
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

Paralelní běh k-lokálních stromových automatů na GPU

Bc. Milan Borový

Ing. Štěpán Plachý

Informatics

System Programming

Department of Theoretical Computer Science

until the end of summer semester 2023/2024

Instructions

Explore frameworks and libraries for parallelization on GPU.

Adapt the PRAM algorithm for a parallel run of k-local finite tree automata [1] to run on

GPU.

Implement your algorithm, test your implementation and compare the speed of the

calculation with previously implemented algorithms for the problem.

[1] Plachý Š., Janoušek J. (2020) On Synchronizing Tree Automata and Their Work–Optimal

Parallel Run, Usable for Parallel Tree Pattern Matching. In: Chatzigeorgiou A. et al. (eds)

SOFSEM 2020: Theory and Practice of Computer Science. SOFSEM 2020. Lecture Notes in

Computer Science, vol 12011. Springer, Cham. https://doi.org/

10.1007/978-3-030-38919-2_47

Electronically approved by doc. Ing. Jan Janoušek, Ph.D. on 5 March 2023 in Prague.

Master’s thesis

Parallel run of k-local tree automata on
GPUs

Bc. Milan Borový

Department of Theoretical Computer Science

Supervisor: Ing. Štěpán Plachý

May 8, 2024

Acknowledgements

I would like to thank my family for the tremendous support during my studies.

I would also like to thank my thesis supervisor Ing. Štěpán Plachý for all the
help and patience during the creation of this thesis.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated
by the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular
that the Czech Technical University in Prague has the right to conclude a
license agreement on the utilization of this thesis as a school work under the
provisions of Article 60 (1) of the Act.

In Prague on May 8, 2024

Czech Technical University in Prague

Faculty of Information Technology

© 2024 Milan Borový. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Borový, Milan. Implementation of parallel algorithm for run of k-local tree
automata. Master’s thesis. Czech Technical University in Prague, Faculty of
Information Technology, 2024.

Abstract

This thesis implements tree pattern matching using deterministic finite tree
automata. A work-optimal parallel algorithm exists and has been imple-
mented for EREW PRAM. This algorithm will be optimized for APRAM
and ported to SIMT. Then, both new implementations will be measured ex-
perimentally and compared.

Keywords k-locality, deterministic finite tree automaton, parallel run im-
plementation, APRAM, SIMT, CUDA, GPGPU

Abstrakt

Tato práce implementuje vyhledáváńı vzorøu ve stromech za použit́ı determi-
nistických konečných stromových automatøu. Existuje popis a implementace
pracovně optimálńıho algoritmu pro EREW PRAM. Tento algoritmus bude
optimalizován pro APRAM a portován na SIMT. Poté budou tyto dvě nové
implementace experimentálně změřeny a porovnány.

vii

Kĺıčová slova k-lokálnost, deterministický konečný stromový automat, im-
plementace paralelńıho běhu, APRAM, SIMT, CUDA, GPGPU

viii

Contents

Introduction 1
Goals . 1

1 Theory 3
1.1 Basic definitions . 3

1.1.1 Graph . 3
1.1.2 Tree . 5
1.1.3 Tree language . 7
1.1.4 Tree automaton . 9
1.1.5 k-local tree automaton 10

1.2 Algorithm Complexity . 10
1.2.1 Sequential Complexity 10
1.2.2 Parallel Complexity . 11

1.3 Parallel Computation Models 12
1.4 Reduction and Scan . 15
1.5 Lists . 16
1.6 Euler Tour Technique . 17
1.7 Parentheses Matching . 19

2 Analysis and Design 21
2.1 Structures . 21

2.1.1 Array . 21
2.1.1.1 CPU . 22
2.1.1.2 GPU . 22

2.1.2 Tree . 22
2.1.2.1 CPU . 22
2.1.2.2 GPU . 23

2.1.3 Arc . 23
2.1.4 DFTA . 23

ix

2.1.4.1 CPU . 23
2.1.4.2 GPU . 24

2.2 Reduction and Scan . 24
2.2.1 Reduction . 24

2.2.1.1 Algorithms . 24
2.2.1.2 Implementations 26

2.2.2 Inclusive scan . 27
2.2.2.1 Algorithms . 27
2.2.2.2 Implementations 33

2.2.3 Exclusive scan . 33
2.2.3.1 Implementations 33

2.3 Lists . 33
2.3.1 Linked list . 33

2.3.1.1 Implementations 34
2.3.2 List ranking . 34

2.3.2.1 6-coloring . 38
2.3.2.2 3-coloring . 39
2.3.2.3 Work-optimal list ranking 39
2.3.2.4 Implementations 41

2.4 Euler Tour Technique . 42
2.4.1 Algorithms . 42
2.4.2 Implementations . 44
2.4.3 Applications . 44

2.5 Parentheses matching . 45
2.5.1 Algorithms . 45
2.5.2 Implementations . 49

2.6 DFTA run . 49
2.6.1 The main algorithm . 50
2.6.2 Depth-mod-k sort . 51
2.6.3 Step computation . 54
2.6.4 State computation . 55
2.6.5 Complexity analysis . 55
2.6.6 APRAM modification 56
2.6.7 GPGPU modification 57
2.6.8 Implementations . 57

3 Implementation 59
3.1 Libraries . 59

3.1.1 CPU . 59
3.1.2 GPU . 60

3.2 Structures . 60
3.2.1 Array . 60

3.2.1.1 CPU . 60
3.2.1.2 GPU . 60

x

3.2.2 Tree . 61
3.2.2.1 CPU . 61
3.2.2.2 GPU . 61

3.2.3 Arc . 61
3.2.3.1 CPU . 61
3.2.3.2 GPU . 61

3.2.4 DFTA . 61
3.2.4.1 CPU . 61
3.2.4.2 GPU . 62

3.3 Reduction and Scan . 62
3.3.1 Reduction . 62

3.3.1.1 CPU . 62
3.3.1.2 GPU . 62

3.3.2 Inclusive scan . 62
3.3.2.1 CPU . 62
3.3.2.2 GPU . 62

3.3.3 Exclusive scan . 63
3.3.3.1 CPU . 63
3.3.3.2 GPU . 63

3.4 Lists . 63
3.4.1 Linked list . 63

3.4.1.1 CPU . 63
3.4.1.2 GPU . 63

3.4.2 List ranking . 63
3.4.2.1 CPU . 63
3.4.2.2 GPU . 64

3.5 Euler Tour Technique . 64
3.5.1 CPU . 64
3.5.2 GPU . 64

3.6 Parentheses matching . 65
3.6.1 CPU . 65
3.6.2 GPU . 65

3.7 Run of k-local DFTA . 65
3.7.1 Run . 65

3.7.1.1 CPU . 65
3.7.1.2 GPU . 65

3.7.2 Preprocess . 66
3.7.2.1 CPU . 66
3.7.2.2 GPU . 66

4 Testing 67
4.1 System test . 67
4.2 Time measurements . 68

4.2.1 Methodology . 68

xi

4.2.2 Hardware . 68
4.2.3 Data . 69
4.2.4 Results . 69

Conclusions and Future work 73
Future work . 73

Bibliography 75

A Acronyms 77

B Symbols 79

C User manual 81
C.1 Prerequisities . 81

C.1.1 CPU . 81
C.1.2 GPU . 81

C.2 Compilation . 81
C.3 Usage . 82

D Contents of the enclosed medium 83

xii

List of Figures

2.1 Parallel reduction computation . 25
2.2 Hillis-Steele algorithm for input of size 16 28
2.3 Up-Sweep step for the input of the size 8 30
2.4 Down-Sweep step for the input of the size 8 30
2.5 Linked structure . 34
2.6 Successor array . 34
2.7 Pointer jumping . 35
2.8 (a) Euler circuit of the tree (b) Array representation of the arcs . . 43

4.1 Example pattern . 67
4.2 Evaluated example tree . 68
4.3 Results . 69
4.4 Time comparisons . 70

xiii

Introduction

Even with the rapid development of processor operation speed, overcoming
issues with big data computations is impossible and not feasible. The solution
is parallelization, as potentially slower processors (and cheaper processors)
may achieve a greater speed by splitting the work needed.

One of the problems that may greatly benefit from that is tree pattern match-
ing. Linear time complexity is feasible only in the case of relatively small
trees. When enough processors are supplied, the computation time can be
reduced substantially.

Patterns of height k can be represented by a k-local deterministic finite tree
automaton. Thus, running such an automaton for some trees can be used
to match patterns in trees. The work-optimal algorithm for that problem
was presented described[1] and implemented[2]. The original algorithm was
designed for EREW PRAM architecture, which is not usual in its pure form.

Instead, modern CPUs are close to APRAM architecture, which is more re-
laxed than EREW PRAM, offering possible optimizations. But, for mass
parallelization, GPUs seem more suitable. Modern GPUs are of the SIMT
architecture, which is similar to PRAM in some regards but has its own chal-
lenges.

Goals

There are several goals for this thesis.

The first one is to analyze the algorithm in general. Including possibilities to
implement it.

1

Introduction

The second one is to implement a run of the k-local DFTA for CPUs and
apply possible optimizations enabled by the APRAM architecture.

The third one is to implement the run for GPUs, adapting the algorithm to
the new architecture.

The fourth one is to compare mass-parallelized GPU implementation with the
CPU implementation.

2

Chapter 1
Theory

In this Chapter, all the needed theory will be presented. Starting with basics
of graph theory[3], tree languages[1] and algorithm complexity[4] through com-
putation models[4] to the definition of individual problems that are needed to
be solved to run k-local DFTA in parallel on APRAM and SIMT architectures.

All problems defined in this chapter will be analyzed in Chapter 2.

Notation in this chapter will be similar to the notation in [4] and [1] for tree
languages.

1.1 Basic definitions

1.1.1 Graph

Definition 1.1 Graph is a pair G = (V, E), where

• V is a set of elements called vertices or nodes,

• E ⊆ {{u, v} : u, v ∈ V ∧ u ̸= v} is a set of edges.

Definition 1.2 Induced subgraph G′ = (V ′, E′) of the graph G = (V, E)
is a graph such that V ′ ⊆ V and

∀u, v ∈ V ′ : {u, v} ∈ E′ ⇔ {u, v} ∈ E

3

1. Theory

Definition 1.3 Let G = (V, E) be a graph. The degree of a vertex u ∈ V
is

deg(u) := |{{u, v} : {u, v} ∈ E}| .

Definition 1.4 Path x1 − xn in the graph G = (V, E) is an nonempty
sequence of vertices x1 . . . xn, where

• ∀i ≤ n : xi ∈ V ,

• ∀i < n : {xx‘i, xi+1} ∈ E,

• ∀i, j ≤ n : i = j ∨ xi ̸= xj.

Definition 1.5 Length of the path x1 − xn is

length of x1 − xn = n− 1.

Definition 1.6 A graph in which a path exists for each pair of vertices
u, v ∈ V, u ̸= v is called connected.

Definition 1.7 Cycle in the graph G = (V, E) is the sequence of vertices
x1 . . . xn, where

• n ≥ 3,

• ∀i ≤ n : xi ∈ V ,

• ∀i < n : {xi, xi+1} ∈ E,

• ∀i, j < n : i = j ∨ xi ̸= xj,

• {x1, xn} ∈ E.

Definition 1.8 def:agraph A graph in which no cycle exists is called
acyclic.

Definition 1.9 Directed graph is a pair DG = (V, E), where

• V is a set of elements called vertices or nodes,

• E ⊆ {(u, v) : u, v ∈ V ∧ u ̸= v} is a set of directed edges.

4

1.1. Basic definitions

Definition 1.10 Let DG = (V, E) be a directed graph. The in-degree of
a vertex u ∈ V is

degin(u) := |{(v, u) : (v, u) ∈ E}| .

The out-degree of a vertex u ∈ V is

degout(u) := |{(u, v) : (u, v) ∈ E}| .

Definition 1.11 The directed path x1 − xn in the directed graph DG =
(V, E) is an unempty sequence of vertices x1 . . . xn, where

• ∀i ≤ n : xi ∈ V ,

• ∀i < n : (xi, xi+1) ∈ E,

• ∀i, j ≤ n : i = j ∨ xi ̸= xj.

Definition 1.12 Length of the directed path x1 − xn is

length of x1 − xn = n− 1.

Definition 1.13 A directed graph with a directed path for each pair of
vertices u, v ∈ V, u ̸= v is called strongly connected.

Definition 1.14 If the directed graph is not strongly connected, but an
undirected path exists for each pair of vertices, the graph is called weakly
connected.

1.1.2 Tree

Definition 1.15 Tree is an acyclic and connected graph.

Definition 1.16 Rooted tree is a tree where one vertex has been desig-
nated as the root.

Definition 1.17 Depth of the vertex u in a tree with the root r is length
of the path r − u and is denoted depth(u).

5

1. Theory

Definition 1.18 Let G = (V, E) be a tree and u, v any two vertices of G
such that {u, v} ∈ E and depth(u) < depth(v). Then u is called parent
of v denoted by parent(v), and v is called child of u. The set of children
of u is denoted by children(u).

Definition 1.19 Let G = (V, E) be a tree and u any vertex of that tree.
Then ∀v, w ∈ children(u), v ̸= w : v is called sibling of w. The set of
siblings of v is denoted by siblings(v).

Definition 1.20 Let G = (V, E) be a tree and u, v ∈ V two vertices of
that tree. Then u is called an ancestor of v if

• u = parent(v), or

• ∃w ∈ V such that u is an ancestor of w and w is an ancestor of the
vertex v.

The set of ancestors of v is denoted by ancestors(v).

Definition 1.21 Let G = (V, E) be a tree and u, v ∈ V two vertices of
that tree such that u ∈ ancestors(v). Then v is called descendant of u.
The set of descendants of the vertex u is denoted by descendants(u).

Definition 1.22 Tree G′ that is an induced subgraph of another tree G
is called its subtree.

Definition 1.23 Let G = (V, E) be a tree and u ∈ V a vertex of that
tree. The arity of u is

arity(u) = |children(u)| .

Definition 1.24 Let G = (V, E) be a tree and u ∈ V vertex of that tree.
u is called a leaf iff arity(u) = 0. u is called an inner vertex iff it’s not
a leaf. The set of leaves is denoted by leaves(G).

Definition 1.25 Ordered tree G = (V, E) is a tree such that ∀u ∈ V : children(u)
is an ordered set.

6

1.1. Basic definitions

Definition 1.26 Let G = (V, E) be an ordered tree and u, v ∈ V vertices
of that tree such that v ∈ children(u). v is called i-th child of vertex u if v
is on the i-th position of the ordered set children(u) denoted by childi(u).

1.1.3 Tree language

Definition 1.27 Alphabet Σ is a finite set of symbols.

Definition 1.28 String w over an alphabet Σ is a sequence of symbols
w1 . . . wn from the alphabet Σ.

ϵ denotes an empty string.

|w| = |w1 . . . wn| = n denotes length of string w.

The set of all strings over an alphabet Σ is denoted by Σ∗.

|w|a denotes the number of occurrences of the symbol a ∈ Σ in the string
w ∈ Σ∗.

wi denotes the i-th symbol of the string w ∈ Σ∗.

Definition 1.29 Concatenation of strings over an alphabet Σ is mapping
· : Σ∗ × Σ∗ → Σ∗ such that

a1 . . . an · b1 . . . bn = a1 . . . anb1 . . . bn.

Definition 1.30 Substring of string w over the alphabet Σ is such string
s that

∃t, u ∈ Σ∗ : w = t · s · u.

Definition 1.31 Prefix of string w over the alphabet Σ is such string p
that

∃t ∈ Σ∗ : w = p · t.

Definition 1.32 Suffix of string w over the alphabet Σ is such string s
that

∃t ∈ Σ∗ : w = t · s.

7

1. Theory

Definition 1.33 Ranked alphabet is a pair F = (Σ, rank), where

• Σ is an alphabet,

• rank is a function Σ → N0 assigning a natural number to each
symbol of the alphabet Σ.

Fr = {a : a ∈ Σ ∧ rank(a) = r} denotes subset of symbols with rank r.

Definition 1.34 The set of terms T (F ,X) over the ranked alphabet F
and the set of constants X called variables, where X ∩ F0 = ∅, is the
smallest set satisfying

• F0 ⊆ T (F ,X),

• X ⊆ T (F ,X),

• ∀r ≥ 1,∀f ∈ Fr : t1, . . . , tr ∈ T ⇒ f(t1, . . . , tr) ∈ T .

Each t ∈ T is called a term over the ranked alphabet F .

Definition 1.35 The term t ∈ T (F ,X) where X = ∅ is called a ground
term over the ranked alphabet F . The set of ground terms over the ranked
alphabet F is denoted by T (F).

Theorem 1.1 Let t = f(t1, . . . , tr) ∈ T (F ,X) be a term over the ranked
alphabed F . Then there exists an equivalent tree G = (V, E) such that

• V = {node(t)} ∪ (⋃r
i=1 V ′

i),

• E = {node(t), root(G′
i) : ∀i ∈ r̂} ∪ (⋃r

i=1 E′
i),

• node(t) denotes node representing term t,

• label(root(G)) denotes symbol f ,

• G′
i = (V ′

i , E′
i) is an equivalent tree of the term ti.

Such tree can be used to represent t.

8

1.1. Basic definitions

Definition 1.36 Ground substition σ over the set of the variables X and
the ranked alphabet F is a mapping X → T (F) assigning a ground term
t ∈ T (F) to each variable x ∈ X .

Definition 1.37 Subterm t|p of the term t = f(t1, . . . , tr) ∈ T (F ,X) at
the position p ∈ N∗

0 is

• t, iff p = ϵ,

• ti|p′, iff p = ip′.

The set of subterms of the term t is denoted by subterms(t).

Definition 1.38 Tree language over the ranked alphabet F is a set of
ground terms L ⊆ T (F).

1.1.4 Tree automaton

Definition 1.39 Deterministic finite tree automaton (DFTA) over the
ranked alphabet F is a quadruple A = (Q,F , Qf , ∆) such that

• Q is a finite set of states,

• F is a ranked alphabet,

• Qf ⊆ Q is a set of final states,

• ∆ = ⋃
r ∆r : Fr ×Qr → Q is a transition function.

Definition 1.40 Extended transition function of the DFTA A = (Q,F , Qf , ∆)
is a mapping ∆̂ : T (F)→ Q such that

• ∀f ∈ F0 : ∆̂(f) = ∆(f)

• ∀r ≥ 1, ∀f ∈ Fr,∀t1, . . . , tr ∈ T (F) : ∆̂(f(t1, . . . , tr)) = ∆(f(∆̂(t1), . . . , ∆̂(tr)))

Definition 1.41 A ground term t ∈ T (F) is accepted by the DFTA
A = (Q,F , Qf , ∆) iff ∆̂(t) ∈ Qf .

9

1. Theory

1.1.5 k-local tree automaton

Definition 1.42 Let A = (Q,F , Qf , ∆) be a DFTA and t ∈ T (F ,X) be
a term over the ranked alphabet F . Term t is called synchronizing for A
iff

∃q ∈ Q,∀σ : ∆̂(σ(t)) = q.

Definition 1.43 Minimal variable depth is a function MV D : T (F ,X) → N0
such that

• ∀f ∈ F0 : MV D(f) = +∞,

• ∀x ∈ X : MV D(x) = 0,

• ∀p > 0,∀f ∈ Fr,∀t1, . . . , tr ∈ T (F ,X) :
MV D(f(t1, . . . , tr)) = 1 + minr

i=1MV D(ti).

Definition 1.44 k-local DFTA A = (Q,F , Qf , ∆) is a DFTA such that

∀t ∈ T (F ,X) : MV D(t) ≥ k ⇒ t is synchronizing.

1.2 Algorithm Complexity

1.2.1 Sequential Complexity

Definition 1.45 Time complexity T K
A (n) of the algorithm A solving the

problem K for an input of the size n is a computer time required to run
that algorithm.

Definition 1.46 Sequential lower bound SLK(n) of the problem K is a
function such that

∀A : T K
A (n) ∈ Ω

(
SLK(n)

)
.

Definition 1.47 Best known sequential algorithm solving the problem K
is such algorithm A that there’s no known algorithm B such that

T K
A (n) ∈ ω

(
T K

B (n)
)

.

10

1.2. Algorithm Complexity

Definition 1.48 Sequential upper bound SUK(n) of the problem K is
the worst-case time complexity of the best known sequential algorithm solv-
ing K.

Definition 1.49 Optimal sequential algorithm solving the problem K is
such algorithm A that

T K
A (n) ∈ Θ

(
SLK(n)

)
.

1.2.2 Parallel Complexity

Definition 1.50 Parallel time complexity T K
A (n, p) of the parallel algo-

rithm A solving the problem K for an input of then size n using p proces-
sors is a total time elapsed from the beginning of execution until the last
processor finishes.

Definition 1.51 Parallel speedup of the parallel algorithm A solving the
problem K for an input of the size n using p processors is

SK
A (n, p) = SUK(n)

T K
A (n, p)

.

Definition 1.52 Parallel cost of the algorithm A solving the problem K
for an input of the size n using p processors is

CK
A (n, p) = p · T K

A (n, p).

Definition 1.53 Cost-optimal algorithm A is such algorithm that

CK
A (n, p) ∈ Θ

(
SUK(n)

)
.

Definition 1.54 Synchronous parallel work of the synchronous algorithm
A solving the problem K for an input of the size n using p processors in τ
parallel steps where pi denotes the number of active processors in the step
i is

W K
A (n, p) =

τ∑
i=1

pi.

11

1. Theory

Definition 1.55 Asynchronous parallel work of the asynchronous algo-
rithm A solving problem K for an input of the size n using p processors
where Ti denotes the number of steps executed by the i-th processor is

W K
A (n, p) =

p∑
i=1

Ti.

Definition 1.56 Work-optimal algorithm A is such algorirthm that

W K
A (n, p) ∈ Θ

(
SUK(n)

)
.

Definition 1.57 Parallel efficiency of the algorithm A solving the prob-
lem K for an input of the size n using p processors is

EK
A (n, p) = SUK(n)

CK
A (n, p)

.

1.3 Parallel Computation Models

Parallel computation models are split into 2 groups.

• Shared-memory models where all processors share one common memory.

• Distributed-memory models where each processor (or group of proces-
sors) has private memories and passes data through messages.

This thesis is focused on shared-memory models. Specifically MIMD APRAM
(de facto multi-core CPUs) and SIMD PRAM (de facto many-core GPUs). For
more insights, [4] is recommended.

12

1.3. Parallel Computation Models

Definition 1.58 Random Access Machine (RAM) model is a computa-
tion model consisting of a single processor with

• a bounded number of registers,

• an unbounded number of local memory cells with a user-defined pro-
gram,

• a read-only input tape,

• a write-only output tape.

The processor’s instruction set contains instructions for simple data ma-
nipulation, comparisons, branching, and basic arithmetic operations. The
program is executed from the first instruction until the HALT instruction.

Definition 1.59 Parallel Random Access Machine (PRAM) model is a
computation model consisting of multiple RAM processors p1, p2, . . . with
no input nor output tape and without a local memory.

All processors are connected to a shared memory with an unbounded num-
ber of cells M1, M2, Each processor pi knows its index i. Each pro-
cessor has constant-time access to any Mj unless access conflicts exist.

All processors work synchronously and can communicate with each other
only through writing to or reading from the shared memory. p1 has a
control role and starts execution of other processors. p1 can halt only in
case other processors halted as well.

Access conflicts mentioned in the previous definition are handled based on the
conflict-handling strategy of specific PRAM submodels.

Definition 1.60 Exclusive Read Exclusive Write (EREW) PRAM sub-
model doesn’t allow 2 processors to access the same memory cell simulta-
neously.

Definition 1.61 Concurrent Read Exclusive Write (CREW) PRAM sub-
model allows reading single memory cell from multiple processors simul-
taneously. Still, only one processor can write a single cell at a time.

13

1. Theory

Definition 1.62 Concurrent Read Concurrent Write (CRCW) PRAM
submodel allows multiple processors to read or write a single cell simulta-
neously.

The concurrent read operations don’t affect each other, but the concurrent
write operations may be ambiguous, and thus, their semantics have to be
defined.

Definition 1.63 Priority CRCW PRAM submodel has fixly prioritized
processors. Only the processor with the highest priority can complete the
write operation in case of conflict.

Definition 1.64 Arbitrary CRCW PRAM submodel allows to single ran-
domly chosen processor to complete write operation.

Definition 1.65 Common CRCW PRAM submodel allows all processors
to complete write operation, but all processors have to write the same value
(algorithm responsibility).

Another way to split computation models is based on the number of instruction
streams and input streams being processed simultaneously[5].

• Single-Instruction (SI) architectures can process only one instruction at
a time.

• Multiple-Instruction (MI) architectures can process multiple instructions
simultaneously.

• Single-Data (SD) architectures can process data from only one input
stream at a time.

• Multiple-Data (MD) architectures can process data from multiple input
streams simultaneously.

Given those SISD, SIMD, MISD and MIMD architectures are defined.

14

1.4. Reduction and Scan

Note 1.1 Modern multi-core CPUs represent the MIMD APRAM model.

Modern many-core GPUs represent the SIMD PRAM model.

Even though this model still applies to program design, GPUs are not
strictly SIMD PRAM. Threads are split into groups. Threads in a sin-
gle group operate as a SIMD PRAM (not strictly true), but multiple
groups operate as a MIMD APRAM. To avoid confusion by calling modern
GPUs SIMD even though they aren’t, new term SIMT (single-instruction
multiple-threads) was created for them.

1.4 Reduction and Scan

Definition 1.66 Let X = {x1, . . . , xn} be a finite set of values and ⊕ an
associative binary operator X ×X→ X.

The problem of finding ⊕n
i=1 xi is called a reduction and ⊕ is called a

reduction operator.

Definition 1.67 Let (xi)n
i=1 be a finite sequence of values from X and ⊕

an associative binary operator X ×X→ X.

The problem of finding a sequence (yi)n
i=1 such that

∀i ∈ n̂ : yi =
i⊕

j=1
xj

is called an inclusive scan.

Definition 1.68 Let (xi)n
i=1 be a finite sequence of values from X and ⊕

an associative binary operator X ×X→ X.

The problem of finding a sequence (yi)n
i=1 such that

∀i ∈ n̂ : yi =
i−1⊕
j=1

xj

is called an exclusive scan.

15

1. Theory

1.5 Lists

Definition 1.69 Linked list is a pair L = (X, S) where

• X is an unempty set of nodes,

• S is a successor function X → X such that

– ∃!h ∈ X,∀x ∈ X : S(x) ̸= h,
– ∃!t ∈ X : S(t) is undefined,
– S|X|−1(h) = t.

The node h is called a head and is denoted by head(L). The node t is
called a tail and is denoted by tail(L).

Definition 1.70 Let L = (X, S) be a linked list. Independent set I ⊂ X
of a linked list L is such set that

∀i ∈ I : S(i) /∈ I ∨ S(i) is undefined.

Lemma 1.1 Independent set I of linked list L can be removed from L in
parallel on an EREW PRAM.

Proof 1.1 Let L = (X, S) be a linked list and I ⊂ X its independent set.

Since ∀i, j ∈ I : S(i) ̸= j, there are no neighbouring nodes in the in-
dependent set I. Thus each node can be removed from L by re-linking
its predecessor to its successor (i.e. iff S(i) ∈ I then S(i) ← S(S(i)))
without any conflicts. □

Definition 1.71 Let L = (X, S) be a linked list and C a set of k colors
(X ∩ C = ∅). Problem of finding a mapping color : X → C such that

∀x, y ∈ X : S(x) = y ⇒ color(x) ̸= color(y)

is called list k-coloring.

16

1.6. Euler Tour Technique

Lemma 1.2 Let color be a k-coloring of a linked list L = (X, S).

The set of local minima of the k-coloring

{x : x ∈ X ∧ (∀y ∈ X : (S(x) = y ∨ S(y) = x)⇒ color(x) < color(y))}

is an independent set of the linked list L of a size O
(

n
k

)
.

Proof 1.2 Let x, y be 2 local minima of a k-colouring color of a linked
list L = (X, S) with no other local minima in between.

As local minima is defined to be strictly smaller than its neighbours, there
can’t be 2 neighboring local minima.

Since there are no local minima between x and y, colours of nodes between
x and y must form a bitonic sequence1that has at most 2k − 3 colours.
Thus the size of the set of the local minima is O

(
n

2·k−2

)
⊆ O

(
n
k

)
. □

Definition 1.72 Let L = (X, S) be a linked list. Problem of finding a
mapping rank : X → N0 such that

∀x ∈ X : Srank(x)(head(L)) = x

is called list ranking.

1.6 Euler Tour Technique

Definition 1.73 Euler tour of a graph G = (V, E) is a sequence of con-
secutive edges in the graph G that traverses every edge in E exactly once.

Graph G that contains Euler tour is called Euler graph.

Theorem 1.2 (Euler’s theorem[3]) A connected graph G = (V, E) is Eu-
ler iff

∀u ∈ V : deg(u) is even.

1sequence (a)n
1 such that ∃k : 1 < k < n for which (a)k

1 is monotonic increasing and (a)n
k

is monotonic decreasing or vice versa.

17

1. Theory

Theorem 1.3 A connected oriented graph G = (V, E) is Euler iff

∀u ∈ V : degin(u) = degout(u).

Theorem 1.4 Let G = (V, E) be a tree. An oriented graph G′ = (V, E′)
such that

∀u, v ∈ V : ((u, v) ∈ E′ ∧ (v, u) ∈ E′)⇔ {u, v} ∈ E

is an oriented Euler graph.

Proof 1.3 Since G = (V, E) is connected and each edge in E was re-
placed with pair of edges in both directions, G′ = (V, E′) must be strongly
connected and

∀u ∈ V : deg(u) = deg′
in(u) = deg′

out(u).

Hence G′ is an oriented Euler graph. □

Definition 1.74 Euler tour technique is a problem of finding an Euler
tour of an ordered tree.

18

1.7. Parentheses Matching

1.7 Parentheses Matching

Definition 1.75 String of parentheses w ∈ {(,)}∗ is well-formed when

• w = (), or

• w = u · v, where u, v are well-formed, or

• w = (v), where v is well-formed.

Definition 1.76 Let w ∈ {(,)}∗ be a well-formed string of parentheses.

Problem of finding a mapping match : N→ N0 such that

∀i, j ∈ |̂w|) : match(i) = j
⇔ match(j) = i
⇔ wmin{i,j} . . . wmax{i,j} is well − formed

is called parentheses matching.

19

Chapter 2
Analysis and Design

In this chapter, the data structures used will be designed first. Secondly,
algorithms solving problems defined in the previous Chapter will be analyzed.
All those algorithms are required for the main algorithm.

Next, the main algorithm and possible optimizations for APRAM will be
analyzed. The last part of this Chapter will analyze the main algorithm
modification for SIMT architecture.

For the sake of simplicity, all the algorithms present in this chapter assume
that the size of the input is a power of two, there are always enough processors,
and all processors are synchronous (PRAM model).

2.1 Structures

2.1.1 Array

An array is a contiguous block of memory providing random access to the
individual elements. Arrays are a core feature of C++. Stack-based arrays
would require limiting the size of trees and DFTAs to some arbitrary number,
which is unfavorable. Heap-based arrays have no limit, but they have to be
managed manually.

STL includes auto-managed variants of those. std::array for stack-based ar-
ray and std::vector for heap-based array. Even though they’re implemented
efficiently, for the purpose of this thesis, they’re slow.

The first problem is that they can’t be allocated without initialization the

21

2. Analysis and Design

same way as C-like arrays. The second problem is initialization/copy, which
is implemented sequentially, slowing down the parallel applications.

2.1.1.1 CPU

A custom container similar to std::vector will be implemented to overcome
those issues. This container will have a minimal subset of capabilities required
for this thesis.

2.1.1.2 GPU

As thrust (CUDA) will be used for SIMT variant, thrust::host vector and
thrust::device vector may be used to represent array. Those are designed
specifically to be used in GPGPU and handle data transfer between CPU
and GPU.

2.1.2 Tree

Tree will represent term t ∈ T (F ,X) as described in theorem 1.1 and could
be represented as a pair of arrays:

• symbols of ranked alphabet F for each vertex,

• children pointing to children of each vertex,

and a pointer to the root of the tree.

As most tree implementations available are usually based on linked structures
rather then contiguous memory blocks, custom tree will have to be imple-
mented as well.

2.1.2.1 CPU

children array can be represented as a 2-dimensional array (i.e., array of ar-
rays). The first dimension is the vertex, which owns its children’s list. The
second dimension is individual children.

22

2.1. Structures

2.1.2.2 GPU

As 2-dimensional arrays are impractical for GPGPU as they may present an
unnecessary level of indirection, children array should rather be linearized,
requiring an additional array specifying first index of children list for each
vertex.

2.1.3 Arc

Arc of the Euler tour of the tree is a 4-tuple consisting of:

• pointer to source vertex,

• pointer to target vertex,

• pointer to opposite arc,

• and a type of the arc.

2.1.4 DFTA

A DFTA is defined (see definition 1.39) as a 4-tuple A = (Q,F , Qf , ∆). As
∆ has to contain all symbols from F with correct arity, there’s no need to ex-
plicitly specify ranked alphabet. Thus, the DFTA may be a 3-tuple consisting
of

• a set of states, represented by n assuming states are numbers 0, . . . , n,

• a set of final states, represented by an actual set,

• and a transition function.

The transition function can be represented as an array associating states to a
new state.

2.1.4.1 CPU

The set of final states may be represented by std::unordered set. It has similar
issues as std::vector regarding multi-threading, but as those sets will be small,
this is negligible.

23

2. Analysis and Design

For ease of use, the transition function may be a 2-dimensional array, with the
first dimension associating the symbol of the alphabet to a transition function
for that symbol. The second dimension associating the states of the children
to a new state.

2.1.4.2 GPU

As the std::unordered set cannot be used in GPGPU, an array of booleans
should be used instead, denoting whether the set is final for each vertex.

As with arrays (2.1.1), the transition function array will have to be linearized,
introducing an array for first indices.

2.2 Reduction and Scan

2.2.1 Reduction

The reduction is defined in definition 1.66.

2.2.1.1 Algorithms

As the operator ⊕ is associative, the reduction can be performed in arbitrary
order.

For the sequential solution, linear order can be used, i.e.

((((. . . (((x1 ⊕ x2)⊕ x3)⊕ x4)⊕ · · · ⊕ xn−3)⊕ xn−2)⊕ xn−1)⊕ xn) .

Each value is then consecutively accumulated to an accumulator. Such accu-
mulator can be initialized to a left-identity 0 with respect to ⊕. Hence, the
algorithm 1.

As the whole input is iterated once the time complexity is

T (n) = O (n) .

For the same reason, it’s impossible to do it any faster as the input must be
read at least once.

SL (n) = SU (n) = O (n)

24

2.2. Reduction and Scan

Algorithm 1: Sequential reduction
Input: values x1, . . . , xn

Result: reduction of values
r ← 0;
for i← 1 to n do

r ← r ⊕ xi;
end
return r;

result

...

x1 x2 x3 x4

...

xn−3 xn−2 xn−1 xn⊕ ⊕ ⊕ ⊕

⊕ ⊕

⊕

step 1

step 2

step log2 n

Figure 2.1: Parallel reduction computation

For the parallel solution, tree-like order is more beneficial, i.e.

(. . . ((x1 ⊕ x2)⊕ (x3 ⊕ x4))⊕ · · · ⊕ ((xn−3 ⊕ xn−2)⊕ (xn−1 ⊕ xn)) . . .) .

Reduction is performed in several steps. Each step consists of a computation
of results for every application of ⊕ that hasn’t been computed yet and does
not require any uncomputed intermediate result. Every computation done in
a single step is performed by a different processor. Figure 2.1 depicts parallel
reduction.

This is formulated in algorithm 2.

The inner loop has O (n) iterations split among p processors. The outer loop
has O (log2 n) iterations performed sequentially. This combines to

25

2. Analysis and Design

Algorithm 2: Parallel reduction (EREW PRAM)
Input: values x1, . . . , xn

Result: reduction of values
Auxiliary: intermediate results r1, . . . , r n

2
, ∀i ∈ n̂

2 : indices
lefti, righti

for i← 1 to log2 n do
for j ← 1 to n

2i do in parallel
leftj ← 1 + (j − 1) · 2i;
rightj ← left + 2i−1;
rleftj

← rleftj
⊕ rrightj

;
end

end
return r1;

T (n, p) =O

(
n

p

)
·O (log2 n) = O

(
n · log2 n

p

)
,

S (n, p) = O (n)
O
(

n·log2 n
p

) = O

(
p

log2 n

)
,

C (n, p) =p ·O
(

n · log2 n

p

)
= O (n · log2 n) = ω (SU (n)) ,

W (n, p) =
log2 n∑

i=1

n

2i
= n ·

log2 n∑
i=1

1
2i

= n · 1 = O (n) = Θ (SU (n)) .

As the number of processors is halved each step, this algorithm is not cost-
optimal. No read/write conflicts exist, so all complexities apply to EREW
PRAM.

2.2.1.2 Implementations

C++17 numeric library provides std::reduce, which implements both sequen-
tial and parallel reduction with the same complexity as described above. It
provides a convenient and flexible interface supporting containers but lacks
control over the number of threads used.

OpenMP provides its own reduction implementation using pragma directives.
This provides full control over the number of threads but lacks the flexibility
of STL.

26

2.2. Reduction and Scan

For GPU implementation, thrust::reduce can be used, similar to std::reduce
but designed for GPU computation.

2.2.2 Inclusive scan

The inclusive scan is defined in definition 1.67.

The inclusive scan is the same as reduction, but all intermediate results of
linear order (see 2.2.1) must be returned.

2.2.2.1 Algorithms

The sequential solution is a modification of sequential reduction, storing all
intermediate results to output.

Algorithm 3: Sequential inclusive scan
Input: values x1, . . . , xn

Output: inclusive scan s1, . . . , sn

r ← 0;
for i← 1 to n do

r ← r ⊕ xi;
si ← r;

end

Complexities and bounds are the same as in the case of reduction.

As linear order results are required, but the parallel reduction has a tree-like
order, a similar modification cannot be used for the parallel inclusive scan.

There are two dominant algorithms for scans.

The first one was presented by Hillis & Steele[6] and is depicted in figure 2.2.

The algorithm 4 is divided into several steps. In each step ⊕ is applied to
values with distance 2step−1.

The auxiliary array is necessary for EREW as without it, there will be read/write
conflicts, resulting in the algorithm being CREW.

The copy has complexity O
(

n
p

)
. The inner loop has O (n) steps split among p

processors. The outer loop has O (log2 n) steps performed sequentially. This

27

2. Analysis and Design

x1

⊕1
1

⊕1
1

⊕1
1

⊕1
1

x2

⊕2
1

⊕2
1

⊕2
1

⊕2
1

x3

⊕3
2

⊕3
1

⊕3
1

⊕3
1

x4

⊕4
3

⊕4
1

⊕4
1

⊕4
1

x5

⊕5
4

⊕5
2

⊕5
1

⊕5
1

x6

⊕6
5

⊕6
3

⊕6
1

⊕6
1

x7

⊕7
6

⊕7
4

⊕7
1

⊕7
1

x8

⊕8
7

⊕8
5

⊕8
1

⊕8
1

x9

⊕9
8

⊕9
6

⊕9
2

⊕9
1

x10

⊕10
9

⊕10
7

⊕10
3

⊕10
1

x11

⊕11
10

⊕11
8

⊕11
4

⊕11
1

x12

⊕12
11

⊕12
9

⊕12
5

⊕12
1

x13

⊕13
12

⊕13
10

⊕13
6

⊕13
1

x14

⊕14
13

⊕14
11

⊕14
7

⊕14
1

x15

⊕15
14

⊕15
12

⊕15
8

⊕15
1

x16

⊕16
15

⊕16
13

⊕16
9

⊕16
1

Figure 2.2: Hillis-Steele algorithm for input of size 16

Algorithm 4: Hillis-Steele scan algorithm (EREW PRAM)
Input: values x1, . . . , xn

Output: inclusive scan s1, . . . , sn

Auxiliary: intermediate results r1, . . . , rn

∀i ∈ n̂ : si ← xi;
for i← 1 to log2 n do
∀i ∈ n̂ : ri ← si;
for j ← 1 to n− 2i−1 do in parallel

sj+2i−1 ← rj ⊕ rj+2i−1 ;
end

end
return s1;

combines to

T (n, p) =O

(
n

p

)
+ O

(
n

p
· log2 n

)
= O

(
n · log2 n

p

)
,

S (n, p) = O (n)
O
(

n·log2 n
p

) = O

(
p

log2 n

)
,

C (n, p) =p ·O
(

n · log2 n

p

)
= O (n · log2 n) = ω (SU (n)) ,

W (n, p) =
log2 n∑

i=1
n− 2i−1 = O (n · log2 n) = ω (SU (n)) .

28

2.2. Reduction and Scan

The number of the utilized processors is reduced each step, resulting in cost
non-optimality. Also, the algorithm is not work-optimal because there are
redundant applications of ⊕.

To achieve work optimality, the input could be split into p portions that are
precomputed sequentially. Hillis-Steele is then applied to the results, and the
result of that is then distributed back to the portions.

Algorithm 5: Modified Hillis-Steele scan algorithm (EREW PRAM)
Input: values x1, . . . , xn

Output: inclusive scan s1, . . . , sn

Auxiliary: intermediate results r1, . . . , rp

equipartition x1, . . . , xn to p contiguous sections;
foreach section xi, . . . , xj do in parallel

sequential inclusive scan (in: xi, . . . , xj , out: xi, . . . , xj);
rtid ← sj ;

end
Hillis-Steele algorithm (in: r, out: r);
foreach section xi, . . . , xj do in parallel

for k ← i to j do
if tid ̸= 1 then

sk ← rtid−1 ⊕ sk;
end

end
end

Both the sequential scan and partial result redistribution take O
(

n
p

)
. Hillis-

Steele for input of size p and p processors has complexity O
(

p·log2 p
p

)
. This

combines to

T (n, p) =O

(
n

p

)
+ O

(
p · log2 p

p

)
= O

(
n

p
+ log2 p

)
,

S (n, p) = O (n)
O
(

n
p + log2 p

) = O

(
n · p

n + p · log2p

)
,

C (n, p) =p ·O
(

n

p
+ log2 p

)
= O (n + p · log2 p) = ω (SU (n)) ,

W (n, p) =O (n) + O (p · log2 p) = O (n + p · log2 p) = ω (SU (n)) ,

C

(
n,

n

log2 n

)
=O

(
n + n

log2 n
· log2

n

log2 n

)
= O

(
n + n

log2 n
· log2 n

)
= O (n) = Θ (SU (n)) ,

W

(
n,

n

log2 n

)
=O

(
n + n

log2 n
· log2

n

log2 n

)
= O (n) = Θ (SU (n)) .

29

2. Analysis and Design

⊕8
1

⊕4
1

⊕2
1

x1 x2

⊕4
3

x3 x4

⊕8
5

⊕6
5

x5 x6

⊕8
7

x7 x8

Figure 2.3: Up-Sweep step for the input of the size 8

0

0

0

0
⊕1

1

⊕2
1

⊕2
1

⊕3
1

⊕4
1

⊕4
1

⊕4
1

⊕5
1

⊕6
1

⊕6
1

⊕7
1

Figure 2.4: Down-Sweep step for the input of the size 8

Thus, this modification made Hillis-Steele cost and work optimal in case n
log2 n

processors are used.

The second algorithm was presented by Blelloch[7]. The algorithm works
with a tree structure similar to the one used by reduction (see Figure 2.1) in
2 steps. The first step, which is almost identical with the parallel reduction,
is called up-sweep and computes partial results traversing the tree from leaves
towards the root (see Figure 2.3). The second step is called down-sweep and
redistributes partial results from the root towards leaves (see Figure 2.4).

As the figures show, this algorithm is natively exclusive but can be modified
to be inclusive. In the same spirit, Hillis-Steele is natively inclusive but can
be modified to be exclusive.

Both steps consist of 2 nested loops. The inner one performs O (n) steps split

30

2.2. Reduction and Scan

Algorithm 6: Up-Sweep step of the Blelloch scan algorithm (EREW
PRAM)

Input: values x1, . . . , xn

Output: intermediate results r1, . . . , rn

Auxiliary: left and right indices left1, . . . , left n
2

and
right1, . . . , right n

2

∀i ∈ n̂ : ri ← xi;
for i← 1 to log2 n do

for j ← 1 to n
2i do in parallel

leftj ← 1 + (j − 1) · 2i;
rightj ← left + 2i−1;
rleftj

← rleftj
⊕ rrightj

;
end

end

Algorithm 7: Down-Sweep step of Blelloch scan algorithm (EREW
PRAM)

Input: values x1, . . . , xn

Output: scan s1, . . . , sn

Auxiliary: left and right indices left1, . . . , left n
2

and
right1, . . . , right n

2
, temporary values t1, . . . , t n

2

∀i ∈ n̂ : si ← xi;
for i← log2 n downto 1 do

for j ← 1 to n
2i do in parallel

leftj ← 1 + (j − 1) · 2i;
rightj ← left + 2i−1;
tj ← sleftj

⊕ srightj
;

sleftj
← srightj

;
srightj

← tj ;
end

end

31

2. Analysis and Design

among p processors. The outer one performs O (log2 n) steps sequentially.
Both steps also contain a copy that has a complexity of O

(
n
p

)
. This combines

to
T (n, p) = O

(
n

p

)
+ O

(
n

p
· log2 n

)
= O

(
n · log2 n

p

)
.

Similarly to Hillis-Steele, input is equipartitioned first, and a sequential scan
is applied to each partition first. Up-sweep and down-sweep are applied to
intermediate results of those partitions. The results of those steps are then
applied back to the partitions. The offset at which those intermediates are
applied determines whether the algorithm will be inclusive or exclusive (this
also applies to Hillis-Steele).

Algorithm 8: Blelloch scan alorithm (EREW PRAM)
Input: values x1, . . . , xn

Output: inclusive scan s1, . . . , sn

Auxiliary: intermediate results r1, . . . , rp

equipartition x1, . . . , xn to p contiguous sections;
foreach section xi, . . . , xj do in parallel

sequential inclusive scan (in: xi, . . . , xj , out: si, . . . , sj);
rtid ← sj ;

end
up-sweep (in: r, out: r);
down-sweep (in: r, out: r);
foreach section xi, . . . , xj do in parallel

for k ← i to j do
sk ← rtid ⊕ sk;

end
end

Complexities of the Blelloch algorithm are

T (n, p) =O

(
n

p

)
+ O

(
p · log2 p

p

)
= O

(
n

p
+ log2 p

)
,

S (n, p) = O (n)
O
(

n
p + log2 p

) = O

(
n · p

n + p · log2 p

)
,

C (n, p) =p ·O
(

n

p
+ log2 p

)
= O (n + p · log2 p) = ω (SU (n)) ,

W (n, p) =O (n) + O

log2 p∑
i=1

p

2i

 = O (n) + O

p ·
log2 p∑

i=1

1
2i

 = O (n + p) = O (n) = Θ (SU (n)) .

32

2.3. Lists

As for both steps, the number of utilized processors is halved each iteration,
the algorithm is not cost-optimal.

2.2.2.2 Implementations

Similar to reduction, C++17 numeric library provides std::inclusive scan that
lacks control over the number of processors used.

As OpenMP does not offer sufficiently flexible implementation, custom inclu-
sive scan based on Blelloch must be implemented for CPU.

For GPU implementations thrust::inclusive scan could be used.

2.2.3 Exclusive scan

The exclusive scan is defined in definition 1.68.

The exclusive scan is almost identical to the inclusive scan. The result is just
shifted.

2.2.3.1 Implementations

In C++17 numeric library, it’s implemented as std::exclusive scan.

In thrust, it’s implemented as thrust::exclusive scan.

2.3 Lists

2.3.1 Linked list

The linked list is defined in definition 1.69.

Two basic strategies exist for their implementation.

1. Using a linked structure. Each node holds a pointer to its successor.
Nodes are dynamically allocated independently from each other.

33

2. Analysis and Design

4 2 7 1 5 6 8 3

Figure 2.5: Linked structure

2. Using a successor array. Each element holds an index of its successor.
Nodes are allocated en masse in a contagious memory block.

5 7 3 2 6 8 1 3

1 2 3 4 5 6 7 8

Figure 2.6: Successor array

For the purpose of this thesis, the successor array is more beneficial as it allows
for quick allocation and random access. Quick insertion/removal, which is a
strong side of the linked structure, is not required.

2.3.1.1 Implementations

C++ list library implements std::list utilizing the linked structure strategy.

2.3.2 List ranking

The list ranking is defined in definition 1.72.

The rank of a node is equal to the number of its predecessors. This can be
achieved by using an inclusive scan, respecting order given by the list.

The sequential solution consists of a simple counter and traversal of the list.
Hence, the algorithm 9.

As each node is visited once, the complexity is

T (n) = O (n) .

As each node has to be visited to set its rank, the bounds must be the same.

SL (n) = SU (n) = O (n)

The parallel solution of the list ranking can be achieved by modifying the
Hillis-Steele algorithm 4 for the scan.

34

2.3. Lists

Algorithm 9: Sequential list ranking
Input: successor array s1, . . . , sn, head index h
Output: ranking r1, . . . , rn

r ← 0;
while sh ̸= h do

rh ← r ← r + 1;
h← sh;

end
rh ← r + 1;

1 1 1 1 1 1 1 1

1 2 2 2 2 2 2 2

1 2 3 4 4 4 4 4

1 2 3 4 5 6 7 8

Figure 2.7: Pointer jumping

The order given by the list has to be respected. Thus instead of direct indexing
and distance, the successor array has to be used. To emulate the distance, its
value is set to si ← ssi in each iteration. This is called pointer jumping and
is depicted by figure 2.7. This formulates to the algorithm 10.

The inner loop has O (n) iterations split among p processors. The outer loop
has O (log2 n) iterations. The initialization of arrays has O

(
n
p

)
complexity.

35

2. Analysis and Design

Algorithm 10: Pointer jumping (CREW PRAM)
Input: successor array s1, . . . , sn

Output: ranking r1, . . . , rn

Auxiliary: active indicators a1, . . . , an

∀i ∈ n̂ : ai ← active, ri ← 1;
for i← 1 to log2 n do

for j ← 1 to n do in parallel
if ai = active then

rsi ← ri + rsi ;
if si = ssi then

ai ← inactive;
else

si ← ssi ;
end

end
end

end

This combines to

T (n, p) =O

(
n

p

)
+ O

(
n

p
· log2 n

)
= O

(
n · log2 n

p

)
,

S (n, p) = O (n)
O
(

n·log2 n
p

) = O

(
p

log2 n

)
,

C (n, p) =p ·O
(

n · log2 n

p

)
= O (n · log2 n) = ω (SU (n)) ,

W (n, p) =
log2 n∑

i=1
n− 2i = O (n · log2 n) = ω (SU (n)) .

The number of utilized processors is reduced each iteration, this is the source of
the cost non-optimality. Also, the addition is performed redundantly, resulting
in work non-optimality. As it’s not possible to identify equal-sized partitions
of the list, modification of the Hillis-Steele algorithm won’t work.

The observation 2.1 describes an idea of a cost/work-optimal list ranking.

36

2.3. Lists

Observation 2.1 Let there be a linked list of size n′ = n
log2 n = O (n).

Then

T
(
n′, n′) =O

(
log2 n′) = O (log2 n) ,

C
(
n′, n′) =O

(
n′ · log2 n′)

=O

(
n

log2 n
· log2 n

)
=O (n) = Θ (SU (n)) .

The idea requires the list to be shrunk to the size n′ using n′ processors in
T (n, n′) = O (log2 n) and with C (n, n′) = O (n). Then, pointer jumping may
be applied to that shrunken list, and the original list has to be restored with
the same complexity.

Meeting all those requirements results in

T
(
n, n′) =O (log2 n) ,

S
(
n, n′) = O (n)

O (log2 n) = O

(
n

log2 n

)
,

C
(
n, n′) =O (n) + n′ ·O (log2 n) = O

(
n

log2 n
· log2 n

)
= O (n) = Θ (SU (n)) .

Thus, the algorithm would be cost and potentially work-optimal.

To achieve work-optimality (without cost-optimality), the independent sets
(defined in definition 1.70) could be used for shrinking the list.

To get such an independent set, 3-coloring could be used, as it’s the best
coloring achievable in EREW PRAM. Such independent set would have size
O
(

n
2·3−2

)
= O

(
n
4
)

(see proof 1.2). Thus size of the shrunk list L′ = L \ I is
Ω
(

3·n
4

)
.

Shrinking can be repeated until the required size is achieved. To achieve that,
Θ
(
log2

2 n
)

shrinkings has to be done, as(3
4

)s

· n ≤ n

log2 n
,(4

3

)s

≥log2 n,

s ≥log 4
3

log2 n = Θ
(
log2

2 n
)

.

37

2. Analysis and Design

2.3.2.1 6-coloring

The k-coloring is defined in definition 1.71.

The 6-coloring is used as an intermediate step to achieve 3-coloring. Determin-
istic Coin Tossing technique is used to get it and is formulated in algorithm
11.

Function diff(x, y) return least bit index at which binary representations of
x and y differ. x[i] denotes i-th bit of x. Function log∗

b x is defined as
min{i : logi

b x ≤ 1}.

Algorithm 11: 6-coloring (CREW PRAM)
Input: successor array s1, . . . , sn

Output: coloring c1, . . . , cn

Auxiliary: difference π1, . . . , πn

(* Generate n-coloring *)
for i← 1 to n do in parallel

ci ← i;
end
(* Reduce to 6-coloring *)
for i← 1 to log∗

2 n do
for j ← 1 to n do in parallel

πj ← diff(cj , csj);
cj ← 2 · πj + cj[πj];

end
end

The inner loop preserves the validity of the coloring and thus π is always well
defined. The best coloring that can be achieved by DCT is 6-coloring.

The n-coloring generation has n iterations split among p processors. The inner
loop of the 6-coloring reduction has n iterations split among p processors as
well. The outer loop of the 6-coloring reduction has log∗

2 n iterations. As the
value of log∗

2 won’t exceed 6 for any representable value (as log∗
2 2265536−1 = 6),

it could be neglected and considered constant. This combines to

T (n, p) =O

(
n

p

)
,

C (n, p) =p ·O
(

n

p

)
= O (n) ,

W (n, p) =n + n · log∗
2 n = O (n) .

38

2.3. Lists

2.3.2.2 3-coloring

The 3-coloring is obtained by reduction of 6-coloring by gradual elimination
of colors.

Algorithm 12: 3-coloring (EREW PRAM)
Input: successor array s1, . . . , sn

Output: coloring c1, . . . , cn

6-coloring (in: s, out: c);
for i← 1 to n do in parallel

if ci = 5 then
ci ← any of{0, 1, 2} \ {csi , cj}, where sj = i;

end
end
for i← 1 to n do in parallel

if ci = 4 then
ci ← any of{0, 1, 2} \ {csi , cj}, where sj = i;

end
end
for i← 1 to n do in parallel

if ci = 3 then
ci ← any of{0, 1, 2} \ {csi , cj}, where sj = i;

end
end

To get a predecessor, the list can be reversed, which takes O
(

n
p

)
.

Each loop has n iterations split among p processors. This results in

T (n, p) =O

(
n

p

)
,

C (n, p) =p ·O
(

n

p

)
= O (n) ,

W (n, p) =O (n) .

2.3.2.3 Work-optimal list ranking

This all can be used to formalize an algorithm 13 for a work-optimal list
ranking.[4][8]

39

2. Analysis and Design

Algorithm 13: Work-optimal list ranking (CREW PRAM)
Input: successor array s1, . . . , sn

Output: ranking r1, . . . , rn

Auxiliary: indicators f1, . . . , fn, results n1, . . . , nn, coloring
c1, . . . , cn, predecessors p1, . . . , pn, stack S, temporary
t1, . . . , tn

∀i ∈ n̂ : S ← ∅, n′ ← n, ri ← 1;
reverse(in: s, out: p);
while n′ > n

log2 n do
∀i : ti ← ∅;
3-coloring(in: s1, . . . , sn′ , out: c1, . . . , cn′);
(* Identify I *)
for i← 1 to n′ do in parallel

fi ← ci < min(cpi , csi);
ni ← 1 iff fi else 0;

end
(* Remove I from L *)
inclusive scan(in: n1, . . . , nn′ , out: n1, . . . , nn′);
for i← 1 to n′ do in parallel

if fi then
tni ← (i, si, pi, ri);
rpi ← rpi + ri;
spi ← si, psi ← pi;

end
end
(* Compact L′ = L \ I to consecutive memory locations *)
∀i ∈ n̂ : ni ← 0 iff fi else 1;
inclusive scan(in: n1, . . . , nn′ , out: n1, . . . , nn′);
for i← 1 to n′ do in parallel

if ¬fi then
sni ← nsi , pni ← npi ;
rni ← ri;

end
end
S ← (S, {ti : ti ̸= ∅});
n′ ← n′ − |{ti : ti ̸= ∅}|;

end
pointer jumping (in: s1, . . . , sn′ , out: r1, . . . , rn′);
restore L and rank removed nodes by emptying stack S and reversing
steps in removal and compaction;

40

2.3. Lists

All initializations can be executed in O
(

n
p

)
time and O (n) work. List reverse

has the same complexities.

The big loop has O
(
log2

2 n
)

iterations. Both removal and compaction have n′

iterations split among p processors. There’s a 3-coloring and inclusive scan as
a part of that loop.

Overall, the big loop has combined complexities of

T (n, p) =O
(
log2

2 n
)
·O

(
n

p
+ log2 p

)
= O

(
(n + p · log2 p) · log2

2 n

p

)
,

W (n, p) =O (n) .

The pointer jumping used there is the same pointer jumping as work non-
optimal list ranking. Restoring the original list has identical complexities as
it’s shrinking.

All of this combines to

T (n, p) =O

(
(n + p · log2 p) · log2

2 n

p

)
,

S (n, p) =O

(
n · p

(n + p · log2 p) · log2
2 n

)
,

C (n, p) =O
(
(n + p · log2 p) · log2

2 n
)

= ω (SU (n)) ,

W (n, p) =O (n) = Θ (SU (n)) .

Thus the algorithm is work-optimal. The cost non-optimality is caused by
the fact that not all processors are utilized in the shrunk list in case there are
enough of them for the whole list, and const non-optimality of used algorithms
even in case there’s just enough of them for the shrunk list. Even though
efficiency is higher, overall speed is lower than pointer jumping.

2.3.2.4 Implementations

There’s no proper implementation of list ranking. C++ std::inclusive scan
together with std::list could be used for sequential ranking, but there’s no
such substitute for parallel ranking.

41

2. Analysis and Design

2.4 Euler Tour Technique

The Euler Tour Technique is defined in definition 1.74.

2.4.1 Algorithms

Note 2.1 The sequential solution is omitted as there’s no use for it in
this thesis. It’s complexity is T (n) = SU (n) = SL (n) = O (n).

The parallel solution utilizes an arc representation of the tree. Each edge is
represented by a pair of arcs (1 downgoing, 1 upgoing). Those arcs are ar-
ranged into an array where arcs originating in a single vertex form a contagious
block and opposite arcs are adjacent to each other.

Let there be the following notation.

• origin(xy ↕) = x

• target(xy ↕) = y

• type(xy ↓) =↓, type(yx ↑) =↑

• opposite(xy ↓) = yx ↑

• next(xy ↕) =

x(childi+1(x)) ↓, iff y = childi(x) ∧ i < arity(x),
x(parent(x)) ↑, iff y = childarity(x)(x) ∧ parent(x) ̸= root,

x(child1(x)) ↓, iff xy ↕ is x(parent(x)) ↑ ∧arity(x) > 0,

xy ↕, otherwise.

This representation is depicted in figure 2.8. The next function is depicted by
the red arrow. The opposite function is depicted by the blue arrow.

The path is defined as

path(a) :=
{

a, iff a is (childarity(root)(root))(root) ↑,
next(opposite(a)), otherwise

The path serves as a successor function for a linked list of arcs. Using list
ranking to determine the index, arcs could be reordered in order of the Euler
tour. Hence the algorithm 14.[9]

42

2.4. Euler Tour Technique

u

v

w x

(a)

u v w x

uv ↓ vu ↑ vw ↓ wv ↑ vx ↓ xv ↑

(b)

Figure 2.8: (a) Euler circuit of the tree (b) Array representation of the arcs

Algorithm 14: Euler Tour construction (EREW PRAM)
Input: tree T = (V, E)
Output: Euler tour a1, . . . , a2·|V |−2
Auxiliary: path p1, . . . , p2·n−2, ranks r1, . . . , r2·n−2
foreach {u, v} ∈ E do in parallel

create uv ↓ & vu ↑ and arrange them into the array a;
end
for i← 1 to 2 · n− 2 do in parallel

pi ← next(opposite(ai));
end
last← (childarity(root)(root))(root) ↑ plast ← last;
list ranking (in: p, out: r);
reorder a with respect to the ranking r;

Arc creation has n− 1 iterations split among p processors. Path computation
has 2 · n − 2 iterations split among p processors. Ordering with list ranking
available has complexity O

(
n
p

)
.

Total complexity depends on the list ranking algorithm used.

43

2. Analysis and Design

For pointer jumping, it combines to

T (n, p) =O

(
n

p

)
+ O

(
n · log2 n

p

)
= O

(
n · log2 n

p

)
,

S (n, p) = O (n)
O
(

n·log2 n
p

) = O

(
p

log2 n

)
,

C (n, p) =p ·O
(

n · log2 n

p

)
= O (n · log2 n) = ω (SU (n)) ,

W (n, p) =O (n) + O (n · log2 n) = O (n · log2 n) = ω (SU (n)) .

For work-optimal ranking, it combines to

T (n, p) =O

(
n

p

)
+ O

(
(n + p · log2 p) · log2

2 n

p

)
= O

(
(n + p · log2 p) · log2

2 n

p

)
,

S (n, p) = O (n)
O
((n+p·log2 p)·log2

2 n
p

) = O

(
n · p

(n + p · log2 p) · log2
2 n

)
,

C (n, p) =p ·O
(

(n + p · log2 p) · log2
2 n

p

)
= O

(
(n + p · log2 p) · log2

2 n
)

= ω (SU (n)) ,

W (n, p) =O (n) = Θ (SU (n)) .

Thus, optimality is fully dependent on the list ranking used.

2.4.2 Implementations

No implementations of the Euler Tour construction as described above ex-
ist in any popular libraries. Boost boost:depth first search can be used as a
sequential substitute. No such parallel substitute exists.

2.4.3 Applications

ETT has many applications. The most important one (and the one required
in this thesis) is tree nodes depths parallel computation. This is formulated
in algorithm 15.

Even though there are potentially a lot of write-write conflicts in the last loop,
the same value will be written to the conflicting ones. Thus, this algorithm can
still be used for EREW PRAM, even though it’s a Common CREW PRAM.

44

2.5. Parentheses matching

Algorithm 15: Get depths of nodes of the tree (EREW PRAM)
Input: tree T = (V, E)
Output: array of depths d1, . . . , dn

Auxiliary: array of arcs a1, . . . , a2·|V |−2, temporaries t1, . . . , t2·|V |−2
Euler tour construction (in: T , out: a);
for i← 1 to 2 · |V | − 2 do in parallel

ti ← 1 iff a is ↓ else − 1;
end
inclusive scan (in: t, out: t);
for i← 1 to 2 · n− 2 do in parallel

if ai is downgoing then
dtarget(ai) ← ti;

end
end

The complexities are the same as in case of Euler Tour construction.

2.5 Parentheses matching

The parentheses matching is defined in definition 1.76.

2.5.1 Algorithms

In all algorithms presented, only well-formed strings are allowed for the sake
of simplicity.

The sequential solution formulated in the algorithm 16 stores unmatched
opening parentheses on the stack and matches them with encountered closing
parentheses.

As this algorithm performs a single pass of the string, it has a complexity

T (n) = O (n) .

As matching has to write a matched parenthesis for each parenthesis, it has
to perform at least a single full pass. Thus,

SL (n) = SU (n) = O (n) .

45

2. Analysis and Design

Algorithm 16: Sequential parentheses matching
Input: string p1, . . . , pn

Output: matches m1, . . . , mn

Auxiliary: stack S
S ← ∅;
for i← 1 to n do

if pi is (then
S ← (S, i);

else
S, t← S′, top, where S = (S′, top);
mi ← t, mt ← i;

end
end

There are multiple parallel solutions. Two of them will be presented as they
will be used later.

The first one utilizes parentheses depths.[10] Matching parentheses have the
same depths, and there’s no parenthesis with the same depth between them.
Thus, parentheses depth is computed first, and then parentheses are stable
sorted. This way, matching parentheses will be adjacent and may be quickly
paired. Hence, the algorithm 17.

All loops have n iterations split among p processors. Any parallel stable sort
has time complexity T (n, p) = Ω

(
n·log2 n

p

)
with parallel work W (n, p) =

Ω (n · log2 n). This together with inclusive scan combines to

T (n, p) =O

(
n

p

)
+ O

(
n · log2 n

p

)
= O

(
n · log2 n

p

)
,

S (n, p) = O (n)
O
(

n·log2 n
p

) = O

(
p

log2 n

)
,

C (n, p) =p ·O
(

n · log2 n

p

)
= O (n · log2 n) = ω (SU (n)) ,

W (n, p) =O (n) + O (n · log2 n) = O (n · log2 n) = ω (SU (n)) .

Sorting prevents cost and work optimality as it’s not possible to do it quicker/more
efficiently.

The second one is more similar to the sequential solution. Instead of using
a stack, the stack is replaced by an array, thus allowing random access and
parallelization.

46

2.5. Parentheses matching

Algorithm 17: Depth-based parallel parentheses matching (EREW
PRAM)

Input: string p1, . . . , pn

Output: matches m1, . . . , mn

Auxiliary: depths d1, . . . , dn, permutation π1, . . . , πn

for i← 1 to n do in parallel
di ← 1 iff pi is (else − 1;

end
inclusive scan (in: d, out: d);
for i← 1 to n do in parallel

if pi is) then
di ← di + 1;

end
end
stable sort(in: d, out: π);
for i← 1 to n

2 do in parallel
mπ−1(2·i−1) ← π−1(2 · i);
mπ−1(2·i) ← π−1(2 · i− 1);

end

First, every processor matches its partition of the input string. It forms a se-
quence of unmatched closing and opening parentheses (x), x(). All unmatched
closing parentheses will precede all unmatched opening parentheses.

The result of the previous step is then reduced. Processors are matching
parentheses in pairs ((l), l(), (r), r()). First, l(is matched with r). One of the
three situations may occur.

• All parentheses are matched.

• Some parentheses from l(are unmatched. Then they’re prepended to r(.

• Some parentheses from r) are unmatched. Then they’re appended to l).

This is formulated in algorithm 18.

Partition-based sequential preprocessing takes O
(

n
p

)
time and O (n) work.

The inner loop has n
2i = O (n) iterations split among p processors. Each

such iteration has O (n) matches/moves. But across all processors, it totals
with O (n) operations split among p processors. The outer loop has log2 p

47

2. Analysis and Design

Algorithm 18: Work-optimal parallel parentheses matching (EREW
PRAM)

Input: string p1, . . . , pn

Output: matches m1, . . . , mn

Auxiliary: unmatched parentheses u1, . . . , un, # of unmatched
parentheses l1, . . . , lP , r1, . . . , rP where P is the # of
processors

equipartition p1, . . . , pn to P contiguous sections;
foreach section pi, . . . , pj do in parallel

sequential parentheses matching (in: pi, . . . , pj , out: mi, . . . , mj);
arrange unmatched parentheses to ti, . . . , tj with closing
parentheses start at i and opening parentheses end at j;

ltid ← # of unmatched opening parentheses;
rtid ← # of unmatched closing parentheses;

end
for i← 1 to log2 P do

for j ← 1 to P
2i do in parallel

llo← tid · 2i, rlo← llo + 2i−1;
rbase← n · rlo

p , lbase← rbase− 1;
matched← min{leftllo, rightrlo};
for k ← 1 to matched do

match tlbase−k+1 with trbase+k−1;
end
if leftllo > matched then

rem← leftllo −matched;
rbase← n · rlo+2i−1

p − leftrlo − 1;
move tlbase−leftllo+1, . . . , tlbase−matched to
trbase−rem+1, . . . , trbase;

else if rightrlo > matched then
rem← rightllo −matched;
lbase← n · llo

p + leftllo;
move trbase+matched, . . . , trbase+rightrlo−1 to
tlbase, . . . , tlbase+rem−1;

end
leftllo ← leftllo + leftrlo −matched;
rightllo ← rightllo + rightrlo −matched;

end
end

48

2.6. DFTA run

iterations. This combines to

T (n, p) =O

(
n

p

)
+ O

(
n

p
· log2 p

)
= O

(
n · log2 p

p

)
,

S (n, p) = O (n)
O
(

n·log2 p
p

) = O

(
p

log2 p

)
,

C (n, p) =p ·O
(

n · log2 p

p

)
= O (n · log2 p) = ω (SU (n)) ,

W (n, p) =O (n) + O (n · log2 p) = O (n · log2 p) .

As processors become gradually inactive, this results in cost non-optimality.
As some of the moves are redundant, the algorithm is not work-optimal either
but it is very close to it with a lower number of processors. Also, the case
when there’s substantial redundant work done is rare, and thus, it has an
average case time of n

p .

2.5.2 Implementations

There are no proper implementations of parentheses matching in a C++ STL
nor Boost.

2.6 DFTA run

To run the DFTA A = (Q,F , Qf , ∆) for ground term t ∈ T (F) means to
evaluate the extended transitition function ∆̂(t). The extended transition
function is defined in definition 1.40.

The sequential solution can be achieved by traversing the tree (for example
by using DFS) and evaluating ∆̂ from leaves towards the root. Hence, the
algorithm 19.

As this algorithm consists of a single simple pass of the tree, the complexities
are

T (n) = SL (n) = SU (n) = O (n) .

Even though this algorithm can be parallelized as any other DFS, it’s far from
optimal.

49

2. Analysis and Design

Algorithm 19: Sequential run of the DFTA
Input: DFTA A = (Q,F , Qf , ∆), tree t = (labels, children, root) of

the size n
Output: states state1, . . . , staten

foreach child ∈ childrenroot do
run (in: A, t′ ← (labels, children, child), out: state);

end
stateroot ← ∆labelsroot(statechildrenroot,1 , . . . , statechildrenroot,arity(root));

Parallel run of k-local DFTA is achievable utilising the fact that any term of
MVD at least k is synchronizing (i.e. subtrees below this depth of k don’t
affect the resulting state), thus states of nodes at layers separated by at least
k− 1 another layers can be computed in parallel without affecting each other.

2.6.1 The main algorithm

To achieve better parallelization for k-local DFTAs, the fact that states of
nodes separated by at least k − 1 layers, or laying on the same layer, are not
affecting each other, is utilized.

Even though two such layers don’t affect each other directly, the result of the
upper layer is dependent on a correct state of the intermediate layers, that
are dependent on the lower layer. To ensure that, the algorithm runs in two
passes. The first pass (also called synchronization pass) is used to initialize
state of each node correctly. The second pass is used to obtain the correct
states of all nodes.

The nodes are split to groups based on the layer they lie in. Each group
contains nodes that are independent on each other (i.e. they lie on ith and
(i + l · k)th layer, where l is any integer). All the groups are arranged into an
linear array to ease the computation.

As the groups will be bigger than number of processors available in most cases,
the computation step is precomputed for each node.

The complexity will be analyzed later after all functions are analyzed (see
2.6.5.

50

2.6. DFTA run

Algorithm 20: Parallel run of the k-local DFTA (EREW PRAM)
Input: DFTA A = (Q,F , Qf , ∆), tree t = (labels, children, root) of

the size n
Output: states state1, . . . , staten

Auxiliary: depths depth1, . . . , depthn, steps step1, . . . , stepn,
depth-mod-k order dmk1, . . . , dmkn

get depths using ETT (in: t, out: depth);
depth-mod-k sort (in: t, depth, out: dmk);
compute step (in: dmk, depth, out: step);
∀i ∈ n̂ : statei ← 0;
compute state (in: A, t, dmk, step, out: state);
compute state (in: A, t, dmk, step, out: state);

2.6.2 Depth-mod-k sort

The depth-mod-k order is a modified BFS traversal of the tree, where all layers
in the same group as described in the previous section are merged. The order
is ascending with respect to depth mod k.

To achieve such traversal ETT with parentheses matching could be used. The
Euler tour of the tree is acquired first. Then each downgoing arc is replaced
by a closing parenthesis, and each upgoing arc is replaced by an opening
parenthesis.

Whole such string is wrapped into parentheses, whose count is equal to the
depth of the tree, to ensure that the string is well-formed. Those wrapping
parentheses will match unmatched parentheses in the Euler tour. In addition
to that, they can be used to identify individual layers.

To acquire a linked list from the matching, downgoing arcs are re-linked to
the opposite arcs first. Then arcs at the end of each layer are re-linked to
appropriate layer.

The depth-mod-k order is then obtained by ranking such list.

The algorithm consists of an ETT, reduction, parentheses matching, and list
ranking, which are all analyzed in previous sections. Besides those, the rest
of the algorithm is simple conflict-less assignments.

51

2. Analysis and Design

Algorithm 21: depth-mod-k sort (EREW PRAM)
Input: tree t = (labels, children, root) of size n, depths array

depth1, . . . , depthn

Output: depth-mod-k order dmk1, . . . , dmkn

Auxiliary: Euler tour e1, . . . , e2·n−2, parentheses
par−max(depth), . . . , par2·n−2+max(depth)−1, successor array
next−max(depth), . . . , next2·n−2+max(depth)−1, ranking
r−max(depth), . . . , r2·n−2+max(depth)−1

create Euler tour (in: t, out: e);
height← reduce (in: depth);
foreach ei ∈ e do in parallel

pari−1 ←
{

(iff ei is downgoing

) otherwise
;

end
for i← 1 to height do in parallel

par−i ← (;
par|e|−1+i ←);

end
match parentheses (in: par, out: next);
foreach ei ∈ e do in parallel

if ei is downgoing then
nexti−1 ← index of opposite(ei)− 1;

end
end
for i← 1 to height do in parallel

next|e|−1+i ←

next−i−k iff i < height− k

next−i mod k − 2 iff i mod k ̸= k − 1
|e| − 1 + i otherwise

;

end
rank list (in: next, out: r);
construct dmk from r as its inversion;

52

2.6. DFTA run

Using non-optimal algorithms, this combines to

T (n, p) =O

(
n · log2 n

p

)
+ O (n) p = O

(
n · log2 n

p

)
,

C (n, p) =p ·O
(

n · log2 n

p

)
= O (n · log2 n) ,

W (n, p) =O (n · log2 n) + O (n) = O (n · log2 n) .

Using optimal algorithms, this combines to

T (n, p) =O

(
(n + p · log2 p) · log2

2 n

p

)
+ O

(
n · log2 n

p

)
+ O

(
n

p

)

=O

(
p · log2 p · log2

2 n + n · log2 n

p

)
,

C (n, p) =p ·O
(

p · log2 p · log2
2 n + n · log2 n

p

)
=O

(
p · log2 p · log2

2 n + n · log2 n
)

,

W (n, p) =O (n) + O (n · log2 p) = O (n · log2 p) .

The non-work-optimal variant is better suited for cases where the number of
processors is high and close to n. The work-optimal variant is better when
only a few processors are available.

This is obvious when p is assumed to be O (n) (many processors) or O (1) (few
processors). For the non-work-optimal variant, it is

T (n, O (1)) =O

(
n · log2 n

1

)
= O (n · log2 n) ,

W (n, O (1)) =O (n · log2 n) ,

T (n, O (n)) =O

(
n · log2 n

n

)
= O (log2 n) ,

W (n, O (n)) =O (n · log2 n) .

53

2. Analysis and Design

For the work-optimal variant, it is

T (n, O (1)) =O

(
1 · log2 1 · log2

2 n + n · log2 n

1

)
= O (n · log2 n) ,

W (n, O (1)) =O (n · log2 1) = O (n) ,

T (n, O (n)) =O

(
n · log2 n · log2

2 n + n · log2 n

n

)
= O

(
log2 n · log2

2 n
)

,

W (n, O (n)) =O (n · log2 n) .

2.6.3 Step computation

Steps are pre-computed based on depth-mod-k order. Nodes are split into
groups based on depth mod k first. Those groups are then split into sub-groups
of size p. Each such sub-group corresponds to a single step of computation.
Hence, the algorithm 22.

Algorithm 22: compute step (EREW PRAM)
Input: depth-mod-k order dmk1, . . . , dmkn, depths

depth1, . . . , depthn

Output: steps step1, . . . , stepn

Auxiliary: groups group1, . . . , groupn, group end indices
gei1, . . . , gein

for i← 1 to n do in parallel
groupi ← depthdmki

mod k;
geii ← i iff n− 1 ∨ groupi ̸= groupi+1 else ∞;

end
inclusive suffix min scan (in: gei, out: gei);
for i← 1 to n do in parallel

stepi ← 1 iff (geii − 1) mod p else 0;
end
inclusive suffix scan (in: step, out: step);

As the algorithm consists of 2 pairs of simple loops and scans, the complexities
are

T (n, p) =O

(
n

p

)
+ O

(
n

p
+ log2 p

)
= O

(
n

p
+ log2 p

)
,

C (n, p) =p ·O
(

n

p
+ log2 p

)
= O (n + p · log2 p) ,

W (n, p) =O (n) .

54

2.6. DFTA run

2.6.4 State computation

Node states are computed in depth-mod-k order. Besides group boundaries,
there’s no processor stalling. There are k − 1 such boundaries, and at most
p − 1 processors will stall. This means that O (p · k) stalls occur throughout
the run. Hence, the algorithm 23.

Algorithm 23: compute state (EREW PRAM)
Input: DFTA A = (Q,F , Qf , ∆), tree t = (labels, children, root) of

the size n, depth-mod-k order dmk1, . . . , dmkn, steps
step1, . . . , stepn

Output: states state1, . . . , staten

do in parallel
s← 1;
i← n− pid;
while i ≥ 1 do

if stepi = s then
statei ← ∆labelsi

(statechild1(i), . . . , statechildarity(i)(i));
i← i− p;

end
s← s + 1;

end
end

As it’s just a simple loop, assuming that ∆ evaluates in O (1), the complexities
are

T (n, p) =O

(
n

p

)
,

C (n, p) =p ·O
(

n

p

)
= O (n) ,

W (n, p) =O (n) .

2.6.5 Complexity analysis

The algorithm consists of ETT, dept-mod-k sort, step computation, and state
computation. All of those were analyzed above. The complexities depend on

55

2. Analysis and Design

the ranking algorithm used. For the non-work-optimal ranking, they’re

T (n, p) =O

(
n · log2 n

p

)
+ O

(
n

p
+ log2 p

)
+ O (n) p = O

(
n · log2 n

p

)
,

S (n, p) = O (n)
O
(

n·log2 n
p

) = O

(
p

log2 n

)
,

C (n, p) =p ·O
(

n · log2 n

p

)
= O (n · log2 n) ,

W (n, p) =O (n · log2 n) + O (n) = O (n · log2 n) .

For the work-optimal ranking, they’re

T (n, p) =O

(
p · log2 p · log2

2 n + n · log2 n

p

)
+ O

(
n

p
+ log2 p

)
+ O

(
n

p

)

=O

(
p · log2 p · log2

2 n + n · log2 n

p

)
,

S (n, p) =O

(
n · p

p · log2 p · log2
2 n + n · log2 n

)
,

C (n, p) =p ·O
(

p · log2 p · log2
2 n + n · log2 n

p

)
=O

(
p · log2 p · log2

2 n + n · log2 n
)

,

W (n, p) =O (n · log2 p) + O (n) = O (n · log2 p) .

2.6.6 APRAM modification

As in APRAM, the processors are not working in synchrony, all of the parallel
regions have to be synchronized during potential conflicts. The algorithm is
designed for EREW PRAM, i.e. it’s designed to be conflict-less. There are
some conflicts present in the implementation, all are described in appropriate
sections. All of them are negligible and do not conflict with the nature of
EREW PRAM.

The only reason for step pre-computation is to be able to tell when the syn-
chronous processors should stall. For asynchronous processors, a synchro-
nization barrier could be used instead. Then, the whole step of computation
can be skipped. Hence the modified algorithms for DFTA run 25 and state
computation 24.

56

2.6. DFTA run

Algorithm 24: compute state (APRAM)
Input: DFTA A = (Q,F , Qf , ∆), tree t = (labels, children, root) of

the size n, depth-mod-k order dmk1, . . . , dmkn

Output: states state1, . . . , staten

do in parallel
s← 1;
i← n− pid;
for g ← dmkn downto 1 do

while dmki = g do
statei ← ∆labelsi

(statechild1(i), . . . , statechildarity(i)(i));
i← i− p;

end
synchronize processors;

end
end

Algorithm 25: Parallel run of the k-local DFTA (APRAM)
Input: DFTA A = (Q,F , Qf , ∆), tree t = (labels, children, root) of

the size n
Output: states state1, . . . , staten

Auxiliary: depths depth1, . . . , depthn, depth-mod-k order
dmk1, . . . , dmkn

get depths using ETT (in: t, out: depth);
depth-mod-k sort (in: t, depth, out: dmk);
∀i ∈ n̂ : statei ← 0;
compute state (in: A, t, dmk, out: state);
compute state (in: A, t, dmk, out: state);

2.6.7 GPGPU modification

As SIMT architecture is closer to the true nature of EREW PRAM, the steps
cannot be omitted completely. Instead of step computation, the boundaries
of each group are computed. Then, the individual groups are processed one
by one without any additional stalling.

2.6.8 Implementations

As the algorithm is still relatively new, there are no practical implementations.
The only existing implementation the author of this thesis is aware of, is

57

2. Analysis and Design

implementation done by the author himself. [2]

58

Chapter 3
Implementation

This chapter starts with a short description of parallelization libraries. The
implementation notes of individual structures and algorithms follow. The
CPU and GPU implementation of individual parts is next to each other for
easier comparison.

3.1 Libraries

3.1.1 CPU

POSIX threads are considered a parallelization standard. Most of the other
libraries use it as a reference or even wrap it, providing a convenient interface.
It offers basic thread manipulation and synchronization primitives.

STL provides its OO interface for POSIX threads. Even though it’s powerful
and convenient, it’s not sufficient for the purpose of this thesis as it lacks
control over number of processors utilized.

TBB is considered an industry standard for parallelization. Besides parity
with POSIX, an implementation of some algorithms is provided as well. Work-
load balancing is part of the implementation.

OpenMP has a similar, if not the same, status as TBB. Rather than classes
and functions, preprocessor directives and core language features are utilized
to interface with the user. It provides control over the number of used pro-
cessors. This is the main strength of this library and the main reason why
implementation will use that.

59

3. Implementation

3.1.2 GPU

OpenCL provides all the required functionality to create GPGPU applications.
It’s an open standard for GPGPU computation. It’s considered to be an
industry standard for multiplatform GPGPU.

CUDA is a proprietary NVIDIA GPGPU API. It’s on par with OpenCL re-
garding the provided functionalities. As it’s a proprietary standard of NVIDIA,
it’s well-optimized for NVIDIA GPUs.

Thrust is a C++ extension of CUDA, that implements many algorithms and
structures for GPGPU computing. As the NVIDIA GPUs are expected to be
used with the implementation, this library will be used for it.

3.2 Structures

3.2.1 Array

3.2.1.1 CPU

As most implementations of arrays have sequential initialization & copy, cus-
tom implementation is implemented. The implementation can be found in
b5:type.par vector module, named b5::type::par vector. It conforms to Con-
tainer named requirement.

As the addition and removal of the elements after initialization is not required,
the implementation doesn’t support that.

All the operations are implemented with either T (n, p) = O
(

n
p

)
or T (n, p) =

O (1).

3.2.1.2 GPU

The Thrust library provides thrust::host vector & thrust::device vector as CPU
and GPU counterparts of each other. It supports the transition of the data
from CPU to GPU and vice versa.

60

3.2. Structures

3.2.2 Tree

3.2.2.1 CPU

The implementation can be found in b5:type.tree, named b5::type::tree.
b5::type::par vector is used as array implementation.

3.2.2.2 GPU

The implementation is split into classes b5::type::tree::host &
b5::type::tree::device. Those use thrust::host vector & thrust::device vector as
array implementation.

3.2.3 Arc

3.2.3.1 CPU

The implementation can be found in b5:algorithm.ett, named b5::algorithm::arc.

3.2.3.2 GPU

As it’s POD, there’s only one implementation common for both, host and
device. It’s implemented in class b5::algorithm::arc.

3.2.4 DFTA

3.2.4.1 CPU

The implementation can be found in b5:type.dfta, named b5::type::dfta. The
states are represented by the maximal state. The final states are represented
by an std::unordered set to be more memory-efficient than using
b5::type::par vector<bool>. The transition function is represented by
std::unordered map, which conforms to 23 assumption that it’s evaluated in
O (1).

The symbol-specific sections of the transition functions are represented by
b5::type::dfta::transitions. To ease the implementation with various supported

61

3. Implementation

arities, the table is flattened.

3.2.4.2 GPU

The implementation is split into classes b5::type::dfta::host &
b5::type::dfta::device. The transition function is flattened fully.

3.3 Reduction and Scan

3.3.1 Reduction

3.3.1.1 CPU

The OpenMP implementation of reduction is utilized.

3.3.1.2 GPU

As the reduction is not used in GPU implementation, it’s not present.

3.3.2 Inclusive scan

3.3.2.1 CPU

As the implementation provided by the STL doesn’t provide control over the
number of processors used, there’s a custom implementation. It can be found
in b5:algorithm.scan.inclusive, named b5::algorithm::scan::inclusive. It imple-
ments the Blelloch algorithm 8.

3.3.2.2 GPU

The thrust::inclusive scan is used in GPU implementation.

62

3.4. Lists

3.3.3 Exclusive scan

3.3.3.1 CPU

The exclusive counterpart of the inclusive scan can be found in
b5::algorithm.scan.exclusive, named b5::algorithm::scan::exclusive.

3.3.3.2 GPU

The exclusive counterpart is implemented as thrust::exclusive scan.

3.4 Lists

3.4.1 Linked list

3.4.1.1 CPU

The implementation of the linked list using the successor array can be found
in b5:type.linked list, named b5::type::linked list.

3.4.1.2 GPU

The implementation is split into classes b5::type::ll::host & b5::type::ll::device.
Both of them use the successor array.

3.4.2 List ranking

3.4.2.1 CPU

The algorithm 13 is implemented.

The n-coloring can be found in b5:algorithm.ranking.n coloring and is named
b5::algorithm::ranking::n coloring.

63

3. Implementation

The 6-coloring using DCT (algorithm 11) can be found in
b5:algorithm.ranking.six coloring and is named
b5::algorithm::ranking::six coloring.

The 3-coloring (algorithm 12) can be found in b5:algorithm.ranking.three coloring
and is named b5::algorithm::ranking::three coloring.

The ranking itself can be found in b5:algorithm.ranking and is named
b5::algorithm::list ranking. 0 is used instead of 1 as initial rank as it’s used to
index arrays.

3.4.2.2 GPU

As the algorithm 13 won’t work well with GPUs, due to its nature, the algo-
rithm 10 is implemented instead. It’s named b5::algorithm::list ranking.

3.5 Euler Tour Technique

3.5.1 CPU

The implementation of the algorithm 14 can be found in b5:algorithm.ett,
named b5::algorithm::euler tour.

The index of the first arc for each node is precomputed first. This allows for
a parallel arc creation.

The creation of the downgoing and upgoing arcs is split for simplification.

3.5.2 GPU

The implementation of the algorithm 14 is implemented as
b5::algorithm::euler tour. It’s similar to the CPU implementation.

64

3.6. Parentheses matching

3.6 Parentheses matching

3.6.1 CPU

The implementation can be found in b5:algorithm.par match, named
b5::algorithm::par match. It implements work-optimal parentheses matching
18.

3.6.2 GPU

The algorithm 17 is used instead as it’s more SIMT-friendly.
thrust::stable sort by key is used as a stable sort implementation. It’s imple-
mented as b5::algorithm::par match.

3.7 Run of k-local DFTA

3.7.1 Run

3.7.1.1 CPU

The run can be found in b5:algorithm.dfta.run as b5::algorithm::dfta::run.

It’s associated with the state computation as its dependency. It’s named
b5::algorithm::dfta::update states but is not exposed.

3.7.1.2 GPU

The run is implemented as b5::algorithm::run.

It’s associated with the state computation as its dependency. It’s named
b5::algorithm::dfta::update states but is not exposed.

65

3. Implementation

3.7.2 Preprocess

3.7.2.1 CPU

The preprocess combines the get depths algorithm 15 with the depth-mod-k
algorithm 21.

They’re implemented as b5::algorithm::dfta::get depths & b5::algorithm::dfta::depth mod k sort
but are not exposed. Instead, b5::algorithm::dfta::preprocess could be used.
All of them may be found in b5:algorithm.dfta.preprocess.

3.7.2.2 GPU

The preprocess is similar to the CPU implementation, including names and
exposition.

66

Chapter 4
Testing

This chapter starts with a system test of created implementations. The time
measurement of those implementations follows. It’s closed by a comparison of
both implementations.

4.1 System test

The system test is not using any standardized framework. Instead, the set of
pre-defined trees and DFTAs with known results is used. One of those trees
and DFTAs is provided with this thesis as an example.

Figure 4.1 depicts a pattern described by example DFTA and 4.2 example
tree with states after evaluation.

a

b

c

b

∗

Figure 4.1: Example pattern

67

4. Testing

a0

b2

a4

b3

c1

b2

a0

a0

a0

b2

b3

c1

c1

a0

c1b2

b3

c1

c1

b2

b2

b2

a4

b3

c1

b2

a4

b3

c1

b2

b3

c1

Figure 4.2: Evaluated example tree

4.2 Time measurements

4.2.1 Methodology

The preprocessing time was measured separately from the time of the run, as
it’s a common use case to preprocess a tree for multiple patterns.

The real-time was measured as an approximation of the execution time, ne-
glecting time scheduling.

Multiple data sets were tested with each algorithm described in 4.2.3.

4.2.2 Hardware

All tests were executed with the following hardware.

• Intel Core i7 12850HX with 24 vCPUs,

68

4.2. Time measurements

n
CPU GPU

preproc. run
∑

preproc. run
∑

210 6.20 ms 220 µs 6.43 ms 597 ms 1.60 ms 599 ms
212 8.49 ms 825 µs 9.31 ms 668 ms 2.05 ms 670 ms
214 11.6 ms 3.46 ms 15.1 ms 672 ms 2.56 ms 674 ms
216 34.6 ms 8.75 ms 43.4 ms 674 ms 2.97 ms 677 ms
218 133 ms 34.2 ms 168 ms 676 ms 3.01 ms 679 ms
220 482 ms 144 ms 625 ms 693 ms 6.51 ms 700 ms
222 3.51 s 687 ms 4.19 s 913 ms 15.7 ms 928 ms
224 11.6 s 4.06 s 15.6 s 1.95 s 53.8 ms 2.01 s
226 47.0 s 14.7 s 1.03 min 6.53 s 241 ms 6.77 s
228 3.57 min 1.12 min 4.70 min 24.0 s 994 ms 25.0 s
230 14.8 min 5.24 min 20.0 min 1.54 min 3.93 s 1.61 min

Figure 4.3: Results

• 64 GiB of RAM, 4800 MHz

• NVIDIA GeForce RTX 3080 Ti

4.2.3 Data

The testing data consisted of randomly generated trees and DFTAs.

The actual k-locality of DFTA was neglected as it does not affect the measured
time. Various DFTAs were used mainly to mitigate variance in results. ks
were chosen in range 2 through 24.

The processor count wasn’t limited in any way for CPU implementation, as it
doesn’t make sense to limit CPUs when competing with GPUs.

The tested tree sizes were in the range of 210 through 230. Each tree’s run
time was measured multiple times, and multiple trees of the same size were
tested to mitigate variance.

Random test data were generated using Algorithms Library Toolkit.[11]

4.2.4 Results

Results are presented in the figure 4.3. The results presented are average of
individual results. Charts 4.4 present results visually.

69

4. Testing

210 212 214 216 218 220 222 224 226 228 230

10

100

1,000

10,000

100,000

1,000,000

Tree size

T
im

e
[m

s]
Preprocessing time comparison

CPU
GPU

210 212 214 216 218 220 222 224 226 228 230

0.1

1

10

100

1,000

10,000

100,000

1,000,000

Tree size

T
im

e
[m

s]

Run time comparison

CPU
GPU

Figure 4.4: Time comparisons

70

4.2. Time measurements

As expected, the charts show that GPU implementation achieves significantly
higher speed than CPU implementation. This occurs only with bigger trees, as
the GPU synchronization’s relatively big overhead causes the GPU implemen-
tation to be slower with smaller inputs. As it’s somewhat expensive to pass
data between CPU and GPU, the benefit of GPU is expected to be mitigated
by the overhead with small trees.

The size of approximately 1.5 million of nodes seems to be the boundary at
which GPU speedup overcomes its overhead. The CPU implementation can
be up to 100 times faster for smaller trees. With bigger trees, the GPU needs
approximately 1

10 of execution time required by the CPU implementation.

The linear increase of execution time with tree size is most probably caused by
the full utilization of threads. As there are not enough threads to split all the
work, the waiting time that grows linearly with tree size is defining the overall
trend. The threads are depleted much sooner for CPU implementation than
the GPU implementation. That is caused by the fact that GPUs can have
thousands of threads available, while typical CPUs have less than a hundred
threads available. The point at which GPU threads are depleted can be seen in
the chart as a point where the constant trend of the time complexity changes
to a linear trend.

The main issue of the measurement is the limited number of threads available.
The algorithm expects the number of processors to scale with the input size.
That’s why the declared complexity is not visible in charts.

The speed-up of the GPU is much more significant in a pure run with pre-
processed data. The GPU outperforms the CPU up to 100 times. As the
preprocessing is much more expensive than running itself, it’s worth prepro-
cessing the tree only once when possible. The tree should be preprocessed
for the biggest k of all DFTAs it should be used with. This way, it can be
run with all of the DFTAs without further processing, causing much more
significant speed-up than parallelization itself.

As is the results seem very promising, as the GPU implementation was able
to keep great execution time until the threads were depleted. Further testing
may prove the feasibility of the implemented algorithm for pattern matching.

71

Conclusions and Future work

This thesis was about implementing a parallel run of k-local DFTA for two
different architectures.

For APRAM, the original algorithm was optimized and implemented work
optimally. The implementation was tested and measured experimentally.

Besides APRAM, the original algorithm was adapted to SIMT architecture,
which is similar to the original EREW PRAM, yet different. The implemen-
tation for SIMT isn’t work-optimal. Some of the work-optimal algorithms
presented are not compatible with SIMT architecture and thus cannot be
used. The algorithm was implemented, favoring the overall speed, sacrific-
ing some of the optimality. The implementation was tested and measured
experimentally as well.

Both implementations were compared to each other. As expected, the GPU
implementation outperformed the CPU one. The testing was performed with
all processors available to achieve maximal speed.

The implementation proves the applicability and feasibility of the algorithm
for other architectures than the originally intended one.

Even though the results are very promising, further testing is required to reach
any conclusions regarding overall performance and scalability.

Future work

Further tests with many more processors will be required to test scalability
properly. To achieve that, modification for a NUMA model would be required

73

Conclusions and Future work

as even testing performed in this thesis is hitting the limits of usual UMA
models.

Besides migrating to distributed memory, there are many possible optimiza-
tions for current implementations.

The APRAM implementation was made to optimize/modify the original EREW
PRAM algorithm slightly. Further relaxation of requirements given by that
architecture can be applied to optimize the algorithm for asynchronous sys-
tems.

The SIMT implementation currently doesn’t solve data locality to the depth.
There’s a lot of space for improvement in that regard. By improving data
locality and optimizing data transfers between RAM, VRAM, and caches, a
lot of additional acceleration can be achieved, benefiting from GPGPU much
more than in the current thesis.

Even though the NUMA architectures should be prioritized for further work,
it’s possible to adapt the algorithm to other UMA architectures to prove its
applicability regardless of the architecture.

74

Bibliography

[1] Plachý, v.; Janoušek, J. On Synchronizing Tree Automata and Their
Work–Optimal Parallel Run Usable for Parallel Tree Pattern Match-
ing. Springer International Publishing, 2020, ISBN 9783030389192, p.
576–586, doi:10.1007/978-3-030-38919-2 47. Available from: http://
dx.doi.org/10.1007/978-3-030-38919-2_47

[2] Borový, M. Implementation of parallel algorithm for run of k-local tree
automata. Czech Technical University in Prague, 2021. Available from:
https://dspace.cvut.cz/handle/10467/95439

[3] Rahman, M. S. Basic Graph Theory. Springer International Publish-
ing, 2017, ISBN 9783319494753, doi:10.1007/978-3-319-49475-3. Avail-
able from: http://dx.doi.org/10.1007/978-3-319-49475-3

[4] Tvrd́ık, P. Parallel algorithms and computing. Praha: Vydavatelstv́ı
ČVUT, 2003, ISBN 80-01-02824-0.

[5] Flynn, M. Very high-speed computing systems. Proceedings of the
IEEE, volume 54, no. 12, 1966: p. 1901–1909, ISSN 0018-9219, doi:
10.1109/proc.1966.5273. Available from: http://dx.doi.org/10.1109/
PROC.1966.5273

[6] Hillis, W. D.; Steele, G. L. Data parallel algorithms. Communica-
tions of the ACM, volume 29, no. 12, Dec. 1986: p. 1170–1183, ISSN
1557-7317, doi:10.1145/7902.7903. Available from: http://dx.doi.org/
10.1145/7902.7903

[7] Blelloch, G. E. Prefix sums and their applications. Technical report CMU-
CS-90-190, School of Computer Science, Carnegie Mellon University,
1990.

75

http://dx.doi.org/10.1007/978-3-030-38919-2_47
http://dx.doi.org/10.1007/978-3-030-38919-2_47
https://dspace.cvut.cz/handle/10467/95439
http://dx.doi.org/10.1007/978-3-319-49475-3
http://dx.doi.org/10.1109/PROC.1966.5273
http://dx.doi.org/10.1109/PROC.1966.5273
http://dx.doi.org/10.1145/7902.7903
http://dx.doi.org/10.1145/7902.7903

Bibliography

[8] Cole, R.; Vishkin, U. Faster optimal parallel prefix sums and list rank-
ing. Information and Computation, volume 81, no. 3, June 1989: p.
334–352, ISSN 0890-5401, doi:10.1016/0890-5401(89)90036-9. Available
from: http://dx.doi.org/10.1016/0890-5401(89)90036-9

[9] Tarjan, R.; Vishkin, U. Finding biconnected componemts and comput-
ing tree functions in logarithmic parallel time. In 25th Annual Sym-
posium on Foundations of Computer Science, 1984., IEEE, 1984, doi:
10.1109/sfcs.1984.715896. Available from: http://dx.doi.org/10.1109/
sfcs.1984.715896

[10] Levcopoulos, C.; Petersson, O. Matching parentheses in parallel. Discrete
Applied Mathematics, volume 40, no. 3, Dec. 1992: p. 423–431, ISSN
0166-218X, doi:10.1016/0166-218x(92)90011-x. Available from: http://
dx.doi.org/10.1016/0166-218X(92)90011-X

[11] Faculty of Information Technology, Czech Technical University in Prague.
Algorithms Library Toolkit. 2021-04-03, version 0.0.0.r1109.gc0ac370eb.
Available from: https://alt.fit.cvut.cz/

[12] OpenMP. 2020-11-17, version 5.1. Available from: https:
//www.openmp.org/

76

http://dx.doi.org/10.1016/0890-5401(89)90036-9
http://dx.doi.org/10.1109/sfcs.1984.715896
http://dx.doi.org/10.1109/sfcs.1984.715896
http://dx.doi.org/10.1016/0166-218X(92)90011-X
http://dx.doi.org/10.1016/0166-218X(92)90011-X
https://alt.fit.cvut.cz/
https://www.openmp.org/
https://www.openmp.org/

Appendix A
Acronyms

APRAM Asynchronous Parallel Random Access Machine

BFS Breadth-First Search

CRCW Concurrent Read Concurrent Write

CREW Concurrent Read Exclusive Write

CUDA Compute Unified Device Architecture

DCT Deterministic Coin Tossing

DFS Depth-First Search

DFTA Deterministic finite tree automaton

EREW Exclusive Read Exclusive Write

ETT Euler’s Tour Technique

MIMD Multiple Instruction Multiple Data

MISD Multiple Instruction Single Data

NUMA Non-Uniform Memory Access

PRAM Parallel Random Access Machine

RAM Random Access Machine

SIMD Single Instruction Multiple Data

SIMT Single Instruction Multiple Threads

SISD Single Instruction Single Data

77

A. Acronyms

TBB Thread Building Blocks

UMA Uniform Memory Access

78

Appendix B
Symbols

N0 set of natural numbers

R+ set of positive real numbers

x̂ set {1, 2, . . . , x}⊕b
i=a xi shorthand for xa ⊕ · · · ⊕ xb.

79

Appendix C
User manual

C.1 Prerequisities

C.1.1 CPU

• CMake v3.28 or newer

• OpenMP v4.5 or newer

C.1.2 GPU

• CMake v3.28 or newer

• CUDA v12.4 or newer

• Compatible thrust version

C.2 Compilation

To compile this thesis, follow these steps:

1. Navigate to the desired build directory < BUILD DIR >.

2. Type cmake < SRC DIR > in the terminal.

3. Type cmake –build < BUILD DIR > in the terminal.

81

C. User manual

C.3 Usage

The compilation of the source codes produced < BUILD DIR > /lib/dftaOmp lib.a
and < BUILD DIR > /bin/dftaOmp demo.

To run the demo program type < BUILD DIR > /bin/dftaOmp demo <
TREE BINARY > < DFTA BINARY > k. To run the time measuring
type < BUILD DIR > /bin/dftaOmp measure < TREE BINARY > <
DFTA BINARY > k.

For the GPU implementation just replace dftaOmp with dftaCuda.

82

Appendix D
Contents of the enclosed

medium

readme.txt the file with CD contents description
cuda the GPU implementation sources
omp...................................the CPU implementation sources

bin
example.dfta example DFTA binary
example.dfta.desc example DFTA description
example.out.desc................... example output description
example.tree...............................example tree binary
example.tree.desc.....................example tree description

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format

83

	Introduction
	Goals

	Theory
	Basic definitions
	Graph
	Tree
	Tree language
	Tree automaton
	k-local tree automaton

	Algorithm Complexity
	Sequential Complexity
	Parallel Complexity

	Parallel Computation Models
	Reduction and Scan
	Lists
	Euler Tour Technique
	Parentheses Matching

	Analysis and Design
	Structures
	Array
	CPU
	GPU

	Tree
	CPU
	GPU

	Arc
	DFTA
	CPU
	GPU

	Reduction and Scan
	Reduction
	Algorithms
	Implementations

	Inclusive scan
	Algorithms
	Implementations

	Exclusive scan
	Implementations

	Lists
	Linked list
	Implementations

	List ranking
	6-coloring
	3-coloring
	Work-optimal list ranking
	Implementations

	Euler Tour Technique
	Algorithms
	Implementations
	Applications

	Parentheses matching
	Algorithms
	Implementations

	DFTA run
	The main algorithm
	Depth-mod-k sort
	Step computation
	State computation
	Complexity analysis
	APRAM modification
	GPGPU modification
	Implementations

	Implementation
	Libraries
	CPU
	GPU

	Structures
	Array
	CPU
	GPU

	Tree
	CPU
	GPU

	Arc
	CPU
	GPU

	DFTA
	CPU
	GPU

	Reduction and Scan
	Reduction
	CPU
	GPU

	Inclusive scan
	CPU
	GPU

	Exclusive scan
	CPU
	GPU

	Lists
	Linked list
	CPU
	GPU

	List ranking
	CPU
	GPU

	Euler Tour Technique
	CPU
	GPU

	Parentheses matching
	CPU
	GPU

	Run of k-local DFTA
	Run
	CPU
	GPU

	Preprocess
	CPU
	GPU

	Testing
	System test
	Time measurements
	Methodology
	Hardware
	Data
	Results

	Conclusions and Future work
	Future work

	Bibliography
	Acronyms
	Symbols
	User manual
	Prerequisities
	CPU
	GPU

	Compilation
	Usage

	Contents of the enclosed medium

