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Abstrakt: Tématem této práce je detekce anomálií pomocí hlubokých gener-
ativních modelů. Čtenář je nejprve seznámen se základními kon-
cepty a technikami, které se používají k řešení problémů detekce
anomálií. Poté je představen podrobný přehled generativních mod-
elů a jejich aplikace v detekci anomálií. Vybrané generativní modely
jsou spolu srovnány v rozsáhlé experimentální části, která si klade za
cíl identifikovat jejich síly a slabiny. Na základě teoretických a prak-
tických poznatků, získaných v předchozích kapitolách, je poté před-
staven vlastní generativní model určený pro detekci sémantických
anomálií v komplexních obrazových datech. Hlavní motivací urču-
jící architekturu modelu je skutečnost, že anomálie mohou pocházet
z různých zdrojů a může být více důvodů, proč je vzorek považován
za anomální. Tím se navrhovaný přístup liší od podobných mod-
elů, které tuto skutečnost nezohledňují. Model rozkládá obraz na
tři nezávislé složky - tvar objektu a texturu jeho popředí a pozadí -
a poskytuje pro každou z těchto složek anomální skóre. Tyto skóre
lze použít k identifikaci zdroje anomálie v obraze přímo, nebo mo-
hou být kombinována pomocí vah získaných z několika označených
vzorků anomálií.

Abstract: The topic of this thesis is anomaly detection with deep generative
models. The reader is first introduced to basic concepts and tech-
niques that are used to solve anomaly detection problems. Then,
a comprehensive overview of generative models and their applica-
tion in anomaly detection is presented together with a large-scale
experimental survey that aims to identify their strengths and weak-
nesses. Armed with the obtained theoretical and practical knowl-
edge, a novel generative model is introduced whose application do-
main is detection of semantic anomalies in complex image data. The
motivation for the model comes from the fact that anomalies might
come from multiple sources and there might be many reasons for
a sample to be deemed anomalous, while most novel anomaly de-
tection methods do not consider this. The proposed model decom-
poses the image into three independent components—the shape of
an object and its foreground and background textures—and provides
anomaly scores for each of those components separately. The scores
are used to identify the source of anomality in an image in a com-
pletely unsupervised manner or they can be combined using weights
obtained from a few labeled samples of anomalies.
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1
Introduction

Anomaly detection is an important task in environments where we have a good knowl-
edge of what normal behaviour is, but we know very little about the behaviour of yet
unseen or otherwise abnormal events – anomalies. The reasons for this can be numer-
ous: either there is no common generating principle behind anomalies and each new
anomaly may be very different from those that we have yet seen, or the acquisition of
anomalous data is too expensive or downright impossible. An example of this might
be an industrial process, where an anomaly incurs a high operational cost. Usually,
there is a disbalance in the number of labeled normal and anomalous data samples
that are available, and sometimes no anomalies are available at all. While it might be
tempting to solve anomaly detection as supervised binary classification, for the rea-
sons listed above, a supervised classifier is likely to be unrobust to actual anomalies
that it will encounter in a production environment. Together with an ever-increasing
volume of collected data and available computing power, this motivates the develop-
ment of specialized methods for automatic anomaly detection. What these methods
have in common is that they learn a model of normal data, and detect anomalies as
deviations from this model.

The actions taken after an anomaly is detected might be varied. Sometimes, the
anomaly might be considered to be an erroneous measurement and, as such, is ignored,
which is the case of some of the earliest scientific essays [1, 2] on the topic of anomaly
detection. In other cases, a preventive measure must be taken in order to mitigate
unwanted behaviour, such as the case of cybersecurity [3, 4, 5], fraud detection [6, 7, 8],
medical diagnosis [9, 10, 11, 12] or industrial process monitoring [13, 14, 15]. Finally,
detected anomalies might drive forward scientific discovery in astronomy [16], plasma
physics [17], chemistry [18] or particle physics [19].

There are countless models and algorithms for anomaly detection, tackling the
problem from different angles based on the basic principle of the algorithm, the ex-
pected nature of the data, and the application domain. There are methods based on
random forests [20], the k–nearest neighbors algorithm [21], Gaussian mixture mod-
els [22], clustering neural networks [23], histogram estimation [24], kernel density es-
timates [25] or support vector machines [26]. A comprehensive overview of anomaly
detection methods is presented in studies such as [27, 28, 29, 30, 31] where the meth-
ods and their performance are usually compared on a set of benchmark datasets. Our
own overview of some classical anomaly detectors follows in Chapter 2.

Deep generative models have recently attracted a lot of attention due to their abil-
ity to produce (generate) very high-quality artificial images that resemble those from
the training dataset. Since the seminal papers [32, 33, 34] on the main types of gener-
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1.1 What is anomaly detection?

ative models have been published, a myriad of improvements and tweaks have been
proposed. While the original purpose of generative models was not aimed towards
anomaly detection, some of them were redesigned for it. Most of the comparative
studies of anomaly detectors however do not include methods based on (deep) neural
networks and especially not generative models. The probably most recent and com-
plete overview of deep generative models can be found at [35]. This text intends to col-
lect some (but certainly not all) of the relevant information on deep generative models
in one place and assess the potential suitability of the different generative models to
the task of anomaly detection, mainly in Chapter 3. This is followed by a comprehen-
sive experimental comparison in Chapter 4. Finally, in Chapter 5 we introduce our
own anomaly detector based on generative models.

1.1 What is anomaly detection?

Anomaly detection has been extensively studied under many different names: out-
lier detection [36, 37], novelty detection [27], one-class classification [38] or out-of-
distribution detection [39]. There is a small distinction between these terms based
on the application domain, but the methods used to solve the problems they present
are in principle the same. In the same vein, the terms outlier, novelty, and anomaly
may have slightly different meanings in some publications, but they are often used
interchangeably. In this text, we will resort to the use of the last term. An often cited
definition of what constitutes an anomaly is “an observation which deviates so much
from other observations as to arouse suspicion that it was generated by a different
mechanism” [40]. This broad statement highlights the fact that anomalies may have
very different sources of origin, and their anomality depends on the context in which
they are considered.

The probabilistic definition assumes a probability distribution P + of normal data,
operating on a data space X , which is defined by a given problem, and which is most
of the time only known through a set of normal samples. We call a sample xxx ∈ X to be
an anomaly if it lies in a region where P + has very low density. In other words, we can
define a set of anomalies [35] as

A = {xxx ∈ X |p+(xxx) ≤ τ}, τ ≥ 0, (1.1)

where p+ is the probability density function corresponding to P + and τ is a threshold
which defines the line between normal and anomalous samples.

It is also often assumed that the region of data space that is occupied by normal
data is concentrated, that is, there exists a threshold τ ≥ 0 such that

X /A = {xxx ∈ X |p+(xxx) > τ} (1.2)

is not empty, which however does not imply that the support of p+ is bounded. On
the other hand, A is not required to be concentrated and can be unbounded. Notice
that we do not explicitly define any sort of anomalous distribution P −. This is because
most anomaly detection methods only model P +. When P − is considered, such as in
KDE [41] or OCSVM [26] detectors, it is assumed that it is uniform over X .

Since the full form of P + is usually unknown, one has to estimate it from data.
The most straightforward way of expressing the anomaly detection objective is the
estimation of low-density regions of the data space X under P +. This is formalized as

2



1 Introduction

density level set estimation [42], where a density set is C = {xxx ∈ X |p+(xxx) > τ} for some
threshold τ ≥ 0. Then, the α-level density set Cα is (for α ∈ [0,1]) defined [35] as

Cα = arginf
C
{λ(C)|P +(C) ≥ 1−α}

= {xxx ∈ X |p+(xxx) > τα}, (1.3)

which is the smallest density level set with probability at least 1−α under P +, where
τα ≥ 0 is the corresponding threshold and λ is a Lebesgue measure. If the concentra-
tion assumption (1.2) holds, then Cα exists for any admissible α and is bounded. For
density-based sets, the task of finding (1.3) is equal to the minimum volume set estima-
tion [43], which is a concept native to many anomaly detectors, mainly domain-based,
which are described in Sec. 2.2.3.

We define the contamination rate of a dataset X = {xxx1,xxx2, . . . ,xxxn} ⊂ X , which is a
finite collection of samples from data space X as

cr(X ) =
|{xxxi |xxxi ∈ A∧xxxi ∈ X}ni=1|

|X |
, (1.4)

i.e. the ratio of the number of anomalies to the total size of the dataset. This will be
useful in later parts of this text.

We can think of any anomaly detection model as providing a function that produces
a ranking of the individual data points with respect to their anomalousness. This is
called an anomaly score s : X → R of a model. In certain contexts [44], anomaly score
might be called decision or scoring function. In this text, we will assume that a higher
anomaly score is attributed to a point more likely to be anomalous. To be able to use an
anomaly score for decision-making, one must choose the threshold τ ∈ R. From (1.1),
a sample xxx is considered to be an anomaly if s(xxx) >= τ and normal otherwise. The
selection of τ can sometimes be a process more complicated than the fitting of the
actual model [45]. Its value is typically determined based on the tolerated false positive
rate and an estimate of the true contamination rate of a dataset (1.4).

1.2 Anomaly types

Different types of anomalies that require different approaches have been identified in
literature [30, 35]. Examples for each type are presented in Fig. 1.1.

• Point anomaly is a single observation fromA, for example, an outlying measure-
ment or a photograph of a cat among other images of dogs. This is the most often
studied type of anomaly in the research literature. Note that a point anomaly can
become an anomaly of the two following types if the observations in a dataset are
somehow dependent (e.g. through time) or if some additional context about the
data can be extracted.

• Group anomaly is a collection of correlated observations that are only anoma-
lous together. Only a large number of malicious requests is enough to shut down
a server in a DDoS atack [46]. Other research [47, 48] focuses on finding anoma-
lies under the multiple-instance learning (MIL) [49] paradigm, where individual
observations (called bags) are comprised of a variable number of multivariate
measurements (called instances). This calls for an aggregation method, on top of
which an anomaly detector can operate.
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1.3 Objectives

(a) point anomalies (b) group (left) and contextual (right) anomaly

(c) semantic anomaly

Figure 1.1: Examples of different types of anomalies.

• Contextual anomaly is a kind of anomaly that is only anomalous in a certain
context. A person measuring over 195 cm is an outlier in almost any place except
a locker room of a basketball team. If a target dataset consists of pictures of birds
photographed mid-flight – is a bird sitting on grass an anomaly? Or a different
flying object, such as an airplane? The answers to those questions depend on
what problem is actually being solved. Contextual anomalies often arise in time
series [50] or in spatial data [51].

• Semantic anomalies arise in image data and are opposed to sensory anomalies.
While sensory anomalies appear in low-level image features such as edges or
textures (e.g. breaks or defects), semantic anomalies can be detected in the high-
level information of an image (e.g. an object of a different category than what
appears in the training dataset). Semantic anomalies can be hard to detect, as
they can be very similar to normal data [52]. We will cover their detection in
chapters 4 and 5.

1.3 Objectives

In this short section, we summarize the objectives and goals of this thesis. The logical
structure of the text follows them, as each objective is covered by one or more chapters.
The main objectives are the following:

1. Providing a compilation of the current state-of-the-art for both classical (shallow)
models and (deep) generative models for anomaly detection. This is important

4



1 Introduction

in order to understand the theoretical properties of current shallow and deep
methods. Also, by compiling all this information in one place (Chapters 2 and 3),
this work can then serve as an introduction to the topic of anomaly detection as
well as to generative modelling, while at the same time providing deeper insights
into the behaviour of generative models in anomaly detection, which most of the
current surveys are lacking.

2. Conducting an extensive experimental comparison of selected methods under
different operating conditions. This is done in Chapter 4, and it is meant to test
the strengths and weaknesses of the individual methods in a broad range of con-
ditions, such as varying data type, anomaly type, and amount of anomalies in the
vaidation set. The desired outcome of such an analysis is providing a direction
in which deep generative models can bring added value, either in performance,
explainability, or other areas.

3. Finally, based on the knowledge gained in the course of the work, the main goal
is to propose a novel anomaly detector based on deep generative models. To
validate that it solves the specific anomaly detection problem for which it is de-
signed, an experimental comparison needs to be conducted again, see Chapter 5.
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2
State-of-the-art overview

In this chapter, we first introduce basic measures that are used for comparison of
anomaly detectors. Then, we describe the current stat-of-the-art of anomaly detectors
that are not based on generative models, since those are described in Chapter 3.

2.1 Comparing anomaly detectors

Comparing different models on the same set of data is a basic requirement in prac-
tical and research problems. As already mentioned at the beginning of the previous
chapter, anomaly detection has some common ground with binary classification tasks.
Therefore, we can readily apply the evaluation metrics that are used to evaluate these
tasks in comparisons of anomaly detectors. However, there are specifics of anomaly
detection problems, mainly the often encountered large imbalance of labeled normal
and anomalous samples, that we have to keep in mind. Also, with one exception, all
the metrics that will be described here require at least some labeled anomalous sam-
ples, no matter how difficult it might be to obtain them. A more complete overview
with some experimental results can be found in [53].

Table 2.1 displays a confusion table that introduces the basic concepts and nota-
tion needed below. It summarizes the performance of an algorithm with a particular
threshold. In the context of anomaly detection, positive samples are anomalies, while
normal samples are considered negative.

AUC

The most widely used measure in the field of anomaly detection is the area under the
ROC (receiver operating characteristic) curve. The acronym AUC will be used in this
text for the sake of brevity. The ROC curve is a parametric curve describing the trade-
off between true positive rate (sometimes also called recall) TPR(τ) = tp

tp+fn(τ) and

true label/estimated label normal anomalous
normal tn fp

anomalous fn tp

Table 2.1: A confusion matrix of a model which captures its performance by showing
the total number of correctly (tp = true positives and tn = true negative) and incor-
rectly (fp = false positives and fn = false negatives) identified samples.

7



2.1 Comparing anomaly detectors
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Figure 2.1: An example of a ROC curve and the derived measures captured at FPR=0.1.
AUC is the whole shaded area under the ROC curve. The darker shading corresponds
to AUC@0.1. On the left, the PR curve of the same detector is shown.

false positive rate FPR(τ) = fp
fp+tn(τ) for different values of the decision threshold τ .

Then, the area under the curve is calculated as the following integral

AUC =
∫
R

TPR(τ)dFPR′(τ)dτ =
∫ 1

0
TPR(FPR)dFPR. (2.1)

The last integral that uses TPR(·) as a function of the corresponding FPR shows the
simple concept behind the AUC that can be easily discerned from a ROC curve drawn
in a graph, see Fig. 2.1. An AUC value of 1.0 is equal to perfect classification/ordering
of the data, while a value of 0.5 is equal to classifying by random guessing. In prac-
tice, the corresponding AUC is estimated from an empirical ROC curve using some
numerical integration scheme, e.g. the trapezoidal rule.

As mentioned above, the main advantage of AUC is that it does not depend on
the choice of a particular decision threshold. Also, the measure has a straightforward
interpretation – it is an estimate of the probability that a randomly chosen positive
sample is ranked higher than a randomly chosen negative sample [54]. However, a lot
of information is lost when the whole ROC curve is summarized into a single number.
This is especially concerning for some applications, where the region of low false pos-
itive rates is of the principal interest. For example, in cybersecurity applications, it is
usual to draw a ROC curve in logarithmic scale on the x-axis, which accentuates the
low-FPR section of the ROC curve.

AUPRC

The Area Under the Precision-Recall Curve is very similar to AUC, as it is given by
computing the precision PREC(τ) = tp

tp + fp(τ) and recall for different values of classifi-
cation threshold τ and then integrating the area under the resulting curve. Although
popular in some contexts, it has its drawbacks. A PR curve has at most as many unique
recall values as positive samples in the dataset. This is problematic for anomaly detec-
tion, where the number of anomalies is low, which leads to a very sparse estimate of
the true PR curve. In fact, using the same trained anomaly detector and changing the
contamination rate of a testing dataset produces highly varied AUPRC results, which
then makes any analysis based on AUPRC useless when the true contamination rate
is unknown. Furthermore, a correct PR curve lacks a universal starting point, unlike
a ROC curve, because precision is undefined for zero recall, making the computation
and normalization of the area under the PR curve and the comparison between datasets

8



2 State-of-the-art overview
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Figure 2.2: An example of a detector and the decision region for differing values of FPR
α. The decision boundary is drawn as a white isoline at level τ(α) with the estimated
enclosed volume VOL@α, black and red dots represent normal and anomalous samples
in the training set. Clearly, a smaller tolerance of false positives forces us to set a higher
threshold which results in higher decision region volume.

even more complicated. Nevertheless, it is a metric that is reported very often besides
the AUC.

Areas of low TPR

The two already mentioned metrics put the same weight on all areas on the x-axis.
This might not be always ideal for the purpose of anomaly detection, as low FPR areas
might be more interesting – after all, when reporting detected anomalies for a manual
check, there is always a limit on how many samples can be realistically processed.
A performance measure popular among practitioners is TPR@α, which is simply the
true positive rate evaluated at a given false positive rate α ∈ [0,1]. This measure can be
easily read from an ROC curve. In practice, it is necessary to interpolate the ROC curve
since it has discrete values, especially for datasets with a small number of samples.

Another alternative to AUC is the partial AUC, or AUC@α, which is the area under
the ROC curve calculated only up to some value of false positive rate α ∈ [0,1]

AUC@α =
∫ α

0
TPR(FPR)dFPR. (2.2)

Numerically, it is again important to interpolate the ROC curve for a given α before
computing the integral. In Fig. 2.1, AUC@0.1 corresponds to the darker gray region.
AUC@α can be easily normalized by dividing by the chosen α, in which case the best
detector has AUC@α = 1 similarly to AUC.

Volume of decision region

All of the previous measures originate from the evaluation of the performance of bi-
nary classifiers. Since labeled anomalies are often difficult to obtain, a measure that
does not require labels for its evaluation might be more useful and better describe
behaviour on unknown samples. If the goal is to compare two models supposed to
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2.2 Anomaly detectors taxonomy

characterize the normal class, and with no other assumptions about the distribution
of the anomalous class, it makes sense to choose the model enclosing the training data
more tightly. This corresponds to calculating the volume inside the model’s decision
boundary in a similar fashion to [55], where a theoretical justification is given. This
decision boundary can be chosen to correspond to a certain level of false positive rate.
We define the volume of decision region as

VOL(α) =
∫
X
1{xxx∈X |s(xxx)<=τ}(xxx)dxxx s.t. FPR(τ) = α, (2.3)

where X is the input space, s(xxx) is an anomaly score, and α ∈ [0,1] is a given false
positive rate. In other words, VOL(α) is the volume of the subspace where the classifier
returns "normal" answer with a false positive rate α. An example of a model and its
decision region for different values of α is shown in Fig. 2.2. It should be noted that
the idea of minimizing the enclosed volume is native to some models, e.g. the SVDD
model described in Sec. 2.2.3.

Computing the empirical VOL(α) in data space X requires first finding the thresh-
old τ corresponding to the chosen FPR α and then integrating the volume which cor-
responds to the space enclosed by the isosurface where the anomaly score is equal to τ .
It is numerically estimated by Monte Carlo sampling [56]. This comes with its down-
sides. Mainly, the number of samples required to cover d–dimensional sample space
grows exponentially with d. This issue has been addressed in [57], where the volume
is computed multiple times for different subsamplings of input features, however, this
does not seem to be optimal as it requires training a new model for each subset of fea-
tures. A comprehensive description of the practical use of this measure is presented in
the original publication [53].

2.2 Anomaly detectors taxonomy

Anomaly detection methods are based on a wide range of paradigms. In this sec-
tion, we will follow the taxonomy outlined in publications [27, 35], which divide
shallow (not based on neural networks) and deep (based on neural networks) de-
tectors into groups based on their common traits. Note that this taxonomy is ten-
tative, and some methods have traits common to multiple groups. A few examples
of the most prominent methods will be given for each category, since their knowl-
edge will be useful in the later chapters of this text, but the list is far from complete.
For a complete overview of the landscape of anomaly detection methods, see the sur-
veys [27, 31, 28, 58, 59, 60, 61, 62, 35].

2.2.1 Probabilistic methods

Since we have defined anomaly detection as detecting samples that deviate from the
normal distribution P +, it is straightforward to try to model the distribution by model-
ing its probability distribution function (pdf). One of the simplest such methods is the
Grubbs’ test [63], which assumes a Gaussian distribution of normal one-dimensional
data and declares a sample to be anomalous if its distance from the mean is larger than
some threshold (e.g. three standard deviations). Many such methods based on statisti-
cal tests have been proposed [64], but we will focus on advanced modeling probabilis-
tic techniques.

10
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Figure 2.3: The two bananas dataset consists of two clusters of points. The black points
are considered to be normal and the red are considered to be anomalies. The dataset
is useful for introducing behaviour of anomaly detectors because as an anomaly detec-
tion problem, it cannot be solved by a linear separation of the two groups of points.
Here, GMM models with a varying number of components K are fitted to the normal
observations. The contours of the anomaly score based on (2.5) are shown together
with the AUC computed with respect to the anomalous observations.

Shallow methods

A Mahalabonis distance anomaly detector [65] is a step-up from the naive Grubbs’
test as it assumes that the normal data have a multivariate Gaussian distribution.
Therefore, it builds a simple parametric estimate of the normal distribution by com-
puting the mean µµµ ∈ R

d and covariance matrix Σ ∈ R
d×d of the training data. The

anomaly score of a test point xxx ∈Rd is then

s(xxx) = (xxx −µµµ)TΣ−1(xxx −µµµ), (2.4)

which is equivalent to the evaluation of the negative log-likelihood under the Gaussian
distribution. Even though this is one of the simplest and most non-robust methods,
we include it here since terms similar to (2.4) will be encountered in the remainder of
this text.

Instead of limiting the model to a single-mode distribution, a mixture of K distri-
butions

p(xxx) =
K∑
k=1

p(k)p(xxx|k),p(k) ∈ [0,1],
K∑
k=1

p(k) = 1, (2.5)

can be estimated instead, where p(k) is the prior probability of the k-th component.
Gaussian Mixture Models (GMMs) have been used for anomaly detection in [66, 22].
There, we assume that p(xxx|k) are Gaussian distribution densities, and their parameters
are estimated using the EM algorithm [67] or via Variational Bayes [68]. The expression
− logp(xxx) is usually used as the anomaly score, although sometimes the maximum of
the Mahalabonis distance (2.4) over the K components is used instead. However, the
viable usecases for a GMM anomaly detector are limited, mainly due to the need to
compute and invert the covariance matrix, which is O(d3) in the size of the input space
d (when the full covariance matrix is estimated). See Fig. 2.3, where the same anomaly
detection problem is solved by GMMs with a different number of components. Even
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2.2 Anomaly detectors taxonomy

though the AUC score is already perfect for two components, the difficult shape of the
normal data requires more components than that to be fully covered.

Time series data anomaly detection was approached with the use of Autoregressive
Integrated Moving Average (ARIMA) models in [66, 69], or using a Hidden Markov
Model (HMM) in [70, 71]. Both approaches offer predictions for future states of an
observed system, and the anomaly score is the difference between the prediction and
the actual state of the system. The problems to which these methods can be applied
are encountered in medicine or computer network intrusion detection.

All the previous were examples of parametric models, where a set of parameters θθθ
is directly estimated. Opposed to these are non-parametric models, which are less re-
stricting – e.g. they do not assume any (normal, Poisson, ...) distribution – instead, they
build a parameter-free model of the normal data. Kernel density estimation (KDE)
method [41], which estimates an unknown univariate probability density function by
an empirical estimate

p̂(x) =
1
hn

n∑
i=1

kf

(x − xi
h

)
,xi ∈ X (2.6)

where X = {x1,x2, . . . ,xn} ⊂ R is the training dataset of n univariate samples, h ∈ R+ is
a bandwidth parameter, and kf : R → R

+ is a kernel – uniform, triangular, normal
(which is the most often used), etc., see [72]. Note that this is different from kernel
functions used and described in Sec. 2.2.3. KDE has been used under the name Parzen
window estimate e.g. in [9, 73], where − ln p̂(x) is used to score anomalies. Histogram-
based Outlier Score (HBOS) is a method [74] for anomaly detection on multivariate
data xxx ∈ Rd . It computes normalized histograms for each feature xj , j ∈ {1, . . . ,d} inde-
pendently. Then the anomaly score for an unlabeled sample xxx is

s(xxx) = −
d∑

j=1

ln p̃j(xxx) (2.7)

where p̃j(xxx) is the height of the bin in which xj is located. The main advantage of this
method in comparison with e.g. distance-based is the relative computational simplic-
ity. In the Lightweight Online Detector of Anomalies (LODA) [24], an ensemble of
one-dimensional histograms is used in the space of diversified projection vectors. The
anomaly score is then an average of the logarithm of probabilities estimated from the
histograms on individual projection vectors. Due to its simplicity and computational
efficiency, it is popular in settings with high volumes of data and potentially missing
input values.

Deep methods

The recent advent of neural networks has given rise to many novel methods that
are more capable of handling high-dimensional datasets that would be otherwise ex-
tremely difficult to handle. A mixture model was used in the DAGMM method [75],
where a neural network creates a low-dimensional latent representation zzz from an in-
put xxx. The GMM and its parameters are then estimated in the latent space, again via a
neural network, which enables online learning of the whole model together.

Energy based models (EBMs) use the energy function Eθθθ(xxx) to approximate the
density as

pθθθ(xxx) =
1

Z(θθθ)
exp(−Eθθθ(xxx)), (2.8)
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Figure 2.4: K-nearest neighbor detectors on the two bananas dataset. The contours of
the score (2.9) are shown for different values of k together with the resulting AUC.

where Z(θθθ) is the partition function parametrized byθθθ to ensure proper normalization
of pθθθ(xxx). Although the partition function usually cannot be directly computed, an
EBM can still be trained via gradient descent coupled with Markov Chain Monte Carlo
estimation [76], which is however also the reason for its ineffectiveness relative to more
novel approaches, as the MCMC is computationally costly. The anomaly score is then
the energy function Eθθθ(xxx). Although the direct use of the early examples of EBMs such
as Deep Belief Networks [77] and Deep Boltzmann Machines [78] was impractical
for anomaly detection, they were eventually refined and successfully used on anomaly
detection benchmarks in [79].

Finally, the most recent advancements in anomaly detection were achieved with the
use of deep generative models that model the distribution of the data via a generative
process, where it is assumed that the data is generated from a hidden latent variable.
Flow models [34], Variational autoencoders [33] and Generative Adversarial Net-
works [32] are described in greater detail in Chapter 3.

2.2.2 Distance-based methods

Instead of modeling the probability distribution of the normal data, distance-based
anomaly detectors use heuristics that compute a similarity measure between two data
points. One of the simplest such models is the k-Nearest Neighbor (kNN) [80] model
where the anomaly score of a sample is based on its proximity to its k-nearest neigh-
bours from the training dataset. Consider set Xk(xxx) of the k-nearest neighbors of xxx from
a training dataset X = {xxx1,xxx2, . . . ,xxxn} ⊂R

d . Different anomaly scores are then described
in [21], where the Euclidean distance is used as the similarity measure:

• sκ(xxx), where the anomaly score is the distance between xxx and its kth-nearest
neighbor,

sκ(xxx) = max
xxxi∈Xk(xxx)

||xxx −xxxi ||2, (2.9)

• sγ (xxx), where the anomaly score is the average distance of xxx to its k-nearest neigh-
bors,

sγ (xxx) =
1
k

∑
xxxi∈Xk(x)

||xxx −xxxi ||2, (2.10)
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2.2 Anomaly detectors taxonomy

• sδ(xxx), where the anomaly score is the length of the mean of the vectors pointing
from xxx to its k-nearest neighbours,

sδ(xxx) =

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣1k

∑
xxxi∈Xk(x)

(xxxi −xxx)

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
2

. (2.11)

All these definitions presume that normal data lie in concentrated regions of the data
space X , according to (1.2), while anomalies lie outside of them. The kNN anomaly de-
tector is very popular thanks to its simplicity and good performance [31]. See Fig. 2.4,
where low values of k result in a very local behaviour of the model, which is suitable for
this problem. The biggest disadvantage of the model is the computational cost. Even
though there is no actual training procedure, the prediction complexity is O(ndk). This
can be ameliorated by the construction of a k-d tree [81], which partitions the space of
the training data to speed-up prediction, or using GPU-based similarity search tech-
niques such as [82]. Other methods, such as REPEN [83], use the kNN detector trained
on low-dimensional representations of otherwise high-dimensional data produced by
a deep neural network. We will make use of this approach in models in Sec. 3.4 and
Chapter 5.

The Local Outlier Factor (LOF) algorithm [84] is based on comparing the local
density of a sample xxx with the local density of its k-nearest neighbours. To correctly
describe the way in which the density is defined and the anomaly score is computed,
we use the formula (2.9). Then we define the local reachability density as

LRDk(xxx) =
|Xk(xxx)|∑

xxxi∈Xk(x) max{sκ(xxx), ||xxx −xxxi ||2}
. (2.12)

Since this is practically the inverse of an average distance betweenxxx and its neighbours,
the closer the neighbours are to xxx, the higher this approximation of local density is.
Finally, anomaly score of xxx is given by comparing the LRDk of xxx and its neighbours

sLOF(xxx) =

∑
xxxi∈Xk(xxx) LRDk(xxxi)

LRDk(xxx)|Xk(xxx)|
. (2.13)

The rationale behind the formula is that if the local density of the neighbours is higher
or the local density of xxx is lower then it is more likely for xxx to be an anomaly. This
method however does not scale well in number of training samples, as its complexity
is even greater than that of a simple kNN detector. Methods that are similar to LOF
are the connectivity–based outlier factor (COF) [85] or clustering–based local outlier
factor (CBLOF) [86].

A different approach is taken by the isolation forest (IF) model [20] where an en-
semble of Nt ∈ N isolation trees is constructed from the training dataset. The indi-
vidual trees are constructed in such a way as to isolate each individual observation
from the rest of the dataset using consecutive splits on different features. Although
this procedure is stochastic (each tree splits the data differently), it is presumed that
an anomaly can be generally isolated using a smaller number of splits and therefore it
usually lies on a branch closer to the root of the tree. The anomaly score is then based
on the depth in which a sample is represented in the tree, averaged over all trees in the
ensemble. A method similar to IF is the Partial Identification Forest (PIDForest) [87],
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2 State-of-the-art overview

which uses a more informed way of choosing the data features for split, favouring more
informative features.

In Angle-Based Outlier Detection (ABOD) [88] presumes that outliers lie far from
clusters of normal data, therefore the viewing angle that covers a cluster of normal
observations when "looking" at it from a sample xxx is smaller when xxx is anomalous.
More concretely, the method computes the angles between xxx and all pairs of points in
the training dataset, and the anomaly score is inversely proportional to the variance
of these angles – the more varied the angles are, the more likely xxx is close to some
cluster of normal data and the anomaly score is thus lower. In the original paper, the
method is lauded for the lack of hyperparameters that need to be tuned and the ability
to operate in high-dimensional data spaces. However, in the experiments in Chapter 4,
it proves to be the method with one of the slowest prediction times.

2.2.3 Domain-based methods

Some anomaly detectors divide the data space into a normal and anomalous subspace
(domain). In [35], these are labeled as domain-based, and we will follow that distinc-
tion here.

Shallow methods

In domain-based models, the data space is partitioned into subspaces by a decision
boundary. Instead of estimating the density of the whole training dataset, they only
consider a few samples from it, which are called support vectors, and which are used
to define the decision boundary. A very simple example is an anomaly detector which,
for a training set X = {xxx1,xxx2, . . . ,xxxn} ⊂ R

d , constructs a hypersphere with center ccc ∈ Rd

and radius R > 0 that encloses the training data. It is found by solving the objective

min
R,ccc,ξξξ

R2 +
1
νn

n∑
i=1

ξi

s.t.||xxxi −ccc||22 ≤ R2 + ξi ,ξi ≥ 0,∀i

(2.14)

where ξi are slack variables that allow some data points to lie outside of the hyper-
sphere. The ratio of the maximum number of outliers is controlled by the variable
ν ∈ (0,1], which is at the same time a lower bound on the number of support vectors,
which are samples xxxi that lie exactly on the boundary of the hypersphere. The so-
lution to (2.14) is given by solving the dual problem. Notice that a simple criterion
||xxx − ccc||22 ≤ R2 already gives a decision whether the point xxx is already inside the sphere.
To convert this to a continuous anomaly score, we can compute the distance of xxx from
the boundary

s(xxx) = ||xxx −ccc||22 −R
2 (2.15)

which is negative for points inside and positive for points outside the hypersphere.
Abstracting the above, one can use kernel functions [89] to move the problem (2.14)

from the original input space to a transformed kernel space. The kernel is a function
kf : Rd ×Rd →R, with which we associate a feature map Φ : Rd →Fk such that the re-
lation defined by the inner product kf (xxx,yyy) = ⟨Φ(xxx),Φ(yyy)⟩ is true for all xxx,yyy. The space
Fk is a reproducing kernel Hilbert space and we choose the kernel in such a way that
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Figure 2.5: OCSVM detectors with different kernel functions and kernel width param-
eter γ values on the two bananas dataset. The contours of the score (2.15) together with
the resulting AUC are depicted. Although the use of both the polynomial and sigmoid
kernels results in a relatively good AUC value, the anomaly score contours reveal that
the model would fail if the anomalies were placed slightly differently. Furthermore,
the tight fit of the training data with the radial basis function (rbf) is proportional to the
kernel width.

its dimensionality is higher than d. This is the basis for the Support Vector Data De-
scriptor (SVDD) anomaly detector, where the inequality condition in (2.15) is replaced
by ||Φ(xxxi)−ccc||22 ≤ R2 +ξi . By solving the problem in a space of higher dimensionality, it
is possible to find a decision boundary (hypersphere) for observations that would oth-
erwise not be separable in the original space. In comparison, the One-Class Support
Vector Machine (OCSVM) [26] does not construct a hypersphere, but instead aims to
find a separating hyperplane in the kernel space. See Fig. 2.5 for a demonstration of
the OCSVM model on our toy dataset. Unlike in traditional SVM [90], which is used
to separate two classes in a binary classification problem, OCSVM instead aims to find
a hyperplane that maximizes the separation of the majority of the training data from
the origin in the kernel space. The anomaly score of an OCSVM detector is, similarly
to (2.15), the distance from the separating hyperplane. Apart from ν, a very important
hyperparameter of the model is the kernel scale parameter γOCSVM. Many variants of
both of the presented approaches were introduced over the years, such as Minimum
Volume Ellipsoid [91], Multi-sphere SVDD [92] or Bayesian Data Description [93].

Deep methods

Instead of choosing a kernel and its parameters manually, one can instead parametrize
the feature maps Φ using neural networks and train them using standard gradient de-
scent techniques, or use pre-trained networks from related tasks. This is the basis for
deep OCSVM methods such as One-class Neural Network (OCNN) [94] or [95], or
methods based on the SVDD formulation [96]. In Deep SVDD (DSVDD) [38], the ob-
jective (2.14) is reformulated without the slack variables ξi , which means that the hy-
persphere is expected to enclose all observations in the training dataset. This simplifi-
cation leads to faster convergence and yet still proves to be an effective anomaly detec-
tor. However, all the deep methods have a basic flaw. Without any further restrictions,
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the solution Φ(xxx) = ccc is valid but does not provide a useful detector. This behaviour is
called the feature map collapse. In order to prevent this, many techniques such as freez-
ing the neural networks that provide the feature map, architectural choices or using
adversarial learning are used (for an extensive list of possibilities, see [35]).

Training with negative examples

Although we have stated in Sec. 1.1 that anomaly detection methods do not usually
consider the distribution of anomalies P −, some approaches do. These still fall under
the domain-based category of anomaly detectors, as they are mostly constructed as bi-
nary classifiers that divide the input space into subspaces where either the anomalous
or normal class is expected. In the simplest case [97], P − is assumed to be uniform and
a supervised classifier is trained using anomalies sampled from a hypercube centered
around the normal data. This approach, however, suffers from the curse of dimen-
sionality and saturating the hypercube in high-dimensional spaces is computationally
infeasible, especially for image data. Some attempts for a more efficient sampling have
been proposed, such as sampling based on local density estimation [98]. In outlier
exposure [99] techniques, a large auxiliary dataset, that is somehow related to normal
data, is used to improve the generalization properties of a deep anomaly detector. For
example, if the normal class consists of images of birds, it might be useful to train
the detector to recognize normal data from images containing other animals, even
though this auxiliary dataset may contain animal classes that will not be encountered
as anomalies in a test/production environment. It has been shown to be an effective
technique in [100].

Outlier exposure is a form of weak supervision [101], which is a more general
term covering the approach to learning with imperfectly labeled anomaly samples.
In [102, 103] it is shown that using even a few labeled examples of anomalies can
dramatically improve the detection performance. It is however important to robustify
the model in order to be able to generalize to the types of anomalies not present in
the labeled training dataset. These techniques can help in active learning in anomaly
detection [104], where the anomaly detector sends queries to its operator, asking for
the most informative/relevant samples to be manually labeled. It is stated in [35] that
weak supervision is essential for potential breakthroughs in anomaly detection, which
is the motivation for the method proposed in Chapter 5.

Another paradigm where the model is trained in the presence of additional data is
self-supervision [105], where the model solves an auxiliary task, such as prediction of
transformations applied to the image [106]. The important distinction between this ap-
proach and outlier exposure is that the transformed data is obtained from the normal
training dataset by applying random translations, scalings, rotations, etc. Transform-
ing the data in a controlled manner, the anomaly detector is then a multiclass classifier
that predicts the correct transformation applied to the data. The anomaly score of such
a model is then based on the softmax activations in the output layer – if the predic-
tion uncertainty is high, the scored sample is more likely to be an anomaly. This was
very successfully used in the Geometric Transformations (GT) [107] anomaly detec-
tor. Furthermore, the GOAD method [108] extends this approach to non-image data.
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2.2.4 Reconstruction-based methods

One of the most popular approaches to anomaly detection is to build a model that
learns to reconstruct input samples. When this model is trained on normal data and
learns to reconstruct them well, it is expected that it will be able to identify anomalies
by failing to reconstruct them properly since they have properties unseen by the model
at training time. To formalize this, a reconstruction-based anomaly detector consists of
an encoder, which is a mapping eφφφ : X → Z, and a decoder gθθθ : Z → X . Here, X ⊂ R

d is
the input space, Z ⊂R

h is a so called latent space and φφφ,θθθ are parameters. A latent rep-
resentation or encoding of a sample xxx is z = eφφφ(xxx). Reconstruction-based methods then
try to match the original sample xxx with its reconstruction xxx′ = gθθθ(zzz) = gθθθ(eφφφ(xxx)). This is
done by finding such parameters φφφ,θθθ as to minimize the reconstruction objective

min
φφφ,θθθ
||xxx − gθθθ(eφφφ(xxx))||22 +R, (2.16)

where R is a regularization term. Some sort of regularization is needed in order to
prevent the decoding function (gθθθ◦eφφφ)(xxx) to become an identity function, in which case
the detector would be useless. The anomaly score of reconstruction-based methods is
the reconstruction error

s(xxx) = ||x − gθθθ(eφφφ(xxx))||22. (2.17)

The Principal Component Analysis (PCA) [109, 110], although not originally de-
veloped for this purpose, is an example of a reconstruction anomaly detection method.
It is assumed that the normal data lie on a lower-dimensional manifold in the data
space, which is an assumption also used in other methods. This means that theoret-
ically, they can be represented by a transformation into a lower dimensional latent
space, and the eventual differences between the reconstructions from the latent back
to the data space and the original samples are only due to noise that is present in the
data, and therefore the latent representation contains all the relevant information of
a sample. PCA seeks to represent the data by finding an orthonormal basis W ∈ Rh,d

that maximizes the empirical variance of the data X = {xxx1,xxx2, . . . ,xxxn} ⊂R
d . The original

objective of PCA can be reformulated with (2.16) in mind, which yields

max
W

n∑
i=1

||xxxi −W TWxxxi ||22,s.t.WW T = I. (2.18)

Thus, this means zzz = eφφφ(xxx) = Wxxx ∈ Rh is the encoding represented by the first h prin-
cipal components, while the decoder is gθθθ(zzz) = W T zzz. The solution to (2.18) is obtained
by collecting the first h eigenvectors of the covariance matrix of the training data, e.g.
through its eigendecomposition, or by computing the singular value decomposition of
the data matrix. Like in the domain-based methods in Sec. 2.2.3, some of the restric-
tions imposed by the linear formulation of classical PCA are circumvented by using a
kernel PCA (kPCA) [111], where xxx is replaced by its nonlinear transformation Φ(xxx).
This was used for anomaly detection e.g. in [112].

An autoencoder (AE) [113] is in its basic principle a nonlinear PCA, where the en-
coder eφφφ and decoder gθθθ are neural networks and the parameters φφφ,θθθ are the trainable
weights of these networks. The nonlinearity comes from the use of nonlinear activation
functions between the individual layers of the neural networks. An example of an AE
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Figure 2.6: An example of an autoencoder consisting of fully connected layers. The
latent code zzz ∈ R2 is computed by propagating the input xxx ∈ R4 through the encoder
eφφφ(xxx) and then used to produce the reconstruction xxx′ ∈R4 via the decoder gθθθ(zzz).
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Figure 2.7: The figure demonstrates the ability of an autoencoder to reconstruct data.
The dimension h of the latent space Z is on the x-axis, while the average reconstruc-
tion error (2.17) over the whole dataset is on the y–axis. Note that although the ar-
tificial dataset is 16–dimensional, it only contains 8 non-correlated dimensions while
the remaining are a linear combination of them, which makes the data lie on an 8-
dimensional manifold. This results in the error dropping to zero for h >= 8 where the
model is able to disentangle the correlations and learn the identity function.
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network is in Fig. 2.6. To find the weights of the neural networks, the reconstruction
error (2.17) is minimized

LAE(xxx,φφφ,θθθ) = ||xxx − gθθθ(eφφφ(xxx))||22 (2.19)

with respect to φφφ,θθθ using a gradient descent technique, such as ADAM [114] or AMS-
Grad [115], which use backpropagation [116]. Note that the explicit regularization
termR from (2.16) here is omitted and instead, the regularization is enforced by creat-
ing a bottleneck h < d, which again forces the model to find the optimal representation
of data on a manifold of the data space, as is demonstrated in Fig. 2.6. Other types
of regularizations include sparse autoencoders [117], where sparsity of encodings is
enforced, or denoising autoencoders [118], which reconstruct samples with added ar-
tificial noise. The process of training an autoencoder is described in Alg. 1. Note that
the space if inputs X might be an Euclidean space R

d for tabular data, while RGB im-
ages are usually represented by three-dimensional tensors of width W and height H ,
therefore X = R

H×W×3. In that case, the computation of loss (2.19) on samples remains
the same as if the inputs were vectorized because the operation is element-wise. The
main difference when working with image data is the architecture of a neural network,
where convolutional layers are usually used instead of dense layers, as they have some
favourable properties, such as translational invariance [119].

Autoencoders were used for anomaly detection e.g. in [120, 121], where the recon-
struction error (2.17) is used as the anomaly score, and also as a powerful nonlinear
dimensionality reduction technique coupled with traditional method in a two-stage
approach, as in [95, 122]. They are also the basis for the Variational autoencoder,
which will be discussed in depth in the next chapter.

Algorithm 1 Autoencoder training procedure.

Require: Autoencoder (gθθθ, eφφφ), a training set X = {xxx1,xxx2, . . . ,xxxn} ⊂ X , maximum num-
ber of iterations I ∈N, batchsize B ∈N.

1: φφφ,θθθ← Initialize weights
2: i← Iteration counter
3: while i < I or φφφ,θθθ are not converged do
4: XB← A random batch of B samples from X
5: l← 1

B

∑B
i=1LAE(xxxi ,φφφ,θθθ),xxxi ∈ XB

6: φφφ
+←−∇φφφl, update of encoder weights

7: θθθ
+←−∇θθθl, update of decoder weights

8: i← i + 1
9: end while

10: return encoder eφφφ(xxx), decoder gθθθ(zzz)
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3
Generative models in anomaly detec-
tion

Suppose that a given problem (e.g. classification) requires us to model some directly
observable data, denoted by xxx, which is somehow connected with a second variable zzz,
which might not be directly observable, or we only have a finite set of observed pairs
(xxx,zzz). When zzz is discrete, it has the interpretation of a label which denotes an affiliation
with one of a finite number of classes (in that case, it is often denoted by yyy instead).
When it is continuous, we use the term hidden or latent variable, see Sec. 2.2.1, where
it was already discussed. In that case, we assume that there is some mechanism that
connects xxx and zzz that can be modeled e.g. by a decoder gθθθ(z) from Sec. 2.2.4. The
term generative model denotes an approach when the joint probability distribution of
p(xxx,zzz) is modeled, as opposed to a discriminative model, which tries to estimate p(zzz|xxx).
An example of a discriminative model is a logistic classifier, which in fact estimates
p(zzz|xxx) as a function f : X → Z where Z = [0,1], i.e. it produces a guess for binary
label based on input data. While it seems that a generative model is more flexible, as
it can provide p(zzz|xxx) = p(xxx,zzz)/p(xxx), it is usually subpar in classification tasks [123, 124].
The advantage of using a generative model is that it can generate artificial samples xxx,
and most importantly, it can be trained in an unsupervised manner (without observed
labels/latent variables) and provide an estimate of the data distribution p(xxx). This is
the reason generative models are interesting for anomaly detection, together with the
advent of deep generative models that can model large quantities of high-dimensional
data.

Some generative models were already introduced in Sec. 2.2.1, such as the Gaus-
sian Mixture Model, autoregressive models, or various energy-based models. Recently,
very large deep generative models with billions of parameters were introduced. They
are pushing the boundaries in many domains and produce human-like outputs, such
as the BigGAN [125] for images, GPT-3 [126] for text, the Jukebox model [127] for
music generation, or diffusion models [128] for text-to-image translation [129]. In the
previous chapter, we have already mentioned the three main types of deep generative
models that will be discussed in greater depth in this chapter – the Generative Adver-
sarial Network (GAN) [32], the Variational Autoencoder (VAE) [33] and various flow
models [34]. They present the basic paradigms on which most of the novel anomaly
detectors are built [130, 131, 132, 133, 134, 135].
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zzz ∼ p(zzz)

gθθθ(zzz)

x̃xx

xxx ∼ p(xxx)

sd ∈ [0,1]

dϕϕϕ(xxx)

Figure 3.1: A schematic of a GAN consisting of fully connected layers. A latent noise
sample zzz ∼ p(zzz) is fed to the generator gθθθ(zzz) which then produces an artificial sample x̃xx.
Alternatively, a sample xxx is sampled from the data distribution p(xxx). Both are passed
to the discriminator dϕϕϕ(xxx) that produces a score sd – the probability that x̃xx or xxx come
from the true data distribution.

3.1 GAN–based models

The Generative Adversarial Network (GAN) was introduced in [32] where it was suc-
cessfully used to generate MNIST digits, faces, and CIFAR-10 images. Since then,
GAN-based models were used in a multitude of different areas, such as next frame
prediction in videos [136], semi-supervised learning [137], image–to–image transla-
tion [138], semantic manipulation of high-resolution images [139] or for generating
realistic artificial image [140] and audio data [141]. In comparison with VAE-based
generative models, it is believed that GAN-based models produce pictures that are
more realistic (less blurry), at the cost of difficult and highly unstable training [137].
In the following text, the basics of GANs will be introduced together with their appli-
cations in anomaly detection.

3.1.1 Basic GAN model

Suppose that there is a true data distribution p(xxx),xxx ∈ X , which we are trying to imitate.
We don’t know the true form of p(xxx), since it is usually high-dimensional and not
representable directly by a function, but instead, it is available to us through a finite
set of samples that comprise the training dataset X = {xxx1,xxx2, . . . ,xxxn} ⊂ X . The goal is to
build a proxy for p(xxx) so that we can draw new, yet unseen samples from it. The GAN
tackles this problem by constructing a model with two principal parts. First is the
generator, which is a neural network that represents a mapping gθθθ(zzz) : Z → X , where
θθθ are its weights, and Z is the latent space. Note that we use the same notation for the
generator that was already used for a decoder in the AE model – this is because they
fulfill the same role in both models. We will denote a generated sample by x̃xx = gθθθ(zzz).
Since the generator, as we have defined it so far, is deterministic and we need to cover a
random distribution, the inputs to the generator come from a prior noise distribution
p(zzz). The prior is usually chosen such that it is easy to generate samples from it, e.g.
p(zzz) = N (0,III), in which case Z = R

h with h being the dimension of the latent space.
Then, the task is to train the generator in such a fashion that it learns the potentially
highly non–linear mapping from p(zzz) to p(xxx). This is stimulated by the adversary of
the generator – the discriminator. We define it as a neural network with weightsϕϕϕ, i.e.
a mapping dϕϕϕ(xxx) : X → [0,1]. The output of the discriminator has the interpretation
of the probability that its input comes from p(xxx) rather than being generated by the
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3 Generative models in anomaly detection

generator, in other words, true samples xxx should be given a higher value than the
generated samples x̃xx.

Both parts of a GAN are trained (their weights are updated) in tandem, so each of
them iteratively improves in its task. The discriminator is trained both with true and
generated samples to maximize the probability of assigning the correct label to them,
while the generator is minimizing the probability of the discriminator recognizing the
generated sample. This can be written down as a two-player minimax [142] game

min
θθθ

max
ϕϕϕ

Exxx∼p(xxx)

[
lndϕϕϕ(xxx)

]
+Ezzz∼p(zzz)

[
ln

(
1− dϕϕϕ(gθθθ(zzz))

)]
. (3.1)

It can be shown [32] that this objective has a saddle point at − ln4. In practice, (3.1)
is not used directly. That is because the term ln

(
1− dϕϕϕ(gθθθ(zzz))

)
suffers from vanishing

gradients – when the generated samples do not resemble the real data at the beginning
of the training, this terms is almost zero and the generator is not trained. Therefore,
instead of minimizing this, we can maximize lndϕϕϕ(gθθθ(zzz)) to train the generator, which
has much stronger gradients [32]. During the training, we sample xxx from the training
dataset and zzz from the prior distribution and update the generator and discriminator
weights by minimizing

Lg(zzz,θθθ) = − lndϕϕϕ(gθθθ(zzz)), (3.2)

Ld(xxx,zzz,ϕϕϕ) = − lndϕϕϕ(xxx)− ln
(
1− dϕϕϕ(gθθθ(zzz))

)
. (3.3)

Note that we explicitly remove the dependency of the loss functions on the weights
that are not being optimized through them. A detailed training procedure of a GAN
is described in Alg. 2. Interestingly, during training, the generator never encounters
any sample coming from p(xxx) but is still able to eventually learn the shape of p(xxx).
The choice of p(zzz) can be rather arbitrary as far as sampling from it is possible and the
generator and discriminator have sufficient capacity to process it. In practice, uniform
or normal distribution is usually used.

Algorithm 2 GAN training procedure.

Require: Generator gθθθ, discriminator eφφφ, a training set X = {xxx1,xxx2, . . . ,xxxn} ⊂ X , maxi-
mum number of iterations I ∈N, batchsize B ∈N.

1: θθθ,ϕϕϕ← Initialize weights
2: i← Iteration counter
3: while i < I or θθθ,ϕϕϕ are not converged do
4: XB← A random batch of B samples from X
5: ZB← A random batch of B samples from p(zzz)
6: ld ← 1

B

∑N
j=1Ld(xxxj ,zzzj ,ϕϕϕ),xxxj ∈ XB,zzzj ∈ ZB

7: ϕϕϕ
+←−∇ϕϕϕld , update of discriminator weights

8: lg ← 1
L

∑L
j=1Lg(zzzj ,θθθ),zzzj ∈ ZL

9: θθθ
+←−∇θθθlg , update of generator weights

10: i← i + 1
11: end while
12: return generator gθθθ(zzz), discriminator dϕϕϕ(xxx)
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Figure 3.2: Four different GAN models trained on the normal (black) data of the two
bananas dataset, the contours of the respective anomaly scores (3.6) and the AUC of the
model with respect to the anomalous (red) data. The models differ only in the initial
values of their weights, yet they converged to very different states. Most importantly, it
is evident that the discriminator can output arbitrary values in the areas where training
data is not present.

Achieving convergence such that the generated samples x̃xx resemble the training
data might be difficult and require multiple random initializations of the model weights,
see Fig. 3.2. Details on stable training of GANs can be found e.g. in [143]. A phe-
nomenon called mode collapse has been described [144], which happens when p(xxx)
is multimodal, but the generator distribution collapses to a single mode. A generator
that has collapsed to a single mode of an MNIST dataset will produce only a single
digit, e.g. "1", no matter where the code is sampled from. To mitigate this issue, sev-
eral practices have been proposed [137, 145]. One of them is the use of an enhanced
generator loss

Lgfm(zzz,xxx,θθθ) = αLg(zzz,θθθ) +Lf m(zzz,xxx,θθθ), (3.4)

where α > 0 is a tunable weight and the second term is the so-called feature-matching
loss

Lf m(zzz,xxx,θθθ) = ||dn,ϕϕϕ(xxx)− dn,ϕϕϕ(gθθθ(zzz))||22. (3.5)

Here, dn,ϕϕϕ(xxx) is the intermediate representation of xxx after propagation through n ∈N
layers of the discriminator. This loss is supposed to provide improved gradients for
the generator to stabilize the training. In the following text, a GAN model with the
loss (3.4) will be referred to as the feature-matching GAN (fmGAN).

3.1.2 GANs in anomaly detection

The idea of using a GAN for anomaly detection comes from the ability of the generator
to learn the true data distribution p(xxx) and especially the ability of the discriminator
to recognize samples coming from p(xxx). When the training dataset consists of normal
samples, the discriminator output can be converted into an anomaly score

sGAN(xxx) = 1− dϕϕϕ(xxx), (3.6)

which is higher for suspected anomalies and lower for normal data. The common
critique is that the discriminator was not trained to recognize an arbitrary distribution
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3 Generative models in anomaly detection

of the anomalies but only that of the latent transformed by the generator. Thus it may
fail to recognize anomalous samples of interest. Also, the training procedure of a GAN
model has very high variance in the sense that two models with the same architecture
and hyperparameters and trained on the same data might converge to very different
states, see Fig. 3.2. This implies that more models need to be created and trained in
order to find a good anomaly detector. This is further discussed in Chapter 4.

The authors of the AnoGAN model [23] recognize some of these flaws. Their convo-
lutional GAN model is trained with the feature-matching loss (3.4). For identification
of anomalies in medical images, instead of using (3.6), they propose an iterative pro-
cedure that searches for the latent code zzz most likely to generate the tested sample
to identify anomalous images. However, this procedure is computationally expensive.
Therefore, an update to this model was published, the f(ast)AnoGAN [146]. It uses a
Wasserstein GAN [147, 148] (more on Wasserstein optimization objective in the next
section) with gradient penalization [147] to improve training stability and adds an
encoder distribution qφ(zzz|xxx) to find zzz closest to given xxx faster. The anomaly score of
fAnoGAN is a combination of the discriminator score (3.6) and the feature-matching
loss (3.5).

The fmGAN model is used in the publication [149], where it is tested on bench-
mark datasets such as MNIST and CIFAR-10. In [132], a GAN model was used to de-
tect anomalies in time series data coming from industrial processes, whereas in [150],
network intrusions were detected. In the Multiple-Objective Generative Adversar-
ial Active Learning (MOGAAL) [151], k ∈ N generators are trained against a single
discriminator on input data divided into k subsets. The discriminator score Eq. (3.6)
is used to test new samples. The authors of the OCGAN model [133] claim to have
achieved state-of-the-art results in one-class classification by severely restricting the
latent space of the GAN combined with an autoencoder and employing an adversarial
data augmentation strategy.

The use of GAN with an encoder [152] or an autoencoder with a discriminator [153]
for anomaly detection is often and somehow blurs the line between GAN and VAE-
based models, but we believe that presenting both concepts separately is useful. True
GAN-like models for anomaly detection are however far less prevalent than models
that use some autoencoding structure, which will be the focus of the next section. An
experimental comparison of both approaches is presented in Chapter 4.

3.2 VAE-based models

The Variational Autoencoder (VAE) is a generative model that has enjoyed great suc-
cess in a number of fields since its introduction in [33]. Its basic architecture [154]
is very similar to that of an AE model described in Sec. 2.2.4, but that is where the
similarities end, as VAE is more of a probabilistic anomaly detector, since it models
the probability distribution of the normal data. Unlike in AE, where the encoding to
latent space Z is not constrained from taking any shape or form as far as the learn-
ing objective is minimized, in VAE a desired distribution of the encodings is explicitly
prescribed in the form of a prior distribution p(zzz). If the network is trained properly
and the encodings follow the prior, we can feed samples from p(zzz) to the decoder and
expect to obtain random samples in the X space that will resemble those from the
training dataset. This is the simple principle of how VAE works — more details will
be given in the following text.
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The VAE has been mainly used for generation of artificial images such as faces [155]
or sentences [156], but also for other tasks such as semi-supervised learning [157],
segmentation [158], static image forecasting [159] and of course for anomaly detec-
tion [130, 131, 160]. Since its popularity, a multitude of approaches enhancing the
original VAE has been published, approaching the paradigm from different angles,
with some of the more prominent examples published in [161, 162, 163, 164, 165]. In
the following text, we will go through the basic theory, its implications for the basic
VAE, and through some of the extensions.

3.2.1 Basic VAE

Let’s begin by defining the VAE from a probabilistic perspective. Assume that there is a
dataset X consisting of i.i.d samples. We want to obtain a tractable estimate of the true
data distribution p(xxx) in order to be able to sample from it. For that purpose, suppose
that there is a hidden random process that generates the data and which involves a
latent variable zzz. Then, like in the case of the GAN model, we can redirect the sampling
from the data space X to the latent space Z, in which it might be easier. Specifically,
we want to sample from the latent prior distribution specified by a density p(zzz), then
pass this sample to the generative distribution with density pθθθ(xxx|zzz), where θθθ are its
parameters, and obtain a sample xxx that will be very similar to the samples coming from
the true data distribution p(xxx). In other words, we want to maximize the probability
of each sample obtained through the generative process

pθθθ(xxx) =
∫
Z
pθθθ(xxx|zzz)p(zzz)dzzz. (3.7)

Unfortunately, there are several issues with this. Firstly, we do not know the optimal
value of parameters θθθ. Secondly, the integral (3.7) is usually intractable, e.g. in the
case where pθθθ(xxx|zzz) is represented by a neural network. Finally, we want to avoid ex-
pensive sampling methods such as Monte Carlo Expectation Maximization [166]. A
sampling procedure is eventually used, but we only want to pass such samples zzz to
the generative model that will already be very likely under pθθθ(xxx|zzz). To this end, we
introduce a discriminative distribution qφφφ(zzz|xxx) which is an approximation of the true
intractable posterior p(zzz|xxx), with parameters φφφ.

The ELBO objective

Now, we would like to relate the generative and discriminative distributions together
in a way that would enable us to optimize the model with respect to φφφ,θθθ. Continuing
from (3.7),

lnpθθθ(xxx) = Eqφφφ(zzz|xxx)[lnpθθθ(xxx)] = Eqφφφ(zzz|xxx)[lnpθθθ(xxx|zzz) + lnp(zzz)− lnp(zzz|xxx)], (3.8)

where we have used the Bayes’ rule and the fact that pθθθ(xxx) does not depend on zzz. Now
we use the KL divergence (A.5)

lnpθθθθθθθθθ(xxx)−DKL

(
qφφφ(zzz|xxx)||p(zzz|xxx)

)
= Eqφφφ(zzz|xxx)

[
lnpθθθ(xxx|zzz) + lnp(zzz)− lnqφφφ(zzz|xxx)

]
(3.9)

= Eqφφφ(zzz|xxx)[lnpθθθ(xxx|zzz)]−DKL

(
qφφφ(zzz|xxx)||p(zzz)

)
(3.10)

= −LVAE(xxx,φφφ,θθθ) (3.11)
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xxx

qφφφ(zzz|xxx)

µµµφφφ

σσσ2
φφφ

z = µφφφ + σφφφ ⊙ ε

ε ∼N (0,III)

xxx′

pθθθ(xxx|zzz)

Figure 3.3: A schematic of a Variational Autoencoder consisting of fully connected lay-
ers with a Gaussian encoder qφφφ(zzz|xxx) with meanµµµφφφ and variance σσσ2

φφφ, which are extracted
from the last layer of the encoder. They are used to sample an encoding zzz through the
reparametrization trick with a noise variable εεε. The encoding is then passed forward
and the reconstruction xxx′ is sampled from the decoder pθθθ(xxx|zzz).

This is the variational lower bound of the VAE model, sometimes called ELBO (evi-
dence lower boundary) through which we can optimize the marginal likelihood pθθθ(xxx).
This is due to the fact that the analytically unsolvable term DKL

(
qφφφ(zzz|xxx)||p(zzz|x)

)
is al-

ways nonnegative, thus by maximization of ELBO (minimization of LVAE(xxx,φφφ,θθθ)) we
also maximize pθθθ(xxx).

By looking at the individual parts of Eq. (3.10), we can see that by maximizing
the ELBO, we simultaneously maximize the likelihood pθθθ(xxx|zzz) and minimize the dis-
tance between qφφφ(zzz|xxx) and p(zzz). While looking at the left–hand side of (3.9) we can
see that at the same time, the marginal likelihood pθθθ(xxx) is maximized, and the error
term DKL

(
qφφφ(zzz|xxx)||p(zzz|xxx)

)
is minimized, forcing the shape of qφφφ(zzz|xxx) to the true pos-

terior. Also, (3.10) captures the autoencoding nature of the VAE model. We pass xxx
to the discriminative distribution, which acts as an encoder, sample latent encoding
zzz ∼ qφφφ(zzz|xxx) and pass this back to generative distribution, which acts as a decoder, to
obtain a reconstructed sample xxx′ ∼ pθθθ(xxx|zzz). From this point on, we will use the term
encoder and decoder to describe the discriminative and generative distributions.

Vanilla VAE

To be able to optimize (3.11), we must make some additional assumptions about the
model. Here, we will describe those that were made by the authors of the original
"vanilla" VAE model. Note that different assumptions are feasible, such as the choice
of the prior or decoder distribution. First, suppose that X = R

d , although the follow-
ing generally holds even for image data, where X = R

H×W×3, see the comment at the
end of Sec. 2.2.4. Additionaly, the prior p(zzz) is chosen to be an h-dimensional unit
normal distribution p(zzz) =N (zzz|0,I). The encoded training data are expected to follow
this distribution after optimization and it is used for the generation of new samples. In
tandem with this, the encoder is assumed to model a normal distribution with a diag-
onal covariance matrix qφφφ(zzz|xxx) = N

(
zzz|µφφφ(x),diag(σσσ2

φφφ(x))
)
,µµµφφφ,σσσ

2
φφφ : Rd → R

h, where the
mean and variance estimates are computed by neural networks with shared weights
φφφ. These choices lead to an analytically solvable expression for the KL divergence
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in (3.10), see (A.10) in the Appendix

DKL

(
qφφφ(zzz|xxx)||p(zzz)

)
=

1
2

d∑
i=1

1− σ2
φφφ,i(xxx) + lnσ2

φφφ,i(xxx)−µ2
φφφ,i(xxx). (3.12)

Second, the optimization of the ELBO (3.11) requires sampling from the encoder
qφφφ(zzz|xxx). This is however problematic for optimization by backpropagation because
sampling is not a differentiable operation. Therefore, a reparametrization trick was
introduced in [33]. Instead of directly drawing samples from qφφφ(zzz|xxx), we first take a
sample from an h-dimensional noise distribution εεε ∼ p(εεε) =N (0,I) and then compute
the encoding as zzz = µµµφφφ(xxx) + σσσφφφ(xxx) ⊙ εεε, where ⊙ denotes element-wise multiplication.
This changes the first term of the ELBO, which is called the log-likelihood to

Eqφφφ(zzz|xxx)[lnpθθθ(xxx|zzz)] = Eεεε∼N (0,I)

[
lnpθθθ(xxx|µµµφφφ(xxx) +σσσφφφ(xxx)⊙εεε)

]
. (3.13)

In the following text, whenever it can apply, we use the notation zzz ∼ qφφφ(zzz|xxx) as a short-
hand for the reparametrization trick.

Finally, the decoder pθθθ(xxx|zzz) is also assumed to model a normal distribution
N (xxx|µµµθθθ(zzz),σ2I),µµµθθθ : Rh→ R

d ,σ2 ∈ R+, although a Bernoulli distribution is sometimes
used for data scaled to the interval [0,1]. The mean of the decoder distribution is again
represented by a neural network with weights θθθ. The variance parameter σ2 is either
fixed, or it can be estimated from data during training. Therefore, the log-likelihood
takes on the form

lnpθθθ(xxx|zzz) = − 1
2σ2 ||xxx −µµµθθθ(zzz)||22 −

d
2

ln2π − d lnσ. (3.14)

Note that the last two terms can be left out of the optimization since they are not de-
pendent on any inputs or weights. Again, we see the connection with an autoencoding
model, where the log-likelihood (3.14) has a very similar form to the objective (2.19).
Here, the reconstruction takes the form of xxx′ = µµµθθθ(zzz). A notable property of the VAE
model is that the reconstruction is stochastic, which is due to the sampling used in the
reparametrization trick (3.13).

Now, we combine the assumptions and equations (3.12)–(3.14) to derive the final
analytic form of the ELBO objective. The expectation in (3.13) is replaced by a mean of
L ∈N samples of z through the reparametrization trick. The VAE loss function, which
is minimized with respect to φφφ,θθθ, and which is equal to negative ELBO (3.11), has the
form

LVAE(xxx,φφφ,θθθ) =
1

2σ2L

L∑
l=1

||xxx −µµµθθθ(zzzl)||22 −
1
2

d∑
i=1

1− σ2
φφφ,i(x) + lnσ2

φφφ,i(x)−µ2
φφφ,i(x), (3.15)

zzzl = µµµφφφ(xxx) +σσσφφφ(xxx)⊙εεεl ,εεεl ∼N (0,I).

We set L = 1 in accordance with [33]. The objective (3.15) can be directly optimized
via gradient descent techniques. Neural networks are used in place of the encoder and
decoder, since they have been proven to be universal function approximators. Given
enough capacity, data, and training time, the decoder can theoretically learn a map-
ping from the prior to an arbitrary function. See Fig. 3.3 for a schematic example of
a VAE model. The training procedure of a VAE is described in Alg. 3. An example
of the outputs of a VAE model trained on the MNIST hand-written digits dataset (see
Appendix B.2) is in Fig. 3.4.
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Algorithm 3 Variational Autoencoder training procedure.

Require: A VAE model with encoder qφφφ(zzz|xxx) and decoder pθθθ(xxx|zzz), training set X =
{xxx1,xxx2, . . . ,xxxn} ⊂ X , maximum number of iterations I ∈N, batchsize B ∈N.

1: φφφ,θθθ← Initialize parameters
2: i← Iteration counter
3: while i < I or φφφ,θθθ are not converged do
4: XB← A random batch of B samples from X
5: l← 1

B

∑L
j=1LVAE(xxxj ,φφφ,θθθ),xxxj ∈ XB

6: φφφ
+←−∇φφφl update of encoder weights

7: θθθ
+←−∇θθθl update of decoder weights

8: i← i + 1
9: end while

10: return encoder qφφφ(zzz|xxx), decoder pθθθ(xxx|zzz)

Figure 3.4: Example of a simple VAE trained on the MNIST dataset. Here, the neural
networks modelling the encoder and decoder parameters contained two levels of con-
volutional blocks. Ground truth examples are in the top row, reconstructed samples
are in the middle row, and artificially generated digits are in the bottom row. The re-
constructions are blurry, which is a typical VAE behaviour. Also, the reconstruction is
imperfect for digits that resemble each other, such as "9", "4" and "7", or "3" and "8".
The artificial digits were created by linearly interpolating between two coordinates in
the latent space and using this as an input to the decoder. The VAE then produces a
smooth interpolation between digits "1" and "8" that contains the related digits "2" and
"3".
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Figure 3.5: The latent space of the MNIST dataset produced by a VAE with a two-
dimensional latent space. Note the overlapping of some digit encodings, e.g. "7" and
"9".

Some VAE properties

If a VAE model is correctly trained, we can assume that the encoder qφφφ(zzz|xxx) and prior
p(zzz) = N (zzz|0,I) are close to each other. Then, samples from the prior can be fed to
the decoder and one can expect artificial samples that resemble the training data. A
generated sample can therefore be described as

x̃xx = µµµθθθ(zzz),zzz ∼ p(zzz). (3.16)

Note that a reconstructed sample is instead obtained by sampling the encoding zzz from
the encoder through the reparametrization trick (3.13).

Fig. 3.5 shows the latent space of an example VAE model. Note that although the
overall distribution of the encodings resembles the normal prior, in order to be able
to reconstruct the samples from the encodings, the model has to learn to encode the
samples from different digit classes to different parts of the latent space. It was shown
in [161] that the reconstruction and regularization parts of the VAE loss (3.11) actually
work against each other. A model with an encoder perfectly copying the randomness
of the prior would not be able to reconstruct the inputs. On the other hand, a model
without the latent regularization would not be able to generate new samples, as it
would be practically identical to an AE model from Sec. 2.2.4, which is free to encode
the different classes to arbitrary parts of the latent space. The basic loss (3.15) leads to
a model that is usually in an equilibrium between both of these states. It is however
possible to push the model in one of these directions by using a scaling parameter β

LβVAE(xxx,φφφ,θθθ,β) = −Eqφφφ(zzz|xxx)[lnpθθθ(xxx|zzz)] + βDKL

(
qφφφ(zzz|xxx)||p(zzz)

)
,β > 0. (3.17)

A VAE model trained with this loss is known as BetaVAE [161] and is one of the first
VAE-based models that attempt some sort of unsupervised disentanglement. A dis-
entangled model captures the possible factors of variation of a dataset in orthogonal
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Figure 3.6: An overview of VAE behaviour with respect to the scaling parameter β of
the objective (3.17) and to the way the covariance of the decoder pθθθ(xxx|zzz) is estimated.
The VAE model was trained on the two moons data, plotted in the plots at the very
top. Variants with 1D (a) and 2D (b) latent spaces are compared, and means of the de-
coder µµµθθθ(zzz) are plotted on the left and the latent representations on the right. Clearly,
smaller values of β lead to better sample reconstruction, especially in the case of a
two-dimensional latent space, as well as leading to a better separation of the encod-
ings. This is understandable, since the prior p(zzz) =N (0,I) is unimodal. From the top:
the covariance of the decoder is given either by a fixed scalar (σ2I,σ = 1), by a scalar
estimated from the data (σ2(zzz)I), or by an estimate of its diagonal terms (diag(σ2(zzz))).
The magnitude of the estimated variance in the two latter cases is denoted by color,
where a brighter color corresponds to a higher value of variance. It is interesting that
the second case (σ2(zzz)I) seems to alleviate the reconstruction difficulties with higher
β, while the estimation of the full covariance diagonal does not exhibit such property.
Also, the third case seems to "exploit" the estimation of variance. Instead of pushing
and optimizing the mean, it can instead simply output a higher variance in the direc-
tion in which the reconstruction is worse and still incur only a small loss. Due to this
behaviour, the second case seems to be the most robust and stable way of estimating
the reconstruction variance, at least on this simple dataset. Not surprisingly, the 2D
case provides better reconstructions since it was provided with one more dimension to
encode data to.
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3.2 VAE-based models

dimensions of the latent space. Imagine a colored MNIST dataset, on which a disentan-
gled model with a two-dimensional latent space is trained. If properly disentangled,
one latent dimension would capture the identity of the digit, while the other one would
capture its color. This concept will be again revisited in Chapter 5. The influence of
the β parameter is discussed in Fig. 3.6.

Instead of setting a fixed variance parameter σ2 in the decoder, one can optimize
and extract it instead from the last layer of the decoder, either as a scalar σ2

θθθ (zzz) ∈R+ or
even a full diagonal of the covariance diag

(
σσσ2
θθθ(zzz)

)
,σσσ2

θθθ(zzz) ∈ Rd+. From the experiment
in Fig. 3.6, it seems (at least for tabular data) that the best results were surprisingly
obtained not by the most complex variant, but the one with a scalar value σ2

θθθ optimized
during training.

3.2.2 Wasserstein and adversarial autoencoders

The asymmetry of the KL divergence motivated the search for another feasible metric
measuring the distance between the prior and the encoder. An alternative approach
to VAE has been published in [167] and improved in [163], which proposes a general
form of a generative autoencoder that uses a Wasserstein metric [168]. Unlike the
KL divergence term in the VAE loss, which forces all the input data samples to zero
(the mean of the standard prior), in Wasserstein autoencoders (WAE) the encoding is
loosened, which reportedly leads to improved reconstruction [163]. A general form of
the loss function of a WAE model is

LDW(xxx,θθθ,φφφ) = −Eqφφφ(zzz|xxx)[lnpθθθ(xxx|zzz)] +λDW

(
qφφφ(zzz|xxx)||p(zzz)

)
, (3.18)

where λ > 0 is a scalar hyperparameter, and DW is a Wasserstein metric. The most
commonly used form of the Wasserstein metric is the kernelized maximum-mean-
discrepancy (MMD) with a kernel function kf : Rh ×Rh → R, which was reported to
perform well in matching high dimensional distributions [162]. From the theoretical
point of view, KLD only matches the first and the second moment of the two distribu-
tions, while MMD can potentially match an infinite amount of moments with the right
kernel. Some authors [163] argue that by minimizing KLD, the latent representation
might become uninformative for the decoder to reconstruct the code. On the other
hand, MMD maximizes the mutual information between xxx and zzz [162].

Under some mild assumptions about the kernel function kf , which needs to be
characteristic and positive-definite (see details in [163]), the MMD can be expressed
in such a way that enables optimization of the model by backpropagation. Then, the
MMD of the prior and the encoder can be approximated solely by comparing sets of
samples from these distributions Z = {zzz1,zzz2, . . . ,zzzn}, Z̃ = {z̃zz1,z̃zz2, . . . ,z̃zzn},zzzi ∼ qφφφ(zzz|xxx),z̃zzi ∼
p(zzz),∀i ∈ n̂ in a closed expression

MMDk(Z,Z̃) =
1

n(n− 1)

∑
i,j

kf (zzzi ,zzzj) +
1

n(n− 1)

∑
i,j

kf (z̃zzi ,z̃zzj)−
2
n2

∑
i,j

kf (zzzi ,z̃zzj). (3.19)

The most notable characteristic of the MMD is that in practice, it only requires sam-
ples from the distributions in question, and it is therefore less restricting than the
KLD, which required Gaussian prior and encoder in order to obtain the analytic ex-
pression (3.12). This offers the potential for the use of a variety of prior and encoder
distributions, however, the reparametrization trick (3.13) or a similar technique must
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Algorithm 4 Wasserstein autoencoder training procedure.

Require: A WAE model with encoder qφφφ(zzz|xxx), decoder pθθθ(xxx|zzz) and a prior p(zzz), training
set X = {xxx1,xxx2, . . . ,xxxn} ⊂ X , maximum number of iterations I ∈N, batchsize B ∈N,
regularization coefficient λ > 0, characteristic positive definite kernel kf , standard
deviation parameter σ > 0.

1: φφφ,θθθ← Initialize parameters
2: i← Iteration counter
3: while i < I or φφφ,θθθ are not converged do
4: XB← A random batch of B samples from X
5: Z← {zzzj ∼ qφ(zzz|xxxj),xxxj ∈ XB} samples from the encoder
6: Z̃← A random batch of B samples from prior p(zzz)
7: l← 1

σ2B

∑B
j=1 ||xxxj −µµµθθθ(zzzj)||22 +λMMDk(Z,Z̃),xxxj ∈ XB,zzzj ∈ Z

8: φφφ
+←−∇φφφl update of encoder weights

9: θθθ
+←−∇θθθl update of decoder weights

10: i← i + 1
11: end while
12: return encoder qφφφ(zzz|xxx), decoder pθθθ(xxx|zzz)

be used in order to keep the sampling from qφφφ(zzz|xxx) a differentiable operation. The two
most common choices of kf are the RBF kf (zzz,z̃zz) = exp(−γ ||zzz − z̃zz||22),γ > 0 and inverse
multiquadratics (IMQ) kf (zzz,z̃zz) = (c2 + ||zzz − z̃zz||22)β , c > 0,β < 0 kernels. The training algo-
rithm for a WAE with the MMD is in Alg. 4. Note that although the parameters φφφ do
not appear explicitly in the overall loss function, they are present through the samples
in Z.

A different architecture arises when the Jensen–Shannon divergence DJS [169] is
used in place of DW. Again, the JSD is a symmetrical measure of distance between two
probability distributions. The use of JSD leads to a model that is called the adversarial
autoencoder (AAE) and was originally proposed in [164]. The connection between an
AAE model and the general formulation (3.18) was shown in [163]. To regularize the
encoder, we add a discriminator dηηη(zzz) : Z → [0,1] represented by a neural network
with parameters ηηη. The discriminator has a similar function to the one in the GAN
model from Sec. 3.1. It tries to recognize latent space samples produced by the encoder
and those sampled from the prior p(zzz). The difference is that here, the discriminator
operates on the latent space Z instead of the data space X .

A modified loss (3.3) is used to train the discriminator, while the loss function (3.2)
is used in place of the general Wasserstein distance in (3.18) for the training of the
encoder and decoder. Explicitly,

LAAEd
(zzz,z̃zz,ηηη) = − lndη(zzz)− ln(1− dηηη(z̃zz)), (3.20)

LAAE(xxx,zzz,z̃zz,θθθ,φφφ) =
1
σ2 ||xxx −µµµθθθ(zzz)||22 −λ lndηηη(z̃zz), (3.21)

where λ > 0, zzz ∼ qφφφ(zzz|xxx), z̃zz ∼ p(zzz). Not that the loss (3.21) has implicit functional
dependence on φφφ through the samples zzz. A schematic of the AAE model is in Fig. 3.7
and the AAE training procedure is described in Alg. 5. Again, any prior p(zzz) that we
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xxx

qφφφ(zzz|xxx)

zzz

z̃zz ∼ p(zzz)

xxx′

pθθθ(xxx|zzz)

s ∈ [0,1]

dηηη(zzz)

Figure 3.7: A schematic of an AAE model consisting of fully connected layers. A data
sample xxx is mapped to latent space representation z̃ via the encoder qφφφ(zzz|xxx). Also, a
sample zzz is sampled from the latent prior p(zzz). Both zzz and z̃zz are passed to the discrimi-
nator dη(zzz) that produces a score s – the probability that the input sample comes from
the prior. At the same time, the latent representation is passed to the decoder pθθθ(xxx|zzz)
which maps it to a reconstruction xxx′.

Algorithm 5 AAE training procedure.

Require: An AAE model with encoder qφφφ(zzz|xxx), decoder pθθθ(xxx|zzz), a prior p(zzz) and a dis-
criminator dηηη(zzz), training set X = {xxx1,xxx2, . . . ,xxxn} ⊂ X , maximum number of itera-
tions I ∈ N, batchsize B ∈ N, regularization coefficient λ > 0, standard deviation
parameter σ > 0.

1: φφφ,θθθ,ηηη← Initialize parameters
2: i← Iteration counter
3: while i < I or φφφ,θθθ,ηηη are not converged do
4: XB← A random batch of B samples from X
5: Z← {zzzj ∼ qφφφ(zzz|xxxj),xxxj ∈ XB} samples from the encoder
6: Z̃← A random batch of B samples from prior p(zzz)
7: X̃← {x̃xxj ∼ pθθθ(xxx|z̃zzj),z̃zzj ∈ Z̃B} generated samples
8: lae← 1

B

∑B
j=1LAAE(xxxj ,zzzj ,z̃zzj , ,θθθ,φφφ),xj ∈ XB,zzzj ∈ Z,z̃zzj ∈ Z̃

9: ld ← 1
B

∑B
j=1LAAEd

(zzzj ,z̃zzj ,ηηη),zzzj ∈ Z,z̃zzj ∈ Z̃
10: φφφ

+←−∇φφφlae update of encoder weights

11: θθθ
+←−∇θθθlae update of decoder weights

12: ηηη
+←−∇ηηηld update of discriminator weights

13: i← i + 1
14: end while
15: return encoder qφφφ(zzz|xxx), decoder pθθθ(xxx|zzz), discriminator dηηη(zzz)
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can sample from is suitable for the regularization of AAE, even a multimodal one. In
practice, an AAE model compared to a WAE behaves similarly as a GAN compared to
a VAE. The adversarial loss leads to less blurry reconstructions and generated samples
at the cost of higher training instability [163]. One way to gain advantages of both is
to use an AAE architecture as depicted in Fig. 3.7 and add the MMD regularization
term (3.19) to the loss (3.21).

The single-mode prior p(zzz) of the VAE model stimulates the distribution qφφφ(zzz|xxx) to
have a single mode as well, and therefore it is hard to fit data with a multi-modal latent
distribution. The publication [170] proposes a learnable multimodal Vamp prior re-
alized as a mixture of K ∈N independent Gaussian components. However, the Vamp
prior is not compatible with the basic VAE model since its use does not lead to an
analytical expression of the KLD (3.12). Fortunately, we have just described two al-
ternatives that only require samples from the prior and which are viable with Vamp.
The parameters of the components of the mixture can be then learned together with
the parameters of the model. We will present some experiments with this prior in
Chapter 4.

3.2.3 Generative autoencoders in anomaly detection

Anomaly scores

The likelihood function (3.7) constitutes the ideal anomaly score. Some training losses
such as ELBO (3.11) were designed as approximations of the likelihood and can thus be
used as anomaly scores. However, this interpretation is not so clear for other training
losses, i.e. (3.18) or (3.21), hence these models were proposed for anomaly detection
with separately defined anomaly scores. Nevertheless, many scores are interchange-
able, giving rise to another degree of freedom (hyperparameter) for the use of au-
toencoders in anomaly detection. A common score is based on the first term in the
loss (3.10) i.e. a Monte Carlo estimate of the expectation of conditional log-likelihood
over the encoder −Eqφφφ(zzz|xxx)[lnpθθθ(xxx|zzz)], which is in the case of an isotropic Gaussian de-
coder equal to

srs(xxx) =
1

σ2L

L∑
l=1

||x −µµµθθθ(zzzl)||22. (3.22)

This score, called the sampled reconstruction error, was shown in [131] to be more
accurate than evaluating (3.7) by sampling zzz from the prior p(zzz), which is equal to com-
puting −Ep(zzz)[lnpθθθ(xxx|zzz)]. Further simplification is based on replacing samples from
the encoder by its mean − lnpθθθ(xxx|µµµφφφ(xxx)) and therefore avoiding sampling, yielding the
common reconstruction error score

srm(xxx) =||x −µµµθθθ(µµµφφφ(xxx))||22. (3.23)

The usage of (3.23) is justified by the assumption that taking the mean at the encoder
should approximate (3.22) while having lower computational demands. However, as
we show in some of the experiments in Chapter 4, the score (3.22) performs generally
better.

For adversarial autoencoders, these simplifications can be combined with the dis-
criminator score [23, 150],

sad(xxx) = αsrs(xxx) + (1−α)dηηη(µµµφφφ(xxx)),α ∈ [0,1]. (3.24)
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Figure 3.8: Anomaly detection with a VAE trained with the (3.17) objective on the
two bananas dataset with a varying value of β and different way of treating the decoder
variance σ2, where it is either considered fixed or it is subject to optimization and func-
tionally dependent on the latent encoding zzz. The contours of the anomaly score (3.22)
are shown.

The use of the score (3.22) is demonstrated in Fig. 3.8. In the plot, the difference be-
tween a fixed and estimated decoder variance is explored again, similarly to Fig. 3.6. It
is again shown that over-parametrizing the model might lead to undesired behaviour,
as in the rightmost subplot, where the VAE collapsed into a single-modal Gaussian
distribution.

The reconstruction error-based anomaly scores were criticized in [171] for not cap-
turing the true data density p(xxx). The proposed replacement is based on the orthogonal
decomposition of the data into xxx = xxx′ + eee⊥ where the xxx′ lies in the tangent space of to
the manifold defined by the decoder and eee⊥ is the orthogonal noise. This allows for a
decomposition of the marginal likelihood into a product of two orthogonal parts

p(xxx) ≈ p′(xxx)p(eee⊥), (3.25)

where p(eee⊥) is the reconstruction error term, e.g. (3.22), and p(xxx)′ is obtained through
transformation of variables, see Sec. 5.2.1 for more details. The calculation of (3.25)
is however quite computationally expensive, as it needs to compute the singular value
decomposition of a Jacobian.

Practical examples

In this section, we give an overview of the current state-of-the-art in VAE-like models
in anomaly detection. First, the reason for using the VAE model instead of a recon-
struction error of AE is the improved generalization that was described in the previous
section. It is discussed in [172] that a VAE model is equivalent to a non–linear robust
PCA model and is proficient at dismissing sparse outliers. The authors also make note
of the fact that VAE is very efficient in pruning unnecessary latent dimensions in the
case when the real latent structure has a lower dimension than the chosen VAE latent
space.

In [131] the authors present a so-called DonutVAE model with an enhanced loss
function to detect anomalies in times series data. The architecture is similar to that of
a vanilla VAE, but the training loss (3.15) is modified to consider the nature of the time
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3 Generative models in anomaly detection

series data. The authors then show that usage of this loss function improves overall
results. This however has a caveat – known anomalous samples must be available,
otherwise the proposed loss is the same as (3.15). Furthermore, the authors claim
that using reconstruction probability (3.22) can be seen as a weighted kernel density
estimate. A similar problem is solved in [173], where a VAE model coupled with an
LSTM recurrent neural network with an attention mechanism is used for detection of
anomalies in time series. Again, the model operates in the semisupervised setting, and
it is able to capture the temporal structure in the data.

In the self-adversarial Variational Autoencoder (adVAE) [174], an encoder-decoder
pair is augmented with a transformer [175], whose goal is to simulate anomalies during
training. A seeming flaw of the model is that it is trained only on normal data, and
there is no link between the real and the simulated anomalies, even though the authors
claim its superiority over a number of well-known competing methods. The sampled
reconstruction error 3.22 is used as an anomaly score.

A variant of AAE is used in [153] where it is benchmarked on the MNIST prob-
lem. Standard normal distribution prior is compared to a Gaussian mixture model
(GMM) latent prior and a special rejection component is introduced for the repre-
sentation of anomalies. In [176] the AAE model is compared to VAE on the task of
detection of brain abnormalities in MRI images. The loss function of the autoencod-
ing part is enhanced by a term γ ||zzz − zzz′ ||,γ > 0, where zzz is a latent representation of
a sample xxx and zzz′ is the latent representation of the reconstructed sample xxx′, which
is supposed to improve consistency of the representation. The thesis [177] also uses
AAEs for the detection of abnormalities in videos. The model presented in [171] uses
an additional discriminator on top of the decoder in AAE to improve its reconstruction
and generative properties. The model is then tested for anomaly detection on standard
benchmark datasets.

Despite its name, GANomaly [178, 179] is more related to adversarial autoencoders
than to GANs. It consists of an encoder-decoder-encoder architecture with a discrim-
inator, similar to an AAE. The anomaly score is the difference between latent repre-
sentations of a sample after the first and second encoding. An upgrade to this model,
skip-GANomaly [180], uses skip connections in a U-Net type architecture. Here, the
anomaly score is a combination of the reconstruction error and feature-matching loss.

Another way of using generative autoencoders for anomaly detection is to combat
the curse of dimensionality by employing their ability to produce a low–dimensional
representation of high–dimensional data that preserves the important relations be-
tween individual observations. Then, an anomaly detection model (be it a generative
or a classical one) can be trained on the data encoded in the latent space. This two-
stage approach is especially useful when the target domain is image data. The usage of
this technique will be demonstrated in an experiment in Section 3.4. It has also been
used in many publications [181, 182, 38, 17]. In [183], both stages are a VAE and the
second stage has the same input and latent space dimensionality (therefore it does not
compress data at all). Although this paper does not present an application in anomaly
detection, it shows an improvement in learning of the latent space prior. The authors
of [75] couple an ordinary autoencoder with a Gaussian mixture model represented by
a neural network. The AE reduces the problem dimension to help overcome the curse
of dimensionality, while the GMM model serves as a density estimate in the latent
space. Both the autoencoder and the GMM model are learnt jointly which improves
the performance of the model. Secondly, the input of the GMM model is not only the
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latent representation, but also the reconstruction error of the sample. Although this
model is not based on VAE, the proposed loss function can be viewed as being similar
to the general form (3.18), as it imposes a structure on the distribution of encodings.

In [38], the model optimizes the projection of data (by virtue of NNs) to a new
space, where they can be easily enclosed in a sphere of minimum radius. The approach
presented in [17, 182] explicitly splits the creation of the detector into two parts. It first
trains a VAE (and its variants), and then it fixes the encoder. The anomaly score is cal-
culated by a kNN [17] or by OC-SVM [182] detectors in the latent space, obtained by
projecting the sample by the fixed encoder. The two-stage models can also be viewed
as a kNN with a trained metric or OC-SVM with a trained kernel. The embedding can
be optimized differently, for example, by enforcing the margin between anomaly can-
didates and normal data as done in the REPEN [83] method, which uses an ensemble
of 1NN detectors as the second stage.

3.3 Normalizing flows

Generative models that are based on normalizing flows aim to model the data distri-
bution p(xxx) in a general and expressive manner. While GANs do not explicitly consider
a model for p(xxx) and only build a proxy (generator) that enables sampling, VAEs in-
stead optimize a posterior pθθθ(xxx|zzz) through a lower bound on the data log-likelihood.
In this regard, normalizing flows are the most exact in handling the data distribution.
This is at the cost of some requirements that need to be followed when building and
training a normalizing flow model that will be described in the following text. Nor-
malizing flows have been used to model complex probability distributions in multiple
publications [34, 184, 185, 186]. Since the exact log-likelihood of a new sample is read-
ily available when using a normalizing flow model, they have been applied to anomaly
detection tasks in [134, 135, 187, 188, 189].

Generally, a normalizing flow is a transformation fννν : Z → X that can be used to
express a data sample xxx ∼ p(xxx) as

xxx = fννν(zzz),zzz ∼ p(zzz), (3.26)

where p(zzz) is the prior which has some desirable properties. The defining property
of normalizing flow models that differentiates them from VAEs and GANs is that the
transformation fννν must be invertible, and both fννν and f −1

ννν must be differentiable. This
means that the dimension of xxx and zzz must be the same, so here we assume Z = X = R

d .
Therefore, from (3.26) and the formula for the change of variables, we have

p(xxx) = p(zzz)
∣∣∣∣∣∂fννν(zzz)

∂zzz

∣∣∣∣∣−1

= p(f −1
ννν (xxx))

∣∣∣∣∣∣∂f −1
ννν (xxx)
∂xxx

∣∣∣∣∣∣ (3.27)

which contains the determinant of the square Jacobian matrix. In practice, the normal-
izing flow fννν is implemented as a neural network with weights ννν. Notice that since it
is fully invertible, we do not need an encoder-decoder pair like in a VAE. Again, like in
the case of the vanilla VAE and GAN models, the prior might be e.g. N (0,I). Thanks
to (3.27), the model can be directly optimized using the log-likelihood − lnp(xxx). When
properly trained, it is possible to use a normalizing flow model to generate new sam-
ples using (3.26) or evaluate its density using (3.27), which is the basis for anomaly
detection.
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3 Generative models in anomaly detection

One can see the transformation fννν as a process of reshaping the space R
d in order

for p(zzz) to closely fit p(xxx). This process is commonly broken down into incremental
steps described as a series of K ∈N elementary invertible operations (flows)

fννν = fννν,K ◦ fννν,K−1 ◦ . . . ◦ fννν,1 (3.28)

which are composed together to form the full normalizing flow. This gives the model
its name, as we can observe the "flow" of transformed variables

zzzk = fννν,k(zzzk−1), k ∈ K̂,zzz0 = zzz,zzzK = xxx. (3.29)

From (3.27), we can express the normalizing flow objective as

Lf (xxx,ννν) = − lnp(xxx) = − lnp(zzz) +
K∑
k=1

ln
∣∣∣∣∣∂fννν,k(zzzk−1)

∂zzzk−1

∣∣∣∣∣, (3.30)

where the inverse evaluation in the direction from xxx to zzz is given by zzzk−1 = f −1
ννν,k (zzzk). As

mentioned earlier, this is used to train a normalizing flow model and is also a well-
suited anomaly score.

The different flow models vary in the way the individual transformations fννν,k are
constructed and trained, which is largely dependent on their application. In the Non-
linear Independent Component Estimator (NICE) [34], each individual flow is called
an aditive coupling layer, which is an operation that splits the input zzzk−1 into two
halves along its dimensions. The first half zzzk−1,1 remains unchanged and the second
zzzk−1,2 undergoes a transformation using a parametrizable function mννν , which is a sim-
ple fully connected neural network with ReLU activations. Therefore

zzzk,1 = zzzk−1,1 (3.31)
zzzk,2 = zzzk−1,2 +mννν(zzzk−1,1), (3.32)

and the reverse operation is

zzzk−1,1 = zzzk,1 (3.33)
zzzk−1,2 = zzzk,2 −mννν(zzzk,1), (3.34)

which is differentiable since mννν is differentiable and its jacobian is easily computed.
The Real-valued Non-Volume Preserving (RealNVP) [190] is based on the NICE model
and uses an affine coupling layer, where the second half of input dimensions undergo
a scale-and-shift transformation

zzzk,1 = zzzk−1,1 (3.35)
zzzk,2 = zzzk−1,2 ⊙ exp(sννν(zzzk−1,1)) + tννν(zzzk−1,1), (3.36)

where sννν , tννν : Rd → R
d/2 are again represented by neural networks. The reverse opera-

tion for the second input is

zzzk−1,2 = (zzzk,2 − tννν(zzzk,1))⊙ exp(−sννν(zzzk,1)). (3.37)

The Glow [191] demonstrates the applicability of normalizing flows to image data,
which is otherwise a very difficult domain. The flow used in this model consists of
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3.4 Anomaly detection with generative models: practical example

invertible 1x1 convolutions and it is demonstrated to be able to generate realistic im-
ages of faces. Some normalizing flow models use an autoregressive constraint [185]
to represent the flow of information from the prior to the data distribution. The most
prominent is the Masked Autoregressive Flow (MAF) [192]. A promising class of
Sum-product-Transform Networks (SPTN) [188] combines normalizing flows with a
graphical model. For a more complex overview and introduction to generative models
based on normalizing flows, see [193, 194].

Although there are some applications of normalizing flows to anomaly detection [195,
196, 197, 198], they are less popular than different autoencoding generative models.
This might seem surprising, as they are at the same time praised for the theoretical
exactness of the log-likelihood computation. However, it seems that matching high-
dimensional, complex distributions this way is very difficult in practice and requires
normalizing flow models with hundreds of flow levels. Thus, they are very slow to
train on complex data, which is also due to the requirement dim(Z) = dim(X ). The
Glow model requires 200 million parameters optimized over 13,000 GPU-hours to
achieve similar performance to computationally much less expensive alternatives [191].
Still, normalizing flows present a very interesting branch of generative modeling.

3.4 Anomaly detection with generative models: practi-
cal example

In this section, an application of generative modelling on a practical example is pre-
sented. It was previously published in [17]. Some of the different generative autoen-
coders presented in Sec. 3.2 will be used to model data measured in a complex sci-
entific experiment. Apart from the comparison of the previously presented anomaly
scores, consider this to be a preliminary exploration of the two-stage modeling ap-
proach to anomaly detection described at the end of Sec. 3.2.3, where an autoencoding
model is used to create a meaningful low-dimensional representation of complex data,
and which is then coupled with some classical detector from Sec. 2.2. The same con-
cept will also be further explored in Chapter 5.

3.4.1 The application problem

As already mentioned in the introductory chapter, physics has recently enjoyed an
influx of very large amounts of data [199, 200] that needs to be processed and most
importantly, from which new scientific discoveries may be extracted. This is also true
for the field of plasma fusion, which pursues the goal of controlling a fusion reaction
as a clean and almost inexhaustible source of energy. The ITER project [201], which is
going to be one of the largest and most complicated scientific experiments in history,
is expected to produce up to 2 petabytes of data every day. This naturally calls for
automatic processing of the data for a multitude of tasks, including anomaly detec-
tion. Currently, tokamaks are state-of-the-art devices for experiments with controlled
plasma fusion. In this section, an anomaly detection problem that appears during the
operation of the COMPASS [202] tokamak will be dissected.

During the operation of COMPASS, Alfvén eigenmodes [203, 204, 205] were ob-
served. Alfvén eigenmodes are magnetic instabilities that degrade the performance
of the tokamak and possibly endanger the plasma-facing components of the magnetic
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3 Generative models in anomaly detection

Figure 3.9: COMPASS shot 10870. Raw U-probe signal is in the upper plot. The cor-
responding spectrogram is below that. The score is the output of one of the tested
models over the spectrogram at f0 = 0.9 MHz and it is plotted third from the top. The
highest peak around 1.1s corresponds to a detected chirping mode. A close-up of the
spectrogram part containing the chirping mode as detected from the red part of the
score plot is at the bottom. The size of the close-up is 128 × 311 pixels.

chamber [206]. For this reason, their automatic detection is very important. Also, it
may offer an opportunity for the study of their interactions with high-energy particles
present in the plasma during an experiment. On COMPASS, chirping Alfvén eigen-
modes are estimated to appear in about 0.1% of all experiments. The primary means
of their identification is a manual inspection of spectrograms drawn from the signal
of certain magnetic probes, which is very time-consuming. See Fig. 3.9 for an example
of the measured signal, a spectrogram that is derived from it, and a detected chirping
Alfvén eigenmode. The spectrograms such as the one in Fig. 3.9 are large, so they are
divided into patches of 128x128 pixels which is a feasible input size for current con-
volutional neural network architectures. It is also enough to capture most of a typical
chirping mode as can be seen in the bottom plot in Fig. 3.9. The patches that contain a
chirping Alfvén eigenmode are considered to be anomalies. There are 370 labeled ex-
amples of patches with a chirping Alfvén eigenmode and a large database containing
33000 unlabeled (but considered normal) patches. This is a typical anomaly detec-
tion problem, where labeled anomalies are only used for evaluation and comparison
of different models and the training dataset is considered to be anomaly-free.
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xxx ∈R128×128×1 xxx′ ∈R128×128×1zzz ∈Rh

eφφφ(xxx) gθθθ(zzz)

Figure 3.10: A schematic diagram of the convolutional autoencoder used for our exper-
iments. Spectrogram patches are encoded through several convolutional, maxpooling
and dense (fully connected) layers into h-dimensional vectors (here h = 2) and then
decoded back with transposed convolutions and upscaling layers.

3.4.2 The experimental setup

Two basic experimental setups are tested in this section. Both are based on generative
autoencoders from Sec. 3.2. The basic models have similar architectures, but they dif-
fer in the probability divergences used to regularize the latent space. The KLD (3.12)
of a VAE model is compared against the MMD (3.19). A WAE model with a discrimina-
tor is regularized by JSD which results in the training losses (3.20) and (3.21). Finally,
a plain AE from Sec. 2.2.4 is included to verify that a regularized latent space is use-
ful. The individual components of the models (encoders, decoders, discriminators)
are represented by neural networks with convolutional architecture. This is the most
often used architecture for image data, as several levels of convolution operations are
designed to capture shift-invariant features at different scales of an image. For more
technical details on the construction of the models, see [17]. A schematic of a proto-
typical model is in Fig. 3.10. The models have Gaussian encoders and decoders. The
prior is eitherN (0,I) or Vamp, as described in Sec. 3.2.2, and the choice is treated as a
hyperparameter. Note that Vamp is only possible to use with the MMD or JSD metrics
or their combination.

In the first setup, the described models are compared against each other as pri-
mary anomaly detectors in the one class setting. This means that they are trained
on the (assumed) normal spectrogram patches and the anomaly score is the sampled
reconstruction error (3.22) in case of probabilistic autoencoders, and the reconstruc-
tion error (2.19) in case of the plain autoencoder model. This will test the proposed
robustness of generative autoencoders.

In the second setup, the encoding capabilities of generative encoders are leveraged
to create uncorrelated low-dimensional representations of spectrogram patches. This
is combined with a classifier in a combined two-stage model. The first stage is a con-
volutional generative autoencoder trained with unlabeled data. Through the use of
MMD or JSD measures and Vamp, a separation of the encoded data into clusters that
contain similar inputs can be enforced, which makes the task of the classifier easier.
The second stage is a classifier that is trained on encoded labeled data. Two different
classifiers were tested. The kNN classifier, which is similar to the kNN anomaly detec-
tor described in Sec. 2.2.2, and where the score of a sample is the average label of its
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Figure 3.11: Examples of spectrogram patches identified as containing a chirping
mode.

k-nearest neighbors, assuming that the label y ∈ {0,1} is zero for normal samples. The
GMM classifier with M components was fitted on the latent representations of both
labeled and unlabeled training data. Afterward, we determine one or more compo-
nents of the mixture into which the positively labeled training samples are most likely
to be projected via the encoder. Then, for a new sample, the score is the (average)
log-likelihood of the sample in the anomalous components.

For more details on model architecture and hyperparameters used in the experi-
ments, see [17]. For both experimental setups, 10-fold cross-validation over different
splits of training and testing data was done. In the experimental results below, the
models are selected using average performance on the test set. This is not ideal, as will
be shown in Chapter 4, but here the very low number of labeled anomalies would lead
to nonrobust results if the proper train/validation/test split was done, which is even
more pronounced by the splitting procedure described in Sec. 3.4.3.

3.4.3 Results

During the use of one of the proposed models in the production environment of the
tokamak, the following workflow would be observed. A set of experiments to be ana-
lyzed would be selected. Then, the needed signals would be extracted, spectrograms
computed, and divided into patches of appropriate size. These would be fed to a
trained model that would produce scores to enable a ranking of the patches. Since
this would produce thousands of patches and scores for each tokamak experiment, the
operator would ideally only want to examine a few with the highest score. The prob-
lem is illustrated in Fig. 3.11, where the output of such a procedure using one of the
best-performing models is shown. It contains 4 patches with the highest score, out of
which 3 contain a chirping mode. It illustrates that even though the neural network
encoding might be powerful, it is still basically a black box model and we need to be
very careful in its evaluation. Because of this, we evaluate the model performance not
only by AUC (2.1), and also by the precision@n score, which is the precision at the
n-highest scoring samples, and which is useful because it can be tuned to a certain n
given by the operating conditions of the tokamak. Here, we use n = 50, which is a re-
alistic number of samples that an operator can examine for each tokamak experiment.

Tab. 3.1 compares the performance of models in the one-class setup. The results
are split by the divergence used to regularize the latent space. The difference between
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divergence AUC precision@50

– 0.82 ± 0.03 0.86 ± 0.06
KLD 0.46 ± 0.05 0.50 ± 0.14

MMD 0.84 ± 0.03 0.90 ± 0.06
JSD 0.84 ± 0.05 0.83 ± 0.10

MMD + JSD 0.84 ± 0.01 0.87 ± 0.01

Table 3.1: Results of optimization of the one class model by the divergence used in
latent space regularization. The top three values are highlighted with shading. No
divergence is used in a plain autoencoder with the training objective (2.19).
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Figure 3.12: ROC and PR curves of selected models. For brevity, we include the best
one-class and best two-stage models in the same plot, although they are not directly
comparable.

MMD, JSD, and their combination in terms of AUC is negligible, but MMD is slightly
better than the rest in terms of precision@50. Surprisingly, vanilla VAE with KLD fails
in this task altogether, which indicates that the distribution of the patches with Alfvén
eigenmodes is difficult to model through a latent space with an unimodal prior.

The performance of the two-stage models is summarized in Tab. 3.2. What is im-
mediately obvious is that the simple kNN model is superior to the GMM approach
with any encoding. Also, MMD regularization produces the best results. We might
speculate that this might be due to the improved ability to produce a well-separated
encoding enforced by the used prior. Fig. 3.12 captures the ROC and PR curves for the
best one-class and two-stage models.

A question one might ask is whether the use of an autoencoder is truly necessary.
In the end, we are doing a projection from d = 128 × 128 = 16384 dimensional pic-
ture space into at most h = 64 dimensional latent space which must naturally lead to
a loss of information. As shown in Fig. 3.13, where h = 8, the autoencoder is able to
identify the difficult nonlinear correlations and improve the performance of a subse-
quent second-stage kNN model. The compression is clearly necessary for overcoming
the curse of dimensionality which says that the L2 distance degenerates in large dimen-
sions. An alternative approach to overcoming the issue of large input dimension might
be to train a classification convolutional neural network, which does the compression
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divergence classifier AUC precision@50

– kNN 0.80±0.07 0.88±0.10
KLD kNN 0.80±0.08 0.85±0.11

MMD kNN 0.91±0.06 0.94±0.05
JSD kNN 0.83±0.07 0.87±0.10

MMD + JSD kNN 0.86 ± 0.07 0.91±0.10
– GMM 0.75±0.06 0.80±0.10

KLD GMM 0.74±0.06 0.83±0.11
MMD GMM 0.66±0.12 0.72±0.12
JSD GMM 0.74±0.06 0.82±0.11

MMD + JSD GMM 0.76±0.06 0.84±0.10

Table 3.2: Results of hyperparameter tuning of the two-stage model across 10 cross-
validation splits.

by its nature. However, such a network would be highly susceptible to overfitting since
it requires a lot of labeled data that is not available.

Influence of the train/test splitting methodology

At first, the splitting of testing and training labeled patches was done on the level
of patches, without any regard for the spectrogram/experiment that the patch came
from. It was assumed that the labeled chirping modes are homogeneous across the
spectrograms. However, this turned out not to be true. Therefore, the train/test splits
were done on the level of spectrograms which were then subsequently divided into
patches. See Fig. 3.13 where on the left side, the AUC curves for different values of k of
the kNN model are for the case when the data split was done on the level of patches.
The blue line that is the result of a kNN fit peaks at k = 3. On the other hand, there
is no such peak on the right side of the figure, where splitting was done on the level
of spectrograms. This indicates that the positively labeled patches in a single spec-
trogram are much more similar to each other than to those in different spectrograms,
as only a relatively low number of neighbors is sufficient for optimal performance.
Also, the variance of the right-side plots is much higher, again indicating larger differ-
ences across spectrograms. If we continued with the splitting on the level of patches,
we would have a biased and too optimistic estimate of performance before using the
framework in a production environment.

Final remarks

To sum up the findings from this section: generative autoencoders are a viable tool
for unsupervised and semi-supervised anomaly detection. The information contained
in the latent spaces is useful for anomaly detection, provided we have at least some
examples of labeled anomalies. And finally, the kNN classifier proved to work very
well in this simple experiment. All of these findings are going to be useful in the
building of the model that is presented in Chapter 5.
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Figure 3.13: kNN fits for different values of k. The red line and band show the mean
and one standard deviation bands of the resulting AUC values when kNN is fitted to
the original vectorized images. The input space dimensionality is h = 16384. The blue
dashed line and band are the same quantities for a h = 8 dimensional representation
by a first-stage model. On the left, the training and testing splits were done on the
level of individual patches, leading to improved performance and less variance. On
the right, the split was done on the level of the original spectrograms, which is a more
realistic scenario. The standard deviation and mean were computed from 10 random
splits.
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4
Empirical comparison of anomaly de-
tectors

The practical use of anomaly detectors (as well as other machine learning models) con-
sists of finding the right choice of algorithm and its hyperparameters that is the most
suitable for the problem at hand. This usually requires a time-consuming effort of
training many models and evaluating them fairly on some test data. It is not clear,
however, if there is a method or a class of methods that is generally more suitable for
solving certain anomaly detection problems than any other. The objective of this chap-
ter is twofold: to provide an empirical comparison of anomaly detection methods of
various paradigms with a focus on deep generative models, and to identify the sources
of variability in data that have the largest influence on the suitability of a method.
The methods are compared on popular tabular and image datasets and under a vary-
ing amount of anomalies available for hyperparameter optimization. This serves to
establish a direction for the novel anomaly detector described in Chapter 5.

As far as anomaly detectors based on deep generative models are concerned, the
number of modifications and extensions of VAE or GANs is sharply increasing (as is
documented in Chapter 3), each claiming superiority over the prior art. Although al-
most every newly published method provides evidence of outperforming its predeces-
sors, sometimes there are contradictory results when the same methods are included
in different comparisons. This raises a suspicion that some of the methods are overspe-
cialized or poorly tested. This chapter is inspired by the paper "Do we need hundreds
of classifiers to solve real-world classification problems?" [209], and strives to com-
pare anomaly detectors under fair conditions to observe how the field has evolved in
the last twenty years — the oldest compared detector (kNN) was published in 2000.
Specifically, it investigates if methods based on deep generative models offer a benefit
over methods based on alternative paradigms, either the shallow methods that were
introduced in Chapter 2 or deep architectures without the capability of generating
samples.

There is a number of works that try to achieve a similar goal, but we have found
some deficiencies (with respect to the previously stated goals) in most of them. Earlier
surveys [27, 31, 28, 24] do not compare to deep generative methods because they were
not developed or sufficiently popular at that time. Contrary to that, the study in [210]
contains a detailed description of deep models but provides experiments only with
the basic VAE and only on specialized video datasets. Ref. [62] introduces a taxonomy
of deep anomaly detection models but does not compare them experimentally. Other
recent surveys [58, 59, 60, 61, 211] either ignore deep generative models altogether
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Figure 4.1: Various aspects of anomaly detection comparison forming the context of
an experiment.

or describe them only theoretically, without making any experimental comparison.
The most relevant prior art is [35], which tries to theoretically link deep and shallow
techniques. But again, an extensive experimental comparison of different generative
models is missing. One would also expect papers introducing new methods to contain
such a comparison. Some of them do [24], but generally, we have found comparisons
limited (e.g. using a small number of datasets or methods) or flawed, which is elabo-
rated below.

How do we avoid the aforementioned deficiencies? First, eight shallow methods
from Chapter 2 serve as a baseline, with which we compare the generative models and
other state-of-the-art deep methods from Chapter 3. Second, the comparison uses a
large number of tabular (40) and image (6) datasets popular in the evaluation of deep
models, which are described in Appendix B. Third, all methods have been given the
same conditions, which primarily means the budget for optimization of hyperparam-
eters, as [212] has shown this to have a significant impact.

This chapter is organized as follows. In Sec. 4.1, the anomaly detection contexts
that have the greatest influence on the outcome of our experiments are defined. Sec. 4.2
details the datasets, different approaches to the selection of hyperparameters, and
other design decisions in the experimental setup. Sec. 4.3 discusses the experimental
results and lessons we have learned. We summarize the chapter with a recommenda-
tion to practitioners and our suggestions for future work. The original paper [213],
which this chapter summarizes, contains more, mainly technical details and results.

4.1 Anomaly Detection Contexts

While many practitioners are eager to see which method is the best for their appli-
cation, the specifics of the application may differ. In this chapter, a large number of
experiments are conducted in order to identify the main sources of variability influenc-
ing the performance of anomaly detection methods. The number of combinations of
these aspects is huge. Therefore, we have chosen these key axes of variability: datasets,
hyperparameter selection strategy, and economic point of view. From these axes, we
select a few discrete points, on which we will provide a comparison. The particular
combination of the selected aspects will be called a context, see Fig. 4.1 for illustra-
tion.

The first axis is the target data domain. Our experiments use two types of datasets:
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tabular and image. This is the most obvious split, and indeed most authors of prior
art test their methods on either choice of data. Another possible way to look at data
is whether they contain statistical or semantic anomalies, see Sec. 1.1. Statistical
anomalies should be located in areas of a low likelihood of the normal class, while
semantic [52] anomalies cannot be differentiated from normal data statistically. This
is because they appear in datasets with multiple sources of variations, where only some
of them are considered anomalous. Such types of anomalies are most common in im-
age datasets. The suitability of the compared methods for the dataset context axis is
studied in Sec. 4.3.1.

The second axis of variability is the hyperparameter selection strategy. It should be
a gold standard that the experiments are repeated on different splits of data to train-
ing, validation, and testing subsets, especially if the datasets are small. However, in
most of the reviewed recent papers [151, 174, 23, 178, 133], this procedure was not
mentioned with the exception of [38]. Therefore, our comparison fills this gap. Also,
it is important to define the nature of information available for the selection of the hy-
perparameters: it is indeed a very different task if there is some (often small) number
of known anomalies in the validation dataset that can be used to choose hyperparam-
eters by cross-validation - this is the anomaly validation scenario. On the other hand,
in the clean validation scenario, the validation dataset contains no anomalies. In our
experience, the former case is more common. Our observations are summarised in
Sec. 4.3.2.

The third axis is the economic aspect of a problem. There might be serious com-
putational restrictions present in solving real-life problems. One might then not opt
for a method that promises state-of-the-art performance, but for another that reaches
slightly worse performance but can be trained economically, and its performance is
robust with regard to hyperparameter optimization. This tradeoff is captured by the
train/test computational demands of a method. More details on this can be found in
Sec. 4.3.3.

4.2 Experimental setup

In order to achieve a fair and robust comparison, a strict procedure for testing each
model was followed, which is briefly described in this section. For more details, see
the original publication [213].

4.2.1 Data

Two criteria guided the choice of datasets (mainly the tabular ones): first, they ought to
be publicly available, and second, they should appear in surveys or articles presenting
new methods. We conduct experiments both on tabular (see their list in Appendix B.1)
and image datasets (see Appendix B.2). In the setting of this whole work, a single
class (of digits/objects) is considered normal and the rest anomalous. Therefore, one
classification image dataset is transformed into ten different anomaly detection sub-
datasets. Since the MNIST, FashionMNIST, MVTec-AD, and MNISTC datasets have a
rich and consistent number of samples in the normal class and clear anomalies, we
consider them to be statistical anomalies. On the other hand, images in the majority
of classes in CIFAR10 and SVHN2 have a strong background and are thus considered
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Table 4.1: Overview of the main classes of compared methods and the acronyms used
in the text.

to contain semantic anomalies. This prior division is also supported by a different
behavior of different methods as reported in the following text.

The normal data samples in each dataset were randomly split in 60%/20%/20% ra-
tios to train/validation/test subsets, respectively. Anomalous data samples were split
such that 50% were in the validation part and 50% in the testing part, which means
the training subset has not contained anomalous samples. 1 The proportion of anoma-
lies that were used in the validation phase varied from zero to the selected 50%. This
was done five times to produce different folds in all tabular and small (MvTec-AD and
MNIST-C) image datasets, but only once for other image datasets, as the folds would
be very homogenous, see the original paper.

4.2.2 Models and their hyperparameters

Since the number of tested models is quite large, Tab. 4.1 offers their overview together
with acronyms used in graphs and tables and also an orientational division of the mod-
els into separate categories. Most of the deep models were coded from scratch since the
original implementations were either missing or non-functional. Properly exploring
the space of hyperparameters of all models is paramount to achieving fair and compa-
rable experimental comparison, yet this is often superficially treated. Researchers of-
ten use default or recommended values, ignoring that they are sub-optimal on datasets
they use in their comparison. The conflicting results of the MOGAAL method in the
original publication [151] and in [174] demonstrate our argument. Another proto-
typical example is OC-SVM, which is typically used with Gaussian kernel and with ν

1A training set without any anomalies is in practice very optimistic, but this decision removes an-
other degree of freedom from the evaluation for the sake of clarity of results.
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set to some default value, e.g. 0.05 [24], but can achieve better results with different
kernels. The choice of hyperparameters in anomaly detection is everything but easy.
But this means that the experimental settings should be set up such that all methods
have been optimized equally. We conjecture that recommended and default values of
hyperparameters are strongly correlated with the choice of evaluation datasets in the
publications that recommend them.

In order to explore the hyperparameter space of each method properly, we have
employed a random search over a predefined grid for each method. This allows the
construction of sections through the space for sensitivity studies. Moreover, it is fre-
quently more efficient than grid search [214] and more flexible. For each model,
dataset, and repetition, we sampled 100 configurations from corresponding sets of
hyperparameters and trained the models with them. A fixed time budget was also
given for the training of each model. This automatically penalizes complicated mod-
els, that might theoretically achieve great performance but are too computationally
demanding.

A thorough exploration of the hyperparameter selection context also requires chang-
ing the criteria of model selection. When anomalies are available for validation, we
select hyperparameters maximizing the AUC on the validation set. For experiments
with no available anomalies, we have decided on the following hyperparameter selec-
tion mechanism. For shallow methods, we have used default hyperparameter values
from literature - either the authors of the method recommended them, they were used
in a survey, or are default in a given implementation. Their overview is found in [213].
For deep methods, this is unfortunately impossible since their hyperparameter space is
much larger, and the values are usually tuned to a specific dataset. Therefore, to have
a universal solution, we have selected the already trained and evaluated models based
on the lowest average anomaly score on the clean validation data, i.e. validation data
without anomalies. This approach is theoretically justified for models with proper
likelihood (such as flow or VAE models), which also perform better in this scenario.

4.3 Experimental results

Unless specified otherwise, the performance results are estimates of the AUC on the
testing set and averaged over all folds of the random cross-validation repetitions. When
ranks are reported, they are calculated by ordering methods on each dataset and cal-
culating the average across them (as recommended in [215]). Hyperparameters are
selected using the best average performance over the folds of the validation dataset.

4.3.1 Dataset context

The results of the experimental comparison on all dataset types are presented in the
form of critical difference diagrams (CDD) as recommended by Demšar [215], see
Fig. 4.2. These diagrams show the average rank of detectors across the datasets to-
gether with a confidence band that indicates that a statistical test cannot reject the
hypothesis that two detectors perform the same. What follows is a commentary on the
influence of the datatype with respect to two types of hyperparameter selection strate-
gies differing in the number of anomalies in the validation set as defined in Section 4.1:
i) anomaly validation context, and ii) clean validation context.
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Figure 4.2: Critical difference diagram of models ranked via the test AUC. Models
whose performance is statistically indistinguishable have a difference of ranks under
the critical value of the Nemenyi test CD0.1 and are joined by a horizontal band. Re-
sults are presented for different types of datasets: tabular (Top row), image datasets
with statistical anomalies (Middle row), and image datasets with semantic anomalies
(Bottom row); and two different hyperparameter selection cases: using anomalies in
validation (left) and using clean validation (right).

Tabular data: OC-SVM performs the best, and it is statistically better than almost
all detectors except autoencoder-based generative models and VAE combined with OC-
SVM in the case of anomaly validation context. The first 11 places (roughly one half)
belong to models that can be divided into three groups: (i) OC-SVM and its variants,
which estimate a density level of a distribution; (ii) flow models and kNN, which esti-
mate the pdf (un-normalized in case of kNN); (iii) and variants of autoencoders, where
the reconstruction error is related to pdf as explained in Sec. 3.2. The same types of
methods occupy the top positions in the clean validation context, Fig. 4.2b), however
in a different order. The best is the kNN (due to the simplicity of its hyperparameters),
and all other pdf-modeling methods (flows) have improved relative to the anomaly
validation context. The autoencoder-based methods moved beyond shallow methods
(LOF, ABOD, IF). We believe that models in the lower half of the scale in both vali-
dation contexts are not suitable for detecting statistical anomalies. We cannot explain
the poor performance of MOGAAL, DAGMM, and adVAE, and we attribute it to dif-
ferent experimental environment. DeepSVDD was primarily implemented for image
problems, where it performs relatively well.

Moreover, differences in mean ranks of many models in Fig. 4.2 are statistically
insignificant at level p = 0.1, which is disappointing. Assuming the ranks remain the
same, another 51 datasets would be needed to make the difference between OC-SVM
and VAE statistically significant on tabular data with 50% anomalies. This indicates
that the results are relatively noisy and can be easily changed for a different choice of
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4 Empirical comparison of anomaly detectors

datasets.
Statistical image data: WAE and VAE models have the best average rank when

evaluated on statistical image data, although their lead is not statistically significant
over most of the other models as is evident from Fig. 4.2c). The autoencoder-based
methods (AAE,VAE,WAE) also perform well in the clean validation context, comple-
mented by the kNN, Fig. 4.2d).

Semantic image data: A different story is told by Fig. 4.2e) where the ranking of
methods on image datasets with semantic anomalies is dominated by fmGAN by a
large margin in the anomaly validation context. However, it is also the worst method
in the clean validation context. In the opposite manner, OC-SVM and kNN perform
very poorly in the anomaly validation context, but they are among the best in the
clean validation context. The best-performing method in the clean validation context
is DeepSVDD [38]. We conjecture that the performance of the fmGAN is related to the
variability of its training. With a sufficient number of anomalies in the validation set,
it is possible to find one trained model that fits the problem.

4.3.2 Hyperparameter selection context

The influence of the hyperparameter selection procedure on the results in the previous
section is now studied in detail for a few selected methods. We choose only those that
scored among the best in the previous section. First, we analyze the sensitivity of these
methods to the number of anomalies in the validation set. Second, we study hyperpa-
rameter selection for two individual methods, the variational autoencoder family and
OC-SVM.

Impact of the number of anomalies in the validation set

The process of hyperparameter selection described in Sec. 4.2.2 depends on the avail-
ability of examples of anomalies in the validation set (recall that it is assumed that
the validation dataset does not contain unknown anomalous samples, i.e. is not con-
taminated). Fig. 4.3 displays the influence of the number of anomalous samples in the
validation set on a finer grid between the two contexts reported before. Note that for
the first point on the x-axis where the clean validation dataset was used, the mecha-
nism of model selection was different from the rest of the graph. This is the reason for
the significant difference between the clean context and the remaining points.

First, we observe that the quality of the models selected using anomalies improves
with an increasing number of anomalous samples, which is expected. However, for a
low number of anomalies, many methods perform significantly worse than in the case
of the clean validation context. This behavior is notable across dataset types, especially
for OC-SVM, and to some extent VAE. We conjecture that the hyperparameter selection
procedure of those methods has a tendency to overfit, and its hyperparameters are not
robust. In contrast to this, the performance of kNN, WAE, and RealNVP degrades
slowly with the declining number of anomalies, which suggests that they are quite
robust in difficult operating conditions. We attribute it to the fact that these methods
are more exact in their estimation of data likelihood than the rest.

Second, we notice that the experimental results on the semantic image datasets are
generally poor, as the AUC of the best model (fmGAN) on CIFAR10 is 0.72 and sim-
ilarly on SVHN2, where the best model achieved 0.74. On the other hand, anomaly
detection methods perform well on statistical image datasets. This indicates, contrary
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Figure 4.3: Sensitivity of methods to the number of anomalies available in the vali-
dation set for hyperparameter selection visualized in terms of the achieved AUC ag-
gregated over all datasets in each category (columns). The clean validation context is
the left-most point on the x-axis, and the anomaly validation context (50% of available
anomalies) is the right-most point. The points in-between were obtained by selecting
models with the highest precision on the reported portion (e.g. 5%) of validation sam-
ples with the highest anomaly scores.

to popular belief that the models fail to learn or identify the important semantic infor-
mation, or they consider different semantic information anomalous, and they should
be told which semantic aspect of an image should be considered as an anomaly –
e.g. blurred images might be anomalous as well. Again, more detailed results, e.g.
non-aggregated AUC values for individual datasets, or illustrative samples of detected
anomalies can be found in the original publication [213].

A practitioner might also desire a method robust with respect to a poor choice of
hyperparameters. In general, deep methods in our experiments have demonstrated
higher variance, probably due to the large number of hyperparameters and stochastic-
ity involved in their initialization and training via batched gradient optimization. In
this respect, GAN-based models seem to be the least robust, which is in line with [216]
stating that GANs are not directly optimized for anomaly detection. This hints at the
potential cost of hyperparameter optimization — with higher performance variance,
one is less likely to train a well-performing model in a given number of attempts. On
the other hand, given enough labeled anomalies for hyperparameter selection, the fm-
GAN model gained a noticeable edge on semantic image anomalies.

The good performance of the fmGAN model on semantic anomaly data is perhaps
a little surprising in light of the observations made e.g. in Sec. 3.1. There, the covering
of the input space by the discriminator seems to be quite non-robust as the discrimi-
nator tends to give low anomaly scores even in places where there are no training data.
Our hypothesis on why the discriminator performs well on semantic image data is that
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4 Empirical comparison of anomaly detectors

due to the high dimension, the space is much more sparse than in the case of tabu-
lar data, and such degenerate behaviour which is observed in Fig. 3.2 then happens
less frequently. Another explanation might have some connection to noise-contrastive
estimation. In [221], a simple approach to anomaly detection is proposed - a logistic
regression model that is trained to distinguish normal training data and samples from
a uniform distribution which poses as a proxy for the distribution of anomalies. On
low-dimensional problems, this approach works well, but as it requires a large volume
of the input data space to be covered by samples, it soon reaches its limits. There are
some similarities between this approach and the (fm)GAN model - the generator and
the uniform sampler have the same role as well as the discriminator and the logistic re-
gression model. It is possible that the generator samples the input space in such a way
that fewer samples are required than in the noise-contrastive approach, as it only sam-
ples from the input space around the input training samples. Unfortunately, a proper
exploration of this hypothesis is beyond the scope of this work, although a generator-
discriminator pair is successfully used in Chapter 5 to detect semantic anomalies.

Sensitivity Analysis of the VAE family

The richness of the landscape of models that are based on the VAE is evident even from
the relatively short overview in Sec. 3.2. These methods form a whole family with mul-
tiple sources of variability: i) approximation of the likelihood in training (loss func-
tion), ii) the choice of latent prior, and iii) the anomaly score. We will analyze the sensi-
tivity of the results to these choices on tabular data in the anomaly validation context.
We focus on this family since most of the novel deep generative models for anomaly
detection are based on the autoencoder architecture, as well as the novel model that
is introduced in Chapter 5. Additional degrees of freedom include the parametriza-
tion of variance of pθθθ(xxx|zzz), which was discussed already in Fig. 3.6. The variance can
be either fixed (called VAE-constant), used in [182, 174, 179], a trainable scalar (called
VAE-scalar), or a trainable full diagonal (called VAE-diagonal), used in [130, 131, 150].
In the experiments, all three variations were tested on tabular data; however, on image
data, the full diagonal was skipped due to computational constraints (and in line with
the prior art, where only scalar variance is used).

The overall comparison in Fig. 4.2 revealed that WAE and vanilla VAE variants
perform best. The other degrees of freedom, namely richness of prior, used anomaly
score, and parametrization of the variance, were treated as hyperparameters. Fig. 4.4
extends the study by showing the distribution of ranks over tabular datasets for differ-
ent variants of VAE, including GANomaly and adVAE. First, notice that the spread of
the method’s ranks over various datasets is significant, as even ranks of the best meth-
ods vary from 3 to 15. This means that the conclusions below need to be taken with a
grain of salt, as the experimental results are extremely noisy.

The ELBO-based score (3.15), -el, together with the orthogonal decomposition (3.25)
of the likelihood [171], -jc, does not perform well. The sampled reconstruction er-
ror (3.22), -rs, almost always performs better than the usual reconstruction error, -rm,
calculated according to (3.23). This demonstrates that the common approach of replac-
ing the mean of the decoder with that of the encoder is inferior but computationally
cheaper (see Tab. 4.2 with prediction times). The inclusion of the discriminator score
in (3.24), -di, of AAE (an autoencoder combined with GAN) seems to be also on par
with the sampled score (3.22).
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Figure 4.4: Sensitivity study of various variants of autoencoder-based methods dis-
played in the form of boxplots of their ranks in the AUC metric achieved on the tabular
datasets. The first three letters of the method’s name denote the training loss. Models
with the -d- middle part estimate the full diagonal of the decoder variance, -s- estimate
only a scalar, and -c- use a fixed scalar variance as a hyperparameter. All variants are
using the standard Gaussian latent model. Models using the VampPrior are denoted
by extending the decoder variance symbol by the letter v-, i.e. -dv-, -sv-, -cv-. The last
part of the name denotes score, -rs stands for the sampled rec. probability (3.22) with
L = 100, -rm for (3.23), -el for the ELBO (3.15) composed of -rs and KLD, -jc for (3.25),
-di for (3.24).

From the same figure, we also conclude that the models modelling the full diagonal
in pθθθ(xxx|zzz), -d-, seem to be better than the scalar, -s-, or constant, -c-, variants. This
result is important, as many comparisons in the prior art use the VAE-constant, despite
the version with full diagonal being discussed in the original publication [217]. It also
comes as a bit of a surprise, considering that the reconstruction was of higher quality
with a scalar variance in the simple experiment in Fig. 3.6.

The rich prior distribution on the latent space proposed in [170], VAMP, -v-, does
not seem to give an advantage in the anomaly detection except in the AAE, although
it performed quite well in the practical anomaly detection problem in Sec. 3.4. This
might be due to most of the anomaly problems presented in this chapter having an
unimodal distribution of normal samples, as opposed to the real-world distribution
of tokamak data. Similarly, recent variants adVAE and GANomaly do not seem to
perform well on the tabular data, but they were not evaluated on them in the original
publications.
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vae-s-rs vae-d-rs vae-s-rm vae-d-rm vae-d-jc

t̄pred [s] 12.10 18.51 0.11 0.15 57.31

Table 4.2: Average prediction times on the tabular datasets for different combinations
of VAE scores and decoder variance estimations. The -d- part stands for a model with
an estimate of the full diagonal of the decoder variance, -s- is a scalar estimate. Sam-
pled reconstruction error (3.22) (with L = 10 samples) is denoted as -rs, -rm is the
anomaly score (3.23) and -jc is (3.25).

Sensitivity study of OC-SVM

This result on the optimization of OC-SVM, taken from [213], is not directly related to
the main result presented in Chapter 5, but we found it interesting enough to include it
in this compilation. The domination of OC-SVM on tabular data in anomaly validation
context contrasts with many prior experimental comparisons [28, 218, 216, 87, 219,
174]. The search for the culprit found it to be the hyperparameter selection. This study
has varied the ν parameter, kernels, and their parameters, which is much more than
most of the prior art does, which is fixing the kernel to RBF and testing a few values of
its width γ and ν. Inclusion of other kernels into the search for hyperparameters seems
to be the major source of improvement in this case. Replacing the OC-SVM with one
restricted to use only the RBF kernel and ν = 0.5 yields an increase in average rank
from 2.9 to 8.1 with an average decrease in performance by 0.06, measured in AUC
in the anomaly validation context. This version of OC-SVM is then easily surpassed
by variational autoencoders and kNN, as demonstrated in [213]. The importance of
the choice of the kernel is furthermore illustrated by the fact that the sigmoid kernel
was the optimal choice for 23 datasets, while the RBF kernel was optimal only for 13.
Ref. [28] mentions that setting ν = 0.5 provides universally good results, which may
be the reason why many authors do not tune it. In theory, it should be set to much
lower values (ν = 0.05) corresponding to the presumed low ratio of anomalies in data,
but with Bayesian optimization, we found that the best estimate of ν was in some cases
even higher, such as ∼ 0.75 on the statlog-vehicle dataset.

4.3.3 Economic context

Practitioners ask for fast and accurate algorithms, but these two features rarely go
hand in hand, and a decision on a trade-off has to be made. When one plots model
performance against computational intensity, the interesting methods lie on the Pareto
frontier [220], as in the absence of an external factor, a rationally behaving practitioner
does not have the motivation to choose a different model.

Fig. 4.5a-left shows the trade-off between accuracy and training time for tabular
data, where the absolute numbers were replaced by average ranks for robustness. The
Pareto frontier contains two methods, which are OC-SVM and kNN. The position of
OC-SVM is rather surprising, as its training time is known to scale poorly (quadrati-
cally) with respect to the number of samples, but it is caused by most of the tabular
datasets being small. Different results may arise for a dataset with many data records.
Fig. 4.5a-right shows a similar trade-off between accuracy and testing (inference) time.
OC-SVM is still on the Pareto frontier, but it is expensive, as the complexity grows lin-
early in the number of samples. The fmGAN, GAN, and DAGMM methods are there
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Figure 4.5: Scatter-plots of the average rank in the AUC metric on the tabular (a) and
image (b) data versus average rank of the computational complexity of the displayed
methods measured via training time (left) and prediction time (right). MO-GAAL has
been omitted from the tabular figures, as its performance positioned it too far to the
right with the training time rank of 19.4 and the prediction time rank of 10.0.
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as well – these methods have fast inference but lower performance.
We provide results averaged over the studied contexts on image data. Due to the

variability of the results in each context, the x-axis will vary. In the averaged ranks,
VAE is on the Pareto front in both fit and prediction times, see Fig. 4.5b. Its pre-
diction complexity is given mainly by choice of the number of samples taken in the
computation of the sampled reconstruction score (3.22). The kNN detector has negli-
gible training time, given only by the construction of the tree structure representing
data, but seems to be mostly unusable on image data due to slow prediction times on
datasets that are large in dimension and the number of samples. The fmGAN finds
itself in a completely reversed scenario.

4.4 Conclusion

The presented extensive comparison of anomaly detection methods based on deep gen-
erative methods, namely variants of flows, variational autoencoders, and generative
adversarial networks with shallow methods based on alternative paradigms revealed
that the performance of anomaly detection methods strongly depends on experimental
conditions. We have identified the most important contexts (sources of variation) to be
the type of data, availability of labeled anomalies for hyperparameter tuning, and the
available computational power. There are also factors of variance that have a smaller
relevance in the conducted experiments in [213], such as the use of ensembles, al-
ternative performance metrics, and Bayesian optimization of model hyperparameters,
which did not have an effect on the relative performance of different models.

This is the list of some of the most important practical observations and recom-
mendations, some of which will be relevant in Chapter 5.

• Methods with more exact likelihood modeling, such as kNN, flows, and autoencoder-
based models, perform better in scenarios with a limited number of anomalies
available for hyperparameter tuning.

• Majority of the methods fail to detect semantic anomalies. The exception is the
fmGAN, which uses a generator-discriminator pair, but only if given enough
computational resources and many anomalous samples for cross-validation.

• OC-SVM, when properly tuned, can defeat most of the state-of-the-art on tabu-
lar data, although it suffers from overfitting when hyperparameters are selected
using too few anomalies in the validation set.

• The method of the first choice appears to be the VAE/WAE due to its relatively
cheap, precise, and consistent performance in most of the experiments. How-
ever, it possesses so many degrees of freedom that it forms a full family of meth-
ods. It was found that the best performance is obtained when estimating the full
variance of (tabular data) samples on the output of the decoder and evaluating
anomalies using sampled reconstruction score.

Many aspects have not been covered and remain a topic of future work, such as
the identification of the relevant kind of anomalies in the semantic datasets or the
design of ensembles of methods of various types. Although we have shown that the
number of anomalies available for validation is an important context, there was no
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4.4 Conclusion

further budget for a comparison of anomaly detection methods with active learning.
We have also completely left out the comparison of models on temporal data, such as
time series or video, which is a very challenging task. Finally, an interesting area to
study further is the influence of the presence of unlabeled anomalies in the training
data.
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5
Anomaly detection in multi-factor data

5.1 Introduction

In the course of this text, we have been gathering information about state-of-the-art
methods, available datasets, and potential unsolved problems in anomaly detection.
The ultimate goal of this endeavour was to find an intriguing anomaly detection prob-
lem and propose a novel method for its solution, which will be presented in this chap-
ter. Here is a list of the findings that have been gathered so far.

1. In Section 3.4, the problem of identifying anomalies in high-resolution image
data was solved and the two-stage model approach proved to be the most success-
ful. The best models were a combination of a probabilistic autoencoder, which
produced informative latent encoding, and a classical anomaly detector, which
operated on the encoded data of highly reduced dimensionality. The dimension-
ality reduction alleviated the computational burden from the second stage model
which could be more deeply fine-tuned. Eventually, a simple kNN detector was
the best choice for a second-stage model.

2. In Chapter 4, a thorough comparison of existing anomaly detectors was done. We
have seen what are the most important contexts of an anomaly detection problem
(data type, number of labeled anomalies, and budget available for hyperparame-
ter tuning) that one should consider when choosing a method for solving a prac-
tical problem. It was shown that deep generative models gain an edge over other
methods when solving anomaly detection problems on image data, especially on
problems where semantic anomalies occur.

3. In the same chapter, it was shown that although probabilistic autoencoders are
generally well-suited for image anomaly detection problems, adversarial train-
ing might be beneficial for the detection of semantic anomalies [52] with enough
budget for hyperparameter tuning. In fact, the majority of the methods com-
pared in Chapter 4 failed in the detection of semantic anomalies.

Since the detection of semantic anomalies in images is a relatively novel field, we
have decided to cover this problem in this chapter using the findings described in the
list above. Semantic anomalies appear most often in visual data and their anomality
is based on the high-level (semantic) information in the image. For example, an image
(used in [213]) can be anomalous because it is blurred, or because it has a different
object in the foreground (e.g. plane in the sky instead of a bird in the sky), or dif-
ferent background (e.g. the plane is on a runway, whereas it is usually on the sky).
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5.2 Decomposing the anomaly score

From the point of view of the above definition, they are all anomalies, but the user
might be interested in anomalies of a certain type, or they might want the anomalies
to be automatically classified according to their type. This difference can only be made
based on the high-level, semantic information of an image. A good semantic detector
should be also robust to non-semantic shifts [222], i.e. data-generating factors that are
not present in the training data but are not considered anomalous. The detection of
semantic anomalies has been previously studied under the name subspace anomaly
detection [223, 224, 225]. The idea, as the name suggests, is that the anomaly is not
visible in the full input space, where it might be shadowed by noise, but only in the
subspace. The subspace is most of the time "axis parallel" or defined in a linear trans-
formation of the input space. Semantic anomalies further generalize this to non-linear
transformations.

It seems unlikely in practice that the subspace in which anomalies would be de-
tectable would be aligned with the input space, or with its linear transformation. Con-
trary, independent components emerge after non-linear projections as shown in [226,
227, 228, 229, 230, 231, 232], which motivates this work. Here, we propose to disen-
tangle the input into independent factors, each providing an anomaly score. Ideally, a
semantic anomaly and its source would be then better detectable by one of these scores
rather than by a score given to the original input.

In this chapter, the proposed disentanglement into independent factors and the
resulting composition of anomaly scores is first theoretically justified. This multi-
factor anomaly score is a weighted combination of anomaly scores corresponding to
individual factors of the disentangled latent space. In Sec. 5.3, the concrete details
(construction, training, and evaluation) of the novel model are described. In the exper-
imental Sec. 5.4, the proposed model is extensively compared to baselines on several
image benchmarks. It is demonstrated that the model is capable of detecting the fac-
tor that is the most likely source of the anomaly in the unsupervised case, and quickly
improves with very few labeled samples.

5.2 Decomposing the anomaly score

In this section, we will derive a general formula for the computation of the anomaly
score of a VAE model for the case when the latent space can be disentangled into inde-
pendent components. This will be useful as a theoretical foundation of the proposed
anomaly detector in Sec. 5.3.

5.2.1 Orthogonal generative model

Let us remind ourselves that the VAE (see Sec. 3.2.1) fits a generative model with data
xxx ∈Rd

pθθθ(xxx) =
∫
Z
pθθθ(xxx|zzz)p(zzz)dzzz pθθθ(xxx|zzz) =N (xxx;µµµθθθ(zzz),σσσ2I), (5.1)

where pθθθ(xxx|zzz) is the decoder and the prior on the latent h-dimensional variable z is
either fixed p(zzz) = N (0,I), or further parametrized pθθθ(zzz), e.g. as in [233]. The VAE
also includes an encoder qφφφ(zzz|xxx) and is optimized by minimization of the ELBO objec-
tive (3.11).
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5 Anomaly detection in multi-factor data

The above generative model (5.1) can be rewritten as xxx = µµµθθθ(zzz)+eee where eee is (usually
isotropic) Gaussian noise. This formulation emphasizes the need for marginalization
since µµµθθθ(zzz) is a random variable of dimension h (same as that of the latent space Z)
and noise eee is a random variable of dimension d, which is the same as the data. Equa-
tion (5.1) therefore marginalizes away random variables corresponding to latent z. Due
to this ambiguity, the assignment between x and z is not unique. In fact, for any xxx exists
zzz′ [171, 234] such that

xxx = xxx′ + +eee⊥ = µµµθθθ(zzz′) +eee⊥

where eee⊥ is the observation noise that lies in the normal space perpendicular to the
manifold defined by the decoder mean µµµθθθ(zzz). This interpretation implies indepen-
dence between µµµθθθ(zzz′) and eee⊥, which allows for the approximation

pθθθ(xxx) ≈ p(µµµθθθ(zzz′))p(eee⊥). (5.2)

However, the independence relation was found [234] to be sufficiently accurate
even for the original noise estimate, xxx = xxx′ + eee. The probability of the reconstruction
pθθθ(xxx′) is given by the change of coordinate formula from pz(zzz) (here we use the sub-
script z in order to distinguish that the distribution is on the latent space Z), yielding

pθθθ(xxx) ≈ pθθθ(xxx′)p(eee) = pz(µµµ
−1
θθθ (xxx′))

∣∣∣∣∣∣∂µµµ−1
θθθ (xxx)

∂xxx

∣∣∣∣∣∣p(eee). (5.3)

A gaussian noise model might be assumed, e.g. p(eee) = N (xxx − xxx′,σσσ2I). In practice, an
anomaly score for the orthogonal model s(xxx) = − logpθθθ(xxx) is computed as

s(xxx) = − logp(eee)− logpz(zzz)− log

∣∣∣∣∣∣∂µµµ−1
θθθ (xxx)

∂xxx

∣∣∣∣∣∣, (5.4)

which is essentially the reconstruction error with additional terms.

5.2.2 Anomaly in the latent space

Let’s observe how the above generative model changes when we assume the distribu-
tion on latent zzz to be multi-modal conditioned by hidden label y. This simplification
assumes that the latent distribution for normal and anomalous data is different. Let

pz(zzz|y) = pn(zzz)ypa(zzz)1−y , y ∈ [0,1], (5.5)

where y = 1 for normal data, y = 0 for anomalies, and pn(zzz),pa(zzz) are the latent distri-
butions of normal and anomalous data, respectively. Then from (5.4) we have

s(xxx|y) = − logp(eee)− y logpn(zzz)− (1− y) logpa(zzz)− log

∣∣∣∣∣∣∂µµµ−1
θθθ (xxx)

∂xxx

∣∣∣∣∣∣,
Since y is usually unknown, we will integrate it away by expectation over y,

Ep(y)[s(xxx|y)] =− logp(eee)− log

∣∣∣∣∣∣∂µµµ−1
θθθ (xxx)

∂xxx

∣∣∣∣∣∣
−
∫
Y
y logpn(zzz)p(y)dy −

∫
Y

(1− y) logpa(zzz)p(y)dy

∝− logp(eee)− log

∣∣∣∣∣∣∂µµµ−1
θθθ (xxx)

∂xxx

∣∣∣∣∣∣−α logpn(zzz) = s(xxx). (5.6)
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5.3 Shape-guided decomposition

where we assume Ep(y)[y] = α, and pa(zzz) ∝ 1, because the probability of an anomaly is
assumed to be the same everywhere, which then allows us to drop this term since it is
independent of xxx.

Now consider a disentagled model, where the data is generated from multiple in-
dependent latent spaces, zzz = zzz1, . . . ,zzzl ,

xxx = f (zzz1, . . . ,zzzl) +eee, (5.7)

where each of the latents has distribution p(zzzi) =N (0,I). Using the same derivations,
each of the latent spaces zzzi can be a potential source of different types of anomalies,
with hidden labels y = (y1, . . . , yl). Therefore, instead of (5.5), we have

p(zzz|y) =
l∏

i=1

pni (zzzi)
yipai (zzzi)

1−yi , yi ∈ [0,1]. (5.8)

Repeating derivation of (5.6) for multiple latent variables, the anomaly score becomes

s(xxx) = − logp(eee)− log

∣∣∣∣∣∣∂µµµ−1
θθθ (xxx)

∂xxx

∣∣∣∣∣∣− l∑
i=1

αi logpni (zzzi), (5.9)

where αi denotes the probability that the latent variable of the ith factor is generated
from the normal class. In this work, we assume that αi is not known during training
but has to be estimated in the validation stage from examples of anomalous samples.1

The interpretation of the values of αi will be important later, in Sec. 5.3, where we
construct the latent spaces to give them a specific meaning, and in Sec. 5.3.2, where
we describe their fitting. Fitting the values of all αi on a set of labeled data is equal to
estimating the mean of p(yi) for the given data. This can be interpreted as estimating
how likely it is for an anomaly to appear in the i-th latent in the context of the current
dataset.

In contrast, for a single data sample, we are more interested in the actual values
of yi , which are binary and which determine whether the sample is anomalous in the
context of the latent space i. Their estimation is equal to the estimation of the distri-
butions p(yi |xxx) and will be discussed in Sec. 5.3.3.

5.3 Shape-guided decomposition

We demonstrate the advantage of disentanglement in detecting semantic anomalies
on image data, because (i) the disentanglement has been researched mostly in this
domain [227, 231, 235], (ii) the anomaly detection community is the most active in
this field, and (iii) the findings of Chapter 4 showed that most deep generative models
are not very efficient when dealing with semantic anomalies.

For the construction of the proposed model, we assume an image xxx to be composed
of three main components: a mask (shape of the object), a background texture, and
a foreground texture (the object). This of course is not true for all images, but many
open datasets contain images that are structured this way. The mask together with the

1Based on the industrial experience of authors, this assumption is safe, i.e. there are usually examples
of anomalies, though their diversity might be low.
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5 Anomaly detection in multi-factor data

Figure 5.1: Examples of decomposition on the Wildlife MNIST dataset by the SGVAE-
GAN model. The first row contains the input samples, below that are the decoded
masks, backgrounds, foregrounds, and finally the whole reconstructions. The model
can learn appropriate masks in an unsupervised fashion.

foreground texture defines the semantic meaning of the object, as it is what defines the
class of the image in datasets. According to the above assumptions, each component
(mask, background texture, and foreground texture) is generated from an independent
variable. Therefore, for the latent distribution p(zzz) it holds that

p(zzz) = pzm(zzzm)pzf (zzzf )pzb(zzzb), (5.10)

where subscripts m,f ,b denote the mask, foreground, and background latent variable,
respectively. A representative example of a dataset where each image is composed of
three independent components is the Wildlife MNIST dataset [236]. It is constructed
using masks from MNIST [237] combined with foreground and background textures
from [238] (see more details on its construction in Appendix B). For examples from
individual classes see the top row of Fig. 5.1.

The independent decomposition (5.10) is akin to (5.7), but here we ascribe high-
level semantic meaning to the individual latent spaces. This means that the model
built on top of the assumption (5.10) has an inductive bias, which enables the unsu-
pervised disentangled representation of the individual components of an image. The
independency is further reinforced by the fact that the parts of the model respon-
sible for the representation of the components do not share weights. Furthermore,
since we want to apriori ascribe specific meaning to the disentangled latent spaces, we
cannot use automatic disentanglement of individual dimensions as is the case in liter-
ature [226, 231, 232], since there, the disentanglement is not unique and the semantic
meaning of the disentangled factors has to be found manually in a post-processing
phase.

In this section, the structure of the proposed generative model with independent
latent spaces and its training procedure is described first. Then, in order to be able
to detect and describe semantic anomalies, we combine the model with the anomaly
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score derived in Sec. 5.2.

5.3.1 Shape-guided VAEGAN model

input

mask

background

foreground

reconstruction

original

generated

encoders decoders

discriminator

GAN

rec

aux
prior

Figure 5.2: The schema of the proposed model. Convolutional blocks are denoted
in orange, fully connected in cyan, and intermediate representations in green. The
yellow squares represent special operations - c is the composition (5.13) and the
reparametrization trick is denoted by ∼. The generated sample is obtained by feed-
ing samples from priorsN (0,I) to the decoders.

The model disentangling the input image into its three components is our synthesis
of a VAEGAN [239] and Counterfactual generative networks (CGN) [236].2 Building
blocks of this model, further denoted as SGVAEGAN, are outlined in Fig. 5.2. The
model uses three separate independent autoencoders for three components of an im-
age, a block combining them to the reconstructed image, and a discriminator for im-
proved performance on semantic image data. We emphasize that it is this strict sepa-
ration of autoencoders that improves the desired disentanglement.

Autoencoders responsible for individual components are vanilla VAE consisting of
an encoder

qi,φφφ(zzzi |xxx) =N
(
zzzi ;µµµi,φφφ(xxx),diag(σσσ i,φφφ(xxx))

)
, i ∈ {m,f ,b}, (5.11)

and a decoder
xxxi = gi,θθθ(zzzi), i ∈ {m,f ,b}. (5.12)

Although Sec. 5.2 we assumed xxx ∈ X = R
d , here the data are colored images, therefore

X = R
H×W×3, where (W,H) stands for the width and height of an image in pixels.

This is without any loss of generalization on the already derived results, as it only
affects the term logp(eee) in (5.9), but this will be expressed by an element-wise operation
which is introduced in the following text. Latent variables zzzi are sampled through
the usual reparametrization trick (3.13) from the normal distribution (5.11) with a
diagonal covariance matrix.

2Counterfactual generative networks [236] were selected because based on our preliminary experi-
ments, the result offered superior disentanglement likely due to highly inductive bias.
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5 Anomaly detection in multi-factor data

All three autoencoders output a tensor of the size of the input image, xxxm, xxxf , and
xxxb ∈ RH×W×3, which are then composed by a compositor c(xxxm,xxxf ,xxxb) to form a recon-
structed image xxx′

xxx′ = c(xxxm,xxxf ,xxxb) = xxxm ⊙xxxf + (1−xxxm)⊙xxxb, (5.13)

where ⊙ denotes a Hadamard (element-wise) product and 1 is a matrix of ones with
the same dimension as xxxm. The elements of the mask xxxm lie in the interval [0,1] and the
training procedure ensures that they are pushed to the extremes of the closed interval,
such that elements with nonzero values represent the pixels that contain the most
prominent object in the image.

The loss function optimized during training is an augmented version of the VAE
ELBO loss (3.11), which accounts for the need to optimize the discriminator, and also
for ensuring that the separate autoencoders that are responsible for encoding and de-
coding different components of an image retain their meaning. Without the additional
constraints imposed during training, it could happen that the autoencoder responsible
for modelling of the background learns the foreground instead, or learns to reconstruct
the complete image, while the remaining autoencoders learn nothing. Therefore, the
total training loss consists of a reconstruction error term, a GAN-like loss, regulariza-
tion of the latent space, and an auxiliary part,

L = λrecLrec +LGAN +Lprior +Laux. (5.14)

Their contributions are controlled by a scalar weight λrec and by weights contained in
Laux. The first three parts in Eq. (5.14) are adopted from VAEGAN while the last part
is adopted from the CGN model. The rest of this section describes them in detail.

Reconstruction loss uses the feature-matching construction (3.5), which was chosen
because of its good performance on semantic anomalies in Chapter 4. It generalizes
the standard reconstruction loss by comparing xxx and xxx′ at a certain depth of the dis-
criminator dϕϕϕ as

Lrec = ||dn,ϕϕϕ(xxx)− dn,ϕϕϕ(xxx′)||22, (5.15)

where dn,ϕϕϕ(xxx) is the intermediate representation of xxx at the n-th layer of the discrimi-
nator andϕϕϕ are its weights. When n = 0, the loss coincides with log-likehood (3.13) for
VAE with Gaussian output distribution. In the experiments in Sec. 5.4, n is treated as
a hyperparameter subjected to tuning.3 The authors of the VAEGAN model claim that
incorporating the discriminator for image reconstruction leads to an improvement in
the overall reconstruction/generation quality as it pushes the model to be able to ab-
stract beyond the capabilities of pixel-wise reconstruction loss such as (3.13). Note
that (5.15) is used to optimize the weights of the decoders and encoders and not the
discriminator. This is possible because the reconstruction xxx′ undergoes the process
(5.11)-(5.13) which makes it functionally dependent on θθθ and φφφ.

GAN loss LGAN was adopted from the VAEGAN model. It is used to optimize the
discriminator dϕϕϕ and the decoders gm,θθθ, gf ,θθθ, and gb,θθθ, of the model via

LGAN = − logdϕϕϕ(xxx)− log(1− dϕϕϕ(xxx′))− log(1− dϕϕϕ(x̃xx)), (5.16)

3Based on our experimental results, we cannot recommend a single good value, as values selected on
the validation set ranged from 0 to 7.
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where x̃xx is a generated sample obtained by sampling z̃zzm, z̃zzf , and z̃zzb fromN (0,I), decod-
ing these via (5.12) and composing them via (5.13). The training procedure of a VAE-
GAN model is slightly different from a standard GAN. Compare the expression (5.16)
with the usual GAN training objective (3.1), where only the generated sample x̃xx is used.
This makes perfect sense since there is no reconstruction xxx′ in a GAN. Furthermore,
the output of the discriminator dϕϕϕ also has a slightly changed meaning. It outputs a
scalar in the range [0,1], where a higher value means a sample comes from the training
dataset and a lower value means the sample is generated or reconstructed. In order for
the discriminator to learn to score the samples in this fashion, the loss (5.16) is mini-
mized with respect to the discriminator parameters and maximized with respect to the
decoders’ parameters. This corresponds to discriminator/generator training in a GAN
model, see Sec. 3.1.

Prior loss is used to regularize the latent spaces as in (3.10) by minimizing the KL
divergence between qφφφ(zzz|xxx) and the prior p(zzz) as

Lprior = DKL(qφφφ(zzz|xxx)||p(zzz)) =
∑

i∈{m,f ,b}
DKL(qi,φφφ(zzzi |xxx)||p(zzzi)), (5.17)

because zzzi are assumed to be independent. Furthermore, since it is assumed p(zzzi) =
N (0,I), Lprior can be computed analytically, see (3.12).

Auxiliary loss was adopted from [236] and it is a weighted combination of three
parts

Laux = λbinLbin(xxxm) +λmaskLmask(xxxm) +λtextLtext(xxxm,xxxf ,xxx). (5.18)

The texture loss Ltext(xxxm,xxxf ,xxx) ensures that the parts of the network assigned to recon-
struct the background and foreground are not switched and that no shape informa-
tion is stored in the foreground. It is computed in the following way: 36 patches are
sampled from the image xxx in regions where the mask xxxm is nonzero. These are then
composed together to form a tensor xxxg that is as large as the image. Then, a perceptual
loss [240] between xxxg and xxxf is computed. A perceptual loss is a measure of the simi-
larity of two images that uses a convolutional neural network that was pre-trained on
a very large database of image data. It is used because by using a pre-trained network,
one can compare higher-level, semantic information of two images, which cannot be
captured by a pixel-wise similarity measure such as L2 loss. In our case, the perceptual
loss is computed as the L1 distance between the activation maps of xxxf and xxxg in the
first four convolutional layers of a VGG16 [241] convolutional network. By minimiz-
ing it, the output of the foreground autoencoder is forced to be similar to the general
(because of the sampling) texture of the object captured by the mask.

The term Lbin forces elements of the mask to be close to either 0 or 1. The objective
to be minimized is

Lbin(xxxm) = − 1
N

N∑
i=1

xxxm,i log2(xxxm,i) + (1−xxxm,i) log2(1−xxxm,i), (5.19)

where the index i goes over all elements of the tensor xxxm and N is the number of its
elements.

Finally, Lmask prevents degeneration of the mask to be all zeroes or all ones, which
would lead to failure in the identification of background/foreground. This is achieved

68



5 Anomaly detection in multi-factor data

by computing

Lmask(xxxm) =

max

0, τ − 1
N

N∑
i=1

xxxm,i

+ max

0,
1
N

N∑
i=1

xxxm,i − τ


 (5.20)

where τ ∈ [0,1] is a parameter that forces the mask to occupy a total area of the image
that is in the interval [τ,1− τ].

The complete training procedure of the SGVAEGAN model is described in detail in
Alg. 6.

Algorithm 6 Training of the SGVAEGAN model. The budget is either a time limit or a
fixed maximum number of iterations. Capital letters denote a batched variable.

Require: An SGVAEGAN model with encoders and decoders
(
qi,φφφ(zzzi |xxx), gi,θθθ(zzzi)

)
, i ∈

{m,f ,b} and a discriminator dϕϕϕ(xxx), a composition operator c(xxxm,xxxf ,xxxb), a training
set X = {xxx1,xxx2, . . . ,xxxn} ⊂ X , maximum number of iterations I ∈N, batchsize B ∈N.

1: i← Iteration counter
2: (φφφ,θθθ,ϕϕϕ)← initialize parameters
3: while i < I or (φφφ,θθθ,ϕϕϕ) are not converged do
4: XB← batch of B samples from the dataset X
5: Lrec,Laux,Lprior,LGAN← 0
6: for xxx ∈ XB do
7: // Computation of prior, reconstruction, and auxiliary losses
8: (zzzm,zzzf ,zzzb)← encodings of xxx

9: Lprior
+←

∑
i∈{m,f ,b}DKL(qi,φφφ(zzzi ||xxx)|p(zzzi))

10: (xxxm,xxxf ,xxxb)← (gm,θθθ(zzzm), gf ,θθθ(zzzf ), gb,θθθ(zzzb))
11: xxx′← c(xxxm,xxxf ,xxxb)

12: Lrec
+← ||dn,ϕϕϕ(xxx)− dn,ϕϕϕ(xxx′)||22

13: Laux
+← λbinLbin(xxxm) +λmaskLmask(xxxm) +λtextLtext(xxxm,xxxf ,xxx).

14: // Adversarial loss
15: (z̃zzm,z̃zzf ,z̃zzb)← samples from the prior p(zzz)
16: (x̃xxm,x̃xxf ,x̃xxb)← (gm,θθθ(z̃zzm), gf ,θθθ(z̃zzf ), gb,θθθ(z̃zzb))
17: x̃xx← c(x̃xxm,x̃xxf ,x̃xxb) a generated sample

18: LGAN
+←− logdϕϕϕ(xxx)− log(1− dϕϕϕ(xxx′))− log(1− dϕϕϕ(x̃xx))

19: end for
20: // Update of the parameters
21: φφφ

+←−∇φφφ 1
B(λrecLrec +Laux +Lprior)

22: θθθ
+←−∇θθθ 1

B(λrecLrec +Laux −LGAN)

23: ϕϕϕ
+←−∇ϕϕϕ 1

BLGAN
24: end while
25: return encoders and decoders

(
qi,φφφ(zzzi |xxx), gi,θθθ(zzzi)

)
, i ∈ {m,f ,b}, discriminator dϕϕϕ(xxx)

5.3.2 Detecting anomalies with SGVAEGAN

If the SGVAEGAN is trained well, particularly if the decomposition into latent spaces
is (at least approximately) right, different types of anomalies should be in low-density
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Figure 5.3: Position of different images encoded to individual latent spaces using SG-
VAEGAN model with two-dimensional latent spaces. The training set consisted of
images with factors fixed to those of the digit in the first column. The densities of en-
codings of normal (training) data, estimated by a kNN detector (5.26) are depicted as
well.

regions of different latent spaces. This is illustrated in Fig. 5.3 on the Wildlife MNIST
dataset, where we can see that anomalous shape, background texture, and foreground
texture is anomalous in the corresponding latent space. We can use the score (5.9) and
assign pni (zzzi) = pzi (zzzi), i ∈ {m,f ,b}, since the model is trained on normal data. Then we
have

s(xxx) = − logp(eee)− log

∣∣∣∣∣∣∂g−1(xxx)
∂xxx

∣∣∣∣∣∣− ∑
i∈{m,f ,b}

αi logpzi (zzzi), (5.21)

where g(zzz) is a function that computes an image from the latent encodings via (5.13)

g(zzz) = g(zzzm,zzzf ,zzzb) = gm,θθθ(zzzm)⊙ gf ,θθθ(zzzf ) + (1− gm,θθθ(zzzm))⊙ gb,θθθ(zzzb). (5.22)
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Following the derivations in [234], we use the fact that ∂g−1(xxx)
∂xxx =

(
∂g(zzz)
∂z

)−1
, and assume

the independency of the latent spaces of zzzm,zzzf ,zzzb. Then Eq. (5.21) can be rewritten to

s(xxx) = − logp(e) + sj(xxx)−
∑

i∈{m,f ,b}
αi logpzi (zzzi), (5.23)

where sj(xxx) = log
∣∣∣∣∂g(zzz)

∂zzz

∣∣∣∣ denotes the Jacobian term, which is functionally dependent on
the input image xxx through the latent encodings zzz = (zzzm,zzzf ,zzzb), see (5.11). A reader

recognizes that ∂g(zzz)
∂zzz is not square, hence its determinant is zero. Ref. [234] suggests

estimating the determinant from a diagonal matrix after SVD decomposition, which is
valid if one assumes the orthogonality of the data and noise.

The proposed score, based on (5.23), reads as a weighted sum of the individual
components

s(xxx) = αrsr(xxx) +αjsj(xxx) +αmsm(xxx) +αf sf (xxx) +αbsb(xxx), (5.24)

where si , i ∈ {r, j,m,f ,b} are individual anomaly score components which will be de-
scribed in the following text. The αr ,αj weights were added in order to tune the total
score to the modalities of anomalous data, which were not seen during the training,
and therefore the base model is not fitted to them. The values of α can be either set
manually or estimated from a small number of labeled anomalies as described in the
following text.

Reconstruction error Reconstructed samples are needed for the computation of the
reconstruction term − logp(eee). However, since the reconstruction steps (5.11)-(5.13)
contain sampling through the reparametrization trick, the reconstructionsxxx′ are stochas-
tic. As we have shown already in (3.22), the estimate of the reconstruction error is
stabilized by taking an average from multiple reconstructions {xxx′l}

L
l=1 computed as

sr(xxx) = − 1
σσσ2L

L∑
l=1

||xxx −xxx′l ||
2
2, (5.25)

where the scalar variance σσσ2 ∈ R is estimated from the data during the training of the
model. The number of samples was set to L = 10 during our experiments.

Latent scores A correct estimate of the likelihood of latent representations pzi (zzzi),
i ∈ {m,f ,b} is important for the score (5.24). Even though latent representations are
regularized during the fitting of the model to have normal distribution N (0,I), it was
shown [183] that the fit is usually not very good. This can be also seen in Fig. 5.3, where
the distribution of the latent representations is not perfectly normal. Therefore, we
approximate pzi (zzzi) by the k-nearest-neighbor (kNN) density estimator, see Sec. 2.2.2,
which is trained on latent representations of normal data. This method was chosen for
its simplicity yet powerful performance, which was demonstrated both by the results
in Sec. 3.4 and also in Chapter 4, where it scored amongst the top models on low
dimensional data. This requirement will be satisfied here, as the encoders comprise
the high-dimensional image data into latent space with dimensionality on the order of
102. The score of a sample in the i-th latent space, i ∈ {m,f ,b}, has the form

si(xxx) =
1
k

∑
zzzj∈Zk,i

||zzzi −zzzj ||2,zzzi = µµµi,φφφ(xxx), (5.26)
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which is the average Euclidean distance between the projection zzzi of the tested sample
xxx into the latent space, and the set Zk,i of the k-nearest projections of the normal data
to the same latent space. The value of k is a hyperparameter tuned on the validation
set.

Optimization of α The proposed score is effectively a weighted sum of individual
parts. In theory, one can set the weights α by themselves if one knows in which latent
to expect the anomaly. Since this knowledge is rarely available, we estimate them from
data (that contains examples of labeled anomalies) by regularized logistic regression
as

α∗ = argmin
α
−
∑
n

yn logσσσ (s(xxxn|α)) + (1− yn) log(1−σσσ (s(xxxn|α)))) + β||α −α0||22, (5.27)

s(xxxn|α) =
∑
i

αi ŝi(xxxn), i ∈ {r, j,m,f ,b}, (5.28)

where σσσ (.) is the sigmoid function, yn ∈ {0,1} are labels, α0 is a prior value and the
index n goes over the samples in the labeled dataset. Since the scores si(xxx) can have
very different scales (e.g. sr(xxx) ∼ 104 while sf (xxx) ∼ 100), we rescale them to have zero
mean and unit variance. The rescaled scores are denoted as ŝi(xxx). The regularization
is set using β = β0

n1
,β0 ∈ R, where n1 is the number of positive (anomalous) samples

in the dataset, and β0 is a hyperparameter. This ensures that the prior α0 has a large
influence over the final value of α when there is a small number of known anomalies,
thus ensuring the robustness of the final α estimate. The prior is set such that α0,i = 1
for such i where the AUC computed from {si(xxxn), yn}n is maximal and zero everywhere
else, making α0 a failsafe value. The criterion (5.27) is optimized by an LBFGS opti-
mizer [242].

Removing the Jacobian from the score While the score (5.23) is theoretically correct
under the assumption that anomalies are located in areas of low density, the publica-
tion [234] shows that it does not work well when the model is trained on data without
anomalies. Our experiments shown below arrived at the same conclusion. We suspect
the cause to be that the decoders g can be arbitrary (with arbitrary jacobian) in parts of
the space not supported by the data, where anomalous samples are located. Moreover,
the computation of the determinant is so expensive that the score is effectively useless
for state-of-the-art image models. Therefore, we propose dropping the Jacobian term
sj(xxx) from (5.24) and adding the discriminator score

sd(xxx) = 1− dϕϕϕ(xxx), (5.29)

which works well for anomaly detection according to [239] and also for semantic
anomaly detection in images, which was shown by an exceptional performance of the
fmGAN model with the score (5.29) in Chapter 4. The alternative score then reads

s(xxx) = αrsr(xxx) +αdsd(xxx) +αmsm(xxx) +αf sf (xxx) +αbsb(xxx). (5.30)

Again, the values of α are optimized similarly to (5.27).
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Figure 5.4: Masked detection technique for identifying the source of anomality. The
model was originally trained on samples similar to the one on the very left, brown-
striped sixes on a purple-yellow background. To distinguish between anomalies in
the background and foreground texture, a reconstruction xxxr and a mask xxxm are com-
puted for a test sample xxx1, which is anomalous in the background, and xxx2, which is
anomalous in the foreground texture. The scores Sb (5.31), Sf (5.32) are computed as
scaled differences between the original and reconstructed masked–out backgrounds,
bm = xxx ⊙ (1 −xxxm) and foregrounds fm = xxx ⊙xxxm and their values are displayed between
the image of the original and reconstructed foregrounds and backgrounds.

5.3.3 Anomaly factor identification

The model presented above can identify the source of the anomality through the in-
formation from the individual latent spaces. Under the formalism (5.5), estimation
of the probability of being generated from the normal model is simply p(y|zzz) ∝ p(zzz|y),
which is only possible for proper distributions. Since we used an improper distribution
(pa(xxx) ∝ 1) to minimize the number of unknown parameters, we cannot use direct esti-
mation and have to rely on approximation. This approximation relies on the fact that
the source of anomaly should have a low probability in the respective latent space. We
have designed two approximate methods for identifying it. The main benefit of these
methods is that they are completely unsupervised and computationally cheap. Note
that when using them, it is assumed that anomalies are generated from a single source,
i.e. being anomalous only either in shape, foreground, or background.

Ranked anomaly factor identification The first approximation relies on the replace-
ment of the likelihood p(yi |zzzi(xxx)) by an empirical quantile. Specifically, we store the
values of anomaly scores si,train = si(xxxtrain) for the training set and for a new sample xxx
compute the quantile qi(xxx) (relative rank) within the training scores of the correspond-
ing latent space. The anomaly source estimate is then computed as the maximum of
the relative rank y∗ = argmaxi∈{m,f ,b} qi(xxx).

Masked anomaly factor identification Using even a properly trained model, the
ranked method is not always able to correctly identify all three types of anomaly
sources. Therefore, we have simplified the problem to distinguish the source of an
anomaly only in the background or foreground texture by computing the reconstruc-
tion errors for those components separately. For an input xxx, the reconstructed image xxx′

and a mask xxxm are computed. Using these, we compute the normalized reconstruction
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errors as

Sb =

∑
j

(
(xxxj −xxx′j)(1−xxxm,j)

)2∑
j 1−xxxm,j

(5.31)

Sf =

∑
j

(
(xxxj −xxx′j)xxxm,j

)2∑
j xxxm,j

(5.32)

where index j goes over elements in all dimensions of an array xxx ∈ RH×W×3 represent-
ing an RGB image. See Fig. 5.4 for an illustration of the principle of this method. The
normalization factor in (5.31,5.32) is important since the object in the foreground usu-
ally covers fewer pixels than the background. If Sb is higher, the prediction for the
anomaly factor is "background" and vice versa. The comparison of the ranked and
masked method is presented in Sec. 5.4.4

5.4 Experiments

In the experimental evaluation of the proposed model, we follow the strict protocol
that was established in Chapter 4. The datasets were split into training, validation,
and test subsets for each of their classes (or subproblems in the case of the MVTec-AD
dataset). Details on the splits for individual experiments can be found in the respective
sections below. Then, for each such split and each model, 50 hyperparameter settings
were randomly sampled from a set of possible values. The use of Bayesian optimization
to select hyperparameters was considered but eventually dropped as it did not have an
impact on the relative rank of the methods in Chapter 4. The validation set was used
to select the best hyperparameter values for a given model on a specific subproblem.
Unless mentioned otherwise, the experiments below report (ROC)AUC values of the
selected models computed on the test set. The models were trained for 50 epochs each.

The datasets used in the experimental evaluation were selected in order to con-
tain semantic anomalies (with the exception of the MVTec-AD dataset). Two artificial
datasets (Wildlife MNIST and COCOPlaces) were created as baselines on which the
model is supposed to perform well. Especially Wildlife MNIST contains easily seg-
mentable objects. For details on datasets, see Appendix B.

5.4.1 Baseline methods

We have selected unsupervised anomaly detectors mainly based on the review in Chap-
ter 4, specifically those that were amongst the top performers on colored images. For
additional These models include:

Variational Autoencoder (VAE) - a convolutional VAE from Sec. 3.2 that uses the
sampled reconstruction error (5.25). The decoder variance σσσ2 is estimated from
the data.

Feature-matching GAN (fmGAN) - a convolutional GAN model trained using the
feature-matching loss (3.4). The anomaly score is based on the discriminator (5.29).

VAEGAN - a convolutional VAE where reconstruction is enforced through a discrimi-
nator [239]. The anomaly score is (5.29).

74



5 Anomaly detection in multi-factor data

Deep Support Vector Data Description (DSVDD) - is a model that learns a transfor-
mation of data via a neural network to a subspace where the anomalies lie out-
side of a hypersphere composed of transformed normal data. The anomaly score
is then the distance of a point from the center of the hypersphere, see Sec. 2.2.3.

fast Anomaly GAN (fAnoGAN) - a GAN model trained via Wasserstein loss and gra-
dient penalization that identifies anomalies by backward-searching the latent
code z that is the most likely to generate the given test samples, see Sec. 3.1.2.

Counterfactual Generative Network (CGN) - this is a baseline model [236] for the
decomposition of data into three components. Although not originally intended
as an anomaly detector, it can be used as one as it provides the discriminator
score (5.29) and proved itself to be competitive in our experiments.

Shape Guided VAE (SGVAE) - this is a modification of the proposed model intro-
duced to study the impact of the discriminator. It is trained without a discrimina-
tor and the reconstruction loss is −Eqφφφ(zzz|xxx)[logpθθθ(xxx|zzz)], similar to a classical VAE.
The anomaly score for this model is the sampled reconstruction error (5.25).

Shape Guided VAEGAN (SGVAEGAN) - this is the basic proposed model that is trained
in a completely unsupervised fashion and evaluated without considering the full
anomaly scores (5.24) and (5.30). Instead, the default anomaly score is (5.29).

SGVAEα - this is the SGVAE model where the score (5.24) is considered. To compute
the anomaly scores, SGVAE models pre-trained in an unsupervised fashion were
used and only the weights α were computed on a validation dataset.

SGVAEGANα - this is the full proposed model. As discussed in the Sec. 5.4.2, it is
used with the score (5.24) with the Jacobian, but later the Jacobian is dropped
and the model is used with score (5.30).

5.4.2 The contribution of the Jacobian

We start by demonstrating that dropping the Jacobian term from the score (5.24) does
not have a negative effect on the detection performance of the proposed model. Tab. 5.1
shows AUCs of the model that uses the score (5.24) with and without the Jacobian term
sj(xxx) on a subset of the SVHN2 dataset. For each normal class, training, and testing sets
containing 750 normal and 150 anomalous samples were used. To obtain the presented
statistic, the subsets were sampled 5 times. The difference in performance is almost
negligible but the difference in computational costs is high. Therefore, we omit the
term from all further experiments, and the score (5.30) is used for the SGVAEGANα
instead, while for SGVAEα, the term is dropped from (5.24).

5.4.3 Detection of semantic anomalies

We now study how the proposed detector behaves as it gradually incorporates more
knowledge in the form of labeled anomalies used to optimize weights α via (5.27). To
simulate a semantic anomaly scenario, the following training and testing protocol is
used with the Wildlife MNIST and COCOPlaces datasets. The training set consists of
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class AUC - no sj(x) AUC - with sj(x) αr αj

0 0.70 ±0.04 0.70 ±0.05 1.00 0.00
1 0.82 ±0.01 0.82 ±0.02 1.09 -0.03
2 0.71 ±0.02 0.72 ±0.02 0.93 -0.01
3 0.64 ±0.02 0.64 ±0.02 0.94 0.01
4 0.72 ±0.03 0.72 ±0.03 1.00 0.00
5 0.67 ±0.01 0.66 ±0.01 0.98 0.00
6 0.68 ±0.02 0.68 ±0.02 0.60 0.00
7 0.73 ±0.05 0.73 ±0.05 1.00 0.00
8 0.69 ±0.04 0.71 ±0.02 0.98 -0.04
9 0.63 ±0.05 0.63 ±0.04 0.80 0.00

Table 5.1: Experiment with sj(x) on a subset of the SVHN2 dataset. The mean values
of α weights estimated with (5.27) are also presented and show that the weight of the
Jacobian term is suppressed during their computation.
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Figure 5.5: Semantic anomaly detection experiment on the Wildlife MNIST (top) and
COCOPlaces (bottom) datasets. The x-axis covers a changing number of anomalies
present in the validation dataset. The y-axis reports the average AUC over dataset
subclasses and 5-fold cross-validation.
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samples of one class (the whole experiment is repeated for all 10 classes) from the non-
mixed version of the datasets (see Appendix. B for details of how this is generated).
Then, for a given factor of variation, validation, and test sets are drawn from the mixed
version of the dataset, where the anomality of a sample is based on whether the target
factor is the same or different as in the training dataset. This introduces a non-semantic
shift, as the validation and test sets contain a variation of a factor that was not seen in
the training data but is not considered anomalous.

An example of how the individual data sets are constructed is the following: con-
sider that the training set contains only images of MNIST class "0" with "leaf" back-
ground and brown foreground texture, like in Fig. 5.1. When the target factor of varia-
tion is background, then in the validation and test set, all images with "leaf" background
are considered normal and any other background is considered anomalous, no matter
what the remaining factors of variation (digit and foreground texture) are, therefore
a brown digit "0" with a blue background texture is considered anomalous, while a
yellow "9" with "leaf" background is considered normal.

Fig. 5.5 shows AUCs of compared methods with respect to the number of known
anomalies in the validation set, in which the ratio of anomalous to normal data ranges
from 0.1% to 100% with the number of normal samples staying the same. The models
are trained on the same training non-mixed data, their hyperparameters are selected
on the validation dataset and the resulting test set AUC is averaged over 10 classes
and a 5-fold random selection of the validation anomalies. While on Wildlife MNIST,
both SGVAEα and SGVAEGANα quickly dominate other methods once a few (five)
examples of anomalies are available, the SGVAEα performs worse on COCOPlaces.
This is the effect of the discriminator of SGVAEGAN, which is used in the score and
which contributes to the improved fit of the model. The results also show how methods
benefit from a better selection of hyperparameters when more known anomalies are in
the validation set.

5.4.4 Anomaly factor identification

In this section, we compare the two approximate methods for identification of the
source of an anomaly as described in Sec. 5.3.3, i.e. the ranked and the masked method.
For the comparison, we use the mixed version of the Wildlife MNIST dataset. The
results in the form of prediction accuracies over different normal classes are shown
in Tab. 5.2.

The ranked method sometimes fails to identify all three factors better than ran-
dom chance, which has an accuracy of 0.33. The masked method performs better than
the ranked one in the identification of the background and foreground anomalies, al-
though the background anomaly detection accuracies are not completely satisfactory
on all digit classes. However, we explain this by some classes having very similar back-
grounds, e.g. a very common misclassification for class "4" is that with anomalous
background from classes "1" or "7", see Fig. 5.1. In these misclassifications, the back-
ground is reconstructed rather well, while even a small imprecision in the mask leads
to a high reconstruction error in the foreground. Still, this method of detection of the
source of anomality might be useful in some real-world problems, given we can train
the model to produce correct masks.
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ranked masked
normal class shape background foreground background foreground

0 0.82 0.19 0.62 0.88 0.95
1 0.84 0.92 0.19 0.85 1.0
2 0.92 0.37 0.7 0.95 0.6
3 0.55 0.86 0.24 0.63 0.96
4 0.79 0.46 0.85 0.62 1.0
5 0.57 0.89 0.31 0.72 1.0
6 0.74 0.95 0.52 0.96 0.96
7 0.47 0.84 0.75 0.87 0.98
8 0.64 0.64 0.62 0.98 0.97
9 0.88 0.27 0.1 0.77 0.94

Table 5.2: Accuracy of factor detection on the wildlife MNIST dataset for ranked and
masked methods. The columns correspond to test samples anomalous in the respective
factor.

5.4.5 Large scale study

problem D
SV

D
D

fA
no

G
A

N

fm
G

A
N

VA
E

C
G

N

VA
E

G
A

N

SG
VA

E

SG
VA

E
G

A
N

SG
VA

E
α

SG
VA

E
G

A
N

α
bottle 0.81 0.97 0.95 0.98 0.90 0.85 0.98 0.83 0.97 0.92

capsule 0.65 0.69 0.67 0.74 0.69 0.58 0.76 0.66 0.80 0.67
nut 0.78 0.72 0.88 0.71 0.82 0.84 0.69 0.78 0.81 0.86
pill 0.64 0.71 0.73 0.73 0.59 0.70 0.77 0.72 0.78 0.73

transistor 0.69 0.77 0.90 0.81 0.88 0.75 0.78 0.79 0.81 0.79

mean rank 8.90 6.20 3.50 4.20 5.50 7.60 4.50 7.00 2.80 4.80

Table 5.3: Aggregated performance in test AUC of models on MVTec-AD problems.

This experiment compares the proposed model in a traditional anomaly detec-
tion scenario on selected image datasets. We assume the leave-one-in scenario, when
the training dataset contains samples from one class and the rest is considered to be
anomalous in validation and test datasets. We believe this is a good representation of
a semantic anomaly detection problem as well as being a more realistic option since
in real-world problems, anomalies may come from many varying distributions.4 To
test the models in a non-semantic anomaly detection setting, we have included the

4In this regard, we disagree with the authors of [52] which propose the alternative of leave-one-out,
stating that in most anomaly detection problems, we want to detect only small perturbations from the
target class. However, traditional image benchmarks don’t allow for this anyway as the classes are very
distinct even in the latter case.
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Figure 5.6: Comparison of models on selected image datasets for the leave-one-in ex-
periment. The x-axis covers a changing number of anomalies in the validation dataset,
which is used for hyperparameter selection and α computation. The y-axis reports the
average test AUC over 10 normal classes. The columns capture experiments with vary-
ing availability of validation samples from different anomalous classes, while anoma-
lies of all classes are present in the test set. The number of normal samples in the
validation set is the following: Wildlife MNIST: 1184, CIFAR10: 1200, SVHN2: 3792,
COCOPlaces: 100.

MVTec-AD dataset where the normal and anomalous data differ only in small details,
and which is popular for benchmarking anomaly detection methods.

In practice, it might happen that anomalies are in a few clusters, but only samples
from some of them are labeled and available for model selection. To simulate such a
scenario and similar validation/test discrepancies, we performed model selection with
significantly varied validation sets. First, the total number of anomalies in the valida-
tion set was varied, which constitutes the x-axis in Fig. 5.6. Second, for each normal
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Figure 5.7: A critical difference diagram that shows mean ranks of models from
Tab. 5.4. The difference in the performance of 2 models compared on 40 datasets to
be statistically significant on level 10% must be greater than the value of the Nemenyi
test CD0.1=1.95. The thick horizontal lines connect the models with performance dif-
ferences less than this.

class, samples from only a limited number of anomalous classes were sampled to the
validation set, which creates the different columns in Fig. 5.6. The test set contained
anomalies from all the classes left out of training. An example with 4 anomalous
classes known in validation: training of models was done using class "1" of the SVHN2
dataset. The validation dataset contained normal data from class "1" and anomalies
sampled from classes "2", "3", "4" and "5". The testing dataset contained normal sam-
ples from class "1" and anomalies sampled from all the other classes. The normal data
split is 60/20/20%, 50% of available anomalies are in the test set.

Fig. 5.6 contains the overall comparison across the different variants of validation
datasets used for model selection. It contains only a selection of the best-performing
models to improve readability. Apart from the SVHN2 dataset, the proposed model
outperforms the baselines after observing just 10 examples of anomalies, in some cases
even less. A comparison of all baselines aggregated over all semantic datasets is pre-
sented in the critical difference diagram in Fig. 5.7, where mean ranks of models are
compared using the methodology presented in [243]. Tab. 5.4 contains a disaggre-
gated comparison in the case of 2% of labeled anomalies from 4 classes in the vali-
dation dataset. Finally, see Tab. 5.3 for the results on the MVTec-AD subproblems.
Here the alternative SGVAEα trained without a discriminator performs better. This
is probably because the dataset only contains non-semantic anomalies, which cannot
be well captured by the discriminator score which is used in SGVAEGANα. Since the
total number of anomalies in MVTec-AD is low, the use of the discriminator score may
lead to overfitting of the α estimate on the validation dataset. By selecting the optimal
model on the validation set and reporting on the test set, which is not standard in ev-
ery publication [213], we believe that our experiments provide a realistic comparison
of baselines.

A fully supervised classifier trained on the validation dataset is included in the
comparison in Fig. 5.6. By its inclusion, we try to answer a question that is very per-
tinent for practitioners – if you need at least some labeled anomalies to tune your
unsupervised models anyway, what amount of labeled anomalies means that you can
train a fully supervised classifier instead? Our comparison shows that this amount is
surprisingly low, apart from the (relatively easy) Wildlife MNIST dataset. This result
is, of course, closely tied to the specific setting of our experiment and should not be
extrapolated to other problems without further research.
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5.5 Conclusion

In this chapter, the SGVAEGAN was proposed - a deep generative model for anomaly
detection that uses several independent latent spaces to generate a data sample. The
generative model is assumed to generate the normal class, and the flexibility of the
latent spaces allows us (i) to detect anomalies of a certain type, and (ii) to question
which component of the test sample is anomalous. This concept has been applied to
semantic anomaly detection of images where the anomaly may be present in the shape,
foreground, and background textures. The proposed anomaly detector was tested on
synthetic as well as real-world image datasets.

The detector was fine-tuned to the type of anomalies that are of interest. This has
been achieved by learning the weights of the scores from the independent latent spaces
for known anomalies. Naturally, the performance of the proposed method improves
with a growing number of available anomalies in the validation. However, as shown
in the experimental section, as few as ten labeled anomalies were already enough to
improve over the tested baselines, and this was shown to be true even if samples from
only certain anomalous classes were labeled. A comparison with a supervised classifier
was done, which demonstrated that a relatively low number of labeled anomalies is
enough for the supervised classifier to outperform any anomaly detector. This sets
an upper bound on the meaningful range of problems suitable for anomaly detection
methods. We recommend performing such an experiment for every anomaly detection
method.

A possible improvement of the proposed model might come from the use of a more
flexible latent model, such as Vamp, that was introduced in Sec. 3.2.2 and succesfuly
used on the Alfvén mode detection problem in Sec. 3.4. This was not initially consid-
ered, since the large scale study in the previous chapter did not show it brought any
performance benefits on other data (see the discussion on the VAE family of models
in Sec. 4.3.2). It might be possible though that real-world problems with complicated
latent distributions might be a more suitable environment, where a multi-modal prior
is suitable.

The proposed SGVAEGAN model is a demonstration of the general approach, which
can be used with any type of decomposition/disentanglement of the latent space. The
requirement for the application of another generative model is that it has to be capa-
ble of learning the disentanglement in an unsupervised manner. We wish these results
motivate the research in the learning of disentangled models.
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frog 0.71 0.76 0.71 0.75 0.67 0.69 0.73 0.60 0.78 0.82

horse 0.61 0.56 0.60 0.54 0.75 0.72 0.67 0.65 0.70 0.68
ship 0.74 0.80 0.77 0.71 0.74 0.71 0.82 0.72 0.84 0.79
truck 0.67 0.65 0.79 0.63 0.76 0.67 0.54 0.70 0.73 0.78

SV
H

N
2

0 0.64 0.64 0.68 0.64 0.78 0.64 0.67 0.65 0.71 0.77
1 0.63 0.60 0.61 0.67 0.76 0.61 0.69 0.70 0.82 0.84
2 0.61 0.58 0.58 0.62 0.76 0.62 0.62 0.63 0.75 0.74
3 0.55 0.55 0.59 0.58 0.71 0.54 0.59 0.64 0.64 0.68
4 0.58 0.58 0.63 0.63 0.80 0.66 0.62 0.69 0.74 0.77
5 0.56 0.57 0.61 0.58 0.72 0.57 0.60 0.65 0.67 0.69
6 0.57 0.60 0.58 0.59 0.75 0.62 0.61 0.66 0.73 0.72
7 0.59 0.58 0.66 0.64 0.82 0.61 0.65 0.69 0.77 0.78
8 0.58 0.60 0.57 0.58 0.70 0.57 0.59 0.65 0.65 0.71
9 0.56 0.59 0.62 0.59 0.74 0.56 0.60 0.65 0.68 0.71

C
O

C
O

P
la

ce
s

airplane 0.72 0.74 0.77 0.74 0.68 0.79 0.64 0.81 0.77 0.81
bird 0.48 0.48 0.64 0.53 0.64 0.61 0.47 0.69 0.66 0.68
boat 0.65 0.70 0.81 0.76 0.76 0.77 0.77 0.71 0.77 0.81
bus 0.58 0.82 0.85 0.67 0.83 0.87 0.74 0.70 0.78 0.89
dog 0.72 0.71 0.71 0.72 0.63 0.64 0.71 0.66 0.71 0.75

horse 0.58 0.57 0.69 0.65 0.59 0.71 0.65 0.69 0.64 0.74
motorcycle 0.63 0.65 0.75 0.60 0.77 0.77 0.69 0.73 0.66 0.78

train 0.64 0.71 0.68 0.65 0.55 0.62 0.69 0.74 0.75 0.77
truck 0.48 0.65 0.61 0.63 0.63 0.69 0.63 0.70 0.68 0.64
zebra 0.68 0.63 0.59 0.66 0.84 0.82 0.52 0.79 0.86 0.84

mean rank 8.23 6.48 5.40 7.09 4.41 6.15 5.64 4.75 3.66 3.20

Table 5.4: Test AUC of models trained on the normal class marked in the first column
of the table. The shading highlights the top 3 models. In this experiment, the val-
idation dataset contained anomalies from 4 known classes, which is the same as the
third column in Fig. 5.6. The ratio of normal data and anomalies in the validation
dataset was 100:2. In absolute numbers, this means the following numbers of valida-
tion anomalies: wildlife MNIST: 23, CIFAR10: 24, SVHN2: 75, COCOPlaces: 2.
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6
Conclusion

In this chapter, we summarize the individual chapters of the dissertation and their
contribution. Also, we relate them to original peer-reviewed papers or other publica-
tions which are available in the form of preprints. Furthermore, we try to evaluate the
goals that were set in the introduction in Sec. 1.3. And finally, we offer an outlook on
possible extensions of the presented work.

6.1 Contributions

Chapter 1 This chapter sets the stage for the rest of the text with definitions of basic
terms and ideas that are important for anomaly detection. It also introduces basic
types of anomalies and sets a list of objectives that we are going to evaluate here.

Chapter 2 This chapter contains an introduction to measures available for compar-
ison of anomaly detectors. The main contribution over state-of-the-art is the analysis
of the suitability of the ROC-AUC as a default quality measure for anomaly detector
comparison. These findings were published in [53]. Another contribution is an exten-
sive description of the current state-of-the-art shallow anomaly detectors, which partly
covers the first objective from Sec. 1.3.

Chapter 3 The rest of the first objective is covered in this chapter with an extensive
description of deep anomaly detectors. Special attention is given to detectors based
on deep generative models. The main contribution of this chapter is that it offers a
comprehensive overview of the topic which is based on both theoretical and practical
experience of the author. We believe it is useful both for novices and experienced
researchers in the field of generative models and/or anomaly detection.

In Sec. 3.4, the practical use of generative autoencoders for anomaly detection is
presented in the context of plasma fusion physics. This work was published as a jour-
nal paper [17]. It shows the feasibility of a two-stage approach, where a deep model
is coupled with a shallow one operating on the latter model’s low-dimensional repre-
sentations of otherwise high-dimensional inputs. There is also an empirical compari-
son with more traditional approaches. The following chapters, especially the original
model proposed in Chapter 5, take inspiration in this approach.

Chapter 4 Here, a large-scale theoretical and experimental survey of deep generative
models in anomaly detection is presented. Its goals were to find a research direction
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6.2 Future work

in which generative anomaly detectors gain an advantage over other approaches, and
it was successful in doing so, as it inspired the model proposed in Chapter 5. The
contribution of this chapter is that it shows the results of a large-scale experimental
comparison of state-of-the-art models, which are compared under different operating
conditions, which was not previously done for generative models in anomaly detection
when the original publication [213] was published.

This chapter fully covers the second objective that was set in Sec. 1.3 by providing
insights into: i) the effect of building blocks of anomaly detection on their perfor-
mance, and ii) the generally poor performance of the existing methods on semantic
image anomalies, which is the focus of the following chapter.

Chapter 5 This chapter presents a novel anomaly detection method addressing miss-
ing functionality that was identified in the previous chapters. The method is the main
contribution of the thesis, which also covers the last objective set in Sec. 1.3. The pro-
posed method defines a novel multi-factor anomaly detection scheme. The scheme is
demonstrated on a novel SGVAEGAN model which performs successfully on the prob-
lem of semantic anomaly detection on image data. It also provides a novel manner of
informed but unsupervised image disentanglement and most importantly a procedure
for anomaly origin detection and explanation, which is something that is missing in
the current state-of-art of image anomaly detection. At the time of the writing of this
thesis, it is currently considered for publication.

Finally, one of the contributions of this work is that it contains links to all the
related software developed during our research process. The list of publicly available
repositories is in Appendix C.

6.2 Future work

As the field of anomaly detection progresses, novel methods appear constantly. In
the vein of Chapter 4, we should strive to add novel methods into a fair comparison
that evaluates them from different perspectives. Although this is clearly not feasible
to do continuously, an updated version of such a survey, created after a few years,
would be helpful in assessing how the field of anomaly detection has evolved in the
meantime. In fact, when publishing the original article [213], we knew that there were
novel methods that appeared during the publication process and which we would have
liked to cover as well. Furthermore, the conclusion of Chapter 4 covers some missing
topics, such as anomaly detection with active learning or temporal anomaly detection,
which is a research area that has been gaining a lot of momentum recently.

Possible technical improvements of the model proposed in Chapter 5, such as the
use of a more flexible latent prior, are mentioned at the end of that chapter. Although
the SGVAEGAN model was specifically designed for anomaly detection on images
where a prominent object is positioned on a distinct background, the general approach
to anomaly detection via disentanglement based on Eq. (5.9) is possibly applicable to
a different kind of data where there there is a possibility of anomalies coming from
different independent sources. Finally, we believe that in order to improve the under-
standing of the proposed model behaviour, its capabilities would be best demonstrated
in new experiments on some real-world application data.
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A
Mathematical formulations

A.1 Multivariate normal distribution

A random vector xxx ∈ Rd follows the multivariate normal (Gaussian) distribution with
mean µµµ ∈ Rd , symmetric and positive–definite covariance matrix Σ ∈ Rd×d , if its prob-
ability density is

p(xxx|µµµ,Σ) =N (xxx|µµµ,Σ) = (2π)−
d
2 |Σ|−

1
2 exp

(
−1

2
(xxx −µµµ)TΣ−1(xxx −µµµ)

)
, (A.1)

where |Σ| is the determinant of the covariance matrix. Sometimes, instead of covari-
ance the precision matrix is used Λ = Σ−1 which makes some manipulations easier.
Some moments of interest are

E[xxx] = µµµ, (A.2)

E

[
xxxxxxT

]
= Σ+µµµµµµT , (A.3)

E

[
xxxTxxx

]
= µµµTµµµ+ Tr(Σ), (A.4)

where Tr(.) is the trace operator.

A.2 The Kullback-Leibler divergence

The Kullback-Leibler (KL) divergence is a measure of distance between two probability
distributions. For two continuous probability distributions with probability densities
p(xxx) and q(xxx) defined on the same probability space we define it as

DKL(p(xxx)||q(xxx)) =
∫
X
p(xxx) ln

p(xxx)
q(xxx)

dxxx. (A.5)

It is an asymmetric measure, therefore it is not a proper metric. These relations hold

p(xxx) = q(xxx) almost everywhere ⇐⇒DKL(p(xxx)||q(xxx)) = 0, (A.6)

DKL(p(xxx)||q(xxx)) ≥ 0, (A.7)

generally DKL(p(xxx)||q(xxx)),DKL(q(xxx)||p(xxx)). (A.8)
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A.3 Kullback–Leibler divergence of two normal distributions

A.3 Kullback–Leibler divergence of two normal distri-
butions

For the case of two multivariate normal distributions p0(xxx) = N (xxx|µµµ0,Σ0) and p1(xxx) =
N (xxx|µµµ1,Σ1) where xxx ∈Rd the KL divergence is

DKL(p0(xxx)||p1(xxx)) = Ep0
[lnp0(xxx)− lnp1(xxx)]

=
1
2
Ep0

[
− ln |Σ0| − (xxx −µµµ0)TΣ−1

0 (xxx −µµµ0) + ln |Σ1|
]
+

1
2
Ep0

[
(xxx −µµµ1)TΣ−1

1 (xxx −µµµ1)
]

=
1
2

ln
|Σ1|
|Σ0|

+
1
2
Ep0

[
−Tr

(
Σ−1

0 (xxx −µµµ0)(xxx −µ0µ0µ0)T
)]

+

1
2
Ep0

[
Tr

(
Σ−1

1 (xxx −µµµ1)(xxx −µµµ1)T
)]

=
1
2

ln
|Σ1|
|Σ0|
− 1

2
Tr

(
Σ−1

0 Ep0

[
(xxx −µµµ0)(xxx −µµµ0)T

])
+

1
2

Tr
(
Ep0

[
Σ−1

1 (xxxxxxT − 2xxxµµµT1 +µµµ1µµµ
T
1 )

])
=

1
2

ln
|Σ1|
|Σ0|
− 1

2
Tr

(
Σ−1

0 Σ0

)
+

1
2

Tr
(
Σ−1

1 (Σ0 +µµµ0µµµ
T
0 − 2µµµ0µµµ

T
1 −µµµ1µµµ

T
1 )

)
=

1
2

ln
|Σ1|
|Σ0|
− 1

2
d +

1
2

Tr
(
Σ−1

1 Σ0

)
+

1
2

Tr
(
Σ−1

1 (µµµ0 −µµµ1)T (µµµ0 −µµµ1)
)

=
1
2

(
ln
|Σ1|
|Σ0|
− d + Tr

(
Σ−1

1 Σ0

)
+ (µµµ0 −µµµ1)TΣ−1

1 (µµµ0 −µµµ1)
)
. (A.9)

where we have used the common trick using the trace of a scalar, the relation Tr(ABC) =
Tr(BCA) = Tr(CAB) and the linearity of the trace operator. For us, a special case
is of high interest – one where we have a normal distribution with diagonal covari-
ance and a standard normal distribution, that is p0(xxx) = N (xxx|µµµ),diag(σσσ2),σσσ2 ∈ Rd and
p1(xxx) =N (xxx|0,III). In that case

DKL(p0(xxx)||N (xxx|0,1)) =
1
2

ln
1∏d

i=1σσσ
2
i

− d +
d∑
i=1

σσσ2
i +µµµTµµµ)

 =
1
2

d∑
i=1

σσσ2
i − 1− lnσσσ2

i +µµµ2
i .

(A.10)
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B
Datasets

B.1 Tabular datasets

In total, we have collected 40 tabular datasets, the majority of which come from the
UCI repository [244]. The complete listing of dataset dimensions is recorded in Tab. B.1
and B.2. Except for the ANNThyroid, Arrhytmia, HAR, HTRU2, KDD Cup 99 (small),
Spambase, Mammography, and Seismic, where the anomaly class has a clear meaning
(security incident or disease), we have followed the technique of [245] for creating arti-
ficial datasets for anomaly detection tasks from classification datasets. More precisely,
we have used only "easy" and "medium" anomalies, as "hard" and "very hard" are not
truly anomalous in the sense of being statistically distinct from the normal class.

B.2 Image datasets

The number of image datasets used for the evaluation of deep models is limited, as
there are very few publicly available image datasets designed purely for anomaly de-
tection. In our experiments, we have used the MNIST-C and MVTec-AD datasets. Fur-
thermore, we have extended these with artificially created anomaly datasets based on
common image datasets that are usually used for classification. These contain ten
classes of distinct objects. In most of our experiments, we have used the leave-one-in
protocol, where one of the classes is considered normal and the remaining are anoma-
lous. Therefore, one classification image dataset with ten distinct classes is trans-
formed into ten different anomaly detection sub-datasets. Finally, for the experiments
with the SGVAEGAN model, we have created two completely artificial image datasets
where the goal was to have images with prominent objects on a more or less unified
background. Again, the basic statistics on image datasets are shown in Tab. B.3.

MNIST dataset [237] is a collection of greyscale images of handwritten digits and one
of the most ubiquitous datasets used in machine learning due to its simplicity
and easy interpretation.

FashionMNIST [246] is a classification dataset of low-resolution greyscale images of
ten different classes of fashion articles, such as coats, shirts, or sandals. It is
supposed to be slightly more difficult than the MNIST datasets.

SVHN2 is a well-known benchmark dataset [247] containing images of house num-
bers. In this cropped version of the dataset, the target digit is centered in the
middle of the picture. However, there may be partial digits adjacent to it, which
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B.2 Image datasets

dataset alias dim anom normal

ANNthyroid ann 21 534 6665
Arrhythmia arr 275 206 245
HAR har 561 1944 8355
HTRU2 htr 8 1638 16257
KDD99 (10%) kdd 118 396742 97276
Mammography mam 6 260 10921
Seismic sei 24 170 2412
Spambase spm 57 1812 2786

Table B.1: Basic statistics (dimensionality, number of normal and anomalous samples)
of the tabular dataset designed directly for anomaly detection.

makes the problem harder. Furthermore, there are no available annotations for
the background/foreground factor and in this paper, it is included mainly as a
benchmark for comparison to other baseline methods.

CIFAR10 is another classical dataset of images of 10 classes of different objects or ani-
mals often used for validation of anomaly detectors [38, 102, 94]. For an overview
of the dataset see [248].

MNIST-C is an artificially created anomaly detection dataset introduced in [249]. It
is created using digits from the MNIST datasets to which certain distortions and
corruptions are added. The normal data in this case are the original MNIST im-
ages and the anomalies are their corrupted counterparts. There are 15 classes
of corruptions, such as different types of blur, noise, or geometrical transforma-
tions. The difficulty of the detection of corrupted images varies a lot. While
brightness change is usually very easy for most detectors, translation or rotation
is sometimes very difficult, see the extended results in the Appendix of [213].

MVTec-AD is an industrial dataset [250] that captures several different problems of
identifying faulty or damaged objects. We have included only some classes of
the dataset that either represented an anomaly detection problem of a varying
degree of difficulty or contained a prominent object in the foreground. The indi-
vidual problems are smaller — on average about 200 normal and 100 anomalous
samples. The images used in our experiments are downscaled to 128x128 pixels
from the original size of 1024x1024.

Wildlife MNIST [236] is an artificial dataset based on the standard MNIST. For each
MNIST digit, a background and foreground texture is sampled from a texture
dataset described in [238] to create a colored version. Two versions of this dataset
were created - mixed and non-mixed. In the mixed version, the background and
foreground for each digit are sampled randomly from 10 background and fore-
ground texture classes to create a very diverse set of images. In the non-mixed
version, the background and foreground class is kept the same for all basic MNIST
digits from the same class, resulting in a less diverse dataset. For examples of the
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B Datasets

dataset alias dim anom normal

Abalone aba 10 50 2151
Blood Transfusion blt 4 16 382
Breast Cancer Wisconsin bcw 30 206 356
Breast Tissue bts 9 22 65
Cardiotocography crd 27 228 1830
Ecoli eco 7 108 205
Glass gls 10 94 112
Haberman hab 3 14 225
Ionosphere ion 33 122 225
Iris irs 4 46 100
Isolet iso 617 3300 4496
Letter Recognition ltr 617 3600 4196
Libras lbr 90 142 215
Magic Telescope mgc 10 3882 12331
Miniboone mnb 50 23922 93565
Multiple Features mlt 649 800 1200
PageBlocks pgb 10 384 4911
Parkinsons prk 22 44 146
Pendigits pen 16 5384 5537
Pima Indians pim 8 176 500
Sonar snr 60 96 110
Spect Heart sph 44 52 211
Statlog Satimage sat 36 2630 3592
Statlog Segment seg 18 938 1320
Statlog Shuttle sht 8 28 57767
Statlog Vehicle vhc 18 132 627
Synthetic Control Chart scc 60 200 400
Wall Following Robot wrb 24 2220 2921
Waveform-1 wf1 21 1482 3302
Waveform-2 wf2 21 1472 3302
Wine wne 13 70 106
Yeast yst 8 390 751

Table B.2: Basic statistics of the tabular multi-class datasets that were transformed into
anomaly detection problems.
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B.2 Image datasets

dataset alias dim anom normal

MNIST-C mnistc 28x28x1 70000 70000
MVTec-AD - wood wood 128x128x3 60 266
MVTec-AD - grid grid 128x128x3 57 285
MVTec-AD - transistor transistor 128x128x3 40 273
MVTec-AD - bottle transistor 128x128x3 40 273
MVTec-AD - capsule transistor 128x128x3 40 273
MVTec-AD - nut transistor 128x128x3 40 273
MVTec-AD - pill transistor 128x128x3 40 273
FashionMNIST fmnist 28x28x1 63000 7000
MNIST mnist 28x28x1 63686 6312
CIFAR10 cifar10 32x32x3 54000 6000
SVHN2 svhn2 32x32x3 80327 18960
Wildlife MNIST wmnist 32x32x3 54000 6000
COCOPlaces coco 64x64x3 4500 500

Table B.3: Basic statistics of image datasets. Note that the numbers of normal and
anomalous samples are approximate, as each dataset (apart from MVTec-AD) has 10
classes of data and some datasets have an uneven distribution of the number of sam-
ples in these classes.

non-mixed version, see the top row of Fig. 5.1. Each version contains 60000 sam-
ples of RGB images with three factors of variation.

COCOPlaces is a dataset created similarly to Wildlife MNIST. 10 classes of objects
from the COCO dataset [251] were combined with 10 background classes from
the Places dataset [252]. Again, mixed and non-mixed variants were created.
Because the object shape and texture cannot be separated in this case, it repre-
sents a problem with two factors of variation that is slightly more realistic than
the previous one. Furthermore, it is much harder, as the object shapes are very
distinct, sometimes the foreground object is only partially visible and the back-
ground itself may sometimes contain some other objects as well. A total of 5000
RGB images were generated for each variant. For sample images of all classes,
see Fig. B.1.

92



B Datasets

Figure B.1: Samples from the semantic image datasets and the MvTec-AD dataset
which were used in the experiments. Datasets from the top row to bottom: CO-
COPlaces, CIFAR10, SVHN2, and MVTec-AD. MVTec-AD examples of normal and
anomalous samples from the bottle, capsule, metal nut, pill, and transistor classes are
shown.
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C
Additional resources

Most of the datasets from Appendix B are publicly available. The Wildlife MNIST and
COCOPlaces datasets were created and published by the author of this thesis and are
available at https://zenodo.org/record/7602025 and https://zenodo.org/record/

7612053. The data that were produced during the extensive experimental comparison
are not publicly available, since they exceed 10TB in size, but the model performance
metrics from experiments in Chapters 4 and 5 are available upon request from the
authors.

Most of the models which were experimented with experiments were implemented
either mostly in the Julia [253] language, with the exception of the SGVAEGAN model,
which was implemented in PyTorch [254]. Now we list the publicly available reposi-
tories used in the creation of this thesis.

1. Repository https://github.com/vitskvara/UCI.jl provides easy access to anomaly
benchmark datasets that were created from classification problems in the UCI
dataset database. This was used for the experiments with tabular data in Chap-
ter 4.

2. Repository https://github.com/vitskvara/AlfvenDetectors.jl is a collec-
tion of model code and utilities for experiments on Alfvén detection that was
described in Sec. 3.4.

3. Repository https://github.com/aicenter/GenerativeModels.jl contains a very
general interface for training and evaluation of basic generative models.

4. Repository github.com/vitskvara/GenerativeAD.jl compiles the experimen-
tal framework used for the large-scale experimental comparisons in Chapters 4
and 5.

5. Finally, the repository github.com/vitskvara/sgad contains the PyTorch im-
plementation of the SGVAEGAN model.
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