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Introduction

The discrete Laplace operator A on (?(Z) is a linear second-order difference operator
given by
(Av), == —vy_1 + 20, — Uny1, Vv € 3(Z).

It is an approximation of the continuous 1-D Laplace operator which is acting like

Af @/

A2

Vf € C*(R).

The continuous Laplace operator arises in various areas of mathematics, for example
differential equations or mathematical physics. Therefore it has been a long-standing
subject of study in scientific publications, including the spectral theory.

In recent years, there has been a number of works dealing with discrete versions of Laplace
operator and problems inspired by the continuous cases. Omne of them should be this
master’s thesis.

The introduced discrete Laplace operator is a representative of the class of Laurent
operators. In the first chapter, we use the theory of Laurent operators to define the general
power of the discrete Laplace operator A%, « > 0 and analyze it’s spectral properties.
Later in the thesis, we define a negative power of the discrete Laplace operator in a similar
way. We also study the resolvent operator of the discrete polyharmonic operator. The
resolvent is obtained in the form of the Green kernel (matrix element) using a modified
Joukowski transform of the spectral parameter.

In the second chapter, we study the spectrum of the discrete polyharmonic operator
with a complex potential. We consider a trace-class operator V. The operator is associated
with a sequence v € ¢'(Z). Inspired by a method from [9], we use the Birman-Schwinger
principle to obtain so called spectral enclosures. The spectral enclosure is a subset of the
complex plane which contain the discrete spectrum of the discrete polyharmonic operator
perturbed by the potential V. In addition, we are able to localize the whole spectrum of
the perturbed operator.

In order to obtain the spectral enclosures, we need to estimate the absolute value of the
Green kernel of the polyharmonic operator. We introduce two estimates. One of them is
non-optimal but analytically proved. The other is optimal. Unfortunately, we only have
the proof of the optimality for the case of the discrete bilaplace operator. The proof uses
methods of the complex analysis. The validity of the estimate for higher integer powers of

7



the discrete Laplace operator was numerically tested and it has not been disproved. We
also discuss the absence of eigenvalues in the essential spectrum of the perturbed bilaplace
operator.

Finally, we are dealing with criticality of the positive power of the discrete Laplace
operator. The main result is that A® is critical if and only if @ > 1/2. We use an approach
introduced in [4] for the positive power of the discrete Laplacian over the positive integers.
The operator A® is subcritical for a € (0,1/2). This is equivalent with the existence of
Hardy’s inequalities which were analyzed in [1]. We made a recherche of their proof with
an emphasis on linking their semigroup approach with ours.



Chapter 1

Positive power of the discrete Laplace
operator and polyharmonic operator

A crucial object of this thesis is the discrete Laplace operator, since now denoted by
T', which is acting on the Hilbert space

*(7) = {u 7 — C: Z|uj]2 < —I-OO}
jez
with the orthonormal basis
E=1{ej};cy. where Vi €Z: e = {01}z

and §;, is the Kronecker delta. We consider the Euclidean inner product on ¢*(Z) to be
linear in the second argument.

Operator T is defined by its action on vectors of £ as follows:
Te, = —¢€,_1+2¢e, —e,y1, Vn el (1.1)

It is usual to associate the operator with its matrix with respect to the standard basis &,
which is doubly infinite. It reads




Spectral properties of the operators T' and T? were studied in my Bachelor’s degree
project [10]. In this thesis we would like to study a general positive power of T, i.e. T,
a > 0. Proper definitions and spectral properties will be introduced and analyzed using
the theory of Laurent operators.

1.1 A brief introduction to Laurent operators

In this section, we will introduce the class of Laurent operators. It consists of operators

whose matrix with respect to standard basis has a certain structure. We state that any
operator of this class is uniquely associated with a complex valued function, which, in
a certain sense, carries almost all the information about spectral properties of the operator.
We find it easier to use this method to do a basic spectral analysis for the polyharmonic
operator, which is, indeed, in the Laurent class, instead of the direct approach which
consists of solving the equation for eigenvalues etc.
All the propositions are based on [5] and can be found in Section 3.1. Some details
might be found in [10] as well, where the same theory was used for discrete Laplacian
and bilaplacian. Since this is a brief introduction, all the propositions will be introduced
without proofs, although they are not complicated.

Definition 1.1. A bounded operator A on ¢?(Z) is called Laurent operator if its matrix
element (kernel) A,,, depends only on the difference m — n.

Definition 1.1 says that the matrix representation of the operator A has constant
diagonals.

Let us now consider a unitary mapping U : (*(Z) — L*([—m,7]) given by the action
on the vectors of £

1 .
Ue,)(t) = —=e™ =: f.(t), Vte[-mn], VneLZ. 1.2
Uen)(t) = =™ = fo(t), VE€[m] (12)
U maps the orthonormal basis of *(Z) onto an orthonormal basis of L?([—7, 7]). Therefore
U us unitary.
The inverse of U is nothing but the discrete Fourier transform,

U f, =e, YVneZ.

Definition 1.2. Let ¢4 : [—m, 7] — C be a bounded, measurable function. We call ¢4
the symbol of a Laurent operator A if it holds

A=U"My, U, (1.3)

where M, is the operator of multiplication by ¢4, which is, under these assumptions,
bounded on L? ([, 7]).
10



Since the diagonals of the matrix representation of A are constant, it is convenient to
denote Vm,n € Z: A, = ay_p. Thus, the matrix of A is of following form

a_9 Q_1 Qo aq Q9

P O, R ¢ | Im ay Qg
T =
a_o9 a_1 Qo aq

Now, provided that a € (*(Z), it is easy to verify that the function

da(t) =) ane™, te[-mm] (1.4)

nez

is the symbol of a Laurent operator with a kernel A,,,. Indeed, for every basis function
fm € L? ([—7,7]) it holds

(UAUT f,)(t) = (UAe,,) (t) = <u > anem_n> (1) =) anfmalt) =

nez neL

_ (Z ) Fnlt) = 04011,

nez

using the continuity of U and the fact that A is a Laurent class operator. Hence the
desired formula

Z/{AZ/{il - M¢A

directly follows. Moreover, for a given symbol ¢4, one can find matrix elements of the
corresponding operator A as

1 s

:% »

pa(t)e™dt, ¥n € Z.

Qn

The relation (1.3) is called diagonalization of the Laurent operator A. It follows
that every Laurent operator is uniquely related to its symbol ¢4 defined by (1.4) and
corresponding multiplication operator M,,. the spectra of these operators are identical
including the spectral classification (point, continuous and residual spectrum). Thus, it
is easy to study spectral properties of Laurent operator A using ¢ 4.

Theorem 1.3. (Inverse operator) Let A be a Laurent operator with a continuous
symbol ¢4. Then A is invertible if and only if ¢a(t) # 0, Vt € [—7,7]. If so, A™! is
Laurent operator with symbol 1/¢4 and its the matrix representation kernel is

1 ™ ei(n—m)t

A_l mmn — ~
( ) 7 27 —T ¢A
11

dt, ¥Ym,n € Z.



Theorem 1.4. (Operator norm of a Laurent operator) Let A be a Laurent operator
with a continuous symbol ¢ 4. Then A is bounded and

41 = max [o(t)]

te[—m,m

Theorem 1.5. (Spectral properties of a Laurent operator) Let A be a Laurent
operator with a continuous symbol ¢ 4. The spectrum of A coincides with the set Ran(¢,4).
Moreover, the point spectrum of A consists of all points A\ € C such that there exists
a Borel set B in R satisfying u(B) # 0 & ¢a(t) = A\, Vt € B, where pu is the Lebesgue
measure.

At this time, we should mention that a slight abuse of terminology was made. The term
symbol is usually used for a complex function ¢4 defined on the unit circle. Such a function
is also uniquely associated with the Laurent operator and has the same properties. One
can easily obtain the complex function from the defining equation (1.4) putting z = ' €
C, then

da(z) = Zanz’”, 2z €T,

nez

where T stands for the unit circle.

1.2 Definition of the positive power of discrete Lapla-
cian and basic properties

The results from the previous section will be applied now. Let us make the terminology
and notation clear. By the discrete polyharmonic operator it will be understood operator
T* where o € Z* and T is the discrete Laplacian. We will strictly use positive power of
discrete Laplacian if o € (0,400). One can find terms like fractional discrete Laplacian
for v € (0, 1) which will not be used here. The definition of discrete Laplacian itself might
be different too. We are strictly using the definition given by (1.1) which is a convention
used to guarantee positiveness of the spectrum of the Laplacian. There is often used
a definition corresponding to the operator 2/ — 1", which has the spectrum symmetrically
located around zero. This definition is used for example in [9].

The discrete Laplacian T is clearly in the Laurent class. The definition of the discrete
polyharmonic operator is clear and since the class of Laurent operators is closed under
composition, it is again a Laurent operator. For the definition of the positive power of T,
we use the diagonalization of Laurent operator (1.3).

First, let us determine the symbol ¢7. Using equation (1.1) and the relation for a symbol
(1.4) we obtain

pr(t) = —e" +2 —e =2 —2cos(t), t€[-m,
12



Definition 1.6. Let U be the unitary operator defined by (1.2) and « € (0,400). The
positive power of discrete Laplacian is defined as follows

T :=U" Mgy U.
The matrix element of T is for n > m € Z given by

(T) o = <€m7Ta€n>€2(Z) - <uem’UTaen>L2([_MD - <fm’ w—_i f”>
Moo (1_cos(-)) L2([~m,7])
1 T i
=3 | 21— costiyean

To compute this integral, we use the following proposition, which could be found in [7],
3.631 eq. 8.

Proposition 1.7. Let s € Z, v € C, Re(v) > 0, it holds

w[(v)

* sin~L(t) cos(2st)dt = (~1)° :
/0 Sin ( )COS( S ) ( ) QZ,F(VTH +S>F(VTH —S)

Rewriting the e(™~™) ysing sines and cosines in addition with some basic trigonometric
identities one has

1 ™ [e% s

- af1 a i(n—m)t _ 2 i «a . _
o ] 29(1 — cos(t))%e dt o 4(1 cos(t))® cos((n — m)t)dt
4o (7 2.4 (%
= — sinQa(E) cos((n —m)t)dt = / sin®*(7) cos(2(n — m)7)dr.
T Jo 2 ™ Jo

Hence, using Proposition 1.7, it immediately follows that

i 2. 4977 (2a + 1) B
(T = (1) 72201 (a + 14+ (m —n))T(a+1— (m —n))

I'(2a+1)
FNa+1+(m—n)a+1—(m—n))

= (-1

Recall that 1/T'(z) = 0 for z € Zj .

From the symmetry of m and n one immediately obtains

I'2a+1)
Fa+1+(m—n)l'(a+1—(m—n))

Vm,neZ: (T, =(=1)""

myn (1.5)
Since the kernel (7). depends only on the difference of its indices, the operator is in

the Laurent class.
13



It is clear, that a bounded continuous function ¢ra(t) = 2*(1 — cos(t))® is the symbol
of the operator 7. One can immediately get its spectral properties. This function is
real-valued, thus the T is self-adjoint. The range of this function is

Ran(¢re) = [0,4%].

And since the sets of zero derivative of ¢ra consist of at most three points —m, 7w and 0,
then using Theorem 1.5, one arrives at following proposition.

Proposition 1.8. Let o € (0, +00), then the operator T is self-adjoint Laurent operator.
It’s spectrum is
o(T) = [0,4°]

and is purely essential and purely continuous.

To be more concrete, in Figure 1.1, one can see graphs of the symbols of T* for few
selected values of a > 0.

15

10

Figure 1.1: Graphs of ¢z« for o € {0.2,0.6,1.0,1.4,1.8,2.2}.

1.3 Polyharmonic operator

Spectral properties of the discrete polyharmonic operator follow directly from the pre-
vious section. In what follows, we would like to find the resolvent of the polyharmonic
operator. Considering general a € (0,400), this problem will turn out to be more com-
plicated. The key step is solving a complex contour integral, what I was not able to do so

14



in general, thus we will later restrict on a positive integer a. But let us at first proceed
in the most general way.

According to Theorem 1.3, the resolvent operator (7% — X\)~! is in the Laurent class

and its symbol is
o !
( a_A)_l o la A ’

Thus, the matrix element of the resolvent for A € C )\ [0,4%] is

1 ™ ei(n—m)t 1 ™ ei(n—m)t

<neZ: (T°-Njh=— [ ——dt=— i (L
vmsnel: (A 27r/_W¢TU—Adt o) @ty (10

The matrix element of the resolvent is called the Green kernel of T.

Using the substitution z = e, we can transform this integral into complex contour integral
over the unit circle T, which can be simplified through the Residue theorem if oo € Z*.
For positive integer powers, the polynomial in the denominator can be factorized quickly,
unfortunately, for general rational or even the real powers, this procedure does not apply.
First of all, we need to transform the spectral parameter A by a parameter from the unit
disk D. In the following we put N := « € {1,2,3,...}.

1.3.1 Transformation of the spectral parametr

Working with discrete Laplacians and their resolvents, it is natural and convenient to
transform the spectral parameter A using the Joukowski transform, it was used e.g. in 9]
or [6], where the standard notation for the new parameter is k. It was also used in [10],
where a modification of the Joukowski transform fitting for T? was introduced. Recall
that the Joukowski transform is bijection from D\ {0} onto C\ [—2, 2] defined by

AE) =k + kL.
We introduce a modification of this transformation which satisfies our demands on the
target set which is C \ [0,4"]. Let us define
(n(k) = (=(k = kDAY, for ke D)\ {0}. (1.7)

Let us now find a proper subset of D which is mapped by ¢ on C \ [0,4"] bijectively. Tt
is clear, that the transform ( could be written as a composition of following mappings
1
Gu) ==u——, Gi(u):= u?, Giii(u) == —u, and  ((u) := u®
u
as (v = Giw © Gii © Gii © ¢;. Let us denote (" := (3, 0 (; 0 (5 and

. TToow .
Hy := {w:rel‘pE(C: 7’6(0,-11-;0)7 NS [§>§+N>}\1[072]7



which is in fact a sector with the segment from 0 to 2i missing.
One can easily see that
¢'(Hy) = C\ [0,4"]

and the mapping is injective.

To finish this, we need to describe the set ¢;'(Hy), we will denote it by DS, C D.
Again, we want the (; to be bijection from ]D)f\, onto Hy. For N =1 and N = 2 one can
easily see that

DS = ¢ (Hy) = {w €D: Re(w) >0} Ui(0,1),
DS = ¢ '(Hy) = {w € D: Re(w) > 0,Im(w) > 0} Ui(0,1).
Indeed, consider k = re'* for r € (0, +00) and ¢ € (—m,7]. Then

Gk) = (r— %) cos(t) +i(r + %) sin(t)

and it is not hard to verify that once r € (0,1) and t € (—n/2,7/2] or t € (0,7/2],
¢;(k) is in Hy or H respectively. Especially, the segment i(0, 1) is mapped onto i(2, +00).
Moreover, for fixed » € (0,1) and ¢t moving in given interval, the generated curves are
parts of ellipses which do not intersect each other for any two r, thus the bijectivity

follows. To conclude, we have found domains Dg, ]D)g, where the transform (y is bijective,
for N =1,2.

The situation is no longer "straight" considering N > 2. We know how i(0, 1) would
be mapped. Next, one can describe the segment in D mapping on the one boundary
segment of Hpy, which is not lying on the imaginary axis. Let us denote it by [y . It is
not a straight line. We have

In =" ({rd @™V 1 e (0,400)}).

Thus, one can find the explicit formula for £ € D as a function of r € (0, 400) solving the

equation

k— 1 rel 3 H%),

k
Since k # 0 our result is one solution of previous quadratic equation and it reads

{rewﬁfv) +V/r2e2ETR) 44 _
5 :

In =

re (0,—|—oo)} . (1.8)

By In(a) we understand a point of Iy corresponding to the parameter a € (0,4+00). Now
it is clear that for positive integer N > 1 we can define domain of the transformation (y
as follows

IDD?V =
{w e D:Re(w) >0, Im(w) >0, Ya >0, Re(w) = Re(ln(a)) = Im(w) > Im(Ix(a))} .

The set ]D?V is a part of the unit disk bounded by the imaginary axis and the curve [y.
As an illustration, some of the sets D}, are in Figures 1.2(a)-(f).
16



Remark 1.9. Tt is not necessary to restrict the transform ( only to integer N > 0. One
can now easily see that if we have defined ¢, for a € (0,+00), all the properties would
have continuously preserved. Considering just integer parameter NV, it is easier to explain

and understand, moreover, the general case with o would not be useful for us.
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Figure 1.2: Domains Dg\, for selected N.
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1.3.2 Resolvent

As it was mentioned, the Green kernel obeys the formula (1.6). One can still consider

real o > 0. Using the substitution z = ¢/ one has, for n > m € Z,
1 T ei(n—m)t 1 zZ(n—m)—l
T — N\t = — . - dt = — dz.
( o 2m /,r (2 —elt —eit)a — X 27 Jp (2 — 22 — 272)2 — A :

Now we put A\ = (,(k), hence

(T = Nn o Jo (—(z — 212 — (—(k — k:—l)Q)adZ N

(=) 22(n—m)—1 .
N i ]{r ((z—2z71)2)> — ((k— k—l)Q)ad : (1.9)

We will integrate using the Residue theorem provided that « is positive integer. From
now on, until the end of this chapter, we will consider only integer powers of the discrete
Laplacian N := o € Z*.

We multiply the fraction in the integral in (1.9) by 22V /22V | thus we arrive at

T — gyt = DY }[ A d (1.10)
mn = omi P 1PN — N (p — e 1N '

Let us denote the denominator of the fraction in integral (1.10) as py = pn(z). We
have the polynomial

pN(Z> — (22 . 1)2N o ZQN(IC . k?_l)2N — 22N ((Z . Z_1>2N o (k’ . ]C_l)2N) 7

where we are giving two different forms, because they are both useful. The polynomial
pn is clearly of degree 4N and thus has 4N roots (counting the multiplicity). Recall that
k € Dg\,. From the reciprocal form of py on can see that once z # 0 is a root of py, 1/2 is
also a root of py. Since any z € T such that p(z) = 0 would imply & outside ]D)g\,, half of

the roots are in the unit circle D and half of them are in D_. We are interested in roots
in D which is the interior of the integration curve. Moreover, since py(2) = py(—2), it
follows that half of the roots are in the left part of D and half in the right part of D or on
the corresponding parts of the imaginary axis. It is also clear that k is always a root of
pn. We can work out even a better description of the roots of the polynomial py in the
unit circle.

Let us denote zi,...,zy the roots of py in the right half of D (i.e Re(z;) > 0,Vj €
{1,...,N}) and zy11, ..., z2n the roots in the left half (i.e Re(z;) < 0,Vj € {N+1,...,2N}).
We do it in the way that z; = —zny;, V5 € {1, ..., N}. The zeros of the polynomial py in
D fulfill

(z— 2z = (k= k)N, forj e {l,...,2N},
18



from which we obtain

z;— 2 = ¥ (k— k1), for j € {1,..,2N}. (1.11)

J

This equation determine the numbering of the roots z;. Later, we will be able to derive
exact regions of the roots in D using (1.11).

Next, the derivative of py reads
Py(2) =4Nz(22 — 1)V — N2V — )2
For every j € {1,...,2N}, it holds

Pv(z) = 2N2 1222 — 27 ) = (R — k7)) =

= 2NN (22(z5 — 27 )N - oMU (25 — 2;)*N) =

= 2Nz]2-N_1(zj — 2PNz — zj_l) £0,

J

where we used (1.11).
Thus, every described root z; for j € {1,...,2N} generates a simple-pole-type singularity.
We can proceed from (1.10) using the residue theorem as follows

N Z?(m—n)—&—QN—l ZZ(nfm)JrQNfl
R A DL T
’ jzl Piv()) Pv(2n+5)

Z?(n—m)—l—QN

(=Y i ; _
N &= 222(22 — 1)2N-1 - 2N (f — f-1)2N

z?_(n—m)—i—QN

_(=)Y i : _
TN 9, 2N+1(, 2—1)2N—1 _ sz(k — k1)2N o

j=1"%J (ZJ J

2(n—m)

N N
J _
N Z 22;(k — k71)2N71672wi% — (k — k=1)2N

1
QTFIW 22(77' m)

N N e
N 222,(k_k1)2N1 2’”7(16 k—1)2N -
J

where the second line was obtained using z; = —zn;, fourth and sixth line were obtained
repeatedly using (1.11). It is necessary to mind that z; = z;(k), for j € {1,...,2N}.

The green kernel of T could be obtained using the symmetry of the matrix kernel

T,,IX , With respect to m and n. One immediately has the following proposition.
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Proposition 1.10. Let TV be a discrete polyharmonic operator, A\(k) = (y(k) defined
in (1.7) and z; = z;(k) a root of py in D given by (1.11). Then
(_1>N N Z?‘”_m|62ﬂi%

. N -1 _ :
Vm,n€Z: (T = \Nk))pn = N(k — k—1)2N—1 Z

- (1.12)

j=1 <j + Zj

Let us point out the known cases N = 1 and N = 2. For discrete Laplace operator

one has
k2|mfn\

k2 — k-—Q’

where the fact that z; = k was used. Recall that, in [10] and [9], it appears the well
known formula -

Ymne L (H-AE)h = oy

: £—¢1

where H := 21 — T and \(§) = £ + &1 is the classical Joukowski transform. We can see
a notably similar structure of the formulas, whereas the differences are caused by another
transform and slightly modified operator. Finally, we propose a similar form for the Green
kernel for N = 2, we will later work with. The formula (1.11) for j = 2 is now of the form
(22 — 2z, ') = i(k — k~'). We abuse the notation slightly by denoting 2; = k and z, = z,
which is still a function of k. From (1.12), we have

vm,neZ: (T—Ak),=-

T2 N . 1 k2|m—n| . 22|m—n|
( - ( ))m,n_ 2(]{5—]{3_1)3 k+ k-1 +12—|—Z_1 -
k2 k2|mfn| . Z2|mfn|
k2 —1)? [k:Q e T k—l)} '

Now, we use (1.11) and arrive at

k2
Z: (T?— -l—

(1.13)

k2|m—n\ 22|m—n|
k? — k=2 22 —2z272
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Chapter 2

Spectral enclosures for the discrete
polyharmonic operator

In this section we would like to improve upon the main result from [10], which is the
localization of the spectrum of the discrete bilaplace operator T2 perturbed by a complex
potential. It is well known and solved problem for the discrete Laplace operator, even
with the optimal result, see [9]. On the other hand, for the discrete bilaplacian 72, only
non-optimal result were found. A Conjecture on optimal enclosures has been formulated.
It will be proved afterwards.

We will introduce a general approach for the discrete polyharmonic operator TV and
formulate a generalized conjecture on optimal result. This conjecture will be proved for
N = 2. Recall that N is a positive integer.

Let us start with some general results describing changes of spectrum of a bounded
self-adjoint linear operator on a Hilbert space under a compact perturbation.

Theorem 2.1. (Birman—Schwinger principle) Let L be a bounded self-adjoint opera-
tor and V' be a compact operator on a Hilbert space H and let A, B be bounded operators
on H such that V = AB, then for A € p(L):

A€ ap(L+V) <= —1€0,(K(N),

where K () := B(L — \)"'A is the Birman-Schwinger operator.

Proof of Theorem 2.1 could be found in [10]. A more general version of the Birman-
Schwinger principle is discussed in [8]. One can immediately deduce on important corol-
lary, which is a necessary condition for A from the resolvent set of L to be in a point
spectrum of the operator L + V.

Corollary 2.2. Let L be a bounded self-adjoint operator and V' be a compact operator
on a Hilbert space H and let A, B be bounded operators on H such that V' = AB, then
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following implication holds true
A€ o,(L+V)= ||[K\)| > 1,
for A in p(L) and K (\) the Birman-Schwinger operator.

We proceed by a theorem which deals with the essential spectrum of a bounded self-
adjoint operator with a compact perturbation. Let us recall that we use a definition of
the essential spectrum from [13].

Let A be a bounded operator on a Hilbert space H. The algebraic multiplicity of an
isolated A\ € o,(A) is defined as

Vo(A) := dim(Ran(Py)),

where
Py ::i_]{ (A—2)"dz, wi={weC: |lw—-\=¢}.
2 .,
The € > 0 is small enough that the interior and the boundary of 7, do not contain any
other point of the spectrum of A. We define the discrete spectrum and the essential

spectrum of A as follows:
gaisc(A) = {A € 0,(A) : A\ is isolated & v,(\) < 400},
Oess(A) == 0(A) \ dqisc(A).

Theorem 2.3. Let A be a bounded operator on a Hilbert space H and V' be a compact
operator on H. And let the following hold true

1. The interior of o(A) in the topology of C is empty.
2. V C connected component of p(A) : CNp(A+V) # 0.

Then Tess(A 4+ V) = 0ess(A).

Proof of Theorem 2.3 could be found in [13] in section XIII 4.

2.1 Spectral enclosures

Let us introduce the problem. We consider discrete polyharmonic operator with a com-
plex potential T + V', where V is determined by a sequence v € (1(Z), i.e.

Ve, =uvne,, Vné€Ze,c€E. (2.1)
One can easily show that operator V' is compact, even trace-class, see [10].
Our aim is to localize the spectrum of TV perturbed by the potential V. The following

theorem localizes the essential spectrum of TV + V.
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Proposition 2.4. Let V be a potential defined by ¢!(Z) sequence v as in (2.1), then
Oess (TN + V) = 00s(TY) = [0,4V].

Proof. Tt is clear that the interior of o(T") = [0,4"] in the topology of C is empty.
Moreover, the operator 7% is bounded as well as V, thus the resolvent set p(TV + V)
is unbounded and it surely intersects the only connected component of p(T") which is

C\ [0,4"]. Theorem 2.3 concludes the proof. O

Since the essential spectra of perturbed and unperturbed polyharmonic operator 7%
are the same, only eigenvalues can appear due to perturbation V. We will localize the
eigenvalues using the Birman—Shwinger principle and we will find the sets containing the
discrete spectrum of 7% + V which only depend on the /! —norm of generating sequence
v € (Y(Z). Let us start with the decomposition of the potential V.

We define two operators |V|'/? and Vi /2 playing the role of operators A and B in the
Birman-Schwinger principle (Theorem 2.1). They act as follows,

Vn e Z: ’V’Uzen = |Un’1/26n7 ‘/1/2611 = |’U‘1/28g1’1(?]n>€m
where e, € £, v € (1(Z) is the generating sequence of V and sgn is the complex sign
function defined as
= 0
)T 2z #0,
sgn(z) :=
&n(2) {0 z=0.

It is clear that
V= |VI"2V,

and we define the Birman—-Schwinger operator as
K(\) = Vip(TN = N7V V2, (2.2)

Proposition 2.5. Let K(\) be defined by (2.2) and let number E(X) € (0, +00) be such
that Ym,n € Z: |(T™ — N),;1,| < E()), then

KNI < EN)|[v]le@.

Proof. The proposition immediately follows from the next estimate. For every u € (*(Z)
it holds

KNl =Y 1> KNt <O [om V(T2 = AL [oa] /2 )

meZ neZ MmeZ neEZ
c-S
N2 ol O fonl P lunl)? < EQ)? Y o] D Junl® > [l
meZ ne’l meZ ne’l kEZ

2 2
= E(\)? HU”El(Z) ”uHﬁ(Z) ’

where the Cauchy-Schwarz inequality was used. O]
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The exact form of the estimate E()\) of the Green kernel of TV will be introduced
later. First, let us finish the general process of searching for the enclosures.

Proposition 2.6. Let K(\) be defined by (2.2) and let number E(X) € (0, +00) be such
that Vm,n € Z: |(TN — N),;L,| < E(X), then

o, (TN +V) C {A € p(TV): ﬁ < |yv||m)} U [0,4"].

Proof. For \ € p(T") we use Corollary 2.2 which imply that if A € o,(T" + V) then
[IKMI=1 = 1< KW <EQX) vl
where the result of Proposition 2.5 was used. Hence
A€ ay(TV +V) = (EMN) ™" < [l

We have localized the discrete spectrum of TV 4V, it is a subset of
{Fen@): BEO) < olla ) -

Now, we make a union of the essential spectrum of T, which is [0,4"], with this set,
because of the possible eigenvalues in essential spectrum. This concludes the proof. [

From Proposition 2.6, we know that there is no eigenvalue of perturbed polyharmonic
operator outside the given set, except the interval [0,4"]. By a spectral enclosure we

understand a set .

On(lll = € o1 g < oo}

which, as it was mentioned, depends only on the norm of the sequence v € ¢*(Z) and the
estimate E(\).

There exists more than one possibility how to get the estimate E of the absolute value
of green kernel. Naturally, we would like to get the optimal one which is the supremum
over m,n € Z of |(T™ —X)~|. Tt turns out that it is a non-trivial problem for N > 1. But
it is still worth the effort since the optimal estimate induces, in a certain sense, optimal
enclosures. Let us first propose one of the immediate but non-optimal estimates.

Proposition 2.7. Let A = (y(k) € C )\ [0,4"], then

Vm,ne€Z: |(TV = Xk))mn

‘N( 2N 1’Z|ZJ+Z

Proof. The proof follows directly from Porposition 1.10 and the fact that all the roots
z; = zj(k) are in . O
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We have a conjecture on the optimal estimate, which will be proved later for one
special case N = 2, the proof is easy for N = 1 and in this case, the estimate coincides
with the one obtained from Proposition 2.7.

Conjecture 2.8. Let A = (y(k) € C\ [0,4"], then

N si—1
eQﬂ'lW

1
N — kP

Vm,n € Z: (T = A(k))pinl < (T = A(K))gol =

—1 *
Pl i

This allows us to summarize our result in the following theorem:.

Theorem 2.9. (partly conjectural) Let N be positive integer and V' be a trace class po-
tential generated by a sequence v € £1(Z). We can localize the spectrum of the perturbed
discrete polyharmonic operator TV as follows

L. o(TN+V)C

-1

< HUHel(m U [0>4N}-

1 Y
A= Cu(k) € C\ [0.4"]: [W ] X o
g=1 """ ="

Similarly, provided that Conjecture 2.8 holds true, then

2. o(TVN+V)C
i e27rij2;N1
+ 271

=1 % T

1
N — k]

A= Cuk) €€\ [0,4] [ < ol p U 0,4Y)

Proof. Part 1. follows directly from Propositions 2.4, 2.7 and 2.6. Part 2. follows from
the same propositions, we just consider Conjecture 2.8 instead of Proposition 2.7. O

2.2 Proof of Conjecture 2.8 for N =2

In this section we prove Conjecture 2.8 for N = 2. Afterwards, we discuss a possible
method of proving the conjecture for N > 3.

Firstly, let us recall a well-known result of the complex analysis.

Theorem 2.10. (Maximum Modulus Principle).
Let €2 be a connected open subset of C and f : 2 — C holomorphic on € and f # const.
Then |f| cannot exhibit a strict local maximum in 2.
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Figure 2.1: The optimal spectral enclosures for the discrete bilaplacian with a complex
potential determined by a sequence v € ((Z) for [|v, 4 € {8,10,12,14,18}.

Corollary 2.11. Let © be a bounded connected open subset of C and f : @ — C
holomorphic on €2 and continuous on 2. Then

max |f| = max|f|.

We use the following form of the Green kernel of 7% which was given in (1.13) and
reads
k2 k2|mfn| Z?\mfn\

v Z: (T* =Xk = -
m,n & ( ( ))m,n 2(]62 o 1)2 k2 _ k—2 22 _ 2_2

Or aim is to show
Vm,n € Z: |(T% = Mk) ™ imnl < [(T* = A(k)) ool k € DS.

Recall that z = z(k) is the unique solution of (1.11) in D where z := 2. Let us denote
s := |m — n| which is nonnegative integer. We can divide both sides of the inequality by
|k?/2(k* — 1), slightly manipulate the other terms from which we obtain

VseZi K (22— am2) — 2 (- kD) | <[ (2 -2 — (- k).

Let us now analyze the position of z = z(k).

Lemma 2.12. Let k € DS, then for z = z(k), which is given by (1.11) as z — 2~ =
i(k — k1), holds

ze{weC: |Jw| <1,Re(w)>0,Im(w) <0 }U(0,vV2—1).
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Proof. We use the results of Subsection 1.3.1. Hence for k € D§ one has
Glk)=k -k {w =re' €C: re(0,+0), t € [g,ﬂ)} \ 1[0, 2].

Since (;(z) = i¢;(k), we see that (;(z) is located in the same sector which is only rotated
by an angle 4+ /2 (it is equivalent to the multiplication by i). The proof is concluded by
applying the inverse transformation ¢; ' O]

Due to Lemma 2.12 we see that once k € Dg, z is, up to a part of the boundary, in
the symmetric region in the lower half of D with respect to the real axis (i.e. Im(z) < 0).
One can see that k occurs only as a second power k? in our problem, as well as z . Thus,
we can immediately determine its regions as

B> €Dy ={weC: |w <1,Im(w) >0}U(-1,0),
22eDy={weC: |w <1,Im(w) <0}uU(0,(V2-1)3).

The following proposition is in fact more general than the original hypothesis. We simply
get rid of the dependence of z on &k and formulate the problem for two independent
complex numbers in the regions D2 and D,2.

Proposition 2.13. Let s € ZJ, then
Vu€Dje, Vo €D |u'(v—v") =0’ (u—u )| <|(v=0v") = (u—u"")|.
It is clear, that to prove the Conjecture 2.8, it is sufficient to prove this proposition.

Moreover, we restrict the regions for numbers u and v.

Proposition 2.14. Let s € ZJ, then the following statements are equivalent:

LYueDp,VveD,:: |[u(v—v)—=vi(u—u)|<|(v—v)—(u—ut)],

2. Vu €2, Vo €D,z : |u(v—v ) —v(u—u )| <|(v—v)—(u—ut)]|.

Proof. We consider a function f: C x C — C defined as

v w—v )= (u—ut) w0 —1) — ot (u? - 1)

(v—v1)—(u—ult) (14 uwv)(v—u)

fs(u,v) :==

Y

where s € Z§, u € Dj2, v € D,2. Part 1 of the proposition is then equivalent to
|fs(u,v)] < 1,Vu € Dy2, Vo € Do,

We choose a fixed v € D2 arbitrarily and look closer to the function fs(-,v), which is
analytic on D2 and continuous on Dy2. Indeed, it holds that the limit

lim £,(u,v)
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exists and is finite. The second factor in the denominator of f; could generate singularity
if 1 +uv = 0, but in this case u = —1/v, thus u ¢ D2, since |v| < 1 and |u| = |1/v] > 1.
Using the Maximum Modulus Principle (MMP) we obtain

‘fS(UaU)’ < 1,Vu € 0Dz, Vv € D,2.

Now, we take fixed u € 0Dy and analyze the function f,(u,-). Function f; satisfies
the assumptions of MMP. Indeed, the only term in the definition of function f, which
could generate a singularity is (1 + wv) if v = —1/u and u € 9D;2. We look closer on
following situations:

u=e? pc(0,m): v=——=¢9¢D.,y,
u

1
we(—=1,1): v=——¢D. since > 1,
u

1
u==+1: v=-——=7FI1.
U

Functions fs(+1,v) do not have singularities at v = F1. The proof is finished by using
MMP again. [l

Following theorem concludes the proof of Conjecture 2.8.

Theorem 2.15. Let s € Z, then
Vu € 0Dz, Vo € 0D,z |u® (v—v )=  (u—u )| < | (v—v)=(u—u"")|. (2.3)

Proof. Let us mention that the boundaries JD;2 and 0,2 are simply the upper and the
lower half of the unit circle respectively, and interval [—1, 1].

Theorem 2.15 will be proven using following strategy. We divide the boundaries of the
upper and the lower half of the unit circle into parts and then we will prove the theorem
considering all the positions of v and v step by step.

In the following, we denote

U =1, v =r,e?.

1. We consider the case, when both v and v are real. Without loss of generality, let
us assume that 0 <r, <r, < 1. If r, > r, we can use the symmetry of u, v in this
problem. If 0 > r, > r, > —1 we can get the same problem as if the numbers are
positive because of the absolute value in (2.3).

We have u = r,,v = r,, thus the inequality is in the form

L T O | e e 1
st (L =r2) = (=) < ra (L =71)) =1 (1= 12)].
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Let us denote RHS := 7, (1 —r2) — 7, (1 —r2) and
LHS := r5 (1 —72) — 7571 (1 — r2). Since RHS > 0 and LHS > 0, Vs € ZZ, the
problem is as follows

0< RHS — LHS =r,(1—r) (1—=r))—r, (1—7r2) (1—15),

v

ro (1=17) _TU(l_ri)

o<
R 1—r2

Consider the real function a 9
x(l—x

) =———>
which is increasing on interval (0,1). Hence we get 0 < {(y) — &(z) for any z,y €
(0,1),y > x. If we put x := r, and y := r, the lemma is proved. It also follows from
this proof that the inequality holds Vr,,r, € (—1,1). Indeed, for odd s we can use
directly previous part of this proof. For s even, the function £ is odd and we can
also prove it the same way. It remains to prove that the function ¢ is increasing.

Indeed, for s = 0 it is clear, for s > 1 it holds

)= = D
Z

and thus

! L N7 j S j+1
§($):m<(1+$)2(j+1)x —Zgj >:

Jj=0 J=0

1+a: <Z]$J+Z]xj+l+2x9) > 0,

for z € (0,1). Which was to be proved.

. Now consider v and v such that r, = r, = 1. Let us denote

8(s) =l w* (v =v7) = v* (w—u )]

We have u = ¢ and v = €', ¢, € (0,7), ¢, € (—7,0) and using the definition of
absolute value of the complex number and some trigonometric identities we obtain

g(s) = | 2isin ¢, — € 2isin ¢, | =
= 4 ((sin (s¢) sin (@) — sin (s¢,) sin (¢,,))” -
(cos (s¢) sin (¢,) — cos (s,) sin (¢,))?) =
= 4 (sin® (¢u) + sin® (¢,) —

2sin (¢,,) sin (¢, ) (cos (s¢py,) cos (s¢,) + sin (s¢,,) sin (sgbv)p
cos(s(éu—)
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Now it is not hard to verify that g(s) < g(0). Let us analyze

g(0) — g(s) = —8sin (@) sin (¢,) (1 — cos (s (du — ¢u))) >0
—— — ~ v
>0 <0 25in? (5 (pu—cv))

Thus, the inequality (2.3) holds for the considered range of v and v.

. Now consider number v to be real and positive, u to be complex. It is
ry =1, 1, €[0,1] and ¢, € (0,7), ¢, = 0. Denote

h(s):=[u® (v—0v7")=0v° (u—u"") ‘2
As in the previous parts, we have u = e'%» and v = 7, and we obtain
h(s) = ‘eiw“ (rv — 7‘;1) — ri2isin ¢u’2 =
= (ry — ;') cos® (sgu) + ((ry — 7 ") sin (s¢y) — 27 sin (¢y,) ?
= (ro—r, ) —4r$ (ry — v ') sin (s@y,) sin (¢u) + 4r2° sin® (¢y,) -

In fact, the difference h(0) — h(s) is nonnegative,

h(0) — h(s) = 4sin® (¢,) (1 —72°) +4r) (ry — r, ") sin (s¢y) sin (@) é 0.

Dividing both sides by positive terms 4 sin? (¢,) — Ty, TS, we get

Ty
=1 sin(s¢y,)

0< -2 .
N qul — Ty sin (Cbu)

(2.4)

Since the function
A
xr) = ———
() = ———

is decreasing on (0,1),lim, ;- n(z) = s (see the end of the proof) and
(sin (s¢u))
max (——— | =s
$uc(0,m) \ sin (¢y)

(see the end of the proof), the inequality (2.4) holds. We can easily prove that
the inequality (2.3) holds for u € 0Dy2,v € ID,2 such that r, = 1,7, € [0,1] and
¢y € (—7,0),¢, = 0. It is enough to use the symmetry of u and v in the problem

and the fact that
(Sin (sgb))
max - =
¢€(0,r) \ sin (¢)

4. Now consider similar case, but r, = 1,r, € [-1,0] and ¢, € (0,7), ¢, = 0. Denote

h(s) ==l v (v—v") =0 (u—u') ’2 :
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Using exactly the same method as in the previous case we get
h(0) — h(s) = 4sin’ (¢,) (1 — 72°) +4r5 (r — v, ") sin (s¢y) sin (¢,) > 0. (2.5)

Now we have to separately discuss two situations. Firstly, consider s is odd. In this
case, we divide both sides of the inequality (2.5) by the same terms as in the proof
of previous part, i.e. 4sin®(¢,) > 0,r;t —r, < 0,7° < 0. Now we have the same
inequality for different range of parameters
0< rot =Ty sin(séu).

N TEJ — Ty Shl(¢u>
Since both functions are even in this case, the inequality follows directly from the
proof of previous case.

To finish the proof, we assume s even. Again, we divide both sides of the inequality
(2.5) by 4sin®(¢,) > 0, r;* —r, < 0,75 < 0 and obtain

0> ros— s N (_sin (sqﬁu)) .

rol—ry, sin (¢by,)
Now n(z) = =2 is odd function and Ssiinn((sf:)) is odd. It is easy to see that the

inequality holds.

One can easily prove (2.3) for u € 0Dy2,v € 0D,2 such that r, = 1,r, € [—1,0]
and ¢, € (—m,0), ¢, = 0. It follows directly from symmetry of v and v in (2.3) and
properties of the functions n and sin(sx)/ sin(x).

Now it remains to prove that the function 7 is decreasing. Moreover, n is odd
function for even s and even function for odd s. Indeed, the oddness/evenness
follows directly from the definition and the monotonicity is easy for s € {0,1}. For
s > 2, we have

_ 2s s—1 s—1
x7% —xaf e =1 _ _
n(x) — = s+1 - =1 s+1 E iL'Qk — E $2k s+1.
2 —1
k=0 k=0

xt—x
Hence
fmatn=s & tmom={ 1T 00
and also -
W(z) = (2k—s+ 12>
k=0

Now we look closer to the sum. There are s terms in the sum for every even s > 2
and s — 1 terms for odd s > 2. There are also |s/2] positive terms and |s/2|
negative terms. It holds that for any x € (0,1)

Vs >2,vle{0,1,...,|s/2] —1}:
(20— s+ 12?7 > [(2(s — 1= 1) — s+ 1)x2(5*1*l)*5| .
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Indeed, using standard algebraic manipulations we get

‘(21 -5+ 1)3:21_5‘ > ‘(2(5 —1—1)— s+ 1)z 03|
(20 — s+ )22 | | > |—(20 — s + D)o 272

2l—s)—(—2l+s—-2) A=2s+2 - 1

.I( =T

It holds, because 4l — 2s +2 < 0,Vs > 2,Vl € {0,1,...,[s/2| — 1} and = is from
(0,1).

Last proposition to show to finish the proof is that for every s € Z;,

sin (s¢)
max — =
¢€(0,7) sin ()
It is easy for s = 0. It holds for s > 0, because the function
sin (s¢)
sin (9)
where U, (z) is the second kind Chebyshev polynomial which has extreme values at

+1. The proof can be found in the first chapter in [12]|. Tt is clear that the value of
the function Us_q(cos @) at ¢ =0 is s.

= U, (COS ¢)7

2.2.1 A remark on validity of the conjecture for N > 3

The proof of Conjecture 2.8 in general would be the most valuable result for us. Let
us now discuss a method of proving this conjecture analytically. Let us mention, that the
proof is not done and this is just an idea of a possible method.

Our approach is the same as in the previous part. First, we need to localize the regions
for the roots of polynomial

pr(2) = (27 = 1N = 22V (ks — 1),

in the unit disk D which are occurring in the formula for the Green kernel. The following
part is a brief reminder of a part in the first chapter. Recall that we consider A = A(k) =

(n (k) and element of the Green kernel (1.12) reads
(_1)N N 2}‘”*7”‘627&g

2N
ZJ

-1

. N -1 _
Ym,n € Z: (T - )‘(k))mn - N(k‘ _ k,_l)zN—l _
7j=1
Thus, roots z1, ..., 2y are important for us. We know that they are related via (1.11) as
follows o
2z — ;1 — e2’fljzfzv(k — k™), forje{l,.. N}
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Hence it follows that z, = k and since we know the region for k which is DS, we can
localize the rest of the roots.

Let us denote s := |m — n| > 0, Conjecture 2.8 is then of the form

N i—1

N 2s.emil o2ty
<

- 2N
ST

-1
pael R

Vs €Zs, VN € Z" :

—1 :
AT

Having this, we know that the N regions for the roots z, ..., zy fill the right half of
D. Let us denote them D, ,...,D,,. Then we need to get rid of the mutual relations of
the roots and formulate the more general problem for N independent parameters u; €
D,,,...,uxn € D,,. Then, we could possibly use the MMP and reduce the regions onto the
boundaries. Since our method is based on proving the inequalities for each pair of the
boundaries, there arise first problem. The number of boundaries part increases and thus
the number of pairs increases too, even though we can take advantage of the symmetry
of this problem with respect to cyclic permutations of the parameters.
Unfortunately, I was not able to proceed this way even for N = 3. Moreover, there is
another problem which is the shape of the boundaries for higher N. Namely [ given by
(1.8) is one of the boundary parts which complicates the analytic approach.

Despite all the problems mentioned, we can try to numerically disprove the conjecture.
Using k € D% and (1.11), we made a grid covering the regions D,,,...,D,,. We tested
the conjecture on the grid for 0 < s < 40 and N < 10 considering the dependence of
21, ...,2y. The result is that we cannot disprove the conjecture.

The regions of the roots zy,...,2zy for N = 3 and N = 4 are in Figures 2.2a and 2.2b
respectively.

2.3 Optimality

In [9], it was shown that the enclosures obtained using our method for the discrete
Schrodinger operator H are optimal. The optimality is understood in the following sense.
Take [[v[|s1 4 fixed, then for every boundary point z of the spectral enclosure O:(|[v]|)
not belonging to ges(7') = [0, 4], there exist a potential V' such that z is an eigenvalue of
T+V.

Similarly, in [10], same method was used for T2 considering the optimal estimate of the
Green kernel, which is now proved in Conjecture 2.8 for N = 2. Naturally, one can easily
generalize this procedure for the discrete polyharmonic operator.

We define a special compact diagonal potential d;, on ¢?(Z) by giving its kernel

1 m=n=k,

(Ok)mn = (2.6)

0 otherweise.
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This potential is generated by sequence {5k’j}jGZ' It holds &, = (e, ) e for e, € &.

Recall that the conjectural spectral enclosure from Theorem 2.9 reads

On(l[oll) =

-1

N ii—1

1 e2m gy
A= k) e C\J0,4M]: E —_ < 1 (2.7
CN( ) \ [ ] [|N<k k71)2N71| — z; ijl — ||U||€ (zZ) ( )

Assuming the validity of Conjecture 2.8 for all N > 0, the following proposition proves
the optimality of the enclosures On/(||v]]).

Proposition 2.16. (conjectural) Let v € ('(Z) be a generating sequence of potential
V and let On(||v]|) be the conjectural spectral enclosure given by (2.7). Then

vz € 00x(|[v]) \ [0,47], 3w € C, |w| = [vllpzy : z€ op(T? + wdy).

Proof. Take z € O0x(]|v]|) \ [0,4"] arbitrary and fixed. We transform this point using (y
and we obtain a unique k € DS, such that z = (y(k). Now put

N =1
-1 e27r1J2—N

N(k _ szl)2N71

Pl +z; v
It follows from the definition of the spectral enclosure and from the fact z is on the
boundary of the enclosure that |1/r(k)| = [|v[|,1 (4. Now we consider a potential wdy for
w € C and ¢y given by (2.6). This potential is generated by sequence {wd,, }nez, which

has a norm equal to |w|. The kernel of Birman—Schwinger operator for this potential is

r(k)w m=n=0,

0 otherweise.

K(z<k))m,n = {

It is clear that r(k)w is an eigenvalue of K (z(k)). Thus, according to Birman—Schwinger
principle, z = (v (k) € 90xn(||v]) \ [0,4Y] is an eigenvalue of TV + wdy if and only if

1
kw= -1 = ——.
r(k)w = w TR
So we set
-1
(k)
Proof is concluded by noticing that |w| = | = 1/r(k)| = [[v]|x - O
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2.4 Absence of eigenvalues in the essential spectrum of
the discrete bilaplacian

In previous parts of this chapter, it was found that only eigenvalues can appear due to

the perturbation of TV by a trace-class potential V. Considering the most explored case
N =1, i.e. discrete Laplace operator T or the operator H = 2/ — T, it was shown in [6],
that the eigenvalue cannot appear in the interior of essential spectrum of H (oess(H)®) ,
i.e. in interval (—2,2), perturbed by a trace class perturbation. A direct method of solving
the eigenvalue equation was used in the proof. It is based on a tridiagonal structure of
the matrix of discrete Laplace operator.
We would like to get a similar result for N = 2, but I was not able to generalize this
method. Thus, we will use a less general result, which allows us to exclude eigenvalues at
least outside the spectral enclosure Oy(]|v||). In fact, the spectral enclosure contains the
whole essential spectrum of T2 for the potentials with ||v|| large and thus this method is
satisfactory for small potentials only. It is a discrete version of a result from [3].

Proposition 2.17. Let v € (*(Z) be a generating sequence of a potential V and \ €
(0,16) = 0ess(T?)° such that (T2 4+ V)u = Au, for 0 # u € ¢*(Z). Then

VneZ: ((I+KN\+ie)|V[V?u) —0, &— 0",

where K (1) = |V[Y3(T? — p)~'Vi )2, u € p(T?) is the Birman-Schwinger operator.

Proof. Take n € Z fixed, then

KX+ ie)[VIV2u)y = Y Joa] (T2 = X —ie), ), vt =
mez > g d
( n(fs))m
== Z(Gn(g))m(TQU)m +A Z(Gn(g))mumv
meZ meZ
where the assumption that Vu = —T?%u + Au was used. Using T? is self-adjoint and

G, (g) € (*(Z), we can continue as follows,
(KA +1)|V[V2u), = MGn(e), 1) — (Gale), T?u) = — ((T* — N)Ga(e), ) .
Since it holds that (T2 — A — ie)G,,(¢) = |v,|'/%e,, where e, € £, we have
(KA +i8)|[V|Y2u),, = —|va|Y? (en, TW) — ie (Gp(e), ) .

Hence
VneZ: ((I+KN\+e)|V[Vu ), = —ie (Gn(e), 7). (2.8)

Let us now analyze the absolute value of (G, (e ),ﬂ) | on the right hand side. Using the
Cauchy—-Schwarz inequality we obtain | (G, (¢),w) | < ||Gn(€)|l ||u]|. Only part dependent
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on ¢ is ||Gn(e)|]. To get it asymptotic behavior as ¢ — 0%, we proceed as follows

CoN— 2
G = ol D |(T* = A=), | =
meZ
k,2|m n| Z2|m—n|
k2 2 -2

=l X |5
MmeZ

where (1.13) and the transform X + ie = (5(k) were used.

Now one can verify that

2

I

1Gale)] = w%), . 2.9)

Indeed, we can get the asymptotic expansion of k and k~! from the equation \ + ic =
Go(k) = (k — k=) as follows

© g
k(e, A =e2 |1
(&:Ap)) = e ( * 8(2 cos(p) — 2)sin(yp)
where A = (2 — 2cos(p))? € (0,16), considering ¢ € (0,7). The expansion for z = z(k)
can be obtained from (1.11) which reads z — 27! = i(k — k™!). Consider z(g) = 2o+ 216 +
O(e?), e — 0% and k(e,A(¢)) = ko + kie + O(e?), € — 0%, where ky = €%/ and k; are
from (2.10). We put this into (1.11) and obtain

(%—%%Ma+ok+m )(%—%)(h+;k+0@y

)+0@% e— 0", (2.10)

By comparing of terms with €° and considering k = €'¥/2 we obtain
22 + 22psin(p/2) — 1 = 0.

Since |z| < 1 we choose zy = \/sin*(¢/2) + 1 — sin(p/2), ¢ € (0,7). One can see that
Vo € (0,7) : |20] # 1. Although we could obtain z; by comparing terms with &', we do
not need explicitly have it, since it is sufficient to know z.

Having this, we can estimate

2

k2 mmm S2lm—n| |2
G ()I” <[val <— ( +2) R >=
meZ
ol | K2 1 1+ k[ 1 14z
2 (k2 =12 | |2 —k2P1—[k[*  [22—22P1— |24
B % o /e .

Term A = O(1) since k? # +1. One can also easily see that (1+ |k[*)/|k? — k72 = O(1),
from the same reason. Thus, the asymptotic behavior of term B is equivalent to

1 1 1
1_%“:1—@+ ¢ +OW»4:O%)
8(2 cos(gz§%2) sin(p) €




Situation is similar considering term C. We obtain that

1 1
~ = = ]_
[—F ~ I=ff v 0~ °W

C

since |zp| # 1. Thus, |G, (e)|*> = O(1/¢). The proof is concluded combining results (2.9)
and (2.8) while e — 0. O

Theorem 2.18. Let v € /1(Z) be the generating sequence of a potential V and X be in
(0,16) N Oz(|[v|N®. Then X & o, (T*+ V).

Proof. The theorem clearly holds for V' = 0, so we can assume V # 0. For a contradiction,
let us assume the existence of X € (0,16) N Oy(|[v||)¢ in the point spectrum of perturbed
operator T2. Hence, there exists a vector u # 0 € ¢*(Z) such that (T? + V)u = Au. Since
the spectrum of 72 is purely continuous, we can assume V # 0 and thus |V|"/2 # 0. The
result of Proposition 2.17 says that for any e, € € : {(e,, (I + K(A +i¢))|V["?u) — 0, as
e — 07. Hence,

Vo e (Z): |z KO\ +ie)[VIYV2u) | =% | (2, |V]V2u) .

The vector u # 0 since it is an eigenvector of T? + V. Recall that we assume V # 0 and
thus |V|'/2u # 0. Putting = = |V|"/?u # 0, one has

lim [ (|V[Y2u, KA+ ie)|[V[Y2u) | = |[[V]Y2u]]”

e—0t

On the other hand, for small € > 0, A +ic € Oy(||v||)¢ which is an open set. Thus,
KA +ie)l <g <1
Hence we have

IMWQVW%JGA+meﬂ@]§h%MKQ+meVW%W§qWVW%W.
e—

e—0t

Combining the two previous results we obtain

V2| < g ||V,

which is a contradiction since g < 1. O]
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Chapter 3

Criticality and Hardy’s inequalities

In this chapter we would like to build upon the results introduced in [4], where the
criticality of the positive power of discrete Laplacian on ¢?(N) was discussed and it was
shown that the operator is critical if and only if @ > 3/2. Using their method on Z, we
will show that T is critical if and only if o > 1/2.

The subcriticality for a € (0,1/2) is connected with Hardy’s inequalities analyzed in [1].

In this section, we consider real valued potentials only. Thus, operator-type inequali-
ties are understood as inequalities of the corresponding quadratic forms, i.e.

VA, B bounded, self-adjoint on (*(Z): A> B <= Vx € (*(Z): (x,Az) > (x, Bx).

Recall one important result of the spectra analysis. It could be found in [13], chapter
XIII, section 1. We can consider bounded operators only.

Theorem 3.1. (Min-Max principle) Let A be bounded self-adjoint operator on
a Hilbert space H. We put

M(A) = sup inf {{u, Au) : u € {a1,...,z01}, full = 1}.
Then Vn € Z*, either

1. there are n eigenvalues (counting degenerate eigenvalues a number of times equal
to their multiplicity) bellow the bottom of the essential spectrum, and A, (A) is the
nth eigenvalue counting multiplicity,

or

2. \y(A) = inf oe5(A) and in that case A\, (A) = \y1(A) = A\y2(A) = ... and there
are at most n — 1 eigenvalues (counting multiplicity) below A, (A).
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As usual, we consider positive power of the discrete Laplace operator T<, a > 0. Let
us start with the key definition.

Definition 3.2. Let V be a bounded diagonal operator on ¢*(Z), Then

e operator T is called criticalif YV >0: T*—-V >0=—=V =0,
e operator T is called subcritical if it is not critical.

Remark 3.3. The criticality of T could be equivalently characterized as
YV >0, V #0, bounded : info(7T—V) <O0.

This follows from the fact that nonnegative self-adjoint operator has nonnegative spec-
trum.
Our aim is to determine for which real o > 0 is the operator T critical. Answer to

this problem is given by following theorem.

Theorem 3.4. Operator T on ¢*(Z) is critical <= o > 1/2.

We divide proof of this theorem into few parts. the implication (<) will be shown
directly. Let us start with a proposition describing the eigenvalues of operator T* with
a 0, potential given by (2.6).

Proposition 3.5. Let a > 1/2 and ¢ > 0. Then operator T“ —¢j,, has an unique negative
eigenvalue for any n € Z.

Proof. Take an arbitrary n € Z and let A € p(T®). Then, using the Birman—Schwinger
principle, one has
A€ op(T*—cb,) <= —1ea,(K(N)).

Since §,, = 62, the Birman-Schwinger operator is of following form
K(A\) = —cb,(T* — \) 714,
and it has an eigenvalue equal to —c¢(T* — )\);;l. Let us denote

H) = (T = ),!

n,n

and consider it as a function p : (—o00,0) — R. This function has following properties:

1. hm)x—>0* :u()\) = 00,
ii. limy o u(N) =0,

19%. p is continuous,
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1. is strictly increasing.

ad i. Consider a > 0, the diagonal element of the Green kernel of 7% is given by (1.6)
taking m = n. Thus

1 (7 1 1 [7 1
T —\), L = — dt = — dt
( o 21 J_ . 2(1 — cos(t))* — A 7r /0 20 ( ’

using the substitution = = cos(t) we arrive at

() = %/_1 1 —1x)a — \/11_7@5. (3.1)

Considering A = 0 we formally have

1 /1 1
dx.
20 |1 (1 — )2 (1 — 2)V/2(1 + 2)1/2

This integral is surely divergent for o« > 1/2 since there are singularities at x = +1.
For given range of «, the function 1/(1—2)'/?7 is not integrable in the neighborhood
of +1. By means of the monotone convergence theorem we obtain

dr = +00.

/1 1 1
A=0- T J 291 —2)* — A1 — a2

ad 4i. The result can be obtained by taking the limit A — —oo in the integral (3.1) and
using the monotone convergence.

ad i7. This point follows from the fact that operator-valued function A — (7% — \)7! is
real-analytic on the p(7%) = C\ [0,4°].

ad iv. The property follows directly from the integral (3.1).

Properties i.—iv. are sufficient to state that there exists a unique A € (—o0, 0) such that
—cp(A) = —1, i.e. \is an eigenvalue of T — ¢4, by the Birman-Schwinger principle. [

The proposition is slightly more general than we need. Since the existence of the
eigenvalue is sufficient for us, we do not need the uniqueness.
The implication (<=) in Theorem 3.4 is an immediate consequence of following proposition
and Remark 3.3.

Proposition 3.6. Let a > 0 and V > 0, V # 0, bounded diagonal operator on *(Z),
then
info(T*-V) <0.
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Proof. Let us denote V,, the n—th element of the diagonal of V. Since V # 0 and
nonnegative, there exist such n that V,, > 0. Hence, clearly V' > V,,§,, and using a direct
consequence of the Min-Max principle, we obtain

info(T* — V) <info(T% - V,.0,).

Together with Proposition 3.5, this inequality concludes the proof. O

Now, the question is how to prove the opposite implication (=) in Theorem 3.4. The
subcriticality can be characterized as

dV >0, V # 0 diagonal operator on KQ(Z) o TY>V. (3.2)

Such a potential was introduced in [1| for o € (0,1/2). This fact proves the following
proposition, thus Theorem 3.4 is proved.

Proposition 3.7. Let a € (0,1/2), then there exist a bounded diagonal operator on
(*(Z) such that
V>0, VAEOELT*>V.

Details of the proof follow in the next section.

3.1 Hardy’s inequality for the positive power of discrete
Laplace operator

In this section, we would like to summarize key parts of the approach used in [1],
where the discrete Hardy’s inequality for positive power of the discrete Laplace operator
was introduced. In some propositions, especially those concerning the quadratic forms,
we can consider real-valued sequences from ¢2(Z) only. The results can be easily extended
for /?(Z) sequences with values in C using properties of the inner product.

Definition 3.8. Inequalities of type (3.2) are called discrete Hardy’s inequalities.

Hardy’s inequality for the positive power of discrete Laplacian is described in following
theorem. Moreover, it was shown that introduced Hardy’s weight is optimal, see [11].

Theorem 3.9. Let « € (0,1/2) and let u € (*(Z) be a real-valued with compact support.
Then

Zun(To‘u)n > 4° (L%a)) Zu . (|n| + 1—426“) . (|n| + %) Up,. (3.3)

T(522)) & "I (In| + 222) T (|n| + 222

42



To make the notation easier, let us denote

L (Il + 522) T (Il + *5*)

Vn €7 o)n = )
Bt W N (T EE)T () + 2R)

w, is a real-valued sequence. Moreover, if we define an operator W, like
VneZ: Wyen:=(Wa)nen, €n€éE,
the inequality (3.3) becomes

(u, T%u) >4 (;Eﬁ;f (u, Wau,) .

Key proposition of this section is the following pointwise identity. It was proved in [2],
where the authors use a semigroup approach of defining 7' and the result then follows
almost directly.

Proposition 3.10. Let « € (0,1), then Vf € (*(Z) :
(Taf>n = Z (fn - fm)Ka(n - m),
meZ, m#n

where

4% I(ls|=a)l'(1/2+a)
K,(s) = NIV (EESEy e LA 7\ {0},
0, s =0.
Proof. Recall that we know the matrix element of 7%, which was derived in (1.5). It reads

I'2a+1)
Fla+14+(m—n)T(la+1—(m—n))

Vm,neZ: Ty, = (=1)""

Thus, it is sufficient to verify that

ST fm= Y (fa— fu)Ka(n—m), (3.4)

mez meZ, m#n
:< Z Ka(n—m)>fn— Z Kuo(n—m)fm.
meZ, m#n meZ, m#n
A= Bi=

On the other hand, we can also obtain that the left hand side of (3.4) is equal to

T'(2a + 1) (=1)""T'(2a + 1)
T(a+ D+ 1)Jf” +me;1¢n Mo+ 1+ (m—n))latl—(m=n)' ™
A= S B .

It is enough to show that A; = As and By = —Bs.
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Ay = Ay @ According to the definition of K, the symmetry K,(m) = K,(—m) and
by denoting s := m — n, we have

NS 0 AT(/240) X T(s —a) 4°T(1/2 + a) —T(—q)
A =2 Kols) =22 v a) - VAT (Ca) T T a)

4°T(1/2 + a) [2] P(2a + 1)

T Jrl(l+a)  I2a+1) =42

where the forth equality was obtained using Vo € (0,1) : |I'(—a)| = —I'(—a). Let
us now clarify the identity . It follows from

X I(s—a) 1 -T(—a)
Zr(s+1+a) T 2T(1+4a)

For a € R we define the Pochhammer symbol

I'(a+n)
v VAR n =
n € () Ia)
It holds
+o0
s—a s—i—l—a B Z 1—a
Fs—|—1+a I‘3+2+a - 2+a

The last series coincides with the Gauss hypergeometric function F(a,b,c, z), see
[15], eq. 15.2.1. One has

(1= a), (1), I'(2+ a)l(2a)
; Crans LTl @r el D) = g S Ay

which could be found in [15], eq. 15.4.20. Using this result, one arrives at

*i (s — o) M(1-a) T2+a)l(2e) Tl-a)(l+a)
I(s+1+a) T2+a)l(1+20)I(1+a) L2+ a) 2«

It was enough to use the notorious identity I'(z + 1) = 2I'(z),Vz € C. Hence the
desired identity directly follows.

The identity [2]|is an immediate consequence of

%QQZlf(z)F(z +1/2), (3.5)

which holds for all z € C\ Z;, see [15], eq. 5.5.5.

['(2z2) =
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e By = —B, : Let us denote s = m — n and since m # n we consider s # 0 and due
to the symmetry we can consider s > 0. To prove the identity, it is enough to show
that

(=) T2+ 1)

Fla+1+s)MNa+1—2s)

VseZ: Ky(s)=—

Indeed, for o € (0,1) we have
4°T'(1/2+a) I'(s—a«)
—/ml(—a) T(a+1—3s)

Ka(s) =

Using (3.5) and

T
Z: T'(z2)I'(1—2)= .
Vze C\ (2)[(1 = 2) sn(rz)’ (3.6)
see [15], eq. 5.5.3, we immediately obtain
I'2a+1) I'(s—a)  sin(ma) I'2a+1)

Rls) = DT () T+ 1-a) ~ sin(rls —a)) Ta+ 1+ )Fa+ 15

One can easily verify that

sin(ma)
sin(m(s — «))

which gives the desired result.

= (-1,

]

Let us now make a first step towards proving Theorem 3.9. Following proposition is
taken from [1].

Proposition 3.11. Let a € (0,1) and f € ¢*(Z) be a real-valued with compact support,

then
E fe? _ E E _ 2 F(|m_n’_a)

nes nEZ meL, m#n

where

_4T(12+a)
VAl (=)l

Proof. Using Proposition 3.10 we immediately obtain
an(Taf>n: Z Z — fm) falo(n —m).
neL meEZ, m#n ne€Z

Since the kernel K, is symmetric, we have

DL a= D D (fm = fa)fmKaln —m).

neZ meZ, m#n n€L
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We add these two equations and obtain
1
an(Taf>n: 5 Z Z(fm_fn)2Ka(n_m)'
nes meZ, m#n n€Z

Now it is sufficient just to interchange the order of summation and use the definition of
kernel K,. O

Negative power of the discrete Laplacian
In what follows we need to make a brief comment on the negative power of discrete
Laplacian. Let g € (0,1/2). Based on the results of Section 1.1, we put
T .= UflMdfﬁu,
T

where ¢p is the symbol of Laurent operator T. Since the function

1
(2 — 2cos(t))?

o7’ =

is unbounded for 3 € (0,1/2), the operator of multiplication is unbounded and thus T7—#
is unbounded too. In this thesis, it is enough to consider

Dom(T~") = {u € ¢*(Z) : supp(u) is compact} .

One can still search for a matrix element of the operator. We have

= 5w | @ ey = O e o)
= — = sin cos(2(m — n)t).
™he2m Jr (2—2cos(t)P w8 f L,

This integral can be solved the same way as the one for the positive power of T'. Using
Proposition 1.7 we arrive at

(=)™ I'(1 - 25)

1,5 = :
e T1l=F+m—n)(1—-F+n—m)

The authors of [1] used the semigroup approach, where so called Riesz kernel associated
with T-7 appears. For 3 € (0,1/2), it reads

1 [t
/ e 2, (20) 7 dt,
0

Rg(n) = m

where [, is the modified Bessel function of order n, which is defined for example in the
fifth chapter of [14]. For 5 € (0,1/2), we can get an explicit value of Rg(n), it holds

Ry = 4°T0/2=8) T(in|+9)
T Vil (8) C(ln[+1+5)’

(3.7)



see [2].

The Riesz kernel is related to our matrix element of 777, In fact, they are equal in
following sense
Vm,n€Z: T,5 = Rs(m—n).

m,n

Indeed, denote s := m — n. Then it holds
1T(1/2-8)  T(1-25)
¥ yr TA-p)°
which is a consequence of (3.5) and from (3.6) we obtain

T 1
sin(m(|s| +8)) (1 = 8 —[s])’

Hence, due to the symmetry of 777 it follows

m,n’

P/2-p) Tdsl+p4) _  (=1)° (1 -2p)
VyrlB) D(ls|+1+6) TA-F+s)I1—-p—s)

I(|s[+8) =

VseZ: Rﬁ()

which was to be shown.

What we need is the following lemma, which is an immediate consequence of the
definitions of T, T~" and its relation to Rz(n), see [1], Lemma 2.3.

Lemma 3.12. Let 3 >0, a < 1/2, 8 —a € (0,1/2) and let u € (*(Z) real-valued with
compact support We define real-valued sequences f and g in (*(Z) as follow

Vn€Z: g,:= Rg(n)and f, :=u/Rs(n).

Then R
Taf g Zu A1B—al\lt) Oé

neL

Proof of Theorem 3.9

We finish the proof exactly the same way as the authors of [1], including some notation.
For all u € (*(Z) real-valued with compact support, we denote

_ ey, o (LN g, Dl 5220 T (1l + 252)
_Zun<T U)n_4 (F(%)) Zunr(|n|+%)r(|n|+#)un

nez

Let us denote )
F 1+2«

Co :=4° ((%a)) :

NED)

and recall that a, is given in Proposition 3.11.
47



Proposition 3.13. Let a € (0,1/2). Let F be a real-valued sequence with compact

support and put
Fy

i Z: G, _
n € R1+2a()

Then

Fl=a.d 3 E(n = m| = o) Rica(n)Rusa(m).  (3.8)

n€Z meL,m#n (|n_m| +O€+1)

Proof. Consider f,g € (*(Z) real-valued with compact support. Then Proposition 3.11
implies that

o D(jm —n| - a)
Zgn(T f)n—aaz Z (fn_fm)(gn_gm)r<|m_n’+a>+1- (3.9)

nez nEZ meZ,m#n

We consider 5 € (0,1/2) and put
Ynel: f,=—"7.

The right hand side of (3.9) is equal to

F, F.\*\ T(m-n|—a)
w2 2 ( gmg"(g_n‘g_m)>r<|m—n\+a+1>‘

n€Z mel,m#n

E, F,\° I(m-n|-a
LSO S o e

nezet nEZ meZ,m#n In Gm

Indeed, the first equality follows from Proposition 3.10 and it holds that the term

9m

n gm
E, F,\’
:(Fm_Fn)Q_gmgn (___) .
gn 9m

Now, we put g, := Rg(n) and § := (1 + 2a)/4. Assuming the same choice of f, the
left hand side of (3.9) reads

. LD (] + 52) T (jn] + 222)
2 eI = 2 g oy = O 2 8 o+ )

nEL ne”Z nez

The first equality follows from Lemma 3.12, then we have used the exact value of Rg(n)
from (3.7).
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To conclude the proof, recall that we consider § := (1 + 2«)/4, then putting the new
forms of the left and right hand side together, we obtain

I (Jn] + 122) T (Jn] + 222)
F, TO‘ - C, =
20 2 P ([ 5 ) T (o] = 22

J

v~

Hu[F)

L(jm —n| —«)

=aa Y > ) Ritza (m )R%(n)r(‘m_nHaH).

n€Z meZ m#n

This concludes the proof. O

Theorem 3.9 is an immediate consequence of Proposition 3.13 since the right hand side
of (3.8) is nonnegative. Indeed, a,, (G, — G,,) and T'(jm —n| — «)/T(lm —n| + a + 1)
are clearly nonnegative Vm,n € zet, m # n, o € (0,1/2). The nonegativity of R# (m)
and R#(n) follows from (3.7).
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Conclusion

In this thesis, we focused on the spectral analysis of the general positive power of the
discrete Laplace operator on *(Z). The definition of the operator itself and the basic
properties were obtained using the theory of Laurent operators. Afterwards we localized
the spectrum of the polyharmonic operator with a trace class perturbation and derived
the spectral enclosures, which are sets containing the discrete spectrum of the perturbed
operator. Moreover, we formulated a conjecture on optimal enclosures, which was proved
for discrete bilaplace operator. We also showed the absence of eigenvalues in the interior
of the essential spectrum outside the spectral enclosure for the discrete bilaplacian. At
the end, we discussed the criticality of the positive power of the discrete Laplacian and
introduced Hardy’s inequalities for the subcritical case.

At the very end, I would like to outline one of the possible extensions of our results. It
is the weak-coupling analysis for the discrete bilaplace operator. We consider the operator
T? +V, where V is a small real-valued potential and we want to analyze the existence
and uniqueness of eigenvalues of 72 + V. In this setting, the operator T2 + V is self-
adjoint. The analysis was done for the continuous Schrodinger operators in one and two
dimensions, see [16]. It was also done for the the discrete version of the Schrodinger
operator in [17].

In the papers, the Birman—Schwinger operator is used and the main idea is to decom-
pose the operator onto, in a certain sense, a singular and regular part. We associate the
potential V' with a sequence v, which is on the diagonal of it’s matrix. We put A = ((k),
defined in (1.7), the matrix element of the Birman—Schwinger operator is of the form

k2 kl,2\mfn\ 22|mfn|

Vm,neZ: KAK))mn =V |Um|2(k:2 sl e V |[vn]sgn(vy,).

22

We want to analyze the behavior of the operator as A — 0~ and A\ — 167, i.e. \is
near the boundary points of the essential spectrum. Now consider the right neighborhood
of 16 only. We can see from the definition of the transform (y for N = 2 that A\ —
167 <= k — i. Since k € ]DDg, it tends to i from below along the imaginary axis. We

20



put K(\) = M(X) + L(X\), where, Ym,n € Z:

2 —1)lm—nl —1)lm=nl
L) = Vo515 | o — e | VTl
M (A(K)) =

2 2lm—n| _ (_1)lm—n|
\% |Um|2(k2k_ 1)2 |:k kz _(k_]j - :| \/mSgn(Un>-

This decomposition was made in such a way that the operator L(\) is rank one and the
operator M (\) converges to the operator M(16) in the operator norm as A — 167. The
situation is slightly different in the left neighborhood of 0. If A\ — 0~ then k£ — 1 along
the curve ¢, which is given by

Z2\m—n| . (_1) [m—n)|

22 — 272

1 .
c = {5 (ae‘%7r + \/4—ia2> :a€ (0, +oo)} C ID>§.

The definition of the operators M (\) and L(\) would be different in this case.

In the future, I would like to extend the result of this thesis in many ways, including the
weak-coupling analysis. The mentioned ideas are merely an introduction of the approach
used in cited articles. The successful completion of at least proving of the existence of
eigenvalues requires a significant amount of further work.
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