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Abstrakt: Jednou z hlavních otázek kombinatoriky na slovech jsou repetice ve slovech, které popisuje
kritický a asymptotický kritický exponent. Kritický exponent (CE) říká, jaký je maximální počet opa-
kování slova hned po sobě v daném nekonečném slově. Asymptotický kritický exponent (ACE) pak
uvažuje pouze opakování faktorů, jejichž délka jde limitně do nekonečna.

Práce je dělena do dvou samostatných celků. V první části se zabýváme otázkou minimálního ACE
balancovaných slov nad d-písmennou abecedou. Napřed proto definujeme základní pojmy a popíšeme
bispeciály a návratová slova v balancovaných slovech a jak je lze využít pro hledání minimálního ACE.
Dále teorii rozšíříme, abychom dokázali pro danou mez najít balancované slovo s danými parametry,
které nabývá ACE nižší, než je daná mez (pokud existuje). S využitím teorie navrhneme a implemen-
tujeme algoritmus, který nám umožní najít hodnotu minimálního ACE pro balancovaná slova nad d-
písmennou abecedou pro d ∈ {3, 4, . . . , 10}.

Druhá část této práce se zabývá nekonečnými slovy nad binární abecedou, která mají malý kritický
exponent a zároveň obsahují pouze konečně mnoho palindromů, resp. komplementárních faktorů. Hlavní
přínos této části je popis procesu hledání kritického exponentu pro morfické obrazy nekonečného slova,
které je pevným bodem zadaného morfismu.

Tato práce navazuje na výzkum v mé bakalářské práci a výzkumném projektu. Dále jsou výsledky
této práce součástí tří článků, z toho jeden je již publikovaný [16] a dva odeslané [14, 8].

Klíčová slova: asymptotický kritický exponent, balancované slovo, bispeciál, komplementární faktor,
kritický exponent, morfismus, návratové slovo, palindrom, pevný bod morfismu



Title:

Critical exponent and asymptotic critical exponent

Author: Bc. Daniela Opočenská

Abstract: One of the main questions in combinatorics on words concerns repetitions in sequences, this
notion is described by (asymptotic) critical exponent. The critical exponent (CE) of a sequence tells us
what the maximum number of consecutive repetitions of any non-empty word in the sequence is. The
asymptotic critical exponent (ACE) then considers repetitions of words of length that tends to infinity.

The thesis consists of two independent parts. In the first part, we examine the minimal ACE of
balanced sequences over a d-letter alphabet. To do so, we recall the notions of bispecial factors and
return words in balanced sequences and how to use them to calculate the ACE of a balanced sequence.
Next, we expand this theory to allow us to find a balanced sequence with given parameters that attains
ACE lower than a given bound (if such a sequence exists). Using the theory, we create and implement
an algorithm and then use it to find the minimal ACE of balanced sequences over a d-letter alphabet for
d ∈ {3, 4, . . . , 10}.

The second part of the thesis deals with binary sequences having small CE while containing either
a limited number of palindromes or a limited number of complemented factors. The main contribution of
this part is the method of computation of CE of morphic images of the fixed point of a given morphism.

This thesis follows up on research conducted in my bachelor thesis and research project. The results
are also part of one published [16] and two submitted [14, 8] papers.

Key words: asymptotic critical exponent, balanced sequence, bispecial factor, complementary factor,
critical exponent, fixed point of a morphism, morphism, palindrome, return word
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Introduction
The first works in combinatorics on words date back to the 1900’s when a Norwegian mathematician

Axel Thue studied the consecutive repetition of factors in infinite sequences. He affirmatively answered
the following two questions. Is there an infinite sequence over a binary alphabet that contains no cubes,
i.e., no factor repeating consecutively three times? Is there an infinite sequence over a ternary alphabet
that contains no squares, that is, no factor repeating twice consecutively? The critical exponent E(u)
of an infinite sequence u = u0u1u2 · · · captures the maximal possible repetition rate of the factors that
occur in u. Therefore, the sequences found as answers to the previous questions have a critical exponent
less than or equal to three, resp. less than or equal to two. A natural question to ask is: What is the
smallest possible critical exponent for a sequence over a given alphabet? The answer to the question is
called repetition threshold and it has been found by Dejean’s theorem [11], which says that the infimum
of critical exponents of sequences over a d-letter alphabet is:

• 2 for d = 2 • 7
4 for d = 3 • 7

5 for d = 4 • d
d−1 for d ≥ 5.

For d = 2, the minimum is reached by the Thue-Morse sequence, the case for d = 3 was proven by
Dejean and the rest has been proven step by step by many people [32, 7, 10, 30, 34] over the course of
almost 40 years.

Dejean’s theorem shows us the repetition threshold for classes Cd of infinite sequences over a d-letter
alphabet, where d ≥ 2. The repetition threshold has also been investigated for other classes of sequences.

• Factor complexity of a sequence u is function Cu : N→ N counting the number of distinct factors
of a sequence u of length n. If we consider u periodic, we can see that the factor complexity is
bounded while the critical exponent is +∞.

For aperiodic sequences, the smallest complexity is Cu(n) = n+1 obtained by Sturmian sequences.
In [3], it was proven that the repetition threshold for Sturmian sequences is 5+

√
5

2 and the bound
is attained by the Fibonacci sequence. In [23], the authors showed that the repetition threshold is
the same even if we expand the class to any binary sequence with factor complexity of the form
Cu(n) = n + c, where c ≥ 1. The authors also showed that the repetition threshold for binary
sequences can be lowered to 5

2 if we allow factor complexity ≤ 2n.

• A sequence u is balanced if for any two factors u, v of the same length and any letter b of the
alphabet, the number of occurrences of b in u and v differs at most by one. Aperiodic balanced
sequences over binary alphabet coincide with Sturmian sequences.

In [33], the authors tried to recreate Dejean’s theorem for balanced sequences over a d-letter al-
phabet. They found the repetition threshold for d-letter alphabets, where d ∈ {3, 4}, and found
the sequences that reach the bound. Furthermore, they formulated a conjecture that the repetition
threshold for balanced sequences over d-letter alphabet is d−2

d−3 for d ≥ 5 and showed that it can-
not be lower for d ≤ 10. They also provided a list of sequences xd for 5 ≤ d ≤ 10, which they
suspected attain the bound d−2

d−3 . This proposition has been proven for 5 ≤ d ≤ 8 in [6, 1].

In [12, 19, 18], the authors proposed a different method, which allows to calculate the (asymptotic)
critical exponent from the knowledge of the lengths of bispecial factors and their return words,
and they showed how to find these values in balanced sequences. In my bachelor thesis [31], we
used this approach to first verify that the critical exponents of the sequences x9 and x10 attain the
values d−2

d−3 and then we used the programs to refute the conjecture from [33] for bigger alphabets.
In [17, 31], we showed that the repetition threshold for balanced sequences over a d-letter alphabet,
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where d ≥ 12 even, is d−1
d−2 and that for d odd, it cannot be lower. It remains an open problem to

prove our new conjecture for all d-letter alphabets, where d is odd and greater than 11.

• The complement of a word u over binary alphabet {0, 1} is ū obtained by changing 0 7→ 1 and
1 7→ 0. The only binary sequences avoiding complements of all factors are the sequences (0)ω =
0000000 · · · and (1)ω = 1111111 · · · . Now, we can define the classes

CALℓ = {u binary sequence : (∀u factor of u)(ū factor of u⇒ |u| < ℓ)}
CANn = {u binary sequence : #{u factor of u : ū factor of u} ≤ n},

i.e. CALℓ limits the length of complementary factors, and CANn limits the number of comple-
mentary factors in u.

The authors in [8] found the repetition threshold for these two classes. To finish the proofs, it was
necessary to calculate the critical exponent of given morphic images of a sequence p described in
Chapter 8. We were able to do so, and the computation can be found in Chapters 11 and 12 and as
a part of submitted paper [8].

• Another studied property is the number of palindromes that can be found in the sequence. A word u
of length n is called rich if it contains exactly n distinct non-empty factors that are palindromes
(i.e. v such that v0v1 · · · v|v|−1 = v|v|−1 . . . v1v0). A sequence u is rich if all factors of u are rich.

In [2], the authors constructed a binary rich sequence with critical exponent 2+
√

2
2 and conjectured

that this is the repetition threshold for the class of binary rich sequences. This proposition has been
later proven in [22]. The authors of [2] also showed that the repetition threshold for the class of
ternary (i.e. over 3-letter alphabet) rich sequences is greater than or equal to 9

4 . It is known that
for d-letter alphabets the critical exponent is less than or equal to the critical exponent of d-ary
episturmian sequences (generalization of Sturmian sequences over bigger alphabets) which equals
2+ 1

td−1 , where td > 1 is the unique positive root of the polynomial xd− xd−1−· · ·− x−1 (see [27]).
For d growing to infinity, the bound 2 + 1

td−1 tends to 3.

A natural question is: What happens to the repetition threshold if we limit the number of palin-
dromes that can appear in a sequence? For binary sequences, the answer was given in [14]. Sim-
ilarly to the previous item, it was necessary to calculate the critical exponent of some morphic
images of p and the calculations are in Chapters 9 and 10 and as a part of submitted paper [14].

• The Thue-Morse sequence is an example of a binary sequence avoiding cubes. Similarly, Solomon
Arshon gave an algorithm that for any n ≥ 3 constructs a square-free sequence an over the alphabet
A = {0, 1, . . . , n − 1}. The construction defines two morphisms and alternates between them at
odd/even positions in the sequence. From the construction, the critical exponent of an is ≤ 2.
In [25], the authors showed that the critical exponent of a3 is 7

4 . In [26], the authors proved that
for any n ≥ 3, the critical exponent of an is equal to 3n−2

2n−2 and the factor that achieves the value of
the critical exponent starts at position 1.

Our approach to calculating the repetition threshold of (balanced) sequences relied heavily on our
ability to compute the asymptotic critical exponent, which considers only the repetition of the factors
as their length tends to infinity. Although we realized that computing asymptotic critical exponent is
an integral part of computing the critical exponent of a given sequence, there was not much known about
its properties in general. There have been some studies focusing on the asymptotic critical exponent
of Sturmian sequences in the past; however, our study expanding it to balanced sequences, which are
colourings of Sturmian sequences, is pioneering.

Before describing the content, let us mention that the results of this thesis are part of the published
paper [16] and the submitted papers [8, 14].
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At first, during my research project, we asked whether we can recreate Dejean’s theorem for the
asymptotic critical exponent. Cassaigne [21] constructed a binary sequence with the asymptotic critical
exponent equal to 1. It follows that the minimum of asymptotic critical exponents over a d-letter alphabet
is 1 for all d ≥ 2. In [16], we proved that the infimum of asymptotic critical exponents of d-ary uniformly
recurrent sequences is also 1.

Next, we focused on determining the minimal asymptotic critical exponent of balanced sequences
over a d-letter alphabet. For this, we introduced a new tool – a graph of admissible tails. Using the theory
explained in detail in [16] and in this thesis, I designed and implemented the algorithms for generating
and searching the graph to determine the balanced sequences for which the minimum is attained. Using
the program, we were able to determine the minimal asymptotic critical exponent for d ∈ {3, 4, . . . , 10}
and find sequences for which the minimum is attained.

The thesis is structured as follows. First, we recall the necessary definitions in Chapter 1 and define
the asymptotic critical exponent in Chapter 2. In Part I, we try to determine the minimal asymptotic
critical exponent in balanced sequences over a d-letter alphabet. In more detail, in Chapter 3, we focus
on some important properties of Sturmian sequences, especially on the forms and lengths of bispecial
factors and their return words. In Chapter 4, we show how to generate balanced sequences from Stur-
mian sequences and focus on the relationship between bispecial factors in a balanced sequence and the
underlying Sturmian sequence. In Chapter 5, we define the graph of admissible tails and show how it can
be used to determine balanced sequences with the minimal asymptotic critical exponent. We also discuss
possible reductions of the graph to significantly reduce the number of vertices and edges that we need to
consider. The algorithms used to generate the graphs of admissible tails are described in Appendix A.
In Chapter 6, we use the program to determine the minimal asymptotic critical exponent for sequences
over a d-letter alphabet for d ≤ 10. In Part II, Chapter 7 we abandon balanced sequences and focus on
the repetition threshold of sequences avoiding palindromes or complements.

At first, we examine the form of bispecial factors in the sequence p in Chapter 8 and then examine
four different morphic images of p in Chapters 9, 10, 11, and 12. As mentioned above, our contribution
in this section is the calculation of the critical exponents of given morphic images of sequence p. In
the end, we summarize our results and mention open problems.
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1 Combinatorics on words
An alphabet A is a finite set of symbols that are called letters. A concatenation of a finite number

of letters is called a word, formally u = u0u1 · · · un, where ui ∈ A for all i ∈ {0, 1, . . . , n}. The length of
a word u is denoted by |u| and it is the number of letters contained in u, so |u0u1 · · · un| = n + 1. For each
letter a inA, we denote the number of occurrences of a in u by |u|a.

The neutral element of concatenation is called the empty word, denoted by ε. The set of all words
over an alphabet A is denoted by A∗. If u = xyz for some words x, y, z (they can be empty words) over
an alphabetA, then x is a prefix, z is a suffix, and y is a factor of u.

The reverse of a word u = u0u1 · · · un−2un−1 is a word uR = un−1un−2 · · · u1u0. A word u is a palin-
drome, if u = uR, i.e. it is the same when read in the opposite direction.

A sequence over A is an infinite sequence of letters from the alphabet, we write u = u0u1u2 · · · ,
where un ∈ A for all n ∈ N0. Sequences will always be written in bold. A factor of a sequence is
an arbitrary finite sequence of consecutive letters, which means that u is a factor of u = u0u1 · · · if
u = uiui+1 · · · u j−1, where i, j ∈ N0, i ≤ j. The index i is the occurrence of u in u. The language of u,
denoted by L(u), is a set of all factors of u.

To a word u over a d-letter alphabet A, we assign its Parikh vector V⃗(u) ∈ Nd
0, where (V⃗(u))a = |u|a

for all a ∈ A. We say that a sequence u is recurrent if each of its factors has infinitely many occurrences
in u. If for each factor the distances between its consecutive occurrences are bounded, we say that u is
uniformly recurrent.

A sequence u is eventually periodic if there exist words u, v ∈ L(u) such that u = vuuuuu · · · = v(u)ω,
where exponent ω means an infinite repetition of the word u. The factor v is called a preperiod and u is
a period of u. If the length of u is minimal possible, then we denote the period of u as Per(u) = |u|. Let
us note that period means two different things – a word u or the length of u. Usually, it is clear from the
context which one is meant. The sequence u is periodic if v = ε. If u is not eventually periodic, we say
that u is aperiodic.

Definition 1.1. A sequence u over an alphabetA is balanced, if for any two of its factors u, v ∈ L(u) of
the same length and any letter c ∈ A, the number of occurrences of c in u and in v differs at most by one,
i.e., ||u|c − |v|c| ≤ 1.

A return word to a factor w in u is a word v ∈ L(u) such that vw ∈ L(u) and w occurs in vw only
as a prefix and as a suffix. In other words, if i, j, such that i < j, are two consecutive occurrences of w
in u, then a return word to w in u is the factor v = vivi+1 · · · v j−1. The set of all return words to w in u is
denoted by Ru(w).

The factor u of u is called a right special factor of u if there exist two different letters a, b ∈ A
such that ua, ub ∈ L(u) – the factor has two different right extensions. We define a left special factor
symmetrically – it has two different left extensions. A bispecial factor is a factor that is both right and
left special.

Definition 1.2. Let u be a sequence overA and u ∈ L(u) be a bispecial factor. Let

B(u) = #{(a, b) ∈ A ×A : aub ∈ L(u)} − #{a ∈ A : au ∈ L(u)} − #{b ∈ A : ub ∈ L(u)} + 1.

We say that u is a weak bispecial factor if B(u) < 0 and it is an ordinary bispecial factor if B(u) = 0.

The letter density of a letter a ∈ A in a sequence u overA is the limit (if it exists)

ρa = lim
n→+∞

|u0u1 · · · un−1|a

n
.

17



For example, in periodic sequences, the letter densities always exist and are rational. If u can be
written as u = v(u)ω, then for any a ∈ A, the density of a in u can be calculated as |u|a

|u| .
For Sturmian sequences, the letter densities always exist and are irrational ([28]).

Example 1.3. Let us choose a ternary alphabetA = {a, n, s}. A word over this alphabet is, for example,
ananas. Its Parikh vector (in alphabetical order of the letters) is

V⃗(ananas) =

|ananas|a
|ananas|n
|ananas|s

 =
32
1

 .
The prefixes are, for instance, a, ana and suffixes are anas, as. If we consider the periodic sequence

u = (ananas)ω = ananasananasana · · · , we can see that the return words to the factor na are Ru(na) =
{na, nasa}. If we consider the factor sa, we will find only one return word, which is sanana. A return
word can even be shorter than its factor. It happens when the occurrences of a factor overlap: for example,
Ru(ana) = {an, anas}.

We can also observe left and right special factors. A bispecial factor is, for example, the factor a,
because an, as, sa, na ∈ L(u). A longer bispecial factor is ana.

We can also see that, for eventually periodic words, there exists only a finite number of bispecial
factors because we cannot find a bispecial factor longer than the sum of lengths of preperiod and period.

We can also determine the letter densities: ρa =
3
6 =

1
2 , ρn =

2
6 =

1
3 , and ρs =

1
6 .

Morphisms

Let A,B be alphabets. A morphism χ is a map χ : A∗ → B∗ such that χ(uv) = χ(u)χ(v) for all
words u, v ∈ A∗. Therefore, the image of a word by morphism χ can be constructed by applying the
morphism χ to the individual letters of the word. Using this remark, we can apply the morphism χ even
on sequences by setting χ(u0u1u2 · · · ) := χ(u0)χ(u1)χ(u2) · · · .

A sequence v is a fixed point of a morphism χ if χ(v) = v. We say that the morphism χ is non-erasing
if χ(c) , ε for each c ∈ A.

A morphism χ : A∗ → B∗ is injective, if for any u, v ∈ A∗, we get χ(u) = χ(v)⇒ u = v. We say that
a morphism χ is primitive, if there exists n ∈ N such that

(∀a ∈ A)(∀b ∈ B)(|χn(a)|b > 0),

i.e. there exists n ∈ N such that image of any letter fromA under χn contains every letter from B at least
once.

If we consider a word u over a binary alphabet {0, 1}, then the complement of u, denoted by ū is
obtained as an image of u under the morphism that maps 0→ 1 and 1→ 0.

Example 1.4. A well-known aperiodic sequence is the Fibonacci sequence. It is the fixed point of the
morphism

φF : a→ b,

b→ ba.

We can see that φF is non-erasing, injective and also from the form of φ2
F , we can say that φF is also

primitive. We would like to note here that the predominant form of φF in the literature often uses different
letters (usually 0, 1), or switches a, b. This does not have any impact on the properties we study.

Prefixes of the Fibonacci sequence of arbitrary length can be generated by recursive application of
φF to the letter b.

b→ φF(b) = ba→ φF(ba) = bab→ φF(bab) = babba→ φF(babba) = babbabab · · ·
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2 Repetitions in words and sequences
In the previous chapter, we have already used the notation (v)ω for the infinite repetition of the word v.

We will now define an exponent.
Given a natural number n ∈ N and a word s, then sn is a concatenation of n instances of s, for

example, s4 = ssss. Specially, s2 = ss is often called a square and s3 is called a cube. The exponent can
also be a rational number; if we take ℓ = |s|, then for any k

ℓ ∈ Q, we obtain s
k
ℓ by taking the prefix of

length k of the sequence sω.
Reversely, if z is a prefix of uω, where u is the shortest possible period, then we can write z = ue,

with e = |z|
|u| called exponent.

Example 2.1. We will once again use the word ananas:

(ananas)3 = ananasananasananas,

(ananas)
1
6 = a,

(ananas)
5
3 = (ananas)

10
6 = ananasanan.

Another example is pulp = (pul)
4
3 or onion = (oni)

5
3 .

The critical exponent of a sequence u is defined as

E(u) = sup{e ∈ Q : there exist nonempty factors x, y ∈ L(u) such that xe = y}.

If the critical exponent is +∞, then the asymptotic critical exponent is also +∞. Otherwise, we define
the asymptotic critical exponent as

E∗(u) = lim
n→+∞

sup {e ∈ Q : there exist nonempty factors x, y ∈ L(u), where |x| > n, and xe = y}.

It is obvious that for any sequence u, we have E∗(u) ≤ E(u). Also, if we consider an eventually
periodic sequence u = v(u)ω, we get E∗(u) = E(u) = +∞, because un ∈ L(u) for all n ∈ N. Therefore,
we are interested only in aperiodic sequences.

The next theorem shows that we do not need to take into account all possible factors, only the bispe-
cial factors and their shortest return words.

Theorem 2.2 ([15]). Let u be a uniformly recurrent aperiodic sequence. Let (wn) be a sequence of all
bispecial factors ordered by their length. For every n ∈ N, let vn be a shortest return word to wn in u.
Then

E(u) = 1 + sup
n∈N

{
|wn|

|vn|

}
and E∗(u) = 1 + lim sup

n→+∞

|wn|

|vn|
. (2.1)
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Part I

Minimal asymptotic critical exponent of
balanced sequences
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3 Sturmian sequences
Sturmian sequences form one of the most known classes of sequences over a binary alphabet. There-

fore, there exist many equivalent definitions.

Definition 3.1 ([29]). Sturmian sequences are aperiodic balanced sequences over a binary alphabet.

In the thesis, we will consider Sturmian sequences over the alphabetA = {a, b}.
For an arbitrary Sturmian sequence u and any n ∈ N0, there are exactly n + 1 different factors

of length n. This also means that for any n ∈ N0, there is exactly one left and one right special factor
of length n in u. Another equivalent definition can be found in [35]: a sequence u is Sturmian if and only
if each factor of u has exactly two return words.

The Sturmian sequences are recurrent and can therefore be written as a concatenation of return words
to any prefix. Formally, let u be a prefix of u and denote r, resp. s, its return word, which is, resp. is
not, a prefix of u. Then u can be written as a sequence over an alphabet A = {r, s}. This sequence is
called a derived sequence of u to a factor u, denoted du(u). We can also construct a derived sequence to
a factor u that is not a prefix of u by omitting the prefix up to the first occurrence of u in u.

For any factor u of a Sturmian sequence u, the derived sequence du(u) is also Sturmian, see [4].
In the following chapters, we shall keep the notation that the first element of the Parikh vector is

the number of occurrences of the letter a, resp. s, and the second element is the number of occurrences
of the letter b, respectively the letter r.

Definition 3.2. A Sturmian sequence u is standard if each prefix of u is a left special factor.

Theorem 3.3 ([28]). If u is a Sturmian sequence, then there exists a standard Sturmian sequence u′ such
that L(u) = L(u′).

We want to compute the asymptotic critical exponent, therefore we are interested only in the language
of u. Because of that, we will consider only standard Sturmian sequences in the rest of the thesis.

We will define two morphisms to help us work with standard Sturmian sequences:

G : a→ a, D : a→ ba,

b→ ab, b→ b.

Both of morphisms G,D are non-erasing, injective, but not primitive, since, for example, for any n ∈ N,
Gn(a) = a, i.e. it does not contain b.

Remark. We can see that for any word w over an alphabet {a, b}, we get |G(w)|a = |w|a + |w|b = |w| and
|G(w)|b = |w|b. Similarly for D, we get |D(w)|b = |w|a + |w|b = |w| and |D(w)|a = |w|a.

Theorem 3.4 ([24]). For every standard Sturmian sequence u, there is a uniquely given directive se-
quence ∆ = ∆0∆1∆2 · · · ∈ {G,D}N0 of morphisms and a sequence (u(n))n∈N of standard Sturmian se-
quences such that

u = ∆0∆1 · · ·∆n−1
(
u(n)

)
for every n ∈ N.

Both G and D occur in the sequence ∆ infinitely often.

Since G and D occur infinitely often, we can write the directive sequence in one of the forms
∆ = Da1Ga2 Da3 · · · or ∆ = Ga1 Da2Ga3 · · · , where for every i ∈ N, ai ∈ N. Following from the previ-
ous remark, if the directive sequence of u starts with D, then b is the most frequent letter in u.
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Definition 3.5. If u is a standard Sturmian sequence with the directive sequence ∆ = Da1Ga2 Da3 · · ·

or ∆ = Ga1 Da2Ga3 · · · , we say that the slope of u is θ ∈ (0, 1) determined by the continued fraction
expansion in the form

θ = [0, a1, a2, a3, a4, . . . ] =
1

a1 +
1

a2 +
1

a3 +
1

a4 +
. . .

.

Given continued fraction expansion θ = [0, a1, a2, a3, a4, . . . ], we define the sequences (pn)n≥−1 and
(qn)n≥−1, which will be useful for the next calculations. The sequences satisfy the following recurrence
relation

Xn+1 = an+1Xn + Xn−1 for n ≥ 0, (3.1)

where Xn represents either pn or qn, with initial conditions p−1 = 1, p0 = 0, q−1 = 0, q0 = 1. We also
define a sequence (Qn)n≥−1 by Qn = pn + qn. This sequence can also be computed using the recurrence
relation (3.1) with Q−1 = 1 = Q0. It is well known that θ = limn→∞

pn
qn
.

Example 3.6. We will consider the Fibonacci sequence which is the fixed point of the morphism

φF : a→ b,

b→ ba.

This morphism does not correspond to any of the morphisms G and D. However, the morphism φ2
F

can be written as a concatenation of these two morphisms.

φ2
F : a→ ba, (DG) : a→ D(a) → ba,

b→ bab. b→ D(ab)→ bab.

Therefore, ∆ = (DG)ω, θ = [0, (1)ω], and the sequences (pn) and (qn) satisfy the relations

pn = pn−1 + pn−2, qn = qn−1 + qn−2

with p0 = 0, p1 = 1 and q0 = 1, q1 = 1. Therefore, pn = Fn and qn = Fn+1, where Fn denotes
the Fibonacci numbers.

The elements of Fibonacci sequence can be calculated as

Fn =

√
5

5

1 +
√

5
2

n

−

√
5

5

1 −
√

5
2

n

,

therefore,

θ = lim
n→+∞

Fn

Fn+1
=

2

1 +
√

5
=

√
5 − 1
2

=
1
τ
,

where τ is the golden ratio.

The slope θ of u has more interesting properties, the most important ones for us are summarized in
the next theorem.

Theorem 3.7. Let b be the most frequent letter of a standard Sturmian sequence u with slope θ. Then

1. ([28]) θ = ρa
ρb

,

2. ([12]) There exists u ∈ L(u) such that |u|a = ℓ and |u|b = k if and only if k, ℓ ∈ N0 and

|ℓ − kθ| < (1 + θ).
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3.1 Bispecial factors and their return words

Considering a standard Sturmian sequence u, we know that each left special factor is a prefix of
u. Therefore, the bispecial factors, which are both left and right special factors, are also prefixes of u.
The Sturmian words are closed under reversal, i.e. if u is a factor of u, then uR is also a factor of u,
see [36]. In particular, this means that if u ∈ L(u) is a left special factor, then uR ∈ L(u) is a right special
factor. Therefore, the bispecial factors in u are exactly the palindromic prefixes of u. Each bispecial
factor has exactly two return words, one of them is a prefix of u, denoted by r, and the second one is
denoted by s.

Theorem 3.8 ([15]). Suppose that u is a standard Sturmian sequence whose directive sequence begins
with D. Let θ = [0, a1, a2, . . . ] be the slope of u and z be a bispecial factor of u. Let r (resp. s) denote
the return word to z which is (resp. is not) a prefix of u. Then

1. there exists a unique pair (N,m) ∈ N2
0 with 0 ≤ m < aN+1 such that the Parikh vectors of r, s and z

are respectively

V⃗(r) =
(
pN

qN

)
, V⃗(s) =

(
mpN + pN−1
mqN + qN−1

)
, V⃗(z) = V⃗(r) + V⃗(s) −

(
1
1

)
; (3.2)

2. the slope of the derived sequence du(z) is

θ′ = [0, aN+1 − m, aN+2, aN+3, . . .].

Remark. Let z be the n-th bispecial of a standard Sturmian sequence when ordered by length. Then,
using the same notation as in Theorem 3.8, the pair (N,m) assigned to the bispecial factor z is defined by
the following relation:

n = a0 + a1 + · · · + aN + m, where a0 = 0 and m < aN+1.

This assignment is therefore bijective.

Example 3.9. Let us continue with Example 3.6. We already know that pn = Fn and qn = Fn+1, where
Fn denotes the Fibonacci number.

Since 0 ≤ m < an = 1 for all n ∈ N, we get m = 0 for every bispecial factor. So, the Parikh vectors
of the N-th bispecial factor uN and its return words r, s are

V⃗(r) =
(
pN

qN

)
=

(
FN

FN+1

)
,

V⃗(s) =
(
pN−1
qN−1

)
=

(
FN−1
FN

)
,

V⃗(uN) =
(
FN + FN−1 − 1
FN+1 + FN − 1

)
=

(
FN+1 − 1
FN+2 − 1

)
.

The prefix of the Fibonacci sequence is

babbabab babba babbabab babbabab babba babbabab babba babbabab.

So, for example, the third bispecial is babbab (as can be seen from the underlined occurrences) and its
length is indeed F5 + F4 − 2 = 5 + 3 − 2 = 6.
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4 Balanced sequences
We have already said that Sturmian sequences are aperiodic balanced sequences over a binary alpha-

bet. Even more interesting is that recurrent aperiodic balanced sequences over an arbitrary alphabet can
be derived from Sturmian sequences by a process called colouring. Before we get to it, we will need
some definitions.

Definition 4.1. A sequence y is a constant gap sequence if for each letter c occurring in y there is
a positive integer denoted by gapy(c) such that the distance between any two consecutive occurrences of
c in y is gapy(c).

We can see that any constant gap sequence is periodic, the minimum length of the period is denoted
by Per(y) and it is equal to the least common multiple of gapy(c) for all c ∈ A.

Definition 4.2. Let u be a sequence over {a, b}, y and y′ be arbitrary sequences. The colouring of u by y
and y′ is the sequence v = colour(u, y, y′) obtained from u by replacing the subsequence of all a’s with
y and the subsequence of all b’s with y′.

Theorem 4.3 ([20]). A recurrent aperiodic sequence v is balanced if and only if v = colour(u, y, y′) for
some Sturmian sequence u and constant gap sequences y and y′ over two disjoint alphabets.

IfA and B are the two disjoint alphabets, we will use the notation π for a "discolouration map", i.e.,
π : A∪B → {a, b} is a morphism mapping

a 7→ a for all a ∈ A,

b 7→ b for all b ∈ B.

Let u be a Sturmian sequence, y and y′ two constant gap sequences over disjoint alphabets and let
v = colour(u, y, y′). Then u = π(v), resp. for any v ∈ L(v), π(v) ∈ L(u).

This theorem allows us to work only with a Sturmian sequence and two constant gap sequences
when studying a balanced sequence. If we consider only standard Sturmian sequences (and the following
theorem allows us to do so), we can describe any aperiodic balanced sequence by the slope θ and two
finite words representing periods of constant gap sequences y and y′.

Theorem 4.4 ([12]). Let u, u′ be two Sturmian sequences such that L(u) = L(u′) and y and y′ be two
constant gap sequences over disjoint alphabets. Let v = colour(u, y, y′) and v′ = colour(u′, y, y′). Then
L(v) = L(v′).

Example 4.5. The sequence (01)ω is balanced. On the other hand, the sequence v = (0110)ω is not
because 00, 11 ∈ L(v) has the same length and the number of ones differs by 2.

The sequence (010203)ω is a constant gap sequence over a 4-letter alphabet. For 0, the gap is 2, and
it is 6 for the other letters. We can therefore see that 0 is the longest bispecial factor in the sequence.

On the other hand, the sequence (101)ω is not a constant gap sequence.
Now we will consider a standard Sturmian sequence u with the directive sequence ∆ = (DG2)ω. Its

prefix can be constructed by repeated application of the morphisms DG2 on b:

DG2 : a→ DG(a) = D(a) = ba,

b→ DG(ab) = D(aab) = babab.
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Therefore, the following word is a prefix of u:

DG2DG2(b) = DG2(babab) = babab ba babab ba babab.

Next, we will show the process of colouring the prefix by two constant gap sequences y = (34)ω and
y′ = (0102)ω. We will obtain a prefix of a balanced sequence v = colour(u, (34)ω, (0102)ω), which is
a sequence over a 5-letter alphabetA∪̇B = {0, 1, 2, 3, 4}.

u = b a b a b b a b a b a b b a b a b a b · · ·
colouring of a: 3 4 3 4 3 4 3 4 · · ·

colouring of b: 0 1 0 2 0 1 0 2 0 1 0 · · ·

v = 0 3 1 4 0 2 3 0 4 1 3 0 2 4 0 3 1 4 0 · · ·

Factors of length 5 are, for example, 03140, 31402, 23041, 30240, 02403. The factor 03140 contains two
0’s, therefore, since the sequence v is balanced, there is no factor w ∈ L(v) of length 5 such that |w|0 = 0.
Since there are other factors of length five containing only one 0, there is no factor w ∈ L(v) of length 5
such that |w|0 ≥ 3.

We can also see that the factor bab is coloured by many possible combinations of letters from y and
y′, mainly 031, 140, 230, 041, 130, 240. Therefore, we can see that the return words to a factor w ∈ L(v)
will be longer than the return words to the factor π(w) in u and not every occurrence of π(w) in u forces
occurrence of w in v.

4.1 Bispecial factors and their return words

Using Theorem 4.3, we can obtain many characteristics of balanced sequences from the characteris-
tics of Sturmian sequences.

Theorem 4.6 ([12]). Let u be a standard Sturmian sequence, y and y′ constant gap sequences over
disjoint alphabets, and let v = colour(u, y, y′). Let w ∈ L(v), u ∈ L(u) be factors such that π(w) = u.
Then,

1. if u is a bispecial factor of u, then w is a bispecial factor of v.

2. If w is a bispecial factor of v and |u|a ≥ Per(y) and |u|b ≥ Per(y′), then u is a bispecial factor of u.

This theorem combined with Theorem 3.8 gives us a formula for the lengths of bispecial factors in
a recurrent aperiodic balanced word. Now, we need a formula for the length of a shortest return word to
a given bispecial factor.

Let u, y, y′, v be the same as in Theorem 4.6. Let x be a bispecial factor in u, y be a bispecial factor
in v such that π(y) = x and we want to find the necessary conditions for z to be a return word to y in v.
Let r, s be the two return words to x in u.

1. Let i, j be the occurrences of y in v. Then i, j are also occurrences of x in u and the factor
uiui+1 . . . u j−1 is a concatenation of return words r, s, because uiui+1 . . . u j−1x has x as a prefix
and as a suffix, although it can appear somewhere in the middle, too.

2. Moreover, y can be obtained only by colouring the factor x in u, and for the factors uiui+1 . . . ui+|x|−1
and u ju j+1 . . . u j+|x|−1 to be coloured by the same letters in y and y′ (so that we get y and not some
other factor w such that π(w) = x), we have to be at the same positions in the periods of y and y′.
Therefore, for x "long enough" the number of a’s and b’s in uiui+1 . . . u j−1 must be divisible by
Per(y) and Per(y′), respectively.
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Theorem 4.7 ([12]). Let u be a Sturmian sequence, y and y′ be two constant gap sequences over disjoint
alphabets, and v = colour(u, y, y′). Let u ∈ L(u) be a bispecial factor such that |u|a ≥ Per(y) and
|u|b ≥ Per(y′). Let r, resp. s be the return word to u in u which is, resp. is not, a prefix of u. We denote
S(u) = S1(u) ∩ S2(u) ∩ S3, where

S1(u) =
{(
ℓ

k

)
: kV⃗(r) + ℓV⃗(s) =

(
0 mod Per(y)
0 mod Per(y′)

)}
,

S2(u) =
{(
ℓ

k

)
:
(
ℓ

k

)
is a Parikh vector of a factor of derived sequence du(u)

}
,

S3 =

{(
ℓ

k

)
: 1 ≤ k + ℓ ≤ Per(y)Per(y′)

}
.

Then a shortest return word v ∈ L(v) to any bispecial factor w ∈ L(v), where π(w) = u, has length

|v| = min
{

k|r| + ℓ|s| :
(
ℓ

k

)
∈ S(u)

}
.

Theorem 4.7 says that the conditions mentioned above are sufficient. The set S2(u) ensures that
the concatenation of return words r, s are allowed in u, i.e. Item 1 above is fulfilled. The set S1(u) then
ensures that after reading this concatenation, we are at the same positions in y and y′, as discussed in
Item 2 above. The set S3 only limits the number of pairs (ℓ, k)T we need to consider. And for v to be
a shortest return word, we consider the shortest factor complying with the restrictions above.

Example 4.8. Let us recall the prefix of the balanced sequence generated in Example 4.5, we obtained
v = 0314023041302403140 · · · as a colouring of u = bababbabababbababab · · · by the constant gap
sequences y = (34)ω and y′ = (0102)ω.

If we consider the factor 30, we can see from the underlined occurrences that it is a bispecial factor
of v.

However, π(30) = ab is not a bispecial in u because the letter a is always preceded by b in u.
The conditions of Theorem 4.6 were not fulfilled.

Now we will choose the bispecial factor u = bababbabab. To find the return words, we will need
a longer prefix of u and of v. It can be found by applying DG2 on the prefix we have already found and
then colouring it.

u = DG2(babab ba b · · · ) = babab ba babab ba babab babab ba babab · · ·

v = colour(u, (34)ω, (0102)ω) = 03140 23 04130 24 03140 23041 03 24031 · · ·

We can find the return words in the prefix, they are r = bababba and s = babab. Now the set S1(u)
has the form

S1(u) =
{(
ℓ

k

)
: k

(
3
4

)
+ ℓ

(
2
3

)
=

(
0 mod 2
0 mod 4

)}
.

For example, k = 2, ℓ = 0 is in the set S1(u).
The prefix of the derived sequence du(u) can be constructed from u and we get du(u) = rrsr · · ·.

Therefore, k = 2, ℓ = 0 is also in the set S2(u).

Since 2 + 0 < 2 · 4, the pair k = 2, ℓ = 0 is also in the set S3 and therefore
(
2
0

)
∈ S(u).

If we set k ∈ {0, 1}, then the second equation for S1(u) forces ℓ = 4a for a ∈ N and these pairs are
not in the set S2(u) since the sequence du(u) is Sturmian with r more frequent letter.

Therefore, the pair k = 2, ℓ = 0 defines the length of a shortest return word to z ∈ L(v), π(z) = u.
The length can be computed as k|r| + ℓ|s| = 2 · 7 = 14. For example, the shortest return word to
z = 03140 23 041 is 03140 23 04130 24.
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5 Construction of graph of admissible tails
Notation. In this chapter, we will always denote u a standard Sturmian sequence with slope in the
form θ = [0, a1, a2, a3, . . . ], where the directive sequence starts with D. Hence, the letter b is the most
frequent in u. The sequences y and y′ will be two constant gap sequences over disjoint alphabets and
v := colour(u, y, y′). We will also use the symbols P = Per(y) and P′ = Per(y′).

For given N ∈ N, we denote AN :=
(

pN−1 pN
qN−1 qN

)
and δN = [aN+1, aN+2, . . . ].

Remark. The recurrence relation between AN and AN+1 can be written in the form

AN+1 = AN

(
0 1
1 aN+1

)
= AN

(
0 1
1 ⌊δN⌋

)
. (5.1)

Convention: We will write (
a1
a2

)
=

(
b1
b2

)
mod

(
P
P′

)
if

a1 ≡ b1 mod P ∧ a2 ≡ b2 mod P′,

and (
a11 a12
a21 a22

)
=

(
b11 b12
b21 b22

)
mod

(
P
P′

)
if (

a1i

a2i

)
=

(
b1i

b2i

)
mod

(
P
P′

)
∀i ∈ {1, 2}.

If we consider a bispecial factor u with assigned pair (N,m), we can combine Theorem 4.7 with
Theorems 3.8 and 3.7, and obtain the following definition.

Definition 5.1. Let N ∈ N and 0 ≤ m < aN+1. Then to a pair (N,m), we assign the sets

S1(N,m) =
{(
ℓ

k

)
∈ N2

0 : AN

(
1 0
m 1

) (
ℓ

k

)
=

(
0
0

)
mod

(
P
P′

)}
,

S2(N,m) =
{(
ℓ

k

)
∈ N2

0 : |ℓ(δN − m) − k| < δN − m + 1 and k + ℓ > 0
}
,

S3 =

{(
ℓ

k

)
∈ N2

0 : 1 ≤ k + ℓ ≤ PP′
}
,

S(N,m) = S1(N,m) ∩ S2(N,m) ∩ S3.

Combining this with Theorem 2.2 results in the following theorem.

Theorem 5.2 ([12]). Let u be a standard Sturmian sequence with slope θ = [0, a1, a2, a3, . . . ] and the di-
rective sequence starting with D. Let y and y′ be two constant gap sequences over disjoint alphabets,
and v = colour(u, y, y′). We define the sequence (ΦN)N∈N as

ΦN := max

 1 + m + QN−1
QN

k + ℓm + ℓQN−1
QN

:
(
ℓ

k

)
∈ S(N,m) and 0 ≤ m < aN+1

 . (5.2)

Then E∗(v) = 1 + lim supn→+∞ΦN .

This theorem shows us that the asymptotic critical exponent of v depends only on the periods of y
and y′, not on their structure. The same is not true for the critical exponent.
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5.1 Equivalence on unimodular matrices

We will now focus on the set S1(N,m) and try to reduce the number of matrices AN necessary for
the computation of E∗(v). Let us start with some notation.

Notation. For given periods P and P′, we will use the notation H, L,Y,Y ′ such that

H = gcd(P, P′), P = HY, P′ = HY ′, L = lcm(P, P′) = YY ′H. (5.3)

We always consider L > 1 because for L = 1 the sequence u and v = colour(u, y, y′) have the same
asymptotic critical exponent (they are the same up to letter symbols) and the (minimal) asymptotic critical
exponent for Sturmian sequences is already known.

Lemma 5.3. For all N ∈ N0, the matrix AN is unimodular and A−1
N ∈ Z

2×2.

Proof. We can see that det AN = pN−1qN−pNqN−1. For A0, we obtain det A0 = p−1q0−p0q−1 = 1·1−0 =
1. Let us consider N ≥ 0. Then

det AN+1 = pNqN+1 − pN+1qN = pN(aN+1qN + qN−1) − qN(aN+1 pN + pN−1)

= pNqN−1 − qN pN−1 = − det AN .

Therefore det AN = (−1)N . Moreover, the inverse of a matrix in Z2×2 can be computed as(
pN−1 pN

qN−1 qN

)−1

=
1

pN−1qN − pNqN−1

(
qN −pN

−qN−1 pN−1

)
= (−1)N

(
qN −pN

−qN−1 pN−1

)
∈ Z2×2 .

□

Using the lemma above, we get the following statement. It will help us create classes of equivalence
for matrices AN such that S1(N,m) will be the same for each representative of the class [AN]≡.

Lemma 5.4 ([16]). Let A ∈ Z2×2 be a unimodular matrix and ℓ, k ∈ Z. Then

A
(
ℓ

k

)
=

(
0
0

)
mod

(
P
P′

)
if and only if there exist λ, κ ∈ Z such that

(
ℓ

k

)
= H

(
λ

κ

)
and A

(
λ

κ

)
=

(
0
0

)
mod

(
Y
Y ′

)
.

Therefore, solving equation A
(
ℓ

k

)
=

(
0
0

)
mod

(
P
P′

)
, where A =

(
a11 a12
a21 a22

)
, is equivalent to finding

the solution of MA

(
λ

κ

)
=

(
0
0

)
mod

(
Y
Y ′

)
with matrix

MA =

(
a11 mod Y a12 mod Y
a21 mod Y ′ a22 mod Y ′

)
and setting

(
ℓ

k

)
= H

(
λ

κ

)
.

Remark. Since there is a bijection between solutions of

A
(
ℓ

k

)
=

(
0
0

)
mod

(
P
P′

)
and of MA

(
λ

κ

)
=

(
0
0

)
mod

(
Y
Y ′

)
,

we will work only with the representation of a matrix by MA in the program and in the figures in this
thesis.
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In fact, even two matrices A, B, where MA , MB, can have identical sets of solutions of equation
MA

(
λ
κ

)
=

(
0
0

)
mod

(
Y
Y′

)
as shown in the following example.

Example 5.5. If we set the periods P = Y = 4 and P′ = Y ′ = 1, we can check that the matrices
A = MA =

(
1 2
0 1

)
and B = MB =

(
3 2
1 1

)
have the same set of solutions of the equations

A
(
λ

κ

)
=

(
0
0

)
mod

(
Y
Y ′

)
, B

(
λ

κ

)
=

(
0
0

)
mod

(
Y
Y ′

)
.

Since Y ′ = 1, we need to satisfy only the first row because the second row holds for any integers λ, κ.
The equation for A gives us

0 ≡ 1λ + 2κ mod 4 .

If we multiply both sides by 3, which is coprime to 4 (so the multiplication does not change the solution),
we get

0 ≡ 3λ + 6κ ≡ 3λ + 2κ mod 4 ,

which is the same as the first equation for B.

We will therefore use the following equivalence to group such matrices MA,MB together into the same
class of equivalence.

Definition 5.6. Let A and B be unimodular matrices in Z2×2. We say that A is equivalent to B, we write
A ≡ B, if there exist c ∈ Z coprime with Y and c′ ∈ Z coprime with Y ′ such that(

c 0
0 c′

)
A = B mod

(
Y
Y ′

)
. (5.4)

The class of equivalence containing A will be denoted [A]≡.

Remark. The relation ≡ is an equivalence. Obviously A ≡ A. Also, the set of elements {c ∈ Z :
c coprime with z} is closed under multiplication and inversion modulo z for any z ∈ Z, giving us the two
remaining properties, i.e., transitivity and symmetry, required for ≡ to be an equivalence. It is true for
any z ∈ Z, especially for z ∈ {Y,Y ′}.

Remark. We can also combine the definition with the previous lemma because if A ≡ B, then MA ≡ MB.

The reason for the definition of ≡ in this way is revealed in the following lemma.

Lemma 5.7 ([16]). Let ℓ, k ∈ N and let A and B be unimodular matrices in Z2×2 such that A ≡ B. Then

• A
(
ℓ

k

)
=

(
0
0

)
mod

(
P
P′

)
if and only if B

(
ℓ

k

)
=

(
0
0

)
mod

(
P
P′

)
,

• AC ≡ BC for any unimodular matrix C ∈ Z2×2.

5.2 Lower bound on the asymptotic critical exponent

The next step will be to use the equivalence ≡ to determine the lower bound on the asymptotic critical
exponent for all balanced sequences v = colour(u, y, y′), where u is arbitrary Sturmian, but P and P′ are
fixed. Since for a given size of the alphabet we have only a finite number of possible periods of constant
gap sequences over the alphabet, this approach will allow us to find the lower bound.
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Definition 5.8 ([16]). Let A ∈ Z2×2 be unimodular and β > 0. We say that δ > 1 is (1 + β)-forcing for
the class [A]≡ if there exist m, k, ℓ ∈ N0, ℓ + k > 0, such that

P1: A
(
1 0
m 1

) (
ℓ

k

)
=

(
0
0

)
mod

(
P
P′

)
;

P2: m + 1 < δ and |ℓ(δ − m) − k| < δ − m + 1 ;

P3: – if k = ℓ, then 1
k > β;

– if k > ℓ, then 1+m
k+mℓ ≥ β;

– if k < ℓ, then 2+m
k+(m+1)ℓ ≥ β.

The set of (1 + β)-forcing δ’s for the class [A]≡ is denoted F (β, A).

Lemma 5.7 tells us that the definition is correct because only P1 depends on the matrix A and we
know that the solutions are the same for equivalent matrices. We can also see that for A = AN , the fulfill-
ment of P1 means (ℓ, k)T ∈ S1(N,m) and the condition P2 means (ℓ, k)T ∈ S2(N,m). The reason behind
P3 and the term (1 + β)-forcing will be explained in the next theorem.

Theorem 5.9 ([16]). Let v = colour(u, y, y′), where u is a Sturmian sequence with the slope θ =

[0, a1, a2, a3, . . .], and let β be a fixed positive number.
Assume that there exist infinitely many N ∈ N such that δN is (1 + β)-forcing for the class [AN]≡.

Then E∗(v) > 1 + β.

5.3 Admissible tails of continued fraction expansions

In this section, we want to find all balanced sequences v = colour(u, y, y′) such that the asymptotic
critical exponent of v is E∗(v) ≤ 1 + β for given β > 0. Theorem 5.9 shows us that the best way

to proceed is to guarantee that δN is not (1 + β)-forcing for the class [AN]≡ for any N large enough.

Remark. In Definition 5.8, only the property P2 depends on δ. Hence, if a triplet (m, k, ℓ) satisfies
the properties P1 and P3, the property P2 means that the interval

(m + k − 1,+∞) ∩ (m + 1,+∞) if ℓ = 0;

(m + k−1
2 ,+∞) ∩ (m + 1,+∞) if ℓ = 1;

(m + k−1
ℓ+1 ,m +

k+1
ℓ−1 ) ∩ (m + 1,+∞) if ℓ ≥ 2;

(5.5)

belongs to the set F (β, A). Therefore, the set F (β, A) is a union of several open intervals. Since we want
to consider δ as a tail of the continued fraction expansion of slope θ, it cannot be rational. This means
that even the boundaries of the intervals in (5.5) are not suitable candidates.

This leads to the following definition.

Definition 5.10 ([16]). Let β > 0 and A ∈ Z2×2 be unimodular. We denote

D(β, A) = {δ > 1 : δ is NOT in the closure of F (β, A)}.

Using this notation, we can see that E∗(v) ≤ 1+β implies that for any N large enough, δN ∈ D(β, AN).
In the computer program, we do not want to work with unbounded intervals. The following lemma

shows that we do not have to.

Lemma 5.11 ([16]). Let A ∈ Z2×2 be a unimodular matrix. Let β > 0 and L = lcm(P, P′ ) > 1. Then
the set D(β, A) is a subset of (1, ⌈L(1 + β)⌉ − 2). In particular, D(β, A) is bounded for each equivalence
class [A]≡.

34



Not only this lemma ensures that we will not have to work with unbounded intervals, but it gives us
also a bound on m. If m ≥ ⌈L(1 + β)⌉ − 2, then all intervals in Equation (5.5) lie in the complement of
(1, ⌈L(1 + β)⌉ − 2) and therefore will not changeD(β, A).

Moreover, since we have to consider only a finite number of triplets m, k, ℓ to generateD(β, A), the set
D(β, A) consists of a finite number of intervals.

Example 5.12. Consider P = 2, P′ = 12 and β = 0.14095. So Y = 1, Y ′ = 6, H = 2 and L = 12.
For this setting, one of the matrices we need to consider has MA =

(
0 0
2 1

)
.

From Lemma 5.11, we haveD(β, A) ⊂ (1, ⌈12 ·1.14095⌉−2) = (1, 12). We want to find the solutions
(m, k, ℓ) such that

• m < 12

•
(
ℓ

k

)
= 2

(
λ

κ

)
, where (

0 0
2 1

) (
1 0
m 1

) (
λ

κ

)
=

(
0 mod 1
0 mod 6

)
• and

– if k = ℓ, then 1
k > 0.14095, i.e., k ≤ 7;

– if k > ℓ, then 1+m
k+mℓ ≥ 0.14095;

– if k < ℓ, then 2+m
k+(m+1)ℓ ≥ 0.14095.

There are several solutions, we will list only the ones that impact the resultingD(β, A).

(m, k, ℓ) Adding to F (β, A) ModifiedD(β, A)

(0, 4, 4)
(
0 + 4−1

4+1 , 0 +
4+1
4−1

)
∩ (1 + 0,+∞) =

(
1, 5

3

) (
5
3 , 12

)
(1, 6, 2)

(
1 + 6−1

2+1 , 1 +
6+1
2−1

)
∩ (1 + 1,+∞) =

(
8
3 , 8

) (
5
3 ,

8
3

)
∪ (8, 12)

(1, 6, 6)
(
1 + 6−1

6+1 , 1 +
6+1
6−1

)
∩ (1 + 1,+∞) =

(
2, 12

5

) (
5
3 , 2

)
∪

(
12
5 ,

8
3

)
∪ (8, 12)

(2, 16, 2)
(
2 + 16−1

2+1 , 2 +
16+1
2−1

)
∩ (2 + 1,+∞) = (7, 19)

(
5
3 , 2

)
∪

(
12
5 ,

8
3

)
Table 5.1: The triplets (m, k, ℓ) that determine the setD(β, A).

The final setD(β, A) =
(

5
3 , 2

)
∪

(
12
5 ,

8
3

)
.

5.4 Graph of admissible tails

Now, we have all we need to construct the graph of admissible tails.
We can see that the number of classes of equivalence ≡ for unimodular matrices in Z2×2 is finite.

Also, we are able to construct these classes, the exact algorithm can be found in Appendix A.
Now we will use the relation between [AN]≡ and [AN+1]≡ to construct an oriented graph that will

help us determine whether there exists a recurrent aperiodic balanced sequence v such that E∗(v) ≤ 1+ β
and if yes, find at least one such.

Definition 5.13. Let β > 0 and P, P′ ∈ N. An oriented graph (V, E) is called the graph of (1 + β)-
admissible tails, and denoted Γβ, if

• the set of vertices V consists of classes of equivalence ≡;
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• a pair
(
[A]≡, [B]≡

)
labeled by interval (a, b) , ∅ belongs to the set E of oriented edges if (a, b) =

D(β, A) ∩ (k, k + 1) for some k ∈ N and B ∈ [A
(

0 1
1 ⌊a⌋

)
]≡.

Example 5.14. Let us generate the graph of admissible tails for P = 2, P′ = 4 and β = 1
2 . For this, we

have three classes of equivalence for matrices. The classes are represented by matrices MA, MB and MC

as discussed in the remark after Lemma 5.4.

MA =

(
0 0
0 1

)
with D(β, A) = (1, 4) ;

MB =

(
0 0
1 0

)
with D(β, B) = ∅ ;

MC =

(
0 0
1 1

)
with D(β,C) = (1, 4) .

So, the graph of admissible tails will have 3 vertices and 6 edges.
The first edge going from MA will have the label (1, 4) ∩ (1, 2) = (1, 2). Since[

MA

(
0 1
1 ⌊1⌋

)]
≡

=

[(
0 0
1 1

)]
≡

= [MC]≡,

this edge will go from MA to MC . We can find the other edges similarly, and, in the end, we will obtain
the graph depicted in Figure 5.1.

(
0 0
0 1

) (
0 0
1 0

)

(
0 0
1 1

)

(1,2)

(2,3)

(3,4)

(1
,2

)

(2,3)

(3,
4)

Figure 5.1: The graph of (1 + β)-admissible tails before reductions for P = 2, P′ = 4 and β = 1
2 .

The graph Γβ is finite. We have already discussed why the number of vertices is finite. Moreover, it
follows from Lemma 5.11 that for each vertex, the number of outgoing edges is finite.

We are able to rephrase Theorem 5.9 using the graph Γβ.

Theorem 5.15 ([16]). Let β > 0 and v = colour(u, y, y′), where u is a standard Sturmian sequence
with slope θ = [0, a1, a2, a3, . . .]. Assume that E∗(v) ≤ 1 + β. Then there exists an infinite oriented path
v0, e0, v1, e1, v2, e2, . . . in Γβ and N0 ∈ N such that for every N ∈ N

1. [AN+N0]≡ = vN;

2. aN+N0+1 = ⌊cN⌋, where cN is the left point of the edge label eN = (cN , dN).
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We are interested only in paths on which the vertices occur infinitely many times (we have finitely
many vertices and want to find an infinite path and any finite prefix can be included in the preperiod of θ).
Therefore, we will consider only the strongly connected components of graph Γβ, i.e., subgraphs with
an oriented path from each vertex to each vertex. In particular, if a component consists of exactly one
vertex, it has to contain a loop. The components not having an oriented cycle will be deleted from Γβ.

Remark. In particular, if the graph Γβ contains no oriented cycle for given β > 0 and P, P′ ∈ N, then
E∗(v) > 1 + β for every colouring v of a Sturmian sequence by constant gap sequences of periods P
and P′.

Example 5.16. If we continue with the graph in Example 5.14, Figure 5.1, we can see that no edge enters
the matrix MA =

(
0 0
0 1

)
and that no edge leaves the matrix MB =

(
0 0
1 0

)
. We can therefore delete all edges

except the loop and obtain the graph depicted in Figure 5.2.(
0 0
1 1

)
(2,3)

Figure 5.2: The graph of (1 + β)-admissible tails for P = 2, P′ = 4 and β = 1
2 after reduction to strongly

connected component.

5.5 Graph reductions

We have already talked about the reduction to strongly connected components. Now, we will show
two more simplifications – forward and backward reductions.

5.5.1 Forward reduction

The forward reduction works with the relation between δN and δN+1, that is,

δN = aN+1 +
1

δN+1
.

Therefore, if a class [AN]≡ has an edge to [AN+1]≡ determined by the interval (a, b), where a ≥ 1 and
b ≤ ⌊a⌋ + 1, then

δN = ⌊a⌋ +
1

δN+1

δN ∈ (a, b) ⇒
1

δN+1
∈ (a − ⌊a⌋, b − ⌊a⌋) .

If a < N, then δN+1 ∈

(
1

b − ⌊a⌋
,

1
a − ⌊a⌋

)
, (5.6)

if a ∈ N, then δN+1 ∈

(
1

b − ⌊a⌋
,+∞

)
. (5.7)

Remark. If both a and b are integers, we will obtain δN+1 ∈ (1,+∞), which does not bring any new
information nor any constraints.

The forward reduction has two parts. In the first part, we can delete edges that cannot be extended
into a suitable path in the graph; in the second, we change the labels of the edges.
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5.5.1.1 Edge deletion

Finding a suitable path in the graph means going recursively through the graph. In each step, we will
choose an edge and generate a new interval from it. Then we move along this edge to the next vertex,
intersect the interval with edge labels (but do not modify the edge labels in the graph) and check whether
we can get at least one non-empty intersection.

• If yes, we repeat the process recursively with this edge and the new interval as starting point up to
the specified recursion depth. If we reach the specified recursion depth, then we stop the process
and choose another edge as a new starting point.

• If not, we will return to the previous vertex and check another edge.

If we cannot reach the specified recursion depth because there does not exist a path, then we can delete
the edge that started this process. The algorithm can be found in Subsection A.6.1. After edge deletion,
we can again reduce the graph to strongly connected components.

5.5.1.2 Edge modification

The other part of the forward reduction allows us to modify the edges. As we have shown, every
edge going into the class [AN]≡ sets the boundaries on δN . Let us consider i-th edge going into the class
[AN]≡ labeled by (ai, bi). This interval generates the interval (ci, di) using equation (5.6). Then δN must
lie in the union

⋃n
i=1(ci, di), where n is the number of edges going into [AN]≡. Therefore, any label of an

edge going from [AN]≡ must be a subset of
⋃n

i=1(ci, di).
For each vertex, we can find all edges going into [AN]≡, find

⋃n
i=1(ci, di) and modify all labels going

from [AN]≡ accordingly. It is possible that this process will delete some edges, but even the modification
can help reduce the graph significantly when combined with edge deletion described above.

(
0 0
1 6

)

(
0 0
2 5

) (
0 0
1 12

)

(
0 0
4 3

)(
0 0
1 13

)

(
0 0
1 11

)(
0 0
1 4

)

(
0 0
4 1

)

(
5
3 , 2

)
(
7

2 , 113 )
(1,

2)(
5
2 ,

8
3

) (
1, 3

2

)
(
4

3 , 2 )(
7

3 , 3 )

(1, 2)

(
3
2 , 2

) (
3
2 , 2

)
(1, 2)

(2, 3)

Figure 5.3: Strongly connected component of the graph of admissible tails for P = 1, P′ = 16 and
β = 25

104 .

Example 5.17. Consider the graph in Figure 5.3 and the bold edge. The bold edge is the only edge en-
tering the vertex

(
0 0
1 11

)
and its label

(
3
2 , 2

)
forces any outgoing edge to be in the interval (1, 2). Therefore,

the red edge with the label
(

7
2 ,

11
3

)
can be completely removed.

If we consider the purple vertex
(

0 0
4 1

)
, it has two entering edges. Both edges, with labels

(
7
3 , 3

)
and(

4
3 , 2

)
, force the outgoing labels to be in the interval (1, 3). They do not modify the edge

(
5
2 ,

8
3

)
.

This process can be repeated for all edges. For example, the blue edge
(

5
3 , 2

)
forces the outgoing

edges to be in
(
1, 3

2

)
, therefore the edge

(
7
3 , 3

)
is removed and the edge

(
4
3 , 2

)
must be modified to

(
4
3 ,

3
2

)
.

And the blue edge
(
1, 3

2

)
forces the deletion of the next edge in the cycle.

Combining this, we obtain only one cycle depicted in Figure 5.4.
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(
0 0
1 6

)

(
0 0
2 5

)(
0 0
1 11

)(
0 0
1 4

)

(
0 0
4 1

)

(
5
3 , 2

)

(1,
2)(

5
2 ,

8
3

)
(
4

3 , 3
2

)
(

3
2 , 2

)

Figure 5.4: Strongly connected component of the graph of admissible tails for P = 1, P′ = 16 and
β = 25

104 after forward reduction.

5.5.2 Backward reduction

The forward reduction worked with how δN affects δN+1. On the other hand, the backward reduction
works with knowledge of the first p coefficients of δN−p and modifies the process used in the proof of
Theorem 5.9 to obtain more accurate boundaries.

Consider a path in the graph Γβ corresponding to θ = [0, a1, a2, . . . ]. Let us focus on a vertex [AN]≡
and denote xN =

QN−1
QN

. It follows from the recurrence relations that QN−1
QN
= [0, aN , aN−1, . . . , a1].

In Theorem 5.9, we only used that xN ∈ [0, 1] to prove that if (5.8) is satisfied and m, k, ℓ satisfy P1
from Definition 5.8, then ΦN > 1 + β.

1
k > β if k = ℓ ;

1+m
k+ℓm ≥ β if k > ℓ ;

2+m
k+ℓ(m+1) ≥ β if k < ℓ ;


⇒

1 + m + xN

k + ℓm + ℓxN
≥ min

{
1 + m + x

k + ℓm + ℓx
: x ∈ [0, 1]

}
≥ β. (5.8)

Let us refine the lower bound from (5.8). Using the recurrence relation (3.1) and choosing 0 ≤ p < N,
we can rewrite xN as

xN =
QN−1

QN
=

QN−1

aN QN−1 + QN−2
=

1
aN + xN−1

,

xN =
1

aN +
1

aN−1 +
1

. . . +
1

aN−p + xN−p−1

, where xN−p−1 ∈ [0, 1].

Therefore, with the knowledge of aN , . . . , aN−p, we can obtain better bounds on xN . Namely

xN ∈

{q′N−1 + p′N−1 · x

q′N + p′N · x
: x ∈ [0, 1]

}
=: [X,Y], where

p′N
q′N
= [0, aN−p, . . . , aN].

Then we can claim that if (5.9) is satisfied and m, k, ℓ satisfy P1, then ΦN > 1 + β.

1
k > β if k = ℓ ;

1+m+X
k+ℓ(m+X) ≥ β if k > ℓ ;

1+m+Y
k+ℓ(m+Y) ≥ β if k < ℓ .


⇒

1 + m + xN

k + ℓm + ℓxN
≥ min

{
1 + m + x

k + ℓm + ℓx
: x ∈ [X,Y]

}
≥ β. (5.9)
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We cannot use it directly for graph generation because we do not know the coefficients aN−p, . . . , aN at
the beginning. Even with the graph in hand, there might be more paths of length p to a vertex [AN]≡, and
the coefficients aN−p, . . . , aN are therefore not uniquely determined.

We will now demonstrate how to determine the left edge of the interval [X,Y] in such a way that
the above inequality holds for any choice of the path ending in [AN]≡. Let us denote by a′N the maximal
value of ⌊a⌋, where (a, b) is a label of an edge entering [AN]≡. Let us denote by [B]≡ the vertex which
is the starting point of the edge (a, b). Let a′N−1 be the minimal value of ⌊c⌋, where (c, d) is an edge
that enters [B]≡. Denote [C]≡ the vertex from which this edge leaves. We repeat the process from
the beginning, starting from [C]≡ and choosing maximal a′n−2 until we reach the desired number of
coefficients. Then we have xN ≥ minx∈[0,1][0, a′N , a

′
N−1, . . . , a

′
N−p + x].

So to find a better lower bound X on xN , we have to go backwards through the graph and find
alternately the maximal or the minimal label of an edge going into a given vertex.

Similarly if we wanted to find a better upper bound Y on xN , we would walk backwards through
the graph and find alternately the minimal or the maximal label (starting with the minimal) of an edge
going into a given vertex.

After we find the lower bound X and the upper bound Y and all m, k, ℓ satisfying the property P1
and the inequality from (5.9), these m, k, ℓ enlarge F (β, AN) as in Definition 5.5, resp. restrict D(β, AN)
to D′(β, AN) and change the labels of the edges that go from [AN]≡ in the graph. This process usually
does not delete edges, but can change some labels. Therefore, after backward reduction, we will repeat
forward reduction to get new labels.

Example 5.18. Let us consider the graph of (1+ β)-admissible tails for P = 2, P′ = 12 and β = 0.14095.
The graph after the reduction to strongly connected components is depicted in Figure 5.5. The forward
reduction was then preformed and the resulting graph can be found in Figure 5.6. We can see that
the forward reduction simplified the graph to only two connected cycles.
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(
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)
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)
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)
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8
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)
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7
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5
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7
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5

)
(
7
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)

(1, 2)
( 12

5
, 3
)

(
3
2 , 2

)

(
83 ,

145 )

Figure 5.5: The graph of admissible tails after reduction to strongly connected components for P = 2,
P′ = 12 and β = 0.14095.
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Figure 5.6: The graph of admissible tails after forward reductions for P = 2, P′ = 12 and β = 0.14095.

Let us show, how to determine the left side of the interval (X,Y) for p = 3.
If we consider the red vertex

(
0 0
2 1

)
, we can see that it has two entering edges, one with the label

(
7
3 ,

12
5

)
and one with the label

(
3
2 , 2

)
. Our first (resp. last) coefficient will therefore be a′N = max

{
⌊ 7

3⌋, ⌊
3
2⌋

}
= 2.

Now we move in reverse through the blue edge to the vertex
(

0 0
3 2

)
. We can see that there is only one

edge entering this vertex and so the next coefficient is a′N−1 = ⌊
7
5⌋ = 1. Similarly, the last (resp. first)

coefficient is a′N−2 = ⌊
5
3⌋ = 1.

So, we set
p′N
q′N
= [0, 1, 1, 2] = 3

5 and
p′N−1
q′N−1
= [0, 1, 1] = 1

2 . Therefore, xN ≥ min
{

2+x
5+3x : x ∈ [0, 1]

}
= 3

8 .

As we have seen in Example 5.12, the interval for this matrix is D(β, A) =
(

5
3 , 2

)
∪

(
12
5 ,

8
3

)
. It is

different from
(

5
3 , 2

)
∪

(
5
2 ,

8
3

)
in Figure 5.6 because the forward reduction changed the second interval.

If we now try to compute the interval D′ (β, AN), we can see that the triplet (m, k, ℓ) = (0, 8, 2)
satisfies the property P1 and the second inequality from (5.9), but not the second inequality from (5.8).
This triplet adds a new interval

(
7
3 , 9

)
to F (β, A) and therefore

D′ (β, AN) ⊂
((

5
3
, 2

)
∪

(
12
5
,

8
3

))
∩

((
1,

7
3

)
∪ (9, 12)

)
=

(
5
3
, 2

)
.

The purple edge is therefore completely removed by backward reduction.
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6 Results
In this chapter, we will consider y a constant gap sequence over an alphabetA with period P and y′

a constant gap sequence over B with period P′, where A ∩ B = ∅. Also, u will always be a standard
Sturmian sequence.

The program, with pseudocode described in Appendix A, works with the parameters P, P′ and α = 1
β .

Our goal is to find a standard Sturmian sequence u and periods of y and y′ such that the balanced
sequence v = colour(u, y, y′) has asymptotic critical exponent lower than or equal to 1 + 1

α .
The following theorem will help us reduce the number of combinations of P and P′ that we need to

consider.

Theorem 6.1 ([16]). Let y and y′ be two constant gap sequences over disjoint alphabets and u ∈ {a, b}N
be a Sturmian sequence with b being the most frequent letter in u. Then there exists a Sturmian sequence
ũ ∈ {a, b}N with b being the most frequent letter in ũ such that

E∗
(
colour(̃u, y′, y)

)
= E∗

(
colour(u, y, y′)

)
.

It means that, without loss of generality, we can consider |A| ≤ |B|. We can further reduce the number
of combinations using the following two lemmas.

Lemma 6.2 ([16]). Let v = colour(u, y, y′) and v̂ = colour(u, ŷ, ŷ′). If Per(ŷ) is divisible by Per(y) and
Per(ŷ′) is divisible by Per(y′), then E∗(v) ≥ E∗(v̂).

Lemma 6.3 ([12]). Let v = colour(u, y, y′). Then

E∗(v) ≥ 1 +
1

Per(y) · Per(y′)
.

Therefore we need to consider only P, P′ such that P · P′ ≥ α.
We will now go step by step through balanced words over the alphabet with 3 to 12 letters. We will

list the considered combinations of P and P′ after using Theorem 6.1 and Lemma 6.2 and if the graph is
not empty after reductions, we will show its structure. From the cycle, we can deduce the form of θ which
might have a low asymptotic critical exponent as follows: If AN is a vertex in a cycle, then we can find
a preperiod of θ of length h such that

(
ph−1 ph
qh−1 qh

)
∈ [AN]≡. Then we add infinite repetition of coefficients

obtained from going through the cycle. The asymptotic critical exponent depends only on the structure
of the cycle, not on the first matrix we step into the cycle. For any matrix, there are infinitely many
preperiods that will generate the same matrix, and we can choose any matrix from the cycle, so we try
to select the simplest form of θ. This also means that there are infinitely many balanced sequences that
have the same value of the asymptotic critical exponent, although they often differ only in the preperiod
and not period of θ.

Example 6.4. For example, if we consider the cycle in Figure 5.4, the matrix
(

0 0
1 4

)
can be generated by

the preperiod of length 1 equal to 4. Then following the cycle starting from this matrix, we obtain a period
in the form

(
⌊ 4

3⌋, ⌊
5
2⌋, 1, ⌊

3
2⌋, ⌊

5
3⌋

)ω
= (1, 2, 1, 1, 1)ω. Combining this, we obtain θ = [0, 4, (1, 2, 1, 1, 1)ω],

which in fact has the lowest asymptotic critical exponent with P = 1 and P′ = 16.

We then use the program I made for my bachelor thesis [31] to assess the exact value of the asymp-
totic critical exponent for the given P, P′ and θ.

The parameter α is chosen mostly by trial and error. We start with theoretical estimation such as
the minimal value of the critical exponent of balanced sequences for a given alphabet (which is greater
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than the minimal asymptotic critical exponent) found in [31] and if we obtain a nonempty graph for
given α and a possible combination of P and P′, we use my program to calculate the asymptotic critical
exponent of the resulting cycles. If at least one of the cycles has an asymptotic critical exponent lower
than 1 + 1

α , we modify α to reflect it, i.e., we set new α as approximately 1
E∗(v)−1 for this v and let the

program generate the graph for this new α. In the following text, we will show only the optimal α and
the results for it, not the whole testing process.

To be able to test all possible combinations of P and P′, we need to know what periods of constant
gap sequences are possible for a given size of an alphabet. The periods of constant gap sequences over
alphabet of size d are as follows [16]:

d possible period of a constant gap sequence
1 1
2 2
3 3, 4
4 4, 6, 8
5 5, 6, 8, 9, 12, 16
6 6, 8, 10, 12, 16, 18, 24, 32
7 7, 8, 9, 10, 12, 15, 16, 18, 20, 24, 27, 32, 36, 48, 64
8 8, 10, 12, 14, 16, 18, 20, 24, 30, 32, 36, 40, 48, 54, 64, 72, 96, 128
9 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 25, 27, 28, 30, 32, 36, 40, 45,

48, 54, 60, 64, 72, 80, 81, 96, 108, 128, 144, 192, 256

6.1 3-letter alphabet

The only possible periods to consider are P = 1 and P′ = 2. If we choose α = 0.5857, i.e.,
β � 1.7074, we obtain a single cycle with θ = [0, 1, (2)ω] depicted in Figure 6.1. This sequence has
the asymptotic critical exponent equal to 4+

√
2

2 � 2.7071.

(
0 0
1 1

) (2, 3)

Figure 6.1: The strongly connected component of the graph of admissible tails for P = 1, P′ = 2 and
α = 0.5857.

6.2 4-letter alphabet

We have 3 possible combinations of P and P′. We set α = 1.236, i.e., β � 0.8091. If we consider
P = 1 and P′ ∈ {3, 4}, the graph of admissible tails does not have a strongly connected component.
For P = 2 = P′, we obtain one cycle with θ = [0, (1)ω], as shown in Figure 6.2. This sequence has
the asymptotic critical exponent equal to 5+

√
5

4 � 1.8090.

(
0 0
0 0

) (1, 2)

Figure 6.2: The strongly connected component of the graph of admissible tails for P = 2, P′ = 2 and
α = 1.236.
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6.3 5-letter alphabet

Now we set α = 2, i.e., β = 0.5. The combinations P = 1 and P′ ∈ {4, 6, 8} and P = 2, P′ = 3 do not
create a strongly connected component. The combination P = 2 and P′ = 4 generates one cycle depicted
in Figure 5.2 with θ = [0, 1, (2)ω], and the asymptotic critical exponent equal to 3

2 .

6.4 6-letter alphabet

We set α = 4.16953, i.e., β � 0.239835. The results for given P, P′ are given in Table 6.1. We can see
that for P = 4 = P′, the forward reduction was necessary. The only cycle exists for P = 1 and P′ = 16;
it is shown in Figure 5.4. The sequence has θ = [0, 4, (1, 2, 1, 1, 1)ω] and its asymptotic critical exponent
is equal to 75+3

√
65

80 � 1.2398.

Table 6.1: Tested combinations of P and P′ with α = 4.16953 for 6-letter alphabet and their graphs.
P P’ is empty? why?
1 5 Yes no component
1 6 Yes no component
1 8 Yes no component
1 9 Yes no component
1 12 Yes no component
1 16 No
2 4 Yes no component
2 6 Yes no component
2 8 Yes no component
3 3 Yes no component
3 4 Yes no component
4 3 Yes no component
4 4 Yes forward reduction

6.5 7-letter alphabet

We set α = 7.0946, i.e., β � 0.140952. The results for given P, P′ are in Table 6.2. We can see that
for some combinations of P, P′, both forward and backward reductions were necessary.

For P = 1 and P′ = 32, the strongly connected component of the graph contains 2 cycles, where one
of them can be deleted using forward reduction.

The resulting graph can be seen in Figure 6.3. Then the sequence with θ = [0, 5, 1, (1, 1, 1, 5, 2)ω]
has the asymptotic critical exponent equal to 49+

√
577

64 � 1.140950.
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Table 6.2: Tested combinations of P and P′ with α = 7.0946 for 7-letter alphabet and their graphs.
P P’ is empty? why?
1 10 Yes no component
1 18 Yes no component
1 24 Yes no component
1 32 No
2 5 Yes no component
2 9 Yes no component
2 12 Yes cycle of reductions
2 16 Yes cycle of reductions
3 6 Yes no component
3 8 Yes no component
4 6 Yes cycle of reductions
4 8 Yes cycle of reductions

(
0 0
4 3

) (
0 0
1 14

) (
0 0
2 9

)

(
0 0
1 28

) (
0 0
1 19

)

(
5
2 ,

8
3

) (
3
2 , 2

)

(
1, 4

3

)( 16 3
,

27 5

) ( 7
4
, 2
)

Figure 6.3: The strongly connected component of the graph of admissible tails after all reductions for
P = 1, P′ = 32 and α = 7.0946.

6.6 8-letter alphabet

We set α = 20.94, i.e., β � 0.047755. The results for given P, P′ are given in Table 6.3. We can see
that for some combinations of P, P′, forward reduction was necessary.

For P = 8 and P′ = 8, the graph of admissible tails contains 1 vertex and 1 edge. The edge is modified
during forward reduction, but not deleted. The resulting graph is shown in Figure 6.4. The sequence with
θ = [0, (1)ω] has the asymptotic critical exponent equal to 19−

√
5

16 � 1.047746.

(
0 0
0 0

)

(
32 , 53 )

Figure 6.4: The strongly connected component of the graph of admissible tails after reductions for P = 8,
P′ = 8 and α = 20.94.
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Table 6.3: Tested combinations of P and P′ with α = 20.94 for 8-letter alphabet and their graphs.
P P’ is empty? why?
1 20 Yes no component
1 27 Yes no component
1 36 Yes no component
1 48 Yes no component
1 64 Yes forward reduction
2 18 Yes no component
2 24 Yes no component
2 32 Yes forward reduction
3 9 Yes no component
3 12 Yes no component
3 16 Yes no component
4 9 Yes no component
4 12 Yes no component
4 16 Yes forward reduction
6 4 Yes no component
6 6 Yes no component
6 8 Yes no component
8 4 Yes no component
8 6 Yes no component
8 8 No

6.7 9-letter alphabet

We set α = 30.31, i.e., β � 0.0329924. The results for given P, P′ are given in Table 6.4. We can see
that for some combinations of P, P′, both reductions were necessary.

The only nonempty graph is for P = 8 and P′ = 16. After forward reduction, only one vertex and
one edge remain, as shown in Figure 6.5. The sequence with θ = [0, 1, (4)ω] has the asymptotic critical
exponent equal to 21−

√
20

16 � 1.0329915.

(
0 0
1 1

) (
215
,

106
25 )

Figure 6.5: The strongly connected component of the graph of admissible tails after all reductions for
P = 8, P′ = 16 and α = 30.31.

6.8 10-letter alphabet

We set α = 68.48, i.e., β � 0.0146028. The results for given P, P′ are in Table 6.5. We can see that
for some combinations of P, P′, both reductions were necessary.

The only non-empty graph is for P = 4 and P′ = 64. After finding the correct asymptotic exponent,
we modified α to 64.485 to obtain less edges in the final graph. The final graph contains two connected
cycles as shown in Figure 6.6.
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Table 6.4: Tested combinations of P and P′ with α = 30.31 for 9-letter alphabet and their graphs.
P P’ is empty? why?
1 40 Yes no component
1 54 Yes no component
1 72 Yes forward reduction
1 96 Yes forward reduction
1 128 Yes forward reduction
2 20 Yes no component
2 27 Yes no component
2 32 Yes no component
2 36 Yes forward reduction
2 48 Yes forward reduction
2 64 Yes cycle of reductions
3 18 Yes no component
3 24 Yes forward reduction
3 32 Yes forward reduction
4 10 Yes no component
4 18 Yes forward reduction
4 24 Yes forward reduction
4 32 Yes cycle of reductions
6 9 Yes no component
6 12 Yes forward reduction
6 16 Yes forward reduction
8 5 Yes no component
8 9 Yes forward reduction
8 12 Yes forward reduction
8 16 No
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Table 6.5: Tested combinations of P and P′ with α = 68.48 (resp. α = 68 for some graphs that ended up
empty before changing α) for the 10-letter alphabet and their graphs.

P P’ is empty? why?
1 80 Yes no component
1 81 Yes no component
1 108 Yes no component
1 144 Yes forward reduction
1 192 Yes forward reduction
1 256 Yes forward reduction
2 40 Yes no component
2 54 Yes no component
2 72 Yes forward reduction
2 96 Yes forward reduction
2 128 Yes both reductions
3 27 Yes no component
3 36 Yes no component
3 48 Yes forward reduction
3 64 Yes forward reduction
4 20 Yes no component
4 27 Yes no component
4 36 Yes no component
4 48 Yes forward reduction
4 64 No
6 18 Yes no component
6 24 Yes forward reduction
6 32 Yes forward reduction
8 10 Yes no component
8 18 Yes forward reduction
8 24 Yes forward reduction
8 32 Yes forward reduction
5 16 Yes no component
9 9 Yes no component
9 12 Yes no component
9 16 Yes forward reduction
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Figure 6.6: The strongly connected component of the graph of admissible tails after reductions for P = 4,
P′ = 64 and α = 68.485.

If we consider the left or right cycles separately, they both have too large asymptotic critical exponent.
The infinite path must therefore alternate between the cycles.

If we do the forward reduction "by hand" starting from the red edge, the condition given by Equa-
tion (5.6) on the next edge is

(
29
21 ,

47
34

)
, which means that we must continue along the straight edge to

(
0 0
2 5

)
.

This edge gives us the condition on the next edge being
(

34
13 ,

21
8

)
. Therefore, the only possible way is to

go through the blue edge.
On the other hand, if we start from the green edge, the condition given by Equation (5.6) on the next

edge is
(

49
30 ,

18
11

)
and we must continue along the curved edge to

(
0 0
2 5

)
. The curved edge restricts the next

edge to
(

41
26 ,

30
19

)
and we can continue only through the violet edge.

Therefore, the only candidate for low asymptotic critical exponent corresponds to an infinite path
going alternatively through the left and right cycle without going through one cycle twice consecutively.

Moreover, both edges going from
(

0 0
1 6

)
to

(
0 0
2 5

)
generate the same coefficient for θ because ⌊ 49

30⌋ =

1 = ⌊ 29
21⌋.

Therefore, we obtain θ = [0, 6, (1, 1, 1, 1, 2, 1, 2, 1, 1, 1)ω] and the asymptotic critical exponent of this
sequence is equal to 364−21

√
7

304 � 1.0146027.

6.9 Asymptotic behaviour

We were able to determine the minimal asymptotic critical exponent of balanced sequences only for
alphabets up to ten letters. Increasing the alphabet size has many difficulties. First, the number of com-
binations of P and P′ grows fast. Second, the time necessary to run the program increases significantly,
since we have more matrices, larger α, which means checking more triplets m, k, ℓ, and therefore often
many more vertices and edges.

To expand the results to bigger alphabets, we added some modifications to the program. Mainly, the
first part, i.e. finding the setD( 1

α , A) for every matrix in the list, is independent and therefore can be done
in parallel. The same modification was done for back reduction, where we calculate the modified set
D′( 1

α , AN). Another modification was done to speed up the calculation ofD( 1
α , A) when we already have

the setD( 1
α0
, A) for α0 < α. In this case, we can take the setD( 1

α0
, A) as a starting set and only consider

intersection for the triples (m, k, ℓ) which satisfy all the items in Definition 5.8 for 1
α , but not for 1

α0
.

Even using these modifications, the computation is time-consuming, and we were not able to expand
the results in time to incorporate them into the thesis.

Another problem is to choose the correct α. If the initial α is chosen too high, we will not find any
non-empty graph and we will need to run all of the combinations of P and P′ again for smaller α. On the
other hand, if α is chosen too low, then the resulting graphs will contain many interlinked cycles and it
will be hard to find a cycle that maximalizes α for the next iterations.
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The greatest difficulty can be seen even for the alphabet of 10 letters. We have shown that, in this
case, the graph contains two interlocked cycles, where each of them has an asymptotic critical exponent
too high. Only manual intervention showed that we obtain an unambiguous optimal solution when we
go alternatively through the first and the second cycle. The situation is similar for the case in which we
choose α too small which happens when we do not have any theoretical approximation of the minimal
value.

The same problem also occurs for some combinations of P and P′, even though α is chosen maximal
possible for this combination to give non-empty graph. One of the examples for this case could be
the combination of periods P = 6, P′ = 108. This combination with α = 135.186 generates the graph
shown in Figure 6.7, where we use only ⌊a⌋ as the edge label and we omit the multiplicity of the edges.
When α is modified to α′ = 135.187, the graph of admissible tails for the same combination of P and
P′ is empty. We are therefore quite lucky that the graphs for optimal combinations of P, P′ and α are
actually quite simple.

So, in the future, to find balanced sequences with minimal asymptotic critical exponent over larger
alphabets, we will either have to enhance our graph reductions or find a completely different approach.
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Figure 6.7: The graph of admissible tails with modified edge labels after all reductions for P = 6,
P′ = 108 and α = 135.186.
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Part II

Critical exponent of morphic sequences
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7 Critical exponent of morphic images of
a sequence

In our work, we often encountered the problem of computing the critical exponent of a morphic image
of a sequence. This problem occurred, for example, in [8, 14]. In these papers, we used a morphism
to construct a sequence with the least number of palindromes or complemented words, while having
a small critical exponent. To complete the proofs, it was necessary to show what the critical exponent of
the morphic images is.

In this part, we will first show the results of [8, 14] to motivate our choice of morphisms in Sec-
tion 7.1. We will then present the main ideas for calculating the critical exponent of a morphic image
of an arbitrary sequence u when we know the form of bispecial factors in the sequence u in Section 7.2.
In Chapter 8, we will describe bispecial factors and their return words in the sequence p defined in the
same section. Finally, we will demonstrate how this method works on four given morphic images of p in
Chapters 9, 10, 11, and 12.

7.1 Motivation

Since the definition of repetitions in sequence, people have asked what the lower bound for repetitions
in a sequence is. The question has been answered in general, and also for certain classes of sequences,
such as sequences over an alphabet of given cardinality, Sturmian sequences, balanced sequences etc.
Naturally, if we restrict our class of sequences, the repetition threshold (i.e. the infimum of critical
exponents of sequences in the class) will be at least the bound for the larger class.

7.1.1 Complement avoidance

Let us recall that the complement to a word u over an alphabet {0, 1} is a word ū obtained by switching
0 → 1 and 1 → 0. We call u and ū complemented factors. In [8], the authors studied the repetition
threshold for the classes of sequences

CALℓ = {u binary sequence : (∀u factor of u)(ū factor of u⇒ |u| < ℓ)}
CANn = {u binary sequence : #{u factor of u : ū factor of u} ≤ n},

i.e. the sequences that avoid complemented factors of length larger than ℓ or have only a limited number
of complemented factors. It is clear that CAL1 = CAN0 = CAN1 = {(0)ω, (1)ω} and the repetition
threshold for these classes is infinite.

Theorem 7.1 ([8]). The repetition threshold for class CALℓ is β, for the following pairs (ℓ, β). Moreover,
this list of pairs is optimal and the bound is attained.

(*) (1,+∞),

(a) (3, 2 + α), where α = (1 +
√

5)/2,

(b) (5, 3),

(c) (7, 8
3 ),

(d) (8, 5
2 ),
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(e) (11, γ′), where γ′ � 2.48086 is the critical exponent of p (see Chapter 8),

(f) (13, 7
3 ).

Optimality means that if ℓ is between any two values ℓ1 < ℓ2 in the list, then the critical exponent
is the same as for ℓ1. For example, the repetition threshold for ℓ = 6 is 3. The proof in the article
always gave us the sequence attaining the bound and showed that any binary word having the same
critical exponent while avoiding shorter complemented factors must be finite. To finish the proof, it was
necessary to calculate the critical exponent of the given sequences. We calculated the critical exponent
for Item (d) and Item (e) since it used the sequences ξ(p) and ψ(p). The calculations can be found in
Chapters 12 and 11.

The results can then be extended to the class CANn.

Theorem 7.2 ([8]). The repetition threshold for class CANn is β, for the following pairs (n, β). Moreover,
this list of pairs is optimal and the bound is attained.

(*) (0,+∞),

(a) (4, 2 + α), where α = (1 +
√

5)/2,

(b) (8, 3),

(c) (24, 8
3 ),

(d) (36, 5
2 ),

(e) (64, γ′), where γ′ � 2.4808627161472369 is the critical exponent of p,

(f) (90, 7
3 ).

7.1.2 Palindrome avoidance

In [14], the authors found the repetition threshold for the classes of binary sequences containing at
most n distinct factors that are palindromes.

Theorem 7.3 ([14]). The repetition threshold for binary sequences containing only p distinct palin-
dromes is β for the following pairs (p, β). Moreover, this list of pairs is optimal, and the bound is
attained.

(a) (11, 10
3 ),

(b) (12, 23
7 ),

(c) (13, 3),

(d) (15, 8
3 ),

(e) (18, 28
11 ),

(f) (20, 5
2 ),

(g) (25, 7
3 ).

The optimality again means that if p1 < p2 < p3, where p1 and p3 correspond to an item in the
theorem, then the repetition threshold for sequences containing at most p2 palindromes is the same as
the repetition threshold for the class of sequences containing at most p1 palindromes (i.e. allowing more
palindromes does not lower the repetition threshold). The proofs, analogously to complement avoidance,
present sequences reaching the threshold and then show that any word having the same critical exponent
and containing fewer palindromes must be finite. To complete the proofs, it was necessary to calculate
the critical exponents of the given sequences. The sequences for Item (e) and (f) correspond with µ(p)
and ν(p) and the calculation is part of this thesis, Chapters 10 and 9.
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7.2 General approach to computation of critical exponent

Definition 7.4. Let u be a sequence over an alphabetA and let Ψ : A∗ → B∗ be a morphism. Consider
a factor w of Ψ(u). We say that (w1, w2) is a synchronization point of w if w = w1w2 and for all factors
p, s ∈ L(Ψ(u)) and v ∈ L(u) such that Ψ(v) = pws there exists a factorization v = v1v2 of v with
Ψ(v1) = pw1 and Ψ(v2) = w2s. We denote the synchronization point by w1 • w2.

Example 7.5. Let us consider morphism ν, where

ν(0) = 011, ν(1) = 0, ν(2) = 01.

First, we can see that the letter 0 appears only as a prefix of letter images. Therefore, any appearance
of 0 symbolizes start of a letter image and there will be synchronization point in front of 0 regardless of
the preceding letter.

The end of letter image might be harder to determine since ν(1) is a prefix of ν(2) which is a prefix
of ν(0). But from the form of the morphism, we can see that the factor 11 can be obtained only from
ν(0), therefore, after 11, there will be a synchronization point and it will be always followed by 0.

Lastly, we can see that any word of length at least two must contain either 0 or 11 and therefore, it
has a synchronization point.

Let u be a fixed point of the morphism χ, let w be a bispecial factor in u such that there exist letters
a, b, c, d ∈ A, a , b and c , d such that aw, bw, wc, wd ∈ L(u).

Let Ψ be a morphism Ψ : A∗ → B∗ and v = Ψ(u). Since aw, bw, wc, wd ∈ L(u), we have
Ψ(aw),Ψ(bw),Ψ(wc),Ψ(wd) ∈ L(Ψ(u)) = L(v).

Now, depending on the form of Ψ, we might be able to identify that for long enough w (so long that
Ψ(w) has a synchonization point) xΨ(w)y is a bispecial factor in v, where we need to find x, y depending
on the letter images a, b, c, d under the morphism Ψ.

Let us show how to find y. There are two possibilities, either Ψ(c),Ψ(d) differ at some position.
In this case y is their longest common prefix such that |y| < min{|Ψ(c)|, |Ψ(d)|}. Or, without loss of
generality, Ψ(c) is a prefix of Ψ(d). In this case, we have to prolong the factor wc, resp. wd to wu, resp.
wv using our knowledge of the form of χ (often some factors are forbidden in u). Since the morphism Ψ
is injective and since for long enough extension wu the factors Ψ(w) and Ψ(u) contain a synchronization
point, clearly wu is not a prefix of wv. Similarly, wv is not a prefix of wu. The word y will then be the
longest common prefix of Ψ(u) and Ψ(v). We can determine the word x analogously, we just need to
consider suffixes instead of prefixes.

This procedure will allow us to find all bispecial factors in v that are "long enough" and the next step
is to find the short bispecial factors, which is often done by generating a prefix of the sequence v.

Similarly to finding the bispecial factors, we can determine the form of the return words in v.

Lemma 7.6. Let u be a sequence over an alphabet A. Let Ψ : A∗ → B∗ be an injective morphism
and let L ∈ N be such that every factor v of Ψ(u), |v| ≥ L, has a synchronization point. Then any factor
w ∈ L(Ψ(u)) such that |w| ≥ 2L+ 1 has two synchronization points and can be factorized as w = s • v • t,
where |s| ≤ L, |t| ≤ L are minimal and there exists a unique x ∈ L(u) ∖ {ε} such that v = Ψ(x).

Moreover, if w is a bispecial factor in Ψ(u), then x is a bispecial factor in u.

Proof. For w ∈ L(Ψ(u)), |w| ≥ 2L + 1, we can write w = hyz, where |h| = L, |z| = L and |y| ≥ 1.
Furthermore, the factors h and z each have a synchronization point h = h1 • h2, z = z1 • z2. Therefore,
there exists a factorization w = s • v • t, where |v| ≥ |h2yz1| ≥ 1, |s| ≤ |h1| ≤ |h| ≤ L, and |t| ≤ |z2| ≤ |z| ≤ L.
Let us consider a factorization such that |s| and |t| are minimal. From the definition of synchronization
point, we can see that v = Ψ(x) for some x ∈ L(u) and by the injectivity of Ψ, the factor x is unique.

Now, let w be a bispecial factor of Ψ(u), |w| ≥ 2L + 1 and let w = s • v • t from the previous point,
Ψ(x) = v. Let us now assume that x is not a bispecial factor of u. Without loss of generality, let us
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assume that x is not left special (for right special the proof is analogous, only we use prefixes instead of
suffixes). Then any occurrence of x in u is preceded by a unique letter a ∈ A. Therefore, any occurrence
of v as a factor of w in Ψ(u) is preceded by Ψ(a). If |s| ≥ |Ψ(a)|, then Ψ(a) must be a suffix of s since it is
a unique left extension of v in Ψ(u). But this is a contradiction since we chose |s|minimal and this would
give us a synchronization point w = s′ •Ψ(a)v • t, |s′| < |s|. Therefore, |s| < |Ψ(a)| and s is a proper suffix
of Ψ(a). Then any occurrence of w = svt has left extension dictated by the letter in Ψ(a) preceeding s
which gives us a contradiction since w is a left special factor in Ψ(u). □

Theorem 7.7 ([14]). Let u be an infinite word over an alphabetA such that the letter densities in u exist.
Let Ψ : A∗ → B∗ be an injective morphism and let L ∈ N be such that every factor v of Ψ(u), |v| ≥ L,
has a synchronization point. Then E∗(u) = E∗(Ψ(u)).

Proof. The inequality E∗(ψ(u)) ≥ E∗(u) is proven in [27] for any non-erasing morphism under the as-
sumption of existence of letter densities in u. Let us prove the opposite inequality. According to the
definition of E∗(ψ(u)), there exist sequences

(
wn

)
and

(
vn

)
such that

1. lim
n→∞
|vn| = +∞;

2. wn is a factor of ψ(u) for each n ∈ N;

3. wn is a prefix of the periodic word
(
vn

)ω for each n ∈ N;

4. E∗(ψ(u)) = lim
n→∞

|wn |
|vn |

.

If E∗(ψ(u)) = 1, then, clearly, E∗(ψ(u)) ≤ E∗(u). Assume in the sequel that E∗(ψ(u)) > 1, then we have
for large enough n that |wn| > |vn| and moreover, by the first item, |vn| ≥ L. By assumption, both vn and
wn have synchronization points and since vn is a prefix of wn for large enough n, we may write

wn = xn • ψ(w′n) • yn and vn = xn • ψ(v′n) • zn ,

where we highlighted the first and the last synchronization point (not necessarily distinct) in wn and vn

and where w′n and v′n are uniquely given factors of u and the lengths of xn, yn, zn are smaller than L.

By the third item, we have
wn = v

k
nun = (xnψ(v′n)zn)kun ,

where un is a proper prefix of vn and k ∈ N, k ≥ 1.
There are two possible cases for (un).

(a) Either (|un|) is bounded, but as E∗(ψ(u)) > 1, it follows that k ≥ 2 for large enough n.

(b) Or there is a subsequence (u jn) of (un) such that for all n ∈ N we have |u jn | ≥ L. Then by
assumption, u jn has a synchronization point and we may write u jn = x jn • ψ(u′jn) • y jn , where we
highlighted the first and the last synchronization point in u jn and u′jn is a prefix of v′jn by injectivity
of ψ.

(a) In the first case, since k ≥ 2 for large enough n, the factor wn starts with (xnψ(v′n)zn)2. By the
definition of synchronization points and injectivity of ψ, there exists a unique factor tn of u such
that ψ(v′n)znxn = ψ(tn). Consequently, wn = (xnψ(v′n)zn)kun = xnψ(tk−1

n v′n)znun. Therefore, tk−1
n v′n is

a factor of u and it is a prefix of (tn)ω and

E∗(ψ(u)) = lim
n→∞

|wn|

|vn|
= lim

n→∞

|xnψ(tnk−1v′n)znun|

|ψ(tn)|
= lim

n→∞

|ψ(tnk−1v′n)|
|ψ(tn)|

,

where the last equality holds thanks to boundedness of (|xn|), (|zn|) and (|un|).
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(b) In the second case, w jn = (x jnψ(v′jn)z jn)kx jnψ(u′jn)y jn , where k ≥ 1. By definition of synchronization
points and injectivity of ψ, there exists a unique factor t jn of u such that ψ(v′jn)z jn x jn = ψ(t jn).
Consequently, (t jn)ku′jn is a factor of u and it is a prefix of (t jn)ω and

E∗(ψ(u)) = lim
n→∞

|wn|

|vn|
= lim

n→∞

|x jnψ
(
(t jn)ku′jn

)
y jn |

|ψ(t jn)|
= lim

n→∞

|ψ
(
(t jn)ku′jn

)
|

|ψ(t jn)|
,

where the last equality holds thanks to boundedness of (|xn|) and (|yn|).

Combining two simple facts:

• |ψ(u)|
|u| = 1⃗

T
Mψ

u⃗
|u| for each word u over A, where 1⃗ is a vector with all coordinates equal to one

and Mψ is a matrix of size #A × #A, where (Mψ)i, j = |ψ( j)|i for i, j ∈ A characterizes how
the morphism ψ changes Parikh vectors;

• for each sequence (sn) of factors of u with limn→∞ |sn| = ∞we have, by existence of letter densities
in u, lim

n→∞
s⃗n
|sn |
= f⃗ , where f⃗ is the vector of letter densities in u,

we obtain
lim
n→∞

|ψ(sn)|
|sn|

= 1⃗
T

Mψ f⃗ . (7.1)

Consequently,

(a) in the first case, since limn→∞ |tn| = ∞, we obtain using (7.1)

E∗(ψ(u)) = lim
n→∞

|ψ(tnk−1v′n)|
|ψ(tn)|

= lim
n→∞

|ψ(tnk−1v′n)|
|tnk−1v′n |

|tn |
|ψ(tn)|

|tnk−1v′n |
|tn |

= lim
n→∞

|tnk−1v′n |
|tn |

≤ E∗(u) ,

where the last inequality follows from the fact that (tn)k−1v′n ∈ L(u) and (tn)k−1v′n is a power of tn;

(b) in the second case, since lim |t jn | = ∞, we obtain using (7.1)

E∗(ψ(u)) = lim
n→∞

|ψ
(
(t jn )ku′jn

)
|

|ψ(t jn )|

= lim
n→∞

|ψ
(
(t jn )ku′jn

)
|

|(t jn )ku′jn |
|t jn |

|ψ(t jn )|
|(t jn )ku′jn |
|t jn |

= lim
n→∞

|(t jn )ku′jn |
|t jn |

≤ E∗(u) ,

where the last inequality follows from the fact that (t jn)ku′jn ∈ L(u) and (t jn)ku′jn is a power of t jn .

□

Next, we will be working with return words, and the following lemma will help us prolong the return
words simultaneously with prolongation of the factors.

Lemma 7.8. Let w be a factor of a recurrent sequence u and let v be its return word. If w has a unique
right extension a, then v is a return word to wa, too. If w has a unique left extension b, then bvb−1

is a return word to bw, where b−1 means erasing the letter b from the end of the word. In particular,
the Parikh vectors of the corresponding return words are the same.

Proof. It follows immediately from the fact that the left or right extension is unique; therefore, since w
is a prefix and suffix of vw, then wa is a prefix and suffix of vwa and each factor of the form vw has a as
a right extension. Also, since w does not appear in vw in the middle, wa cannot appear in the middle of
vwa. The proof for the left extension follows analogously. □
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8 Sequence p
The sequence p is defined as the fixed point of morphism φ in the form

φ : 0→ 01,

1→ 21,

2→ 0.

Therefore, the prefix of p is

p = 01210210102101210102101210210121010 · · ·

The following characteristics of p are known [9]:

• It is sequence A287072 in the On-Line Encyclopedia of Integer Sequences (OEIS) and can be
found in https://oeis.org/A287072.

• The factor complexity of p is C(n) = 2n + 1.

• The word p is not closed under reversal; 02 ∈ L(p), but 20 < L(p).

• The word p is uniformly recurrent and p has letter densities because φ is primitive (see [13]).

• The morphism φ is injective. Moreover, each non-empty factor w of p has a synchronization point.

8.1 Bispecial factors in p

To find bispecial factors, we need to find factors that are both left and right special. So, first, we
examine the form of left special factors. Using the form of φ, we observe

• 0 has only one left extension: 1,

• 1 has two left extensions: 0 and 2,

• 2 has two left extensions: 0 and 1.

Therefore, every left special factor either starts with 1 and has left extensions {0, 2}, or starts with 2 with
left extensions {0, 1}.

Lemma 8.1. Let w , ε, w ∈ L(p).

• If w is a left special factor such that 0w, 1w ∈ L(p), then 1φ(w) is a left special factor such that
01φ(w), 21φ(w) ∈ L(p).

• If w is a left special factor such that 0w, 2w ∈ L(p), then φ(w) is a left special factor such that
0φ(w), 1φ(w) ∈ L(p).

Proof. It follows from the form of φ and the fact that p is the fixed point of the morphism φ, i.e., if
u ∈ L(p), then φ(u) ∈ L(p). □

We can find the form of right special factors analogously. We observe
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• 0 has two right extensions: 1 and 2,

• 1 has two right extensions: 0 and 2,

• 2 has only one right extension: 1.

Therefore, every right special factor either ends with 0 with right extensions {1, 2}, or ends in 1 with right
extensions {0, 2}.

Lemma 8.2. Let w , ε, w ∈ L(p).

• If w is a right special factor such that w0, w2 ∈ L(p), then φ(w)0 is a right special factor such that
φ(w)01, φ(w)02 ∈ L(p).

• If w is a right special factor such that w1, w2 ∈ L(p), then φ(w) is a right special factor such that
φ(w)2, φ(w)0 ∈ L(p).

Combining these two lemmata, we can see that we have at most 4 possible kinds of non-empty
bispecial factors in p.

Theorem 8.3. Let v be a non-empty bispecial factor in p.

1. 0v, 2v, v0, v2 ∈ L(p) if and only if there exists w ∈ L(p) such that v = 1φ(w) and 0w, 1w, w1, w2 are
factors of p.

2. 0v, 1v, v1, v2 ∈ L(p) if and only if there exists w ∈ L(p) such that v = φ(w)0 and 0w, 2w, w0, w2 are
factors of p.

3. 0v, 2v, v1, v2 ∈ L(p) if and only if there exists w ∈ L(p) such that v = 1φ(w)0 and 0w, 1w, w0, w2
are factors of p.

4. 0v, 1v, v0, v2 ∈ L(p) if and only if there exists w ∈ L(p) such that v = φ(w) and 0w, 2w, w1, w2 are
factors of p.

Proof. The implication (⇐) follows from Lemmata 8.1 and 8.2. We will prove the opposite implica-
tion for Item 1, the other cases may be proven analogously. If v is a non-empty factor of p such that
0v, 2v, v0, v2 ∈ L(p), then v necessarily starts and ends with the letter 1. By the form of φ, we have the
following synchronization points v = 1 • v̂• (v̂ may be empty). Hence, by injectivity of φ, there exists
a unique w in p such that v = 1φ(w). Thus, using again the form of φ and the knowledge of possible right
extensions, the factor w is bispecial and 0w, 1w, w1, w2 ∈ L(p). □

We can see that the only bispecial factor of length one is 1, it has left extensions 0, 2 and right
extensions 0, 2. Applying Theorem 8.3 Item 2, we obtain that φ(1)0 is bispecial with left extensions 0, 1
and right extensions 1, 2. Theorem 8.3 Item 1 gives us that 1φ2(1)φ(0) is bispecial with left extensions
0, 2 and right extensions 0, 2. This process can be iterated providing us with infinitely many bispecial
factors:

1→ φ(1)0→ 1φ2(1)φ(0)→ φ(1)φ3(1)φ2(0)0→
→ 1φ2(1)φ4(1)φ3(0)φ(0)→ φ(1)φ3(1)φ5(1)φ4(0)φ2(0)0 . . .

(8.1)

The only bispecial factor of length two is 10, it has left extensions 0, 2 and right extensions 1, 2. Ap-
plying Theorem 8.3 Item 4, we obtain that φ(1)φ(0) is bispecial factor with left extensions 0, 1 and right
extensions 0, 2. Theorem 8.3 Item 3 gives us that 1φ2(1)φ2(0)0 is bispecial factor with left extensions 0, 2
and right extensions 1, 2. This process can be iterated providing us again with infinitely many bispecial
factors:

10→ φ(1)φ(0)→ 1φ2(1)φ2(0)0→ φ(1)φ3(1)φ3(0)φ(0)→
→ 1φ2(1)φ4(1)φ4(0)φ2(0)0→ φ(1)φ3(1)φ5(1)φ5(0)φ3(0)φ(0) . . .

(8.2)
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Each bispecial factor v of length greater than two has at least two synchronization points and the cor-
responding bispecial factor w from Theorem 8.3 is non-empty. In other words, the bispecial factor v
makes part of one of the sequences (8.1) and (8.2) of bispecial factors.

As a consequence of Theorem 8.3 and the above arguments, we get a complete description of bispe-
cial factors in p.

Theorem 8.4. Let w be a non-empty bispecial factor in p. Then it has one of the following forms:

(A)
w(n)

A = 1φ2(1)φ4(1) · · ·φ2n(1)φ2n−1(0)φ2n−3(0) · · ·φ(0)

for n ≥ 1. If n = 0, then we set w(0)
A = 1.

The Parikh vector of w(n)
A is the same as of the word 1φ(012)φ3(012) . . . φ2n−1(012).

(B)
w(n)

B = φ(1)φ3(1) · · ·φ2n+1(1)φ2n(0)φ2n−2(0) · · ·φ2(0)0

for n ≥ 0.

The Parikh vector of w(n)
B is the same as of the word 012φ2(012)φ4(012) . . . φ2n(012).

(C)
w(n)

C = 1φ2(1)φ4(1) · · ·φ2n(1)φ2n(0)φ2n−2(0) · · ·φ2(0)0

for n ≥ 0.

The Parikh vector of w(n)
C is the same as of the word 01φ2(01)φ4(01) . . . φ2n(01).

(D)
w(n)

D = φ(1)φ3(1) · · ·φ2n+1(1)φ2n+1(0)φ2n−1(0) · · ·φ(0)

for n ≥ 0.

The Parikh vector of w(n)
D is the same as of the word φ(01)φ3(01) . . . φ2n+1(01).

8.2 The shortest return words to bispecial factors in p

To find the shortest return word to a bispecial factor in p, it is convenient to know, how many return
words the factor has. The next theorem will help us with that.

Theorem 8.5 (Theorem 5.7 in [5]). Let u be a uniformly recurrent infinite word. Then each factor of u
has exactly 3 return words if and only if C(n) = 2n + 1 and u has no weak bispecial factors.

Next, to use the theorem above, we will show that each bispecial factor is ordinary, and therefore
each factor of p has 3 return words.

Lemma 8.6. All bispecial factors in p are ordinary.

Proof. The empty word is ordinary because all factors of length two are 10, 01, 02, 12, 21. Thus b(ε) =
5 − 3 − 3 + 1 = 0. It is easy to verify that each non-empty bispecial factor w has three extensions. In
particular,

• extensions of w = w(n)
A are: 0w2, 2w0, 0w0,

• extensions of w = w(n)
B are: 2w2, 2w1, 0w2,

• extensions of w = w(n)
C are: 0w0, 0w2, 1w0,
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• extensions of w = w(n)
D are: 1w2, 0w1, 1w1.

Consequently, b(w) = 3 − 2 − 2 + 1 = 0. □

As we have seen in the case of generating bispecial factors, it is convenient to examine the return
words to short bispecial factors. The return words can be found using the prefix of p generated at the
beginning of this section and the knowledge that there are exactly three for each bispecial factor.

• The return words to ε are 0, 1, 2.

• The return words to 1 are 12, 102, 10.

• The return words to φ(1)0 are 210 = φ(1)0, 21010, 2101. The shortest one is 210 and it is a prefix
of all of them.

• The return words to 10 are 10, 102, 1012. The shortest one is 10 and it is a prefix of all of them.

Lemma 8.7. If w is a non-empty bispecial factor of p and v is its return word, then φ(v) is a return word
to φ(w).

Proof. On one hand, since vw contains w as a prefix and as a suffix, φ(v)φ(w) contains φ(w) as a prefix
and as a suffix, too. On the other hand, w starts in 1 or 2 and ends in 0 or 1, thus φ(w) starts in 0 or 2 and
ends in 1, therefore it has the following synchronization points •φ(w)•. Consequently, φ(v)φ(w) cannot
contain φ(w) somewhere in the middle because in such a case, by injectivity of φ, vw would contain w
also somewhere in the middle. □

Example 8.8. Consider the bispecial factor 10 with the shortest return word 10 (being a prefix of the
other two return words), then by Lemma 8.7 the bispecial factor φ(1)φ(0) has the shortest return word
equal to φ(10). By Lemma 8.7, the factor φ2(1)φ2(0) has the shortest return word equal to φ2(10) and by
Lemma 7.8, the shortest return word to the bispecial factor 1φ2(1)φ2(0)0 has the same Parikh vector as
φ2(10).

Using Lemmata 8.7 and 7.8, and the knowledge of how the bispecial factors are constructed, as
illustrated in Example 8.8, we obtain the following statement about the shortest return words to bispecial
factors in p.

Theorem 8.9. The shortest return words to bispecial factors in p have the following properties.

(A) The shortest return words to w(n)
A are

(i) 12 and 10 for n = 0,

(ii) r(n)
A with the same Parikh vector as φ2n−1(012) for n ≥ 1.

(B) The shortest return word r(n)
B to w(n)

B has the same Parikh vector as φ2n(012).

(C) The shortest return word r(n)
C to w(n)

C has the same Parikh vector as φ2n(01).

(D) The shortest return word r(n)
D to w(n)

D has the same Parikh vector as φ2n+1(01).

Proof. We will prove case (A). The other cases are similar. The shortest return words to w(0)
A = 1 are

12 and 10 as can be seen in the prefix. Let us proceed by induction on n. Consider the bispecial factor
w(1)

A = 1φ2(1)φ(0) = 1φ(φ(1)0). By description of the shortest return words to short bispecial factors, we
know that 210 is the shortest return word (moreover prefix of all other return words) to the bispecial factor
φ(1)0. Using Lemma 8.7, φ(210) is the shortest return word to the factor φ2(1)φ(0). By Lemma 7.8, the
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Parikh vector of the shortest return word to w(1)
A = 1φ2(1)φ(0) is equal to the Parikh vector of φ(210),

hence also to the Parikh vector of φ(012).
Assume for a fixed n ≥ 1, the bispecial factor

w(n)
A = 1φ2(1)φ4(1) · · ·φ2n(1)φ2n−1(0)φ2n−3(0) · · ·φ(0)

has the shortest return word with the Parikh vector φ2n−1(012) and this return word is a prefix of all other
return words. By definition, w(n+1)

A = 1φ2(w(n)
A )φ(0). By Lemma 8.7 and by induction assumption, the

shortest return word to the factor φ2(w(n)
A ) has the same Parikh vector as φ2n+1(012). Using Lemma 7.8,

we obtain that the shortest return word to w(n+1)
A has the same Parikh vector as the factor φ2n+1(012),

too. □

8.3 The asymptotic critical exponent of p

With the knowledge of the form of bispecial factors and their shortest return words, we can now use
Theorem 2.2 and we get E∗(p) = 1 +max{A′, B′,C′,D′}, where

A′ = lim sup
n→∞

|w(n)
A |

|r(n)
A |
= lim sup

n→∞

|1φ(012)φ3(012) . . . φ2n−1(012))|
|φ2n−1(012)|

;

B′ = lim sup
n→∞

|w(n)
B |

|r(n)
B |
= lim sup

n→∞

|012φ2(012)φ4(012) . . . φ2n(012))|
|φ2n(012)|

;

C′ = lim sup
n→∞

|w(n)
C |

|r(n)
C |
= lim sup

n→∞

|01φ2(01)φ4(01) . . . φ2n(01)|
|φ2n(01)|

;

D′ = lim sup
n→∞

|w(n)
D |

|r(n)
D |
= lim sup

n→∞

|φ(01)φ3(01) . . . φ2n+1(01)|
|φ2n+1(01)|

.

Let us denote

Mφ =

|φ(0)|0 |φ(1)|0 |φ(2)|0
|φ(0)|1 |φ(1)|1 |φ(2)|1
|φ(0)|2 |φ(1)|2 |φ(2)|2

 =
1 0 1
1 1 0
0 1 0

 . (8.3)

Remark. By the Hamilton-Cayley theorem, we have M3
φ − 2M2

φ + Mφ − I = 0.

The following lemma shows us a nice way to compute the lengths of the bispecial factors and their
shortest return words in p and later also in the morphic images of p.

Lemma 8.10. Let v⃗ ∈ N3
0, Mφ be the matrix defined in (8.3) and c0, c1, c2 ∈ N0 and define ℓn =

(c0, c1, c2)
(
Mφ

)n
v⃗. Then ℓn satisfies the recurrence relation

ℓn+3 − 2ℓn+2 + ℓn+1 − ℓn = 0 (8.4)

with the initial conditions

ℓ0 = (c0, c1, c2)⃗v,

ℓ1 = (c0, c1, c2)Mφv⃗,

ℓ2 = (c0, c1, c2)(Mφ)2v⃗.

Let β, λ1, λ2 be the real and two complex roots of the polynomial t3 − 2t2 + t − 1, i.e.

β � 1.75488, λ1 � 0.12256 + 0.74486i, λ2 = λ1; |λ1| � 0.75488 < 1. (8.5)
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Then ℓn can be computed as ℓn = A1β
n + B1λ

n
1 +C1λ

n
2, where

A1 =
ℓ0|λ1|

2 − 2ℓ1 Re(λ1) + ℓ2

|β − λ1|2
,

B1 =
ℓ0βλ2 − ℓ1(β + λ2) + ℓ2

(β − λ1)(λ2 − λ1)
,

C1 = B1.

Proof. By the remark above, the sequence (Mφ)n follows the recurrence relation (Mφ)n+3 − 2(Mφ)n+2 +

Mn+1
φ −Mn

φ = 0. Multiplying the equation from left by (c0, c1, c2) and from right by v⃗ gives us the relation
for ℓn.

The coefficients A1, B1 and C1 are then the solution of the system 1 1 1
β λ1 λ2
β2 λ2

1 λ2
2


A1
B1
C1

 =
ℓ0
ℓ1
ℓ2

 ,
which can be solved and gives us the closed formulas in the lemma. □

For our case, we can denote fn = |φn(w)| = (1, 1, 1)(Mφ)nV⃗(w) and use Lemma 8.10, i.e. fn =
A1β

n + B1λ
n
1 +C1λ

n
2 for some coefficients A1, B1,C1, where A1 , 0 for w ∈ {01, 012}.

Since β is strictly larger than the modulus of the other roots of the characteristic polynomial, we
obtain:

A′ = lim
n→∞

∑n
k=1 β

2k−1

β2n−1 =
β2

β2−1 ;

B′ = C′ = lim
n→∞

∑n
k=0 β

2k

β2n =
β2

β2−1 ;

D′ = lim
n→∞

∑n
k=0 β

2k+1

β2n+1 =
β2

β2−1 .

Consequently, E∗(p) = 1 + β2

β2−1 � 2.48.
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9 The infinite word ν(p)
The morphism ν has the form:

ν : 0→ 011,

1→ 0,

2→ 01.

Therefore,
ν(p) = 011001001101001100110100110010011 · · ·

and ν is injective.

Lemma 9.1. Any factor v of ν(p) of length at least two has a synchronization point.

Proof. It is enough to show that each factor of ν(p) of length 2 has a synchronization point since v
contains at least one of them as a prefix. The factors of length two are

•0 • 0, •01, 1 • 0, 11•,

where we highlighted the synchronization points as we discussed them in Example 7.5. □

Using Lemma 9.1 and Theorem 7.7, we deduce that

E∗(ν(p)) = E∗(p).

9.1 Bispecial factors in ν(p)

Lemma 9.2. Let v ∈ L(ν(p)) be a bispecial factor of length at least five. Then one of the items holds.

1. There exists w ∈ L(p) such that v = 1ν(w)01 and 0w, 2w, w0, w2 ∈ L(p).

2. There exists w ∈ L(p) such that v = ν(w)0 and 0w, 1w, w1, w2 ∈ L(p).

3. There exists w ∈ L(p) such that v = 1ν(w)0 and 0w, 2w, w1, w2 ∈ L(p).

4. There exists w ∈ L(p) such that v = ν(w)01 and 0w, 1w, w0, w2 ∈ L(p).

Proof. The statement follows from Lemma 9.1, Lemma 7.6, from the form of the morphism ν and from
the possible left and right extensions of factors in p. □

Combining Lemma 9.2 and Theorem 8.4, we get a complete description of bispecial factors of length
at least five in ν(p).

Theorem 9.3. Let v be a non-empty bispecial factor in ν(p) of length at least five. Then v has one of the
following forms:

(A)
v(n)

A = 1ν(1φ2(1)φ4(1) · · ·φ2n(1)φ2n−1(0)φ2n−3(0) · · ·φ(0))01

for n ≥ 1.

The Parikh vector of v(n)
A , n ≥ 1 is the same as of the word 011ν(1φ(012)φ3(012) . . . φ2n−1(012)).
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(B)
v(n)

B = ν(φ(1)φ3(1) · · ·φ2n+1(1)φ2n(0)φ2n−2(0) · · ·φ2(0)0)0

for n ≥ 0.

The Parikh vector of v(n)
B is the same as of the word 0ν(012φ2(012)φ4(012) . . . φ2n(012)).

(C)
v(n)

C = 1ν(1φ2(1)φ4(1) · · ·φ2n(1)φ2n(0)φ2n−2(0) · · ·φ2(0)0)0

for n ≥ 0.

The Parikh vector of v(n)
C is the same as of the word 01ν(01φ2(01)φ4(01) . . . φ2n(01)).

(D)
v(n)

D = ν(φ(1)φ3(1) · · ·φ2n+1(1)φ2n+1(0)φ2n−1(0) · · ·φ(0))01

for n ≥ 0.

The Parikh vector of v(n)
D is the same as of the word 01ν(φ(01)φ3(01) . . . φ2n+1(01)).

9.2 The shortest return words to bispecial factors in ν(p)

Lemma 9.4. If w is a non-empty bispecial factor in p and v is its return word, then ν(v) is a return word
to ν(w)0.

Proof. On one hand, consider any occurrence of vw and denote a the following letter, then ν(v)ν(w)0 is a
prefix of ν(vwa). Since vw contains w as a prefix and as a suffix, then ν(v)ν(w)0 contains ν(w)0 as a prefix
and as a suffix, too. On the other hand, w starts in 1 or 2, thus ν(w)0 starts in 0 and ends in 0, therefore
ν(w)0 has the following synchronization points •ν(w) • 0. Consequently, ν(v)ν(w)0 cannot contain ν(w)0
somewhere in the middle because in such a case, by injectivity of ν, vw would contain w also somewhere
in the middle. □

Applying Lemmata 9.4, 7.8 and Theorem 8.9, we have the following description of the shortest return
words to bispecial factors.

Theorem 9.5. The shortest return words to bispecial factors of length at least five in ν(p) have the
following properties.

(A) The shortest return word r̂(n)
A to v(n)

A has the same Parikh vector as ν(φ2n−1(012)) for n ≥ 1.

(B) The shortest return word r̂(n)
B to v(n)

B has the same Parikh vector as ν(φ2n(012)).

(C) The shortest return word r̂(n)
C to v(n)

C has the same Parikh vector as ν(φ2n(01)).

(D) The shortest return word r̂(n)
D to v(n)

D has the same Parikh vector as ν(φ2n+1(01)).

Proof. We will prove case (A). The other cases are similar.
Let us consider n ≥ 1 and the bispecial factor

v(n)
A = 1ν(1φ2(1)φ4(1) · · ·φ2n(1)φ2n−1(0)φ2n−3(0) · · ·φ(0))01 = 1ν(w(n)

A )01.

Using Theorem 8.9, we know that the shortest return word to w(n)
A has the same Parikh vector as φ2n−1(012),

moreover the shortest return word is a prefix of all other return words.
Using Lemma 9.4, we obtain that the shortest return word to ν(w(n)

A )0 has the same Parikh vector as
ν(φ2n−1(012)). Using Lemma 7.8 twice, we obtain that the shortest return word to 1ν(w(n)

A )01 has the
same Parikh vector as ν(φ2n−1(012)), since adding 1 at the beginning and erasing 1 at the end does not
change the Parikh vector. □
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9.3 The critical exponent of ν(p)

Using Theorem 2.2 and the description of bispecial factors from Theorem 9.3 and of their shortest
return words from Theorem 9.5, we obtain the following formula for the critical exponent of ν(p).

E(ν(p)) = 1 +max {A, B,C,D, F} ,

where

A = sup

 |v(n)
A |

|r̂(n)
A |

: n ≥ 1

 = sup
{
|011ν(1φ(012)φ3(012) . . . φ2n−1(012))|

|ν(φ2n−1(012))|
: n ≥ 1

}

B = sup

 |v(n)
B |

|r̂(n)
B |

: n ≥ 0

 = sup
{
|0ν(012φ2(012)φ4(012) . . . φ2n(012))|

|ν(φ2n(012))|
: n ≥ 0

}
;

C = sup

 |v
(n)
C |

|r̂(n)
C |

: n ≥ 0

 = sup
{
|01ν(01φ2(01)φ4(01) . . . φ2n(01))|

|ν(φ2n(01))|
: n ≥ 0

}
;

D = sup

 |v(n)
D |

|r̂(n)
D |

: n ≥ 0

 = sup
{
|01ν(φ(01)φ3(01) . . . φ2n+1(01))|

|ν(φ2n+1(01))|
: n ≥ 0

}
;

F = max
{
|w|

|r|
: w bispecial factor in ν(p) of length at most four and r its shortest return word

}
.

Theorem 9.6. The critical exponent of ν(p) equals

E(ν(p)) =
5
2
.

Proof. To determine the critical exponent, we need to examine the values of A, B,C,D and F.

1. First, we calculate the value of F. The bispecial factors of length at most four in ν(p) with their
shortest return words are

• 0 with the shortest return word 0.

• 1 with the shortest return word 1.

• 01 with the shortest return words 010, 011.

• 10 with the shortest return word 10.

• 1001 with the shortest return word 100.

Therefore, we get F = max
{
1, 2

3 ,
4
3

}
= 4

3 .

2. Computation of A and B.

Let us denote an := |ν(φn(012))|, then from the form of ν, we get

an = (3, 1, 2)(Mφ)n(1, 1, 1)T .

Using Lemma 8.10 with a0 = 6, a1 = 10 and a2 = 17, we get the explicit solution

an = A1β
n + B1λ

n
1 +C1λ

n
2,

where
β � 1.75488, λ1 � 0.12256 + 0.74486i, λ2 = λ1
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and

A1 =
6|λ1|

2 − 20 Re(λ1) + 17
|β − λ1|2

� 5.58131 ;

B1 =
6βλ2 − 10(β + λ2) + 17

(β − λ1)(λ2 − λ1)
� 0.20935 − 0.10348i ;

C1 = B1 .

Let us show that A ≤ 3
2 .

We need to show for all n ≥ 1 that

4 + A1
∑n

k=1 β
2k−1 + B1

∑n
k=1 λ

2k−1
1 +C1

∑n
k=1 λ

2k−1
2

A1β2n−1 + B1λ
2n−1
1 +C1λ

2n−1
2

≤? 3
2
,

8 + 2A1

n∑
k=1

β2k−1 + 4 Re

B1

n∑
k=1

λ2k−1
1

 ≤? 3A1β
2n−1 + 6 Re(B1λ

2n−1
1 ),

8 + 2A1

n−1∑
k=1

β2k−1 + 4 Re

B1

n−1∑
k=1

λ2k−1
1

 ≤? A1β
2n−1 + 2 Re(B1λ

2n−1
1 ),

8 + 2A1

(
β2n−1

β2 − 1
−

β

β2 − 1

)
+ 4 Re

B1λ1
1 − λ2n−2

1

1 − λ2
1

 ≤? A1β
2n−1 + 2 Re(B1λ

2n−1
1 ).

Since

2
β2 − 1

≤ 1,

we need to prove the inequality in the form

8 + 4 Re
B1λ1

1 − λ2n−2
1

1 − λ2
1

 ≤? 2A1
β

β2 − 1
+ 2 Re(B1λ

2n−1
1 ).

For the left side, we can write for n ≥ 1

8 + 4 Re
B1λ1

1 − λ2n−2
1

1 − λ2
1

 ≤ 8 + 4|B1||λ1|
|λ1|

2n−2 + 1
|λ2

1 − 1|

≤ 8 + 4|B1||λ1|
2

|λ2
1 − 1|

.

For the right side, we can write for n ≥ 1

2A1
β

β2 − 1
+ 2 Re(B1λ

2n−1
1 ) ≥ 2A1

β

β2 − 1
− 2|B1||λ1|

2n−1

≥ 2A1
β

β2 − 1
− 2|B1||λ1|.

Since the inequality

8 + 4|B1||λ1|
2

|λ2
1 − 1|

≤ 2A1
β

β2 − 1
− 2|B1||λ1|
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holds true for given values, we obtain A ≤ 3
2 .

Next, we will show that B ≤ 3
2 .

For all n ≥ 0 we have to show that

1 + A1
∑n

k=0 β
2k + B1

∑n
k=0 λ

2k
1 +C1

∑n
k=0 λ

2k
2

A1β2n + B1λ
2n
1 +C1λ

2n
2

≤? 3
2
,

2 + 2A1

n−1∑
k=0

β2k + 4 Re

B1

n−1∑
k=0

λ2k
1

 ≤? A1β
2n + 2 Re

(
B1λ

2n
1

)
,

2 + 2A1
β2n − 1
β2 − 1

+ 4 Re
B1

λ2n
1 − 1

λ2
1 − 1

 ≤? A1β
2n + 2 Re

(
B1λ

2n
1

)
.

Since

2
β2 − 1

≤ 1,

we need to prove the inequality in the form

2 + 4 Re
B1

λ2n
1 − 1

λ2
1 − 1

 ≤? A1
2

β2 − 1
+ 2 Re

(
B1λ

2n
1

)
.

For the left side, we can write for n ≥ 0

2 + 4 Re
B1

λ2n
1 − 1

λ2
1 − 1

 ≤ 2 + 4|B1|
|λ1|

2n + 1
|λ2

1 − 1|

≤ 2 + 4|B1|
2

|λ2
1 − 1|

.

For the right side, we can write for n ≥ 0

A1
2

β2 − 1
+ 2 Re

(
B1λ

2n
1

)
≥ A1

2
β2 − 1

− 2|B1||λ1|
2n

≥ A1
2

β2 − 1
− 2|B1|.

Since the inequality

2 + 4|B1|
2

|λ2
1 − 1|

≤ A1
2

β2 − 1
− 2|B1|

holds true for given values, we obtain B ≤ 3
2 .

3. Computation of C and D.

Denote bn := |ν(φn(01))| = (3, 1, 2)(Mφ)n(1, 1, 0)T . Then, using Lemma 8.4 with initial conditions
b0 = 4, b1 = 7 and b2 = 13, we obtain the explicit solution

bn = A2β
n + B2λ

n
1 +C2λ

n
2,

where
β � 1.75488, λ1 � 0.12256 + 0.74486i, λ2 = λ1
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and

A2 =
4|λ1|

2 − 14 Re(λ1) + 13
|β − λ1|2

� 4.21321 ;

B2 =
4βλ2 − 7(β + λ2) + 13

(β − λ1)(λ2 − λ1)
� −0.10660 + 0.24672i ;

C2 = B2 .

First, we will show that C = 3
2 .

For n = 0, we get 2+b0
b0
= 3

2 and for n = 1, we obtain 2+b0+b2
b2

= 19
13 <

3
2 . Therefore, we have C ≥ 3

2
and it suffices to show for all n ≥ 2 that

2 + A2
∑n

k=0 β
2k + B2

∑n
k=0 λ

2k
1 +C2

∑n
k=0 λ

2k
2

A2β2n + B2λ
2n
1 +C2λ

2n
2

≤? 3
2
,

4 + 2A2

n−1∑
k=0

β2k + 4 Re

B2

n−1∑
k=0

λ2k
1

 ≤? A2β
2n + 2 Re

(
B2λ

2n
1

)
,

4 + 2A2
β2n − 1
β2 − 1

+ 4 Re
B2

λ2n
1 − 1

λ2
1 − 1

 ≤? A2β
2n + 2 Re

(
B2λ

2n
1

)
.

Since

2
β2 − 1

≤ 1,

we need to prove the inequality in the form

4 + 4 Re
B2

λ2n
1 − 1

λ2
1 − 1

 ≤? A2
2

β2 − 1
+ 2 Re

(
B2λ

2n
1

)
.

Now, we need to be more careful with the approximations. For the left side, we can write for n ≥ 2

4 + 4 Re
B2

λ2n
1 − 1

λ2
1 − 1

 ≤ 4 + 4 Re
 B2

1 − λ2
1

 + 4|B2|
|λ1|

2n

|1 − λ2
1|

≤ 4 + 4 Re
 B2

1 − λ2
1

 + 4|B2|
|λ1|

4

|1 − λ2
1|
.

For the right side, we can write for n ≥ 2

A2
2

β2 − 1
+ 2 Re

(
B2λ

2n
1

)
≥ A2

2
β2 − 1

− 2|B2||λ1|
2n

≥ A2
2

β2 − 1
− 2|B2||λ1|

4.

Since the inequality

4 + 4 Re
 B2

1 − λ2
1

 + 4|B2|
|λ1|

4

|1 − λ2
1|

≤ A2
2

β2 − 1
− 2|B2||λ1|

4

holds for given values and the cases n ∈ {0, 1} were already examined, we have proven that C = 3
2 .
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It remains to prove D ≤ 3
2 , however, the steps are the same as in the proof of inequality A ≤ 3

2 ,
only the values A1, resp. B1 will be substituted for A2, resp. B2 and the offset value 4 will be
replaced by 2. Therefore, it is enough to check the inequality

4 + 4|B2||λ1|
2

|λ2
1 − 1|

≤ 2A2
β

β2 − 1
− 2|B2||λ1|,

which is true for given values.

We have shown that max{A, B,C,D} = 3
2 , and F = 4

3 . Consequently,

E(ν(p)) = 1 +max{A, B,C,D, F} =
5
2
.

□
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10 The infinite word µ(p)
Since the examination of the word µ(p) proceeds analogously as for ν(p) and we would quickly run

out of possible notation, therefore, in this chapter, we will use the same notation for bispecial factors,
their shortest return words and other variables as in the previous section. We will not use any variables
from Chapter 9; the calculation of the critical exponent of µ(p) is independent.

The morphism µ has the form:

µ : 0→ 011001,

1→ 1001,

2→ 0.

Therefore, µ is injective and

µ(p) = 01100110010100101100101001011001100101100101 · · ·

Lemma 10.1. Any factor v of µ(p) of length at least six has a synchronization point.

Proof. Similarly to Lemma 9.1, it is enough to show that any factor of length six has a synchronization
point. The factors are

011001•

11001 • 1

1001 • 10

001 • 100

11001 • 0

1001 • 01

001 • 0 • 10

01 • 0 • 100

1 • 0 • 1001•

•0 • 1001 • 0

001 • 011

01 • 0110

1 • 01100

where we highlighted the synchronization points. □

Using Lemma 10.1 and Theorem 7.7, we deduce that

E∗(µ(p)) = E∗(p).

10.1 Bispecial factors in µ(p)

Using Lemma 10.1, Lemma 7.6, and the form of µ with the knowledge of possible left and right
extension in p, we obtain the following lemma.

Lemma 10.2. Let v ∈ L(µ(p)) be a bispecial factor of length at least 13. Then one of the items holds.

1. There exists w ∈ L(p) such that v = µ(w)01 and 0w, 2w, w0, w2 ∈ L(p).

2. There exists w ∈ L(p) such that v = 011001µ(w) and 0w, 1w, w1, w2 ∈ L(p).

3. There exists w ∈ L(p) such that v = µ(w) and 0w, 2w, w1, w2 ∈ L(p).

4. There exists w ∈ L(p) such that v = 011001µ(w)01 and 0w, 1w, w0, w2 ∈ L(p).

Theorem 10.3. Let v be a bispecial factor in µ(p) of length at least 13. Then v has one of the following
forms:
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(A)
v(n)

A = µ(1φ2(1)φ4(1) · · ·φ2n(1)φ2n−1(0)φ2n−3(0) · · ·φ(0))01

for n ≥ 1.

The Parikh vector of v(n)
A is the same as of the word 01µ(1φ(012)φ3(012) . . . φ2n−1(012)).

(B)

v(n)
B = 011001µ(φ(1)φ3(1) · · ·φ2n+1(1)φ2n(0)φ2n−2(0) · · ·φ2(0)0)

for n ≥ 0.

The Parikh vector of v(n)
B is the same as of the word 000111µ(012φ2(012)φ4(012) . . . φ2n(012)).

(C)
v(n)

C = µ(1φ2(1)φ4(1) · · ·φ2n(1)φ2n(0)φ2n−2(0) · · ·φ2(0)0)

for n ≥ 1.

The Parikh vector of v(n)
C is the same as of the word µ(01φ2(01)φ4(01) . . . φ2n(01)).

(D)
v(n)

D = 011001µ(φ(1)φ3(1) · · ·φ2n+1(1)φ2n+1(0)φ2n−1(0) · · ·φ(0))01

for n ≥ 0.

The Parikh vector of v(n)
D is the same as of the word 00001111µ(φ(01)φ3(01) . . . φ2n+1(01)).

10.2 The shortest return words to bispecial factors in µ(p)

Lemma 10.4. If w is a bispecial factor of p, |w| ≥ 2, and v is its return word, then µ(v) is a return word
to µ(w).

Proof. On one hand, since vw contains w as a prefix and as a suffix, then µ(v)µ(w) contains µ(w) as a prefix
and as a suffix, too. On the other hand, w starts in 10 or 21 and ends in 0 or 1, therefore µ(w) has the
following synchronization points •µ(w)•. Consequently, µ(v)µ(w) cannot contain µ(w) somewhere in the
middle because in such a case, by injectivity of µ, vw would contain w also somewhere in the middle. □

Applying Lemma 10.4, Lemma 7.8 and Theorem 8.9, we have the following description of the short-
est return words to bispecial factors.

Theorem 10.5. The shortest return words to bispecial factors of length at least 13 in µ(p) have the
following properties.

(A) The shortest return word r̂(n)
A to v(n)

A has the same Parikh vector as µ(φ2n−1(012)) for n ≥ 1.

(B) The shortest return word r̂(n)
B to v(n)

B has the same Parikh vector as µ(φ2n(012)).

(C) The shortest return word r̂(n)
C to v(n)

C has the same Parikh vector as µ(φ2n(01)) for n ≥ 1.

(D) The shortest return word r̂(n)
D to v(n)

D has the same Parikh vector as µ(φ2n+1(01)).

Proof. We will prove case (A). The other cases are similar. Let us consider n ≥ 1 and the bispecial
factor

v(n)
A = µ(1φ2(1)φ4(1) · · ·φ2n(1)φ2n−1(0)φ2n−3(0) · · ·φ(0))01 = µ(w(n)

A )01.

Using Theorem 8.9, we know that the shortest return word to w(n)
A has the same Parikh vector as φ2n−1(012),

moreover the shortest return word is a prefix of all of the return words.
Using Lemma 10.4, we obtain that the shortest return word to µ(w(n)

A ) has the same Parikh vector as
µ(φ2n−1(012)). Using Lemma 7.8 twice, we obtain that the shortest return word to µ(w(n)

A )01 has the same
Parikh vector as µ(φ2n−1(012)). □
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10.3 The critical exponent of µ(p)

Using Theorem 2.2 and the description of bispecial factors from Theorem 10.3 and of their shortest
return words from Theorem 10.5, we obtain the following formula for the critical exponent of µ(p).

E(µ(p)) = 1 +max {A, B,C,D, F} ,

where

A = sup

 |v(n)
A |

|r̂(n)
A |

: n ≥ 1

 = sup
{
|01µ(1φ(012)φ3(012) . . . φ2n−1(012))|

|µ(φ2n−1(012))|
: n ≥ 1

}
;

B = sup

 |v(n)
B |

|r̂(n)
B |

: n ≥ 0

 = sup
{
|000111µ(012φ2(012)φ4(012) . . . φ2n(012))|

|µ(φ2n(012))|
: n ≥ 0

}
;

C = sup

 |v
(n)
C |

|r̂(n)
C |

: n ≥ 1

 = sup
{
|µ(01φ2(01)φ4(01) . . . φ2n(01))|

|µ(φ2n(01))|
: n ≥ 1

}
;

D = sup

 |v(n)
D |

|r̂(n)
D |

: n ≥ 0

 = sup
{
|00001111µ(φ(01)φ3(01) . . . φ2n+1(01))|

|µ(φ2n+1(01))|
: n ≥ 0

}
;

F = max
{
|w|

|r|
: w bispecial factor in µ(p) of length at most 12 and r its shortest return word

}
.

Theorem 10.6. The critical exponent of µ(p) is equal to

E(µ(p)) =
28
11
.

Proof. To calculate the critical exponent of µ(p), we need to examine the values of A, B,C,D and F.

1. To determine the value of F, we need to find all bispecial factors of length at most 12 and their
shortest return words. The bispecial factors are

• 1 with the shortest return word 1.

• 0 with the shortest return word 0.

• 10 with the shortest return word 10.

• 01 with the shortest return word 01.

• 010 with the shortest return word 01.

• 1001 with the shortest return word 1001.

• 011001 with the shortest return word 0110.

• 100101 with the shortest return word 10010.

• 01100101 with the shortest return word 011001.

• 1001011001 with the shortest return word 1001011001.

Therefore, F = max
{
1, 3

2 ,
6
5 ,

8
6

}
= 3

2 <
17
11 .

2. Computation of A and B.

Denote an := |µ(φn(012))| = (6, 4, 1)(Mφ)n(1, 1, 1)T . Then using Lemma 8.10 with initial condi-
tions a0 = 11, a1 = 21 and a2 = 36, we obtain the explicit solution

an = A1β
n + B1λ

n
1 +C1λ

n
2,
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where
β � 1.75488, λ1 � 0.12256 + 0.74486i, λ2 = λ1

and

A1 =
11|λ1|

2 − 42 Re(λ1) + 36
|β − λ1|2

� 11.53075 ;

B1 =
11βλ2 − 21(β + λ2) + 36

(β − λ1)(λ2 − λ1)
� −0.26538 − 0.55714i ;

C1 = B1 .

Let us show that A ≤ 17
11 . We have to show for all n ≥ 1 that

6 + A1
∑n

k=1 β
2k−1 + B1

∑n
k=1 λ

2k−1
1 +C1

∑n
k=1 λ

2k−1
2

A1β2n−1 + B1λ
2n−1
1 +C1λ

2n−1
2

≤? 17
11
,

66 + 11A1

n∑
k=1

β2k−1 + 22 Re

B1

n∑
k=1

λ2k−1
1

 ≤? 17A1β
2n−1 + 34 Re(B1λ

2n−1
1 ),

66 + 11A1

n−1∑
k=1

β2k−1 + 22 Re

B1

n−1∑
k=1

λ2k−1
1

 ≤? 6A1β
2n−1 + 12 Re(B1λ

2n−1
1 ),

66 + 11A1

(
β2n−1

β2 − 1
−

β

β2 − 1

)
+ 22 Re

B1λ1
1 − λ2n−2

1

1 − λ2
1

 ≤? 6A1β
2n−1 + 12 Re(B1λ

2n−1
1 ).

Since

11
β2 − 1

≤ 6,

we need to prove the inequality in the form

66 + 22 Re
B1λ1

1 − λ2n−2
1

1 − λ2
1

 ≤? 11A1
β

β2 − 1
+ 12 Re(B1λ

2n−1
1 ).

For the left side, we can write for n ≥ 1

66 + 22 Re
B1λ1

1 − λ2n−2
1

1 − λ2
1

 ≤ 66 + 22|B1||λ1|
|λ1|

2n−2 + 1
|λ2

1 − 1|

≤ 66 + 22|B1||λ1|
2

|λ2
1 − 1|

.

For the right side, we can write for n ≥ 1

11A1
β

β2 − 1
+ 12 Re(B1λ

2n−1
1 ) ≥ 11A1

β

β2 − 1
− 12|B1||λ1|

2n−1

≥ 11A1
β

β2 − 1
− 12|B1||λ1|.

Since the inequality

66 + 22|B1||λ1|
2

|λ2
1 − 1|

≤ 11A1
β

β2 − 1
− 12|B1||λ1|
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holds true for given values, we obtain A ≤ 17
11 .

Next, we will show that B = 17
11 .

Since for n = 0 we have
|v(0)

B |

|r̂(0)
B |
= 6+11

11 =
17
11 , it remains to show that for all n ≥ 1

6 + A1
∑n

k=0 β
2k + B1

∑n
k=0 λ

2k
1 +C1

∑n
k=0 λ

2k
2

A1β2n + B1λ
2n
1 +C1λ

2n
2

≤? 17
11
,

66 + 11A1

n−1∑
k=0

β2k + 22 Re

B1

n−1∑
k=0

λ2k
1

 ≤? 6A1β
2n + 12 Re

(
B1λ

2n
1

)
,

66 + 11A1
β2n − 1
β2 − 1

+ 22 Re
B1

λ2n
1 − 1

λ2
1 − 1

 ≤? 6A1β
2n + 12 Re

(
B1λ

2n
1

)
.

Now, we need to be more careful with the approximations, we will therefore prove the inequality
in the form

66 + 22 Re
B1

λ2n
1 − 1

λ2
1 − 1

 ≤? 11A1
1

β2 − 1
+ A1β

2n
(
6 −

11
β2 − 1

)
+ 12 Re

(
B1λ

2n
1

)
.

For the left side, we can write for n ≥ 1

66 + 22 Re
B1

λ2n
1 − 1

λ2
1 − 1

 ≤ 66 + 22|B1|
|λ1|

2n + 1
|λ2

1 − 1|

≤ 66 + 22|B1|
1 + |λ1|

2

|λ2
1 − 1|

.

For the right side, we can write for n ≥ 1

A1
11

β2 − 1
+ A1β

2n
(
6 −

11
β2 − 1

)
+ 12 Re

(
B1λ

2n
1

)
≥ A1

11
β2 − 1

+ A1β
2
(
6 −

11
β2 − 1

)
− 12|B1||λ1|

2n

≥ A1
11

β2 − 1
+ A1β

2
(
6 −

11
β2 − 1

)
− 12|B1||λ1|

2.

Since the inequality

66 + 22|B1|
1 + |λ1|

2

|λ2
1 − 1|

≤ A1
11

β2 − 1
+ A1β

2
(
6 −

11
β2 − 1

)
− 12|B1||λ1|

2

holds true for given values and the bound is attained for n = 0, we conclude B = 17
11 .

3. Computation of C and D.

Denote bn := |µ(φn(01))| = (6, 4, 1)(Mφ)n(1, 1, 0)T . Then using Lemma 8.4 with initial conditions
b0 = 10, b1 = 15 and b2 = 26, we get the explicit solution in the form

bn = A2β
n + B2λ

n
1 +C2λ

n
2,

where
β � 1.75488, λ1 � 0.12256 + 0.74486i, λ2 = λ1

79



and

A2 =
10|λ1|

2 − 30 Re(λ1) + 26
|β − λ1|2

� 8.70431 ;

B2 =
10βλ2 − 15(β + λ2) + 26

(β − λ1)(λ2 − λ1)
� 0.64785 + 0.29119i ;

C2 = B2 .

The computation for C ≤ 17
11 is the same as for B, only we substitute A1, B1 and C1 by A2, B2 and

C2 and the offset 6 by 0. Since the case for n = 0 falls under the computation of F, it is enough to
check the inequality

0 + 22|B2|
1 + |λ1|

2

|λ2
1 − 1|

≤ A2
11

β2 − 1
+ A2β

2
(
6 −

11
β2 − 1

)
− 12|B2||λ1|

2,

which holds for given values.

Let us show that D ≤ 17
11 .

We have to show for n ≥ 1 that

8 + A2
∑n

k=1 β
2k−1 + B2

∑n
k=1 λ

2k−1
1 +C2

∑n
k=1 λ

2k−1
2

A2β2n−1 + B2λ
2n−1
1 +C2λ

2n−1
2

≤? 17
11
,

88 + 11A2

(
β2n−1

β2 − 1
−

β

β2 − 1

)
+ 22 Re

B2λ1
1 − λ2n−2

1

1 − λ2
1

 ≤? 6A2β
2n−1 + 12 Re(B2λ

2n−1
1 ).

Since
11

β2 − 1
≤ 6,

we need to prove the inequality in the form

88 + 22 Re
B2λ1

1 − λ2n−2
1

1 − λ2
1

 ≤? 11A2
β

β2 − 1
+ 12 Re(B2λ

2n−1
1 ).

For the left side, we now need to be more careful with the approximations. We can write for n ≥ 1

88 + 22 Re
B2λ1

1 − λ2n−2
1

1 − λ2
1

 ≤ 88 + 22 Re
 B2λ1

1 − λ2
1

 + 22|B2|
|λ1|

2n−1

|1 − λ2
1|

≤ 88 + 22 Re
 B2λ1

1 − λ2
1

 + 22|B2|
|λ1|

|1 − λ2
1|
.

For the right side, we can write for n ≥ 1

11A2
β

β2 − 1
+ 12 Re(B2λ

2n−1
1 ) ≥ 11A2

β

β2 − 1
− 12|B2||λ1|

2n−1

≥ 11A2
β

β2 − 1
− 12|B2||λ1|.

Since the inequality

88 + 22 Re
 B2λ1

1 − λ2
1

 + 22|B2|
|λ1|

|1 − λ2
1|

≤ 11A2
β

β2 − 1
− 12|B2||λ1|

holds true for the given values, we obtain D ≤ 17
11 .

We have shown that max{A, B,C,D} = B = 17
11 , and F < 17

11 . Consequently, E(µ(p)) = 1 +
max{A, B,C,D, F} = 28

11 . □
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11 The infinite word ψ(p)
Since the examination of the word ψ(p) proceeds analogously as for ν(p) and µ(p), we will use the

same notation for bispecial factors, their shortest return words and other variables as in the previous
chapter. We will not use any variables from Chapters 9 and 10.

The morphism ψ has the form:

ψ : 0→ 011001,

1→ 0,

2→ 01101.

Therefore, ψ is injective and

ψ(p) = 01100100110100110010110100110010011001011010 · · ·

Lemma 11.1. Any factor v of ψ(p) of length at least five has a synchronization point.

Proof. Similarly to Lemma 9.1, it is enough to show that any factor of length five has a synchronization
point. The factors are:

•01100

11001•

1001 • 0

001 • 0 • 0

01 • 0 • 01

1 • 0 • 011

0 • 0110

•01101•

1101 • 0

101 • 0 • 0

001 • 01

01 • 011

1 • 0110

where we highlighted the synchronization points. □

Using Lemma 11.1 and Theorem 7.7, we deduce that

E∗(ψ(p)) = E∗(p).

11.1 Bispecial factors in ψ(p)

Using Lemma 11.1, Lemma 7.6, and the form of ψ with the knowledge of possible left and right
extension in p, we obtain the following Lemma.

Lemma 11.2. Let v ∈ L(ψ(p)) be a bispecial factor in ψ(p) of length at least 11. Then one of the
following items is true.

1. There exists w ∈ L(p) such that v = 01ψ(w)0110 and 0w, 2w, w0, w2 ∈ L(p).

2. There exists w ∈ L(p) such that v = ψ(w)0 and 0w, 1w, w1, w2 ∈ L(p).

3. There exists w ∈ L(p) such that v = 01ψ(w)0 and 0w, 2w, w1, w2 ∈ L(p).

4. There exists w ∈ L(p) such that v = ψ(w)0110 and 0w, 1w, w0, w2 ∈ L(p).

Theorem 11.3. Let v ∈ L(ψ(p)). If v is a bispecial factor of length at least 11, then v has one of the
following forms:
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A)
v(n)

A = 01ψ(1φ2(1)φ4(1) · · ·φ2n(1)φ2n−1(0)φ2n−3(0) · · ·φ(0))0110 for n ≥ 1.

The Parikh vector of v(n)
A is the same as that of the word 000111ψ(1φ(012)φ3(012) · · ·φ2n−1(012)).

B)
v(n)

B = ψ(φ(1)φ3(1) · · ·φ2n+1(1)φ2n(0)φ2n−2(0) · · ·φ2(0)0)0 for n ≥ 0.

The Parikh vector of v(n)
B is the same as that of the word 0ψ(012φ2(012)φ4(012) · · ·φ2n(012)).

C)
v(n)

C = 01ψ(1φ2(1)φ4(1) · · ·φ2n(1)φ2n(0)φ2n−2(0) · · ·φ2(0)0)0 for n ≥ 1.

The Parikh vector of v(n)
C is the same as of the word 001ψ(01φ2(01)φ4(01) · · ·φ2n(01)).

D)
v(n)

D = ψ(φ(1)φ3(1) · · ·φ2n+1(1)φ2n+1(0)φ2n−1(0) · · ·φ(0))0110 for n ≥ 0.

The Parikh vector of v(n)
D is the same as of the word 0011ψ(φ(01)φ3(01) · · ·φ2n+1(01)).

11.2 The shortest return words to bispecial factors in ψ(p)

Lemma 11.4. Let w be a bispecial factor in p, |w| ≥ 2, and v its return word.

• If w has right extensions {1, 2}, then ψ(v) is a return word to ψ(w).

• If w has right extensions {0, 2}, then ψ(v) is a return word to ψ(w)0110

Proof. Any bispecial factor in p of length at least two either starts in 10 or in 2. Therefore, ψ(w) starts in
•0011001 or •01101.

• If w has right extensions {1, 2}, then it ends in 0. Therefore ψ(w) ends in 011001• and has following
synchronization points •ψ(w)•. Since vw has w as a prefix, certainly ψ(v)ψ(w) contains ψ(w) as a
prefix. It cannot contain ψ(w) in the middle, because then, from injectivity of ψ, the factor vw
would contain w in the middle.

• If w has right extension {0, 2}, then it ends in φ(0) = 01. Therefore, ψ(w) ends in 0 and is always
followed by 0110. Combining this, ψ(w)0110 has following synchronization points •ψ(w) • 0110.

Now, consider any occurrence of vw and denote a ∈ {0, 2} the following letter, then ψ(v)ψ(w)0110
is a prefix of ψ(vwa). Since vw contains w as a prefix and as a suffix, then ψ(v)ψ(w)0110 contains
ψ(w)0110 as a prefix and as a suffix, too.

From the position of synchronization points, ψ(v)ψ(w)0110 cannot contain ψ(w)0110 somewhere
in the middle because in such a case, by injectivity of ψ, vw would contain w also somewhere in
the middle. □

Applying Lemma 11.4, Lemma 7.8 and Theorem 8.9, we have the following description of the short-
est return words to bispecial factors.

Theorem 11.5. The shortest return words to bispecial factors of length at least 11 in ψ(p) have the
following properties.

A) The shortest return word r(n)
A to v(n)

A , n ≥ 1, has the same Parikh vector as the factor ψ(φ2n−1(012)).

B) The shortest return word r(n)
B to v(n)

B , n ≥ 0, has the same Parikh vector as the factor ψ(φ2n(012)).
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C) The shortest return word r(n)
C to v(n)

C , n ≥ 1, has the same Parikh vector as the factor ψ(φ2n(01)).

D) The shortest return word r(n)
D to v(n)

D , n ≥ 0, has the same Parikh vector as the factor ψ(φ2n+1(01)).

Proof. We will prove case (A). The other cases are similar. Let us consider n ≥ 1 and the bispecial
factor

v(n)
A = 01ψ(1φ2(1)φ4(1) · · ·φ2n(1)φ2n−1(0)φ2n−3(0) · · ·φ(0))0110 = 01ψ(w(n)

A )0110,

where the bispecial factor w(n)
A has right extensions 0, 2. Using Theorem 8.9, we know that the shortest

return word to w(n)
A has the same Parikh vector as φ2n−1(012), moreover the shortest return word is a prefix

of all of the return words.
Using Lemma 11.4, the second item, we obtain that the shortest return word to ψ(w(n)

A )0110 has the
same Parikh vector as ψ(φ2n−1(012)). Using Lemma 7.8 twice, we obtain that the shortest return word to
01ψ(w(n)

A )0110 has the same Parikh vector as ψ(φ2n−1(012)).
□

11.3 The critical exponent of ψ(p)

Using Theorem 2.2 and the description of bispecial factors from Theorem 11.3 and of their shortest
return words from Theorem 11.5, we obtain the following formula for the critical exponent of ψ(p).

E(ψ(p)) = 1 +max {A, B,C,D, F} ,

where

A = sup

 |v(n)
A |

|r(n)
A |

: n ≥ 1

 = sup
{
|000111ψ(1φ(012)φ3(012) · · ·φ2n−1(012))|

|ψ(φ2n−1(012))|
: n ≥ 1

}
;

B = sup

 |v(n)
B |

|r(n)
B |

: n ≥ 0

 = sup
{
|0ψ(012φ2(012)φ4(012) · · ·φ2n(012))|

|ψ(φ2n(012))|
: n ≥ 0

}
;

C = sup

 |v
(n)
C |

|r(n)
C |

: n ≥ 1

 = sup
{
|001ψ(01φ2(01)φ4(01) · · ·φ2n(01))|

|ψ(φ2n(01))|
: n ≥ 1

}
;

D = sup

 |v(n)
D |

|r(n)
D |

: n ≥ 0

 = sup
{
|0011ψ(φ(01)φ3(01) · · ·φ2n+1(01))|

|ψ(φ2n+1(01))|
: n ≥ 0

}
;

F =
{
|w|

|r|
: w bispecial factor in ψ(p) of length at most ten, r the shortest return word to w

}
.

Theorem 11.6. The critical exponent of ψ(p) is equal to

E(ψ(p)) = E∗(p) = 1 +
β2

β2 − 1
,

where β is the real root of the polynomial t3 − 2t2 + t − 1, i.e. β � 1.75488.

Proof. To calculate the critical exponent of ψ(p), we need to examine the values of A, B,C,D and F.
First, let us point out that the inequality E(ψ(p)) ≥ E∗(ψ(p)) = E∗(p) follows from the definition. There-
fore, it is sufficient to show max{A, B,C,D, F} ≤ β2

β2−1 .

1. To determine the value of F, we need to find all bispecial factors of length at most ten and their
shortest return words. The bispecial factors are:
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• 1 with the shortest return word 1.
• 0 with the shortest return word 0.
• 10 with the shortest return word 10.
• 01 with the shortest return word 01.
• 010 with the shortest return word 01011.
• 101 with the shortest return word 101.
• 1001 with the shortest return word 100.
• 0110 with the shortest return words 011001, 011010.
• 0100110 with the shortest return word 010011.
• 0100110010 with the shortest return word 0100110.

Therefore, F = max
{
1, 3

5 ,
4
3 ,

2
3 ,

7
6 ,

10
7

}
= 10

7 � 1.43 < β2

β2−1 � 1.48.

2. Computation of A and B.

Denote an := |ψ(φn(012))| = (6, 1, 5)(Mφ)n(1, 1, 1)T . Then using Lemma 8.10 with initial condi-
tions a0 = 12, a1 = 19 and a2 = 32, we obtain the explicit solution

an = A1β
n + B1λ

n
1 +C1λ

n
2,

where
β � 1.75488, λ1 � 0.12256 + 0.74486i, λ2 = λ1

and

A1 =
12|λ1|

2 − 38 Re(λ1) + 32
|β − λ1|2

� 10.61753 ;

B1 =
12βλ2 − 19(β + λ2) + 32

(β − λ1)(λ2 − λ1)
� 0.69124 − 0.13298i ;

C1 = B1 .

Let us show that A ≤ β2

β2−1 .

Since for n = 1, we have 7+a1
a1
= 1 + 7

19 <
β2

β2−1 , we have to show for all n ≥ 2 that

7 + A1
∑n

k=1 β
2k−1 + B1

∑n
k=1 λ

2k−1
1 +C1

∑n
k=1 λ

2k−1
2

A1β2n−1 + B1λ
2n−1
1 +C1λ

2n−1
2

≤? β2

β2 − 1

(β2 − 1)
7 + 2 Re

B1λ1
λ2n

1 − 1

λ2
1 − 1

 + A1β
2n+1 − A1β ≤? 2β2 Re(B1λ

2n−1
1 ) + A1β

2n+1

(β2 − 1)
7 + 2 Re

B1λ1
λ2n

1 − 1

λ2
1 − 1

 ≤? 2β2 Re(B1λ
2n−1
1 ) + A1β .

Now, on the one hand, for n ≥ 2, we have

(β2 − 1)
7 + 2 Re

B1λ1
λ2n

1 − 1

λ2
1 − 1

 ≤ (β2 − 1)
7 + 2|B1||λ1|

|λ1|
2n + 1
|λ2

1 − 1|


≤ (β2 − 1)

7 + 2|B1||λ1|
|λ1|

4 + 1
|λ2

1 − 1|

 .
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On the other hand for n ≥ 2,

2β2 Re(B1λ
2n−1
1 ) + A1β ≥ A1β − 2β2|B1||λ1|

2n−1

≥ A1β − 2β2|B1||λ1|
3.

And if we substitute the values, we get

(β2 − 1)
7 + 2|B1||λ1|

|λ1|
4 + 1

|λ2
1 − 1|

 ≤ A1β − 2β2|B1||λ1|
3.

Therefore A ≤ β2

β2−1 .

Next, we will show that B ≤ β2

β2−1 .

Since for n = 0 we get 1+a0
a0
= 1+12

12 <
β2

β2−1 and for n = 1, we get 1+a0+a2
a2

= 1 + 1+12
32 <

β2

β2−1 , it
remains to show that for all n ≥ 2

1 + A1
∑n

k=0 β
2k + B1

∑n
k=0 λ

2k
1 +C1

∑n
k=0 λ

2k
2

A1β2n + B1λ
2n
1 +C1λ

2n
2

≤? β2

β2 − 1

(β2 − 1)
1 + 2 Re

B1
λ2n+2

1 − 1

λ2
1 − 1

 + A1β
2n+2 − A1 ≤? 2β2 Re(B1λ

2n
1 ) + A1β

2n+2

(β2 − 1)
1 + 2 Re

B1
λ2n+2

1 − 1

λ2
1 − 1

 ≤? 2β2 Re(B1λ
2n
1 ) + A1 .

Now, on the one hand, for all n ≥ 2, we have

(β2 − 1)
1 + 2 Re

B1
λ2n+2

1 − 1

λ2
1 − 1

 ≤ (β2 − 1)
1 + 2 Re

 B1

1 − λ2
1

 − 2 Re
B1

λ2n+2
1

1 − λ2
1


≤ (β2 − 1)

1 + 2 Re
 B1

1 − λ2
1

 + 2|B1|
|λ2n+2

1 |

|1 − λ2
1|


≤ (β2 − 1)

1 + 2 Re
 B1

1 − λ2
1

 + 2|B1|
|λ1|

6

|1 − λ2
1|

 .
On the other hand,

2β2 Re(B1λ
2n
1 ) + A1 ≥ A1 − 2β2|B1||λ1|

4.

Substituting the values proves that

(β2 − 1)
1 + 2 Re

 B1

1 − λ2
1

 + 2|B1|
|λ1|

6

|1 − λ2
1|

 < A1 − 2β2|B1||λ1|
4.

Therefore, B ≤ β2

β2−1 .

3. Computation of C and D.

Denote bn := |ψ(φn(01))| = (6, 1, 5)(Mφ)n(1, 1, 0)T . Then using Lemma 8.4 with initial conditions
b0 = 7, b1 = 13 and b2 = 25, we get the explicit solution in the form

bn = A2β
n + B2λ

n
1 +C2λ

n
2,
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where
β � 1.75488, λ1 � 0.12256 + 0.74486i, λ2 = λ1

and

A2 =
7|λ1|

2 − 13 Re(λ1) + 25
|β − λ1|2

� 8.01494 ;

B2 =
10βλ2 − 15(β + λ2) + 26

(β − λ1)(λ2 − λ1)
� −0.50747 + 0.63155i ;

C2 = B2 .

The computation for C ≤ β2

β2−1

It proceeds in the same way as for B ≤ β2

β2−1 . So at first, we need to check the values for n ∈ {0, 1}:

The case n = 0 falls under the computation of F and for n = 1, we get 3+c0+c2
c2

= 1 + 3+7
25 <

β2

β2−1 .

The rest is the same as for B, only we substitute A1, B1,C1 by A2, B2,C2 and the offset 1 by 3.
Therefore, it remains to check the inequality

(β2 − 1)
3 + 2 Re

 B2

1 − λ2
1

 + 2|B2|
|λ1|

6

|1 − λ2
1|

 < A2 − 2β2|B2||λ1|
4,

which holds for given values and, therefore, C ≤ β2

β2−1 .

To finish the proof, we need to show that D ≤ β2

β2−1 . The computation for D is the same as for A,
only we substitute A1, B1 and C1 by A2, B2 and C2 and the offset 7 by 4. Since for n = 1, we get
4+b1

b1
= 1 + 4

13 <
β2

β2−1 , it is enough to check the inequality

(β2 − 1)
4 + 2|B2||λ1|

|λ1|
4 + 1

|λ2
1 − 1|

 ≤ A2β − 2β2|B2||λ1|
3,

which holds for given values. Therefore, D ≤ β2

β2−1 .

We have shown that 1 + max{A, B,C,D, F} ≤ E∗(ψ(p)), and since E(ψ(p) ≥ E∗(ψ(p)), we have
E(ψ(p) = E∗(ψ(p)) = E∗(p) = 1 + β2

β2−1 . □
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12 The infinite word ξ(p)
Since the examination of the word ξ(p) proceeds analogously as for ν(p), µ(p) and ψ(p), we will use

the same notation for bispecial factors, their shortest return words and other variables as in the previous
chapter. We will not use any values from Chapters 9, 10 or 11.

The morphism ξ has the form:

ξ : 0→ 01,

1→ 0110,

2→ 1.

Therefore, ξ is injective and

ξ(p) = 0101101011001101100101100110110 · · ·

Lemma 12.1. Any factor v of ξ(p) of length at least five has a synchronization point.

Proof. Similarly to Lemma 9.1, it is enough to show that any factor of length five has a synchronization
point. Since the factors •011, 01 • 0 and 0 • 0 each have a synchronization point, it is sufficient to check
that any factor of ξ(p) of length at least five must contain one of these factors. Going through all possible
words in {0, 1}5, we find that it contains either 111, which cannot be a factor of ξ(p) or it contains one of
the factors listed. □

Remark. We need to work with factors of length at least five because, for example, the factor 1101 does
not have a synchronization point.

Using Lemma 11.1 and Theorem 7.7, we deduce that

E∗(ξ(p)) = E∗(p).

12.1 Bispecial factors in ξ(p)

Now, it is harder to determine how the left extensions {0, 2} in p will project into ξ(p), we will
therefore at first prove the following lemma.

Lemma 12.2. Let w , ε, w ∈ L(p) be a bispecial factor such that 0w, 2w ∈ L(p). Then either w = 1
and both 1ξ(1) and 01ξ(1) are left special factors in ξ(p), or w = 10 and both 1ξ(10) and 01ξ(10) are
left special factors in ξ(p), or |w| ≥ 3 and 01ξ(w) is a left special factor in ξ(p), while 1ξ(w) is not a left
special factor in ξ(p).

Proof. From the form of bispecial factors in p with left extensions 0, 2, we can see that either w = 1,
w = 10 or w starts in 1φ2(1) = 1021.

If w = 1, then from 101, 021, 121 ∈ L(p), we have that 001ξ(1), 011ξ(1), 101ξ(1) ∈ L(ξ(p)) and both
1ξ(1) and 01ξ(1) are left special factors.

If w = 10, then from 1010, 0210, 1210 ∈ L(p), we have that 001ξ(10), 011ξ(10), 101ξ(10) ∈ L(ξ(p))
and both 1ξ(10) and 01ξ(10) are left special factors.

If w starts in 1021, then we can see that 02w < L(p) since this word has 021021 = φ(2121) = φ2(11)
as a prefix and 11 < L(p). Therefore, the only possible left extensions of w are 12w, 10w and, therefore,
01ξ(w) is a left special factor in ξ(p), while 1ξ(w) has only one possible left extension. □
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Remark. The cases w = 1 and w = 10 in the previous theorem generate bispecial factors in ξ(p) of length
at most |01ξ(10)| = 8, they will therefore be examined as short bispecial factors.

Lemma 12.3. Let v ∈ L(ξ(p)) be a bispecial factor in ξ(p) of length at least 11. Then one of the following
items is true.

1. There exists w ∈ L(p) such that v = 01ξ(w) and 0w, 2w, w0, w2 ∈ L(p).

2. There exists w ∈ L(p) such that v = ξ(w) and 0w, 1w, w1, w2 ∈ L(p).

3. There exists w ∈ L(p) such that v = 01ξ(w) and 0w, 2w, w1, w2 ∈ L(p).

4. There exists w ∈ L(p) such that v = ξ(w) and 0w, 1w, w0, w2 ∈ L(p).

Theorem 12.4. Let v ∈ L(ξ(p)). If v is a bispecial factor of length at least 11, then v has one of
the following forms:

A)
v(n)

A = 01ξ(1φ2(1)φ4(1) · · ·φ2n(1)φ2n−1(0)φ2n−3(0) · · ·φ(0)) for n ≥ 1.

The Parikh vector of v(n)
A is the same as that of the word 01ξ(1φ(012)φ3(012) · · ·φ2n−1(012)).

B)
v(n)

B = ξ(φ(1)φ3(1) · · ·φ2n+1(1)φ2n(0)φ2n−2(0) · · ·φ2(0)0) for n ≥ 0.

The Parikh vector of v(n)
B is the same as that of the word ξ(012φ2(012)φ4(012) · · ·φ2n(012)).

C)
v(n)

C = 01ξ(1φ2(1)φ4(1) · · ·φ2n(1)φ2n(0)φ2n−2(0) · · ·φ2(0)0) for n ≥ 1.

The Parikh vector of v(n)
C is the same as of the word 01ξ(01φ2(01)φ4(01) · · ·φ2n(01)).

D)
v(n)

D = ξ(φ(1)φ3(1) · · ·φ2n+1(1)φ2n+1(0)φ2n−1(0) · · ·φ(0)) for n ≥ 0.

The Parikh vector of v(n)
D is the same as of the word ξ(φ(01)φ3(01) · · ·φ2n+1(01)).

12.2 The shortest return words to bispecial factors in ξ(p)

Lemma 12.5. If w is a bispecial factor of p, |w| ≥ 4, and v is its return word, then ξ(v) is a return word
to ξ(w).

Proof. Since vw has w as a prefix, then ξ(v)ξ(w) must have ξ(w) as a prefix.
If w is a bispecial factor in p, then w starts either in 1 or 2101 and ends in 10 or 01. Therefore, ξ(w)

starts in •0110 or 1 • 0110 and ends in 010110• or 011001•.

• If ξ(w) starts in •011 and ends in 010110• or 011001•, then ξ(w) has the following synchronization
points •ξ(w)•. Therefore, by injectivity of ξ, ξ(v)ξ(w) cannot have ξ(w) somewhere in the middle
since then vw would have w somewhere in the middle.

• If w starts in 2101, then we can see that the factor w′ = 2−1w is not left special since the only
left special factor with the first letter 1 in p starts in 102. This however means that ξ(w) has the
synchronization points •ξ(w)• in this case, too. Applying the same reasoning as above, we observe
that ξ(v)ξ(w) cannot have ξ(w) somewhere in the middle since then vw would have w somewhere
in the middle. □
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Applying Lemma 12.5, Lemma 7.8 and Theorem 8.9, we have the following description of the short-
est return words to bispecial factors.

Theorem 12.6. The shortest return words to bispecial factors of length at least 11 in ξ(p) have the fol-
lowing properties.

A) The shortest return word r(n)
A to v(n)

A , n ≥ 1, has the same Parikh vector as ξ(φ2n−1(012)).

B) The shortest return word r(n)
B to v(n)

B , n ≥ 0, has the same Parikh vector as ξ(φ2n(012)).

C) The shortest return word r(n)
C to v(n)

C , n ≥ 1, has the same Parikh vector as ξ(φ2n(01)).

D) The shortest return word r(n)
D to v(n)

D , n ≥ 0, has the same Parikh vector as ξ(φ2n+1(01)).

Proof. We will prove case (A). The other cases are similar. Let us consider n ≥ 1 and the bispecial
factor

v(n)
A = 01ξ(1φ2(1)φ4(1) · · ·φ2n(1)φ2n−1(0)φ2n−3(0) · · ·φ(0)) = 01ξ(w(n)

A ).

Using Theorem 8.9, we know that the shortest return word to w(n)
A has the same Parikh vector as φ2n−1(012),

moreover the shortest return word is a prefix of all of the return words.
Using Lemma 12.5, we obtain that the shortest return word to ξ(w(n)

A ) has the same Parikh vector as
ξ(φ2n−1(012)). Using Lemma 7.8 twice, we obtain that the shortest return word to 01ξ(w(n)

A ) has the same
Parikh vector as ξ(φ2n−1(012)). □

12.3 The critical exponent of ξ(p)

Using Theorem 2.2 and the description of bispecial factors from Theorem 12.4 and of their shortest
return words from Theorem 12.6, we obtain the following formula for the critical exponent of ξ(p).

E(ξ(p)) = 1 +max {A, B,C,D, F} ,

where

A = sup
{
|01ξ(1φ(012)φ3(012) · · ·φ2n−1(012))|

|ξ(φ2n−1(012))|
: n ≥ 1

}
;

B = sup
{
|ξ(012φ2(012)φ4(012) · · ·φ2n(012))|

|ξ(φ2n(012))|
: n ≥ 0

}
;

C = sup
{
|01ξ(01φ2(01)φ4(01) · · ·φ2n(01))|

|ξ(φ2n(01))|
: n ≥ 1

}
;

D = sup
{
|ξ(φ(01)φ3(01) · · ·φ2n+1(01))|

|ξ(φ2n+1(01))|
: n ≥ 0

}
;

F = max
{
|v|

|r|
: v bispecial factor in ξ(p) of length at most ten and r the shortest return word to v

}
.

Theorem 12.7. The critical exponent of ξ(p) is equal to

E(ξ(p)) =
5
2
.

Proof. To calculate the critical exponent of ξ(p), we need to examine the values of A, B,C,D and F.

1. To determine the value of F, we need to find all bispecial factors of length at most ten and their
shortest return words. The bispecial factors are
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• 1 with the shortest return word 1.
• 0 with the shortest return word 0.
• 10 with the shortest return word 10
• 01 with the shortest return word 01.
• 101 with the shortest return word 10.
• 0110 with the shortest return word 011.
• 10110 with the shortest return word 10110
• 01101 with the shortest return words 011010110, 011011001
• 010110 with the shortest return word 01011
• 1011001 with the shortest return word 101100
• 01011001 with the shortest return word 010110

Therefore, F = max
{
1, 3

2 ,
4
3 ,

5
9 ,

6
5 ,

7
6

}
= 3

2 .

The computation of B,C,D will proceed in the same way as for ν(p) in Chapter 9, Theorem 9.6,
only the values of A1, A2, B1, B2,C1,C2 and the offsets will differ. We will therefore omit rewriting
the approximations and write only the first and last steps, where the steps in-between are analogous
as in Chapter 9.

2. Computation of A and B.

Denote an := |ξ(φn(012))| = (2, 4, 1)(Mφ)n(1, 1, 1)T . Then using Lemma 8.10 with initial condi-
tions a0 = 7, a1 = 13 and a2 = 24, we obtain the explicit solution

an = A1β
n + B1λ

n
1 +C1λ

n
2,

where
β � 1.75488, λ1 � 0.12256 + 0.74486i, λ2 = λ1

and

A1 =
7|λ1|

2 − 26 Re(λ1) + 24
|β − λ1|2

� 7.70431 ;

B1 =
7βλ2 − 13(β + λ2) + 24

(β − λ1)(λ2 − λ1)
� −0.35215 + 0.29119i ;

C1 = B1 .

Let us show that A ≤ 3
2 .

For n = 1, we obtain 6+a1
a1
= 19

13 <
3
2 .

Therefore, it is enough to show for all n ≥ 2 that

6 + A1
∑n

k=1 β
2k−1 + B1

∑n
k=1 λ

2k−1
1 +C1

∑n
k=1 λ

2k−1
2

A1β2n−1 + B1λ
2n−1
1 +C1λ

2n−1
2

≤? 3
2
,

12 + 2A1

n∑
k=1

β2k−1 + 4 Re

B1

n∑
k=1

λ2k−1
1

 ≤? 3A1β
2n−1 + 6 Re(B1λ

2n−1
1 ),

12 + 2A1

n−1∑
k=1

β2k−1 + 4 Re

B1

n−1∑
k=1

λ2k−1
1

 ≤? A1β
2n−1 + 2 Re(B1λ

2n−1
1 ),

12 + 2A1

(
β2n−1

β2 − 1
−

β

β2 − 1

)
+ 4 Re

B1λ1
1 − λ2n−2

1

1 − λ2
1

 ≤? A1β
2n−1 + 2 Re(B1λ

2n−1
1 ).
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12 + 4 Re
B1λ1

1 − λ2n−2
1

1 − λ2
1

 ≤? 2A1
β

β2 − 1
+ A1β

2n−1
(
1 −

2
β2 − 1

)
+ 2 Re(B1λ

2n−1
1 ).

For the left side, we can write for n ≥ 2

12 + 4 Re
B1λ1

1 − λ2n−2
1

1 − λ2
1

 ≤ 12 + 4|B1||λ1|
|λ1|

2n−2 + 1
|λ2

1 − 1|

≤ 12 + 4|B1||λ1|
|λ1|

2 + 1
|λ2

1 − 1|
.

For the right side, we can write for n ≥ 2

2A1
β

β2 − 1
+ A1β

2n−1
(
1 −

2
β2 − 1

)
+ 2 Re(B1λ

2n−1
1 ) ≥

≥ 2A1
β

β2 − 1
+ A1β

2n−1
(
1 −

2
β2 − 1

)
− 2|B1||λ1|

2n−1

≥ 2A1
β

β2 − 1
+ A1β

3
(
1 −

2
β2 − 1

)
− 2|B1||λ1|

3.

Since the inequality

12 + 4|B1||λ1|
|λ1|

2 + 1
|λ2

1 − 1|
≤ 2A1

β

β2 − 1
+ A1β

3
(
1 −

2
β2 − 1

)
− 2|B1||λ1|

3.

holds true for the given values, we obtain A ≤ 3
2 .

Therefore, A ≤ 3
2 .

Next, we will show that B ≤ 3
2 .

For all n ≥ 0 we have to show that

1 + A1
∑n

k=0 β
2k + B1

∑n
k=0 λ

2k
1 +C1

∑n
k=0 λ

2k
2

A1β2n + B1λ
2n
1 +C1λ

2n
2

≤? 3
2
.

Using the same approximations as in Theorem 9.6, it is enough to check that the inequality

2 + 4|B1|
2

|λ2
1 − 1|

≤ A1
2

β2 − 1
− 2|B1|

holds true for given values. Therefore, B ≤ 3
2 .

3. Computation of C and D.

Denote bn := |ξ(φn(01))| = (2, 4, 1)(Mφ)n(1, 1, 0)T . Then, using Lemma 8.4 with initial conditions
b0 = 6, b1 = 11 and b2 = 18, we obtain the explicit solution

bn = A2β
n + B2λ

n
1 +C2λ

n
2,

where
β � 1.75488, λ1 � 0.12256 + 0.74486i, λ2 = λ1
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and

A2 =
6|λ1|

2 − 22 Re(λ1) + 18
|β − λ1|2

� 5.81581 ;

B2 =
6βλ2 − 11(β + λ2) + 18

(β − λ1)(λ2 − λ1)
� 0.09210 − 0.51781i ;

C2 = B2 .

First, we will show that C ≤ 3
2 .

The case n = 0 falls to the computation of F, and for n = 1, we obtain 2+b0+b2
b2

= 13
9 � 1.44 < 3

2 .
Therefore, it suffices to show for all n ≥ 2 that

2 + A2
∑n

k=0 β
2k + B2

∑n
k=0 λ

2k
1 +C2

∑n
k=0 λ

2k
2

A2β2n + B2λ
2n
1 +C2λ

2n
2

≤? 3
2
,

Using the same approximations as in Theorem 9.6, it is enough to check that the inequality

4 + 4 Re
 B2

1 − λ2
1

 + 4|B2|
|λ1|

4

|1 − λ2
1|

≤ A2
2

β2 − 1
− 2|B2||λ1|

4

holds for given values. Therefore, we have proven that C ≤ 3
2 .

It remains to prove D ≤ 3
2 ,

We need to check the inequality

0 + A2
∑n

k=1 β
2k−1 + B2

∑n
k=1 λ

2k−1
1 +C2

∑n
k=1 λ

2k−1
2

A2β2n−1 + B2λ
2n−1
1 +C2λ

2n−1
2

≤? 3
2
.

Using the same approximations as in Theorem 9.6, it is enough to check that the inequality

0 + 4|B2||λ1|
2

|λ2
1 − 1|

≤ 2A2
β

β2 − 1
− 2|B2||λ1|,

which is true for given values.

Therefore, D ≤ 3
2 .

We have shown that max{A, B,C,D, F} = F = 3
2 . Therefore, E(ξ(p)) = 1 + F = 5

2 . □
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Conclusions
The first part of this thesis follows up on the research conducted in my bachelor thesis [31]. In

the bachelor thesis, we focused on the minimal critical exponent of balanced sequences over a given
alphabet. At first, we described how to compute the (asymptotic) critical exponent of a given balanced
sequence using the knowledge of the length of bispecial factors and their return words. Then the compu-
tation was implemented to obtain two computer programs that calculate the (asymptotic) critical expo-
nent for a given balanced sequence.

In this thesis, we expand the theory from [12] so that instead of computing the asymptotic critical
exponent of a given sequence, we use the inequalities to find a balanced sequence that has low asymptotic
critical exponent. To do this, we introduce a new tool – a graph of admissible tails that allows us to find
all balanced sequences over a given alphabet that have an asymptotic critical exponent lower than a given
bound.

We described the theory in our recently published paper [16]; therefore, we omit the proofs in this
thesis. Using the theory, I designed and implemented the algorithms for generating the graph of admis-
sible tails, including the reductions and searching the cycles in the graph. The implementation was done
in C++ using object-oriented programming.

We used it in combination with the program from [31] to find the minimal asymptotic critical ex-
ponent for balanced sequences over a given alphabet of up to eleven letters. The results were quite
interesting. For example, we learned that the minimum is attained and the period of θ is determined
exactly and is only one possible (up to cyclic permutations). We have shown that for d ∈ {3, 4, 5},
the minimal asymptotic critical exponent coincides with the minimal critical exponent, while for d ≥ 6,
the minimal asymptotic critical exponent is strictly smaller than the minimal critical exponent.

Increasing the alphabet size proved difficult. Not only does the number of combinations of P and
P′ increase with alphabet size but also the minimal value of the asymptotic critical exponent decreases,
which forces α to increase. All of this causes the graph of admissible tails to contain more vertices and
more edges, which slows down the program. The main problem is similar to what we have seen for
a 10-letter alphabet. As there are many vertices and edges, it happens that the graph of admissible tails
cannot be reduced to obtain only one cycle but contains two or more interlocking cycles. Therefore, in
our next work, we will need a different approach to solve this problem.

In the second part of the thesis, we at first examined the bispecials and return words in the sequence p,
which is the fixed point of the morphism φ defined in Chapter 8. Next, we calculated the critical exponent
of some morphic images of the sequence p, which have some nice properties, mainly they contain only
a limited number of complemented factors or a limited number of palindromes while having a small
critical exponent. To do so, we had to determine the form of bispecial factors and their return words
in the sequence p and also find the relations between the bispecial factors in p and its morphic image
under four different morphisms. After this, the problem was reduced to finding the maximal exponent
of a small number of short factors and using estimates to prove inequalities for longer factors. These
computations completed the proofs in [8, 14].

Although we managed to expand our knowledge of both the asymptotic and critical exponents of
balanced sequences in our work, there are still some open questions.

• In [17], we conjectured that the infimum of the critical exponents of balanced sequences over d-
letter alphabet is d−1

d−2 for d ≥ 11. In the same paper, we managed to show that it cannot be lower for
d ≥ 11 and we found sequences over d-lettered alphabets, where d ∈ {11}∪ {2δ : δ ∈ N, δ ≥ 6} that
attain the bound. Therefore, it remains to prove or refute our conjecture for d odd larger than 11.

95



• In [16] and this thesis, we found the infimum of asymptotic critical exponents of balanced se-
quences over d-letter alphabet with d ∈ {3, 4, . . . , 10}. We also found sequences that attain the min-
imum and showed that the slope of the sequence attaining minimum is quadratic irrational and its
period is unique up to cyclic permutations. It remains to find the minimal asymptotic critical
exponent of balanced sequences over d-letter alphabets with d larger than 10.
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A Program
In this chapter, we will describe the algorithm for creating and processing the graph of admissible

tails. The implementation was completed in C++ using object-oriented programming. Most of the
program was written from scratch, including working with the linked list etc. In the thesis, we use
pseudocode to describe the main idea behind the main functions.

The input parameters are P, P′ and α, where P, resp. P′, is the length of the period of a constant
gap sequence y, resp. y′, and α > 0. The output is a graph of

(
1 + 1

α

)
-admissible tails after reductions.

We choose to work with α = 1
β because for bigger alphabets, the minimal asymptotic critical exponent

approaches 1 and therefore β soon becomes a very small number and rounding errors in the program
might be significant. Also, for example, 1

k > β becomes k < α, which is better for evaluation. The
construction can be divided into six parts, each part will be discussed separately.

1. At first, two lists of rows are generated. Both lists consist of the representative of each class
of equivalence ∼ f , where f ∈ {Y,Y ′}, and the list of their equivalent rows as defined below in
Definition A.1.

2. Using the prepared lists, we generate all classes of equivalence [A]≡ with the rows of matrix A
being the representatives of their class for ∼Y , resp. ∼Y′ .

3. For each class [A]≡, the intervalD(β, A) is generated.

4. The graph is constructed from the list of classes and their intervals.

5. The graph is reduced to the strongly connected components.

6. If necessary, forward and backward reductions are used in combination with the reduction to
strongly connected components.

A.1 List of rows

If we look closely at the definition of equivalence ≡, we can see that it defines two equivalences on
rows of the matrix A.

Definition A.1. We say that the row (a, b) ∈ Z1×2 is equivalent to the row (a′, b′) ∈ Z1×2 with respect to
an integer Y if there exists c ∈ Z coprime with Y such that

ca ≡ a′ mod Y and cb ≡ b′ mod Y.

We write (a, b) ∼Y (a′, b′).

Using this definition, the matrices A, B ∈ Z2×2 are equivalent according to Definition 5.6 if and only
if (a11, a12) ∼Y (b11, b12) and (a21, a22) ∼Y′ (b21, b22).

Since we will need to search in the list of rows, we have additional requirements on the representative
of each group of equivalence. We want the first element of the row to be a divisor of Y . And since the
rows are rows of the unimodular matrix, we allow only the rows (a, b) where a · b = 0 or gcd{a, b} = 1.

A.1.1 Generating list of rows

The input parameter is f ∈ N (in our case it is either Y or Y ′). If f = 1, we have only one possible
row (0,0). If f ≥ 2, we use the pseudocode described in Algorithm 1 to generate the list L.
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Algorithm 1: Generating RowList L with given f ≥ 2

1 L := ∅;
2 add (0,1) to L;
3 for b = 0, 1, . . . , f − 1 do
4 add (1, b) to L;

5 for a = 2, 3, . . . , f − 1 do
6 if f = 0 mod a then
7 Generate a field F of length f and set all values to zero;
8 for b = 1, 2, . . . , f − 1 do
9 if gcd(a, b) > 1 then

10 F[b]← 1; /* This row is not allowed. */

11 else
12 add (a, b) to L;
13 F[b]← 1;
14 for g ∈

{
k f
a + 1 : k ∈ N

}
∩ (1, f − 1) do

/* Find equivalent rows */

15 b0 ← b · g mod f ;
16 if F[b0] = 0 then
17 F[b0]← 1;
18 add (a, b0) as an equivalent row to (a, b); /* The row is equivalent

because gcd{g, f } = 1 and g(a, b) ∼ f (k f + a, b0) ∼ f (a, b0). */

A.1.2 Searching for equivalent rows

Now we want to find the chosen representative of a class [(a, b)]∼ f , where a, b ∈ {0, 1, . . . , f − 1} and
either a · b = 0 or gcd{a, b} = 1. The pseudocode used to do so can be found in Algortihm 2.

For c , 0 coprime with f , we will denote c−1 f the modular multiplicative inverse of c modulo f .

A.2 List of matrices

Given the numbers P and P′, we first compute Y and Y ′. Then we generate the lists of rows L1 with
the parameter Y and L2 with Y ′ as described in Algorithm 1.

The procedure of generating all the matrices that were unimodular before applying modulo is in detail
described in [31] in Chapter 7, more precisely in Section 7.1.2.1. In the program, we use the algorithm
described by pseudocode in Algorithm 3.

This process will insert representatives of all classes of equivalence ≡ exactly once in the list.
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Algorithm 2: Searching in the RowList for representative of the class

1 if f = 1 then
2 return (0, 0); /* Only one possible row. */

/* Now, we will consider f > 1, so a and b cannot be zero simultaneously. */

3 if a = 0 then
/* So b , 0 must be coprime with f, because otherwise the matrix could not have been

unimodular */

4 return (0, 1);
/* Because (0, 1) ∼ f b−1 f (0, b) and b−1 f is also coprime with f */

5 else if a = 1 then
6 return (1, b);
7 else if 0 , f mod a then
8 d ← gcd{a, f };
9 a0 ←

a
d ; /* Then a0 is coprime with f. */

10 b′ ← b · a−1 f

0 mod f ; /* Now a′ = d is a divisor of f and (a, b) ∼ f (a′, b′). */

11 Find (d, b′) in the list and return the representative to which it was added as an equivalent
row.;

12 return the representative.
13 else
14 Find (a, b) in the list and return the representative to which it was added as an equivalent

row.;
15 return the representative.

Algorithm 3: Generating list M of modulated unimodular matrices

1 M = ∅;
2

E ←
(
1 mod Y 0

0 1 mod Y ′

)
;

3 add E to M;
4 Set the pointer to the first matrix in the list;
5 while pointer is not NULL do

6 Take the matrix A←
(
a11 a12
a21 a22

)
given by the pointer;

7 Generate two matrices B and C such that:

B =
(
a12 a11
a22 a21

)
C =

(
a11 + a12 a12
a21 + a22 a22

)
for B and C do

8 Find the representative of class [B]≡, resp. [C]≡, by searching the first row of B,
respectively C, in L1 and the second row in L2.;

9 Look if the representative matrix is already in the list. If not, add it at the end of the list.

10 Move the pointer to the next matrix in the list
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A.3 IntervalsD(β, A)

The input of the function for the generation of the intervalD(β, A) is

• matrix A (or two rows that define the matrix),

• Y and Y ′,

• H = gcd{P, P′},

• α := 1
β

• The left and right points of the interval specified by the backward reduction in Section 5.5.2:
C,D ∈ [0, 1], where C < D. If not specified, C := 0 and D = 1.

The pseudocode can be found in Algorithm 4.

A.4 Graph

We have a list of classes of equivalence, know its length, denoted by M, and for each class, we have
generated the setD(β, A).

For easier searching, we will copy the matrices into the field and index them accordingly. Next, we
will generate the field of adjacency lists adj and fill it by the procedure described in Algorithm 5.

At the end of the procedure, we will have the graph Γβ represented as a field of vertices and a field
of adjacent lists for each vertex.

The labels of edges are not important for finding the paths, but we will use them for the forward and
backward reductions.

A.5 Reduction to strongly connected components

This reduction is quite simple. We walk through the graph, and if we find a vertex without an
edge going into it, we delete all edges going from it and vice versa. The pseudocode can be found in
Algorithm 6.
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Algorithm 4: Computation of the setD(β, A)

1 Max← ⌈L(1 + β)⌉ − 2; /* Calculated from Y,Y ′,H as in Lemma 5.11 */

2 I ← (1,Max);
3 for m = 0,1,. . . , Max do

4 Am ← A
(
1 0
m 1

)
;

5 k ← 0;
6 while k ≤ (2 + m) · α do
7 ℓ ← 0;
8 while ℓ ≤ (2 + m) · α and k + ℓ ≤ Y · Y ′ · H2 do
9 if I = ∅ then

10 D(β, A)← ∅;
11 return;

12 else if



k + ℓ = 0,
or k = ℓ ∧ k ≥ α,
or k > ℓ ∧ k+ℓ(m+C)

(1+m+C) > α,

or k < ℓ ∧ k+ℓ(m+D)
(1+m+D) > α,

or Am

 ℓHk
H

 , 00
 mod

Y
Y ′

 ,
then

13 increase ℓ by H;

/* It means that

(
ℓ

k

)
does not comply with P3 or P2, resp. the inequality

in (5.9). */

14 else
15 J := ∅;
16 if ℓ > 1 then
17 J ←

(
k+1+m(ℓ−1)

ℓ−1 ,Max
)
;

18 if k > 1 then
19 J ← J ∪

((
1, k−1+m(ℓ+1)

ℓ+1

)
∩ (1,m + 1)

)
;

20 if k = 0 then
21 J ← J ∪ (1,m + 1);

22 I ← I ∩ J;
23 ℓ ← ℓ + H;

24 k ← k + H;

25 D(β, A)← I;
26 returnD(β, A).
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Algorithm 5: Filling the adjacent list adj

1 for i = 0, 1, . . . ,M − 1 do
2 Take the i-th matrix and denote it by Ai;
3 Set the pointer to the first interval inD(β, Ai);
4 Take the interval (a, b) from the pointer;
5 while The pointer is not NULL do
6 k ← ⌊a⌋;
7 while k < b do
8 Find the representative of class [Ai

(
0 1
1 k

)
]≡ and find it in the list of matrices. Denote

its index as j;
9 To the adj [ i ], add the edge to j with the label (k, k + 1) ∩ (a, b);

10 k ← k + 1;

11 Move the pointer to the next interval;

Algorithm 6: Reduction to strongly connected components

1 deleted ← true;
2 while deleted = true do

/* While we delete some edges */

3 deleted ← false;
4 for i = 0,1,. . . , M-1 do
5 if adj[ i ] is empty then

/* If the vertex has no outgoing edges */

6 j← 0;
7 while j ≤ M − 1 do
8 if adj[ j ] has an edge to i then

/* delete all edges going into it */

9 Delete the edge;
10 deleted←true;

11 j← j + 1;

12 else
13 isOk←false;
14 for j = 0, 1, . . . ,N − 1 do

/* Check if there is an edge into the vertex */

15 if adj[ j ] contains an edge to i then
16 isOk← true;

17 if isOk = false then
/* If there is no edge going into the vertex */

18 adj [ i ] ← ∅;
/* delete all edges going from it. */

19 deleted ← true;
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A.6 Forward reduction

As discussed in Section 5.5, the forward reduction has two parts. Since the edge modification is
pretty straightforward, we will discuss only the edge deletion in more detail.

A.6.1 Delete edges

At first, we will show how to determine whether an edge has a suitable prolongation to a path of
length at least MinLength.

Let [AN]≡ be a class of equivalence ≡, let (a, b) be an interval such that δN+1 ∈ (a, b) and let k be the
depth of recursion (at the beginning, it is set to 0). This procedure is described in Algorithm 7.

Algorithm 7: The pseudocode for the function hasSuitableEdge
input: Index of the matrix in the list i

Boundary points of interval (a, b)
The depth of recursion k

1 hasSuitableEdge(i,a,b,k):
2 isOk← false;
3 Set pointer to the first interval in adj [ i ];
4 while The pointer is not NULL do
5 if k = MinLength then
6 return true;

7 (e, f )← edge label from the pointer;
8 B← vertex from the pointer;
9 ℓ ← the index of matrix B in the field;

10 if (e, f ) ∩ (a, b) , ∅ then
11 if a, b ∈ N then

/* We have a suitable edge and no restrictions on the next one given by our

edge. */

12 return true;
/* Otherwise we compute new interval and recursively check if there exists a

prolongation */

13 (g, h)← new interval from (e, f ) ∩ (a, b) calculated using (5.6);
14 j← ⌊g⌋;
15 while max{ j, h} = h do
16 (o, p)← (g, h) ∩ ( j, j + 1);
17 isOk← isOk or hasSuitableEdge(ℓ, o, p, k + 1); /* Using recursion */

18 j← j + 1;

19 Move the pointer to the next edge;

20 return isOk

Now we can use the function hasSuitableEdge to remove edges that do not have a suitable prolonga-
tion. We will repeat the procedure described in Algorithm 8 for all classes and all edges, where [A]≡ is a
class of equivalence and (a, b) an edge to class [B]≡.
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Algorithm 8: Edge deletion by forward reduction

1 if a, b ∈ N then
/* We have no conditions on δ and we do nothing */

2 return;

3 (c, d)← interval for δN+1 computed from (a, b) using (5.6);
4 hasPath← false;
5 j← ⌊c⌋;
6 while max{ j, d} = d and hasPath = false do
7 (e, f )← (c, d) ∩ ( j, j + 1);
8 ℓ ← index of the vertex [B]≡;
9 hasPath← hasSuitableEdge(ℓ, e, f , 0); /* using function described in Algorithm 7 */

10 j← j + 1

11 if hasPath = false then
/* We have not found a suitable path */

12 remove the edge (a, b) from the graph;

106


	Introduction
	Combinatorics on words
	Repetitions in words and sequences
	I Minimal asymptotic critical exponent of balanced sequences
	Sturmian sequences
	Bispecial factors and their return words

	Balanced sequences
	Bispecial factors and their return words

	Construction of graph of admissible tails
	Equivalence on unimodular matrices
	Lower bound on the asymptotic critical exponent
	Admissible tails of continued fraction expansions
	Graph of admissible tails
	Graph reductions
	Forward reduction
	Backward reduction


	Results
	3-letter alphabet
	4-letter alphabet
	5-letter alphabet
	6-letter alphabet
	7-letter alphabet
	8-letter alphabet
	9-letter alphabet
	10-letter alphabet
	Asymptotic behaviour


	II Critical exponent of morphic sequences
	Critical exponent of morphic images of a sequence
	Motivation
	Complement avoidance
	Palindrome avoidance

	General approach to computation of critical exponent

	Sequence p
	Bispecial factors in p
	The shortest return words to bispecial factors in p
	The asymptotic critical exponent of p

	The infinite word (p)
	Bispecial factors in (p)
	The shortest return words to bispecial factors in (p)
	The critical exponent of (p)

	The infinite word (p)
	Bispecial factors in (p)
	The shortest return words to bispecial factors in (p)
	The critical exponent of (p)

	The infinite word (p)
	Bispecial factors in (p)
	The shortest return words to bispecial factors in (p)
	The critical exponent of (p)

	The infinite word (p)
	Bispecial factors in (p)
	The shortest return words to bispecial factors in (p)
	The critical exponent of (p)

	Conclusions
	Program
	List of rows
	Generating list of rows
	Searching for equivalent rows

	List of matrices
	Intervals D(, A)
	Graph
	Reduction to strongly connected components
	Forward reduction
	Delete edges




