
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

Implementation of a Service Discovery for Enterprise Platform

Bc. Josef Havelka

Ing. Marek Suchánek, Ph.D. et Ph.D.

Informatics

Software Engineering

Department of Software Engineering

until the end of summer semester 2024/2025

Instructions

Service discovery is an essential element of service-oriented architecture and

distributed systems in general. There are currently various services, technologies, tools,

and libraries available and it becomes challenging to select the right one. The goal of this

thesis is to research existing solutions and propose replacement of current

implementation of service discovery used by the specified enterprise customer.

- Describe briefly the principles of service discovery in distributed systems, related

patterns and theorems, and other relevant topics for the thesis.

- Analyze and describe the current architecture of the service discovery used by the

customer and summarize the requirements.

- Research relevant technologies, tools and libraries (such as HashiCorp Consul,

HashiCorp Serf, Netflix Eureka, ZooKeeper).

- Design the architecture for the new implementation of the discovery service.

- Implement the solution prototype based on the design with use of selected

technologies, test and document the solution properly.

- Demonstrate the functionality of the prototype, evaluate it and propose future

development.

Electronically approved by Ing. Michal Valenta, Ph.D. on 31 October 2023 in Prague.

Master thesis

IMPLEMENTATION OF A
SERVICE DISCOVERY
FOR ENTERPRISE
PLATFORM

Josef Havelka

Czech Technical University in Prague, Faculty of Information Tech-
nology
Department of Software Engineering
Supervisor: Ing. Marek Suchánek Ph.D. et Ph.D.
May 7, 2024

Czech Technical University in Prague
Faculty of Information Technology
© 2024 Josef Havelka. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Link to the thesis: Josef Havelka. Implementation of a Service Discovery for Enterprise Platform.
Master thesis. Czech Technical University in Prague, Faculty of Information Technology, 2024.

Contents

Acknowledgements viii

Declaration ix

Abstract x

1 Introduction 1
1.1 Company . 1

1.1.1 Team . 1
1.2 Summary . 1

1.2.1 Motivation . 1
1.2.2 Goal . 1
1.2.3 Steps . 2
1.2.4 Results of the thesis . 2
1.2.5 Conclusion . 2

2 Theoretical background 3
2.1 Requirements prioritisation MoSCow . 3
2.2 Key-value store . 3
2.3 Failure tolerance and high availability . 3
2.4 Microservice architecture . 4

2.4.1 Pros . 4
2.4.2 Cons . 4

2.5 Load balancing . 5
2.6 Service discovery . 5
2.7 Distributed systems . 5

2.7.1 Gossip protocol . 6
2.7.2 Leader-follower pattern . 6
2.7.3 Consistency models . 6
2.7.4 CAP theorem . 6
2.7.5 Consensus algorithms . 7
2.7.6 Raft algorithm . 8

2.8 Linux container . 9

3 Current service discovery architecture 11
3.1 Service definition and meaning . 11
3.2 Actors . 11

3.2.1 Serf agent . 11
3.2.2 AB agent . 12
3.2.3 Distributed store . 12
3.2.4 Business applications . 12

3.3 Workflow . 12

iii

iv Contents

4 Requirements 15
4.1 Main focus . 15
4.2 CAP theorem . 16
4.3 Pricing . 16
4.4 Java API . 16
4.5 Maximal size of service registry . 16
4.6 Maximal size of one entry . 16
4.7 Documentation . 16
4.8 Subscription vs repeatedly polling the data . 17
4.9 GUI for admin . 17
4.10 Data revision history . 17

5 Comparison of existing service discovery solutions 19
5.1 Existing solutions . 19

5.1.1 Consul . 19
5.1.2 Netflix Eureka . 19
5.1.3 Etcd . 21
5.1.4 ZooKeeper . 21
5.1.5 Redis . 22

5.2 Comparison . 24
5.2.1 Main focus . 24
5.2.2 Comparison based on CAP theorem . 25
5.2.3 Pricing . 25
5.2.4 Implemented the Java API client . 26
5.2.5 Subscription vs repeatedly polling the data 26
5.2.6 Maximal reliable size of the storage . 26
5.2.7 Maximal size of one database entry . 27
5.2.8 Quality of the documentation . 27
5.2.9 Has a GUI? . 27
5.2.10 Has data revision history? . 27

5.3 Conclusion . 28

6 Consul analysis 29
6.1 Philosophy . 29
6.2 Use cases . 30
6.3 Architecture . 30
6.4 Fault tolerance . 30
6.5 Consistency modes . 32

6.5.1 Default mode . 32
6.5.2 Consistent mode . 32
6.5.3 Stale mode . 33
6.5.4 Consistency mode per HTTP request . 33

6.6 Multiple datacenters . 34
6.6.1 WAN federation . 34
6.6.2 WAN gossip pool . 34

6.7 Deployment . 36
6.7.1 Hashicorp cloud platform . 36

6.8 Performance fine-tuning . 36
6.8.1 Anti-entropy . 36
6.8.2 Agent request caching . 36

6.9 Reactive environment . 37
6.9.1 Watches . 37

Contents v

6.9.2 Templates . 37
6.10 Conclusion . 38

7 Design 41
7.1 Using Consul service catalogue . 41
7.2 Using Consul for health checking . 41
7.3 Using Consul key-value store and other features 44

8 Implementation 45
8.1 Start . 45
8.2 Stop . 46
8.3 Configuration management . 47
8.4 Health checking . 47
8.5 Integration with other systems using Java API client 49

8.5.1 Register service . 49
8.5.2 Deregister service . 50
8.5.3 Subscribe for a service . 50

9 Demonstration of the prototype 55
9.1 Configuration for production environment . 55
9.2 Deployment schema . 55
9.3 Consul GUI . 57
9.4 Fault tolerance and stale mode testing . 60

9.4.1 Testing scenario . 60
9.4.2 Results . 61

9.5 Performance measurements . 61
9.5.1 Scraping telemetry with Prometheus . 61
9.5.2 Test scenario . 62
9.5.3 Results . 62

10 Conclusion 65
10.1 Future work . 65

Contents of the enclosed media 73

List of Figures

2.1 Replicated log with finite state machine [14] . 8

3.1 Current architecture . 13

5.1 Consul architecture [35] . 20
5.2 Netflix Eureka architecture [12] . 21
5.3 Zookeeper architecture [32] . 22
5.4 Redis architecture [41] . 23

6.1 Consul architecture [35] . 31
6.2 Consul default mode [42] . 32
6.3 Consul consistent mode [42] . 33
6.4 Consul stale mode [42] . 34
6.5 Consul cross datacenter forwarding [72] . 35
6.6 Consul cross datacenter gossip [72] . 35
6.7 Consul long polling [77] . 37

7.1 The first phase – Using Consul service catalogue 42
7.2 The second phase – Using Consul for health checking 43

9.1 Prototype deployment schema . 56
9.2 Consul GUI nodes . 57
9.3 Consul GUI services . 58
9.4 Consul GUI service detail . 59
9.5 Memory allocation in MB . 62
9.6 Leader server response times . 63
9.7 Count of registration calls . 64

List of Tables

4.1 Requirements prioritisation . 15

5.1 Comparison of existing frameworks suitable for implementing the service discovery 24
5.2 Java API client comparison . 26
5.3 Maximal size of one database entry . 27
5.4 GUI comparison . 27

vi

List of Listings vii

List of Listings

6.1 agent-config.json script watch example [52] . 38
6.2 agent-config.json HTTP watch example [52] . 38
6.3 Find address template example find address.tpl [79] 38
6.4 Activate the template [79] . 38
6.5 Put the value to the corresponding key [79] . 38
6.6 Showing content of the rendered file [79] . 38

8.1 Consul starting . 46
8.2 Consul stop . 47
8.3 Consul configuration template file example . 48
8.4 Consul configuration management . 48
8.5 Consul health checking . 49
8.6 Consul register service . 51
8.7 Consul deregister service . 52
8.8 Consul subscribe for services . 53

9.1 Performance fine-tuning . 56
9.2 Enabling the GUI . 57
9.3 Commands for fault tolerance testing . 60
9.4 Consul telemetry with Prometheus . 61
9.5 Prometheus download data . 62

I want to thank my supervisor Ing. Marek Suchánek, Ph.D. et Ph.D.
for his invaluable guidance and insightful feedback throughout the
development of the thesis. His prompt responses to my questions
and openness to discussions significantly contributed to the success
of my work.

viii

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis. I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact
that the Czech Technical University in Prague has the right to conclude a licence agreement on
the utilization of this thesis as a school work pursuant of Section 60 (1) of the Act.

In Prague on May 5, 2024 .

ix

Abstract

The thesis aims to identify an optimal service discovery solution to replace the existing one in
the current implementation by the real-world enterprise customer. The thesis explores service
discovery and distributed systems, beginning with a foundational understanding of relevant the-
ory. Abstract requirements are gathered from the company team and refined through research on
existing frameworks. Concurrently, the current implementation is studied to inform the require-
ments. Following the finalisation of requirements, a comparative analysis of existing solutions
guides the selection of the most appropriate technology. Finally, a solution is designed and a
prototype developed to showcase its functionality. Towards the conclusion of the thesis, recom-
mended preparatory steps are outlined before initiating the current implementation’s refactoring
process.

Keywords service discovery, distributed systems, comparative analysis, technology selection,
solution design, prototype development, HashiCorp Consul

Abstrakt

Ćılem této práce je nalézt optimálńı řešeńı pro service discovery, které nahrad́ı existuj́ıćı im-
plementaci u reálného podnikového zákazńıka. Práce zkoumá service discovery a distribuo-
vané systémy, zač́ınaje základńım porozuměńım př́ıslušné teorie. Abstraktńı požadavky jsou
shromážděny od firemńıho týmu a upřesněny prostřednictv́ım rešerše existuj́ıćıch řešeńı. Současně
je studována stávaj́ıćı implementace, která pomáhá formulovat požadavky. Po finalizaci požadavk̊u
následuje komparativńı analýza existuj́ıćıch řešeńı, která usměrňuje výběr nejvhodněǰśı technolo-
gie. Nakonec je navrženo řešeńı a vyvinut prototyp, který ukazuje jeho funkčnost. Ke konci práce
jsou doporučeny př́ıpravné kroky před zahájeńım refaktorizace stávaj́ıćı implementace.

Kĺıčová slova service discovery, distribuované systémy, komparativni analýza, výběr tech-
nologie, návrh řešeńı, implementace prototypu, HashiCorp Consul

x

Glossary

AB AB is an anonymised placeholder name for the real company for which the thesis is written.
1, 2, 11, 12, 19, 41, 45–47, 50, 55, 62

AP Available and Partition tolerant. 25, 33

Apache Curator Apache Curator is a Java library that provides a high-level API and utilities
for working with Apache ZooKeeper [1] . 22

Apache ZooKeeper ZooKeeper is an open-source distributed coordination service designed for
maintaining configuration information, naming, providing distributed synchronisation, and
group services in large-scale distributed systems [2] . 8, 21, 22, 25–28

API Application Programming Interface. 4, 16, 21, 26, 27, 29, 41, 45, 46, 49, 61

AWS Amazon Web Services. 19, 28

CAP theorem The CAP theorem states that in a distributed system, it is impossible to simul-
taneously achieve consistency, availability, and partition tolerance, and a trade-off must be
made between these three characteristics [3]. 6, 16, 25, 33

Consul Consul is a software tool designed for service discovery, configuration management, and
maintaining the availability and reliability of distributed systems [4]. 2, 19, 21, 22, 24–26,
28–30, 32, 33, 36–39, 41, 44–50, 55–57, 60–63, 65

CP Consistent and Partition tolerant. 16, 21, 25, 28, 33

CPU Central Processing Unit. 9, 36

CSP Communicating Sequential Processes. 29

CTO Chief Technology Officer. 1, 15

DevOps DevOps is a collaborative approach that bridges the gap between development and op-
erations teams, emphasising automation, communication, and shared responsibility to stream-
line software delivery. It aims to improve agility, efficiency, and reliability throughout the
software development lifecycle [5]. 1, 5, 15, 45

Dos A DoS (Denial of Service) attack is when a malicious actor floods a system, network, or
service with excessive traffic or requests, rendering it unavailable to legitimate users [6]. 5

Etcd etcd is an open-source distributed key-value store designed for storing and managing con-
figuration data, feature flags, and other distributed system metadata [7] . 21, 24–28

FSM Finite State Machine. 8

Git Git is a distributed version control system used for tracking changes in software development,
facilitating collaboration among developers, and managing code revisions efficiently [8] . 45,
47

xi

xii Glossary

Go Go, or Golang, is a statically typed and compiled programming language developed by
Google [9]. 29, 37

gRPC Google Remote Procedure Call. 11, 12, 30, 55

GUI Graphical User Interface. 17, 27, 28, 55, 57

HashiCorp HashiCorp is a software company that provides infrastructure automation software
to help organisations manage and secure their infrastructure in a dynamic and scalable way.
The company is known for developing a suite of open-source tools and commercial products
that facilitate various aspects of infrastructure management, including provisioning, security,
networking, and application deployment [10]. 2, 11, 19, 25, 29, 30, 36, 38, 65

HCP HashiCorp Cloud Platform. 36

HTTP Hypertext Transfer Protocol. 4, 21, 25, 26, 30, 32, 33, 36, 37, 45, 47, 55, 60, 61

JSON JavaScript Object Notation. 47

LXC Linux Containers. 55, 62

MoSCow MoSCoW prioritisation categorises project requirements into four levels: Must-have,
Should-have, Could-have, and Won’t-have, helping teams focus on critical needs first [11] .
15

Netflix Eureka Netflix Eureka is an open-source service registry and discovery service primar-
ily used for microservices-based architectures [12]. 19, 24–28

PID Process ID. 41, 46, 48

Prometheus Prometheus is an open-source systems monitoring and alerting toolkit that collects
and stores metrics as time series data, initially developed at SoundCloud and maintained
independently since joining the Cloud Native Computing Foundation in 2016 [13] . 61

Raft algorithm Raft is a consensus algorithm for managing replicated logs in a distributed
system, ensuring fault tolerance and consistency among nodes [14] . 6, 8, 12, 15, 16, 19, 21,
25, 26, 30, 32, 46, 50, 55, 60

RAM Random Access Memory. 26, 61, 62

Redis Redis is an open-source, in-memory data structure store [15] . 22, 25–28

REST Representational State Transfer. 27, 41, 46, 49

RPC Remote Procedure Call. 41, 61

SaaS Software as a Service. 36

Serf Serf is a decentralised and highly available cluster membership and gossip protocol designed
for providing fault tolerance and coordination in distributed systems [16]. 11, 12, 30

TCP Transmission Control Protocol. 30

TTL Time To Live. 19, 26

UDP User Datagram Protocol. 30

ZAB Zookeeper Atomic Broadcast Protocol. 7, 22, 25

Chapter 1

Introduction

1.1 Company

The thesis is done for a medium-sized financial technology vendor in a real-world corporate
setting. The anonymised placeholder AB will refer to the company.

1.1.1 Team
Whenever the author of this thesis refers to the team, he means a group of people across AB
company teams that were selected to discuss the thesis and attend regular meetings. The team
consists of a single CTO, a team leader of a back-end team and two DevOps specialists.

1.2 Summary

1.2.1 Motivation
In today’s cloud-centric era, seamless deployment relies heavily on a reliable and user-friendly
service discovery tool. Although building from scratch is an option, there are existing solutions
available. The key lies in choosing the solution that best suits the needs of a company. Cloud-
native service registry tools exist, but for legacy reasons, it may be beneficial to have a solution
that can run on on-premise hardware and in a cloud environment.

Service discovery is inherently designed to be fault tolerant, given its critical role in any
platform. Distributed systems are often used to address this need for resilience. However, while
distributed systems effectively mitigate fault tolerance issues, they also introduce additional
complexity.

A robust service discovery solution paves the way for the adoption of a microservice archi-
tecture, a path that many companies choose for its scalability advantages.

1.2.2 Goal
The primary objective is to find the optimal service discovery solution that will facilitate the
transition of the current platform to a microservice architecture and cloud environment tailored
to the AB company’s needs.

1

2 Introduction

1.2.3 Steps
The initial step involved getting familiar with service discovery, distributed systems, and related
theory.

The first abstract requirements were obtained from the team, followed by research into ex-
isting frameworks to identify key aspects. The team discussed the acquired knowledge to refine
the requirements. As part of the requirements gathering, it was helpful to study the current
implementation.

After finalising all requirements, a comparison of existing solutions was conducted. This led
to the selection of the most suitable technology.

Subsequently, a solution was designed, and a prototype was prepared to demonstrate the
functionality.

1.2.4 Results of the thesis
The outcome of the thesis is a recommendation for a framework to use. Based on the research,
the best-fitting solution is the HashiCorp Consul software.

The author of the thesis designed a service discovery solution that could replace the ex-
isting implementation inside the AB company’s platform. He implemented a prototype using
HashiCorp Consul, performed simple tests and suggested future performance tests. The pro-
totype can serve as a core for implementing service discovery if the AB company chooses the
recommended option.

1.2.5 Conclusion
The thesis focuses mainly on research, gathering requirements, and creating a prototype. These
phases of the project are interconnected and influence each other. For example, discovering
important aspects of a technology during research affects the discussion about requirements.

The prototype has been directly added to the AB company’s source code. The thesis only
reveals important code related to the prototype. Similarly, when describing the current design of
the service discovery in the platform, there was a significant emphasis on not revealing confidential
information.

The project is part of the AB company’s long-term vision of moving to the cloud.

Chapter 2

Theoretical background

This section introduces a theoretical background essential for understanding the upcoming con-
tent. The reader will understand the following discussions better by laying down these funda-
mental concepts.

2.1 Requirements prioritisation MoSCow
The MoSCoW method prioritises requirements into four categories: Must Have, Should Have,
Could Have, and Won’t Have (this time). [11]

Must Have: These are essential requirements that must be implemented for the project to be
considered successful. Failure to meet these requirements would result in the project being
deemed a failure. [11]

Should Have: These requirements are important but not critical. They are considered to be
of high value, but their absence would not necessarily result in project failure. [11]

Could Have: These requirements are desirable but not necessary for the project’s core func-
tionality. They are typically features or enhancements that would be nice to have if resources
and time allow. [11]

Won’t Have (this time): These are requirements that are explicitly identified as not being
included in the current project scope. They may be considered for future phases or releases
but are not part of the immediate project goals. [11]

2.2 Key-value store
Key-value store or database is a data structure similar to a map or dictionary in programming.
It consists of a collection of key-value pairs with quick and efficient access to the value given the
corresponding key. [17]

2.3 Failure tolerance and high availability
High availability strategies prioritise minimising system or application downtime by implementing
measures such as load balancing, redundant servers, automatic failover, and monitoring systems
to seamlessly transition between components in case of failure, aiming to maximise uptime and
ensure uninterrupted operation despite potential disruptions. [18]

3

4 Theoretical background

A basic explanation of fault tolerance is that if a component or sub-system fails, it does
not disrupt the overall functioning of the system. Fault tolerance is a specific aspect of high
availability, focussing on the system’s ability to withstand and recover from component failures
while maintaining continuous operation. [19]

2.4 Microservice architecture
The microservice architectural style is a method of building a single application by breaking it
down into smaller services, each operating independently in its own process and communicating
through lightweight mechanisms, commonly using HTTP resource APIs. [20] “These services are
built around business capabilities and independently deployable by fully automated deployment
machinery. There is a bare minimum of centralised management of these services, which may be
written in different programming languages and use different data storage technologies.” [20]

2.4.1 Pros
2.4.1.1 Strong module boundaries
Microservices with strong module boundaries refer to an architectural approach where individual
microservices are encapsulated with clear and defined interfaces, minimising dependencies and
promoting independent development, deployment, and scalability. [21]

Another aspect involves distributing data ownership and management responsibilities across
individual microservices, improving autonomy, flexibility, and resilience within the system archi-
tecture. [21]

2.4.1.2 Independent deployment
Each microservice operates independently, allowing changes and updates to be made without
affecting other services. This isolation ensures that deployment is more straightforward, with
fewer dependencies and a reduced risk of unintended consequences. Additionally, microservices
typically have smaller codebases compared to monolithic applications, making them easier to
manage and deploy. [21]

2.4.1.3 Technology diversity
The use of separate processes for each microservice allows the flexibility to employ any pro-
gramming language or technology that is customised to the specific needs of each service. This
versatility enables teams to optimise for performance and scalability while mitigating the risk of
technology lock-in. [21]

2.4.2 Cons
2.4.2.1 Distribution
Distributed software, including microservices, introduces complexities such as performance degra-
dation due to slow remote calls and concerns about reliability and consistency. Remote calls
can accumulate latency, particularly in systems with multiple service interactions, necessitating
strategies to mitigate this, such as increasing call granularity or using asynchronous communica-
tion. Additionally, the potential for remote call failures in distributed systems poses reliability
challenges, requiring developers to design for failure and handle the consequences of network par-
titions or call failures. These issues underscore the careful consideration required before adopting
distributed architectures like microservices, as they come with inherent costs and challenges. [21]

Load balancing 5

2.4.2.2 Eventual consistency

Eventual consistency ensures that data across distributed systems will eventually converge to
a consistent state, allowing temporary inconsistencies during the propagation of updates [22].
Services may exhibit inconsistencies due to their decentralised nature, which can lead to variations
in data states and behaviours across distributed components [21].

However, certain parts of the system may require consistency despite its decentralised nature,
which prompts the use of various consensus algorithms to ensure agreement among distributed
components [23].

2.4.2.3 Operational complexity

The transition to microservices can significantly increase operational complexity due to the prolif-
eration of numerous small services, demanding robust continuous delivery practices and enhanced
monitoring capabilities. While microservices offer the advantage of smaller, more manageable
components, the complexity is often shifted to interservice connections, necessitating careful con-
sideration of service boundaries to mitigate operational challenges. Managing this complexity
requires new skills and tools, emphasising the importance of a DevOps culture for effective col-
laboration between development and operations teams. Without adequate training and cultural
change, monolithic and microservice applications may impede their development and mainte-
nance. [21]

2.5 Load balancing

“The goal of load balancing is improving the performance by balancing the load among these
various resources (network links, central processing units, disk drives. . .) to achieve optimal
resource utilisation, maximum throughput, maximum response time, and avoiding overload.” [24]

The improvement of overall performance is the primary goal of load balancing. However,
other motivations could be improved security by mitigating the risk of a Dos attack. [6]

2.6 Service discovery

Service discovery is related to the architecture of microservices. Typically, it involves clients
seeking connection details to access services centrally stored in a service registry. This registry
is often replicated for fault tolerance. Services are required to register with the registry, and
clients query it to obtain connection information. This process may also involve load balancing,
where multiple instances of the same service are deployed for improved performance or high
availability. In this setup, the service registry can either return a list of services that match
the client’s requirements, allowing the client to choose (client-side architecture), or the registry
server itself can select and return the service to the client (server-side architecture). The latter
approach may improve performance, as the server can make informed decisions about service
selection. [25]

2.7 Distributed systems

Distributed systems are a collection of independent nodes that cooperate to achieve a common
goal. There are several reasons to use a distributed system. In general, the main reasons are to
improve the system’s performance, scalability and reliability. [26]

6 Theoretical background

2.7.1 Gossip protocol
A gossip protocol is a communication protocol used by distributed systems to spread informa-
tion across the network in an efficient and decentralised manner. The gossip protocol operates
similarly to how news spreads in a social network - from one node to another, gradually reaching
the entire network. [27].

2.7.2 Leader-follower pattern
The leader-follower pattern, also known as the master-slave architecture, is a distributed com-
puting design in which a node, known as the leader or master, is designated as the primary
authority for decision making and coordination. Other nodes, called followers or slaves, typically
replicate the actions of the leader and follow its directives. This pattern is commonly used in
systems that require coordination and replication, such as databases, messaging systems, and
distributed computing frameworks. [28]

In the context of data replication, the leader-follower pattern dictates that only the leader
node is responsible for initiating updates to the shared data. followers passively replicate the
updates received from the leader, ensuring that they maintain a consistent copy of the data. This
approach simplifies coordination and consistency management by centralising write operations
to a single authoritative source. [28]

However, it is essential to prevent multiple nodes from acting simultaneously as leaders, as
this can lead to inconsistencies and conflicts in the replicated data. When two or more nodes
behave as leaders concurrently, it is referred to as a split-brain situation. To mitigate this risk,
leader election mechanisms are often used to ensure that only one node assumes the role of the
leader at any given time. These mechanisms use various algorithms and criteria to select a leader
node, such as distributed consensus algorithms like Raft algorithm. [26]

2.7.3 Consistency models
There are many consistency models, most of which are described in detail in [29]. The most
important models in the context of this thesis are sequential consistency and linearisability.

2.7.3.1 Sequential consistency
“The result of any execution is the same as if the operations of all the processors were executed in
some sequential order, and the operations of each individual processor appear in this sequence in
the order specified by its program. A multiprocessor satisfying this condition will be called sequen-
tially consistent.” [30] In the context of distributed systems, all write operations are guaranteed
to occur in identical order across each system.

2.7.3.2 Linearisability
Linearisability, also called a strong consistency model, ensures that all read and write operations
behave as if executed on a single instance despite multiple replicas. [26].

“The behavior of this model is like the sequential consistency model. However, the order of
the operations is set by the whole processes based on their time of occurrence.” [29]

2.7.4 CAP theorem
CAP theorem states the distributed system has three important properties [3].

Distributed systems 7

C – Consistency – From the client’s perspective, it looks like one main server is performing
all the tasks in an ordered way. [3]

A – Availability – Each request eventually receives a response. [3]

P – Partition tolerance – The systems continue to function even in case of network issues. [3]

When designing a distributed system, one cannot guarantee all three at once. Only two are
possible. The combinations are as follows:

CA – The system blocks in case of a network partition, ensuring consistency and availability.
(e.g. banking application) [3]

CP – When the system becomes available again, writes are processed (e.g., When writing into
the Google Doc, the client has its local copy and saves only when the server is available.). [3]

AP – During a network partition, each node handles client requests without synchronising with
other nodes. The system remains available, but may return stale data. (e.g. When using
social media, users may come across older content, but it does not affect their ability to use
the platform.) [3]

It is important to note that the following is just a theoretical grouping, and in practice,
there are several strategies for handling partitions. The primary concern is the trade-off between
consistency and potentially stale data. For better performance, one may accept a solution in
which a distributed system is consistent in most cases, except for rare events. [23]

Some authors find that the definition of the CAP theorem needs to be more specific and
propose using different terminology. “Consistency refers to a spectrum of different consistency
models (including linearisability and causal consistency), not one particular consistency model.
When a particular consistency model such as linearisability is intended, it is referred to by its
usual name. The term strong consistency is vague, and may refer to linearisability, sequential
consistency or one-copy serializability.” [31] However, the abstract notion of the dilemma between
availability and consistency is sufficient to understand the thesis. The thesis uses consistency,
strong consistency, and linearisability as synonyms.

2.7.5 Consensus algorithms
The problem of consensus is defined as an agreement between distributed systems on which
data are correct at a given time. The goal is to ensure that all nodes in the system agree on a
particular value or decision. [26]

2.7.5.1 Zookeeper custom algorithm
The Zookeeper Atomic Broadcast Protocol (ZAB) operates based on several key guarantees and
properties:

Reliable Delivery – Messages sent by one server are eventually delivered by all servers within
the system, ensuring that all servers receive the same information. [32]

Total Order – Messages are delivered in the same order across all servers. If a message a is
delivered before message b by one server, it will be delivered in the same order by all servers,
ensuring consistency of message ordering. [32]

Causal Order – Messages are ordered based on causal relationships. If message b is sent af-
ter message a has been delivered by the sender of b, message a must be ordered before b.
Furthermore, if a sender sends a message c after sending b, c must be ordered after b. [32]

8 Theoretical background

Figure 2.1 Replicated log with finite state machine [14]

Apache ZooKeeper uses a simple, reliable messaging system to keep servers in sync. It uses
direct communication channels that ensure messages are received in the same order they are
sent. The system works in two main steps: first, it picks a leader who has the most up-to-
date information. This leader then makes sure all servers have the same data, either by sending
updates or a full copy of the current system status. Once a leader is elected, it sends out messages
with updates. All servers get these messages in order and let the leader know that they have
received them. When enough servers have confirmed receipt, the leader finalises the update.
This method ensures that all messages are delivered correctly and keeps the system consistent
and in sync. [32]

“The consistency guarantees of ZooKeeper lie between sequential consistency and linearisabil-
ity.” [32] Reads do not rely on a quorum operation, which could result in stale data even without
a partition. [32]

2.7.6 Raft algorithm
The original article [14] describes all the details of Raft algorithm. The exact implementation
details are not crucial for the thesis. This section will introduce the main idea and concepts of
Raft algorithm.

The idea is to create a set of identical Finite State Machine (FSM). A sequence of commands
(requests) is saved in a replicated log. These FSMs need to be deterministic, meaning that when
each FSM executes the sequence of commands, they should end up in the same state. The log is
typically persisted on a hard drive to enable the restoration of each member’s state in case of a
crash. [14] For an illustration, see Figure 2.1.

It consists of 3 main components:

Leader election – In a cluster, each node is either a follower, candidate, or leader. The leader
periodically announces that it is the leader. If a follower does not hear from the leader within
a specific time, it becomes a candidate and tries to set up a new election. [14]

Log replication – The leader receives a client’s request and replicates it to the followers. Fol-
lowers append the request to their log. [14]

Log commitment – The leader waits until it receives acknowledgments from a majority of its
followers for a specific log entry before considering it committed. Once committed, the leader
notifies its followers, and they apply the entry to their FSM. After committing and applying
the entry, it is possible to clear some resources by truncating the logs. [14]

Linux container 9

Consistency – There are specific rules for leader election and log replication to prevent incon-
sistencies, but it is not necessary to go into detail to understand the rest of the thesis. [14]

2.8 Linux container
“A system container is one that delivers the same user experience as a virtual machine. It runs
the entire operating system, minus the shared kernel. The current major implementation on
Linux is LXC (Linux Containers).” [33]

The kernel of an operating system acts as the essential intermediary between software ap-
plications and computer hardware, managing fundamental tasks like hardware management and
resource allocation, serving as the foundation for the entire system. [34]

Control Groups (cgroups), a feature of the Linux kernel, enable the management of system
resources like CPU, memory, disk I/O, and network bandwidth by organising processes into hi-
erarchical groups with individual resource limits and policies, thus facilitating container isolation
while sharing the kernel. [33]

Chapter 3

Current service discovery
architecture

This chapter provides an overview of the existing architecture. Understanding the current
solution, evaluating its pros and cons, and identifying places for enhancement is crucial. A
good understanding of the current architecture will serve as a foundational element during the
requirement-gathering phase and help design the new solution.

The current architecture is described in a generalised and abstract approach, ensuring no
confidential information is revealed. The author of this thesis reviewed the internal documenta-
tion and cross-checked it with the source code. Whenever in doubt, he consulted with his team
leader.

3.1 Service definition and meaning
From the AB company’s perspective, a service is primarily defined by its connection details,
which can vary depending on the protocol used. Usually, this involves an IP address combined
with a port number. However, additional information, such as stream ID, becomes essential in
some scenarios. Furthermore, services can be represented by straightforward gRPC or database
connection strings, which may not always explicitly specify the IP or port.

3.2 Actors
This section outlines the system actors and their respective roles within the platform.

3.2.1 Serf agent
It is a HashiCorp Serf agent. Serf agents form a cluster using the gossip protocol. It serves as
a tool for firing and subscribing to events or queries. A Serf event is a fire-and-forget message
that gets broadcast across the cluster. The query is a request that is also broadcast, but the
difference is that it expects a response from each node. [16]

Local datacenter Serf agent (local DC Serf) – The Serf agent operates on all nodes within
the local datacenter. A node is considered inactive if the Serf agent is not running on it.

Cross datacenter Serf agent (cross DC Serf) – It is used only to find distributed stores
and AB agents from another datacenter.

11

12 Current service discovery architecture

3.2.2 AB agent
The AB agent performs health checks of all applications. The AB agent fires an event to Serf in
case some application goes down. There are two ways AB agents communicate with each other.
The first is to directly use the gRPC. The second option is to fire a query to the Serf agent. All
AB agents that subscribe to the particular query type will receive it. If there is a request for
all datacenters, the AB agent that receives the request broadcasts it to all AB agents within its
datacenter and sends the request to one AB agent per other datacenter. The AB agent from the
other datacenter then broadcasts within its datacenter.

3.2.3 Distributed store
As the name suggests, this system stores data in a distributed way. It forms a fault tolerant
cluster. It uses the Raft algorithm for data replication through the cluster. The cluster is within
the scope of one datacenter. For a deployment with multiple datacenters, the distributed store
sends the data to only one of the distributed store systems from another datacenter. It picks up
the distributed store system registered as last by the cross DC Serf. The distributed store from
another datacenter replicates this within its own Raft algorithm cluster.

3.2.4 Business applications
These applications handle business logic and are the main product. An application can register
its available services to the distributed store or query it for service configurations. Also, it is
possible to subscribe for a service, and the distributed store will send a notification in case the
service is down or the connection details of the service change.

3.3 Workflow
An internally developed distributed store is in place, leveraging the Raft algorithm for leader
election and ensuring consistency. This store maintains connection details for all services. Exter-
nal systems establish connections directly with the leader, locating it through Serf. The leader
tags a Serf instance on its node with connection details, facilitating communication. In addition,
on each node, an AB agent process performs health checks. In the event of an application failure,
the agent triggers an event via the Serf cluster. Consequently, the discovery service plugin within
the distributed store can unregister failed applications. However, if the entire server crashes, the
discovery service remains aware, as the Serf instance on that box becomes unreachable. The
communication schema is depicted in Figure 3.1.

Workflow 13

Figure 3.1 Current architecture

Chapter 4

Requirements

This chapter shows the main goals and lists all requirements. There is a section for each require-
ment that describes why it is important. The upcoming Chapter 5 will refer to these requirements
when comparing the existing frameworks. The author of this thesis attended meetings with his
colleagues almost weekly. The meeting’s participant list included the company’s CTO, leader of a
back-end team and two DevOps specialist. The primary goals were established at the beginning.
Later, during the research phase, more specific requirements were added.

The primary objective of the refactoring is to replace the custom implementation of the Raft
algorithm with an established solution to improve reliability. Other aims include preparing the
platform for microservice architecture and migration to the cloud. Having the legacy option to
run on on-premise infrastructure is also essential.

However, it is crucial to retain certain aspects, such as subscription for service updates, fault
tolerance, consistency, the versatility of the distributed store for storing various information,
maintaining a lightweight implementation, and ensuring the new version works across datacen-
ters.

The Table 4.1 summarises the priority of each requirement using the MoSCow methodology
described in Section 2.1.

Table 4.1 Requirements prioritisation

Requirement Importance
Main focus Must have
CAP theorem Must have
Pricing Must have
Java API client Should have
Maximal size of database Should have
Maximal size of one entry Should have
Documentation Could have
GUI for admin Could have
Data revision history Will not have

4.1 Main focus
The framework’s primary focus has to be a service discovery solution or a technology that can
be used to implement service discovery. This is why the palette shrinks to service discovery
solutions and distributed stores.

15

16 Requirements

4.2 CAP theorem

The CAP theorem, described in Section 2.7.4, offers valuable information when discussing consis-
tency in distributed systems. Although the current implementation relies on the Raft algorithm,
adhering to this specific algorithm is not mandatory. However, to maintain the same function-
ality, it is essential to configure the new solution to operate in a consistent mode, as defined by
the CAP theorem, denoted CP.

4.3 Pricing

Ideally, there should be a free alternative, as is typical in the software industry, where a free
version is often accompanied by a paid version offering additional features. Ensuring that the
free version meets all the requirements is crucial. Once a suitable use case arises, it is worth
considering using the paid or enterprise version.

4.4 Java API

Given that most systems in our platform are written in Java, it is crucial to have a seamless
integration method through embedded Java code or a project with an existing Java API client.

4.5 Maximal size of service registry

Another crucial requirement pertains to the technical limits of the framework, particularly with
regard to the maximum size of the service registry. It is imperative to ascertain whether the
framework can accommodate all services the current implementation registers without encoun-
tering issues. Understanding this limit ensures that the framework can effectively handle the
expected workload.

With an expected amount of several hundreds of services, each with relatively small meta-
data, even under a pessimistic estimate of 100 kB per service, a framework should comfortably
accommodate the registry’s storage needs, totalling several hundreds of megabytes. This en-
sures that the storage capacity of the framework is sufficient to handle the anticipated workload
without encountering capacity constraints.

4.6 Maximal size of one entry

In addition to the overall storage capacity, it is common for frameworks to impose limits per entry.
Although individual services in the current architecture only require a little space, choosing a
framework with a maximum entry size above 200 kB ensures that each entry can comfortably
accommodate any future expansion or increased metadata requirements.

4.7 Documentation

Clear documentation reduces the learning curve, enabling developers to grasp and utilise the
framework’s functionalities quickly. Critical aspects of documentation include well-described
internal implementation details, comprehensive API documentation, and tutorials covering usage
and deployment processes.

Subscription vs repeatedly polling the data 17

4.8 Subscription vs repeatedly polling the data
The best approach would be to keep the same approach with the service registry, which proac-
tively sends notifications to clients about updates. It is essential to know whether and how this
subscription for updates is implemented internally and how it affects performance. In the worst
case, it is possible to achieve the same effect as the subscription by repeatedly polling.

4.9 GUI for admin
Once the discovery service is established, it is essential to monitor the state of the registry to
ensure its health and accuracy and validate the correctness of the data in the service registry.
A simple Graphical User Interface (GUI) for querying data from the service registry would be
beneficial, eliminating the need to build one from scratch.

4.10 Data revision history
A data revision history in a service discovery solution provides transparency by allowing users
to track changes made to service metadata over time. This feature improves accountability and
facilitates troubleshooting by identifying when and by whom changes were made. In addition,
it improves reliability by enabling users to revert to previous versions in case of accidental data
deletion or corruption.

Chapter 5

Comparison of existing service
discovery solutions

5.1 Existing solutions
This section will introduce established frameworks suitable for service discovery. Each technology
is initially presented with a concise overview of its essential characteristics, advantages, and
drawbacks. Then, a comprehensive table will summarise and compare all the technologies.

For each aspect derived from the requirements Chapter 4, a dedicated section is provided
in the detailed comparison, offering a comprehensive evaluation of how each framework meets
these criteria. Finally, a conclusion will guide the selection of the most appropriate solution for
a specific use case and the reasoning behind the choice.

The author of this thesis researched discovery services and distributed stores, recognising
that the latter could be the foundation for building discovery services. Colleagues from the
AB company team provided tips on specific applications, while others surfaced during Internet
research, often compared to frameworks he already had in a scope.

5.1.1 Consul
Consul, developed by HashiCorp, is an open-source tool tailored for service discovery and con-
figuring distributed systems. Its purpose is to facilitate the coordination and configuration of
services within large and dynamic infrastructure setups. [4]

The Figure 5.1 shows the architecture of the Consul system. It is composed of a Raft algorithm
cluster made up of Consul servers, where the data is primarily stored. The Consul client is a
separate process that acts as a proxy. All Consul processes communicate with each other using
a gossip protocol.

Consul has a whole Chapter 6 dedicated to its functionalities and features.

5.1.2 Netflix Eureka
Netflix Eureka [36], akin to Consul, is a service discovery tool designed for environments with
dynamic changes, particularly suited for AWS deployments. It specialises in helping services
discover and communicate with each other in a dynamic and scalable manner. In Netflix Eureka,
registered services have defined Time To Live (TTL) and must be renewed every 30 seconds to
maintain accurate and up-to-date service discovery information. [12]

19

20 Comparison of existing service discovery solutions

Figure 5.1 Consul architecture [35]

Existing solutions 21

Figure 5.2 Netflix Eureka architecture [12]

The Figure 5.2 illustrates the architecture of the Netflix Eureka design, which consists of
a cluster of Eureka servers. Unlike consensus-based clusters, this design does not guarantee
consistency across the cluster but follows a best-effort approach prioritising availability over
consistency. The client is embedded into an application, and the Eureka server exposes an
HTTP endpoint. Both the server and the client are written in Java. [12]

5.1.3 Etcd
Etcd is a performant distributed key-value. Etcd does not inherently implement service discovery.
Users can build their service discovery solutions on top of its versatile key-value store foundation.
Like the Consul, Etcd uses the Raft algorithm, ensuring a CP system. Etcd servers also expose
their API via an HTTP endpoint. [7]

The official Etcd website [37] makes comparisons between Etcd, Apache ZooKeeper, and
Consul. Etcd is endorsed for its efficiency as a distributed key-value store, while Consul is
preferred for tasks such as service discovery and service mesh deployment. [37]

5.1.4 ZooKeeper
Apache ZooKeeper primarily functions as a hierarchical key-value store, with service discovery
being one of its potential applications. Unlike Consul, which offers a built-in service discovery
feature, Apache ZooKeeper requires manual implementation for service discovery.

22 Comparison of existing service discovery solutions

Figure 5.3 Zookeeper architecture [32]

Both Apache ZooKeeper and Consul feature a similar architecture, comprising fault-tolerant
server cluster to which clients connect. The custom consensus algorithm, Zookeeper Atomic
Broadcast Protocol (ZAB), is in place, as described in Section 2.7.5.1. Apache ZooKeeper lacks
a proxy (in opposite to Consul) between the client and the server. The Apache ZooKeeper
architecture is shown in Figure 5.3. The client component in Apache ZooKeeper is provided
as a Java package, Apache Curator being among the recommended client libraries for Apache
ZooKeeper. [32].

5.1.5 Redis
“Redis is an open-source in-memory data structure store that can be used as a database, cache,
and message broker.” [38] It is known for its high performance, versatility, and simplicity. Redis
has gained widespread adoption due to its efficient handling of data structures like strings, hashes,
lists, and sorted sets. [15]

The Figure 5.4 depicts all of the possibilities for the Redis deployment. Redis can be con-
figured to use a leader-follower (primary-replica) pattern cluster for data replication and high
availability [39]. This is called a sentinel [40]. Additionally, it is possible to chain sentinels
to a cluster of sentinels [40]. Data replication is not a quorum operation, implying that data
consistency is not guaranteed [39].

Existing solutions 23

Figure 5.4 Redis architecture [41]

24 Comparison of existing service discovery solutions

5.2 Comparison
Table 5.1 shows a summarised comparison. The comparison of each aspect is described in more
detail in the following sections.

Table 5.1 Comparison of existing frameworks suitable for implementing the service discovery

(a) Consul and Netflix Eureka

Consul Netflix Eureka
Main focus Service discovery, service mesh Service discovery in AWS
CAP theorem CP, AP, almost CP AP
Pricing Open-source, premium Open-source
Java API client Yes Yes
Maximal size of service registry 100s of MB Unknown
Maximal size of one entry 512 kB Unknown
Documentation Very good Poor
Possible subscription for updates Yes No
GUI for admin Yes No
Data revision history No No

(b) Key-value stores Etcd, ZooKeeper and Redis

etcd ZooKeeper Redis
Main focus Distributed key-

value store
Distributed key-
value store

In-memory key-
value store

CAP theorem CP, AP AP, almost CP AP
Pricing Open-source Open-source Open-source, pre-

mium
Java API client Yes Yes Yes
Maximal size of service registry Up to 8 GB, 2 GB

by default
100s of MB In-memory, lim-

ited by RAM
Maximal size of one entry 1.5 MB 1 MB 512 MB
Documentation Very good Very good Very good
Possible subscription for updates Yes Yes Yes
GUI for admin Yes Yes Yes
Data revision history Yes, built-in Yes, built-in No

5.2.1 Main focus
Consul – Consul primarily focuses on service discovery, service mesh capabilities, and pro-

viding a distributed key-value store. It enables dynamic service registration and discovery,
health checking, and advanced features for service-to-service communication within modern
microservices architectures. [4]

Netflix Eureka – Netflix Eureka is designed for service discovery and registration, particu-
larly for mid-tier load balancing in cloud-native environments. It enables services to register
themselves and locate other services without hard-coded dependencies, thus enhancing the
resilience and scalability of applications. [12]

Etcd – Etcd serves as a distributed key-value store primarily focusing on configuration manage-
ment. It provides a reliable way to store configuration data across distributed systems and

Comparison 25

facilitates coordination among different components, making it suitable for building highly
available and scalable applications. [7]

ZooKeeper – Apache ZooKeeper is a distributed coordination service primarily focusing on
maintaining configuration information, providing naming services, distributed synchronisa-
tion, and supporting group services. It is widely used for building distributed systems that
require reliable coordination and consensus among multiple nodes. [2]

Redis – Redis is an in-memory data structure store that serves various purposes, including acting
as a database, cache, and message broker. Its main focus is on providing high-performance
data storage and manipulation capabilities, making it a versatile tool for various use cases,
from caching to real-time analytics. [15]

5.2.2 Comparison based on CAP theorem
Consul – Writes are always CP. There are three modes for a read request in Consul. By default,

Consul uses a mode that is consistent in most cases, except the edge case, with a trade-off for
better performance. It can also be strictly configured to use CP, AP, or a default approach.
In addition, it is possible to choose the strategy per each HTTP request separately. [42]

Netflix Eureka – Netflix Eureka emphasises availability, acknowledging the dynamic nature of
cloud environments and their inherent variability. Eureka’s design assumes frequent network
partitions or system failures, including those affecting the Netflix Eureka cluster, particularly
in large-scale deployments. Regarding the CAP theorem, the framework leans towards being
AP in its design and functionality. It operates without employing any consensus algorithm,
instead opting for a ”best-effort” approach to achieve its objectives. [12]

Etcd – Etcd provides the flexibility to be configured for either CP or AP modes. Similarly to
Consul, it internally utilises Raft algorithm as its consensus algorithm. [43]

Zookeper – There is a unique consensus protocol developed by Apache ZooKeeper called
Zookeeper Atomic Broadcast Protocol (ZAB). This algorithm is already introduced in the Sec-
tion 2.7.5.1. Strong consistency (CP) is not guaranteed, but it is close to it. It maintains
sequential consistency, defined in Section 2.7.3.1, meaning that updates from a client will be
applied in the order they were transmitted, but it is not linearisable (CP) [32]

Redis – Redis prefers availability, AP. The Redis cluster implements asynchronous replication,
leading to potential data loss scenarios. Even with synchronous writes enforced through the
WAIT command, strong consistency is not achieved, and there is still a risk of data loss. It is
worth noting that the WAIT command significantly reduces performance. [39]

5.2.3 Pricing
Each framework provides an open-source version, with Consul and Redis offering an enterprise
edition with additional features.

Consul – Open-source, with enterprise options for easier server cluster management. Consul
Enterprise Edition presents a range of advanced functionalities designed for larger-scale de-
ployments, including enhanced support for network segmentation, resource isolation through
namespaces, and automated backup capabilities. Additionally, organisations can entrust the
management of Consul servers to HashiCorp, streamlining operational tasks and ensuring
optimal performance and reliability. [44]

26 Comparison of existing service discovery solutions

Redis – The core functionality is open-source. Redis Enterprise, developed by Redis, Inc.,
is a robust commercial product that enhances the core Redis Engine with enterprise-grade
features. It enables linear scaling to handle large workloads and ensures high availability
with up to 99.999% uptime. Redis Enterprise ensures data integrity and protection with geo-
replication capabilities and advanced security measures. Redis Enterprise is supported by
24/7 assistance for seamless implementation and maintenance, offering flexible deployment
options, including on-premise, cloud-based, and hybrid configurations. [45]

5.2.4 Implemented the Java API client
A Java API client exists for each framework. The summary is depicted in Table 5.2. All of the
clients are open-source.

Table 5.2 Java API client comparison

Framework Java API Client
Consul Rickfast [46]
Netflix Eureka EurekaClient [36]
Etcd Jetcd [47]
ZooKeeper Curator [1]
Redis Jedis [48]

5.2.5 Subscription vs repeatedly polling the data
For Etcd [49], Apache ZooKeeper [50] and Redis [51], it is possible to register a callback for data
changes.

Consul – It is possible to subscribe for events with watches [52]. The Consul agent triggers a
script or sends a request to the HTTP endpoint [52]. The Rickfast [46] client implements a
registering of a callback by the long-polling mechanism. Section 6.8.2.2

Netflix Eureka – There is not mentioned anything about callbacks for data changes in the
documentation [12]. In the worst case, it is possible to implement repeated polling on the
client side to achieve the same.

5.2.6 Maximal reliable size of the storage
Consul – It is not designed to store much data in the key-value store. Up to several hundreds of

MB can be stored using disk storage for the Raft algorithm. According to the documentation,
it is recommended to have 2 to 4 times more RAM available than the size of the storage. [53]

Netflix Eureka – Without an official benchmark, accurately determining the RAM require-
ments for Netflix Eureka’s operation entails conducting empirical testing and performance
analysis. Since Netflix Eureka is an in-memory database with a TTL for each service, usually
around 30 seconds before automatic removal, the RAM size needed would vary depending
on the stored data volume [12]. It would be prudent to allocate additional RAM to handle
fluctuations effectively.

Etcd – Scales well with big key-value stores, up to several GB. By default, it is set to 2 GB.
The maximum recommended size is 8 GB. [54]

Comparison 27

ZooKeeper – Assuming the Etcd benchmark [37], Apache ZooKeeper scales well with big key-
value stores, up to several hundreds of MB.

Redis – In-memory database works well with data that fits into memory. It can be configured
to persist data, supporting up to several GB. [55]

5.2.7 Maximal size of one database entry
The author of this thesis could not find a maximum size for Netflix Eureka.

Table 5.3 Maximal size of one database entry

Framework Maximal size of one entry
Consul 512 kB [53]
Netflix Eureka Unknown
Etcd 1, 5 MB [54]
ZooKeeper 1 MB [32]
Redis 512 MB [56]

5.2.8 Quality of the documentation
Except for Netflix Eureka, all other frameworks have comprehensive documentation, providing
thorough descriptions of their internal implementation, APIs, and tutorials.

Netflix Eureka – The documentation for Netflix Eureka [12] is notably concise, offering brief
explanations of its internal implementation, deployment tutorials, and REST API. However,
while tutorials on configuration and the REST API are sufficiently described, the internal
implementation of the cluster may lack detailed documentation. Nonetheless, users can still
benefit from practical guidance on the deployment and use of the REST API for their projects.

5.2.9 Has a GUI?
All solutions have an existing GUI, with variations in whether it is an official or third-party
offering. All of them are free except for Redis, which is a paid service.

Table 5.4 GUI comparison

Framework Note GUI software Pricing
Consul Official Consul [57] Free
Netflix Eureka Third party Eureka Spring Cloud [58] Free
Etcd Third party Etcdmanager [59] Free
ZooKeeper Third party Zoonavigator [60] Free
Redis Official Redis [61] Paid

5.2.10 Has data revision history?
Consul – Revision history tracking is not directly supported, but it offers options to log changes

or capture snapshots of services. [4]

28 Comparison of existing service discovery solutions

Netflix Eureka – The documentation [12] does not mention the built-in support for revision
history tracking.

Etcd – Revisions can be monitored programmatically or managed through the GUI. [62]

ZooKeeper By default, Apache ZooKeeper retains historical snapshots of data and maintains
both a transactional log and snapshots. [32]

Redis – Revisions in Redis would require manual implementation as it is could not be found in
the documentation [15].

5.3 Conclusion
Consul emerges as the optimal choice to meet the customer’s requirements. Its versatility allows
it to operate seamlessly in cloud environments and on-premise infrastructure. Its primary focus
on service discovery and robust documentation makes it the most promising fit for the project.

Although Etcd and Apache ZooKeeper are viable alternatives, they would require additional
implementation efforts to achieve service discovery using the key-value store. In contrast, Consul
offers built-in capabilities for service discovery, streamlining the development process.

The decision to rule out Netflix Eureka is primarily due to its limitation of running exclusively
in the AWS cloud, which does not align with the requirement for flexibility across different
environments. In addition, the documentation is inadequate.

As for Redis, although it excels as a key-value database, it may not meet the project’s specific
needs, mainly if consistency and partition tolerance (CP) are essential requirements.

In summary, Consul stands out as the preferred solution due to its compatibility across various
deployment environments, strong focus on service discovery, and comprehensive documentation,
making it an optimal choice for the project.

Chapter 6

Consul analysis

Consul is an open-source tool for service discovery and distributed system configuration made by
HashiCorp, a company that provides infrastructure automation software [4]. It is designed to help
coordinate and configure services in large-scale dynamic infrastructure environments [4]. Consul
is primarily written in the Go programming language [63]. The tool was first conceptualised in
2013 and introduced as a service discovery and configuration tool by HashiCorp in 2014, reaching
version 0.1 [64].

6.1 Philosophy

The main philosophy outlined on their website [65] describes the main points to be followed.

Workflow focus – HashiCorp prioritises workflows to easily adopt new tools. [65]

Simple, modular, composable – HashiCorp products are built using simple, modular, and
composable components, allowing for innovation by combining smaller, well-defined parts,
following the Unix philosophy. [65]

Communication sequential processing – HashiCorp believes that Communicating Sequen-
tial Processes (CSP) are crucial for managing complexity and building robust, scalable sys-
tems in a service-oriented architecture. Each service is treated as an autonomous process
that communicates via APIs. [65]

Immutability – HashiCorp promotes immutability in infrastructure, extending it to app source
code, versions, and server states, resulting in more robust and straightforward systems to
operate. [65]

Versioning through codification – The belief in codification involves writing processes as
code, storing, and versioning them to promote knowledge sharing and prevent data loss
during operations. [65]

Automation through codification – HashiCorp emphasises automation by promoting codi-
fication to enable machine execution while remaining readable by operators, increasing pro-
ductivity, and reducing human errors. [65]

Resilient systems – HashiCorp prioritises building durable systems that handle unexpected
inputs and outputs. This is achieved through maintaining a desired state, collecting real-
time information, and self-healing mechanisms. [65]

29

30 Consul analysis

Pragmatism – HashiCorp values practicality, adapting principles such as immutability, codifi-
cation, and automation to meet requirements and encourage innovation. [65]

6.2 Use cases
This section explains the primary characteristics and practical applications of Consul.

Service discovery – Automatic detection and cataloguing of available services within a net-
work, keeping the service registry [66]

Health-checking – Several types of health checks: HTTP, TCP, UDP, gRPC. . . [67]

Key-value store – For storing key-value pairs [66]

Leader election within services – Implementation of a leader election that other applications
can use [68]

Service mesh – Management of communication between services (authentication, load balanc-
ing, data encryption, sets rules for service-to-service communication) [66]

In the thesis context, service discovery and the key-value store are the most important fea-
tures.

6.3 Architecture
There are two types of Consul agents: server and client. Each agent exposes an HTTP end-
point [69].

The server stores all data, such as the service catalogue and key-value store, while the client
is a proxy to forward requests to the server. Clients maintain a cache, which allows them to
handle some requests without contacting the servers. Generally, each box has one Consul agent
(server or client). In addition, the client is responsible for managing the health checks of the
services. Registering a check for a service is possible, which triggers a bash script or a custom
HTTP endpoint when the service is down. The servers that provide the core functionality are
usually in a cluster to ensure fault tolerance. The Raft algorithm ensures consistency, with Serf
being used as the underlying technology. All Consul instances (clients and servers) communicate
with each other using the gossip protocol. [70]

In the image shown in Figure 6.1, the architecture of Consul is depicted. This tool also
allows for deployment across multiple datacenters. According to Consul, a datacenter is defined
as follows: “We define a datacenter to be a networking environment that is private, low latency,
and high bandwidth. This excludes communication that would traverse the public internet, but
for our purposes multiple availability zones within a single EC2 region would be considered part
of a single datacenter.” [71].

6.4 Fault tolerance
According to Raft algorithm, a cluster can continue to operate as long as a majority (also known
as quorum) of servers remains alive. However, there is a trade-off between fault tolerance and
performance, as a larger quorum can tolerate more server failures but at the cost of decreased
performance due to increased gossip communication. The Consul documentation recommends
a cluster size of three or five members, where a three-member cluster can tolerate one server
failure and a five-member cluster can tolerate two server failures without affecting the cluster
functionality. [42]

Fault tolerance 31

Figure 6.1 Consul architecture [35]

32 Consul analysis

Figure 6.2 Consul default mode [42]

6.5 Consistency modes
When discussing consistency modes in Consul, we only refer to read requests. This is due to the
fact that write requests must always be replicated and committed by the Raft algorithm leader,
which means they are always consistent. [42]

A user can select from three consistency modes. Additionally, each mode can be set for each
HTTP request. Full details can be found on the Consul official documentation [42].

6.5.1 Default mode
“It is strongly consistent in almost all cases. However, there is a small window in which a new
leader may be elected, during which the old leader may respond with stale values. The trade-off
is fast reads but potentially stale values. The condition resulting in stale reads is hard to trigger,
and most clients should not need to worry about this case. Also, note that this race condition
only applies to reads, not writes.” [42] This mode is shown in Figure 6.2.

It is an excellent example of how sacrificing a little consistency can significantly improve
performance. This fits to the Consul’s pragmatical philosophy.

6.5.2 Consistent mode
For users prioritising strong consistency over availability, the consistent mode offers a stricter
approach. The leader checks its leadership status before responding to a read request, resulting
in an additional round-trip for each request as seen in Figure 6.3. In other words, this mode is

Consistency modes 33

Figure 6.3 Consul consistent mode [42]

the same as the default mode with the addition of solving the edge case when the leader may send
old values. The reads are consistent and partition-tolerant (CP) based on the CAP theorem. [42]

6.5.3 Stale mode
The stale consistency mode is designed for users who prioritise availability over strong con-
sistency. In this mode, any Consul server can handle a read request, regardless of whether it
is the leader. This mode is best suited when performance is more important than potentially
stale values. One can say that reads are available and partition-tolerant (AP) based on the CAP
theorem. [42]

6.5.4 Consistency mode per HTTP request
Consul provides fine-grained control over consistency modes for individual HTTP requests. This
flexibility allows users to tailor the consistency level based on specific requirements for different
parts of their application. To select the desired request mode, use one of the HTTP query
parameters: ?stale, ?consistent, ?default. [42]

34 Consul analysis

Figure 6.4 Consul stale mode [42]

6.6 Multiple datacenters

Cross-DC communication is the transfer of data between geographically dispersed datacenters. It
differs from inner DC communication within a single datacenter. The main differences are scale,
distance, and latency. Cross-DC communication experiences higher latency and lower bandwidth
due to longer physical distances and multiple network hops. The design and optimisation of
networking infrastructure for these two communication types require different considerations. [72]

There are two ways to set up communication between datacenters. The first option is to set
up a WAN gossip pool. The second one is to set up the Remote datacenter forwarding. Both
have their pros and cons. [72]

6.6.1 WAN federation
The local server from the datacenter will send a request to a server from the secondary datacenter
when data is needed. The schema is depicted in Figure 6.5.

6.6.2 WAN gossip pool
The way it works is similar to a single datacenter. All servers are connected through gossip
communication, which allows messages to be sent across the datacenter. The schema is depicted
in Figure 6.6.

Multiple datacenters 35

Figure 6.5 Consul cross datacenter forwarding [72]

Figure 6.6 Consul cross datacenter gossip [72]

36 Consul analysis

6.7 Deployment
The deployment process for a Consul cluster is relatively simple and lightweight. There are three
ways to install a Consul agent. website. The easiest method is to download a precompiled binary
and run it. [73]

6.7.1 Hashicorp cloud platform
Consul offers a paid feature called HashiCorp Cloud Platform (HCP) cluster. It is a fully managed
server cluster by HashiCorp that saves user’s time as it is used in a Software as a Service (SaaS)
way. [44]

6.8 Performance fine-tuning
To optimise Consul for better performance, administrators can fine-tune parameters related to
the gossip protocol, such as adjusting the gossip interval and managing the number of nodes
involved in gossip. Additionally, carefully allocating resources for Consul servers and agents
based on the specific deployment characteristics, like adjusting memory and CPU allocations,
can contribute to a more efficient and scalable Consul infrastructure. [74]

The following sections describe some of Consul’s internal performance enhancements. This
knowledge can be used to further improve performance by configuring the agent or requests.

6.8.1 Anti-entropy
Each Consul client stores information about services and health checks that are registered locally
on the same node. The agent sends this data to the service catalogue, a collection of global states
held by the consul servers. Some requests can be handled from the client’s local state, usually
containing information about services from the local node. The catalogue and the client’s state
are synchronised periodically. “The anti-entropy mechanism reconciles these two views of the
world: anti-entropy is a synchronization of the local agent state and the catalogue.” [75]

6.8.2 Agent request caching
The agent can fulfil certain requests without contacting the servers every time. To achieve this,
two caching strategies can be employed - Simple caching and Background Refresh caching. Each
strategy is supported by different HTTP endpoints. [76]

6.8.2.1 Simple caching
The caching mechanism will be employed when the HTTP ?cached query parameter is set,
and the required tags are added to the Cache-Control header. The value for max-age should
be specified in seconds. The response includes a flag indicating whether the cache was hit or
missed. [76]

6.8.2.2 Background refresh caching
Some endpoints in Consul support an active caching feature that helps keep the data synchro-
nised with the catalogue. To achieve this, the server and the client use a technique called long
polling [77]. Instead of the client repeatedly asking the server for updates, it sends a request to
the server and holds it open until new data is available or a timeout occurs. When new data is

Reactive environment 37

Figure 6.7 Consul long polling [77]

ready, the server responds to the client, which processes the information and immediately sends
another request to the server to maintain the connection [78].

The idx and wait HTTP query parameters are crucial for Consul’s long polling. The idx
parameter corresponds to the data version, while the wait parameter specifies the interval for
how long the connection can be kept open [46].

An example of how it may look is depicted in Figure 6.7.

6.9 Reactive environment

Consul provides two ways to specify actions for incoming events based on changes in the key-value
store, service catalogue, list of nodes, etc.

6.9.1 Watches
“Watches are a way of specifying a view of data (e.g. list of nodes, KV pairs, health checks) which
is monitored for updates. When an update is detected, an external handler is invoked.” [52]. A
handler can be a script (see example in Listing 6.1) or a HTTP endpoint (see example in List-
ing 6.2). [52]

6.9.2 Templates
It is basically a daemon that watches for changes in the key-value store and based on that renders
a configuration file on a local node. This is essentially just syntactic sugar. The same result could
be achieved through the use of a watch. Templates have their own scripting language similar to
Go. The demo is shown in the Listing 6.3 to Listing 6.6. [79]

38 Consul analysis

Listing 6.1 agent-config.json script watch example [52]
1 {
2 "watches": [
3 {
4 "type": "key",
5 "key": "foo/bar/baz",
6 "handler_type": "script",
7 "args": ["/usr/bin/my-service-handler.sh", "-redis"]
8 }
9]

10 }

Listing 6.2 agent-config.json HTTP watch example [52]
1 {
2 "watches": [
3 {
4 "type": "key",
5 "key": "foo/bar/baz",
6 "handler_type": "http",
7 "http_handler_config": {
8 "path": "https://localhost:8000/watch",
9 "method": "POST",

10 "header": { "x-foo": ["bar", "baz"] },
11 "timeout": "10s",
12 "tls_skip_verify": false
13 }
14 }
15]
16 }

Listing 6.3 Find address template example find address.tpl [79]
{{ key "/hashicorp/street_address" }}

Listing 6.4 Activate the template [79]
1 consul-template -template "find_address.tpl:hashicorp_address.txt"

Listing 6.5 Put the value to the corresponding key [79]
1 consul kv put hashicorp/street_address "101 2nd St"
2

3 Success! Data written to: hashicorp/street_address

Listing 6.6 Showing content of the rendered file [79]
1 cat hashicorp_address.txt
2

3 101 2nd St

6.10 Conclusion
Consul by HashiCorp is an open-source tool designed to facilitate service discovery and dis-
tributed system configuration. It is a powerful and flexible tool that is easy to use and provides
a range of features such as consistency modes, support for multiple datacenters, and performance

Conclusion 39

fine-tuning options.
Consul is built on the principles of simplicity, modularity, and pragmatism. Its architecture

is based on a gossip-based cluster, which combines server and client agents for scalability and
fault tolerance. Consul is not just a distributed key-value store, but also serves as a crucial
component for creating reactive environments through watches and templates. Additionally, it
offers solutions for managing databases, including health checking, leader election, and other
coordination tasks.

In summary, Consul is an invaluable asset for organisations dealing with modern infrastruc-
ture and distributed systems. It simplifies the complexities of managing such systems and offers
a practical solution.

Chapter 7

Design

This section exclusively illustrates actors and processes relevant to service discovery to simplify
the view. The current architecture is described in Chapter 3 with the schema Figure 3.1.

The refactoring process will be divided into several phases for the sake of smoother imple-
mentation. In the first phase, the existing distributed store will be deployed alongside Consul.
During this phase, the AB agent will continue to handle health checks. The primary modification
will involve transferring the responsibility of the discovery service from the distributed store to
the Consul while retaining the rest of the current implementation.

Subsequently, in the second phase, the Consul will take over the health check responsibility
from the AB agent. Upon completion of these two phases, the migration of the discovery service
to the new implementation will be finalised.

As a bonus step, the final phase will involve utilising Consul’s key-value store instead of the
distributed store, allowing for the complete removal of the distributed store from the platform.

7.1 Using Consul service catalogue

The Consul server cluster is typically deployed on dedicated nodes, separate from other applica-
tions, comprising three to five nodes to ensure tolerance against failures of one or two nodes. Each
node hosting a business application has a Consul client as a proxy. Requests are routed through
REST API calls. Upon receiving a request, the Consul agent may promptly respond or delegate
the request via RPC call to the Consul server cluster. The Consul’s internal communication is
described in more detail in Section 6.3 and Section 6.8.2.

Applications register their available services by sending a REST request to the locally running
Consul client. The application queries the Consul cluster when needing connection details from
the service registry. Consul’s service registry and service catalogue are synonyms. The AB agent
continues to perform PID health checks and deregisters the application in case of a stoppage or
crash. This phase is illustrated in Figure 7.1.

7.2 Using Consul for health checking

In the second phase, the Consul instances perform all health checks. An application registers
health checks for itself and all the services it exposes. The client may subscribe for the service
metadata and health updates. The Section 6.8.2.2 outlines the subscription mechanism. This
phase is depicted in Figure 7.1.

41

42 Design

Figure 7.1 The first phase – Using Consul service catalogue

Using Consul for health checking 43

Figure 7.2 The second phase – Using Consul for health checking

44 Design

7.3 Using Consul key-value store and other features
This phase is considered a bonus phase as it is not related to service discovery. Instead, it focuses
on leveraging Consul’s key-value store to replace the existing one within the platform. Consul
provides many supplementary features, among which the most notable for integration are the
service mesh, Consul metrics, and leader election functionalities. All use cases for Consul are
listed in Section 6.2.

Chapter 8

Implementation

It is important to note that the current implementation is designed only for Linux-based operating
systems. The code is written in a simple manner and can be improved later if needed. The author
of this thesis prioritised understanding and using the Consul framework over writing the code as
a final product. It is considered more of a prototype and there will likely be improvements once
it is fully implemented. However, the existing code should serve as a good starting point and a
core implementation.

The implementation encompassed several facets, primarily orchestrated by the AB agent.
This included the deployment of Consul, configuration management, and health checking. The
DevOps framework ensures that the binary file is downloaded to each box where the AB agent
is running. The AB agent then takes the binary and initiates the Consul process. The AB agent
handles the entire lifecycle of the Consul process and its configuration management. The main
code about the implementation of the service discovery API is described in Section 8.5.

8.1 Start

A Consul agent needs configuration upon start-up. The easiest way is to provide a configuration
file. All available configuration settings are explained in the official documentation [80]. For
demonstration purposes, refer to the configuration file provided in Listing 8.3 as an example.
The Consul needs a data directory to store some data to function correctly.

As visible in Listing 8.1, the start method performs the following steps in order: Firstly,
it creates the data and config directories. Then, it removes the existing configuration file to
replace it with the latest updated properties. The agent takes these properties from its own
configuration, which is pulled from the Git repository. The exact values that are populated into
the configuration file are further explained in Section 8.3. The AB agent does the online reload of
the configuration in case the Consul process is already running. Only some parts of the configu-
ration are reloadable. To reload configuration, the AB agent sends an HTTP PUT request to the
agent/reload endpoint. Periodic health checks are scheduled to verify that the Consul is run-
ning. If not, the AB agent attempts to restart it. The health checking itself is further described
in Section 8.4. The InteractiveProcessRunner is a wrapper for java.lang.ProcessBuilder,
which allows starting a new process with arguments and redirecting the output to a log file. The
AB agent passes the -config-file option with the file path to the Consul binary.

45

46 Implementation

Listing 8.1 Consul starting
1 ...
2 @Singleton
3 public class ConsulStarter {
4 ...
5 public void start() {
6 try {
7 Files.createDirectories(this.consulDataFolder);
8 Files.createDirectories(this.configFile.getParent());
9 Files.deleteIfExists(this.configFile);

10 Files.createFile(this.configFile);
11 copyAndPopulateConfig(
12 applicationConfiguration.getApplicationFile(consulConfigTemplateFileName)
13);
14 startConsul();
15 } catch (final Exception e) {
16 logger.atSevere().withCause(e).log("Unable to start consul.");
17 }
18 }
19 ...
20 private void startConsulProcess() {
21 backupOldLog(logFile);
22 final String[] startCmd = new String[] {
23 "./consul", "agent", String.format("-config-file=%s", this.configFile)
24 };
25

26 logger.atInfo().log("Starting Consul Agent");
27 final InteractiveProcessRunner runner =
28 new InteractiveProcessRunner(workingDirectory.toFile(), startCmd);
29 try {
30 runner.startRedirectOutput(logFile);
31 } catch (final IOException e) {
32 throw new IncorrectStartException(
33 String.format("Cannot start consul in directory %s.", workingDirectory),
34 IncorrectStartException.CANNOT_EXECUTE_CONSUL,
35 "Check that the consul is correctly installed."
36);
37 }
38 }
39 ...
40 }

8.2 Stop

Stopping the Consul process is an important consideration. Initially, using the leave com-
mand [81] via the REST API seemed promising. However, this approach has a distinct drawback.
The leave command stops the Consul instance and reduces the size of the Raft algorithm cluster.
The primary reason for wanting to stop Consul is to allow it to restart in case of malfunctions or
when a configuration change that cannot be reloaded online occurs. Therefore, for this use case,
stopping Consul without affecting the existing cluster size is desirable. The implementation is
depicted in Listing 8.2.

The AB agent creates a backup of the current log file by appending a suffix with the current
date and time. This helps in a quicker identification and investigation of any issues.

The current implementation of stopping Consul could be improved by using a PID file to
read the process ID instead of calling the pgrep consul command.

Configuration management 47

Listing 8.2 Consul stop
1 ...
2 @Singleton
3 public class ConsulProcessKiller implements IConsulProcessKiller {
4 ...
5 public boolean tryToKillConsul() {
6 try {
7 final int pid = findConsulPid();
8 if (pid == -1) {
9 flogger.atInfo().log("Consul process is already not running.");

10 }
11 return killProcess(pid);
12 } catch (final Exception e) {
13 flogger.atSevere().withCause(e).log("Unable to stop consul agent");
14 return false;
15 }
16 }
17 ...
18 private static boolean killProcess(final int pid)
19 throws IOException, InterruptedException {
20 final ProcessBuilder processBuilder =
21 new ProcessBuilder("kill", "-9", Integer.toString(pid));
22 final Process process = processBuilder.start();
23 final int exitCode = process.waitFor();
24

25 if (exitCode == 0) {
26 flogger.atInfo().log("Process killed successfully.");
27 return true;
28 } else {
29 flogger.atSevere().log("Failed to kill process. Exit code: %d", exitCode);
30 return false;
31 }
32 }
33 }
34

8.3 Configuration management

The AB agent retrieves its configuration files from a Git repository, which also contains config-
uration file templates for the Consul server and the client. Each node has a different Consul
configuration, and the AB agent fills in the templates with local node-specific information based
on its configuration. The template is stored in JSON format. An example of such a file is
in Listing 8.3.

The fields populated by the AB agent include the advertise address, node name, datacenter
name, Consul data directory name, and retry join addresses. The retry-join addresses refer to
the addresses of other members of the Consul cluster. The rest of the fields are self-explanatory,
but refer to Consul’s documentation for more detailed information. The code for this is in the
method enrichConfig in Listing 8.4.

8.4 Health checking

The health checking strategy involves executing a sequence of HTTP requests. If a specified
number of these requests fail, the Consul process is considered to be not running, and it is
restarted. A special case occurs right after starting the Consul, where a longer delay is required
before the first health check can be performed to ensure that the Consul is fully operational.
The timeouts are currently hard-coded, but it would be better to make them configurable in the

48 Implementation

Listing 8.3 Consul configuration template file example
1 {
2 "server": true,
3 "bootstrap_expect": 3,
4 "client_addr": "0.0.0.0",
5 "datacenter": "Will be populated by AB agent",
6 "data_dir": "../data",
7 "domain": "consul",
8 "advertise_addr": "Will be populated by AB agent",
9 "node_name": "Will be populated by AB agent",

10 "retry_join": ["Will be populated by AB agent"],
11 ...
12 }

Listing 8.4 Consul configuration management
1 ...
2 @Singleton
3 public class ConsulStarter {
4 ...
5 private void copyAndPopulateConfig(final Path consulConfigPath)
6 throws IOException {
7 final JsonObject config = this.loadConsulConfig(consulConfigPath);
8 this.enrichConfig(config);
9 Files.writeString(this.configFile,

10 this.gson.toJson(config),
11 StandardOpenOption.WRITE,
12 StandardOpenOption.CREATE
13);
14 }
15 ...
16 /**
17 * Populates the config with node data etc.
18 * @param consulConfig template config to enrich
19 */
20 private void enrichConfig(final JsonObject consulConfig) {
21 final JsonArray retryJoinAddresses = new JsonArray();
22 this.localDeployments
23 .getNodesInCurrentDC()
24 .stream()
25 .map(NodeConfiguration::getSystemListenInterface)
26 .filter(a -> !Objects.equals(a, this.localDeployments.getSystemListenInterface()))
27 .forEachOrdered(retryJoinAddresses::add);
28

29 consulConfig.remove("data_dir");
30 consulConfig.addProperty("data_dir", this.consulDataFolder.toAbsolutePath().toString());
31 consulConfig.remove("advertise_addr");
32 consulConfig.addProperty("advertise_addr", this.localDeployments.getAdvertiseAddress());
33 consulConfig.remove("node_name");
34 consulConfig.addProperty("node_name", this.localDeployments.getLocalNodeName());
35 consulConfig.remove("retry_join");
36 consulConfig.add("retry_join", retryJoinAddresses);
37 consulConfig.remove("datacenter");
38 consulConfig.addProperty("datacenter", this.localDeployments.getDataCenterName());
39 }
40 ...
41 }

future. Additionally, just like killing the Consul process, it may be helpful to use PID checks to
determine if a process is running correctly. The current implementation is depicted in Listing 8.5.

Integration with other systems using Java API client 49

Listing 8.5 Consul health checking
1 ...
2 @Singleton
3 public class ConsulConnectionChecker {
4 ...
5 public void scheduleHealthCheck(final int initialDelay, final Runnable startConsulTask) {
6 scheduleNext.set(true);
7 this.scheduledExecutorPool.schedule(
8 initialDelay,
9 () -> this.runAndScheduleCheck(startConsulTask)

10);
11 }
12 ...
13 public boolean isConsulRunning() {
14 try {
15 return performHttpHealthCheck(healthCheckUrl);
16 } catch (final IOException e) {
17 logger.atSevere().withCause(e).log("Unable to ping ConsulAgent.");
18 return false;
19 }
20 }
21 ...
22 private void runAndScheduleCheck(final Runnable startConsulTask) {
23 int actualDelay = delay;
24 try {
25 if (!isConsulRunning()) {
26 logger.atWarning().log("Unable to ping Consul local Agent");
27 if (failedHealthChecksCounter.incrementAndGet() > this.allowedFailedPings) {
28 startConsulTask.run();
29 actualDelay = 10_000;
30 failedHealthChecksCounter.set(0);
31 }
32 } else {
33 logger.atFine().atMostEvery(10, TimeUnit.SECONDS)
34 .log("Able to ping Consul local Agent");
35 // resetting the counter
36 failedHealthChecksCounter.set(0);
37 }
38 } finally {
39 if (scheduleNext.get()) {
40 scheduledExecutorPool.schedule(
41 actualDelay,
42 () -> runAndScheduleCheck(startConsulTask)
43);
44 }
45 }
46 }
47 }

8.5 Integration with other systems using Java API client
This section will explore the process of interacting with the Consul REST API via Rickfast client [46].
The operations that can be performed include registering, deregistering, and subscribing to the
service definition. To keep things straightforward, each service definition in the prototype is as-
sociated with a unique integer ID, which will be utilised to illustrate the prototype in Section 9.5.

8.5.1 Register service
There exist two techniques for registering a service with the Consul. The initial technique
involves directly registering the service into the service catalogue via the /catalog/register

50 Implementation

endpoint. The request is completed after the changes are committed to the Raft algorithm log
and a response is received from the servers. The corresponding operation is called "REGISTER -
SERVICES CATALOG" and it can be found in Listing 8.6.

The second and more recommended technique employs the /agent/register endpoint. This
technique registers the service through the local agent instance and takes advantage of Consul’s
anti-entropy mechanism as detailed in the Section 6.8.1. The implemented operation, "REGIS-
TER SERVICES LOCAL AGENT", is depicted in Listing 8.6.

The author of this thesis has incorporated an AB agent operation for both endpoints, in
addition to the choice of sending a stream of such services. This strategy ensures that the
registrations are spread over time, as a limit of requests per second can be designated as an
argument. The procedures closely resemble "REGISTER SERVICES CATALOG" and "REGISTER -
SERVICES LOCAL AGENT", with the sole distinction being the application of the rate limiter prior
to each request, indicating a per-second throttle. Methods that are rate limited end with a
"FLOW" suffix.

8.5.2 Deregister service
There are corresponding deregister methods for each register method. Each service is iden-
tified based on the string id. During the prototype, the service is identified by the index variable
in the for loop to keep things simple. The code for methods is in Listing 8.7.

8.5.3 Subscribe for a service
It is possible to subscribe to changes in the catalogue when a service definition changes in the
catalogue. In RickFast [46], this subscription mechanism is referred to as a cache. Its usage
is illustrated in Listing 8.8. Internally, it uses the long polling mechanism already mentioned
in Figure 6.7. It is possible to remove the subscription.

Integration with other systems using Java API client 51

Listing 8.6 Consul register service
1 ...
2 @Singleton
3 @OperationContainer
4 public class ConsulOperationContainer {
5 @Operation(name = "REGISTER_SERVICES_CATALOG")
6 public String registerServices(
7 @Parameter(name = "indexFrom") final int indexFrom,
8 @Parameter(name = "indexTo") final int indexTo) {
9 return foreachDo(indexFrom, indexTo, i -> {

10 final var catalogRegistration
11 = ImmutableCatalogRegistration.builder()
12 .node("someNode")
13 .address("localhost")
14 .service(generateServiceRegistration(i))
15 .build();
16 client.catalogClient().register(catalogRegistration);
17 });
18 }
19 ...
20 @Operation(name = "REGISTER_SERVICES_LOCAL_AGENT")
21 public String registerServicesLocal(
22 @Parameter(name = "indexFrom") final int indexFrom,
23 @Parameter(name = "indexTo") final int indexTo) {
24 return foreachDo(indexFrom, indexTo, i -> {
25 client.agentClient().register(
26 ImmutableRegistration.builder()
27 .name("service-" + i)
28 .id("" + i).build()
29);
30 });
31 }
32 ...
33 @Operation(name = "REGISTER_SERVICES_CATALOG_FLOW")
34 public String registerServicesCatalogFlow(
35 @Parameter(name = "indexFrom") final int indexFrom,
36 @Parameter(name = "indexTo") final int indexTo),
37 @Parameter(name = "rateLimit") {
38 if (rateLimit <= 0) {
39 return "Invalid argument, \"rateLimit\" should be positive.";
40 }
41 final RateLimiter rateLimiter = RateLimiter.create(rateLimit);
42 return foreachDo(indexFrom, indexTo, i -> {
43 final var catalogRegistration
44 = ImmutableCatalogRegistration.builder()
45 .node("someNode")
46 .address("localhost")
47 .service(generateServiceRegistration(i))
48 .build();
49 rateLimiter.acquire();
50 client.catalogClient().register(catalogRegistration);
51 });
52 }
53 ...
54 @Operation(name = "REGISTER_SERVICES_LOCAL_AGENT_FLOW")
55 public String registerLocalAgentServicesFlow(...) {
56 // Using ratelimiter analogically as in the REGISTER_SERVICES_CATALOG_FLOW.
57 ...
58 }
59 ...
60 }

52 Implementation

Listing 8.7 Consul deregister service
1 ...
2 @Singleton
3 @OperationContainer
4 public class ConsulOperationContainer {
5 ...
6 @Operation(name = "DEREGISTER_SERVICES_CATALOG")
7 public String deRegisterServices(
8 @Parameter(name = "indexFrom") final int indexFrom,
9 @Parameter(name = "indexTo") final int indexTo) {

10 return foreachDo(indexFrom, indexTo, i -> {
11 final var catalogDeRegistration = ImmutableCatalogDeregistration.builder()
12 .serviceId("" + i)
13 .node("someNode")
14 .build();
15 client.catalogClient().deregister(catalogDeRegistration);
16 });
17 }
18 ...
19 @Operation(name = "DEREGISTER_SERVICES_LOCAL_AGENT")
20 public String deRegisterServicesLocal(
21 @Parameter(name = "indexFrom") final int indexFrom,
22 @Parameter(name = "indexTo") final int indexTo) {
23 return foreachDo(indexFrom, indexTo, i -> {
24 client.agentClient().deregister("service-" + i);
25 });
26 }
27 ...
28 }
29

30

Integration with other systems using Java API client 53

Listing 8.8 Consul subscribe for services
1 ...
2 @Singleton
3 @OperationContainer
4 public class ConsulOperationContainer {
5 ...
6 @Operation(name = "SUBSCRIBE_SERVICES")
7 public String subscribeServices(
8 @Parameter(name = "indexFrom") final int indexFrom,
9 @Parameter(name = "indexTo") final int indexTo) {

10 return foreachDo(indexFrom, indexTo, i -> {
11 final int finalI = i;
12 final ServiceCatalogCache cache = ServiceCatalogCache.newCache(
13 client.catalogClient(),
14 "service-" + i
15);
16 cache.addListener(new ConsulCache.Listener<String, CatalogService>() {
17 @Override
18 public void notify(final Map<String, CatalogService> newValues) {
19 final var serviceInfo = newValues.get("" + finalI);
20 if (serviceInfo != null) {
21 logger.atInfo().log("Received info about service: %s", serviceInfo);
22 }
23 }
24 });
25 this.caches.compute(finalI, (key, existingCache) -> {
26 if (existingCache != null) {
27 existingCache.stop();
28 }
29 return cache;
30 });
31 cache.start();
32 });
33 }
34 ...
35 @Operation(name = "UNSUBSCRIBE_SERVICES")
36 public String unSubscribeServices(
37 @Parameter(name = "indexFrom") final int indexFrom,
38 @Parameter(name = "indexTo") final int indexTo) {
39 return foreachDo(indexFrom, indexTo, i -> this.caches.get(i).stop());
40 }
41 ...
42 }

Chapter 9

Demonstration of the prototype

The prototype demonstration primarily serves as a proof of concept, showcasing the deployment
of a Consul cluster onto LXCs and subsequent interactions. Its core objective is to validate
whether the deployed Consul instances function as described in the official documentation and
fulfil the requirements mentioned in Chapter 4. Key areas of focus include assessing the failure
tolerance of the Raft algorithm, estimating the storage capacity of Consul, measuring response
times for requests to the Consul cluster, and exploring the capabilities of GUI.

9.1 Configuration for production environment
The author of the thesis investigated how to configure the Consul cluster for a production envi-
ronment from the documentation [74]. The framework seems opinionated, so there is no need to
specify many settings, and defaults are usually the best choice. The main configuration factor
appeared to be the raft multiplier specifying timeouts related to gossip protocol heartbeats
and leader election. The recommended value is 1. “The trade off is between leader stability and
time to recover from an actual leader failure. A short multiplier minimises failure detection and
election time but may be triggered frequently in high-latency situations. This can cause constant
leadership churn and associated unavailability. A high multiplier reduces the chances that spuri-
ous failures will cause leadership churn, but it does this at the expense of taking longer to detect
real failures and thus takes longer to restore cluster availability.” [74]

Another crucial factor is the rate limitation of client requests. The read rate and write -
rate refer to the limits of client requests per second. When the enforcing mode is set, the
Consul server will stop accepting new requests once the limit is reached. The permissive mode
is the softest option, with the Consul server only writing information about hitting the limit into
the log. The disabled mode turns off the rate limit, which is the default option. [74]

The configuration is depicted in Listing 9.1.

9.2 Deployment schema
On-premise servers were utilised to deploy systems, with all hosts being provisioned within LXCs.
In subsequent phases, exploring deploying the system in a cloud environment would be beneficial,
mainly in exploring the multiple datacenter deployment. However, the current setup suffices for
the initial implementation and gaining hands-on experience with the Consul.

The prototype consists solely of the AB agent and Consul cluster, where operations on each
agent can be initiated via a gRPC call. The agent operation then triggers an HTTP call to the
localhost Consul client using the Rickfast implementation [46]. The code for agent methods is

55

56 Demonstration of the prototype

Listing 9.1 Performance fine-tuning

1 "performance": {
2 "raft_multiplier": 1
3 },
4 "limits": {
5 "request_limits": {
6 "mode": "enforcing",
7 "read_rate": 10000,
8 "write_rate": 10000
9 }

10 }

discussed in the preceding Section 8.5. The agent will interact with the Consul cluster, which
consists of three servers – the minimum size for a fault-tolerant cluster. An equivalent number
of boxes with Consul clients are also deployed in the same datacenter. The complete schema is
visible in Figure 9.1.

Figure 9.1 Prototype deployment schema

Consul GUI 57

9.3 Consul GUI
The GUI needs to be enabled from the config file as presented in Listing 9.2. The GUI is
accessible only from Consul servers, not from clients. The GUI is accessible only from a Consul
server, not a client.

Listing 9.2 Enabling the GUI
1 "ui_config": {
2 "enabled": true
3 }

The GUI allows users to access different functionalities such as viewing the cluster’s state,
browsing stored data, monitoring leader election status, and more. In Figure 9.2, the cluster’s
state and the marked leader node are visible. In Figure 9.3, there is a list displaying available
services, along with information about their health checks’ status and the number of instances
for each service. Users can click on a service to view more details in Figure 9.4, such as which
node each instance runs on, service tags, and routing rules.

Figure 9.2 Consul GUI nodes

58 Demonstration of the prototype

Figure 9.3 Consul GUI services

Consul GUI 59

Figure 9.4 Consul GUI service detail

60 Demonstration of the prototype

9.4 Fault tolerance and stale mode testing
The fault tolerance comes from the properties of the Raft algorithm, and the documentation
ensures that it should work well. However, it is better to test as the testing is not that time-
consuming, and this is a critical feature of the service discovery system.

The testing was done to assert that the leader election, data replication, and consistency work
as stated in the Consul documentation. Another task was to check how the consistency mode
per HTTP request works.

To test the fault tolerance of the cluster, boxes containing Consul servers were turned on
and off repeatedly to check whether each node maintained consistent data. The stale request
method was used to verify the content of each server, as consensus from the leader is not required
to retrieve the data. The entire test scenario is described step by step in following Section 9.4.1.

9.4.1 Testing scenario
1. Set the default consistency mode in the config file and start all three Consul servers.

2. Register some service from any node.

3. Assert that all Consul servers keep the same data by sending a stale request to each server
and comparing the results.

4. Stop the box-1.

5. Assert that Consul cluster works with two instances running by registering and unregistering
another service

6. Start box-1 and wait for the Consul server to rejoin the cluster

7. Assert the same as in step 3. Assert that the server on box-1 got synced with the rest of
the cluster.

8. Stop box-1 and box-2.

9. Assert that normal requests are rejected, only stale requests work.

10. Stop box-3.

11. Start box-1, box-2, box-3.

12. Assert: the same as in step 3.

Commands for retrieving and posting the data are shown in Listing 9.3. For simplicity, the
curl command has been used for interacting with the HTTP endpoint instead of the Rickfast
java client [46].

Listing 9.3 Commands for fault tolerance testing
1 # Command for getting the services using the stale mode
2 curl http://10.40.81.28:8500/v1/catalog/services?stale
3

4 # Command for registering a service into the service catalog
5 curl --request PUT --data @payload.json http://10.40.81.28:8500/v1/catalog/register

Performance measurements 61

9.4.2 Results
The test scenario was successful and the cluster operated as expected. The Consul cluster
functioned well with only two servers, showing its fault tolerance. With one server, standard
requests were rejected because consensus could not happen, and the stale request feature still
worked. When a stopped node was restarted, data replication was smooth.

9.5 Performance measurements

Consul makes its metrics available through the /agent/metrics endpoint, with data aggregated
every 10 seconds. This feature greatly aids in performance assessment and will be valuable
for administrators in monitoring the health and efficiency of the Consul cluster based on these
metrics. There is a wealth of metrics available, but for now, the author of this thesis has sin-
gled out consul.rpc.server.call as the most significant metric, as it closely reflects server
workload. This metric measures the time taken for an RPC call to respond, measured in mil-
liseconds. Additionally, RAM usage consul.runtime.alloc bytes is of interest since Consul
operates in memory. Finally, another aspect worth considering is the number of HTTP requests
consul.api.http for each endpoint across all nodes.

9.5.1 Scraping telemetry with Prometheus
To gain a comprehensive view of the metrics over time, Prometheus [13] can be used to periodi-
cally scrape data from the endpoint. The data can be visualised in the dashboard. There is also
a way to download the data from dashboards using the Prometheus API [82]. The example of
API usage is in Listing 9.5. Configuring Prometheus on the Consul side is simple. It involves
adjusting a few properties in the Consul configuration file. The key aspect is filtering out the
important metrics. The exact configuration is shown in Listing 9.4.

Listing 9.4 Consul telemetry with Prometheus
1 "telemetry": {
2 "prometheus_retention_time" : "300s",
3 "filter_default": false,
4 "enable_host_metrics": true,
5 "prefix_filter": [
6 "-consul",
7 "+consul.api.http",
8 "+consul.rpc.server.call",
9 "+consul.box-1.runtime.alloc_bytes",

10 "+consul.box-1.runtime.sys_bytes",
11 "+consul.box-2.runtime.alloc_bytes",
12 "+consul.box-2.runtime.sys_bytes",
13 "+consul.box-3.runtime.alloc_bytes",
14 "+consul.box-3.runtime.sys_bytes",
15 "+consul.box-4.runtime.alloc_bytes",
16 "+consul.box-4.runtime.sys_bytes",
17 "+consul.box-5.runtime.alloc_bytes",
18 "+consul.box-5.runtime.sys_bytes",
19 "+consul.box-6.runtime.alloc_bytes",
20 "+consul.box-6.runtime.sys_bytes"
21]
22 }

62 Demonstration of the prototype

Listing 9.5 Prometheus download data
1 curl -g 'http://<prometheus-ip>:<prometheus-port>/api/v1/query_range?query=consul_rpc_server_call
2 &start=2024-04-15T8:25:30.781Z&end=2024-04-15T16:00:30.781Z&step=10s'

9.5.2 Test scenario
The test scenario was straightforward: 20, 000 registration requests, at a rate of 1, 000 per second,
were simultaneously triggered on box-1 and box-2 Consul clients.

9.5.3 Results
As visible in Figure 9.5, the RAM usage remains within reasonable limits, hovering around
200 MBs even after registering 40, 000 services.

Figure 9.5 Memory allocation in MB

As expected, the server response time increases over time. The 0.99 quantile indicates that
99 % of requests are executed within a certain number of milliseconds. The full diagram is shown
in Figure 9.6.

As apparent from Figure 9.7, the number of requests reported by the telemetry module did
not match the expected rate of 2, 000 requests per second. During 23 minutes, 40, 000 services
were registered, which resulted in an average of 30 requests per second. At the start, there were
800 requests every 5 seconds, equivalent to 160 requests per second. The official documentation
states that workflows that require heavy writing tend to be limited by disk I/O [74]. Discus-
sions online suggest that Consul is designed to favour reads over writes. Conducting further
performance testing in a cloud environment where resources can be better controlled may be
beneficial. Resource utilisation evaluation on the current LXC setup, which is shared with other
LXCs, is challenging. Additionally, it is important to investigate potential problems in the cur-
rent implementation, such as rate limiting in the AB agent, within the Rickfast client [46], or

Performance measurements 63

Figure 9.6 Leader server response times

15
 14

:30

15
 14

:35

15
 14

:40

15
 14

:45

15
 14

:50

Datetime

50

100

150

200

250

300

350

400

M
illi

se
co

nd
s

The consul_rpc_server_call metric
for catalog.register method on the leader server, 0.99 quantile

on the Consul client side, which could contribute to slowdowns. The current numbers should be
sufficient for the existing platform, but scalability concerns may arise with larger deployments,
requiring additional performance testing and investigations.

64 Demonstration of the prototype

Figure 9.7 Count of registration calls

Chapter 10

Conclusion

The thesis aimed to identify the optimal service discovery solution to facilitate the transition of
the current platform to a microservice architecture and cloud environment.

The steps involved familiarising with the theory of distributed systems and service discov-
ery, gathering abstract requirements and researching existing frameworks while simultaneously
refining requirements through team discussion. Following this, a thorough comparison of exist-
ing solutions was undertaken to justify the selection of HashiCorp Consul as the most suitable
technology. Subsequently, a solution was designed, and a prototype was developed, showcasing
Consul’s functionality and potential within the company’s platform.

The outcome of the thesis was a recommendation for Consul, supported by the implemen-
tation of a prototype integrated into the company’s source code, paving the way for future
performance testing and aligning with the company’s long-term vision of migrating to the cloud.

10.1 Future work
As mentioned in the previous sections, several future steps need to be taken before refactoring
the current service discovery solution can be considered complete. The ideal next steps are to
expand the prototype to cover multiple datacenters, conduct further performance tests to ensure
it meets the platform’s requirements, and deploy it in a cloud environment to understand its
behaviour better there.

After this final round of testing, it should be ready to receive a green light for refactoring.
This will involve replacing the current implementation of the service discovery with Consul and
utilising the code already written for a prototype.

65

Bibliography

[1] Apache. Apache Curator.
url: https://github.com/apache/curator (visited on 03/21/2024).

[2] ZooKeeper Authors. ZooKeeper Internals. Mar. 12, 2024.
url: https://zookeeper.apache.org/doc/r3.9.2/zookeeperOver.html (visited on
03/23/2024).

[3] Seth Gilbert and Nancy Lynch. “Perspectives on the CAP Theorem”.
In: Computer 45.2 (2012), pp. 30–36.

[4] HashiCorp Authors. What is Consul? HashiCorp, Inc.
url: https://developer.hashicorp.com/consul/docs/intro (visited on 03/23/2024).

[5] Ramtin Jabbari et al.
“What is DevOps? A systematic mapping study on definitions and practices”.
In: Proceedings of the scientific workshop proceedings of XP2016. 2016, pp. 1–11.

[6] Adaoma Ezenwe, Eoghan Furey, and Kevin Curran.
“Mitigating Denial of Service Attacks with Load Balancing”.
In: Journal of Robotics and Control (JRC) 1.4 (2020), pp. 129–135.

[7] Etcd Authors. What is etcd? Apr. 20, 2023.
url: https://etcd.io/docs/v3.5/faq/ (visited on 03/21/2024).

[8] Scott Chacon and Ben Straub. Pro git. Springer Nature, 2014.
[9] Go Authors. The Go Programming Language.

url: https://go.dev/ (visited on 04/25/2024).
[10] HashiCorp Authors. HashiCorp. HashiCorp, Inc.

url: https://www.hashicorp.com/ (visited on 04/25/2024).
[11] Janet Kuhn. “Decrypting the MoSCoW analysis”.

In: The workable, practical guide to Do IT Yourself 5 (2009).
[12] Netflix Eureka Authors. What is Eureka? Netflix Eureka. Dec. 18, 2014.

url: https://github.com/Netflix/eureka/wiki/Eureka-at-a-glance (visited on
03/23/2024).

[13] Prometheus Authors. What is Prometheus?
url: https://prometheus.io/docs/introduction/overview/ (visited on 04/16/2024).

[14] Diego Ongaro and John Ousterhout.
“In search of an understandable consensus algorithm (extended version)”.
In: Proceeding of USENIX annual technical conference, USENIX ATC. 2014, pp. 19–20.

67

https://github.com/apache/curator
https://zookeeper.apache.org/doc/r3.9.2/zookeeperOver.html
https://developer.hashicorp.com/consul/docs/intro
https://etcd.io/docs/v3.5/faq/
https://go.dev/
https://www.hashicorp.com/
https://github.com/Netflix/eureka/wiki/Eureka-at-a-glance
https://prometheus.io/docs/introduction/overview/

68 Bibliography

[15] Redis Authors. Introduction to Redis.
url: https://redis.io/docs/about/ (visited on 03/21/2024).

[16] HashiCorp Authors. Documentation. HashiCorp, Inc.
url: https://www.serf.io/docs/index.html (visited on 04/25/2024).

[17] Mongodb Authors. Key-Value Databases. MongoDB, Inc. url:
https://www.mongodb.com/databases/key-value-database (visited on 12/11/2023).

[18] Ben Lutkevich and Alexander S. Gillis. Definition of High Availability (HA). TechTarget.
Apr. 1, 2021. url:
https://www.techtarget.com/searchdatacenter/definition/high-availability
(visited on 04/22/2024).

[19] R.V. White and F.M. Miles. “Principles of fault tolerance”.
In: Proceedings of Applied Power Electronics Conference. APEC ’96. Vol. 1. 1996,
18–25 vol.1. doi: 10.1109/APEC.1996.500416.

[20] Martin Fowler and James Lewis. Microservices. Mar. 25, 2014. url:
https://martinfowler.com/articles/microservices.html (visited on 03/25/2024).

[21] Martin Fowler. Microservice Trade-Offs. July 1, 2015.
url: https://martinfowler.com/articles/microservice-trade-offs.html (visited
on 03/26/2024).

[22] Rishabh Batra. Eventual Consistency in Distributed Systems — Learn System Design.
Feb. 21, 2024. url: https://www.geeksforgeeks.org/eventual-consistency-in-
distributive-systems-learn-system-design/#what-is-eventual-consistency
(visited on 03/27/2024).

[23] Eric Brewer. CAP Twelve Years Later: How the ”Rules” Have Changed. June 30, 2012.
url: https://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-
have-changed/ (visited on 12/23/2023).

[24] A. Khiyaita et al. “Load balancing cloud computing: State of art”.
In: 2012 National Days of Network Security and Systems. 2012, pp. 106–109.
doi: 10.1109/JNS2.2012.6249253.

[25] Vishva Desai, Yash Koladia, and Suvarna Pansambal.
“Microservices: architecture and technologies”.
In: Int. J. Res. Appl. Sci. Eng. Technol 8.10 (2020), pp. 679–686.

[26] Dr. Martin Kleppmann. Concurrent and Distributed Systems. Michaelmas term.
University of Cambridge. 2021.
url: https://www.cl.cam.ac.uk/teaching/2122/ConcDisSys/dist-sys-notes.pdf
(visited on 04/24/2024). Lecture videos available at
https://www.youtube.com/playlist?list=PLeKd45zvjcDFUEvohrHdUFe97RItdiB.

[27] Prateek Gupta. Gossip Protocol in distributed systems. Apr. 23, 2022.
url: https://medium.com/nerd-for-tech/gossip-protocol-in-distributed-
systems-e2b0665c7135 (visited on 12/25/2023).

[28] Martin Kleppmann. Designing data-intensive applications. 2019.
[29] Hesam Nejati Sharif Aldin et al. “Consistency models in distributed systems: A survey on

definitions, disciplines, challenges and applications”.
In: arXiv preprint arXiv:1902.03305 (2019).

[30] Lamport. “How to Make a Multiprocessor Computer That Correctly Executes
Multiprocess Programs”.
In: IEEE Transactions on Computers C-28.9 (1979), pp. 690–691.
doi: 10.1109/TC.1979.1675439.

https://redis.io/docs/about/
https://www.serf.io/docs/index.html
https://www.mongodb.com/databases/key-value-database
https://www.techtarget.com/searchdatacenter/definition/high-availability
https://doi.org/10.1109/APEC.1996.500416
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservice-trade-offs.html
https://www.geeksforgeeks.org/eventual-consistency-in-distributive-systems-learn-system-design/#what-is-eventual-consistency
https://www.geeksforgeeks.org/eventual-consistency-in-distributive-systems-learn-system-design/#what-is-eventual-consistency
https://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed/
https://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed/
https://doi.org/10.1109/JNS2.2012.6249253
https://www.cl.cam.ac.uk/teaching/2122/ConcDisSys/dist-sys-notes.pdf
https://www.youtube.com/playlist?list=PLeKd45zvjcDFUEv ohr HdUFe97RItdiB
https://medium.com/nerd-for-tech/gossip-protocol-in-distributed-systems-e2b0665c7135
https://medium.com/nerd-for-tech/gossip-protocol-in-distributed-systems-e2b0665c7135
https://doi.org/10.1109/TC.1979.1675439

Bibliography 69

[31] Martin Kleppmann. “A Critique of the CAP Theorem”.
In: arXiv preprint arXiv:1509.05393 (2015).

[32] ZooKeeper Authors. ZooKeeper Internals. July 18, 2024.
url: https://zookeeper.apache.org/doc/r3.9.2/zookeeperInternals.html (visited
on 02/05/2024).

[33] Tomas Vondra. Containers - principles and Docker. Czech technical university in Prague.
Apr. 3, 2022. url: https://courses.fit.cvut.cz/NIE-VCC/ (visited on 04/22/2024).

[34] Petr Zemanek. Introduction to (Linux) Kernel. Czech technical university in Prague.
url: https://courses.fit.cvut.cz/NI-OSY/ (visited on 04/22/2024).

[35] HashiCorp Authors. Consul Vocabulary. HashiCorp, Inc.
url: https://developer.hashicorp.com/consul/tutorials/production-
deploy/deployment-guide (visited on 12/11/2023).

[36] Netflix Eureka Authors. Netflix Eureka.
url: https://github.com/Netflix/eureka (visited on 02/05/2024).

[37] Etcd Authors. etcd versus other key-value stores.
url: https://etcd.io/docs/v3.5/learning/why/ (visited on 02/05/2024).

[38] Heather Bennett. Is Redis a Data Structure? July 1, 2023. url:
https://serverlogic3.com/is-redis-a-data-structure/ (visited on 04/27/2024).

[39] Redis authors. Scale with Redis Cluster.
url: https://redis.io/docs/management/scaling/ (visited on 03/11/2024).

[40] Redis authors. Redis Sentinel Documentation.
url: https://cndoc.github.io/redis-doc-cn/cn/topics/sentinel.html (visited on
03/11/2024).

[41] Redis authors. Cluster architecture.
url: https://redis.io/redis-enterprise/technology/redis-enterprise-
cluster-architecture/ (visited on 03/11/2024).

[42] HashiCorp Authors. Consistency modes. HashiCorp, Inc.
url: https://developer.hashicorp.com/consul/api-docs/features/consistency
(visited on 12/26/2023).

[43] Etcd Authors. Design learner. July 23, 2021. url:
https://etcd.io/docs/v3.5/learning/design-learner/ (visited on 02/05/2024).

[44] HashiCorp Authors. Consul Enterprise. HashiCorp, Inc.
url: https://developer.hashicorp.com/consul/docs/enterprise (visited on
03/24/2024).

[45] Redis Authors. Redis Enterprise. Redis Ltd.
url: https://redis.io/docs/about/redis-enterprise/ (visited on 03/24/2024).

[46] Rick Fast. Consul Client for Java.
url: https://github.com/rickfast/consul-client (visited on 03/21/2024).

[47] Etcd Authors. jetcd - A Java Client for etcd.
url: https://github.com/etcd-io/jetcd (visited on 03/21/2024).

[48] Redis Authors. Jedis. url: https://github.com/redis/jedis (visited on 03/21/2024).
[49] Etcd Authors. Interacting with etcd. June 14, 2021. url:

https://etcd.io/docs/v3.5/dev-guide/interacting_v3/ (visited on 03/21/2024).
[50] Zookeeper Authors. ZooKeeper Programmer’s Guide. url: https:

//zookeeper.apache.org/doc/r3.9.2/zookeeperProgrammers.html#ch_zkWatches
(visited on 03/21/2024).

https://zookeeper.apache.org/doc/r3.9.2/zookeeperInternals.html
https://courses.fit.cvut.cz/NIE-VCC/
https://courses.fit.cvut.cz/NI-OSY/
https://developer.hashicorp.com/consul/tutorials/production-deploy/deployment-guide
https://developer.hashicorp.com/consul/tutorials/production-deploy/deployment-guide
https://github.com/Netflix/eureka
https://etcd.io/docs/v3.5/learning/why/
https://serverlogic3.com/is-redis-a-data-structure/
https://redis.io/docs/management/scaling/
https://cndoc.github.io/redis-doc-cn/cn/topics/sentinel.html
https://redis.io/redis-enterprise/technology/redis-enterprise-cluster-architecture/
https://redis.io/redis-enterprise/technology/redis-enterprise-cluster-architecture/
https://developer.hashicorp.com/consul/api-docs/features/consistency
https://etcd.io/docs/v3.5/learning/design-learner/
https://developer.hashicorp.com/consul/docs/enterprise
https://redis.io/docs/about/redis-enterprise/
https://github.com/rickfast/consul-client
https://github.com/etcd-io/jetcd
https://github.com/redis/jedis
https://etcd.io/docs/v3.5/dev-guide/interacting_v3/
https://zookeeper.apache.org/doc/r3.9.2/zookeeperProgrammers.html#ch_zkWatches
https://zookeeper.apache.org/doc/r3.9.2/zookeeperProgrammers.html#ch_zkWatches

70 Bibliography

[51] Redis authors. Keyspace triggers. url:
https://redis.io/docs/latest/develop/interact/programmability/triggers-
and-functions/concepts/triggers/keyspace_triggers/ (visited on 03/11/2024).

[52] HashiCorp Authors. Watches Overview and Reference. HashiCorp, Inc.
url: https://developer.hashicorp.com/consul/docs/dynamic-app-config/watches
(visited on 12/29/2023).

[53] HashiCorp Authors. Memory requirements. HashiCorp, Inc. url:
https://developer.hashicorp.com/consul/docs/install/performance#memory-
requirements (visited on 03/21/2024).

[54] Etcd Authors. Storage size limit. Apr. 20, 2023.
url: https://etcd.io/docs/v3.5/dev-guide/limit/#storage-size-limit (visited
on 03/21/2024).

[55] Redis Authors. Database memory limits. Feb. 1, 2024.
url: https://docs.redis.com/latest/rs/databases/memory-performance/memory-
limit/ (visited on 03/21/2024).

[56] Redis Authors. Keyspace.
url: https://redis.io/docs/manual/keyspace/ (visited on 03/21/2024).

[57] HashiCorp Authors. Watches Overview and Reference. HashiCorp, Inc.
url: https://developer.hashicorp.com/consul/tutorials/certification-
associate-tutorials/get-started-explore-the-ui (visited on 12/29/2023).

[58] Netflix Eureka Authors. Spring Cloud Netflix. HashiCorp, Inc. url:
https://github.com/spring-cloud/spring-cloud-netflix (visited on 12/29/2023).

[59] Tamas Geschitz. etcdmanager.
url: https://github.com/gtamas/etcdmanager (visited on 03/21/2024).

[60] Lubos Kozmon. zoonavigator.
url: https://github.com/elkozmon/zoonavigator (visited on 03/21/2024).

[61] Redis Authors. Redis insight. Redis Ltd.
url: https://redis.com/redis-enterprise/redis-insight/ (visited on 03/21/2024).

[62] Etcd Authors. Compacted revisions. June 14, 2021. url:
https://etcd.io/docs/v3.5/dev-guide/interacting_v3/#compacted-revisions
(visited on 03/25/2024).

[63] HashiCorp Authors. Consul. HashiCorp, Inc.
url: https://github.com/hashicorp/consul (visited on 04/28/2024).

[64] HashiCorp Authors. 7 Years On: Remembering the Origins of HashiCorp Consul.
Hashicorp, Inc. Oct. 21, 2020. url: https://www.hashicorp.com/resources/7-years-
on-remembering-the-origins-of-hashicorp-consul (visited on 12/25/2023).

[65] HashiCorp Authors. The Tao of HashiCorp. Hashicorp, Inc.
url: https://www.hashicorp.com/tao-of-hashicorp (visited on 12/25/2023).

[66] HashiCorp Authors. Consul use cases. HashiCorp, Inc. url:
https://www.hashicorp.com/products/consul/use-cases (visited on 04/28/2024).

[67] HashiCorp Authors. Health checks. HashiCorp, Inc.
url: https://developer.hashicorp.com/consul/docs/services/usage/checks
(visited on 04/28/2024).

[68] HashiCorp Authors. Sessions and Distributed Locks Overview. HashiCorp, Inc. url:
https://developer.hashicorp.com/consul/docs/dynamic-app-config/sessions
(visited on 04/28/2024).

https://redis.io/docs/latest/develop/interact/programmability/triggers-and-functions/concepts/triggers/keyspace_triggers/
https://redis.io/docs/latest/develop/interact/programmability/triggers-and-functions/concepts/triggers/keyspace_triggers/
https://developer.hashicorp.com/consul/docs/dynamic-app-config/watches
https://developer.hashicorp.com/consul/docs/install/performance#memory-requirements
https://developer.hashicorp.com/consul/docs/install/performance#memory-requirements
https://etcd.io/docs/v3.5/dev-guide/limit/#storage-size-limit
https://docs.redis.com/latest/rs/databases/memory-performance/memory-limit/
https://docs.redis.com/latest/rs/databases/memory-performance/memory-limit/
https://redis.io/docs/manual/keyspace/
https://developer.hashicorp.com/consul/tutorials/certification-associate-tutorials/get-started-explore-the-ui
https://developer.hashicorp.com/consul/tutorials/certification-associate-tutorials/get-started-explore-the-ui
https://github.com/spring-cloud/spring-cloud-netflix
https://github.com/gtamas/etcdmanager
https://github.com/elkozmon/zoonavigator
https://redis.com/redis-enterprise/redis-insight/
https://etcd.io/docs/v3.5/dev-guide/interacting_v3/#compacted-revisions
https://github.com/hashicorp/consul
https://www.hashicorp.com/resources/7-years-on-remembering-the-origins-of-hashicorp-consul
https://www.hashicorp.com/resources/7-years-on-remembering-the-origins-of-hashicorp-consul
https://www.hashicorp.com/tao-of-hashicorp
https://www.hashicorp.com/products/consul/use-cases
https://developer.hashicorp.com/consul/docs/services/usage/checks
https://developer.hashicorp.com/consul/docs/dynamic-app-config/sessions

Bibliography 71

[69] HashiCorp Authors. Consul API Overview. HashiCorp, Inc.
url: https://developer.hashicorp.com/consul/api-docs (visited on 12/26/2023).

[70] HashiCorp Authors. Consul Architecture. HashiCorp, Inc.
url: https://developer.hashicorp.com/consul/docs/architecture (visited on
12/10/2023).

[71] HashiCorp Authors. Consul Vocabulary. HashiCorp, Inc.
url: https://developer.hashicorp.com/consul/docs/install/glossary (visited on
12/11/2023).

[72] HashiCorp Authors. Consul Architecture. HashiCorp, Inc.
url: https://developer.hashicorp.com/consul/docs/architecture#cross-
datacenter-requests (visited on 12/10/2023).

[73] HashiCorp Authors. Install Consul. Hashicorp, Inc. url:
https://developer.hashicorp.com/consul/docs/install (visited on 12/25/2023).

[74] HashiCorp Authors. Memory requirements. HashiCorp, Inc.
url: https://developer.hashicorp.com/consul/docs/install/performance (visited
on 04/12/2024).

[75] HashiCorp Authors. Anti-Entropy Enforcement. HashiCorp, Inc.
url: https://developer.hashicorp.com/consul/docs/architecture/anti-entropy
(visited on 12/26/2023).

[76] HashiCorp Authors. Agent caching. HashiCorp, Inc.
url: https://developer.hashicorp.com/consul/api-docs/features/caching
(visited on 12/26/2023).

[77] Pierre Souchay. Consul Streaming: What’s behind it? Criteo R&D Blog. Feb. 2, 2021.
url: https://medium.com/criteo-engineering/consul-streaming-whats-behind-
it-6f44f77a5175 (visited on 12/10/2023).

[78] PubNub Authors. What is Long Polling? PubNub.
url: https://www.pubnub.com/guides/long-polling/ (visited on 04/27/2024).

[79] HashiCorp Authors. Service configuration with Consul Template. HashiCorp, Inc.
url: https://developer.hashicorp.com/consul/tutorials/developer-
configuration/consul-template (visited on 12/29/2023).

[80] HashiCorp Authors. Agents Configuration File Reference. HashiCorp, Inc.
url: https://developer.hashicorp.com/consul/docs/agent/config/config-files
(visited on 12/29/2023).

[81] HashiCorp Authors. Agent HTTP API. HashiCorp, Inc.
url: https://developer.hashicorp.com/consul/api-docs/agent#graceful-leave-
and-shutdown (visited on 12/26/2023).

[82] Prometheus Authors. HTTP API.
url: https://prometheus.io/docs/prometheus/latest/querying/api/ (visited on
04/16/2024).

https://developer.hashicorp.com/consul/api-docs
https://developer.hashicorp.com/consul/docs/architecture
https://developer.hashicorp.com/consul/docs/install/glossary
https://developer.hashicorp.com/consul/docs/architecture#cross-datacenter-requests
https://developer.hashicorp.com/consul/docs/architecture#cross-datacenter-requests
https://developer.hashicorp.com/consul/docs/install
https://developer.hashicorp.com/consul/docs/install/performance
https://developer.hashicorp.com/consul/docs/architecture/anti-entropy
https://developer.hashicorp.com/consul/api-docs/features/caching
https://medium.com/criteo-engineering/consul-streaming-whats-behind-it-6f44f77a5175
https://medium.com/criteo-engineering/consul-streaming-whats-behind-it-6f44f77a5175
https://www.pubnub.com/guides/long-polling/
https://developer.hashicorp.com/consul/tutorials/developer-configuration/consul-template
https://developer.hashicorp.com/consul/tutorials/developer-configuration/consul-template
https://developer.hashicorp.com/consul/docs/agent/config/config-files
https://developer.hashicorp.com/consul/api-docs/agent#graceful-leave-and-shutdown
https://developer.hashicorp.com/consul/api-docs/agent#graceful-leave-and-shutdown
https://prometheus.io/docs/prometheus/latest/querying/api/

Contents of the enclosed media

README.md.................................a brief description of the content for this folder
DemonstrationAttachment.pdf............screenshots for demonstration of the prototype
FaultToleranceTest

README.md.............................a brief description of the content for this folder
testReport.log.........recorded output from terminal with the fault tolerance testing
mentioned in Section 9.4.1
register.json the first payload for the service registration operation
register2.json...............the second payload for the service registration operation
deregister.json..............the first payload for the service deregistration operation
deregister2.json.......... the second payload for the service deregistration operation

thesis.zip .. the source folder for LATEX
thesis.pdf...the text of the thesis in PDF format

73

	Acknowledgements
	Declaration
	Abstract
	Introduction
	Company
	Team

	Summary
	Motivation
	Goal
	Steps
	Results of the thesis
	Conclusion

	Theoretical background
	Requirements prioritisation MoSCow
	Key-value store
	Failure tolerance and high availability
	Microservice architecture
	Pros
	Cons

	Load balancing
	Service discovery
	Distributed systems
	Gossip protocol
	Leader-follower pattern
	Consistency models
	CAP theorem
	Consensus algorithms
	Raft algorithm

	Linux container

	Current service discovery architecture
	Service definition and meaning
	Actors
	Serf agent
	AB agent
	Distributed store
	Business applications

	Workflow

	Requirements
	Main focus
	CAP theorem
	Pricing
	Java API
	Maximal size of service registry
	Maximal size of one entry
	Documentation
	Subscription vs repeatedly polling the data
	GUI for admin
	Data revision history

	Comparison of existing service discovery solutions
	Existing solutions
	Consul
	Netflix Eureka
	Etcd
	ZooKeeper
	Redis

	Comparison
	Main focus
	Comparison based on CAP theorem
	Pricing
	Implemented the Java API client
	Subscription vs repeatedly polling the data
	Maximal reliable size of the storage
	Maximal size of one database entry
	Quality of the documentation
	Has a GUI?
	Has data revision history?

	Conclusion

	Consul analysis
	Philosophy
	Use cases
	Architecture
	Fault tolerance
	Consistency modes
	Default mode
	Consistent mode
	Stale mode
	Consistency mode per HTTP request

	Multiple datacenters
	WAN federation
	WAN gossip pool

	Deployment
	Hashicorp cloud platform

	Performance fine-tuning
	Anti-entropy
	Agent request caching

	Reactive environment
	Watches
	Templates

	Conclusion

	Design
	Using Consul service catalogue
	Using Consul for health checking
	Using Consul key-value store and other features

	Implementation
	Start
	Stop
	Configuration management
	Health checking
	Integration with other systems using Java API client
	Register service
	Deregister service
	Subscribe for a service

	Demonstration of the prototype
	Configuration for production environment
	Deployment schema
	Consul GUI
	Fault tolerance and stale mode testing
	Testing scenario
	Results

	Performance measurements
	Scraping telemetry with Prometheus
	Test scenario
	Results

	Conclusion
	Future work

	Contents of the enclosed media

