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Název práce:
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Abstrakt: Experimenty v oblasti kognitivních věd ukázali, že lidské rozhodování se ukazuje být
v rozporu s klasickou teorií rozhodování. Tento rozpor vyvolává řadu paradoxů a nekonzistencí.
Bylo ukázáno, že kvantový přístup k rozhodování řeší tento problém, ovšem důvody, proč tomu
tak je, zůstávaly neznámy.

Tato práce představuje nový koncept teorie který i) zavádí obecnější formalizaci rozhodovací
úlohy ii) krok po kroku ukazuje, že za rozumně odůvodnitelných předpokladů je nalezeno řešení
bez potřeby předem zavést pravděpodobnost iii) dokazuje kvantovou povahu neurčitosti a tvrdí,
že kvantové modelování je pro rozhodování nezbytné.

Klíčová slova: rozhodování, kvantový model neurčitostí, kvantová pravděpodobnost, plně prav-
děpodobnostní návrh rozhodovacích strategií, teorie paralelních světů, kvantová teorie rozhodo-
vání

Title:
Quantum Model of Uncertainty for Dynamic Decision Making

Author: Bc. Aleksej Gaj

Abstract: Classical decision theory is in a strong conflict with the observed experimental data
coming from cognitive and descriptive decision making research. This conflict yields different
paradoxes and inconsistencies. It was shown that quantum-like approach to decision making
solves these problems, but the reasons why it does so far stayed unknown.

This thesis presents new framework that i) introduces more general formalisation of decision
making task ii) step-by-step shows, that under realistic assumptions a solution is found without
prior definition of probability iii) shows quantum nature of uncertainty and claims that quantum
models are inevitable for decision making.

Key words: decision making, quantum model of uncertainties, quantum probability, fully prob-
abilistic design of decision strategies, multi-world interpretation, quantum decision theory
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Introduction

Disclaimer. The title of this thesis is partially misleading: got inspired by the mathematical
apparatus used in quantum mechanics, so we build similar construction for formalization of DM
task. The truth is that this work neither directly relates to quantum mechanics nor tries to
rebuild/extend it. On the other hand we have physical interpretation of mathematical objects
we are dealing with.

Everyone makes decisions on a daily basis. It is the inseparable part of our everyday life.
We make decisions based on own (or others) experience, sometimes we rely on logical consid-
erations or use our intuition (whatever it is). Either one-shot decisions (like choosing a meal
in a restaurant, a car insurance or a diploma topic) or dynamic decisions (like driving a car or
managing a company) are made under uncertainty. Since the main engine of science has always
been curiosity and laziness, people want not only to describe the phenomenon of cognition and
decision but also to learn how to influence it. This is where decision theory (DT) comes into
play.

In classical decision making theory (CDT) [26], [28], rational agents are modelled as “pro-
cessors” of probabilistic information that updates models in Bayesian way. However general
plausibility of the CDT is in strong conflict with significant experimental data: humans make
their decisions by violating classical probability laws, for instance the Savage’s sure thing prin-
ciple [28], see also Appendix A. A. Tversky and D. Kahneman demonstrated cases when human
behaviour persistently diverges from that predicted by classical probability [18], Ellsberg and
Allais formulated paradoxes [1], [13]. One of the reasons is claimed apparent irrationality of
humans [7], [39]. Another significant reason that humans are highly sensitive to context, and
can be easily disturbed by other observations [18], [7]. Besides people (and their societies) form
extremely complex systems having a large number of practically unobservable states. Even if
we could measure/observe some states, these measurements would be very noisy and highly
uncertain.

Judgments (and even weakly related questions) of other humans also may significantly influ-
ence judgment of the human in question. For instance a witness of a crime may be significantly
influenced by the order in which the pictures are presented to him [35]. So called order effects
introduce uncertainty into human judgments.

To address the mentioned inconsistency the quantum modelling has been applied [2]. De-
spite different motivation and different initial points, all of the approaches have confirmed that
quantum modelling well describes human decision making and allows to overcome some para-
doxes and inconsistencies. However neither of approaches has mathematical justification why
quantum models provide better results. Although some of them provide intuitive explanation
of different effects.

13



Representants of contemporary approaches to DM involving quantum way of modelling are:
Yukalov, Sornette [39], Khrennikov [4], [5], Busemeyer [7], Pothos [25], Caves [8] and Sozzo [30].

Aim of this thesis is to provide a mathematical justification of quantum modelling in for-
malisation of decision making tasks involving humans. We would like to begin with a general
formulation of decision making task (using closed loop formulation) and via sequence of well-
grounded mathematical steps to come to quantum formalisation. Inevitably we will make some
assumptions along the way, so we also provide an intuitive explanation that those assumptions
are realistic and reasonable for the task we want to solve.

Several approaches can be considered when constructing a mathematically formulated de-
cision theory. Before we get any further we stress that in scope of this work we deal with a
prescriptive theory, not descriptive. It means aim of the theory is not (only) to describe some
phenomenon (modelling environment/system), but also provide a recommendation on how to
choose decisions optimal from the perspective of a given aim.

There exists a great amount of tasks involving decision making (DM) under uncertainty
(outer ellipse in Figure 1). Subset of those tasks are tasks which involve human (human can be
involved either as the user/agent, for whom the decision should be made or part of system with
respect of which the decision should be made. Figure 1 describes the considered main groups
of DM tasks. We are searching for prescriptive theory denoted by blue oval, which as much as
possible respects the descriptive theory, which analyses how decisions are made when human is
involved.

Figure 1: Sets of tasks: outer ellipse represents a set of all DM tasks. Inner ellipse represents
such DM tasks where human is involved. Aim of this thesis is propose prescriptive theory which
will cover most of inner black ellipse without overlap to the outer ellipse.

Outline. Chapter 1 briefly reminds some mathematical objects and theorems used in this
thesis. Also general formulation od decision making ask is placed here. Following Chapter 2
reminds (using introduced notation) CPT approach: Markov decision process (MDP) and fully
probabilistic design (FPD). Chapter 3 contains a new way to model uncertainties always present
in the closed loop model. It is reached by making a sequence of mathematical steps and as-
sumptions. As the main result we get a measure on a space of uncertainties.
At the end of the thesis there are 3 appendix chapters presenting topics related to the core of
this work. Note that each of them uses its own notion.
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Notations

Shortcut Meaning
DM decision making
pdf probability density function
MDP Markov decision process
FPD Fully probabilistic design
KLD Kullback–Leibler divergence
QM Quantum mechanics
CPT Classical probability theory (the Kolmogorov’s one)
QPT Quantum probability theory
CDT Classical decision theory (aka classical DM theory)
QDT Quantum decision theory
w.r.t. with respect to
OG orthogonal
ON orthonormal

Table 1: Abbreviations used.

Symbol Meaning
R set of real numbers
R+ set of real positive numbers
N set of natural numbers
X, A, S, Ω, ... sets
A σ-algebra
[a, b] closed interval from a ∈ R to b ∈ R, a ≤ b

E mean value (in CPT)
D(f∥g) Kullback–Leibler divergence between two probability functions f a g
A matrix
Â operator
H Hilbert space
H♯ dual space to Hilbert space
⟨ϕ|ψ⟩ bra-ket (according to Dirac notation[11]) of ϕ ∈ H♯, ψ ∈ H
⟨a| bra, covariant vector
|a⟩ ket, contravariant vector

Table 2: Notations used.

Note. Definitions of the notions are emphasised by green italic.
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Chapter 1

Preliminaries

Every new beginning comes from some other beginning’s end.

– Seneca

This chapter briefly reminds definitions and theorems used in the thesis, using notation
introduced in Table 2.

1.1 Hilbert spaces

In this work Hilbert spaces will be one of main mathematical objects to work with. This
section briefly reminds what is Hilbert space and how operations on its elements look like.

Definition 1 (Hilbert space). Let’s have a vector space V over real (R) or complex (C) field.
If V is a complete metric space equipped with scalar product ⟨·|·⟩ : V ×V → C, then it is called
Hilbert space and noted H.

Remark 1 (Some properties of Hilbert space). Let H be a Hilbert space. Then:

1. In H linearity holds: (∀ |ϕ, ψ⟩ ∈ H) (∀a ∈ R) : a |ϕ⟩ = |aϕ⟩ ∈ H and a |ϕ⟩ + |ψ⟩ ∈ H

2. Every Cauchy sequence (ψn) ⊂ H is convergent in H.

3. Every tuple of elements of Hilbert space (ψj)j∈N, which satisfies:

(∀ |ϕ⟩ ∈ H) (∃ {aj in the field}j∈N) : |ϕ⟩ =
∑
j∈N

aj |ψj⟩ .

is called a basis of the space. If ∀i, j ∈ N, i , j : ⟨ψi|ψj⟩ = 0 then the basis is orthogonal
(OG).

Remark 2 (Norm in Hilbert space). Let H be a Hilbert space. Then we define a norm on H
∥·∥ : H → R as

∥ψ∥ :=
√

⟨ψ|ψ⟩ ∀ψ ∈ H. (1.1)

The orthogonal vectors (basis) of unit norm are called orthonormal (ON). More details can
be found in [22] or [32].
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Definition 2 (Subspace of Hilbert space). Let’s have a Hilbert space H over real or complex
field. Space H1 is a subspace of Hilbert space H if and only if:

1. H1 is a subset of H: H1 ⊂ H

2. H1 is closed under the operation of forming linear combinations:

(∀a1, a2 ∈ R) (∀ψ1, ψ2 ∈ H1) : a1 |ψ1⟩ + a2 |ψ2⟩ ∈ H1. (1.2)

Notation: H1 ⊂⊂ H.

Remark 3.

• If H1 ⊂⊂ H, subspace H1 is equipped with the same scalar product as H.

• Every subspace of Hilbert space is also a Hilbert space, [22].

Whenever we describe the evolution of some object, we use a notion of a state.

Definition 3 (State). A state of an object is a collection of mathematical quantities such that if
we have a prescription for the object’s evolution and the current state, we can always determine
the next state.

The state of an object can be represented via different mathematical quantities. For in-
stance, it can be represented by an integer number (state of simple random walk in 1D), or
tuples of values (pressure, volume and temperature of gas), sequences, vectors in vector space
(say coordinates of a pendulum) or other mathematical objects. Another example is Markov
chain: the current state is the only information (alongside the evolutional equation) we need to
determine the next state.

Definition 4 (Tensor product of Hilbert spaces). Let H1, H2 be Hilbert spaces with scalar
products ⟨•|•⟩1 and ⟨•|•⟩2 respectively. Then the tensor product of two Hilbert spaces is defined
as H3 := H1 ⊗ H2, [23], with a linear envelope of the elements:

(∀ |α3⟩ ∈ H3) (∃ |α1⟩ ∈ H1, |α2⟩ ∈ H2) α3 = α1 ⊗ α2 ≡ |α1 α2⟩ (1.3)

and scalar product ⟨•|•⟩3:

∀α3, β3 ∈ H3 ⟨α3|β3⟩3 = ⟨α1|β1⟩1 + ⟨α2|β2⟩2 . (1.4)

Definition 5 (Linear operator on Hilbert space). Linear operator is mapping that acts on
elements of a space and produces elements of the same space. Symbolically - by operator Â on
Hilbert space H we mean : Â : H → H.

Remark 4. Onwards by operator we always mean linear operator.

Definition 6 (Projector). Every (linear) operator P̂ which satisfies P̂P̂ = P̂ is called a projector.

Remark 5 (Bra–ket formalism). P.A.M. Dirac introduced a notational formalism that allows
equivalent representation of the state:

• state is represented by an element of Hilbert space: |ψ⟩ ∈ H, or

• state is represented by a projector: P̂ψ = |ψ⟩ ⟨ψ|.
18



Details on the formalism can be found in [22].
Let (uj)j∈N be a basis in H. Then projection of |ψ⟩ ∈ H to the j-th dimension can be found

as |ψj⟩ = |uj⟩ ⟨uj |ψ⟩, where the projector is: P̂j = |uj⟩ ⟨uj |. The first factor is a vector from the
basis (normalized to 1), which determines the direction of projection and the second factor is a
scalar product, which determines the coefficient. Indeed,

|ψj⟩ ≡ P̂j |ψ⟩ = |uj⟩ ⟨uj |︸       ︷︷       ︸
P̂j

|ψ⟩ = |uj⟩︸︷︷︸
direction

⟨uj |ψ⟩︸    ︷︷    ︸
coef.

(1.5)

Similarly the projection into two-dimensional subspace spanned on (not necessarily orthog-
onal) unit vectors ui and uj reads: |ψij⟩ ≡ P̂iP̂j |ψ⟩ = |ui⟩ ⟨ui|uj⟩ ⟨uj |ψ⟩.
Remark 6 (Relation between a projector and a subspace). Every vector of Hilbert space can be
represented as a sum of two vectors: a vector that is an element of a subspace of Hilbert space
and other OG vector:

(∀ψ ∈ H) (∀H1 ⊂⊂ H)
(
∃ϕ1 ∈ H1, ∃ϕ2 ∈ H \ H1, ⟨ϕ2|ϕ1⟩ != 0

)
: |ψ⟩ = |ϕ1⟩ + |ϕ2⟩ . (1.6)

The mapping which assigns |ψ⟩ → |ϕ1⟩ is the projector on subspace H1. It can be shown in a
following way:

Statement above implies that we expect a projector in a following form:

P̂ |ψ⟩ = a |ϕ1⟩ , (1.7)

where a ∈ R.
P̂ |ψ⟩ (1.6)= P̂ (|ϕ1⟩ + |ϕ2⟩) != a |ϕ1⟩ . (1.8)

That means we search for operator P̂ : H → H1 that has these properties:

P̂ |ϕ1⟩ = a |ϕ1⟩
P̂ |ϕ2⟩ = 0

(1.9)

Choice P̂ := |ϕ1⟩ ⟨ϕ1| fulfils it:

|ϕ1⟩ ⟨ϕ1|ϕ1⟩ = |ϕ1⟩ a
|ϕ1⟩ ⟨ϕ1|ϕ2⟩ = 0.

(1.10)

Theorem 1 (Operators in bra–ket formalism). Let H be a Hilbert space with a countable
orthonormal basis {uj}j∈N. Then:

• identity operator can be written as ∑
j

|uj⟩ ⟨uj | = 1̂ (1.11)

Note the symbol on the right side: operator 1̂ vs. number 1.

• every operator Â on H can be written as

Â =
∑
j

aij |ui⟩ ⟨uj | , (1.12)

where aij = ⟨ui| Â |uj⟩ ∈ R.
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Proof. Straightforward:

• For every ψ, ϕ ∈ H holds: ⟨ψ|ϕ⟩ = ∑
j ⟨ψ|uj⟩ ⟨uj |ϕ⟩ = ⟨ψ|

∑
j |uj⟩ ⟨uj |ϕ⟩ = ⟨ψ| 1̂ |ϕ⟩

• Â = 1̂Â1̂ = ∑
i

∑
j |ui⟩ ⟨ui| Â |uj⟩ ⟨uj | = ∑

i

∑
j |ui⟩ aij ⟨uj | = ∑

i

∑
j aij |ui⟩ ⟨uj |

□

Note that with the use of Eq. (1.11) we can write |ψ⟩ = ∑
j |uj⟩ ⟨uj |ψ⟩ which is basically

representation of a vector ψ in a basis {uj}j∈N in terms of linear algebra.

Definition 7 (Unitary matrix). Matrix A is called unitary if it satisfies:

• A is square matrix

• A is complex matrix (it has complex elements)

• A is invertible: ∃A−1

• its conjugation transpose1is also its inverse: A∗ = A−1.

Remark 7. Some sources distinguish between unitary matrices (their elements are complex num-
bers) and orthogonal matrices (their elements are real numbers). Since applying complex con-
jugation on a real number does not change it, we will keep term unitary matrix as more general
one.
Remark 8. Linear operator on a vector space with countable basis (which will be the case in
this thesis) can be represented by a matrix.

Theorem 2 (Selected properties of unitary matrices). Let matrix A be a unitary matrix. Then
the following statements hold:

• for any two (complex) vectors ψ1, ψ2 ∈ H multiplication by A on H preserves their inner
product, ⟨Aψ1|Aψ2⟩ = ⟨ψ1|ψ2⟩.

• A is normal, A∗A = AA∗.

• A∗A = AA∗ = I, where I is identity matrix.

• Eigenspaces2of A are orthogonal.

• Columns of A form an orthonormal basis (w.r.t. inner product), also A∗A = I.

• Rows of A form an orthonormal basis (w.r.t. inner product), also AA∗ = I.

Proof. Can be found in [16]. □

1Conjugation transpose (also Hermitian transpose) is defined by transposing the matrix and applying complex
conjugation to each its element.

2The set of all eigenvectors of A corresponding to the same eigenvalue, together with the zero vector, is called
an eigenspace.
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Theorem 3 (Singular value decomposition). Any matrix A of size m× n with real or complex
values can be decomposed:

A = V · D · U∗, (1.13)

where:

• V is a unitary matrix of size m×m,

• D is a matrix of size m× n with non-negative values. Elements on the main diagonal are
so called singular values of A, and the remaining elements are zeros,

• U is a unitary matrix of size n× n.

Proof. Can be found in [17]. □

Definition 8 (Positive semidefinite operator). Let Â : H → H be an operator on Hilbert space
H . Â is positive semidefinite (PSD) ⇔ ∀ψ ∈ H : ⟨ψ| Â |ψ⟩ ≥ 0.

Remark 9. Note that using Theorem 1 every PSD operator Â : H → H can be written as:

Â =
∑
j∈j

wj |αj⟩ ⟨αj | , (1.14)

where wj ∈ R are eigenvalues of Â and |αj⟩ ∈ H are eigenvectors of Â. Due to PSD wj ≥ 0 and
set of all eigenvectors {αj}j∈j defines a basis in H.

1.2 Quantification of ordering
Let us have a set of objects with a complete transitive ordering defined on it: (B,≺B) (B -

set of elements b1, b2, ...). Quantification3 of the ordering operation ≺B is required. It is done
by finding a real valued mapping q : B → R (where R is the set of real numbers), such that
b1 ≺B b2 ⇔ q(b1) < q(b2) and b1 ≈B b2 ⇔ q(b1) = q(b2).

Definition 9 (Density of a set w.r.t. an ordering on it). Let (B,≺B) be a set with a complete
transitive ordering. A set G, G ⊂ B, is ≺B-dense if and only if following holds:

(∀b1, b2 ∈ B) (∃ b3 ∈ G ⊂ B) : b1 ≺B b3 ≺B b2. (1.15)

Theorem 4 (On quantification of ordering). A continuous loss function, q : B → R that
quantifies ordering ⪯B on B, exists if and only if there exists set G such that:

1. G is countable,

2. G is ≺B-dense.

Proof. Proof can be found in [9]. □

An intuitive interpretation of Theorem 4 states that the quantification of ordering is possible
if and only if operation ≺B on B is not richer than operation < on real numbers.

3In this context - assigning a real number to every element of B according to the ordering.
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1.3 Probability measure on subspaces
Classical probability theory formulated by Andrei Kolmogorov uses σ-algebra as the basic

term. Such a σ-algebra is defined via operations of intersection and union on a sample space. A
random event is represented as an element of σ-algebra: a set. Therefore probability measure
on such random events is a measure defined on sets.

Quantum probability takes unit vectors in Hilbert space as elementary events. It creates
events via meet (intersection) and join (linear envelope of union). Thus probability is to be
defined on such events. It has a general form given by Gleason’s theorem, see below. Table 1.1
compares the models of randomness using the description of subspaces via projectors.

CPT (Kolmogorov) QPT (Gleason)

sample space Ω sample space H
set of events: σ-algebra4A built on Ω set of subspaces of H
operation intersection

⋂ on A operation meet ∧ on H , which is defined
as intersection of subspaces

operation union
⋃ on A operation join ∨ on H , which is defined

as linear span of union of subspaces
de Morgan properties hold de Morgan properties do not hold
commutativity holds:

A ∩B = B ∩A

Order does not matter.

commutativity: for A,B ⊂⊂ H commu-
tativity does not hold in general:

P̂AP̂B , P̂BP̂A

That means in assigning probability order
matters.

Table 1.1: Comparison between CPT and QPT.

A new probability measure is needed since quantum probability theory assigns random events
to vectors in Hilbert space. The following theorem (modified version of that in [24]) can be used
for it:

Theorem 5 (Gleason’s). Let:

• H be a Hilbert’s space such that:

– H is separable (within the scope of this thesis is ensured thanks to Theorem 4)
– H has dimension dim (H) ≥ 3.

• P̂̂P̂P(H) is a set of all projectors on H and for every projector P̂ (representing an event) there
exists probability µ(P̂) of the event such that:

4σ-algebra A is defined as a subset of power set of Ω that has following properties:
• A is closed under complementation: (∀A ∈ A) : Ω \ A ∈ A,
• A is closed under countable unions: (∀j, Aj ∈ A) :

⋃
j

Aj ∈ A.
Properties mentioned above imply that σ-algebra is also closed under countable intersections, and also that ∅ ∈ A,
Ω ∈ A.
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– 0 ≤ µ(P̂) ≤ 1
– µ(1̂) = 1 (where for operator 1̂ following holds: ∑

j |uj⟩ ⟨uj | = 1̂).

Then there exists an operator T̂µ : H → H such that the probability can be written as a
quadratic form:

(∀ψ ∈ H) : µ (|ψ⟩ ⟨ψ|) = ⟨ψ| T̂µ |ψ⟩ . (1.16)

Operator T̂µ is called density operator and has the following properties:

1. It is positive semidefinite (PSD), T̂µ ⊵ 0

2. Its trace is equal to 1, tr
(
T̂µ

)
= 1.

Proof. Proof can be found in [12]. □

In other words, Theorem 5 states that under some assumptions a probability measure of
an element of Hilbert space (for example the state vector) can be represented as a quadratic
form. We can find operator T̂µ, which in the discrete case is represented by a matrix. Then the
right side of (1.16) is a vector multiplied by a matrix and by the same vector, which is a matrix
representation of a quadratic form.

1.4 Decision making under uncertainty: examples

Let us consider DM task from the decision-maker’s point of view. A decision-maker has some
aim concerning the part of the world he5 is interacting with. His aim can be influencing the
world i.e. obtaining the desired behaviour via the interaction. But not always the decision-maker
influences the part of the word directly. Let us consider two examples:

1. (DM task: choosing clothes). Imagine a man who has to choose clothes before going
outside. His aim is not to get wet or cold during the day (given the unknown weather
forecast). The man observes current weather, say, when he looks out of the window. But
he is not able to predict weather conditions several hours ahead. The man decides to
choose a coat and umbrella, because it’s raining and pretty cold. But his decision does
not influence the weather. i.e. the weather will not change, no matter he chooses a coat
or swimsuit. His action will affect only his level of comfort (payoff).

2. (DM task: Air condition problem). Imagine a man in the room equipped with an air
conditioner (AC). The man prefers to have temperature in the room at the desired level,
say 20C. His decision is to set 20C on AC device. By doing that, he directly influences
the room temperature (a part of the world).

Remark 10. DM task, its solution and obtained results heavily depend on the formulation of
the decision task and involved objects.

To unify formalisation of the different representative examples above, let us model them via
closed loop, see Figure 1.1, consisting of agent and system. By system we call a part of the world

5In this text, we refer to the agent as he/him, although based on the agent’s nature, pronouns she/her and
it/its can be applied too.
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the decision-maker is interested in. By agent we called decision-maker, which interacts with the
system intending to influence it, learn it6 or both.

Figure 1.1: Closed-loop formulation of DM task: agent chooses actions to influence the system
(or his knowledge about the system) according to his DM preferences. Also agent receives
information from the system via observations and updates his knowledge.

Clearly, any agent’s activity influences the whole closed loop. The agent has some knowl-
edge (either common, individual or expert-based) and DM preferences that express his wishes
concerning the closed loop behaviour.

The agent’s preferences about system (for example what states or observations he wants the
system to be in; or what sequence of states he wants the system to visit) can be expressed via
different mathematical objects. One of the possible options is to use reward (or loss) function:
such function will take state and action chosen by agent and return a reward (payoff in Savage’s
terminology, see Appendix).

To summarize:

• Agent chooses actions at ∈ a using his knowledge at time t from a given set of actions a
regarding his preferences. At time t agent is has inner state ζt ∈ ζζζ.7 Agent also makes
observations st ∈ s on the system.

• System is a part of the world related to the agent DM preferences. At time t the system
inner (not necessarily observable) state is ξt ∈ ξξξ.

Until now we have not distinguished between static and dynamic DM tasks. Static DM task
means that there is no time evolution in it. The agent takes only one (possibly multivariate)
action (selects either coat of jacket, see DM task: choosing clothes above). One-shot parameter
estimation or choosing of the most suitable insurance plan can be an example of such a scenario.

Dynamic DM task means, that the decision making evolves in time: in each time (discrete
or continuous) agent makes observations on the system, and chooses optimal action for the

6i.e. improve the agent’s knowledge about the system.
7It may reflect the agent’s knowledge about the system.
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current time. This optimal action influences the closed-loop. In the next time epoch the agent
again makes observation and updates optimal action. Section 2.2 discusses this concept in more
details.
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Chapter 2

Probabilistic approach to DM under
uncertainty

Reality resists imitation through a model.

– E. Schrödinger, The Present Simulation in Quantum Mechanics

Since our aim is to describe principles of (human) decision making, we need to formalize them.
For a long period of time the classical probability theory (CPT) (pretty successfully) served to
it. Recent studies thought suggest an existence of much suitable apparatus for describing human
DM behaviour. In this chapter we will briefly summarize, so far classical, probabilistic approach
to solution of DM task. It has origin in the classical Savage’s formalisation (for details, see
Appendix A).

2.1 Decision making as closed loop

The DM formalisation operates on behaviour b ∈ b, which is a collection of all variables in
closed loop in all of the considered time instances.

Assumption 1 (Ordering on behaviours). User’s preferences can be expressed/formalised via
an ordering ⪯b on set of behaviours b. It also implies equivalence ≈b and strong ordering ≺b.
The ordering should satisfy the following assumptions:

1. there exist at least two distinguishable behaviours1: ∃b1, b2 ∈ b : b1 ≺b b2,

2. ⪯b is a complete ordering2,

3. transitivity: for every b1, b2, b3 ∈ b: if b1 ≺b b2 and b2 ≺b b3, then b1 ≺b b3.

The completeness can be always reached within the considered setup. The transitivity as-
sumption is needed to avoid money pump3.

1In the rest of this section subscripts distinguish elements of the set b.
2i.e. any pair of behaviours is comparable.
3In economic theory, the money pump argument is a thought experiment showing that rational behavior

requires transitive preferences.
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Definition 10 (Loss function). Loss function is a mapping z : b → R that (R is the set of real
numbers):

1. is monotone on b: b1 ⪯b b2 ⇔ z (b1) ≤ z (b2),

2. preserves equivalence on b: b1 ≈b b2 ⇔ z (b1) = z (b2).

Note that ordering ⪯b cannot be richer than ≤ on a real line – so only countable things
are distinguished. This allows us to further deal with at most countable sets. Throughout, we
assume that (preferential) ordering ⪯b can be quantified by loss function z(•).

Definition 11 (Decision rule, strategy). Decision rule is a mapping which assigns action a to
available knowledge k:

S : k → a.

Time sequence of decision rules is called strategy. In the static DM task a decision rule coincides
with the strategy.

2.2 Probabilistic formalization of DM task: MDP and FPD.

We consider DM task in closed loop formulation, see Figure 1.1). The agent’s aim4 related
to the system is any of the following: i) to influence the system; ii) to learn it, or both. The
solved DM task is to chose action (or sequence of actions) that influence the system itself or
improve agent’s knowledge about the system.

Formally at time t ∈ T, T := {0, 1, . . . T − 1} the system generates state st ∈ S observed
by the agent5. The agent (based on sequence of observed states, his aim and prior knowledge)
generates action at ∈ A, which influences the system state at the next time st+1 ∈ S. To
dynamically select appropriate action, the agent needs to have optimal decision rule (aka decision
function) which maps knowledge to actions. Time sequence of decision rules forms DM strategy.

To describe the “agent-system” interaction, a notion of closed-loop behaviour is used.

Definition 12 (Closed-loop behaviour). The closed–loop behaviour at time t is a sequence of
pairs at, st:

bt :=

aT , sT , . . . , st+1︸                   ︷︷                   ︸
gt+1

, at, st, . . . , a1, s1︸               ︷︷               ︸
kt

 = (gt+1, at, kt) (2.1)

where at and and st are action and system state at time t ∈ T, respectively. Note that b is a
sequence, so generally it can be interpreted as a vector.

In (2.1):

• kt ∈ k represents a knowledge possessed by the agent. For example: data (sequence of
previous observations and actions), structural knowledge, any kind of prior knowledge,
etc. Initial action a0 and state s0 are supposed to be known and implicitly included in
knowledge k0. k – set of knowledges6

4Often represented by agent DM preferences.
5This is a simplification as system states are quite often observed indirectly and partially
6These unusual plural forms (knowledges, behaviours, ignorances, ...) are necessary in a context of this thesis

to distinguish between a (sub)set and its element.
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• gt ∈ g is so–called ignorance containing anything that the agent considers but cannot use
for the choice of action (may contain: future observations, unobserved parts of state, ...),
g – set of ignorances

Definition 13 (Behaviour of the closed loop). Tuple

bt := (gt, at, kt) (2.2)

represents behaviour of the closed loop and b is a set of all possible behaviours of the closed loop.

Interpretation of bt in (2.2) is: at is an action chosen by the agent based on knowledge kt
under ignorance gt. In a static DM task (when single a ∈ a is chosen), time subscript is dropped.
Generally, with k0, a0, s0 in the, often implicit, condition:

bt = (gt, at, kt) = (st, at−1, st−1, . . . , aτ , sτ , . . . , a1, s1) (2.3)

is a complete description of the closed loop in time t: all states observed and actions chosen
before current time t belong to knowledge kt, while all future observations and actions are part
of ignorance gt. With every new time step ignorance is reduced (next action was chosen and
observed state received) and knowledge kt is larger (or at least not smaller).

Let us model closed-loop behaviour, Definition 12, probabilistically and factorise the model
p(bT ) using the chain rule

p(bT ) = p (sT , aT−1, sT−1, . . . , a1, s1)

=
∏
t∈T

p

st+1, at| at−1, . . . , a0, st, . . . , s0︸                           ︷︷                           ︸
kt, see (2.1)


=

∏
t∈T

p (st+1|at, kt) p (at|kt)

(2.4)

Definition 14 (DM rule and DM strategy). DM rule is conditional pdf that represents proba-
bility of choosing action at when state st is observed:

p (at|st, st−1, . . . , s0, at−1, . . . , a0) .

DM strategy (or simply strategy) is a time sequence of DM rules:

S = ST = (p (at|st, st−1, . . . , s0, at−1, . . . , a0))t∈T = (p (at|kt))t∈T .

Strategy is also called policy.

We already have got an interpretation for two objects on the right-hand side of (2.4):

p(bT ) =
∏
t∈T

p (st+1|at, kt)︸              ︷︷              ︸
model of the system

p (at|kt)︸      ︷︷      ︸
DM rule

. (2.5)

Solving DM task means to design an algorithm for selecting a DM strategy that is optimal
regarding the agent’s aim. There exist many different formulations of this problem and Markov
decision process (MDP), [26], is one of them. MDP uses so–called Markov assumption that
replaces conditions in (2.5) only by the latest values, which significantly simplifies the model.
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Under some assumptions the MDP solution is an optimal strategy that maximises expected
reward (cf. with payoff in Appendix A):

Sopt = arg max
S∈S

ES
[∑
t∈T

R (st+1, at, st)
]
, (2.6)

where ES is a strategy-dependent expectation and R : S × A × S → R is a reward function
assigning every triple (st+1, at, st) a real value, and S is a set of all possible strategies. If a loss
function l : S×A×S → R, l = −R is used instead of reward function, then in (2.6) minimisation
replaces maximisation. Note that Chapter 3 will use loss function for quantification.

Another formulation of DM problem generalising MDP is so-called Fully Probabilistic Design,
[20], solution of which is given by Theorem 6, see below.

Definition 15 (Fully probabilistic design (FPD)). Let’s have a Markov model of the system
p (st+1|at, st) and probability function Ip(bT ) that describes preferable (from agent’s perspective)
behaviour of the closed loop7. A strategy which ensures minimal divergence between probability
describing behaviours of closed loop bT and its ideal counterpart is called FPD-optimal strategy.
In other words:

Sopt ∈ arg min
S∈S

D
(
pS(bT )∥Ip(bT )

)
, (2.7)

where D(·∥·) is Kullback–Leibler divergence, for more see [10].

Remark 11. Axiomatic justification of this definition is provided in [21].

Theorem 6 (Solution of FPD). Let A, S to be discrete sets and at ∈ A, st ∈ S for ∀t ∈ T. Let’s
have model of system p (st+1|at, st) and ideal pdf of closed loop behaviour factorized similarly
as Eq. (2.5).

Then optimal DM rule for time t ∈ T is to be found in a way:

popt(at|st) = Ip (at|st)
exp (−d(at, st))

h(st)
, (2.8)

where
d(at, st) =

∑
st+1∈S

p (st+1|at, st) ln p (st+1|at, st)
Ip (st+1|at, st)h(st+1) , (2.9)

h(st) =
∑
at∈A

Ip (at|st) exp (−d(at, st)) (2.10)

We are searching for optimal decision rule for every time epoch t ∈ T. We are going though
time backwards, using so called backward induction. The computation starts at t = T with:

h(sT ) = 1 ∀sT ∈ S. (2.11)

The optimal strategy is a sequence of the optimal DM rules:

Sopt =
(
popt(at|st)

)
t∈T

. (2.12)

Proof. Proof can be found in [29]. □

7This pdf is often called the ideal pdf.
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Chapter 3

A new way of formalisation of DM
under uncertainty

Once we have granted that any physical theory is essentially only a model for the
world of experience, we must renounce all hope of finding anything like “the correct
theory”.

– H. Everett III., The Theory of Universal Wave Function

In this chapter we formalise DM in the closed loop from the scratch and arrive to the need
for the quantum probability as a tool for the optimal decision making. This avoids the classical
approach [28] relying on pre-existing notion of probability.

3.1 Let the magic begin (static case)
Let us first consider a static case, i. e. when the action is selected only once. Keeping the

introduced notation (see Section 1.4) we obtain that t = fixed, g = fixed, k = fixed. The time
index t is omitted in this section.

Assumption 2 (DM under uncertainty). Every closed–loop behaviour b can be expressed as
a function Φ of two arguments: strategy S, which is explicitly chosen by the agent, and un-
certainty1 U , (U ∈ U, card (U) ≥ 2) that is completely independent of the agent and is not
accessible to the agent:

b = Φ (S,U) . (3.1)

In Assumption 2 U represents overall uncertainty existing in the closed DM loop, i. e.

• anything that prevents from accurately determining b for the chosen strategy, S;

• anything that the agent cannot influence, no matter which strategy he chooses.

Applying loss function z(•) on both sides of (3.1), we get:

z(b) = z (Φ (S,U)) . (3.2)
1We will not specify at this moment what is the mathematical nature of it.
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According to Theorem 4, the assumed existence of a loss function implies that distinguishable
behaviours, strategies, and uncertainties are densely populated with countable subsets. Thus,
we can handle these countable subsets symbolically. With some notation abuse, we denote both
the strategy (i. e. a sequence of mappings) and the integer pointer to it by the same symbol S.
We use the same multiply interpretable notation to uncertainty, i. e. U denotes the uncertainty
itself and a pointer to it. The meaning of specific notations will be apparent from the context.

Now let us consider S to be an index (or pointer) representing a strategy and U be an
index (or pointer) representing an uncertainty. We can introduce matrix L that contains values
z (Φ (S,U)) for every index values S,U , i.e.

LS,U ≡ [L]S,U := z (Φ (S,U)) , (3.3)

where card (S) ≤ card (N) , S ∈ S, card (U) ≤ card (N) , U ∈ U. From the definition of loss
function z(•) it follows that elements of matrix L are real numbers.

Assumption 3 (No hidden feedback). U is not dependent on strategy S and evolves irrespec-
tively of S.

This assumption means that no hidden feedback is present in the closed loop.
From here onwards, we accept Assumptions 1, 2, 3. Matrix L contains loss values for every

“scenario”, i. e. for every combination of S and U .
Let us apply the singular value decomposition (SVD) (see Theorem 3) to matrix L (3.3):

L
SVD= V · D · U∗ = V · D︸  ︷︷  ︸

S

·U∗ = S · U∗. (3.4)

In (3.4) matrix S := V · D depends only on strategy index S while matrix U depends only on
uncertainty index U . It can be seen when LS,N is rewritten in the following way:

LS,U =
∑
j

SS,jU
∗
j,U , (3.5)

where j is a summation index. SVD serves to separate the dependencies of L on S and U and
this guarantees that important Assumption3 is structurally met.

The S-th row of matrix L is a strategy-dependent linear combination of rows of U∗ that
describes uncertainty. Clearly uncertainties enter (3.4) in a linear way and have Hilbert’s space
structure. Since U is a unitary matrix, columns of U are orthonormal vectors that form a basis
of Hilbert space on which S operates and “projects” them on losses (S-dependent D makes this
projection). Multiplication of uncertainties (rows of U∗) by zero elements of S2 remove their
influence on losses L, (3.5).

We insert the identity matrix, I = diag (1, . . . , 1), expressed via any unitary matrix P into
(3.4):

L = S · U∗ = S · P · P∗︸  ︷︷  ︸
=I

·U∗. (3.6)

This does not change matrix L and keeps P∗ · U∗ unitary. Since matrix P is unitary, it
represents a rotation. This fact has a very attractive interpretation. This allows us to conclude
that P∗ ·U∗ is a rotation of the Hilbert space that describes uncertainty. It maps a line to a line,

2corresponding to zero rows of D.
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a plane to a plane, ..., a subspace of a given dimension to a subspace of the same dimension.
Similarly, S ·P is a rotation of a “projection” influenced by the agent’s strategies. Neither of the
rotations affects the resulting matrix, L.

The effect of the uncertainties represented by those rows of U∗ that are multiplied by non-
zero elements of D is indistinguishable from the point of view of the values of L. Thus subspaces
spanned on those uncertainties matter. Probabilities (arising in quantitative ordering of strate-
gies, see Section 3.2) have to be assigned to them. Random event is a subspace of Hilbert’s
space. This is key difference from Kolmogorov’s modelling of randomness.

3.2 Quantification of ordering on set of strategies

In context of DM task we are solving, we are given: set of all possible behaviours b and
ordering ⪯b which determines DM aim that needs to be reached (which behaviour is more
preferable). Optimization on set b is not possible, because behaviour is influenced both by
choice of strategy (made by agent) and choice of uncertainty (agent has no influence on it).

Aim of DM is to choose a strategy S ∈ S such that respects given preferences on behaviours
(they were given via ordering ⪯b). To make the choice we need to be able to decide which S ∈ S
is “better”/more preferred. Mathematically speaking we need to build ⪯S that will respect ⪯b.
Note that we have not introduced any kind of probability yet. Its necessity arises here.

Our next step is to build an ordering on set of available strategies: ⪯S (respecting ordering
on set of behaviours ⪯b). It can be done using an extended version of Riesz representation of a
functional. There appears a measure on random events, i.e. probability on subspaces – which
is exactly formalism used in quantum mechanics. Here it applies also to macro-world of DM.

First let us inspect a set of functions whose only argument is uncertainty U . For the fixed
strategy, S, the considered function maps uncertainty on values of the loss, i.e.

lS(U) := LS,U . (3.7)

The set of such functions looks like:

Λ := {lS : U → R | ∃S ∈ S : lS(U) = LS,U }. (3.8)

The functions in (3.8) are assumed to be bounded. It is unrestrictive as they quantify ordering
⪯B.

Definition 16 (Correspondence between preferences on strategy and preferences on loss func-
tion). Let S1, S2 ∈ S. We define ordering ⪯Λ on Λ

S1 ⪯S S2
!⇐⇒ lS1 ⪯Λ lS2 . (3.9)

Strategy S1 is more preferable than S2 if S1 leads to a “better” loss function lS1 that lS2 .
Definition 16 implies that once we quantify ordering on Λ, we can use (3.9) to quantify ordering
on S. We shall use Rao’s theorem [27], which generally represents a functional Υ : Λ → R,
under several widely acceptable conditions:

1. Υ should be somewhat continuous3: small changes of S and U should cause only small
changes of value Υ (lS(U)) ,

3For exact definition see [27], Theorem 5, Chapter 9.
33



2. the specific linearity should hold (∀S1, S2 ∈ S) (∀U ∈ U):

lS1(U) · lS2(U) = 0 =⇒ Υ (lS1(U) + lS2(U)) != Υ (lS1(U)) + Υ (lS2(U)) .

According to [27] (Chapter 9, Theorem 5) such a functional is represented in the following
way:

Υ (lS) :=
∫
U∈U

K(lS(U), U) dp(U), (3.10)

where K is a kernel for which the integral is well defined, K(0, U) = 0 and p is Kolmogorov’s
probabilistic measure.

The whole quantification scheme is thus as follows:

S1 ⪯S S2
Definition 16⇐⇒ lS1 ⪯Λ lS2

quantification via Υ⇐⇒ Υ (lS1) ≤ Υ (lS2) (3.11)

where the last inequality compares two real numbers. Let us simplify 3.10 for the discrete
countable set U under consideration. For simplicity we assume it to be finite

U = {U1, U2, . . . , Un} ≡ {Uj}j∈j, (3.12)

where j ∈ j ≡ {1, . . . , n}, n = card(U). Now (3.10) can be rewritten as:

Υ (lS) :=
∑
j∈j

K(lS(Uj), Uj)p(Uj). (3.13)

The used theorem ([27], Chapter 9, Theorem 5) models uncertainty by assigning probability
to elementary random events Uj and then to a σ-algebra on U. Thus it holds (∀j ∈ j) p(Uj) ≥ 0
and ∑

j∈j p(Uj) = 1. We can however regard the atomic random events (Uj) as elements in
Hilbert space. For each atomic4 random event Uj we can define a unique unit vector |ηj⟩ in H
(which implies dim(H) = card(U)):

(∀Uj ∈ U)
(
∃1 |ηj⟩ ∈ H

)
: |ηj⟩k := δj,k, j, k ∈ j (3.14)

where δj,k is Kronecker’s delta symbol5. In other words we define |ηj⟩ as a vector of length equal
to card(U) which has 1 on j-th position and zeros everywhere else. A set of such |ηj⟩ forms a
basis of H .

Now we are ready to use Theorem 5, Section 1.3 and express any measure µ on H

(∀j ∈ j) : µ(ηj) = ⟨ηj | T̂µ |ηj⟩ . (3.15)

How does operator T̂µ look like to get a quantum equivalent of (3.13)? Because of our choice
of vectors |ηj⟩, only the diagonal elements in the matrix representing T̂µ will influence µ(ηj), so
it is natural to choose the matrix representing T̂µ in the following form:

T̂µ := diag (p(U1), p(U2), . . . , p(Un)) Remark 8= Tµ. (3.16)

4Event E is called an atom if µ(E) > 0 and E1 ⊂ E implies µ (E1) = 0.
5δj,k = 1 when j = k and δj,k = 0 otherwise.
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Then
µ(ηj) = ⟨ηj | T̂µ |ηj⟩

= (0, 0, . . . , 1, . . . , 0)


p(U1) 0 . . . 0

0 p(U2) . . . 0
...

...
. . .

...
0 . . . 0 p(Un)





0
...
1
...
0


= p(Uj), ∀j ∈ j.

(3.17)

We have shown that starting from a very general formulation of the DM problem and using
Hilbert space to represent the uncertainties in a closed loop, our solution for a static case
(one-shot DM problem) is consistent with the classical probability theory (the Kolmogorov
probability). Functional (3.13) can be written using Kolmogorov’s probability or via quantum
probability:

Υ (lS) :=
∑
j∈j

K(lS(Uj), Uj) p(Uj)
(3.17)=

∑
j∈j

K(lS(Uj), Uj) µ(ηj). (3.18)

The quantified ⪯S, (3.11), implies that optimal strategy S ∈ S can be found by minimising
Υ (lS) over S:

S(opt) = arg min
S∈S

Υ (lS)

= arg min
S∈S

∑
j∈j

K(lS(Uj), Uj) p(Uj).
(3.19)

Remark 12. The above equations are written under the assumption card(U) = n < +∞, but
they can be rewritten for the case where card(U) = +∞ without any loss.
Note that back substitution

U = Φ−1 (S, b) (3.20)
gives the functional

Υ (lS) =
∑
b∈b

K(lS(Φ−1 (S, b)),Φ−1 (S, b)) p(Φ−1 (S, b)). (3.21)

For convenience let us denote:
p(Φ−1 (S, b)) =: µS (b) and KS(z(b), b) = K(lS(Φ−1 (S, b))︸               ︷︷               ︸

z(b), see (3.7)

,Φ−1) µS (b) (3.22)

then (3.21) reads
Υ (lS) =

∑
b∈b

KS (z(b), b) pS (b) =
∑
b∈b

KS (z(b), b)µS (b) . (3.23)

There Kolmogorov’s probability is related to quantum probability via a diagonal S-dependent
density operator T̂S .

3.3 Dynamic case
In dynamic case the agent chooses a sequence of actions: a1, a2, . . . , at, at+1, . . .. In order

to see what may happen in infinitesimal time increase we distinguish discrete time of acting (t)
and continuous time of evolution of uncertainties (τ).6

6Later on we shall call them acting time step and evolutional time step respectively.
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Uncertainty U evolves independently on strategy (due to Assumption 3) and we accept the
following time formalism:

Assumption 4 (Two time scales formalism). After the agent chooses action at, uncertainty
present in the closed loop evolves in (continuous) time τ ∈ [t, t+ 1), see Figure 3.1.

Figure 3.1: Time scales

Note that no actions could been chosen between those two times (and the same holds for
observations). With the adopted scaling τ ≤ 1 always holds and when τ = 1, then t+ τ = t+ 1
and τ is set to zero: τ = 0. In dynamic case the matrices in (3.6) become time dependent.

Figure 3.2: Let’s imagine a simplified example. Each pair (Si, Uj) leads to behaviour of closed
loop bi,j , which is quantified by value lSi(Uj). Let’s say that we choose always only strategy
S2. Then black lines represent time evolution for cases when for any time t U1 holds, U2 holds,
etc. But uncertainty somehow changes between discrete time steps - so actual (real) evolution
switches between those possible evolutions. If red line represents real behaviour br of closed loop,
we can imagine that when another uncertainty actualises, it switches the evolution to another
one (from one “black line” to another).

Between times t and t+ τ uncertainty generally changes from:

Lt = St · U∗
t , (3.24)

to
Lt+τ = St+τ · U∗

t+τ (3.25)
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and the agent has no influence on U. Note that the matrix of losses on the left side of (3.24)
and of (3.25) is the same. Time index just emphasises different decompositions. We express
this change by introducing matrix M, which may depend on both time t and time τ :

Ut+τ = Mt,τ · Ut. (3.26)

Matrices Ut and Ut+τ are unitary, so matrix Mt,τ has to be unitary too. Now we shall express
Mt,τ as:

Mt,τ = exp (iτHt) , (3.27)

where i is imaginary unit and Ht is some positive semi-definite symmetric matrix that generally
can change with time t. It can be verified that any unitary matrix can be expressed in this way.

By inserting (3.27) into (3.26), we get:

Ut+τ = exp (iτHt) · Ut. (3.28)

This looks very similar to the ansatz from which the Schrödinger equation is derived. This
means we are able to derive it too:

Ut+τ = exp (iτHt) · Ut
∣∣∣∣ ∂∂τ (3.29)

∂

∂τ
Ut+τ = iHt exp (iτHt) · Ut︸                ︷︷                ︸

(3.28)
= Ut+τ

+ exp (iτHt) · ∂

∂τ
(Ut)︸      ︷︷      ︸

=0

(3.30)

and we recognize the Schrödinger equation:

∂

∂τ
Ut+τ = iHt · Ut+τ , (3.31)

where Ht can be interpreted as energy influencing the uncertainty in the closed loop at time t.
Technical steps above lead us to the important conclusion: between two actions (say, at and

at+1) uncertainty in the closed loop evolves in time τ via the Schrödinger equation.

Brief summary of what has been done:

• Ordering of behaviours ⪯b was quantified via loss function z : b → R, and as a consequence
only countable sets of behaviours and uncertainties are relevant for DM.

• Uncertainty U independent of the strategy, S, was introduced.

• Proposed SVD of matrix of losses L(S,U) = LS,U ensures that uncertainty is stored in
matrix U∗ which is not influenced by chosen strategy S. Hilbert’s structure of uncertainties
determine subspaces as random events.

• We have built an ordering on set of available strategies: ⪯S (respecting ordering on set
of behaviours ⪯b). It has been done using an extended version of Riesz representation of
functional Υ, (3.21). There appears a measure on random events.

• In the static case they can have a standard Kolmogorov’s structure, which can be embedded
into a set of events represented by subspaces of Hilbert space: into formalism of quantum
mechanics.
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• In the dynamic case the diagonal embedding is lost and quantum description is inevitable.
This follow from the following statement. Even if the probabilistic measure on uncertainty
is given by the diagonal density operator, T̂µ,t = Tµ,t, (3.16), the inevitable rotation of
uncertainties, (3.26), rotates Tµ,t to:

Tµ,t+τ = Mt,τ Tµ,tM
∗
t,τ (3.32)

and the original embedding of quantum description to Kolmogorov’s description is lost.
The non-diagonal density operator T̂µ,t+τ = Tµ,t+τ has to be used in the considered macro-
world DM.

3.4 Quantum DM
The density operator T̂µ, (3.32), is generally represented by a matrix with an infinite number

of rows and columns. For practical use, it must be generated in a way similar to partially
observable Markov decision processes (POMDP). This means that the Hilbert space on b is
constructed as the tensor product of Hilbert spaces on behaviour components, {st, at}t∈t. Then
the quantum analogy of POMDP arises. The solution for a specific state evolution can be found
in [3]. We conjecture that extension to FPD version is possible in a way similar to the classical
extension [19], which strongly relies on the used non-standard Riesz representation of functional.
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Conclusion

Now this is not the end. It is not even the beginning of the end. But it is, perhaps,
the end of the beginning.

– Winston Churchill

The work proposes novel formalisation and solution of DM task. The formalisation builds
upon agent-system interaction and uses the quantum description of uncertainty. Many previous
works have confirmed the usefulness of quantum models in decision-making. However, to the
author’s best knowledge, none of the earlier works has answered the question: “Why are the
quantum models so successful in describing human-like DM and existing paradoxes?”

Main contribution of the proposed work is that it answers this question and step-by-step
shows that under realistic assumptions, quantum models become inevitable for describing DM
under uncertainty. Indeed, uncertainty significantly influences the system and agent. Since the
nature of uncertainty is generally unknown, deterministic modelling can hardly help. The start-
ing point did not rely on the concept of probability, so the necessity of probabilistic description
rose after a detailed analysis of the role of uncertainty and its modelling. The proposed solution
has the following features:

1. static DM: The solution coincides with solution obtained by the classical decision theory.

2. dynamic DM: It is shown that uncertainty inherent to DM task evolves according to
Schrödinger equation and requires quantum modelling - both in the micro- and macro-
world. Notably, this conclusion is fully consistent with the results of Busemeyer and
Pothos, [7].

3. Mathematics: being a general mathematical model the obtained solution emphasises that
quantum modelling can be of help in any application where uncertainty is present (for
instance economy, biology, social sciences, physics, ...).

Surprisingly, the formalisation developed shares some common features with two very dif-
ferent domains. When compared with Savage’s subjective utility theory, key differences are:

DM theory Savage’s approach operates with three orderings: order in states, order in payoffs, and
order in decision rules. We operate with order in behaviours and order in strategies. Our
operating with strategies is more general than with decision rules (strategy is a sequence
of decision rules in time). Moreover we do not rely on pre-existing probabilities.

Physics There is a deep relation to physics. In the dynamic case, loss functions for every re-
alisation of uncertainty are defined, but at each time step, another uncertainty can be

39



realised. It means reality is “switching” in discrete times between different trajectories
(recall Figure 3.2). In other words, several possible trajectories exist, and a concrete value
of loss function is assigned to each of them, but only one trajectory is realised. It can be
interpreted as parallel realities that exist, and the agent is aware of them but does not
know in which one he will find himself. This interpretation is close to the formulation of
many-worlds interpretation introduced by Hugh Everett (see Appendix C).

This work is just a beginning and calls for a further research. Two immediate non-trivial
research tasks are:

• Detailed and thorough elaboration of quantum version of the partially observable Markov
decision process (q-POMDP);

• Elaboration of quantum version of fully probabilistic design, which is enabled by the
outlined quantum version of functional Υ, see Section 3.2.
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Appendix A

Approach to decision making
through subjective probability

Disclaimer. Each Appendix has own notations.

Theory of subjective (personal) probability was developed by Leonard J. Savage in 1954 [28].
His idea was to use a numerical representation for a preference ordering of decision functions.

The approach is very general and abstract. Hence, for the purpose of this work it will be
simplified. Let system be a part of the world. The system is in definite state at each time
moment.1. In the Table A.1 are mentioned main objects to work with.

Symbol Meaning
S set of states s ∈ S of the world
≺ (comparative probability) ordering between subsets of S
C set of abstract consequences c ∈ C or payoffs
≺C ordering between elements of C
D = {d(•) : S → C} set of functions (mappings) from S to C (decision rules)
≺D ordering between elements of D

Table A.1: Notions of the subjective probability theory

In the considered formulation S is a set of states of the system and D is a set of decision
rules. Payoff c ∈ C is a consequence of a decision rule d(s) when s ∈ S is the true state of the
world. The decision problem is to find an optimal decision rule.

We define ≺C and ≺ in terms of ≺D as follows. For any given c ∈ C we introduce dc(•) ∈ D
as

∀s ∈ S : dc(s) = c. (A.1)
For each c1, c2 ∈ C we define

c1 ≺C c2 ⇔ dc1(•) ≺D dc2(•).

Remark 13. Using bullet (•) as argument of a function just emphasizes that the object is a
function by itself, not a value of the function in a certain point.

1There exist many different approaches how to start explaining basic terms of DM. In [28] L. Savage expects
intuitive understanding of what decision and decision maker is.
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Subsets A,B, . . . of S represent events. Let’s denote

dAc1,c2(s) =
{
c1 if s ∈ A

c2 if s ∈ S\A.
(A.2)

Now we are able to define comparative probability ordering between events A,B ⊂ S:

A ≺ B ⇔ (∀c1, c2 ∈ C, c1 ≺C c2) : dAc1,c2(•) ≺D dBc1,c2(•) (A.3)

Those above definitions of ordering operations (≺, ≺D) are reasonable because better decision
can be obtained either

• by improving the payoff2 for a fixed events, or

• by increasing chances to get a better payoff.

At first, let us illustrate the terms represented by elements of those sets.

Example. Let’s imagine we are playing a simplified dice game with one die. We bet one dollar
on one of the numbers between 1 and 6. After that, the die is rolled, and if the number we bet
on is rolled, we win the dollar. Otherwise we lose.

In this example, our world is represented by the dice. Possible states of the world are

S = { “The die rolls 1.”, “The die rolls 2.”, ... , “The die rolls 6.” }.

Set of our payoffs (consequences) are

C = { “We win 1 dollar.”, “We lose 1 dollar.”}.

Elements of D are functions that maps any given state of the thrown die to our payoff (in
terms of dollars)3. Our decision (which number we want to bet on) is implicitly a part of these
functions. For instance, if we bet on number 6, and die rolls number 3:

d(“The die rolls a 3.”) = “We lose 1 dollar.”.

Now we have three sets, each set with its own ordering operation.
L. J. Savage formulated seven axioms for personalistic rational DM. Before we recall the

axioms, one more definition needs to be specified:

Definition 17 (Comparison of “conditional” decision rules). For event A ⊂ S and for each
decision rules f, g ∈ D we define f(•) ≺D g(•) given A as follows:

f(•) ≺D g(•) given A ⇔


(
∀f ′ ∈ D

)
(∀s ∈ A) : f ′(s) = f(s)(

∀g′ ∈ D
)

(∀s ∈ A) : g′(s) = g(s)(
∀f ′ ∈ D

)
(∀s ∈ S\A) : f ′(s) = g′(s)

 (
f ′(•) ≺D g′(•)

)
(A.4)

The comparing operator defined above has meaning similar to conditional probability (in
Kolmogorov sense). It compares two decision rules but only for states in a given event A.

Now we are able to state the axioms ([15]):
2By payoff we understand any abstract consequences related to the state/event/decision.
3Here elements of D are called decision rules or simply decisions. In [28] those functions are called acts.
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Axiom 1. (∃c1, c2 ∈ C) : c1 ≺C c2
(assuring non-triviality of the DM task)

Axiom 2. ≺D is complete order (i.e. transitive, reflexive, binary relation)
(any pair of decision functions is comparable)

Axiom 3. (∀d1(•), d2(•) ∈ D) (∀A ⊂ S) holds either d1(•) ≺D d2(•) given A or d2(•) ≺D d1(•) given A
(all “conditional” decisions are comparable)

Axiom 4. If A , ∅, then equivalency holds: ( (∀s ∈ A) (dc1(s) ≺D dc2(s)) ) ⇔ (c1 ≺C c2)
(so-called sure-thing principle: if person would not prefer decision rule d1(•) to d2(•),
either event A ⊂ S obtained or not, then he does not prefer d1(•) to d2(•) at all)

Axiom 5. (∀A,B ⊂ S) : A ≺ B or B ≺ A

Axiom 6. Let P be a finite disjoint cover of set S:

P = {Sj}, ∪jSj = P.

For (∀f, g ∈ D, f(•) ≺D g(•)) (∀c ∈ C) (∃P)
(
∀Sj ∈ P

)
let’s define fj , gj ∈ D as follows:

fj(s) =
{
f(s) if s < Sj

c if s ∈ Sj

gj(s) =
{
g(s) if s < Sj

c if s ∈ Sj

Then fj(•) ≺D g(•) and gj(•) ≺D f(•).

Axiom 7.
(∀A ⊂ S) (∀s ∈ A) : f(•) ≺D dg(s)(•) given A ⇒ f(•) ≺D g(•) given A (A.5)

and

(∀A ⊂ S) (∀s ∈ A) : dg(s)(•) ≺D f(•) given A ⇒ g(•) ≺D f(•) given A (A.6)

(This axiom is needed only in situations where set of consequences C is not finite.)

Accepting those axioms, we implicitly believe that states s ∈ S and consequences c ∈ C
are unrelated entities, i.e. choice of consequences does not influence states or probability, with
which those states occur. Also choices of states and events does not influence the desirability of
consequences (i.e. our preferences do not change no matter in which state the world is).

Theorem 7 (Savage’s subjective probability). Under Axioms 1-7 (page ii) there exists a uniquely
defined, finitely additive set function4 P (•) : S → [0, 1] agreeing with ordering operation ≺ on
S and having following property:

(∀A ⊆ S) (∀ρ ∈ [0, 1]) (∃B ⊆ A) : P (B) = ρP (A) (A.7)

Furthermore there exists a bounded (utility) function u(•) : C → R unique up to linear trans-
formation, such that

f(•) ≺D g(•) ⇔ E [u(f(s))] ≤ E [u(g(s))] , (A.8)

where E[•] is expected value with respect to the function P (Eq. (A.7)).
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Proof. Proof can be found in [28].
This theorem says nothing about the interpretation of the probability P . As long as ≺D is

subjectively defined operation (it depends on us, which decision rule should be considered as more
preferable), P is also subjective in origin (Savage’s emphasis on personalistic DM). The purpose
of P in this approach was not to make empirically correct statements about occurrence of the
events, but the purpose was to represent ≺D in “probability manner”, as stated in Theorem 7.
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Appendix B

Quantum decision theory (Yukalov
& Sornette)

Application of the quantum theory to psychological and cognitive phenomena operating
on composite events and non-commuting observables produced a variety of quantum models
[7] and theories, see survey [2]. A special attention deserves quantum decision theory (QDT)
[36] based on generalisation of the quantum theory of measurement [34]. The key assumption
behind that there is a strong correspondence between measurements and decisions and composite
measurements are equivalent to composite decisions. QDT is formulated as a self-consistent
mathematical theory and allows to explain all reported paradoxes. The detailed description of
the theory can be found in [36]. It is quite advanced but definitely not finished and commonly
accepted. This makes us to give up unification in notation and to use the notations of [36].
They are related to the previous presentations and to numerous attempts to get QDT. Below
we summarise the main relevant features/aspects of QDT.

• QDT operates on events that can be: an event in decision theory or probability theory, or
the result of a measurement in the quantum theory of measurements.

• Decision-maker is an open system described by a statistical operator not by wave function.

• Memory of decision maker is nothing but delayed interactions.

• Observable quantities are represented by self-adjoint operators, A. Measuring an eigen-
value An of the operator is interpreted as the occurrence of event An. The corresponding
eigenvector |n⟩ 1 is an event (decision) mode.

• Operator P̂n ≡ |n⟩ ⟨n| 2 is an event operator. The collection {P̂n} is a projector-valued
measure.

• The space of decision modes is given by the Hilbert space HA = span{|n⟩}.

• Decision-maker state is characterised by a statistical operator ρ̂, thus pair {H, ρ̂} is a
decision ensemble.

1microstate in physical interpretation
2measurement projector in physical interpretation
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• Probability of an event An3, is given by p(An) = TrAρ̂P̂n ≡ ⟨P̂n⟩ with TrA denotes trace
of operator A over space HA.

• QDT interprets the measurement of two observables (occurrence of two events) as a com-
posite event called prospect and defines joint and conditional probability of events.

• Probability of uncertain composite event πn in quantum form is described by p(πn) =
TrAB ρ̂ABP̂n where A and B are two events with event operators Ân ≡ |A⟩ ⟨A| and P̂B ≡
|B⟩ ⟨B| respectively. Note ∑

n p(πn) = 1 and 0 ≤ p(πn) ≤ 1.

• Probability of prospect (composite event) can be written as a sum p(πn) = f(πn) + q(πn),
where f(πn) describes the utility factor and q(πn) is an attractor factor4. Once the second
term goes zero, quantum probability reduces to the classic one: q(πn) → 0 implies p(πn) →
f(πn). This allows to interpret decisions under uncertainty in such way that π1 is more
useful than π2 if f(π1) > f(π2); π1 is more attractive than π2 if q(π1) > q(π2); π1 is more
preferable than π2 if p(π1) > p(π2).

• Prospect π∗ = argmaxjp(πn) is called optimal. In QDT the concept of an optimal decision
is replaced by a probabilistic decision, when the prospect π that makes p(πn) maximal, is
the one which corresponds best to the given strategic state of mind of the decision maker.

• The dependence of probability of prospect on the additional information QDT expresses
as p(πn, µ) = f(πn) + q(πn, µ), where µ information measure, [37]. Notably that the
utility factor does not dependent on additional information while attractor (subjective by
its nature) factor does. Work [38] shows that the attraction factor decreases with the
received additional information, which explains effect of preference reversal.

3equivalent to the probability of measuring eigenvalue of An
4Later also informational factor was introduced:

p(πn) = f(πn)︸  ︷︷  ︸
utility
factor

+ q(πn)︸  ︷︷  ︸
attraction

factor

+ h(πn)︸  ︷︷  ︸
informational

factor
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Appendix C

Everett’s approach: one wave
function to rule them all

“One Ring to rule them all, One Ring to find them, One Ring to bring them all
and in the darkness bind them.”

– J. R. R. Tolkien, The Ring’s inscription, translated

Conventional quantum theory states that a physical system is completely described by a
state function ψ ∈ H. It specifies the probabilities of results of various observations which are
made on the system by external observers1. There are two different ways in which state function
can change:

Process 1. Discontinuous change of the state caused by observation of quantity with eigenstates
ϕ1, ϕ2, . . .. The state will change to the state ϕj with probability | ⟨ψ|ϕj⟩ |2.

Process 2. Continuous (and deterministic) change of the state with time according to a wave equation

∂ψ

∂t
= Âψ,

where Â is linear operator.

This formulation corresponds with experience. No experimental evidence is known to con-
tradict it.

But not all situations/setups fit into that formulation. Let’s consider a composite system,
consisting of physical system and observer, who observes that physical system. Can the time
change of the composite system be described via Process 2?

If yes, then it appears no discontinuous change of state (Process 1) takes place. If no, we need
to admit that such composite systems cannot be described by the same quantum–mechanical
description used for other physical systems.

1Such observer can be either human being, or some measuring apparatus, or even an algorithm. In this work
we will refer to an observer as “he” in all generality.
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C.1 Everett’s interpretation of quantum mechanics

The many–worlds interpretation of quantum mechanics is close to the boundary between a
“formulation” and “interpretation”: its founder, Hugh Everett III., called it “the relative state
formulation”, while its successor Bryce DeWitt continued to develop it under the name “the
many–worlds interpretation”[31].

In this theory, Everett criticises usual concept of collapse of the wave function. The question
changes from “What happens to the world (system)?” to “What happens in particular story
line with the system?” Let’s recall extremely famous example with Schrödinger cat, which is
so-called to be “dead and alive at the same time”. Bohr interpretation poses the question “What
happens?” and the answer is: when observer opens the box, the probability to observe a dead
cat is equal to 0.5, and the probability to observe alive (and very angry) cat is also 0.5. In
Everett’s interpretation, that is not the right question to pose. There is one story line, where
observer opens the box and sees a dead cat (for sure), and another story line, where observer
sees alive cat after he opens the box. The probabilities for observer to find himself in one of the
story lines is still 0.5. So Everett question is “What happens in particular story line?”2 The
wave function representing state never collapses, it keeps splitting.

C.1.1 Setup

Everett’s approach [14] profit from wave mechanics. So his starting point is a postulate that
a wave function that obeys linear wave equation (everywhere and at any time) is a complete
mathematical model for an isolated physical system. Furthermore, every system that can be a
subject for external observation can be considered as a part of (larger) isolated system. Simply
speaking: any even non–isolated system, whose states can someone observe, can be a part of
some bigger isolated system.

To put theory into correspondence with experience, it is necessary to formulate abstract
models of observers (observer models), such that:

• Observer models should be treatable as physical systems.

• Observer models should consider following structure: there exists an isolated system, ob-
server is a part of it. Observer is interacting with other subsystems in that system, see
Figure C.1.

• It should be able to deduce the changes in observer as a consequence of these interactions.

In his work, Everett introduces the concept of relativity of states, which can be reformulated
as follows: Let’s have an isolated system (composite system). There are several other systems
inside of it, we shall call them subsystems. A subsystem cannot be said to be in any well–defined
state, independently from the rest of the system. For every chosen state of the subsystem there
will exists exactly one relative state of the rest of the system. Usually this relative state depends
on the state of chosen subsystem. In other words, all states of subsystems are correlated (not
independent). Such correlation appears whenever subsystems interact. In this formulation, all
measurements/observations are considered as interactions between subsystems.

So deductions about the observer state are done relatively to the object system.
2The philosophy behind “right” and “wrong” questions can be illustrated even simpler. Question “How far is

Paris?” does not make sense, while question “How far is Paris from Prague?” does.
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C.1.2 The concept of relative state

Now, let’s investigate the consequences of applying wave mechanics formalism to the com-
posite systems (a system, containing several subsystems). Let’s assume we have a system S,
associated with Hilbert space H. S is composed of two subsystems: S1 and S2 (being associated
with H1 and H2). Then, according to the formalism of composite systems H = H1 ⊗ H2 (tensor
product of H1 and H2). Let {ξS1

i } be an orthonormal (ON) set of states for subsystem S1, and
{ηS2
j } be an ON set of states for subsystem S2

3.
Then state ψS of the system Scan be found as a superposition of states of subsystems:

ψS =
∑
i

∑
j

aij ξ
S1
i ηS2

j (C.1)

Even if system S is in state ψS , we cannot say its subsystems are in definite states inde-
pendently on one another (except the special case when all but one numbers aij are equal 0).
However it is possible to assign for any state of one subsystem a corresponding relative state of
another subsystem.

That brings us to the concept of relative state. Let’s choose a state ξk as the state for S1.
Composite system is in the state ψS , given by Equation (C.1). Then the corresponding relative
state will be:

ψ (S2, rel ξk, S1) = Nk

∑
j

akjη
s2
j (C.2)

Left side of Equation (C.2) reads “state of S2 when S1 is in state ξk”.
Visually definition of relative state reminds conditional probability in CPT formulation, and

there really is a connection: in conventional formulation, the relative state ψ (S2, rel ϕ, S1) of
S2 for a state ϕS1 of system S1 gives conditional probability distribution of the results of all
measurements done on system S2, given that S1 has been measured and found to be in state
ϕS1 . In other words it means that ϕS1 is an eigenfunction of the measurement that corresponds
to the observed eigenvalue in S1.

C.1.3 Observer as a subsystem

According to this approach, for now on, the observers will be treated as physical system.
Aim of further steps will be to make deductions about the consequences of this assumption.
Let’s explore the present properties of such observer in the light of his past experience.

If we are saying that an observer O has observed event A, it means that the state of O has
changed from it former state to a new state, which depends on event A. Such observer has his
own memory (recording device). In order to make a conclusion about anything O observed in
the past it is sufficient to analyse his current contents of the memory.

Here it should be mentioned, that Everett in his work assumes that observer could be consid-
ered as a machine, equipped with sensors (recording data) and recording device (storing data).
Such a machine is able to perform a sequence of observations (measurements), and even will
be capable to decide upon its future experiments on the basis of past results of observations.
For such machine it is possible to use statement “machine is aware of A” if event A has been
observed and the result of this observation is stored in machine’s memory.

When describing observer O in terms of composite systems (see Figure C.1), we assign a
state function ψO to it. When observer has observed events A,B, . . . , C4, we denote this via

3We leave out Dirac’s bra-ket notation as Everett does.
4In order of occurrence, i.e. time dependent order.
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Figure C.1: Everett concept of an observer and a system as a part of composite system

lower index, representing contents of observer’s memory:

ψO[A,B,...,C].

Interaction between observer and system are treated within the framework of Process 2 (see
page vii).

Let’s define what a “good” observation is.

Definition 18 (Good observation). We have system S and observer O. Observer is in state
ψO. A good observation of quantity A consists of an interaction, which transforms state of the
composite system ψS+O = ϕj ψ

O
[... ] into a newer state ψS+O ′ = ϕj ψ

O
[...,αj ] in a specified period of

time, where αj are eigenvalues of quantity A and ϕj are eigenfunctions of of quantity A.

Because of an observation, state of the system S does not change, but the state of an observer
does change according to new record in his memory (the change of observer’s state describes
that observer is “aware” of which eigenfunction corresponds to observed eigenstate). As a result,
the state of composite system (S +O) also changes.

In case that system S has not been observed in its eigenstate, we can write current general
state ψ as a superposition of eigenstates. Then final total state will have the form:

ψS+O ′ =
∑
j

ajϕj ψ
O
[...,αj ],

where ψS = ∑
j ajϕj . Coefficients aj are given by aj = ⟨ϕj |ψS⟩.

Based on this steps, Everett defines two rules that describe how the total state of composite
system changes after observer makes an observation (in other words, after observer interacts
with subsystem).

C.2 Summary
Everett’s interpretation tries to describe a composite system consisted of a physical subsys-

tem (object system) and an observer observing the object subsystem. The proposed concept
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can be applied to composite systems containing several subsystems and several observers. The
state of a subsystem will be observed in the same way by every observer. However each observer
will be in a different state after observing the same subsystem. One can interpret this as an
existence of “parallel universes”: each observer has his own new state.

Important consequences of this interpretation are, [6]

“... a state of a composite system leads to a joint distributions over subsystem
quantities which are generally not independent. Conditional distributions and ex-
pectations for subsystems are obtained from relative states, and subsystem marginal
distributions and expectations are given by density matrices. There does not, in
general, exist anything like a single state for one subsystem of a composite system.
That is, subsystems do not possess states independent of the states of the remainder
of the system, so that the subsystem states re generally correlated. One can arbi-
trarily choose a state for one subsystem, and to be led to the relative state for the
other subsystems. Thus we are faced with a fundamental relativity of states, which is
implied by the formalism of composite systems. It is meaningless to ask the absolute
value of a subsystem - one can only ask the state relative to a given state of the
remained of the system.”

xi



xii



Bibliography

[1] Maurice Allais. Le comportement de l’homme rationnel devant le risque: Critique des
postulats et axiomes de l’ecole americaine. Econometrica, 21(4):503–546, 1953.

[2] Mehrdad Ashtiani and Mohammad Abdollahi Azgomi. A survey of quantum-like approaches
to decision making and cognition. Mathematical Social Sciences, 75:49–80, 2015.

[3] Jennifer Barry, Daniel T. Barry, and Scott Aaronson. Quantum partially observable markov
decision processes. Physical Review A, 90(3), September 2014.

[4] Irina Basieva and Andrei Khrennikov. “What Is Life?”: Open Quantum Systems Approach.
Open Systems & Information Dynamics, 29, 02 2023.

[5] Irina Basieva, Andrei Khrennikov, and Masanao Ozawa. Quantum-like modeling in biology
with open quantum systems and instruments. Biosystems, 201:104328, 12 2020.

[6] Editors Bryce S. DeWitt, Neill Graham. The Many-Worlds Interpretation of Quantum
Mechanics. Princeton Series in Physics. Princeton University Press, 1st edition, 1973.

[7] Jerome R. Busemeyer and Peter D. Bruza. Quantum Models of Cognition and Decision.
Cambridge University Press, 2012.

[8] Carlton M. Caves, Christopher A. Fuchs, and Rüdiger Schack. Quantum probabilities as
bayesian probabilities. Physical Review A, 65(2), January 2002.

[9] C. H. Coombs, R. L. Davis, and Robert McDowell Thrall. Decision Processes. John Wiley
& Sons, 1954.

[10] T. Cover and J. Thomas. Elements of Information Theory. Wiley Series in Telecommuni-
cations and Signal Processing. Wiley-Interscience, 2nd ed edition, 2006.

[11] Paul A. M. Dirac. The Principles of Quantum Mechanics. Oxford University Press, USA,
4 rev edition, 1967.

[12] Anatolij Dvurečenskij. Gleason’s Theorem and Its Applications. Mathematics and its Ap-
plications №60. Springer, 1 edition, 1993.

[13] Daniel Ellsberg. Risk, Ambiguity, and the Savage axioms. The Quarterly Journal of Eco-
nomics, 75(4):643–669, 1961.

[14] Hugh Everett. The Many-Worlds Interpretation of Quantum Mechanics. PhD thesis, Prince-
ton, New Jersey, 1956.

xiii



[15] Terrence L. Fine. Theories of Probability. An Examination of Foundations. Elsevier Inc,
Academic Press Inc, 1973.

[16] Feliks Rouminovich Gantmacher. The Theory of Matrices. Translated by KA Hirsch,
Chelsea Publishing Company, Printed in USA, Card Nr. 59-11779, ISBN: 8284-0131-4,
1960.

[17] Gene H Golub and Charles F Van Loan. Matrix computations. JHU press, 2013.

[18] Daniel Kahneman and Amos Tversky. Subjective probability: A judgment of representa-
tiveness. Cognitive psychology, 3(3):430–454, 1972.

[19] M. Kárný. Axiomatisation of fully probabilistic design revisited. Systems & Control Letters,
141:104719, 2020.

[20] M. Kárný. Fully probabilistic design unifies and supports dynamic decision making under
uncertainty. Inf. Sci., pages 104–118, 2020.

[21] Miroslav Kárný and Tomaš Kroupa. Axiomatisation of fully probabilistic design. Inf. Sci.,
186(1):105–113, 2012.

[22] Jan Klíma. Kvantová mechanika I. Karolinum, Prague, 2015.

[23] Andrey Nikolaevich Kolmogorov and Sergei Vasilyevich Fomin. Elements of the Theory
of Functions and Functional Analysis, Volume 2, Measure. The Lebesgue Integral. Hilbert
Space. Graylock, 1961.

[24] Kalyanapuram Rangachari Parthasarathy. An Introduction to Quantum Stochastic Calcu-
lus. Modern Birkhäuser Classics. Birkhäuser, 1 edition, 1992.

[25] Emmanuel M. Pothos and Jerome R. Busemeyer. A quantum probability explanation for
violations of ’rational’ decision theory. Proceedings: Biological Sciences, 276(1665):2171–
2178, 2009.

[26] M. Puterman. Markov decision processes. John Wiley & Sons, 1994.

[27] Malempati Madhusudana Rao. Measure Theory and Integration. Pure and Applied Math-
ematics. Marcel Dekker, 2 edition, 2004.

[28] Leonard J. Savage. The foundations of statistics. New York, Dover Publications, 2d rev.
ed edition, 1972.

[29] Jan Šindelář, Igor Vajda, and Miroslav Kárný. Stochastic control optimal in the Kullback
sense. Kybernetika, 44(1):53–60, 2008.

[30] Sandro Sozzo. Quantum structures in human decision-making: Towards quantum expected
utility. International Journal of Theoretical Physics, 60:468–482, 2021.

[31] Daniel F. Styer, Miranda S. Balkin, Kathryn M. Becker, Matthew R. Burns, Christopher E.
Dudley, Scott T. Forth, Jeremy S. Gaumer, Mark A. Kramer, David C. Oertel, Leonard H.
Park, Marie T. Rinkoski, Clait T. Smith, and Timothy D. Wotherspoon. Nine formulations
of quantum mechanics. American Journal of Physics, 70(3):288–297, 2002.

xiv



[32] Angus E. Taylor. Introduction to Functional Analysis. R.E. Krieger Pub. Co, 2nd ed.,
reprint ed edition, 1958.

[33] John R.R. Tolkien. The Lord of the Rings. HarperCollins, London, England, 1991.

[34] John von Neumann. Mathematical foundations of quantum mechanics: New edition, vol-
ume 53. Princeton university press, 2018.

[35] Gary L Wells and Elizabeth A Olson. Eyewitness testimony. Annual review of Psychology,
54(1):277–295, 2003.

[36] Vyacheslav I. Yukalov and Didier Sornette. Quantum decision theory as quantum theory
of measurement. Physics Letters A, 372(46):6867–6871, 2008.

[37] Vyacheslav I. Yukalov and Didier Sornette. Processing information in quantum decision
theory. Entropy, 11(4):1073–1120, 2009.

[38] Vyacheslav I Yukalov and Didier Sornette. Manipulating decision making of typical agents.
IEEE Transactions on Systems, Man, and Cybernetics: Systems, 44(9):1155–1168, 2014.

[39] Vyacheslav I. Yukalov and Didier Sornette. Quantum probability and quantum decision-
making. Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 374(2058):20150100, 2016.

xv



Index

≺B-dense set, 21

assumption
no hidden feedback, 32
two time scales formalism, 36

behaviour
of closed loop, 28

behaviour of closed loop, 29

decision rule, 28
design

fully probabilistic, 30
DM rule, 29
dynamic programming, 30

equation
Schrödinger, 37

Hilbert space, 17

join, 22

loss function, 28

Markov decision process, 29
matrix

orthogonal, 20
unitary, 20

meet, 22

norm, 17

operator, 18
density, 23
positive semidefinite, 21

orthogonality (OG), 17
orthonormality (ON), 17

policy, 29
probability

subjective, iii
projector, 18

PSD, 21

rule, 29

singular value decomposition, 21
state, 18
strategy, 28, 29
subspace

of Hilbert space, 18

Tensor product of Hilbert spaces, 18
theorem

Gleason’s, 22
on quantification of ordering, 21
solution of FPD, 30

time step
acting, 35
evolutional, 35

transpose
conjugation, 20
Hermitian, 20

unitary matrix
properties, 20

xvi


	Introduction
	Preliminaries
	Hilbert spaces
	Quantification of ordering
	Probability measure on subspaces
	DM task - formulation and notation

	Classical approach to DM task
	Decision making as closed loop
	Probabilistic formalization of DM task: MDP and FPD.

	A new way of formalisation of DM under uncertainty
	Let the magic begin (static case)
	Quantification of ordering on set of strategies
	Dynamic case
	Quantum DM

	Conclusion
	Approach to decision making through subjective probability
	Quantum decision theory (Yukalov & Sornette)
	Everett's approach: one wave function to rule them all
	Everett's interpretation of quantum mechanics
	Setup
	The concept of relative state
	Observer as a subsystem

	Summary


