
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

Progressive Web Application based on Microservice

Architecture for monitoring of Babyboxes

Bc. Zbyněk Juřica

Ing. Milan Dojčinovski, Ph.D.

Informatics

Web Engineering

Department of Software Engineering

until the end of summer semester 2024/2025

Instructions

Babybox Dashboard is an internal web application designed for remote monitoring and

management of Babyboxes, further ensuring their safe and efficient operation across

Czechia.

The goal of this work is to rewrite this outdated and hard to maintain application,

transforming it into a more performant, manageable and future-ready system. The

application is inspired by the previous version and will offer data visualizations,

aggregations and implement further functionality for custom notifications and storing

relevant data regarding each Babybox.

Main objectives:

- Analysis: assess use-cases and requirements and identify relevant technologies.

- Design: design a maintainable and modular microservice solution based on the

previous monolithic application.

- Implementation: develop the application with a strong focus on data storage,

visualization, notifications with a Progressive Web Apps (PWA) frontend solution.

- Testing and evaluation: test the application, evaluate its functionalities and

performance compared to the older version.

Electronically approved by Ing. Jaroslav Kuchař, Ph.D. on 18 December 2023 in Prague.

Master’s thesis

PROGRESSIVE WEB
APPLICATION BASED
ON MICROSERVICE
ARCHITECTURE FOR
MONITORING OF
BABYBOXES

Bc. Zbyněk Juřica

Faculty of Information Technology
Department of Software Engineering
Supervisor: Ing. Milan Dojčinovski, Ph.D.
May 9, 2024

Czech Technical University in Prague
Faculty of Information Technology
© 2024 Bc. Zbyněk Juřica. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It
has been submitted at Czech Technical University in Prague, Faculty of Information
Technology. The thesis is protected by the Copyright Act and its usage without author’s
permission is prohibited (with exceptions defined by the Copyright Act).

Citation of this thesis: Juřica Zbyněk. Progressive Web Application based on Mi-
croservice Architecture for monitoring of Babyboxes. Master’s thesis. Czech Technical
University in Prague, Faculty of Information Technology, 2024.

Contents

Acknowledgments x

Declaration xi

Abstract xii

List of abbreviations xiv

Introduction 1

1 Background and Related Work 3
1.1 Context . 3

1.1.1 Are Babyboxes Necessary? 4
1.1.2 Technological Description 5

1.2 Related Work . 7
1.2.1 Similar Solutions for Monitoring Applications 7
1.2.2 Relevant Alternatives 10

1.2.2.1 Grafana . 10
1.2.2.2 TICK Stack 11

1.3 Technological Concepts . 11
1.3.1 Client/Server . 12
1.3.2 Microservice Architecture 12
1.3.3 Message Broker . 13

1.3.3.1 Concepts . 13
1.3.3.2 Strategies . 14

1.3.4 API Gateway . 15
1.3.5 REST API . 15

1.3.5.1 Concepts . 16
1.3.6 Server Side and Client Side Rendering 17

1.3.6.1 Server-Side Rendering 17
1.3.6.2 Client-Side Rendering 18
1.3.6.3 When to Choose Which? 18

1.3.7 PWA . 19
1.3.7.1 Service Workers 19
1.3.7.2 Web App Manifest 19
1.3.7.3 HTTPS . 19

1.3.8 SWR . 19

ii

Contents iii

1.3.9 Containers . 20
1.3.9.1 Docker . 20
1.3.9.2 Docker Compose 21
1.3.9.3 Benefits . 22

1.3.10 NoSQL Databases . 22
1.3.10.1 MongoDB . 22
1.3.10.2 InfluxDB . 23

1.3.11 JWT Authenticaiton Mechanism 24

2 Analysis and Design 26
2.1 Methodology . 26

2.1.1 Software Development Process 26
2.1.2 Technological Freedom in Microservice Architecture . . 27
2.1.3 Guiding Principles . 27

2.1.3.1 Design Principles and Patterns 28
2.2 Requirements Analysis . 30

2.2.1 Identification and Analysis of User Requirements 31
2.2.2 User Personas . 32
2.2.3 Use Cases . 32
2.2.4 Functional Requirements 34
2.2.5 Non-functional Requirements 36

2.3 Choosing technologies for This Project 36
2.3.1 Programming Languages and Frameworks 36

2.3.1.1 Next.js . 37
2.3.1.2 JavaScript Runtime 38
2.3.1.3 Go . 38
2.3.1.4 Python . 39

2.3.2 Web Frameworks . 40
2.3.3 Charting library . 41
2.3.4 Databases . 43

2.3.4.1 Time-series Database 43
2.3.4.2 General-purpose Database 45

2.3.5 Middleware . 46
2.3.5.1 Message Broker 46
2.3.5.2 API Gateway 48
2.3.5.3 Docker and Docker Compose 48

2.4 System Design . 49
2.4.1 Previous Solution . 50
2.4.2 Proposed Solution . 52

2.4.2.1 Transition to a Microservice Architecture . . . 53
2.4.2.2 Architectural Design 55
2.4.2.3 Design of Individual Components 56
2.4.2.4 Domain Model 58

Contents iv

3 Implementation 61
3.1 Implementation Process . 61
3.2 Infrastructure . 62

3.2.1 Code Structure . 63
3.2.1.1 Nx . 63
3.2.1.2 Current Setup 64

3.2.2 Containerization . 64
3.2.2.1 Docker . 65
3.2.2.2 Docker Compose 66
3.2.2.3 Environment Variable Management 66
3.2.2.4 Container Dependencies 67

3.2.3 API Gateway . 67
3.2.3.1 Development Environment 67
3.2.3.2 Production Environment 68

3.2.4 RabbitMQ . 69
3.2.4.1 Docker Compose Configuration 69
3.2.4.2 Naming Conventions 69
3.2.4.3 Communicating through the Message Broker . 69
3.2.4.4 Types of Data 70

3.2.5 MongoDB . 70
3.2.5.1 Docker Compose Configuration 71
3.2.5.2 Practical Utilization of Schemaless Design . . . 71
3.2.5.3 Efficient Data Retrieval 71
3.2.5.4 Indexing Considerations 72
3.2.5.5 Tooling and Development Support 72

3.2.6 InfluxDB . 72
3.2.6.1 Docker Compose Configuration 73
3.2.6.2 Data Storage 73
3.2.6.3 Development Tools and Visualization 73

3.3 Microservices . 74
3.3.1 Snapshot Handler Microservice 74

3.3.1.1 New Firmware API Improvements 74
3.3.1.2 Slug Conversion and Usage 75
3.3.1.3 Data Handling and Storage 75
3.3.1.4 API Endpoints for Data Retrieval 75
3.3.1.5 API Versioning and Envelope Pattern 76
3.3.1.6 Authentication 76
3.3.1.7 Health Check Endpoint 77

3.3.2 Querying Data from InfluxDB 77
3.3.2.1 Gap Filling Strategies 79

3.3.3 Babybox Microservice 81
3.3.3.1 Core Functionality 81
3.3.3.2 API Design and Endpoint Functionality 82

3.3.4 Notification Microservice 83

Contents v

3.3.4.1 REST API . 83
3.3.4.2 Template Configuration and Snapshot Processing 84
3.3.4.3 Strategies to Refining Notification Frequency . 84
3.3.4.4 Chain of Checkers 84
3.3.4.5 Email Notification Mechanism 87

3.3.5 User Microservice . 88
3.3.5.1 REST API . 88
3.3.5.2 Registration Process 88
3.3.5.3 Login Process 89
3.3.5.4 Integration with Other Services 90

3.3.6 Battery Analyzer Microservice 92
3.3.6.1 REST API . 92
3.3.6.2 Taking a Measurement 93
3.3.6.3 Battery Quality Assessment Idea 93
3.3.6.4 Empirical Research and Methodology 94

3.4 Front-end . 95
3.4.1 Application Flow . 96
3.4.2 User Experience . 97
3.4.3 Implementing PWA . 98
3.4.4 Login and Logout Functionality 99
3.4.5 Starting Page . 100

3.4.5.1 Data Tables 102
3.4.6 Babybox Page . 103

3.4.6.1 Grouping notification 105
3.4.7 Chart Page . 106

3.4.7.1 Chart Component 106
3.4.7.2 Consistent Color Coding 108
3.4.7.3 SearchParams as State 108
3.4.7.4 ApexCharts Performance 109
3.4.7.5 Displaying Event Data 110
3.4.7.6 Gap Filling Algorithms 112

3.4.8 Battery Analysis Page 113
3.4.8.1 Babybox Information Page 113

3.4.9 Notification and User Pages 114

4 Testing and Evaluation 115
4.1 Testing . 115

4.1.1 Unit testing . 115
4.1.2 Testing the API interface 116

4.2 CI/CD Pipelines . 118
4.2.1 Continuous Integration 118

4.2.1.1 Additional Workflows 119
4.2.2 Continuous Deployment 119

4.3 Documentation . 120

Contents vi

4.4 Evaluation and User Feedback 120
4.4.1 Requirements Fulfillment 120
4.4.2 User Feedback . 122

5 Conclusion 123
5.1 Future Improvements . 124

5.1.1 Kubernetes . 124
5.1.2 Analysis Services . 124
5.1.3 Maintenance Microservice 125
5.1.4 Improving Current Components and Services 125

A Previous Solution Screenshots 127
A.1 Babybox Detail Page . 127
A.2 Babybox Page . 128
A.3 Time Filtering on Chart Page 129

B New Solution Screenshots 130
B.1 Babybox Detail Page . 130
B.2 Babybox Table with Tooltips 131
B.3 Time Filtering on Chart Page 132
B.4 Statistics and Tabular Data under the Chart 133

Contents of the Attached Media 139

List of Figures

2.1 Performance benchmarks of the web frameworks we considered.
Showing the average latency, P90 and P99 values for 64, 256
and 512 concurrency. 40

2.2 Performance benchmarks of the same web frameworks showing
a score of performance.[53] . 41

2.3 Example of range, x-axis, y-axis and point annotations in a line
chart.[54] . 42

2.4 Benchmark results showing ingestion speeds (top image), query
speeds (left image) and aggregation speeds (right image). . . . 44

2.5 Data flow diagram of the previous solution, where the blue Back-
end component is the one big monolith. 51

2.6 Data flow diagram of the new microservice solution. 55
2.7 Domain model . 58

3.1 Visualization of distributing snapshots among consumers. . . . 70
3.2 Visualization of the filling algorithms. 80
3.3 Visualization of the notification checking chain. 85
3.4 Visualization of the notification checking in action (streak set

to 2, new error set to true, delay set to 35 minutes). 86
3.5 Normalized battery voltage decrease over time (y-axis starts at

12.5V and ends at 13.8V; x-axis is from 0 seconds to 25 minutes). 95
3.6 Diagram showing the flow through the application. 96
3.7 Skeleton components indicating that the overview widgets are

loading/fetching data. 97
3.8 Screenshots of the PWA application in standalone mode looking

like a native application. 99
3.9 New table containing all the babyboxes on the starting page. . 101
3.10 Table showing a list of all the babyboxes in the previous version

of the application. 101
3.11 Partial screenshot of variable overview widgets showing the first

3 variables - chart and minimum, maximum and average statis-
tics over the last week, 3 days and 1 day. 103

3.12 Screenshot of the table showing the latest snapshots. 104
3.13 Notifications displayed using the accordion component grouped

by their template id and further grouped by the day on which
they occurred. 106

vii

3.14 The main line chart displaying the temperatures over one week
time. 107

3.15 The main chart displaying the color coded events with labels
over one week of time. 111

3.16 Visualization of the intervals algorithm creating and then com-
bining the intervals together. 112

3.17 User interface of the battery measurement. 113

4.1 Performance testing in Postman. 121

List of code listings

3.1 Pseudo-Dockerfile showcasing the basic structure of the Dock-
erfiles in this application. 65

3.2 Configuration a service through environment variables in a Docker
Compose file. 66

3.3 Configuring snapshot-handler service for Traefik using labels. . 68
3.4 Configuring snapshot-handler service in Caddyfile. 68
3.5 Query template for a snapshot range query based on slug. . . . 77
3.6 Query creation for an aggregated query. 78
3.7 Using aggregateWindow for filling gaps in time-series data. . . 80
3.8 Using a pre-hook in Mongoose for hashing passwords before

saving to MongoDB. 89
3.9 Generating a new JWT in Bun. 89
3.10 Protecting a group of endpoints in Go’s Echo by checking the

JWT validity. 90
3.11 Protecting endpoints in Python’s FastAPI by checking the JWT

validity. 91
3.12 Protecting a group of endpoints in Bun’s Elysia by checking the

JWT validity. 92
3.13 Adjusting CSS styling for PWA users only. 98
3.14 Structure of the auth-context that can be used throughout the

application. 100
3.15 Using the DataTable component. 102
3.16 Column definition (for the temperature inside column) to pro-

vide icons indicating a sudden change in the data. 104
3.17 CSS and Tailwind configurations working together to add cus-

tom colors. 108
3.18 Updateing search from and to parameters in Next.js. 109

viii

List of code listings ix

3.19 Code for delaying the render of the line chart component. . . . 110

4.1 Example of a test suite for the notification pipeline of grouping
them by template ID, day of year and then merging together. . 116

4.2 Examples of API testing using Postman to check the status
code, headers and data payload. 117

4.3 Snippet of the Continuous Integrity part of the pipeline for run-
ning automated tests. 118

4.4 Snippet of the Continuous Delivery part of the pipeline for au-
tomatically deploying to a remote server. 119

I would like to express my deepest and warmest grati-
tude to my supervisor for his invaluable guidance, and
support that he provided, which carried me through all
the stages of writing this thesis. His insights and ex-
pertise were instrumental in shaping this thesis.
I am also immensely grateful to my family for their un-
wavering support, encouragement, and advice. To my
girlfriend, thank you for your patience, understanding,
and constant motivation, it has meant a lot to me.
Finally, a special thanks to my dog, an old lady who
watched me tirelessly work on this thesis. Your quiet
companionship made the long hours much more bear-
able.
Thank you all for being my pillars of support during
this endeavor.

x

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on May 9, 2024

xi

Abstract

This thesis presents the design and implementation of a monitoring system
based on microservice architecture for managing and analyzing data from
babyboxes across the Czech Republic. The work involved transitioning from
an outdated monolithic architecture to a more flexible and maintainable mi-
croservices architecture, aiming to empower staff working as operators and
maintenance technicians.

The system includes several microservices handling data ingestion, user
management, notifications, and battery analysis. Built using Go, TypeScript,
Python, MongoDB, InfluxDB, and RabbitMQ, the backend provides a scalable
and modular structure. The front-end, developed with Next.js and React, of-
fers comprehensive data visualization, aggregations, notifications, and analysis
features. The application was continuously improved based on user feedback,
laying a strong foundation for future enhancements and integrations.

Keywords Microservice architecture, Progressive Web Application, Baby-
box, Baby Hatch, Internet of Things, Go, Next.js, TypeScript, Bun, InfluxDB,
MongoDB, Docker, Monitoring System

Abstrakt

Tato diplomová práce představuje návrh a implementaci monitorovaćıho
systému založeného na architektuře mikroslužeb pro správu a analýzu dat
z babybox̊u po celé České republice. Práce zahrnovala přechod ze zastaralé
monolitické architektury na flexibilněǰśı a lépe udržovatelnou architekturu
mikroslužeb s ćılem poskytnout lepš́ı nástroje pracovńık̊um, kteř́ı p̊usob́ı jako
operátoři a servisńı technici.

Systém zahrnuje několik mikroservis, které zajǐst’uj́ı př́ıjem dat, správu
uživatel̊u, notifikace a analýzu stavu akumulátor̊u. Back-end je vytvořen po-
moćı technologíı Go, TypeScript, Python, MongoDB, InfluxDB a RabbitMQ
a poskytuje škálovatelnou a modulárńı strukturu. Frontend, vyvinutý pomoćı

xii

xiii

Next.js a React, nab́ıźı komplexńı vizualizaci dat, agregace, notifikace a ana-
lytické funkce. Aplikace byla pr̊uběžně vylepšována na základě zpětné vazby
uživatel̊u, což položilo pevný základ pro budoućı vylepšeńı a integrace.

Kĺıčová slova Architektura mikroslužeb, Progresivńı Webová Aplikace,
Babybox, Baby Hatch, Internet Věćı, Go, Next.js, TypeScript, Bun, InfluxDB,
MongoDB, Docker, Monitorovaćı Systém

List of abbreviations

API Application Programming Interface
CD Continuous Delivery
CI Continuous Integration

CRUD Create, Read, Update, Delete
CSS Cascading Style Sheets
CSR Client-Side Rendering
DB Database

DRY Don’t Repeat Yourself
GSM Global System for Mobile communications

HTTP HyperText Transfer Protocol
HTTPS HyperText Transfer Protocol Secure

HATEOAS Hypermedia As The Engine Of Application State
HTML Hypertext Markup Language

IP Internet Protocol
JWT JSON Web Token

JSON JavaScript Object Notation
MQ Message Queue

MQTT Message Queuing Telemetry Transport
NoSQL Not Only SQL / No SQL

PDF Portable Document Format
PWA Progressive Web Application

REST Representational State Transfer
SEO Search Engine Optimization
SMS Short Message Service
SQL Structured Query Language
SSR Server-Side Rendering

SWR Stale-While-Revalidate
TDD Test Driven Development
URI Uniform Resource Identifier
URL Uniform Resource Locator
XML Extensible Markup Language

YAML YAML Ain’t Markup Language

xiv

Introduction

Babyboxes, also known as baby hatches, provide a secure and anonymous
method for individuals to leave their newborns in a location where they will
be promptly discovered and cared for. This concept, deeply rooted in ancient
history, has been prevalent for centuries.

The inception of babyboxes dates back to the 12th century in Italy. Strate-
gically placed in accessible locations, often near churches or monasteries, these
facilities offered a safe alternative for individuals unable to care for their in-
fants, ensuring the well-being of these children.[1]

Over time, this idea spread to other countries and has now reached different
parts of the world. Today they can be found in many different countries
including Germany, Poland, Italy, and even countries like Japan, Malaysia,
and places like Vancouver. Despite regional variations, the core objective of
these babyboxes remains consistent: ensuring the safety of infants.[1]

The enduring relevance of babyboxes illustrates their importance and high-
lights the need for innovative solutions to enhance the safety and responsiveness
of these devices. This is especially evident in the Czech Republic, where there
is a notable number of these devices further enhanced by modern technolo-
gies featuring mechanisms to ensure improved safety but also availability with
immediate multi-layer alerting.

Integral to the efficient operation of these babyboxes is Babybox Dash-
board, an internal tool for operations staff to monitor the network of baby-
boxes. This application receives data, such as temperatures and voltages, from
babyboxes periodically and enables its users to monitor the status and fix any
potential issues.

The goal of this thesis is to rethink, improve, and rewrite the current
application to support future extensibility and better maintainability while
enhancing its scalability and performance. Inspiration will be drawn from the
previous solution to identify and improve areas that were lacking, particularly
those involving outdated technologies, performance issues affecting the front-
end user experience, and notification fatigue caused by an excessive number
of notifications generated. The implementation will leverage the microservice

1

Introduction 2

architecture to build a progressive web application that provides an intuitive
overview of the status of each babybox while accommodating this functionality
with custom notifications and analysis.

This thesis will commence by Chatper 1 explaining the background, de-
scribing similar works and also giving an overview of the relevant technologies.
The following chapter, Chapter 2, goes over the analysis, focusing on the pre-
ceding solution, followed by an outline of the new design and the transition
from a monolithic to a microservice architecture. The main chapter is Chapter
3, which describes the practical implementation of this work: the application
infrastructure and details the components and services that constitute the en-
tire application. Finally, Chapter 4 will go over testing and evaluating the
final solution. The Conclusion summarizes this work and its results and sets
future goals and possible expansions of this application.

Chapter 1

Background and Related
Work

This chapter delves into the background and related work that provide es-
sential context for this thesis. Initially, it introduces the concept of baby-
boxes, exploring their purpose and technical specifics, thereby setting the
stage for the application’s focus. Subsequently, the discussion extends to
similar projects in various domains and also examining alternative solu-
tions and approaches. Additionally, this chapter explicates key technical
concepts employed throughout this thesis. The comprehensive examination
presented here is crucial for understanding the domain of operation and
the rationale behind the decisions made during the project’s development
phases.

1.1 Context

The concept of “babyboxes” or “baby hatches”1 provides a secure and anony-
mous method for parents, especially mothers, to safely leave their newborns.
In the Czech Republic, these devices are equipped with temperature regulation
features and are typically located near healthcare facilities to ensure immedi-
ate care for the infants. Spearheaded by the Nadačńı fond pro odložené děti
Statim2 and the registered association Babybox pro odložené děti–Statim3, the
initiative has seen significant adoption across the country.

As of April 2024, 88 babyboxes have been installed in the Czech Repub-
lic, which have collectively safeguarded 253 children. These installations are
mostly found in hospitals, with a few exceptions in other types of buildings,

1In this thesis, we will use the term “babybox” instead of “baby hatch”, as that is the
name commonly recognized in the Czech Republic.

2https://www.babybox.cz/?p=fond
3https://www.babybox.cz/?p=sdruzeni

3

https://www.babybox.cz/?p=fond
https://www.babybox.cz/?p=sdruzeni

1.1. Context 4

reflecting their integration into healthcare and community infrastructure. The
design of babyboxes has evolved over time to where it is today: Babyboxes are
made of stainless steel with automated doors and safety features like infrared
sensors to prevent accidents. [2][3]

The initiative’s growth in the Czech Republic has been driven by key fig-
ures such as Ludv́ık Hess, with support from various sponsors and medical
professionals. Despite some legislative and administrative challenges, the com-
mitment to expanding this service highlights its importance.[2][3]

1.1.1 Are Babyboxes Necessary?
In examining the role and necessity of baby hatches in our society, we looked
at the insights provided by research from Japan, Malaysia, and Poland, each
offering a unique perspective on this complex issue.

The Japanese perspective, as discussed in the first paper, emphasizes that
baby hatches serve as crucial intervention points for infants who might other-
wise be abandoned in dangerous situations. This analysis supports the view
that while baby hatches do not address the underlying social challenges that
lead to abandonment, they fulfill an essential role by offering a safe and anony-
mous option for parents in crisis. The paper advocates for the preservation of
these hatches as they ensure the survival and safety of infants, presenting a
pragmatic solution to a distressing social dilemma.[4]

The Malaysian study shifts the focus slightly to the societal implications of
baby hatches, particularly in contexts where there is significant social stigma
against unwed mothers and victims of sexual assault. It outlines how baby
hatches in Malaysia act as compassionate alternatives, providing a secure en-
vironment for abandoned infants while maintaining the anonymity of the par-
ents. This approach helps to mitigate infant mortality and supports mothers
in desperate situations without subjecting them to further societal judgment
or exclusion.[5]

Poland’s case, explored in the third paper, delves into the ethical, cultural,
and societal debates surrounding baby hatches. It critically examines the ten-
sion between the child’s right to know their origins and the societal benefits
of providing a secure abandonment point. Despite various ethical concerns,
the conclusion drawn is that baby hatches, albeit controversial, are necessary.
They provide an indispensable safety option for individuals facing extreme
circumstances, thus serving as a vital last-resort measure in safeguarding the
welfare of children.[6]

Bringing these analyses together, it is clear that baby hatches, regardless
of the cultural or ethical controversies they may spark, serve as indispensable
safety measures. They are established not as solutions for the root cause but
as necessary interventions to ensure the immediate safety of infants. Each
paper, while recognizing that baby hatches do not tackle the root causes of
abandonment, reiterates their importance in providing a safe alternative for

1.1. Context 5

ensuring the survival and well-being of infants when parents find themselves
in untenable situations.

In conclusion, the necessity of baby hatches as a last-resort measure is evi-
dent across different social and cultural settings. They provide a critical safety
net for newborns, ensuring that infants have a safe place to go when all other
options might fail. This makes them a crucial part of social safety measures,
needed to protect the most vulnerable in society—the newborn infants.[4][5][6]

1.1.2 Technological Description
Bayboxes, for which we will be developing the platform, are engineered with
technological components designed to ensure safety and security for the infant
while facilitating easy and discreet operation for the parent. As we are the
ones manufacturing them, we have a direct influence on which hardware and
software is going to be used. Babyboxes are usually built into a wall of the
hospital, leading to a separation to the outside side, accessible publicly by
the individual leaving the child, and the hospital side, where the medical staff
retrieves the child. Each babybox is composed of several key components:

1. Engine Unit:

Functionality: The engine unit controls the automatic doors on the out-
side side of the babybox. It integrates sensors to detect the weight of
the object placed inside, activating the doors to open or close automat-
ically. This unit is designed to operate seamlessly to ensure that the
door mechanism does not pose any risk during its operation.

2. Thermal Unit:

Heating and Cooling: The thermal unit manages the internal environ-
ment of the babybox through two types of heating mechanisms—casing
heating and fan heating—to maintain a stable temperature regardless of
external weather conditions. Cooling is facilitated through fans, which
are activated as needed to keep the internal temperature within a safe
range.
Temperature Monitoring: Multiple sensors are deployed to monitor var-
ious temperatures:
Inside Temperature: Ensures the internal environment remains within
a safe range for the infant.
Outside Temperature: Monitors external conditions to adjust internal
heating or cooling.
Casing Temperature: Oversees the temperature of the babybox casing
heating.

1.1. Context 6

Top and Bottom Temperatures: These are specifically placed on the top
and bottom of the heat exchanger to monitor the state and functioning
of the heating/cooling system.
Voltage Monitoring: The unit monitors various voltages, most impor-
tantly the input voltage and the voltage of the battery in case of a power
outage.

3. Monitoring and Communication:

Camera: A camera installed inside the babybox provides real-time vi-
sual monitoring, allowing hospital staff to observe the babybox interior
continuously. This is important for ensuring the safety and security of
the child until retrieval.
Router: Connects the babybox to the hospital’s network, enabling the
transmission of real-time data and video feeds to the monitoring com-
puter accessed by hospital staff. The router also facilitates an internet
connection for external communications.
GSM Communicator: An additional layer of communication is provided
by a GSM communicator, which sends SMS notifications to predefined
recipients, enhancing the alert system in case of emergencies.

4. Connectivity and Alerts:

Monitoring Panel: A computer installed in the hospital, in a place where
staff is present 24/7, displaying real-time data and video from the baby-
box as well as alerting the staff about problems and activation.
Emails: Sent by both the engine and thermal units, and the camera, to
notify staff of events or problems.
SMS Alerts: Generated by the GSM communicator, sending text mes-
sages to designated recipients about critical events.

The Babybox system employs a structured approach to data collection,
which is essential for monitoring the operational integrity of each unit. The
thermal unit within each Babybox is tasked with gathering data on temper-
atures and voltage measurements at regular intervals. Specifically, data is
transmitted every 10 minutes (e.g., XX:00, XX:10, XX:20, etc.), ensuring that
any significant changes in environmental conditions or system performance are
promptly captured and addressed.

Data is sent to a designated HTTP endpoint: GET /BB.{BABYBOX_NAME}.
data?BB={BABYBOX_NAME}&T0=value&T1=value,..., where {BABYBOX NAME} is an
identifier such as BRNO or OSTRAVA, and T0 to TX represent readings from various
sensors. This method of transmission has been a historical choice for the
system, supporting current operational needs effectively. However, our goal is
to update and enhance this data transmission process in future versions of the
system.

1.2. Related Work 7

Currently, the system does not automatically collect event data, which
is seen as a significant area for improvement. Adding automatic event data
collection would provide a more comprehensive overview of the Babybox’s
operational status and help pinpoint specific incidents requiring immediate
attention.

Looking forward, we intend to reduce the data transmission interval to
every 5 minutes to allow more frequent updates and closer monitoring. Along-
side this change, the legacy endpoint format is under review to potentially
incorporate more advanced data handling capabilities, which would improve
efficiency and the overall functionality of Babybox Dashboard. These planned
updates are part of a broader strategy to enhance the system’s responsiveness
and the safety of the infants cared for within the Babybox network.

1.2 Related Work

We looked at the landscape of existing solutions and technologies in this do-
main. This section explores various monitoring applications that utilize mi-
croservice architectures, providing insights into how similar systems are struc-
tured and operate. Additionally, we will look into established tools such as
Grafana and the TICK stack, which are prominent in the fields of monitoring
and analytics. Analyzing these solutions allows us to draw on industry expe-
riences and identify effective practices that could be adapted to enhance our
system. This review not only broadens our perspective on possible design and
functional approaches but also ensures that our development is informed by a
wide range of existing technological advancements.

1.2.1 Similar Solutions for Monitoring Applications
A Microservices-based IoT Monitoring System to improve the Safety
in Public Buildings

This study introduces a microservices-based IoT monitoring system de-
signed to enhance safety in public buildings by continuously tracking envi-
ronmental conditions such as temperature, or smoke levels. The microservice
architecture allows for a pattern-based specification of system components that
are adapted to the specific context, such as user’s needs and requirements.

The microservice architecture was chosen to best satisfy the non-functional
requirements. The implementation demonstrates the effectiveness of this ar-
chitecture for safety applications where system failure can have severe conse-
quences. The microservice architecture was chosen to improve availability and
system failure tolerance, performance, and scalability.[7]

Design and implementation of a smart beehive and its monitoring

1.2. Related Work 8

system using microservices in the context of IoT and open data
The smart beehive monitoring system utilizes microservices to manage and

analyze data collected from various sensors within beehives, focusing on pa-
rameters such as temperature and humidity which are critical for bee health.
This system uses Python for microservices development, integrating with both
wireless sensor networks (WSN) and IoT technology to gather and process en-
vironmental data, which they also provide for further research in the formats
of XML, JSON, RDF, Turtle and other open data formats.

This approach highlights the benefits of microservices in managing complex
data structures and ensuring the scalability of IoT applications. The study is
satisfied with the results of the microservice architecture, however, more work
needs to be done in properly handling and utilizing the data in a meaningful
way.[8]

A Microservices Platform for Monitoring and Analysis of IoT Traffic
Data in Smart Cities

The PROMENADE project developed primarily for real-time monitoring
and analysis of traffic data from smart cities, employing a microservices archi-
tecture to handle the vast amounts of spatio-temporal IoT traffic data with
fine resolutions. The platforms utilizes IoT/Fog/Cloud paradigms, microser-
vice architecture and DevOps to run the application using OpenShift with
Kubernetes and Apache ActiveMQ as a message broker along side with Kafka
for receiving data.

The successful deployment of this system underscores the adaptability and
efficiency of microservices in handling real-time data and large-scale appli-
cations within smart cities. The use of microservices enables the system to
develop robust and reliable services and to improve the ability of satisfying
strict non-functional requirements.[9]

Design of a Cattle-Health-Monitoring System Using Microservices
and IoT Devices

In the domain of agriculture, a microservices-based system was developed
to monitor cattle health by collecting data on various physiological and en-
vironmental parameters. The system efficiently manages data across a dis-
tributed network, facilitating scalability at the service level and robust data
processing capabilities. This enables farmers to receive real-time insights into
the health status of their cattle, helping them make informed decisions about
animal care and management.

The study demonstrates the practical applications of microservices in agri-
cultural settings, where the ability to process large volumes of data reliably is
essential for effective livestock management. The nature of microservices allow
for better fault tolerance. This research highlights the flexibility of microser-
vices in enhancing data-driven decision-making in agriculture, in the context

1.2. Related Work 9

of using machine learning techniques for further analysis.[10]

Microservices-based IoT Monitoring Application with a Domain-
driven Design Approach

This paper discusses an IoT-based environmental monitoring system within
a Domain-driven Design (DDD) framework, using microservices to manage
complex interactions between various data points and services. By employ-
ing microservices, the services are more independent during the development
process and their performance does not affect each other that much; the de-
ployment process has also been more effective.

The use of DDD in conjunction with microservices architecture goes hand-
in-hand to produce adaptive software to changes during the development pro-
cess. In the future, the authors would like to explore the usage of MQTT
protocol more for improved independence and greater scalability.[11]

Multiple time series database on microservice architecture for IoT
based sleep monitoring system

The paper explores an IoT-based sleep monitoring system utilizing a mi-
croservices architecture to manage and analyze sleep data captured through
wearable devices. This system employs multiple time series databases to store
and process large volumes of health-related data efficiently, ensuring high
throughput and minimal latency. The use of the MQTT protocol facilitates
the real-time transmission of data. The microservices allow for the modular
integration of various components, each handling specific functionalities such
as data ingestion, processing, and analysis.

The conclusion drawn from this study emphasizes that microservices ar-
chitecture is better for developing scalable, reliable, and flexible healthcare
monitoring systems that can adapt to increasing data volumes and complex
processing needs. Introducing InfluxDB for data ingestion has increased write
performance by about 20 times faster. Using MQTT as the sensor gateway
increased throughput by about 2 times. Using a separate database for each
service has further increased scalability, resilience, and independence.[12]

Summary
The related work provides inspiration not only through the technologies

commonly employed in this space, such as message brokers (using MQTT or
Kafka) and containerization tools (Docker or Kubernetes), but also by high-
lighting the advantages of flexibility, fault tolerance, independence, and im-
proved availability, performance, scalability, and maintainability.

1.2. Related Work 10

1.2.2 Relevant Alternatives
We have also reviewed and rejected some other solutions that could have been
potentially easier to use, but do not actually fully satisfy the needs and re-
quirements of our application.

1.2.2.1 Grafana

Grafana is an open-source platform renowned for its robust capabilities in
monitoring and visualizing metrics from a vast array of data sources such as
InfluxDB, Prometheus, and Elasticsearch. It enables users to create detailed,
interactive dashboards that showcase data through various visual representa-
tions including graphs, charts, and alerts. This platform excels particularly
in handling time series data, which is essential for applications that require
continuous monitoring and performance analytics. Grafana’s customization
options are extensive, allowing users to tailor dashboards to specific needs,
and its alerting capabilities are invaluable for maintaining operational aware-
ness and responding promptly to critical conditions.[13]

Each dashboard can be fine-tuned to display real-time information, making
Grafana an indispensable tool in domains where timely data visualization and
analysis are critical. Its ability to integrate seamlessly with many modern data
sources and its user-friendly interface make it an attractive option for system
administrators and data analysts alike.

Despite these strengths, we ultimately decided against employing Grafana
for the Babybox monitoring system. Our project demanded a more customized
solution to align closely with the specific operational workflows unique to Baby-
Box monitoring. Grafana, while powerful and flexible, is a general-purpose tool
designed to cater to a wide range of monitoring scenarios. The level of cus-
tomization required to adapt Grafana to our particular needs could potentially
lead to a complex and cumbersome setup.

Furthermore, our vision for the Babybox monitoring system includes not
only meeting current requirements but also accommodating future expansions
and functionalities. Although Grafana is scalable and capable of handling sig-
nificant amounts of data, tailoring it to support future-specific enhancements
and features could limit its effectiveness and efficiency. We needed a system
that could evolve without the constraints imposed by a predefined platform,
no matter how versatile it might be.

In conclusion, while Grafana offers a compelling set of features for generic
monitoring tasks, the unique challenges and specific goals of our Babybox
monitoring project necessitated the development of a custom solution. This
approach ensures that the monitoring system is perfectly suited to our imme-
diate needs and capable of adapting to future demands, providing a seamless,
integrated experience tailored specifically for the context of Babybox opera-
tions.[13]

1.3. Technological Concepts 11

1.2.2.2 TICK Stack

The TICK stack is an integrated collection of open-source tools designed to
handle time-series data efficiently across various stages of data management.
Each component of the TICK stack serves a unique purpose within the ecosys-
tem:[14][15]

1. Telegraf : This is a plugin-driven server agent responsible for collecting
metrics and data from a variety of sources and writing them to InfluxDB.
Telegraf supports a vast array of data collection plugins, making it versatile
for collecting data from virtually any source.

2. InfluxDB: At the heart of the stack, InfluxDB is a high-performance time-
series database designed to handle high write and query loads. It is partic-
ularly optimized for fast, time-stamped data storage and retrieval, making
it ideal for applications that require real-time analytics and monitoring.

3. Chronograf : This component provides a user-friendly graphical interface
for visualizing the data stored in InfluxDB. It offers tools for building dash-
boards and graphs that help users interpret vast amounts of data intuitively
and quickly.

4. Kapacitor: A real-time streaming data processing engine, Kapacitor is
used for creating alerts, running ETL jobs, and detecting anomalies in the
data. It can process both batch and stream data from InfluxDB, enabling
complex data processing tasks.

Despite the comprehensive capabilities of the TICK stack, we ultimately
decided against implementing it for the Babybox monitoring system for several
reasons:

The specific requirements of our project necessitated a more tailored solu-
tion that could deeply integrate with the unique operational workflows unique
to Babybox monitoring. The TICK stack, while powerful, is a general-purpose
suite of tools that would require extensive customization to meet these special-
ized needs. Such significant modifications could introduce a level of complexity
and maintenance that might not be sustainable in the long term.

Furthermore, there were concerns about future expandability and vendor
lock-in. Relying on the TICK stack could limit our ability to seamlessly inte-
grate other technologies or adapt to new requirements as the project evolves.
Additionally, the absence of Czech language support in the user interfaces of
the TICK tools is not compatible with our setting.[14][15]

1.3 Technological Concepts

In this section, we will explore several foundational theoretical concepts that
are essential for understanding the technological topics discussed in this work.

1.3. Technological Concepts 12

These concepts encompass a range of topics integral for modern web devel-
opment and software architecture, including microservices, data storage, or
communication models.

1.3.1 Client/Server
The client/server architecture is a distributed application structure that parti-
tions tasks or workloads between the providers of a resource or service, called
servers, and service requesters, called clients. Often clients and servers com-
municate over a computer network on separate hardware, but both client and
server may reside in the same system. A server hosts, delivers, and manages
most of the resources and services to be consumed by the client. This model
can be utilized in applications ranging from email exchanges to web browsing,
where web servers serve web pages to client browsers.[16]

In this architecture, the client initiates communication sessions, which the
server awaits for requests to respond to. This setup allows clients to access
a range of network services that are continuously available on servers. The
beauty of this architecture lies in its scalability and efficiency; new clients can
be easily added, and they can communicate with the server as long as the
network is reachable. Servers can also be scaled up to handle increases in
workload, making this model adaptable to varying demand levels.[16]

1.3.2 Microservice Architecture
Microservice architecture is an approach to building a single application as
a suite of small, modular services. Each module supports a specific goal and
uses a simple, well-defined interface to communicate with other sets of services.
This architecture is a development of the client/server model but breaks down
the functionality into smaller, more manageable pieces that can be developed,
deployed, and scaled independently. The microservice architecture has several
key characteristics: [17][18][19][20]

Decentralized Control: Unlike monolithic architectures, where a single
database or a central unit of operation manages the entire application’s
processes, microservices decentralize control and data management. Each
service in a microservice architecture operates independently with its own
database and state, reducing dependency on a central management system.

Flexibility in Technology: Microservices can be written using different pro-
gramming languages, databases, hardware, and software environments de-
pending on what fits best for their defined responsibilities. This polyglot
approach allows developers to use the right tool for the right job rather
than being constrained to the choices made at the start of a project.

1.3. Technological Concepts 13

Resilience: By segregating services, the system ensures that even if one
service fails, the others continue to function without disruption. This iso-
lation helps in containing faults within the system and makes it easier to
restart or replicate services without affecting the entire application.

Scalability: Services can be scaled independently, allowing more precise
handling of load changes. For instance, a component that handles payment
can be scaled up during high-demand periods without having to scale the
entire application.

Ease of Deployment: Due to their smaller size, microservices can be quickly
deployed and updated, allowing for frequent updates and faster release cy-
cles. This agility supports continuous integration and continuous deploy-
ment practices that are integral to modern software development cycles.

In microservice architecture, services communicate with each other through
well-defined APIs. They often employ lightweight protocols. Communication
can be either synchronous or asynchronous. Asynchronous communication,
favored in microservice architectures, is typically handled through a message
broker.

The use of microservices brings several benefits but also introduces com-
plexities in service integration, data consistency, and management. Therefore,
organizations must weigh these factors based on their specific needs, consider-
ing both the size and scope of the project.

This architecture not only changes how applications are built but also
affects how teams function, necessitating a culture of collaboration and con-
tinuous learning among teams.[17][18][19][20]

1.3.3 Message Broker
A message broker is a key intermediary software module that translates mes-
sages between disparate telecommunication, data communication, or comput-
ing systems. This module enables software applications, which may be built
with different programming languages and on different platforms, to commu-
nicate seamlessly.[21][22]

1.3.3.1 Concepts

Producer (Publisher): A service that sends messages. It creates messages
and sends them to an exchange, initiating the message delivery workflow.

Consumer (Subscriber): A service that retrieves messages from queues. It
processes messages that have been added to a queue by a producer.

Exchange: A component that receives messages from producers. It decides
how to route these messages to one or more queues based on the message

1.3. Technological Concepts 14

attributes, bindings, and the type of exchange used. The exchange plays a
pivotal role in determining the flow of messages within the system.

Queue: A component stores messages until they are processed by a con-
sumer. It acts as a buffer that allows asynchronous processing—producers
can continue adding messages to the queue without waiting for them to be
processed.

Binding: A rule that links a queue to an exchange. Bindings can have
optional routing keys that direct the exchange on how to route messages
to the correct queues.

Routing Key: A specific attribute or identifier associated with a message
that helps the exchange to route the message to the appropriate queue
based on the binding rules.

1.3.3.2 Strategies

Message brokers support various messaging strategies and patterns that cater
to different communication needs:

Point-to-Point: In this simplest form, a producer sends a message and one
consumer receives it directly. It’s effective for direct and uncomplicated
communication.

Work Queues: This pattern distributes tasks among multiple workers. It’s
used to scale processing and handle multiple jobs by distributing them
among several consumers, typically to balance load.

Routing Exchange: Utilizes routing keys to direct messages to specific
queues based on certain criteria. This allows for more directed and filtered
communication.

Topic Exchange: An extension of routing exchange that supports pattern
matching against multiple criteria. It enables more flexible and dynamic
routing scenarios.

Publish/Subscribe (Fanout): This strategy broadcasts every message to all
of the available queues connected to an exchange. It is used when the same
message needs to be delivered to multiple consumers.

Using these components and strategies, message brokers facilitate diverse
and flexible communication options for distributed systems. They enable ef-
fective decoupling of application components, which can improve scalability,
fault tolerance, and the overall flexibility of system architecture.[21][22]

1.3. Technological Concepts 15

1.3.4 API Gateway
An API Gateway is a fundamental component in modern application architec-
tures, especially those utilizing microservices. It acts as a reverse proxy that
routes incoming requests from clients (such as web browsers or mobile apps)
to various backend services. By centralizing common functionalities such as
request routing, authentication, and rate limiting, an API Gateway simplifies
the complexities involved in managing microservice infrastructures. The core
funcionalities API gateway can handle are:[23][24]

Request Routing: The primary role of an API Gateway is to accept incom-
ing API requests and route them to the appropriate microservice based on
the URL path, method, and possibly other headers. This routing capabil-
ity allows developers to decompose backend services according to business
functionalities while presenting a unified API endpoint to clients.

Authentication and Authorization: An API Gateway can centralize com-
mon security tasks like authentication and authorization. It can validate
access tokens, ensuring that requests are allowed to access particular ser-
vices and operations. This removes the necessity for each microservice
to implement its authentication logic, promoting a DRY (Don’t Repeat
Yourself) approach and reducing the chance of security breaches due to
inconsistent implementations across services.

Rate Limiting and Throttling: To protect backend services from being
overwhelmed by too many requests, an API Gateway can enforce rate lim-
iting and request throttling. This ensures that services remain responsive
and available even under high load, preventing resource exhaustion and
potential service downtime.

Load Balancing: By distributing incoming requests evenly across a pool of
instances for each service, an API Gateway optimizes resource utilization
and maximizes throughput. Load balancing improves the overall perfor-
mance of the application by ensuring no single service instance becomes a
bottleneck.

Other concerns: Besides routing and security, API Gateways can handle
other concerns such as logging, monitoring, and response transformation.
For instance, an API Gateway can aggregate responses from multiple ser-
vices and transform them into a format expected by the client, simplifying
client-side logic.[23][24]

1.3.5 REST API
A REST API (Representational State Transfer Application Programming In-
terface) defines a set of rules for how web-based applications should communi-
cate with each other using stateless operations over HTTP. Its design is guided

1.3. Technological Concepts 16

by a few key principles that make web interactions more efficient and flexible.
[25][26][27]

1.3.5.1 Concepts

Resources: In REST, a resource refers to any content or information that
can be named and is the concept around which REST revolves. Each
resource is uniquely identified by a URI (Uniform Resource Identifier).
Resources represent objects or data entities and can be a document, an
image, or a collection of other resources.

HTTP Methods: REST uses standard HTTP methods to perform actions
on resources, each method specifying a different type of operation:

GET: Retrieves data from a server; it should only retrieve data and have
no other effect (idempotent).
POST: Sends data to the server for a new entity. It is often used when
creating a new resource.
PUT: Updates existing data or creates a new resource at a specific URI
if it does not exist, and it is idempotent.
DELETE: Removes data from the server, and it is idempotent.

Statelessness: Every HTTP request from a client to server must contain
all the information needed to understand the request. The server does not
store any state about the client’s session. This makes the REST service
scalable and visible, as the lack of a required connection between a series
of requests benefits load balancing and fault tolerance.

Headers: HTTP headers let the client and server pass additional informa-
tion with an HTTP request or response. Headers control the behavior of
request/response or provide information such as formats a client can un-
derstand (Accept or Content-Type headers). Another important header
is the Authorization header, which can be used by the client to authorize
itself using a token.

Query Parameters: These are optional key-value pairs that appear after the
question mark (?) and further delimited by ampersands (&) in the URL.
They are used to further refine HTTP requests. For example, filtering
results in a GET request.

JSON (JavaScript Object Notation): A lightweight data-interchange for-
mat that’s easy to read and write for humans and easy to parse and generate
for machines. JSON is commonly used in REST APIs to format data sent
between clients and servers but other formats (such as XML can be used).
JSON can exchange a few different types of data that can be nested inside
each other:

1.3. Technological Concepts 17

Numbers: JSON can represent double-precision floating-point format
numbers. It does not distinguish between integers and floating-point
numbers.
Strings: Strings in JSON must be written in double quotes. They can
contain a sequence of zero or more Unicode characters.
Booleans: JSON supports the true and false values typical of boolean
data types.
Null: JSON can represent a null value with the keyword null.
Arrays: An array is an ordered collection of zero or more values, enclosed
in square brackets (e.g., [1, "hello", true]). Arrays in JSON can
contain items of different types, including numbers, strings, objects,
arrays, booleans, and null.
Objects: An object is an unordered collection of key:value pairs, with
the keys as strings and the values as any other JSON data type. Objects
are enclosed in curly braces (e.g., {"name":"John","age":30}).

These principles and components enable REST APIs to facilitate clear,
reliable, and efficient communication between distributed systems over the
web.[25][26][27]

1.3.6 Server Side and Client Side Rendering
When choosing between server-side rendering (SSR) and client-side render-
ing (CSR), it’s important to understand not just the basic mechanics of each
approach, but also when rendering occurs and the implications of when it
happens for performance, SEO, and application architecture.[28][29]

1.3.6.1 Server-Side Rendering

In SSR, the HTML content of a web page is generated on the server in response
to a user’s request. This happens before the page reaches the browser. The
server executes all the logic required to compile the page content, including
fetching data from databases or APIs, and renders the final HTML to send to
the client. An extension of this approach is Server Side Generation is when
the page is generated during build time of the application (mostly for static
pages).

SSR is often times combined with caching on the server, where the server
caches the rendered page to improve response times for the same requests.
There are many different strategies for caching and when to rerender the page.

The implications of this approach are that the browser receives a fully-
rendered HTML page, which means the content is immediately available for
display and interaction. This reduces the perceived load time and can enhance
user satisfaction while also improving SEO as search engines can easily crawl

1.3. Technological Concepts 18

and index the fully rendered HTML, improving the visibility of the site in
search results. This is particularly important for content-heavy sites where
organic search traffic is a priority.

Since SSR occurs on the server, it has direct access to backend resources,
potentially on the same local network or within a Docker network when used
in a containerized environment like Docker Compose. This proximity can lead
to faster data retrieval and integration, as it avoids the latency that might be
involved with external API calls from the client side.[28][29]

1.3.6.2 Client-Side Rendering

CSR occurs entirely in the browser. Upon the initial request, the server sends a
minimal HTML document with links to JavaScript files. The browser executes
the JavaScript, which typically makes API calls back to the server to fetch
data and then dynamically generates the HTML content on the client side.

The initial load time includes downloading, parsing, and executing the
JavaScript, which means there can be a significant delay before any content is
rendered on the screen. This can impact user experience negatively, particu-
larly on slower networks or devices.

Furthermore, dynamic content rendering poses challenges for SEO as search
engine crawlers may not effectively process JavaScript that loads content after
the initial page load. This can reduce the effectiveness of SEO strategies for
sites reliant on search engine traffic.

Unlike SSR, CSR typically cannot directly access backend resources on
a local or Docker network. It must make separate API calls over the inter-
net, which can introduce additional latency and complexity, especially when
handling secure or sensitive data.

Although CSR has many negatives, it has one crucial advantage over SSR
- it can, by definition, run code on the client side, therefore, unlike SSR it
allows for user interaction which is crucial on websites that are more dynamic.
Any component with a user interaction, such as a button, popup, modal and
many others, need to be rendered using CSR to allow for running the code on
the client side, when user interacts with the application.[28][29]

1.3.6.3 When to Choose Which?

Deciding between SSR and CSR involves weighing these factors against the
specific needs of the application. SSR offers immediate content availability
and excellent SEO benefits but can put a heavier load on the server. CSR
provides an interactive user experience suitable for applications where user
engagement is more critical than immediate content availability. Modern web
development often involves a blend of both techniques to leverage the strengths
of each, particularly with frameworks like Next.js that facilitate hybrid ren-
dering strategies with granularity per each component.[28][29]

1.3. Technological Concepts 19

1.3.7 PWA
Progressive Web Applications (PWAs) utilize several integral technologies to
provide a seamless and robust user experience akin to native apps, but through
a web browser. All of these things need to be configured for PWA to be
enabled.[30][31]

1.3.7.1 Service Workers

Service Workers are pivotal to the functionality of PWAs. These scripts oper-
ate in the background, independent of the web page, and handle key operations
like network requests and data management in offline conditions. This capabil-
ity allows PWAs to load content, perform actions, and maintain a responsive
interface even when network connectivity is limited or absent. Service Workers
also enable background data synchronization, ensuring that any changes made
offline are seamlessly updated once connectivity is restored. Additionally, they
facilitate push notifications, which are important for keeping users engaged by
delivering timely and relevant updates directly to their device.[30][31]

1.3.7.2 Web App Manifest

The Web App Manifest is a configuration file in JSON format that tells the
browser about the PWA and how it should behave when “installed” on a user’s
device. It includes details such as the app’s name, icons, and start URL,
which collectively influence how the app appears on the home screen and task
switcher. The manifest also configures the PWA’s display settings, such as
whether it should run in full screen or in a standalone window, essentially
guiding the browser to treat the web app more like a native app. This setup
is crucial for enhancing the user’s perception of the PWA as a real application
rather than just another webpage.[30][31]

1.3.7.3 HTTPS

Security in PWAs is enforced through HTTPS, ensuring that all communica-
tions between the user’s device and the server are encrypted. This encryption
is essential not only for safeguarding user data from interception and tamper-
ing but also for maintaining user trust, particularly in applications that handle
sensitive transactions or personal data. HTTPS is a fundamental requirement
for the use of Service Workers, as the security risks of intercepting service
worker traffic could otherwise compromise the entire application.[30][31]

1.3.8 SWR
SWR (Stale-While-Revalidate) is a strategy and React hook implemented by
Next.js for efficient data fetching. This approach optimizes the way data is

1.3. Technological Concepts 20

loaded and updated in web applications, enhancing user experience by pro-
viding immediate access to data (”stale”) while simultaneously updating the
cache in the background (”revalidate”).[32]

SWR works on the principle of returning the cached data first (stale), then
sending the fetch request (revalidate), and finally coming back with the latest
data. This process allows the interface to remain responsive and appear fast,
as users see data immediately while the newest data fetches in the background.

Immediate Data: When a component mounts or a request is made, SWR
first provides data from cache, reducing the initial load time and perceived
latency.

Revalidation: After serving the stale data, SWR re-fetches the data from
the server to get the most current version. If the new data differs from
what’s in the cache, it updates the cache and re-renders the UI with the
updated data.

Efficient Updates: SWR uses several smart features like deduplication of
requests, on-focus revalidation (revalidating data when a window regains
focus), and interval-based polling to keep the data fresh without over-
whelming the server or the network.

By leveraging SWR, developers can build fast, reliable web applications
with Next.js that handle data fetching elegantly, enhancing both the perfor-
mance and the user experience.[32]

1.3.9 Containers
Containers offer a lightweight, efficient method to ensure that software runs
reliably when moved from one computing environment to another. Docker, a
leading containerization platform, uses containers to encapsulate an applica-
tion’s software environment, simplifying deployments and scaling across diverse
systems.[33][34]

1.3.9.1 Docker

Docker provides a platform for developers to package applications along with
their dependencies into containers—standardized executable components com-
bining application source code with the operating system (OS) libraries and
dependencies required to run that code in any environment.[33][34]

Image: A Docker image is a static snapshot of the container’s environment,
capturing the application and its environment at a specific point in time.
Images serve as the building blocks of Docker containers, defining what the
environment should look like and which software it contains.

1.3. Technological Concepts 21

Container: A container is a runtime instance of an image, where the im-
age’s static file becomes a live environment when the container is running.
Containers isolate and secure the application ensuring it works uniformly
despite differences, for example, between development and staging environ-
ments.

Dockerfile: This is a text document that contains all the commands a user
could call on the command line to assemble an image. Using docker build
users can create an automated build that executes several command-line
instructions in succession.

1.3.9.2 Docker Compose

Docker Compose is a tool for defining and running multi-container Docker
applications. With a simple YAML file, developers can configure application
services and manage them as a single service when deployed.[35]

Compose file: The docker-compose.yml file is where one defines Docker
applications using various services, networks, and volumes. Here, each
service can run in its container and interact with others.

Services: Defined in the Docker Compose file, services are the actual con-
tainers in operation. Each service can have its configuration concerning
how it is built, ports that are exposed, and more.

Volumes: These are used to persist data generated by and used by Docker
containers. When containers are deleted, their volume remains active, al-
lowing data to persist.

Networks: Docker networks allow containers to communicate with each
other. Compose networks are isolated by default, providing each service
with access to a default network to facilitate communication.

Environment Variables: Used to pass configuration to the services running
inside containers. They can dynamically set service parameters without
hard coding them into the image.

Labels: Key-value pairs attached to objects such as containers, images,
networks, or volumes, useful for organizing images, managing container
lifecycles, and configuring policies.

Restart Policies: Determine how Docker should handle container exits.
Policies like always, on-failure, or unless-stopped specify whether con-
tainers start automatically under certain conditions

1.3. Technological Concepts 22

1.3.9.3 Benefits

Consistency and Isolation: Containers are fully portable and provide con-
sistent operations across any platform. Docker encapsulates the applica-
tion’s environment, and its dependencies into a Docker container, which
can be moved across systems and executed without change.

Developer Productivity: Docker simplifies the development process by al-
lowing developers to create predictable environments that are isolated from
other applications. Docker Compose further enhances productivity by en-
abling developers to define and coordinate the operation of multi-container
applications.

Operational Efficiency: Docker containers can be started almost instantly,
which means that scaling up to handle load spikes is straightforward.
Docker Compose manages the entire lifecycle of application services col-
lectively, simplifying deployment and scaling.

Docker and Docker Compose represent vital tools in modern software devel-
opment, promoting more efficient application deployment and management
through containerization technology. These tools ensure applications per-
form as expected in different environments by standardizing the software
distribution process.[33][34][35][36]

1.3.10 NoSQL Databases
NoSQL databases are designed to provide flexible schema, scalability, and high
performance for various types of data models. Unlike relational databases,
which use tables and a fixed schema, NoSQL databases use a variety of data
models, including document, key-value, wide-column, and graph. These mod-
els are designed to handle large volumes of data distributed across many ma-
chines. NoSQL is particularly effective for applications requiring large data
storage, rapid development, or agile sprints that frequently adjust data mod-
els.

1.3.10.1 MongoDB

MongoDB is a document-oriented NoSQL database known for its high flexi-
bility, which stores data in JSON-like documents with dynamic schemas. This
model allows applications to store data in a way that is closer to how data is
represented in the application code, making it easier to work with and improv-
ing developer productivity.[37][38]

Collections and Documents: Data in MongoDB is organized into collec-
tions, which are analogous to tables in relational databases. Each collec-
tion holds documents, which are sets of key-value pairs. Documents can

1.3. Technological Concepts 23

contain nested documents and arrays, allowing for a rich data structure
that can easily adapt to changes.

Basic Queries: MongoDB allows for performing basic queries by specifying
a document containing the field values in question. For example, to find
all documents in a collection where the "name" field equals "John", one
would use {name:"John"} as the query.

Range Queries: It is possible to query documents based on range condi-
tions using operators such as $gt (greater than), $lt (less than), $gte
(greater than or equal to), and $lte (less than or equal to). For instance,
{age:{$gt:30}} would match documents where the age field is greater
than 30.

Regular Expressions: MongoDB supports using regex, which allows for
flexible searching of strings. For example, finding documents where the
"name" starts with ’J’ can be performed with {name:/ˆJ/}.

Aggregation Pipelines: the aggregation framework is a powerful feature in
MongoDB designed to process data records and return computed results. It
groups values from multiple documents together and can perform a variety
of operations on the grouped data to return a single result. MongoDB’s
aggregation framework operates in a pipeline, with each stage transforming
the documents as they pass through.

JOIN operation: Although MongoDB does not natively support joins as
in SQL databases, it can achieve similar results using a $lookup stage in
an aggregation pipeline, which can be used to perform a left-outer-join-like
operation between documents from different collections. It essentially adds
new fields to documents from the joined collection based on a specified
matching condition.

1.3.10.2 InfluxDB

InfluxDB is an open-source time series database optimized for fast, high-
availability storage and retrieval of time series data, events, and metrics. It is
designed to handle massive volumes of time-stamped information, making it
ideal for applications such as monitoring real-time analytics, IoT, and sensor
data.[39]

Buckets: In InfluxDB, data is stored in buckets, which are organized by
time and retention policies. This structure helps manage data lifecycle
effectively by specifying how long data should be stored before it is auto-
matically deleted.

Measurements and Fields: Data points in InfluxDB are organized around
measurements, tags, and fields. Measurements act as a data descriptor

1.3. Technological Concepts 24

similar to a table name in a relational database, tags provide indexed meta-
data, and fields are non-indexed data. This structure allows for efficient
data organization and retrieval.

Flux: InfluxDB uses Flux, a powerful functional data scripting and query
language that supports complex data processing, joining of data streams,
and alert management.

Line Protocol: The primary way to write data to InfluxDB is through the
Line Protocol, a text-based format for writing points to the database. It
encapsulates measurement, tag set, field set, and timestamp for each data
point.

Time-series ready: InfluxDB offers many functions and features that take
advantage of the fact that InfluxDB is a time-series database, such as
downsampling, continuous queries and many more.

Aggregate Window Function: This function allows for partitioning of data
into windows of time and apply an aggregation function to each window.
For example, one can calculate the average, sum, count, or any other aggre-
gate measure over fixed time intervals. This is extremely useful in scenarios
where one needs to analyze trends over time, such as monitoring average
response times within 10-minute intervals throughout a day.

1.3.11 JWT Authenticaiton Mechanism
JSON Web Tokens (JWT) offer a secure and efficient method for transmitting
information as compact JSON objects that can be verified because they are
digitally signed. This format is widely used for authentication and secure data
transmission between parties. A JWT is composed of three parts: Header,
Payload, and Signature.[40][41]

Header: Specifies the token type (JWT) and the signing algorithm (e.g.,
HS256).

{
"alg": "HS256",
"typ": "JWT"

}

Payload: Contains claims such as issuer, subject, expiration, and additional
data related to the user.

{
"sub": "1234567890",

1.3. Technological Concepts 25

"name": "John Doe",
"admin": true

}

Signature: Generated from encoding the header and payload and signing
it with a secret to ensure the token’s integrity.

Resulting JWT can look like this, where each section is divided by a period
(.):
eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.
eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9lIiwiYWRtaW4i.
4TQL9E3i7MYToMsiKL31yoM1iZmNcFRLzoWtZLx7b8Y

JWTs are ideal for decentralized authentication systems, particularly useful
in distributed environments like microservices. Each service can independently
verify a JWT without needing central authentication, enhancing system scala-
bility and resilience. This approach allows each part of a system to authenticate
tokens, streamline security processes, and reduce bottlenecks.

JWTs enable secure, scalable, and efficient user authentication, making
them a cornerstone of modern web security strategies.[40][41]

Chapter 2

Analysis and Design

This chapter will cover the methodology in the decision process before and
during software development, then it will go over the choices of technologies
for this project. After that, there is a section explaining the analysis of user
requirements; describing the personas and their use cases, functional and
non-functional requirements. Finally, we will go over describing the previ-
ous solution with a comparison to the new solution, along with architectural
and system designs.

2.1 Methodology

As discussed previously, the unique context of this project significantly influ-
ences the choices made throughout every stage of the development process.

This section outlines the methodology adopted for the software develop-
ment process and decision making towards choosing technologies within this
project, providing a structured framework to guide our development efforts
and also the methodology for other decision making made.

2.1.1 Software Development Process
As a project with a single developer, we adopted a very flexible iterative ap-
proach, which involves the following elements:

1. Prioritizing staff feedback - throughout the development process, we regu-
larly consulted with the primary maintenance staff making sure we commu-
nicated the changes made compared to the previous version of the software,
but also reaching for new ideas and improvements with each feature. We
ensured that the new features and design choices align with their practical
needs and address the shortcomings of the previous application.
We set up a weekly and sometimes even a daily communication routine in
person with the personnel to keep them and us updated about the progress

26

2.1. Methodology 27

and decision making taken during the development process.

2. Iterative refinement - new features were rolled in stages, focusing on the
user experience and critical details first. This ensured that changes are
small and manageable.

3. Selective testing - as this is a fast moving project with limited resources
we focused on manual testing in a combination of unit testing and testing
the API interface.

4. Version control - GitHub was used extensively for code management, ver-
sion control and documentation. In the future, we also plan to use it for
issue tracking and potential collaboration.

5. Documentation - We used GitHub for the developer documentation; for
general documentation and analysis we used an internal wiki to track long-
term features and requirements.

We have decided to use the microservice architecture for the benefits it
has, mainly they are: technology agnostic, more scalable, better at isolating
faults. We will discuss this choice more extensively later.

2.1.2 Technological Freedom in Microservice Archi-
tecture

When designing a system based on the microservice architecture, it is impor-
tant to establish guidelines for technology choices to ensure consistency. One
of the main advantages of microservices is that they are technology agnostic -
each microservice can take advantage of the most suitable technology according
to its needs.[20]

While technological freedom is beneficial, too many choices can hinder
developer efficiency and maintainability. When each service can use any tech-
nology, the overall system might become hard to work with as developers can
become lost and cannot utilize their knowledge and experience acquired from
one service to another. It is a good idea to mitigate such problems by restrict-
ing the technologies we use throughout the codebase.

This section will focus on finding a good middleground set of programming
languages, frameworks and other technologies to use within the application to
avoid the codebase becoming too confusing and complex.

2.1.3 Guiding Principles
The choices for this application have to account for some core limitations that
this project has, those are mainly:

Project Requirements

2.1. Methodology 28

Budget

Manpower Limitation

The primary consideration of this project is on the features and user re-
quirements that need to be delivered with limited resources both in budget and
human resources. The main emphasis is to choose technologies that are suit-
able for delivering requested features as easily as possible, therefore the
technologies should promote developer efficiency and have a gentle learning
curve to streamline development and minimize potential hurdles.

Another factor to consider, that goes hand-in-hand with the previous point,
is popularity, strength of the support and the community around the technol-
ogy and the quality of the documentation. These factors, although subtle,
can tremendously speed up the development process.

We still value performance especially for the more demanding areas, such
as the database or the services with higher expected load.

After considering these factors, the final chosen technology must also make
sense in the grand scheme of things - it must fit in among the other parts of
the application. If we choose to use a message broker and then later choose a
language that is perfect for the job, but cannot communicate with the message
broker, then the choice is still very poor.

2.1.3.1 Design Principles and Patterns

In rewriting this application, several key design principles and patterns have
been adopted to enhance system functionality, and operational efficiency. These
are categorized into microservice patterns, RESTful API practices, and general
programming principles.
Microservice Patterns

To avoid common pitfalls, we embraced several patterns and ideas from
established practices in the field, inspired by Chris Richardson’s book on mi-
croservice patterns:[19][20]

Decomposition by Business Capabilities: Services are decomposed based
on business functionality which simplifies development, deployment, and
scaling of independent service units.

Shared Database: Each microservice utilizes its own distinct set of collec-
tions within MongoDB, ensuring that there is no overlap in data manage-
ment which minimizes interference and enhances performance.

API Gateway: Initially, Traefik was considered for its dynamic service
routing capabilities; however, Caddy was eventually chosen for its simplic-
ity and effective static and dynamic routing abilities in production.

2.1. Methodology 29

Health Check API: Implemented across services for monitoring but not
actively used in operations; provides readiness checks and potential for
future use in service orchestration and recovery strategies or at least for
user’s information about the system’s health.

Log Aggregation: Utilizing Docker Compose’s built-in capabilities for log-
ging, which aggregates logs from all containers, simplifying debugging and
monitoring.

Access Tokens Using JWT: JSON Web Tokens (JWT) are used for manag-
ing access and ensuring secure and stateless communication between ser-
vices.

Service Communication: While developing, services communicate over a
Docker network which facilitates isolated networking and interaction test-
ing between containers.

REST API Best Practices
In REST API design, we adopted structured practices to ensure APIs are

unified and predictable:[26][42]

Resource Naming: Adheres to conventional standards for naming end-
points, focusing on nouns that represent entity relationships clearly and
intuitively.

CRUD Operations: Each resource supports standard CRUD operations,
providing a consistent and predictable framework for interacting with data.

Envelope Pattern: Used in API responses to wrap data, allowing for stan-
dardized communication of results and metadata (mostly for error han-
dling).

Versioning: APIs are versioned to manage changes gracefully, ensuring
backward compatibility and clear evolution of service interfaces.

Query Parameters: Support for extensive filtering, sorting, limiting, and
formatting options through query parameters enhances the flexibility and
user-friendliness of APIs.

Non-Adherence to HATEOAS: The system does not implement the Hy-
permedia as the Engine of Application State (HATEOAS) principle, as
it was deemed unnecessary for the application’s current needs and would
introduce additional complexity.

Adapted REST Practices: While generally adhering to RESTful principles,
the system makes a pragmatic exceptions. One such big concession is
for receiving snapshots from babyboxes. Due to backwards compatibility
reasons, we receive the snapshots using GET request with the data in the
query parameters.

2.2. Requirements Analysis 30

Programming Principles and Patterns
Additionally, programming practices were aligned with both functional and

object-oriented paradigms to optimize code maintainability and system func-
tionality.[43][44][45]

Idiomatic Language Use: Efforts are made to utilize each programming
language in its idiomatic form. For instance, Go is employed with its
conventional procedural style, focusing on simplicity and efficiency with-
out adopting functional programming paradigms. Conversely, TypeScript
is used in a style that embraces more functional programming concepts,
leveraging advanced type systems and functional constructs to enhance
code safety and reusability. Similarly, we tried following the idiomatic
codebase structures and more. This approach ensures that the codebase
not only follows best practices for each language but also aligns with the
community standards and expectations.

Avoid Premature Optimization: A principle that states that unless there is
evidence of some performance issue we should not further optimize. This
principle can be applied on any level of granularity: for functions as well
as for services.

Immutability: Ensured in data handling to prevent side effects and facil-
itate easier state management, particularly in services handling complex
data structures.

Stateless Design: Encouraged to make services scalable and easily manage-
able, as stateless applications are easier to deploy and scale.

DRY (Don’t Repeat Yourself): A key principle in the codebase to reduce
redundancy and increase maintainability.

Single Responsibility Principle: Every module or class should have respon-
sibility over a single part of the functionality provided by the software,
which is encapsulated in that module or class.

Functional Programming: Emphasizes the use of pure functions, immutabil-
ity, and stateless components to build reliable and predictable code. We
plan to write code inspired by this paradigm in the microservices and
the front-end using JavaScript, on the other hand we plan to avoid this
paradigm in the Go services purely based on the nature of the program-
ming languages.

2.2 Requirements Analysis

This section lays the foundational framework for this work, establishing the
primary specifications that guide all subsequent design and development pro-

2.2. Requirements Analysis 31

cesses. By analyzing and defining both the functional and non-functional re-
quirements, we ensure that the system is fully equipped to meet the specific
needs of its users while adhering to high standards of performance and relia-
bility.

The objectives of this section are:

To identify and understand the key user groups and their specific require-
ments for the system through user personas.

To describe the use case scenarios that the system must support.

To describe clear functional requirements that describe what the system
will do.

To describe non-functional requirements that focus on how the system will
perform the required functions.

The importance of comprehensive requirements analysis cannot be over-
stated, as it directly impacts the usability and effectiveness of the final product.
By rigorously defining these requirements, we lay a solid foundation for devel-
oping a system that is not only technologically sound but also user-centric,
ensuring it effectively supports the day-to-day operations of those who rely on
it.

In the subsequent sections, we will explore the methods used to gather user
requirements, develop representative use cases, and specify the necessary func-
tional and non-functional requirements. The following chapters will build upon
this foundation, detailing the system design, implementation, and evaluation
processes.

2.2.1 Identification and Analysis of User Require-
ments

To ensure the system effectively meets the needs of its users, extensive research
was conducted, combining various methodologies to gather actionable insights.

We began with interviews with both operational and maintenance staff,
aiming to understand their daily interactions with the existing system and
identify any challenges they face. These discussions provided valuable context
about their routine tasks and highlighted inefficiencies and limitations in the
current system. Staff members were encouraged to share how the system
could better support their work, offering insights into desired features and
functionalities that would enhance their efficiency and effectiveness.

Simultaneously, we conducted an analysis of the current system usage to
pinpoint frequent pain points and the features most in need of improvement.
This involved observing users as they navigated the existing interface and
managed their tasks, which helped clarify which aspects of the system were

2.2. Requirements Analysis 32

obstructing their workflow. The feedback was particularly critical in under-
standing the practical difficulties users encountered and what they felt were
missing capabilities.

Furthermore, we explored how operation staff solved problems using the
current software. This routine and problem-solving analysis involved real-time
observations and interactive sessions, where users demonstrated their process
for addressing issues. This approach was instrumental in uncovering implicit
needs not readily articulated during interviews, such as the need for quicker
access to operational data or more intuitive navigation paths.

2.2.2 User Personas
The user requirements analysis led to the development of detailed personas that
represent the core users of the Babybox Monitoring System. These personas
help to humanize the abstract data and insights collected, making it easier to
design solutions tailored to specific needs.

Oscar the Operator: Oscar is an experienced operator responsible for
monitoring babyboxes. He relies heavily on the system for real-time data
analysis to proactively manage and address operational issues. Oscar benefits
greatly from a sophisticated dashboard that integrates advanced analytics and
customizable alerts, allowing him to efficiently oversee the system’s health.

Max the Maintenance Technician: Max’s role requires him to be
highly mobile, often traveling to various sites to address urgent maintenance
issues. He needs a system that is straightforward and quick to use. The ideal
interface for Max would display essential information such as a simple status
and location of the next babybox.

They both work from different environments; Oscar is more likely to work
on a desktop computer, but also might need to use the application on a tablet
or a phone. Max will more likely work on his phone.

We decided to put our main emphasis on Oscar and tailoring the applica-
tion to his needs, while also keeping in mind Max’s requirements and needs,
where it makes sense.

2.2.3 Use Cases
This chapter delineates a series of use case scenarios that illustrate the func-
tional capabilities of application, particularly focusing on the needs of Oscar,
the operator.

All use cases assume that Oscar and Max have been onboarded to the
application: accounts have been created, and they have successfully logged
into the application.

1. Monitoring System Health

2.2. Requirements Analysis 33

Actor: Oscar
Goal: To verify the current operational status of all babyboxes.
Main flow:

a. Oscar accesses the main dashboard, which displays a list of all baby-
boxes.

b. Each babybox is listed with a clear indication of its current status, using
color codes or icons for quick visibility.

c. Oscar reviews the list to identify any units signaling potential issues,
focusing on those that may require immediate attention.

2. Analyzing a Problem with Heating (or cooling, voltage, etc.)
Actor: Oscar
Goal: To diagnose and resolve heating issues in a specific babybox.
Main flow:

a. Oscar selects the problematic babybox from the dashboard and navigates
to its dedicated analysis page.

b. The system presents visualizations and tabular data from the babybox.
c. Oscar modifies the type of data he wants to see to identify the problem.
d. Oscar customizes the data display by adjusting the type and time range

of the data shown to better isolate the issue.
e. He examines historical data and visualizations to pinpoint the underly-

ing cause of the heating malfunction.

3. Custom Notifications
Actor: Oscar
Goal: To set up custom alerts for babyboxes deviating from optimal oper-
ational parameters.
Main flow:

a. Oscar goes to the notification settings page within the system.
b. He defines the scope and specifics of the alert, such as which parameters

to monitor and the threshold for triggering an alert.
c. The system provides options to set conditions based on temperature and

voltage readings.
d. Additional settings are adjusted to minimize notification fatigue, such

as delays or streaks.
e. Oscar finalizes and saves a notification template, which the system uses

to monitor conditions and send alerts when parameters breach the set
thresholds.

2.2. Requirements Analysis 34

f. The system later checks for conditions for generating a notification to
be met with each new snapshot.

g. Oscar receives the notification to act upon.

4. Contacting Hospital Staff
Actor: Oscar or Max
Goal: To facilitate direct communication with hospital staff associated with
a specific babybox.
Main flow:

a. The actor selects a babybox and views its detailed information page.
b. The page lists all relevant hospital staff along with their contact details,

including names, phone numbers, emails, and positions.
c. Oscar or Max uses this information to initiate contact directly from the

system interface if needed.

5. Navigating to a babybox
Actor: Max
Goal: To find the quickest route to a hospital for maintenance work.
Main flow:

a. Max selects his target babybox from a list and accesses its location
information.

b. The system displays comprehensive location details, including the hos-
pital’s address and the specific site of the babybox within the facility.

c. A direct link to open the location in an external navigation app (such
as Google Maps or Mapy.cz) is provided to guide Max to the hospital
efficiently.

2.2.4 Functional Requirements
These requirements outline the specific actions and capabilities that the system
must possess to fulfill the needs identified through user interactions and use
case scenarios.

F1 User Authentication
The system must provide a user management and authentication system.
Babybox Dashboard is an internal tool with sensitive information that
should be protected behind an authentication system. The system must
also allow for creating new users within the interface.

2.2. Requirements Analysis 35

F2 Dashboard Display
The system must provide a central dashboard that lists all babyboxes with
the latest status indicators.
Each status indicator should utilize visual cues such as color coding or icons
to represent different operational states (normal, warning, critical/error).

F3 Data Visualization and Analysis
Detailed data visualization tools should be available for analyzing param-
eters like temperatures and voltages.
Users should have the ability to customize which data are shown, filter
based on time range, and other predefined criteria.

F4 Notifications System
A customizable alert system must be implemented to allow users to set and
adjust thresholds for critical operational parameters.
The system should include settings to control notification frequency and
parameters to prevent notification fatigue.
The system should support setting a scope of the notification either for all
babyboxes or for a specific babybox.

F5 Sending notifications
Notifications should be generated with each snapshot based on if the con-
ditions are met. Notifications should be displayed in the application and
also sent as an email.

F6 Detailed Information
The system must facilitate easy access to detailed information about each
babybox and its related information:

Contact information - names, phone numbers, email addresses, position-
s/departments.
Location information - Hospital name, city, street, postcode, coordi-
nates; with an integration with external navigation applications.
Network configuration information - Type of configuration, IP addresses
of the router, units, camera and gateway.

F7 Editing Information
The system must be allow for an easy modification and addition of the
detailed information defined in F6.

F8 PWA and Responsive Design
The application should have basic PWA functionality and with that also
have a responsive design such that it can be used on mobile, table and
desktop.

2.3. Choosing technologies for This Project 36

2.2.5 Non-functional Requirements
For the development of this system, we have derived non-functional require-
ments from the functional needs and user interactions identified in previous
sections. These requirements are crucial for ensuring that the system not only
functions as intended but also adheres to high standards of performance, se-
curity, usability, and maintainability.

To systematically address these aspects, we have categorized the non-
functional requirements into distinct groups: Performance, Security, Usabil-
ity, Scalability, and Maintainability. Each category is equipped with specific
metrics to quantitatively measure the system’s adherence to these standards.

[NF1] Concurrent Snapshot Handling
Category: Performance
Description: The system must efficiently manage multiple requests simul-

taneously to ensure reliable performance under peak usage.
Metric: The system should handle at least 100 incoming requests simulta-

neously, with the 90th percentile response time be under 2 seconds.
[NF2] Secure Communication
Category: Security
Description: To protect data integrity and confidentiality, the system must

encrypt all user transmissions using HTTPS, ensuring secure exchanges be-
tween the client and server.

Metric: 100% of data transmissions of the user must be conducted over
HTTPS.

[NF3] Maintainability and System Updates
Category: Maintainability
Description: The system architecture must support easy maintenance and

updates with minimal disruption to service. This involves using modular de-
signs and clear documentation that simplify the integration of new features
and updates.

Metric: Each (re)deployment should result in less than a 10 minutes down-
time and 80% of bugs should be repaired within 1 hour of accepting them.

2.3 Choosing technologies for This Project

In this section, we will take the methodology to practice to find the best
technologies for this particular project based on the context, limitations, use
cases and requirements that were discussed in the previous sections.

2.3.1 Programming Languages and Frameworks
The most fundamental choices are in the space of programming languages, this
choice is mainly influenced by the type of services the system is going to be
composed with. In the case of our project, I identified 3 types of services:

2.3. Choosing technologies for This Project 37

High-performance services - services that will be under heavier load

Analytical services - services that will use analytical functionalities

Standard services - services that do not require any special needs

We have decided to use Go for high-performance services as it is an easy
language to use and move quickly with. It is also a very common language
to use in microservices and therefore has robust support in terms of libraries
and other resources. It does satisfy all the guiding principles, while being very
performant.

Python is a great choice for analytical services as it is a de facto standard
solution for data science and machine learning use cases, while also obviously
being more than suitable for services providing basic statistics and aggrega-
tions.

The rest of the services can be implemented in TypeScript as it offers the
greatest versatility and community support. It is also a sensible choice as the
front-end of this application is going to be written in TypeScript as well.

Programming languages and frameworks, especially those used on the back-
end, need to integrate into the ecosystem. They need to have extensive libraries
and drivers to communicate with the databases and message brokers we will
be using. Fortunately, as we are mostly going to be using popular technologies,
we do not have to worry about this too much as there is effort on both ends
to be compatible with each other.

2.3.1.1 Next.js

We selected Next.js as the main front-end framework to be used. Next.js is
a popular React-based framework, which offers several compelling advantages
that align with the project’s requirements and guiding principles.[46]

It supports both client-side and server-side rendering, letting one
choose which rendering startegy they want to use per each component or page.
This is done using the "use client"; directive at the top of the file.

Next.js improves developer productivity using many different features
such as folder-based routing, where the routes are created automatically de-
pending on the path they are placed in. It also automatically handles opti-
mization by compressing, lazy loading images and even resizing them based
on the device size; it also prefetches links and improves ergonomics of working
with metadata.

Next.js is developed and maintained by Vercel, a company that also runs
their own cloud providing services that integrate with Next.js effortlessly by
easily setup an automatic deployment. Although, this project does not
aim to use their services for hosting purposes, they were still very useful in the
iterative development process to see a demo version of the front-end running in
production publicly to show to the staff to get feedback. It also automatically

2.3. Choosing technologies for This Project 38

sets up a CI/CD pipeline on GitHub, which helped us catching bugs before
going to production.

Last but not least, Next.js is now the most popular framework of its
kind with an incredibly strong community, rich in resources that can be found
online and also has great documentation. Next.js is therefore rich in re-
sources and libraries. In the context of this work, we will be using the Next.js
plugin for PWA support, which is a powerful plug-in library for adding the
PWA functionalities with minimal effort.[47]

Therefore, Next.js was the obvious choice as it shows why it is so popular;
its ecosystem, resources, support and features are unmatched in the space of
React meta-frameworks.[46]

2.3.1.2 JavaScript Runtime

JavaScript runtimes have become increasingly more popular over the past years
on the back-end due to the comprehensive library support and big community.
Node.js has dominated this space for a while, but recently Bun has made big
waves in this area disrupting the dominance of Node.js.[48][49]

The decision to utilize Bun as the JavaScript runtime for this project stems
from several key advantages.

Bun offers exceptional performance with its core built with Zig and lever-
aging JavaScriptCore (the engine behind Safari), delivers significant perfor-
mance gains over Node.js. This is especially noticeable in startup times, file
I/O, and certain computationally intensive tasks – all relevant to real-time
monitoring applications.[50]

Bun aims to solve many of the pain-points within the JavaScript world
by including its own built-in bundler, transpiler, supporting TypeScript out-
of-the-box and a test runner. It also solves the annoying ES modules vs.
CommonJS modules conflicts.

Bun has also great documentation that describes many solutions to com-
mon problems one can expect to run into.

It has to be mentioned that Bun is a very young technology and therefore
it might lack resources, support and libraries for more niche problems. While
this is a concern, Bun is compatible with most of the packages built for Node.js
and in many ways is not all that different from Node.js.[50]

2.3.1.3 Go

When developing high-performance services within our microservice architec-
ture, we have opted to utilize Go as the primary programming language. Go’s
design by Google engineers to address issues of efficient compilation, execution,
and ease of use makes it an ideal choice for back-end services that demand high
performance and scalability.

Go is an extremely simple and efficient language. Its syntax is clean
and concise, which makes it easy to read and write. This simplicity accelerates

2.3. Choosing technologies for This Project 39

the development process and reduces the likelihood of bugs. Its compiled
nature means it executes code quickly, which is crucial for performance-critical
applications. In addition due to Go’s simpleness, the Go compiler offers very
fast compile times.

Its simplicity reaches also reaches into its support for concurrent pro-
gramming making it an excellent choice for web servers. Concurrency is
handled through goroutines, which are lightweight threads managed by the
Go runtime; and even these complexities are usually hidden away by a library.
This model allows developers to easily implement asynchronous processes.[51]

Go offers a robust standard library with extensive support for a wide
range of functionalities. Notably the net/http package is highly optimized
for building web servers and contrary to other language it is commonly used
in production. Most of the frameworks for Go stick to the original mantra of
Go and are very simplistic. Moreover, many of the web frameworks implement
the net/http interface to be fully compatible.

While Go’s standard library is powerful, we chose to use Echo as the web
framework to streamline the creation of our REST API for our services. Echo
is a high-performance, extensible framework that simplifies many things over
the standard library. This choice has been quite hard to make as many of
the frameworks in to Go space are similar. While Echo has a smaller com-
munity compared to, for example, Gin; it has a better documentation, in our
opinion.[26]

2.3.1.4 Python

For the analytical services component of our microservice architecture, Python
has been selected as the programming language of choice. Renowned for its
strong presence in data analysis, scientific computing, and machine learning.

Python’s vast array of libraries such as NumPy, Pandas, SciPy, and
scikit-learn, simplifies complex data manipulation and analysis tasks. These
libraries provide built-in methods for statistical analysis, machine learning,
and more, which are essential for the analytical tasks. Furthermore, it can still
be integrated with other technologies such as message queues and databases
because of its popularity.

Python benefits from a large and active community, which offers extensive
resources, tutorials, and forums for troubleshooting. This community sup-
port is invaluable for rapid development and problem-solving for analytical
purposes.

To efficiently create REST APIs for our analytical services, we have
chosen FastAPI as the web framework. FastAPI is a modern, fast (high-
performance), web framework for building APIs.

FastAPI is one of the fastest web frameworks for Python and even offers
an automatic API documentation generation using Swagger.

All in all, Python is a great language for analytical purposes, but lacks

2.3. Choosing technologies for This Project 40

in speed compared to Go and Bun, which leaves it as a great choice for the
analytical services.

2.3.2 Web Frameworks
We have already discussed the decision process behind choosing the individual
web frameworks.

We mainly looked at web frameworks with the biggest popularity for each
language and then looked closely at the top of the list. We then made an
opinionated judgment based on the mindset behind the framework and its
style. We also looked at the quality of the documentation.

Finally, we considered the performance of these frameworks based on differ-
ent benchmarks. You can see the benchmarks below, firstly from a minimalist
benchmark, focusing on purely answering a request by a response.[52]

Figure 2.1 Performance benchmarks of the web frameworks we
considered. Showing the average latency, P90 and P99 values for 64,
256 and 512 concurrency.

We can see that apart from Elysia, the only Bun framework in the table (the
other JavaScript frameworks ran on Node.js runtime), the Go frameworks show
a clear dominance, especially Fiber and FastHTTP, but the other frameworks
are not too far behind.

Python is clearly the least performant language on this list, which is also
shown in the comparison of its web frameworks.

It is important to take these results with a grain of salt, as they are results
of a minimalist benchmark which is not simulating any real scenario and the
actual real-world performance might be different. These results, however, are
relevant as a quick preview of expectations.

Another benchmark focusing on a real-world scenario, by also incorporating
other elements such as a database:[53]

2.3. Choosing technologies for This Project 41

Figure 2.2 Performance benchmarks of the same web frameworks showing
a score of performance.[53]

We can see similar results to the previous benchmark - the Go frameworks
are the fastest along side with Elysia, the only Bun web framework on the list.
We can see again that Python’s performance is the lowest.

2.3.3 Charting library
Choosing a powerful and suitable charting library for the front-end of this
application is integral as it is one of the main features.

We had several requirements for the charting library:

Easy integration with React

Range and value annotations

Wide range of chart types

We considered several charting libraries such as: Chart.js, Recharts, Nivo,
Ant Design, MUI and more.

As it turns out, although most frameworks already support React in some
way (be it by being a native React library or by having a React wrapper) and
the list of offered chart types is rich, the biggest problem is with range and
time annotations.

2.3. Choosing technologies for This Project 42

Figure 2.3 Example of range, x-axis, y-axis and point annotations
in a line chart.[54]

As shown on the figure above, these are annotations inside the line chart
itself that give additional context. There are many use cases we could use this
for within our application:

X-Axis Range annotation - time segments of some events (heating on/off,
cooling on/off, fan on/off, etc.)

Y-Axis Range annotation - babybox configuration (optimal temperature
range, etc.)

X-Axis annotation - single event (babybox turned on, snapshot sent, etc.)

Y-Axis annotation - Max/min values (maximum allowable temperature,
maximum observed temperature, etc.)

Point annotation - points of interest (notification generated at that point)

Ultimately, we decided on using ApexCharts for our project as it offers
everything we need including the annotations.

ApexCharts supports many different types of charts too: line, bar, area,
timeline, radar, raidal, heat map, etc. Chart types can be mixed together
through the way ApexCharts handles creating series. A series can represent
the same data in a unified way for differnt chart types making them easy to
combine together.

Although ApexCharts is not the most popular charting library, it still
offers wrapper implementations for different frameworks including React and
its documentation is sufficient.

2.3. Choosing technologies for This Project 43

2.3.4 Databases
In the development of this work, selecting the appropriate databases was a
critical decision that required careful consideration and extensive benchmark-
ing. The system’s need to handle a mix of data types, particularly time-series
data generated by babyboxes (specifically temperature and voltage snapshots
and events) alongside more static data (such as babybox information, user de-
tails, and notification templates), necessitated a dual-database approach. This
strategy ensures that each type of data is managed optimally according to its
specific access patterns and storage needs.

We have done extensive work in understanding the advantages of a time-
series database compared to a normal general-purpose database. Keeping in
mind our guiding principles, we have decided that the advantages based on the
project requirements and the time saved using the time-series database will be
worth the effort in increasing the complexity of the system.

We have considered our options aligned with the budget constraints and
will explain the decision making process when choosing an open-source database
to best align with our needs.

2.3.4.1 Time-series Database

For the development of the system, a comprehensive benchmarking study was
conducted to evaluate the most suitable time-series database technologies for
managing high-frequency, time-stamped data generated by babyboxes. The
findings of this study have been detailed in a paper, which we worked on.1
This section summarizes the key points from the paper, that focused on both
specialized time-series databases and general-purpose databases to ascertain
their effectiveness in handling time-series data:[55]

InfluxDB, TimescaleDB, and QuestDB were evaluated for their specialized
time-series capabilities.

PostgreSQL and MongoDB were included to assess the performance of
general-purpose databases when adapted to time-series data.

The benchmarking involved simulating data from IoT devices, typical of
what babyboxes might produce:

Outside temperature - temperature following natural daily fluctuations.

Heating and Cooling temperatures - primarily stable temperatures with
heating and cooling spikes.

Voltage - primarily stable voltage with failures.
1The full paper can be found here: https://github.com/zbyju/timeseries-benchmar

k/blob/main/paper.pdf

https://github.com/zbyju/timeseries-benchmark/blob/main/paper.pdf
https://github.com/zbyju/timeseries-benchmark/blob/main/paper.pdf

2.3. Choosing technologies for This Project 44

The performance of each database was tested with different volumes of
data and in different categories:

Data Ingestion: How quickly each database could absorb data.

Query Performance: Efficiency in retrieving data over last day for a specific
station (babybox).

Data Aggregation: Time of calculating the average over all datapoints.

The benchmarking results highlighted significant differences in performance
across the databases:

Figure 2.4 Benchmark results showing ingestion speeds (top image), query
speeds (left image) and aggregation speeds (right image).

Ingestion Speeds: All the databases using the line protocol (InfluxDB
and QuestDB) have performed the best in the ingestion benchmark. SQL
database were a bit slower than MongoDB.

Query Performance: SQL-based systems like TimescaleDB (an extension
of PostgreSQL) performed well in query operations, followed by pure time-
series databases, while MongoDB was struggling.

Aggregation Capabilities: SQL-based databases were dominating again
with TimescaleDB scaling better than standard PostgreSQL. InfluxDB and
QuestDB were doing fine, while MongoDB was scaling the worst.

Given the Babybox Dashboard’s primary load on data ingestion due to
time-stamped data from babyboxes, databases optimized for high ingestion

2.3. Choosing technologies for This Project 45

rates are preferred. Among the candidates, line protocol-based databases,
InfluxDB and QuestDB, stood out for their ingestion capabilities.

QuestDB showed excellent performance in our benchmarks across various
metrics but its relative immaturity and limited feature set pose risks for long-
term use. In contrast, InfluxDB, as the most established time-series database,
offers not only high performance but also robust features and extensive com-
munity support.

We would also seriously consider TimescaleDB, if we were using Post-
greSQL as our database; as it is an elegant solution working as a plugin for
PostgreSQL to improve working with time-series data.

Therefore, InfluxDB has been selected for its proven reliability and suit-
ability for managing high volumes of time-series data efficiently, making it the
optimal choice. This decision ensures the system can handle current demands
and adapt to future growth.[55]

2.3.4.2 General-purpose Database

In our project, while a time-series database efficiently handles the voluminous
data from the babyboxes, the system also requires a robust solution for man-
aging general purpose data. This includes static and structured data such as
babybox details, user information, and notification templates. To limit com-
plexity in our system architecture, our goal was to select a single database
technology that could effectively manage all these types of general purpose
data.[38][37]

The choice between traditional SQL databases and more modern NoSQL
databases was central to our architectural strategy. SQL databases, exempli-
fied by PostgreSQL, offer robust data integrity, extensive querying capabilities,
and strong transactional support. PostgreSQL, a popular open-source rela-
tional database, is renowned for its comprehensive feature set and compliance
with SQL standards, making it a strong candidate for applications requiring
complex queries and reliable transactions.

However, the relational model of SQL databases imposes certain limita-
tions, particularly in terms of schema flexibility. Schema modifications in SQL
databases can be cumbersome and disruptive, potentially slowing down devel-
opment as the application evolves. This rigidity contrasts sharply with the
dynamic and flexible schema capabilities in the world of NoSQL databases,
which adapt more readily to changes in data structure and application re-
quirements.

MongoDB, a leading NoSQL database, stores data in a JSON-like docu-
ment format that naturally supports the hierarchical data structures prevalent
in modern web applications. This schema-free model allows each document to
have its own structure, which can include arrays and nested documents, pro-
viding a highly flexible environment that is ideal for the diverse and evolving
data needs.

2.3. Choosing technologies for This Project 46

Furthermore, the schema-free nature of MongoDB significantly accelerates
development. Developers can modify the data model on the fly, an important
benefit in the fast-paced development cycles, where adaptability to changing
requirements is key.[38][37]

2.3.5 Middleware
”Middleware is software and cloud services that provide common services and
capabilities to applications and help developers and operators build and de-
ploy applications more efficiently. Middleware acts like the connective tissue
between applications, data, and users.“[56]

In the architecture, middleware plays a crucial role in facilitating efficient
and secure communication between the various components of the system. We
have utilized a message broker, API gateway and other utilities that help inte-
grate disparate parts of the system into a cohesive whole. This section explains
the functionalities and strategic roles of selected middleware technologies as
well as containerization tools, which are instrumental in deploying and man-
aging the system’s infrastructure.

2.3.5.1 Message Broker

In microservice architectures, maintaining a high level of decoupling between
services is essential for ensuring system flexibility, scalability, and maintain-
ability. Message brokers play a pivotal role in achieving this by mediating
communication paths among services. They facilitate decoupling by allowing
services to exchange messages without being directly connected; instead, mes-
sages are sent to a common mediator (the broker), which routes them to the
appropriate destination based on predefined configurations.

Message brokers usually support many different types of messaging models;
we think that all of these models are going to be needed in the future and as
such we want to choose a versatile message broker that will support at least
these models:

Message Queues: Standard queues that ensure point-to-point message de-
livery.

Publish/Subscribe: A publisher sends messages to a channel without know-
ing about the subscribers, ensuring wide distribution of messages.

Request/Reply: Supports synchronous communication patterns typically
used for direct service-to-service communication.

While there are several message brokers available, RabbitMQ and Kafka
are two of the most prominent in the industry.[57]

Kafka focuses on handling large-scale, high-volume data streams. Origi-
nally designed by LinkedIn to manage massive amounts of event data, Kafka

2.3. Choosing technologies for This Project 47

serves not only as a message broker but also as a platform for log aggregation.
It stores messages in a sequential manner within topics, akin to logs, which
can be replayed, enabling historical data analysis and robust system recovery
features. This log-centric design is particularly beneficial for applications re-
quiring durable and reliable data processing, such as event sourcing systems
where past messages need to be retrieved and processed to restore or replicate
application state.

Kafka strives in a distributing environment where it truly shines, support-
ing robust data partitioning and replication across multiple nodes in a cluster.
This setup ensures high availability and fault tolerance, making Kafka an ex-
cellent choice for enterprise-level applications that require resilience at scale.
Moreover, Kafka’s performance does not degrade with an increase in data,
maintaining high throughput rates under heavy loads.

In contrast, RabbitMQ is more traditional in its approach, designed to
cater to a wide range of messaging needs across various applications. It sup-
ports Advanced Message Queuing Protocol (AMQP), Streaming Text Oriented
Messaging Protocol (STOMP), and Message Queuing Telemetry Transport
(MQTT), which are standards for integrating heterogeneous system compo-
nents. Unlike Kafka, RabbitMQ excels in scenarios requiring complex mes-
sage routing, load balancing, and quick message delivery without the need for
long-term data storage or replay capabilities.

RabbitMQ provides flexibility through its support for multiple messaging
patterns, including not just basic point-to-point and publish/subscribe models,
but also sophisticated routing capabilities that can direct messages based on
content and other headers. This makes it particularly useful for applications
where delivery order, priority management, and routing complexity are critical.

For this project, RabbitMQ was chosen primarily for its simplicity and im-
mediate alignment with the system’s operational requirements. While Kafka
offers extensive capabilities around data retention and distributed processing,
these features introduce complexity in terms of setup, management and op-
erational overhead—factors that have very little to no upsides. It also does
not offer the same versatility as RabbitMQ does when it comes to messaging
models.

RabbitMQ’s ease of deployment, rich feature set, and support for diverse
messaging models make it well-suited for applications that do not require
Kafka’s robust data logging and replay functionalities. Additionally, Rab-
bitMQ’s compatibility with many programming languages enhances its ver-
satility, allowing seamless integration across different software environments.
Furthermore, RabbitMQ’s management interface provides straightforward mon-
itoring and troubleshooting tools, which are invaluable for maintaining system
health and performance without the need for extensive configuration or spe-
cialized expertise.[57]

2.3. Choosing technologies for This Project 48

2.3.5.2 API Gateway

In the architecture, the API gateway is a critical component, acting as the entry
point for all client requests to the backend services. It simplifies the complexity
of interacting with microservices by providing a single, unified API interface to
external clients. Moreover, it handles a variety of cross-cutting concerns such
as authentication, SSL termination, rate limiting, and load balancing.[23][24]

For our system, the choice of the right API gateway was influenced by
several factors including simplicity, automatic HTTPS support, and ease of
integration with our existing infrastructure.

Caddy has been part of our infrastructure for some time and is primarily
used as a reverse proxy. It stands out for its simplicity and minimal con-
figuration requirements. One of Caddy’s hallmark features is its support for
automatic HTTPS, which effortlessly handles SSL/TLS certificate issuance
and renewal through Let’s Encrypt. This eliminates many of the manual steps
typically associated with certificate management and ensures that our com-
munications are always secured without additional overhead.[58]

Given its proven reliability and ease of use, Caddy was a natural choice for
deployment in the production environment. It effectively manages incoming
requests and routes them to the appropriate services, while also dealing with
HTTPS, thereby enhancing security and simplifying the operational aspects
of our infrastructure.[58]

Traefik, on the other hand, was considered for its robust integration capa-
bilities with Docker and Docker Compose. Traefik uses labels specified in the
Compose files to automatically discover services and configure routing rules,
which significantly simplifies the process of dynamically adding or removing
services without manual gateway configuration.[23]

Despite its advantages, the complexity and management overhead of using
Traefik in production while also using Caddy for our other projects and appli-
cations led us to reserve Traefik for development use only. Its powerful features
make it an excellent candidate for scaling scenarios where automatic service
discovery and more granular load balancing capabilities become necessary.[23]

2.3.5.3 Docker and Docker Compose

From the onset of designing Babybox Dashboard, the utilization of Docker
was a foundational decision. Docker’s containerization technology and the
microservice architecture goes hand-in-hand and enable each other. Docker
helps encapsulating microservices into manageable units but also for ensuring
consistency across various environments. The inherent isolation that Docker
provides allows each microservice to be packaged with its dependencies, elim-
inating the common development pitfall of “it works on my machine”. This
discrepancy is often due to environmental differences that Docker containers
mitigate by maintaining uniformity from development through to production.

2.4. System Design 49

In the development environment, Docker’s role extends beyond merely
avoiding environmental discrepancies. Containers can be used to spin up in-
stances of each microservice independently with configurations tailored for
development, which may include additional debugging tools or configuration
settings not used in production.

Docker can also be used for seamlessly setting up a production and develop-
ment environments. Development environments tend to have different require-
ments such as being able to run each service in isolation for debugging and
also enabling hot-reloading for quick development. Production environment
should create production ready builds for performance and security, stripped
of unnecessary packages.

We also decided to use Docker Compose which further enhances Docker’s
capabilities by allowing for the definition, orchestration, and scaling of multi-
container applications through simple YAML configuration files. This is par-
ticularly advantageous when dealing with microservices, as it allows for:

Clear service definitions: Each service is defined with its environment vari-
ables, volumes, and other dependencies clearly stated, simplifying setup
and replication.

Network configuration: Docker Compose manages the internal networking
through which containers communicate with each other. This network iso-
lation simplifies network management and enhances security by controlling
inter-service communication paths.

Simplified deployment: With Docker Compose, the entire application stack
can be deployed using a single command, ensuring that all services are
launched in the correct order with the proper configurations.

2.4 System Design

Babybox Dashboard, initially developed with a functional yet rigid architec-
ture, faced increasing challenges in mainly flexibility and maintainability. As
the demand for more sophisticated functionalities and the need for system ex-
pansion became apparent, it was crucial to transition towards a more robust,
future-ready solution. This transition aimed to address not only the immedi-
ate inefficiencies but also to lay a foundation that would support the system’s
growth and adaptability in the face of evolving technological trends and user
requirements.

This section of the thesis delineates the process of redesigning the system
architecture. It begins with an evaluation of the previous solution, highlighting
the core limitations that necessitated a redesign. Following this, the proposed
solution is detailed, describing the new architectural design, the rationale be-
hind the design choices made, and the integration of modern design principles
and patterns. The section concludes with a comprehensive presentation of the

2.4. System Design 50

domain model, which organizes and defines the system’s primary entities and
their interactions, ensuring alignment with the newly adopted architectural
strategies. This structured approach ensures a holistic understanding of the
system’s design evolution and its alignment with long-term strategic goals.

2.4.1 Previous Solution
Babybox Dashboard was initially developed to provide real-time monitoring
and management capabilities for babyboxes. Its primary functions included
tracking operational status, managing alerts and notifications, and administer-
ing user and device configurations. The dashboard enabled users to visualize
data trends, receive updates on babybox conditions, and respond to alerts
quickly, playing an integral role in ensuring the safety and effectiveness of the
babybox service.

From a technical standpoint, the system utilized a combination of Vue 2
for the frontend and Node.js with Express for the backend. Vue 2 was selected
for its reactivity and component-based architecture, which facilitated the de-
velopment of a dynamic user interface. The backend, powered by Node.js and
Express, handled all server-side logic including data reception, user authenti-
cation, and notification processing.

The entire data management was centralized in MongoDB, which stored ev-
erything from user information to time-series dataFlex. This setup allowed for
straightforward data operations but lacked the flexibility to optimize storage
and queries tailored to the distinct characteristics of time-series and relational
data.

The application infrastructure was not containerized, relying instead on
PM2 for process management. PM2 is a process manager for Node.js appli-
cations that provides an easy way to manage and daemonize applications. It
offers features such as automatic restarts, and log management, which helped
in maintaining application uptime and simplifying deployment processes.

2.4. System Design 51

Figure 2.5 Data flow diagram of the previous solution, where
the blue Back-end component is the one big monolith.

The initial design of the application, created as a monolithic application,
posed significant challenges to system expansion and feature enhancement.
Given the monolithic structure, any modification or addition of features re-
quired scaling or updating the entire system, which was not only resource-
intensive but also prone to increasing the potential for errors. Additionally,
the early stages of development suffered from inexperience, resulting in a code-
base that wasn’t optimized for easy updates or future expansion. This lack
of foresight in design made it cumbersome to integrate new functionalities or
adapt to evolving user needs and technological advancements.

As Babybox Dashboard continued to operate, the frameworks and libraries
it relied upon aged—some becoming obsolete and others undergoing major
updates that the existing system architecture could not seamlessly integrate
without significant refactoring. For example, transitioning from Vue 2 to a
more current version represented not just a simple update but a comprehensive
overhaul of the frontend codebase.

The monolithic architecture significantly limited the system’s flexibility.
Different parts of the application, such as user interface rendering, data pro-
cessing, and notification management, would ideally benefit from specific tech-
nologies best suited to their operational requirements. For instance, handling
time-series data from babyboxes could be more efficiently managed by a spe-
cialized time-series database rather than the general-purpose MongoDB used
across the system. More importantly, it would be beneficial to use different
programming languages and libraries for different features. For example, using
Python and its ecosystem of libraries would be beneficial in the more analytical

2.4. System Design 52

parts of the application. The inflexible nature of the monolithic design made it
difficult to implement the most effective technological solutions for individual
components, thereby hampering overall system efficiency.

The infrastructure supporting the system was minimally set up, lacking
many components that could facilitate development and deployment efficiency.
The absence of containerization meant that replicating production environ-
ments for testing was fraught with inconsistencies, leading to the “it works on
my machine” syndrome. Additionally, the lack of a CI/CD pipeline, insuffi-
cient documentation, and inadequate testing practices further complicated the
development process and increased the maintenance overhead. The system’s
setup did not leverage modern development practices like Docker, which could
streamline environment management and improve deployment reliability.

The decision to undertake a complete rewrite of Babybox Dashboard was
driven by these identified issues. The rewrite will transition the system from a
monolithic architecture to a microservices-based architecture, enhancing flex-
ibility by allowing individual services to use the most appropriate technolo-
gies and databases. This modular approach will facilitate easier updates and
quicker integration of new features. Additionally, introducing containerization
through Docker will standardize development and production environments.
This comprehensive overhaul is aimed at making the system more adaptable,
maintainable, and capable of meeting current and future needs more effectively.

2.4.2 Proposed Solution
The redesigned solution aims to address the shortcomings of the previous
monolithic architecture while leveraging insights gained from past design, im-
plementation experiences and observing users interactions. The proposed solu-
tion adopts a microservices architecture, which offers significant improvements
in system flexibility, maintainability, and scalability. This architectural shift
is designed to mitigate the issues inherent in the original setup, such as diffi-
culty in expanding features, challenges in maintenance, and the inflexibility of
integrating optimal technologies for specific tasks.

In the new architecture, the application will be decomposed into several
smaller, loosely coupled services. Each service will be responsible for handling
a distinct aspect of the system, allowing for independent scaling, development,
and maintenance. This modularity enables the selective use of the most appro-
priate technologies and databases tailored to the specific needs of each service.

To effectively support this diverse ecosystem, the solution will utilize a mix
of programming languages and technologies that are best suited for the tasks at
hand. Go will be employed for services requiring high-performance and efficient
concurrency management. TypeScript, with its robust typing system, will be
used to enhance the development of the user interface and other front-end
components. Python will be utilized for services that benefit from its extensive
library support, particularly for data analysis and possibly machine learning

2.4. System Design 53

tasks. On the database front, InfluxDB will manage time-series data from
the babyboxes, optimizing for high write throughput and efficient querying of
time-stamped data, while MongoDB will continue to handle more general data
storage needs.

This strategic use of multiple technologies and the transition to microser-
vices are geared towards creating a maintainable, flexible, and robust platform.
This approach not only facilitates easier updates and maintenance but also pre-
pares the system for future expansion and the integration of new technologies
as they emerge. The following sections will delve deeper into the specifics
of this architectural design, the individual components, and the overarching
design principles that guide the development of the new system.

2.4.2.1 Transition to a Microservice Architecture

The transition from a monolithic architecture to a microservice-based archi-
tecture is a pivotal shift in how the application is structured and managed.
This transformation capitalizes on the clarity of established requirements and
a well-defined product scope, which significantly aids in delineating the ca-
pabilities around which the microservices are designed. Each service in the
new architecture is aligned around a specific function, enhancing the system’s
flexibility, scalability, and maintainability.

The process of decomposing a monolith into microservices involves several
challenges that must be carefully managed:

Overly Granular Services: Excessively small services can lead to an inflated
number of components to manage, which might complicate the architec-
ture and increase overhead. Such granularity can also dilute the focus of
services, making the system harder to maintain.

Oversized Services: Conversely, if services are too large, they may retain
some of the monolithic architecture’s drawbacks, such as tight coupling
and reduced flexibility. These large services can hinder the independent
scalability and resilience that microservices aim to provide.

To ensure a smooth and effective transition to a microservices architecture,
it is essential to meticulously address a variety of key aspects that are critical
for laying a solid foundation for this complex system structure:

Service Boundaries: Establishing clear boundaries based on distinct busi-
ness capabilities is critical. This ensures that services are cohesive and
maintain loose coupling with others, allowing for independent operation
and easier scalability.

Data Management: While each microservice owning its database is ideal
for ensuring loose coupling, the complexity of managing multiple databases
would not suit this project. In this redesigned architecture, each service

2.4. System Design 54

manages its distinct set of database collections (or tables, buckets, etc.)
within the database, which prevents interference with other services and is a
step towards database-per-service architecture without full implementation
complexity.

Communication Strategies: Implementing robust communication mecha-
nisms, such as asynchronous messaging through RabbitMQ, supports ser-
vice autonomy and enhances the resilience of the system against failures.

Technology and Language Diversification: The use of different technology
stacks for different services is encouraged to optimize performance based
on service requirements. However, limitations need to be established to
prevent excessive diversification, which could lead to a fragmented system
that is hard to manage. Keeping the technology stack consistent where
possible—using a limited set of languages and frameworks—helps maintain
system coherence and manageability.

Transitioning to a microservice architecture as a single developer presents
unique challenges, particularly in managing the system’s complexity effec-
tively. Instead of adopting a typical multi-team approach, the strategy revolves
around simplifying the system design to ensure manageability while still deliv-
ering all required functionalities. Each microservice is carefully designed with
clear interfaces and assigned responsibilities, significantly reducing the cogni-
tive load and making the overall system easier to understand and manage.

RabbitMQ plays a critical role as the communication hub, streamlining
the interactions between services. This setup not only simplifies the messag-
ing patterns but also centralizes message handling, enhancing the system’s
reliability and scalability. Furthermore, the integration of decentralized tech-
nologies like JSON Web Tokens (JWT) for security empowers each service to
independently manage authentication and authorization without the need to
communicate with any other service. This decentralization enhances service
autonomy, secures interactions, and facilitates scalable expansion as the system
evolves.

The careful planning and implementation of this microservice architecture
aim to fully leverage the benefits of this architectural style while consciously
addressing its complexities. By clearly defining service boundaries, optimizing
data management, and curating a limited yet effective technological palette,
the architecture is designed to be robust, scalable, and adaptable. This strate-
gic overhaul isn’t just about technological advancement but about laying a
sustainable and evolvable foundation that supports ongoing improvement and
accommodates future growth, ensuring the system remains effective and re-
sponsive to evolving needs.

2.4. System Design 55

2.4.2.2 Architectural Design

The architectural design of the updated system leverages a pragmatic infras-
tructure to manage the routing and processing of various data types. This
setup ensures that data from different sources is handled efficiently through
designated pathways, as depicted in the system design diagram.

Figure 2.6 Data flow diagram of the new microservice solution.

Snapshot Data Flow: Snapshots and event-related data are continu-
ously generated by babyboxes and transmitted directly to an API gateway.
This gateway routes the incoming data to the Snapshot Handler microser-
vice, which is optimized for processing time-series data. The microservice
then stores this data in InfluxDB, suited for high write throughput and fast
querying capabilities essential for time-series data management. Additionally,
this data is also published to RabbitMQ, which distributes it across all sub-
scribed services via fan-out exchanges, facilitating data analysis and further
processing.

User Interaction with the Frontend: The frontend interacts with the
system either through server-side or client-side rendering. In both cases, user
requests for data are routed through the API gateway to the appropriate mi-
croservices’ REST APIs.

Notification Data Flow: Notifications are generated by a dedicated
Notification Service that triggers emails to users based on specific conditions or
events detected within the data. This service forms an essential communication
link between the system’s operations and the user, ensuring timely updates on
critical events.

The use of an API gateway centralizes the entry points for all incoming data
and requests, simplifying the management of data flows across the system’s

2.4. System Design 56

landscape. RabbitMQ plays a pivotal role in decoupling data producers from
consumers, providing a robust messaging framework that enhances the overall
responsiveness and efficiency of the system.

It should be pointed out, that the architecture suggests each microservice
owns its own database. The diagram more so tries to symbolically illustrate
that it is indeed the microservice who owns its data (even if they are stored in
a shared database). More importantly, the diagram is supposed to convey the
idea that the concrete placement of the data is not relevant as it is a subject
to change if there is the need.

The architecture described meets the current functional requirements of
the system but also supports efficient maintenance and management practices.
We also think that it is a robust solution for future expansions.

2.4.2.3 Design of Individual Components

The Babybox system utilizes a collection of microservices, each designed to
handle specific functional scopes efficiently. Here’s a detailed look at each
service, outlining their roles and the expected load based on system usage
patterns.

Snapshot Handler (microservice)

Functional Scope: This service processes and stores incoming data from
the babyboxes, including snapshots and event notifications. It ensures
data is validated, formatted, and persisted in a time-series database for
real-time and historical analysis. The Snapshot Handler also publishes
this data to a message broker to facilitate asynchronous processing by
other services and provides data access through a REST API.
Expected Load: High, due to the continuous and simultaneous influx of
data from approximately 100 babyboxes.

Babybox Service (microservice)

Functional Scope: Manages comprehensive information about each reg-
istered babybox, such as location, contacts, and network settings. This
service is essential for operational management and exposes babybox
details through a REST API.
Expected Load: Medium, reflecting the less frequent updates and but
frequent queries.

User Service (microservice)

Functional Scope: Handles user management including registration and
authentication by issuing tokens, which are used to check for authenti-
cation in other components. It exposes its data through a REST API.

2.4. System Design 57

Expected Load: Low, given the infrequent user authentication events
relative to data processing activities and speed is not critical.

Notification Service (microservice)

Functional Scope: Analyzes data from babyboxes to generate notifi-
cations based on specific triggers. This service manages notification
templates and the delivery of alerts, accessible via a REST API.
Expected Load: Low, as notification generation is event-driven and only
occurs in response to particular data conditions.

Other Analysis Microservices

Functional Scope: These services perform targeted analyses on subsets
of data relevant to their specific functions. They operate independently,
providing specialized data processing and interfacing with other system
components through REST APIs.
Expected Load: Variable, typically low to medium, depending on the
complexity and frequency of the required analyses.

Front-end

Functional Scope: Serves as the user interface of the system, capable of
running code both server-side and client-side to provide dynamic data
visualizations and user interactions. It fetches and displays data neces-
sary for users to oversee and interact with various aspects of the system.
Expected Load: Medium, due to most computation being done client
side anyway.

API Gateway

Functional Scope: Acts as the central point for all incoming and outgo-
ing HTTP/HTTPS requests. It functions as a reverse proxy, directing
requests from users to the appropriate microservices, thereby facilitating
seamless interactions across the system.
Expected Load: High, as it manages all network traffic, ensuring secure
and efficient data transmission to and from the microservices.

Message Broker

Functional Scope: Operates as the middleware that facilitates com-
munication between microservices. It ensures that updates and new
data/events are consistently propagated throughout the system, en-
abling services to respond to real-time changes.
Expected Load: High, tasked with robustly handling a vast volume of
messages and maintaining low latency in data distribution.

2.4. System Design 58

As we have discussed, we will approach each service based on the method-
ology and mindset we have described and having a clear understanding of its
functional scope and load is going to play a major role.

By designing each component with a clearly defined role and aligning their
capabilities with the anticipated operational demands, the system stays main-
tainable and predictable. Each service is optimized to handle its assigned tasks
effectively, ensuring the architecture supports both current needs and future
growth.

2.4.2.4 Domain Model

The domain model provides an abstract representation of the data entities
and their relationships. It is important to note that this model does not di-
rectly correspond to the actual database schemas but rather offers a conceptual
overview, which helps in understanding how data is organized and managed
across the system rather than depending on the implementation and techno-
logical details.

Figure 2.7 Domain model

Babybox Entity:

slug: Unique identifier, a string of lowercase letters with spaces replaced
by hyphens.
name: A human-readable name for the babybox, initially the same as
the slug but can be changed by the user.
created at: Timestamp marking the creation of the babybox record.

2.4. System Design 59

contact information: Includes firstname, lastname, phone, email,
position, and a note.
network configuration: Captures the type of network setup, ip -
addresses of key components (engine unit, thermal unit, camera,
router, gateway), and a note.
location: Details the hospital name, city, street, postcode, and
geographical coordinates - latitude and longitude.

Snapshot Entity:

slug: Associates the snapshot with a specific babybox.
timestamp: The precise moment the snapshot was captured.
status: Indicates the operational status, with 0 for normal and other
values indicating issues.
temperature measurements: Specific readings from inside, outside,
casing, top, and bottom of the heat exchanger.
voltage measurements: Includes voltage inputs from the power supply
(in) and battery.

Event Entity:

slug: Links the event to a babybox.
unit: Specifies the unit from which the event originated.
event code: Categorizes the event type.
timestamp: Records the time of the event occurrence.

Notification Template Entity:

id: Unique identifier for the template.
scope: Defined per babybox (slug) or globally (”global“).
title: User defined name of the notification.
message: User defined message attached to each notification.
Condition Setup: Comprises of a variable (e.g., temperature.inside),
a comparison operator (e.g., <), and a value that together define the
trigger condition.
severity: Categorized as low, medium, or high, indicating the urgency
of the notification.
notify new error: Boolean flag to immediately trigger notifications for
new issues.
delay: Time interval to wait before issuing another notification for the
same event.

2.4. System Design 60

streak: Number of consecutive data points that meet the condition
before a notification is issued.
emails: Recipients of the notification.

Notification Entity:

id: A unique identifier of the notification.
template: Reference to the notification template.
timestamp: Time at which the notification was generated.
slug: Identifier for the babybox associated with the notification.

User Entity:

username: Unique identifier for each user.
email: User’s email address.
password: Hashed password for user authentication.

Measurement Entity:

slug: Unique identifier for the babybox from which the measurement
was taken.
measurements: Array of tuples containing the timestamp and the bat-
tery voltage over time.

Chapter 3

Implementation

In this chapter, we delve into the practical application of the theoretical
concepts and architectural design choices discussed earlier, focusing on the
actual implementation of the Babybox Dashboard system. This includes a
detailed examination of the system’s infrastructure, the microservices them-
selves, and the front-end part of the application, providing insights into both
the technical challenges and solutions employed throughout the development
process.

3.1 Implementation Process

The implementation of Babybox Dashboard was approached methodically to
ensure a robust and user-centric solution. Here’s an overview of the process:

1. Analysis and Technology Selection:

The project began with an in-depth analysis phase, where requirements
were gathered and use cases were defined. This stage was critical for
understanding the specific needs and expectations of the users.
Simultaneously, technology selection was carried out to identify tools
and frameworks that would best meet these requirements. This in-
volved choosing suitable databases, backend frameworks, and front-end
technologies.

2. System Design:

With a clear set of requirements and technologies selected, the next step
was to design the system architecture. This provided a blueprint of how
the application components would interact and laid the groundwork for
the implementation phase.

3. Initial Service Implementation:

61

3.2. Infrastructure 62

Implementation kicked off with the development of the snapshot handler
service. This service was prioritized to start gathering data early in the
project lifecycle, ensuring that by the time other parts of the application
were developed, there was already meaningful data to work with.

4. Front-End Development and Testing:

Attention then shifted to developing the front-end to ensure the ap-
plication was user-friendly and efficient. The initial user interface was
crafted and deployed using Vercel’s cloud platform for quick testing and
iteration.
This approach allowed for continuous user feedback, which was integral
to refining the UI. The design-first approach for the front end ensured
that once the user interface was set, the backend could be tailored to
support the exact data needs and functionalities required by the front
end.

5. Development of Additional Services:

With the front-end established and the snapshot handler in place, de-
velopment proceeded with other critical services: the Babybox service,
User service, and finally, the Notification service.
Each service was developed in sequence, with ongoing iterations based on
user feedback. This iterative process helped in fine-tuning each service
according to real user interactions and requirements.

6. Iterative Development and Feedback:

Throughout the development process, the project benefited from being
agile and responsive to feedback. Regular interactions with potential
end-users helped in refining features and ensuring the system met prac-
tical needs.
The development was a solo effort, which underscored the importance of
structured planning and self-reliance. Managing the entire stack single-
handedly highlighted the need for a highly organized approach to both
development and testing.

3.2 Infrastructure

The infrastructure was designed to avoid excessive complexity while priori-
tizing maintainability and future expandability. This approach ensures that
the system remains manageable and adaptable, accommodating changes and
growth over time without the risk of becoming cumbersome. The selection
and integration of key technological components form the core of this infras-
tructure, supporting the system’s operational needs and aligning with current
standards in software development.

3.2. Infrastructure 63

Included in this robust yet straightforward infrastructure are several es-
sential components. Containerization is implemented through Docker and
Docker Compose, which encapsulate each service within its own environment,
ensuring consistent deployments across development and production environ-
ments.

RabbitMQ acts as the message broker, facilitating asynchronous commu-
nication between microservices, which enhances responsiveness and decouples
system components.

MongoDB is utilized for its schema-less design, offering the flexibility
required in dynamic environments often encountered in modern web applica-
tions.

Lastly, InfluxDB is incorporated for its specialized handling of time-series
data, pivotal for effectively monitoring and analyzing performance metrics from
Babybox units.

The whole application is deployed on a single node on our own server.
This choice is driven by the convenience and control offered by managing our
server, which is already employed for other projects, and the desire to avoid
dependency on external cloud services.

Additionally, we have established a development environment that runs
directly on the developers’ machines. This setup mirrors the production en-
vironment closely. This approach not only accelerates development cycles but
also minimizes the discrepancies between development and production setups,
enhancing the reliability and predictability of new releases.

3.2.1 Code Structure
In the development of the microservice architecture, we considered employing a
monorepo approach to centralize source control and streamline development
processes. A monorepo facilitates simplified dependency management, as up-
dates are applied uniformly across all services, and enhances collaboration by
standardizing tools and scripts. Additionally, this configuration can signifi-
cantly ease development operations and integration with CI/CD pipelines.

However, monorepos are not without challenges. The growth of the repos-
itory can complicate codebase management, potentially slowing down build
processes and complicating navigation. Furthermore, the risk of inadvertently
introducing tight coupling between services increases with shared dependen-
cies, and complex branch management can further complicate version control.

3.2.1.1 Nx

To manage these complexities within a monorepo, we evaluated Nx, a powerful
tool that extends beyond JavaScript and TypeScript to support a diverse range
of technologies including Go and Python. Nx is particularly appealing for its
features like generators, which automate repetitive tasks and ensure uniformity

3.2. Infrastructure 64

in how certain operations—such as service scaffolding—are executed across
different parts of the codebase. This capability not only saves time but also
enforces consistency in the development process.

Despite these advantages, implementing Nx was not straightforward. The
tool introduced a steep initial learning curve and integrating it into our existing
workflow presented several challenges. Additionally, we encountered specific
issues with an Nx plugin for Go which was undergoing a change in maintainers
and was not operational at the time, further complicating its adoption.

Given these hurdles, and considering the overhead of introducing and main-
taining Nx in our development environment, we decided against its immediate
adoption. We recognized that while Nx could potentially help us in devel-
opment and enforce best practices across services, the immediate costs and
complexities did not justify the integration. However, the flexibility of our
architectural approach allows us to revisit this decision in the future should
our needs or the stability and features of tools like Nx change.

3.2.1.2 Current Setup

Currently, our project structure involves a monorepo with a /apps/ folder
containing individual microservices. This setup maintains a clear separation
of concerns, with each service operating independently and managing its own
domain logic and data. This decoupling ensures that the lack of shared code-
bases does not adversely affect system functionality, and the system remains
adaptable for potential future integration of tools like Nx to enhance develop-
ment practices.

The code structure of the services themselves follows idiomatic approaches.
In Go, we heavily utilized the internal folder, which has a special meaning
which makes sure that there is no tight coupling between services as that code
can only be imported internally within each respective service.

Microservices written in Bun and Python also follow their idiomatic ap-
proaches; this way we believe that orientation in the codebase becomes much
easier.

3.2.2 Containerization
In the system, containerization plays a pivotal role not just in ensuring appli-
cation consistency across environments but also in enhancing the development
workflow. The project utilizes Docker and Docker Compose as key tools to
improve the developer experience by enabling features like hot reloading and
simplifying the setup process, allowing the entire environment to be launched
with a single command.

3.2. Infrastructure 65

3.2.2.1 Docker

The system employs two types of Dockerfiles tailored for different environ-
ments—development and production:

Development Dockerfiles (Dockerfile.dev): These are designed to maxi-
mize developer productivity by enabling hot reloading. This feature allows
the system to automatically reload and apply changes in real time as devel-
opers modify the code, significantly speeding up the development process.
The setup varies by the technology stack:

Go: Utilizes Air for hot reloading.
Bun: Runs bun with the --watch option.
Python: Leverages Uvicorn with the --reload flag.

Production Dockerfiles (Dockerfile): These are optimized for performance
and stability. In this configuration:

Go: The application is compiled into a streamlined binary.
Bun: The application is transpiled into a production-ready format.
Python: Uvicorn runs without the hot reload feature, enhancing perfor-
mance.

Each Dockerfile follows a structured approach to build the Docker images:

1 # Start with a base image for the specific service
2 FROM base-image
3

4 # Set the working directory within the container
5 WORKDIR /app
6

7 # Copy over the file that lists project dependencies
8 COPY dependency_definition_list dependency_definition_list
9

10 # Install the project dependencies
11 RUN install_dependencies
12

13 # Copy the rest of the application's source code
14 COPY . .
15

16 # Command to run the application
17 CMD ["run", "application"]

Code listing 3.1 Pseudo-Dockerfile showcasing the basic structure of the Docker-
files in this application.

3.2. Infrastructure 66

3.2.2.2 Docker Compose

Docker Compose is used to orchestrate the entire suite of services, ensuring
each component interacts seamlessly with others while maintaining isolation:

Production (docker-compose.yml): Specifies paths to production Dock-
erfiles and sets up the operational environment, including dependencies,
network settings, and environment variables necessary for the production
setup.

Development (docker-compose.dev.yml): Overrides the Dockerfile paths
to use development versions and can modify other settings to tailor the
environment for development needs.

To launch the system:

For production: The command: docker compose up --build is used. It
builds and starts services based on the production configurations.

For development: By running: docker compose -f docker-compose.yml -f
docker-compose.dev.yml -p babybox-dashboard-dev up, the system com-

bines the base Docker Compose configuration with the development Com-
pose file by overriding the common configuration found in both files, which
leads to a development environment spinning up equipped with hot reload-
ing and other developer-friendly features.

This dual approach in Docker Compose setup not only speeds up the de-
velopment and deployment processes but also ensures that the environments
are optimally configured for their respective purposes, development or pro-
duction, thereby supporting the project’s goals of maintainability and future
expandability without introducing unnecessary complexity.

3.2.2.3 Environment Variable Management

Environment variables are centrally managed in a .env file, enhancing security
and simplifying configuration changes. Docker Compose is configured to inject
these variables into services as needed:

1 environment:
2 - APP_ENV=production
3 - JWT_SECRET=${JWT_SECRET}
4 - INFLUXDB_URL=http://influxdb:8086

Code listing 3.2 Configuration a service through environment variables in a Docker
Compose file.

3.2. Infrastructure 67

In this example, APP ENV and INFLUXDB URL are going to be statically set;
JWT SECRET is going to be assigned the value from the .env file.

This method ensures that all services have access to the configurations they
require without hardcoding sensitive information into the codebase or Docker
configurations.

Furthermore, to not leak any sensitive information such as secrets or pass-
words we do make .env file public by pushing it into a GIT repository; instead
we push a .env.example file, which makes it clear which variables need to be
set without exposing the values.

3.2.2.4 Container Dependencies

One challenge with Docker Compose is its depends on functionality, which
does not guarantee that a dependent service is fully operational before starting
services that rely on it. This can cause issues, particularly when a service ex-
pects a database or RabbitMQ to be available immediately. Although Docker
Compose supports automatic restarts on failure, this is not always effective
in development environments with hot reloading as the software providing the
hot reloading functionality does not actually shut down but waits for changes
to restart the service, meaning Docker will not trigger the restart.

To address this, each microservice includes an initialization process that
retries connections to dependencies several times with delays if necessary. This
approach effectively mitigates issues related to services starting before their
dependencies are fully operational.

3.2.3 API Gateway
In the infrastructure, access to back-end services is managed differently in
development and production environments, each tailored to meet the specific
needs of these scenarios efficiently.

3.2.3.1 Development Environment

In development, we use Traefik as an API Gateway to provide communication
between the services and the front-end. This is done so that the developer
environment is more similar to the production environment. For other types
of communication, such as service-to-middleware communication, we just use
the docker network.

A MongoDB service running in a container named mongodb on port 27017
is accessible via mongodb:27017. A service like snapshot-handler listening
on port 8080 can be reached through http://snapshot-handler.localhost
from the front-end as the requests are passed through Traefik. This method is
straightforward and sufficient for development purposes, where simplicity and
speed of setup are crucial.

3.2. Infrastructure 68

We have also heavily considered Traefik as our API Gateway in produc-
tion as it is a popular choice for handling reverse proxy tasks with automatic
HTTPS management and is particularly well-suited for dynamic microservice
environments. Traefik’s configuration typically involves either using a config-
uration file or, when used with Docker Compose, setting labels, like:

1 labels:
2 - traefik.enable=true
3 - traefik.http.routers.snapshot-handler.entrypoints=websecure
4 - traefik.http.routers.snapshot-handler.rule=Host(`snapshot-handler.dom c

ain.com`)↪→

5 - traefik.http.services.snapshot-handler.loadbalancer.server.port=8080

Code listing 3.3 Configuring snapshot-handler service for Traefik using labels.

These labels allow Traefik to automatically detect services and manage
traffic routing based on the specified rules. However, given the existing in-
frastructure and the usage of Caddy across other projects, introducing Traefik
was deemed to potentially add unnecessary complexity. We therefore opted to
leave Traefik for development only for now.

3.2.3.2 Production Environment

For production, the approach is more structured to ensure security, reliability,
and scalability. We use Caddy as a reverse proxy to manage requests from the
internet to the internal services efficiently. Caddy stands out for its simplicity
and automatic HTTPS setup, which secures communication by default.

The configuration of Caddy involves specifying routes and target services
straightforwardly. For example, to route traffic intended for a service-handler
to the correct backend service, the Caddyfile would include:

1 snapshot-handler.domain.com {
2 reverse_proxy IP:PORT
3 }

Code listing 3.4 Configuring snapshot-handler service in Caddyfile.

This setup ensures that any request to https://snapshot-handler.domain
.com/ is appropriately directed to the internal service running at the specified
IP and port.

By keeping the development environment simple with Traefik and Docker’s
networking capabilities and leveraging Caddy’s straightforward and secure re-
verse proxy functionality in production, the system achieves a balance of ease

3.2. Infrastructure 69

of use, security, and consistency across its deployment environments. This ap-
proach ensures that both the development and production setups are optimized
for their respective needs without compromising functionality.

3.2.4 RabbitMQ
We used RabbitMQ as the backbone for asynchronous communication between
different services, particularly in handling and distributing events related to
babybox data, such as newly received snapshots. The use of RabbitMQ ensures
that services can react to events in real-time without being tightly coupled to
each other, enhancing the system’s scalability and responsiveness.

3.2.4.1 Docker Compose Configuration

RabbitMQ is configured within Docker Compose, leveraging environmental
variables defined in the .env file for setting credentials. It operates on the
default port 5672 for messaging operations, with the management dashboard
accessible on port 15672. This setup allows for easy monitoring and manage-
ment of RabbitMQ, providing insights into message throughput, queue lengths,
and other operational metrics.

The management dashboard has proven to be quite useful for debugging
and monitoring the state of the application and how data is being consumed.

3.2.4.2 Naming Conventions

A clear and systematic naming scheme is key for the organization and man-
agement of exchanges and queues within RabbitMQ. For this system, the ex-
changes are named following the pattern of domain.event, which in the case
of receiving new snapshots is snapshot.received. This naming helps in iden-
tifying the purpose of the exchange and the type of events it handles.

Similarly, queues follow a structured naming convention: service_name.
domain.name, such as babybox-service.snapshot.processor. This convention
ensures that the queues are easily identifiable, related to specific services, and
categorized by the data they consume.

3.2.4.3 Communicating through the Message Broker

The configuration of the message broker is decentralized; each service au-
tonomously sets up its part of the messaging architecture.

Producers are responsible for initializing the exchanges and configuring
them to use the fanout strategy (publish/subscribe strategy), which is ideal
for broadcasting messages to multiple consumers. On the other side, con-
sumers set up their queues and create bindings to connect these queues to the

3.2. Infrastructure 70

relevant exchanges. This decentralized approach allows each service to inde-
pendently manage its subscriptions and messages, thus promoting flexibility
and scalability.

Figure 3.1 Visualization of distributing snapshots among consumers.

For example, as shown on the visualization, when a snapshot from a baby-
box is received in the snapshot-handler service, it is published to the snap-
shot.received exchange. Services that process these snapshots have their
own queues bound to this exchange, ensuring that they receive the messages
pertinent to their operational logic. This setup not only keeps the architecture
clean but also allows for easy scaling as more services or types of messages are
added over time.

3.2.4.4 Types of Data

Currently, the only data being sent through RabbitMQ are the snapshots. We
expect this to change rather quickly as other services appear or get into a
situation where they need to access other types of data.

We have expected this to happen sooner rather than later and as such the
system’s design accommodates this growth seamlessly, allowing for new types
of data to be exchanged.

3.2.5 MongoDB
MongoDB was chosen as the general-purpose database for its schemaless na-
ture, which offers significant flexibility in how data is structured and managed.
This flexibility is vital for a system that needs to adapt and evolve without
cumbersome migrations or downtime. As well as its developer experience and
productivity it offers with its tooling and resources.

3.2. Infrastructure 71

3.2.5.1 Docker Compose Configuration

The deployment of MongoDB within the system uses Docker Compose, config-
ured via environment variables in the .env file for aspects like authentication.
This setup ensures that MongoDB integrates smoothly with the rest of the
services, maintaining secure and reliable database access.

3.2.5.2 Practical Utilization of Schemaless Design

Despite being schemaless, which theoretically allows any form of document to
be stored in a collection, it is key to maintain a logical structure to the data
stored. The schemaless nature is not used in our system to store random data
formats but to allow certain documents to optionally include additional fields
without disrupting the existing structure.

For instance, the babybox entity primarily includes fields like slug, name,
and created at. Detailed data such as location, network configuration,
and contacts are optional, which means not all documents in the collection
need to have these fields. This approach avoids the need for database migra-
tions if new fields are introduced; documents without these new fields operate
perfectly within the system norms, as the application logic is designed to han-
dle such absences gracefully.

This method of using MongoDB’s schemaless feature ensures that the sys-
tem can seamlessly introduce new attributes to entities like babyboxes as re-
quirements evolve or new features are implemented. The system thus remains
agile and responsive to changes, with minimal overhead for managing data
schema changes.

Through creating proper types in our services for these entities we can
ensure that we handle the cases where these fields might be missing. This is
especially necessary on the front-end, to let the user know that this information
is not available, or to hide components that cannot be rendered due to missing
data.

3.2.5.3 Efficient Data Retrieval

A potential problem that we are aware of is entities growing too big while
there also arises a use case of needing only part of the entity. This could lead
to inefficient queries a data transfers.

Such problem could be solved using projection. Projection allows specifying
which fields should be returned by a query, thereby optimizing performance
by fetching only the necessary data.

In the connection with REST, the filtering can be chosen by the client
using a query parameter. If the need for such feature was growing, we could
introduce a GraphQL for such service, which is great for such use cases as the
client can specify exactly what kinds of fields they want. This would not be

3.2. Infrastructure 72

a problem as we are using API versioning and the GraphQL API could listen
on endpoints /v2/ while the REST API is on /v1/.

3.2.5.4 Indexing Considerations

As of now, the system does not employ extensive indexing due to the low vol-
ume of data—less than 100 babyboxes, a modest amount of users and limited
amount notification template data. Introducing indexes could actually slow
the database down as they slow down insert, update and delete queries due to
the indexes having to be maintained and updated when the data changes.

However, as the notifications are going to be generated, indexing considera-
tions are becoming relevant for the notifications collection specifically, par-
ticularly for improving access speeds to frequently queried fields like the baby-
box slug. Indexing this field could reduce query times for specific operations-
mainly different queries revolving around filtering notifications based on a spe-
cific babybox.

3.2.5.5 Tooling and Development Support

MongoDB’s ecosystem offers powerful tools such as Studio 3T and MongoDB
Compass, which enhance database management capabilities.

Studio 3T facilitates direct interaction with the database, making data
manipulation and query building intuitive and efficient. We used Studio 3T to
quickly inspect the data in production.

We also used MongoDB Compass extensively as it is a great tool for under-
standing the data in the database, viewing statistics, debugging performance
and creating queries and aggregation pipelines.

It support generating queries and even aggregation pipelines using a natu-
ral language on a real database with real data. It then visualizes the stages of
aggregation pipelines and how the data looks like in after each stage. This vi-
sual representation is invaluable for debugging and optimizing complex queries,
particularly when dealing with large datasets and sophisticated data transfor-
mations. The generated query or aggregation pipeline can be directly trans-
formed to code in a specified programming language further improving devel-
oper productivity.

We used it also for debugging performance and understanding the benefits
of introducing indexes.

3.2.6 InfluxDB
InfluxDB is employed specifically for its prowess in handling time-series data,
which is crucial for storing and analyzing snapshots and event data generated
by babyboxes. The decision to use InfluxDB was solidified by a thorough
benchmark analysis that not only demonstrated its great performance with

3.2. Infrastructure 73

synthetic but realistic data sets but also highlighted its commendable developer
experience.

3.2.6.1 Docker Compose Configuration

InfluxDB is run within the system’s infrastructure using Docker Compose, en-
suring ease of deployment and consistency across development and production
environments. Similar to other services, InfluxDB’s configuration, including
credentials and connection settings, is managed through environment variables
specified in the .env file. This approach secures and simplifies access to the
database, maintaining clean and manageable codebases.

3.2.6.2 Data Storage

The database is designed to store two primary types of data:

Snapshots: These are recorded with their slug (identifier of a babybox) and
version (babybox firmware version to know how to parse/treat the data)
as tags, which facilitate fast and indexed queries alongside the timestamp.
The temperature and voltage measurements are stored as fields.

Events: For events, the slug and unit (which unit sent the event) are
stored as tags, with the event code stored as a string field. This struc-
turing ensures that events are indexed and can be efficiently queried and
analyzed over time.

The use of tags for indexing, along with timestamps, enables InfluxDB
to perform well for queries that are typical in monitoring systems, such as
retrieving time-based data sequences or aggregating data across time intervals.

Currently, the system does not store notifications in InfluxDB, despite
them being timestamped and technically fitting the time-series data model.
The decision to keep notification data in MongoDB instead stems from their
tight integration with notification templates. Storing notifications in Mon-
goDB simplifies making aggregated queries that combine notifications with
their corresponding templates, a task that would be more complex if the data
were spread across different databases.

3.2.6.3 Development Tools and Visualization

InfluxDB’s developer portal offers visualization tools that significantly enhance
the development and monitoring process. We utilized both Flux, InfluxDB’s
functional data scripting language, and the UI to set up queries and visualize
the data. This feature was particularly valuable during the development phase,
as it allowed for creating and debugging queries and immediate visual feedback
on how data are stored and can be queried, ensuring accuracy and effectiveness
in data handling.

3.3. Microservices 74

3.3 Microservices

This project includes the development of several microservices, each focused
on a specific domain. The Snapshot Handler Microservice handles the snap-
shots and events coming from babyboxes, while the Babybox Microservice
manages the metadata for each babybox. The User Microservice provides au-
thentication and user management, and the Notification Microservice manages
notifications and their distribution. Finally, the Battery Analyzer Microser-
vice captures and analyzes measurements of the babybox battery. Together,
these microservices form a cohesive, maintainable, and efficient system.

3.3.1 Snapshot Handler Microservice
The Snapshot Handler microservice is a cornerstone of the Babybox monitor-
ing system, designed to manage the influx of data from various babyboxes
efficiently. This microservice, developed using Go and the Echo framework,
is crucial for handling both real-time data intake and user requests for data
retrieval.

3.3.1.1 New Firmware API Improvements

Due to constraints imposed by the babyboxes’ hardware and firmware, the
API endpoints could not fully adhere to ideal RESTful practices. The system
had to accommodate legacy firmware that sends data through unconventional
endpoints such as /BB.{slug}.data. This endpoint receives data through
query parameters like BB={slug}&T0={value}&T1={value}...&T8={value},
complicating the standardization of data intake.

As part of this thesis, a new firmware version was developed to establish
a more standardized API structure. For newer versions of the firmware, the
following improvements were made:

Snapshots are received via /send/snapshots/thermal/{slug} using the same
query parameters for consistency with older versions.

Events data is captured through /send/events/{slug}, with each event
encoded as a string that indicates the unit from which the event was sent
(thermal or engine) followed by a code specifying the event.

To maintain compatibility with legacy firmware and handle new features in
the updated firmware, snapshots are labeled with either version 1 or version 2
based on the endpoint they came from. This version-based labeling enables the
system to differentiate between older and newer firmware snapshots, allowing
for specific processing operations tailored to each version.

The new firmware also increased the frequency of snapshot data submis-
sions, reducing the interval from every 10 minutes to every 5 minutes. This

3.3. Microservices 75

adjustment ensures more timely data collection and enhances the accuracy of
real-time monitoring.

This way, despite the introduction of new API endpoints and changes in
snapshot frequency, the system remains compatible with older firmware ver-
sions and ready to be expanded upon.

3.3.1.2 Slug Conversion and Usage

Babyboxes self-identify using names based on their geographical location—such
as BRNO, PRAHA2, PRAHA6. These names are transformed into ‘slugs’ that act
as unique identifiers within our system. The conversion process involves stan-
dardizing the names into a slug format by converting all letters to lowercase,
replacing spaces with hyphens, maintaining numbers, and removing other char-
acters. These slugs are crucial for tracking and associating data accurately
across the system’s databases and services.

3.3.1.3 Data Handling and Storage

Upon receipt, snapshot data is immediately formatted into InfluxDB points,
with measurements stored as fields and the babybox’s slug and firmware ver-
sion stored as tags. This structuring facilitates efficient time-series data anal-
ysis and storage as InfluxDB automatically indexes the data. Simultaneously,
these snapshots are published to RabbitMQ in JSON format, allowing other
microservices within the architecture to react to and process the incoming data
appropriately.

3.3.1.4 API Endpoints for Data Retrieval

The Snapshot Handler microservice provides comprehensive endpoints to ac-
cess the data:

/snapshots: This endpoint is generally used for debugging purposes and
returns all snapshots stored in the system.

/snapshots/{slug}: Targets data retrieval for a specific babybox. It sup-
ports query parameters like from, to, n, and fill, which allow users to
filter the snapshots by date, limit the number of results, and specify how
missing data points should be handled.

/snapshots/{slug}/summary: Provides a summary of data for a given
babybox over a specified period. This endpoint returns what looks like
a single snapshot, but instead of values for temperatures and voltages it
returns aggregated data - minimum, maximum and average values. This
query can be adjusted using the from and to query parameters.

For event data, the service offers:

3.3. Microservices 76

/events: Retrieves all event records.

/events/{slug}: Fetches events for a specific babybox, with similar fil-
tering capabilities as the snapshot endpoints. Again with the ability to
specify from, to and n query parameters.

The common query parameters that can be used to adjust the result set
that is going to be returned are:

from: Specifies the start date for the data retrieval in YYYY-MM-DD
format and it is set to the beginning of the day. It defaults to one year
ago if not provided. This parameter is pivotal for bounding the query to a
specific timeframe.

to: Sets the end date for data retrieval, also in YYYY-MM-DD format
and it is set to the end of the day, and defaults to the current date. This
parameter allows users to define the period for which they need data, up
to the very day of the query.

n: Limits the number of data points returned. This parameter is useful
for managing the volume of data retrieved, particularly in scenarios where
only a sample or the most recent entries are needed.

As an example, a request made to the snapshots endpoint: /snapshots/
brno?from=2024-01-01\&to=2024-01-01, the service would respond with all data
recorded from the babybox with slug brno on the day 1.1.2024 (the whole day
would be selected as from is set to 1.1.2024 00:00:00 and to is set to 1.1.2024
23:59:59)

3.3.1.5 API Versioning and Envelope Pattern

To ensure backward compatibility and ease future updates, the API incor-
porates versioning. Each user endpoint begins with a version prefix, such as
/v1/, ensuring that any future changes do not disrupt existing integrations.

The response from these endpoints adheres to the envelope pattern, which
includes a data object for the payload and a metadata section containing error
status and messages. A response follows this pattern: { data: ..., metadata
: { err: boolean, message: string }}.

3.3.1.6 Authentication

Each endpoint within the /v1/ group of endpoints (user endpoints) checks for
the JWT token that should be attached in each request in the Authorization
header. Only after checking its legitimacy and expiration date, is the request
handled. Otherwise it appropriately sends a 401 status - Unauthorized.

3.3. Microservices 77

3.3.1.7 Health Check Endpoint

The microservice also includes a health check endpoint. This endpoint provides
very simple information about its status and version.

3.3.2 Querying Data from InfluxDB
For querying, we utilize Go’s fmt.Sprintf function to dynamically construct
queries for InfluxDB. This method allows us to embed user-specified parame-
ters directly into our Flux queries, adapting to varied data retrieval.

The fmt.Sprintf function in Go formats strings with placeholders, which
are replaced by subsequent arguments. This functionality is beneficial for
constructing database queries, where parameters such as bucket names, time
ranges, and limits might change based on user input.

Here is an example of how we construct a query for retrieving data:

1 fluxQuery := fmt.Sprintf(`from(bucket: "%s")
2 |> range(start: %s, stop: %s)
3 |> filter(fn: (r) => r._measurement == "%s" and r.slug == "%s")
4 |> pivot(rowKey: ["_time"], columnKey: ["_field"], valueColumn:

"_value")↪→

5 |> sort(columns: ["_time"], desc: true)
6 |> limit(n: %d)`, service.bucket, from.Format(time.RFC3339),

to.Format(time.RFC3339), measurementNameThermal, slug, n)↪→

Code listing 3.5 Query template for a snapshot range query based on slug.

from: Specifies the InfluxDB bucket from which to retrieve data. The
bucket name is dynamically inserted based on the service configuration.

range: Sets the time range for the query. The start and stop parameters
are formatted as RFC3339 strings, ensuring accurate parsing by InfluxDB
(e.g. 2024-01-20T12:34:56Z).[59]

filter: Filters the data to include only entries that match a specific mea-
surement (measurements from the thermal unit) and a particular slug.
This ensures that the query returns only the relevant data associated with
a designated babybox.

pivot: Reorganizes the data format by essentially merging all the rows
based on its time into one row with multiple columns; otherwise we would
get multiple rows with each temperature and voltage separate.

sort: Orders the results in descending order by time, ensuring that the
most recent records are presented first.

limit: Restricts the number of entries returned by the query.

3.3. Microservices 78

For generating aggregated data reports - minimum, maximum, and aver-
age values over a specified period, we use a template that inserts aggregation
functions dynamically:

1 queryTemplate := `from(bucket: "%s")
2 |> range(start: %s, stop: %s)
3 |> filter(fn: (r) => r._measurement == "%s" and r.slug == "%s" and

r._field == "%s")↪→

4 |> %s()
5 |> yield(name: "%s_%s")`
6

7 queries := ""
8 fields := []string{
9 "temperature_inside",

10 "temperature_outside",
11 "temperature_casing",
12 "temperature_top",
13 "temperature_bottom",
14 "voltage_in",
15 "voltage_battery",
16 }
17 aggregations := []string{"min", "mean", "max"}
18

19 for _, field := range fields {
20 for _, aggregation := range aggregations {
21 query := fmt.Sprintf(queryTemplate, ...)
22 queries += query
23 }
24 }

Code listing 3.6 Query creation for an aggregated query.

The differences between the previous query are:

filter: The filter function now further narrows the data to to only a
specific variable within the measurement (e.g. temperature inside).

|> %s() is replaced with the desired aggregation function (mean(), min(),
or max()), tailoring the query to compute specific statistical metrics.

The yield function labels the output of the query, which is important be-
cause the query will yield multiple outputs (for each field and for each
aggregation function).

The resulting query is constructed by iterating over all fields and all ag-
gregation functions and concatenating all the queries together.

3.3. Microservices 79

3.3.2.1 Gap Filling Strategies

As babyboxes send their snapshots, there might be some outages on either
end, network problems, or other reasons why the snapshots do not arrive to
be stored. Thus, we should make it clear to the user that these data points
are missing.

In the new application, we made a transition from a static to a dynamic gap
filling strategy in the Snapshot Handler microservice, which marks a signifi-
cant improvement in how data integrity is maintained while managing storage
efficiency. Previously, a cron job was responsible for identifying and filling data
gaps by creating and storing synthetic data points directly in the database.
This method, though effective in maintaining complete datasets, led to unnec-
essary storage of filler data that had no analytical value.

The new dynamic approach addresses data gaps in real-time during data
retrieval, eliminating the need to store synthetic data persistently. API clients
specify their preferred gap filling strategy via the fill query parameter when
making API requests to the endpoint /snapshots/{slug}. This allows for on-
demand data manipulation, aligning data presentation with immediate user
needs without impacting the underlying data storage.

No Filling (query parameter missing, "no" or "false"):

If this option is selected, the API directly returns the data as stored,
including any gaps resulting from non-transmission periods or system
downtime. This method is straightforward; no loop or additional pro-
cessing is involved.

Standard Filling (query parameter "fill"):

This algorithm initiates when gaps of over 12 minutes (giving a bit of a
buffer over the usual 10 minutes for some inconsistencies) are detected
between sequential data points. It operates by looping through the
dataset from the from date to the to date specified in the query.
For each gap detected, the algorithm inserts synthetic data points every
10 minutes until it reaches the timestamp of the next available real data
point or fills up to the to date.
In practice, if a gap is found, a synthetic data point is created at 10
minutes after the last real data point, and the process repeats from this
new synthetic point, continually checking for and filling any subsequent
gaps.

Lazy Filling (query parameter "lazy"):

Similar to the standard filling, this method begins by identifying gaps
larger than 10 minutes.

3.3. Microservices 80

Instead of filling every 10-minute interval within a gap, lazy filling places
only one synthetic data point at the start of the gap. It then jumps to
the next real data point, thereby placing significantly fewer synthetic
points.
This strategy leads to every gap of more than 12 minutes being filled
with exactly one synthetic data point. This process reduces the compu-
tational load compared to the full filling algorithm while still providing
some indication of a gap in the data.

Figure 3.2 Visualization of the filling algorithms.

An accompanying figure visually differentiates the results of each strategy.
It illustrates a timeline where:

No filling leaves clear gaps.

Standard filling densely populates gaps with synthetic points at regular
intervals.

Lazy filling sparsely populates gaps, marking only the beginning of each
detected gap with a single point.

In our efforts to provide this functionality, we have also explored several
methods to dynamically manage gaps directly within the database using the
InfluxDB’s aggregateWindow function which looked promising in the begin-
ning:

1 |> aggregateWindow(every: 10m, fn: last, createEmpty: true)

Code listing 3.7 Using aggregateWindow for filling gaps in time-series data.

3.3. Microservices 81

This Flux query command divides the dataset into 10-minute windows and
applies the last function to each window - each window’s result is the last value
within that window. If a window lacks data points, the function is designed
to create an empty data point.

However, several issues arose with this approach, making it less viable for
our specific needs:

Timestamp Inaccuracy: InfluxDB assigns the timestamp of the window’s
end to any created empty data points, rather than preserving the actual
time of the missed data. This behavior misrepresents the timing of data,
which is somwhat important for accurate monitoring and analysis in sce-
narios where precise time stamps of events are needed for diagnostic or
operational purposes.

Data Point Exclusion: The last function within each window might inad-
vertently exclude relevant data points if more than one entry is present in
the same window. For example, if two data points are logged at 12:00:00
and 12:09:59, only the second is retained and the first is ignored. This can
lead to loss of potentially valuable data. Note that other functions such as
mean (calculating the average of each window) would not solve the issues
as the following window would still be missing a value.

Misleading Last Data Point: The function often assigns the current time
to the last data point in the sequence, due to the window ending at the
to time (which is set to the current time in most cases). This can lead to
confusion and inaccuracies in data interpretation.

Given these limitations, while the aggregateWindow function offered a
streamlined, database-integrated solution to data gap handling, the trade-
offs in terms of data accuracy and integrity were significant. That is why we
ultimately decided to develop our own filling algorithms.

3.3.3 Babybox Microservice
The Babybox Service microservice plays a key role in the monitoring system
by managing detailed information about each babybox. This service is vital
for maintaining an accurate registry of babyboxes and incorporating data from
newly detected units efficiently.

3.3.3.1 Core Functionality

Central to the service’s function is the creation and updating of babybox entries
in the MongoDB database. This process occurs automatically when new baby-
boxes are detected through the snapshots they send. Detection is facilitated
by RabbitMQ on the snapshots.received exchange, where each snapshot is
checked against existing database entries:

3.3. Microservices 82

If the babybox’s unique slug is not found in the database, it indicates the
arrival of a snapshot from a undiscovered babybox. The service responds
by creating a new entry for this babybox, setting the name initially to match
the slug and recording the created at timestamp to the current time.

If the slug already exists, then it gets ignored as far as this service is
concerned.

Snapshots are read from RabbitMQ by having the babybox service create
its own queue for these snapshots and attaching it to the snapshot.received
exchange, which is managed by the snapshot handler service. This exchange
is set to use the fanout strategy leading to the babybox service reading all the
new snapshots and making sure there is no snapshots coming from untracked
babyboxes.

3.3.3.2 API Design and Endpoint Functionality

The Babybox Service mirrors the structure of the Snapshot Handler microser-
vice, employing several best practices for secure and efficient data management:

API Versioning is implemented to manage changes effectively without dis-
rupting service for existing clients.

JWT Authentication secures access, requiring valid tokens for operations
that access or modify babybox data, thereby enhancing the system’s secu-
rity.

Envelope Pattern is used in API responses to include metadata alongside
the primary data, facilitating better client-side processing and error han-
dling.

The service provides a range of endpoints, each serving specific functions:

POST /babyboxes: Primarily used for debugging, this endpoint allows
manual creation of babybox entries.

GET /babyboxes: Offers a list of all registered babyboxes, showing basic
identifiers: slug and name, useful for listing all the babybox on a page.

GET /babyboxes/{slug}: Delivers detailed information for a specific baby-
box.

PUT /babyboxes/{slug}: Enables comprehensive updates to a babybox’s
details by requiring the full updated object to be submitted.

3.3. Microservices 83

3.3.4 Notification Microservice
The Notification Microservice is an essential component of the Babybox mon-
itoring system, designed to handle all aspects related to notifications. This
includes managing notification templates, storing notification data, and fa-
cilitating the sending of notifications to users via email. This service plays
a pivotal role in ensuring that relevant parties are promptly and reliably in-
formed about significant events or statuses related to babyboxes.

3.3.4.1 REST API

It offers a comprehensive REST API that supports various operations related
to notifications and templates:

GET /notifications: Retrieves all notifications, primarily used for de-
bugging and administrative overview.

GET /notifications/{slug}: Fetches notifications for a specific babybox
identified by its slug. This endpoint supports additional filtering by start
and end date parameters formatted in YYYY-MM-DD, allowing users to nar-
row down the search to a specific time frame.

DELETE /notifications/{id}: Allows deletion of a specific notification
by its ID, useful for managing erroneous or outdated notifications.

POST /notifications/{template id}/{slug}: Primarily for testing and
debugging, this endpoint facilitates the manual creation of a notification
based on a specified template ID and babybox slug.

GET /templates: Lists all notification templates, providing an overview of
the different notification criteria set up within the system.

GET /templates/{slug}: Retrieves notification templates applicable to a
specific babybox or globally. It includes an optional global boolean query
parameter that, when set to true, returns both the templates specifically
for the given slug and those marked as global.

GET /templates/id/{id}: Provides details of a specific template by its
ID, useful for detailed template management and editing.

POST /templates: Supports the creation of new notification templates,
allowing users to define new criteria and notification behaviors.

DELETE /templates/{id}: Enables the deletion of a notification template
by its ID, which is essential for removing outdated or unnecessary notifi-
cation rules.

PUT /templates/{id}: Updates an existing notification template by re-
placing the entire template object. This is crucial for adapting notification
behaviors as the monitoring requirements evolve.

3.3. Microservices 84

3.3.4.2 Template Configuration and Snapshot Processing

Users can create notification templates that detail the circumstances under
which notifications should be sent. These templates include a scope (specific
babybox slug or "global"), condition made out of 3 parameters: variable
(which variable are we monitoring; e.g. "temperature.inside"), comparison
(binary predicate that is used in the condition to compare the variable with a
value; e.g. "<"), value (a numeric value to compare against), and metadata like
the notification’s title, message, severity, and recipients email addresses.

When a new snapshot arrives through the snapshot.received exchange
from RabbitMQ, the service first identifies the applicable templates. It filters
these templates to include only those whose scope matches the babybox’s slug
from the snapshot or those set as "global". For each relevant template, the
service checks if the snapshot meets the predefined conditions.

3.3.4.3 Strategies to Refining Notification Frequency

Given the high potential for numerous snapshots generating an excessive vol-
ume of notifications, we have developed several strategies to manage and refine
when notifications are triggered:

Streak Requirement: This feature requires a certain number of consecutive
snapshots to meet the condition before a notification is generated. This
strategy is particularly useful for avoiding false alarms due to data fluctu-
ations that momentarily cross threshold values.

New Error Detection: This strategy prioritizes the detection of new errors.
If a snapshot meets the condition and represents a change from previous
snapshots (i.e., the previous did not meet the condition but the current
one does), a notification is immediately triggered. This ensures prompt
alerting for new issues, independent of their the delay limitation checker.

Delay checker: After a notification is generated, a delay period is enforced
during which no further notifications for the same condition are issued,
regardless of the incoming snapshot data. This delay prevents a flood of
messages for persistent or recurring issues, helping to manage the volume
of outgoing communications effectively.

3.3.4.4 Chain of Checkers

Our approach in checking for different conditions and limitations for generating
notifications was heavily inspired by the chain of responsibility pattern, where
each checker in the chain has a specific role:

Condition Checker: This initial checker evaluates whether the snapshot
meets the basic conditions specified in the template.

3.3. Microservices 85

Streak Checker: If the condition is met, the streak checker assesses whether
the condition has been met consecutively the required number of times. It
does this using an internal state. It has a dictionary key → streak. The
key is created by using the id of the template and the slug of the snapshot
- creating a unique identifier for this combination; the streak is then tracked
based on each snapshot that comes in.

New Error Checker: This checker intervenes to ensure that any new error
triggers an immediate notification, even if the following checker would de-
cide otherwise. It does so by having an internal dictionary, similar to the
streak checker, key → last decision.

Delay Checker: This checker applies a cooldown period, during which no
further notifications are generated from the same template for the same
babybox, regardless of the snapshot data. It does so by checking the
timestamp of the last notification generated for this template/babybox
combination.

Final Checker: This is a filler checker at the end of the chain. It is there
so that the code of the previous checkers is a bit less complicated as they
do not have to check if there is another checker after them in the chain. If
a snapshot gets to this checker, then it always creates the notification.

Figure 3.3 Visualization of the notification checking chain.

In this figure, we can better picture how this chain is constructed. We can
see that the condition, streak and delay checker have the ability to make an
early return with the value false (notification should not be created) and the
new error and final checkers have to ability to make an early return with the
value true (notification should be created).

Each checker has a next checker and passes the snapshot to it using the
handle method. If an early decision is made, then it uses the announce method
instead, which informs all the following checkers of the decision that has been
made. This is done for checkers to update their state based on the decision that

3.3. Microservices 86

has been made (e.g., streak checker resetting the streak of this template/baby-
box combination to 0 if the condition was not met).

Figure 3.4 Visualization of the notification checking in action (streak set to 2, new
error set to true, delay set to 35 minutes).

In this figure, we can see how these checkers work together on a notification
template with streak set to 2, new error turned on and delay set to 35 minutes.
The color-coded square represents data coming through the checkers:

Blue for regular untagged snapshots.

Green for snapshots that do not meet the triggering condition and are thus
ignored.

Red for snapshots that meet the condition and may lead to a notification
depending on further checks.

Yellow for snapshots that generated a notification.

Gray for announcement calls.

If a snapshot is coded red by the condition checker, it proceeds to the
streak checker. In our case a single alerting data point will not trigger a
notification unless followed by another (streak has to be at least 2), that is
why no notification is generated during the first 5 snapshots.

In the new error checker, a notification can already be generated if it gets
recognized as a new error. In the last snapshot, we can see that the notification
is generated even though the delay between the notifications is only 30 minutes
(from 1:40 to 2:10).

The delay checker plays its role in preventing too frequent notifications
to be generated, which we can see for snapshots at 1:10 to 1:30, after that
another notification is generated because the time from the previous one (which
happened at 1:00) is bigger than 35 minutes.

3.3. Microservices 87

If a decision is made, then the internal state of the checkers is updated
through announcement calls, which is symbolized in gray squares.

We can see that most checkers return an early false (meaning do not
generate a notification), the new error checker and in some sense the final
checker are the only two checkers that can return an early true.

3.3.4.5 Email Notification Mechanism

The primary function way of notifying the users is to send timely alerts in
the form of emails to users based on specific conditions defined within user-
created notification templates. These notifications are crucial for maintaining
the operational integrity of the babyboxes by alerting maintenance staff to
potential issues as they arise.

The service employs Python’s smtplib with SSL to handle email noti-
fications. This choice allows for secure transmission of email data over the
network. When a notification condition is met, the service assembles an email
that includes all intended recipients, sending a single email regardless of the
number of recipients. This method focuses on efficiency knowing that email
recipients are within the same organization, thus eliminating concerns over
privacy breaches that might occur if recipients were external parties.

The content of the email is formatted in HTML, enhancing readability and
allowing for more detailed messages. The email’s subject is taken from the
notification template’s title, and the body includes the template message along
with the slug or slugs associated with the babyboxes triggering the notification.
This comprehensive format ensures that recipients receive clear and actionable
information.

To mitigate the issue of notification fatigue—where users receive too many
emails in a short period—additional strategies have been implemented. In-
stead of sending emails instantaneously with each triggered notification, the
service aggregates notifications intended for the same template. These are
temporarily stored in a dictionary mapping each template ID to an array of
relevant babybox slugs.

A scheduled task (cron job) runs at the second minute of each hour and
subsequently every five minutes (e.g., 02, 07, 12, 17 minutes past the hour).
During each run, the task checks this dictionary and compiles all pending no-
tifications into a single email per template. This consolidated approach means
that users receive fewer emails, each potentially covering multiple notification
events, thus significantly reducing the volume of incoming emails while still
ensuring all critical information is communicated effectively.

We were trying to find a good balance between waiting too long before
sending the emails, or not waiting at all on the other end. The former ap-
proach leads to less emails but prolongs the time between the event happening
and the email being sent. The latter leads to immediate email notification,
but way more emails are generated. The 5 minute window for collecting the

3.3. Microservices 88

notifications into one was chosen based when the snapshots are sent - every 5
or 10 minutes, therefore we expect to send maximum of one email per template
for each time we get new data.

3.3.5 User Microservice
The User Service microservice within the Babybox monitoring system serves
two critical functions: user management and authentication. This service
is essential to ensure that only authorized users can access the system and
manage the babyboxes effectively.

3.3.5.1 REST API

The service provides a suite of endpoints focused on user management and
secure authentication:

POST /login: This endpoint handles user login requests. It checks sub-
mitted usernames and passwords against the database records. If the cre-
dentials are valid, it generates and returns a JWT that the user can use
for subsequent authenticated requests.

GET /users: Retrieves a list of all users from the database, ensuring that
sensitive password data (actually, the password hash) is never included in
the response.

GET /users/{username}: Fetches detailed information about a specific
user by username.

DELETE /users/{username}: Allows for the deletion of a user by their
username.

POST /users: Facilitates the creation of a new user by submitting a user-
name, password, and email.

3.3.5.2 Registration Process

Users are registered by providing a username, password, and email. Since
this is an internal tool intended for a limited number of users, the registra-
tion process is straightforward without the need for email confirmations. The
system uses Mongoose to interact with MongoDB, utilizing schemas to define
data structures and hooks to perform operations before saving data, such as
password hashing.

The following Mongoose pre-save hook demonstrates how passwords are
handled securely before storing user data:

3.3. Microservices 89

1 userSchema.pre("save", async function (next) {
2 this.password = await Bun.password.hash(this.password);
3 next();
4 });

Code listing 3.8 Using a pre-hook in Mongoose for hashing passwords before
saving to MongoDB.

This hook is triggered before a user document is saved to the database.
The password is hashed using Bun’s Bun.password.hash() function, which
defaults to the Argon2id algorithm—a robust choice for password hashing due
to its resistance to brute-force attacks. The hash function is configured to
automatically handle salt generation and storage within the hash itself, making
the storage and verification process straightforward and secure.

3.3.5.3 Login Process

The login process involves several key steps:

1. Username Verification: The system first retrieves the user document based
on the submitted username. If no matching user is found, it indicates an
error in the username entry.

2. Password Verification: The submitted password is verified against the
stored hash using Bun.password.verify(), which checks the password
against the hash stored in the database. This function is efficient as it
reads the algorithm details and parameters directly from the hash, elimi-
nating the need for reconfiguring each time.

3. JWT Creation: Upon successful password verification, a JWT is generated:

1 const token = signJWT(user);
2

3 export function signJWT(user: UserSanitized) {
4 const payload = { username: user.username, email: user.email };
5 const options = { expiresIn: "7d" };
6

7 const secret = process.env.JWT_SECRET;
8 const token = jwt.sign(payload, secret, options);
9

10 return token;
11 }

Code listing 3.9 Generating a new JWT in Bun.

This function constructs a JWT with a payload containing the user’s user-
name and email, setting an expiration of 7 days. The jwt.sign() method

3.3. Microservices 90

is used to create the token, which the user can then use to authenticate
subsequent requests across the system. The jsonwebtoken package uses
the HS256 algorithm by default (HMAC using SHA256) to sign the JWT.

3.3.5.4 Integration with Other Services

The generated JWT is critical for securing the APIs in other services, where
similar JWT handling mechanisms are employed to validate user requests.
For example, in the Echo framework, JWT middleware can be configured to
protect routes, ensuring that only requests with valid JWTs can access certain
endpoints (in this case the /v1/ group of endpoints). This is quite simple to
do as Echo is well equipped for working with JWTs:

1 type JWTCustomClaims struct {
2 Username string `json:"username"`
3 Email string `json:"email"`
4 jwt.RegisteredClaims
5 }
6 config := echojwt.Config{
7 NewClaimsFunc: func(c echo.Context) jwt.Claims {
8 return new(middleware.JWTCustomClaims)
9 },

10 SigningKey: []byte(jwt_secret),
11 }
12 v1Group.Use(echojwt.WithConfig(config));

Code listing 3.10 Protecting a group of endpoints in Go’s Echo by checking the
JWT validity.

Similarly in Python with FastAPI we can check the JWT validity before
each request starts being processed by the endpoint handler using the jwt
package:

3.3. Microservices 91

1 async def get_current_user(
2 authorization: HTTPAuthorizationCredentials = Security(security),
3) -> dict:
4 token = authorization.credentials
5 try:
6 payload = jwt.decode(token, get_jwt_secret_key(),

algorithms=["HS256"], options={"verify_exp": True})↪→

7

8 return payload
9 except jwt.PyJWTError:

10 raise HTTPException(
11 status_code=401,
12 detail="Unauthorized",
13)
14 ...
15 @router.get("/", response_model=...)
16 async def endpoint_handler(user=Depends(get_current_user)):

Code listing 3.11 Protecting endpoints in Python’s FastAPI by checking the JWT
validity.

Lastly in Bun with Elysia we can also define a group a endpoints and attach
a function that will check the validity of the request before each processing of
the request. This is again pretty straight forward using the jsonwebtoken
library:

3.3. Microservices 92

1 export function isAuthenticated(headers: Record<string, string |
undefined>): {↪→

2 isAuth: boolean;
3 payload: JWTPayload | null;
4 } {
5 const token = extractToken(headers["authorization"]);
6 if (token.isNone()) {
7 return { isAuth: false, payload: null };
8 }
9

10 try {
11 const res = jwt.verify(token.unwrap(), process.env.JWT_SECRET);
12 const payload = jwtPayloadSchema.parse(res);
13

14 if (payload.exp && Date.now() >= payload.exp * 1000) {
15 return { isAuth: false, payload };
16 }
17 return { isAuth: true, payload };
18 } catch (error) {
19 return { isAuth: false, payload: null };
20 }
21 }
22 ...
23 app.group("/users", (app) =>
24 app.onBeforeHandle(({ headers, error }) => {
25 const { isAuth } = isAuthenticated(headers);
26 if (isAuth === false) {
27 return error(401, "Unauthorized");
28 }
29 })
30 .use(userRoutes),
31),

Code listing 3.12 Protecting a group of endpoints in Bun’s Elysia by checking the
JWT validity.

3.3.6 Battery Analyzer Microservice
The Battery Analyzer microservice is a component of Babybox Dashboard,
specifically designed to analyze and assess the health of the accumulator within
babyboxes. This service is crucial for pre-emptive maintenance and ensuring
reliability when babyboxes switch to battery operation.

3.3.6.1 REST API

This microservice manages and processes voltage data from babyboxes, pro-
viding a REST API with functionalities similar to other services in the system,
including a healthcheck endpoint, JWT authentication for security, and API
versioning strategy. The key endpoints of this service are:

3.3. Microservices 93

GET /measurements: Retrieves all recorded measurements, mainly utilized
for debugging and data verification purposes.

GET /measurements/{slug}: Accesses measurement data for a specific
babybox by its slug.

POST /measurements: Supports the creation of new measurement entries,
typically used during testing phases or when manually adding data.

DELETE /measurements/{measurement id}: Allows for the deletion of spe-
cific measurement entries to maintain data integrity and relevance.

Each entry in MongoDB associated with these endpoints includes a Mon-
goDB generated ID, the slug of the babybox from which the measurement was
taken, and an array of tuples that record each measurement’s datetime and
corresponding voltage of the accumulator. Importantly, a quality attribute of
the battery is not stored directly in the database but is dynamically calculated
on request, based on the array of sub-measurements.

3.3.6.2 Taking a Measurement

When designing this service, we kept in mind that the vast majority of input
voltage outages are going to occur during planned diesel generators tests in
hospitals. These tests typically interrupt the main power supply for about
20 minutes, during which the babybox operates solely on its accumulator,
providing a window for battery health evaluation.

When a power outage is detected—indicated by the input voltage drop-
ping near 0V—the microservice initiates a recording of battery voltage levels.
It captures an initial measurement while the power is still on, followed by sub-
sequent measurements after the power cuts off. These measurements continue
at regular intervals until either the power is restored or a maximum duration
of three hours is reached. Each recorded entry includes a timestamp and the
corresponding voltage, forming an array that is then stored in the database.
This data collection process can later be used for visualization, alerting and
estimating the state of health of the battery.

3.3.6.3 Battery Quality Assessment Idea

The initial idea for assessing battery quality was based on the response of the
battery voltage over the duration of the power outage. The initial hypothesis
was that by analyzing the decline in voltage from the moment the power out-
age, valuable insights could be made regarding battery’s health. Our initial
approach was looking at the first 12 minutes of the data, where the decline is
the biggest. This decision was also supported by the context in which these
measurements are going to be taken in reality; most of the measurements will
offer only 10-20 minutes of data (2 snapshots with power outage with the old
firmware), so this was also a practical decision to normalize the process.

3.3. Microservices 94

3.3.6.4 Empirical Research and Methodology

To validate this approach, empirical research was conducted using a testing
babybox, where the conditions could be closely monitored. The methodology
involved:

Equipment Setup: High-precision instruments were used for the voltage
measurements, specifically the UNI-T UT71A multimeter, which offers high
precision for measuring voltage.

Test Conditions: A testing babybox equipped with different accumulators
that are regularly used in babyboxes around Czechia. These accumulators
were charged under normal conditions and then subjected to a simulated
power outage.

Battery Quality: Each battery has been measured for its state of health
using the DHC tester BTJ41 to then compare to the voltage measurements
to see a correlation.

Measurement Intervals: Voltage readings were taken just before the power
outage and then at precise intervals—at 5, 10, 15, 20, 25, 30 seconds,
followed by every minute up to 15 minutes and then at 20 minutes and 25
minutes, to capture the dynamic voltage response accurately.

The research aimed to correlate the voltage response with the known state
of health of the batteries. However, the results indicated that the voltage
measurements within the first 20 minutes (the typical duration of hospital
generator tests) did not consistently correlate with the batteries’ health as
determined by traditional testing methods as seen on the figure below.

3.4. Front-end 95

Figure 3.5 Normalized battery voltage decrease over time (y-axis starts at 12.5V
and ends at 13.8V; x-axis is from 0 seconds to 25 minutes).

This finding suggested that such method cannot be used for assessing the
health of the accumulator. The suspected problem of this method of estimating
the state of health of the accumulator is that the current drawn, which is
about 0.6A during the outage as only the necessary parts are operational,
from the accumulator is too low for us to calculate the internal resistance
which determines the state of health. We would need to momentarily load
the battery with higher current to obtain a proper measurement, which is not
achievable with our setup. The results of our research show that our method
is not suitable for estimating the state of health of the battery, as seen in the
figure - the battery with the highest quality is actually the one with the fastest
voltage decline, which is the opposite of what we would have expected.

The insights gained from this study have led to a reevaluation of the ap-
proach to battery health assessment within the Battery Analyzer microservice.
In the future, we would like to explore other methods. Currently, we leave the
data accessible to the staff in the application so that they can view the mea-
surements as they are taken over time.

3.4 Front-end

When designing the frontend of Babybox Dashboard, user experience was a
primary focus. We aimed to create an intuitive and efficient interface that
would make daily operations seamless for users, keeping in mind the insights
gained from our user persona analysis. Our goal was to design an application

3.4. Front-end 96

that not only addressed the user’s needs effectively but also simplified their
interactions with the system.

3.4.1 Application Flow

Figure 3.6 Diagram showing the flow through the application.

The primary interface starts with a main table that lists all the babyboxes
in the system, displaying their most recent status. This view allows users
to quickly assess which babyboxes might require attention. Upon selecting a
babybox, the user is taken to a detailed page that not only shows information
about the recent status and statistics but also offers links to more specialized
views:

Chart Page: This section includes a comprehensive chart that displays
historical data over selected period of time, allowing for detailed trend
analysis and operational oversight.

Detailed Information: Users can access information about each babybox -
location, contact information and network configuration.

Analysis: Includes tools and outputs, such as battery performance analyses.

Notifications: Users can see notification templates for the specific babybox
and also add new ones.

In addition to that, there is also a page showing all the notification tem-
plates with the option to add a new one and a similar page to manage users.

3.4. Front-end 97

3.4.2 User Experience
One of the key features implemented to enhance user experience is the com-
bobox in the navigation menu. This component lists all known babyboxes and
includes a search functionality, allowing users to quickly find and navigate to a
specific babybox page from anywhere within the application. This feature sig-
nificantly reduces the time and effort required to manage multiple babyboxes,
making the system more accessible and user-friendly.

Each babybox page also includes a side menu that offers quick naviga-
tion options, enabling users to seamlessly cycle through different babyboxes or
jump back to the collective list. Such design considerations ensure that users
can efficiently monitor and evaluate the status of any babybox with minimal
navigation.

To enhance the interactive experience, the application employs skeleton
components during data loading phases. These components mimic the layout
of the content that is being loaded, providing users with a visual cue of what
to expect, thereby improving the perceived responsiveness of the application.
In addition, toast notifications are used to communicate the results of user
actions, whether successful or unsuccessful, further helping to provide clear
and immediate feedback that is crucial for effective user interaction.

Figure 3.7 Skeleton components indicating that the overview widgets are load-
ing/fetching data.

The application uses tooltips to assist users in understanding more complex
aspects of the system without cluttering the interface with excessive text or
navigating away from the current task. This feature is particularly beneficial
to new staff or when introducing new features to help with understanding all
the tools the application provides. Furthermore, tooltips are used to provide
more context or additional information in certain scenarios.

Understanding that staff may need to access the application under different

3.4. Front-end 98

lighting conditions, especially since they operate 24/7, the front-end includes
an adaptive display setting. Users can toggle between dark and light modes, or
they can choose the system mode, which automatically adjusts the display to
match the user’s system settings. This flexibility ensures that the application
is comfortable to use at any hour, reducing eye strain and enhancing visual
comfort during nighttime or in low-light environments.

Security and seamless user experience are critical, especially in an appli-
cation handling sensitive operational data. If a user’s session expires or if
they attempt to access functionalities without proper authentication, the sys-
tem proactively handles these events. If a user tries to navigate the dashboard
without being authenticated, they are immediately redirected to the login page.
This redirection is accompanied by a toast notification that informs them of
the need to log in.

3.4.3 Implementing PWA
To achieve PWA functionality, we utilized the next-pwa plugin, a powerful yet
easy-to-use library designed to seamlessly integrate PWA features into Next.js
applications. This plugin simplifies the setup of service workers, which are
needed for PWA to work.

One of the foundational requirements for a PWA is HTTPS, which secures
the connection between the user and the application. We leveraged Caddy as
our API gateway to automatically handle HTTPS, ensuring all data transmit-
ted remains encrypted.

Another component needed for PWA is the manifest. It includes essential
details such as the application’s name, short name, and description, along
with a set of icons in various sizes. All of this information is used when users
“install” the application on their home screens. Furthermore, we specified that
the application should launch in standalone mode with a portrait orienta-
tion, which provides a native-app-like experience by hiding the browser UI
when opened.

To further refine the user experience specifically for the PWA, we made
some CSS adjustments that are applied only when the application is running
in standalone mode:

1 @media all and (display-mode: standalone) {...}

Code listing 3.13 Adjusting CSS styling for PWA users only.

We made an extra effort of optimizing the design for mobile and table as
we expect the usage of our application to increase on such devices. In fact, we
adopetd the mobile first design approach, where we designed the application
for phone devices and then adjusted the design to accompany wider screens.[60]

3.4. Front-end 99

We have done so using Tailwind directives such as lg: which can be pre-
fixed to any class name to make that class name only apply on large screens.
We have also made an extensive use of flexbox, which dynamically adjusts
the positioning of elements on the screen.

(a) Screenshot of the babybox page
on a mobile device.

(b) Screenshot of the babybox
chart page on a mobile device.

Figure 3.8 Screenshots of the PWA application in standalone mode looking like a
native application.

We hope the PWA functionality to bring a better user experience when
using the application on mobile or tablet devices providing a more native
experience.

3.4.4 Login and Logout Functionality
The application includes dedicated pages for handling user authentication,
specifically designed to facilitate secure access to the system. These pages,
login and logout, are important for maintaining the security and integrity
of user sessions and ensuring that only authorized personnel can access the
dashboard functionalities.

The login page features a straightforward form that integrates with the

3.4. Front-end 100

User Service to authenticate users and retrieve a JWT token. This token is
critical as it serves as the user’s credential for all subsequent requests within
the session, ensuring secure communication between the client and the server.

Upon successful authentication, the JWT is stored in the browser’s lo-
calStorage to persist the login state across page reloads. This token is also
integrated into a React Context, specifically designed to manage authentica-
tion states throughout the application. The context structure is defined as
follows:

1 interface AuthContextType {
2 token: string;
3 isAuthenticated: boolean;
4 isLoaded: boolean;
5 login: (username: string, password: string) => Promise<boolean>;
6 logout: () => void;
7 }
8 ...
9 const { token, isAuthenticated, isLoaded, login, logout } = useAuth();

Code listing 3.14 Structure of the auth-context that can be used throughout the
application.

Within the application, components can access the authentication state
using the useAuth hook, which exposes the token, isAuthenticated, isLoaded,
login, and logout properties and methods:

Check Authentication: The isAuthenticated boolean indicates whether the
user is currently authenticated.

Check Loading State: The isLoaded flag shows whether the authentication
context has completed its initial loading and setup.

Perform Login and Logout: Functions login and logout handle user login
and logout operations, respectively.

The logout page clears the JWT from both the React Context and lo-
calStorage and confirms it to the user that the logout has been successful.
After logging out, users are redirected away from the dashboard to prevent
unauthorized access, usually back to the login page.

3.4.5 Starting Page
The starting page of the application features a table that provides a compre-
hensive overview of all the babyboxes in the system. The design of this page
has largely remained the same, focusing on delivering latest data in a clear
and accessible manner. To enhance the user experience and avoid overwhelm-
ing users with information, the status of each babybox is now displayed in a

3.4. Front-end 101

separate column within the table. This adjustment helps to make the table
layout cleaner and more readable.

Figure 3.9 New table containing all the babyboxes on the starting page.

The table quickly communicates the current status of each babybox, dis-
playing key metrics such as the inner and outside temperatures, input and
battery voltages, and the timestamp of the latest data received. The status
column is particularly vital as it indicates whether the babybox is function-
ing normally or if there has been a disruption in data transmission (shown
as an error if the last data received is older than 12 minutes). This status
functionality is explained to the users via tooltips.

Figure 3.10 Table showing a list of all the babyboxes in the previous version of
the application.

For a comparison, the previous table colored the whole row based on the
status of the babybox, this design was arguably more eye-catching, however,
after replicating this design in the new solution we decided to change it as we
thought it was too overwhelming and did not match the rest of the application.

3.4. Front-end 102

3.4.5.1 Data Tables

We utilized Tanstack Table, a powerful library suited for building interactive
tables in React and TypeScript environments, for creating a general and highly
versatile data table component, which can be adjusted to fit specific scenarios
using props to adjust for example:

Filtering: Allows users to filter data based on specific criteria.

Sorting: Users can sort data according to different columns.

Pagination: Manages data presentation in a paginated format.

Here’s a snippet of how the table is set up:

1 function onRowClick(row: Row<Babybox>) {
2 router.push("/dashboard/babybox/" + row.getValue("slug"));
3 }
4 ...
5 <DataTable
6 columns={columns}
7 data={babyboxes}
8 sorting={[{ id: "name", desc: false }]}
9 rowClickAccessor={onRowClick}

10 hideColumns={["slug"]}
11 filterColumnName="name"
12 onRefresh={onRefresh}
13 />

Code listing 3.15 Using the DataTable component.

The code above includes the configuration of:

columns defines the structure and headers of the table.

data contains the array of babyboxes to be displayed.

sorting sets the default sorting behavior.

rowClickAccessor is a function that triggers when a row is clicked, navi-
gating the user to the babybox page.

hideColumns, filterColumnName, and onRefresh manage the visibility of
columns, the column used for filtering, and a refresh function callback for
reloading the data.

3.4. Front-end 103

3.4.6 Babybox Page
The babybox page has been significantly enhanced to provide a more compre-
hensive and immediate understanding of each babybox’s status at first glance.
This page is central to monitoring the detailed performance of individual baby-
boxes and offers a richer user experience.

One of the key features of the babybox page is the inclusion of charts
displaying the latest snapshots of data collected from the babybox. This visual
representation helps users quickly grasp the current status and historical trends
of various parameters such as temperature and voltage levels. Additionally,
summary statistics for the last week, three days, and a day are presented
alongside the chart for quick comparisons and trend analysis, allowing users
to immediately detect any anomalies or significant changes in the babybox’s
conditions.

Figure 3.11 Partial screenshot of variable overview widgets showing the first 3
variables - chart and minimum, maximum and average statistics over the last week, 3
days and 1 day.

Below the variable overviews, a data table displays the latest snapshots,
detailing all recorded variables. Each entry in the table is accompanied by
an icon indicating whether there was a significant change compared to the
previous snapshot. This is achieved through a column definition in the table
setup, which calculates the percentage change and displays an appropriate icon
to reflect the increase, decrease, or stability of the value:

3.4. Front-end 104

1 cell: ({ getValue, table, row }) => {
2 const val = getValue();
3 const valStr = val.toFixed(2);
4 const currentIndex = row.index;
5 const currentValue = row.getValue("temperature_inside");
6 const previousValue = currentIndex > 0
7 ? table.getRowModel().rows[currentIndex - 1]
8 .getValue("temperature_inside")
9 : undefined;

10 const percentageChange = previousValue && currentValue
11 ? calculatePercentageChange(previousValue, currentValue)
12 : 0;
13 const arrow = percentageChange > 1 ? (
14 <ArrowUpRight size={16} className="text-red-600..." />
15) : percentageChange < -1 ? (
16 <ArrowDownRight size={16} className="text-blue-600..." />
17) : (
18 <Minus size={16} className="text-slate-700..." />
19);
20

21 return <div className="...">{valStr} {arrow}</div>;
22 }

Code listing 3.16 Column definition (for the temperature inside column) to pro-
vide icons indicating a sudden change in the data.

This table is also supported by additional statistics that calculate the time
from the last snapshot and the average gap between snapshots and visually
indicate if these values within acceptable bounds.

Figure 3.12 Screenshot of the table showing the latest snapshots.

3.4. Front-end 105

The page also includes sections for displaying the latest events and noti-
fications related to the babybox. Events are presented in another data table,
providing a chronological view of occurrences that might affect the babybox’s
operation.

Notifications, on the other hand, are grouped by the notification template
and displayed as badges further grouped by days, providing a clear visual of
the frequency and types of alerts generated for the babybox.

3.4.6.1 Grouping notification

To achieve clarity in the design of displaying the notifications, we have im-
plemented a series of pure functions that process notifications in a structured
manner, ensuring the UI remains intuitive and user-friendly.

The first step in our notification processing pipeline involves grouping no-
tifications by their associated templates. This is essential because notifications
related to the same issue should be viewed collectively. Each notification car-
ries a template ID, which we use to aggregate related notifications into groups,
thus making it easier for users to navigate and interpret the data. This func-
tion transforms the Notification[] into { template: string; notifications
: Notification[] }[].

Following this, the aggregated notifications are further organized by the day
they were generated. This day-by-day grouping helps in identifying trends
or issues that might be developing over time. This function transforms the
output of the last function into a { template: string; days: { day: string;
notifications: Notification[]} }[].

To enhance the usability of our notification system, we also combine noti-
fications from consecutive days into single entries if applicable. This method
simplifies the timeline of events, reducing the clutter in the UI and making it
easier for users to track ongoing situations without getting overwhelmed by
too much granular data.

3.4. Front-end 106

Figure 3.13 Notifications displayed using the accordion component grouped by
their template id and further grouped by the day on which they occurred.

The final structured data, processed through these functions, is ready for
providing a clear and concise display of the notifications. The rationale behind
using such a structured approach is to minimize the cognitive load on users
who need to make decisions based on the notifications. By grouping and
simplifying the notification data, we ensure that users can quickly grasp the
situation without having to sift through disorganized information. The final
structure is displayed through an accordion component to hide overwhelming
amount of unnecessary notification data unless the user needs to see it.

3.4.7 Chart Page
The chart page is designed to offer a comprehensive view of data through an
interactive and detailed chart. This page is central to the analytical capabilities
of the application, allowing users to visually assess the operational status and
historical data of babyboxes over selected periods.

3.4.7.1 Chart Component

The main feature of this page is a large, dynamic chart that displays all se-
lected data types—temperature readings, voltage levels, and various event
types—across a user-specified time range. This visualization is not only a tool
for monitoring but also for analyzing patterns or anomalies over time, making
it invaluable for proactive maintenance and quick responses to potential issues.

3.4. Front-end 107

Beneath the chart, the interface includes a series of intuitive controls to
customize the data display. Upon clicking the button, a drawer component
appears, revealing the customization options:

Calendar Selection: Users can adjust the time range for the chart data
either by selecting dates directly from a pop-up calendar or by using quick-
select buttons that automatically set ranges such as the last day, three days,
a week, or two weeks.

Data Source Toggles: There are switches to toggle the display of different
data types, such as temperatures and voltages, allowing users to customize
the chart to show only the relevant data they need.

Variable Visibility: Further granularity is provided by controls on the chart
itself, where users can hide specific data points or variables to focus on
others.

Chart Customization: Users can adjust visual aspects of the chart, such
as the line stroke width and the type of data smoothing applied, choosing
from options like no smoothing, standard smoothing, or cubic smoothing.
These adjustments are made through a drawer component that organizes
options neatly without cluttering the main interface.

Below the chart, the page displays statistics for the selected time period
- minimum, maximum, and average values for each variable. This summary
provides a quick numerical overview complementing the visual data represen-
tation.

Figure 3.14 The main line chart displaying the temperatures over one week time.

Additionally, a detailed data table mirrors the chart’s data in a structured
tabular format. This table benefits from the same flexible data handling as

3.4. Front-end 108

the chart, including pagination to manage large datasets efficiently, ensuring
the interface remains responsive and user-friendly.

3.4.7.2 Consistent Color Coding

To enhance usability and visual coherence, each variable type is assigned a
consistent color that is used throughout the application. This color coding
is implemented using CSS variables and integrated with Tailwind CSS. For
instance, the internal temperature variable might be defined as follows:

1 /* CSS configuration */
2 layer base {
3 :root {
4 ...
5 --inside: 221.2 83.2% 53.3%;
6 ...
7 }
8 }
9

10 /* Tailwind configuration */
11 ...
12 inside: {
13 DEFAULT: "hsl(var(--inside))",
14 foreground: "hsl(var(--inside))",
15 }
16 ...

Code listing 3.17 CSS and Tailwind configurations working together to add cus-
tom colors.

Using this setup, we can easily apply these colors across different UI ele-
ments by using class names such as "text-inside" or "bg-inside", which
are automatically created by Tailwind. This approach not only maintains a
cohesive visual identity but also simplifies dynamic theming and responsive
design adjustments across the platform.

3.4.7.3 SearchParams as State

For this page, we have leveraged URL search parameters to maintain and
manipulate application state directly from the browser’s address bar. This
method proves particularly effective for sharing views and settings between
users and for initializing the application with specific pre-configured states.

Search parameters, often referred to as query parameters, are appended to
URLs and can influence the application state upon page load. By using these
parameters, we can dynamically adjust what is displayed on the chart page,
such as the time range or the data sources that are visible. The key benefits
of this approach include:

3.4. Front-end 109

Link Sharing: When a user wants to share a specific view of the data with
a colleague, they can simply send a URL containing the appropriate query
parameters. This ensures that the recipient sees exactly the same data state
as the sender, which is invaluable for collaboration and troubleshooting.

Direct Navigation: This method allows us to create links that navigate
directly to a pre-configured view. For instance, a link could lead a user
to a chart that only displays temperature data, simplifying navigation and
enhancing user experience.

Implementing this functionality in a Next.js application is made easy thanks
to the useSearchParams() hook. This hook provides a way to access and ma-
nipulate the URL’s query parameters within our React components. We use
this information on page load, when we initialize the state of the application
from the search parameters. Then we track the state as the user makes changes
to the settings of the chart. For example, to update the time range, we might
use the following code snippet:

1 const [searchParams, setSearchParams] = useSearchParams();
2 ...
3 const from = searchParams.get("from");
4 const to = searchParams.get("to");
5 ...
6 const updateDateRange = (dateRange) => {
7 const existing = Object.fromEntries(searchParams?.entries() ?? []);
8 setSearchParams({
9 ...existing,

10 from: dateRange.from,
11 to: dateRange.to,
12 });
13 setDateRange(dateRange);
14 };
15 ...
16 <Link href={`/dashboard/babybox/${slug}/chart?sources=temperature`}>View

Temperatures</Link>↪→

Code listing 3.18 Updateing search from and to parameters in Next.js.

This approach not only updates the URL but also ensures that the internal
state of our application remains in sync with the URL, providing a seamless
user experience. As an example of this in action could be a link that directs a
user to the chart page with only the temperatures being shown.

3.4.7.4 ApexCharts Performance

In working with ApexCharts to develop the line chart component, we encoun-
tered performance problems, particularly when dealing with extensive datasets.

3.4. Front-end 110

As our solution involved rendering potentially thousands of data points, per-
formance issues arose with our initial choice of the ApexCharts library. To
address the lag and sluggishness in chart rendering, we implemented several
optimization strategies:

Optimizing Data Handling: We switched the x-axis configuration to a
datetime type, which is more efficient for handling time-series data in
ApexCharts. This adjustment significantly reduced the computational load
during chart plotting.

Reducing Visual Complexity: We disabled animations, markers, and data
labels within the charts. Each of these features, while visually appealing,
adds to the processing time required to render the chart, especially when
dealing with large volumes of data.

Delaying Chart Rendering: To ensure that the user interface remains re-
sponsive, we implemented a strategy to delay the rendering of the chart
until all other components of the page had loaded. This was achieved
through a controlled use of React’s useState and useEffect hooks:

1 const [display, setDisplay] = useState<boolean>(false);
2 useEffect(() => {
3 setDisplay(false);
4 setTimeout(() => setDisplay(true), 1);
5 }, []);

Code listing 3.19 Code for delaying the render of the line chart component.

This approach prevents the chart from blocking the initial load of the page,
thereby improving the perceived performance.

User Feedback During Load: We integrated a skeleton component that
appears while the chart is loading. This visual cue informs users that data
is being processed and helps manage expectations regarding load times.

Despite these improvements, the performance of the chart component is
still not at an ideal level. The current measures have mitigated the issue to
some extent, but have not completely eliminated performance bottlenecks. As
a result, we are considering further strategies to enhance chart performance,
including excluding other performance optimizations but also exploring alter-
native libraries.

3.4.7.5 Displaying Event Data

Visualizing events as intervals on the chart enhances clarity and user under-
standing of the context of the data. This visualization helps users quickly

3.4. Front-end 111

grasp periods during which specific conditions, like heating or cooling, were
active.

Figure 3.15 The main chart displaying the color coded events with labels over one
week of time.

To achieve this, we developed a method to transform discrete event data
into continuous intervals to then display as annotations on the chart.

Each event in the system, such as “heating on” or “cooling off”, marks a
change in state. Our goal is to map these events to intervals that represent
the duration each state was active.

1. Initial Collection: As we process the array of events, we keep track of
ongoing events using a dictionary. Each event type, like heating or cooling,
is monitored separately.

2. Event Termination: For each new event, we check if it should terminate any
ongoing events. This involves a predefined array of terminating events for
each type. For example, “heating off” or a generic “babybox reset” event
might end a “heating on” interval. Including broad reset events ensures
that all states are correctly reset, even if a specific “off” event was missed
due to data gaps or errors.

3. Building Intervals: As we find starting and terminating events, we create
intervals marked by a start and end timestamp. These intervals are stored
as soon as both boundaries are identified.

We create these intervals in one sweep and then we combine the intervals
of the same type that occur close together into a single interval. This reduces
the number of intervals displayed and focuses the user’s attention on signif-
icant changes. While this method may sacrifice some precision, it enhances
performance and reduces visual clutter, making the chart more accessible and
easier to understand.

3.4. Front-end 112

Figure 3.16 Visualization of the intervals algorithm creating and then combining
the intervals together.

The attached figure illustrates this algorithm in action. It shows how indi-
vidual intervals are constructed based on event data and then combined based
on their proximity and type.

3.4.7.6 Gap Filling Algorithms

The approach to fetching snapshot data is tailored to suit different display
needs, ensuring that the data representation is both accurate and efficient.
For displaying the latest snapshots, the application fetches the data directly as
they are, without any modifications. This straightforward approach is suitable
for simple display, where the primary focus is on the most recent data points,
and there is no need to highlight gaps in data collection.

However, when it comes to visualizing the data on the chart, simply dis-
playing raw data can be misleading due to the presence of gaps. These gaps
might not be visually apparent when the data points are connected directly,
which could misrepresent the actual monitoring situation. To address this,
we implement a filling algorithm, as previously detailed, opting for the “lazy”
filling strategy for chart displays. This method adds a single data point for
each gap, sufficiently indicating the presence of a gap while minimizing the
number of additional data points. This approach is particularly important
for maintaining performance with ApexCharts, which can struggle with large
datasets.

Below the chart, there’s a need for a more detailed and exhaustive view of
the data. Here, we apply the full filling method, which inserts data points for
all missing snapshots within the selected timeframe. This ensures that users
can see a complete timeline, including periods where data was not received,

3.4. Front-end 113

providing a comprehensive overview necessary for thorough analysis.

3.4.8 Battery Analysis Page
The battery analysis page serves as a tool for monitoring battery performance,
focusing on visually representing the battery’s voltage fluctuations during
power outages. Each measurement taken by the battery analyzer microservice
is displayed using the accordion component. Upon expanding the accordion
a chart appears that tracks the voltage of the battery from the onset of a
power outage to its conclusion or for a maximum duration of three hours. The
chart provides a clear visual history of the battery’s voltage stability or decline
during these periods.

While the user interface is designed to potentially display the estimated
quality of the battery, this feature does not provide accurate information due
to the challenges in determining battery health from short monitoring intervals.

Figure 3.17 User interface of the battery measurement.

3.4.8.1 Babybox Information Page

The babybox information page is a dedicated section within the application
that displays detailed information about each babybox. This page provides
a comprehensive view of user-inputted details including the babybox’s name,
location, network configuration, and contacts associated with the hospital staff.
For added convenience, the location information includes interactive buttons
that link to Google Maps or Mapy.cz, facilitating quick navigation directly
from the interface.

At the top of the page, there is an edit button that enables users to update
the babybox’s information. Clicking this button transforms the display into
a form layout, retaining the original data structure but replacing static text
with form inputs. This allows users to easily modify the details as needed,
ensuring that the database remains current and accurate.

3.4. Front-end 114

3.4.9 Notification and User Pages
The notification and user pages serve specific administrative functions, al-
lowing users to manage notification templates and user accounts respectively.
Each page presents a table listing the existing records, such as notification
templates or user details, with each row featuring an action column. This
column provides options to edit or delete the record directly from the table,
facilitating quick and efficient management. Deleting a record is protected by
a modal popup to prevent deleting something accidentally.

Additionally, both pages include a prominent button that navigates users
to a form where they can create new notification templates or register new
users.

Chapter 4

Testing and Evaluation

The following chapter outlines the practical approach taken to validate the
functionality and performance of the system. This includes detailed descrip-
tions of our methods for unit testing and API testing. Subsequent sections
delve into the evaluation of both functional and non-functional requirements,
assessing how well the system meets the specified criteria. Additionally, this
chapter presents insights from user feedback.

4.1 Testing

During development, the approach to testing was very pragmatic, shaped by
the constraints of resources and the need to ensure functional reliability within
those limits. This resulted in a focused strategy, prioritizing certain types of
tests over others to maximize the impact of the testing effort on the applica-
tion’s overall quality.

4.1.1 Unit testing
Keeping in mind the manpower constraints, an emphasis was placed on unit
testing of the logic and core functionalities, facilitated by the practice of Test-
Driven Development (TDD).[61]

Test-driven development requires writing tests for each function or feature
before implementing the actual code, starting with defining a clear “contract”
for the function’s inputs and outputs. This method ensures clarity, as each
unit of code is designed to fulfill a specific, pre-defined role, reducing ambigu-
ity in implementation. Functions are crafted to be pure, meaning they operate
without side effects and do not rely on or alter the external state, which sim-
plifies updating and refactoring since changes in one part of the system are
less likely to impact other parts. Such functions are also easier to think about.

By isolating functions and defining clear input-output behaviors, the tests
can run in isolation, making them simpler to write, execute, and debug. This

115

4.1. Testing 116

isolation allows for pinpointing the exact location of defects within the code-
base.

1 describe("groupNotificationsByTemplate", () => {
2 test("groups an empty array of notifications", () => {
3 const notifications: Notification[] = [];
4 const grouped = groupNotificationsByTemplate(notifications);
5 expect(grouped).toEqual([]);
6 })
7 test("groups multiple notifications under the same template", () =>

{...})↪→

8 })
9 describe("groupNotificationsByDay", () => {...})

10 describe("mergeConsecutiveDays", () => {...})
11 describe("processNotifications", () => {...})

Code listing 4.1 Example of a test suite for the notification pipeline of grouping
them by template ID, day of year and then merging together.

On the code example, we can see how thinking in TDD way makes code
naturally split into pure functions with single concern while enforcing defining
the types of inputs and outputs of the functions. The usage of TDD on itself
makes the code adhere to a higher quality; in total we made around 50 test
cases throughout the application.

This focused approach to unit testing, embedded within the TDD frame-
work, ensured that despite limited resources, we could maintain a high stan-
dard of quality and functionality. We found that this approach sped up the
development process both in the long term and in the short term as we got
high confidence when the tests passed.[61]

4.1.2 Testing the API interface
During the development of the application, we leveraged Postman extensively
for manual API testing. Postman’s user-friendly interface facilitated the test-
ing of various API endpoints, significantly speeding up the process compared
to traditional methods like using curl commands. The tool allowed for easy
manipulation of API requests and visualization of responses, enabling us to
quickly adjust inputs and query parameters to observe the effects.

One of the substantial advantages of using Postman was its collaborative
features, which allowed us to synchronize our API tests and configurations
across different development environments seamlessly.

Postman proved particularly useful when integrating and testing authen-
tication mechanisms within our application. The tool supports a variety of
authentication schemes, including JWT. By handling authentication tokens
dynamically, Postman allowed us to simulate authenticated sessions effectively,

4.1. Testing 117

facilitating thorough testing of secured endpoints without the repetitive man-
ual input of credentials.

Setting up JWT for authentication involves configuring the Authorization
tab of a request to use a Bearer Token. Once configured, Postman can auto-
matically append the JWT to the Authorization header of the HTTP request,
ensuring that all subsequent requests within a collection are properly authen-
ticated. This streamlined our testing process, especially when dealing with
multiple endpoints that required authentication.

As we progressed in the development process, we started using Postman
for regression testing. Once our APIs were established and functional, we
utilized Postman’s automation features to conduct regression tests. These
tests were designed to ensure that newly introduced changes did not affect
existing functionalities. With Postman, we could automate checks for correct
status codes, validate response bodies, and ensure that our API’s contracts
remained consistent over time.

For automated testing, Postman’s ability to run collections of requests
through its built-in runner or via Newman, a command-line Collection Runner,
allowed us to automate the execution of scenarios for our endpoints. We could
script tests to assert various aspects of the API response, such as the HTTP
status codes, response payload, and the correctness of headers, directly within
Postman.

1 pm.test("Status code is 200", function () {
2 pm.response.to.have.status(200);
3 });
4 pm.test("Token is valid", function () {
5 var jsonData = pm.response.json();
6 pm.expect(jsonData.data.token).to.be.a('string');
7 });
8 pm.test("Content type is present and correct", function () {
9 pm.response.to.have.header("Content-Type", "application/json");

10 });
11 pm.test("Response has the correct username", function () {
12 var responseJson = pm.response.json();
13 pm.expect(responseJson.data.username).to.eql("zbynek");
14 });

Code listing 4.2 Examples of API testing using Postman to check the status code,
headers and data payload.

This approach not only maintained the integrity of our APIs but also
boosted our confidence in the system’s stability with each new release, mini-
mizing the risk of introducing regressions into the live environment.

We have also used Postman for performance testing and evaluating the
non-functional requirements.

4.2. CI/CD Pipelines 118

4.2 CI/CD Pipelines

In this project, we set up a CI/CD pipeline on GitHub to ensure consistent code
quality, automated testing, and efficient deployment. The pipeline runs on
every push to the main branch and is composed of several stages to ensure ro-
bustness and security throughout the development and deployment processes.

4.2.1 Continuous Integration
The first stage of the pipeline involves running all the test suites for each
microservice. The pipeline configuration leverages GitHub Actions to wait
for changes and execute unit tests, ensuring that any new code maintains the
existing functionality without introducing regressions.

1 on:
2 push:
3 branches:
4 - main
5 jobs:
6 run_cicd:
7 runs-on: ubuntu-latest
8 steps:
9 - name: Checkout Code

10 uses: actions/checkout@v4
11 - name: Set up Node.js
12 uses: actions/setup-node@v3
13 with:
14 node-version: "20"
15 - name: Install npm dependencies for Web App
16 working-directory: apps/web
17 run: npm install
18 - name: Run Tests for Frontend
19 working-directory: apps/web
20 run: npm run test
21 - name: Set up Go
22 uses: actions/setup-go@v3
23 with:
24 go-version: "1.22"
25 - name: Run Tests for Snapshot Handler
26 working-directory: apps/snapshot-handler
27 run: go test ./...
28 ...

Code listing 4.3 Snippet of the Continuous Integrity part of the pipeline for
running automated tests.

The pipeline installs all the dependencies, sets up the environment for the
service itself and then runs the tests.

4.2. CI/CD Pipelines 119

4.2.1.1 Additional Workflows

In addition to running test suites, we included automated code analysis and
dependency management as another two workflows added to our GitHub Ac-
tions.

CodeQL analyzes the codebase for potential security vulnerabilities and
coding issues. It checks for common security flaws, enabling us to identify and
resolve them early.

Dependabot ensures that all dependencies remain up-to-date and secure
by periodically scanning for outdated or vulnerable packages and generating
pull requests to update them.

4.2.2 Continuous Deployment
Our production server is managed on-premise, requiring secure SSH access for
deployments. We set up SSH port forwarding and adjusted firewall settings to
allow the GitHub pipeline to connect directly to the server.

Then we utilize GitHub Secrets to securely store the server’s private SSH
key and other necessary variables such as the username. The CI/CD pipeline
retrieves the private key during deployment to authenticate via SSH.

1 ...
2 - name: Install SSH Keys
3 run: |
4 mkdir -p ˜/.ssh
5 chmod 700 ˜/.ssh
6 install -m 600 -D /dev/null ˜/.ssh/id_rsa
7 echo "${{ secrets.SSH_PRIVATE_KEY }}" > ˜/.ssh/id_rsa
8 ssh-keyscan -p ${{secrets.SSH_PORT }} -H ${{ secrets.SSH_HOST }} >

˜/.ssh/known_hosts↪→

9 chmod 644 ˜/.ssh/known_hosts
10 - name: Connect and Deploy
11 run: ssh -p ${{ secrets.SSH_PORT }} ${{ secrets.SSH_USER }}@${{

secrets.SSH_HOST }} "cd ${{ secrets.WORK_DIR }} && git checkout ${{
secrets.MAIN_BRANCH }} && git pull && docker compose up --detach
--build && exit"

↪→

↪→

↪→

12 - name: Cleanup
13 run: rm -rf ˜/.ssh

Code listing 4.4 Snippet of the Continuous Delivery part of the pipeline for au-
tomatically deploying to a remote server.

After successfully connecting to the server, the pipeline downloads the
newer version of the application using Git and builds the application using
Docker Compose. This automatically redeploys the application with the newer
code.

4.3. Documentation 120

4.3 Documentation

Technical documentation is integrated within the codebase to ensure that de-
velopers and technical staff have immediate access to necessary information:

Code Comments: Code is supplemented with comments that explain com-
plex logic and decisions, making the code self-explanatory and easier to
understand or modify.

README.md Files: Every microservice and the front-end repository contain
a README.md file that provides an overview of the service, setup instruc-
tions, and usage details, serving as a quick reference for developers.

Commit Messages: The commit history is utilized as part of the documen-
tation strategy. Detailed commit messages include a body that explains the
rationale behind major decisions, providing a chronological documentation
of changes and reasoning.

Internal Wiki: Comprehensive details, architectural decisions, and project
guidelines are documented in an internal wiki, which serves for other projects
as well.

To ensure that end-users can effectively utilize the system, user documen-
tation is embedded directly within the application:

Help Page: The application includes a dedicated help page accessible to
the users. This page houses detailed documentation on how to use various
features of the application, practical tips, and troubleshooting steps.

Contextual Help: Tooltips and contextual help elements are distributed
throughout the application interface, providing users with instant guidance
and clarifications on functionality directly within their workflow.

4.4 Evaluation and User Feedback

This section provides an analysis of how effectively the application meets its
intended functional and non-functional requirements, as established during the
initial analysis phase. By incorporating continuous user feedback and rigorous
testing into the development process, this section discusses how the system has
evolved to improve user experience and system performance, setting a baseline
for ongoing adaptation and growth.

4.4.1 Requirements Fulfillment
We successfully implemented all the functional requirements identified during
the initial analysis phase. To continuously improve and adapt the system,

4.4. Evaluation and User Feedback 121

we will persistently monitor user interactions and gather feedback to refine
features and address any emerging challenges. Over time, some aspects of the
system may require adjustments based on additional data and user experiences.
The last chapter of this work discusses future improvements and directions we
would like to explore.

Regarding the non-functional requirements, we focused on performance,
security, and maintainability:

Performance: We leveraged Postman’s performance testing tools to eval-
uate the API’s response under stress. We simulated a load with 100 virtual
users to test critical API endpoints over a one-minute interval, specifically ob-
serving the 90th percentile response time. The performance metrics from this
test, particularly for complex queries like retrieving a week’s worth of gap-filled
snapshot data, remained within acceptable limits. This testing phase was con-
ducted in the production environment to account for all real-world operational
variables, including potential overhead from network components like the API
gateway.

Figure 4.1 Performance testing in Postman.

The results of this test were very positive, as the 90th percentile latency
was well under 1 second even for very expensive endpoints.

Security: Our use of Caddy as an API gateway has significantly stream-
lined our security setup. Caddy automates the deployment of HTTPS, ensur-
ing encrypted communication channels by default and automatically redirect-
ing HTTP requests to HTTPS. This setup ensures the use of HTTPS for all
user requests.

Maintainability: While it’s too early to assess the maintainability of the
system since it has only recently been deployed, our design and technology
choices were made with long-term maintainability in mind. Future evaluations
will focus on the system’s adaptability to changes and the ease with which the
development team can implement updates and resolve issues.

As we move forward, these initial evaluations will serve as a baseline for

4.4. Evaluation and User Feedback 122

continuous improvement, ensuring that the system not only meets current user
needs but also adapts to future demands and technological advances.

4.4.2 User Feedback
Throughout the development process, we actively engaged with a user from
both user groups (operations and maintenance) to gather continuous feedback
on each new feature (even those heavily inspired from the previous solution).

We let the users use the application for a limited time based on the task
to accomplish that we gave them (e.g., create a notification template), and
by observing their interactions with the feature/part of the application we
were focusing on and posing open-ended questions, we gained valuable insights
through their direct feedback or by observing the struggles they were having,
which ultimately guided our enhancements and adaptations of the system.

This approach ensured that we retained the effective elements of the previ-
ous solution while introducing modernized functionalities and improvements.

Key components of the application, such as the initial table of babyboxes
and the comprehensive chart page, were deliberately kept similar to maintain
user familiarity. These sections were, however, augmented with additional
functionalities to enhance user experience. The babybox page, in particular,
underwent significant redesigns to transform it into a more useful and infor-
mative hub.

The notification system was another area of focus, redesigned to mitigate
notification fatigue—a challenge with the previous system. Inspired by the
earlier implementation but refined to better meet current needs, the new sys-
tem has been well-received by the staff. It balances familiarity with innovation,
making the transition smoother while improving their daily workflows.

Feedback regarding the application’s performance has been overwhelmingly
positive, especially concerning its responsiveness and the seamless loading ex-
perience—even during data retrieval.

Looking forward, we aim to improve the application for maintenance work-
ers and are interested in their insight as they start using this system as they
were not included in the usage of the previous application.

The introduction of PWA functionality, improved mobile and tablet sup-
port and enhanced responsiveness are steps toward making the application
more accessible and useful in more situations.

Chapter 5

Conclusion

In this thesis, the primary objective was to develop a microservice-based appli-
cation for monitoring and managing data from Babyboxes distributed across
the Czech Republic. This system was specifically designed to enhance the effi-
ciency and effectiveness of both operational staff and maintenance technicians
interacting with these devices.

The project began with an extensive analysis of existing solutions and
relevant technologies, which informed the conceptualization and design of a
new, more capable system. This involved a thorough review of the previous
system’s architecture and user requirements, leading to the selection and im-
plementation of appropriate technologies that would support a microservice
architecture.

In the implementation phase, we established a robust infrastructure that
sets the foundation for future expansions and enhancements of the applica-
tion with a CI/CD pipeline to run automated tests and deploy to our server,
setting up a versatile environment that supports both production and devel-
opment modes, featuring streamlined deployment processes and hot reloading
capabilities in development to facilitate rapid iteration and testing.

We enhanced the data collection mechanisms from the babyboxes, and
developed multiple microservices, each tasked with specific capabilities to pro-
vide data collection, visualization, aggregation, analysis along with a custom
notification system. We developed a PWA application with a modern user
interface focused on user experience to enable efficiency for working with the
application.

Feedback from staff has been integral throughout the development process,
driving continuous improvement and adaptation of the application to better
meet the needs of the staff. With the introduction of the system to maintenance
workers, a new user group, the application now provides new functionalities to
support their specific requirements.

This work has demonstrated that even with inherent complexities and re-
source demands, a microservice architecture can achieve a balance that offers

123

5.1. Future Improvements 124

maintainability and scalability, suitable for projects with limited budget and
manpower. Developed by a single developer, this project highlights how, with
the correct approach and careful balancing, microservices can be beneficial
even for smaller projects. By clearly defining boundaries and responsibilities
within the system, the architecture reduces cognitive load, making the system
more manageable and less overwhelming than a monolithic architecture might
be. Thus, the architecture not only supports current operational needs but also
provides a flexible foundation for future enhancements and integrations. This
setup proves that even with minimal resources, a well-considered microservice
approach can significantly benefit project development by simplifying reason-
ing about the codebase and enhancing system comprehensibility.

5.1 Future Improvements

This work has laid a solid foundation for numerous future enhancements. As we
look toward the future, we aim to introduce new groundbreaking capabilities
while also iterating over existing functionalities to enhance both the user and
developer experiences. This continuous evolution is vital for maintaining the
relevance and effectiveness of the system, ensuring it remains a robust and
adaptive tool for operational staff and maintenance technicians.

5.1.1 Kubernetes
We made a deliberate effort to avoid premature optimization, focusing instead
on establishing a robust and flexible foundation for the application. As we look
to future improvements, one potential avenue is the adoption of Kubernetes
for deployment. Kubernetes is a powerful orchestration tool widely used in
managing microservices, providing enhanced scalability and resilience through
its automated container deployment, scaling, and management capabilities.

Currently, the system does not demand the high-level scalability that Ku-
bernetes is designed to handle, as the number of babyboxes and user requests
remains relatively stable and manageable. However, the future could bring
more complex challenges, such as an increase in the types and volumes of
snapshots and events sent from babyboxes. If babyboxes begin sending more
complex or frequent data—particularly as more devices are upgraded to newer
firmware versions—the load on the system could increase to a point where
Kubernetes could start making sense for us to adopt.

5.1.2 Analysis Services
The development of additional analysis services stands out as an obvious next
step. The introduction of a service dedicated to monitoring the electrical relays
within the babyboxes could provide significant insights into their operational

5.1. Future Improvements 125

health and longevity. By analyzing the frequency and patterns of relay trig-
gers, captured through event data, we can predict their lifespan and identify
potential failures before they occur. This predictive maintenance capability
would not only enhance the reliability of the babyboxes but also optimize
maintenance schedules.

Similarly, tracking the operational duration of the fans within each babybox
could allow us to estimate their wear and service life accurately. By aggregating
runtime data, this service could alert maintenance personnel to upcoming fan
replacements.

Another enhancement would be the creation of a comprehensive service
that consolidates data from various sources to produce detailed reports on the
status of each babybox. These reports could serve as official documents dur-
ing maintenance visits, providing hospital staff with a transparent overview
of the babybox’s condition and performance over time. Such documentation
could improve communication with hospital personnel and ensure that all par-
ties are informed about the babybox’s operational status and any upcoming
maintenance needs.

5.1.3 Maintenance Microservice
Introducing a maintenance service would significantly enhance its utility for
maintenance technicians and operators. This service would function as a cen-
tralized issue tracking system, recording both historical and current problems
encountered with each babybox, alongside their respective resolutions.

By systematically cataloging issues, this service would provide technicians
with a prioritized list of tasks during maintenance visits, ensuring that the most
critical problems are addressed promptly. This could dramatically improve the
efficiency of maintenance operations, as technicians would arrive well-informed
and prepared to tackle specific issues.

For hospital staff and administrators, the maintenance service would serve
as a valuable repository of information. By generating detailed reports based
on the tracked data, the service could offer insights into the frequency and na-
ture of problems, highlight potential areas for improvement in babybox design
or usage, and provide a record of maintenance history for each unit. These
reports could be useful for archival purposes, helping to maintain a clear his-
torical record of each babybox’s operational integrity and maintenance needs.

5.1.4 Improving Current Components and Services
Expanding and enhancing the Babybox Dashboard’s capabilities could signif-
icantly boost its efficiency, user experience, and overall effectiveness:

Infrastructure: Implementing a more robust testing strategy, including
automated tests with higher coverage, would be very beneficial. Intro-
ducing a dedicated testing environment would allow for isolated testing

5.1. Future Improvements 126

scenarios that do not affect the production database, ensuring that new
features and updates can be validated thoroughly before deployment.

Babybox Service: Enhancing data retention capabilities by storing more
information about each babybox, such as components or relevant documen-
tation in PDF format, could greatly aid maintenance efforts. Additionally,
enabling the service to generate and archive essential files automatically
would help many operational processes.

User Service: Improving the synchronization between the user service
and the front-end, particularly in terms of session management, would
enhance user experience. Implementing auto-renewal of authentication to-
kens could prevent disruptions in user sessions, maintaining a seamless user
experience.

Notification Service: Integrating outputs from various services to enrich
the notification conditions and options could lead to more tailored and
relevant alerts.
Exploring methods to aggregate notifications into a single email based on
set intervals or severity could reduce notification fatigue significantly.
Additionally, introducing daily summary emails and drawing more atten-
tion to the unread notifications within the user interface could ensure crit-
ical information is promptly noticed and acted upon.

Front-End Enhancements: The front-end could be improved by in-
vestigating alternative charting libraries or techniques that handle large
datasets more efficiently. This would address performance issues currently
experienced with ApexCharts and enhance the data visualization aspects
of the application.
Another big feature to add to the front-end would be push notifications
as part of the PWA functionality that would provide real-time updates to
users, enhancing the responsiveness and interactivity of the application.

Appendix A

Previous Solution Screenshots

A.1 Babybox Detail Page

127

A.2. Babybox Page 128

A.2 Babybox Page

A.3. Time Filtering on Chart Page 129

A.3 Time Filtering on Chart Page

Appendix B

New Solution Screenshots

B.1 Babybox Detail Page

130

B.2. Babybox Table with Tooltips 131

B.2 Babybox Table with Tooltips

B.3. Time Filtering on Chart Page 132

B.3 Time Filtering on Chart Page

B.4. Statistics and Tabular Data under the Chart 133

B.4 Statistics and Tabular Data under the Chart

Bibliography

1. BABYBOX Problematika babybox̊u [online] [visited on 2024-05-05]. Avail-
able from: https://www.babybox.cz/?p=problematika.

2. Statistika babybox̊u ke dni 28. dubna 2024 [https://www.babybox.cz/m
edia/pdf/statistika-babyboxu.pdf]. 2024. Accessed: 2024-5-5.

3. Babybox - Zdeněk Juřica - MONTEL [https://jurica-montel.cz/bab
ybox/]. [N.d.]. Accessed: 2024-5-5.

4. ASAI, Atsushi; ISHIMOTO, Hiroko. Should we maintain baby hatches
in our society? BMC Med. Ethics. 2013, vol. 14.

5. COCHRANE, Joan; MING, Goh Lee. Abandoned babies: the Malaysian
‘baby hatch’. infant. 2013, vol. 9.

6. OLEJARZ, S. Ethical concerns relating to child abandonment and baby
hatches: The case of Poland. J. Philos. Ethics Health Care Med. 2017,
vol. 11.

7. MONGIELLO, Marina; NOCERA, Francesco; PARCHITELLI, Angelo;
RICCARDI, Luca; AVENA, Leonardo; PATRONO, Luigi; SERGI, Ilaria;
RAMETTA, Piercosimo. A Microservices-based IoT Monitoring System
to Improve the Safety in Public Building. In: 2018 3rd International Con-
ference on Smart and Sustainable Technologies (SpliTech). IEEE, 2018,
pp. 1–6.

8. AYDIN, Sahin; NAFIZ AYDIN, Mehmet. Design and implementation of
a smart beehive and its monitoring system using microservices in the
context of IoT and open data. Comput. Electron. Agric. 2022, vol. 196,
p. 106897.

9. DE IASIO, Antonio; FURNO, Angelo; GOGLIA, Lorenzo; ZIMEO, Euge-
nio. A Microservices Platform for Monitoring and Analysis of IoT Traffic
Data in Smart Cities. In: 2019 IEEE International Conference on Big
Data (Big Data). IEEE, 2019, pp. 5223–5232.

134

https://www.babybox.cz/?p=problematika
https://www.babybox.cz/media/pdf/statistika-babyboxu.pdf
https://www.babybox.cz/media/pdf/statistika-babyboxu.pdf
https://jurica-montel.cz/babybox/
https://jurica-montel.cz/babybox/

Bibliography 135

10. SHABANI, Isak; BIBA, Tonit; ÇIÇO, Betim. Design of a Cattle-Health-
Monitoring System Using Microservices and IoT Devices. Computers.
2022, vol. 11, no. 5, p. 79.

11. RAHMATULLOH, Alam; SARI, Dewi Wulan; SHOFA, Rahmi Nur; DAR-
MAWAN, Irfan. Microservices-based IoT Monitoring Application with a
Domain-driven Design Approach. In: 2021 International Conference Ad-
vancement in Data Science, E-learning and Information Systems. IEEE,
2021, pp. 1–8.

12. SIMANJUNTAK, Eko; SURANTHA, Nico. Multiple time series database
on microservice architecture for IoT-based sleep monitoring system. Jour-
nal of Big Data. 2022, vol. 9, no. 1, p. 108.

13. Grafana Labs. Grafana documentation [https://grafana.com/docs/gr
afana/latest/]. [N.d.]. Accessed: 2024-5-5.

14. InfluxData. InfluxDB [https://www.influxdata.com/]. 2017. Accessed:
2024-5-5.

15. SCRIPTBEES. Medium. What is TICK Stack, and why should we con-
sider using it? [https://medium.com/@scriptbees/what-is-tick-st
ack-and-why-should-we-consider-using-it-5a2bddcd7b10]. 2020.
Accessed: 2024-5-5.

16. REESE, George. Distributed Application Architecture. In: Database Pro-
gramming with JDBC & Java, Second Edition. 2000, pp. 126–145.

17. LEWIS, James; FOWLER, Martin. martinfowler.com. Microservices [h
ttps://martinfowler.com/articles/microservices.html]. [N.d.].
Accessed: 2024-5-5.

18. RICHARDSON, Chris. Microservice Architecture [https://microservi
ces.io/]. [N.d.]. Accessed: 2024-5-5.

19. RICHARDSON, Chris. Microservices Patterns: With examples in Java.
First Edition. Manning, 2018.

20. NEWMAN, Sam. Building Microservices: Designing Fine-Grained Sys-
tems. 2nd ed. O’Reilly Media, 2021.

21. What Is a Message Broker? [https://www.ibm.com/topics/message-
brokers]. 2024. Accessed: 2024-5-5.

22. RabbitMQ Documentation [https://www.rabbitmq.com/docs]. [N.d.].
Accessed: 2024-5-5.

23. Traefik Labs: Say Goodbye to Connectivity Chaos. API Gateway: Devel-
oper’s #1 Choice [https://traefik.io/solutions/api-gateway/].
[N.d.]. Accessed: 2024-5-5.

24. KONG. What is an API Gateway? Benefits and Use Cases [https://ko
nghq.com/blog/learning-center/what-is-an-api-gateway]. [N.d.].
Accessed: 2024-5-5.

https://grafana.com/docs/grafana/latest/
https://grafana.com/docs/grafana/latest/
https://www.influxdata.com/
https://medium.com/@scriptbees/what-is-tick-stack-and-why-should-we-consider-using-it-5a2bddcd7b10
https://medium.com/@scriptbees/what-is-tick-stack-and-why-should-we-consider-using-it-5a2bddcd7b10
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://microservices.io/
https://microservices.io/
https://www.ibm.com/topics/message-brokers
https://www.ibm.com/topics/message-brokers
https://www.rabbitmq.com/docs
https://traefik.io/solutions/api-gateway/
https://konghq.com/blog/learning-center/what-is-an-api-gateway
https://konghq.com/blog/learning-center/what-is-an-api-gateway

Bibliography 136

25. What is a REST API? [https://www.ibm.com/topics/rest-apis].
2024. Accessed: 2024-5-5.

26. EDWARDS, Alex. Let’s Go Further! [N.d.].
27. ERICKSON, Jeffrey. Here’s Why JSON Rules the Web [https://www.or

acle.com/database/what-is-json/]. Oracle, 2024. Accessed: 2024-5-5.
28. Rendering [https://nextjs.org/docs/pages/building-your-applic

ation/rendering]. [N.d.]. Accessed: 2024-5-5.
29. SHAD, Sherry. Medium. SSR vs CSR: Server Side Rendering vs Client

Side Rendering [https://medium.com/@sharareshaddev/ssr-vs-csr-
server-side-rendering-vs-client-side-rendering-deb1d3855b77
]. 2023. Accessed: 2024-5-5.

30. MDN Web Docs. Progressive web apps [https://developer.mozill
a.org/en- US/docs/Web/Progressive_web_apps]. [N.d.]. Accessed:
2024-5-5.

31. web.dev. Progressive Web Apps [https://web.dev/explore/progressi
ve-web-apps]. [N.d.]. Accessed: 2024-5-5.

32. React Hooks for Data Fetching – SWR [https://swr.vercel.app/].
[N.d.]. Accessed: 2024-5-5.

33. Google Cloud. What are containers? [https://cloud.google.com/lear
n/what-are-containers]. [N.d.]. Accessed: 2024-5-5.

34. Docker. What is a Container? [https://www.docker.com/resources/w
hat-container/]. [N.d.]. Accessed: 2024-5-5.

35. Docker Documentation. Docker Compose overview [https://docs.dock
er.com/compose/]. 2024. Accessed: 2024-5-5.

36. IBM Developer [https://developer.ibm.com/articles/true-benefi
ts-of-moving-to-containers-1/]. [N.d.]. Accessed: 2024-5-5.

37. MongoDB. What Is NoSQL? NoSQL Databases Explained [https://ww
w.mongodb.com/nosql-explained]. [N.d.]. Accessed: 2024-5-5.

38. What is MongoDB? [https://www.mongodb.com/docs/manual/]. [N.d.].
Accessed: 2024-5-5.

39. InfluxDB OSS v2 Documentation [https://docs.influxdata.com/inf
luxdb/v2/]. [N.d.]. Accessed: 2024-5-5.

40. EXTIO TECHNOLOGY. Medium. Understanding JSON Web Tokens
(JWT): A Secure Approach to Web Authentication [https://medium.c
om/@extio/understanding-json-web-tokens-jwt-a-secure-approa
ch-to-web-authentication-f551e8d66deb]. 2023. Accessed: 2024-5-5.

41. JSON Web Tokens - jwt.io [https://jwt.io/]. Auth0, [n.d.]. Accessed:
2024-5-5.

https://www.ibm.com/topics/rest-apis
https://www.oracle.com/database/what-is-json/
https://www.oracle.com/database/what-is-json/
https://nextjs.org/docs/pages/building-your-application/rendering
https://nextjs.org/docs/pages/building-your-application/rendering
https://medium.com/@sharareshaddev/ssr-vs-csr-server-side-rendering-vs-client-side-rendering-deb1d3855b77
https://medium.com/@sharareshaddev/ssr-vs-csr-server-side-rendering-vs-client-side-rendering-deb1d3855b77
https://medium.com/@sharareshaddev/ssr-vs-csr-server-side-rendering-vs-client-side-rendering-deb1d3855b77
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps
https://web.dev/explore/progressive-web-apps
https://web.dev/explore/progressive-web-apps
https://swr.vercel.app/
https://cloud.google.com/learn/what-are-containers
https://cloud.google.com/learn/what-are-containers
https://www.docker.com/resources/what-container/
https://www.docker.com/resources/what-container/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://developer.ibm.com/articles/true-benefits-of-moving-to-containers-1/
https://developer.ibm.com/articles/true-benefits-of-moving-to-containers-1/
https://www.mongodb.com/nosql-explained
https://www.mongodb.com/nosql-explained
https://www.mongodb.com/docs/manual/
https://docs.influxdata.com/influxdb/v2/
https://docs.influxdata.com/influxdb/v2/
https://medium.com/@extio/understanding-json-web-tokens-jwt-a-secure-approach-to-web-authentication-f551e8d66deb
https://medium.com/@extio/understanding-json-web-tokens-jwt-a-secure-approach-to-web-authentication-f551e8d66deb
https://medium.com/@extio/understanding-json-web-tokens-jwt-a-secure-approach-to-web-authentication-f551e8d66deb
https://jwt.io/

Bibliography 137

42. Best practices for REST API design - Stack Overflow [https://stackov
erflow.blog/2020/03/02/best-practices-for-rest-api-design/].
2020. Accessed: 2024-5-5.

43. OSSPH. 10 Programming Principles Every Software Developer Should
Know [https://blog.ossph.org/programming-principles-every-de
veloper-should-know/]. [N.d.]. Accessed: 2024-5-5.

44. RAWSON, David. The Startup. Idiomatic Code - The Startup - Medium
[https://medium.com/swlh/idiomatic-code-a73f17f0f287]. 2020.
Accessed: 2024-5-5.

45. BORKAR, Pradnya. Medium. Functional programming principles - Prad-
nya Borkar [https://medium.com/@kumbhar.pradnya/functional-pr
ogramming-principles-6f59bc6764ff]. 2020. Accessed: 2024-5-5.

46. Docs [https://nextjs.org/docs]. [N.d.]. Accessed: 2024-5-5.
47. GREIF, Sacha. State of JavaScript 2022 [https://2022.stateofjs.co

m/en-US/]. [N.d.]. Accessed: 2024-5-8.
48. VAEZIAN, Vahid. Towards Data Science. Popularity Ranking of Pro-

gramming Languages [https://towardsdatascience.com/populari
ty- ranking- of- programming- languages- 72bcf697ea20]. 2020. Ac-
cessed: 2024-5-5.

49. O’GRADY, Stephen. tecosystems. The RedMonk Programming Language
Rankings: January 2024 [https://redmonk.com/sogrady/2024/03/08
/language-rankings-1-24/]. 2024. Accessed: 2024-5-5.

50. Bun. What is Bun? [https://bun.sh/docs]. [N.d.]. Accessed: 2024-5-5.
51. CHAKRABORTY, Sutirtha. Goroutines in Golang - Golang Docs [http

s://golangdocs.com/goroutines-in-golang]. [N.d.]. Accessed: 2024-
5-5.

52. Web Frameworks Benchmark [https://web-frameworks-benchmark.n
etlify.app/]. [N.d.]. Accessed: 2024-5-5.

53. www.techempower.com. TechEmpower Web Framework Performance Com-
parison [https : / / www . techempower . com / benchmarks/]. [N.d.]. Ac-
cessed: 2024-5-5.

54. ApexCharts.js. JavaScript Line Chart with Annotations – [https://ape
xcharts.com/javascript-chart-demos/line-charts/line-chart-a
nnotations/]. ApexCharts, 2018. Accessed: 2024-5-5.

55. JUŘICA, Zbyněk. timeseries-benchmark [https://github.com/zbyju
/timeseries-benchmark]. 2023.

56. What is middleware? [https://www.redhat.com/en/topics/middlewa
re/what-is-middleware]. [N.d.]. Accessed: 2024-5-5.

https://stackoverflow.blog/2020/03/02/best-practices-for-rest-api-design/
https://stackoverflow.blog/2020/03/02/best-practices-for-rest-api-design/
https://blog.ossph.org/programming-principles-every-developer-should-know/
https://blog.ossph.org/programming-principles-every-developer-should-know/
https://medium.com/swlh/idiomatic-code-a73f17f0f287
https://medium.com/@kumbhar.pradnya/functional-programming-principles-6f59bc6764ff
https://medium.com/@kumbhar.pradnya/functional-programming-principles-6f59bc6764ff
https://nextjs.org/docs
https://2022.stateofjs.com/en-US/
https://2022.stateofjs.com/en-US/
https://towardsdatascience.com/popularity-ranking-of-programming-languages-72bcf697ea20
https://towardsdatascience.com/popularity-ranking-of-programming-languages-72bcf697ea20
https://redmonk.com/sogrady/2024/03/08/language-rankings-1-24/
https://redmonk.com/sogrady/2024/03/08/language-rankings-1-24/
https://bun.sh/docs
https://golangdocs.com/goroutines-in-golang
https://golangdocs.com/goroutines-in-golang
https://web-frameworks-benchmark.netlify.app/
https://web-frameworks-benchmark.netlify.app/
https://www.techempower.com/benchmarks/
https://apexcharts.com/javascript-chart-demos/line-charts/line-chart-annotations/
https://apexcharts.com/javascript-chart-demos/line-charts/line-chart-annotations/
https://apexcharts.com/javascript-chart-demos/line-charts/line-chart-annotations/
https://github.com/zbyju/timeseries-benchmark
https://github.com/zbyju/timeseries-benchmark
https://www.redhat.com/en/topics/middleware/what-is-middleware
https://www.redhat.com/en/topics/middleware/what-is-middleware

Bibliography 138

57. DOBBELAERE, Philippe; ESMAILI, Kyumars Sheykh. Kafka versus
RabbitMQ: A comparative study of two industry reference publish/-
subscribe implementations: Industry Paper. In: Proceedings of the 11th
ACM International Conference on Distributed and Event-based Systems.
Barcelona, Spain: Association for Computing Machinery, 2017, pp. 227–
238. DEBS ’17.

58. Caddy Documentation [https://caddyserver.com/docs/getting-sta
rted]. [N.d.]. Accessed: 2024-5-8.

59. KLYNE, G; NEWMAN, C. Date and Time on the Internet: Timestamps.
Tech. rep.

60. XIA, Vincent. Medium. What is Mobile First Design? Why It’s Important
& How To Make It? [https://medium.com/@Vincentxia77/what-is-m
obile-first-design-why-its-important-how-to-make-it-7d3cf2e
29d00]. 2017. Accessed: 2024-5-5.

61. FOWLER, Martin. martinfowler.com. Test Driven Development [https
://martinfowler.com/bliki/TestDrivenDevelopment.html]. [N.d.].
Accessed: 2024-5-9.

https://caddyserver.com/docs/getting-started
https://caddyserver.com/docs/getting-started
https://medium.com/@Vincentxia77/what-is-mobile-first-design-why-its-important-how-to-make-it-7d3cf2e29d00
https://medium.com/@Vincentxia77/what-is-mobile-first-design-why-its-important-how-to-make-it-7d3cf2e29d00
https://medium.com/@Vincentxia77/what-is-mobile-first-design-why-its-important-how-to-make-it-7d3cf2e29d00
https://martinfowler.com/bliki/TestDrivenDevelopment.html
https://martinfowler.com/bliki/TestDrivenDevelopment.html

Contents of the Attached
Media

src
impl................................... implementation source codes
thesis.................... source code for the thesis in LATEX format

text ... text of the thesis
thesis.pdf................................thesis in the PDF format

139

	Acknowledgments
	Declaration
	Abstract
	List of abbreviations
	Introduction
	Background and Related Work
	Context
	Are Babyboxes Necessary?
	Technological Description

	Related Work
	Similar Solutions for Monitoring Applications
	Relevant Alternatives
	Grafana
	TICK Stack

	Technological Concepts
	Client/Server
	Microservice Architecture
	Message Broker
	Concepts
	Strategies

	API Gateway
	REST API
	Concepts

	Server Side and Client Side Rendering
	Server-Side Rendering
	Client-Side Rendering
	When to Choose Which?

	PWA
	Service Workers
	Web App Manifest
	HTTPS

	SWR
	Containers
	Docker
	Docker Compose
	Benefits

	NoSQL Databases
	MongoDB
	InfluxDB

	JWT Authenticaiton Mechanism

	Analysis and Design
	Methodology
	Software Development Process
	Technological Freedom in Microservice Architecture
	Guiding Principles
	Design Principles and Patterns

	Requirements Analysis
	Identification and Analysis of User Requirements
	User Personas
	Use Cases
	Functional Requirements
	Non-functional Requirements

	Choosing technologies for This Project
	Programming Languages and Frameworks
	Next.js
	JavaScript Runtime
	Go
	Python

	Web Frameworks
	Charting library
	Databases
	Time-series Database
	General-purpose Database

	Middleware
	Message Broker
	API Gateway
	Docker and Docker Compose

	System Design
	Previous Solution
	Proposed Solution
	Transition to a Microservice Architecture
	Architectural Design
	Design of Individual Components
	Domain Model

	Implementation
	Implementation Process
	Infrastructure
	Code Structure
	Nx
	Current Setup

	Containerization
	Docker
	Docker Compose
	Environment Variable Management
	Container Dependencies

	API Gateway
	Development Environment
	Production Environment

	RabbitMQ
	Docker Compose Configuration
	Naming Conventions
	Communicating through the Message Broker
	Types of Data

	MongoDB
	Docker Compose Configuration
	Practical Utilization of Schemaless Design
	Efficient Data Retrieval
	Indexing Considerations
	Tooling and Development Support

	InfluxDB
	Docker Compose Configuration
	Data Storage
	Development Tools and Visualization

	Microservices
	Snapshot Handler Microservice
	New Firmware API Improvements
	Slug Conversion and Usage
	Data Handling and Storage
	API Endpoints for Data Retrieval
	API Versioning and Envelope Pattern
	Authentication
	Health Check Endpoint

	Querying Data from InfluxDB
	Gap Filling Strategies

	Babybox Microservice
	Core Functionality
	API Design and Endpoint Functionality

	Notification Microservice
	REST API
	Template Configuration and Snapshot Processing
	Strategies to Refining Notification Frequency
	Chain of Checkers
	Email Notification Mechanism

	User Microservice
	REST API
	Registration Process
	Login Process
	Integration with Other Services

	Battery Analyzer Microservice
	REST API
	Taking a Measurement
	Battery Quality Assessment Idea
	Empirical Research and Methodology

	Front-end
	Application Flow
	User Experience
	Implementing PWA
	Login and Logout Functionality
	Starting Page
	Data Tables

	Babybox Page
	Grouping notification

	Chart Page
	Chart Component
	Consistent Color Coding
	SearchParams as State
	ApexCharts Performance
	Displaying Event Data
	Gap Filling Algorithms

	Battery Analysis Page
	Babybox Information Page

	Notification and User Pages

	Testing and Evaluation
	Testing
	Unit testing
	Testing the API interface

	CI/CD Pipelines
	Continuous Integration
	Additional Workflows

	Continuous Deployment

	Documentation
	Evaluation and User Feedback
	Requirements Fulfillment
	User Feedback

	Conclusion
	Future Improvements
	Kubernetes
	Analysis Services
	Maintenance Microservice
	Improving Current Components and Services

	Previous Solution Screenshots
	Babybox Detail Page
	Babybox Page
	Time Filtering on Chart Page

	New Solution Screenshots
	Babybox Detail Page
	Babybox Table with Tooltips
	Time Filtering on Chart Page
	Statistics and Tabular Data under the Chart

	Contents of the Attached Media

