
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

Interactive web documentation for Protocol Buffers

Bc. Jakub Dobrý

Ing. Jiří Šmolík

Informatics

Web Engineering

Department of Software Engineering

until the end of summer semester 2023/2024

Instructions

The aim of the work is to design and implement a static web presentation generator for

gRPC API documentation. The input files are proto files that carry a description of

services, calls and types. The output is an HTML page with documentation and the ability

to call the API (provided that the API supports gRPC-web).

1. Research existing solutions for Protocol Buffers and compare features with similar

tools for GraphQL or RESTful APIs.

2. Design and implement a documentation generator with the ability to call an existing

gRPC-web API.

3. Discuss and possibly implement an alternative data source using gRPC reflection.

4. Test the application with automated tests and perform user testing.

Electronically approved by Ing. Jaroslav Kuchař, Ph.D. on 24 November 2022 in Prague.

Master’s thesis

INTERACTIVE WEB
DOCUMENTATION FOR
PROTOCOL BUFFERS

Bc. Jakub Dobrý

Faculty of Information Technology
Department of Software Engineering
Supervisor: Ing. Jiří Šmolík
May 8, 2024

Czech Technical University in Prague
Faculty of Information Technology
© 2024 Bc. Jakub Dobrý. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Dobrý Jakub. Interactive web documentation for Protocol Buffers. Master’s
thesis. Czech Technical University in Prague, Faculty of Information Technology, 2024.

Contents

Acknowledgments viii

Declaration ix

Abstract x

List of abbreviations xi

1 Introduction 1

2 Goals 3

3 Analysis 5
3.1 Protocol Buffers . 5

3.1.1 Structures . 5
3.1.2 Comments . 8
3.1.3 Code Generation . 8
3.1.4 Metadata . 8
3.1.5 gRPC-web . 8
3.1.6 gRPC Reflection . 9

3.2 Existing Documentation Tools . 10
3.2.1 Protocol Buffers . 10
3.2.2 GraphQL . 18
3.2.3 RESTful API . 22
3.2.4 Summary . 24

3.3 Requirements . 27
3.3.1 Functional Requirements . 27
3.3.2 Non-Functional Requirements . 28

3.4 Use Cases . 29
3.4.1 UC1 – Generate Website from .proto Files 29
3.4.2 UC2 – Generate Website from gRPC Reflection 30
3.4.3 UC3 – Preview services and methods definitions 30
3.4.4 UC4 – Preview message types . 30
3.4.5 UC5 – Preview enum types . 31
3.4.6 UC6 – Preview comments for services, methods, message types, and enum

types . 31
3.4.7 UC7 – Preview options of the services and methods 31
3.4.8 UC8 – Execute a unary request and preview response with metadata, head-

ers, and trailers . 31
3.4.9 UC9 – Execute a server streaming request and preview responses with

metadata, headers, and trailers . 32
3.4.10 UC10 – Set global metadata, such as authorization 32

3.5 Requirements to Use Cases Mapping . 32

iii

iv Contents

4 Design 35
4.1 Swagger UI for gRPC . 35
4.2 gRPC-Web Limitations . 36
4.3 gRPC Reflection Possibility . 36
4.4 Architecture . 36
4.5 Common Format . 38

4.5.1 grpc-protoc-gen-doc . 38
4.5.2 gnostic . 38
4.5.3 protobufjs . 38
4.5.4 Summary . 39

4.6 Website Design . 39
4.6.1 Proto Files Generator . 39
4.6.2 gRPC Reflection Generator . 39
4.6.3 Website Wireframe . 40

4.7 Fulfillment of Requirements . 43

5 Implementation 45
5.1 Choosing the Technology . 45

5.1.1 Web Framework . 46
5.1.2 Styling Libraries . 46
5.1.3 Protobufjs Library . 46
5.1.4 gRPC-Web Client Library . 47
5.1.5 Other Libraries . 48

5.2 Project Settings . 49
5.3 JSON from Proto Files Generator . 49
5.4 JSON from gRPC Reflection Generator . 50
5.5 Static Website . 50

5.5.1 Protobufjs Data Structure . 52
5.5.2 Design and Functionality . 52

5.6 Licensing . 58

6 Testing 61
6.1 Automated Testing . 61
6.2 Manual Scenarios . 61

6.2.1 T1 – Generating the website from proto files and validating the data . . . 62
6.2.2 T2 – Generating the website from the gRPC reflection and validating the

data . 62
6.2.3 T3 – Executing unary request . 62
6.2.4 T4 – Executing server streaming request 63
6.2.5 T5 – Setting global metadata . 63

6.3 User Testing . 63
6.3.1 Common Format Generation from Proto Files 64
6.3.2 List Services, Methods, Message Types, and Enum Types 64
6.3.3 Comments and Options . 65
6.3.4 Execute Unary Request . 65
6.3.5 Execute Server Streaming Request . 65
6.3.6 Complex Method Input . 65
6.3.7 Global Metadata . 65
6.3.8 Testing Results . 66
6.3.9 Found Issues and Their Solutions . 70

6.4 Testing Summary . 73

Contents v

7 Conclusion 75
7.1 Possible Future Development . 76

A Website Guide 77
A.1 Prerequisites . 77
A.2 Usage . 77

A.2.1 Website . 77
A.2.2 Proto Files to JSON Generation . 78
A.2.3 Reflection to JSON Generation . 78

A.3 Testing Server . 78

Attached Media Contents 83

List of Figures

3.1 Protocol Buffers workflow [1] . 6
3.2 gRPC metadata . 9
3.3 Wombat GUI [10] . 10
3.4 BloomRPC GUI [11] . 11
3.5 GenDocu Web UI [12] . 12
3.6 gRPC UI [13] . 13
3.7 letmegrpc UI [14] . 14
3.8 gRPC Swagger UI [16] . 16
3.9 Postman UI [19] . 18
3.10 GraphDoc UI [23] . 19
3.11 GraphQL Playground UI [24] . 20
3.12 GraphiQL UI [25] . 21
3.13 Apollo Studio UI [26] . 21
3.14 ReDoc UI [28] . 22
3.15 RapiDoc UI [29] . 23
3.16 Swagger UI [30] . 24
3.17 Use case diagram . 29

4.1 Architecture . 37
4.2 Main layout wireframe . 41
4.3 Method wireframe . 42
4.4 Type wireframe . 43
4.5 Enum wireframe . 43

5.1 Protobufjs class diagram [35] . 51
5.2 Website overview . 53
5.3 Input using file . 53
5.4 Metadata modal dialog . 54
5.5 Method overview . 54
5.6 Method execution response . 55
5.7 Method execution response – server streaming . 55
5.8 Method execution pending state . 55
5.9 Method execution response error . 55
5.10 Method execution input fields . 56
5.11 Input validation . 56
5.12 Message type and enum type . 57

6.1 Changes after testing . 72

vi

List of Tables

3.1 Scalar types in Protocol Buffers [2] . 6
3.2 Protocol Buffers comparison . 25
3.3 Requirements to use cases mapping . 33

4.1 Fulfillment of requirements . 44

5.1 Overview of licenses and their limitations . 58
5.2 List of libraries and their licenses . 59
5.3 List of development libraries and their licenses 60

6.1 Test coverage statistics . 61
6.2 Found issues and their solutions . 71

List of code listings

3.1 Protocol Buffers code generation [2] . 8
3.2 gRPC-Gateway annotations [17] . 16
3.3 gRPC-Gateway configuration file [17] . 17
5.1 protobufjs library enum comments bug fix . 47
5.2 protobufjs-cli comments support . 47
5.3 gRPC-Web extracted client unary call example 48
5.4 proto-to-json command example . 50
5.5 proto-to-json command example . 50
5.6 proto-to-json command example . 50

vii

I would especially like to thank my supervisor, Ing. Jiří Šmolík, for
his help, time, and patience in answering my questions. I would
like to thank all testers for taking the time to do the user testing. I
would also like to thank my friends, who have been very supportive
throughout. I am grateful to my girlfriend for her encouragement
and support. Last but not least, I would like to thank my family for
their support and patience while writing this thesis.

viii

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by the Act
No. 121/2000 Coll., the Copyright Act, as amended. In accordance with Article 46(6) of the
Act, I hereby grant a nonexclusive authorization (license) to utilize this thesis, including any
and all computer programs incorporated therein or attached thereto and all corresponding doc-
umentation (hereinafter collectively referred to as the “Work”), to any and all persons that wish
to utilize the Work. Such persons are entitled to use the Work in any way (including for-profit
purposes) that does not detract from its value. This authorization is not limited in terms of
time, location and quantity.

In Prague on May 8, 2024

ix

Abstract

This master thesis presents the analysis of existing documentation tools, design, implementation,
and testing of a static website generator tailored for gRPC APIs, enabling interactive API calls
via gRPC-Web. The solution leverages a common JSON format for definitions and incorporates
two generators: one for proto files and another for gRPC reflection. This system allows users to
explore gRPC services, message types, and enums, complete with their documentation comments.
It also facilitates live interaction with the gRPC API, allowing users to execute calls and view
real-time results. Aiming to enhance the developer experience, this work will be publicly available
to the gRPC community, providing a valuable tool for developers working with gRPC APIs.

Keywords static web page, gRPC, gRPC-Web, interactive calls, documentation generator,
Protocol Buffers

Abstrakt

Tato diplomová práce představuje analýzu existujících nástrojů pro dokumentaci, návrh, im-
plementaci a testování statického generátoru webových stránek určeného pro gRPC API, který
umožňuje interaktivní volání API prostřednictvím gRPC-Web. Řešení využívá společný for-
mát JSON pro definice a zahrnuje dva generátory: jeden pro proto soubory a druhý pro reflexi
gRPC. Tento systém umožňuje uživatelům prozkoumávat gRPC service, message typy a enum,
včetně jejich dokumentačních komentářů. Dále umožňuje interakci s gRPC API, což uživatelům
umožňuje provádět volání a zobrazovat výsledky v reálném čase. S cílem zlepšit vývoj bude
tato práce zpřístupněna veřejně pro gRPC komunitu, čímž poskytne cenný nástroj pro vývojáře
pracující s gRPC API.

Klíčová slova statická webová stránka, gRPC, gRPC-Web, interaktivní volání, generátor
dokumentace, Protocol Buffers

x

List of abbreviations

API Application Programming Interface
CSS Cascading Style Sheets

DOM Document Object Model
EOF End-of-file

GraphQL Query Language for APIs
gRPC Google Remote Procedure Call

HTML HyperText Markup Language
HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment
JSON JavaScript Object Notation
NPM Node Package Manager

REST Representational State Transfer
RPC Remote Procedure Call
TLS Transport Layer Security

UI User Interface
URL Uniform Resource Locator

YAML Yet Another Markup Language

xi

xii List of abbreviations

Chapter 1

Introduction

Having a readily available client implementation and documentation for a server API significantly
aids in testing and development. However, implementing clients can be a time-consuming effort.
To address this, generic clients are often employed. Swagger1 is a popular choice for RESTful
APIs, while GraphiQL2 often serves this purpose in the GraphQL world. There is an evident
need for a similarly streamlined tool within the gRPC ecosystem.

While gRPC documentation tools exist, they often lack the user-friendliness found in their
REST or GraphQL counterparts. These solutions may require separate servers and sometimes
have limited support for comprehensively documenting services, calls, and types.

The central aim of this work is to design and implement a static web presentation generator
focused on user-friendly gRPC API documentation. Input will consist of Protobuf Buffer files
that describe the services, calls, and types. The desired output is a static HTML page that
provides clear documentation and the ability to directly execute gRPC-web API calls (assuming
the API supports gRPC-web).

I have chosen this topic because I believe I can offer a solution that will alleviate the challenges
associated with documenting gRPC services. This is particularly relevant for developers who
primarily work with RESTful APIs.

The thesis is divided into four main parts. The first part focuses on analyzing existing
solutions. Subsequent parts cover design, implementation, and testing.

In the analysis phase, I will examine the features present in existing gRPC documentation
solutions and compare them to similar tools designed for RESTful and GraphQL APIs. Based
on the insights gained, I will define the specific requirements and use cases for the static web
presentation generator.

In the design chapter, I will present a solution that leverages a static web page and tools for
converting gRPC API definitions into a format readily understood by the web page. I will also
delve into the options and potential limitations of using gRPC vs gRPC-web. Additionally, I
will explore and design a mechanism to obtain a gRPC API definition using gRPC reflection.

The implementation chapter will address the selection of an appropriate technology stack,
the implementation of the designed solution, and the overall architecture of the application. I
will discuss any challenges encountered during implementation and the solutions devised. This
chapter will conclude with a review of the licenses associated with any external libraries used.

Finally, the testing chapter will cover both manual and automated testing strategies. Auto-
mated testing will be conducted utilizing unit tests. Manual testing will be performed through
user testing, with a strong emphasis on evaluating the user-friendliness of the application.

1https://swagger.io/
2https://github.com/graphql/graphiql

1

https://swagger.io/
https://github.com/graphql/graphiql

2 Introduction

Chapter 2

Goals

The primary goal of this thesis is to develop a static HTML page that provides both developer-
familiar documentation design and gRPC API interaction capabilities (assuming the API sup-
ports gRPC-web). This project will leverage Protocol Buffer files, which define services, calls,
and data types as input. A key focus is to address the challenges of creating interactive gRPC
API documentation by utilizing a static web page and tools facilitating conversion between the
gRPC API definition and a format readily understood by the web page.

A comprehensive analysis of existing gRPC solutions, alongside comparable tools for REST-
ful and GraphQL APIs, will be conducted. This analysis will examine features, strengths, and
weaknesses, informing the specific requirements and use cases for the proposed web-based solu-
tion.

The implementation chapter centers on the creation of the static HTML page, enabling direct
gRPC API calls. Additionally, this page will incorporate the ability to automatically generate
documentation leveraging gRPC reflection.

A testing phase will include both automated tests to verify functionality and user testing to
evaluate the interface’s overall usability and developer-familiar design.

The ultimate outcome of this work is to provide a valuable resource for developers building or
using gRPC APIs. This solution will streamline the process of creating interactive documenta-
tion, enhancing understanding and efficient use of gRPC services, and hosting the documentation
website.

3

4 Goals

Chapter 3

Analysis

In this chapter, I am going to introduce Protocol Buffers. Then, I will analyze existing solutions
for website documentation with the ability to call APIs for Protocol Buffers, GraphQL, and
RESTful APIs. I will start with Protocol Buffers, then move and explore the solutions for
GraphQL, and finally analyze RESTful API.

3.1 Protocol Buffers
Protocol Buffers1 are a mechanism for serializing structured data. They are language-neutral
and platform-neutral. They encompass:

definition language,

compiler-generated code,

language-specific runtime libraries,

serialization format.
The definition language defines data structures expressed in .proto files. The compiler-generated
code enables interaction with the defined data structures in a specific programming language.
The language-specific runtime libraries facilitate the serialization and deserialization of data
according to the Protocol Buffer format. The serialization format is a compact binary format
for storing Protocol Buffer data in files or transmitting it across network connections. [1]

The mechanism of typical workflow is described in figure 3.1. For this work, my main focus
will be generating the code (and website documentation) from the .proto files and using the
generated code to interact with the final APIs.

There are two language versions of Protocol Buffers, version 2 and version 3. The versions
share the same basic concepts using the same syntax, but version 3 improves version 2 in several
ways [2]. As this work focuses on the latest technologies, I will focus on version 3 of Protocol
Buffers. If no specific version is mentioned, it is assumed that version 3 is used.

3.1.1 Structures
The primary keywords in Protocol Buffers are message, enum, service, method, and package. The
message is used to define a data structure. The enum defines a set of named constants. The
service is a set of methods that can be called remotely. And, the package type is used to define
a namespace for the defined messages, enums, and services. [2]

1https://protobuf.dev/

5

https://protobuf.dev/

6 Analysis

Figure 3.1 Protocol Buffers workflow [1]

3.1.1.1 Message
Messages are used to define data structures. They are defined using the message keyword followed
by the name of the message and a block of fields. Each field has a name, a type, and a unique
number across all fields in the message. The type of a field can be a scalar type or another
message type. The possible scalar types are described in table 3.1 with their C++ programming
language counterparts. The unique number is used to identify the field in the binary encoding.
Reusing the same number for different fields is therefore highly discouraged. To avoid this, there
is a reserved keyword, which I will describe later. [2]

.proto C++
double double
float float
int32 int32
int64 int64
uint32 uint32
uint64 uint64
sint32 int32
sint64 int64
fixed32 uint32
fixed64 uint64
sfixed32 int32
sfixed64 int64
bool bool
string string
bytes string

Table 3.1 Scalar types in Protocol Buffers [2]

Additional properties can be added to fields or types to alter their behavior. The possibilities
are reserved, optional, repeated, map, and oneof. [2]

The reserved keyword is used to reserve a field number, preventing it from being used in the
future. This is useful when a field is removed from a message, and the field number should not be
reused. You can specify a single field number, a range of field numbers, or a list of field numbers
and ranges. [2]

In Protocol Buffers version 3, fields are inherently optional, with omitted fields assuming
their default values. This can create ambiguity when differentiating between a missing field and
one explicitly set to its default. The optional keyword resolves this by providing a mechanism to
explicitly mark fields as optional and track whether they have been set, even if the value is the
default. [2]

The repeated keyword is used to define fields that can hold multiple values of the same type.

Protocol Buffers 7

This is analogous to arrays or lists in common programming languages. A repeated field allows
the representation of collections of data within the message structure. For example, a message
representing an order might have a repeated field for line items, allowing multiple products within
a single order. Protocol Buffers offer efficient encoding mechanisms for repeated fields, making
them suitable for representing ordered data lists. [2]

The map keyword is employed to define fields encompassing key-value pairs, akin to dictionar-
ies or hashmaps in programming contexts. A map field allows the flexible association of related
data without the constraints of a rigid structure. For instance, a product attribute message could
leverage a map field where keys denote attribute names (“color”, “size”) and their corresponding
values provide the descriptions (“red”, “large”). [2]

Finally, the oneof keyword provides a mechanism to define a message field where only one
of several sub-fields can be set at a time. This is valuable when the message needs to represent
mutually exclusive data variations. For example, a payment_method field within a message
could use a oneof to support different payment types like credit_card, debit_card, or paypal.
Setting one of these sub-fields automatically clears any previously set values within the oneof.
This helps conserve memory and enforces a clear structure for alternative data representations.
[2]

3.1.1.2 Enum
Another type of structure is enum. It is used to define a set of named constants. The constants
are defined using the enum keyword followed by the name of the enum and a block of constants
with their numeric values. The special numeric value 0 is used as the default value. Therefore,
the first constant must have the value 0. [2]

The enum has a special option called allow_alias, which allows having the same numeric
values for multiple names. This is useful when the same value is used in different contexts. [2]

3.1.1.3 Service and Method
The service defines a set of methods that can be called remotely. It is defined using the service
keyword followed by the name of the service and a block of methods. Each method has a name,
request, and response message type. The method can also have a stream keyword to define
streaming of request, streaming of response, or both. [2]

Streaming is a feature that allows the client and server to send a sequence of messages back
and forth until the stream is closed. This is useful when the client or server needs to send a large
number of messages or just does not know the exact number of them in advance. [2]

There are four types of gRPC calls. When no streaming is involved, it is called unary call.
When the request is streamed, it is called client-streaming call. When the response is streamed,
it is called server-streaming call. And when both request and response are streamed, it is called
bidirectional-streaming call. [3]

3.1.1.4 Packages and Options
The package is used to define a namespace for the defined messages, enums, and services in the
.proto file. It is present at the beginning of the file using the package keyword followed by the
name of the package. [2]

The other option to differentiate messages names is using nested types. The message can be
defined inside another message. It is useful when the message is used only in the context of the
parent message or is meaningful only in the parent message context. [2]

Both package and nested types are used to avoid name conflicts and can be used using the
dot notation between names.

The options are used to alter the behavior of the .proto file, message, enum, service, method,
or fields. They are defined using the option keyword followed by the name of the option and its

8 Analysis

value. One of the most commonly used option is a java_package. The java_package is used to
define the package for the Java programming language code generation. It is defined at the file
level. Other option could be java_multiple_files for altering Java code generation to generate
multiple files, or optimize_for for selection of C++ and Java generated client size, and more. [2]

3.1.2 Comments
The .proto files can contain comments. The comments can be single-line or multi-line. The
single-line comments are started with the // characters. The multi-line comments start with
the /* characters and end with the */ characters. The comments can be used to describe the
purpose of the message, enum, service, method, or field. The comments can also describe the
purpose of the package or the whole file. [2]

3.1.3 Code Generation
The .proto files are used as a source for generating a specific programming language code. Code
generation can be done using various tools, the recommended one being the Protocol Compiler
(protoc). It is used to generate the C++, C#, Dart, Go, Java, Python, Ruby, and JavaScript
code. An example usage is described in the code snippet 3.1. Required classes and types are
then generated, and the gRPC APIs can be called without extra coding work. [2]

Code listing 3.1 Protocol Buffers code generation [2]
protoc --proto_path=IMPORT_PATH --java_out=DST_DIR path/to/file.proto

3.1.4 Metadata
Metadata are key-value pairs sent with the initial or final request or response. They are used
to provide additional information, such as authentication or tracing information. Two types of
metadata are used: headers and trailers.

Headers are sent before the initial client request and before the initial response from the
server. This applies only to the first message of the client and server. The figure 3.2 shows the
gRPC headers in the request lifecycle.

Trailers are sent after the server gives the final response. They provide additional information
about the response, such as the utilization or query cost. The figure 3.2 shows the gRPC trailers
in the response lifecycle. [4]

3.1.5 gRPC-web
The gRPC is built on HTTP/2, using features like HTTP/2 framing [5]. As the HTTP/2 framing
is not, and probably never be, directly exposed by any browser, the gRPC-Web protocol exists [6].

The design goals of the gRPC-Web are:

to adopt the same framing as gRPC whenever possible,

decouple from HTTP/2 framing,

support text stream for cross-browser support [6].

The gRPC-Web clients require a proxy, which is added between the client and the server. The
communication works as follows. The browser sends a request to the proxy using the gRPC-Web
protocol. The proxy translates the gRPC-Web protocol to the gRPC protocol and sends the
request to the server. The server processes the request and sends the response back to the proxy.

Protocol Buffers 9

Message 1

Header

Client Server

Response 1

Header

Message 2..n-1

Response 2..n-1

Message n

Response n

Trailer

Figure 3.2 gRPC metadata

The proxy translates the gRPC protocol to the gRPC-Web protocol and sends the response back
to the browser. The browser processes the response, and the communication is complete. [6]

The default proxy implementation is the Envoy2 proxy. It supports the gRPC-Web protocol
out of the box. Other options are, but not only, gRPC-Web Go proxy3, APISIX4, and Nginx5.

Because of the proxy and browser implementation, there are a few differences and current
limitations of the gRPC-Web [7]. The most important one is streaming support. Currently,
the gRPC-Web does not support client-side streaming (effectively bi-directional streaming). It
supports only unary calls and server-side streaming. Based on the streaming roadmap, the client-
side streaming is planned for the future. It is planned for 2023+, but it has not been implemented
yet [8].

3.1.6 gRPC Reflection
The gRPC protocol uses binary encoding. Therefore, it is impossible to query the server without
knowing the protobuf definition of the service and both request and response messages in advance
of the request. The gRPC reflection is a way to get this information using a standardized gRPC
service that allows other clients to query the server for the protobuf-defined APIs. It includes all
necessary information about the services, methods, enums, and messages. This information can
encode requests, query the server, and decode responses. It is used by debugging tools such as
grpcurl6. The gRPC reflection service is not exposed by default, so it must be explicitly enabled
in the server configuration. The support for it varies across different gRPC implementations in
different programming languages. [9]

2https://www.envoyproxy.io/
3https://github.com/improbable-eng/grpc-web/tree/master/go/grpcwebproxy
4https://apisix.apache.org/blog/2022/01/25/apisix-grpc-web-integration/
5https://www.nginx.com/
6https://github.com/fullstorydev/grpcurl

https://www.envoyproxy.io/
https://github.com/improbable-eng/grpc-web/tree/master/go/grpcwebproxy
https://apisix.apache.org/blog/2022/01/25/apisix-grpc-web-integration/
https://www.nginx.com/
https://github.com/fullstorydev/grpcurl

10 Analysis

3.2 Existing Documentation Tools
This section examines popular tools for documenting gRPC, GraphQL, and RESTful APIs. I will
assess the capabilities and shortcomings of each solution, addressing gRPC first, then GraphQL,
and lastly, RESTful APIs. The section will culminate in a summary of findings, a discussion of
issues, and a proposed solution for the static website generator.

3.2.1 Protocol Buffers
In the Protocol Buffers world, there are several tools for generating documentation or interactive
calls from the .proto files. The most popular ones I have found are described in the following
subsections.

3.2.1.1 Wombat
Wombat is a cross-platform gRPC desktop app client. The UI is in the figure 3.3. It is used to
call gRPC services and inspect the responses. [10]

Figure 3.3 Wombat GUI [10]

The main features are:

automatic parsing of proto definitions to render services and input messages,

configuration of TLS,

input form generation for all scalar types, nested messages, enums, repeated, oneof, and map,

request metadata,

execution of unary, server streaming, client streaming, bidirectional requests,

pending request cancellation,

Existing Documentation Tools 11

sending EOF for client streaming,

view response messages,

view gRPC header and trailer,

view RPC statistics,

determine gRPC schema via reflection,

support for Google Well Known Types,

multiple workspace support [10].

The main disadvantages (compared to my task) are:

desktop application (not a website),

no support for documentation comments,

last update 3 years ago [10].

3.2.1.2 BloomRPC
BloomRPC is a cross-platform gRPC desktop app client. The UI is in the figure 3.4. It is used
to call gRPC services and inspect the responses. [11]

Figure 3.4 BloomRPC GUI [11]

The main features are:

automatic parsing of proto definitions to list services and example messages,

configuration of TLS,

request metadata,

execution of unary, server streaming, client streaming, bidirectional requests,

selection between gRPC and gRPC-Web,

pending request cancellation,

12 Analysis

sending EOF for client streaming,

view response messages [11].

The main disadvantages (compared to my task) are:

desktop application (not a website),

no support for documentation comments,

missing determine gRPC schema via reflection,

missing gRPC headers and trailers preview,

archived in 2023, usage is no longer recommended [11].

3.2.1.3 gRPC Docs and GenDocu
The gRPC Docs is a website API documentation generator by GenDocu. It provides RPC calls
documentation for gRPC services. There is no option to call the services. This documentation
is generated from the .proto files using protoc-gen-doc7 utility with its custom format output as
JSON. The example web UI is in the figure 3.5. [12]

GenDocu is a hosted gRPC Docs version. This version can call the gRPC services. But,
at the time of writing, the GenDocu website is not working anymore, and the project looks
abandoned (with the last commit being more than a year ago). [12]

Figure 3.5 GenDocu Web UI [12]

The main features are:

.proto files parsing and services, messages, enums generation,

support for documentation comments,

generation using common JSON format with the ability to change the source without rede-
ploying the website [12].

7https://github.com/pseudomuto/protoc-gen-doc

https://github.com/pseudomuto/protoc-gen-doc

Existing Documentation Tools 13

The main disadvantages (compared to my task) are:

missing determine gRPC schema via reflection,

execution of unary, server streaming, client streaming, bidirectional requests,

inactive and looks abandoned with no external websites working [12].

3.2.1.4 gRPC UI
The gRPC UI is a website that supports calling gRPC services. With this tool, you can browse
the schema, which is presented as a list of available endpoints. The schema can be constructed by
querying a server that supports server reflection, reading proto source files, or loading a compiled
‘protoset’ file (files containing an encoded file descriptor protos). The protoset file can be created
using the protoc tool, which is used by the gRPC tooling for the client’s code generation. The
UI is in the figure 3.6. [13]

Figure 3.6 gRPC UI [13]

The main features are:

listing services and methods,

ability to construct messages with forms or raw JSON,

execution of unary, server streaming, client streaming, bidirectional requests,

request metadata, headers and trailers,

configuration of TLS,

rich support for well-known types,

view response messages,

actively maintained [13].

14 Analysis

The main disadvantages (compared to my task) are:

requires a server to run (not a static website),

no support for documentation comments,

requires you to construct the entire stream of request messages all at once, and then it shows
the entire resulting stream of response messages all at once (so you can’t interact with any
streams interactively) [13].

3.2.1.5 letmegrpc
The letmegrpc is a website that supports calling gRPC services. It allows service methods to call
using forms, where each method has its separate URL (http://localhost:8080/ServiceName/
MethodName). It is constructed from a .proto file. The UI is in the figure 3.7. [14]

Figure 3.7 letmegrpc UI [14]

The main features are:

comments to fields are in tooltips,

ability to construct messages with forms,

http://localhost:8080/ServiceName/MethodName
http://localhost:8080/ServiceName/MethodName

Existing Documentation Tools 15

execution of unary, server streaming, client streaming, bidirectional requests,

view response messages [14].

The main disadvantages (compared to my task) are:

requires setup with manual go package downloads,

no listing of services and methods,

requires a server to run (not a static website),

even though forms are powerful, they can be annoying to use, especially with complex re-
quests,

no support for request metadata, headers, and trailers,

no direct support for gRPC reflection,

custom proto file parser, which does not have implemented all language features ([15]),

inactive, the last update was five years ago [14].

3.2.1.6 gRPC-swagger
The gRPC Swagger is a website. It is based on gRPC reflection and can list and call gRPC
services. It uses Swagger UI design language (copy of the Swagger UI) but is not a part of the
official Swagger. The UI is in the figure 3.8. The architecture is done using its own server as a
proxy. The website’s server forwards all requests to the gRPC server and back to the website. [14]

The main features are:

listing of services and methods,

familiar UI to the Swagger UI,

support for request metadata, headers, and trailers,

execution of unary, server streaming, client streaming, bidirectional requests,

view response messages [16].

The main disadvantages (compared to my task) are:

requires reflection enabled,

no support for comments,

requires a server to run (not a static website),

it requires to construct the entire stream of request messages all at once, and then it shows
the entire resulting stream of response messages all at once (so you can’t interact with any
streams interactively)

request data are only in the form of JSON,

inactive, last update two years ago, last release in 2020 [16].

16 Analysis

Figure 3.8 gRPC Swagger UI [16]

3.2.1.7 gRPC-Gateway
The gRPC-Gateway is a protoc compiler plugin. It generates a reverse proxy server, translating a
RESTful JSON API into gRPC. So, it is a reverse proxy server, not a documentation website, nor
a client for calling gRPC. It can also generate OpenAPI definitions using protoc-gen-openapiv2,
which can be used with tools like Swagger UI. [14]

It uses annotations in the service definitions or a configuration file. An example of annotation
is in the code snippet 3.2, and an example of the configuration file is in the code snippet 3.3. [14]

Code listing 3.2 gRPC-Gateway annotations [17]

import "google/api/annotations.proto";

rpc Echo(StringMessage) returns (StringMessage) {
option (google.api.http) = {

post: "/v1/example/echo"
body: "*"

};
}

Existing Documentation Tools 17

Code listing 3.3 gRPC-Gateway configuration file [17]
type : google . api . Service
config_version : 3

http :
ru l e s :

− s e l e c t o r : your . s e rv i c e . v1 . YourService . Echo
post : /v1/example/echo
body : ”∗”

The main features are:

support for request metadata, headers,

ability to create OpenAPI definitions,

execution of unary, server streaming, client streaming, bidirectional requests, but in a batched
manner,

and much more regards the specifics of the reverse-proxy layer [17].

The main disadvantages (compared to my task) are:

dependent on OpenAPI/HTTP API - is not just a gRPC client, but much more,

OpenAPI definitions do not have to reflect the gRPC service definitions,

no support for trailers,

no support for true bi-directional streaming,

requires the underline gRPC service definitions,

no support for reflection,

no support for documentation/comments,

requires a server to run (not a static website) [17].

3.2.1.8 Postman
Postman is the leading API platform [18]. It supports many different API types (e.g., HTTP
API, WebSockets, GraphQL) but also includes gRPC. Upon loading .proto files or using gRPC
reflection, it can understand the gRPC API and use the information for calls. It can do more
than call the gRPC services, but it is not a documentation website. So, I will focus on its gRPC
capabilities. The UI is in the figure 3.9. [19]

The main features are:

listing of services and methods,

execution of unary, server streaming, client streaming, bidirectional requests,

broad range of features for API calls, including automated tests,

support for request metadata, headers, and trailers,

supports gRPC reflection,

messages autocompletion,

messages validation,

18 Analysis

Figure 3.9 Postman UI [19]

view response messages with full support for streaming [19].

The main disadvantages (compared to my task) are:

it is a desktop application, not a static website,

no support for comments,

request data are only in the form of JSON [19].

3.2.1.9 proto2asciidoc
The proto2asciidoc is a plugin for the protoc tool that generates AsciiDoc documentation. Many
tools can then parse the AsciiDoc format. One of these tools can be a static website. The main
disadvantage is that it is not a website or application but a documentation file. Therefore, it
does not allow calling the gRPC services at all. Another disadvantage is the special comment
block formatting requirement, which differs from usual comments in proto files. And finally, it
looks to be abandoned with the last commit more than two years ago. [20]

3.2.1.10 protoc-gen-doc
The protoc-gen-doc is a documentation generator for the protoc compiler tool. It can generate
HTML, JSON, DocBook, and Markdown documentation from comments in .proto files. The
main advantages are that it can take comments from the .proto files and generate a static
documentation website or JSON, keeping the original structure of the input .proto files. The
website contains the documentation of the services, methods, and messages. The JSON can
then be used to create a custom website. For example, GenDocu mentioned earlier uses it. The
disadvantage is that it does not allow the gRPC services to be called. [21]

3.2.2 GraphQL
In the GraphQL world, there are several tools for generating documentation or interactive calls.
The most popular ones based on the state of GraphQL in 2022 and others I have found for
documentation are in the following subsections [22].

Existing Documentation Tools 19

3.2.2.1 GraphDoc
GraphDoc is a static website generator for GraphQL schemas. It supports live endpoint and
.graphql definition files. The generated website contains the documentation of the queries, mu-
tations, and types. They are shown in a file-like structure with interactive-type definition links.
The UI is in the figure 3.10. [23]

Figure 3.10 GraphDoc UI [23]

The main features are:

static website,

listing of queries, mutations, and types,

generation from the live endpoint and .graphql definition files,

documenting comments [23].

The main disadvantages (compared to my task) are:

no requests execution,

not actively maintained (last commit three years ago) [24].

3.2.2.2 GraphQL Playground
GraphQL Playground is an application for desktop and web. It allows developers to build and test
GraphQL queries and mutations, explore an API schema, and view real-time results. GraphQL
Playground offers features like automatic schema documentation, query history, and support for
GraphQL subscriptions. It uses a live endpoint and can be hosted as a static website. The UI is
in the figure 3.11. [24]

The main features are:

context-aware autocompletion,

20 Analysis

Figure 3.11 GraphQL Playground UI [24]

listing of queries, mutations, and types,

real-time GraphQL subscriptions,

multiple projects and endpoints support,

can be static website [24].

The main disadvantages (compared to my task) are:

no documenting comments,

not actively maintained (last commit two years ago, the last release in 2019) [24].

3.2.2.3 GraphiQL
GraphiQL is an interactive in-browser IDE. It allows GraphQL API documentation exploring
and the ability to execute queries and mutations. It takes an endpoint and generates a static
website. The UI is in the figure 3.12. [25]

The main features are:

static website,

documentation with comments,

listing of queries, mutations, and types,

execution of queries and mutations,

autocompletion,

metadata support [25].

The main disadvantages (compared to my task) are:

disconnection between documentation and query execution,

requires manual implementation - library usage [25].

Existing Documentation Tools 21

Figure 3.12 GraphiQL UI [25]

3.2.2.4 Apollo Studio
Apollo Studio is a cloud platform with features called Explorer or Schema. The Schema feature
is for exploring the graph with documentation. The Explorer is a tool for executing queries and
mutations, with the support of documentation, that is the closest to my task. It also contains
features like monitoring, teams, changelog, deployment support, and more. The UI is in the
figure 3.13. [26]

Figure 3.13 Apollo Studio UI [26]

The main features are:

website,

documentation with comments,

listing of queries, mutations, and types,

execution of queries and mutations,

22 Analysis

autocompletion,

metadata support,

option to construct queries using the schema with documentation,

and much more [26].

The main disadvantage (compared to my task) is that it is not self-hosted and is a closed
source [26].

3.2.3 RESTful API
In the RESTful API world, there are several tools for generating documentation or interactive
calls. Swagger UI is one of the most popular ones, which I will mainly cover and compare with
the gRPC options [27].

3.2.3.1 ReDoc
ReDoc is a tool for generating documentation based on the definition of OpenAPI. It is a static
website with a responsive layout. It is used to preview documentation comments with example
requests and responses and to show implementation examples. The UI is in the figure 3.14. [28]

Figure 3.14 ReDoc UI [28]

The main features are:

static website,

responsive layout,

documentation with comments,

preview example requests and responses,

implementation examples [28].

The main disadvantage (compared to my task) is no option of calling the endpoints [28].

Existing Documentation Tools 23

3.2.3.2 RapiDoc
RapiDoc is interactive API documentation with OpenAPI definition. It is a static website,
supports documentation comments, and allows calling the endpoints. The UI is in the figure 3.15.
[29]

Figure 3.15 RapiDoc UI [29]

The main features are:

static website,

documentation with comments,

preview example requests and responses,

implementation examples,

ability to call endpoints,

support for metadata,

support for authentication mechanisms [29].

I have not found any main disadvantages (compared to my task) of RapiDoc.

3.2.3.3 Swagger UI
Swagger UI is one of the most popular choices for RESTful API documentation [27]. The parent
project is OpenAPI, a specification for general building HTTP APIs. This tool is used to generate
documentation from the OpenAPI definition. It is a static website with support for comments
and interactive endpoint calling. The UI is in the figure 3.16. [30]

The main features are:

static website,

documentation with comments,

preview example requests and responses,

24 Analysis

Figure 3.16 Swagger UI [30]

implementation examples,

ability to call endpoints,

support for metadata,

support for authentication mechanisms [30].

I have not found any main disadvantages (compared to my task) of Swagger UI.

3.2.4 Summary
I have compiled main tools for documenting and interacting with Protocol Buffers, GraphQL,
and RESTful APIs. For each tool, I have described the overall image and the main features and
disadvantages. While many of them excel in certain areas, they often fail to provide an experience
that combines documentation rendering and interactive API exploration. The comparison of the
main features of the Protocol Buffers tools is in the table 3.2.

For Protocol Buffers, the most dominant are desktop applications like Wombat, BloomRPC,
and Postman, which facilitate the browsing and calling of gRPC services. However, these ap-
plications generally lack support for rendering documentation comments or determining gRPC
schema via reflection.

Web-based solutions like gRPC Docs, gRPC UI, letmegrpc, and gRPC-swagger offer inter-
active gRPC calling capabilities. Still, they encounter limitations like interactive streaming
support, documentation comments integration, or special server setup requirements. This means
developers must set up and maintain a server infrastructure specifically for API documentation
and interaction.

Additionally, static documentation generators like proto2asciidoc or protoc-gen-doc can ren-
der comments from .proto files as markup, but they do not allow direct interaction with the
services. The gRPC-Gateway is a unique tool that generates a reverse proxy server for trans-
lating HTTP JSON APIs into gRPC. While it is not directly comparable to the other tools, it
is worth mentioning due to its ability to generate OpenAPI definitions, which can be used with
existing tools for HTTP APIs.

Also, it is important to point out that maintenance of the tools is generally not good, with
most of them being inactive for more than a year. Only gRPC UI, gRPC-Gateway, protoc-gen-
doc, and Postman are actively maintained.

Overall, the combination of having a static website with documenting comments and being
able to call specific service methods interactively is lacking in current gRPC tools.

E
xisting

D
ocum

entation
T

ools
25

Wombat BloomRPC gRPC Docs gRPC UI letmegrpc gRPC-swagger gRPC-Gateway Postman proto2asciidoc protoc-gen-doc
Type Desktop App Desktop App Static Web Website Website Website Proxy Desktop App AsciiDoc Static Web, JSON
Listing of services & methods x x x x x x x x
Input as form x x x
Input as JSON x x x x
Request metadata x x x x x x
Headers & Trailers x x x x x
Execution of requests x x x x x x x
Determine schema via gRPC reflection x x x x x ? (not specified) ? (not specified)
Schema from .proto files x x x x x x x
Documentation comments ∼ (in tooltips) x x
Maintained x x x x

Table 3.2 Protocol Buffers comparison

26 Analysis

In the GraphQL realm, a documentation-focused tool graphdoc generates static documenta-
tion websites from schema definitions, providing a comprehensive view of the available queries,
mutations, and types. However, this tool cannot execute queries and mutations, limiting its
usefulness for interactive API exploration.

On the other hand, GraphQL Playground and GraphiQL are powerful web IDEs that do
not require a specific server to be running and excel in executing queries and mutations. Still,
they struggle to integrate documentation seamlessly and comprehensively in their UI, where
only GraphiQL includes the documentation comments but is not able to connect them with the
queries directly. The most advanced tool is Apollo Studio, a cloud platform that offers a wide
range of features for exploring and executing GraphQL APIs. However, it still lacks a self-hosted
solution for static website generation. As a result, none of the most popular tools I have found
combine comprehensive documentation rendering with fully interactive query capabilities in a
static website format.

In contrast, the RESTful API ecosystem is in a vastly different state. The ReDoc tool is a
static website generator that renders documentation from OpenAPI definitions, providing a view
of the available endpoints, request/response examples, and implementation examples. However,
it does not support interactive API execution.

Solutions like Swagger UI and RapiDoc render documentation from OpenAPI definitions
while allowing interactive API execution. These tools provide a cohesive experience for developers
working with RESTful APIs, blending documentation and interaction capabilities while being
able to run as a static website. I have found no significant disadvantages to either of these tools.

3.2.4.1 Comparison
Comparing the tools for Protocol Buffers, GraphQL, and RESTful APIs, I have found that the
RESTful API tools are the most advanced in terms of combining documentation rendering with
interactive API exploration. Tools like Swagger UI and RapiDoc provide a cohesive experience
for developers working with RESTful APIs, blending documentation and interaction capabilities
while being able to run a static website. They have features like listing endpoints, input as
form or JSON (in a combined way, where the form is only to a first level of hierarchy deepness),
request/response metadata, execution of requests, and documentation comments.

The GraphQL tools are also quite advanced, but they often struggle with integrating doc-
umentation comments into the interactive query execution. The Protocol Buffers tools are the
least advanced, with most tools focusing on either documentation rendering or interactive API
exploration, but not both. Also, the maintenance of the tools is generally not good, with most
of them being inactive for more than a year.

3.2.4.2 Issues
Despite the strengths of existing tools for Protocol Buffers, there remains a notable gap for an
integrated solution that can cater to a unified static web generator that can provide a cohesive
experience by combining documentation and fully interactive request/response capabilities with
support for features like streaming, headers and trailers metadata. This website generator should
be able to create the static website from .proto files or gRPC reflection.

The main issues I will be addressing are:

documentation comments,

interactive streaming,

gRPC reflection,

request metadata, headers, and trailers.

Requirements 27

3.3 Requirements
The main requirement is to create a static website documentation for Protocol Buffers, which
supports API calls. The website should be able to render documentation comments, list services
and methods, execute requests, and support request metadata, headers, and trailers. It has to
understand all gRPC features like messages, services, methods, and enums. The website should
be generated from .proto files or gRPC reflection.

Based on the issues and primary features described previously in the tools, I have compiled
functional and non-functional requirements covering the required functionality of the static web-
site interactive documentation generator.

3.3.1 Functional Requirements
F1 List services and methods

The website should list all services and methods available in the Protocol Buffers.

F2 List message types
The website should list all message types available in the Protocol Buffers.

F3 List enum types
The website should list all enum types available in the Protocol Buffers.

F4 Show comments for services, methods, message types, and enum types
Comments from the Protocol Buffers definitions should be rendered on the website for ser-
vices, methods, message, and enum types.

F5 Show comments for fields
Comments from the Protocol Buffers definitions should be rendered on the website for fields
in message or enum types.

F6 Execution of methods with unary requests
The website should allow for the execution of unary requests.

F7 Execution of methods with server streaming requests
The website should allow for the execution of server streaming gRPC method requests. Also,
streaming cancellation should be allowed in the middle of the execution.

F8 Request body message input
The website should allow request data input as a form or JSON. It has to support all scalar
types, including messages and enums. The input should eventually also contain an example
of the message structure.

F9 Input form validation for the correct message structure
The website should validate the input form for the correct message structure and show an
error if the structure is incorrect.

F10 Request metadata input
The website should allow for input of request metadata.

F11 Response headers and trailers
The website should show response headers and trailers.

F12 Response message
The website should display the response message or messages.

28 Analysis

F13 Support for oneof fields
The website should support oneof the fields in the message types. They must be supported
in the input request and the message definition.

F14 Support for map fields
The website should support map fields in the message types. They must be supported in
the input request and the message definition.

F15 Support for repeated fields
The website should support repeated fields in the message types. They must be supported
in the input request and the message definition.

F16 Support for nested messages
The website should support nested messages in the message types. They must be supported
in the input request and the message definition.

F17 Support for well-known types
The website should support well-known types like Timestamp, Duration, FieldMask, etc.
They must be supported in the input request and the message definition.

F18 Generate website from .proto files
The generator should be able to generate the website from .proto files. The .proto files can
be a single file or a folder.

F19 Generate a website from gRPC reflection
The generator should be able to generate the website from gRPC reflection. The reflection
can be from a server or a protoset definition file.

F20 Global metadata and authorization
The website should allow for global metadata definition and authorization metadata. It
should be possible to set the metadata for all requests and methods.

F21 Options should be shown
The website should show the options for services and methods.

3.3.2 Non-Functional Requirements
N1 Static Website

The website should be static. It means only a combination of static files like HTML, CSS,
and JavaScript without requiring a dynamic server to be run. This should allow for easy
deployment and hosting on various platforms.

N2 Familiar UI
The website should have a familiar UI for developers, probably close to something already
used in the RESTful or GraphQL worlds. It should be easy to navigate and understand,
with a clear structure and layout.

N3 Input as form or JSON
The website should allow request data input as a form or JSON. Depending on the devel-
oper’s preference, this should allow for flexibility in how the data is entered.

Use Cases 29

Interactive Documentation Static Website

Application Developer

UC1 - Generate
Website from .proto

Files

gRPC Developer

UC2 - Generate
Website from gRPC

Reflection

UC3 - Preview services
and methods definitions

UC4 - Preview message
types

UC5 - Preview enum
types

UC6 - Preview comments for
services, methods, message

types, and enum types

UC7 - Preview options of the
services and methods

UC8 - Execute a unary request
and preview response with

metadata, headers, and trailers

UC9 - Execute a server
streaming request and preview

responses with metadata,
headers, and trailers

UC10 - Set global metadata,
such as authorization

Figure 3.17 Use case diagram

3.4 Use Cases
Based on the requirements and comparing the existing tools, I have compiled a list of use cases
that the static website interactive documentation generator should support. The figure 3.17
shows the diagram of the use cases and their relationships with the actors. In my case, I have
two actors. One is the Application Developer, who uses the website to explore and interact with
the gRPC services. The other is the gRPC Developer, who generates the static website from the
.proto files or gRPC reflection.

3.4.1 UC1 – Generate Website from .proto Files
Primary Actor: gRPC Developer
Preconditions: The gRPC Developer has the .proto files ready. Either as separate files in a
folder or as interlinked files using imports.

30 Analysis

Goal: The website is generated.
Main Scenario: The gRPC Developer runs the generator. The generator reads the .proto files.
The generator generates the website’s necessary files for these definitions. The website is ready
for the gRPC Developer to be hosted.
Alternative Scenario 1: The generator finds an error while parsing the .proto files. So, it
shows an error message to the gRPC Developer. The gRPC Developer has to fix the error in the
.proto files and rerun the generator.
Alternative Scenario 2: The .proto files do not exist. The generator shows an error message
to the gRPC Developer. The gRPC Developer has to provide the .proto files and rerun the
generator.

3.4.2 UC2 – Generate Website from gRPC Reflection
Primary Actor: gRPC Developer
Preconditions: The gRPC Developer has the gRPC server with reflection enabled, ready and
running.
Goal: The website is generated.
Main Scenario: With reflection enabled, the gRPC Developer runs some tools to get the
Protocol Buffer definitions from the target gRPC server. After the Protocol Buffer definitions
are created, the gRPC Developer runs the generator and feeds it the definitions. The generator
reads the definitions and generates the website’s necessary files. The website is ready for the
gRPC Developer to be hosted.
Alternative Scenario 1: The generator finds an error while parsing the definitions file. So,
it shows an error message to the gRPC Developer. The gRPC Developer has to regenerate the
definitions file and rerun the generator.
Alternative Scenario 2: The definition file does not exist. The generator shows an error
message to the gRPC Developer. The gRPC Developer has to provide the definition file and
rerun the generator.

3.4.3 UC3 – Preview services and methods definitions
Primary Actor: Application Developer
Preconditions: The Application Developer has opened the static website with the Protocol
Buffers definition defined.
Goal: The services and methods are shown.
Main Scenario: The Application Developer opens the website. The website shows the services
and methods available in the definitions of Protocol Buffers. The Application Developer can see
the details of the services and methods with their relevant package paths.
Alternative Scenario 1: The website does not show the services and methods. The Application
Developer sees an error message or empty page. The Application Developer has to ask the gRPC
Developer to check the Protocol Buffers definitions and regenerate the website.

3.4.4 UC4 – Preview message types
Primary Actor: Application Developer
Preconditions: The Application Developer has opened the static website with the Protocol
Buffers definition defined.
Goal: The message types are shown.
Main Scenario: The Application Developer opens the website. The website shows the message
types available in the definitions of Protocol Buffers. The Application Developer can see the
details of the message type with their fields and nested message types.

Use Cases 31

Alternative Scenario 1: The website does not show the message types. The Application
Developer sees an error message or empty page. The Application Developer has to ask the
gRPC Developer to check the Protocol Buffers definitions and regenerate the website.

3.4.5 UC5 – Preview enum types
Primary Actor: Application Developer
Preconditions: The Application Developer has opened the static website with the Protocol
Buffers definition defined.
Goal: The enum types are shown.
Main Scenario: The Application Developer opens the website. The website shows the enum
types available in the definitions of Protocol Buffers. The Application Developer can see the
details of the enum type with their keys and values.
Alternative Scenario 1: The website does not show the enum types. The Application De-
veloper sees an error message or empty page. The Application Developer has to ask the gRPC
Developer to check the Protocol Buffers definitions and regenerate the website.

3.4.6 UC6 – Preview comments for services, methods, mes-
sage types, and enum types

Primary Actor: Application Developer
Preconditions: The Application Developer has opened the static website with the Protocol
Buffers definition defined.
Goal: The comments are shown.
Main Scenario: The Application Developer opens the website. The website shows all defined
comments for services, methods, message types, and enum types. The Application Developer
can see all the comments for each of them.
Alternative Scenario 1: The website does not show the defined comments. The Application
Developer sees an error message or no comments on the page. The Application Developer has to
ask the gRPC Developer to check the Protocol Buffers definitions and regenerate the website.

3.4.7 UC7 – Preview options of the services and methods
Primary Actor: Application Developer
Preconditions: The Application Developer has opened the static website with the Protocol
Buffers definition defined.
Goal: The options are shown.
Main Scenario: The Application Developer opens the website. The website shows all defined
options for services and methods. The Application Developer can see the last defined options
for each of them.
Alternative Scenario 1: The website does not show the defined options. The Application
Developer sees an error message or no options on the page. The Application Developer has to
ask the gRPC Developer to check the Protocol Buffers definitions and regenerate the website.

3.4.8 UC8 – Execute a unary request and preview response
with metadata, headers, and trailers

Primary Actor: Application Developer
Preconditions: The Application Developer has opened the static website with the Protocol
Buffers definition defined.

32 Analysis

Goal: Execution is successful, and the response is shown.
Main Scenario: The Application Developer opens the website. First, they define the target
server URL. Then, they select a service and method. They fill in the request data and metadata.
They execute the request. The website shows headers, then the response, and finally, the trailers.
Alternative Scenario 1: The request data are invalid. The website shows an error message.
The Application Developer has to fix the request data and rerun the request.
Alternative Scenario 2: The request fails for any reason. The website shows an error message.
The Application Developer has to check the server status, the request data, and metadata and
rerun the request.
Alternative Scenario 3: The request is taking too long. The Application developer can cancel
the request in the middle of the execution. They have to check the server status, the request
data, and metadata and rerun the request.

3.4.9 UC9 – Execute a server streaming request and pre-
view responses with metadata, headers, and trailers

Primary Actor: Application Developer
Preconditions: The Application Developer has opened the static website with the Protocol
Buffers definition defined.
Goal: Execution is successful, and all responses are shown.
Main Scenario: The Application Developer opens the website. First, they define the target
server URL. Then, they select a service and method. They fill in the request data and metadata.
They execute the request. The website shows headers, then all responses while they are arriving
from the server one by one, and finally, trailers.
Alternative Scenario 1: The request data are invalid. The website shows an error message.
The Application Developer has to fix the request data and rerun the request.
Alternative Scenario 2: The request fails for any reason. The website shows an error message.
The Application Developer has to check the server status, the request data, and metadata and
rerun the request.
Alternative Scenario 3: The request is taking too long. The Application developer can cancel
the request in the middle of the execution. They have to check the server status, the request
data, and metadata and rerun the request.

3.4.10 UC10 – Set global metadata, such as authorization
Primary Actor: Application Developer
Preconditions: The Application Developer has opened the static website with the Protocol
Buffers definition defined.
Goal: Execution is successful, and the global metadata is included in the request.
Main Scenario: The Application Developer opens the website. First, they define the target
server URL. Then, they select a service and method. They fill in the request data and meta-
data. They execute the request. The website shows the executed request containing the global
metadata.

3.5 Requirements to Use Cases Mapping
I have compiled a table of requirements and use cases mapping (see table 3.3) to verify that all
requirements are covered by at least one use case and that no use case is unnecessary. The table
shows that all requirements are covered.

Requirements to Use Cases Mapping 33

Use Cases
1 2 3 4 5 6 7 8 9 10

F1 x
F2 x
F3 x
F4 x
F5 x
F6 x
F7 x
F8 x x
F9 x x
F10 x x
F11 x x
F12 x x
F13 x x x
F14 x x x
F15 x x x
F16 x x x
F17 x
F18 x
F19 x
F20 x
F21 x

Table 3.3 Requirements to use cases mapping

34 Analysis

Chapter 4

Design

Based on the analysis, as one of the most advanced documentation generators is Swagger UI,
it will be my main inspiration. Also, the Swagger UI is a well-known tool in the software
development community, and many companies and projects use it. The Swagger UI works so
the website is static by default, and the endpoints, types, and more are defined in a definition
file. This file is an OpenAPI YAML or JSON file, which is then parsed and displayed on the
website [31]. This is a good approach, as it separates the data from the view. This allows the
data to be easily changed, and the website will regenerate dynamically in the browser. The
deployment of the website is also more accessible, as it is just a static website, which can be
hosted on any web server, and updating the definitions can be part of different deployment
processes.

First, I will analyze if I could use Swagger UI directly or if I need to create my own website.

4.1 Swagger UI for gRPC

The first idea is to use Swagger UI and generate the OpenAPI definition file from the gRPC
proto files. This approach would benefit from reusing a known tool with all its features. The
issue is that OpenAPI Specification is made for HTTP APIs, which gRPC APIs, although
using HTTP/2, are not [32]. This means the OpenAPI Specification does not support gRPC
specifics, like the streaming or mapping service methods to HTTP endpoints. Implementation
of such would require compromises on the translation layer between the two. As described in the
analysis, the gRPC-Gateway is an example of this translation, but it is not a perfect solution,
and it has its limitations, which I want to avoid.

Another option is using the Swagger UI plugin system [33]. This would allow me to use the
swagger-ui package as a dependency and build all the gRPC specifics on top of it, including
reading different specifications than OpenAPI. The positive side of this approach is that I would
be able to use the Swagger UI design. On the other hand, I would need to reimplement almost
every single part in order to be able to work with gRPC specifics and, in the future, maintain
compatibility with possible Swagger UI updates. This would leave me only with a page skeleton.
That is a toolbar and a background color. I do not see that as a significant advantage over
creating my own website.

In the end, I have decided to create my own website, which will be inspired by the Swagger
UI design, but it will be adjusted to the gRPC specifics.

35

36 Design

4.2 gRPC-Web Limitations
Previously, I mentioned the limitations of the gRPC-Web. The most important influence will be
based on the lack of support for client streaming and bidirectional streaming, even though its
implementation is on the roadmap. This means that the website will not be able to execute these
method types, and the execution will be limited to unary and server streaming methods only.
However, it does not affect the design of the website. It can still show all relevant documentation
and have the implementation ready when gRPC-Web developers add support.

For the possibility of gRPC-Web support for client streaming and bidirectional streaming not
being added in the following years, I will prepare an interface to use a custom gRPC server proxy.
If an implementation of that interface is provided, the website will be able to use it, and the user
will be able to use all gRPC methods, including client streaming and bidirectional streaming.
This solution will not be part of my thesis, but I will prepare the website so it can be added (or
removed altogether) in the future.

The server streaming also has a limitation in gRPC-Web, which is that it works only in
application/grpc-web-text format [7]. This means that the payload is base64 encoded, and it is
not possible to use the application/grpc-web+proto content type, which uses payload in binary
format. Only unary calls support both an application/grpc-web+proto and application/grpc-
web-text content types. Therefore, unary requests will feature a selection of content types, which
users will be able to change.

4.3 gRPC Reflection Possibility
Before I start designing the website architecture, I need to decide how the gRPC reflection as a
data source could be used compared to the proto files. Any tool using gRPC reflection has to
support the connection using gRPC itself. Therefore, it is not possible to use it directly in the
browser. A server-side tool or client will need to be used to connect to the gRPC server and
get the reflection data. The grpcurl tool mentioned in the analysis allows not only creating the
client but also exporting a “protoset” file. This is a file containing the reflection metadata in its
own format. This file can be used instead of a direct gRPC server as a reflection source. But
it can also be read with tools other than grpcurl. For example, the gRPC UI tool elevates this
in its own implementation [13]. This will allow for the documentation website to either use the
protoset file directly or convert the protoset file to a different common format, which the website
will then use.

The limitation of the gRPC reflection is that it does not provide comments from the proto
files. This means the website will not be able to show the comments, which are part of the proto
files, if the reflection is used. This is a significant limitation, as the comments are part of the
documentation, and they are important for the user to understand the methods and types. The
good thing is that it is being tracked on GitHub (https://github.com/grpc/grpc/issues/
22680) by the gRPC developers, and when it is implemented, the documentation website will be
able to use it. For now, if documentation comments are required, the proto files will have to be
used as the data source.

4.4 Architecture
The architecture of the website will be based on the Swagger UI, but it will be adjusted to the
gRPC specifics. The website will be static, and it will take a gRPC definition file to show all
gRPC-related parts. The gRPC definition file from the proto files or gRPC reflection and its
format will be most probably either JSON or YAML. These formats are common in software
development, and they are also used by the Swagger UI, from which I take inspiration.

https://github.com/grpc/grpc/issues/22680
https://github.com/grpc/grpc/issues/22680

Architecture 37

I have created a diagram of the website architecture, which is shown in the figure 4.1. There
are two places where the generation of the common format starts. The first one is from the .proto
file. The second one is from the gRPC reflection. Both methods will generate the same format
that the website will use. The website will be static and generated using the common format on
the fly using client-side programming languages like JavaScript. The user of the website will be
able to see all the methods, types, and enums, which are defined in the gRPC definition file. They
will also be able to call the methods and see the responses on the website. When they invoke
the request, the website will select the correct backend (gRPC-Web or other implementation),
and it will be the server. The server then returns the response, which is then displayed on the
website (the responses can be shown gradually as, for example, the server streams responses).

Supplied

.proto Files

Generates

gRPC Reflection

Generates

Web Documentation
Generator

User invokesWeb Documentation Selects
backend

Request Call
Interface

Custom gRPC Server
(not implementing,
future extension

possibility)

gRPC-web Server

Request
is invoked

Request

START START

START

Request Types:
 - unary
 - server streaming
 - client streaming
 - bidirectional

Show to the user Response

Which
backend

is
selected?

Calls the service method, gets response

Supplied

Library for converting
files to common

format

Takes provided
common format
and generates
required request
calls

Supplied

.bin File

Common format with
definitions and

comments

Outputs

Selects the
gRPC-web server,
no other will be
implemented

Figure 4.1 Architecture

This architecture should allow static website hosting, with the possibility of generating the
website on the fly based on the common format definition. The deployment of that website
could be then split into deploying the website itself and deploying the common format definition,
which may allow more possibilities for gRPC API developers or maintainers. It will be also able

38 Design

to execute queries and, more importantly, show server streaming responses right at the moment
they are received from the server. The website will be able to work with both proto files and
gRPC reflection, and it will be ready for future gRPC-Web support for client streaming and
bidirectional streaming.

4.5 Common Format
As previously mentioned, the website will use a common format for the gRPC definitions, from
which the website will be generated on the fly. In this section, I will discuss the possibilities of
already existing common formats, and I will choose the most suitable one for the website. I will
not consider the OpenAPI standard anymore, as I have discussed previously in the Swagger UI
possibility.

4.5.1 grpc-protoc-gen-doc
The grpc-protoc-gen-doc1 allows JSON output generation, including comments. This is great
for documentation, but it does not allow the generation of the necessary gRPC metadata used
for constructing gRPC requests. That means the website would not allow gRPC methods to be
executed just from this file, and additional metadata would be needed.

4.5.2 gnostic
The gnostic2 is a compiler for APIs described by the OpenAPI Specification. It generates JSON
and YAML OpenAPI descriptors to (and from) Protocol Buffer representations. It uses gRPC
options to specify HTTP paths and other information. [34]

This is a good option, as it is able to generate the OpenAPI Specification from the proto
files. The issue is that the binary format of the proto files is defined by gnostic, so all generations
have to be done from YAML or JSON, not from the proto files at all. This makes this library
not suitable for use as a common format, as it would require the proto files to be converted to
YAML or JSON first. Or implementing a script for converting proto files to the gnostic binary
format, which is still missing all the implementation needed for the website itself.

4.5.3 protobufjs
The protobufjs3 library is a JavaScript implementation with TypeScript support of the Protocol
Buffers serialization with over fourteen million downloads per week. It is able to parse the proto
files and query the data from them. The data can then be used to serialize and deserialize the
messages in binary format when used in gRPC calls. It does not execute the gRPC calls directly,
but this functionality can be implemented using other libraries. [35]

This library allows for listing all services, methods, types, enums, and all other related parts
of proto files, such as fields, options, and, most importantly, also comments. It is able to parse the
proto files and generate a JSON output, which can be then used instead of the proto files directly.
This is a possible candidate for the common format, as it is able to generate the necessary data
for the website, and it is also able to generate the binary format for the gRPC calls.

There is also a protobufjs/ext/descriptor4 extension, which is able to parse and decode the
descriptor.proto files used in the binary format of gRPC reflection. This means that the proto-
bufjs library is able to work with both proto files and gRPC reflection. Using this extension, I

1https://github.com/pseudomuto/protoc-gen-doc
2https://github.com/google/gnostic
3https://github.com/protobufjs/protobuf.js
4https://github.com/protobufjs/protobuf.js/blob/master/ext/descriptor/README.md

https://github.com/pseudomuto/protoc-gen-doc
https://github.com/google/gnostic
https://github.com/protobufjs/protobuf.js
https://github.com/protobufjs/protobuf.js/blob/master/ext/descriptor/README.md

Website Design 39

can generate the common JSON format, and the website will be able to work with the reflection
too.

4.5.4 Summary
Based on the options I have found, the protobufjs library looks like the best option for the
common format. It is able to generate the JSON output, which can be used as a common format
for the proto files and the gRPC reflection. It also allows the creation of the binary message
format necessary for the gRPC calls. It is also able to parse the comments from the proto files,
which is important for documentation purposes.

I could also create my own parser, which would parse the proto files and generate the JSON
output. But this would require a lot of work, and it would not be as good as the protobufjs
library, which is already broadly used. Therefore, I have decided to use the protobufjs library
for the common format.

4.6 Website Design

Based on the architecture, the website generator will contain three parts:

proto files generator,

gRPC reflection generator,

static website.

The proto files generator will generate the JSON output from the proto files. The gRPC
reflection generator will generate the JSON output from the gRPC reflection. The static website
will take the JSON output and generate the website on the fly in the browser.

The website design will be inspired by the Swagger UI design, but it will be adjusted to the
gRPC specifics. This should allow the developers to get familiar with the website quickly, as
they may already know the Swagger UI design.

I will describe each part in more detail in the following sections, and I will also show the
wireframes of the website.

4.6.1 Proto Files Generator
The proto files generator will be a command line script that takes the proto files as input and
generates the JSON output. It should also allow the user to use a folder of proto files. The
protobufjs library will define the JSON output and should contain all the necessary data for the
website, such as services, methods, types, enums, and comments.

4.6.2 gRPC Reflection Generator
The gRPC reflection generator will be a command line script that takes the gRPC reflection
definition file as input and generates the JSON output. The input bin file will be the protoset
file generated by the grpcurl tool. The protobufjs library will define the JSON output and
should contain all the necessary data for the website, such as services, methods, types, enums,
and comments.

40 Design

4.6.3 Website Wireframe
The main website wireframe is in the figure 4.2. It starts with a toolbar at the top, which
contains the name of the website in the format of a logo and a definition file link with a preview
button. The definition file link will allow the user to upload the definition file, and the preview
button will generate the website on the fly. This link can be either a local file or a remote path.

Next, there is a part with a brief explanation of what this website is and what it allows. This
part may be used in the future for general gRPC API information of the particular definition
file.

Then, there are settings fields and options that apply to the whole website. The first one is a
method selection. This is a dropdown list that allows users to choose which backend implemen-
tation they want to use. Right now, only gRPC-Web is supported, but in the future, there may
be more options, such as custom gRPC server proxy or anything else. Next is a gRPC server
URL. This is a text field where the user can enter the URL of the gRPC server, which is later
used as the backend URL for gRPC calls. For the gRPC-Web implementation, this URL will be
the URL of the gRPC-Web proxy, such as Envoy. The last setting is metadata. The button will
open a modal with a table where the user can enter the metadata key-value pairs. There will
be an authorization field that will allow the user to enter the authorization token, which will be
used in the gRPC calls. This field will only define an extra metadata pair with a predefined key
and value prefix.

The main part of the website consists of three sections: services, types, and enums. Each ser-
vice name contains a full package path, documentation comment, and options, like java_package.
Services are expandable, and when expanded, they show the methods. Each method contains the
type (unary, client streaming, server streaming, or bidirectional streaming), name, and part of
the documentation comment. Methods are expandable as well, and when expanded, they show
more information, which I will describe in the following section.

The message types and enums sections are similar to the services section. Each message type
or enum contains the full package path and documentation comment and can be expanded to
show more information. Enums are prefixed with the [Enum] to distinguish them from message
types, but otherwise, they share the same design.

4.6.3.1 Method Wireframe
The method wireframe is shown in the figure 4.3. It contains the method name, type, full
documentation comment, and options. Then, it is divided into two sections. The first one
contains the request data, and the second one contains the response data.

The request data section contains a table with all top-level fields and their respective names,
types, and comments. All fields are empty by default because all fields in the gRPC request are
optional by design. The only pre-filled fields are message types because the structures can be
complex, and I assume they will be filled with at least some data. If not, they can be cleared
by the user, which I consider to be easier than creating the structure from scratch. Additional
options are shown for these fields, too. These options allow the user to preview an example input
and the target message type model. The input of the message type is done using a JSON format,
which is validated on the fly. The form itself is generated only for the top-level fields, and the
example input is done only for one level deeper. This is an intentional design decision because the
depth of nested message types can be infinite, but the user input always starts with the top-level
one. Therefore, any nested message type is treated as being part of the top-level message type.
This should allow quick input for common use cases, such as one string or number of inputs, but
also be able to define complex structures using the JSON format for message types. For fields
using oneof, repeated, or map, respective implementations, such as an array, are shown.

Before the request execution, all fields are validated, and the user is informed about any
errors. Message type errors that do not conform to the message type structure are shown, too.

Website Design 41

Figure 4.2 Main layout wireframe

This should allow the user to correct the errors and execute the request again.
The responses section contains content type selection, which is used mainly for the gRPC-Web

and sets the content type of the communication, and four subsections:

request JSON,

request server,

server responses,

responses.

The content type selection place is based on the Swagger UI content type selection, hence
part of the responses section. The request JSON section contains the request data in JSON
format with metadata, which is sent to the server. This is useful for debugging purposes, as
the user can see what is sent to the server in case the UI is not clear enough. The request
server section contains the information about the request server to remind the user that this
server is requested because its URL is set in the global settings at the top of the page. The
server responses section contains information about the server responses, such as headers, status
codes (if an error occurred), messages, and trailers. The messages are dynamically added in this
section in the case of server streaming-type requests. The responses section contains an example
response from the server in the case of success with the example message type. The message
type is expandable and behaves the same as I will describe in the following message type detail
section.

42 Design

Figure 4.3 Method wireframe

4.6.3.2 Type and Enum Wireframe
The method wireframe is shown in the figure 4.4 and the enum wireframe in the figure 4.5. Both
message types and enums contain the full package path with a name and a documentation com-
ment and can be expanded to show more information. They also include options like allow_alias
for enums.

For the message types, all fields are shown with their names, documentation comments,
unique identifiers, and types. Also, fields that are part of oneof, repeated, or map are shown
in their respective manner. If the field type is a message type, it is expandable as well, and it
shows the same information as the message type itself. Recursive message types allow infinite
expansion.

For the enums, all keys are shown with their values and value options. The value options can
be used, for example, to mark the key as deprecated or define custom properties.

Both message types and enum types work the same when used in the method requests and
response examples, and they are expandable on demand with the same design. The support
for well-known types is achieved by traversing all imported dependencies and showing their
definitions. They are shown in the same way as the user-defined types.

Fulfillment of Requirements 43

Figure 4.4 Type wireframe

Figure 4.5 Enum wireframe

4.7 Fulfillment of Requirements
I have gone through all the requirements and added a description of how the website design
fulfills them. It is shown in the table 4.1.

Based on the table, the website generator design fulfills all the requirements defined in the
analysis.

44
D

esign

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 N1 N2 N3

Main webpage design x x x

Showing comments for the services,
methods, message types, fields, and
enums

x x

Execution of methods using direct
gRPC-Web implementation

x x

Method design with inputs for all
fields

x

Form validation x

Global metadata settings, with the
ability to set the authorization token

x x

Showing the response headers, mes-
sages as they come, and trailers

x x

Supporting oneof, map, repeated, and
nested message types in the method
input and in the message type

x x x x

Supporting all imported types, in-
cluding well-known types, and show-
ing them in the types section

x

Generator for the proto files x

gRPC reflection generator, combined
with grpcurl

x

Showing options for services, meth-
ods, message types, and enum values

x

Website is static and all content is
generated on the fly

x

UI is inspired by the Swagger UI de-
sign, and it is adjusted to the gRPC
specifics

x

Message request input is in a combi-
nation of form and JSON format

x

Table 4.1 Fulfillment of requirements

Chapter 5

Implementation

In this chapter, I will describe the implementation of the website generator. I will start by
discussing the choice of technology, followed by the project settings. Then, I will describe the
code structure, user interface, and functionality. Finally, I will discuss the licensing of the libraries
used in the project.

5.1 Choosing the Technology

The main factor in choosing the technology is the ability to generate a website that can be
easily deployed and accessed by users. In the design chapter, I concluded that I would use a
common format with all gRPC definitions, and the website would be generated from this format
in the browser. Therefore, I must choose a technology for the website and the common format
generators.

As for the website, the basics are done using HTML and CSS. There is no other choice.
For the programming language, because of the dynamic rendering based on the common format,
the only possibilities are JavaScript and WebAssembly. Because I will need to be updating the
website (meaning the DOM), which is not supported directly by WebAssembly, I have chosen
JavaScript [36].

JavaScript was initially designed to manage basic website interactions using simple scripts.
The website will not be a simple script though, but many scripts with complex functions and
classes. Complexity can lead to subtle bugs that are hard to track down in plain JavaScript.
Adding type-checking ensures that errors are caught at the development stage, reducing bugs
and improving code quality. Additionally, type annotations make the code more readable and
easier to understand, which is crucial when collaborating with others or for future modifications.
[37]

Based on the State of JavaScript 2022 survey [38], the most popular language flavor of
JavaScript is Typescript1. Because of the popularity, the benefits of type-checking, and the
readability of the code, I have decided to use TypeScript for the website.

The browser does not limit the common format generator language selection because the
generators are run on the developer’s machine. Therefore, the language choice is based on the
required libraries for the generators. But, because I will be using the protobufjs JavaScript
library, I will use JavaScript for the generators.

1https://www.typescriptlang.org/

45

https://www.typescriptlang.org/

46 Implementation

5.1.1 Web Framework
To create the website with extensive logic, I will use a front-end framework. The most popular
options for the web framework based on the State of Javascript 2022 survey are React2, Angular3,
Vue.js4, and Svelte5 [39]. I want the page to exist for a long time and be maintained. For this
reason, I will choose the most popular framework, which is React.

React is a JavaScript library for building user interfaces. It is maintained by Meta and
a community of individual developers and companies. React can be used as a base in the
development of single-page web applications. It allows developers to create large web applications
that can change data without reloading the page, making the website faster. [40]

Using React is a great option, but it requires a lot of manual setup (routing, code splitting,
and more). For this reason, there is a React framework called Next.js6. It simplifies the setup,
development, static site page generation, routing, and a lot more [41]. It is also the first rec-
ommended way to build a new React application by the React team [42]. Therefore, I will use
Next.js for the website. The key features, except the setup of Next.js, that I will use are static
site generation and TypeScript support.

5.1.2 Styling Libraries
Instead of using my own CSS classes to style the website, I will use a framework to speed up
development. The most popular CSS frameworks based on the State of CSS 2023 survey are
Bootstrap7, Tailwind CSS8, and Materialize CSS9 [43]. All of them are good options, but as for
choosing the front-end framework, I will choose the most popular one, which is Bootstrap.

5.1.3 Protobufjs Library
Based on the design chapter, the protobufjs library is used to serialize and deserialize the data in
a common JSON format. The library also offers a tool called protobufjs-cli10. It is a command-
line tool that can be used to generate the JSON format from the proto files [44]. It has an
issue, though. It only allows individual proto files as input, not the entire folder, which is in
the earlier defined use case 3.4.1. Also, the correct parameters need to be specified in order to
get the correct output. For this reason, I will use the protobufjs-cli, but only as a library. This
will allow me to have potential features in the future, fix the current ones, and seal the required
parameters.

There are two more issues with this library that need to be addressed. The first one is
that there is a bug in the library when parsing the value options for enums. I found the issue
in the library’s repository source code and fixed it locally using the package manager patch
functionality. I have also reported the issue to the library’s repository at https://github.com/
protobufjs/protobuf.js/issues/1961 with a way to fix it and created a pull request. The
patch change is in the code snippet 5.1.

2https://react.dev/
3https://angular.io/
4https://vuejs.org/
5https://svelte.dev/
6https://nextjs.org/
7https://getbootstrap.com/
8https://tailwindcss.com/
9https://materializecss.com/

10https://www.npmjs.com/package/protobufjs-cli

https://github.com/protobufjs/protobuf.js/issues/1961
https://github.com/protobufjs/protobuf.js/issues/1961
https://react.dev/
https://angular.io/
https://vuejs.org/
https://svelte.dev/
https://nextjs.org/
https://getbootstrap.com/
https://tailwindcss.com/
https://materializecss.com/
https://www.npmjs.com/package/protobufjs-cli

Choosing the Technology 47

Code listing 5.1 protobufjs library enum comments bug fix
Enum.fromJSON = function fromJSON(name, json) {

// This line is removed
var enm = new Enum(name, json.values, json.options, json.comment, json.comments);
// This line is added
var enm = new Enum(name, json.values, json.options, json.comment, json.comments,
json.valuesOptions);
enm.reserved = json.reserved;
return enm;

};

The second issue is that the protobufjs-cli library does not support comments. I have found an
already existing issue (https://github.com/protobufjs/protobuf.js/issues/1145), which
hints at how to patch the library locally until it is added to the library itself. To make the
protobufjs-cli library support comments, I have slightly updated how JSON exports work and
created a local patch. When this feature is added to the library, I can remove the patch and use
the library as it is. The patch change is in the code snippet 5.2.

Code listing 5.2 protobufjs-cli comments support
function json_target(root, options, callback) {

// This line is removed
callback(null, JSON.stringify(root, null, 2));
// Theis line is added
callback(null, JSON.stringify(root.toJSON({ keepComments: true }), null, 2));

}

5.1.4 gRPC-Web Client Library
The gRPC-Web library only offers client-side code generation from the proto files (stubs). How-
ever, it does not allow the client to make the requests only with the possibility of implementing
the data serialization and deserialization. I have tried to find a library offering this functionality,
but I have not found any. For this reason, I have decided to analyze how the stubs are generated
in order to extract the gRPC-Web client. I already know that I can serialize and deserialize the
data using the protobufjs library, which I will use for that.

There are two generated gRPC-Web client files. One generates the client, and the other
generates the message types and methods. Note that the client is still specific to the proto files.

Based on the generated code, I have found that the actual call is done using initialization
of GrpcWebClientBase and then calling rpcCall method for unary requests and serverStreaming
method for server streaming requests. The client initialization does not require any parameters
but can be supplied with the option object, which may contain a format (binary or text). The
rpcCall method requires a method name, a request message type object, a metadata of the
request, a methodDescriptor (more on that later), and a callback. The rpcCall function returns
a stream, which may be used for additional headers or trailer handling. The serverStreaming
method requires the same parameters, but the callback is not present, and responses are handled
only using the returned stream.

The code snippet 5.3 shows an example of the method with parameters. The method name is a
string with a full path to the method. The request message type is defined by the generated client
and is required to contain specific attributes and methods. Because I am using the protobufjs
library, I have found out I am able to supply only an empty object ({}) there and do the rest of
the work in other functions supplied in the method descriptor.

The method descriptor is an object containing the method name, the method type, the request
message type, the response message type, and the request serialize and response deserialize

https://github.com/protobufjs/protobuf.js/issues/1145

48 Implementation

functions. The method name is just the method name without a path. The method type is
either unary or server streaming. Because I am using the protobufjs library, a fake class with a
constructor can replace the request and response message types. Finally, the request serialize,
and response deserialize functions are functions that take the message object and return the
serialized or deserialized message. Because I have replaced the request object with an empty
object, the request serialize function is not supplied with the message. However, I can directly
access the variable from the outer scope using the protobufjs library and return the encoded
message. For the response deserialize function, I can use the protobufjs library again to decode
the available message, this time as a byte’s array parameter, and return it. The callback function
or the stream receives the deserialized message in the protobufjs format.

Code listing 5.3 gRPC-Web extracted client unary call example
const client = new GrpcWebClientBase({ format: options?.format });

const unaryStream = client.rpcCall(
methodPath,
// Ignored, using protobufjs directly
{},
options?.metadata ?? {},
new MethodDescriptor(

method.name,
MethodType.UNARY,
// Ignored, using protobufjs directly
DummyRPCType,
// Ignored, using protobufjs directly
DummyRPCType,
() => {

return typeEncode.encode(message).finish();
},
(bytes: Uint8Array) => {

return typeDecode.decode(bytes);
},

),
(err, response: protobuf.Message<MessageData>) => {

if (err) {
reject(err);

} else {
completeResponse.data = [response];

}
},

);

I have extracted the gRPC-Web client from the generated stubs, and I can use it on the
website for any request. The gRPC-Web library still handles the communication with the server,
though, so any future updates to the library should be automatically applied to the client as
well.

5.1.5 Other Libraries
Other essential libraries that I will use are react-hook-form11 for creating the request input form
validation, yup12 for the schema validation (used in connection with forms), and fontawesome13

11https://react-hook-form.com/
12https://github.com/jquense/yup
13https://fontawesome.com/

https://react-hook-form.com/
https://github.com/jquense/yup
https://fontawesome.com/

Project Settings 49

for the icons. These libraries have the features I need from them, have over a million weekly
downloads (which is significant compared to other NPM packages), and are maintained. Again,
I am choosing the most popular and maintained libraries for the long-term existence of the static
documentation website.

5.2 Project Settings
The project is using the Lerna14 and pNpM15 package manager. Lerna is a tool that optimizes
the workflow around managing multi-package repositories [45]. And pNpM is a fast, disk-space
efficient package manager with the support of workspaces and libraries patching [46]. Both tools
cooperate and are compatible with each other.

The project is set up as a monorepo. It is divided into three packages:

proto-to-json – contains the generator from proto files,

reflection-to-json – contains the generator from the reflection file,

web – contains the website.

The project also contains example and patches folders.
The example folder contains example proto and reflection files with a pre-generated common

format, as well as Envoy proxy configuration and gRPC server implementation in JavaScript. The
Envoy proxy can then be started using a Docker image envoyproxy/envoy and the gRPC server
using the node server.js command. This setup can be used to test the website’s functionality.

The patches folder contains the patches for the protobufjs library described in the 5.1.4. They
are split into two files, each containing the diff of a concrete package file. These files are generated
using the pnpm patch <pkg name> command and applied automatically when the package is
installed.

The generators from proto and reflection files are set up as NPM runnable packages. This
means the packages can be installed globally and run from the command line.

The website is set up as a Next.js project using the command npx create-next-app@latest.
It uses an App directory for routing, TypeScript as the language, ESLint16 for linting, Jest17

for testing, and Prettier18 for code formatting. The website is set up to be statically generated
using the output: ”export” option, which means that the website is generated at build time and
served as static files. For building, it uses the Next.js Compiler, which is run using the pnpm
build command.

5.3 JSON from Proto Files Generator
The generator from proto files is a command-line tool that generates the common JSON format.
It takes one or more proto files or a directory with proto files as input and outputs the JSON
format to the console. The script uses the proto files from the command or recursively traverses
the directory for all proto files, which are then passed to the protobufjs-cli library with correct
arguments and writes output to the console. The output can be then redirected to a file.

The code snippet 5.4 shows an example of the command. The symbol > redirects the output
to a file. The SOURCE_PROTO_FILES can be any number of proto files or folder combinations
split by space. If invalid proto files are passed, an error will be thrown, which is then displayed
in the console.

14https://lerna.js.org/
15https://pnpm.io/
16https://eslint.org/
17https://jestjs.io/
18https://prettier.io/

https://lerna.js.org/
https://pnpm.io/
https://eslint.org/
https://jestjs.io/
https://prettier.io/

50 Implementation

Code listing 5.4 proto-to-json command example
gf-proto -to-json ${SOURCE_PROTO_FILES} > ${EXPORTED_NAME}.json

The generated JSON output can then be used on the website.

5.4 JSON from gRPC Reflection Generator
The generator from the reflection file is a command-line tool that generates the common JSON
format. The script uses the reflection bin file from the command, which is then processed by the
protobufjs library and serialized to the JSON format. The output can be then redirected to a
file.

The bin format can be generated using the grpcurl tool. The example command is shown in
the code snippet 5.5. The BIN_FILE is the target reflection bin file, and GRPC_SERVER is
the gRPC server address. The -protoset-out is used to output the reflection to the file, and the
describe tells the grpcurl to output the reflection definitions. Other parameters and features of
the grpcurl tool can also be used (e.g., TLS settings, filtering only parts of the reflection interface,
etc.). This is just an example. Also, there may be other tools for creating the reflection bin file.
There is no limitation on the tool used as long as the bin file is in the correct format.

Code listing 5.5 proto-to-json command example
grpcurl -protoset -out ${BIN_FILE}.bin -plaintext ${GRPC_SERVER} describe

The code snippet 5.6 shows an example of the command. The symbol > redirects the output
to a file. The SOURCE_BIN_FILE is the bin file. If an invalid bin file is passed, an error will
be thrown, which will then be displayed in the console.

Code listing 5.6 proto-to-json command example
gf-reflection -to-json ${SOURCE_BIN_FILE} > ${EXPORTED_NAME}.json

The generated JSON output can then be used on the website.

5.5 Static Website
The website is static and generated using the Next.js framework. The code structure is divided
into:

src/app – contains the pages of the website,

src/components – contains the React components,

src/contexts – contains the React contexts,

src/scss – contains the global styles of the website,

src/services – contains the functions with logic for the website,

src/types – helper types and constant definition,

public – contains the public files (e.g., images).
After the website is built, the output is in the out directory. The directory contains static

HTML, CSS, JavaScript files, and all files from the public directory. It can then be hosted by
any web server that supports static file hosting. It is enough to copy only the contents of the out
directory to the server. The default definitions file is in the root of the directory and is called
definitions.json. It is shown on the website page by default. Any other file can replace it with
the same structure and name, or it is possible to host the file anywhere and specify the file URL
in the url query parameter of the website.

Static
W

ebsite
51

Figure 5.1 Protobufjs class diagram [35]

52 Implementation

5.5.1 Protobufjs Data Structure
I am using the protobufjs library with its data structure. The data class diagram is shown in
the figure 5.1.

The base is the Root class, which is returned by parsing the common format. Other classes
like service or type create a tree structure. For example, using the field nested (or nestedArray)
from the NamespaceBase, I can traverse the tree and find all services, message types, or enums.
This way, I find all the data I need for the website.

Each class has fields related to the protobuf features. For example, the Service class has a
methods field containing all methods for that service, and the Method class has a field of what
type of streaming it is. Also, all classes have a comment field containing the proto file’s comment.
Using these fields, I can display the data on the website.

5.5.2 Design and Functionality
The website design starts from the wireframes in the design chapter. The whole page is in the
figure 5.2. At the top, the toolbar contains the URL input for definitions JSON files by default.
If the user clicks on the URL dropdown button, they can change the input to a file input (shown
in the figure 5.3). The file can then be a JSON definition file from the local machine or the gRPC
reflection bin file. The file is then parsed, and the data is displayed on the website.

Under the toolbar is a short description of the website’s purpose. Under the description is
a section with global settings. The first is the selection of the backend method, which is, by
default, the gRPC-Web. This is a place where it is possible to add more backends in the future,
which may have full implementation of client streaming. If the gRPC-Web library eventually
has client streaming support, this dropdown can be easily removed.

Next to the method selection is a backend gRPC server selection. The user can change the
server address and port. This is a global setting for the website and is used for all requests.

Next is the global metadata definition. Upon clicking the button, a modal dialog, figure 5.4,
is shown. The user can then define the metadata as key-value pairs for the request. It also allows
defining the authorization token, effectively creating a new metadata entry with a predefined
format.

The list of services is under the global settings. The services are displayed as described in
the design chapter. In the figure 5.2, the user can also see the difference between the unary and
server streaming methods, as well as service options and comments.

The expanded method is shown in the figure 5.5. Its design is based on the wireframes,
where the user can see the request input form and the response message type. After executing
the method, the response is shown as in the figure 5.6. It contains the request JSON with the
metadata, server URL, and the response with headers and trailers. When the method type is
server streaming, the response is shown as in the figure 5.7 with all responses gradually showing
as soon as they arrive. If the user wants to cancel the method execution while it is still running,
they can click the cancel button, which is shown in the figure 5.8. If there is an error in the
response, it is shown as in the figure 5.9 with the gRPC error code status, as well as the HTTP
status (for gRPC-Web) and metadata.

The input of a method is as a form. Different input field types are shown in the figure 5.10.
There is special handling for bytes input (file selection), strings, numbers, enums (dropdown
selection), booleans (dropdown selection), oneof the fields grouping, and JSON input fields. The
JSON input fields are shown for repeated (arrays), maps, and messages fields. Each JSON input
contains also a tab with the JSON schema example and the interactive message type model (with
expandable nested message types). The same example and model also apply for the enum types,
but the input is a dropdown selection (if it is not part of repeated). Each field has a validation
based on the schema definition. The examples are shown in the figure 5.11. The errors are

Static Website 53

Figure 5.2 Website overview

Figure 5.3 Input using file

shown after execution under the field with the error message and above the execution button.
The execution button is disabled until all fields are valid.

Message types are the next section on a website. The expanded message type is shown in
the figure 5.12a. It shows the documentation comments and options for the message type itself,
as well as for the fields. All types of fields are shown, including repeated (as an array), maps,
and oneof the fields. Green text with underlining indicates an expandable message type. The
expanded message type is shown in the figure 5.12b. If the expanded message type contains
another nested message type, it is also expandable. Each expansion rendering is done after
clicking on the field, which prevents issues with recursive types.

54 Implementation

Figure 5.4 Metadata modal dialog

Figure 5.5 Method overview

The website ends with enums. The expanded enum is shown in the figure 5.12c. It shows the
documentation comments and options for the enum itself, as well as for the values. The values
are shown as keys with their respective numbers. The enum value options are shown in brackets
after the value name, copying the protobuf syntax.

All the functionality and design allow the user to navigate through the proto file services,
methods, message types, and enums and see the documentation comments. When the user selects
a method, they can execute it with the input form and see the response. For streaming requests,
the user can see the responses gradually. They can see the error message for errors. This way,
the user can test the gRPC server without implementing any client and preview documentation.

Static Website 55

Figure 5.6 Method execution response

Figure 5.7 Method execution response – server streaming

Figure 5.8 Method execution pending state

Figure 5.9 Method execution response error

56 Implementation

(a) Bytes (b) Number (c) Enum

(d) JSON (message type, repeated,
map) (e) JSON - example (f) Model

(g) Oneof (h) Repeated - example

Figure 5.10 Method execution input fields

(a) Field

(b) Button

Figure 5.11 Input validation

Static Website 57

(a) Message type overview

(b) Message type expanded

(c) Enum overview

Figure 5.12 Message type and enum type

58 Implementation

5.6 Licensing
For the implementation, I have used libraries that use the following licenses:

MIT19,

BSD-3-Clause20,

Apache 2.021,

ISC22,

CC-BY-4.023.

The list of libraries and their licenses is captured in tables 5.2 and 5.3. The rights and
limitations of these licenses are then shown in table 5.1.

MIT BSD-3-Clause Apache 2.0 CC-BY-4.0 ISC
Permissions
Commercial use X X X X X
Modification X X X X X
Distribution X X X X X
Patent use - - X x -
Private use X X X X X

Conditions
License and copyright notice X X X X X
State changes - - X X -

Limitations
Trademark use - - x x -
Liability x x x x X
Warranty x x x x X

Table 5.1 Overview of licenses and their limitations

All licenses allow private and commercial use, including distribution and possible modifica-
tions. The only requirement is to state changes if made (I have not made any changes to the
libraries that require it).

Because I have met the requirements of the licenses and their limitations, which allow me to
use the libraries for free, I can use them for my work.

19https://choosealicense.com/licenses/mit/
20https://opensource.org/license/bsd-3-clause
21https://choosealicense.com/licenses/apache-2.0/
22https://www.isc.org/licenses/
23https://creativecommons.org/licenses/by/4.0/

https://choosealicense.com/licenses/mit/
https://opensource.org/license/bsd-3-clause
https://choosealicense.com/licenses/apache-2.0/
https://www.isc.org/licenses/
https://creativecommons.org/licenses/by/4.0/

Licensing 59

Library License
@fortawesome/fontawesome-svg-core24 MIT
@fortawesome/free-regular-svg-icons25 CC-BY-4.0, MIT
@fortawesome/free-solid-svg-icons26 CC-BY-4.0, MIT
@fortawesome/react-fontawesome27 MIT
@hookform/resolvers28 MIT
bootstrap29 MIT
grpc-web30 Apache-2.0
lodash31 MIT
next32 MIT
p-cancelable33 MIT
protobufjs34 BSD-3-Clause
protobufjs-cli35 BSD-3-Clause
react36 MIT
react-bootstrap37 MIT
react-dom38 MIT
react-hook-form39 MIT
react-syntax-highlighter40 MIT
sass41 MIT
yup42 MIT

Table 5.2 List of libraries and their licenses

24https://www.npmjs.com/package/@fortawesome/fontawesome-svg-core
25https://www.npmjs.com/package/@fortawesome/free-regular-svg-icons
26https://www.npmjs.com/package/@fortawesome/free-solid-svg-icons
27https://www.npmjs.com/package/@fortawesome/react-fontawesome
28https://www.npmjs.com/package/@hookform/resolvers
29https://www.npmjs.com/package/bootstrap
30https://www.npmjs.com/package/grpc-web
31https://www.npmjs.com/package/lodash
32https://www.npmjs.com/package/next
33https://www.npmjs.com/package/p-cancelable
34https://www.npmjs.com/package/protobufjs
35https://www.npmjs.com/package/protobufjs-cli
36https://www.npmjs.com/package/react
37https://www.npmjs.com/package/react-bootstrap
38https://www.npmjs.com/package/react-dom
39https://www.npmjs.com/package/react-hook-form
40https://www.npmjs.com/package/react-syntax-highlighter
41https://www.npmjs.com/package/sass
42https://www.npmjs.com/package/yup

https://www.npmjs.com/package/@fortawesome/fontawesome-svg-core
https://www.npmjs.com/package/@fortawesome/free-regular-svg-icons
https://www.npmjs.com/package/@fortawesome/free-solid-svg-icons
https://www.npmjs.com/package/@fortawesome/react-fontawesome
https://www.npmjs.com/package/@hookform/resolvers
https://www.npmjs.com/package/bootstrap
https://www.npmjs.com/package/grpc-web
https://www.npmjs.com/package/lodash
https://www.npmjs.com/package/next
https://www.npmjs.com/package/p-cancelable
https://www.npmjs.com/package/protobufjs
https://www.npmjs.com/package/protobufjs-cli
https://www.npmjs.com/package/react
https://www.npmjs.com/package/react-bootstrap
https://www.npmjs.com/package/react-dom
https://www.npmjs.com/package/react-hook-form
https://www.npmjs.com/package/react-syntax-highlighter
https://www.npmjs.com/package/sass
https://www.npmjs.com/package/yup

60 Implementation

Development Library License
@testing-library/jest-dom43 MIT
@testing-library/react44 MIT
@types/jest45 MIT
@types/lodash46 MIT
@types/node47 MIT
@types/react48 MIT
@types/react-dom49 MIT
@types/react-syntax-highlighter50 MIT
cross-env51 MIT
eslint52 MIT
eslint-config-next53 MIT
eslint-config-prettier54 MIT
jest55 MIT
jest-environment-jsdom56 MIT
prettier57 MIT
typescript58 Apache-2.0
lerna59 MIT
rimraf60 ISC

Table 5.3 List of development libraries and their licenses

43https://www.npmjs.com/package/@testing-library/jest-dom
44https://www.npmjs.com/package/@testing-library/react
45https://www.npmjs.com/package/@types/jest
46https://www.npmjs.com/package/@types/lodash
47https://www.npmjs.com/package/@types/node
48https://www.npmjs.com/package/@types/react
49https://www.npmjs.com/package/@types/react-dom
50https://www.npmjs.com/package/@types/react-syntax-highlighter
51https://www.npmjs.com/package/cross-env
52https://www.npmjs.com/package/eslint
53https://www.npmjs.com/package/eslint-config-next
54https://www.npmjs.com/package/eslint-config-prettier
55https://www.npmjs.com/package/jest
56https://www.npmjs.com/package/jest-environment-jsdom
57https://www.npmjs.com/package/prettier
58https://www.npmjs.com/package/typescript
59https://www.npmjs.com/package/lerna
60https://www.npmjs.com/package/rimraf

https://www.npmjs.com/package/@testing-library/jest-dom
https://www.npmjs.com/package/@testing-library/react
https://www.npmjs.com/package/@types/jest
https://www.npmjs.com/package/@types/lodash
https://www.npmjs.com/package/@types/node
https://www.npmjs.com/package/@types/react
https://www.npmjs.com/package/@types/react-dom
https://www.npmjs.com/package/@types/react-syntax-highlighter
https://www.npmjs.com/package/cross-env
https://www.npmjs.com/package/eslint
https://www.npmjs.com/package/eslint-config-next
https://www.npmjs.com/package/eslint-config-prettier
https://www.npmjs.com/package/jest
https://www.npmjs.com/package/jest-environment-jsdom
https://www.npmjs.com/package/prettier
https://www.npmjs.com/package/typescript
https://www.npmjs.com/package/lerna
https://www.npmjs.com/package/rimraf

Chapter 6

Testing

For the website testing, I have prepared automated unit tests and manual scenarios. The auto-
mated tests are written in the TypeScript programming language using the Jest 1 framework.
The manual scenarios serve as a guide for the user testing of the website and for verifying the
correctness of the website’s behavior.

6.1 Automated Testing

Using the Jest framework, I have created unit tests for the most critical parts of the website.
The tests cover the services and components of the website. They are located in the __tests__
directory. The test coverage statistics are in the table 6.1.

Statements Branches Functions Lines
Coverage 95.07% 95.65% 89.71% 96.36%

Table 6.1 Test coverage statistics

6.2 Manual Scenarios

For the manual user testing of the website, I have created scenarios that cover all use cases. Each
scenario consists of:

initial state,

steps,

covered use cases.

In the individual steps, I describe how to achieve the result defined in the title of the testing
scenario.

1https://jestjs.io/

61

https://jestjs.io/

62 Testing

6.2.1 T1 – Generating the website from proto files and
validating the data

Initial state: A folder with proto files
Steps:

1. Open the terminal

2. Write a command for translating proto files to JSON gf-proto-to-json ./ > common.json

3. Open the website (locally or hosted), change the input to file, and upload the JSON file

4. Check that the data is correctly displayed, including the services, methods, and messages

5. Check that the comments and options are present

Use cases covered: UC1, UC3, UC4, UC5, UC6, UC7

6.2.2 T2 – Generating the website from the gRPC reflec-
tion and validating the data

Initial state: A gRPC server URL with reflection enabled
Steps:

1. Open the terminal

2. Write a command for getting the bin file from the gRPC server grpcurl -protoset-out descrip-
tors.bin -plaintext ${GRPC_SERVER_URL} describe

3. Write a command for translating the bin descriptors file to JSON gf-reflection-to-json de-
scriptors.bin > common.json

4. Open the website (locally or hosted), change the input to file, and upload the bin file

5. Check that the data is correctly displayed, including the services, methods, and messages

6. Check that the comments and options are present

Use cases covered: UC2, UC3, UC4, UC5, UC6, UC7

6.2.3 T3 – Executing unary request
Initial state: Hosted website with loaded definitions and gRPC server running with the Envoy
proxy
Steps:

1. Open the website with definitions loaded

2. Open the unary request

3. Fill in the required fields

4. Click on the “Execute” button

5. Check that the response is displayed with headers and trailers

Use cases covered: UC8

User Testing 63

6.2.4 T4 – Executing server streaming request
Initial state: Hosted website with loaded definitions and gRPC server running with the Envoy
proxy
Steps:

1. Open the website with definitions loaded

2. Open the server streaming request

3. Fill in the required fields

4. Click on the “Execute” button

5. Check that the responses are being displayed as they arrive

6. Check that the headers and trailers are displayed

Use cases covered: UC9

6.2.5 T5 – Setting global metadata
Initial state: Hosted website with loaded definitions and gRPC server running with the Envoy
proxy
Steps:

1. Open the website with definitions loaded

2. Click the metadata button

3. Set any key-value metadata pair

4. Set the authorization token

5. Close the metadata dialog

6. Open any unary request

7. Fill in the required fields

8. Click on the “Execute” button

9. Check that the request contains the set metadata

Use cases covered: UC10

6.3 User Testing
My goal for the user testing is to determine the website’s intuitiveness and clarity and identify
any issues. As for the target user group, I have chosen developers.

I have created the following scenarios for the user testing:

Common Format Generation from Proto Files,

List Services, Methods, Message Types, and Enum Types,

Comments and Options,

Execute Unary Request,

64 Testing

Execute Server Streaming Request,

Complex Method Input,

Global Metadata.

The scenarios are different from those for testing the functionality of the website and do not
cover the entire functionality because the primary goal of user testing is the intuitiveness and
clarity of the website.

Each user will be briefed about the website’s general use case, asked about their experience
with similar pieces of software, and then they will be asked to complete the scenarios and provide
feedback on the website’s functionality and clarity.

The pre-questionnaire will be used to gather information about the user’s experience with
similar software. The questions are:

What is your main focus in programming? (software, hardware, web development, etc.)

What is your experience with REST APIs or GraphQL?

What is your experience with Swagger UI, GraphiQL, or similar tools?

What is your experience with the gRPC?

The post-questionnaire will be used to gather feedback on the website’s functionality and
clarity. The questions are:

How did you find the common format generation process? (rate 1–5, 1 being the best)

How did you find the overall website design? (rate 1–5, 1 being the best)

How difficult was it to find the methods, message types, and enums? (rate 1–5, 1 being the
easiest)

How difficult was it to control the method execution? (rate 1–5, 1 being the easiest)

Is there anything else to add?

6.3.1 Common Format Generation from Proto Files
The tester is provided with proto files and a script for generating a common format with its
documentation.

The following instructions are given:
Based on the provided proto files, generate a common format that will be used later on for the
documentation website.

The expected result is:
A generated common format JSON file.

6.3.2 List Services, Methods, Message Types, and Enum
Types

The tester is provided with the common format file. The website is running on localhost on port
3000.

The following instructions are given:
You have a website running on the localhost on port 3000. List all services, methods, message
types, and enum types from the common format file. Find the method SayHello and tell me
what type it gives as a response.

The expected result is:
The method is found, and the type is HelloReply.

User Testing 65

6.3.3 Comments and Options
The tester is provided with the common format file. The website is running on localhost on port
3000.

The following instructions are given:
You have a website running on the localhost on port 3000. What does the method ListFeatures
in the service RouteGuide do, and what is the java_package of that service?

The expected result is:
The method obtains features within the given rectangle, and the java_package is guiding.route.

6.3.4 Execute Unary Request
The tester is provided with the common format file. The website runs on localhost on port 3000,
and the gRPC-Web proxy with the gRPC server is set up.

The following instructions are given:
You have a website running on the localhost on port 3000. Execute method SayHello with their
parameters and tell me the response with their headers and trailers.

The expected result is:
The method is executed with any parameter and the response is “Hello Name” in the message
field of the response message type.

6.3.5 Execute Server Streaming Request
The tester is provided with the common format file. The website runs on localhost on port 3000,
and the gRPC-Web proxy with the gRPC server is set up.

The following instructions are given:
You have a website running on the localhost on port 3000. Execute method SayRepeatHello
with their parameters and tell me the responses with their headers and trailers.

The expected result is:
The method is executed with any parameter and the response is “Hello Name” multiple times in
the message field of the response message type.

6.3.6 Complex Method Input
The tester is provided with the common format file. The website runs on localhost on port 3000,
and the gRPC-Web proxy with the gRPC server is set up.

The following instructions are given:
You have a website running on the localhost on port 3000. Execute method ListFeatures with
their parameters and tell me the responses. The parameters are the following:

lo: latitude: 400000000, longitude: -750000000,

hi: latitude 420000000, longitude -73000000.

The expected result is:
The method is executed with the parameters, and responses are returned.

6.3.7 Global Metadata
The tester is provided with the common format file and authorization token. The website runs
on localhost on port 3000, and the gRPC-Web proxy with the gRPC server is set up.

66 Testing

The following instructions are given:
You have a website running on the localhost on port 3000. Execute method SayHello with the
authorization token.

The expected result is:
The method is executed, and the authorization token is present in the request metadata section.

6.3.8 Testing Results
The testing has been conducted with five developers, regardless of their experience with gRPC.
The goal was to determine the website’s intuitiveness and clarity and identify any issues. The
individual testing reports follow in the next sections.

6.3.8.1 Tester 1
The first tester is an undergraduate student in computer science.

Pre-questionnaire answers:

1. Mobile applications and hardware.

2. Using them every day.

3. Using them at work for documentation, checking, and testing the APIs.

4. Heard of, but never used.

Post-questionnaire answers:

1. 1 – It is clear and simple to use, but he would prefer a button for the generation in the UI.

2. 2 – Good, clear overview. The metadata button is not clear. It feels like submitting the row.

3. 1 – All good.

4. 1 – All clear, familiar design and controls to the Swagger UI.

5. No.

Individual scenarios:

1. All done as expected.

2. All done as expected.

3. All done as expected.

4. The first method execution was done without any parameters (that is acceptable by gRPC,
so it is not an issue). The rest was done as expected.

5. All was done as expected. He did not expect the number after a name in the response message
(not part of my implementation; it is related to the backend).

6. All done as expected.

7. All done as expected.

User Testing 67

6.3.8.2 Tester 2
The second tester is an undergraduate student in computer science.

Pre-questionnaire answers:

1. Web development, full-stack.

2. Using them actively.

3. Rarely used, but when used, he uses them for documentation and API design checking. The
testing of endpoints is usually done using Postman.

4. None.

Post-questionnaire answers:

1. 1 – All was clear.

2. 1 – All clear, similar to Swagger UI. The only complaint is that the red color in client
streaming invokes there is an error.

3. 1 – All was clear.

4. 1 – All was clear.

5. The metadata button was also expected in the method request, but he does not know how it
is done in Swagger UI. (He found it very quickly regardless.)

Individual scenarios:

1. All done as expected.

2. He could not say the returned message type frame is the returned type. But he guessed the
correct place quickly without any help.

3. All done as expected.

4. When he executed the method, he thought the request shown body was the response body.
The rest was done as expected.

5. The execution was done as expected. The only confusion was that he was unsure if the
response was a list or multiple responses. He has suggested adding a title to each response.

6. He could not find the input for the lo parameter before executing the method. It was caused
by him playing with the application previously and accidentally changing the tab to the
model. After pointing him to the correct tab, he found the input, and the rest was done as
expected. It was more of a testing preparation issue than an application issue connected with
the stress of being a tester.

7. All done as expected.

6.3.8.3 Tester 3
The third tester is an undergraduate student in computer science.

Pre-questionnaire answers:

1. Software development, management, and mobile development.

68 Testing

2. Using REST APIs for mobile and web applications. Also, using GraphQL web applications.

3. None experience with Swagger UI. Some experience with Apollo Studio (not much).

4. None.

Post-questionnaire answers:

1. 1 – All was clear.

2. 2 – Server streaming responses were too long, so the page became too long. The suggestion
is to add scrolling, or a max height, or collapse the responses. The rest was clear.

3. 1 – All was clear.

4. 1 – All was clear.

5. He would add the metadata button in the method request, not only globally.

Individual scenarios:

1. All done as expected.

2. All done as expected.

3. All done as expected.

4. When he executed the method, he thought the request shown body was the response body.
The rest was done as expected.

5. All done as expected.

6. All done as expected, but when he had sent the request, he was waiting for the loading on
the executed button to end. So, he did not see the responses as they were coming.

7. He could not find the global metadata settings because he did not connect metadata with
authorization. The rest was done as expected.

6.3.8.4 Tester 4
The fourth tester is a software developer with a master’s degree in computer science.

Pre-questionnaire answers:

1. Web engineering, backend development in Typescript.

2. Every day.

3. Not much usage, but he knows what they are. He uses the OpenAPI specification for REST
APIs instead of Swagger UI.

4. He was using it about two years ago for mobile development.

Post-questionnaire answers:

1. 1 – All was clear.

2. 1 – Similar to Swagger UI, so all was clear.

3. 1 – He was not sure about the returned type model. The rest was clear.

User Testing 69

4. 1 – He was looking for a while for the button to execute the method, but he missed it because
it was too wide. The rest was clear.

5. If the gRPC API were larger, it would be good to have collapsible services/types/enums
sections.

Individual scenarios:

1. All done as expected.

2. He could not say if the returned type is the message body or the whole message type. But
he eventually remembered it was the whole message type. The rest was done as expected.

3. All done as expected.

4. He could not find the execution button because it was too long, and thought it was a heading.
But he had eventually found it. The rest was done as expected.

5. All done as expected.

6. All done as expected.

7. He was looking for metadata in the method but quickly found it at the top. He has suggested
making the button or header sticky at the top. He has also pointed out that the Bearer prefix
addition seems unnecessary as there might be other types of authorization that this might
not work with. The rest was done as expected.

6.3.8.5 Tester 5
The fourth tester is a software developer with a master’s degree in computer science.

Pre-questionnaire answers:

1. Web engineering, full-stack with a focus on backend development.

2. 6–7 years of experience designing backend APIs, experience with REST, GraphQL, and GRPC
APIs.

3. Most experience with Swagger UI than Apollo Studio. Writing backend specifications and
using these tools as a platform for team sharing.

4. Two years of usage on a larger production project. Wrote a framework for Node.js and gRPC.
Worked a lot with the core library.

Post-questionnaire answers:

1. 1 – He would like to have the reflection URL directly. Otherwise, it was all good.

2. 1 – Similar to Swagger UI, so all was clear. An idea is adding a badge to the metadata button
to symbolize an authorization header set state.

3. 1 – All good. He has stressed the importance of being able to use the ctrl+F (find text on
the page) shortcut. He also appreciated the model preview in the input form while writing
the JSON data.

4. 1 – All good, similar to the Swagger UI. He appreciated the instant response feedback.

5. All good. A suggestion is to add a link to a user guide at the top of the page.

70 Testing

Individual scenarios:

1. All done as expected.

2. All done as expected.

3. He had skipped the comment and told what the method does based on the input and out-
put types, which was correct, but overlooked the comment message. The rest was done as
expected.

4. First, he was confused by the request with the response. Then, confused the headers with
the response message. The rest was done as expected.

5. Confused what the streaming text in response title means, though did not have any effect on
the expectations or actions. The rest was done as expected. Suggested scrollbar or collapse
of the server responses as the server streaming requests are usually used for monitoring data.

6. All done as expected.

7. He has tried to set the authorization headers manually, which is fine and also works. The
rest was done as expected.

6.3.9 Found Issues and Their Solutions
The overall feedback was positive, and the testers found the website intuitive and straightforward.
However, a few issues were found, and they are listed in the table 6.2 with their respective
solutions. The changes in the UI are shown in the figure 6.1.

The slightly lighter color scheme and the change of color for client streaming are shown in
figure 6.1a to solve the confusion with the method being in the error state. Then the figure 6.1b
shows added “OK” text to explain the “0” response status, alongside added “Response message
type” title to hint the user about the response type. The figure 6.1c shows a dark border around
the execute button to emphasize it, and also the cancel button to the right instead of being
underneath.

The metadata renaming to the “Metadata & Authorization” with the larger space on the left
and making the method input and the base gRPC URL input smaller, shown in the figure 6.1d,
is there to prevent a submit button perception and to explain the authorization definition action.
Also, a count badge was added to the metadata button to show the number of set metadata and
authorization headers. After clicking the metadata button, a modal dialog is opened. Changes
to that dialog are shown in the figure 6.1e. The colors for the set and close buttons have been
switched to underline the primary actions, compared to the secondary close. Another change
is in the authorization section, where additional types were added with the preview of the final
metadata key-value pair that will be added when the authorization is set.

The responses list has been redesigned with the addition of the title to each response message
and the total response count. It is shown in the figure 6.1f. Another change is the addition of a
maximum height for the response container. Its height is fixed to 50% of the view height, and it
automatically scrolls to the bottom, if not scrolled, as new messages arrive. This also helps with
having too long message responses.

User Testing 71

Issue Solution State
The metadata button does not
show a clear connection with au-
thorization.

Renamed the button to “Metadata & Authorization”
(6.1d).

Fixed

The metadata button invokes the
feeling of submitting the row (not
opening a modal).

Added greater space between the button and the in-
put fields. Also, make the input fields smaller so the
button is much larger. (6.1d)

Fixed

Swapping the request with the re-
sponse after the method execu-
tion.

Changed the request background color to white to
match the metadata and highlight the heading.

Fixed

The metadata is also expected in
the execution of the method.

Having only global metadata is a design decision
based on the Swagger UI. The idea is that the meta-
data is usually the same for all methods, such as au-
thorization.

Will not fix

The red color background in client
streaming invokes there is an er-
ror.

The background colors have been redone to be lighter.
Also, the client streaming color was changed to yel-
low. (6.1a)

Fixed

It is hard to distinguish the re-
turned message type from the
body of the message type.

Added description of the response status code and
the title for the returned message type. (6.1b)

Fixed

Confusion if the responses are a
response as a list or a list of re-
sponses.

Added a title to each response with the message num-
ber and total count at the end. (6.1f)

Fixed

Server streaming methods can
have too many responses, making
the page too long.

The responses are now scrollable in a fixed-height
container. (6.1f)

Fixed

The responses are not distin-
guished from the headers.

Added titles to each response and the total count.
(6.1f)

Fixed

Not seeing the responses as they
are coming, waiting for the load-
ing on the executed button to end.

Relocated the cancel button to the right side of
the execution button. Changed the responses to be
shown in a fixed-height container. (6.1c) Also, this
was more related to the tester’s stress, where, in re-
ality, they would scroll sooner.

Partially fixed

If the gRPC API were larger, it
would be good to have collapsible
services/types/enums sections.

Added collapsible sections for services, message types,
and enum types.

Fixed

The button for execution is too
long, so it is mistaken for the
heading.

The button’s width is designed based on the Swagger
UI, but its color, border, and icon (in front of the
text) were changed to increase visibility. (6.1c)

Fixed

The close button on the metadata
modal is mistaken for the set but-
ton in the authorization.

The close button is now a secondary color, and the
set button is a primary color. (6.1e)

Fixed

There may be other types of au-
thorization than Bearer.

Added more authorization types, such as Basic and
API Key. Otherwise, the use of authorization is op-
tional, and the user can always use the metadata di-
rectly. (6.1e)

Fixed

Have the gRPC reflection URL di-
rectly on the website.

That is not possible because of the gRPC browser
limitations and the static website (backendless) host-
ing.

Will not fix

Add authorization metadata set
state badge.

Added a badge of the set metadata headers count. Fixed

Add a user guide link at the top
of the page.

This might be added in the future if the solution is
public (the user guide is part of the GitHub reposi-
tory), but as of now, it will not be added.

Will not fix

Table 6.2 Found issues and their solutions

72 Testing

(a) Background colors (b) Response description

(c) Execute and cancel buttons

(d) Metadata button, global settings

(e) Metadata dialog (f) Scrollable responses with titles and total count

Figure 6.1 Changes after testing

Testing Summary 73

6.4 Testing Summary
The user testing feedback was positive, and the testers found the website intuitive and straight-
forward. It was also appreciated that the process and documentation presentation are familiar
to the Swagger UI. The generation of the common format was simple, but it was suggested
to have a button for the generation in the UI. The generation is designed to be performed by
automatic deployment or other tools, so having the UI would change its purpose. Therefore, it
is not planned to be implemented.

The user testing showed that the resulting website fulfills the documentation purpose, allows
the method calls, and contains no functionality-affecting bugs. After fixing the found usability
issues (see subsection 6.3.9), the intuitiveness of the website is met.

The automatic and manual testing confirmed the fulfillment and functionality of all the static
website generator requirements.

74 Testing

Chapter 7

Conclusion

In my thesis, I have dealt with the analysis of existing solutions for Protocol Buffers and compared
them with similar tools for GraphQL and RESTful APIs, as well as the design, implementation,
and testing of the static website generator with interactive API call support.

As part of the analysis, I found out what tools are used for the Protocol Buffers and how
they work, including their features and shortcomings. I have then done the same for GraphQL
and RESTful APIs. Finally, I compared the tools and analyzed the state of the static website
with interactive API call support. The main outcome is that there are tools for RESTful APIs
with almost no issues from my task perspective. The existing tools for GraphQL come close
but have a few issues, like the lack of a self-hosted solution. On the other hand, the tools for
Protocol Buffers are not as advanced. They have many issues, like not being a static website,
lack of support for documenting comments, or lack of support for interactive API calls. None of
the analyzed tools for Protocol Buffers support all the features I have defined as necessary for
my task. Based on the information found, I then compiled requirements and use cases.

In the next chapter, I discussed the design of the solution. I have analyzed the possibility
of using Swagger UI, but I have found that it is not suitable for my task. This is because the
OpenAPI Specification is made for HTTP APIs, which gRPC APIs, although using HTTP/2,
are not. Therefore, the specification and the web UI do not support specific gRPC features,
like streaming. Then, I analyzed the gRPC-Web library and gRPC reflection limitations, which
influenced the design of the solution (gRPC reflection does not support documentation comments
as of right now). I have then proposed a solution that uses the gRPC-Web library and is able
to use the gRPC reflection. The architecture’s central part uses a common file format and static
website, which is then rendered on the fly based on the provided file. I have found an existing
library called protobufjs, which can convert proto files and the gRPC reflection to the JSON
format with small improvements from my side. This has allowed me to design the website the
same way as the Swagger UI works, which should allow familiarization with the tool.

In the implementation, I then put the designs together, and using several libraries, I built
two generators (one for proto files, one for the gRPC reflection) and a static website with the
ability to call the gRPC-Web methods. I had also overcome several issues. One was successfully
extracting the gRPC-Web client from the gRPC-Web library, which was not designed for this
purpose, and there is no other solution for this. Then, for one issue with the protobufjs library,
I had it fixed locally, and I created an issue on the library’s GitHub page and opened a pull
request with a fix proposal.

As part of the testing, I created automated unit tests that covered the website functionality.
Then, I built test scenarios covering all functionality and use cases, which were used to test the
static website and generators. I also conducted user testing, which revealed several minor bugs.
By resolving these, I removed the barriers to intuitiveness and fixed minor issues.

75

76 Conclusion

The static website with both generators created meets all the requirements and solves the
issues of existing solutions by creating a static website based on a common file format and two
generators from proto and gRPC reflection files. Together, they create a unique solution and
option for the gRPC API documentation.

7.1 Possible Future Development
For the future development, I see several possibilities. One of them is to add support for more
backends than just gRPC-Web. This could be done by creating a custom proxy to translate the
requests from the UI to the gRPC server. The implementation could be done using Websockets
or HTTP/2, as it has to support client streaming. This would not only allow the website to be
used with any gRPC server but also not limit its use to any specific backend.

Another possibility is to add support for automatic generation from the gRPC API server
source codes. This could be done by creating a Gradle or Maven plugin (for Java or Kotlin
projects), which will generate the JSON file from the project proto files and then host the static
website along the project server. This would allow the website to be used without extensive
deployment setup and would allow it to be used in the development phase — for example, the
automatic JSON definition file re-generating on each update.

Appendix A

Website Guide

This tool helps you interact with gRPC services. You can use it to explore the service’s endpoints
and make requests to them, browse types and enums, and preview options.

A.1 Prerequisites
To run this application, you need to have the libraries installed.

pnpm install

A.2 Usage

Here are the commands you can use to run the application or generate JSON common format
for the proto files.

A.2.1 Website
Information about the website compilation and development or production build.

A.2.1.1 Development
To run the website in development mode, use the following command.

pnpm -C web run dev

A.2.1.2 Production
To run the website in production mode, use the following commands. First, build the website
and then start the server. The server will be available at http://localhost:3000 by default.

pnpm -C web run build
pnpm -C web run start

77

http://localhost:3000

78 Website Guide

A.2.2 Proto Files to JSON Generation
Generates a JSON from the proto files. The source files can be a single file or a list of files
separated by a space or a folder/folders.

gf-proto -to-json ${SOURCE_PROTO_FILES} > ${EXPORTED_NAME}.json

A.2.3 Reflection to JSON Generation
Generates a JSON from the reflection. The source file should be a single file in the .bin format.

In the following example, the source file is a protoset file. The protoset file can be created
using the grpcurl1 tool.

1. Create a protoset file (it can be done using different ways, this is just an example).

grpcurl -protoset -out descriptors.bin -plaintext localhost:8980 describe

2. Generate a JSON from the protoset file. The file should be a single file in the .bin format.

gf-reflection -to-json ${SOURCE_BIN_FILE} > ${EXPORTED_NAME}.json

A.3 Testing Server
To test the application, you can use the example testing server and Envoy proxy. It is a simple
gRPC server that has a few endpoints and types.

(Source of the Node.js server and Envoy proxy configuration: https://github.com/grpc/
grpc-web/tree/master/net/grpc/gateway/examples/helloworld)

1. Go to the example folder.

cd example

2. Start the Envoy proxy.
(Linux users: Use address: localhost instead of address: host.docker.internal in the bottom
section.)

docker run -d -v "$(pwd)"/envoy -proxy.yaml:/etc/envoy/envoy.yaml:ro -p
8080:8080 -p 9901:9901 envoyproxy/envoy:v1.22.0

3. Run the gRPC server.

node server.js

4. Access the (already running) website and set the server URL to http://localhost:8080.

1https://github.com/fullstorydev/grpcurl

https://github.com/grpc/grpc-web/tree/master/net/grpc/gateway/examples/helloworld
https://github.com/grpc/grpc-web/tree/master/net/grpc/gateway/examples/helloworld
http://localhost:8080
https://github.com/fullstorydev/grpcurl

Bibliography

1. GOOGLE LLC. Overview | Protocol Buffers Documentation [online]. 2024. [visited on
2024-03-11]. Available from: https://protobuf.dev/overview/.

2. GOOGLE LLC. Language Guide (proto 3) [online]. 2024. [visited on 2024-03-11]. Available
from: https://protobuf.dev/programming-guides/proto3/.

3. GOOGLE LLC. Core concepts, architecture and lifecycle [online]. 2022. [visited on 2024-03-16].
Available from: https://grpc.io/docs/what-is-grpc/core-concepts/.

4. GOOGLE LLC. Metadata [online]. 2024. [visited on 2024-03-17]. Available from: https:
//grpc.io/docs/guides/metadata/.

5. GOOGLE LLC. gRPC over HTTP2 [online]. 2023. [visited on 2024-03-16]. Available from:
https://github.com/grpc/grpc/blob/master/doc/PROTOCOL-HTTP2.md.

6. GOOGLE LLC. gRPC Web [online]. 2023. [visited on 2024-03-16]. Available from: https:
//github.com/grpc/grpc/blob/master/doc/PROTOCOL-WEB.md.

7. GOOGLE LLC. gRPC for Web Clients [online]. 2024. [visited on 2024-03-16]. Available
from: https://github.com/grpc/grpc-web.

8. GOOGLE LLC. Streaming Roadmap [online]. 2023. [visited on 2024-03-16]. Available from:
https://github.com/grpc/grpc-web/blob/master/doc/streaming-roadmap.md.

9. GOOGLE LLC. Reflection [online]. 2024. [visited on 2024-03-16]. Available from: https:
//grpc.io/docs/guides/reflection/.

10. CHAPMAN, Roger. Wombat [online]. 2021. [visited on 2024-03-17]. Available from: https:
//github.com/rogchap/wombat.

11. BLOOMRPC. BloomRPC [online]. 2023. [visited on 2024-03-17]. Available from: https:
//github.com/bloomrpc/bloomrpc.

12. GENDOCU CLOUD. gRPC Docs [online]. 2022. [visited on 2024-03-17]. Available from:
https://github.com/gendocu-com/grpc-docs.

13. FULLSTORY. gRPC UI [online]. 2024. [visited on 2024-03-18]. Available from: https:
//github.com/fullstorydev/grpcui.

14. GOGOPROTOBUF. letmegrpc [online]. 2019. [visited on 2024-03-19]. Available from: http
s://github.com/gogo/letmegrpc.

15. KRÄMER, Benjamin. protoc-gen-letmegrpc does not support subtypes as repeated [online].
2018. [visited on 2024-03-19]. Available from: https://github.com/gogo/letmegrpc/
issues/44.

16. ZHANG, Jikai; LIU, Zhengyang. gRPC-swagger [online]. 2020. [visited on 2024-03-20].
Available from: https://github.com/grpc-swagger/grpc-swagger.

79

https://protobuf.dev/overview/
https://protobuf.dev/programming-guides/proto3/
https://grpc.io/docs/what-is-grpc/core-concepts/
https://grpc.io/docs/guides/metadata/
https://grpc.io/docs/guides/metadata/
https://github.com/grpc/grpc/blob/master/doc/PROTOCOL-HTTP2.md
https://github.com/grpc/grpc/blob/master/doc/PROTOCOL-WEB.md
https://github.com/grpc/grpc/blob/master/doc/PROTOCOL-WEB.md
https://github.com/grpc/grpc-web
https://github.com/grpc/grpc-web/blob/master/doc/streaming-roadmap.md
https://grpc.io/docs/guides/reflection/
https://grpc.io/docs/guides/reflection/
https://github.com/rogchap/wombat
https://github.com/rogchap/wombat
https://github.com/bloomrpc/bloomrpc
https://github.com/bloomrpc/bloomrpc
https://github.com/gendocu-com/grpc-docs
https://github.com/fullstorydev/grpcui
https://github.com/fullstorydev/grpcui
https://github.com/gogo/letmegrpc
https://github.com/gogo/letmegrpc
https://github.com/gogo/letmegrpc/issues/44
https://github.com/gogo/letmegrpc/issues/44
https://github.com/grpc-swagger/grpc-swagger

80 Bibliography

17. BRANDHORST, Johan et al. gRPC-Gateway [online]. 2023. [visited on 2024-03-20]. Avail-
able from: https://github.com/grpc-ecosystem/grpc-gateway.

18. G2, INC. Grid Report for API Platforms | Winter 2024 [online]. 2023. [visited on 2024-03-26].
Available from: https : / / www . g2 . com / reports / grid - report - for - api - platfor
ms - winter - 2024 . embed ? secure % 5Bgated _ consumer % 5D = cc626f0f - 1e59 - 4bd9 -
a005-1d41885ec07d&secure%5Btoken%5D=5c23561e75cffcd402334a5730b2e29401c52ed
08015396aae5936d18f19c986&tab=profile-postman.

19. WISE, Joshua. Postman Now Supports gRPC [online]. 2022. [visited on 2024-03-20]. Avail-
able from: https://blog.postman.com/postman-now-supports-grpc/.

20. PRODUCTSUP. protoc-gen-proto2asciidoc [online]. 2022. [visited on 2024-03-18]. Available
from: https://github.com/productsupcom/protoc-gen-proto2asciidoc.

21. MUTO, David. protoc-gen-doc [online]. 2022. [visited on 2024-03-18]. Available from: https:
//github.com/pseudomuto/protoc-gen-doc.

22. GREIF, Sacha. Other Tools [online]. 2023. [visited on 2024-03-26]. Available from: https:
//2022.stateofgraphql.com/en-US/other-tools/.

23. RAMIREZ, Fede. Static page generator for documenting GraphQL Schema [online]. 2020.
[visited on 2024-03-20]. Available from: https://github.com/2fd/graphdoc.

24. GRAPHCOOL. GraphQL Playground [online]. 2022. [visited on 2024-03-20]. Available from:
https://github.com/graphql/graphql-playground.

25. GRAPHQL. GraphiQL [online]. 2024. [visited on 2024-03-20]. Available from: https://
github.com/graphql/graphiql/tree/main/packages/graphiql.

26. APOLLO GRAPH INC. Essential GraphQL developer tooling [online]. 2022. [visited on
2024-03-27]. Available from: https://www.apollographql.com/tutorials/fullstack-
quickstart/06-connecting-graphs-to-apollo-studio.

27. SMARTBEAR SOFTWARE. API Tools, Technologies, and Methodologies [online]. 2023.
[visited on 2024-03-26]. Available from: https://smartbear.com/state-of-software-
quality/api/tools/.

28. REBILLY, INC. Redoc [online]. 2024. [visited on 2024-03-21]. Available from: https://
github.com/Redocly/redoc.

29. MAJUMDAR, Mrinmoy. RapiDoc [online]. 2023. [visited on 2024-03-21]. Available from:
https://rapidocweb.com/.

30. SMARTBEAR SOFTWARE. Swagger UI [online]. 2024. [visited on 2024-03-20]. Available
from: https://swagger.io/tools/swagger-ui/.

31. SMARTBEAR SOFTWARE. Basic Structure [online]. 2024. [visited on 2024-03-25]. Avail-
able from: https://swagger.io/docs/specification/basic-structure/.

32. SMARTBEAR SOFTWARE. OpenAPI Specification [online]. 2021. [visited on 2024-03-29].
Available from: https://swagger.io/specification/.

33. SMARTBEAR SOFTWARE. Plugin system overview [online]. 2024. [visited on 2024-03-25].
Available from: https://swagger.io/docs/open-source-tools/swagger-ui/customiza
tion/overview/.

34. GOOGLE LLC. gnostic [online]. 2023. [visited on 2024-03-31]. Available from: https://
github.com/google/gnostic.

35. WIRTZ, Daniel. protobufjs [online]. 2022. [visited on 2024-04-01]. Available from: https:
//www.npmjs.com/package/protobufjs.

36. MOZILLA CORPORATION. WebAssembly Concepts [online]. 2024. [visited on 2024-04-08].
Available from: https://developer.mozilla.org/en-US/docs/WebAssembly/Concepts.

https://github.com/grpc-ecosystem/grpc-gateway
https://www.g2.com/reports/grid-report-for-api-platforms-winter-2024.embed?secure%5Bgated_consumer%5D=cc626f0f-1e59-4bd9-a005-1d41885ec07d&secure%5Btoken%5D=5c23561e75cffcd402334a5730b2e29401c52ed08015396aae5936d18f19c986&tab=profile-postman
https://www.g2.com/reports/grid-report-for-api-platforms-winter-2024.embed?secure%5Bgated_consumer%5D=cc626f0f-1e59-4bd9-a005-1d41885ec07d&secure%5Btoken%5D=5c23561e75cffcd402334a5730b2e29401c52ed08015396aae5936d18f19c986&tab=profile-postman
https://www.g2.com/reports/grid-report-for-api-platforms-winter-2024.embed?secure%5Bgated_consumer%5D=cc626f0f-1e59-4bd9-a005-1d41885ec07d&secure%5Btoken%5D=5c23561e75cffcd402334a5730b2e29401c52ed08015396aae5936d18f19c986&tab=profile-postman
https://www.g2.com/reports/grid-report-for-api-platforms-winter-2024.embed?secure%5Bgated_consumer%5D=cc626f0f-1e59-4bd9-a005-1d41885ec07d&secure%5Btoken%5D=5c23561e75cffcd402334a5730b2e29401c52ed08015396aae5936d18f19c986&tab=profile-postman
https://blog.postman.com/postman-now-supports-grpc/
https://github.com/productsupcom/protoc-gen-proto2asciidoc
https://github.com/pseudomuto/protoc-gen-doc
https://github.com/pseudomuto/protoc-gen-doc
https://2022.stateofgraphql.com/en-US/other-tools/
https://2022.stateofgraphql.com/en-US/other-tools/
https://github.com/2fd/graphdoc
https://github.com/graphql/graphql-playground
https://github.com/graphql/graphiql/tree/main/packages/graphiql
https://github.com/graphql/graphiql/tree/main/packages/graphiql
https://www.apollographql.com/tutorials/fullstack-quickstart/06-connecting-graphs-to-apollo-studio
https://www.apollographql.com/tutorials/fullstack-quickstart/06-connecting-graphs-to-apollo-studio
https://smartbear.com/state-of-software-quality/api/tools/
https://smartbear.com/state-of-software-quality/api/tools/
https://github.com/Redocly/redoc
https://github.com/Redocly/redoc
https://rapidocweb.com/
https://swagger.io/tools/swagger-ui/
https://swagger.io/docs/specification/basic-structure/
https://swagger.io/specification/
https://swagger.io/docs/open-source-tools/swagger-ui/customization/overview/
https://swagger.io/docs/open-source-tools/swagger-ui/customization/overview/
https://github.com/google/gnostic
https://github.com/google/gnostic
https://www.npmjs.com/package/protobufjs
https://www.npmjs.com/package/protobufjs
https://developer.mozilla.org/en-US/docs/WebAssembly/Concepts

Bibliography 81

37. MICROSOFT. What is JavaScript? [online]. 2020. [visited on 2024-04-14]. Available from:
https://www.typescriptlang.org/why-create-typescript.

38. GREIF, Sacha. Other Tools [online]. 2023. [visited on 2024-04-14]. Available from: https:
//2022.stateofjs.com/en-US/other-tools/.

39. GREIF, Sacha. Front-end Frameworks [online]. 2023. [visited on 2024-04-08]. Available from:
https://2022.stateofjs.com/en-US/libraries/front-end-frameworks/.

40. META OPEN SOURCE. React [online]. 2024. [visited on 2024-04-08]. Available from: htt
ps://react.dev/.

41. VERCEL, INC. The React Framework for the Web [online]. 2024. [visited on 2024-04-08].
Available from: https://nextjs.org/.

42. META OPEN SOURCE. Start a New React Project [online]. 2024. [visited on 2024-04-08].
Available from: https://react.dev/learn/start-a-new-react-project.

43. GREIF, Sacha. CSS Frameworks [online]. 2024. [visited on 2024-04-08]. Available from:
https://2023.stateofcss.com/en-US/css-frameworks/.

44. WIRTZ, Daniel. protobufjs-cli [online]. 2021. [visited on 2024-04-09]. Available from: https:
//www.npmjs.com/package/protobufjs-cli.

45. NX. The Original Tool for JavaScript Monorepos [online]. 2024. [visited on 2024-04-10].
Available from: https://lerna.js.org/.

46. KOCHAN, Zoltan et al. PNPm [online]. 2024. [visited on 2024-04-10]. Available from: htt
ps://pnpm.io/.

https://www.typescriptlang.org/why-create-typescript
https://2022.stateofjs.com/en-US/other-tools/
https://2022.stateofjs.com/en-US/other-tools/
https://2022.stateofjs.com/en-US/libraries/front-end-frameworks/
https://react.dev/
https://react.dev/
https://nextjs.org/
https://react.dev/learn/start-a-new-react-project
https://2023.stateofcss.com/en-US/css-frameworks/
https://www.npmjs.com/package/protobufjs-cli
https://www.npmjs.com/package/protobufjs-cli
https://lerna.js.org/
https://pnpm.io/
https://pnpm.io/

82 Bibliography

Attached Media Contents

readme.txt..brief media contents description
website..exported static website
proto-to-json...proto files to json converter
reflection-to-json ... reflection to json converter
src

impl..implementation source code
thesis...thesis source code in the LATEX format

text.. thesis text
thesis.pdf .. thesis text in the PDF format

83

	Acknowledgments
	Declaration
	Abstract
	List of abbreviations
	Introduction
	Goals
	Analysis
	Protocol Buffers
	Structures
	Comments
	Code Generation
	Metadata
	gRPC-web
	gRPC Reflection

	Existing Documentation Tools
	Protocol Buffers
	GraphQL
	RESTful API
	Summary

	Requirements
	Functional Requirements
	Non-Functional Requirements

	Use Cases
	UC1 – Generate Website from .proto Files
	UC2 – Generate Website from gRPC Reflection
	UC3 – Preview services and methods definitions
	UC4 – Preview message types
	UC5 – Preview enum types
	UC6 – Preview comments for services, methods, message types, and enum types
	UC7 – Preview options of the services and methods
	UC8 – Execute a unary request and preview response with metadata, headers, and trailers
	UC9 – Execute a server streaming request and preview responses with metadata, headers, and trailers
	UC10 – Set global metadata, such as authorization

	Requirements to Use Cases Mapping

	Design
	Swagger UI for gRPC
	gRPC-Web Limitations
	gRPC Reflection Possibility
	Architecture
	Common Format
	grpc-protoc-gen-doc
	gnostic
	protobufjs
	Summary

	Website Design
	Proto Files Generator
	gRPC Reflection Generator
	Website Wireframe

	Fulfillment of Requirements

	Implementation
	Choosing the Technology
	Web Framework
	Styling Libraries
	Protobufjs Library
	gRPC-Web Client Library
	Other Libraries

	Project Settings
	JSON from Proto Files Generator
	JSON from gRPC Reflection Generator
	Static Website
	Protobufjs Data Structure
	Design and Functionality

	Licensing

	Testing
	Automated Testing
	Manual Scenarios
	T1 – Generating the website from proto files and validating the data
	T2 – Generating the website from the gRPC reflection and validating the data
	T3 – Executing unary request
	T4 – Executing server streaming request
	T5 – Setting global metadata

	User Testing
	Common Format Generation from Proto Files
	List Services, Methods, Message Types, and Enum Types
	Comments and Options
	Execute Unary Request
	Execute Server Streaming Request
	Complex Method Input
	Global Metadata
	Testing Results
	Found Issues and Their Solutions

	Testing Summary

	Conclusion
	Possible Future Development

	Website Guide
	Prerequisites
	Usage
	Website
	Proto Files to JSON Generation
	Reflection to JSON Generation

	Testing Server

	Attached Media Contents

