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Instructions

Recommender systems (RSs) is an efficient way of providing personalized experiences 

for users in web systems. These systems often rely on past interactions between users 

and items, such as user ratings, item preferences, or user-item reviews. However, RSs are 

susceptible to attacks from individuals seeking to manipulate recommendations by 

deliberately generating fake interactions, such as producing fraudulent reviews, to 

artificially influence the recommender system's behavior(e.g., boosting the popularity of 

certain items). Sophisticated attacks may be spread over an extended period and across 

various items, making them challenging to detect.

The primary objective of this study is to investigate the identification of fraudulent 

reviews or users by utilizing their relationships within graph neural networks.

1. Research anomaly detection methods employed in recommender systems and 

present a comprehensive literature review in the related work section.

2. Acquaint yourself with graph neural networks for processing user-item interactions.

3. Develop and implement a novel graph-based semi-supervised approach for detecting 

fraud in recommender systems.

4. Evaluate the performance using at least two diverse datasets and compare the results 

with a minimum of four existing methods. *

5. Investigate possible interpretable aspects of the developed model.

*For instance, public datasets available in: https://cseweb.ucsd.edu/~jmcauley/

datasets.html
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Department of Applied Mathematics
Supervisor: Rodrigo Augusto da Silva Alves, Ph.D.

May 9, 2024





Acknowledgements

I want to thank my supervisor, Rodrigo Augusto da Silva Alves, Ph.D., for
his invaluable guidance and support, as well as my family for their unwavering
encouragement throughout my studies.





Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Section 2373(2) of Act No. 89/2012 Coll., the Civil Code, as
amended, I hereby grant a non-exclusive authorization (licence) to utilize this
thesis, including all computer programs that are part of it or attached to it and
all documentation thereof (hereinafter collectively referred to as the “Work”),
to any and all persons who wish to use the Work. Such persons are entitled
to use the Work in any manner that does not diminish the value of the Work
and for any purpose (including use for profit). This authorisation is unlimited
in time, territory and quantity.

In Prague on May 9, 2024



Czech Technical University in Prague
Faculty of Information Technology
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Abstract

Fraudsters attempt to camouflage their behavior to remain undetected. This
can make it challenging to design models capable of reliably discovering them,
as negative samples may be contaminated with hidden positives. Existing
research has shown that taking advantage of relationships between instances
using graph convolution improves the detection ability. This work proposes a
siamese graph neural network that can be trained in a semi-supervised fashion
using a small set of known fraudsters. It shows improved performance over
existing methods and increased resilience against camouflaged fraudsters.

Keywords Fraud detection, Recommender systems, Semi-supervised learn-
ing, Graph neural networks

Abstrakt

Podvodńıci se snaž́ı své chováńı maskovat, aby z̊ustali skryt́ı. To může mı́t
za následek náročný návrh model̊u, které je maj́ı spolehlivě detekovat, jelikož
část podvodńık̊u může z̊ustat ukrytá v množině označené za ne-podvodńıky.
Existuj́ıćı výzkum ukazuje, že grafová konvoluce může přinést vylepšeńı d́ıky
jej́ı schopnosti využ́ıt vztahy mezi jednotlivými př́ıpady. Tato práce navrhuje
siamskou grafovou neuronovou śı̌t, kterou lze trénovat semi-supervizovaným
učeńım, kdy je k dispozici jen malá množina známých podvodńık̊u. Tento
model projevuje lepš́ı výkon než existuj́ıćı metody a vyšš́ı odolnost proti masko-
vaným podvodńık̊um.

Kĺıčová slova Detekce podvod̊u, Rekomendačńı systémy, Semi-supervizované
učeńı, Grafové neuronové śıtě
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Introduction

The paradox of choice [1] (or choice overload [2]) states that an abundance
of options can be counterproductive, requiring more effort and casting doubt
on whether the final decision is correct. This phenomenon applies whether
ordering food from a menu, picking out clothes to wear, or when shopping
for furniture. It can also apply when deciding between different brands of
products, choosing which show to watch, what book to read, or what music to
listen to. Personalized recommendation helps narrow the selection by learning
individual user preferences and suggesting relevant items.

Recommender systems are used by many types of content delivery services,
such as social media platforms [3], online movie streaming [4], news sites [5], re-
search papers [6], e-commerce [7], but also restaurants [8], hotels [9], or health-
care [10].

The content recommendation algorithms are often optimized to maximize
business-related metrics such as user retention [11]. On some platforms, the
content itself is created by other users, who are then compensated for the
number of views their content gets (related to the number of ads served). This
can lead to the content creators playing a game with the recommendation
algorithms to maximize their own profit.

Inevitably, some users will resort to trying to exploit the recommender sys-
tem for personal gain. For instance, so-called shilling attacks [12, 13] are a type
of recommender exploitation, or fraud, where the goal is to artificially raise the
popularity of certain content. The recommendation algorithm is tricked into
suggesting this content to real users, stealing attention from honest content.
Other types of recommender system exploits can be in the form of altering
keywords (or content tags) to leech onto current trends, stealing the content of
others, or recycling old content.

Dishonest content can damage the recommender system’s integrity, leading
to user dissatisfaction by poisoning their personalized recommendations and
ultimately hurting the platform [14, 15]. Due to this, it is in the platforms’
best interests to eliminate cases of such fraud, avoid bias, and protect the
reliability of a recommender system.

Examples of fraud in recommender systems include individual false re-
views [16], bot accounts [17], or deceitful content [18]. False reviews are usually
posted to create an impression that the given content is of high quality and
can be trusted, which is typical for seller reviews in e-commerce or business
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Introduction

reviews, e.g., restaurants or hotels. Bot accounts can facilitate the spreading
of misinformation, such as false reviews, or fabricate engagement, e.g., in com-
ment sections under news articles. Clickbait, fake news, or scam adverts can
be considered deceitful content.

Fake (or fraudulent) interactions, users, or content should ideally be an
anomaly, which represents only a small percentage of the data by definition.
The goal is to identify the anomalies and place less emphasis on that data
during suggestion or eliminate those instances entirely if they are deemed too
harmful (in case of legal issues such as copyright infringement).

Anomaly detection is often interpreted as an unsupervised learning task,
wherein the objective is to assign an outlier score to each instance regarding the
distribution of all the samples. Having at least a partial understanding of what
makes an instance anomalous can help during the design and implementation
of algorithms for their automatic detection.

However, anomaly detection can also be seen as a semi-supervised learn-
ing task. In this case, it seeks to automatically learn the difference between
anomalous and nominal instances, provided some anomalies have already been
uncovered. The difference between supervised and semi-supervised learning
is that the semi-supervised methods assume a degree of contamination in the
unlabeled instances and use the known anomalies to learn to discriminate the
two classes. This is especially true in fraud detection, where fraudsters try to
blend in with legitimate instances, and thus, it is challenging to build a qual-
ity dataset with balanced classes. It would also be a waste not to utilize the
unlabeled instances just because it is too expensive to sort through them.

Most of the existing methods for fraud detection in recommender systems
typically focus only on shilling attacks (for example [19, 20, 21, 22]), in which
unusual amounts of false reviews are submitted in a short time frame. These
types of attacks manifest as an uncommon peak if the number of interactions
per item is plotted as a time series. The problem is that these approaches do
not cover any other type of fraudulent activity. If an attack occurs over a long
period of time, it will not be detected as easily. Additionally, the attacks are
even more difficult to discover if the attackers use hijacked accounts instead of
mass-creating fresh ones. Unmasking such accounts algorithmically is a chal-
lenging task, which is the primary motivation behind using machine learning
for this purpose.

Contributions

This research contributes to the field of recommender systems and fraud de-
tection by presenting a novel approach using a siamese graph neural network.
This thesis fulfills all of the assignment objectives and lays out areas for future
work. The contributions can be outlined as follows:

1. Literature Review and Background: The first chapter surveys prior
work on fraud detection in recommender systems, emphasizing the ne-
cessity of mitigating deceptive behaviors to enhance recommendation ac-
curacy. It describes concepts such as graph neural networks, fraud detec-
tion, and relevant evaluation metrics.

2



2. Siamese Graph Neural Network Model: The proposed model, a
siamese graph neural network, is introduced in the second chapter. This
model is inspired by the success of graph-based architectures in fraud
detection and the utility of siamese networks for similarity learning. The
siamese network architecture compares pairs of samples, learning latent
representations to distinguish known fraudulent behavior from unlabeled
instances. Two variants of the model are presented: one employing a
static distance metric and another integrating a coupled neural network.
Interpretable aspects of the siamese graph neural networks are also dis-
cussed.

3. New Heterogeneous Graph Convolution Operator: To accommo-
date irregular graph structures with different node types and relation-
ships, a new heterogeneous graph convolution operator is introduced.
This operator is inspired by multi-channel image convolution and explic-
itly designed to utilize existing homogeneous graph convolution operators.

4. Experimental Evaluation and Comparative Analysis: The final
chapter includes an ablation study featuring multiple experiments ex-
ploring various model parameters and settings, such as graph convolution
operators, hidden layer configurations, and loss functions. Performance
evaluation of the siamese graph neural network is conducted across four
datasets, benchmarking against seven existing graph-based approaches
for fraud detection in recommender systems.
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Chapter 1
Problem Background & Literature

Review

This chapter introduces recommender systems, collaborative filtering, and graph
convolution and contains an overview of existing methods for fraud detection in
recommender systems. It includes a comprehensive literature review of existing
approaches and related methods.

1.1 Recommender Systems

Personalized content recommendations increase user satisfaction, benefiting the
content platform by securing retention but also benefiting the users by making
the search for relevant content much easier [23]. Typical areas where person-
alization is used include online streaming services, e-commerce, social media,
and targeted advertisement.

Recommender systems need to learn the individual preferences of each user.
This can be done by monitoring the users’ behavior on the platform [24], having
the users fill out short questionnaires [25, 26], or recording the interactions
between users and items.

In the case of targeted ads, the ad-serving company can create a shadow
profile of the user [27], tracking their behavior around multiple partnered sites.
Some of this data can be considered sensitive, raising concerns over security
and privacy protection [28]. Surveys show that some users are strictly against
the invasion of their privacy, while others tolerate it to be shown relevant,
personalized marketing [29, 30, 31].

This section will briefly introduce simple recommender systems operating
on one isolated platform, such as an online streaming service where users pay
for access to movies. If a user watches a documentary about dolphins, they
will be recommended other documentaries about marine life. The idea is that
they might not be interested in paying to watch reality shows, and it is in
the platform’s business interest to keep the user coming back. The same idea
applies to e-commerce recommender systems that advertise products based on
the user’s purchase history.
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1. Problem Background & Literature Review

1.1.1 Definitions
Classic recommender system contains two main entities: a set of users U and
a set of items I [32]. Users interact only with a handful of items, and the task
of the recommender system is to predict which unseen items a user will prefer.
Sometimes, the task is to recommend users to other users (social media), items
to other items (next-basket), or users to items (advertisements).

Every user u ∈ U is associated with their features (a real vector describ-
ing their age, gender, etc.) and their past interactions (a vector of size |I|).
Similarly, every item i ∈ I is associated with its feature vector and interaction
vector (of size |U |). There are two distinct types of interactions:

• Implicit (e.g., clicked on, time spent watching/listening/reading),

• Explicit (e.g., like/dislike button, number of stars given).

Figure 1.1 shows an example of explicit interactions between users and
items. The rating matrix R ∈ (R∪{?})|U|×|I| represents the user-item interac-
tions. The goal of the recommender system is to accurately predict the missing
values of R.

?

? ? ?

??

4

5 1 4

3 2

Item 1 Item 2 Item 3 Item 4

User 2

User 3

User 1

Item 4

Item 3

Item 2

Item 1

User 3

User 2

User 1

Figure 1.1: Illustration of recommender system interactions and the (sparse)
rating matrix. The rows of the rating matrix represent the observed interac-
tions for each user. Likewise, columns represent interactions for items. Explicit
5-star rating interactions.

Content-based filtering uses the item features to suggest new items most
similar to those the user positively interacted with previously. Item features
(tags, keywords, or embeddings) can be compared using cosine similarity or
other distance metrics.

Collaborative filtering relies on other interactions made by other users, uti-
lizing the interaction vectors to find similar users and recommend items that
they have liked.

The difference between content-based and collaborative filtering is shown
in Figure 1.2. Modern recommender systems typically use a hybrid approach,
together with some heuristic strategies such as suggesting currently trending
or newly released items.
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1.1. Recommender Systems

ItemItemItemItem

Liked by User 1, recommend to User 2

Item

User 2User 1 Similar users

(a) Collaborative filtering

Liked Item 3, recommend Item 4

Similar itemsSimilar items

Item 4Item 3Item 2Item 1

User

(b) Content-based filtering

Figure 1.2: Illustration of collaborative and content-based filtering recommen-
dation. In collaborative filtering, users can be considered similar if they have
similar tastes (or attributes). In content-based filtering, item similarity de-
pends mostly on item attributes.

The interactions between users and items can be natively represented as a
bipartite graph, as shown in the left-hand side of Figure 1.1. Recommending
unseen items to users translates to predicting missing edges between nodes or
predicting missing values in the (sparse) rating matrix R. Rating matrix R is
equal to the biadjacency matrix [33, p. 17] of the bipartite graph.

Apart from the problem of predicting missing ratings in R, other frequently
researched problems exist. Cold-start problem is when the recommender system
must provide recommendations to a fresh user who has yet to interact with
any items and their preferences are unknown. Similarly, the same problem
can also apply to freshly added items. Overspecialization, related to the filter
bubbles [34], occurs when the recommender system struggles to recommend
diverse types of content, which can lead to user alienation if user tastes evolve
faster than the recommendations can adapt.

As a reminder, this work is aimed at uncovering fraudulent (or otherwise
anomalous) interactions. The motivation behind this is not only to protect
legitimate users from fraud but also to prevent bias or distortion of the rat-
ings used for personal recommendations. As [35] shows, penalizing anomalous
ratings can improve the recommendation accuracy. The following parts of this
section briefly introduce basic recommender system methods, all of which rely
on user-item interactions to provide personalized suggestions.

1.1.2 Similarity-based Methods
Similarity can be based on user (or item) attributes or the user-item inter-
actions. Examples of similarity measures that can be used in recommender
systems are listed below.
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1. Problem Background & Literature Review

• Cosine similarity for non-zero vectors x,y ∈ Rn:

SCosine(x,y) = xT y
||x|| · ||y|| .

Equal to the cosine of the angle between the two vectors. Returns values
from the interval [−1, 1]. || · || operator denotes the ℓ2 norm, i.e., ||x|| =√

xT x.

• Euclidean similarity for vectors x,y ∈ Rn:

SEuclid(x,y) = 1
1 +

√∑n
i=1(xi − yi)2

.

Inverses the Euclidean distance; the closer the two vectors are, the greater
the similarity. Returns values from the interval [0, 1].

• Jaccard similarity for non-empty sets A,B:

SJaccard(A,B) = |A ∩ B|
|A ∪ B|

.

Measures the overlap and intersection of two sets. Returns values from
the interval [0, 1].

• Pearson correlation coefficient for non-zero vectors x,y ∈ Rn:

SPearson(x,y) =
∑n

i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2∑n

i=1(yi − ȳ)
.

Measures the linear correlation between two vectors. Returns values from
the interval [−1, 1]. x̄ denotes the mean of x, i.e., x̄ = 1

n

∑n
i=1 xi.

Cosine similarity, Euclidean similarity, and Pearson correlation coefficient
can measure the similarity of users or items based on past interactions (both
implicit or explicit ratings) as well as measure similarity based on the user of
item attributes. Jaccard similarity can measure the similarity in item prefer-
ence based on the sets of items that two users have interacted with but com-
pletely ignores any ratings that the users might have given to the items. Cosine
similarity deals well with sparse vectors, which are typical in recommendation
due to users interacting with only a handful of items in an environment filled
with thousands or millions of unique items.

1.1.2.1 K Nearest Neighbors

K Nearest Neighbors (KNN) is generally used for regression or classification
tasks but can also be used as a recommender system as described by Algo-
rithm 1.

Additionally, the computed similarities can be used as weights to increase
the recommendation accuracy [36]. KNN is relatively straightforward to im-
plement and is easily interpretable. However, it can still suffer due to sparsity
and the curse of high dimensionality.

8



1.1. Recommender Systems

Algorithm 1: KNN for recommendation
1 Function kNNrecommend(Set of users U , User u, Integer k)
2 Compute similarity between user u and all other users from U
3 Select k most similar users
4 Aggregate their favorite items as a set Inew
5 Recommend items from Inew to user u
6 end

1.1.3 Matrix Factorization
Matrix factorization can be used with the intent to compress data by approx-
imating the original matrix by a lower-rank matrix, acting as dimensionality
reduction. A latent representation of user/item ratings can be obtained by
applying these methods to the rating matrix R.

In recommender systems, matrix factorization is approached as an opti-
mization problem, where the goal is to minimize the approximation error for
the observed values in the sparse rating matrix R with a dense lower-rank ma-
trix. The values in the dense lower rank matrix can be treated as predicted
ratings where initially not observed.

Formally, let R ∈ (R∪{?})m×n be a sparse matrix with indices of observed
values defined by Ω = {(i, j) | Ri,j ̸= ?}. For a given d ∈ N, find R̂ = U ·V,
where U ∈ Rm×d,V ∈ Rd×n such that the loss function L(R, R̂) is minimized.
In other words, find the solution for:

argmin
U,V

L(R,U ·V).

Example of loss functions for a sparse matrix R ∈ (R∪{?})m×n with indices
of observed values Ω and matrix R̂ ∈ Rm×n are:

• Mean absolute error

LMAE(R, R̂) =
∑

i,j∈Ω
|Ri,j − R̂i,j |.

• Mean squared error

LMSE(R, R̂) = 1
|Ω|

∑
i,j∈Ω

(Ri,j − R̂i,j)2.

• Root mean squared error

LRMSE(R, R̂) =
√

1
|Ω|

∑
i,j∈Ω

(Ri,j − R̂i,j)2.

To limit overfitting, choosing d ≪ rank(R) ≤ min(m,n), and penalizing
the values in U,V through a regularization parameter λ ∈ R+ can result in
better generalization. Rewritten using MSE, the regularized task is:

argmin
U,V

1
|Ω|

∑
i,j∈Ω

(Ri,j −Ui,: ·V:,j)2 + λ

 m∑
i=1
||Ui,:||+

n∑
j=1
||V:,j ||

 .
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1. Problem Background & Literature Review

Due to the high sparsity of the rating matrix R, the standard Singular
Value Decomposition (SVD) algorithm is not suitable for approximating R
with a lower rank matrix. Instead, iterative algorithms such as Alternating
Least Squares (ALS), Bayesian Personalized Ranking (BPR) [37], or Logistic
Matrix Factorization (LMF) [38] can be used.

1.1.3.1 Alternating Least Squares

Inspired by the Regularized Least Squares (RLS) solution for ridge regression,
ALS solves several linear regression problems per iteration.

As a reminder, the goal of RLS is to find weights w ∈ Rn for X ∈ Rm×n

and y ∈ Rm that minimize the regularized Residual Sum of Squares (RSS):

RSS(w;λ) =
m∑

i=1
(yi −Xi,: ·w)2 + λ

n∑
i=1

w2
i = ||y−Xw||2 + λwT Iw,

where λ ∈ R+ is a regularization parameter and I ∈ Rn×n is the identity
matrix.

An explicit solution can be obtained by placing ∇wRSS(w;λ) = 0:

∇wRSS(w;λ) = −2XT (y−Xw) + 2λIw

−2XT (y−Xw) + 2λIw = 0
2λIw = 2XT (y−Xw)
λIw + XT Xw = XT y
(λI + XT X)w = XT y

w = (λI + XT X)−1(XT y)
ALS matrix factorization algorithm alternates between updating one of the

two matrices U and V, freezing the other one. While updating i-th row of U,
the V is treated as the matrix X, i-th row of R as the target vector y and the
solution w is used to update the row Ui,:. Equivalently, while updating j-th
column of V, U is treated as the matrix X, j-th column of R corresponds to
the target vector y and the solution w is used to update the column V:,j .

Described formally, let R ∈ (R∪{?})m×n be a sparse matrix with indices of
observed values defined by Ω = {(i, j) | Ri,j ̸= ?}. Additionally, let Ω(k,:) and
Ω(:,l) denote where Rk,: and R:,l are observed, i.e., Ω(k,:) = {j | Rk,j ̸= ?} and
Ω(:,l) = {i | Ri,l ̸= ?}. For a given hidden dimension d ∈ N and regularization
parameter λ ∈ R+, the ALS algorithm initializes U ∈ Rm×d and V ∈ Rd×n

randomly and repeats the following steps until convergence (or other stopping
criteria, such as a maximum number of iterations):

• Update each row of U:

∀i ∈ {1, . . . ,m} : Ui,: := argmin
u∈R1×d

∑
j∈Ω(i,:)

(Ri,j − u ·V:,j)2 + λ

d∑
j=1

u2
1,j .

• Update each column of V:

∀j ∈ {1, . . . , n} : V:,j := argmin
v∈Rd

∑
i∈Ω(:,j)

(Ri,j −Ui,: · v)2 + λ

d∑
i=1

v2
i .
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1.1. Recommender Systems

The update of one of the rows of U is illustrated in Figure 1.3. The resulting
matrices U and V can be used to predict ratings where previously not observed
by calculating R̂i,j = Ui,: · V:,j , getting the predicted rating of i-th user for
j-th item. The rows of U and the columns of V can be interpreted as latent
representations of users and items, respectively.

× =

(4,:) (4,:)4,: 4,Ω:,Ω
T T TV U R

:,5:,4:,3:,1V V V V

V

U

U

4,:4,:R

R

Figure 1.3: Illustration of a row update of the U matrix in the ALS algorithm.
To update the values in row U4,:, the RLS solution can be directly applied as:
UT

4,: := (λI + V:,Ω(4,:)VT
:,Ω(4,:))−1(V:,Ω(4,:)RT

4,Ω(4,:)).

When choosing the hyperparameters d ∈ N, λ ∈ R+, and the stopping
criteria (typically maximum number of iterations k ∈ N), it is possible to split
the observed interactions Ω into a train and validation set, Ωtrain and Ωvalidation
to see which combination will provide the best accuracy. Ωtrain is used to obtain
the matrices U and V, and Ωvalidation is used to measure the error (e.g., MAE,
MSE or RMSE, as mentioned previously). To gain an insight into how d and λ
influence the reconstruction accuracy, a visualization is provided by Figure 1.4.

How matrix factorization can be used as a recommender system is described
by Algorithm 2.

Algorithm 2: Matrix factorization for recommendation
1 Function MFrecommend(Rating matrix R, User u)
2 Obtain matrix factorization R = U ·V
3 Predict item ratings for u as R̂u,: = Uu,: ·V
4 Aggregate items with highest predicted ratings in R̂u,: as Inew
5 Recommend items from Inew to user u
6 end

1.1.4 Autoencoders
Much like matrix factorization, Autoencoders seek to learn a latent represen-
tation of users (or items). However, instead of creating a temporary vector
representation of each user, the autoencoder is trained to recognize the rela-
tionships that occur between groups of items through the observed interactions
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Figure 1.4: Partial ALS hyperparameter space grid search for d ∈ {2, . . . , 50},
λ ∈ [0, 5], and fixed k = 25. As apparent, overfitting occurs when λ → 0.
Increasing the hidden dimension d has diminishing returns on investment for
the validation set. The vertical axes are normalized for both graphs individually
for visualization purposes; the actual RMSE values are not the primary focus;
their relative scale within a set is.

and is capable of predicting ratings for new users without retraining (unlike
matrix factorization, which requires an update every time a new user is added).

Formally, when training an autoencoder, the goal is to minimize the error
function E (reconstruction loss) for a set of vectors X = {x1, . . . ,xm}:

min
θ∈Θ

E(θ) = min
θ∈Θ

∑
x∈X

L(x,AE(x; θ)),

where x ∈ Rn, L is a loss function (e.g., MSE), AE is the autoencoder function
and θ are its parameters from a parameter space Θ.

Autoencoders are typically implemented as deep neural networks, comprised
of several hidden layers with a characteristic bottleneck layer in the middle, as
illustrated by Figure 1.5. Deep learning utilizes gradient descent to explore the
parameter space Θ to arrive at a local minimum.

As a reminder, gradient descent has several versions. However, they all work
with a similar premise: calculate the current gradient of the error function E
with respect to the parameters θ, ∇θE , and use it to update the parameters θ
for the next iteration.

θ ← θ − α · ∇θE(θ).

• Standard gradient descent utilizes the entire training set X in each iter-
ation.

• Stochastic (or online) gradient descent estimates the gradient using a
single random training sample x ∈ X :

∇θE(θ) ≈ ∇θL(x,AE(x; θ)).

12
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• Minibatch gradient descent estimates the gradient using a random subset
B ⊂ X :

∇θE(θ) ≈ 1
|B|

∑
x∈B
∇θL(x,AE(x; θ)).

• Other optimization methods such as Adagrad [39], Adadelta [40], Adam
[41], or AdamW [42] are also popularly used. Some gradient descent
implementations can also include momentum.

1 2 3 4 5HHHHH

?

?

?

Dense output vectorSparse input vector

Figure 1.5: Example of an autoencoder neural network used to predict missing
values in a sparse vector. H3 is the bottleneck layer.

For a deep neural network consisting of m hidden layers H1, . . . ,Hm, with
sizes defined by n ∈ Nm+1 where each layer Hi consists of ni artificial neurons
and an activation function φ(i) : R → R, the learnable parameters θ include
weight matrices W(1), . . . ,W(m) and bias vectors b(1), . . . ,b(m), where W(i) ∈
Rni,ni−1 and b(i) ∈ Rni , the output of i-th hidden layer is computed as:

h(i) = φ(i)
(

(h(i−1))T W(i) + b(i)
)
,

where φ(i) is applied element-wise and h(0) ∈ Rn0 is the input vector. Activa-
tion functions are most often chosen to be non-linear and continuously differen-
tiable. For non-linear activation functions, it has been proven that multi-layer
neural networks are universal approximators [43].

In recommender systems, autoencoders can be trained to reconstruct the in-
teraction vectors of users, i.e., the rows of the rating matrix R ∈ (R∪{?})m×n.
However, the high sparsity can be a problem for loss functions such as MSE.
AutoRec [44] proposes a modified loss function, penalizing only observed ele-
ments, i.e.;

min
θ∈Θ

m∑
i=1

∑
j∈Ω(i,:)

(Ri,j −AE(Ri,:; θ)j)2
.
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The authors show that even a shallow autoencoder trained with this loss func-
tion can outperform previous matrix factorization methods.

Other significant recommender systems using autoencoders are summarized
by a recent survey [45]. How an autoencoder can be used to recommend items
to users is described by Algorithm 3.

Algorithm 3: Autoencoder for recommendation
1 Function AErecommend(Rating matrix R, User u)
2 Train an autoencoder AE using rows of matrix R
3 Reconstruct the interaction vector R̂u,: = AE(Ru,:; θ) for user u
4 Aggregate items Inew where predicted rating R̂u,i is high
5 Recommend items from Inew to user u
6 end

1.1.5 Graph Neural Networks
Graph neural networks (GNNs), first introduced by [46], are able to effectively
model the complex relationships that exist between users and items. Unlike the
previously mentioned similarity-based methods or matrix factorization, which
rely on explicitly defined metrics or matrix decomposition algorithms, GNNs
can directly process the structural information contained in the graph repre-
sentation of user-item interactions. This information is processed via iterative
message passing between graph vertices (referred to as graph convolution),
aggregating local neighborhood and global structure context to implicitly cre-
ate node embeddings, in essence automatically learning additional features for
graph entities.

Graph neural networks typically apply a learnable function to the aggre-
gated information for each node, similar to convolutional neural networks that
process images. In a way, graph convolutional layers generalize the 2D convo-
lutional layers. Graph convolution operators are explained in greater detail by
Section 1.2. GNNs can be used for node, edge, subgraph, graph classification,
graph generation, or edge prediction. Edge prediction is most interesting for
recommender system applications, as it can serve for predicting missing interac-
tions between user and item nodes in the bipartite user-item graph (illustrated
in Figure 1.6).

Existing graph neural network models specialized for recommender systems
are outlined by recent surveys [47, 48]. Both conclude that GNN techniques are
still maturing and are not without issues. For example, processing dynamically
changing graphs and node features requires constant updates as user prefer-
ences evolve or new items are added. Large GNNs suffer in scalability, making
real-world use, where the number of nodes and edges surpass millions, limited.

Algorithm 4 describes how a link predicting GNN can be used for recom-
mendation. Previously observed interactions can be used as training data for
the GNN model.
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Figure 1.6: Link prediction in user-item graph for recommendation.

Algorithm 4: Link prediction for recommendation
1 Function GNNrecommend(Set of users U , Set of items I,

Interactions E = U × I, User u)
2 Collect neighborhood Vu ⊂ U of u
3 Construct graph G = (Vu ∪ I, E)
4 Predict most likely links Eu = (u× I)
5 Recommend items from Eu to user u
6 end

1.2 Graph Convolution

Image convolution neural networks aggregate information from pixel regions
using discrete two-dimensional convolution and learnable filters (sometimes
called kernels). This has allowed them to be utilized, for example, in image
classification or object segmentation [49]. Let P ∈ Rm,n represent a grayscale
image and let K ∈ Rk,k represent the convolution filter. The convolution
operation produces a new image and is denoted as P′ = P ∗K, where values
of P′ are produced by:

P′
i,j =

⌊ k
2 ⌋∑

a=−⌊ k
2 ⌋

⌊ k
2 ⌋∑

b=−⌊ k
2 ⌋

Pi+a,j+b ·K⌊ k
2 ⌋+a,⌊ k

2 ⌋+b,

where Pi,j = 0 for i ≤ 0 ∨ i > m ∨ j ≤ 0 ∨ j > n (zero-padding, sometimes the
resulting image P′ is cropped instead, or other types of padding can be used).
This operation is illustrated by Figure 1.7.

Graph convolution, introduced by [50], in a way, generalizes the same con-
cept to graph data. An image can be converted into a graph resembling a
grid; each pixel (node) is connected to its neighbors (four neighbors for cen-
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Original image P Output image P'

Filter K

0 -1 0
4 -1

0-10
-1

Figure 1.7: Illustration of discrete two-dimensional convolution, including an
example of the Laplacean edge-detecting filter. Convolution neural networks
learn the weights inside the filter K during training. The size of the filter,
padding strategy, and strides are hyperparameters.

tral pixels, three for border pixels, two for corner pixels). The convolution
filter aggregates information from a neighborhood. The same idea is used by
graph convolution, wherein information from an irregular node neighborhood
is aggregated to produce new node representations.

Graph convolution networks (GCNs), or just graph neural networks (GNNs),
use message passing algorithms to propagate information between nodes along
graph edges. Message passing takes the following form:

p′ = γ

p,
⊕
q∈P

ξ (p,q)

 ,

where p ∈ Rp is the original node representation vector, p′ ∈ Rp is the updated
representation, P is a set containing neighbors of p, γ and ξ are differentiable
functions, e.g., multi-layer perceptrons (MLPs) and ⊕ is a permutation invari-
ant aggregation function, e.g., mean, min, max, or sum.

GCNConv operator (introduced by [50]) learns a weight matrix W ∈ Rp,q

and bias vector b ∈ Rq, used by the following algorithm:

p′ =
∑

q∈P∪{p}

1√
deg(p) ·

√
deg(q)

·
(
WT q

)
+ b,

where q denotes the size of the output dimension.
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GATConv operator (introduced by [51]) uses attention scores αp,q to de-
termine the importance of each node in a neighborhood. In addition to the
weight matrix W ∈ Rp,q, the attention mechanism contains a weight vector
a ∈ R2r and concatenation (denoted by ||). The operator can be expressed as:

p′ =
∑
q∈P

αp,qWT q,

where the attention score is computed as softmax of the two concatenated node
representations (LeakyReLU(·) := max(·, 0) + 1

100 ·min(·, 0)):

αp,q =
exp
(

LeakyReLU
(

aT · [WT p||WT q]
))

∑
r∈P

exp
(

LeakyReLU
(

aT · [WT p||WT r]
)) .

GATv2Conv operator (introduced by [52]) improves upon this approach by
fixing the static attention problem of the original GATConv operator:

αp,q =
exp
(

aT · LeakyReLU
(

WT · [p||q]
))

∑
r∈P

exp
(

aT · LeakyReLU
(

WT · [p||r]
)) .

TransformerConv operator (introducted by [53]) instead uses multi-head dot
product attention with weight matrices W1,W2,W3,W4 and size of attention
heads d:

p′ = WT
1 p +

∑
q∈P

αp,qWT
2 q,

where the attention coefficients ap,q are computed as:

αp,q =
exp

(
(WT

3 p)T (WT
4 q)√

d

)
∑
r∈P

exp
(

(WT
3 p)T (WT

4 r)√
d

) .
SAGEConv operator (introduced by [54]) uses weight matrices W1, W2,

W3, bias vector b and a non-linear activation function φ. It aggregates infor-
mation from neighboring nodes before applying a transformation:

p′ = WT
1 p + WT

2︸ ︷︷ ︸
concatenate

·

⊕
q∈P

φ
(
WT

3 q + b
)

︸ ︷︷ ︸
aggregate

,

where ⊕ is the aggregation operation (mean aggregation, max pooling, min
pooling, or long short-term memory (LSTM) cells).

Other examples of graph convolution operators include ChebConv [55],
GraphConv [56], and SSGConv [57]. Additional information on graph neu-
ral networks, trends, and practical applications is provided by surveys [58, 59,
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60, 61]. Areas where graph neural networks have been successfully used in-
clude chemistry, bioinformatics (drug discovery), natural language processing
(syntactic and semantic parsing), urban analytics (traffic flow and planning),
cybersecurity (network intrusion and fraud detection), knowledge graphs, social
networks, and recommender systems.

Graph neural networks can provide advantages by modeling graph-structu-
red data compared to classic tabular data. Much like image convolution neural
networks, GNNs have the ability to learn how to capture both global and local
patterns, which helps in understanding interactions and relationships between
instances (e.g., in social networks) that are lacking in tabular data.

1.3 Fraud Detection

In fraud detection, the goal is to uncover malicious actors, who typically at-
tempt to mask their presence and blend in with other legitimate entities of a
system. Otherwise, it is also known under the term anomaly detection; how-
ever, not all anomalies constitute fraud. Anomaly detection is applicable in
tabular data (outlier detection), time series (event detection), images (foreign
object detection), or graphs (benign nodes/edges/subgraphs).

Finance is the most notable area where fraud detection is actively com-
batted due to its direct impact on institutions. Examples of types of fraud
include social security fraud [62], credit card fraud [63], insurance fraud [64],
loan application fraud [65], audit fraud [66], or (the somewhat new) cryptocur-
rency fraud [67], showing that as technologies progress, malicious actors evolve
together with them, always searching for ways to exploit them for their own
gain. That means the fraud detection methods also have to adapt by virtue of
the changing environments.

Fraud can also occur in other areas, such as politics (e.g., election fraud [68],
corporate lobbying [69], or bribery [70]), telecommunication (e.g., against ser-
vice provides [71, 72]) and food industry (e.g., ingredients adulteration [73, 74],
or their origin [75]), or counterfeit products in general.

Some fraud can be detected by cautious examination by looking for discrep-
ancies. This requires someone who is familiar with the product beforehand. If
purchasing goods online, inspecting them in person might not be possible. In-
stead, the customers have to rely on product reviews (or seller reviews) and
base their decisions on them.

Suppose a fraudster is advertising premium brand products at a lower price
than other sellers. The fraudster creates false reviews of their products to seem
legitimate and lure customers. If the e-commerce platform detects the false
reviews, it can punish the fraudster by suspending them. Otherwise, verifying
the seller’s legitimacy might be challenging before the customers report that
they have not received what they had ordered.

Since fraudsters can, over time, adapt to methods that are used to detect
them, so too must the detection methods evolve in order to catch them, leading
to a neverending cat-and-mouse game. A rule-based approach may be too slow,
as the new type of fraud has to get noticed and understood before a rule can be
designed to abolish it. On the other hand, machine learning has the potential
to model the underlying difference between legitimate instances and fraud,
allowing for greater flexibility.
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As stated before, fraud detection is related to anomaly detection, as in
both cases, the classes are unbalanced. The main difference is that fraudsters
are usually agents who make an effort to disguise themselves as legitimate.
Anomalous data points stand out from the rest of the data by deviating from
what is expected. Anomalies also represent only a small fraction of the dataset,
typically less than 5%, as larger portions might not be considered outliers but
rather a separate class.

Formally, anomaly detection is a binary classification problem. Let N be
a set of nominal instances and A be a set of anomalous instances, |A| ≪ |N |.
Given the set X = N ∪ A, anomaly detection methods typically assign each
instance x ∈ X an outlier score ηx ∈ R [76], which is used to judge whether x
originates from N or A. Strict decision threshold τ ∈ R can be used:

x ∈

N if ηx < τ,

A if ηx ≥ τ.

Alternatively, a fuzzy approach can be employed instead, where each instance
x ∈ X is assigned a probability of it belonging to A:

P(x ∈ A) = 1− P(x ∈ N ).

Imbalanced classes can present a problem in machine learning, especially
when it comes to evaluation. Consider a system that predicts whether a patient
is infected with a rare disease occurring in 0.03% of individuals. If the system
naively always predicts that a patient is healthy, it will have an accuracy of
99.7%, yet all of the infected individuals will go untreated.

1.3.1 Evaluation Metrics
As previously alluded, it is imperative to consider the context when evaluating
the performance of a model in an environment with imbalanced classes. For
example, if trying to prevent a deadly disease from spreading, a high false
positive rate might be tolerable as long as the false negative rate is minimal. On
the flip side, withholding millions of financial transactions in order to prevent
a handful of fraudulent ones from going through is also undesirable (sometimes
even the delay caused by big data processing is not acceptable, even though it
may prevent some fraud cases [77]).

The confusion matrix is the most descriptive way of measuring binary clas-
sification performance. However, it is not as practical as other derived metrics
simply because it consists of multiple values. Confusion matrix is shown in the
following diagram:
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Let y ∈ {0, 1}m denote the ground truth labels (where 0 is negative and 1
is positive) and similarly let ŷ ∈ {0, 1}m denote the predicted labels. Then,
the values inside of the confusion matrix can be defined as:

• True positive (TP) = |{i | yi = 1 ∧ ŷi = 1}|,

• False positive (FP) = |{i | yi = 0 ∧ ŷi = 1}|,

• False negative (FN) = |{i | yi = 1 ∧ ŷi = 0}|,

• True negative (TN) = |{i | yi = 0 ∧ ŷi = 0}|.

These values give the absolute counts for the occurrences of each respective
metric. Some variations of the confusion matrix use normalized values (over
rows, over columns, or over all values).

The following metrics all utilize the confusion matrix to provide more in-
terpretable values:

• True positive rate (TPR), also referred to as recall:

TPR = TP
TP + FN ,

• False positive rate (FPR):

FPR = FP
FP + TN ,

• Precision (PRE):
PRE = TP

TP + FP ,

• Accuracy (ACC):

ACC = TP + TN
TP + FP + TN + FN ,

• F1 score:
F1 = TP

TP + 1
2 (FP + FN)

,

• Gmean score:

Gmean =
√

TP
TP + FN + TN

FP + TN .

Value of the decision threshold τ can also be examined (e.g., for models
that return the raw outlier score) using the receiver operating characteristic
(ROC) curve. The ROC curve describes the changing ratio of TPR and FPR
for changing τ . An illustration is shown in Figure 1.8a. The ROC curve is
directly used by another metric with a self-explanatory name, the area under
the curve (AUC). AUC can also be interpreted as the probability that the
classifier will correctly predict the label of a random sample [78].
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Precision-recall curve is similar to the ROC curve, except it measures dif-
ferent metrics. Precision-recall curve is visualized in Figure 1.8b. Averaged
precision (AP) utilizes this curve by calculating the weighted mean of the pre-
cisions using the difference of the last two recalls as weight:

AP =
# unique τ∑

i=1
(TPRτi − TPRτi−1) · PREτi .

Some authors argue that the precision-recall curve is better suited for imbal-
anced datasets than the ROC curve [79], as it better summarizes the predic-
tion accuracy for the anomaly class. In contrast, the ROC curve may show an
overoptimistic view.
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Figure 1.8: Illustration of ROC and precision-recall curves for an imbalanced
dataset, where positive examples constitute 5% of all the data. AUC = 1
and AP = 1 is achieved by a perfect classifier, AUC = 0.5 and AP = 0.05 is
achieved by a random classifier.

1.4 Related Works

As described earlier, recommender systems consist of three main entities: users,
items, and user-item interactions (implicit or explicit, sometimes including re-
views). Each of these may be examined differently, depending on the type of
fraud prevention. For example, minimizing the promotion of fraudulent items
may differ from catching malicious users who misuse credit card chargebacks
or detecting false reviews.

Some platforms deal with the issue of false reviews by allowing the users to
rate the reviews themselves. Reviews that obtain too many negative votes are
then discarded or hidden, while reviews with positive votes are pushed to the
top. However, this approach can still be manipulated the same way (a malicious
actor can still promote their own propaganda through other hijacked or bot
accounts). Plus, users typically do not care to investigate other activity made
by suspicious reviewers (if such information is even available to them) [80].
On the other hand, human moderators employed by the platform could find
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such ties. On a platform with thousands or millions of reviews (or comments)
submitted daily, the number of moderators would have to be large, and the
required coordination might be challenging.

The ultimate goal is to automate the process so that exposure to fraud is
minimized for all entities. False reviews should not influence users, the recom-
mender system should accurately suggest legitimate items, and the platform
wants to reduce the number of users defrauding it.

1.4.1 Fraud Detection in Recommender Systems
[16] provides a comprehensive review of false review detection methods pub-
lished between 2007 and 2021. Early works have focused primarily on opinion
fraud [81, 82], shilling attacks [83, 84, 85], or spam campaigns [86, 87, 88].
These types of fraud affect both the recommender system users and items.
Users could be misled by reading false reviews, and items, in turn, suffer by
not being represented accurately and, thus, not being selected by the users.
The recommender system itself may be harmed, as the false reviews can cause
a bias towards or against certain items, reducing the accuracy of recommenda-
tions and ultimately damaging the platform.

[83, 84] rely on time series data modeling to identify unusual events (shilling
attacks) that occur in a short time frame. If these fraudulent interactions are
spread far apart, this approach might not be suitable. On the other hand,
purely analyzing the rating frequencies does not require any feature engineer-
ing or breakdown of complex relationships between users and items. Some of
the more recent research (for example [89, 90, 91, 92]), which also operate with
time series, develop more sophisticated unsupervised methods. Other unsu-
pervised methods use clustering [93, 94] to discern outliers. However, when
malicious actors distribute their attacks over a longer period of time or oth-
erwise mask their behavior, these methods fail to recognize them. For this
reason, other researchers employ supervised (or semi-supervised) methods that
have the potential to learn the intrinsic difference between fraudulent and le-
gitimate instances. Due to the nature of fraud (attackers are attempting to
camouflage themselves), accurately labeling enough data for supervised meth-
ods is challenging. The method proposed by this thesis uses semi-supervised
learning, which can learn the difference between the two classes using only a
handful of known fraudulent instances by comparing them against the rest of
the unlabeled set.

Other early research utilizes shallow machine learning models, such as lo-
gistic regression [81], support vector machines [86, 87], and Naive Bayes [82] to
train false review detectors. All of these works use human-labeled datasets and
show that their methods are capable of matching human judge performance.
Authors of [82] admit that even human judges have trouble deciding whether
some reviews are fraudulent or not. These methods rely only on the individual
features of the text review and do not take into account other behaviors (e.g.,
how many reviews have been posted by the same user and what kind of items
the user rates positively or negatively). These hidden relationships may have
the potential to uncover new patterns that can be used to distinguish fraudsters
more easily.

[88, 85] attempt to model various relationships between individual users,
items, and groups of users, utilizing those for feature engineering. The authors
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propose iterative algorithms which can process the adjacency matrices. Their
results show the ability to detect more subtle fraudsters that have escaped
previous methods, concluding that the potential that graph features offer can
be greatly beneficial in fraud detection.

In recent years, graph neural networks have demonstrated the advantage
that learnable node representation brings, using message passing to exchange
information via the graph edges. They have proven their ability in recommen-
dation systems (as per surveys [47, 48]), owing to the natural bipartite graph
representation of user-item interactions. Similarly, GNNs have been utilized
for anomaly detection in graph datasets. [95] provides a comprehensive survey
on existing deep learning methods for graph anomaly detection. Most relevant
to this thesis are GNN-based recommender system fraud detection methods,
such as [96, 97, 98, 99, 100, 101]. Authors of [96] propose a trainable similarity
measure to overcome the sparsity of labeled nodes in a semi-supervised set-
ting. [98] expands upon their work, implementing a guided and scalable neigh-
borhood selection and generalizing toward other tasks beyond semi-supervised
fraud detection. [99] instead proposes a residual structure to alleviate the di-
lution of information when training very deep graph neural networks. Authors
of [100] demonstrate a novel approach using an additional edge classifier to
split the graph into positive and negative subgraphs, later aggregating node
representation of both again. However, they focus on spectral analysis, ig-
noring the issue of camouflaged fraudsters and the need for a large labeled
dataset in a fully supervised setting. [97] tries to remedy the class imbalance
using a custom balanced graph sampling method but still treats the problem as
fully supervised. [101] directly exploits the message passing of GNNs by using
labels as a feature but carefully masking them in training to avoid leakage,
effectively creating an implicit label propagation algorithm for semi-supervised
graph classification. [102] use a dual channel network, in which one module is a
traditional multi-layer perceptron processing node features, and the other is a
graph neural network processing graph structure. The representations learned
by both modules are combined before predicting the node’s outlier score.

Table 1.1 contains a summary of the mentioned literature, sorted by the
type of approach by their respective authors.

Table 1.1: Structured overview of cited literature on false review detection in
recommender systems.

Approach References
Learning Strategy

Unsupervised Time series [83, 84, 89, 90, 91, 92]
Clustering [93, 94]

Supervised Shallow models [81, 82, 86, 87]

Graph-based [97, 100, 102]
Semi-supervised [96, 98, 99, 101]
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1.4.2 Siamese Neural Networks
Siamese neural network, introduced by [103], consists of two identical artifi-
cial neural networks, conjoining their outputs, which are often compared with
each other via some metric or processed by additional neural layers. They
have shown great potential in one-shot and few-shot learning scenarios, such
as image recognition [104], visual object tracking [105], or user identity track-
ing [106]. [107] provides a comprehensive survey on the potential of siamese
neural networks in recommendation tasks.

Contrastive loss [108] or triplet loss [109] can be used to encourage the
model to learn distant embeddings of positive and negative samples. Both
losses are defined below (and illustrated by Figure 1.9). Let d ∈ R denote the
size of embedding vectors and D : Rd × Rd → R is any distance metric.

• Contrastive loss, given two vectors a,b ∈ Rd:

Lcontrastive(a,b;α) =

D(a,b) if a and b belong to the same class,
max(α−D(a,b), 0) otherwise.

• Triplet loss, given anchor, positive, and negative vectors a,p,n ∈ Rd:

Ltriplet(a,p,n;α) = max(D(a,p)−D(a,n) + α, 0)

For contrastive loss, α ∈ R is a hyperparameter defining the lower bound
distance between classes. For triplet loss, it defines the minimum offset between
different class pairs. Also, it is vital to select difficult negative samples for
triplet loss; otherwise, the model will not have much incentive to improve.

Embedding space

Negative

Positive

(a) Contrastive loss

Embedding space

Negative

Positive

Anchor

(b) Triplet loss

Figure 1.9: Contrastive and triplet loss illustration. For triplet loss, the objec-
tive is to decrease the distance between the anchor and positive samples while
increasing the distance between the anchor and negative samples. Contrastive
loss only seeks to maximize the distance between positive and negative samples.

Notably, siamese networks have also been utilized for anomaly detection
[110], where a fully labeled dataset is challenging to obtain, and few-shot learn-
ing can instead take advantage of a smaller set of known anomalies. The au-
thors use triplet loss (illustrated in Figure 1.9) to make their model learn distant
representations of positive and negative samples. The distance is subsequently
used to determine whether two samples belong to the same class.
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[111] proposes learning pairwise relations, i.e., nominal-nominal, nominal-
anomaly, and anomaly-anomaly, explicitly designed for semi-supervised ano-
maly detection environments. The authors effectively augment their training
dataset, as they instead predict one of the three classes for a pair of samples,
taking significant advantage of a few known positive labels and allowing their
model to learn in a supervised end-to-end fashion in a semi-supervised set-
ting. Each pairing is assigned an anomaly score as the target, allowing the
optimization to be guided via traditional loss functions, such as MSE or MAE.
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Chapter 2
Methodology

This chapter introduces the proposed graph-based semi-supervised method for
fraud detection in recommender systems. It describes how heterogeneous graph
convolution is implemented, the siamese neural network framework structure,
training algorithms, and the necessary steps to correctly process data, including
feature engineering.

2.1 Formal Problem Definition

The problem of fraud detection in recommender systems can be formulated
as binary node classification. Let U = {u(1), . . . ,u(m) | u(j) ∈ Rp} be a set of
users, I = {i(1), . . . , i(n) | i(j) ∈ Rq} be set of items and R = {r(1), . . . , r(k) |
r(j) ∈ Rs} be a set of reviews, meaning each user, item and review is represented
by a feature vector and m,n, k, p, q, s ∈ N, k ≤ m · n. Every review r ∈
R is associated with a particular user (author) and item, defining a set of
relationships Ψ = {ψ(1), . . . , ψ(k) | ψ(j) ∈ {1, . . . ,m}× {1, . . . , k}× {1, . . . , n}}.
Additionally, a tripartite heterogeneous graph G = ({U , I,R}, {E1, E2}) can be
constructed, with three types of nodes and two types of edges E1 = {(ψ1, ψ2) |
∀ψ ∈ Ψ}, E2 = {(ψ2, ψ3) | ∀ψ ∈ Ψ}. The graph representation is illustrated by
Figure 2.1.

Now, let yU ∈ {0, 1}m denote the ground truth labels for users, where

yU
i =

1 user u(i) ∈ U is fraudulent,
0 user u(i) ∈ U is legitimate.

Similarly, yI ∈ {0, 1}n denote the labels for items, and yR ∈ {0, 1}k for re-
views. Given a subset of known fraudulent users AU ⊂ {j | yU

j = 1}, the
goal is to find a classifier C with parameters θ, providing the predicted labels
ŷU ∈ {0, 1}n, in order to maximize an evaluation metric M (e.g., F1 score,
Gmean score, averaged precision, or area under the ROC curve, explained in
Section 1.3.1):

argmax
C,θ

M(yU , C(G; θ)).

Equivalently, the goal can be to uncover fraudulent items or fraudulent re-
views instead, if given some set of previously observed fraudulent items AI or
fraudulent reviews AR.
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1 2Edges E Edges E
Items IReviews RUsers U

Figure 2.1: Tripartite recommender system heterogeneous graph illustration.
Reviews may not be strictly text; other implicit interactions could also be
considered as a review (and only represented as a weighted edge). Additionally,
there may be hidden relationships between users (e.g., a family) or items (e.g.,
the same brand), breaking the premise of a tripartite graph.

2.2 Siamese Graph Neural Network

Siamese neural networks process two input samples in parallel, producing two
comparable output vectors. Both networks share the same weights, and in
practice, a siamese network can be implemented by a single instance, through
which two samples are forwarded in series (cutting memory usage in half but
doubling the processing time).

The motivation behind using a siamese network is to leverage their few-shot
learning capabilities, which have been proven in areas such as facial recogni-
tion or object tracking. The model learns by comparing known positive samples
against negative ones and maximizing the distance between their embeddings.
In a semi-supervised fraud detection setting, only some positive samples are
available; the rest are unlabeled. The expected frequency of fraudsters can
be used as the probability that a given unlabeled sample is positive or nega-
tive. Assuming that fraudulent instances are much less likely than legitimate
instances (i.e., it is an anomaly), then if the embedding distance of a sample is
very far from all other unlabeled samples, it can be reasonably assumed that
it is fraudulent. Coincidentally, it is more likely to be legitimate if it is similar
to many other unlabeled samples.

2.2.1 Deep Learning Framework Definition
Given a training graph G = (V, E), where V = {v(1), . . . ,v(m)}, and A ⊂
{1, . . . ,m} denoting the indices of known fraudulent nodes (the rest of the
indices i ̸∈ A are unlabeled), the goal is to train a function, which assigns a
fraud score for a pair of node neighborhoods:

ϕ : G × G → R,

such that ϕ(Gi,Gj) > ϕ(Gk,Gℓ) for (i ∈ A ∨ j ∈ A) ∧ (k, ℓ ̸∈ A) (where Gi

denotes neighborhood of node v(i)). The function ϕ consists of two modules:
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neighborhood embedding function ϕ1 : G → Rd and pairwise fraud scorer
function ϕ2 : Rd × Rd → R. d ∈ N is the hidden dimension hyperparameter.

The neighborhood embedding function ϕ1 is a graph neural network, con-
sisting of graph convolution layers HG, |HG| = hG ≥ 1 and optionally also
additional linear layers HL, |HL| = hL:

ϕ1 = HL
hL
◦ · · · ◦HL

1 ◦HG
hG
◦ · · · ◦HG

1 .

The pairwise fraud scorer can be implemented as a static distance metric (e.g.,
a Minkowski metric):

ϕ2(u,v; p) = p

√√√√ d∑
i=1
|ui − vi|p,

or for example the signal-to-noise ratio (SNR) based distance metric introduced
by [112]:

ϕ2(u,v) = Var(u− v)
Var(u) =

∑d
i=1((ui − vi)− (u− v))2∑d

i=1(ui − ū)2
,

or similar to what [111] has proposed, a deep neural network with h ∈ N lay-
ers and parameters θ = (W(1), . . . ,W(h),b(1), . . . ,b(h), φ(1), . . . , φ(h)), where
h(0) = (u,v) and ϕ2(u,v; θ) = h(h) and the output of i-th layer is computed
as:

h(i) = φ(i)
(

(h(i−1))T W(i) + b(i)
)
,

where φ(i) are non-linear activation functions (applied element-wise), W(i) are
weight matrices, b(i) are bias vectors and ϕ2 is coupled with the twin graph
neural network ϕ1. Then, using traditional backpropagation algorithms, both
ϕ1 and ϕ2 can be trained together in an end-to-end fashion.

Fraud
score

ϕ 2

Pairwise
fraud scorer

Embeddings

GNN ϕ1

ϕ1GNN

Node neighborhoods

Figure 2.2: Siamese graph neural network architecture. The twin GNNs ϕ1
share the same parameters, and the pairwise fraud scorer ϕ2 should be per-
mutation invariant. By comparing a particular sample against many other
(unlabeled) samples that are assumed to have low fraud contamination, the
model judges which group the sample more likely belongs to by measuring its
embedding distance.
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2.2.2 Heterogeneous Graph Convolution
Standard message passing algorithms cannot be directly applied on heteroge-
neous graphs, as the information stored in different node types or relationships
expressed by different edge types may not be compatible (they may have unique
meanings or even incompatible dimensions). It is possible to discard unwanted
node types and treat all edge types as one, sacrificing information. However,
such radical transformation may lead to excessive node isolation, especially in
bipartite graphs, where each partition consists of different node types, essen-
tially converting graph data into tabular data.

Heterogeneous graph convolution operators already exist, most prominently
the Heterogeneous Graph Transformer (HGT) [113], which utilizes attention
for determining the contextual importance of nodes in a heterogeneous neigh-
borhood. The authors demonstrate a significant performance advantage over
other heterogeneous graph convolution operators, such as Heterogeneous Graph
Neural Network (HetGNN) [114] and Heterogeneous graph Attention Network
(HAN) [115].

Alternatively, it may be feasible to implement dummy features for each node
type and stack multiple graph convolutional layers vertically, one for each type
of edge, aggregating or pooling their output to obtain node embeddings (sim-
ilar to how 2D convolutional layers deal with image color channels). Dummy
features pad the original node feature vector with zeroes, such that traditional
graph convolution operators may be used, transferring the node’s information
to neighbors of different types via message passing.

Let G = (V, E) be a heterogeneous graph with τV , τE ∈ N denoting the
number of different types of nodes and edges respectively. V = {V1, . . . ,VτV}
represents the set of nodes, E = {E1, . . . , EτE} the set of edges, t ∈ NτV describes
the size of feature vectors for each node type, i.e., Vi ⊂ Rti . A particular node
v ∈ Vi can be padded with zeroes (dummy features) as:

ṽ := (0(a),v,0(b)),

where

0(a) ∈ {0}a, a =
i−1∑
j=0

tj , t0 = 0

0(b) ∈ {0}b, b =
τV∑

j=i+1
tj ,

and additionally, the set of transformed nodes is

Ṽ =
τV⋃
i=1
{ṽ | ∀v ∈ V(i)}.

Then, the Channelwise Heterogeneous Graph Convolution (CHGC) can be
described as:

CHGC(V, E ;φ,ρρρ,⊕) = φ

(
τE⊕

τ=1
ρτ (Ṽ, Eτ ; θτ )

)
,
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where φ is a non-linear activation function, ⊕ is an aggregation or a pooling
function (e.g., sum, multiplication, mean, min, max, or concatenation), and
ρτ (Ṽ, Eτ ; θτ ) is any homogeneous graph convolution operator with parameters
θτ (unique for each type of edge τ ∈ {1, . . . , τE}), for example any of the
operators mentioned in Section 1.2.

CHGC idea is visualized in Figure 2.3. Performance comparison with HGT
and HAN in the proposed semi-supervised learning framework will be evalu-
ated later. The heterogeneous graph convolution layers serve to generate node
neighborhood embeddings for any type of graph in order to remove unnecessary
restrictions on the data graph structure, which could prohibit the modeling of
indirect relationships between nodes.

Heterogeneous graph Transformed homogeneousgraphs Graph convolution layers Embedding aggregation

Figure 2.3: Channelwise heterogeneous graph convolution visualization. Sepa-
rate subgraphs are created for all edge types (channels), and all node types are
transformed into one meta-type, creating homogeneous graphs and allowing
traditional graph convolution operators to be used.

2.2.3 Model Hyperparameters and Structure
Apart from the usual deep neural network hyperparameters, such as the number
of hidden layers and activation functions, there are additional choices for the
proposed model: the heterogeneous graph convolution operator used by the
twin graph neural network ϕ1 and the pairwise fraud scorer function ϕ2. The
architecture of the model is shown in Figure 2.2, and all the hyperparameters
are listed below:

• Heterogeneous graph convolution ϕ1

– CHGC
∗ Activation functions (ReLU, LeakyReLU, . . .)
∗ Homogeneous graph convolution operators (GCNConv, SAGE-

Conv, . . .)
∗ Aggregation/pooling operator ⊕ (sum, mean, max, . . .)

– HGT [113]
∗ Number of attention heads

– Other heterogeneous graph convolution operators (HetGNN [114],
HAN [115] . . .)

– Number of graph convolution layers
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– Hidden dimension d (size of neighborhood embedding vector)

• Pairwise fraud scorer function ϕ2

– Decoupled static distance metric (Euclidean distance/SNR distance)
– Coupled learnable deep neural network

∗ Number of hidden layers
∗ Activation functions

2.2.4 Training
The coupled and decoupled versions cannot be trained in the same way. In the
decoupled version, the twin graph neural network ϕ1 learns to maximize the
embedding distance between classes, which is then measured by ϕ2, while the
coupled version learns to output the fraud score directly.

Hierarchical neighborhood sampling from [54] is implemented to fight the
scalability issues that plague graph neural networks. This method allows for
only a portion of the graph dataset to be loaded, i.e., a neighborhood of a node.
During the graph convolution, not all nodes play a part (their messages never
reach the central node being considered) and thus can be ignored. As a bonus
side-effect, this approach also solves the issue of evolving graphs. If a new node
is added (i.e., a new review is posted), its embedding can easily be generated
without regenerating embeddings for all nodes in the original graph.

2.2.4.1 Decoupled Version

During training, the decoupled version samples pairs (or triplets) of instances
from the training set, forwards their neighborhoods through the twin graph
neural network ϕ1, calculates the contrastive (or triplet) loss using a distance
metric D : Rd × Rd → R and adjusts its learnable parameters via backpropa-
gation.

Much like any other model trained using gradient descent, mini-batch train-
ing can offer increased efficiency and lead to faster convergence. For this, a
special pair (or triplet) sampler must be implemented. The sampling algo-
rithms are described by Algorithm 5. The SamplePairs function iterates over
all combinations and collects pairs of the same class if their embeddings are
further apart than the specified intra-class margin s+ or if the samples are from
different classes and their embeddings are closer than the inter-class margin s−.
These rules are used to prioritize learning on the “difficult” paired instances for
faster convergence and to reduce overfitting. The SampleTriplets function
also iterates over every possible combination. However, it only collects triplets
of (anchor, positive, negative), where anchor and positive belong to the same
class, while negative belongs to a different class. It also selects only the dif-
ficult triplets for which the embedding of the negative sample is closer to the
anchor than the embedding of the positive sample (if the minimum embedding
distance margin s between anchor-positive and anchor-negative is exceeded).
Again, this rule selects triplets that the model currently has trouble with. The
mini-batch training algorithm for optimizing parameters θ of the graph neural
network ϕ1 using one of these samplers is described by Algorithm 6.
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Algorithm 5: Pair and triplet samplers
1 Graph G = (V, E) // Number of nodes |V| = m
2 Set of indexes of known fraudulent nodes A = {a1, . . . , ap}
3 Set of indexes of unlabeled nodes N = {n1, . . . , nm−p}
4 Pre-computed node neighborhood embeddings X ∈ Rm,d

5 Function SamplePairs(float s+, float s−)
6 pairs ← ∅
7 for i← 1; i ≤ m; i← i+ 1 do
8 for j ← 1; j ≤ m; j ← j + 1 do
9 if ((i ∈ A ∧ j ∈ A) ∨ (i ∈ N ∧ j ∈ N )) ∧ (D(Xi,:,Xj,:) > s+)

then
10 pairs ← pairs ∪ {(i, j), (j, i)}
11 end
12 if ((i ∈ A ∧ j ∈ N ) ∨ (i ∈ N ∧ j ∈ A)) ∧ (D(Xi,:,Xj,:) < s−)

then
13 pairs ← pairs ∪ {(i, j), (j, i)}
14 end
15 end
16 end
17 return pairs
18 end
19 Function SampleTriplets(float s)
20 triplets ← ∅
21 for i← 1; i ≤ m; i← i+ 1 do
22 for j ← 1; j ≤ m; j ← j + 1 do
23 for k ← 1; k ≤ m; k ← k + 1 do
24 if (i, j ∈ A ∧ k ∈ N ) ∨ (i, j ∈ N ∧ k ∈ A) then
25 if D(Xi,:,Xk,:)−D(Xi,:,Xj,:) < s then
26 triplets ← triplets ∪ {(i, j, k)}
27 end
28 if D(Xj,:,Xk,:)−D(Xj,:,Xi,:) < s then
29 triplets ← triplets ∪ {(j, i, k)}
30 end
31 end
32 end
33 end
34 end
35 return triplets
36 end
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Algorithm 6: Mini-batch training (decoupled version)
1 Graph neural network ϕ1 with learnable parameters θ
2 Graph G = (V, E)
3 Learning rate α
4 Mini-batch size b
5 Function TrainEpoch(function Sampler)
6 Compute current node embeddings X ∈ Rm,d

7 samples ← Sampler()
8 samples ← shuffle(list(samples))
9 for q ← 0; q < ⌈m

b ⌉; q ← q + 1 do
10 // Mini-batch B of up to b pairs or triplets
11 B ← samples[q · b:(q + 1) · b]
12 if Sampler is SamplePairs then
13 // Update parameters of ϕ1 using gradient descent

θ ← θ − α 1
|B|

∑
(i,j)∈B

∇θLcontrastive(ϕ1(Gi; θ), ϕ1(Gj ; θ))
14 end
15 if Sampler is SampleTriplets then
16 θ ← θ − α 1

|B|
∑

(i,j,k)∈B
∇θLtriplet(ϕ1(Gi; θ), ϕ1(Gj ; θ), ϕ1(Gk; θ))

17 end
18 end
19 end

2.2.4.2 Coupled Version

The coupled version uses a regression target for each type of class pairing of
node neighborhoods, i.e., unlabeled-unlabeled, unlabeled-fraud, fraud-unlabe-
led, and fraud-fraud. Given the training graph G = (V, E) where |V| = m
and set of indexes of known fraudulent nodes A = {a1, . . . , ap} and the set of
unlabeled nodes N = {n1, . . . , nm−p}, the regression target y ∈ R for a class
pair is defined as:

y(i,j) =


0 if i ∈ N ∧ j ∈ N ,

1 if i ∈ N ∧ j ∈ A,
1 if i ∈ A ∧ j ∈ N ,

2 if i ∈ A ∧ j ∈ A.

Furthermore, the loss function is the mean absolute error (sometimes referred
to as ℓ1 loss):

LMAE(ϕ(Gi,Gj ; θ), y(i,j)) = |ϕ(Gi,Gj ; θ)− y(i,j)|.

The mini-batch training differs from the decoupled version in that pairs in
every mini-batch are selected randomly. The regression target corresponding
to a pair of input samples effectively augments the training data size from m
to m2. Algorithm 7 describes the pair sampling and epoch training.
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Algorithm 7: Mini-batch training (coupled version)
1 Siamese graph neural network ϕ with learnable parameters θ
2 Graph G = (V, E) // Number of nodes |V| = m
3 Set of indexes of known fraudulent nodes A = {a1, . . . , ap}
4 Set of indexes of unlabeled nodes N = {n1, . . . , nm−p}
5 Learning rate α
6 Mini-batch size b
7 Number of mini-batches per epoch c
8 Function SampleMiniBatch()
9 pairs ← ∅

10 for k ← 0; k < ⌊ b
2⌋; k ← k + 1 do

11 // i, j ∈ N randomly chosen
12 pairs ← pairs ∪ {(i, j, 0)}
13 end
14 for k ← 0; k < ⌈ b

8⌉; k ← k + 1 do
15 // i ∈ N , j ∈ A randomly chosen
16 pairs ← pairs ∪ {(i, j, 1)}
17 end
18 for k ← 0; k < ⌈ b

8⌉; k ← k + 1 do
19 // i ∈ A, j ∈ N randomly chosen
20 pairs ← pairs ∪ {(i, j, 1)}
21 end
22 for k ← 0; k < ⌈ b

4⌉; k ← k + 1 do
23 // i, j ∈ A randomly chosen
24 pairs ← pairs ∪ {(i, j, 2)}
25 end
26 return pairs
27 end
28 Function TrainEpoch()
29 for k ← 0; k < c; k ← k + 1 do
30 B ← SampleMiniBatch()
31 θ ← θ − α 1

|B|
∑

(i,j,y)∈B∇θLMAE(ϕ(Gi,Gj ; θ), y)
32 end
33 end
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2.2.5 Inference and Interpretability
The proposed siamese graph neural network compares two samples against each
other to determine the fraud score. Due to the inherent contamination of the
unlabeled portion of the training set (and unknown labels of new samples),
there is a chance for a false positive reading. To obtain a reliable fraud score,
a particular sample must be compared against multiple others.

The binary fraud classifier can be defined using hypothesis testing. Given
the siamese graph neural network ϕ : G × G ← R with parameters θ (where
G = (V, E) is a heterogeneous graph), trained using a set of known fraudulent
nodes A = {a1, . . . , ap} and a set of unlabeled nodes N = {n1, . . . , nm−p}, the
mean fraud score of node ui ∈ N is calculated as:

ϕ(·,Gui ; θ) = 1
m− p− 1

∑
uj∈N ,uj ̸=ui

ϕ(Guj ,Gui ; θ).

Under the assumption that these scores are sampled from a Gaussian distri-
bution, i.e., ϕ(·,Gui

; θ) ∼ N(µN , σ2
N ), the two-sample t-test can be used. The

two parameters µN and σ2
N can be approximated using the sample mean and

covariance:

µN ≈
1

m− p

m−p∑
i=1

ϕ(·,Gui ; θ),

σ2
N ≈

1
m− p− 1

m−p∑
i=1

(ϕ(·,Gui ; θ)− µ̄N )2
.

Since the fraud contamination should be low (< 5% ideally), the prevalent
instances in N belong to the legitimate class. With this in mind, obtaining k
pairwise fraud scores for some new sample v: v = (ϕ(Gu,Gv; θ) | u ∈ N ), a
one sample t-test can be performed on whether µN ≥ v̄ (null hypothesis) or
µN < v̄ (alternative hypothesis). The test statistic

Tv = v̄− µN√
s2

k

√
k,

where v̄ = 1
k

∑k
i=1 vi and s2

k = 1
k−1

∑k
i=1(vi− v̄)2 is used to evaluate the test.

The null hypothesis is rejected if Tv ≤ −tα,k−1, where tα,k−1 is the critical
value of Student’s t-distribution with k − 1 degrees of freedom, which can be
interpreted as meaning that the fraud scores of sample v are significantly higher
than other unlabeled samples. Finally, the binary classifier C can be described
as:

C(Gv; θ, α, k) =

1 if Tv ≤ −tα,k−1,

0 otherwise,

where k should be sufficiently large (k ≥ 20) as to reduce the influence of
the camouflaged fraudsters within N and α (significance level) dictates the
maximum false positive rate, typically α = 0.05. Additionally, the p-value
inf{α | Tv ≤ −tα,k−1} can be interpreted as the inverse confidence in the
predicted result (i.e., a p-value of 0.03 means 97% confidence of the classifier
that v is fraudulent).
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However, as Figure 3.5 shows, the mean fraud scores of unlabeled nodes
ui ∈ N more closely resemble an exponential distribution rather than a Gaus-
sian distribution, calling into question whether the two-sample t-test is ap-
propriate. Instead, a non-parametric statistical test can be used, such as the
Mann-Whitney U-test [116] or the two-sample Kolmogorov-Smirnov test [117].

Alternatively, the pure sample mean fraud score v̄ can be used as the outlier
score, delegating the binary classification upon a set threshold. The entire
prediction pipeline is visualized in Figure 2.4. The decision threshold can be set
arbitrarily, e.g., to maximize a selected metric (on the training or the validation
set). While this approach does not offer the same confidence measure as the
previous one, the individual contribution of paired samples can be examined
instead. Suppose some subset of the k randomly selected unlabeled samples
heavily influence the arithmetic mean (towards one side or the other). In that
case, they offer some explainability for the outlier score - that v must be very
similar (or dissimilar) to this subset, and whether it is legitimate or fraudulent
can be decided (depending on the result).

GraphLIME [118] can be used to provide additional interpretability for a
graph neural network’s output. It can explain the most representative features
that influence the final prediction or embedding for each node.

2.3 Data Preparation

A heterogeneous graph G = (V, E) may be constructed using all three types of
nodes (V = {U , I,R} for users U , items I, and reviews R) and at least two
types of edges E = {EU×R, ER×I}. Additional edge types can be defined where
the relationships make sense, for example:

• Users listed on the same address (or city).

• Users registered around the same time period.

• Items of the same brand (or manufacturer).

• Items based on category and price.

• Reviews posted on the same date.

• Reviews with the same explicit rating (e.g., number of stars).

Suppose some dataset contains no user or item information beyond their iden-
tifiers. In that case, nodes V are all of the same type, and the additional
relationship edges are necessary in order to construct a graph and take advan-
tage of message passing algorithms.

During training, validation, and testing, it is imperative to correctly mask
data to prevent information leakage between the different sets. This is espe-
cially true in graph neural networks, where careful consideration must be taken
to the nodes and edges that the model is exposed to if working with a single
global graph, as the message passing algorithms can leak information from one
set to another. An effective way to prevent this is to create subgraphs for
each set, where the training graph contains only nodes from the training set,
the validation graph contains nodes from training and validation sets, and the
testing graph contains all nodes.
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Figure 2.4: Siamese graph neural network prediction pipeline, divided into four
steps. Given the target node X , k (in this case k = 4) nodes from the unlabeled
set are selected. Then, their neighborhoods are sampled and paired with the
neighborhood of X . Each of these pairs is forwarded through the siamese GNN,
giving k output values, which are averaged to obtain the final fraud score.

2.3.1 Feature Engineering
Depending on the available information, different kinds of features can be pro-
duced for each type of entity in the recommender system. Suitable user features
may be account creation date, number of reviews, ratio of positive/negative
reviews, average rating, rating variation, rating entropy, and average time be-
tween reviews. For the reviews, generating features depends on how detailed
they are. If reviews are typical text comments, natural language processing
techniques, e.g., sentiment analysis or word embedding, might be required.
Otherwise, only the explicit (or implicit) rating value and meta information,
such as the date and time when the interaction occurred or the device/browser
user agent. Item features generally depend on the platform domain; for exam-
ple, an online streaming service offers movies, while an e-commerce platform
offers physical products; movies have actors, directors, and genre; products are
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manufactured by a particular brand, have a color, material composition, size
dimensions, and possibly a taste or a smell.

Latent representations of users (or items) generated by autoencoders or
matrix factorization methods can also be used as features, as they contain
information produced by interactions in the recommender system.
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Chapter 3
Evaluation

This chapter briefly describes the siamese graph neural network implementa-
tion and argues for the selected model configuration through rigorous cross-
validation testing. It also shows the advantage of a semi-supervised approach
to fraud detection and compares the proposed method with existing models.

3.1 Implementation Notes

The proposed siamese graph neural network is implemented in PyTorch1 with
PyTorch Geometric2. PyTorch Geometric library provides implementations of
graph convolution operators such as SAGEConv, GCNConv, and GATConv.
It also includes tools for efficient handling of graph datasets, e.g., indexing and
sampling node neighborhoods. The implementation uses neighborhood sam-
pling to scale efficiently to larger graph datasets, which might be impractical
to store in memory.

Custom contrastive loss and triplet loss functions are consistent with the
descriptions provided by Section 1.4.2. The implementation includes cosine,
Euclidean, and SNR-based distance metrics. Pair and triplet sampler imple-
mentations sample instances stochastically to reduce computing overhead and
provide regularization for the training algorithm by exposing only random sub-
sets of the training data in each epoch.

3.2 Existing Datasets

Datasets used for false review detection must contain more information re-
garding the interactions than usual recommender system benchmark datasets,
which often consist only of the sparse rating matrix and sometimes the user
and item attributes. Reviews must be paired with a user (author) and the
reviewed item. They typically include a star rating and the text review itself.
Additional information may be votes given to the review by other users (agree-
ing or disagreeing with the review) and metadata such as the date, time, or
device from which the review has been sent.

1https://pytorch.org/
2https://pytorch-geometric.readthedocs.io/en/latest/
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[119] presents a graph dataset where Yelp.com business reviews are repre-
sented as nodes and are connected via various types of edges. Each review has
32 handcrafted features (for example, rating deviation from the mean, review
text length, or ratio of subjective and objective words). The three types of
edges are:

• R-U-R: connecting reviews posted by the same user,

• R-S-R: connecting reviews with the same star rating (1-5 stars) that
review the same item,

• R-T-R: connecting reviews posted in the same month for the same item.

In total, there are 45, 954 reviews, 98, 630 R-U-R edges, 1, 147, 232 R-T-R edges
and 6, 805, 486 R-S-R edges. 6, 677 reviews are labeled as spam. This label
comes from a proprietary automated system used by Yelp to filter spam reviews.
The models using this benchmark aim to learn to imitate the spam detection
algorithm.

[120] introduces an alternate graph-based perspective for fraud detection,
and instead of reviews, it categorizes users who post reviews (of the items on the
e-commerce website Amazon.com). Each user is associated with 25 handcrafted
features (e.g., number of reviews, entropy of ratings, average sentiment of text
reviews, or ratio of positive and negative ratings). This dataset again contains
three types of edges that connect user nodes:

• U-P-U: connecting users that have reviewed the same item,

• U-S-U: connecting users that have given the same (1-5) star rating within
one week,

• U-V-U: connecting users who have posted very similar text reviews (top
5% text similarity measured using TF-IDF).

There are 11, 944 users, 351, 216 U-P-U edges, 7, 132, 958 U-S-U edges and
2, 073, 474 U-V-U edges. 821 users are labeled as fraudulent. Amazon allows
other users to rate the reviews as “helpful”. In this dataset, users with less
than 20% helpful votes are considered fraudsters. The goal is to learn how to
predict whether other users will find a user’s reviews helpful.

3.3 Selected Hyperparameters

The graph convolution operator used by the CHGC layer and activation func-
tions can be selected based on familiarity; for example, LeakyReLU is often
a popular choice. A quick benchmark using the GitHub graph dataset (intro-
duced by [121]), an imbalanced binary node classification task, is performed
to make a more informed selection. Nodes represent GitHub users (128 fea-
tures per node), and edges represent whether a user follows another user. The
goal is to classify nodes into two classes: web developers and machine-learning
developers.

The performance of different graph convolution operators, the number of
convolution layers, and the importance of dropout regularization are illustrated
by Figure 3.1 and summarized by Table 3.1. Activation function benchmarks
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are done using only a feed-forward neural network, without any graph convo-
lution, increasing the number of hidden layers and dropout regularization.

Figures 3.1, 3.2 and Tables 3.1, 3.2 illustrate the performance of differ-
ent graph convolution layers and activation functions. Based on these results,
SAGEConv is selected as the graph convolution operator used by CHGC, to-
gether with the CELU activation function.
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Figure 3.1: Performance comparison of SAGEConv, TransformerConv,
GATv2Conv, SSGConv, ChebConv, GCNConv and GraphConv layers.
Dropout with given probability p is applied after each layer. Performance
is measured using F1 score for increasing the number of convolutional layers.

Table 3.1: Averaged performance of different convolutional layers for varied
number of layers and dropout probability.

Activation function
Average metric performance

AUC F1 score AP Gmean

SAGEConv [54] 0.9056 0.7282 0.6075 0.8248

TransformerConv [53] 0.9051 0.7267 0.6056 0.8242

GATv2Conv [52] 0.9024 0.7270 0.6057 0.8230

SSGConv [57] 0.9008 0.7225 0.6029 0.8194

ChebConv [55] 0.8908 0.7123 0.5914 0.8107

GCNConv [50] 0.8938 0.7130 0.5933 0.8121

GraphConv [56] 0.7877 0.5931 0.4891 0.7110
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Figure 3.2: Performance comparison of CELU, ELU, Tanh, GELU,
LeakyReLU, ReLU, and SiLU activation functions in a feed-forward neural
network. Dropout with given probability p is applied after each layer. Per-
formance is measured using F1 score for increasing number of layers in the
feed-forward neural network.

Table 3.2: Averaged performance of different activation functions for varied
number of layers and dropout probability.

Activation function
Average metric performance

AUC F1 score AP Gmean

CELU 0.8539 0.6606 0.5335 0.7728

ELU 0.8534 0.6600 0.5323 0.7724

Tanh 0.8526 0.6565 0.5278 0.7670

GELU 0.8348 0.6406 0.5112 0.7538

LeakyReLU 0.8422 0.6445 0.5140 0.7552

ReLU 0.8418 0.6440 0.5141 0.7547

SiLU 0.8403 0.6478 0.5208 0.7630
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3.3.1 Loss and Distance used by the Decoupled Version
The decoupled siamese graph neural network aims to learn distant latent rep-
resentations of labeled and unlabeled nodes. Figure 3.3 shows the latent space
learned by minimizing contrastive loss using different distance metrics, and
Figure 3.4 shows the same learned by minimizing triplet loss.

Unlabeled

Fraudulent

(a) Cosine distance

Unlabeled

Fraudulent

(b) Euclidean distance

Unlabeled

Fraudulent

(c) SNR-based distance

Figure 3.3: Visualization of node embedding space learned via minimization of
contrastive loss with various distance metrics (Amazon dataset). SNR-based
distance encourages the model to learn tigher class clusters, while Euclidean
distance allows for more spread, and cosine distance enforces learning orthog-
onal embedding vectors.

Unlabeled
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(a) Cosine distance

Unlabeled

Fraudulent

(b) Euclidean distance

Unlabeled

Fraudulent

(c) SNR-based distance

Figure 3.4: Visualization of node embedding space learned via minimization of
triplet loss with various distance metrics (Amazon dataset). Unlike contrastive
loss, the triplet loss encourages less overlap between class clusters through the
anchored samples.

The decoupled model measures the distance of node embeddings to deter-
mine class affiliation by selecting k random unlabeled samples from the training
set to compare against. The final fraud score is calculated as the mean of the
k distances. Figure 3.5 visualizes the distribution of these distances, in which
it is clear that the unlabeled and labeled (fraudulent) instances follow different
distributions. Alternatively, hypothesis testing (as described in Section 2.2.5)
can be used to determine which distribution the k distances fit better.
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Figure 3.5: Empirical cumulative distribution functions of node embedding
distances (average distance from 20 randomly sampled unlabeled instances).
The distribution of distances for the unlabeled set resembles an exponential
distribution, while the distribution of the distances for the labeled set distances
resembles a Gaussian distribution.

3.4 Graph Convolution Depth and Regularization

Adding regularization during training is especially important for the siamese
graph neural network, as the dual component ϕ1 uses shared weights and thus
is exposed to twice as many training examples. The sample pairing only ex-
acerbates the problem via the natural data augmentation from m individual
samples to m2 possible pairs of samples, making the model prone to overfitting.

In this experiment, two different existing heterogeneous graph convolution
operators (HGT [113] and HAN [115]) are compared with the CHGC operator
proposed in Section 2.2.2. These operators sit in place of the ϕ1 function, which
creates the node neighborhood embeddings.

The effect of increasing the number of graph convolution layers and dropout
regularization is shown in Figure 3.6 and summarized in Table 3.3 for the Yelp
dataset. CHGC shows a significant advantage over both HGT and HAN at
every depth. Higher dropout probability also provides resistance to overfitting.
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Figure 3.6: Performance of different heterogeneous graph convolution operators
for an increasing number of layers and varied dropout probability on the Yelp
dataset.
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Table 3.3: AUC performance for HGT, HAN, and CHGC using different
dropout probability during training and increasing number of layers on the
Yelp dataset. A higher number of graph convolution layers does not necessar-
ily lead to better performance, as aggregating information from many distant
nodes can result in dilution, i.e., all nodes are represented by a similar vector.

Heterogeneous
convolution Dropout p Number of layers

1 2 3 4 5

HGT [113]
0.0 0.8643 0.8843 0.8356 0.7764 0.7678
0.1 0.8576 0.8679 0.8510 0.8575 0.8231
0.2 0.8546 0.8740 0.8574 0.8539 0.8244

HAN [115]
0.0 0.8029 0.8198 0.7315 0.6901 0.7004
0.1 0.8171 0.8176 0.8266 0.7845 0.7817
0.2 0.8341 0.8234 0.8198 0.8774 0.7987

CHGC
0.0 0.8755 0.8954 0.8955 0.8948 0.8773
0.1 0.8825 0.8959 0.8975 0.8985 0.8897
0.2 0.8933 0.8956 0.9059 0.9068 0.9030

3.5 Neighborhood Size

The graph neural network creates embeddings of node neighborhoods. On av-
erage, every node v ∈ V from graph G = (V, E) has 1, 600 neighbors in the
Amazon dataset and 350 neighbors in the Yelp dataset. The node neighbor-
hoods are randomly undersampled as a way of regularization (hiding informa-
tion) and data augmentation (unique subgraph in every training epoch). The
size of the sampled neighborhood is a hyperparameter, the effect of which is
explored in the following experiment.

The siamese graph neural network is trained using varied sizes of neigh-
borhoods, evaluating performance benefits, as illustrated in Figure 3.7 for the
Amazon dataset, Figure 3.8 for the Yelp dataset, and both are summarized in
Table 3.4.
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Figure 3.7: Evaluation metrics for increasing size of node neighborhoods on the
Amazon dataset. For each metric, there is a slight decreasing trend, suggesting
that sampling smaller neighborhoods is beneficial, akin to regularization.
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Figure 3.8: Evaluation metrics for varied size of node neighborhoods on the
Yelp dataset.

Table 3.4: Evaluated metrics for varied size of node neighborhoods for Amazon
and Yelp datasets.

Neighbors Amazon Yelp
AUC F1 score AP Gmean AUC F1 score AP Gmean

16 0.9761 0.8670 0.7775 0.9493 0.8701 0.6370 0.5462 0.8226
32 0.9779 0.8820 0.7896 0.9490 0.8674 0.6449 0.5366 0.8205
64 0.9662 0.8906 0.8084 0.9604 0.8624 0.6220 0.5523 0.8283
128 0.9676 0.8725 0.7604 0.9421 0.8706 0.6385 0.5449 0.8278
256 0.9750 0.8674 0.7636 0.9496 0.8663 0.6379 0.5438 0.8240
512 0.9646 0.8463 0.7794 0.9465 0.8686 0.6230 0.5304 0.8208
1024 0.9713 0.8728 0.7675 0.9455 0.8641 0.6344 0.5413 0.8230

3.5.1 Neighborhood Resampling
To explore the effect of random neighborhood subgraphs, the variance of pre-
dictions can be examined. In this experiment, a siamese graph neural network
ϕ is trained to output a fraud score for each node (higher for fraudulent nodes,
lower for legitimate nodes). For every node v, its neighborhood is sampled
randomly 20 times, creating 20 unique outputs of the network yi = ϕ(Gv; θ).

The variance of the random vector y is calculated as s2
v =

∑20
i=1

(yi−ȳ)
19 and

the distribution of these variances (one for each node v ∈ V) is plotted in
Figure 3.9. As the figure shows, variance for each class never exceeds 10−2,
with the most common variance values falling in the range between 10−6 and
10−8. The outputted scores are in the [0, 2] range, meaning a 10−7 variance
due to a randomly sampled node neighborhood has minimal impact on the final
fraud score.

3.6 Number of Pairs per Prediction

The fraud score for a given node is calculated as the mean of k ∈ N pairwise
predictions. Larger k should improve resistance against fraud contamination
within the unlabeled instances; as per the law of large numbers, with a growing
sample size, the average converges to the true value. This experiment evalu-
ates the performance benefits of using a larger number of paired instances per
prediction.
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Figure 3.9: Letter-value plot [122] of fraud score variances for randomly sam-
pled node neighborhoods. Legitimate, fraudulent, and unlabeled are the ground
truth labels of instances. These classes are plotted separately for introspection
into their respective variance distributions.
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Figure 3.10: Evaluation metrics for increasing number of pairs on the Amazon
dataset. There is an evident upward trend, suggesting that a larger number of
pairs can lead to better performance.
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Figure 3.11: Evaluation metrics for increasing number of pairs on the Yelp
dataset.
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Table 3.5: Evaluated metrics for increasing number of pairs per prediction for
Amazon and Yelp datasets.

Pairs Amazon Yelp
AUC F1 score AP Gmean AUC F1 score AP Gmean

5 0.9679 0.8796 0.7883 0.9417 0.9032 0.7704 0.6238 0.8841
10 0.9669 0.8796 0.7883 0.9416 0.9052 0.7729 0.6276 0.8857
20 0.9659 0.8824 0.7922 0.9414 0.9056 0.7727 0.6275 0.8868
50 0.9711 0.8833 0.7939 0.9418 0.9060 0.7736 0.6284 0.8874
100 0.9691 0.8836 0.7940 0.9414 0.9077 0.7731 0.6279 0.8872
200 0.9700 0.8843 0.7966 0.9410 0.9078 0.7730 0.6277 0.8872
500 0.9701 0.8863 0.7991 0.9412 0.9072 0.7727 0.6281 0.8869
1000 0.9711 0.8872 0.8034 0.9413 0.9076 0.7731 0.6284 0.8869

3.7 Robustness Against Contamination

In a real-world scenario, where a set of m users contains f ≪ m fraudsters,
and |A| = p of them are known, there remain f − p camouflaged fraudsters.
The known set of fraudsters A is used to train the fraud detection model in
the semi-supervised setting. The proposed siamese graph neural network also
utilizes the unlabeled set of |N | = m − p instances to learn fraud represen-
tations. This experiment evaluates the resilience of the siamese graph neural
network against camouflaged fraudsters by varying the size of the labeled set
A. Both coupled and decoupled models are compared against a traditional
multi-layer perceptron (MLP) classifier, trained to minimize the binary cross
entropy (BCE) loss:

LBCE(y, ŷ) = − 1
m

m∑
i=1

(yi log ŷi + (1− yi) log(1− ŷi)) ,

where y ∈ {0, 1}m is the target and ŷ ∈ [0, 1]m is the predicted probability
of the node being fraudulent. As is common in binary classification tasks, the
last activation function of the classifier is the sigmoid function.

Table 3.6 summarizes the results, showing that the proposed siamese graph
neural network with a coupled fraud scorer function is more resilient to class
contamination than a traditional end-to-end classifier. It performs better even
in the case of zero contamination (i.e., a supervised task), thanks to the graph
convolution layers, which allow it to exploit graph structure features, unlike a
traditional multi-layer perceptron.

3.8 Comparison with Existing Methods

This section compares the performance of the proposed siamese graph neural
network against existing baselines that use the Amazon and Yelp datasets. For
each model, the dataset is split into 60/20/20 training/validation/testing sets,
and the best hyperparameters are selected based on the performance on the
validation set; then, the model is retrained using instances from both training
and validation before evaluating performance on the testing set. Table 3.7
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3.8. Comparison with Existing Methods

Table 3.6: AUC performance with camouflaged fraudsters (fraud percentage
in the unlabeled set). Amazon, with 6% contamination, offers only 67 known
instances of fraud (against 7, 098 unlabeled instances). Yelp with 14% contam-
ination, the numbers are 170 fraudsters and 27, 402 unlabeled.

Model Amazon Yelp
0% 2% 4% 6% 0% 5% 10% 14%

Siamese GNN (coupled) 0.9793 0.9763 0.9768 0.9625 0.9112 0.9059 0.8966 0.7661
Siamese GNN (decoupled) 0.9534 0.9519 0.9497 0.9434 0.8411 0.8295 0.8282 0.7412

MLP 0.9743 0.9688 0.9606 0.9518 0.8144 0.8183 0.8009 0.7420

shows the comparison for seven different baselines and four different fraud
detection graph datasets using the AUC metric. AUC was chosen as it is used
by all the mentioned papers.

Amazon and Yelp datasets have been described previously. FDCompCN
(introduced by [100]) is a financial fraud dataset that represents a number
of companies in China. It contains 5, 317 nodes, 559 of which are labeled
fraudulent. Each node is represented by 57 features (such as the number of
employees, industry, company type, registered capital, or city), and there are
three types of relationships connecting them:

• C-C-C: connecting companies that have an investment relationship,

• C-P-C: connecting companies based on shared customers,

• C-S-C: connecting companies that use the same supplier(s).

S-FFSD is a synthetic semi-supervised financial fraud dataset introduced by
[101]. However, unlike the other graph datasets, it is homogeneous (contains
only one type of node and one type of relationship). In S-FFSD, there are
77, 881 nodes and 335, 139 edges. Each node has 126 features, 5, 256 are labeled
as fraudulent, 24, 387 as legitimate, and 48, 238 are unlabeled.

Table 3.7: Performance comparison with existing baseline methods. The table
lists only the AUC metric, which is shared between all the respective papers.

Model Dataset
Amazon Yelp FDCompCN S-FFSD

Siamese GNN (coupled) 0.9815 0.9221 0.7733 0.8327
Siamese GNN (decoupled) 0.9413 0.8862 0.6726 0.7555

CARE-GNN [96] 0.8973 0.7570 0.6518 0.6623
SplitGNN [100] 0.9323 0.9203 0.6898 –

GTAN [101] 0.9630 0.9241 – 0.7616
PC-GNN [97] 0.9586 0.7987 – 0.6795
RioGNN [98] 0.9403 0.8238 0.6347 –
DCGNN [102] 0.9758 0.9085 – –
RLC-GNN [99] 0.9748 0.8544 – –
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Conclusion

The goal of this thesis was to design and implement a novel graph-based semi-
supervised approach for detecting fraud in recommender systems. Fraudsters
typically attempt to camouflage their behavior in order to remain undetected,
which makes creating a quality dataset challenging. In addition, fraudsters
represent only a minority of instances, leading to imbalanced class sizes even
if labeled correctly.

Previous research has shown that taking advantage of relationships between
instances can offer better detection capabilities. This work proposed a new
heterogeneous graph convolution operator and two versions of a siamese graph
neural network, together which have demonstrated their ability to match, and
in some cases even outperform, existing graph-based models (as shown in Sec-
tion 3.8, where it is compared with seven baseline models on four different
datasets).

The proposed siamese network is trained in a unique way, requiring new
paired node neighborhood data loaders, the implementation of which is pro-
vided, together with both coupled and decoupled versions of the model. Both
versions analyze pairs of instances, leveraging the larger set of unlabeled in-
stances. The fraudster minority assumption also makes it more resistant to
contamination within the unlabeled set, unlike traditional binary classifiers
(demonstrated in Section 3.7).

Further experiments have also evaluated hyperparameter selection, such as
the number of graph convolution layers, activation functions, dropout regular-
ization, loss and distance functions, the size of the sampled node neighborhood,
and the number of pairs per prediction.

Interpretable aspects of the siamese graph neural network have been dis-
cussed in Section 2.2.5, where hypothesis testing is proposed as a way to calcu-
late confidence in the prediction of the model by comparing the distribution of
embedding distances. Additionally, GraphLIME was mentioned as it can also
offer an explanation of the most representative features of nodes in a graph
neighborhood.

Future work direction entails replacing the twin graph neural network mod-
ules inside the siamese network with existing, pre-trained models with missing
heads. This straightforward transfer learning procedure could allow under-
performing models to get a boost in performance by taking advantage of its
resistance to class contamination.
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