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Introduction

The discrete Laplace operator ∆ on ℓ2(Z) is a linear second-order di�erence operator
given by

(∆v)n := −vn−1 + 2vn − vn+1, ∀v ∈ ℓ2(Z).

It is an approximation of the continuous 1-D Laplace operator which is acting like

∆f :=
d2f

dx2
, ∀f ∈ C2(R).

The continuous Laplace operator arises in various areas of mathematics, for example
di�erential equations or mathematical physics. Therefore it has been a long-standing
subject of study in scienti�c publications, including the spectral theory.
In recent years, there has been a number of works dealing with discrete versions of Laplace
operator and problems inspired by the continuous cases. One of them should be this
master's thesis.

The introduced discrete Laplace operator is a representative of the class of Laurent
operators. In the �rst chapter, we use the theory of Laurent operators to de�ne the general
power of the discrete Laplace operator ∆α, α > 0 and analyze it's spectral properties.
Later in the thesis, we de�ne a negative power of the discrete Laplace operator in a similar
way. We also study the resolvent operator of the discrete polyharmonic operator. The
resolvent is obtained in the form of the Green kernel (matrix element) using a modi�ed
Joukowski transform of the spectral parameter.

In the second chapter, we study the spectrum of the discrete polyharmonic operator
with a complex potential. We consider a trace-class operator V . The operator is associated
with a sequence v ∈ ℓ1(Z). Inspired by a method from [9], we use the Birman-Schwinger
principle to obtain so called spectral enclosures. The spectral enclosure is a subset of the
complex plane which contain the discrete spectrum of the discrete polyharmonic operator
perturbed by the potential V . In addition, we are able to localize the whole spectrum of
the perturbed operator.
In order to obtain the spectral enclosures, we need to estimate the absolute value of the
Green kernel of the polyharmonic operator. We introduce two estimates. One of them is
non-optimal but analytically proved. The other is optimal. Unfortunately, we only have
the proof of the optimality for the case of the discrete bilaplace operator. The proof uses
methods of the complex analysis. The validity of the estimate for higher integer powers of
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the discrete Laplace operator was numerically tested and it has not been disproved. We
also discuss the absence of eigenvalues in the essential spectrum of the perturbed bilaplace
operator.

Finally, we are dealing with criticality of the positive power of the discrete Laplace
operator. The main result is that ∆α is critical if and only if α ≥ 1/2. We use an approach
introduced in [4] for the positive power of the discrete Laplacian over the positive integers.
The operator ∆α is subcritical for α ∈ (0, 1/2). This is equivalent with the existence of
Hardy's inequalities which were analyzed in [1]. We made a recherche of their proof with
an emphasis on linking their semigroup approach with ours.
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Chapter 1

Positive power of the discrete Laplace

operator and polyharmonic operator

A crucial object of this thesis is the discrete Laplace operator, since now denoted by
T , which is acting on the Hilbert space

ℓ2(Z) =

{
u : Z → C :

∑
j∈Z

|uj|2 < +∞

}

with the orthonormal basis

E = {ej}j∈Z , where ∀j ∈ Z : ej = {δj,k}k∈Z

and δj,k is the Kronecker delta. We consider the Euclidean inner product on ℓ2(Z) to be
linear in the second argument.

Operator T is de�ned by its action on vectors of E as follows:

Ten = −en−1 + 2en − en+1, ∀n ∈ Z. (1.1)

It is usual to associate the operator with its matrix with respect to the standard basis E ,
which is doubly in�nite. It reads

T =



. . . . . . . . .
−1 2 −1

−1 2 −1
−1 2 −1

. . . . . . . . .


.

.
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Spectral properties of the operators T and T 2 were studied in my Bachelor's degree
project [10]. In this thesis we would like to study a general positive power of T , i.e. Tα,
α > 0. Proper de�nitions and spectral properties will be introduced and analyzed using
the theory of Laurent operators.

1.1 A brief introduction to Laurent operators

In this section, we will introduce the class of Laurent operators. It consists of operators
whose matrix with respect to standard basis has a certain structure. We state that any
operator of this class is uniquely associated with a complex valued function, which, in
a certain sense, carries almost all the information about spectral properties of the operator.
We �nd it easier to use this method to do a basic spectral analysis for the polyharmonic
operator, which is, indeed, in the Laurent class, instead of the direct approach which
consists of solving the equation for eigenvalues etc.
All the propositions are based on [5] and can be found in Section 3.1. Some details
might be found in [10] as well, where the same theory was used for discrete Laplacian
and bilaplacian. Since this is a brief introduction, all the propositions will be introduced
without proofs, although they are not complicated.

De�nition 1.1. A bounded operator A on ℓ2(Z) is called Laurent operator if its matrix
element (kernel) Am,n depends only on the di�erence m− n.

De�nition 1.1 says that the matrix representation of the operator A has constant
diagonals.

Let us now consider a unitary mapping U : ℓ2(Z) → L2([−π, π]) given by the action
on the vectors of E

(Uen)(t) =
1√
2π

eint =: fn(t), ∀t ∈ [−π, π], ∀n ∈ Z. (1.2)

U maps the orthonormal basis of ℓ2(Z) onto an orthonormal basis of L2([−π, π]). Therefore
U us unitary.
The inverse of U is nothing but the discrete Fourier transform,

U−1fn = en, ∀n ∈ Z.

De�nition 1.2. Let ϕA : [−π, π] → C be a bounded, measurable function. We call ϕA

the symbol of a Laurent operator A if it holds

A = U−1MϕA
U , (1.3)

where MϕA
is the operator of multiplication by ϕA, which is, under these assumptions,

bounded on L2 ([−π, π]).
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Since the diagonals of the matrix representation of A are constant, it is convenient to
denote ∀m,n ∈ Z : Am,n = an−m. Thus, the matrix of A is of following form

T =



. . . . . . . . . . . .
a−2 a−1 a0 a1 a2
. . . a−2 a−1 a0 a1 a2 . . .

a−2 a−1 a0 a1
. . . . . . . . . . . .


.

Now, provided that a ∈ ℓ1(Z), it is easy to verify that the function

ϕA(t) =
∑
n∈Z

ane
−int, t ∈ [−π, π] (1.4)

is the symbol of a Laurent operator with a kernel Am,n. Indeed, for every basis function
fm ∈ L2 ([−π, π]) it holds

(UAU−1fm)(t) = (UAem) (t) =

(
U
∑
n∈Z

anem−n

)
(t) =

∑
n∈Z

anfm−n(t) =

=

(∑
n∈Z

ane
−int

)
fm(t) = ϕA(t)fm(t),

using the continuity of U and the fact that A is a Laurent class operator. Hence the
desired formula

UAU−1 = MϕA

directly follows. Moreover, for a given symbol ϕA, one can �nd matrix elements of the
corresponding operator A as

an =
1

2π

∫ π

−π

ϕA(t)e
intdt, ∀n ∈ Z.

The relation (1.3) is called diagonalization of the Laurent operator A. It follows
that every Laurent operator is uniquely related to its symbol ϕA de�ned by (1.4) and
corresponding multiplication operator MϕA

. the spectra of these operators are identical
including the spectral classi�cation (point, continuous and residual spectrum). Thus, it
is easy to study spectral properties of Laurent operator A using ϕA.

Theorem 1.3. (Inverse operator) Let A be a Laurent operator with a continuous
symbol ϕA. Then A is invertible if and only if ϕA(t) ̸= 0, ∀t ∈ [−π, π]. If so, A−1 is
Laurent operator with symbol 1/ϕA and its the matrix representation kernel is

(A−1)m,n =
1

2π

∫ π

−π

ei(n−m)t

ϕA

dt, ∀m,n ∈ Z.
11



Theorem 1.4. (Operator norm of a Laurent operator) Let A be a Laurent operator
with a continuous symbol ϕA. Then A is bounded and

∥A∥ = max
t∈[−π,π]

|ϕ(t)|.

Theorem 1.5. (Spectral properties of a Laurent operator) Let A be a Laurent
operator with a continuous symbol ϕA. The spectrum of A coincides with the set Ran(ϕA).
Moreover, the point spectrum of A consists of all points λ ∈ C such that there exists
a Borel set B in R satisfying µ(B) ̸= 0 & ϕA(t) = λ,∀t ∈ B, where µ is the Lebesgue
measure.

At this time, we should mention that a slight abuse of terminology was made. The term
symbol is usually used for a complex function ϕA de�ned on the unit circle. Such a function
is also uniquely associated with the Laurent operator and has the same properties. One
can easily obtain the complex function from the de�ning equation (1.4) putting z = eit ∈
C, then

ϕA(z) =
∑
n∈Z

anz
−n, z ∈ T,

where T stands for the unit circle.

1.2 De�nition of the positive power of discrete Lapla-

cian and basic properties

The results from the previous section will be applied now. Let us make the terminology
and notation clear. By the discrete polyharmonic operator it will be understood operator
Tα where α ∈ Z+ and T is the discrete Laplacian. We will strictly use positive power of

discrete Laplacian if α ∈ (0,+∞). One can �nd terms like fractional discrete Laplacian

for α ∈ (0, 1) which will not be used here. The de�nition of discrete Laplacian itself might
be di�erent too. We are strictly using the de�nition given by (1.1) which is a convention
used to guarantee positiveness of the spectrum of the Laplacian. There is often used
a de�nition corresponding to the operator 2I −T , which has the spectrum symmetrically
located around zero. This de�nition is used for example in [9].

The discrete Laplacian T is clearly in the Laurent class. The de�nition of the discrete
polyharmonic operator is clear and since the class of Laurent operators is closed under
composition, it is again a Laurent operator. For the de�nition of the positive power of T ,
we use the diagonalization of Laurent operator (1.3).
First, let us determine the symbol ϕT . Using equation (1.1) and the relation for a symbol
(1.4) we obtain

ϕT (t) = −eit + 2− e−it = 2− 2 cos(t), t ∈ [−π, π].
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De�nition 1.6. Let U be the unitary operator de�ned by (1.2) and α ∈ (0,+∞). The
positive power of discrete Laplacian is de�ned as follows

Tα := U−1M(ϕT )α U .

The matrix element of Tα is for n ≥ m ∈ Z given by

(Tα)m,n = ⟨em, Tαen⟩ℓ2(Z) = ⟨Uem,UTαen⟩L2([−π,π]) =

〈
fm, UTαU−1︸ ︷︷ ︸

M2α(1−cos(·))α

fn

〉
L2([−π,π])

=
1

2π

∫ π

−π

2α(1− cos(t))αei(n−m)tdt.

To compute this integral, we use the following proposition, which could be found in [7],
3.631 eq. 8.

Proposition 1.7. Let s ∈ Z, ν ∈ C, Re(ν) > 0, it holds∫ π
2

0

sinν−1(t) cos(2st)dt = (−1)s
πΓ(ν)

2νΓ(ν+1
2

+ s)Γ(ν+1
2

− s)
.

Rewriting the ei(m−n)t using sines and cosines in addition with some basic trigonometric
identities one has

1

2π

∫ π

−π

2α(1− cos(t))αei(n−m)tdt =
2α

2π

∫ π

−π

(1− cos(t))α cos((n−m)t)dt =

=
4α

π

∫ π

0

sin2α(
t

2
) cos((n−m)t)dt =

2 · 4α

π

∫ π
2

0

sin2α(τ) cos(2(n−m)τ)dτ.

Hence, using Proposition 1.7, it immediately follows that

(Tα)m,n = (−1)n−m 2 · 4απΓ(2α + 1)

π22α+1Γ(α + 1 + (m− n))Γ(α + 1− (m− n))
=

= (−1)n−m Γ(2α + 1)

Γ(α + 1 + (m− n))Γ(α + 1− (m− n))
.

Recall that 1/Γ(z) = 0 for z ∈ Z−
0 .

From the symmetry of m and n one immediately obtains

∀m,n ∈ Z : (Tα)m,n = (−1)n−m Γ(2α + 1)

Γ(α + 1 + (m− n))Γ(α + 1− (m− n))
. (1.5)

Since the kernel (Tα)m,n depends only on the di�erence of its indices, the operator is in
the Laurent class.
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It is clear, that a bounded continuous function ϕTα(t) = 2α(1− cos(t))α is the symbol
of the operator Tα. One can immediately get its spectral properties. This function is
real-valued, thus the Tα is self-adjoint. The range of this function is

Ran(ϕTα) = [0, 4α].

And since the sets of zero derivative of ϕTα consist of at most three points −π, π and 0,
then using Theorem 1.5, one arrives at following proposition.

Proposition 1.8. Let α ∈ (0,+∞), then the operator Tα is self-adjoint Laurent operator.
It's spectrum is

σ(Tα) = [0, 4α]

and is purely essential and purely continuous.

To be more concrete, in Figure 1.1, one can see graphs of the symbols of Tα for few
selected values of α > 0.

-3 -2 -1 1 2 3
t

5

10

15

ϕ

Figure 1.1: Graphs of ϕTα for α ∈ {0.2, 0.6, 1.0, 1.4, 1.8, 2.2}.

1.3 Polyharmonic operator

Spectral properties of the discrete polyharmonic operator follow directly from the pre-
vious section. In what follows, we would like to �nd the resolvent of the polyharmonic
operator. Considering general α ∈ (0,+∞), this problem will turn out to be more com-
plicated. The key step is solving a complex contour integral, what I was not able to do so
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in general, thus we will later restrict on a positive integer α. But let us at �rst proceed
in the most general way.

According to Theorem 1.3, the resolvent operator (Tα − λ)−1 is in the Laurent class
and its symbol is

ϕ(Tα−λ)−1 =
1

ϕTα − λ
.

Thus, the matrix element of the resolvent for λ ∈ C \ [0, 4α] is

∀m ≤ n ∈ Z : (Tα−λ)−1
m,n =

1

2π

∫ π

−π

ei(n−m)t

ϕTα − λ
dt =

1

2π

∫ π

−π

ei(n−m)t

(2− eit − e−it)α − λ
dt. (1.6)

The matrix element of the resolvent is called the Green kernel of Tα.
Using the substitution z = eit, we can transform this integral into complex contour integral
over the unit circle T, which can be simpli�ed through the Residue theorem if α ∈ Z+.
For positive integer powers, the polynomial in the denominator can be factorized quickly,
unfortunately, for general rational or even the real powers, this procedure does not apply.
First of all, we need to transform the spectral parameter λ by a parameter from the unit
disk D. In the following we put N := α ∈ {1, 2, 3, ...}.

1.3.1 Transformation of the spectral parametr

Working with discrete Laplacians and their resolvents, it is natural and convenient to
transform the spectral parameter λ using the Joukowski transform, it was used e.g. in [9]
or [6], where the standard notation for the new parameter is k. It was also used in [10],
where a modi�cation of the Joukowski transform �tting for T 2 was introduced. Recall
that the Joukowski transform is bijection from D \ {0} onto C \ [−2, 2] de�ned by

λ(k) = k + k−1.

We introduce a modi�cation of this transformation which satis�es our demands on the
target set which is C \ [0, 4N ]. Let us de�ne

ζN(k) := (−(k − k−1)2)N , for k ∈ D \ {0}. (1.7)

Let us now �nd a proper subset of D which is mapped by ζ on C \ [0, 4N ] bijectively. It
is clear, that the transform ζ could be written as a composition of following mappings

ζi(u) := u− 1

u
, ζii(u) := u2, ζiii(u) := −u, and ζiv(u) := uN

as ζN = ζiv ◦ ζiii ◦ ζii ◦ ζi. Let us denote ζ ′ := ζiv ◦ ζi ◦ ζii and

HN :=
{
w = reiφ ∈ C : r ∈ (0,+∞), φ ∈

[π
2
,
π

2
+

π

N

)}
\ i [0, 2] ,
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which is in fact a sector with the segment from 0 to 2i missing.
One can easily see that

ζ ′(HN) = C \ [0, 4N ]
and the mapping is injective.

To �nish this, we need to describe the set ζ−1
i (HN), we will denote it by Dζ

N ⊂ D.
Again, we want the ζi to be bijection from Dζ

N onto HN . For N = 1 and N = 2 one can
easily see that

Dζ
1 = ζ−1

i (H1) = {w ∈ D : Re(w) > 0} ∪ i(0, 1),

Dζ
2 = ζ−1

i (H2) = {w ∈ D : Re(w) > 0, Im(w) > 0} ∪ i(0, 1).

Indeed, consider k = reit for r ∈ (0,+∞) and t ∈ (−π, π]. Then

ζi(k) = (r − 1

r
) cos(t) + i(r +

1

r
) sin(t)

and it is not hard to verify that once r ∈ (0, 1) and t ∈ (−π/2, π/2] or t ∈ (0, π/2],
ζi(k) is in H1 or H2 respectively. Especially, the segment i(0, 1) is mapped onto i(2,+∞).
Moreover, for �xed r ∈ (0, 1) and t moving in given interval, the generated curves are
parts of ellipses which do not intersect each other for any two r, thus the bijectivity
follows. To conclude, we have found domains Dζ

1,D
ζ
2, where the transform ζN is bijective,

for N = 1, 2.

The situation is no longer "straight" considering N > 2. We know how i(0, 1) would
be mapped. Next, one can describe the segment in D mapping on the one boundary
segment of HN , which is not lying on the imaginary axis. Let us denote it by lN . It is
not a straight line. We have

lN = ζ−1
i

({
rei(

π
2
+ π

N
) : r ∈ (0,+∞)

})
.

Thus, one can �nd the explicit formula for k ∈ D as a function of r ∈ (0,+∞) solving the
equation

k − 1

k
= rei(

π
2
+ π

N
).

Since k ̸= 0 our result is one solution of previous quadratic equation and it reads

lN =

{
rei(

π
2
+ π

N
) +
√
r2ei2(

π
2
+ π

N
) + 4

2
: r ∈ (0,+∞)

}
. (1.8)

By lN(a) we understand a point of lN corresponding to the parameter a ∈ (0,+∞). Now
it is clear that for positive integer N > 1 we can de�ne domain of the transformation ζN
as follows

Dζ
N :=

{w ∈ D : Re(w) ≥ 0, Im(w) > 0, ∀a > 0, Re(w) = Re(lN(a)) ⇒ Im(w) > Im(lN(a))} .

The set Dζ
N is a part of the unit disk bounded by the imaginary axis and the curve lN .

As an illustration, some of the sets Dζ
N are in Figures 1.2(a)-(f).
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Remark 1.9. It is not necessary to restrict the transform ζ only to integer N > 0. One
can now easily see that if we have de�ned ζα for α ∈ (0,+∞), all the properties would
have continuously preserved. Considering just integer parameter N , it is easier to explain
and understand, moreover, the general case with α would not be useful for us.
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Figure 1.2: Domains Dζ
N for selected N .
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1.3.2 Resolvent

As it was mentioned, the Green kernel obeys the formula (1.6). One can still consider
real α > 0. Using the substitution z = eit/2 one has, for n ≥ m ∈ Z,

(Tα − λ)−1
m,n =

1

2π

∫ π

−π

ei(n−m)t

(2− eit − e−it)α − λ
dt =

1

2πi

∮
T

z2(n−m)−1

(2− z2 − z−2)α − λ
dz.

Now we put λ = ζα(k), hence

(Tα − λ)−1
m,n =

1

2πi

∮
T

z2(n−m)−1

(−(z − z−1)2)α − (−(k − k−1)2)α
dz =

=
(−1)α

2πi

∮
T

z2(n−m)−1

((z − z−1)2)α − ((k − k−1)2)α
dz. (1.9)

We will integrate using the Residue theorem provided that α is positive integer. From
now on, until the end of this chapter, we will consider only integer powers of the discrete
Laplacian N := α ∈ Z+.

We multiply the fraction in the integral in (1.9) by z2N/z2N , thus we arrive at

(TN − λ(k))−1
m,n =

(−1)N

2πi

∮
T

z2(n−m)+2N−1

(z2 − 1)2N − z2N(k − k−1)2N
dz. (1.10)

Let us denote the denominator of the fraction in integral (1.10) as pN = pN(z). We
have the polynomial

pN(z) = (z2 − 1)2N − z2N(k − k−1)2N = z2N
(
(z − z−1)2N − (k − k−1)2N

)
,

where we are giving two di�erent forms, because they are both useful. The polynomial
pN is clearly of degree 4N and thus has 4N roots (counting the multiplicity). Recall that
k ∈ Dζ

N . From the reciprocal form of pN on can see that once z ̸= 0 is a root of pN , 1/z is
also a root of pN . Since any z ∈ T such that p(z) = 0 would imply k outside Dζ

N , half of
the roots are in the unit circle D and half of them are in DC

. We are interested in roots
in D which is the interior of the integration curve. Moreover, since pN(z) = pN(−z), it
follows that half of the roots are in the left part of D and half in the right part of D or on
the corresponding parts of the imaginary axis. It is also clear that k is always a root of
pN . We can work out even a better description of the roots of the polynomial pN in the
unit circle.
Let us denote z1, ..., zN the roots of pN in the right half of D (i.e Re(zj) ≥ 0,∀j ∈
{1, ..., N}) and zN+1, ..., z2N the roots in the left half (i.e Re(zj) ≤ 0,∀j ∈ {N+1, ..., 2N}).
We do it in the way that zj = −zN+j, ∀j ∈ {1, ..., N}. The zeros of the polynomial pN in
D ful�ll

(zj − z−1
j )2N = (k − k−1)2N , for j ∈ {1, ..., 2N},
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from which we obtain

zj − z−1
j = e2πi

j−1
2N (k − k−1), for j ∈ {1, ..., 2N}. (1.11)

This equation determine the numbering of the roots zj. Later, we will be able to derive
exact regions of the roots in D using (1.11).

Next, the derivative of pN reads

p′N(z) = 4Nz(z2 − 1)2N−1 − 2Nz2N−1(k − k−1)2N .

For every j ∈ {1, ..., 2N}, it holds

p′N(zj) = 2Nz2N−1
j (2zj(zj − z−1

j )2N−1 − (k − k−1)2N) =

= 2Nz2N−1
j (2zj(zj − z−1

j )2N−1 − e−2πi(j−1)(zj − zj)
2N) =

= 2Nz2N−1
j (zj − z−1

j )2N−1(zj − z−1
j ) ̸= 0,

where we used (1.11).
Thus, every described root zj for j ∈ {1, ..., 2N} generates a simple-pole-type singularity.
We can proceed from (1.10) using the residue theorem as follows

(TN − λ(k))−1
m,n =(−1)N

N∑
j=1

z
2(m−n)+2N−1
j

p′N(zj)
+

z
2(n−m)+2N−1
N+j

p′N(zN+j)
=

=
(−1)N

N

N∑
j=1

z
2(n−m)+2N
j

2z2j (z
2
j − 1)2N−1 − z2Nj (k − k−1)2N

=

=
(−1)N

N

N∑
j=1

z
2(n−m)+2N
j

2z2N+1
j (zj − z−1

j )2N−1 − z2Nj (k − k−1)2N
=

=
(−1)N

N

N∑
j=1

z
2(n−m)
j

2zj(k − k−1)2N−1e−2πi j−1
2N − (k − k−1)2N

=

=
(−1)N

N

N∑
j=1

e2πi
j−1
2N z

2(n−m)
j

2zj(k − k−1)2N−1 − e2πi
j−1
2N (k − k−1)2N

=

=
(−1)N

N(k − k−1)2N−1

N∑
j=1

z
2(n−m)
j e2πi

j−1
2N

zj + z−1
j

,

where the second line was obtained using zj = −zN+j, fourth and sixth line were obtained
repeatedly using (1.11). It is necessary to mind that zj = zj(k), for j ∈ {1, ..., 2N}.

The green kernel of TN could be obtained using the symmetry of the matrix kernel
TN
m,n with respect to m and n. One immediately has the following proposition.
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Proposition 1.10. Let TN be a discrete polyharmonic operator, λ(k) = ζN(k) de�ned
in (1.7) and zj = zj(k) a root of pN in D given by (1.11). Then

∀m,n ∈ Z : (TN − λ(k))−1
m,n =

(−1)N

N(k − k−1)2N−1

N∑
j=1

z
2|n−m|
j e2πi

j−1
2N

zj + z−1
j

. (1.12)

Let us point out the known cases N = 1 and N = 2. For discrete Laplace operator
one has

∀m,n ∈ Z : (T − λ(k))−1
m,n = − k2|m−n|

k2 − k−2
,

where the fact that z1 = k was used. Recall that, in [10] and [9], it appears the well
known formula

∀m,n ∈ Z : (H − λ(ξ))−1
m,n =

ξ|m−n|

ξ − ξ−1
,

where H := 2I − T and λ(ξ) = ξ + ξ−1 is the classical Joukowski transform. We can see
a notably similar structure of the formulas, whereas the di�erences are caused by another
transform and slightly modi�ed operator. Finally, we propose a similar form for the Green
kernel for N = 2, we will later work with. The formula (1.11) for j = 2 is now of the form
(z2 − z−1

2 ) = i(k − k−1). We abuse the notation slightly by denoting z1 = k and z2 = z,
which is still a function of k. From (1.12), we have

(T 2 − λ(k))−1
m,n =

1

2(k − k−1)3

[
k2|m−n|

k + k−1
+ i

z2|m−n|

z + z−1

]
=

=
k2

(k2 − 1)2

[
k2|m−n|

k2 − k−2
+ i

z2|m−n|

(z + z−1)(k − k−1)

]
.

Now, we use (1.11) and arrive at

∀m,n ∈ Z : (T 2 − λ(k))−1
m,n =

k2

2(k2 − 1)2

[
k2|m−n|

k2 − k−2
− z2|m−n|

z2 − z−2

]
. (1.13)
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Chapter 2

Spectral enclosures for the discrete

polyharmonic operator

In this section we would like to improve upon the main result from [10], which is the
localization of the spectrum of the discrete bilaplace operator T 2 perturbed by a complex
potential. It is well known and solved problem for the discrete Laplace operator, even
with the optimal result, see [9]. On the other hand, for the discrete bilaplacian T 2, only
non-optimal result were found. A Conjecture on optimal enclosures has been formulated.
It will be proved afterwards.
We will introduce a general approach for the discrete polyharmonic operator TN and
formulate a generalized conjecture on optimal result. This conjecture will be proved for
N = 2. Recall that N is a positive integer.

Let us start with some general results describing changes of spectrum of a bounded
self-adjoint linear operator on a Hilbert space under a compact perturbation.

Theorem 2.1. (Birman�Schwinger principle) Let L be a bounded self-adjoint opera-
tor and V be a compact operator on a Hilbert space H and let A,B be bounded operators
on H such that V = AB, then for λ ∈ ρ(L):

λ ∈ σp(L+ V ) ⇐⇒ −1 ∈ σp(K(λ)),

where K(λ) := B(L− λ)−1A is the Birman�Schwinger operator.

Proof of Theorem 2.1 could be found in [10]. A more general version of the Birman�
Schwinger principle is discussed in [8]. One can immediately deduce on important corol-
lary, which is a necessary condition for λ from the resolvent set of L to be in a point
spectrum of the operator L+ V .

Corollary 2.2. Let L be a bounded self-adjoint operator and V be a compact operator
on a Hilbert space H and let A,B be bounded operators on H such that V = AB, then
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following implication holds true

λ ∈ σp(L+ V ) =⇒ ∥K(λ)∥ ≥ 1,

for λ in ρ(L) and K(λ) the Birman�Schwinger operator.

We proceed by a theorem which deals with the essential spectrum of a bounded self-
adjoint operator with a compact perturbation. Let us recall that we use a de�nition of
the essential spectrum from [13].
Let A be a bounded operator on a Hilbert space H. The algebraic multiplicity of an
isolated λ ∈ σp(A) is de�ned as

νa(λ) := dim(Ran(Pλ)),

where
Pλ :=

1

2πi

∮
γλ

(A− z)−1dz, γλ := {w ∈ C : |w − λ| = ε} .

The ε > 0 is small enough that the interior and the boundary of γλ do not contain any
other point of the spectrum of A. We de�ne the discrete spectrum and the essential

spectrum of A as follows:

σdisc(A) := {λ ∈ σp(A) : λ is isolated & νa(λ) < +∞} ,
σess(A) := σ(A) \ σdisc(A).

Theorem 2.3. Let A be a bounded operator on a Hilbert space H and V be a compact
operator on H. And let the following hold true

1. The interior of σ(A) in the topology of C is empty.

2. ∀ C connected component of ρ(A) : C ∩ ρ(A+ V ) ̸= ∅.

Then σess(A+ V ) = σess(A).

Proof of Theorem 2.3 could be found in [13] in section XIII 4.

2.1 Spectral enclosures

Let us introduce the problem. We consider discrete polyharmonic operator with a com-
plex potential TN + V , where V is determined by a sequence v ∈ ℓ1(Z), i.e.

V en = vnen, ∀n ∈ Z, en ∈ E . (2.1)

One can easily show that operator V is compact, even trace-class, see [10].

Our aim is to localize the spectrum of TN perturbed by the potential V . The following
theorem localizes the essential spectrum of TN + V .
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Proposition 2.4. Let V be a potential de�ned by ℓ1(Z) sequence v as in (2.1), then

σess(T
N + V ) = σess(T

N) = [0, 4N ].

Proof. It is clear that the interior of σ(TN) = [0, 4N ] in the topology of C is empty.
Moreover, the operator TN is bounded as well as V , thus the resolvent set ρ(TN + V )
is unbounded and it surely intersects the only connected component of ρ(TN) which is
C \ [0, 4N ]. Theorem 2.3 concludes the proof.

Since the essential spectra of perturbed and unperturbed polyharmonic operator TN

are the same, only eigenvalues can appear due to perturbation V . We will localize the
eigenvalues using the Birman�Shwinger principle and we will �nd the sets containing the
discrete spectrum of TN + V which only depend on the ℓ1−norm of generating sequence
v ∈ ℓ1(Z). Let us start with the decomposition of the potential V .

We de�ne two operators |V |1/2 and V1/2 playing the role of operators A and B in the
Birman�Schwinger principle (Theorem 2.1). They act as follows,

∀n ∈ Z : |V |1/2en := |vn|1/2en, V1/2en := |v|1/2sgn(vn)en,

where en ∈ E , v ∈ ℓ1(Z) is the generating sequence of V and sgn is the complex sign
function de�ned as

sgn(z) :=

{
z
|z| z ̸= 0,

0 z = 0.

It is clear that
V = |V |1/2V1/2

and we de�ne the Birman�Schwinger operator as

K(λ) := V1/2(T
N − λ)−1|V |1/2. (2.2)

Proposition 2.5. Let K(λ) be de�ned by (2.2) and let number E(λ) ∈ (0,+∞) be such
that ∀m,n ∈ Z :

∣∣(TN − λ)−1
m,n

∣∣ ≤ E(λ), then

∥K(λ)∥ ≤ E(λ)∥v∥ℓ1(Z).

Proof. The proposition immediately follows from the next estimate. For every u ∈ ℓ2(Z)
it holds

∥K(λ)u∥2ℓ2(Z) =
∑
m∈Z

|
∑
n∈Z

K(λ)m,nun|2 ≤
∑
m∈Z

(
∑
n∈Z

|vm|1/2|(T 2 − λI)−1
m,n||vn|1/2|un|)2

≤ E(λ)2
∑
m∈Z

|vm|(
∑
n∈Z

|vn|1/2|un|)2
C−S

≤ E(λ)2
∑
m∈Z

|vm|
∑
n∈Z

|un|2
∑
k∈Z

|vk|

= E(λ)2 ∥v∥2ℓ1(Z) ∥u∥
2
ℓ2(Z) ,

where the Cauchy-Schwarz inequality was used.
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The exact form of the estimate E(λ) of the Green kernel of TN will be introduced
later. First, let us �nish the general process of searching for the enclosures.

Proposition 2.6. Let K(λ) be de�ned by (2.2) and let number E(λ) ∈ (0,+∞) be such
that ∀m,n ∈ Z :

∣∣(TN − λ)−1
m,n

∣∣ ≤ E(λ), then

σp(T
N + V ) ⊂

{
λ ∈ ρ(TN) :

1

E(λ)
≤ ∥v∥ℓ1(Z)

}
∪ [0, 4N ].

Proof. For λ ∈ ρ(TN) we use Corollary 2.2 which imply that if λ ∈ σp(T
N + V ) then

∥K(λ)∥ ≥ 1 =⇒ 1 ≤ ∥K(λ)∥ ≤ E(λ) ∥v∥ℓ1(Z) ,

where the result of Proposition 2.5 was used. Hence

λ ∈ σp(T
N + V ) =⇒ (E(λ))−1 ≤ ∥v∥ℓ1(Z) .

We have localized the discrete spectrum of TN + V , it is a subset of{
λ ∈ ρ(TN) : E(λ)−1 ≤ ∥v∥ℓ1(Z)

}
.

Now, we make a union of the essential spectrum of TN , which is [0, 4N ], with this set,
because of the possible eigenvalues in essential spectrum. This concludes the proof.

From Proposition 2.6, we know that there is no eigenvalue of perturbed polyharmonic
operator outside the given set, except the interval [0, 4N ]. By a spectral enclosure we
understand a set

ON(∥v∥) :=
{
λ ∈ ρ(TN) :

1

E(λ)
≤ ∥v∥ℓ1(Z)

}
which, as it was mentioned, depends only on the norm of the sequence v ∈ ℓ1(Z) and the
estimate E(λ).

There exists more than one possibility how to get the estimate E of the absolute value
of green kernel. Naturally, we would like to get the optimal one which is the supremum
over m,n ∈ Z of |(TN −λ)−1|. It turns out that it is a non-trivial problem for N > 1. But
it is still worth the e�ort since the optimal estimate induces, in a certain sense, optimal
enclosures. Let us �rst propose one of the immediate but non-optimal estimates.

Proposition 2.7. Let λ = ζN(k) ∈ C \ [0, 4N ], then

∀m,n ∈ Z : |(TN − λ(k))−1
m,n| ≤

1

|N(k − k−1)2N−1|

N∑
j=1

1

|zj + z−1
j |

.

Proof. The proof follows directly from Porposition 1.10 and the fact that all the roots
zj = zj(k) are in D.
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We have a conjecture on the optimal estimate, which will be proved later for one
special case N = 2, the proof is easy for N = 1 and in this case, the estimate coincides
with the one obtained from Proposition 2.7.

Conjecture 2.8. Let λ = ζN(k) ∈ C \ [0, 4N ], then

∀m,n ∈ Z : |(TN − λ(k))−1
m,n| ≤ |(TN − λ(k))−1

0,0| =
1

|N(k − k−1)2N−1|

∣∣∣∣∣
N∑
j=1

e2πi
j−1
2N

zj + z−1
j

∣∣∣∣∣ .
This allows us to summarize our result in the following theorem.

Theorem 2.9. (partly conjectural) Let N be positive integer and V be a trace class po-
tential generated by a sequence v ∈ ℓ1(Z). We can localize the spectrum of the perturbed
discrete polyharmonic operator TN as follows

1. σ(TN + V ) ⊂λ = ζN(k) ∈ C \ [0, 4N ] :

[
1

|N(k − k−1)2N−1|

N∑
j=1

1

|zj + z−1
j |

]−1

≤ ∥v∥ℓ1(Z)

 ∪ [0, 4N ].

Similarly, provided that Conjecture 2.8 holds true, then

2. σ(TN + V ) ⊂λ = ζN(k) ∈ C \ [0, 4N ] :

[
1

|N(k − k−1)2N−1|

∣∣∣∣∣
N∑
j=1

e2πi
j−1
2N

zj + z−1
j

∣∣∣∣∣
]−1

≤ ∥v∥ℓ1(Z)

 ∪ [0, 4N ].

Proof. Part 1. follows directly from Propositions 2.4, 2.7 and 2.6. Part 2. follows from
the same propositions, we just consider Conjecture 2.8 instead of Proposition 2.7.

2.2 Proof of Conjecture 2.8 for N = 2

In this section we prove Conjecture 2.8 for N = 2. Afterwards, we discuss a possible
method of proving the conjecture for N ≥ 3.

Firstly, let us recall a well-known result of the complex analysis.

Theorem 2.10. (Maximum Modulus Principle).
Let Ω be a connected open subset of C and f : Ω → C holomorphic on Ω and f ̸= const.
Then |f | cannot exhibit a strict local maximum in Ω.
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Figure 2.1: The optimal spectral enclosures for the discrete bilaplacian with a complex
potential determined by a sequence v ∈ ℓ1(Z) for ∥v∥ℓ1(Z) ∈ {8, 10, 12, 14, 18}.

Corollary 2.11. Let Ω be a bounded connected open subset of C and f : Ω → C
holomorphic on Ω and continuous on Ω̄. Then

max
Ω̄

|f | = max
∂Ω

|f |.

We use the following form of the Green kernel of T 2 which was given in (1.13) and
reads

∀m,n ∈ Z : (T 2 − λ(k))−1
m,n =

k2

2(k2 − 1)2

[
k2|m−n|

k2 − k−2
− z2|m−n|

z2 − z−2

]
.

Or aim is to show

∀m,n ∈ Z : |((T 2 − λ(k))−1)m,n| ≤ |((T 2 − λ(k))−1)0,0|, k ∈ Dζ
2.

Recall that z = z(k) is the unique solution of (1.11) in D where z := z2. Let us denote
s := |m− n| which is nonnegative integer. We can divide both sides of the inequality by
|k2/2(k2 − 1)2|, slightly manipulate the other terms from which we obtain

∀s ∈ Z+
0 | k2s

(
z2 − z−2

)
− z2s

(
k2 − k−2

)
| ≤ |

(
z2 − z−2

)
−
(
k2 − k−2

)
| .

Let us now analyze the position of z = z(k).

Lemma 2.12. Let k ∈ Dζ
2, then for z = z(k), which is given by (1.11) as z − z−1 =

i(k − k−1), holds

z ∈ {w ∈ C : |w| < 1,Re(w) > 0, Im(w) < 0 } ∪ (0,
√
2− 1).
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Proof. We use the results of Subsection 1.3.1. Hence for k ∈ Dζ
2 one has

ζi(k) = k − k−1 ∈
{
w = reit ∈ C : r ∈ (0,+∞), t ∈ [

π

2
, π)
}
\ i[0, 2].

Since ζi(z) = iζi(k), we see that ζi(z) is located in the same sector which is only rotated
by an angle +π/2 (it is equivalent to the multiplication by i). The proof is concluded by
applying the inverse transformation ζ−1

i .

Due to Lemma 2.12 we see that once k ∈ Dζ
2, z is, up to a part of the boundary, in

the symmetric region in the lower half of D with respect to the real axis (i.e. Im(z) ≤ 0).
One can see that k occurs only as a second power k2 in our problem, as well as z . Thus,
we can immediately determine its regions as

k2 ∈ Dk2 := {w ∈ C : |w| < 1, Im(w) > 0} ∪ (−1, 0),

z2 ∈ Dz2 := {w ∈ C : |w| < 1, Im(w) < 0} ∪ (0, (
√
2− 1)2).

The following proposition is in fact more general than the original hypothesis. We simply
get rid of the dependence of z on k and formulate the problem for two independent
complex numbers in the regions Dk2 and Dz2 .

Proposition 2.13. Let s ∈ Z+
0 , then

∀u ∈ Dk2 , ∀v ∈ Dz2 : | us
(
v − v−1

)
− vs

(
u− u−1

)
| ≤ |

(
v − v−1

)
−
(
u− u−1

)
| .

It is clear, that to prove the Conjecture 2.8, it is su�cient to prove this proposition.
Moreover, we restrict the regions for numbers u and v.

Proposition 2.14. Let s ∈ Z+
0 , then the following statements are equivalent:

1. ∀u ∈ Dk2 ,∀v ∈ Dz2 : | us (v − v−1)− vs (u− u−1) | ≤ | (v − v−1)− (u− u−1) |,

2. ∀u ∈ ∂Dk2 ,∀v ∈ ∂Dz2 : | us (v − v−1)− vs (u− u−1) | ≤ | (v − v−1)− (u− u−1) | .

Proof. We consider a function f : C× C → C de�ned as

fs(u, v) :=
us (v − v−1)− vs (u− u−1)

(v − v−1)− (u− u−1)
=

us+1 (v2 − 1)− vs+1 (u2 − 1)

(1 + uv)(v − u)
,

where s ∈ Z+
0 , u ∈ Dk2 , v ∈ Dz2 . Part 1 of the proposition is then equivalent to

|fs(u, v)| ≤ 1,∀u ∈ Dk2 ,∀v ∈ Dz2 .

We choose a �xed v ∈ Dz2 arbitrarily and look closer to the function fs(·, v), which is
analytic on Dk2 and continuous on Dk2 . Indeed, it holds that the limit

lim
u→v

fs(u, v)

27



exists and is �nite. The second factor in the denominator of fs could generate singularity
if 1 + uv = 0, but in this case u = −1/v, thus u /∈ Dk2 , since |v| < 1 and |u| = |1/v| > 1.
Using the Maximum Modulus Principle (MMP) we obtain

|fs(u, v)| ≤ 1, ∀u ∈ ∂Dk2 , ∀v ∈ Dz2 .

Now, we take �xed u ∈ ∂Dk2 and analyze the function fs(u, ·). Function fs satis�es
the assumptions of MMP. Indeed, the only term in the de�nition of function fs which
could generate a singularity is (1 + uv) if v = −1/u and u ∈ ∂Dk2 . We look closer on
following situations:

u = eiϕ, ϕ ∈ (0, π) : v = −1

u
= eiϕ /∈ Dz2 ,

u ∈ (−1, 1) : v = −1

u
/∈ Dz2 since

∣∣∣∣1u
∣∣∣∣ > 1,

u = ±1 : v = −1

u
= ∓1.

Functions fs(±1, v) do not have singularities at v = ∓1. The proof is �nished by using
MMP again.

Following theorem concludes the proof of Conjecture 2.8.

Theorem 2.15. Let s ∈ Z+
0 , then

∀u ∈ ∂Dk2 ,∀v ∈ ∂Dz2 : | us
(
v − v−1

)
−vs

(
u− u−1

)
| ≤ |

(
v − v−1

)
−
(
u− u−1

)
| . (2.3)

Proof. Let us mention that the boundaries ∂Dk2 and ∂Dz2 are simply the upper and the
lower half of the unit circle respectively, and interval [−1, 1].

Theorem 2.15 will be proven using following strategy. We divide the boundaries of the
upper and the lower half of the unit circle into parts and then we will prove the theorem
considering all the positions of u and v step by step.

In the following, we denote

u = rue
iϕu , v = rve

iϕv .

1. We consider the case, when both u and v are real. Without loss of generality, let
us assume that 0 < ru < rv < 1. If ru > rv we can use the symmetry of u, v in this
problem. If 0 > ru > rv > −1 we can get the same problem as if the numbers are
positive because of the absolute value in (2.3).

We have u = ru, v = rv, thus the inequality is in the form∣∣rsu (rv − r−1
v

)
− rsv

(
ru − r−1

u

)∣∣ ≤ ∣∣(rv − r−1
v

)
−
(
ru − r−1

u

)∣∣ ,∣∣rs+1
u

(
1− r2v

)
− rs+1

v

(
1− r2u

)∣∣ ≤ ∣∣ru (1− r2v
)
− rv

(
1− r2u

)∣∣ .
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Let us denote RHS := rv (1− r2u)− ru (1− r2v) and
LHS := rs+1

v (1− r2u) − rs+1
u (1− r2v). Since RHS ≥ 0 and LHS ≥ 0, ∀s ∈ Z+

0 , the
problem is as follows

0 ≤ RHS − LHS = rv
(
1− r2u

)
(1− rsv)− ru

(
1− r2v

)
(1− rsu) ,

0 ≤ rv (1− rsv)

1− r2v
− ru (1− rsu)

1− r2u
.

Consider the real function

ξ(x) =
x (1− xs)

1− x2
,

which is increasing on interval (0, 1). Hence we get 0 ≤ ξ(y) − ξ(x) for any x, y ∈
(0, 1), y > x. If we put x := ru and y := rv the lemma is proved. It also follows from
this proof that the inequality holds ∀ru, rv ∈ (−1, 1). Indeed, for odd s we can use
directly previous part of this proof. For s even, the function ξ is odd and we can
also prove it the same way. It remains to prove that the function ξ is increasing.

Indeed, for s = 0 it is clear, for s ≥ 1 it holds

ξ(x) =
x

1 + x

s−1∑
j=0

xj

and thus

ξ′(x) =
1

(1 + x)2

(
(1 + x)

s−1∑
j=0

(j + 1)xj −
s−1∑
j=0

xj+1

)
=

=
1

(1 + x)2

(
s−1∑
j=0

jxj +
s−1∑
j=0

jxj+1 +
s−1∑
j=0

xj

)
> 0,

for x ∈ (0, 1). Which was to be proved.

2. Now consider u and v such that ru = rv = 1. Let us denote

g(s) :=| us
(
v − v−1

)
− vs

(
u− u−1

)∣∣2
We have u = eiϕu and v = eiϕv , ϕu ∈ (0, π), ϕv ∈ (−π, 0) and using the de�nition of
absolute value of the complex number and some trigonometric identities we obtain

g(s) =
∣∣eisϕu2i sinϕv − eisϕv2i sinϕu

∣∣2 =
= 4

(
(sin (sϕu) sin (ϕv)− sin (sϕv) sin (ϕu))

2−

(cos (sϕu) sin (ϕv)− cos (sϕv) sin (ϕu))
2) =

= 4
(
sin2 (ϕu) + sin2 (ϕv)−

2 sin (ϕu) sin (ϕv) (cos (sϕu) cos (sϕv) + sin (sϕu) sin (sϕv))︸ ︷︷ ︸
cos(s(ϕu−ϕv))

).
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Now it is not hard to verify that g(s) ≤ g(0). Let us analyze

g(0)− g(s) = −8 sin (ϕu)︸ ︷︷ ︸
≥0

sin (ϕv)︸ ︷︷ ︸
≤0

(1− cos (s (ϕu − ϕv))︸ ︷︷ ︸
2 sin2( s

2
(ϕu−ϕv))

) ≥ 0.

Thus, the inequality (2.3) holds for the considered range of u and v.

3. Now consider number v to be real and positive, u to be complex. It is
ru = 1, rv ∈ [0, 1] and ϕu ∈ (0, π), ϕv = 0. Denote

h(s) :=| us
(
v − v−1

)
− vs

(
u− u−1

)∣∣2
As in the previous parts, we have u = eiϕu and v = rv and we obtain

h(s) =
∣∣eisϕu

(
rv − r−1

v

)
− rsv2i sinϕu

∣∣2 =
=
(
rv − r−1

v

)
cos2 (sϕu) +

((
rv − r−1

v

)
sin (sϕu)− 2rsv sin (ϕu)

)2
=
(
rv − r−1

v

)2 − 4rsv
(
rv − r−1

v

)
sin (sϕu) sin (ϕu) + 4r2sv sin2 (ϕu) .

In fact, the di�erence h(0)− h(s) is nonnegative,

h(0)− h(s) = 4 sin2 (ϕu)
(
1− r2sv

)
+ 4rsv

(
rv − r−1

v

)
sin (sϕu) sin (ϕu)

?

≥ 0.

Dividing both sides by positive terms 4 sin2 (ϕu) , r
−1
v − rv, r

s
v, we get

0 ≤ r−s
v − rsv
r−1
v − rv

− sin (sϕu)

sin (ϕu)
. (2.4)

Since the function

η(x) =
x−s − xs

x−1 − x

is decreasing on (0, 1), limx→1− η(x) = s (see the end of the proof) and

max
ϕu∈(0,π)

(
sin (sϕu)

sin (ϕu)

)
= s

(see the end of the proof), the inequality (2.4) holds. We can easily prove that
the inequality (2.3) holds for u ∈ ∂Dk2 , v ∈ ∂Dz2 such that rv = 1, ru ∈ [0, 1] and
ϕv ∈ (−π, 0), ϕu = 0. It is enough to use the symmetry of u and v in the problem
and the fact that

max
ϕ∈(0,π)

(
sin (sϕ)

sin (ϕ)

)
= s.

4. Now consider similar case, but ru = 1, rv ∈ [−1, 0] and ϕu ∈ (0, π), ϕv = 0. Denote

h(s) :=| us
(
v − v−1

)
− vs

(
u− u−1

)∣∣2 .
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Using exactly the same method as in the previous case we get

h(0)− h(s) = 4 sin2 (ϕu)
(
1− r2sv

)
+ 4rsv

(
rv − r−1

v

)
sin (sϕu) sin (ϕu) ≥ 0. (2.5)

Now we have to separately discuss two situations. Firstly, consider s is odd. In this
case, we divide both sides of the inequality (2.5) by the same terms as in the proof
of previous part, i.e. 4 sin2 (ϕu) > 0, r−1

v − rv < 0, rsv < 0. Now we have the same
inequality for di�erent range of parameters

0 ≤ r−s
v − rsv
r−1
v − rv

− sin (sϕu)

sin (ϕu)
.

Since both functions are even in this case, the inequality follows directly from the
proof of previous case.

To �nish the proof, we assume s even. Again, we divide both sides of the inequality
(2.5) by 4 sin2 (ϕu) > 0, r−1

v − rv < 0, rsv < 0 and obtain

0 ≥ r−s
v − rsv
r−1
v − rv

+

(
−sin (sϕu)

sin (ϕu)

)
.

Now η(x) = x−s−xs

x−1−x
is odd function and sin(sϕu)

sin(ϕu)
is odd. It is easy to see that the

inequality holds.
One can easily prove (2.3) for u ∈ ∂Dk2 , v ∈ ∂Dz2 such that rv = 1, ru ∈ [−1, 0]
and ϕv ∈ (−π, 0), ϕu = 0. It follows directly from symmetry of u and v in (2.3) and
properties of the functions η and sin(sx)/ sin(x).

Now it remains to prove that the function η is decreasing. Moreover, η is odd
function for even s and even function for odd s. Indeed, the oddness/evenness
follows directly from the de�nition and the monotonicity is easy for s ∈ {0, 1}. For
s ≥ 2, we have

η(x) =
x−s − xs

x−1 − x
= x−s+1x

2s − 1

x2 − 1
= x−s+1

s−1∑
k=0

x2k =
s−1∑
k=0

x2k−s+1.

Hence

lim
x→1−

η(x) = s & lim
x→−1+

η(x) =

{
s : s odd,
−s : s even

and also

η′(x) =
s−1∑
k=0

(2k − s+ 1)x2k−s.

Now we look closer to the sum. There are s terms in the sum for every even s ≥ 2
and s − 1 terms for odd s > 2. There are also ⌊s/2⌋ positive terms and ⌊s/2⌋
negative terms. It holds that for any x ∈ (0, 1)

∀s ≥ 2,∀l ∈ {0, 1, . . . , ⌊s/2⌋ − 1} :∣∣(2l − s+ 1)x2l−s
∣∣ ≥ ∣∣(2(s− 1− l)− s+ 1)x2(s−1−l)−s

∣∣ .
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Indeed, using standard algebraic manipulations we get∣∣(2l − s+ 1)x2l−s
∣∣ ≥ ∣∣(2(s− 1− l)− s+ 1)x2(s−1−l)−s

∣∣ ,∣∣(2l − s+ 1)x2l−s
∣∣ | ≥ ∣∣−(2l − s+ 1)x−2l+s−2

∣∣ ,
x(2l−s)−(−2l+s−2) = x4l−2s+2 ≥ 1.

It holds, because 4l − 2s + 2 ≤ 0,∀s ≥ 2,∀l ∈ {0, 1, . . . , ⌊s/2⌋ − 1} and x is from
(0, 1).

Last proposition to show to �nish the proof is that for every s ∈ Z+
0 ,

max
ϕ∈(0,π)

sin (sϕ)

sin (ϕ)
= s.

It is easy for s = 0. It holds for s > 0, because the function

sin (sϕ)

sin (ϕ)
= Us−1(cosϕ),

where Un(x) is the second kind Chebyshev polynomial which has extreme values at
±1. The proof can be found in the �rst chapter in [12]. It is clear that the value of
the function Us−1(cosϕ) at ϕ = 0 is s.

2.2.1 A remark on validity of the conjecture for N ≥ 3

The proof of Conjecture 2.8 in general would be the most valuable result for us. Let
us now discuss a method of proving this conjecture analytically. Let us mention, that the
proof is not done and this is just an idea of a possible method.
Our approach is the same as in the previous part. First, we need to localize the regions
for the roots of polynomial

pN(z) = (z2 − 1)2N − z2N(k − k−1)2N ,

in the unit disk D which are occurring in the formula for the Green kernel. The following
part is a brief reminder of a part in the �rst chapter. Recall that we consider λ = λ(k) =
ζN(k) and element of the Green kernel (1.12) reads

∀m,n ∈ Z : (TN − λ(k))−1
m,n =

(−1)N

N(k − k−1)2N−1

N∑
j=1

z
2|n−m|
j e2πi

j−1
2N

zj + z−1
j

.

Thus, roots z1, ..., zN are important for us. We know that they are related via (1.11) as
follows

zj − z−1
j = e2πi

j−1
2N (k − k−1), for j ∈ {1, ..., N}.
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Hence it follows that z1 = k and since we know the region for k which is Dζ
N , we can

localize the rest of the roots.

Let us denote s := |m− n| ≥ 0, Conjecture 2.8 is then of the form

∀s ∈ Z+
0 , ∀N ∈ Z+ :

∣∣∣∣∣
N∑
j=1

z2sj e2πi
j−1
2N

zj + z−1
j

∣∣∣∣∣ ≤
∣∣∣∣∣

N∑
j=1

e2πi
j−1
2N

zj + z−1
j

∣∣∣∣∣ .
Having this, we know that the N regions for the roots z1, ..., zN �ll the right half of

D. Let us denote them Dz1 , ...,DzN . Then we need to get rid of the mutual relations of
the roots and formulate the more general problem for N independent parameters u1 ∈
Dz1 , ..., uN ∈ DzN . Then, we could possibly use the MMP and reduce the regions onto the
boundaries. Since our method is based on proving the inequalities for each pair of the
boundaries, there arise �rst problem. The number of boundaries part increases and thus
the number of pairs increases too, even though we can take advantage of the symmetry
of this problem with respect to cyclic permutations of the parameters.
Unfortunately, I was not able to proceed this way even for N = 3. Moreover, there is
another problem which is the shape of the boundaries for higher N . Namely lN given by
(1.8) is one of the boundary parts which complicates the analytic approach.

Despite all the problems mentioned, we can try to numerically disprove the conjecture.
Using k ∈ Dζ

N and (1.11), we made a grid covering the regions Dz1 , ...,DzN . We tested
the conjecture on the grid for 0 ≤ s ≤ 40 and N ≤ 10 considering the dependence of
z1, ..., zN . The result is that we cannot disprove the conjecture.
The regions of the roots z1, ..., zN for N = 3 and N = 4 are in Figures 2.2a and 2.2b
respectively.

2.3 Optimality

In [9], it was shown that the enclosures obtained using our method for the discrete
Schrodinger operator H are optimal. The optimality is understood in the following sense.
Take ∥v∥ℓ1(Z) �xed, then for every boundary point z of the spectral enclosure O1(∥v∥)
not belonging to σess(T ) = [0, 4], there exist a potential V such that z is an eigenvalue of
T + V .
Similarly, in [10], same method was used for T 2 considering the optimal estimate of the
Green kernel, which is now proved in Conjecture 2.8 for N = 2. Naturally, one can easily
generalize this procedure for the discrete polyharmonic operator.

We de�ne a special compact diagonal potential δk on ℓ2(Z) by giving its kernel

(δk)m,n :=

{
1 m = n = k,

0 otherweise.
(2.6)
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Figure 2.2: Regions of the �rst N roots of polynomial pN for selected N in D.

34



This potential is generated by sequence {δk,j}j∈Z. It holds δk = ⟨ek, · ⟩ ek for ek ∈ E .

Recall that the conjectural spectral enclosure from Theorem 2.9 reads

ON(∥v∥) =λ = ζN(k) ∈ C \ [0, 4N ] :

[
1

|N(k − k−1)2N−1|

∣∣∣∣∣
N∑
j=1

e2πi
j−1
2N

zj + z−1
j

∣∣∣∣∣
]−1

≤ ∥v∥ℓ1(Z)

 . (2.7)

Assuming the validity of Conjecture 2.8 for all N > 0, the following proposition proves
the optimality of the enclosures ON(∥v∥).

Proposition 2.16. (conjectural) Let v ∈ ℓ1(Z) be a generating sequence of potential
V and let ON(∥v∥) be the conjectural spectral enclosure given by (2.7). Then

∀z ∈ ∂ON(∥v∥) \ [0, 4N ], ∃ω ∈ C, |ω| = ∥v∥ℓ1(Z) : z ∈ σp(T
2 + ωδ0).

Proof. Take z ∈ ∂ON(∥v∥)\ [0, 4N ] arbitrary and �xed. We transform this point using ζN
and we obtain a unique k ∈ Dζ

N such that z = ζN(k). Now put

r(k) := (TN − λ(k))−1
0,0 =

−1

N(k − k−1)2N−1

N∑
j=1

e2πi
j−1
2N

zj + z−1
j

.

It follows from the de�nition of the spectral enclosure and from the fact z is on the
boundary of the enclosure that |1/r(k)| = ∥v∥ℓ1(Z). Now we consider a potential ωδ0 for
ω ∈ C and δ0 given by (2.6). This potential is generated by sequence {ωδ0,n}n∈Z, which
has a norm equal to |ω|. The kernel of Birman�Schwinger operator for this potential is

K(z(k))m,n :=

{
r(k)ω m = n = 0,

0 otherweise.

It is clear that r(k)ω is an eigenvalue of K(z(k)). Thus, according to Birman�Schwinger
principle, z = ζN(k) ∈ ∂ON(∥v∥) \ [0, 4N ] is an eigenvalue of TN + ωδ0 if and only if

r(k)ω = −1 ⇐⇒ ω = − 1

r(k)
.

So we set
ω :=

−1

r(k)
.

Proof is concluded by noticing that |ω| = | − 1/r(k)| = ∥v∥ℓ1(Z).
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2.4 Absence of eigenvalues in the essential spectrum of

the discrete bilaplacian

In previous parts of this chapter, it was found that only eigenvalues can appear due to
the perturbation of TN by a trace-class potential V . Considering the most explored case
N = 1, i.e. discrete Laplace operator T or the operator H = 2I − T , it was shown in [6],
that the eigenvalue cannot appear in the interior of essential spectrum of H (σess(H)◦) ,
i.e. in interval (−2, 2), perturbed by a trace class perturbation. A direct method of solving
the eigenvalue equation was used in the proof. It is based on a tridiagonal structure of
the matrix of discrete Laplace operator.
We would like to get a similar result for N = 2, but I was not able to generalize this
method. Thus, we will use a less general result, which allows us to exclude eigenvalues at
least outside the spectral enclosure O2(∥v∥). In fact, the spectral enclosure contains the
whole essential spectrum of T 2 for the potentials with ∥v∥ large and thus this method is
satisfactory for small potentials only. It is a discrete version of a result from [3].

Proposition 2.17. Let v ∈ ℓ1(Z) be a generating sequence of a potential V and λ ∈
(0, 16) ≡ σess(T

2)◦ such that (T 2 + V )u = λu, for 0 ̸= u ∈ ℓ2(Z). Then

∀n ∈ Z :
(
(I +K(λ+ iε)) |V |1/2u

)
n
−→ 0, ε → 0+,

where K(µ) = |V |1/2(T 2 − µ)−1V1/2, µ ∈ ρ(T 2) is the Birman�Schwinger operator.

Proof. Take n ∈ Z �xed, then

(K(λ+ iε)|V |1/2u)n =
∑
m∈Z

|vn|1/2(T 2 − λ− iε)−1
n,m︸ ︷︷ ︸

(Gn(ε))m

vmum =

= −
∑
m∈Z

(Gn(ε))m(T
2u)m + λ

∑
m∈Z

(Gn(ε))mum,

where the assumption that V u = −T 2u + λu was used. Using T 2 is self-adjoint and
Gn(ε) ∈ ℓ2(Z), we can continue as follows,

(K(λ+ iε)|V |1/2u)n = λ ⟨Gn(ε), u⟩ −
〈
Gn(ε), T

2u
〉
= −

〈
(T 2 − λ)Gn(ε), u

〉
.

Since it holds that (T 2 − λ− iε)Gn(ε) = |vn|1/2en, where en ∈ E , we have

(K(λ+ iε)|V |1/2u)n = −|vn|1/2 ⟨en, u⟩ − iε ⟨Gn(ε), u⟩ .

Hence
∀n ∈ Z :

(
(I +K(λ+ ε)|V |1/2u)

)
n
= −iε ⟨Gn(ε), u⟩ . (2.8)

Let us now analyze the absolute value of ⟨Gn(ε), u⟩ | on the right hand side. Using the
Cauchy�Schwarz inequality we obtain | ⟨Gn(ε), u⟩ | ≤ ∥Gn(ε)∥ ∥u∥. Only part dependent
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on ε is ∥Gn(ε)∥. To get it asymptotic behavior as ε → 0+, we proceed as follows

∥Gn(ε)∥2 = |vn|
∑
m∈Z

∣∣(T 2 − λ− iε)−1
n,m

∣∣2 =
= |vn|

∑
m∈Z

∣∣∣∣ k2

2(k2 − 1)2

[
k2|m−n|

k2 − k−2
− z2|m−n|

z2 − z−2

]∣∣∣∣2 ,
where (1.13) and the transform λ+ iε = ζ2(k) were used.
Now one can verify that

∥Gn(ε)∥ = O(
1√
ε
), ε → 0+. (2.9)

Indeed, we can get the asymptotic expansion of k and k−1 from the equation λ + iε =
ζ2(k) = (k − k−1)4 as follows

k(ε, λ(φ)) = e
iφ
2

(
1 +

ε

8(2 cos(φ)− 2) sin(φ)

)
+O(ε2), ε → 0+, (2.10)

where λ = (2 − 2 cos(φ))2 ∈ (0, 16), considering φ ∈ (0, π). The expansion for z = z(k)
can be obtained from (1.11) which reads z− z−1 = i(k− k−1). Consider z(ε) = z0+ z1ε+
O(ε2), ε → 0+ and k(ε, λ(φ)) = k0 + k1ε + O(ε2), ε → 0+, where k0 = eiφ/2 and k1 are
from (2.10). We put this into (1.11) and obtain

(z0 −
1

z0
) + (z1 +

z1
z20
)ε+O(ε2) = i(k0 −

1

k0
) + i(k1 +

k1
k2
0

)ε+O(ε2).

By comparing of terms with ε0 and considering k = eiφ/2 we obtain

z20 + 2z0 sin(φ/2)− 1 = 0.

Since |z| < 1 we choose z0 =
√
sin2(φ/2) + 1 − sin(φ/2), φ ∈ (0, π). One can see that

∀φ ∈ (0, π) : |z0| ≠ 1. Although we could obtain z1 by comparing terms with ε1, we do
not need explicitly have it, since it is su�cient to know z0.

Having this, we can estimate

∥Gn(ε)∥2 ≤|vn|
∣∣∣∣ k2

2(k2 − 1)2

∣∣∣∣2
(
2
∑
m∈Z

∣∣∣∣ k2|m−n|

k2 − k−2

∣∣∣∣2 + 2
∑
m∈Z

∣∣∣∣ z2|m−n|

z2 − z−2

∣∣∣∣2
)

=

|vn|
2

∣∣∣∣ k2

(k2 − 1)2

∣∣∣∣2︸ ︷︷ ︸
=:A

 1

|k2 − k−2|2
1 + |k|4

1− |k|4︸ ︷︷ ︸
=:B

+
1

|z2 − z−2|2
1 + |z|4

1− |z|4︸ ︷︷ ︸
=:C

 .

Term A = O(1) since k2 ̸= ±1. One can also easily see that (1+ |k|4)/|k2−k−2|2 = O(1),
from the same reason. Thus, the asymptotic behavior of term B is equivalent to

1

1− |k|4
=

1

1−
(
1 + ε

8(2 cos(φ)−2) sin(φ)
+O(ε2)

)4 = O(
1

ε
).

37



Situation is similar considering term C. We obtain that

C ∼ 1

1− |z|4
=

1

1− |z0|4 +O(ϵ)
= O(1),

since |z0| ≠ 1. Thus, ∥Gn(ε)∥2 = O(1/ε). The proof is concluded combining results (2.9)
and (2.8) while ε → 0+.

Theorem 2.18. Let v ∈ ℓ1(Z) be the generating sequence of a potential V and λ be in
(0, 16) ∩O2(∥v∥)C . Then λ /∈ σp(T

2 + V ).

Proof. The theorem clearly holds for V = 0, so we can assume V ̸= 0. For a contradiction,
let us assume the existence of λ ∈ (0, 16) ∩O2(∥v∥)C in the point spectrum of perturbed
operator T 2. Hence, there exists a vector u ̸= 0 ∈ ℓ2(Z) such that (T 2 + V )u = λu. Since
the spectrum of T 2 is purely continuous, we can assume V ̸= 0 and thus |V |1/2 ̸= 0. The
result of Proposition 2.17 says that for any en ∈ E :

〈
en, (I +K(λ+ iε))|V |1/2u

〉
→ 0, as

ε → 0+. Hence,

∀x ∈ ℓ2(Z) : |
〈
x,K(λ+ iε)|V |1/2u

〉
| ε→0+−→ |

〈
x, |V |1/2u

〉
|.

The vector u ̸= 0 since it is an eigenvector of T 2 + V . Recall that we assume V ̸= 0 and
thus |V |1/2u ̸= 0. Putting x = |V |1/2u ̸= 0, one has

lim
ε→0+

|
〈
|V |1/2u,K(λ+ iε)|V |1/2u

〉
| =

∥∥|V |1/2u
∥∥2 .

On the other hand, for small ε > 0, λ+ iε ∈ O2(∥v∥)C which is an open set. Thus,

∥K(λ+ iε)∥ ≤ q < 1.

Hence we have

lim
ε→0+

|
〈
|V |1/2u,K(λ+ iε)|V |1/2u

〉
| ≤ lim

ε→0+
∥K(λ+ iε)∥

∥∥|V |1/2u
∥∥2 ≤ q

∥∥|V |1/2u
∥∥2 .

Combining the two previous results we obtain∥∥|V |1/2u
∥∥2 ≤ q

∥∥|V |1/2u
∥∥2 ,

which is a contradiction since q < 1.
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Chapter 3

Criticality and Hardy's inequalities

In this chapter we would like to build upon the results introduced in [4], where the
criticality of the positive power of discrete Laplacian on ℓ2(N) was discussed and it was
shown that the operator is critical if and only if α ≥ 3/2. Using their method on Z, we
will show that Tα is critical if and only if α ≥ 1/2.
The subcriticality for α ∈ (0, 1/2) is connected with Hardy's inequalities analyzed in [1].

In this section, we consider real valued potentials only. Thus, operator-type inequali-
ties are understood as inequalities of the corresponding quadratic forms, i.e.

∀A,B bounded, self-adjoint on ℓ2(Z) : A ≥ B ⇐⇒ ∀x ∈ ℓ2(Z) : ⟨x,Ax⟩ ≥ ⟨x,Bx⟩ .

Recall one important result of the spectra analysis. It could be found in [13], chapter
XIII, section 1. We can consider bounded operators only.

Theorem 3.1. (Min-Max principle) Let A be bounded self-adjoint operator on
a Hilbert space H. We put

λn(A) := sup
x1,...,xn−1∈H

inf
{
⟨u,Au⟩ : u ∈ {x1, ..., xn−1}⊥, ∥u∥ = 1

}
.

Then ∀n ∈ Z+, either

1. there are n eigenvalues (counting degenerate eigenvalues a number of times equal
to their multiplicity) bellow the bottom of the essential spectrum, and λn(A) is the
nth eigenvalue counting multiplicity,

or

2. λn(A) = inf σess(A) and in that case λn(A) = λn+1(A) = λn+2(A) = ... and there
are at most n− 1 eigenvalues (counting multiplicity) below λn(A).

39



As usual, we consider positive power of the discrete Laplace operator Tα, α > 0. Let
us start with the key de�nition.

De�nition 3.2. Let V be a bounded diagonal operator on ℓ2(Z), Then

� operator Tα is called critical if ∀V ≥ 0 : Tα − V ≥ 0 =⇒ V = 0,

� operator Tα is called subcritical if it is not critical.

Remark 3.3. The criticality of Tα could be equivalently characterized as

∀V ≥ 0, V ̸= 0, bounded : infσ(Tα − V ) < 0.

This follows from the fact that nonnegative self-adjoint operator has nonnegative spec-
trum.

Our aim is to determine for which real α > 0 is the operator Tα critical. Answer to
this problem is given by following theorem.

Theorem 3.4. Operator Tα on ℓ2(Z) is critical ⇐⇒ α ≥ 1/2.

We divide proof of this theorem into few parts. the implication (⇐) will be shown
directly. Let us start with a proposition describing the eigenvalues of operator Tα with
a δn potential given by (2.6).

Proposition 3.5. Let α ≥ 1/2 and c > 0. Then operator Tα−cδn has an unique negative
eigenvalue for any n ∈ Z.

Proof. Take an arbitrary n ∈ Z and let λ ∈ ρ(Tα). Then, using the Birman�Schwinger
principle, one has

λ ∈ σp(T
α − cδn) ⇐⇒ −1 ∈ σp(K(λ)).

Since δn = δ2n, the Birman�Schwinger operator is of following form

K(λ) = −cδn(T
α − λ)−1δn

and it has an eigenvalue equal to −c(Tα − λ)−1
n,n. Let us denote

µ(λ) := (Tα − λ)−1
n,n

and consider it as a function µ : (−∞, 0) → R. This function has following properties:

i. limλ→0− µ(λ) = ∞,

ii. limλ→−∞ µ(λ) = 0,

iii. µ is continuous,
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iv. µ is strictly increasing.

ad i. Consider α > 0, the diagonal element of the Green kernel of Tα is given by (1.6)
taking m = n. Thus

(Tα − λ)−1
n,n =

1

2π

∫ π

−π

1

2α(1− cos(t))α − λ
dt =

1

π

∫ π

0

1

2α(1− cos(t))α − λ
dt,

using the substitution x = cos(t) we arrive at

µ(λ) =
1

π

∫ 1

−1

1

2α(1− x)α − λ

1√
1− x2

dx. (3.1)

Considering λ = 0 we formally have

1

2απ

∫ 1

−1

1

(1− x)α(1− x)1/2(1 + x)1/2
dx.

This integral is surely divergent for α ≥ 1/2 since there are singularities at x = ±1.
For given range of α, the function 1/(1−x)1/2+α is not integrable in the neighborhood
of +1. By means of the monotone convergence theorem we obtain

lim
λ→0−

1

π

∫ 1

−1

1

2α(1− x)α − λ

1√
1− x2

dx = +∞.

ad ii. The result can be obtained by taking the limit λ → −∞ in the integral (3.1) and
using the monotone convergence.

ad ii. This point follows from the fact that operator-valued function λ → (Tα − λ)−1 is
real-analytic on the ρ(Tα) = C \ [0, 4α].

ad iv. The property follows directly from the integral (3.1).

Properties i.−iv. are su�cient to state that there exists a unique λ ∈ (−∞, 0) such that
−cµ(λ) = −1, i.e. λ is an eigenvalue of Tα − cδn, by the Birman-Schwinger principle.

The proposition is slightly more general than we need. Since the existence of the
eigenvalue is su�cient for us, we do not need the uniqueness.
The implication (⇐) in Theorem 3.4 is an immediate consequence of following proposition
and Remark 3.3.

Proposition 3.6. Let α ≥ 0 and V ≥ 0, V ̸= 0, bounded diagonal operator on ℓ2(Z),
then

inf σ(Tα − V ) < 0.
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Proof. Let us denote Vn the n−th element of the diagonal of V . Since V ̸= 0 and
nonnegative, there exist such n that Vn > 0. Hence, clearly V ≥ Vnδn and using a direct
consequence of the Min-Max principle, we obtain

inf σ(Tα − V ) ≤ inf σ(Tα − Vnδn).

Together with Proposition 3.5, this inequality concludes the proof.

Now, the question is how to prove the opposite implication (⇒) in Theorem 3.4. The
subcriticality can be characterized as

∃V ≥ 0, V ̸= 0 diagonal operator on ℓ2(Z) : Tα ≥ V. (3.2)

Such a potential was introduced in [1] for α ∈ (0, 1/2). This fact proves the following
proposition, thus Theorem 3.4 is proved.

Proposition 3.7. Let α ∈ (0, 1/2), then there exist a bounded diagonal operator on
ℓ2(Z) such that

V ≥ 0, V ̸= 0 & Tα ≥ V.

Details of the proof follow in the next section.

3.1 Hardy's inequality for the positive power of discrete

Laplace operator

In this section, we would like to summarize key parts of the approach used in [1],
where the discrete Hardy's inequality for positive power of the discrete Laplace operator
was introduced. In some propositions, especially those concerning the quadratic forms,
we can consider real-valued sequences from ℓ2(Z) only. The results can be easily extended
for ℓ2(Z) sequences with values in C using properties of the inner product.

De�nition 3.8. Inequalities of type (3.2) are called discrete Hardy's inequalities.

Hardy's inequality for the positive power of discrete Laplacian is described in following
theorem. Moreover, it was shown that introduced Hardy's weight is optimal, see [11].

Theorem 3.9. Let α ∈ (0, 1/2) and let u ∈ ℓ2(Z) be a real-valued with compact support.
Then ∑

n∈Z

un(T
αu)n ≥ 4α

(
Γ(1+2α

4
)

Γ(1−2α
4

)

)2∑
n∈Z

un

Γ
(
|n|+ 1−2α

4

)
Γ
(
|n|+ 3−2α

4

)
Γ
(
|n|+ 3+2α

4

)
Γ
(
|n|+ 1+2α

4

)un. (3.3)
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To make the notation easier, let us denote

∀n ∈ Z : (wα)n :=
Γ
(
|n|+ 1−2α

4

)
Γ
(
|n|+ 3−2α

4

)
Γ
(
|n|+ 3+2α

4

)
Γ
(
|n|+ 1+2α

4

) ,
wα is a real-valued sequence. Moreover, if we de�ne an operator Wα like

∀n ∈ Z : Wαen := (wα)nen, en ∈ E ,

the inequality (3.3) becomes

⟨u, Tαu⟩ ≥ 4α
(
Γ(1+2α

4
)

Γ(1−2α
4

)

)2

⟨u,Wαu⟩ .

Key proposition of this section is the following pointwise identity. It was proved in [2],
where the authors use a semigroup approach of de�ning Tα and the result then follows
almost directly.

Proposition 3.10. Let α ∈ (0, 1), then ∀f ∈ ℓ2(Z) :

(Tαf)n =
∑

m∈Z, m̸=n

(fn − fm)Kα(n−m),

where

Kα(s) =

{
4α√
π

Γ(|s|−α)Γ(1/2+α)
Γ(|s|+1+α)|Γ(−α)| , s ∈ Z \ {0},

0, s = 0.

Proof. Recall that we know the matrix element of Tα, which was derived in (1.5). It reads

∀m,n ∈ Z : Tα
m,n = (−1)n−m Γ(2α + 1)

Γ(α + 1 + (m− n))Γ(α + 1− (m− n))
.

Thus, it is su�cient to verify that∑
m∈Z

Tα
n,mfm =

∑
m∈Z, m ̸=n

(fn − fm)Kα(n−m), (3.4)

=

( ∑
m∈Z, m̸=n

Kα(n−m)

)
︸ ︷︷ ︸

A1:=

fn −
∑

m∈Z, m̸=n

Kα(n−m)fm︸ ︷︷ ︸
B1:=

.

On the other hand, we can also obtain that the left hand side of (3.4) is equal to

Γ(2α + 1)

Γ(α + 1)Γ(α + 1)︸ ︷︷ ︸
A2:=

fn +
∑

m∈Z, m ̸=n

(−1)n−mΓ(2α + 1)

Γ(α + 1 + (m− n))Γ(α + 1− (m− n))
fm︸ ︷︷ ︸

B2:=

.

It is enough to show that A1 = A2 and B1 = −B2.
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� A1 = A2 : According to the de�nition of Kα, the symmetry Kα(m) = Kα(−m) and
by denoting s := m− n, we have

A1 =2
+∞∑
s=1

Kα(s) = 2
4αΓ(1/2 + α)√

π|Γ(−α)|

+∞∑
s=1

Γ(s− α)

Γ(s+ 1 + α)

1
=

4αΓ(1/2 + α)√
π|Γ(−α)|

−Γ(−α)

Γ(1 + α)

=
4αΓ(1/2 + α)√

πΓ(1 + α)

2
=

Γ(2α + 1)

Γ2(α + 1)
= A2,

where the forth equality was obtained using ∀α ∈ (0, 1) : |Γ(−α)| = −Γ(−α). Let
us now clarify the identity 1 . It follows from

+∞∑
s=1

Γ(s− α)

Γ(s+ 1 + α)
= −1

2

−Γ(−α)

Γ(1 + α)
.

For α ∈ R we de�ne the Pochhammer symbol

∀n ∈ Z+ : (α)n :=
Γ(α + n)

Γ(α)
.

It holds

+∞∑
s=1

Γ(s− α)

Γ(s+ 1 + α)
=

+∞∑
s=0

Γ(s+ 1− α)

Γ(s+ 2 + α)
=

Γ(1− α)

Γ(2 + α)

+∞∑
s=0

(1− α)s (1)s
(2 + α)s s!

.

The last series coincides with the Gauss hypergeometric function F (a, b, c, z), see
[15], eq. 15.2.1. One has

+∞∑
s=0

(1− α)s (1)s
(2 + α)s s!

= F ((1− α), 1, (2 + α), 1) =
Γ(2 + α)Γ(2α)

Γ(1 + 2α)Γ(1 + α)
,

which could be found in [15], eq. 15.4.20. Using this result, one arrives at

+∞∑
s=1

Γ(s− α)

Γ(s+ 1 + α)
=

Γ(1− α)

Γ(2 + α)

Γ(2 + α)Γ(2α)

Γ(1 + 2α)Γ(1 + α)
=

Γ(1− α) (1 + α)

Γ(2 + α) 2α
.

It was enough to use the notorious identity Γ(z + 1) = zΓ(z),∀z ∈ C. Hence the
desired identity directly follows.

The identity 2 is an immediate consequence of

Γ(2z) =
1√
π
22z−1Γ(z)Γ(z + 1/2), (3.5)

which holds for all z ∈ C \ Z−
0 , see [15], eq. 5.5.5.
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� B1 = −B2 : Let us denote s = m − n and since m ̸= n we consider s ̸= 0 and due
to the symmetry we can consider s > 0. To prove the identity, it is enough to show
that

∀s ∈ Z : Kα(s) = − (−1)sΓ(2α + 1)

Γ(α + 1 + s)Γ(α + 1− s)
.

Indeed, for α ∈ (0, 1) we have

Kα(s) =
4αΓ(1/2 + α)

−
√
πΓ(−α)

Γ(s− α)

Γ(α + 1− s)
.

Using (3.5) and
∀z ∈ C \ Z : Γ(z)Γ(1− z) =

π

sin(πz)
, (3.6)

see [15], eq. 5.5.3, we immediately obtain

Kα(s) = − Γ(2α + 1)

Γ(α + 1)Γ(−α)

Γ(s− α)

Γ(s+ 1− α)
=

sin(πα)

sin(π(s− α))

Γ(2α + 1)

Γ(α + 1 + s)Γ(α + 1− s)
.

One can easily verify that

sin(πα)

sin(π(s− α))
= (−1)s+1,

which gives the desired result.

Let us now make a �rst step towards proving Theorem 3.9. Following proposition is
taken from [1].

Proposition 3.11. Let α ∈ (0, 1) and f ∈ ℓ2(Z) be a real-valued with compact support,
then ∑

n∈Z

fn(T
αf)n = aα

∑
n∈Z

∑
m∈Z, m ̸=n

(fn − fm)
2 Γ(|m− n| − α)

Γ(|m− n|+ α) + 1
,

where

aα :=
4αΓ(1/2 + α)√

π|Γ(−α)|
.

Proof. Using Proposition 3.10 we immediately obtain∑
n∈Z

fn(T
αf)n =

∑
m∈Z, m ̸=n

∑
n∈Z

(fn − fm)fnKα(n−m).

Since the kernel Kα is symmetric, we have∑
n∈Z

fn(T
αf)n =

∑
m∈Z, m ̸=n

∑
n∈Z

(fm − fn)fmKα(n−m).
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We add these two equations and obtain∑
n∈Z

fn(T
αf)n =

1

2

∑
m∈Z, m̸=n

∑
n∈Z

(fm − fn)
2Kα(n−m).

Now it is su�cient just to interchange the order of summation and use the de�nition of
kernel Kα.

Negative power of the discrete Laplacian

In what follows we need to make a brief comment on the negative power of discrete
Laplacian. Let β ∈ (0, 1/2). Based on the results of Section 1.1, we put

T−β := U−1Mϕ−β
T
U ,

where ϕT is the symbol of Laurent operator T . Since the function

ϕ−β
T =

1

(2− 2 cos(t))β

is unbounded for β ∈ (0, 1/2), the operator of multiplication is unbounded and thus T−β

is unbounded too. In this thesis, it is enough to consider

Dom(T−β) =
{
u ∈ ℓ2(Z) : supp(u) is compact

}
.

One can still search for a matrix element of the operator. We have

T−β
m,n =

1

2π

∫ π

π

ei(n−m)t

(2− 2 cos(t))β
=

2

π4β

∫ 0

π/2

sin−2β(t) cos(2(m− n)t).

This integral can be solved the same way as the one for the positive power of T . Using
Proposition 1.7 we arrive at

T−β
m,n =

(−1)m−n Γ(1− 2β)

Γ(1− β +m− n)Γ(1− β + n−m)
.

The authors of [1] used the semigroup approach, where so called Riesz kernel associated
with T−β appears. For β ∈ (0, 1/2), it reads

Rβ(n) :=
1

Γ(β)

∫ +∞

0

e−2tIn(2t)t
β−1dt,

where In is the modi�ed Bessel function of order n, which is de�ned for example in the
�fth chapter of [14]. For β ∈ (0, 1/2), we can get an explicit value of Rβ(n), it holds

Rβ(n) =
4−βΓ(1/2− β)√

πΓ(β)

Γ(|n|+ β)

Γ(|n|+ 1 + β)
, (3.7)
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see [2].

The Riesz kernel is related to our matrix element of T−β. In fact, they are equal in
following sense

∀m,n ∈ Z : T−β
m,n = Rβ(m− n).

Indeed, denote s := m− n. Then it holds

1

4β
Γ(1/2− β)√

π
=

Γ(1− 2β)

Γ(1− β)
,

which is a consequence of (3.5) and from (3.6) we obtain

Γ(|s|+ β) =
π

sin(π(|s|+ β))

1

Γ(1− β − |s|)
.

Hence, due to the symmetry of T−β
m,n, it follows

∀s ∈ Z : Rβ(s) =
Γ(1/2− β)

4β
√
πΓ(β)

Γ(|s|+ β)

Γ(|s|+ 1 + β)
=

(−1)s Γ(1− 2β)

Γ(1− β + s)Γ(1− β − s)
,

which was to be shown.

What we need is the following lemma, which is an immediate consequence of the
de�nitions of Tα, T−β and its relation to Rβ(n), see [1], Lemma 2.3.

Lemma 3.12. Let β > 0, α < 1/2, β − α ∈ (0, 1/2) and let u ∈ ℓ2(Z) real-valued with
compact support We de�ne real-valued sequences f and g in ℓ2(Z) as follow

∀n ∈ Z : gn := Rβ(n) and fn := u2
n/Rβ(n).

Then

⟨Tαf, g⟩ =
∑
n∈Z

u2
n

Rβ−α(n)

Rβ(n)
.

Proof of Theorem 3.9

We �nish the proof exactly the same way as the authors of [1], including some notation.
For all u ∈ ℓ2(Z) real-valued with compact support, we denote

Hα[u] :=
∑
n∈Z

un(T
αu)n − 4α

(
Γ(1+2α

4
)

Γ(1−2α
4

)

)2∑
n∈Z

un

Γ
(
|n|+ 1−2α

4

)
Γ
(
|n|+ 3−2α

4

)
Γ
(
|n|+ 3+2α

4

)
Γ
(
|n|+ 1+2α

4

)un.

Let us denote

Cα := 4α
(
Γ(1+2α

4
)

Γ(1−2α
4

)

)2

.

and recall that aα is given in Proposition 3.11.
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Proposition 3.13. Let α ∈ (0, 1/2). Let F be a real-valued sequence with compact
support and put

∀n ∈ Z : Gn :=
Fn

R 1+2α
4

(n)
.

Then

Hα[F ] = aα
∑
n∈Z

∑
m∈Z,m ̸=n

(Gn −Gm)
2 Γ(|n−m| − α)

Γ(|n−m|+ α + 1)
R 1+2α

4
(n)R 1+2α

4
(m). (3.8)

Proof. Consider f, g ∈ ℓ2(Z) real-valued with compact support. Then Proposition 3.11
implies that∑

n∈Z

gn(T
αf)n = aα

∑
n∈Z

∑
m∈Z,m ̸=n

(fn − fm)(gn − gm)
Γ(|m− n| − α)

Γ(|m− n|+ α) + 1
. (3.9)

We consider β ∈ (0, 1/2) and put

∀n ∈ Z : fn :=
F 2
n

gn
.

The right hand side of (3.9) is equal to

aα
∑
n∈Z

∑
m∈Z,m̸=n

(
(Fm − Fn)

2 − gmgn

(
Fn

gn
− Fm

gm

)2
)

Γ(|m− n| − α)

Γ(|m− n|+ α + 1)
=

=
∑
n∈zet

Fn(T
αF )n − aα

∑
n∈Z

∑
m∈Z,m ̸=n

gmgn

(
Fn

gn
− Fm

gm

)2
Γ(|m− n| − α)

Γ(|m− n|+ α + 1)
.

Indeed, the �rst equality follows from Proposition 3.10 and it holds that the term

(fn − fm)(gn − gm) =F 2
n + F 2

m − gm
gn

F 2
n − gn

gm
F 2
m =

=(Fm − Fn)
2 − gmgn

(
Fn

gn
− Fm

gm

)2

.

Now, we put gn := Rβ(n) and β := (1 + 2α)/4. Assuming the same choice of f , the
left hand side of (3.9) reads

∑
n∈Z

gn(T
αf)n =

∑
n∈Z

F 2
n

Rβ−α(n)

Rα(n)
= Cα

∑
n∈Z

F 2
n

Γ
(
|n|+ 1−2α

4

)
Γ
(
|n|+ 3−2α

4

)
Γ
(
|n|+ 3+2α

4

)
Γ
(
|n|+ 1+2α

4

) .
The �rst equality follows from Lemma 3.12, then we have used the exact value of Rβ(n)
from (3.7).
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To conclude the proof, recall that we consider β := (1 + 2α)/4, then putting the new
forms of the left and right hand side together, we obtain

∑
n∈zet

Fn(T
αF )n − Cα

∑
n∈Z

F 2
n

Γ
(
|n|+ 1−2α

4

)
Γ
(
|n|+ 3−2α

4

)
Γ
(
|n|+ 3+2α

4

)
Γ
(
|n|+ 1+2α

4

)︸ ︷︷ ︸
Hα[F ]

=

= aα
∑
n∈Z

∑
m∈Z,m ̸=n

(Gn −Gm)
2R 1+2α

4
(m)R 1+2α

4
(n)

Γ(|m− n| − α)

Γ(|m− n|+ α + 1)
.

This concludes the proof.

Theorem 3.9 is an immediate consequence of Proposition 3.13 since the right hand side
of (3.8) is nonnegative. Indeed, aα, (Gn − Gm) and Γ(|m − n| − α)/Γ(|m − n| + α + 1)
are clearly nonnegative ∀m,n ∈ zet, m ̸= n, α ∈ (0, 1/2). The nonegativity of R 1+2α

4
(m)

and R 1+2α
4

(n) follows from (3.7).
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Conclusion

In this thesis, we focused on the spectral analysis of the general positive power of the
discrete Laplace operator on ℓ2(Z). The de�nition of the operator itself and the basic
properties were obtained using the theory of Laurent operators. Afterwards we localized
the spectrum of the polyharmonic operator with a trace class perturbation and derived
the spectral enclosures, which are sets containing the discrete spectrum of the perturbed
operator. Moreover, we formulated a conjecture on optimal enclosures, which was proved
for discrete bilaplace operator. We also showed the absence of eigenvalues in the interior
of the essential spectrum outside the spectral enclosure for the discrete bilaplacian. At
the end, we discussed the criticality of the positive power of the discrete Laplacian and
introduced Hardy's inequalities for the subcritical case.

At the very end, I would like to outline one of the possible extensions of our results. It
is the weak-coupling analysis for the discrete bilaplace operator. We consider the operator
T 2 + V , where V is a small real-valued potential and we want to analyze the existence
and uniqueness of eigenvalues of T 2 + V . In this setting, the operator T 2 + V is self-
adjoint. The analysis was done for the continuous Schrödinger operators in one and two
dimensions, see [16]. It was also done for the the discrete version of the Schrödinger
operator in [17].

In the papers, the Birman�Schwinger operator is used and the main idea is to decom-
pose the operator onto, in a certain sense, a singular and regular part. We associate the
potential V with a sequence v, which is on the diagonal of it's matrix. We put λ = ζ2(k),
de�ned in (1.7), the matrix element of the Birman�Schwinger operator is of the form

∀m,n ∈ Z : K(λ(k))m,n =
√

|vm|
k2

2(k2 − 1)2

[
k2|m−n|

k2 − k−2
− z2|m−n|

z2 − z−2

]√
|vn|sgn(vn).

We want to analyze the behavior of the operator as λ → 0− and λ → 16+, i.e. λ is
near the boundary points of the essential spectrum. Now consider the right neighborhood
of 16 only. We can see from the de�nition of the transform ζN for N = 2 that λ →
16+ ⇐⇒ k → i. Since k ∈ Dζ

2, it tends to i from below along the imaginary axis. We
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put K(λ) = M(λ) + L(λ), where, ∀m,n ∈ Z:

Lm,n(λ(k)) :=
√
|vm|

k2

2(k2 − 1)2

[
(−1)|m−n|

k2 − k−2
− (−1)|m−n|

z2 − z−2

]√
|vn|sgn(vn),

Mm,n(λ(k)) :=√
|vm|

k2

2(k2 − 1)2

[
k2|m−n| − (−1)|m−n|

k2 − k−2
− z2|m−n| − (−1)|m−n|

z2 − z−2

]√
|vn|sgn(vn).

This decomposition was made in such a way that the operator L(λ) is rank one and the
operator M(λ) converges to the operator M(16) in the operator norm as λ → 16+. The
situation is slightly di�erent in the left neighborhood of 0. If λ → 0− then k → 1 along
the curve c, which is given by

c :=

{
1

2

(
aei

3
4
π +

√
4− ia2

)
: a ∈ (0,+∞)

}
⊂ Dζ

2.

The de�nition of the operators M(λ) and L(λ) would be di�erent in this case.

In the future, I would like to extend the result of this thesis in many ways, including the
weak-coupling analysis. The mentioned ideas are merely an introduction of the approach
used in cited articles. The successful completion of at least proving of the existence of
eigenvalues requires a signi�cant amount of further work.
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