input walls. First off, the algorithm is
order-dependent, as the half-edge data structure generation takes input walls
iteratively. Additionally, there may be some cases, such as when multiple
walls intersect at one point, where the algorithm may process them at different
order each time, slightly changing the output partition.

3.3.1 Splitting the walls

The first step is to detect the intersection of the walls and to divide them
into non-crossing lines. During this step, the half-edge structure is slowly
being built, as it is already known which walls are neighbouring each other.

23

3. Implementation....................................
During the whole splitting a simple rule is held: „The wall is processed,

when it is split into correct wall segments and each segment has
correctly set half-edges“. If this rule is held, after a wall is processed, it
does not need to test against it in any of the next iterations, as it is already
known that it cannot be improved in any way.

At first, all input walls are inserted into a queue. This queue contains all
walls that need to be tested at any time. These walls are processed until
the queue is empty. Every wall is tested to determine which other walls it
intersects. It is tested not only for a full intersection but also for whether the
walls only touch each other, as these walls are also used to split the current
one. It is achieved by using the Unity physics engine by looking for all objects
in a specific layer inside an orientated bounding box with the sizes of a wall
(it is made it a little wider in case of mistakes). From this point on, the walls
are considered as line segments.

For every intersection the walls have, they are split using the same method.
First, every intersection point and its distance along both walls is calculated.
Then these walls are sorted according to their intersection distance. By doing
this, every intersection of our current wall can be calculated once instead of
splitting it into two and repeatedly testing them for intersections. During
the next step, new vertices are detected and created to split the wall. For
the detection, two new arrays are created:.Vertices.. Skip index.

These arrays can be created at once by iterating the array of intersected
walls. The Vertices array contains instances of WallVertex for every unique
intersection point. It needs to be done like this, since multiple walls that
intersect simultaneously are supported. For every vertex, an already existing
vertex that could be used is detected first, which could be a vertex from both
the currently tested wall and any of the intersected ones. If none exists, a new
one is created.

The skip index array detects which walls intersect at which intersection
point. The idea behind it is pretty simple. For a skipIndex at position k, it is
known that the walls from intersectedWalls[k] up to, but excluding intersect-
edWalls[k+1] all intersect at vertices[k]. Knowing this, the intersection can
be tested quickly and the already created vertex can be used without trying
to make a new one.

To create these arrays, iteration through the sorted intersected walls is
needed. The pseudocode for the algorithm can be seen in Figure 3.2

At the beginning, the starting vertex is inserted into the vertices array and
0 for skipIndex. The distance along the wall for the correctly tested wall,
initially 0, is also remembered. Every intersected wall is tested to determine
whether it is further than the previous. The algorithm ends with the vertex
at the end of the current wall and the number of walls as the last skipIndex.
The resulting arrays can be seen in Figure 3.3. It can be seen that there are
two vertices at the end of the line. This is caused by the way the segments

24

.................................. 3.3. Steps of execution

skipIndex, vertices = []
currentT = 0

skipIndex.Insert(0)
vertices.Insert(wall.startPosition)

for i = 0 to intersectedWalls.Length - 1 do:
if currentT < intersectedWalls[i].distanceT:

skipIndex.Insert(i)
vertices.Add(intersectedWalls[i].intersectPosition)

currentT = intersectedWalls[i].distanceT

skipIndex.Insert(intersectedWalls.Length)
vertices.Insert(wall.endPosition)

Figure 3.2: Pseudocode for generation of SkipIndex and Vertices arrays.

are programmed. It is necessary to keep both skipIndex and vertices arrays
the same length since, at each vertex, the intersected wall is processed and
the next line segment is created. Because of this, there can be two vertices
in the same position at the end. This can be solved by detecting whether
there is an intersection at the end. If there is, the ending vertex is inserted
twice. It is inserted twice, since the ending vertex can be a previously created
vertex that some other wall may share. This is done mainly because the last
vertex should be used only to finish the line segments and should not have
any intersections.

After creating the structure, the segments can be created by simply iterating
over them. The iteration can be seen in pseudocode in Figure 3.4.

The two tested walls are divided into four segments (previous, next, left,
right), two for each wall. The previous and next segments are two line
segments of the wall that is being tested. The left and right walls are two line
segments in which the intersected line was split. Any of these parameters can
be undefined, but at any time, at least two must be valid objects. Otherwise,
there cannot be an intersection. Additionally, it is assumed that the left[right]
wall is to the left[right] of the tested wall in its direction. When they are
created, it is not known if this rule is held, so it is necessary to test and
eventually swap them to keep this rule.

This approach is not ideal, as walls that only touch the current wall will
also be split. Walls with a length close to zero are not created, but the code
will still make a copy of a wall that could be used. It can be easily detected
whether there is a need to create a copy of a wall depending on the distance
of the intersection point along the line. If the intersection distance is 0 or the
full length of the line segment, one of the split walls will not be created, and
the other can use the original wall instead.

25

3. Implementation....................................

Figure 3.3: Example of the Vertices and SkipIndex arrays for a multiple inter-
section.

nextSegment, prevSegment,
leftSegment, rightSegment = null;

for v = 0 to length(vertices) - 2 do
nextSegment = Wall(vertices[v], vertices[v+1])

i = skipIndex[v]
j = skipIndex[v+1]

for e = i to j - 1 do
leftSegment = Wall(walls[e].start, vertices[k])
rightSegment = Wall(vertices[k], walls[e].end)

SetHalfEdges(vertices[k],
prevSegment, leftSegment,
nextSegment, rightSegment)

previousSegment = nextSegment

Figure 3.4: Pseudocode for the splitting of line into line segments.

26

.................................. 3.3. Steps of execution

3.3.2 Calculating half-edges

Now that the wall is correctly split, the neighbouring half-edges can be
connected. The primary function that manages the computation of half-edges
is seen in the pseudocode 3.4 called SetHalfEdges.

This function holds an array of the input edges in counter-clockwise order
around the input vertex as well as another array that defines whether that
specific edge starts or ends in the vertex, saved in array swapped. First, it
must be detected whether the wall on the input is valid and to see if they
start in the vertex. This can be tested using the simple comparison seen in
Figure 3.5.

size = 0
swapped = bool[4]
edges = Wall[4]

// for each input Wall segment
if segment is not null then

swapper[size] = segment.startVertex != vertex
edges[size] = segment
size++

Figure 3.5: Pseudocode for validation and preparation of line segments for the
half-edge connecting.

Two comparisons can be simplified because the previous segment never
starts in the vertex, while the next segment always starts there.

There was a need to test whether the edge was swapped, since it is not
known whether the front or back half-edge of the wall should be tested against.
Now that it is known how each wall segment is rotated, it can be decided
which half-edges to test against each other. Two adjacent walls are always
tested, as shown in Figure 3.6.

Testing of half-edges can be split into four separate categories depending on
which half-edge from every wall is used. This test can be seen in pseudocode
3.7. The front half-edge is one to the right from the start of the wall.

As described previously, the setNext function also tests whether the other
half-edge should be added next to the current one. For that, it is necessary to
test not only against the current next half-edge, but also against the previous
half-edge of the second one, visible in Figure 3.1. This is tested to ensure
that the half-edge prediction does not worsen and can only be improved in
the next iterations. The test of whether the half edge should be changed is
calculated as the difference in angles between the two edges tested using the
atan2 function.

27

3. Implementation....................................

(a) (b) (c)
Figure 3.6: (a) Walls to intersect. (b) Intersected walls with half-edges. (c)
Groups of half-edges to be tested.

for i = 0 to size - 1 do
w1 = i
w2 = (i + 1) % size

if swapped[w1] and swapped[w2] then
setNext(edges[w1].frontHE, edges[w2].backHE)

else if not swapped[w1] and swapped[w2] then
setNext(edges[w1].backHE, edges[w2].backHE)

else if swapped[w1] and not swapped[w2] then
setNext(edges[w1].frontHE, edges[w2].frontHE)

else // (not swapped[w1] and not swapped[w2])
setNext(edges[w1].backHE, edges[w2].frontHE)

Figure 3.7: Pseudocode for half-edge connecting of two adjacent line segments.

3.3.3 Generating rooms

After the scene was successfully split into segments and the whole half-edge
data structure was computed, the rooms can be easily detected by iterating
through the half-edge structure. To detect every room, every non-previously
processed half-edge is iterated over. From such a half-edge, the room can
be detected using the algorithm in Figure 2.6, taking the input half-edge as
the starting edge. Every edge visited is set as processed. When the original
half-edge is reached again, all the traversed vertices form a room.

During execution of this algorithm, it is also needed to test when the
polygon is in clockwise or counterclockwise order, since that would determine
whether the room represents the inner or outer surface of the room. Although
the outer surface is not typically considered a room, this paper assumes that

28

.................................. 3.3. Steps of execution

it is one, as it is generated in the same manner. For that, the Shoelace
algorithm [O’R98, p. 21] is used with pseudocode in Figure 3.8.

function IsCCW(polygon):
area = 0
for i = 0 to len(polygon) - 1 do:

x1, y1 = polygon[i]
x2, y2 = polygon[(i + 1) mod len(polygon)]
area += (x2 - x1) * (y2 + y1)

return area > 0

Figure 3.8: Pseudocode for the Shoelace algorithm for testing CW or CCW
direction of a polygon.

The result is quite important, since each room works differently depending
on whether it is an outer or inner room..Outer room has no floor, meaning it shouldn’t be triangulated. Fur-

thermore, the room that closely and fully encloses this room needs to
be detected, as that room will be a candidate for a portal connection
during the Breaking the Walls algorithm.. Inner room has a volume, so the triangulation should be calculated
correctly. The surrounding room does not need to be calculated since
this room can have only rooms inside of itself. Those inside rooms must
be the outer rooms, which are detected by themselves.

To detect the surrounding room, linecast is used to find intersections with
every wall starting at the boundary of the tested room, as it is not necessary
to test rooms lying inside of the tested room. For each intersected wall along
the line, there are two rooms. The first one lying closer to the point from
which the linecast started, the closer room, and the second lying on the
opposite side of the wall, the further room. The searched room is the one of
which the player is inside of, meaning a room that is found as closer room
without finding it as further room before, as seen in Figure 3.9. If such a room
is found, it is known that it fully encloses the currently tested room, as well
as that it is the closest fully enclosed wall. The outer rooms then remember
their surrounding rooms, and the inner rooms remember all the rooms that
are closely inside of them.

29

3. Implementation....................................

Figure 3.9: Detection of surrounding room for room A.out. Each room has inner
and outer part of itself. First inner room intersected room without having the
outer room being intersected is room B.

3.3.4 Mesh generation

After room generation, it is possible to also generate a mesh for the rooms.
The mesh is made up of two parts: walls and floor. Walls can be generated by
iterating through the vertices of the room and generating them as two vertical
triangles between two adjacent vertices. Floor, on the other hand, needs
a triangulation algorithm. For that purpose a simple ear-cutting triangulation
algorithm is used.

The ear cutting algorithm works by iterating through the vertices, while
at every step, a triangle is created from three adjacent vertices. Then, it is
tested whether any other vertex in the room lies inside this triangle. If not,
it can be called it a valid triangle and the middle vertex is removed from the
tested vertices. If a vertex is located inside this triangle, another triangle
needs to be tested. This continues until there are only three vertices, which
create the last triangle of the triangulation.

A slight difference between the standard ear-cutting algorithm is how the
point inside the triangle is detected. Usually, points that lie on the border of
the triangle are considered inside. For this algorithm, it is necessary to make
this rule a little more complex because our room allows walls without width.
Because of this, there may be a vertex on the boundary of the triangle but
theoretically on the other side of the wall. For this reason, the vertices in
one of the vertices of a triangle are not considered inside but outside and are
also accepted. This simple change allows for the triangulation of rooms with
zero-width walls.

3.4 Breaking the Walls

Breaking the Walls algorithm consists of two passes. While the first pass
only creates locally good portals, the second pass validates the result by both
deleting the non-ideal portals and creating the ideal ones.

Given a pair of half-edges on the input, a pair of points, where each of
them lies on a separate half-edge, is searched for to create a shortest portal.
The process can be simplified by finding the distance between the endpoint of
one line and the other line, which results in four cases for each pair of walls.

30

.................................. 3.4. Breaking the Walls

In addition, some constraints must be specified on these points to ensure that
a valid portal can connect them. The valid portal is a portal that does not
cross any other wall. These constraints consist of the following.. Distance has to be nonzero, since zero length portal cannot be created..The other connection point for a half-edge needs to be between the

half-edge wings (previous and next half-edge). This can be ensured by
testing the orientated angle between each of the wings, visible in Figure
3.10. Furthermore, whether the closest point lies between endpoints is
also tested, as it is necessary to ensure that the other connection point
lies on the same side as the half-edge in the case of a wall with zero
width. This step is performed for both the half-edges and their respective
connecting points.

nextprev

next = prev
Figure 3.10: Testing the position of connecting points for a half-edge. On point
lies of black line segment, the other point can only lie in the gray area.. Unfortunately, this is not enough to guarantee the validity of the portal,

as the portal can still cross some other half-edge. The example of such
a problem can be seen in Figure 3.11. As a result, the last step is using
a linecast. Linecast is performed between the pair of closest point as the
last step to ensure there is no other object between the points.

nextprev

closest point

Figure 3.11: An example of input case, where portal may be incorrectly con-
structed without using linecast.

31

3. Implementation....................................
In general, the requirements can be summarised as a function in Figure

3.12.

function isValid(halfEdgeA, pointA, halfEdgeB, pointB):
return Dist(pointA, pointB) > 0 AND

PointBetweenWings(halfEdgeA, pointB) AND
PointBetweenWings(halfEdgeB, pointA) AND
NOT LineCast(pointA, pointB);

Figure 3.12: Pseudocode for testing the valid portal between half-edges A,B.
Points A, B are the closest points on each half-edge.

3.4.1 First pass

The first pass of the Breaking the Walls algorithm creates a simple partition.
This partition is created by detecting the best portal locally. At each step
a half-edge is selected and tested against every other half-edge while looking
for a single shortest valid portal. If such a portal exists, it is created and, if
not, next half-edge is selected and the process is repeated. The end of this
step occurs when no new portal can be created.

During the algorithm, it is not necessary to test every half-edge, as most of
them may not be connected with valid portals. Since portals are generated
per room, a pair of half-edges that can be connected must lie in the same
room. That may not be enough, as during this step there are also room areas
that are split into multiple parts, such as the rooms in Figure 3.9. A valid
portal can be created between these rooms. In general, tested rooms can be
detected based on whether the original room is an outer or inner room.. Inner room. Itself. Inside rooms.Outer room.Outside room. Inside rooms of the outside room (which contains itself)

When the tested rooms are detected, one half-edge from the original room
is selected and the search for the shortest valid portal is started. Another
constraint on a valid portal is also that the length of the portal must be
shorter than the length of the next half-edge, which must be updated every
time the original half-edge is changed.

When a portal is created, the current room splits into one or two new rooms,
which needs to be tested again for a new potential portal. As mentioned
above, the first pass ends when no room can create a valid portal. The whole
pseudocode of the first pass can be seen in Figure 3.13.

32

.................................. 3.4. Breaking the Walls

function FirstPass(rooms):
Queue roomsQueue = new Queue(rooms)
while (roomsQueue.count > 0):

room = roomsQueue.dequeue()

testedRooms = room.GetRoomsToTest()

currentHE = room.halfEdge
do:

distance = length(currentHE.next)
bestPortal = null

foreach otherRoom in testedRooms:
testedHE = otherRoom.halfEdge
do:

portal =
FindClosestPortal(currentHE, testedHE)

if portal.distance < bestPortal.distance:
bestPortal = portal

testedHE = testedHE.next
while (testedHE != otherRoom.halfEdge)

if bestPortal != null:
room1, room2 = CreatePortal(bestPortal)
roomsQueue.enqueue(room1)
roomsQueue.enqueue(room2)

currentHE = currentHE.next
while (currentHE != room.halfEdge)

Figure 3.13: Pseudocode for the first pass of Breaking the Walls algorithm. The
first pass generates partition by creating portals between two valid half-edges.

After completion of the first pass, there may still be some outer rooms that
are not connected to any other room, such as the room in Figure 2.17. Every
outer room needs to be connected, so that the validation pass does not need
to connect to multiple rooms as in the case of the first pass. For that purpose,
the first pass is executed for outer rooms again, while testing only against
other rooms, not itself, to force a connection while allowing a portal of any
size to be created. As before, the algorithm continues until there is no new
portal possible, which in this case is when all outer rooms are connected and
only inner rooms are left.

33

3. Implementation....................................
3.4.2 Second pass

Second pass or validation pass is a refinement of the first initial pass. Com-
pared to the local approach of the first pass, which is looking for the best
portal for a half-edge, the second pass looks for the best portal for the whole
room. The same as in the first pass, the new portal is detected per room, but
this time only the chosen room is tested, as no valid portal can be created
with any of the other rooms.

First, the portals created before are tested, whether they are good enough
for the partition, which is determined by comparing the length of the portal
with the length of the whole room. The portal is valid if:

Room length
Portal length > Portal ratio

With a smaller portal ratio, more portals and denser partitions will be
generated. If a portal is deemed invalid, it is deleted from the structure, the
rooms it splits are connected, and the new room is added again for validation.
The pseudocode for this step can be seen in Figure 3.14.

function SecondPassDelete(room):

portals = room.GetPortals()
roomLength = room.GetLength();

foreach portal in portals:
if roomLength / portal.length < portalRatio:

mergedRoom = portal.Delete()
AddToTestingQueue(mergedRoom)
return

Figure 3.14: Pseudocode for the first part of the second pass of Breaking the
Walls algorithm, which removes invalid portals.

If there are no invalid portals, new valid portals can possibly be added. Such
a portal needs to be found in a way similar to the first pass, but compared
to the first pass, there are some differences. First, only two consecutive half-
edges that have a right turn are tested, or in other words, share an orientated
angle larger than 180 degrees. Another difference is that the algorithm does
not stop when a valid portal is found, but continues until it tests every pair
of half-edges in a single room. Then only the best portal is accepted. If there
is no such portal, the algorithm ends. The pseudocode for the detection of
new portals can be seen in Figure 3.15.

Although the algorithm will find the best portal for a single room, it may
still not be a valid one, as it could break the length requirement. For that
reason, it is necessary to test every portal for its validity before accepting it as

34

.................................. 3.4. Breaking the Walls

function SecondPassAdd(room):
currentHE = room.halfEdge
bestPortal = null

do:
if hasRightTurn(currentHE, currentHE.next):

testedHE = currentHE

do:
portal =

FindClosestPortal(currentHE, testedHE)
if portal.distance < bestPortal.distance:

bestPortal = portal

portal =
FindClosestPortal(currentHE.next, testedHE)

if portal.distance < bestPortal.distance:
bestPortal = portal

testedHE = testedHE.next
while (testedHE = currentHE)

currentHE = currentHE.next
while (currentHE = room.halfEdge)

if bestPortal != null:
room1, room2 = CreatePortal(bestPortal)
roomsQueue.enqueue(room1)
roomsQueue.enqueue(room2)

Figure 3.15: Pseudocode for the second part of the second pass of Breaking the
Walls algorithm, which generates the best valid portal in the whole room.

a possible candidate. This can be simply tested by calculating the lengths of
the two rooms to which this room would be split by such a portal. However,
calculating the lengths for each portal can be ineffective since the same values
would be calculated every time. It is useful to precompute the portal distance
at each half-edge to quickly recompute the new lengths. The idea behind
this computation can be seen in Figure 3.16. If the portal in the figure was
being created, the new room length can be simply calculated by getting the
distance between half-edges 1 and 3 and adding to it the portal length and
the distance along the half-edges of 1 and 4, which is known from the portal
calculation. Then if the new portal has a valid length, it can be considered
a candidate for a newly created portal. Obviously, the new portal must be
valid for both created rooms, so the other room is also tested.

35

3. Implementation....................................
0 1

2

3
4

5

Figure 3.16: Computation of length of a split room. The algorithm calculates
distance of each point from the selected point (0). Then the length of split
room can be calculated as: (distance of 3 - distance of 1) + distance of portal
along lines 1 and 4 + portal length. The gray lines represent distances for each
vertex.

3.5 Potentially visible sets

Final step of the algorithm is the generation of potentially visible sets. An
approximate algorithm based on line casting between portals is used to
determine their visibility. A graph is built over the partition by detecting
which rooms are visible from the selected room. The idea of the PVS algorithm
is to recursively test the visibility of portals. Whether a portal along the path
is visible, the room on the other side of the portals is added to the PVS of
the tested room, and all the portals in the room added to be tested against.
The pseudocode can be seen in Figure 3.17.

function GenerateRoomPVS(room):
PVS[room].Insert(room)

Queue portalQueue = new Queue()
foreach p in room.portals:

portalQueue.enque([p, p])

while (roomQueue.count > 0):

portalFrom, portalTo = portalQueue.deque()
if portalTo.toRoom NOT IN PVS[room] AND

TestVisibility(portalFrom, portalTo):

PVS[room].Insert(portal.toRoom)

foreach p in portalTo.toRoom:
portalQueue.enque[portalFrom, p]

Figure 3.17: Pseudocode for the recursive generation of PVS for a single room.

36

.................................... 3.6. Usage for 3D

The visibility test is a necessary part of the function. The result indicates
whether there are any obstacles, walls in our example, in the way. In our
case, a simple approximate line cast from points lying on one portal to point
lying on the second portals is performed casting a predefined amount of rays
along the portals at uniform distance.

After the generation of the PVS, the resulting visible rooms can be easily
given for every room. To detect in which room user lies, a ray cast is executed,
which returns the room. The PVS is then returned as a list of rooms that
the user can potentially see.

3.6 Usage for 3D

This algorithm is intended for a 2D scene made from lines, but it would be
ideal if there were a way to also use it for a 3D scene in such a way that the
3D scene could be transformed into 2D, a PVS partition being generated and
mapped back to the 3D scene.

The first necessary step would be to project a 3D model into a 2D one.
Techniques like orthographic projection from above would probably be most
useful, as the walls for PVS generation are most likely vertical. This may
bring it’s problems, as other problems as if the 3D mesh contains other objects,
such as furniture, since those objects would also be projected. It is necessary
to preprocess them, so they do not show in the model either by manually
hiding them or possibly distinguishing them from walls by their space, such
as the furniture would be shorter or overall smaller than the architecture.
A different approach, the one this thesis used for preprocessing the models, is
to intersect the models with a horizontal plane. By intersecting the model
at the correct height, ideally where there is no furniture, the correct floor
plan can be quickly generated. While it is a simple and easily controllable
approach, as it may contain less unnecessary objects, it is not ideal for dense
scenes or scenes with different room heights, as a more complex objects for
intersecting would be necessary.

All of the mentioned projection techniques are still not perfect, as the
projection may leave errors such as duplicated or parallel edges, which are
necessary to be fixed before generating the PVS partition. When the valid lines
are created, the PVS partition can be generated using this thesis algorithm.

The last step is to assign the separate PVS cells to the geometry of the 3D
mesh. A way to do it may be to use the orthogonal projection from the first
step. As PVS cells are considered 2D polygons, they can be tested to see
which cell a piece of geometry belongs after it has been projected in 2D. By
simplifying this 3D problem into 2D, the cell in which the geometry belongs
may be detected noticeably faster than in 3D. Each piece of geometry will
then know which cell it belongs to and during the rendering it may be decided
not to be rendered based on PVS of the currently entered cell.

This process may not be the best, as there may be problems with geometry
at some steps. The process would largely depend on the 3D model, but the
idea may, with some additional refinement, work.

37

38

Chapter 4
Results

The algorithm was tested on six scenes. Three of those scenes were extracted
from 3D models, namely, Vienna, Pompeii, and Soda. As the algorithm is
capable of loading wall from file line by line, the floor plan was needed to
be extracted first. This extraction was performed by bisecting the models
in Blender, a 3D modelling software. The result of the bisect were lines
representing the floor plan. All of these scenes still had multiple inaccuracies
after extraction, such as parallel intersecting walls, so algorithms such as Merge
by distance, which merges close vertices or Decimate simplifying geometry
were used. The scene FEL was created by hand based on the first floor of
the Czech Technical University in Prague, situated at Technicka 2. Lastly,
scenes Cross and Houses were generated using a simple Python script.

Cross Houses FEL

Vienna Pompeii Soda Hall

Table 4.1: Preview of tested scenes.

Each scene was tested with multiple values with different algorithm pa-
rameters. The common parameter for every test is the width of the wall as
0.01, as this parameter can slightly change the partition. These values and
measured results can be seen split in the following tables based on the phase

39

4. Results
of the algorithm described in previous chapter. The input images for every
scene can be seen in the table 4.1. This chapter will contain only images
of three selected scenes (FEL, Vienna, Soda). All scenes can be seen in the
appendix A, where all values and images can be found split based on the
scenes compared to the values divided by algorithm phases described here.

4.1 Half-edge structure

First phase of algorithm consists of splitting the walls into segments and
creating the half-edge data structure. The measured values in table 4.2 consist
of:.Walls: The amount of walls in the input.. Edges: The amount of wall segments created, each representing two

half-edges..Rooms: The amount of rooms created.. Intersections: The number of times intersections were calculated for
a single wall..Time: The calculation time of the half-edge structure.

The calculated half-edge data structure can be seen in table 4.3. There are two
types of scenes, the first type that was created by hand (FEL) or extracted
from a 3D model (Vienna, Pompeii, Soda). These scenes contain barely any
wall intersections, as the model was already separated into non-intersecting
lines. For that reason, the number of edges is close to the number of input
walls. On the other hand, scene like Cross was procedural generated, so it
contains many intersecting lines, meaning many of the input wall needed to
be split into segments, hence the larger amount of edges in the data structure.
The same applies to the intersection value, since this value must be bigger
than the input wall value, since each wall must be tested for intersection at
least once, but must be lower than the number of edges, since every edge can
only be tested a maximum of once. The computation time does not depend
as much on the input walls as on the amount of edges or intersections created.

Scene Walls Edges Rooms Intersections Time (s)
Cross 97 163 48 136 0.0799

Houses 104 104 52 104 0.05927
FEL 299 300 11 300 0.1899

Vienna 658 660 186 659 0.437
Pompeii 755 758 229 757 0.4783

Soda Hall 759 777 142 768 0.499

Table 4.2: Amount of geometry and computation time for the half-edge structure
generation.

40

.................................. 4.1. Half-edge structure

Input walls Calculated half-edges Resulting rooms

FEL

Vienna

Soda Hall

Table 4.3: Resulting half-edge partitions and resulting rooms. Red and blue
arrows represent next half-edge of front and back half-edge for each wall. Green
represents the direction of a wall.

41

4. Results
4.2 Breaking the Walls algorithm

Next step is the Breaking the Walls algorithm. As stated above, the algorithm
has two passes. The first pass generates a simple partition by creating portals,
which the second pass validates by both deleting invalid portals and creating
new portals into a final one. The portal ratio for the validation pass was 3.
The values measured in the table 4.4 are:.P1 Ptl+: Number of portals created in the first pass of the algorithm..Time P1 (s): The calculation time of the first pass.. P2 Ptl-: Number of portals deleted in the second pass of the algorithm.. P2 Ptl+: Number of portals created in the second pass of the algorithm..Time P2 (s): The calculation time of the second pass.

The first pass usually creates a large number of portals. As seen in the
table, the large amount, usually around 60-70%, of those portals stays in the
partition. It should be noted that those portal created in the first pass may
not be the best ones, as they are only good enough to be in the partition
based on the portal ratio selected. These portals were created as the best of
the local area, meaning the best from one half edge. If the algorithm were
looking for a globally best portal, meaning the best between every pair of
half-edges, the partition would most likely look different, but the generation
would take noticeably longer time. Although exact values of the optimal
partition were not measured, as the algorithm would need a change, the time
would change from O(n2) to O(n3). Although the validation pass also has
the complexity of O(n3), the n in this case is considerably lower, due to the
first pass splitting large rooms into smaller ones.

Scene P1 Ptl+ Time P1 (s) P2 Ptl- P2 Ptl- Time P2 (s)
Cross 135 0.2859 52 26 0.06401

Houses 123 0.1689 18 7 0.01673
FEL 492 0.5234 51 83 0.1546

Vienna 921 2.2373 316 121 0.33531
Pompeii 397 1.5192 162 82 0.8029

Soda Hall 481 1.3293 137 142 0.40878

Table 4.4: Created and deleted portals for each Breaking the Walls algorithm
phase as well as their computation times.

42

............................. 4.2. Breaking the Walls algorithm

The generated partition of both passes can be seen in the table 4.5. The
partition for different values of the ratio of the portal to room size, used in
the validation, can be seen in the table 4.6.

Rooms First BtW pass Second BtW pass

FEL

Vienna

Soda Hall

Table 4.5: Resulting Breaking the Walls partition. Second pass with portal
ratio of 3.

43

4. Results

Ratio 3 Ratio 6 Ratio 10
FEL

Ratio 3 Ratio 6 Ratio 10
Vienna

Ratio 3 Ratio 6 Ratio 10
Soda Hall

Table 4.6: Breaking the Walls partition with different portal ratios.

44

................................. 4.3. Potentially visible set

4.3 Potentially visible set

The last step of the algorithm is the generation of potentially visible sets. As
PVS during run-time only returns precomputed values, only on the generation
of PVS itself is tested and measured. Since PVS generation is approximate,
being sampled by a number of rays, the times of generation closely depend on
the number of rays. As seen in Figure 4.1. The times were tested for amounts
of 10, 30, 60, 100 and 250 rays.

Ti
m

e
(s

)

0

1

2

3

4

5

50 100 150 200 250

Cross Houses FEL Pompeii Soda Vienna

Figure 4.1: PVS generation time depending on amount of rays. The tested
values were 10, 30, 60, 100, 250.

From the figure it can be noticed that the time is nearly linear to the
amount of tested rays. It can also be noticed that scenes differ in how quickly
the time rises, such as scenes Vienna and Cross. The scene Vienna rises
considerably faster than the scene Cross. The main reason for this is the
number of rooms and portals in the resulting partition. The Cross scene
contains only 109 portals compared to the 726 portals of the Vienna scene.
Since there are more portals, the visibility test will be tested many more
times, resulting in an increase in computation time. In addition, there are
other reasons, such as how the scene is open. An example of this are scenes
Cross and Pompeii. These scenes have similar time, even if the Cross scene
has 109 portals and Pompeii 317. Although one could assume that the scene
Pompeii would take longer to generate PVS, the times are very close. The
reason lies in the layout of the scenes. The scene Pompeii is mostly closed,
meaning that most of the rooms will have very small PVS that does not need
to be tested for very long. On the other hand, the scene Cross is very open,
so more visible rooms need to be tested. In general, both the number of
portals and the layout of the scene are important factors that determine the
computation speed of PVS generation.

The PVS quality is determined by how much area is visible from a selected
cell compared to the whole scene. The less visible area that is detected, the
smaller part of the scene must be rendered. For that reason, the two main

45

4. Results
parameters tested are the average visible area (see equation 4.1)∑

visibleArea
roomAmount · totalArea (4.1)

and the average weighted visible area (see equation 4.2),

∑ (roomArea
totalArea · visibleArea

totalArea

)
(4.2)

where the values are summed over all cells in the partition. While the average
visible area on describes how much percent of the scene is visible from any
scene on average, the weighted visible area takes into account the size of the
tested cell while calculating the average. The value of weighted average range
from zero to one, where zero indicates that every cell visibility is only that
cell itself and one indicates that every cell can see whole scene. Both the
average and weighted areas can show how much a scene is opened. For scenes
such as houses, which have a high percentage of the average area, it can be
assumed that it is very open. On the other hand, a scene like Vienna should
have many cells that can see very little. The measured values can be seen in
Table 4.7. Furthermore, examples of PVS of a selected cell for selected scenes
can be seen in Table 4.8.

Ratio 3 Ratio 6 Ratio 10
Scene Area AreaW Area AreaW Area WArea
Cross 26.64% 0.3 30.45% 0.41 31.85% 0.44

Houses 20.01% 0.16 21.17% 0.21 19.37% 0.24
FEL 6.65% 0.25 8.29% 0.37 8.34% 0.44

Vienna 2.76% 0.06 3.51% 0.08 4.38% 0.09
Pompeii 4.07% 0.06 3.19% 0.064 2.39% 0.74

Soda Hall 3.64% 0.13 3.34% 0.17 3.27% 0.21

Table 4.7: Tested values of Potentially visible set for different portal ratios.

After the PVS is generated, there are multiple ways it can be used. The
first is the intended use as a tool to decrease rendering times by hiding the
non-visible objects. That is a simple optimisation technique, but it is only
useful for a first-person application. If the application was used for some
strategy or building game from a third-person view, this would not be useful.
On the other hand, for these types of game, the PVS can find its own purpose.
Let us say there is a game that lets you build and decorate buildings. The
whole application, not just the PVS, would be very useful for such a task.
Not only can a user create a building, it can also generate a PVS partition,
which would be useful for queries such as detecting in which room an object
lies. There may be a mechanic for which some objects need to lie in specific
rooms. A PVS partition can then be used for a quick query, where it is not
necessary to test against a whole room, but only a small part.

46

................................. 4.3. Potentially visible set

FEL

Vienna

Soda Hall

Table 4.8: Resulting PVS for selected (red) cells. The visible cells are shown as
light red cells.

47

4. Results
4.4 Final time

The graph 4.2 represents separate times of the partition. Each column consists
of times for half edge generation, Breaking the Walls first and second passes,
and PVS creation, as well as the total summed time. Furthermore, these
number values can be seen in Table 4.9.

It can be seen that the amount of input walls is not the main identification
of the computation time. Scene Vienna, while having fewer walls than the
Pompeii or Soda Hall scene, has the computation time higher. The main
reason is the Breaking the Walls algorithm. The scene Vienna has many long
walls that are close to each other. The way the Breaking the Walls algorithm
works is by connecting close walls, which results in creating many portals
and a longer computation time.

Ti
m

e
(s

)

0

1

2

3

4

Cross Houses FEL Vienna Pompeii Soda Hall

PVS BtW P2 BtW P1 HE

Figure 4.2: Resulting times of the partition, split into half edge generation,
Breaking the Walls first and second pass and PVS generation.

Scene HE BtW1 BtW2 PVS Total
Cross 0.0799 0.286 0.064 0.08 0.51

Houses 0.059 0.169 0.167 0.14 0.385
FEL 0.1899 0.5234 0.155 0.135 1

Vienna 0.437 2.237 0.335 0.762 3.77
Pompeii 0.478 1.519 0.803 0.116 2.92

Soda Hall 0.498 1.329s 0.409 0.327 2.24

Table 4.9: All measured times of the algorithm in seconds, along with the total
time.

48

.................................. 4.5. Local modification

4.5 Local modification

Additionally to the partition generation a local update of this partition was
also implemented. In this way, the used can change a wall without having to
recalculate the whole partition. The local update can change the Breaking
the Walls partition only in a local area by first removing the selected wall and
then inserting it at a different place. By using this, all unchanged walls do
not change inside of the partition, and only the changed ones are recalculated.
Note that the potentially visible sets are not updated. The reason being
that a simple change can drastically change the potentially visible sets, and
recalculation would be complicated.

The average time for a local update can be seen in the table 4.10 compared
to the total time for the half-edge data structure and the generation of the
Breaking the Walls partition.

Scene Total Local update
Cross 0.43 0.038

Houses 0.24 0.01
FEL 0.87 0.024

Vienna 3 0.086
Pompeii 2.8 0.19

Soda Hall 2.24 0.11

Table 4.10: Total time for half-edge data structure and Breaking the Walls
partition generation compared to the local update. Potentially visible sets
generation is not part of the total time.

49

50

Chapter 5
Conclusion

The goal of the thesis was the implementation of the Breaking the Walls
algorithm used for generation of Cells and Portals partition. For that purpose
different data structures and Cells and Portals implementation were explored.
Next, the algorithm for both the half-edge data structure used by the Breaking
the Walls algorithm and the Breaking the Walls algorithm itself was then
proposed and implemented in the Unity engine. The implementation also
contained a feature for a local edit of the partition without the need to
generate it from the beginning. Lastly, the implementation was evaluated on
six different scenes for its time complexity and different measured values.

Although there were some problems during implementation, such as mul-
tiple stages of valid portal detection, which changed many times during
implementation, the algorithm prototype was able to generate a complex
Cells and Portals partition, as well as valid potentially visible sets. The
local change was also completed successfully, as the measured times showed
considerable improvement in the time it took to update the partition instead
of generating it from the beginning. While the algorithm isn’t able to process
every scene, since some scene with degeneracies such as multiple parallel
overlapping walls or very close walls, can cause errors, most of the scenes
very computed correctly. The application in Unity allowed easy control over
the algorithm and the scene itself, as it allowed editing, deleting, and saving
scenes.

Some possible expansions of this work could contain different types of
half-edge generations, as this one was based on the Unity physics engine
instead of building a dynamic data structure. Or possibly a better detection of
valid portal placement between two half-edges. The current implementation
is valid, as it created a valid portal and does not create too many of them,
which would be deleted in the validation pass, but a different approach to
creation could be more beneficial.

Overall, the implementation was a success, as it brought a dynamic algo-
rithm for generation of Cells and Portals and potentially visible sets, which
can be used for additional games, as the prototype was implemented in the
Unity game engine.

51

52

Bibliography

[AAM04] Ulf Assarsson and Tomas Akenine-Möller, Occlusion culling and
z-fail for soft shadow volume algorithms,” the visual computer,
The Visual Computer 20 (2004), 601–612.

[Air90] John M. Airey, Increasing update rates in the building walk-
through system with automatic model-space subdivision and po-
tentially visible set calculations, Ph.D. thesis, NORTH CAR-
OLINA UNIV AT CHAPEL HILL DEPT OF COMPUTER
SCIENCE, 1990.

[Bau72] Bruce G Baumgart, Winged edge polyhedron representation,
Stanford University Stanford, California, 1972.

[BJL+16] Richard Bormann, Florian Jordan, Wenzhe Li, Joshua Hampp,
and Martin Hägele, Room segmentation: Survey, implemen-
tation, and analysis, 2016 IEEE International Conference on
Robotics and Automation (ICRA), 2016, pp. 1019–1026.

[COCS01] Daniel Cohen-Or, Yiorgos Chrysanthou, and Cláudio Silva, A
survey of visibility for walkthrough applications, Proceedings of
SIGGRAPH (2001).

[HDS03] D Haumont, O Debeir, and F Sillion, Volumetric cell-and-portal
generation, Comput. Graph. Forum 22 (2003), no. 3, 303–312
(en).

[HvDM+13] John F. Hughes, Andries van Dam, Morgan McGuire, David F.
Sklar, James D. Foley, Steven Feiner, and Kurt Akeley, Computer
graphics: Principles and practice, 3 ed., Addison-Wesley, Upper
Saddle River, NJ, 2013.

[Ket23] Lutz Kettner, Cgal 5.6 - halfedge data structures: User manual,
Jul 2023.

[LCCO03] A. Lerner, Y. Chrysanthou, and D. Cohen-Or, Breaking the walls:
scene partitioning and portal creation, 11th Pacific Conference
on Computer Graphics and Applications, 2003. Proceedings.,
2003, pp. 303–312.

53

5. Conclusion......................................
[LG95] David Luebke and Chris Georges, Portals and mirrors: Simple,

fast evaluation of potentially visible sets, Proceedings of the 1995
Symposium on Interactive 3D Graphics (New York, NY, USA),
I3D ’95, Association for Computing Machinery, 1995, p. 105–ff.

[LH03] Sylvain Lefebvre and Samuel Hornus, Automatic Cell-and-portal
Decomposition, Tech. Report RR-4898, INRIA, July 2003.

[MB90] F MEYER and Serge Beucher, Morphological segmentation,
Journal of Visual Communication and Image Representation -
JVCIR 1 (1990), 21–46.

[McG00] Max McGuire, The half-edge data structure, Website:
http://www. flipcode. com/articles/article halfedgepf. shtml
(2000).

[OP13] R. Oliva and N. Pelechano, NEOGEN: Near optimal genera-
tor of navigation meshes for 3D multi-layered environments,
Computers & Graphics 37 (2013), no. 5, 403–412.

[O’R98] J. O’Rourke, Computational geometry in c, Cambridge Tracts
in Theoretical Computer Science, Cambridge University Press,
1998.

[Tel92] Seth Jared Teller, Visibility computations in densely occluded
polyhedral environments, Ph.D. thesis, EECS Department, Uni-
versity of California, Berkeley, Oct 1992.

[Tót05] Csaba D Tóth, Binary space partitions: recent developments,
Combinatorial and Computational Geometry 52 (2005), 525–
552.

[vdPS99] Michiel van de Panne and A. James Stewart, Effective compres-
sion techniques for precomputed visibility, Eurographics Work-
shop on Rendering, June 1999, pp. 305–316.

54

Appendix A
Additional Test Results

This chapter contains all the results of the tests compacted into separate
sections based on the scene. Compared to the information presented in the
results chapter, where all the data was written in order of execution of the
algorithm, this chapter contains the data separated by scenes together. In
addition, images of scenes not presented before can be seen.

The tested values are the same as in the result chapter, ranging from the
number of input walls Walls, amount of newly generated Edges, Rooms, the
amount of intersected executed Intersections and time Time for half-edge
data structure. Portal[+,-] for portals added or removed during P[1,2] first
or second pass. Average visible area Area and weighted average area AreaW
for portal ratio Ratio[3,6,10] and lastly measured times for each parts of the
algorithm additionally with local edit of one input wall Edit.

55

A. Additional Test Results
A.1 Cross

The Cross scene was created by a simple Python script by generating random
length line segments with spaces between them in a grid-like pattern.

Cross
Half-edge data structure

Walls Edges Rooms Intersections Time (s)
97 163 48 136 0.0799

Breaking the Walls
Portal+ P1 Time P1 (s) Portal- P2 Portal+ P2 Time P2 (s)

135 0.2859 52 26 0.06401
Potentially visible sets

Ratio 3 Ratio 6 Ratio 10
Area AreaW Area AreaW Area WArea

26.64% 0.3 30.45% 0.41 31.85% 0.44
Total times

HE BtW1 BtW2 Total Edit PVS
0.0799 0.286 0.064 0.8 0.039 0.08

Table A.1: Measured values for scene Cross

56

..A.1. Cross

Input Half-Edge Rooms

Rooms BtW first pass BtW validation pass

Breaking the Walls validation pass - ratio 3, 6, 10

PVS Examples

Table A.2: Step-by-step partition of scene Cross.

57

A. Additional Test Results
A.2 Houses

The Houses scene was also created by a Python script as squares with random
point offset in a grid-like pattern. This scene simulates the algorithm’s
behaviour in a sparsely developed area.

Houses
Half-edge data structure

Walls Edges Rooms Intersections Time (s)
104 104 52 104 0.05927

Breaking the Walls
Portal+ P1 Time P1 (s) Portal- P2 Portal+ P2 Time P2 (s)

123 0.1689 18 7 0.01673
Potentially visible sets

Ratio 3 Ratio 6 Ratio 10
Area AreaW Area AreaW Area WArea

20.01% 0.16 21.17% 0.21 19.37% 0.24
Total times

HE BtW1 BtW2 Total Edit PVS
0.059 0.169 0.167 0.14 0.01 0.14

Table A.3: Measured values for scene Houses

58

....................................... A.2. Houses

Input Half-Edge Rooms

Rooms BtW first pass BtW validation pass

Breaking the Walls validation pass - ratio 3, 6, 10

PVS Examples

Table A.4: Step-by-step partition of scene Houses.

59

A. Additional Test Results
A.3 FEL

This scene was created by hand based on the first floor of the Czech Technical
University in Prague, located at Technicka 2.

FEL
Half-edge data structure

Walls Edges Rooms Intersections Time (s)
299 300 11 300 0.1899

Breaking the Walls
Portal+ P1 Time P1 (s) Portal- P2 Portal+ P2 Time P2 (s)

492 0.5234 51 83 0.1546
Potentially visible sets

Ratio 3 Ratio 6 Ratio 10
Area AreaW Area AreaW Area WArea
6.65% 0.25 8.29% 0.37 8.34% 0.44

Total times
HE BtW1 BtW2 Total Edit PVS

0.1899 0.5234 0.155 0.868 0.024 0.135

Table A.5: Measured values for scene FEL

60

.. A.3. FEL

Input Half-Edge Rooms

Rooms BtW first pass BtW validation pass

Breaking the Walls validation pass - ratio 3, 6, 10

PVS Examples

Table A.6: Step-by-step partition of scene FEL.

61

A. Additional Test Results
A.4 Vienna

The Vienna scene is extracted from the part of the 3D model of the city of
Vienna. The extraction, as for all scenes based on 3D models, was done in
3D software Blender. The model was bisected to find the floor plan. As the
bisection returned a rough model with errors, a final floor plan was extracted
by hand and simplified.

Vienna
Half-edge data structure

Walls Edges Rooms Intersections Time (s)
658 660 186 659 0.437

Breaking the Walls
Portal+ P1 Time P1 (s) Portal- P2 Portal+ P2 Time P2 (s)

921 2.2373 316 121 0.33531
Potentially visible sets

Ratio 3 Ratio 6 Ratio 10
Area AreaW Area AreaW Area WArea
2.76% 0.06 3.51% 0.08 4.38% 0.09

Total times
HE BtW1 BtW2 Total Edit PVS

0.437 2.237 0.335 3.009 0.085 0.762

Table A.7: Measured values for scene Vienna

62

....................................... A.4. Vienna

Input Half-Edge Rooms

Rooms BtW first pass BtW validation pass

Breaking the Walls validation pass - ratio 3, 6, 10

PVS Examples

Table A.8: Step-by-step partition of scene Vienna.

63

A. Additional Test Results
A.5 Pompeii

Pompeii scene is another scene based on a 3D model. This model is based on
the reconstruction of the city of Pompeii. The scene is only a small part of
the whole 3D model. In addition, the scene is extremely simplified, as the
original model contained many problematic parts, such as parallel lines, that
needed to be removed. The removal was automatic by simplifying the mesh
as well as by hand, as some errors remained.

Pompeii
Half-edge data structure

Walls Edges Rooms Intersections Time (s)
755 758 229 757 0.4783

Breaking the Walls
Portal+ P1 Time P1 (s) Portal- P2 Portal+ P2 Time P2 (s)

397 1.5192 162 82 0.8029
Potentially visible sets

Ratio 3 Ratio 6 Ratio 10
Area AreaW Area AreaW Area WArea
4.07% 0.06 3.19% 0.064 2.39% 0.74

Total times
HE BtW1 BtW2 Total Edit PVS

0.478 1.519 0.803 0.116 0.189 0.116

Table A.9: Measured values for scene Pompeii

64

...................................... A.5. Pompeii

Input Half-Edge Rooms

Rooms BtW first pass BtW validation pass

Breaking the Walls validation pass - ratio 3, 6, 10

PVS Examples

Table A.10: Step-by-step partition of scene Pompeii.

65

A. Additional Test Results
A.6 Soda Hall

The last scene, Soda Hall, is also generated from a 3D model based on the
Soda Hall building of the University of California in Berkeley. The scene is
extracted from the first floor of the building in the same way as the previous
3D models.

Cross
Half-edge data structure

Walls Edges Rooms Intersections Time (s)
759 777 142 768 0.499

Breaking the Walls
Portal+ P1 Time P1 (s) Portal- P2 Portal+ P2 Time P2 (s)

481 1.3293 137 142 0.40878
Potentially visible sets

Ratio 3 Ratio 6 Ratio 10
Area AreaW Area AreaW Area WArea
3.64% 0.13 3.34% 0.17 3.27% 0.21

Total times
HE BtW1 BtW2 Total Edit PVS

0.498 1.329s 0.409 2.237 0.106 0.327

Table A.11: Measured values for scene Soda Hall

66

......................................A.6. Soda Hall

Input Half-Edge Rooms

Rooms BtW first pass BtW validation pass

Breaking the Walls validation pass - ratio 3, 6, 10

PVS Examples

Table A.12: Step-by-step partition of scene Soda Hall.

67

68

Appendix B
User Manual

The application was implemented in Unity 2022.3.4f1. It may not work
properly in other versions. To open the app, it is recommended to use Unity
Hub, from where users can easily manage Unity projects. To select the project,
the user needs to select the Add button and choose the project folder. The
project will then show and can be opened just by clicking on it.

The application contains multiple folders for scripts, material, etc. For the
user, the only necessary folder is folder Scenes, which contains the tested
scenes, as well as an empty scene Empty, which is an empty scene only with
the algorithm controller. As stated before, the algorithm has two run options,
in the editor or at run-time. These options will be explained individually as
they have different controls, while allowing the same algorithm execution.

B.1 Editor mode

In editor the main object is RoomDetectorController, which can be found in
scene hierarchy. If the scene does not contain one, it can be added by right-
clicking the hierarchy or in the menu bar in the GameObject. Then in both
ways, it can be added by choosing the option RoomDetect/RoomController.
None that scene cannot contain two controllers, as one would stop working.

To add a new input wall, the user needs to find the InputWall button,
which is located in the same path as the room controller. From there it is
possible to select either of the wall vertices and move them.

69

B. User Manual.....................................
After selecting the controller object, a window will appear in the inspector,

visible in Figure B.1. This window contains values for the algorithm, as well
as buttons that start the different parts of the algorithm.

Figure B.1: The room detection controller window used in editor mode.

B.1.1 Parameters

The first part of the window is the algorithm parameters, visible in Figure B.2.
These are Portal ratio used for Breaking the Walls algorithm seconds pass,
amount of PVS Rays which are used to sample the visibility of potentially
visible sets and Wall width representing the width of the shown walls. Note
that the Wall width is tied to the algorithm, as the width of the walls depends
on which walls are considered as intersected. With a bigger Wall width the
algorithm can give incorrect results, which is why it is recommended to keep
the number low. The next parameter is Automatically update toggle, which, if
activated, allows the algorithm to update the partition locally when any input
wall is changed. Note that the automatic update will update the partition by
completing the Breaking the Walls partition. If used before the algorithm
finishes, such as after the half-edge generation phase, it will automatically
complete it. Also, by selecting the vertex, the wall will get removed from the
structure, and by deselecting the vertex, it will get added back. In the editor
mode, only the first selected wall vertex will be updated. Last parameter is
Show input walls which if togged will either hide or show the input wall of the
algorithm. The walls are automatically hidden after the half-edge generation

70

.....................................B.1. Editor mode

phase, after which they are not used anymore. The user can reveal them to
update the partition locally.

Figure B.2: Parameters in the controller window.

B.1.2 Preprocess

The next set of buttons is for the algorithm itself. The first button is Validate
Input Walls for preprocessing. The input may contain parallel walls, which
are illegal and would most likely break the algorithm. This button attempts
to merge the overlapping walls into one. Additionally, it will also merge
parallel adjacent lines into one to eliminate unnecessary calculations during
the half-edge generation step. Note that this algorithm may not detect all
input problems and the partition may still be generated incorrectly.

B.1.3 Algorithm execution

The next set of buttons is for different steps of the whole algorithm. The
button Generate whole partition is used to execute all the steps of the
algorithm at once, except the PVS. For a step-by-step update, the user can
use buttons Intersect walls, Detect rooms, Detect Breaking the Walls partition,
Validate Breaking the Walls partition, which all represent the different steps,
all visible in Figure B.3

Figure B.3: Algorithm execution in the controller window.

PVS can be generated using the Generate PVS. It’s visualisation can be
controller by the user using the Automatically update PVS to show PVS of the
room in which the object chosen in Player character for PVS is continually

71

B. User Manual.....................................
or just once using the Show current PVS button. The PVS is shown as red
tinted rooms, where the selected rooms is red and the visible rooms light red.
An example of this can be seen in Figure B.4.

Figure B.4: Example of a visualised PVS of a room. Dark red is selected room,
light red are visible rooms.

B.1.4 Mesh generation

The next button is Generate room mesh for mesh generation since room mesh
is not automatically generated until PVS is created, as the algorithm does
not use it for anything. Note that the room mesh can be deleted at any step
of the Breaking the Walls algorithm.

B.1.5 Structure deletion

Another set of buttons, which can be seen in Figure B.5, is used to remove
the structure. The buttons Delete everything and Delete mesh are to remove
the structure or just the mesh in particular. Furthermore, the user can toggle
the Randomise input walls on deleting field to change the order of the input
walls that the algorithm takes. This may change the resulting partition and
sometimes help with the algorithm, as some input order may work better
than another.

Figure B.5: Visual and deletion functions in the controller window.

72

................................... B.2. Run-time mode

B.1.6 Input and output

Input and output (I/O) functions, visible in Figure B.6, are used to load and
save walls on the input. The user needs to input the save path in the Path
field. This path can be either absolute or relative to the project folder. Then
the buttons Load/Write walls can be used to load or write the walls in a scene
in/from a file. During file loading, the user can toggle the Reset walls button
to delete all walls in the scene and replace them with those in the input file.

Figure B.6: I/O functions in the controller window.

B.2 Run-time mode

Similar to the editor mode, the run-time mode is also controlled by a set of
buttons. These buttons are embedded in the scene user interface and can be
controlled in the same way. The UI can be seen in Figure B.7.

Figure B.7: The UI controller for the run-time mode.

The buttons have the same function as the ones in the editor controller
described in the previous chapter. The main difference between the editor
mode is first the controls. The user can move around the scene using the
wasd keys and mouse. To rotate the camera, it is necessary to press the
right mouse button. All buttons can be controlled simply with the mouse.
The other difference is in PVS visualisation, compared to the selected object,
which was used in edit mode, in execution mode the user can simply point
on the room to show it’s PVS. To automatically see PVS, it is necessary to
toggle the Auto PVS option.

73

B. User Manual.....................................
The run-time mode currently does not contain all the buttons of edit mode,

as the amount of the button would be overwhelming, so only the necessary
ones are chosen.

To add a new input wall to the scene, the user must press a Q key to place
the starting vertex. While still holding the Q button, the other vertex can
be moved before it is placed again. The placement is finished when the user
presses the Q key. In addition, the user can easily move the wall vertices
simply by clicking and dragging them into the scene. To delete a wall, the
user needs to have one of it’s vertices selected and press Delete. The wall
with both it’s vertices will be deleted.

As it is not possible to change scenes, the user can press the Escape button
to enter a scene selection menu, where he can load the scenes which were
tested in this paper.

74

Appendix C
Content of attached medium

readme.txt Description of the content of attached medium.
src..................Archive with implementation in the Unity engine.

Assets
Scenes...............................Folder with tested scenes.
Scripts..........................Folder with algorithm scripts.

Packages
ProjectSettings

bin
RoomDetection.exe....................The executable application.

latex.zip............................Source of thesis in LATEXformat.
imgs.zip Images presenting the implementation.

75

	Introduction
	Motivation
	Goals

	Analysis
	Data structures
	Indexed triangle mesh
	Winged edge
	Half-Edge data structure

	Visibility culling
	Potentially visible sets
	From-region Cells and Portals
	Point-based Cells and Portals
	Volumetric Cells and Portals
	Voronoi segmentation
	Morphological segmentation

	Breaking the walls
	Construction using BSP tree
	Quality of the partition
	Breaking the walls algorithm
	Initial Partition
	Refinement
	Breaking the walls

	Implementation
	Interactive room detection
	Game objects
	Steps of execution
	Splitting the walls
	Calculating half-edges
	Generating rooms
	Mesh generation

	Breaking the Walls
	First pass
	Second pass

	Potentially visible sets
	Usage for 3D

	Results
	Half-edge structure
	Breaking the Walls algorithm
	Potentially visible set
	Final time
	Local modification

	Conclusion
	Bibliography
	Additional Test Results
	Cross
	Houses
	FEL
	Vienna
	Pompeii
	Soda Hall

	User Manual
	Editor mode
	Parameters
	Preprocess
	Algorithm execution
	Mesh generation
	Structure deletion
	Input and output

	Run-time mode

	Content of attached medium

