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Abstrakt: Práca sa zaoberá problematikou nižšej uplatniteľnosti budúcich výnosov, inak nazýva-
nej diskontovanie, pri využití plne pravdepodobnostného návrhu rozhodovacej stratégie (PPN).
PPN získava optimálnu stratégiu pre riešenie rozhodovacích úloh iba prostredníctvom pravdepo-
dobnostných distribúcií, v čom spočíva jeho hlavná výhoda. Štandardne sa rozhodovacie úlohy
riešia pomocou Markovských rozhodovacích procesov (MRP), ktoré PPN taktiež zahŕňa. Postupy
riešenia diskontovaných MRP už navrhnuté boli. PPN má však výhodu pri riešení úloh s nezná-
mym modelom systému. Vďaka svojej pravdepodobnostnej podstate totiž PPN získava presnejšie
odhady tohto modelu. Po predchádzajúcom rozšírení PPN o diskontovanie a odhadovanie modelu
systému sa táto práca zameriava na preskúmanie vplyvu diskontovania na rozhodovacie procesy
a jeho možné výhody v úlohách s neznámymi modelmi systému.
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Title: Applicable Adaptive Discounted Fully Probabilistic
Design of Decision Strategy

Author: Soňa Molnárová
Abstract: The thesis addresses the issue of decreased utility of future rewards, referred to as
discounting, while utilizing fully probabilistic design (FPD) of decision strategies. FPD obtains
the optimal strategy for decision tasks using only probability distributions, which is its main
asset. The standard way of solving decision tasks is provided by Markov decision processes
(MDP), which FPD covers as a special case. Methods of solving discounted MDPs have already
been introduced. However, the use of FPD might be advantageous when solving tasks with an
unknown system model. Due to its probabilistic nature, FPD is able to obtain a more precise
estimation of this model. After previously introducing discounting and system model estimation
to FPD, the thesis now examines the effect of discounting on decision processes and its possible
advantages when dealing with an unknown system model.

Key words: Bayesian estimation, decision making, discounting, forgetting,
probabilistic strategy design, suppression of approximate modeling impact
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Chapter 1

Introduction

Each day, every person needs to make a countless decisions to reach his or her set goals.
Once a certain decision is made, it influences the decision maker’s environment, referred to as
the system, causing it to shift from its current state. Understanding how the system changes
under the impact of the chosen decisions, or actions, allows for process optimization using
standard probability calculus, as addressed in the theory of Markov decision processes [31].

To understand how the system evolves over time, it is necessary to know its model. The
system model is represented by the probability density function, which describes how the system
transitions between different states under the impact of chosen actions. Unfortunately, knowl-
edge of this model may often be lacking. Bayesian statistical methods [27] are frequently used
to estimate the system model. In Bayesian estimation, models are equipped with parameters,
considered to be random variables, and the probability density of these parameters is updated
after acquiring new data at each step of the process.

An especially challenging case of model estimation arises when parameter values are not
constant but vary over time. In such cases, an approach known as forgetting [18] is adopted to
make decisions regarding the studied parameters. The more significant the parameter change
in the given step of the process was considered to be, the more of the accumulated information
about the parameters is forgotten. Rather subtle changes are mostly neglected, whereas very
abrupt changes result in disregarding most of the accumulated information. If all gathered
information is forgotten, the model needs to be re-estimated from scratch.

Another potential issue is the increasing dimensionality of the task when numerical compu-
tations are attempted. As each step of the process brings new information about the parameter,
keeping it all can quickly disrupt the feasibility of the algorithm. A widely used method to avoid
this inconvenience is to replace the unknown parameters with their most likely estimates, im-
proving computational feasibility. This approach is known as the certainty-equivalence strategy,
see [16].

Once the system model estimate is known, it is possible to proceed to the optimization of
the process discussed earlier. Process optimization involves selecting actions that prompt the
system to move to the decision maker’s preferred states. By assigning a loss function to all
state transitions under the influence of actions, it is possible to choose the action related to the
minimal expected loss function. This practice is used in Markov decision processes.

Another, more general, approach is to construct a decision strategy, which is a sequence
of probability densities called decision rules. These describe the process of action selection in
probabilistic terms. This is where the fully probabilistic design of decision strategy [15] gets its
name. It minimizes the distance between the real system behavior described by system models

8



and decision rules, and their ideal equivalents. The ideals model the most optimistic scenario of
system evolution, which may not be attainable in reality.

In comparison with the standard Markov approach, the fully probabilistic formulation is ad-
vantageous due to its generality. All Markov decision tasks can be arbitrarily well approximated
by a fully probabilistic task, but some fully probabilistic tasks cannot be formulated as Markov
decision processes.

Decision tasks can also suffer from improper excitation, meaning that some actions and
states may not be chosen at all throughout the process. This results in incomplete description
of the system behavior, potentially leading to poor results. This is because the omitted actions
might have led to better system performance compared to the chosen actions [20]. However,
the randomized decision rules of the fully probabilistic design introduce a degree of exploration.
Actions are generated randomly, although there are still preferences towards certain values in
the form of probability bias.

Despite these advantages, Markov decision processes, being the more commonly used method
for decision problem solving, are equipped with more mathematical embellishments, one of these
being discounting. The lack of discounting has already been overcome in [24]. The resulting
discounted fully probabilistic design of decision strategy worked with a known state transition
model. As mentioned earlier, such a model is rarely known. System model estimation was
incorporated in [25], allowing this newly established discounted formulation to gain adaptivity
and become applicable in real-life decision tasks.

The aim of this finalizing work was to study the relationship between discounting and for-
getting. A set of hypotheses was formulated and tested to determine if a connection between the
two could be found and if an improvement in performance could be achieved. The results are pre-
sented in Section 3.5. However, before formulating the results, the basic theoretical foundation
had to be laid out. Section 2.3 recalls the theory regarding parameter estimation, while Section
2.5 discusses the issue of varying parameters and forgetting. Previously established discount-
ing is reintroduced in Section 3.4, after reintroducing the standard fully probabilistic design in
Section 3.2, together with its connection to Markov decision processes discussed in Section 3.3.
The conclusion summarizes the contributions of the work as well as its main results.
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Chapter 2

Bayesian Statistics

Since decisions can be influenced by all sorts of uncontrollable factors, decision processes
occurring in nature can be extremely complex. Furthermore many of these factors are unknown
to an outer observer. The outcomes of such processes can therefore seem to be random (otherwise
called stochastic) rather than generated based on some fixed set of deterministic rules.

Standard way to deal with random processes is to give them a probabilistic description. Each
of the process’ possible outcomes is said to occur with a certain probability. It is therefore said
that the outcomes follow a certain probability distribution.

Besides their characteristic functional form, probability distributions are also given by their
specific parameters. The functional form is usually assumed to be known, e.g. normal. However,
its parameters are seldom known and need to be estimated.

Classical methods such as maximum likelihood [33] can produce biased and imprecise esti-
mates for some distributions [22]. On the other hand Bayesian statistics treats parameters as
random variables and derives them by their probability distribution. This way the probability
of the best parameter value is non-zero even when the distribution does not peak directly at this
value. This makes Bayesian approach to parameter estimation more robust to bias. Moreover
probabilistic description logically leads to addressed decision making.

2.1 Basic Relations
As probability distribution uniquely specifies its corresponding probability density function1

[1], it is possible to model the parameters using densities instead. The purpose of this section is
to give a brief overview of frequently utilized operations when dealing with them.

Random outcomes are realizations of certain measurable functions called random variables.
All possible outcomes then form the range of the given random variable. Probability densities
are defined on measurable sets containing the mentioned outcomes.

For a non-negative function pX to be considered a probability density of the random variable
X it needs to follow normalization condition given below∫

Sx

pX(x)dx = 1,

where Sx is the range of X. This equation describes the case when X is a continuous random
variable. Integration shall be replaced with summation in discrete case.

1Probability density function will be oftentimes referred to as probability density or simply density in the later
text. Probability distribution will be also shortened and referred to as distribution.
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Densities can be used to express probability of some event occurrence as well. Let Sy be a
non-empty measurable subset of Sx, i.e. Sy ⊂ Sx. Probability P of X falling in set Sy is then
defined as

P(X ∈ Sy) =
∫
Sy

pX(x)dx, (2.1)

It is yet to be stressed that random variables can also have multidimensional range. In this
case it is possible to modify the probability density function as follows. Let Sx = Sa × Sb be
the Cartesian product of sets Sa and Sb. Then the probability density function of X can be
expressed as

pX(x) = pA,B(a, b). (2.2)
Function (2.2) is called joint probability density function of random variables A and B.

Having the knowledge of joint density pA,B it would be useful to determine the probability
density pB of B. Utilizing the above mentioned joint density and probability definition (2.1)

P(B ∈ Sy) = P(A ∈ Sa ∧ B ∈ Sb) =
∫

Sa×Sy

pA,B(a, b)d(a, b). (2.3)

The first two expressions in (2.3) are equivalent as it is sure that a random event A = a for
value a in SA will happen.

It has already been derived that the previous probability can also be written as in (2.1).
Comparing these two equations yields

pB(b) =
∫
Sa

pA,B(a,b)da, (2.4)

with the use of Fubini’s theorem [9] on the integral in (2.3). Probability density (2.4) is called
marginal. As usual, integration above needs to be replaced by summation for discrete random
variables.

Another frequent task is to determine how the joint density changes after certain information
about one of the two random variables is obtained. In other words, knowing pA,B, what happens
with the probability density once we have learned that B equals b. As there is no reason to
change the expectations towards random variable A it would make sense for the new density to
be proportional to the original one, i.e.

pA|B(a|b) = λpA,B(a,b), (2.5)

for all a in Sa and the known b, λ being a suitable constant. Probability density pA|B is called
conditional and it describes a two-dimensional variable X = (A, B) when the uncertainty about
one of its components (B in this case) is removed.

Once again for pA|B to be considered a probability density it needs to follow the normalization
rule, therefore

1 =
∫
Sa

pA|B(a|b)da =
∫
Sa

λpA,B(a,b)a = λpB(b),

where the last equation follows from the marginalization (2.4) and homogeneity of integrals.
Proper value of the λ coefficient has therefore been derived. Its substitution back to (2.5) yields
the complete formula valid for pB(b) > 0, i.e.

pA|B(a|b) = pA,B(a,b)
pB(b) . (2.6)
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Let C be a new one-dimensional continuous random variable with range SC . It enters the
relations (2.4) and (2.6) in the following manner

pB|C(b|c) =
∫
Sa

pA,B|C(a,b|c)da,

pA,B|C(a,b|c) = pA|B,C(a|b,c)pB|C(b|c).

The latter of the two can be rewritten by exchanging random variable A for random variable B
as

pA,B|C(a,b|c) = pB|A,C(b|a,c)pA|C(a|c).

Using the above formulas, probability density function conditional on both B and C can be
contained in the form

pA|B,C(a|b,c) =
pB|A,C(b|a,c)pA|C(a|c)∫

Sa

pB|A,C(b|a,c)pA|C(a|c)da .

The indexation by the respective random variable can make the notation quite cumbersome
as seen in the previous paragraphs. For the sake of simplicity, random variables will from now
on be identified solely by the arguments of their respective density. Using the declared new
notation it is possible to rewrite the previous relation in a more readable manner as

p(a|b,c) = p(b|a,c)p(a|c)∫
Sa

p(b|a,c)p(a|c)da . (2.7)

This equation is known as Bayes’ formula.
Densities in the previous paragraphs already dealt with multiple (specifically three) random

variables at once. Now let there be n random variables X1, ..., Xn, n being an arbitrary natural
number. By repeatedly applying the conditional probability density definition (2.6) it is possible
to decompose their joint density in the following way

p(x1, ..., xn) =
n∏

i=2
p(xi|xi−1, ..., x1)p(x1) ≡

n∏
i=1

p(xi|xi−1, ..., x1), (2.8)

where the second expression interprets p(x1) = p(x1|x0). This decomposition is also known as
chain rule and shall be made frequent use of in the following text.

2.2 System Model
Before any sort of estimation can take place, there need to be available data to base this

estimation on. These data can be generally divided into inputs, or actions, and outputs, or
partially observed states. Outputs equal to states in this work. Actions form the part of the
data which is directly passed on to the system while states present the response of the system.
This means they can be observed only passively and influenced purely through the chosen actions.
All data observed up to time t, t included, will be denoted by

Ht = (st, at, st−1, at−1, ..., s1, a1, s0),
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where at denotes the action influencing the system at time t while st is the system state at the
given time. This collection carries the information about the history of the system and describes
how the system evolves in time.

Knowing the initial state of the system s0, it is desirable to describe the next n steps of its
evolution. Using chain rule (2.8) derived in the previous section this can be done by the use of
a joint probability density p in the following way,

p(Hn|s0) =
n∏

t=1
p(st, at|Ht−1) =

n∏
t=1

p(st|at, Ht−1)p(at|Ht−1) ≡
n∏

t=1
m(st|at, Ht−1)r(at|Ht−1). (2.9)

Here, probability density m(st|at, Ht−1) represents how the current state depends on the past
history of the system. It models the state transitions dependent on the chosen actions and
system history, hence its mnemonic notation m. Density r(at|Ht−1) is used to decide the next
action once the history up to the point t − 1 has been observed. It will be referred to as decision
rule and will be denoted by r. A sequence of decision rules forms a decision strategy.

To construct a system model means to find the conditional probability densities introduced
in (2.9) and explained in the previous paragraph. Such task becomes more complex once the
model includes unknown parameters. In that case a direct use of m(st|at, Ht−1, θ), θ being the
unknown parameters with the values in Sθ, can only be made after the elimination of θ. Knowing
range Sθ the elimination is possible utilizing the marginalization formula (2.4)

m(st|at, Ht−1) =
∫
Sθ

m(st, θ|at, Ht−1))dθ =
∫
Sθ

m(st|at, Ht−1, θ)p(θ|at, Ht−1)dθ, (2.10)

where the new density p(θ|at, Ht−1) describes the uncertainty of parameters θ. Relation (2.10)
holds provided that θ is continuous. Otherwise the integration would be replaced by summation.

To conclude this section an exact specification of what exactly is meant by a system model
needs to be provided. Quoting [27], any mathematical description which defines the set of
conditional probability densities m for the time period required through a finite collection of
parameters is called a system model. The choice of model defining the conditional probabilities
featured in (2.9) and subsequent parameter estimation in (2.10) will be crucial for state prediction
and decision making in general.

2.3 Parameter Estimation
After acquiring the action-state (input-output) data Ht up to some finite epoch t, the question

to be answered is how to extract the information about the unknown parameter θ contained
in the data, i.e. how to calculate probability density p(θ|Ht). In Bayesian statistics the aim is
not to find a point estimate θ̂ using one of the classical statistical methods but to evaluate the
probability density as a whole. This makes sense as the main part of decision problems is to
predict the next state, which is an operation that does not require the knowledge of any point
estimates. Utilizing these would only result in lowering the decision accuracy.

The goal is to predict the next state purely based on the past history of the system. This
can be achieved using marginalization and chain rule

m(st+1|at+1, Ht) =
∫
Sθ

m(st+1|at+1, Ht, θ)p(θ|at+1, Ht)dθ,
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where the first factor in the integrand above is given by the model structure. Hence it is possible
to move onto prediction once the density p(θ|at+1, Ht) is found.

In many real life applications the estimation is required in real time. This means that no
fixed amount of data is available. More and more data is provided with each epoch. Were it not
so, it would be possible to perform a one-shot estimation, meaning all available data would be
processed at once.

Both of these cases can be treated at the same time in the following way. Provided probability
density p(θ|Ht1) and data Ht, where t1 < t, find density p(θ|Ht). Here, setting t1 = 0 leads to
one-shot estimation while setting t1 = t − 1 for all t defines a recursive relation for real time
estimation. Thus using Bayes formula (2.7) the sought after probability density can be obtained
as

p(θ|Ht) =
p(Ht

t1+1|Ht1 , θ)p(θ|Ht1)∫
Sθ

p(Ht
t1+1|Ht1 , θ)p(θ|Ht1)dθ

, (2.11)

where Ht
t1+1 is a symbol denoting all state-action data acquired in a discrete time interval

{t1 + 1, t1 + 2, ..., t}.
To solve the presented problem, p(Ht

t1+1|Ht1 , θ) has to be expressed through known proba-
bility densities. This will be done in the most general way where the actions are dependent on
the past states, therefore also possibly dependent on the parameters θ - it is said that actions
are generated in a closed loop.

The first expression in the numerator of (2.11) gains the form

p(Ht
t1+1|Ht1 , θ) =

t∏
τ=t1+1

m(sτ |aτ , Hτ−1, θ)r(aτ |Hτ−1, θ) (2.12)

after the application of chain rule. First probability density m(sτ |aτ , Hτ−1, θ) included in
the product is given by the model structure whereas the second probability density, namely
r(aτ |Hτ−1, θ), describes the action generation.

Let us now consider a situation when no more information about θ is available for opting aτ

than that given by data Hτ−1. This is the case when, for instance, the observer who observes
the system and the decision maker who influences it are the same person. Since all knowledge
available about the parameters is provided by the data, the last conditional density in (2.12)
can be simplified as

r(aτ |Hτ−1, θ) = r(aτ |Hτ−1). (2.13)
Provided that this condition holds, let us study the joint probability density of parameters

θ and actions aτ . Once again using chain rule, this probability density can be expressed as

p(θ, aτ |Hτ−1) = p(θ|aτ , Hτ−1)r(aτ |Hτ−1) = r(aτ |θ, Hτ−1)p(θ|Hτ−1). (2.14)
The equivalent conditions (2.13) and (2.14) are called the natural conditions of control2.

They can be interpreted in the following manner. Provided that data Hτ−1 are given, the
parameters and the inputs are conditionally independent.

2Natural conditions of control do not always have to be met. For example, if the decision maker possesses more
information about the parameters than the observer, the observer is able to acquire this additional information
by watching the decision maker. Equality (2.13) therefore does not hold in this case. However, for the needs of
this work further generalization will not be necessary and so the natural conditions of control will be assumed to
hold at all times.
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Utilizing the previous conditions, conditional probability density of the unknown parameters
given the past history of the system p(θ|Ht), see (2.11), can be formulated in the following
simplified way. Firstly, the product (2.12) is substituted into (2.11). Since densities r(aτ |Hτ−1, θ)
are conditionally independent of the parameters (2.13), they can be taken out of the integration
in (2.11). They subsequently cancel out with the same probability densities substituted into the
numerator giving the final formula

p(θ|Ht) =

t∏
τ=t1+1

m(sτ |aτ , Hτ−1, θ)p(θ|Ht1)

∫
Sθ

t∏
τ=t1+1

m(sτ |aτ , Hτ−1, θ)p(θ|Ht1)dθ

. (2.15)

Knowing conditional density (2.15), it is possible to describe the behavior of the parameters.
This equation answers the question regarding the information extraction contained in the data.
In the following subsections this density will be expressed for the case of fixed and growing data.

2.3.1 Fixed Amount of Data

Setting t1 to zero in (2.15), the formula becomes

p(θ|Ht) =

t∏
τ=1

m(sτ |aτ , Hτ−1, θ)p(θ)

∫
Sθ

t∏
τ=1

m(sτ |aτ , Hτ−1, θ)p(θ)dθ

≡ Lt(θ, Ht)p(θ)∫
Sθ

Lt(θ, Ht)p(θ)dθ
. (2.16)

Here Lt(θ, Ht) stands for the significant part of the likelihood function. The term significant
part refers to the fact that factors r(aτ |Hτ−1, θ) ≡ r(aτ |Hτ−1) are absent for τ lesser than t.

The equality t1 = 0 turned the conditional probability density p(θ|Ht1) in (2.15) into prior
probability density p(θ). It is therefore possible to interpret the formula (2.16) as a correction
of prior information by objective data Ht.

2.3.2 Growing Data

Real time estimation is obtained by setting t1 in (2.11) to t − 1. This yields

p(θ|Ht) = m(st|at, Ht−1, θ)p(θ|Ht−1)∫
Sθ

m(st|at, Ht−1, θ)p(θ|Ht−1)dθ
.

Here the denominator is actually a formula for deriving the probability density of the state in
the next epoch, specifically∫

Sθ

m(st|at, Ht−1, θ)p(θ|Ht−1)dθ = m(st|at, Ht−1). (2.17)

The next state is therefore predicted based on data Ht−1 from the previous epoch. Hence
once a new action is determined, a new state is observed and a new data pair (st, at) is received.
The set of all data is afterwards expanded to epoch t, i.e. Ht is now available, and used to
acquire an updated conditional density of parameters

p(θ|Ht) = m(at|at, Ht−1, θ)p(θ|Ht−1)
m(st|at, Ht−1) . (2.18)
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Such recalculation for each time step t can be computationally demanding when performing
numerical simulations. Simplification in form of posterior density p(θ|Ht) would therefore come
in handy. A certain simplification can be done by replacing the still-growing data Ht by a
suitable sufficient statistic. The topic of sufficient statistics will be covered later in section 2.4.

Equation (2.18) describes how to proceed in order to update posterior densities of the un-
known parameters θ. However, the decision maker’s focus often lays purely on state prediction
without any interest in the parameters of the obtained density. In such case it would seem
reasonable to omit all forms of parameter estimation and focus directly on predicting the next
states resulting in saved computation time and memory.

This is possible using an altered formula (2.11) where t1 is set3 to be equal to some positive
time t0, i.e. t1 = t0 > 0. The formula then gets the form

m(st|at, Ht−1) =
∫

Sθ
m(st|at, Ht−1, θ)Lt−1(θ, Ht−1)p(θ|Ht0)dθ∫

Sθ
Lt−1(θ, Ht−1)p(θ|Ht0)dθ

. (2.19)

As a reminder, the significant part of the likelihood function denoted by Lt−1 defined in
subsection 2.3.1 has the form

Lt−1(θ, Ht−1) =
t−1∏

τ=t0+1
m(sτ |aτ , Hτ−1, θ).

Relating to this definition a recursive formula of the significant part of the likelihood function
can be obtained as

Lt(θ, Ht) = m(st|at, Ht−1, θ)Lt−1(θ, Ht−1).

Utilizing the previous knowledge and denoting the integral in the denominator of (2.19) as
It−1(Ht−1), the recursive formula for the conditional density of the next state can be formulated
as

m(st|at, Ht−1) = It(Ht)
It−1(Ht−1) .

However, as st and at are still unknown, it is necessary to mention that the integral in the
numerator is a function of these two random variables as well. Rewritten, the final prediction
formula of the states in the next epoch in real-time estimation is given by

m(st|at, Ht−1) = It(st, at, Ht−1)
It−1(Ht−1) . (2.20)

In other words, in order to perform real-time estimation while eliminating parameters, the
integral It has to be expressible as a function of the most recent state-action pair.

2.3.3 Prior p(θ|H0)
As the integral in the denominator of (2.18) does not depend on parameters, recursive formula

of the conditional parameter density can be expressed using proportionality symbol, i.e.
3This is the standard process when the densities m(st|at, Ht−1, θ) are not defined by the model structure right

from the beginning of the process but from some time t0 > 0. The topic is otherwise known as the problem of
initial data, see [27].
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p(θ|Ht) ∝ m(st|at, Ht−1, θ)p(θ|Ht−1) ∝ ... ∝
t∏

τ=1
m(sτ |aτ , Hτ−1, θ)p(θ|H0). (2.21)

Here the expression H0 contains not only the initial state of the system s0 but also any possible
prior knowledge about the parameters. Densities p(θ|H0) are taken to be close to uniform in
case of no available prior knowledge.

Up until now probability densities m(st|at, Ht−1, θ) were considered to depend on all available
system history. In many decision processes, however, decisions can be influenced only by the
means of the most recent knowledge of the system - its past state and action opted in that state.
Such system can be described using Markov chain model below

m(sτ |aτ , Hτ−1, θ) = m(sτ |aτ , sτ−1, θ) ≡ θsτ |aτ ,sτ−1 .

The first equality above sets the knowledge of the last observed state st−1 equal to the
knowledge of the whole history of how the system evolved in time. This is known as Markov
property. It says that the system evolution is independent of its history. Unless mentioned
otherwise, Markov property will be considered to hold for both the system model and the
decision rules at all times.

The number of unknown values introduced by the last equality is finite for discrete case4.
Let the cardinality of the state set SS be an arbitrary natural number n greater than two5.
Since θsτ |aτ ,sτ−1 denote values of probability densities, they need to satisfy the non-negativity
and normalization conditions

θsτ |aτ ,sτ−1 ≥ 0,
n∑

sτ =1
θsτ |aτ ,sτ−1 = 1, (2.22)

for any sτ , sτ−1 in SS and aτ in SA. The finite, possibly zero, number of a-values is j.
Using this parametrisation it is possible to rewrite conditional densities p(θ|Ht) from (2.21)

in the following manner,

p(θ|Ht) ∝
t∏

τ=1
θsτ |aτ ,sτ−1p(θ|H0) =

t∏
τ=1

∏
s

∏
a

∏
s′

θ
δ(sτ ,s)δ(aτ ,a)δ(sτ−1,s′)
s|a,s′ p(θ|H0)

≡
∏

s

∏
a

∏
s′

θ
∆t;s|a,s′

s|a,s′ p(θ|H0),

where exponent ∆t;s|a,s′ denotes the sum of all Kronecker’s delta functions above over all time
epochs up to time t, i.e.

∆t;s|a,s′ ≡
t∑

τ=1
δ(sτ , a)δ(aτ , a)δ(aτ−1, s′).

4Numerical simulations presented later in the work will be restricted to discrete case as well.
5Strict inequality is used only so that the integral calculation in (2.26) would not automatically reduce to

Beta function after taking the latter two products out of the integration and using the introduced x-substitution.
Integral calculation is therefore more general. Discarding generality, the state set cardinality may very well be
equal to two as well.
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It would make sense for the initial density p(θ|H0) to be of the same form as the conditional
probability density p(θ|Ht). For this purpose a new prior statistic ν0;s|a,s′ is introduced and the
initial density above is then expressed as

p(θ|H0) ∝
∏

s

∏
a

∏
s′

θ
ν0;s|a,s′ −1
s|a,s′ . (2.23)

The meaning of the subtraction of one will become self-explanatory at the end of the section,
see (2.29) later.

Having determined the exact form of the initial density p(θ|H0), density p(θ|Ht) can now be
expressed as

p(θ|Ht) ∝
∏

s

∏
a

∏
s′

θ
∆t;s|a,s′ +ν0;s|a,s′ −1
s|a,s′ ≡

∏
s

∏
a

∏
s′

θ
νt;s|a,s′ −1
s|a,s′ . (2.24)

The exponent in (2.24) can be found recursively according to the rule

νt;s|a,s′ = ∆t;s|a,s′ + ν0;s|a,s′ = ∆t−1;s|a,s′ + ν0;s|a,s′ + δ(st, s)δ(at, a)δ(st−1, s′)
= νt−1;s|a,s′ + δ(st, s)δ(at, a)δ(st−1, s′). (2.25)

Thus for the given state-action-state triplet the current value of the exponent is either equal to
the exponent from the previous epoch or is greater by one. This is true for any given time.

The last expression in (2.24) is precisely the integrand which enters the integration in (2.17).
Thanks to the normalization condition in (2.22), the last parameter θn|a,s′ can be expressed
through the previous n − 1 parameters as

θn|a,s′ = 1 −
n−1∑
s=1

θs|a,s′ ,

for any available action a and state s′. Since neither the integration nor multiplication run over
the time variable, it will be omitted from further notation to somewhat improve its readability.
All of the symbols below are thought to represent their current value at time t.

Utilizing the normalization condition and the new notation, integral (2.17) then gets the
form

∫
· · ·
∫

∑n−1
s=1 θs|a,s′ ≤1
θs|a,s′ ≥0

n−1∏
s=1

j∏
a=1

n∏
s′=1

θ
νs|a,s′ −1
s|a,s′

(
1 −

n−1∑
s=1

θs|a,s′

)νn|a,s′ −1

dθ. (2.26)

The first state product upper bound only goes up to n−1 as the last θ symbol has been separated
from the rest of the product and rewritten with the use of the remaining symbols. θ symbol in
the differential then denotes all θs|a,s′ variables for all (n − 1) × j × (n − 1) state-action-state
combinations.

By further separating the last but one θ from both the product and the summation hints
the recursive approach towards the solution of the integration task. After the rest of the sum is
taken out of the parentheses a new substitution

xn−1 ≡
θn−1|a,s′

1 −
∑n−2

s=1 θs|a,s′
, (2.27)
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can take place. Integral (2.26) then transforms into

∫
∑n−2

s=1 θs|a,s′ ≤1
θs|a,s′ ≥0

· · ·
∫ 1∫

0

n−2∏
s=1

j∏
a=1

n∏
s′=1

θ
νs|a,s′ −1
s|a,s′ x

νn−1|a,s′ −1
n−1 · · ·

· · · (1 − xn−1)νn|a,s′ −1
(

1 − θn−2|a,s′ −
n−3∑
s=1

θs|a,s′

)νn|a,s′ +νn−1|a,s′ −1

dxn−1dθ̃.

Symbol θ̃ represents the remaining (n − 2) × j × (n − 2) θ-variables whereas xn−1 in bold stands
for variables xn−1 for all possible actions a and states s′, see (2.27). Separating the last element
of the sum in the boundary condition from the rest can serve as a hint for finding the new
integration limits. Separation and subsequent division leads to

1 ≥ θn−1|a,s′ +
n−2∑
s=1

θs|a,s′ ≥ 0 ⇐⇒ 1 ≥
θn−1|a,s′

1 −
∑n−2

s=1 θs|a,s′
= xn−1 ≥ 0.

Recursively continuing this way, the final form of integral (2.26) can be obtained as

∫ 1

0
· · ·
∫ 1

0

n−1∏
s=1

j∏
a=1

n∏
s′=1

x
νs|a,s′ −1
s (1 − xs)

∑n−s+1
k=1 νk|a,s′ −n−s−2dxn−1 · · · dx1, (2.28)

which is the integral form of multivariate beta function Beta(ν1|1,1, ..., νn|j,n) ≡ Beta(ν). The
final parameter estimation model (2.18) therefore acquires the following form and follows Dirich-
let’s distribution thanks to the minus one subtraction, i.e.

p(θ|Ht) =
n−1∏
s=1

j∏
a=1

n∏
s′=1

m(s|a, s′, θ)νt;s|a,s′ −1

Beta(ν) ∼ Dir(ν). (2.29)

2.4 Conjugate Families of Distributions
For the derived theory to be of real practical use in numerical simulations, the data need to be

compressed in such way that the information stored inside stays complete whereas the dimension
of the problem is reduced to some fixed natural number. This can be done through the means of
a sufficient statistic. Statistic in general is a notion denoting any quantity computed from the
available data values. Statistic Tt ≡ Tt(Ht) is said to be sufficient for a certain random variable
X when it fulfills the relation

p(x|Ht) = p(x|Tt). (2.30)

That way all the information provided by the growing data can be represented by a fixed
number of values. In other words, all the information about random variable X is contained in
the statistic Tt. Storing the entire data vector Ht which is generally of a high dimension thus
becomes redundant.

Property (2.30) intuitively does not need to hold for all probability densities. Let Tt be a
sufficient statistic for some family of distributions {p(Ht|θ)|θ ∈ Sθ}, where θ are the unknown
parameters with a certain distribution which will also be denoted by p for simplicity. Following
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the Bayes’ rule the formula for the posterior probability density of these parameters gets the
form

p(θ|Ht) = p(Ht|θ)p(θ)∫
Sθ

p(Ht|θ̃)p(θ̃)dθ̃
≡ q(Tt(Ht), θ), (2.31)

where q is a symbol for the new reference probability density. The existence of sufficient statistic
Tt was utilized in the final equality of (2.31). It is now possible to isolate the likelihood function
from this expression as

p(Ht|θ) = q(Tt(Ht), θ)
p(θ)

∫
Sθ

p(Ht|θ̃)p(θ̃)dθ̃ ≡ R(Tt(Ht), θ)U(Ht). (2.32)

Expression (2.32) says that the probability density functions from the family introduced
above can be factored into a form, where the part of the function which depends on the data in
a way other than through the sufficient statistic, can be isolated as a stand-alone function U of
Ht. Furthermore, this statement can be reversed. Substitution of (2.32) into (2.31) yields

p(θ|Ht) = U(Ht)R(Tt(Ht), θ)p(θ)∫
Sθ

U(Ht)R(Tt(ht), θ̃)p(θ̃)dθ̃
. (2.33)

Here the function U is independent of parameters θ̃ and can therefore be taken outside of the
integrand in the denominator and canceled out with the same function in the numerator. The
posterior probability density (2.33) then becomes dependent on data only through the means of
statistic Tt which makes it sufficient.

Therefore Tt can be identified as sufficient for a certain family of distributions when its
probability density functions can be factored according to (2.32). This statement is otherwise
known as factorization theorem.

Understanding the term sufficient statistic naturally leads to the question of finding its form
for data which follow a certain probability distribution. For instance, arithmetic mean and
standard deviance expressed using arithmetic mean multiplied by its corresponding degrees of
freedom, i.e.

1
n

n∑
i=1

xi and
n∑

i=1
(xi − x̄n)2,

x̄n being arithmetic mean of x1, ..., xn, form a two-dimensional sufficient statistic of finite di-
mension for Gaussian family of distributions.

In general, not all sufficient statistics need to be of fixed dimension. In order to find dis-
tributions which will be usable for computations in real time for large samples of data, the set
of all sufficient statistics needs to be limited to the ones which can be updated in real time
similarly to the example above. Factorization theorem provided a way of checking if a sufficient
statistic exists for a given distribution. Now we need a tool to decide whether the dimension of
this distribution’s statistic stays fixed as the data grows. Such tool can be found in the theory
of conjugate families of distributions.

A prior probability density is said to come from a conjugated family of distributions when
its posterior probability density also comes from this family. An important point to be made is
that this family needs to be rich enough to provide enough densities to properly represent the
prior distribution of the unknown parameters.
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A theorem independently formulated by Darmois, Koopman [17] and Pitman [28] claims
that provided that the support of a given probability density does not change with its varying
parameters then there exists a sufficient statistic of fixed dimension if and only if6 the probability
density comes from an exponential family of distributions. System {p(Ht|θ)|θ ∈ Sθ} of densities
is considered an exponential family when its elements have the form

p(Ht|θ) = c(θ)h(Ht)eTt(Ht)Q(θ). (2.34)

Here c, h ≥ 0, T and Q are known functions of respective arguments. The multivariate T , Q
are combined via dot-product. In other words, functions from the exponential family can be
factored in a way so that the data in the exponent of the exponential are present only in the
form of a sufficient statistic.

The above exposition puts light on the fact that the most generally parameterized Markov
chain model treated in previous section possesses a sufficient statistic of a fixed dimension.
Indeed, simple manipulation allows to further reshape the model in the following manner,

m(st|at, st−1, θ) ≡
∏

s,a,s′

θ
δ(s,st)δ(a,at)δ(s′,st−1)
s|a,s′ = exp

∑
s,a,s′

δ(s, st)δ(a, at)δ(s′, st−1) ln(θs|a,s′)

 .

Comparing this result with (2.34), specific forms of the functions from the exponential form can
be obtained, namely

c(θ) = 1, Q(θ) = ln(θ),
h(Ht) = 1, Tt(Ht) = δ(Ht),

with the sum representing the dot product of the parametric function with the Kronecker’s
sufficient statistic given on a specific system history Ht.

2.5 Forgetting
In previous text it was derived that the propagation of the parameter density has the following

structure,
p(θ|Ht) ∝ m(st|at, Ht−1, θ)p(θ|Ht−1).

This formula sufficiently describes a scenario where no changes in parameter values are expected
to be observed.

A problem arises, however, when parameter values vary in time. Generally a model describing
these changes is necessary. Using the definition of conditional probability density as well as
marginalization rule, a new relation describing this case can be obtained

p(θt+1|Ht) =
∫

Sθ

p(θt+1|θt, Ht)p(θt|Ht)dθt, (2.35)

with p(θt+1|θt, Ht) modelling the evolution of parameter estimates, rather often being an un-
known probability density. Time indexation is now included to emphasize possible value vari-
ations. History variable Ht in equation (2.35) stays constant, i.e. no new information has yet
been gained, while the parameters have evolved from θt to θt+1.

6Sufficient statistic of fixed dimension also exists for the family of uniform distributions. However, densities
from this family do not fulfill the regularity condition of a bound support regardless of the parameter values.
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A new problem arises. Without the knowledge of conditional probability density p(θt+1|θt, Ht),
the exact means to provide data-based parameter estimation for the next epoch cannot be pro-
vided. Hence the standard probability calculus falls short and the task at hand needs to be
solved by different means.

Two most extreme hypotheses about the fate of the probability density (2.35) include

p(θt+1|Ht) =
{

p(θt|Ht) in optimistic case,
p(θt|H0) in pessimistic case.

(2.36)

Symbolic notation p(θt+1|Ht) = p(θt|Ht) represents the hypothesis, that the parameters in the
next time epoch remain constant, i.e. p(θt+1 = θ|Ht) = p(θt = θ|Ht). This refers to the opti-
mistic parameter evolution outcome as no parameter change has occurred. The same notational
rule applies to the second row of (2.36). This pessimistic case refers to a situation when the
parameter variation is so high it becomes impossible to predict the future values. Return to
prior information is then inevitable.

Let us denote the set of all available parameter probability densities on Sθ as Sp. One of the
hypotheses (2.36) is chosen based on the means of a so-called forgetting operator F. It yields
the final parameter model p(θt+1|Ht) by combining hypotheses (2.36) in the following manner,

p(θt+1|Ht) = F[p(θt|Ht), p(θt|H0)] ≡ argmin
p∈Sp

[λtD(p, p(θt|Ht)) + (1 − λt)D(p, p(θt|H0))]. (2.37)

In the last expression above, λt and 1 − λt are non-negative weights specified in advance. They
denote probabilities of the respective hypotheses. Symbol D(·, ·) stands for a known divergence
measure of two probability densities. Different divergence measures can be found for instance in
[3]. Forgetting operator defined this way then obtains a solution which minimizes expectation
of a loss function given by the said divergence.
Remark 1. Operator construction given by (2.37) is said to be based on Bayes principle. There
are other options how to define F such as barycentre principle or minimum distance principle.
These can be both expressed in a way which leads to the Bayes expression above, see [18]. It is
thus sufficient to focus on the introduced definition without any loss of generality.

For the construction to be complete, it is necessary to define the divergence D. It can be
shown that one such plausible choice is given by Kullback-Leibler divergence [19], also known as
relative entropy,

D(p, q) =
∫

Sθ

p(θ) ln
(

p(θ)
q(θ)

)
dθ, (2.38)

where p and q are both probability densities defined on set Sθ, q being strictly positive. It was
proven in [18] that this divergence pick leads to a unique solution of (2.35) in the form

p(θt+1|Ht) ∝ [p(θt|Ht)]λt [p(θt|H0)]1−λt , (2.39)

provided that densities p(θt|Ht) and p(θt|H0) are not mutually orthogonal, meaning their product
is non-zero almost everywhere.
Remark 2. Solution (2.39) can also be generalized for a higher number of hypotheses n, meaning
n greater than two. If this is a matter of interest for the reader, he is referred to [13]. Here,
minimum expected relative entropy is introduced to solve what is called meta-decision tasks,
where each hypothesis is assigned its own probability density.
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By using the conjugated Dirichlet’s distribution of parameters (2.29) discussed in the previous
chapter, final form of probability density (2.35) can be expressed as

p(θt+1|Ht) ∝ [p(θt|Ht)]λt [p(θt|H0)]1−λt (2.40)

∝
n−1∏
s=1

j∏
a=1

n∏
s′=1

m(s|a, s′, θt+1)λtνt;s|a,s′ +(1−λt)ν0;s|a,s′ −1,

recalling that the exponent ν0;s|a,s′ refers to the probability density p(θt|H0) as all other infor-
mation was discarded, or forgotten, in its case.

Constants λt and 1 − λt were said to be probabilities of the two hypotheses (2.36). Their
values are therefore to lay somewhere in the interval [0, 1]. Raising parameter densities to the
power lesser than one can be interpreted as their flattening, i.e. lowering the importance of
accumulated knowledge. Present outcomes are thus regarded as more important. The same
logic applies to future outcomes in discounting tasks, which will be covered later on.



Chapter 3

Fully Probabilistic Design

In everyday decision making the goal is to make choices which lead to the most favorable
results. In order to do this, it is necessary to know how the system evolves in time given different
states and actions to influence it. In other words, it is necessary to know the system dynamics.

Unveiling it was the aim of the previous chapter. Now that the question of system description
is off the table it is possible to move on to the task of identifying the most profitable actions
for each step of a decision process. Markov decision processes [31] present a powerful tool for
solving decision-making tasks. The core of the approach is based on maximizing an expected
reward function or, alternatively, minimizing an expected loss function.

Let the said loss function be denoted as L(st, at, st−1) for an arbitrary state-action-state
triplet. Not including more distant history of the system than the three given arguments is
justified when future system evolution is independent of its history. This fact is referred to as
Markov property.

The state-action-state triplet in L(st, at, st−1) with the smallest addition to the loss function
for a given decision epoch t specifies the action at to be used for the said epoch granting optimal
system evolution. A visualization scheming this process can be seen in Figure 3.1 below.

Figure 3.1: System evolution in time inducing loss L in each epoch.

Perhaps one of the biggest challenges in resolving decision tasks is uncertainty. Virtually

24
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in all real-life applications the real system model remains unknown and its identification1, see
Section 2.3, is only a more or less exact representation of the true system. Decision tasks using
this incomplete information will always be influenced by its imprecision.

One of the driving forces of the research conduced in the span of this work from [24] up until
now was to investigate whether it would be possible to somehow decrease this modeling error.
The most straightforward way would be improving the model quality by making it as close to
the real model as possible. That is, obtaining parameter estimates which best represent the
system dynamics.

Generally, the more is known about how the system transitions between different states
in time, the better the estimates. In order to acquire sufficient knowledge about these state
transitions, the system dynamics needs to be explored as much as possible.

Given an action which is considered to yield optimal results in the given epoch with respect
to the loss function, it might be profitable to opt for a different action so that more information
about the system dynamics can be gained. Parameter estimation then becomes more precise
and comprehensive. This practice is referred to as the exploration principle or system excitation.

However, such activity is in conflict with the system’s optimal performance. Exploration
must not exceed a certain limit for the decision process not to depart too far from the desired
evolution. Combining these two contradictory directions results in what is called an exploration
and exploitation principle2. Different ways how to incorporate it into a decision task can be
found in Mesbah’s survey [23].

Markov decision processes can suffer from insufficient excitation due to the deterministic
nature of their optimal values. On the other hand fully probabilistic design independently
introduced first in [11] and later in [7] has the favorable quality of generating actions based
on probability density functions previously labeled as decision rules, see (2.9). Probabilistic
nature of such actions naturally conforms the exploration and exploitation principle, giving
fully probabilistic design a notable advantage over the standard Markov approach.

Nevertheless as it will be shown in the next section, the dimension of probability densities
required in both fully probabilistic design and Markov decision processes can grow rapidly when
the system model is unknown. Before introducing the standard version of the fully probabilistic
design it will therefore be necessary to provide a method on how to overcome this obstacle.

3.1 Certainty-Equivalence Strategy
Assuming that the system model is known, the problem of new data prediction can be

modeled according to
p(st, at|Ht−1) = m(st|at, st−1)r(at|st−1)

if Markov property holds for the system model m as well as the decision rules r. Data prediction
for the next epoch is therefore conditioned merely on the last observed state instead of the whole
history Ht−1 present on the left hand side.

However, when dealing with uncertainty, it becomes necessary to include parameters in the
system model. This way it becomes m(st|at, st−1, θt−1), where θt−1 can vary in time as discussed
in Section 2.5. Time indexation is present to emphasize this fact. Forgetting showed a promising

1System identification is a term from control theory which describes the process of estimating the model
parameters.

2In control theory referred to as dual control.
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way to deal with parameter changes. Their probability density was derived to be

p(θt|Ht−1) ∝
n−1∏
s=1

j∏
a=1

n∏
s′=1

m(s|a, s′, θt)
λt−1νt−1;s|a,s′+(1−λt−1)ν0;s|a,s′ −1

.

Statistic νt−1 can be obtained recursively according to the formula (2.25), ν0 is a prior
statistic and λt−1 and 1 − λt−1 are known probabilities, see the discussion under (2.40). With
the knowledge of parameter probability density, it would then be possible to express the sought
after system model as

m(st|at, st−1, Ht−1) = m(st|at, st−1, νt−1) =
∫

Sθ

m(st|at, st−1, θ)p(θ|νt−1)dθ. (3.1)

In order to predict the next state st, not only the past state st−1 and the present action at

are utilized. Statistic νt−1 entering the estimation through the parameter probability density p
is also needed. Furthermore once the future state st has been estimated, the new value of the
statistic can be calculated after evaluating the product δ(st, s)δ(at, a)δ(st−1, s′) in (2.25).

In other words, knowledge of past values of ν is necessary in order to predict the future,
whereas the future values become known once the predictions have been made. To focus merely
on the system states would therefore lead to an incomplete evolution description. Rather than
the new state alone, its coupling with the next value of the ν statistic is observed. The two of
them together form a hyper-state in each epoch. System model under hyper-states then becomes

m(st, νt|at, st−1, νt−1). (3.2)

As elegant as such solution may seem, it quickly hits the wall when faced with commonly
available computational power. Numerical handling regarding hyper-states suffer from their
extensive dimensionality. The most widespread tactic to overcome this computational short-
coming is called certainty-equivalence strategy, [16]. In this approach, unknown parameters θ
are replaced with the most likely ν estimates

θ̂ ≡
νt−1;s|a,s′∑n

s=1 νt−1;s|a,s′
. (3.3)

Due to its computational feasibility as opposed to the hyper-state model (3.2) as well as its
closeness to the integral (3.1), approximation

m(st|at, st−1, νt−1) ≈ m(st|at, st−1, θ̂), (3.4)

enters the computations in place of the precise system model. This method is suitable for
well-estimated slowly varying parameters.

3.2 Standard Formulation and Solution
Decision rules r and system model m serve to describe the decision process in an arbitrary

time step. However, the ultimate decision-making goal is not to focus on individual epochs
but to optimize the process as a whole. It is therefore desirable to express the entire system
evolution using a single probability density function.
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Let us consider a decision process with n epochs. The time set St therefore consists of the
first n natural numbers, i.e. {1, 2, ..., n}. A new argument called behavior, denoted b, will be
introduced using the defining relation of a closed-loop probability density cr as

cr(b) ≡ cr(sn, an, sn−1, an−1, ..., s1, a1, s0) =
n∏

τ=1
m(sτ |aτ , sτ−1, θ̂)r(aτ |sτ−1) ≡ m(b)r(b). (3.5)

Term closed loop is a notion from control theory denoting a tuple consisting of the decision
maker and the system. Density (3.5) assigns probabilities to different realizations of the system
evolution which consist of its authentic state transitions and action selections. It hence describes
the system’s real behavior. Superscript r aims to highlight the dependence on decision rules.

Having knowledge of how the system evolves in time, it is possible to optimize its perfor-
mance. This means that actions which influence the closed loop are not selected completely
randomly but in such a way so that the closed loop tends to end up in the decision maker’s
desired states. Before trying to optimize the decision process, however, it is necessary to have
some preferences regarding how it should ideally behave. Ideal closed-loop density

ci(b) ≡ ci(sn, an, sn−1, an−1, ..., s1, a1, s0) =
n∏

τ=1
mi(sτ |aτ , sτ−1)ri(aτ |sτ−1) ≡ mi(b)ri(b) (3.6)

quantifies these preferences by introducing ideal system model mi and ideal decision rules ri.
State transitions given by mi define the desired evolution of the system which is assumed to be
known and does not need to be estimated. That is why ideal system model lacks the parameter
estimate seen in the closed-loop density (3.5).
Remark 3. The task of model identification was successfully finished in Section 2.5 and subse-
quently approximated in Section 3.1 so that it could be used in real world applications. Model
parameters will hence not be the primary focus of this chapter. In order to save some space in the
derivations below, their estimates θ̂ will no longer be included in model arguments. This mea-
sure was taken merely for notation simplification purposes. It should be remembered that what
is essentially meant by m(st|at, st−1) is always the original probability density m(st|at, st−1, θ̂).

Generally speaking, it may not be possible for the system to behave exactly according to
the ideal depicted in (3.6). Optimizing the process therefore means to choose such actions,
which would minimize the distance between the densities (3.5) and (3.6). One possible metric
which measures this distance can be Kullback-Leibler divergence (2.38) and its use is implied
by axiomatics, see [12]. Different examples of measures can be found for instance in [3].

Finally, since the decision problem formulation is probabilistic, the optimizing actions are
chosen via the means of optimal decision rules which will be denoted by ro,

ro ∈ argmin
r

D(cr, ci) =
∫

Sb

cr(b) ln
(

cr(b)
ci(b)

)
db. (3.7)

Integration above runs through the set of all behaviors Sb.
Decision rules which follow the relation (3.7) are said to be gained through fully probabilistic

design. Before deriving their exact form, an additive version of Kullback-Leibler divergence as
well as dynamic programming need to be formulated.

Lemma 3.2.1. Let there be a loss function defined as

Lr(st, at, st−1) ≡ ln
(

m(st|at, st−1)r(at|st−1)
mi(st|at, st−1)ri(at|st−1)

)
, (3.8)
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where superscript r highlights the dependence of Lr on decision rules. Then for any arbitrary
decision rule r Kullback-Leibler divergence of the two closed-loop densities (3.5) and (3.6) can
be expressed in an additive form

D(cr, ci) =
∑
t∈St

∫
(Ss,Sa,Ss)

cr(st, at, st−1)Lr(st, at, st−1)d(st, at, st−1)

=
∑
t∈St

∫
Ss

cr(st−1)
[∫

(Ss,Sa)
m(st|at, st−1)r(at|st−1) ln

(
m(st|at, st−1)r(at|st−1)

mi(st|at, st−1)ri(at|st−1)

)
d(st, at)

]
dst−1,

(3.9)
where cr(st−1) is independent of r(aτ |sτ−1) for all τ greater or equal to t.

Proof. The proof is quite straightforward. Substituting the closed-loop densities into the Kullback-
Leibler divergence definition (2.38) yields

D(cr(b), ci(b)) =
∫

(Ss,Sa)n
cr(sn, an, ..., s1, a1) ln

∏
t∈St

m(st|at, st−1)r(at|st−1)
mi(st|at, st−1)ri(at|st−1)

d(sn, an, ..., s1, a1)

=
∫

(Ss,Sa)n

∑
t∈St

cr(sn, an, ..., s1, a1) ln
(

m(st|at, st−1)r(at|st−1)
mi(st|at, st−1)ri(at|st−1)

)
d(sn, an, ..., s1, a1),

where the last equation stems from the product property of logarithms. Symbol (Ss, Sa)n stands
for n-fold Cartesian product of sets Ss and Sa.

Since only finite decision processes are considered, it is possible to utilize the linearity of
integrals property and exchange the order of the summation and integration, resulting in

D(cr(b), ci(b)) =
∑
t∈St

∫
(Ss,Sa)n

cr(sn, an, ..., s1, a1) ln
(

m(st|at, st−1)r(at|st−1)
mi(st|at, st−1)ri(at|st−1)

)
d(sn, an, ..., s1, a1).

As the expression inside the logarithm of the integrand above depends only on st, at and st−1,
the rest of the states and actions present in the argument of density cr can integrate out creating
a marginal closed-loop probability density. Using the Lr definition (3.8) from the lemma, the
whole expression simplifies into

D(cr(b), ci(b)) =
∑
t∈St

∫
(Ss,Sa,Ss)

cr(st, at, st−1)Lr(st, at, st−1)d(st, at, st−1),

which is precisely the form seen in the first row of (3.9).
The second row of (3.9) can be easily obtained from the first one using chain rule (2.8) on

the closed-loop density, i.e.

cr(st, at, st−1) = cr(st|at, st−1)cr(at|st−1)cr(st−1) ≡ m(st|at, st−1)r(at|st−1)cr(st−1),

as well as Fubini’s theorem for multidimensional integration [32].

Additive form of Kullback-Leibler divergence with r-dependent losses motivated the following
theorem generalizing dynamic programming [2]. It is an optimization method which can be used
to recursively solve many types of tasks by splitting them into smaller sub-tasks.
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Theorem 3.2.2 (Dynamic programming). Let us define a value function v as v(st−1) ≡

min
{r(aτ |sτ−1),τ≥t}

∑
τ≥t

∫
(Ss,Sa,Ss)

Lr(sτ , aτ , sτ−1)m(sτ |aτ , sτ−1)r(aτ |sτ−1)cr(sτ−1|st−1)d(sτ , aτ , sτ−1).

(3.10)
Here, the r-indexation in loss function Lr emphasizes its dependence on decision rules r(aτ |sτ−1)
but only up to the epoch t. Value function v then follows a backward functional recursion

v(st−1) = min
{r(at|st−1)}

∫
(Ss,Sa)

[Lr(st, at, st−1) + v(st)] m(st|at, st−1)r(at|st−1)d(st, at), (3.11)

which starts with the value v(sn) = 0.

Proof. By isolating the first term of the sum in the definition (3.10), the minimization becomes

v(st−1) = min
{r(at|st−1)}

[ ∫
(Ss,Sa,Ss)

Lr(st, at, st−1)m(st|at, st−1)r(at|st−1)cr(st−1|st−1)d(st, at, st−1)

+ min
{r(aτ |sτ−1),τ≥t+1}

∑
τ≥t+1

∫
(Ss,Sa,Ss)

Lr(sτ , aτ , sτ−1)m(sτ |aτ , sτ−1)r(aτ |sτ−1)cr(sτ−1|st−1)d(sτ , aτ , sτ−1)
]
.

In the nested minimization above, epoch t − 1 is only present through the state variable st−1
in cr(sτ−1|st−1). Since the summation runs from t + 1, both the loss function and the densities
relate to epoch t and higher. Using marginalization and chain rule, this density can be rewritten
so that it relates to epoch t via the state variable st,

cr(sτ−1|st−1) =
∫

Ss

cr(sτ−1, st|st−1)dst =
∫

Ss

cr(sτ−1|st, st−1)cr(st|st−1)dst,

which will be useful later on.
Since Markov property is considered to hold throughout this work, further history is regarded

to be of no influence on the system. Density cr(sτ−1|st, st−1) therefore reduces to cr(sτ−1|st) and
the discussed conditional density cr(sτ−1|st−1) becomes

cr(sτ−1|st−1) =
∫

Ss

cr(sτ−1|st)cr(st|st−1)dst.

Before substituting this manipulated density back into the value function, it will be necessary
to come up with a shorter notation. Let Lr

t denote the loss function value3 Lr(st, at, st−1) and
similarly for mt and rt. Only the time index is present to denote the epoch of the arguments
whereas arguments themselves are omitted in order to save space. Identifying the integrable
arguments is possible by the means of differential elements.

Utilizing the cr density reformulation and the new notation, the value function gets the form

v(st−1) = min
{rt}

[ ∫
(Ss,Sa)

Lr
t mtrtd(st, at)

+ min
{rτ ,τ≥t+1}

∑
τ≥t+1

∫
(Ss,Sa,Ss,Ss)

Lr
τ mτ rτ cr(sτ−1|st)cr(st|st−1)d(st, sτ , aτ , sτ−1)

]
.

3Otherwise referred to simply as loss.
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Here, the integrand inside the nested minimization is independent of the decision rules rτ for τ
grater than t. A part of the expression hence can be taken out of the integration, resulting in

v(st−1) = min
{rt}

[ ∫
(Ss,Sa)

Lr
t mtrtd(st, at)

+
∫

Ss

[
min

{rτ ,τ≥t+1}

∑
τ≥t+1

∫
(Ss,Sa,Ss)

Lr
τ mτ rτ cr(sτ−1|st)d(sτ , aτ , sτ−1)

]
cr(st|st−1)dst

]
.

The nested brackets above hold the value function v(st) for the next recursion step.
Applying the same logic as before but expanding the density using actions this time, cr(st|st−1)

becomes

cr(st|st−1) =
∫

Sa

cr(st, at|st−1)dat =
∫

Sa

cr(st|at, st−1)cr(at|st−1)dat

=
∫

Sa

m(st|at, st−1)r(at|st−1)dat.

Substituting the acquired integral back into the previous expression yields the final backward
functional recursion (3.11),

v(st−1) = min
{rt}

[ ∫
(Ss,Sa)

Lr
t mtrtd(st, at) +

∫
(Ss,Sa)

v(st)mtrtd(st, at)
]

= min
{rt}

∫
(Ss,Sa)

[
Lr

t + v(st)
]
mtrtd(st, at).

Finally, the equality of v(sn) to zero stems from the fact that the decision process is finite.
After arriving at the final epoch, no new action is selected. The sum in the value function
definition (3.10) is therefore empty after setting t equal to n.

Remark 4. The motivation behind the value function definition is the following. In Theorem
3.2.2, Lr(sτ , aτ , sτ−1) represents the loss function value for the given epoch τ . The total loss is
then the sum over the entire decision process, i.e.

n∑
τ=1

Lr(sτ , aτ , sτ−1).

Consider its minimization with the dynamic programming approach described on page 28, i.e.
taking into account only the last n − t loss summands. When performing the minimization of
its expected value, the exact definition of the value function (3.10) is obtained.

Now that the preliminaries have been stated and proven, it is possible to perform fully
probabilistic design, which provides the exact form of the decision rules forming the optimal
decision strategy in (3.7).

Theorem 3.2.3 (Fully probabilistic design). Backward functional recursion given by

d(at, st−1) ≡
∫

Ss

m(st|at, st−1) ln
(

m(st|at, st−1)
h(st)mi(st|at, st−1)

)
dst, (3.12)

h(st−1) ≡
∫

Sa

ri(at|st−1) exp (−d(at, st−1)) dat, (3.13)
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where h(st−1) belongs into the interval [0, 1] and begins with the value of h(sn) equal to one,
minimizes the value function from dynamic programming Theorem 3.2.2 defined as v(st) ≡
− ln(h(st)). For closed-loop densities (3.5) and (3.6), the reached minimum is

v(s0) = D(cro
, ci). (3.14)

Optimal decision rules forming the optimal closed-loop density cro can be obtained as

ro(at|st−1) = ri(at|st−1) exp(−d(at, st−1))
h(st−1) . (3.15)

Proof. After setting the time index equal to zero, the sum in the value function definition (3.10)
runs through the whole time set St and v(s0) minimization is then identical to the relation (3.7).

Let the loss function Lr in the dynamic programming Theorem 3.2.2 be defined as (3.8), i.e.

Lr(st, at, st−1) ≡ ln
(

m(st|at, st−1)r(at|st−1)
mi(st|at, st−1)ri(at|st−1)

)
.

This definition is correct since Lr(st, at, st−1) does not depend on decision rules others than the
ones describing the action selection in the epoch t. Considering the loss function in this form
and defining value function as the logarithm of (3.13), it becomes

v(st−1) = min
{r(at|st−1)}

∫
(Ss,Sa)

[
ln
(

m(st|at, st−1)r(at|st−1)
mi(st|at, st−1)ri(at|st−1)

)
+ v(st)

]
m(st|at, st−1)r(at|st−1)d(st, at)

= min
{r(at|st−1)}

∫
(Ss,Sa)

[
ln
(

m(st|at, st−1)
mi(st|at, st−1)h(st)

)
+ ln

(
r(at|st−1)
ri(at|st−1)

)]
m(st|at, st−1)r(at|st−1)d(st, at),

where the first equality above utilizes the dynamic programming relation (3.11).
Previous derivations hint the choice of the value function as the logarithm of (3.13). This

way h(st) could have been included in the logarithm of the system models which all depend on
st. The logarithm of decision rules independent of st now stand on their own, which allows it to
be taken out of the integration through the state set Ss. This computation yields∫

Ss

m(st|at, st−1)r(at|st−1) ln
(

r(at|st−1)
ri(at|st−1)

)
dst = r(at|st−1) ln

(
r(at|st−1)
ri(at|st−1)

)∫
Ss

m(st|at, st−1)dst

= r(at|st−1) ln
(

r(at|st−1)
ri(at|st−1)

)
.

Continuing in the value function computation while utilizing the previous knowledge, it gets
the form

v(st−1) = min
{r(at|st−1)}

∫
Sa

r(at|st−1)
[

ln
(

r(at|st−1)
ri(at|st−1)

)

+
∫
Ss

m(st|at, st−1) ln
(

m(st|at, st−1)
mi(st|at, st−1)h(st)

)
dst

]
dat,
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where the second integral is precisely the d function definintion (3.13). Using this auxiliary
notation, the value function simplifies into

v(st−1) = min
{r(at|st−1)}

∫
Sa

r(at|st−1)
[

ln
(

r(at|st−1)
ri(at|st−1)

)
+ d(at, st−1)

]
dat.

Ignoring d, it can be seen that the expression above notably resembles the definition of
Kullback-Leibler divergence (2.38). In order to include d in the logarithm, certain adjustments
need to be made, specifically

d(at, st−1) = −[−d(at, st−1)] = − ln (exp[−d(at, st−1)]) .

This expression can be substituted back to the value function which then becomes

v(st−1) = min
{r(at|st−1)}

∫
Sa

r(at|st−1)
[

ln
(

r(at|st−1)
ri(at|st−1) exp[−d(at, st−1)]

)]
dat.

In order for the expression above to be considered a Kullback-Leibler divergence, the de-
nominator inside the logarithm needs to be a probability density. Such criterion can only be
guaranteed by a normalization factor, which is precisely the function h given by (3.13). Thus

ln
(

r(at|st−1)
ri(at|st−1) exp[−d(at, st−1)]

)
= ln

(
r(at|st−1)h(st−1)

ri(at|st−1) exp[−d(at, st−1)]

)
− ln[h(st−1)]

= ln
(

r(at|st−1)h(st−1)
ri(at|st−1) exp[−d(at, st−1)]

)
+ v(st−1).

The logarithm of h(st−1) can be written as the value function for the given epoch. Substitution
of this expression back to the integral reminiscing Kullback-Leibler divergence then yields

v(st−1) = min
{r(at|st−1)}

∫
Sa

r(at|st−1)
[

ln
(

r(at|st−1)h(st−1)
ri(at|st−1) exp[−d(at, st−1)]

)
+ v(st−1)

]
dat.

As the integration runs through actions at, it is possible to move v(st−1) in front of the
integral. Decision rule density then integrates out to unity, which enables the value function on
the right hand side to cancel out with the one on the left hand side. Kullback-Leibler divergence
minimum is then received as

0 = min
{r(at|st−1)}

∫
Sa

r(at|st−1)
[

ln
(

r(at|st−1)h(st−1)
ri(at|st−1) exp[−d(at, st−1)]

)]
dat ≡ D [r(at|st−1), ro(at|st−1)] .

The final equality above is used to define the optimal decision rules as stated in the theorem,
i.e. (3.15).

All that remains to show is that the function h(st) falls into the interval [0, 1] for any given
epoch t. For this purpose, the concave logarithmic loss will be modified into a convex x ln x form
and the statement will be then proven based on Jensen’s inequality [8]. Once again the space
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restriction will not allow the complete notation and so its shortened version utilizing only time
indexation will be used, recall the proof of Theorem 3.2.2. Hence

vt−1 = min
{rτ ,τ≥t}

∑
τ≥t

∫
(Ss,Sa,Ss)

ln
(

mτ rτ

mi
τ ri

τ

)
mτ rτ cr

τ−1d(sτ , aτ , sτ−1)

= min
{rτ ,τ≥t}

∑
τ≥t

∫
Ss

[∫
(Sa,Ss)

ln
(

mτ rτ

mi
τ ri

τ

)
mτ rτ

mi
τ ri

τ

mi
τ ri

τ d(sτ , aτ )
]

cr
τ−1dsτ−1.

Expression in the square brackets above stands for the expected value of the product of the
logarithm and the fraction term, that is∫

(Sa,Ss)

ln
(

mτ rτ

mi
τ ri

τ

)
mτ rτ

mi
τ ri

τ

mi
τ ri

τ d(sτ , aτ ) ≡ Ei
[

mτ rτ

mi
τ ri

τ

ln
(

mτ rτ

mi
τ ri

τ

)]
.

Here, Ei denotes the mentioned expected value and the superscript i relates it to its centering
densities mi

τ and ri
τ .

The expected value argument already has the desired x ln x form and it is therefore possible
to apply Jensen’s inequality, yielding

Ei
[

mτ rτ

mi
τ ri

τ

ln
(

mτ rτ

mi
τ ri

τ

)]
≥ Id

[
Ei
[

mτ rτ

mi
τ ri

τ

]]
ln
[
Ei
[

mτ rτ

mi
τ ri

τ

]]
=
[∫

(Ss,Sa)

mτ rτ

mi
τ ri

τ

mi
τ ri

τ d(sτ , aτ )
]

ln
[∫

(Ss,Sa)

mτ rτ

mi
τ ri

τ

mi
τ ri

τ d(sτ , aτ )
]

= 0.

The zero equality follows from the fact that the centering densities in the integral cancel out with
the denominator and the numerator then integrates to unity. Logarithm of this same expression
then equals zero.

Up until now only loss functions dependent on decision rules were considered. Markov
decision processes discussed in the beginning of the chapter, however, deal with loss functions
independent of the decision strategy and its rules. The next theorem therefore states what
happens to dynamic programming when dealing with this type of loss function. Index r will be
omitted in order to emphasize the independence.

Theorem 3.2.4. Let there be a function φ defined as

φ(at, st−1) ≡
∫
Ss

L(st, at, st−1)m(st|at, st−1)dst, (3.16)

where L represents a loss function independent of decision rules r. Optimal strategy (3.7) is
then deterministic and generates optimizing actions ao according to

ao
t (st−1) ∈ Argmin

at∈Sa

φ(at, st−1). (3.17)

These optimizing actions are dependent on the current state of the system in the given epoch.
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Proof. The proof will be done by the means of mathematical induction performed on recursion
(3.11) from dynamic programming. Since the recursion is backward, the base case needs to be
shown in the final epoch of the process, i.e.

v(sn−1) = min
{r(an|sn−1)}

∫
(Ss,Sa)

[
L(sn, an, sn−1) + v(sn)

]
m(sn|an, sn−1)r(an|sn−1)d(sn, an).

Theorem 3.2.2 says that the value function in the final epoch equals zero. This statement
serves as the base case in the previous relation. Utilizing the φ function definition (3.16), the
relation then becomes

v(sn−1) = min
{r(an|sn−1)}

∫
Sa

φ(an, sn−1)r(an|sn−1)dan.

The minimization in v(sn−1) is performed over the set of all decision rules available for the
given epoch. The integral above is therefore minimum possible with respect to r. Action choice
(3.17) from the theorem statement leads to a value of function φ which is minimum in the action
variable. Combination of minimization in decision rules and actions then yields a value function
which is optimal for the given state.

Now it is time to prove the inductive step t → t − 1. Value function (3.11) can be split into
two terms and utilizing the φ definition it turns into

v(st−1) = min
{r(at|st−1)}

[ ∫
Sa

φ(at, st−1)r(at|st−1)dat +
∫
Ss

v(st)m(st|at, st−1)dst

∫
Sa

r(at|st−1)dat

]
.

Here, the integral of the decision rule density r over the whole action set Sa equals one.
As v(st) is independent of decision rules r(at|st−1), the second integral can be taken out of the
minimization. Hence all that is left to minimize is the first integral

v(st−1) = min
{r(at|st−1)}

[ ∫
Sa

φ(at, st−1)r(at|st−1)dat

]
+
∫
Ss

v(st)m(st|at, st−1)dst.

Choosing actions according to (3.17) minimizes the entire value function with regards to
actions and the same logic as in the base case applies. Function v is therefore optimal for all
epochs.

3.3 Fully Probabilistic Design and Markov Decision Processes
Fully probabilistic design as well as Markov decision processes represent two different ap-

proaches to solving decision tasks. It will be the purpose of this section to show the relationship
between them, while also highlighting some advantages fully probabilistic design holds.

Markov decision process can be defined as a tuple consisting of sets of all possible states
and actions, transition probability density which fulfills the Markov property and expected
immediate reward. Choosing an arbitrary t from the time set St and utilizing the notation of
the previous section, this tuple can be written as

(Ss, Sa, m(st|at, st−1), L(st, at, st−1)) ,
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where system model m serves as the transition probability density for the given epoch. Replacing
reward with expected loss is justified provided that there exists an unequivocal relation between
the two. This work will cover the case where the expected loss is equal to negative expected
reward, i.e.

L(st, at, st−1) = −R(st, at, st−1),

R denoting the said reward function. Besides that, Markov decision processes’ loss also must be
independent of decision rules r.

The goal of both Markov decision processes and fully probabilistic design is to optimize the
process so that the system ends up in the decision maker’s desired states. These are usually
fixed for each epoch but there may not be a clear preference towards actions to choose. Fully
probabilistic design quantifies this fact by setting the ideal decision rules equal to the real
closed-loop rules, that is

ri(at|st−1) ≡ r(at|st−1). (3.18)

Equivalence (3.18) introduced in [14] is called leave to the fate option and it can be shown that
fully probabilistic design tasks which follow this condition reduce to Markov decision processes.
Recalling the form of the loss function (3.8) from fully probabilistic design,

Lr(st, at, st−1) ≡ ln
(

m(st|at, st−1)r(at|st−1)
mi(st|at, st−1)ri(at|st−1)

)
,

it is easy to see that under leave to the fate option, the loss becomes independent of decision
rules r. The total loss is obtained as

L(b) ≡
∑
t∈St

Lt(st, at, st−1) =
∑
t∈St

ln
(

m(st|at, st−1)
mi(st|at, st−1)

)
. (3.19)

where Lt(st, at, st−1) represents a partial loss for the given epoch t. The optimal strategy of such
process is then deterministic according to Theorem 3.2.4.

Inversion of (3.19) might make the task conversion from fully probabilistic design to a Markov
decision process seem quite straightforward. Moving the sum in (3.19) inside the logarithm, thus
getting products of the two system models and subsequently expressing the ideal system model
yields

mi(b) = m(b) exp[−L(b)].

Hence, opting for the ideal density mi to be proportionate to the product of the real system
model and exponential of the expected loss function might seem as the right choice when trying
to convert the design approach.

In reality, for models proportionate to the said product this practice leads to Kullback-Leibler
divergence of the form

D(cr||mir) = Er[L(b)] + Er[ln(Φ(an, ..., a1))], (3.20)

where Φ is a normalization factor which ensures that the proportionate mi is in fact a probability
density, specifically

Φ(an, ..., a1) =
∫

Sn
s

m(b) exp (−L(b))d(sn, ..., s1), (3.21)

symbol Sn
s denoting an n-fold Cartesian product of set Ss.
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It can be seen in (3.20) that what is being minimized is not the expected loss function as
desired. Minimization of its sum with the additional term (3.21) is performed instead. The
relationship between the two approaches is therefore a little more complicated. It is described
in the next theorem.

Theorem 3.3.1. 1. There are fully probabilistic design tasks having no standard Markov
decision process equivalent.

2. Let there be a Markov decision process with stabilizing strategy rs such that the expected
loss averaged over this strategy is finite. It is then possible to approximate such process
with a fully probabilistic design task using the same system model m and ideal closed-loop
density of the form

ciλ(b) ≡ c̃(b) exp [−L(b)/λ]∫
Sb

c̃(b) exp [−L(b)/λ]db , (3.22)

defined for λ positive and density c̃ positive on the set of all behaviors Sb. Meanwhile it is
assumed that

(a) density ciλ is well defined when the denominator in (3.22) is finite and
(b) for all deterministic strategies r such that the expected loss function averaged over r

is finite it holds that the Kullback-Leibler divergence of the product mr to density c̃
is also finite.

Proof. 1. Markov decision processes require loss functions strictly defined according to (3.19).
They cannot therefore accommodate decision tasks with other types of loss functions.

2. Bearing in mind the assumptions about λ and density c̃ mentioned in (2b), let us define
two strategies on the set of all possible strategies Sr,

ro ∈ Argmin
Sr

Er[L], where Ero [L] ≤ Ers [L] < ∞, (3.23)

roλ ∈ Argmin
Sr

[Er[L] + λD(mr, c̃)] < ∞. (3.24)

Minimization of the expected loss function in (3.23) corresponds with the minimization in
Markov decision processes. The additional term in (3.24) then connects the problem of
minimizing the expected loss function with fully probabilistic design.
It is possible to manipulate the argument of the λ-minimization (3.24) in a way that yields

Er[L] + λD(mr, c̃) = λ

∫
Sb

m(b)r(b) ln

 m(b)r(b)
c̃(b) exp

(
−L(b)

λ

)
 .

This form is achievable by multiplying the loss function L by one and applying identity,
i.e.

λ

λ
L = −λ ln

(
exp

(−L

λ

))
.

As the denominator in (3.22) is finite, it can be used in yet another manipulation - this
time a zero addition, since

ln
(∫

Sb

c̃(b) exp
(−L(b)

λ

)
db
)

− ln
(∫

Sb

c̃(b) exp
(−L(b)

λ

)
db
)

= 0.
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This expression will serve as a normalizing factor of the denominator in the integral above.
Logarithm of a finite definite integral is a constant. It can be therefore taken out of the
integration, which allows the product of densities m and r to integrate to unity. In the
other term, the normalizing integral is combined with the denominator creating the density
ciλ. The argument of (3.24) then becomes

Er[L] + λD(mr, c̃) = λ

∫
Sb

m(b)r(b) ln
(

m(b)r(b)
ciλ(b)

)
db − const = λD(mr, ciλ) − const.

Since neither multiplication by a positive constant nor subtracting a constant changes the
result of minimization, it is possible to rewrite the relation (3.24) as

roλ ∈ Argmin
r∈Sr

D(mr, ciλ).

Utilizing the definitions (3.23) and (3.24) as well as the non-negativity property of Kullback-
Leibler divergence, it is possible to obtain the following set of inequalities

0 ≤ Eroλ [L] − Ero [L] ≤ Eroλ [L] + λD(mroλ, c̃) − Ero [L] ≤

≤ Ero [L] + λD(mro, c̃) − Ero [L] = λD(mro, c̃) λ→0+−→ 0+,

where the symbol λ→0+−→ 0+ denotes right convergence. This statement holds as long as
Kullback-Leibler divergence is finite, which is, however, guaranteed from the assumption
(2b).
In other words, the expected loss function connected with fully probabilistic design con-
verges to the Markov decision process expected loss function. Written mathematically

Eroλ [L] −→ Ero [L].

This means that every Markov decision process optimal strategy can be arbitrarily well
approximated by a strategy acquired using fully probabilistic design.

3.4 Discounted Formulation and Solution
Discounting is a term used to describe the decreasing preference of future rewards or, alter-

natively, losses. These are said to be discounted in order to reflect their present value. This
phenomenon can be observed in many forms of human behavior from ordinary future planning
to impulse control problems seen for example in eating habits [30] or substance abuse [21].

Indeed, one would intuitively prefer being given 10 dollars immediately rather than one week
later. Consider that the present value of the 10 dollars next week is 1 dollar. In order to obtain
the present value of the future reward, it needs to be multiplied by 0.1. This number which
relates future rewards to their present value is called discounting factor and the principle of
value decrease in relation to future is referred to as temporal discounting.

On the other hand, probabilistic discounting deals with rewards which are perceived as un-
certain. Smaller amount of money, for instance being given 5 dollars with no uncertainty, could
be preferred by many individuals before 10 dollars they may not be sure to receive. It was



CHAPTER 3. FULLY PROBABILISTIC DESIGN 38

Figure 3.2: An example of decreasing time preference.

shown in [6] that both temporal and probabilistic discounting can be treated using the same
mathematical models. For this reason it is possible to limit the study to the former case.

Discounting finds frequent application in investment analysis [10] for obtaining the present
value of future cash flows. Other applications in finance include benefit-cost analysis [5], which
aims to analyze whether a project is economically feasible by comparing its discounted future
benefits with present losses. Capital budgeting [34] is another closely related application. The
benefits of purchasing new equipment, expanding facilities or running new projects need to be
weighed out by their present costs.

Although discounting is generally the most frequently utilized in economic fields, since the
end of the last century it has also found its application in environmental economics [4], [26] for
matters such as modeling greenhouse gas emissions. All of these applications are also discussed
in [29].

Markov decision processes already incorporate the discounting factor and can therefore be
used to solve the above mentioned tasks. Fully probabilistic design, however, lacked the necessary
apparatus for dealing with problems which require discounting. This shortcoming was overcome
in the bachelor’s project [24]. The goal of this section and its subsections is hence to recollect
the derivation of discounted fully probabilistic design.

3.4.1 Discounted Fully Probabilistic Design Is Non-Trivial

Discounted fully probabilistic design aims to weigh out the future losses as previously dis-
cussed. The weights used therefore serve as the discounting factors. The goal is hence to
minimize a Kullback-Leibler divergence of the following form

D(cr, ciw) ≡ Er

∑
t∈St

w(st−1) ln
(

m(st|at, st−1)r(at|st−1)
mi(st|at, st−1)ri(at|st−1)

) , (3.25)

where w(st−1) serve as the weights for the given partial loss function. Ideal closed-loop density
ciw now possesses one more superscript in order to emphasize discounting applied in the form
of weights.

Due to the fact that the time set St is finite, it is possible to exchange the order of the
summation and integration in (3.25) yielding the integral form

D(cr, ciw) =
∑
t∈St

∫
(Ss,Sa)

m(st|at, st−1)r(at|st−1) ln
(

m(st|at, st−1)r(at|st−1)
mi(st|at, st−1)ri(at|st−1)

)w(st−1)
d(at, st).
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Discounting weights w above have turned into exponents using the logarithmic power rule.
For the previous entry to follow the definition of Kullback-Leibler divergence (2.38), the

centering density and the density in the numerator must be the same. This is achievable by
redistributing some of the numerator into the denominator, i.e.

ln
(

mtrt

mi
tr

i
t

)wt−1

= ln
(

mtrt

[mi
tr

i
t]wt−1 [mtrt]1−wt−1

)
.

The simplified notation from the proof of Theorem 3.2.2 was used once again in order to save
space.

All that is left to do is to ensure that the denominator is a probability density. A normal-
ization factor therefore needs to be added and subtracted. Density ciw then becomes

ciw(b) ≡
∏
t∈St

[mi(st|at, st−1)ri(at|st−1)]w(st−1)[m(st|at, st−1)r(at|st−1)]1−w(st−1)∫
(Ss,Sa)

[mi(st|at, st−1)ri(at|st−1)]w(st−1)[m(st|at, st−1)r(at|st−1)]1−w(st−1)d(st, at)
.

(3.26)
Let us denote the normalizing integral above as

Φ(st−1) ≡
∫

(Ss,Sa)

[mi(st|at, st−1)ri(at|st−1)]w(st−1)[m(st|at, st−1)r(at|st−1)]1−w(st−1)d(st, at).

(3.27)
The choice of ideal closed-loop density as (3.26) then leads to a minimization of Kullback-Leibler
divergence with an additional term

D(cr, ciw) = Er

∑
t∈St

(
w(st−1) ln

(
m(st|at, st−1)r(at|st−1)

mi(st|at, st−1)ri(at|st−1)

)
+ ln (Φ(st−1))

) . (3.28)

Discounted fully probabilistic design formulation is therefore non-trivial and cannot be achieved
through simply weighing down the future losses.

3.4.2 Correct Formulation and Solution

Let us introduce a new binary variable pointer, denoted pt for the given epoch t, which
influences the ideal densities mi and ri in the following manner

mi(st|at, pt, st−1) =
{

mi(st|at, st−1), if pt = 1,

m(st|at, st−1), if pt = 0,
(3.29)

ri(at|pt, st−1) =
{

ri(at|st−1), if pt = 1,

r(at|pt, st−1), if pt = 0.
(3.30)

Pointer choice equal to zero sets the ideal densities to be identical to their real counterparts.
Such choice corresponds with the leave to the fate option (3.18). System model m in (3.29) is
independent of pointers, which was discussed in [27].

This is not true for decision rules, cf. (3.29) and (3.30) for the zero pointer case. In order to
emphasize this fact, pointers are present as one of the conditional arguments.

Let the weights w(st−1) be defined in a way so that they express the probability of pointers
equal to one based on the current state of the system, i.e.

w(sτ−1) ≡ p(pτ = 1|sτ−1) and wi(sτ−1) ≡ pi(pτ = 1|sτ−1), (3.31)
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where the superscript i denotes the weights of an ideal closed loop. Probability densities cor-
responding with the zero pointers can then be expressed as 1 − w(st−1) thanks to the pointers’
binary character. Analogical pattern applies for the ideal weights.

Due to the introduction of pointers, behaviors need to be redefined, as they now carry one
more variable. Remembering the leave to the fate options (3.29) and (3.30), weighted closed-loop
density can be defined as

crw(b) ≡cr(sn, an, pn, sn−1, an−1, pn−1, ..., s1, a1, p1, s0)

=
n∏

τ=1
m(sτ |aτ , sτ−1)r(aτ |pτ , sτ−1)wpτ (sτ−1)(1 − w(sτ−1))1−pτ , (3.32)

while its ideal equivalent has the following structure

ciw(b) =
n∏

τ=1
[mi(sτ |aτ , sτ−1)ri(aτ |sτ−1)wi(sτ−1)]pτ

×[m(sτ |aτ , sτ−1)r(aτ |pτ , sτ−1)(1 − wi(sτ−1))]1−pτ . (3.33)

These discounted closed loop models result in the desired minimization of Kullback-Leibler
divergence (3.25) with an additional term. Specifically it reads

D(crw, ciw) = Er

[
n∑

τ=1
w(sτ−1) ln

(
m(sτ |aτ , sτ−1)r(aτ |pτ = 1, sτ−1)

mi(sτ |aτ , sτ−1)ri(aτ |sτ−1)

)]

+
n∑

τ=1
D
(
[w(sτ−1), 1 − w(sτ−1)], [wi(sτ−1), 1 − wi(sτ−1)]

)
, (3.34)

where the second sum of divergencies zeroes out in case of the leave to the fate option applied
to weights. This means that the weights w are set equal to their ideals wi. In other words, there
is no preference in the choice of pointers.

The choice of closed-loop densities in the form (3.32) and (3.33) therefore offers a promising
way of formulating the discounted fully probabilistic design. All that remains is to show how to
construct the decision rules r in (3.34). This will be the aim of the following theorem.

Theorem 3.4.1 (Discounted fully probabilistic design). Discounted fully probabilistic design
optimal decision rules which minimize Kullback-Leibler divergence of the closed loop model
(3.32) to its ideal counterpart (3.33)

• coincide with the optimal strategy from the standard formulation in case that pointers
equal one, and

• become deterministic for the zero pointer case. Optimal actions are selected directly as

ao(st−1) ∈ argmin
at∈Sa

k(at, st−1), with k(at, st−1) =
∫
Ss

m(st|at, st−1) ln
( 1

h(st)

)
dst, (3.35)

being the minimized function. Normalizing factors

h(st−1) = hi(st−1)wi(st−1) + κ(st−1)(1 − wi(st−1)) and (3.36)

hi(st−1) =
∫
Sa

ri(at|st−1) exp(−d(at, st−1))dat, (3.37)
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ensuring the backward functional recursion to the initial state s0 and

d(at, st−1) =
∫
Ss

m(st|at, st−1) ln
(

m(st|at, st−1)
h(st)mi(st|at, st−1)

)
dst and (3.38)

κ(st−1) = exp(−k(ao(st−1), st−1)), (3.39)

being the final two auxiliary functions. Pointers are then generated according to the
optimal weights

wo(st−1) = wi(st−1)hi(st−1)
h(st−1) .

Proof. Substituting extended actions (at, pt) into Theorem 3.2.3 yields

d(at, pt, st−1) =
∫
Ss

m(st|at, pt, st−1) ln
(

m(st|at, pt, st−1)
h(st)mi(st|at, pt, st−1)

)
dst.

Under the leave to the fate option (3.29) density mi in the denominator cancels out with mi

in the numerator, leaving only h. Remembering that pointers have no influence on the system
model, see the discussion under (3.29) on page 39, together with their binary character, function
d becomes

d(at, pt, st−1) = pt

∫
Ss

m(st|at, st−1) ln
(

m(st|at, st−1)
h(st)mi(st|at, st−1)

)
dst

+ (1 − pt)
∫
Ss

m(st|at, st−1) ln
( 1

h(st)

)
dst

Here, the first integral is precisely the d from standard fully probabilistic design (3.13)
whereas the second integral is the function k from the theorem statement, see (3.35). Taking
into account the multiplication by pt and 1 − pt, the extended d function can be expressed as

d(at, pt, st−1) =
{

d(at, st−1), for pt = 1
k(at, st−1), for pt = 0.

(3.40)

Moving on to the normalizing factor h, it can be once again obtained by substituting the
extended actions back into the h from standard fully probabilistic design, i.e.

h(st−1) =
∫
Sa

1∑
pt=0

ri(at, pt|st−1) exp[−d(at, pt, st−1)]dat.

The summation is present to eliminate the dependency of h on pointers.
Extended d can be seen above whereas ideal decision rules with extended actions can be

reformulated using chain rule and weights definition (3.31), thus

ri(at, pt|st−1) = ri(at|pt, st−1)pi(pt|st−1) =
{

ri(at|st−1)wi(st−1), for pt = 1
r(at|pt = 0, st−1)(1 − wi(st−1)), for pt = 0,

(3.41)
where density ri(at|pt, st−1) was expressed using leave to the fate option (3.30).
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The final form of function h can be obtained by substituting the extended d from (3.40) and
ideal decision rules (3.41) back to its defining integral. Therefore

h(st−1) = wi(st−1)
∫
Sa

ri(at|st−1) exp[−d(at, st−1)]dat

+ (1 − wi(st−1))
∫
Sa

r(at|pt = 0, st−1) exp[−k(at, st−1)]dat.
(3.42)

Apparently the case with pointers equal to one in the first row of (3.42) coincides with the h
from standard fully probabilistic design. However, the case with zero pointers is not familiar
and it will be paid more attention to in the following paragraphs.

It can be seen that function k obtained from function d for the zero pointer case notably
resembles the definition of function φ from Theorem 3.2.4. The assumption of independence of
the loss function, i.e. the logarithm of inverse h from (3.35) in this case, on decision rules holds.
Therefore in epochs with zero pointers, the actions are generated deterministically according to

ao(st−1) ∈ Argmin
at∈Sa

k(at, st−1) = Argmin
at∈Sa

∫
Ss

m(st|at, st−1) ln
( 1

h(st)

)
dst. (3.43)

Decision rules r in (3.42) are hence deterministic and generate optimal actions ao dependent on
the current state of the system.

Substituting this knowledge back into (3.42), the final form of the normalizing factor h reads

h(st−1) = wi(st−1)hi(st−1) + (1 − wi(st−1))κ(st−1),

where κ represents the exponential of function k with optimal actions ao, see (3.39).
All that is left to show is the form of optimal decision rules ro. Having derived d(at, pt, st−1)

and ri(at, pt|st−1) for the discounted design, it is possible to substitute these into (3.15), yielding

ro(at, pt|st−1) = pt

ri(at|pt = 1, st−1)pi(pt = 1|st−1) exp[−d(at, pt = 1, st−1)]
h(st−1)

+ (1 − pt)
r(at|pt = 0, st−1)pi(pt = 0|st−1) exp[−d(at, pt = 0, st−1)]

h(st−1) .

Once again utilizing the derived ideal decision rules with extended actions (3.41), the final
form of ro reads

ro(at, pt|st−1) =


wi(st−1)ri(at|st−1) exp[−d(at, st−1)]

h(st−1) if pt = 1,

(1 − wi(st−1))r(at|pt = 0, st−1) exp[−k(at, st−1)]
h(st−1) if pt = 0.

(3.44)

These relations can be directly used to obtain optimal weights wo by integrating over the
actions set. Let us demonstrate this on the less complex case with pointers equal to one, i.e.

wo(st−1) =
∫
Sa

ro(at, pt = 1|st−1)dat = wi(st−1)
h(st−1)

∫
Sa

ri(at|st−1) exp[−d(at, st−1)]dat.
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The last integral above is precisely the normalizing factor from standard fully probabilistic
design (3.37). Optimal weights can hence be expressed simply as

wo(st−1) = wi(st−1)hi(st−1)
h(st−1) . (3.45)

Optimal weights for pointers equal to zero can be then obtained directly as 1 − wo(st−1).
Now that the optimal decision rules with extended actions are known, it might be useful

to move the pointers into the conditional part, yielding ro(at|pt = 1, st−1). Such density is
necessary when both the current state of the system as well as the current pointer are known and
the decision maker wishes to predict the best action choice based on this available information.
Conditional density ro can be expressed using chain rule as

ro(at|pt = 1, st−1) = ro(at, pt = 1|st−1)
wo(st−1) = ri(at|st−1) exp[−d(at, st−1)]

hi(st−1) .

The last equality above was acquired after substituting (3.44) and (3.45) for ro and wo respec-
tively.

The previous computations hold for pointers equal to one. The zero case can be derived
analogically once again substituting ro definition (3.41) and 1 − wo, thus

ro(at|pt = 0, st−1) = ro(at, pt = 0|st−1)
1 − wo(st−1) = ro(at|pt = 0, st−1) exp[−k(at, st−1)]

κ(st−1) .

As both the left and the right hand side contain density ro(at|pt = 0, st−1), in order for the
equality to hold, the exponential of k needs to be equal to κ. It can be seen from the definition
(3.39) that this is only true for actions (3.43). Decision rules ro(at|pt = 0, st−1) therefore generate
deterministic optimal actions turning exp(k) into κ.

3.5 Numerical Simulations
This part numerically illustrates the theory and verifies the working hypothesis on equality

of the optimal forgetting and discounting factor. This hypothesis was already studied in the
research project [25], where there was discovered dependency of the simulation on the chosen
random number generator seed value. This work therefore handles the dependency by averaging
multiple simulations with different seeds to see if they converge to desired results.

In the previous subsection it was discussed that the weights (3.31) serve as the discounting
factors relating future losses to their current value. The motivation of setting the discounting
factor as weights is the following. After applying the decision rule version with the leave to the
fate option (3.30) it can be seen in the resulting form of the Kullback-Leibler divergence (3.34)
that the only decision rule densities with pointers equal to one enter the optimization. The zero
case discards the density from the optimization by canceling out it out with the density in the
numerator. That is where the variable pointer gets its name. It serves as a random selector of
the epochs in which the process shall be optimized.

Forgetting factor λt in (2.40) expresses the probability that no model variations occurred in
between times t − 1 and t. Estimated model should thus represent an appropriate description
of reality whenever the forgetting factor equals one. It would therefore seem reasonable to keep
optimizing the process whenever the estimated model is considered to hold. In probabilistic
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terms, this means to set the discounting factor equal to one whenever the forgetting factor
happens to be one.

Our question was if this hypothesis is sound. Forgetting factor value could then serve as a
good estimate of the discounting factor. The hypothesis was tested in the mentioned research
project where the results did not seem favorable.

During the course of the work we came up with yet another hypothesis regarding the effect of
discounting on decision processes when the model variations are caused by imprecise modeling.
System models acquired through model estimation, see Section 2.3, are always imperfect when
describing the real system behavior. These imperfect estimates enter the optimal decision rule
design discussed in Theorem 3.2.3. However, new states are generated according to a valid
system model m. When this valid model varies in time, the quality of its estimate decreases
and becomes even more imprecise over time. The loss accumulates and the process performance
drops.

This is why it might be profitable to omit some epochs from the optimization in order to limit
the accumulation of loss in systems with time inconsistent models. Stopping the optimization
before the valid and the estimated model stride too far away from each other might solve
this problem and eventually improve the overall performance. This thought motivates our
simulations.

Simulation Setup

The decision horizon n was set to 200 time epochs. Next, a state set containing three
available states and an action set with two available actions were chosen as

Ss = {1, 2, 3} and Sa = {1, 2}.

The initial state of the system s0 was taken to be the state 1.
In order to test the hypothesis of equality of the discounting and forgetting factor values,

denoted w and λ respectively, a discrete grid of these values was defined. It reads

w, λ ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}.

The dropping of the time indices embodies the fact that both factors were believed to remain
constant in the course of time.

Before launching the simulations, it is necessary to define ideal probability densities ri and
mi as well as the valid system model m. Their exact definitions can be seen in Tables 3.1, 3.2
and 3.3 below. These were formulated in a way that would emphasize the preferred state-action
combination, which was set to be the couple

(st, at) = (3, 2) for t = 1, 2, 3, ..., n.

This means that the decision maker wishes to keep reaching state 3 as much as possible during
the course of the process.

Since one of the goals was to test the effect of discounting on decision processes with unknown
and varying system model, this variance also needed to be incorporated. New states were
therefore generated from a linearly degenerating model given by t

nm0.85 + n−t
n m, which was then

normalized.
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ri(at|st−1) at = 1 at = 2
st−1 = 1 0.4167 0.5833
st−1 = 2 0.4286 0.5714
st−1 = 3 0.3077 0.6923

Table 3.1: Ideal decision rule matrix.

m(st|at, st−1) at = 1 at = 2
st = 1, st−1 = 1 0.1951 0.2381
st = 1, st−1 = 2 0.3333 0.3256
st = 1, st−1 = 3 0.3409 0.3542
st = 2, st−1 = 1 0.3171 0.3571
st = 2, st−1 = 2 0.2857 0.2093
st = 2, st−1 = 3 0.4091 0.3958
st = 3, st−1 = 1 0.4878 0.4048
st = 3, st−1 = 2 0.3810 0.4651
st = 3, st−1 = 3 0.2500 0.2500

Table 3.2: Real system model matrix.

mi(st|at, st−1) at = 1 at = 2
st = 1, st−1 = 1 0.3158 0.2286
st = 1, st−1 = 2 0.3070 0.3409
st = 1, st−1 = 3 0.3774 0.1154
st = 2, st−1 = 1 0.2632 0.2857
st = 2, st−1 = 2 0.3728 0.2955
st = 2, st−1 = 3 0.3302 0.1923
st = 3, st−1 = 1 0.4211 0.4857
st = 3, st−1 = 2 0.3202 0.3636
st = 3, st−1 = 3 0.2925 0.6923

Table 3.3: Ideal system model matrix.

Finally, all 200 steps were run under 50 different seeds ranging from 1 to 50. The results were
recorded in form of percentage occurrences of each state out of the 200 epochs. The 50 sets of
results were subsequently averaged in order to eliminate the dependency on the random number
generator. For clarity, they are plotted in form of heat maps. Now that all the preliminaries
have been stated, it is possible to demonstrate the results and verify the following.

Hypothesis that forgetting factor is an adequate estimate of the discounting
factor

The hypothesis of the forgetting factor to be a valid estimate of the discounting factor would
correspond with the best results observed on the diagonal of the preferred state’s heat map.

Since the preferences were chosen as the state 3 and action 2, it can be seen in Tables 3.2
and 3.3 that the third state has higher values of probability densities than the remaining ones.
The same applies to the second action in Table 3.1. However, as the leave to the fate option
(3.30) annuls4 the action preference in some of the epochs, the preference on actions is not quite
as consistent as it is in case of states.

Regarding the hypothesis of discounting factor estimation, the best results in each row of
the heat map Figure 3.5 appeared near the diagonal. However, the differences between the
highest and lowest percentage occurrence were mostly in the order of third decimal place. They
were therefore not sufficiently convincing to draw reliable conclusions. Even after removing the
dependence on random number generator seed observed in the previous work, this hypothesis
cannot be convincingly accepted or refuted.

4See the discussion before Simulation Setup.
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Figure 3.3: Occurrences of state 1 for different factor combinations.
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Figure 3.4: Occurrences of state 2 for different factor combinations.
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Figure 3.5: Occurrences of state 3 for different factor combinations.

Hypothesis that discounting factor improves model performance under impre-
cise modeling

As discussed in Simulation Setup, modeling error was achieved by modifying the density
m, which entered the fully probabilistic design. The system model used for generating new
states and the model used for decision rule design were hence two different densities. The
mismatch between the models might have caused loss accumulation which decreased the system’s
performance.

The hypothesis here was to test whether discounting increased the occurrence of the preferred
state throughout the process compared to the case when no discounting was used, that is, to
test if the process’ performance improved under discounting. Standard fully probabilistic design
is obtained when setting the discounting factor to one. We were therefore comparing the first
row of the heat map in Figure 3.5 with the remaining rows to see if higher occurrence could be
found.

The best results overall were found for the combination of discounting factor 0.1 and forget-
ting factor 0.2. This simulation is presented in Figure 3.6 in form of histograms. The simulation
shown in Figure 3.6a has an absolute occurrence of state 3 equal to 74. Comparing this result
with Figure 3.6b, which contains the best results out of all forgetting factor values, it still has the
absolute occurrence of the preferred state equal to 72. Even for the best possible choice of the
forgetting factor, discounting hence still managed to slightly improve the overall performance.
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(a) Discounting factor 0.1 and forgetting factor 0.2. (b) Discounting factor 1 and forgetting factor 0.7.

Figure 3.6: Comparing the best results obtained with and without discounting (be aware of different scales).

Summary

The goal of the current section was to check hypotheses regarding how to set the discounting
factor value for optimal performance as well as examining the effect of discounting in tasks with
time-varying system models.

When studying the first hypothesis, the best results were not observed for the exact same
value of the two factors, however, the highest occurrences could be seen around the diagonal
of the studied heat map. Despite this fact, the difference in values between these optimal
occurrences and occurrences detected for more distant factor combinations have been very subtle.
In order to carry out conclusions about the truthfulness of the hypothesis, more significant
differences would need to be observed.

The second idea was to check whether discounting helps when dealing with time-inconsistent
system models. When comparing the values from the first row in Figure 3.5 with the rest of the
heat map, it can be seen that discounting improved the system performance for the combination
of discounting and forgetting factor of 0.1 and 0.2 respectively. The change in percentage was,
however, not big enough for this result to be considered significant.

Furthermore, it can be seen in all of the provided figures that the choice of discount factor
in some cases led to performance deterioration when compared to the non-discounted case. It is
hence important to pay close attention when choosing the discounting factor value in order to
prevent this situation.



Chapter 4

Conclusion

Fully probabilistic design of decision strategy was equipped with discounting to reflect the
decreasing preference of future gains. In order to ensure the design’s adaptive property, Bayesian
estimation was incorporated to allow a construction of parametric models. They face the uncer-
tainty of modeling whenever no exact information is given about how the system evolves over
time. In order to further increase the design’s adaptivity, forgetting has been incorporated to
address the issue of time varying models.

Besides reintroducing the theoretical foundation established in the previous works [24] and
[25], the thesis also examined the effect of discounting on decision processes under uncertainty.
The objective was to verify if discounting improved the performance of the process when dealing
with an unknown system model. The main idea was to stop the optimization before the model
could significantly degrade, which would result in an increased loss. A slight improvement
could have been observed, however, the change was not significant enough to carry out serious
conclusions.

The hypothesis of the forgetting factor being an adequate choice of the discounting factor
after handling the dependency on random number generator seed discovered in the previous work
was not denied but could have been supported only weakly. The best results were observed near
the same value of both factors, however, the differences were not very significant. The question
of careful handling of the two factor values was also raised as some combinations led to obvious
performance decrease.

The thesis brought together the research on fully probabilistic design, discounting and system
model estimation, enabling it to cover much wider range of decision tasks. Relationship between
discounting and model estimation was also examined. Similarly to the previous hypothesis,
however, it

Further research might hence focus on the loss function of the given process, which might
hint a more promising way of choosing the optimal factor values. The work has also been limited
to elaborating decision processes with discrete states and actions. In order to further generalize
the fully probabilistic design, continuous spaces should be examined as well, which would further
improve the applicability of the probabilistic approach.
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