
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Identification and Flight Control of Robotic
Helicopter

Bc. Jan Švrčina

Supervisor: Ing. Jan Chudoba
Study Program: Cybernetics and Robotics
May 2024

ii

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

474447 Personal ID number: Švrčina Jan Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Cybernetics

Cybernetics and Robotics Study program:

II. Master’s thesis details

Master’s thesis title in English:

Identification and Flight Control of Robotic Helicopter

Master’s thesis title in Czech:

Identifikace a řízení letu robotické helikoptéry

Guidelines:

Make yourself familiar with helicopter Ryze Tello provided by your supervisor, as well as with methods of its control. Also,
make yourself familiar with Vicon motion capture system, which will be used as a localization system.
• Identify model of the provided helicopter and
• design a method for a flight control along requested trajectories.
• Implement the designed method and demonstrate its function in several experiments with different trajectories.
• Evaluate quality and precision of the control.

Bibliography / sources:

[1] Jan Gärtner, Udržování formace UAV na základě měření vzájemných vzdáleností, diplomová práce, ČVUT v Praze -
FEL, 2021
[2] Pařil David, Autonomous Control of Drone Ryze Tello, bakalářská práce, ČVUT v Praze - FEL, 2021
[3] T. Baca, D. Hert, G. Loianno, M. Saska and V. Kumar, "Model Predictive Trajectory Tracking and Collision Avoidance
for Reliable Outdoor Deployment of Unmanned Aerial Vehicles," 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Madrid, Spain, 2018, pp. 6753-6760

Name and workplace of master’s thesis supervisor:

Ing. Jan Chudoba Intelligent and Mobile Robotics CIIRC

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 24.05.2024 Date of master’s thesis assignment: 22.09.2023

Assignment valid until: 16.02.2025

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Ing. Jan Chudoba
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

iv

Acknowledgements

I thank my alma mater for the knowledge,
skills and lessons I have acquired during
my studies, my supervisor, Jan Chudoba,
for the provided consultation, resources,
and patience and my dear mother, Anna
Švrčinová, for the lifelong support of my
education.

Děkuji své alma mater za znalosti, schop-
nost a lekce, které jsem během svého stu-
dia získal, mému vedoucímu, Janu Chu-
dobovi, za konzultace, zdroje a trpělivost
a mé mamince, Anně Švrčinové, za celoživ-
otní podporu mého vzdělávání.

Declaration

I declare that the presented work was
developed indepenently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

In Prague, 24. May 2024

Prohlašuji, že jsem předloženou práci
vypracoval samostatně, a že jsem
uvedl veškeré použité informační zdroje
v souladu s Metodickým pokynem o do-
držování etických principů při přípravě
vysokoškolských prací.

V Praze, dne 24. května 2024

Jan Švrčina

v

Abstract

The goal of this thesis is to identify
the model of a small robotic helicopter
Tello and to use the motion capture sys-
tem Vicon to track and control the flight
of the helicopter.

We have developed and implemented
an off-line model parameter estimation
method for identification and on-line asyn-
chronous MHE (moving horizon estima-
tor) and MPC (model predictive control)
procedures for real-time control of the
helicopter. This thesis presents the the-
oretical description of the methods used,
and in detail, describes the implementa-
tion of these methods for a real system.

The results of experiments with the real
system are also presented and analyzed,
proving the capability of controlling a sys-
tem with significant input delay.

Keywords: drone, UAV, robotic
helicopter, motion tracking,
identification, control, feedback, model
predictive control, moving horizon
estimation

Supervisor: Ing. Jan Chudoba
Jugoslávských partyzánů 1580/3
160 00 Dejvice

Abstrakt

Cílem této práce je identifikace modelu
malé robotické helicoptéry Tello a pou-
žití systému pro snímání pohybu Vicon
na sledování a řízení letu této helikoptéry.

Jsou odvozeny a implementovány off-
line metoda pro odhad parametrů mo-
delu při identifikaci a také on-line asyn-
chroní MHE (moving horizon estimator)
a MPC (model predictive control) pro-
cedury pro řízení helikoptéry v reálném
čase. Tato práce prezentuje teoretický po-
pis těchto použitých metod a také detailně
popisuje jejich implementaci při použití
na reálném systému.

Výsledky experimentů provedených na re-
álném systém jsou prezentovány a analy-
zovány, dokazující schopnost řízení systém
s výrazným vstupním zpožděním.

Klíčová slova: dron, bezpilotní letoun,
robotická helikoptéra, snímání pohybu,
řízení, zpětná vazba, MPC, MHE

Překlad názvu: Identificace a řízení
letu robotické helikoptéry

vi

Contents

1 Introduction 1

1.1 Key concepts 2

1.1.1 Quadrocopter 2

1.1.2 Closed-loop control 3

2 Literature review 5

2.1 Theses working with Tello robotic
helicopters . 5

2.2 State of the art 6

3 Theoretical background 7

3.1 Dynamical systems 7

3.1.1 State-space model 8

3.1.2 Discretization 10

3.1.3 Parameter identification
problem . 11

3.1.4 Moving horizon estimator . . . 16

3.1.5 Model predictive control 17

3.2 Non-linear least-squares
optimization 19

3.2.1 Modeling 19

3.2.2 Solving 19

3.2.3 Deriving Jacobians 24

4 Technical solution 25

4.1 Hardware . 25

4.1.1 Robotic helicopter Tello 25

4.1.2 Motion capture system Vicon 26

4.2 Drone model 27

4.2.1 Discretization 28

4.2.2 Input delay 28

4.3 Software . 29

4.3.1 Tello communication 29

4.3.2 Vicon communication 29

4.3.3 Vicon filter 30

4.3.4 Logging 31

4.3.5 Ceres solver 32

4.3.6 Model template 32

4.3.7 System identification 33

vii

4.3.8 Moving horizon estimate 35

4.3.9 Model predictive control 36

4.3.10 Adjusting for input delay . . 38

4.3.11 Control loop 38

5 Results 41

5.1 System identification 41

5.1.1 Input delay 41

5.1.2 Model parameters 43

5.2 Flight control 44

5.2.1 Control loop configuration . . 46

5.2.2 Prediction inconsistency 46

5.2.3 Controller performance 46

5.2.4 Additional trajectories 48

6 Discussion 51

6.1 System identification 51

6.1.1 Input delay 51

6.1.2 Parameter values 51

6.1.3 Parameter variance 52

6.2 Flight control 52

6.2.1 Heading adjustment 52

6.2.2 Computation feasibility 53

6.2.3 Prediction inconsistency 53

6.2.4 Controller performance 53

6.2.5 Trajectory progression 54

7 Conclusion 55

A Bibliography 57

B Repository 63

C Configuration file specifications 65

C.1 System identification 65

C.2 Moving horizon estimate 66

C.3 Model predictive control 66

C.4 Control program 67

D Used coefficients 69

viii

Chapter 1

Introduction

Flight control systems have been in use since the start of aviation, however
with the ever-growing availability and capability of unmanned aerial vehicles
(UAVs), the research regarding fully autonomous flight control is becoming
increasingly more important.

UAVs are most commonly used in package delivery, agriculture, security
inspections, and aerial photography. Although a relatively new technology,
autonomous drones are highly versatile, attracting significant research in-
terest for innovative applications like autonomous reconnaissance missions
and firefighting [1]. Regardless of the specific area, reliable control and accu-
rate localization are prerequisites for autonomous drones.

The goal of this thesis is to develop a solution for the autonomous flight control
of a commercially available robotic helicopter with the use of external tracking
system for localization. We present generic methods for the identification
and control of dynamic systems, and we evaluate the availability of a tailored
implementation of these methods for robotic helicopters.

1

1. Introduction
1.1 Key concepts

In this section we describe two key concepts for the autonomous control
of UAVs.

1.1.1 Quadrocopter

A quadrocopter is a type of robotic helicopter with four rotors. Figure 1.1
shows a diagram of a quadrocopter drone with numbered rotors. If the drone

1 2

3 4

Figure 1.1: Quadrocopter diagram

is stationary, each rotor is rotating at the same speed (assuming the center
of gravity is in the middle of the drone). Each rotor produces a lift equal
to a quarter of the total weight. The net torque is zero because rotors 1 and 4
spin clockwise, and rotors 2 and 3 spin counterclockwise.

To change the position of the quadrocopter, we will vary the rotors’ speeds.
Four controls correspond to the control of a conventional helicopter or airplane,
diagrams for the first 3 are in figure 1.2.

Roll. To move right, we increase the speed of rotors 1 and 3 and decrease
the speed of rotors 2 and 4; this will tilt the drone to the right and the net
force will accelerate it to the right.

2

.................................... 1.1. Key concepts

Pitch. To move forward, we decrease the speed of rotors 1 and 2 and increase
the speed of rotors 3 and 4; this will tilt the drone forward and the net force
will accelerate it forward.

Yaw. To rotate counterclockwise, we increase the speed of rotors 1 and 4
(clockwise) and decrease the speed of rotors 2 and 3 (counterclockwise).
The increased drag from clockwise rotors and decreased drag from counter-
clockwise rotors will result in a net torque when rotating the drone.

Throttle. To increase the altitude, we simply increase the speed of all rotors,
increasing the lift.
Remark 1.1. All of the controls are explained in their positive directions.
To move to the other direction, we reverse the rotor selection. For altitude
decrease, lower the speed across all rotors.

1 2

3 4

(a) : Roll

1 2

3 4

(b) : Pitch

1 2

3 4

(c) : Yaw

Figure 1.2: Quadrocopter controls

1.1.2 Closed-loop control

When controlling a dynamic system using naive open-loop control, we simply
get a reference (target) of where we want the system to end up and then send
the appropriate inputs to the dynamic system. This is approach is simple
and often stable (finite input results in a finite output). However, some
disturbances usually affect our system, and our model of dynamic systems is
often only an approximation.

To compensate for the disturbance and the inexact model, we can measure
the output of the system with some sensors and use this measurement to adjust
our control input accordingly, diagram in figure 1.3. This concept of closed-
loop (feedback) control, allows us to adapt according to the current situation

3

1. Introduction
at the cost of the measurement, and when designing the controller, we need
to be mindful of the properties of the closed-loop system.

controller system
reference input output

sensor
measurement

disturbance

Figure 1.3: Closed-loop control

4

Chapter 2

Literature review

2.1 Theses working with Tello robotic helicopters

There are previous theses from CTU working with the same drones as ourselves.
To list a few, M. Bekhzod [2] was tracking drone position using ArUco markers,
J. Ševic [3] is using a drone camera to fly through obstacles, D. Pařil [4] is
using the drone camera and odometry to control its position, J. Gärtner [5]
is using self-made distance sensors to keep the formation of multiple drones.

Most of the research outside of CTU working with the Tello drones focuses
on computer vision. Two examples are T. Saini [6], using the human pose
estimation to control the drone and a paper from Hulek et al. [7] discussing
positioning using April tags. There is very little research available regarding
the control of the Tello drones, while the use of the drone’s internal regulators
is common.

It should be of note that in these theses or papers, the identification of the drone
model (if it was done) was done using ad-hoc methods (usually simple input-
step measurements) and the control was done using a PID regulator, either
external or internal to the drone. The main improvement in this thesis is
the use of a generic model data-driven method for identification and the use
of the model-based MPC controller, similar to the current state-of-the-art
implementations of UAV flight control [8].

5

2. Literature review
2.2 State of the art

Current state-of-the-art UAV flight control is well summarized in [9]. Current
applications use many different approaches. Linear model methods using pro-
portional–integral–derivative (PID) controller [10], linear-quadratic regulator
(LQR) or H-inf controllers [11] are used for their computation simplicity and
well-developed methods guaranteeing the stability of the closed-loop system.

Non-linear models are approaches such as feedback linearization [12] or back-
stepping [13] that trade off the simplicity of the model in favor of capturing
the non-linear dynamics of the drone, improving the accuracy of the con-
troller, usually at the cost of only local stability and increased computational
complexity.

The computationally demanding model predictive methods are used for linear,
linearized (linear approximation of the model in each step) or non-linear
models [14] with increasing popularity in real-time systems (such as flight
control) due to the availability of computational power.

Reinforcement learning approaches that adapt the parameters of the controller
(for example, coefficients of the PID) during the flight or directly control
the drone [15] are an active area of research but are yet to outperform classic
methods of control.

Extensive details for the application of UAVs are in “UAVs Beneath the Surface:
Cooperative Autonomy for Subterranean Search and Rescue in DARPA
SubT” [16] by the Multi-robot Systems group here at CTU.

Results regarding controller performance, including its precision, robustness,
or comparison with other regulators, are primarily collected in simulations.
Real-world data is presented for specific applications where the controller is
tailored for a selected task.

6

Chapter 3

Theoretical background

3.1 Dynamical systems

This section will introduce the basics of dynamical systems, such as the state
space model with disturbances and discretization, as well as clarify the used
notation. It will also introduce the model identification problem, the moving
horizon estimator (MHE) and the model predictive controller (MPC), concepts
used for the identification and control of the real robotic helicopter.

The dynamical behavior of systems can be understood by studying
their mathematical descriptions. (P. Antsaklis and A. Michel [17])

Most of the introductory descriptions of the dynamical systems will come from
the book “A Linear Systems Primer” [17] by Antsaklis and Michel. It is
a great book that introduces many critical concepts for studying dynamic
systems. Another very verbose source regarding this topic is in [18].

In this thesis, we will discuss systems described by differential or differ-
ence equations, “It has become customary in the engineering literature to use
the term dynamical system rather loosely.” (P. Antsaklis and A. Michel [17]).

7

3. Theoretical background
Definition 3.1. A signal is a value representing information in time. It is
a mapping from the time domain T (continuous or discrete) to a subset of real
(or possible complex) numbers A ⊆ R [19],

x : T → A. (3.1)

Definition 3.2. A system is a relation R ⊆ (U ×O) of input u ∈ U and output
o ∈ O signals [19].1

Definition 3.3. The time domain T can be either continuous t ∈ R or discrete
k ∈ Z, we then classify the system as a continuous-time system or a discrete-
time system [17].
Definition 3.4. If the output of the system o is only influenced by current
and previous inputs [19] [17],

u1(t) = u2(t), ∀t ≤ t0 =⇒ o1(t) = o2(t), ∀t ≤ t0, (3.2)

the system is causal.
Definition 3.5. The system is time-invariant if the time-shifted input produces
the same time shifted-output [19],

u(t)→ o(t) =⇒ u(t− τ)→ o(t− τ). (3.3)

3.1.1 State-space model

We describe dynamical systems using mathematical models. The key model
we will use to describe our systems will be the state-space model. It has a set
of inputs u ∈ U , outputs o ∈ O, and states s ∈ S.2 The input U ⊂ Rnu ,
output O ⊂ Rno , and state spaces S ⊂ Rns are subsets of real vector spaces
with appropriate dimensions nu, no and ns, also called number of inputs,
outputs, and states.

In continuous time, the state space model is described using a set of differential
equations, and in discrete time, it uses difference equations. The implicit
form is more general than the much preferred explicit form.
Remark 3.6. We are denoting time derivatives using the dot notation,

da(t)
dt = ȧ(t). (3.4)

1The notation of the input as u is customary throughout the control engineering literature
(sometimes a is used as in action), however the output is usually denoted y. We chose
the letter o as the notation of the output (observation) so as not to confuse it with the y-axis
further in the thesis.

2Similarly to the output notation, the state is usually with denoted with the letter x.
However, to avoid confusion with the x-axis, we choose the letter s.

8

.................................. 3.1. Dynamical systems

Remark 3.7. To make the following equations more readable and compact, we
are using the subscript time notation for the inputs, outputs, states, and other
time-varying variables, these notations are equivalent,3

at =a(t), ak = a(k). (3.5)

Definition 3.8. The implicit form of the state-space model in continuous-time
is,

F(ṡt, st, ut, t) = 0, (3.6)
G(ot, st, ut, t) = 0, (3.7)

where F(·) is the state equation function and G(·) is the output equation
function [20][19].
Definition 3.9. The explicit form of the state-space model in continuous-time
is,

ṡt = f(st, ut, t), (3.8)
ot = g(st, ut, t), (3.9)

where f(·) is the state equation function and g(·) is the output equation
function [20][19].
Definition 3.10. The explicit form of the state-space model in discrete-time
is,

sk+1 = f(sk, uk, k), (3.10)
ok = g(sk, uk, k), (3.11)

where f(·) is the state equation function and g(·) is the output equation
function [20].
Remark 3.11. Assuming that the system is time invariant, we can omit
the time t and time-step k in the state and output functions. Unless oth-
erwise specified, this is assumed in the following usage of space-state models.

Parametrization

Because in real use cases, the exact equations are not known, only their forms
derived from physics, biology, economics, et cetera. They are parameter-
ized by the model parameters p ∈ P.4 The parameter space P ⊂ Rnp is,
again, a subset of a real vector space with an appropriate dimension of number
of parameters np. For this thesis, we will only parameterize the state equation
function (the output function could also be parameterized).

3Sometimes the time notation is forgone completely. However, we would like to keep
the time-dependency of the variables clear.

4Again, the parameters of the model are often times denoted θ or w, but we choose
the letter p to avoid conflicting notation.

9

3. Theoretical background
Definition 3.12. The state equation for the continuous-time state-space model
with parametrization is

ṡt = f(st,ut,p). (3.12)
Definition 3.13. The state equation for the discrete-time state-space model
with parametrization is

sk+1 = f(sk,uk,p). (3.13)

Noise

For the real use of state space models, we introduce the concept of noise.
Because there are often external factors that we are unable to control, we
include them in the model. These factors are often random or unobservable.
The state noise w influences the state equation, and the output (observation)
noise v influences the output equation [17]. We will use the additive noise
model [21], where the noise is simply added to the respective equation. With
this we arrive at the form of the state space model used in this thesis.
Definition 3.14. The equations for the continuous-time state-space model
with parametrization and additive noise are

ṡt = f(st,ut,p) + wt, (3.14)
ot = g(st, ut) + vt. (3.15)

Definition 3.15. The equations for the discrete-time state-space model with
parametrization and additive noise are

sk+1 = f(sk, uk, p) + wk, (3.16)
ok = g(sk, uk) + vk. (3.17)

3.1.2 Discretization

A continuous-time system can be discretized by using the Euler method [22],
which is a first-order approximation. It is causal because the next state is only
affected by current and past states and inputs, it also introduces a minimal
delay caused by discretization. The principle is ds(t)

dt ≈
∆s(t)

∆t , where ∆t is
the discretization step [23].

dst

dt = f(st,ut) ≈
∆st

∆t = st+∆t − st

∆t . (3.18)

Then the equation 3.18 is rearranged, where ϵt is the discretization error,

st+∆t = st + ∆t f(xt,ut) + ϵt, (3.19)

10

.................................. 3.1. Dynamical systems

from this, we can create a discrete-time state-space model approximating
the real model.
Definition 3.16. The Euler method for the discretization of the state-space
model is

sk+1 = sk + ∆t f(xk,uk). (3.20)

There are many more discretization methods, described in chapter 8, Dig-
ital control in [24], all of them trading off between accuracy (higher-order
methods), computational complexity and introduced delay [23].

3.1.3 Parameter identification problem

As noted, we often only know the form of the state f(·) and the output equa-
tion g(·), but not the actual values of the parameter p. Parameter identifi-
cation problem [25], is that we have a set of trajectories H = {h1, . . . , h|H|},
where each trajectory h = {(uh,k,oh,k)}Lh

k=1 consists of a history of inputs uh,k

and outputs oh,k (index h denotes the trajectory, k denotes the time-step
andLh is the length of the trajectory, number of time-steps inh) and we want
to get the estimate of the model parameters p̂, with the model equations 3.16
and 3.17.

Partially observed Markov process

To develop the estimator for the parameter identification problem, we use
the framework of partially observed Markov process (POMP) [26] [27] [28]
to describe the randomness of noise influencing the system dynamics.
Definition 3.17. Markov process (MP)5 is a random process {Xt | k ∈ T} [29],
if the conditional distribution ofXk+1 given the values of {X0, . . . , Xk} is only
dependent on the last state Xk [30]. This is called the Markov property,

P [Xk+1 ≤ xk+1 |X0 = x0 . . . , Xk = xk] = P [Xk+1 ≤ xk+1 |Xk = xk] .
(3.21)

Definition 3.18. Partially observed Markov process (MP)5 [31][26] is the ext-
ension of the MP, where we do not observe the state Xt directly but only
through an observation Yt, the conditional distribution ofYt is only dependent
on the current state,

P [Yk ≤ yk |X0 = x0 . . . , Xk = xk] = P [Yk ≤ yk |Xk = xk] . (3.22)
5We are considering a discrete-time Markov process with a continuous state.

11

3. Theoretical background
MAP estimate

Now that we have formulated the POMP, we will try to fit our problem
of parameter identification into it.
Remark 3.19. Since we are working with continuous states, we will be speaking
in terms of probability density functions (PDF)6 noted pX|Y (x | y) or p(x | y).

Because the state-space model (equation 3.16) has the Markov property (sk+1
is only based on sk and independent noise wk) and observations ok are
following the POMP definition (equation 3.17, only based on the current state
sk and independent noise vk), we can formulate the following probability
density functions,

p(sk+1 | sk, uk, p) = p(wk + f(sk, uk, p)), (3.23)
p(ok | sk, uk) = p(vk + g(sk, uk)). (3.24)

With these, we now formulate the maximum a posteriori (MAP) estima-
tion [26] of the parameter p, for a set of trajectories with known states H̃ =
{h̃1, . . . , h̃|H̃|}, where each trajectory h̃ = {(uh̃,k, sh̃,k)}Lh̃

k=1 consists of a history
of inputs uh̃,k and states sh̃,k,

p̂ = arg max
p

L̃(p, Hs) = arg max
p

p(p | H̃) = arg max
p

p(H̃ |p)
prior of p︷ ︸︸ ︷
p(p)

p(H̃)︸ ︷︷ ︸
independent of p

(3.25)
The prior term p(p) is some prior information about the parameters p, like
previous measurements or expert knowledge (lower or upper bound, expected
value, previous measurements, etc.). The most complicated is the term
p(H̃ |p). First, we split it for each trajectory h̃. We assume the trajectories
are independent,

p(H̃ |p) =
∏

h̃∈H̃

p(h̃ |p). (3.26)

The probability of the trajectory h̃ = {(uh̃,k, sh̃,k)}Lh̃
k=1 is a joint probability

of each of the states and inputs

p(h̃ |p) = p(uh̃,1, sh̃,1, . . . , uh̃,Lh̃
, sh̃,Lh̃

|p) (3.27)
6Probability density pX(x) (in literature often denoted fX(x)) is defined

as P[a ≤ X ≤ b] =
∫ b

a
pX(x)dx, further information in [29].

12

.................................. 3.1. Dynamical systems

Now we use the chain rule of conditional probability (remark 3.21), remove
the conditional terms using independence (remark 3.22) and use Markov
property of the states sh̃,k to simplify the states,

p(h̃ |p) = p(sh̃,1)︸ ︷︷ ︸
initial state

Markov property︷ ︸︸ ︷
Lh̃−1∏
k=1

p(sh̃,k+1 | sh̃,k, uh̃,k, p)
Lh̃∏

k=1
p(uh̃,k)︸ ︷︷ ︸

indep. of p

. (3.28)

Remark 3.20. In equation 3.28, we are only using Lh̃ − 1 time-steps because
that the number of state transitions that we have. The initial state is also
independent of p.

Until now, we assumed that we measured the states s fully and exactly. How-
ever that is not the case for the actual model, as we only have the observations o.
Because of this, we can only use an estimate of the state, so we need the likeli-
hood not only for the parameters p but also all of the states for each trajectory
Hs = {{sh,k}Lh

k=1}h∈H ,

(p̂, Ĥs) = arg max
p, Hs

L(p) = arg max
p, Hs

p(p, Hs |H) =

= arg max
p, Hs

p(H, Hs |p)
prior of p︷ ︸︸ ︷
p(p)

p(H)︸ ︷︷ ︸
independent of p, Hs

.
(3.29)

We can again split the trajectories and define the joint probability for the traj-
ectory,

p(h, hs |p) = p(uh,1, oh,1, sh,1, . . . , uh,Lh
, uh,Lh

, sh,Lh
|p) (3.30)

Now, we start splitting away the parts of the joint probability using the chain
rule of conditional probability (remark 3.21) and removing conditional terms
using independence (remark 3.22). Similarly to equation 3.28, we take away
the uh,k, and next we use the Markov property to split away the states sh,k,
which leaves us with the observations oh,k, only dependent on the current state
and input, the final equation is then

13

3. Theoretical background

p(h, hs |p) = p(sh,1)︸ ︷︷ ︸
initial state

state transition︷ ︸︸ ︷
Lh−1∏
k=1

p(sh,k+1 | sh,k, uh,k, p)×

×
Lh∏

k=1
p(oh,k | sh,k, uh,k)︸ ︷︷ ︸

observations indep. of p

indep. of p︷ ︸︸ ︷
Lh∏

k=1
p(uh,k)

(3.31)

Remark 3.21. The chain rule of conditional probability is that for random
events A1, . . . , An [29],

P [A1, . . . , An] = P [A1] P [A2 |A1] P [A3 |A1, A2] . . .P [An |A1, . . . , An−1] .
(3.32)

Remark 3.22. We are removing conditional terms for the independent variables
because if A⊥B, then

P [A |B] = P [A] . (3.33)

Putting it all together while omitting the terms that do not include p or sh,k

(argmax operator is invariant to multiplication with positive values [32]),
we get

(p̂, Ĥs) = arg max
p, Hs

L(p, Hs) = arg max
p, Hs

prior of p︷ ︸︸ ︷
p(p) ×

×
∏

h∈H

 p(sh,1)︸ ︷︷ ︸
initial state

state transitions︷ ︸︸ ︷
Lh−1∏
k=1

p(sh,k+1 | sh,k, uh,k, p)
Lh∏

k=1
p(oh,k | sh,k, uh,k)︸ ︷︷ ︸

observations

 .
(3.34)

Working with products is complicated, so we rewrite this term in summation
using the log transform. Even though the initial state term p(sh,1) could be
useful if we had a guess in what state the system is at the start of the trajectory,
we omit it as well (prior for the initial state is uniform distribution over S),

14

.................................. 3.1. Dynamical systems

(p̂, Ĥs) = arg max
p, Hs

L(p, Hs) = arg max
p, Hs

log (L(p, Hs)) = arg max
p, Hs

log(p(p))+

+
∑
h∈H

Lk−1∑
k=1

log (p(sh,k+1 | sh,k, uh,k, p)) +
Lk∑

k=1
log (p(oh,k | sh,k, uh,k))

 .
(3.35)

We need to know the properties of the disturbances wk and vk in equations
3.23 and 3.24 to optimize this. The parts of the functions f(·) and g(·) are
deterministic. It is only the probability of the random wk and vk that we are
trying to maximize. By rewriting the equations 3.16 and 3.17 we get

wh,k = sh,k+1 − f(sh,k, uh,k, p), (3.36)
vh,k = oh,k − g(sh,k, uh,k). (3.37)

If we assume that noise wk and vk have multivariate normal distribution [29]
with 0 mean and some covariance matrices Σs and Σo, and we also assume
that the parameters p have multivariate normal distribution with p0 mean
(this is the prior for the model parameters) and covariance matrix Σp, we can
rewrite the equation 3.35 as

(p̂, Ĥs) = arg max
p, Hs

−(p− p0)T Σ−1
p (p− p0)−

−
∑
h∈H

(
Lh−1∑
k=1

wT
h,kΣ−1

s wT
h,k +

Lh∑
k=1

vT
h,kΣ−1

o vh,k

)
−

− log
(√

(2π)np |det(Σp)|
)
−

−
∑
h∈H

Lh log
(√

(2π)np |det(Σv)|
)
−

−
∑
h∈H

(Lh − 1) log
(√

(2π)np |det(Σw)|
)
.

(3.38)

Turning the sign inside argmax we get argmin, and we can omit the last 3
terms as they do not have any optimized variables, using weighing vectors
cp, cs, and co instead of the inverses of the covariance matrices (equivalent
if the matrices are diagonals with reciprocal values of the weighing vectors),7

7We call them weighing vectors to denote how much weight each of the terms will carry
in the final loss function, i.e., how important each of the terms are.

15

3. Theoretical background

(p̂, Ĥs) = arg min
p, Hs

L(p, Hs)

L(p, Hs) = cT
p (p− p0)◦2 +

∑
h∈H

(
Lh−1∑
k=1

cT
s [sh,k+1 − f(sh,k, uh,k, p)]◦2 +

+
Lh∑

k=1
cT

o [oh,k − g(sh,k, uh,k)]◦2
)
.

(3.39)

Remark 3.23. We are using the Hadamard (elementwise) power, so for matrices
A and B and their coefficient [A]i,j and [B]i,j ,

A = B◦2, (3.40)
[A]i,j = [B]2i,j . (3.41)

The loss function L(p, Hs) is, in short, trying to minimize the observation
error while also trying to minimize the error of the state transitions, the prior
of the parameters helps when there is not enough information that could be
gained from the trajectories and also helps regularize the variables during
the optimization process. How to optimize this function will be discussed
in the following section, “Non-linear least-squares optimization”.

3.1.4 Moving horizon estimator

In the last subsection, “Parameter identification problem”, we arrived at an est-
imator that estimates not only parameters p but also all of the state trajecto-
ries Hs. The state estimates seemed like a byproduct, but the moving horizon
estimator (MHE) [33] uses the same principle of the POMP to get an estimate
of the state s that can be used in control, an alternative to algorithms like
the Kalman filter [34] or the extended Kalman filter [35].

The principle of the MHE is that in each time-step it solves non-linear least
squares problem (linear if the f(·) and g(·) functions are linear) defined in 3.24.
Definition 3.24. The MHE optimization problem is, with the horizon L
and weighing vectors cp, co, cs, given the history of the inputs {uk ∈ U}Lk=0,
the history of the observations {ok ∈ O}Lk=1, as well the previous last state
estimate s0 ∈ S and a prior of the parameters p0 ∈ P, we want to optimize

16

.................................. 3.1. Dynamical systems

the following problem over the parameters p and the states {sk}Lk=1[33][23],

min
p, {sk}L

k=1

cT
p ∆p◦2+

L∑
k=1

cT
o ∆o◦2

k +
L∑

k=1
cT

s ∆s◦2
k , (3.42)

∆p = p− p0, (3.43)
∆ok = ok − g(sk, uk), (3.44)
∆sk = sk − f(sk−1, uk−1, p). (3.45)

Remark 3.25. We are only estimating L states, state s0 from the previous
step is reused as prior. In most uses of the MHE we also change the prior p0
to the last estimated parameters p. In a situation where the disturbances do
not follow our assumption of normality and zero mean, this is not recom-
mended, as this would make the estimator biased and inconsistent, shifting
the prior in each iteration, thus hindering the controller’s performance.

We can use the solution of this problem, mainly the last term sL, which is
the current estimated state of the system and the estimated parameters p
for the control of our system.

It would seem redundant to estimate the model parameter p, but this al-
lows us to deal with parameter drift, a phenomenon where the parameters
of the model might change compared to the initial measurements, for exam-
ple, when a battery of a drone that runs low, comparatively, makes the lift
of the drone lower with the same inputs [23].

3.1.5 Model predictive control

Now that we have gotten a relatively good estimate of how our system behaves
(estimated p for the function f(·)) and also roughly know in what state it is
(estimated sk), we can use this information to control our dynamic system.

The model predictive control (MPC) [36][37] is the counterpart to the MHE.
As the MHE was looking into the past, the MPC will, figuratively, look into
the future. This is a control technique, an alternative to the proportional-
integral-derivative (PID) controller [24][38] or the linear-quadratic-regulator
(LQR) [39][40], giving some input u to get our system from our current state
s0 to some desired state s∗.

The PID or the LQR techniques require a linear f(·), or a linearized version
is used. This is one of the main advantages of the MPC controller, it does

17

3. Theoretical background
not impose such requirements on the state function f(·), we can work with
the non-linear function directly.
Definition 3.26. The MPC optimization problem is, with the horizon L,
weighing vectors cu, cs and ct, given state-space model with f(·) and p ∈ P,
last input u−1 ∈ U , initial state s0 ∈ S and a target state s∗ ∈ S, we want
to optimize the following problem over the set of actions {uk ∈ U}L−1

k=0 [36][23],

min
{uk}L−1

k=0

action term︷ ︸︸ ︷
L−1∑
k=0

cT
u ∆u◦2

k +

stage term︷ ︸︸ ︷
L−1∑
k=1

cT
s ∆s◦2

k +

terminal term︷ ︸︸ ︷
cT

t ∆s◦2
L , (3.46)

∆uk = uk − uk−1, (3.47)
∆sk = sk − s∗, (3.48)
sk+1 = f(sk,uk,p). (3.49)

Remark 3.27. From equation 3.49, you can see there is a strict recursive
relationship between the states, so each state sk is a function of the initial
state s0 and the previous inputs u0, . . . , uk−1.

Now, we take an overview of what each of the terms in the optimization is
trying to do. The first action term is trying to minimize the differences be-
tween consecutive actions,8 making our controller more steady. Fast changes
in the input would often disrupt our model (for example, going from a stand-
still to fast speed could cause a wheel slip, it is better to accelerate more
steadily).

The second state term is there to help move our system along the trajectory
to the target or possibly to reduce velocities if they were part of the states
vector. The last term is the terminal term, which usually has higher weights
as we want to be as close to the target as possible at the end of our horizon.

8Often the MPC action term is defined in absolute values of the actions u and not their
differences, this is to minimize the inputs and save energy.

18

.......................... 3.2. Non-linear least-squares optimization

3.2 Non-linear least-squares optimization

In equations 3.39, 3.42, and 3.46, we have developed three non-linear least-
squares optimization problems. This section will explain the methods used
to solve these problems.

3.2.1 Modeling

The non-linear least-squares optimization problem [41] is a problem, where
we are minimizing the objective

min
x

1
2∥r(x)∥2 = min

x1, ..., xm

1
2

n∑
i=1

ri(x1, . . . , xm)2, (3.50)

where r : Rm → Rn is a vector residual function composed of residual functions
r =

[
r1(x) . . . rn(x)

]T
, each with the arguments x =

[
x1 . . . xm

]T
,

which are the optimization variables. Sometimes there are lower bound lbj

and upper bounds ubj conditions imposed on the variables lbj ≤ xj ≤ ubj .

Jacobian. Most of the numerical methods used to solve these problems make
the use of the Jacobian matrix Jr(x) : Rm → Rn×m [42],

Jr(x) =

∂r1(x)

∂x1
. . . ∂r1(x)

∂xm...
∂rn(x)

∂x1
. . . ∂rn(x)

∂xm

 . (3.51)

3.2.2 Solving

When trying to find a solution to the equation r(x) = 0, we could, sometimes,
get an analytical solution. Oftentimes, we are unable to get an analytical
(closed-form) solution, and we have to resort to numerical methods.

Gauss-Newton method. The most basic numerical method for this kind
of problem is the Gauss-Newton method [43]. In each step we approximate

19

3. Theoretical background
the function with a line and solve for the intercept with the x-axis,

r(x) ≈ r(xk) + ∂r(xk)
∂x

∆xgn, (3.52)

0 = r(xk) + ∂r(xk)
∂x

∆xgn, (3.53)

∆xgn =
(
∂r(xk)
∂x

)−1
r(xk), (3.54)

xk+1 =xk + ∆xgn (3.55)

For the multidimensional case of r(x) = 0

r(x) ≈ r(xk) + Jr(xk)∆xgn, (3.56)
0 = r(xk) + Jr(xk)∆xgn. (3.57)

(3.58)

Remark 3.28. Since solving for r(x) = 0 is usually impossible (overdetermined
system of equations), its better to think about the optimization as trying to get
as close as possible to the solution,

min
x
L(x) = min

x
1
2∥r(x)∥2. (3.59)

The major problem with the Gauss-Newton method is the inverse of the deriv-
ative. First, if it is small, we will overshoot and possibly diverge. Second,
the Jacobian J usually is not square (if n ̸= m), so inverting directly might
not be possible).
Remark 3.29. From now on, we will use simplified notating of J = Jr(xk)
and r = r(xk), denoting Jacobian and the value of the residual function
at each step.

To combat the non-square J, we can formulate the equations as a pseudo-
inverse [44],

JT J∆xgn = −Jr. (3.60)

Levenberg-Marquardt method. An improvement to combat the overshooting
was suggested by Levenberg (1944) [45], later improved on by Marquardt
(1963) [46], to use the dampening term µI [47],9 adjusting the equation to

(JT J + µI)∆xlm = −JT r. (3.61)

9The identity matrix is denoted I. It has an appropriate dimension m × m.

20

.......................... 3.2. Non-linear least-squares optimization

The dampening parameter µ has several effects:. For all µ > 0, the coefficient matrix is positive-definite. This
ensures that ∆x is a descent direction.. For large values ofµ we get ∆xlm ≈ − 1

µJ, i.e. a short step
in the steepest direction (this is similar to a gradient descent
step [48]). This is good if the current iterate is far from
the solution.. If µ is very small, then ∆xlm ≈ ∆xgn, which is a good step
in the final stages of the iteration when the current solution xk

is close to the optimal solution x∗. If r(x∗) = 0 (or very small),
then we get (almost) quadratic final convergence.

(K. Madsen [47])

Remark 3.30. The solution to equation 3.61 can be rewritten as ordinary least
squares [47][49],

min
∆x

1
2

∥∥∥∥∥
[

Jr(xk)√
µI

]
∆x +

[
r(xk)

0

]∥∥∥∥∥
2

. (3.62)

The choice of µ in each step can greatly improve the required number
of iterations. The initial value ofµ should be related to the size of the elements
in H0 = JT

0 J0,
µ0 = τ max

i
[H0]i,i . (3.63)

The parameter τ is given by the user.10 To update theµ we can calculate
the gain ration ρ [50],

ρ = ∥r(xk + ∆x)∥2 − ∥r(xk)∥2

∥Jr(xk)∆x + r(xk)∥2 − ∥r(xk)∥2
. (3.64)

. If ρ > ε, then xk+1 = xk + ∆x, else xk+1 = xk. This is to ensure that
we improve the objective. If not, we are not taking the step.. If ρ > η1, then µk+1 = 2µk. Large ρ signifies that the current solution xk

is very far from optimal solution x∗, we want to take a steepest direction
step.. Else if ρ < η2, then µk+1 = 1

2µk. Small ρ signifies that we are close
to the solution x∗, we want to take a Gauss-Newton step.. Else µk+1 = µk.

10For good starting positions of x0, τ = 1e−6, increasing if the confidence in the initial
guess is low [47].

21

3. Theoretical background
With the iteration of the algorithm defined, we need to determine the termina-
tion of the algorithm. The first used termination condition is function change
tolerance [51], this is to most common termination,

|L(xk)− L(xk−1)|
L(xk) ≤ tolf . (3.65)

We can also define the parameter tolerance termination, this is useful when
the value ofL(xk) is very low [47],

∥∆x∥
∥xk∥

≤ tolx. (3.66)

There can also be external terminations, like the maximum number of iterations
or maximum computation time.

Factorization

In each of the iterations of the optimization, we are solving an ordinary least-
squares problem. Since we might need many iterations and the problem could
be quite large, we need an efficient solution [47]. This is done by factorization
of the Jacobian J.11

QR decomposition. Since we are trying to solve the standard least-squares
problem,

min
x
∥Ax− b∥2, (3.67)

we can rewrite the solution (assuming the system of equations is not under-
determined) as

AT Ax∗ = AT b, (3.68)

to solve this matrix equation, we would need the inverse of AT A (matrix A
needs to have full rank). Directly calculating the inverse is very complicated,
Gram (1883) [52] and Schmidt (1907) [53] proposed the QR decomposition
method to decompose the A ∈ Rn×m matrix into factors, 12

A = QR, (3.69)
11For Levenberg-Marquardt method this is already the extended Jacobian[
Jr(xk)T √

µI
]T .

12Sometimes this method is called the Gram-Schmidt method after its two authors.

22

.......................... 3.2. Non-linear least-squares optimization

where Q ∈ Rn×m is a matrix with orthonormal columns and R ∈ Rm×m is
upper triangular matrix [44], we can rewrite the equation 3.68 as

(QR)T QRx∗ = RT QT QRx∗ = RT Qb = (QRT)b. (3.70)

Now we use the fact that QT Q = I and that R has rank n,

Rx∗ = QT b. (3.71)

We can solve this system of equations by backward substitution, as R is upper
triangular.

Cholesky decomposition. If the number of rows n is much bigger than
the number of columnsm of the matrix A, it might be more efficient to calculate
the Cholesky decomposition [54] of the Hermitian H = AT A = RT R, where
R ∈ Rm×m is upper triangular. We can then use this to solve the equation,

AT Ax∗ = RT Rx∗ = AT b, (3.72)
RT w = AT b, (3.73)
Rx∗ = w. (3.74)

Remark 3.31. The R matrix in the Cholesky method (equations 3.72, 3.73
and 3.74) is the same as with the QR method (equations 3.70 and 3.71) [51][41].

So to get a solution we first back-substitute to equation 3.73 to get w and again
equation 3.74. So the trade-off between QR and Cholesky decomposition is
that, QR is more numerically stable and only requires one back-substitution,
but Cholesky decomposition is faster, especially for n >> m [55][56].

Sparse matrices. In most problems, the Jacobian matrix J is very sparse
(most of the entries in the matrix are zero), because only a few variables xj

are arguments of the residual ri(·).

Because of this, we can use the sparse matrix system where instead of saving
all the zeros in the computer memory, we only save the value and position
of the non-zero elements.

This can be leveraged by algorithms for sparse matrices, significantly im-
proving memory and computation requirements, namely the sparse Cholesky
decomposition [57], allowing us to solve huge least-squares problems.

23

3. Theoretical background
3.2.3 Deriving Jacobians

The final Jacobian is going to be very sparse, we only need to derive the Jac-
obian for variables directly influencing the residual function, the rest are going
to be zero.

MHE and model identification. For the first term, the parameter prior,
the Jacobian is very simple,

∂∆p
∂p = Inp×np . (3.75)

For the observation terms, the only variable there is the state sk,

∂∆ok

∂sk
= −∂g(sk, uk)

∂sk
. (3.76)

For the state transition terms, there are 3 variables, sk+1, sk, p,

∂∆sk

∂sk
= Ins×ns , (3.77)

∂∆sk

∂sk−1
= −∂f(sk−1, uk−1, p)

∂sk
, (3.78)

∂∆sk

∂p = −∂f(sk−1, uk−1, p)
∂p . (3.79)

MPC. For the model predictive control problem, we are going to derive
the action term, and the state terms (stage and terminal terms are the same,
only scaled). The Jackobian blocks for the action terms are

∂∆uk

∂uk
= Inu×nu , (3.80)

∂∆uk

∂uk−1
= −Inu×nu . (3.81)

For the state terms, we will need to use the chain rule to calculate the Jacobians,
each state sk is a function of the initial state s0 and the previous inputs
u0, . . . , uk−1, so for k > i ≥ 0,

∂∆sk

∂ui
= ∂f(sk−1, uk−1, p)

∂sk−1
. . .

∂f(si+1, ui+1, p)
∂si+1

∂f(si, ui, p)
∂ui

. (3.82)

24

Chapter 4

Technical solution

This chapter will explain the details of the technical solution to the initial
problem of identification and control of a robotic helicopter. It will give basic
description of the hardware used, introduce the model used for our dynamic
system and describe the software solution in detail.

4.1 Hardware

4.1.1 Robotic helicopter Tello

The robotic helicopter we are going to identify and control is the Tello
drone by Ryze [58], figure 4.1 shows a photograph of the drone with attached
markers. It is a lightweight drone (only 87 grams), with internal regulators
that use internal vision positioning system to stabilize itself. Its control
inputs are roll, pitch, yaw and throttle, which have the same meaning as
in the introduction to the quadrocopter (section 1.1.1). The inputs are target
velocities, and the internal regulators of the drone adjust the rotor speeds
to match the inputs, corrected by the vision positioning system.

25

4. Technical solution...................................

Figure 4.1: Tello drone with tracking markers

4.1.2 Motion capture system Vicon

To localize the drone, we are using the Vicon motion capture system. The princ-
iple is that many infra-red cameras (figure 4.2 show a photograph of said
camera) on the edges of the tracking area are capturing the reflections
of the markers, small reflective silver balls, and using these pictures, and pos-
itions of the cameras it extracts the positions of the markers.

Figure 4.2: Vicon infra-red camera

26

.....................................4.2. Drone model

4.2 Drone model

Truth...is much too complicated to allow anything but approxima-
tions. (John von Neumann [59])

We are using a first-order model of the robot helicopter system. This is because
the internal regulators of the drone accept inputs as scaled target velocities.
The model equations are then the following,

ẋ(t)
ẏ(t)
ż(t)
θ̇(t)

 =

λh sin(ψ(t)) λh cos(ψ(t)) 0 0
−λh cos(ψ(t)) λh sin(ψ(t)) 0 0

0 0 0 λv

0 0 λa 0

roll(t)
pitch(t)
yaw(t)

throttle(t)

 ,
(4.1)

ψ(t) = θ(t) + θ0 (4.2)

The states of the model are:

. x(t) [m]: positing in the x-axis. y(t) [m]: positing in the y-axis. z(t) [m]: position in the z-axis (vertical). θ(t) [rad]: the orientation angle around the z-axis

The outputs (observations) of the system are the same as the states.

The inputs are:

. roll(t) ∈ [−1, 1]: scaled horizontal velocity moving left-right. pitch(t) ∈ [−1, 1]: scaled horizontal velocity moving forward-backward. yaw(t) ∈ [−1, 1]: scaled angular velocity. throttle(t) ∈ [−1, 1]: scaled vertical velocity

27

4. Technical solution...................................
The parameters of the model are:

. λh [m/s]: horizontal velocity coefficient. λv [m/s]: vertical velocity coefficient. λa [rad/s]: angular velocity coefficient. θ0 [rad]: heading offset, the difference between the heading of the drone
and the measured orientation

4.2.1 Discretization

Since we are measuring the system positions in discrete time-steps, and we can
also only control the drone in discrete time-steps, it makes sense to discretize
our model using the Euler method (section 3.1.2) with time-step ∆t, the dis-
crete state-space model we will be using then is

sk+1 =

f(sk, uk, p)︷ ︸︸ ︷
sk + ∆t

[p]1 sin(ψk) [p]1 cos(ψk) 0 0
−[p]1 cos(ψk) [p]1 sin(ψk) 0 0

0 0 0 [p]2
0 0 [p]3 0

uk, (4.3)

ψk = [sk]4 + [p]4 (4.4)

ok = sk, (4.5)

where

sk =
[
x(k) y(k) z(k) θ(k)

]T
, (4.6)

uk =
[
roll(k) pitch(k) yaw(k) throttle(k)

]T
, (4.7)

p =
[
λh λv λa θ0

]T
. (4.8)

4.2.2 Input delay

We are introducing input delay to our model. This means that for delay D
a sent action (command) ak ∈ U at time-step k is going an effective system
input uk+D at time-step k +D.

28

...................................... 4.3. Software

4.3 Software

This section will describe the practical part of the master thesis, the software
solution to track and control the robotic helicopter. All of the source code
and data, including instructions for building and running the programs, are
accessible from https://github.com/svrc-jan/master-thesis/, the tree
of the repository for the most relevant files is in appendix B.

Both the model identification and the control loop programs are written
in the C++ language [60], with emphasis on computation speed and re-usability
for other dynamic models using templates. Data visualization and model
identification bootstrap for estimator variance is done using Python language
scripts [61], for visualization namely the matplotlib library [62].

4.3.1 Tello communication

We use a separate Wi-Fi connection [63] to communicate with the drone.
The basic object for communicating with the Tello drone, based on the Tello
SKD [64] was provided by the thesis supervisor.

It provides an interface for establishing a UDP [65] connection to the drone
using Wi-Fi network interface, as well as basic commands to take-off, land
and set target inputs of roll, pitch, yaw, and throttle (target input because
of the internal regulators of the drone using the internal vision positioning
system).

Connection is done through a network interface (Wi-Fi adapter) connected
to the drone, the IP address of the drone is 192.168.10.1, and the port used
is 8889, as described in the Tello SDK.

4.3.2 Vicon communication

To get positional data we use the motion tracking system Vicon. The tracking
software is running on a separate computer, and the data are being sent over
to the control computer using our local network. This setup is provided
by the thesis supervisor.

29

https://github.com/svrc-jan/master-thesis/

4. Technical solution...................................
The Vicon Tracker application, running on the server computer, publishes
data to localhost. Using the Vicon API, described in Vicon DataStream SDK,
we can set up a client application to recieve selected data in real-time. Using
a local area network (LAN), we establish a TCP [66] connection from the server
computer (tracking) to the client computer (controlling), by default on the port
51602, we then send over real-time data for the selected object(s).

Since the communication is asynchronous and blocking (waiting for the server
to send data), it is run in a separate thread, managed by a handler, which
opens and closes the connection and provides the latest position from the Vicon
system.

4.3.3 Vicon filter

The data from the tracking software is not perfect. To combat the issues
of data provided by the Vicon system, we have developed a filter.

The first problem is the angle wrapping of the orientation angle. Since angles
are wrapped to (−π, π] but we want to have a continuous signal when we go
above or below the bounds, the following unwrapping formula for the angle θ
(θraw is the value from Vicon) around the reference θref (current filtered angle)
is used,

θunwrap = θref + ((θraw − θref + π) mod 2π)− π. (4.9)

The second problem is that the data from the Vicon system is noisy. There
are erroneous readings, outliers that would incorrectly shift our position
estimation and thus hinder our controller’s performance. The tracking im-
perfections are exacerbated by the fact that our tracked object is relatively
small (maximum distance between the markers is less than 10cm), and some
of the markers are not clearly visible from all angles (rotor guards, propellers,
or the drone’s body are often in the way).

To avoid this, there are thresholds thrh, thrv and thra each limiting how big
of a difference ∆x = xraw − xref , between the current raw observation from
Vicon oraw and the reference oref is valid, we also know minimal altitude so
we filter the minimal valid zfloor.

30

...................................... 4.3. Software

. If ∥∆x,∆y∥ ≤ thrh and |∆z| ≤ thrv and z ≥ zfloor then ofilt ← oraw.. If |θunwrap − θref | > thra then θfilt ← θref .. Else give reference observation ofilt ← oref .

Because the orientation θ values are much more prone to erroneous readings,
we do the angle filtering in a separate step. If we were to use the angle condi-
tions with the translation conditions, we would lose a lot of observations with
the correct position but an incorrect orientation.

After each step of the filtering, we save the output of the filter as the new
reference ok,ref ← ok−1,filt. The currently used threshold values are adaptive,
growing with the number of steps that the filter is “holding” the reference nhold

(not changing the values), this is to ensure that if a long period of erroneous
readings happens, the filter can catch up to the new values that might be far
from the current reference,

thrh = 0.5(3 + nhold), (4.10)
thrv = 0.5(3 + nhold), (4.11)
thra = 0.05(3 + nhold). (4.12)

4.3.4 Logging

To record the trajectories for analysis and system identification, we created
a simple logger, saving data in comma-separated-values (CSV) format, saving
tag (position, input or target), time-step, and values, an example:

pos,0,-0.9077,-2.0248,1.1274,0.0305
input,0,-0.0407,-0.0627,-0.0318,0.1484
target,0,-1.0000,-2.0000,1.3000,0.0000
pos,1,-0.9081,-2.0243,1.1291,0.0286
input,1,-0.0400,-0.0627,-0.0280,0.1457
target,1,0.0000,-2.0000,1.6000,0.0000
pos,2,-0.9081,-2.0243,1.1291,0.0286
input,2,-0.0387,-0.0607,-0.0274,0.1443
target,2,0.0000,-2.0000,1.6000,0.0000

We also created a complimentary parser to load selected log values into
an Eigen matrix [67] (Eigen is a C++ library for linear algebra).

31

4. Technical solution...................................
4.3.5 Ceres solver

We are using the open-source Ceres solver [51] developed by Google to model
and solve the non-linear least-squares optimization problems. Main advantages
of using this solver are:

.The ability to handle large problems (our parameter identification prob-
lem has over a hundred thousand optimization variables and residuals,
each iteration of the optimization takes mere seconds to compute) lever-
aging the sparsity of the Jacobian..Automatic differentiation of the Jacobian. If required, manual or numeri-
cal options are also available.. Re-usability of the model (both MPC and MHE build the model only
once and its being rerun with new data at 50 Hz frequency on a personal
computer almost without delay)..There is a wide variety of solver features, such as factorization methods
(QR, Cholesky, and their sparse versions), optimization methods (trust-
region or line-search), and multi-threading, available, making it suitable
for almost any problem that can be formulated within the framework.

During the initial stages of the thesis, some alternatives were tried out. The best
alternative was the Acados framework [68], which required heavy-handed defi-
nitions for the CasADI solver when using C++ language. The Ceres solver only
requires a template residual function definition (example of a residual block
for state term for model identification is listing 4.2) and pointers to where
the variables are to be saved.

Most of the other alternatives either did not support non-linear models, were
too slow due to using Python or numerical differentiation, or required licensed
optimization solvers.

4.3.6 Model template

To make the system identification, MHE and MPC parts of the code reusable
for other models, all of them use template functions and classes. The model
template specifies the input nu, output no, state ns and parameter dimen-
sionsnp, the lower and upper bounds for the inputs and parameter and template

32

...................................... 4.3. Software

state f(·) and output functions g(·) only using basic arithmetic and functions
defined in the standard math library (such as sin, cos and pow) making it suit-
able for the automatic differentiation, the source code for our state equation
function in listing 4.1 is equivalent to the drone state equation 4.1.

template < typename Tds , typename Ts ,
typename Tu , typename Tp >

bool Simple_drone_model :: state_eq (
Tds *ds , const Ts *s, const Tu *u, const Tp *p)

{
ds [0] = Tds(p[0]*(cos(s[3]+p[3])*u[1]

+ sin(s[2]+p[3])*u[0]));
ds [1] = Tds(p[0]*(sin(s[3]+p[3])*u[1]

- cos(s[2]+p[3])*u[0]));
ds [2] = Tds(p[1]*u[3]);
ds [3] = Tds(p[2]*u[2]);

return true;
}

Listing 4.1: C++ code for the state equation

4.3.7 System identification

In the last chapter, section 3.1.3 we formulated the MAP estimator to estimate
the model parameters. We are going to be be using the non-linear least-squares
form in equation 3.39, with the adjustment that we divide the discretized
equation 4.3 by ∆t. This is so we do not have to re-scale the weighing
coefficient if we change the discretization step.

The logs of the trajectories used for identification are provided in the aforement-
ioned CSV format and problem specifics are in a provided JSON configuration
file, full list of configuration options in appendix C.1. Since we are account-
ing for the input delay, the program for the identification shifts the inputs
accordingly, padding the start with zero inputs.

One thing to speed up the computation is to provide the initial solution, so we
set the states to the observations and the parameters to its priors.

To verify if the states’ estimations are valid (trajectory is following the observ-
ations but not over-fitting to outliers), all of the states’ estimates are saved.

33

4. Technical solution...................................
Jacobian derivation. The Jacobian is differentiated automatically but to verify
that it is well defined for all values, we will derive it manually,

∂∆ok

∂sk
= −I4×4, (4.13)

∂∆sk

∂sk
= I4×4

∆t , (4.14)

∂∆sk

∂sk−1
= −

1

∆t 0 0 −λhq2(k − 1)
0 1

∆t 0 λhq1(k − 1)
0 0 1

∆t 0
0 0 0 1

∆t

 , (4.15)

∂∆sk

∂p = −

q1(k − 1) 0 0 −λhq2(k − 1)
q2(k − 1) 0 0 λhq1(k − 1)

0 throttle(k − 1) 0 0
0 0 yaw(k − 1) 0

 ,
(4.16)

q1(k) = cos(ψ(k))pitch(k) + sin(ψ(k))roll(k), (4.17)
q2(k) = sin(ψ(k))pitch(k)− cos(ψ(k))roll(k), (4.18)
ψ(k) = θ(k) + θ0. (4.19)

Since the discretization step ∆t is non-zero and positive, the calculated val-
ues of the Jacobian are always finite, and it is continuous for all states, in-
puts and model parameters, essential conditions for the numerical stability
of the optimization.

Source code. To demonstrate how the mathematical model transitions
to the source code, we provide the implementation of the state Ceres residual
block in listing 4.2, this is equivalent to the state term in equation 3.39.

The residual block is created with pointers to the data, as such it can
be rerun without rebuilding the model (for example, with new input u),
and the template residual function takes the variable and residual pointers
as arguments. As you can see in listing 4.2, the template of the model M
provides the state equation and all the required dimensions (sizes). As such
this residual block can be used for any finite state-space model.

34

...................................... 4.3. Software

template < typename M>
struct State_res
{

State_res (const double *u, const double dt ,
const double *C) : u(u), dt(dt), C(C) {}

template <typename T>
bool operator ()(const T* const s_curr ,

const T* const s_next ,
const T* const p, T* res) const

{
T ds[M:: s_dim];
M:: state_eq (ds , s_curr , this ->u, p);

for(int i = 0; i < M:: s_dim; i++) {
res[i] = this ->C[i]*(ds[i] +

(s_curr [i] - s_next [i])/this ->dt);
}

return true;
}

static CostFunction * Create (
const double * u, const double dt , const double *C)

{
return (new AutoDiffCostFunction <State_res ,

M:: s_dim , M:: s_dim , M:: s_dim , M:: p_dim >
(

new State_res (u, dt , C))
);

}

const double *u;
const double dt;
const double *C; // cost multiplier

};

Listing 4.2: C++ code for the state Ceres residual block

4.3.8 Moving horizon estimate

To estimate the model state we are using the MHE as defined in the previous
chapter, section 3.1.4, specifically equation 3.42. Because we can rerun
the optimization model in Ceres, at the start of the control program, we build
the MHE problem for a fixed horizon length specified in the configuration (full
list of configuration options in appendix C.2).

Since it takes a non-trivial amount of time to solve the optimization problem,
the estimation is done in a handler thread to prevent blocking the main

35

4. Technical solution...................................
thread. At each step in the main thread, we first get the last calculated state
estimate ŝk−1 from the handler, which is going to be used for controlling
the system, and after that we post a request to the handler with the current
observation ok, and the previous input uk−1. This introduces a delay of one
time-step into the control loop, but it is necessary to deal with the real-time
limitations of the optimization.

The handler thread is waiting for the request, checking if the time-step is
greater than the current solution. If yes, it adds data (inputs and observations)
from all unprocessed requests in the queue after shifting the previous data
and solution. The fact that we are reusing the previous estimates as the initial
solution of the optimization greatly helps to improve the computation speed
and allows us to get a good solution within the 20 millisecond sampling period.

If we do not get a solution fast enough, we just reuse the last state estimate
value. Since we can set a computation time limit, it is almost guaranteed to get
a solution within the required time frame, though it is important to balance
the horizon length so that the precision of the solution is sufficient. Longer
horizon might produce better, more robust estimates, but will also take longer
to compute, so we might not do enough solver iterations to get a sufficiently
precise solution.

Jacobian derivation. The Jacobian formulas are the same as for the system
identification, equations 4.13 to 4.19.

4.3.9 Model predictive control

To control our system, we are using the MPC as defined in the previous
chapter, section 3.1.5, specifically equation 3.46. We can leverage the same
advantages of the Ceres solver as with MHE, rerunning the model that is built
for a specific horizon length (full list of configuration options in appendix C.3)
and reusing the previous solution. In the same manner as the MHE, the MPC
optimization is run in a separate handler to prevent blocking the main thread.

As with the MHE, the main thread is first getting the calculated input u
for the current step that is used for controlling the system and then we post
a request with the new s0, p, and s∗. The handler thread also works similarly,
shifting the previous solution and handling the last posted request.

36

...................................... 4.3. Software

Lagged inputs. Since solving the MPC is more demanding than the MHE
(Jacobian is less sparse; state is influenced by all previous inputs), it happens
more often that the computation does not converge withing the allocated time.
Normally we only use the first input when calculating the MPC, but in this
case we can use the later inputs as well. However, to prevent the system from
moving too far from the initial solution, we scale the inputs by a coefficient
α = exp(−lagmpc/10), so if the control is not keeping up, we slow down. It is
important to balance the horizon length with the computational capacity
available to prevent the MPC from lagging behind.

Target clipping. Since our horizon is limited, if we were to get a target
state s∗ far from our current state, we would not be able to get to it within
our horizon, which would cause the inputs to dramatically increase. We would
have to increase the input weights to balance it out, but that would make
the system too slow when we are close to our target. Because of this, it is
better to clip the distance to our target by some value dmax,

s∗
clip = min(dmax, ∥s∗ − s0∥)

s∗ − s0
∥s∗ − s0∥

+ s0. (4.20)

Doing this allows us to have small input weights and make the system move
with approximately constant speed (the clipped target keeps moving to the real
target in each step).

Jacobian derivation. Similarly to the system identification, we are using
automatic differentiation, but verifying the Jacobian manually is useful.
We are deriving the formula from equation 3.82, and we only need the separate
parts of the chain,

∂f(sk,uk,p)
∂sk

=

1 0 0 −∆tλhq2(k)
0 1 0 ∆tλhq1(k)
0 0 1 0
0 0 0 1

 , (4.21)

∂f(sk,uk,p)
∂uk

=

∆tλh sin(ψ(k)) ∆tλh cos(ψ(k)) 0 0
∆tλh cos(ψ(k)) ∆tλh sin(ψ(k)) 0 0

0 0 ∆tλv 0
0 0 0 ∆tλa

 (4.22)

q1(k) = cos(ψ(k))pitch(k) + sin(ψ(k))roll(k), (4.23)
q2(k) = sin(ψ(k))pitch(k)− cos(ψ(k))roll(k), (4.24)
ψ(k) = θ(k) + θ0. (4.25)

37

4. Technical solution...................................
4.3.10 Adjusting for input delay

Systems with delay in the control loop tend to overshoot, oscillating around
the target. If we would want to limit the overshoot, we would have to dampen
the system (make the inputs smaller) but for a large delay this could cause
us to limit the controller so severely that it would be unusable in practice.

The empirical evaluation shows that the controller of the UAV be-
comes increasingly less stable when the state estimate is delayed
for more than 300ms. (M. Petrlík et al. [16])

To deal with the problem of input delay D, we are keeping a FIFO queue
of previous actions {ak−D−1, . . . , ak} where ak is the current action (com-
mand). This allows us to send the correct input uk−1 = ak−D−1, into the MHE.
By itself, this does not allow us to adjust the state of the MPC. To do that
we try to predict the state using the recursive formula, starting from the MHE
state estimate s̃k−1 = ŝk−1 and using parameter estimate p̂,

s̃k+1 = f(s̃k, ak−D, p̂). (4.26)

This is a “leap of faith”, we are relying on the fact that both ŝk−1 and p̂ are
relatively close to the real values, and the disturbances are relatively small.
If this was not the case, the estimate of the final state s̃k+D+1 used to control
the system could be very much off-target, and the controller’s performance
might be much worse, or the closed-loop system might even be unstable.

This is especially true for higher-order systems for which a small change
in the initial state can mean great change in the later states [69]. This is
one of the motivations for us to use a simple first-order model of the system,
making the prediction less sensitive to the quality of the estimation.

4.3.11 Control loop

All of the separate parts (Tello communication, Vicon communication, Vicon
filter, logging, MHE, and MPC) are combined into one program whose main
thread is the control loop. In this loop, in each time-step we do the following
(data flow diagram in figure 4.3):

38

...................................... 4.3. Software..1. Get raw observation ok,raw from Vicon...2. Get filtered observation ok,filt from Vicon filter using ok,raw...3. Get state ŝk−1 and parameter estimate p̂ from MHE...4. Get action ak from MPC...5. Send action ak to Tello...6. Post request to MHE with delayed action ak−D−1, and current filtered
observation ok,filt...7. Predict the state estimate s̃k+D+1 using actions {ak−D−1, . . . , ak}, latest
state ŝk−1 and parameter estimate p̂...8. Post request to MPC with predicted state s̃k+D+1, parameter estimate p̂
and current target s∗...9. If we are within tolerance of the current target s∗ set the next target....10. Log latest estimate ŝk−1, action ak, and target s∗ .

Remark 4.1. Even if the delay D is set to 0, we still predict from s̃k−1 to s̃k+1
with 2 actions, this is due to the asynchronous calculation of the MHE
and the MPC, each introducing a lag of 1 time-step.

We loop with the assigned discretization step ∆t of 20 milliseconds until
a signal to quit is received from the user, which commands Tello to land, joins
all the threads, closes all connections, and ends the program.

To simplify the launch of the program, we provide it with a JSON configuration
file (similarly to model identification, MHE and MPC) with all information
required for connections, logging, Vicon filter, MHE and MPC setups. Full
list for configurations for the control program is in appendix C.4.

As an auxiliary tool and a safety precaution, the program also allows a switch
to manual control of the drone using the keyboard.

39

4. Technical solution...................................

Vicon

Vicon filter

MHE

state
prediction

target
selection

action
history

MPC

Tello

Figure 4.3: Data flow of control loop

40

Chapter 5

Results

5.1 System identification

To identify the model of our system, we will use the filtered observations of six
manually flown trajectories and the recorded inputs, totaling 27832 time-steps.
We are using only the filtered values (not values from MHE) and manual flying
to remove any bias we could introduce by giving initial estimates for the model
parameter values and to get sharp changes in the inputs to better estimate
the input delay.

5.1.1 Input delay

During the initial testing of the drone capabilities, we came to the same
finding as the other users of the Tello drone, the wireless communication
introduces a significant input delay. To find how much delay there is, we
plot out the observations and the cumulative inputs, in figure 5.1 we can
see the positions (blue), the commutative inputs (orange) and the shifted
cumulative input by 35 time-steps (green), time-step ∆t is 20 milliseconds.

41

5. Results
Definition 5.1. Cumulative input is the sum of the expected changes of a state
derived from the model, using state equation 4.1. For the x-axis the cumulative
input is the following,

∆̂x(k0, k1) =
k1∑

k=k0

∆tλh(sin(θ(k) + θ0)roll(k) + cos(θ(k) + θ0)pitch(k)).

(5.1)

2500 2600 2700 2800 2900

k [-]

2.00

2.25

2.50

2.75

x
[m

]

500 750 1000 1250 1500

k [-]

−4

−3

−2

y
[m

]

1800 2000 2200

k [-]

1.0

1.2

1.4

1.6

z
[m

]

2800 3000 3200

k [-]

0.5

1.0

1.5

θ
[ra

d]

Delay analysis

observation cumulative input shifted cumulative input

Figure 5.1: Delay analysis plot

Remark 5.2. In figure 5.1, the cumulative inputs are scaled and shifted
to match the changes in position, we are not trying to estimate the parameters
of the model, just the value of the input delay.

You can see that shifted input (corresponding to input delay) matches
the observations better than not-shifted input, except for the angle rise.
Since we use the value of the delay in the length of the prediction, we use
a conservative estimate of 30 time-steps, which is equal to 0.6 seconds (time-
step ∆t is 20 milliseconds).

42

................................. 5.1. System identification

5.1.2 Model parameters

To estimate the model parameters, we are going to use the MAP estimate that
was formulated and derived in section 3.1.3, with its implementation details
in section 4.3.7. The wireless communication was not lossless, and sometimes,
the drone did not react to the commands. To limit this negative effect
and allow for the use of the bootstrap method for estimation, we split the six
trajectories evenly into sub-trajectories of minimal length of 300 time-steps
(6 seconds).

This produces a history of 89 trajectories (|H| = 89, 304 ≤ Lh ≤ 319). If some
part of the trajectory is tainted by a loss of connection or some other adverse
conditions, smaller part of the dataset would be affected. When tuning
the weighting coefficients of the estimate (used values are in appendix D),
it is important to get state coefficients cs as high as possible while still
following the trajectory, this will result in smooth estimates that produce
good estimations of the model parameters p. If the state coefficients are
too low, most of the model will be explained by observations and the state
equations become irrelevant. This finding is concurrent with the elementary
analysis of the system behavior using step increases in the inputs.

To verify if the state estimates are following the trajectory, we plot out
the estimated states over the observations, like in figure 5.2.

−1.75 −1.50 −1.25 −1.00 −0.75 −0.50

x [m]

−2.4

−2.2

−2.0

−1.8

−1.6

y
[m

] 0 100 200 300

k [-]

1.1

1.2

1.3

z
[m

]

0 100 200 300

k [-]

−4.0

−3.5

−3.0

−2.5

θ
[ra

d]

Parameter identification state estimates

observation estimated state

Figure 5.2: Verification plot for the parameter identification

43

5. Results
Bootstrap. We have explained how to get the values from the estima-
tor, but when using estimators, it is important to talk about the variance
of the estimators. We use the bootstrap method [70], we repeatedly resample
the 89 trajectories with repetition and estimate the values with this sample.

This allows us to get an approximation of the distribution of the parame-
ters. With this distribution, we can create confidence intervals (CI) for our
parameter estimates.

Estimated values. The values found for our model are presented in table 5.1.
To outline the differences between the variances of the estimates, figure 5.3
presents a boxplot for the bootstrap values.

parameter value std. dev. CI(95%) lower CI(95%) upper
λh [m/s] 1.065 0.075 0.908 1.198
λv [m/s] 0.447 0.050 0.349 0.540
λa [m/s] 0.955 0.052 0.851 1.064
θ0 [rad] -0.171 0.150 -0.442 0.126

Table 5.1: Parameter estimate values

λh [m/s] λv [m/s] λa [m/s] θ0 [rad]
parameter

−0.5

0.0

0.5

1.0

1.5

va
lu

es

(1.065) (0.447) (0.955) (-0.171)

Parameter estimate boxplot

Figure 5.3: Boxplot for the bootstrap (estimated values in brackets on top)

5.2 Flight control

To evaluate the controller’s performance, we are using a simple scenario; fly
in a square of size 1.5 meters at the altitude of 1.0 meters or 1.3 meters.

44

.................................... 5.2. Flight control

The heading is constant during the flight, varied across trials from -0.2 rad
to 0 rad. This produces 5 targets, in each corner of the square (including
the starting one), that have to be met within the distance of 0.2 meters.
The order of targets (whether we fly first along the x-axis or the y-axis) is
also varied to demonstrate robustness. An example of a flown trajectory is
in figure 5.4, reference of targets is dashed, time of flight in the brackets.

−2.25−2.00−1.75−1.50−1.25−1.00−0.75−0.50−0.25

x [m] −3.00
−2.75
−2.50
−2.25
−2.00
−1.75
−1.50
−1.25

y
[m

]
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

z
[m

]

Square trajectory

Figure 5.4: Square trajectory (14.8 seconds)

Although the trajectory might seem simple, it requires the drone to repeatedly
accelerate towards the target and then decelerate to meet the target, which
is not an elementary task for a system with such significant input delay
and should provide ample information regarding the controller’s behavior.

A trajectory starts when the state estimate is within the required distance
of the first target and ends when the state estimate is within the required
distance of the last target, or is ended due to external conditions. External
condition preventing the drone from completing the trajectory include low
battery, the drone is not responding to commands (loss of connection),
and manual control is used to prevent the drone from crashing.

During the tuning of the controller, we recorded every trajectory. The analysis
is done for a filtered subset that are deemed valid. For a considered trajectory
to be valid, the drone flew throughout the whole trajectory (met all targets)
and did not deviate from the trajectory in the horizontal direction (only x-axis

45

5. Results
and y-axis) for more than 0.3 meters. The filtered subset of valid trajectories
totals 29 (about 550 seconds of flight time).

5.2.1 Control loop configuration

The final control loop configuration has the loop frequency of 50 Hz (time-
step ∆t is 20 milliseconds) and an estimated input delay of 30 time-step.
The computation distribution is 6 threads for MPC, 1 thread for MHE
and 1 thread for each communication handler. The horizon length is set
to 13 time-steps for MPC and 30 for MHE, which is about the maximum
possible for the used computer with Inter Core i5-8500U CPU (at 1.6 GHz)
and 8 GB of RAM. Full table of the tuned coefficients is in appendix D,
the most notable is the adjustment of the heading offset angle, which is
further explained in discussion 6.2.1.

5.2.2 Prediction inconsistency

As mentioned in section 4.3.10, the model prediction is used to compensate
the input delay of the model, but could become unreliable when the model
does not match the real system. This assumption has been proven correct,
during the flight the prediction seems to follow the trajectory reasonably well,
but when lowering the input (on corners of the square), the real system stops,
while the prediction is drifting beyond the position. Figure 5.5 shows the state,
its prediction, and cumulative input to illustrate this effect. Analysis of this
effect is in discussion 6.1.2 and 6.2.3.

5.2.3 Controller performance

From the 29 valid trajectories, the median time to finish is 18.2 seconds,
the 25% quantile is 14.8 seconds, and the 75% quantile is 22.2 seconds.
The median speed for valid trajectories is 0.35 m/s, comparison is done
in discussion 6.2.4. The median horizontal distance to trajectory is 0.14 m,1
the median input norm is 0.48 (inputs are scaled target velocities).

1We are using the horizontal distance (x and y-axis) as the main metric, because the drone
has its internal altitude control.

46

.................................... 5.2. Flight control

250 300 350 400 450 500 550 600

k [-]

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

x
[m

]

Prediction

state state prediction cumulative input

Figure 5.5: Prediction inconsistency plot

Trajectory progression matching. To further analyze the dynamic behavior
of the controller, we are going to match each time-step to the closest point
on the trajectory. This will allow us to compare results across trajectories
regardless of time, because they will be matched to the same progression
of the trajectory. Figure 5.6 shows the Gaussian kernel density estimate (KDE)
for the progression. In the sections with higher density the drone spent more
time.

0.0 0.2 0.4 0.6 0.8 1.0
trajectory progression [-]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

de
ns

ity
 e

st
im

at
e

[-]

KDE for trajectory progression

Figure 5.6: KDE for trajectory progression

Figure 5.7 shows a heatmap (estimated density), median, and 95% quantile
interval plot for the horizontal distance across trajectory progression, figure 5.8
shows the same information for the input norm, analysis of these plots is
in discussion 6.2.5.

47

5. Results

0.0 0.2 0.4 0.6 0.8 1.0

trajectory progression [-]

0.0

0.1

0.2

0.3

0.4

0.5

ho
riz

io
nt

al
di

st
an

ce
[m

]

Distance for trajectory progression

median 95% quantile interval

Figure 5.7: Horizontal distance for trajectory progression

0.0 0.2 0.4 0.6 0.8 1.0

trajectory progression [-]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

in
pu

tn
or

m
[-]

Input norm for trajectory progression

median 95% quantile interval

Figure 5.8: Input norm for trajectory progression

5.2.4 Additional trajectories

As a proof of concept for the generality of our controller, figures 5.9 and 5.10
present 2 trajectories flying around the laboratory (reference is dashed),
the trajectories are bigger, and the target distance required is set to 0.3 m.

48

.................................... 5.2. Flight control

−1
0

1
2

3
x [m]

−2

−1

0

1

2

y
[m

]

0

1

2

3

4

5

z
[m

]

Arc trajectory

Figure 5.9: Arc trajectory (67.8 seconds)

−2
−1

0
1

2
x [m]

−2

−1

0

1

2

y
[m

]

0

1

2

3

4

5

z
[m

]

Diamond trajectory

Figure 5.10: Diamond trajectory (67.5 seconds)

49

50

Chapter 6

Discussion

This section will discuss the results presented in the previous chapter as well
as findings noted during the tuning of the methods.

6.1 System identification

6.1.1 Input delay

When testing the controller while ignoring the input delay, the closed-loop sys-
tem was oscillating (circling) around the target and an erroneous orientation θ
reading could completely make it unstable, the drone would fly off and had
to be stopped manually. The value of 30 time-steps for the input delay is
chosen conservatively, a longer delay means farther prediction, making it
more prone to model misspecification.

6.1.2 Parameter values

The estimated parameter values (table 5.1) proved to be concurrent with
the initial elementary analysis of step-input measurements. However, due
to the non-linearity of the control around zero input, shown in figure 5.5,

51

6. Discussion
probably caused by the internal regulator which is tuned for a human pilot,
making easier to manually control the drone around zero input, the model
was not working well in this range. It should be noted that the estimated
values presented in [4] are smaller (for the horizontal coefficient by 45%),
this could be explained by the fact that the author only used one trajectory
or a different communicating procedure that scales the inputs for the drone.

6.1.3 Parameter variance

The values of the heading offset are only relevant for a specific Vicon configura-
tion, however, looking at the values in table 5.1 or boxplot in figure 5.3, we can
see that the variance of heading estimation is quite large, 95% confidence
interval ranging from -0.442 rad to 0.126 rad (range of 32.5 degrees).

This finding is important as it pointed us in the right direction when tuning
the controller, the orientation measurements are unreliable, and we need
to rely on the horizontal displacements to estimate our heading. Because
of this, the state and observation weighing coefficients are higher for the MHE
in the x and y-axis, compared to the orientation coefficients.

6.2 Flight control

6.2.1 Heading adjustment

As seen from some of the valid trajectories, the drone often flies slightly
off-target, only to be corrected right before reaching the target. This effect
is due to the unreliable estimation of orientation θ and the heading off-
set θ0, as seen from the variance of the heading offset estimation. To combat
this, we manually adjust the heading offset θ0 for the MPC computation
by an additional -0.3 rad, forcing the drone to shift the trajectory to the target,
and improving the controller’s performance.

52

.................................... 6.2. Flight control

6.2.2 Computation feasibility

The real-time optimization of a non-linear MPC problem proved to be
the limiting factor for the speed of the control loop. The Jacobian of the MPC
problem is much denser than for the MHE. Because of this, the computation
of the MPC problem takes the majority of the computation power (6 threads,
the rest of the tasks have one each).

Still, the Ceres solver proved to be effective for this real-time task. The sol-
ution was precise enough to be used as a control strategy. Only during a fast
target change, it took the optimization algorithm a few cycles of the control
loop to catch up and converge to the optimal strategy, as it had limited
computation time so as not to lag behind the current state. This can be seen
from figure 5.6, the drone “lingers” after the corner before speeding up.

Limiting the distance of the target proved to be a good extension, allowing
for a smooth flight along the trajectory, making the computation more stable.

6.2.3 Prediction inconsistency

Due to the imperfections of our model around the zero input, the prediction
was moving off-target during changes in flight direction. This, coupled with
significant delay meant that the distance requirement of 0.2 meters was
about as low as possible without having to wait a significant amount of time
for the drone to converge to the target.

An additional effect of altitude (z-axis) decrease during horizontal acceler-
ation is also sometimes visible for the drone, it is usually quickly corrected
by the drone’s internal altitude control.

6.2.4 Controller performance

When evaluating the performance of the controller, it should be noted that we
have kept the trajectories even for the untuned parameters of the controller,
so a realistic expectation of the performance for a tuned controller is around
the 25% quantile of 14.8 seconds to finish the square trajectory; this would

53

6. Discussion
correspond to a speed of 0.41 m/s. For comparison with other works, the same
drone is flown with a speed of 0.1 m/s in [4], and the maximum speed is
about 0.2 m/s in [5].

6.2.5 Trajectory progression

From figure 5.7 we can see that the median distance does not rise above
the target required distance of 0.2 meters, stays roughly consistent throughout
the trajectory progression. This is a good finding, if there was some significant
increases in some parts of the trajectory that would mean either overshooting
or significant deviance from the expected behavior.

From figure 5.8 we can see an expected behavior of accelerating towards
the target and then a slight drop-off when we are getting closer to the target
(4 drops corresponding to 4 targets). One finding that is a little bit unexpected
is the fact that in the 1st and 3rd quarter both the input values and the drop-off
are relatively smaller for the median values than for the 2nd and 4th quarter
of the trajectory, suggesting some unexplained effects, however the range
of the confidence interval stays almost the same so it could be just some bias
from repeated dependent experiments.

54

Chapter 7

Conclusion

Assignement completion. The assignment guidelines were completed fully,
with the slight reservation regarding the requirement for different trajectories,
as while multiple trajectories were present, we only collected enough data
for a proper evaluation of the control performance for the square trajectory.

Real-time control. The main conclusion from this thesis is the viability
of a fully non-linear MPC controller for real-time flight control of robotic
helicopter with significant input delay. Most of the previous works used
simpler methods of control or used the MPC either with a linearized system
or outside the loop as a guide-line to which the drone was controlled with
some other method.

MAP estimate for parameters. The values from the derived MAP estimate
of model parameters are successfully used to control the dynamic system.
The implemented method can be applied to other dynamic systems just
by creating a template of the system state-space model.

State prediction for input delay. For a system with such significant input
delay (over 0.6 seconds), the state prediction using previous inputs is a crucial
part of making the controller viable.

55

7. Conclusion......................................
Vicon limitation. The Vicon tracking system is pushed to its limits when
tracking such a small object, and the markers are often obscured. The devel-
oped filter and tuned MHE make Vicon a viable measurement in the control
loop. However, the use of a better marker configuration, or additional mea-
surements such as odometry or camera tracking to correct the measurements
is preferred.

Ceres library. The open-source library Ceres is proven to be capable
of handling real-time tasks like the MPC and the MHE, as well as handling
large models used for off-line parameter estimation. For example our model
for parameter estimation has over 100 000 variables, and over 200 000 residuals
and the computation finished in a matter of minutes on a personal computer.

56

Appendix A

Bibliography

[1] V. Pritzl, P. Stepan, and M. Saska, “Autonomous flying into buildings
in a firefighting scenario,” in 2021 IEEE International Conference on
Robotics and Automation (ICRA), 2021, pp. 239–245.

[2] M. Bekhzod, “Ryze tello drone tracking,” 2022, bachelor thesis,
Department of Cybernetics, FEE CTU Prague. [Online]. Available:
https://dspace.cvut.cz/handle/10467/101276

[3] J. Ševic, “Ryze tello drone flying through an obstacle,” 2021, bachelor
thesis, Department of Cybernetics, FEE CTU Prague. [Online].
Available: https://dspace.cvut.cz/handle/10467/101326

[4] D. Pařil, “Autonomous control of drone ryze tello,” 2021, bachelor thesis,
Department of Cybernetics, FEE CTU Prague. [Online]. Available:
https://dspace.cvut.cz/handle/10467/94756

[5] J. Gärtner, “Uav formation keeping based on mutual distance
measurement,” 2021, master thesis, Department of Cybernetics, FEE
CTU Prague. [Online]. Available: https://dspace.cvut.cz/handle/10467/
95269

[6] T. Saini, “Manoeuvring drone (tello ans tello edu) using body poses or
gestures,” 2021, master thesis, Escola Tècnica Superior d’Enginyeria de
Telecomunicació de Barcelona, Universitat Politècnica de Catalunya.
[Online]. Available: https://dspace.cvut.cz/handle/10467/95269

[7] K. Hulek, M. Pawlicki, A. Ostrowski, and J. Mozaryn, “Implementation
and analysis of ryze tello drone vision-based positioning using apriltags,”
MMAR 2023 - 27th International Conference on Methods and Models in
Automation and Robotics, 05 2023.

57

https://dspace.cvut.cz/handle/10467/101276
https://dspace.cvut.cz/handle/10467/101326
https://dspace.cvut.cz/handle/10467/94756
https://dspace.cvut.cz/handle/10467/95269
https://dspace.cvut.cz/handle/10467/95269
https://dspace.cvut.cz/handle/10467/95269

A. Bibliography.....................................
[8] T. Báča, D. Hert, G. Loianno, M. Saska, and V. Kumar, “Model pre-

dictive trajectory tracking and collision avoidance for reliable outdoor
deployment of unmanned aerial vehicles,” 11 2018.

[9] G. SONUGÜR, “A review of quadrotor uav: Control and slam
methodologies ranging from conventional to innovative approaches,”
Robotics and Autonomous Systems, vol. 161, p. 104342, 2023.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0921889022002317

[10] J. J. Castillo-Zamora, K. A. Camarillo-GóMez, G. I. PéRez-Soto, and
J. RodríGuez-ReséNdiz, “Comparison of pd, pid and sliding-mode posi-
tion controllers for v–tail quadcopter stability,” IEEE Access, vol. 6, pp.
38 086–38 096, 2018.

[11] A. G. Varghese and D. Sreekala, “Modeling and design of uav with lqg
and h-inf controllers,” International Journal of Engineering Research &
Technology (IJERT), vol. 8, no. 5, pp. 446–450, 2019.

[12] N. S. Özbek, M. Önkol, and M. Ö. Efe, “Feedback control strategies for
quadrotor-type aerial robots: a survey,” Transactions of the Institute of
Measurement and Control, vol. 38, no. 5, pp. 529–554, 2016.

[13] T. Madani and A. Benallegue, “Backstepping control for a quadrotor
helicopter,” 2006, Conference paper, p. 3255 – 3260. [Online]. Available:
https://ieeexplore.ieee.org/document/4058900

[14] M. Schwenzer, M. Ay, T. Bergs, and D. Abel, “Review on model predictive
control: An engineering perspective,” The International Journal of
Advanced Manufacturing Technology, vol. 117, no. 5, pp. 1327–1349,
2021.

[15] W. Koch, R. Mancuso, R. West, and A. Bestavros, “Reinforcement
learning for uav attitude control,” ACM Trans. Cyber-Phys. Syst., vol. 3,
no. 2, feb 2019. [Online]. Available: https://doi.org/10.1145/3301273

[16] M. Petrlik, P. Petracek, V. Kratky, T. Musil, Y. Stasinchuk, M. Vrba,
T. Baca, D. Hert, M. Pecka, T. Svoboda, and M. Saska, “UAVs Beneath
the Surface: Cooperative Autonomy for Subterranean Search and Rescue
in DARPA SubT,” Field Robotics, vol. 3, pp. 1–68, January 2023.

[17] P. Antsaklis and A. Michel, A Linear Systems Primer, 01 2007.

[18] F. Brown, Engineering System Dynamics: A Unified Graph-Centered
Approach, Second Edition, ser. Control engineering. Taylor &
Francis, 2006. [Online]. Available: https://books.google.cz/books?id=
UzqX4j9VZWcC

[19] J. Krška, “Přednášky z B3M35LSY,” 2018, lecture notes from FEE CTU
Prague.

58

https://www.sciencedirect.com/science/article/pii/S0921889022002317
https://www.sciencedirect.com/science/article/pii/S0921889022002317
https://ieeexplore.ieee.org/document/4058900
https://doi.org/10.1145/3301273
https://books.google.cz/books?id=UzqX4j9VZWcC
https://books.google.cz/books?id=UzqX4j9VZWcC

..................................... A. Bibliography

[20] Z. Chen and E. N. Brown, “State space model,” Scholarpedia, vol. 8,
no. 3, p. 30868, 2013, revision #189565.

[21] J. Peters, J. Mooij, D. Janzing, and B. Schölkopf, “Causal discovery
with continuous additive noise models,” 2014.

[22] Z. Hurák, “Introduction to numerical simulation,” 2020, lecture at FEE
CTU Prague.

[23] J. Švrčina, “Adaptive control using neural networks,” 2020, bachelor
thesis, Department of Cybernetics, FEE CTU Prague. [Online].
Available: https://dspace.cvut.cz/handle/10467/89834

[24] G. F. Franklin, J. D. Powell, A. Emami-Naeini, and H. S. Sanjay, Feedback
control of dynamic systems, seventh, global ed. Boston: Pearson, 2015.

[25] F. Fisher, The Identification Problem in Econometrics. R. E.
Krieger Publishing Company, 1976. [Online]. Available: https:
//books.google.cz/books?id=rFsrnQEACAAJ

[26] R. S. Sutton and A. G. Barto, Reinforcement Learning; an
Introduction, 2nd ed. MIT Press, 2018. [Online]. Available:
http://www.incompleteideas.net/book/the-book.html

[27] O. N. Bjørnstad and B. T. Grenfell, “Noisy clockwork: Time
series analysis of population fluctuations in animals,” Science,
vol. 293, no. 5530, pp. 638–643, 2001. [Online]. Available:
https://www.science.org/doi/abs/10.1126/science.1062226

[28] C. Breto and E. Ionides, “Compound Markov counting processes and
their applications to modeling infinitesimally over-dispersed systems,”
Stochastic Processes and their Applications, vol. 121, 02 2010.

[29] G. Grimmett and D. Stirzaker, Probability and random processes. Oxford;
New York: Oxford University Press, 2001. [Online]. Available: http:
//www.worldcat.org/search?qt=worldcat_org_all&q=9780198572220

[30] J. Bouda, “Markov processes,” 2009, lecture at Masaryk university in
Brno. [Online]. Available: https://www.fi.muni.cz/~xbouda1/teaching/
2009/IV111/lecture5.pdf

[31] P. Poupart, Partially Observable Markov Decision Processes. Boston,
MA: Springer US, 2010, pp. 754–760. [Online]. Available: https:
//doi.org/10.1007/978-0-387-30164-8_629

[32] J. M. Ondřej Drbohlav, “Parameter estimation: Maximum likelihood
(ml), maximum a posteriori (map), and bayesian,” 2022, lecture at CTU
in Prague. [Online]. Available: https://cw.fel.cvut.cz/b231/_media/
courses/be5b33rpz/lectures/pr_03_parameter_estimation_2022.pdf

59

https://dspace.cvut.cz/handle/10467/89834
https://books.google.cz/books?id=rFsrnQEACAAJ
https://books.google.cz/books?id=rFsrnQEACAAJ
http://www.incompleteideas.net/book/the-book.html
https://www.science.org/doi/abs/10.1126/science.1062226
http://www.worldcat.org/search?qt=worldcat_org_all&q=9780198572220
http://www.worldcat.org/search?qt=worldcat_org_all&q=9780198572220
https://www.fi.muni.cz/~xbouda1/teaching/2009/IV111/lecture5.pdf
https://www.fi.muni.cz/~xbouda1/teaching/2009/IV111/lecture5.pdf
https://doi.org/10.1007/978-0-387-30164-8_629
https://doi.org/10.1007/978-0-387-30164-8_629
https://cw.fel.cvut.cz/b231/_media/courses/be5b33rpz/lectures/pr_03_parameter_estimation_2022.pdf
https://cw.fel.cvut.cz/b231/_media/courses/be5b33rpz/lectures/pr_03_parameter_estimation_2022.pdf

A. Bibliography.....................................
[33] C. V. Rao, J. B. Rawlings, and D. Q. Mayne, “Constrained state estima-

tion for nonlinear discrete-time systems: stability and moving horizon
approximations,” IEEE Transactions on Automatic Control, vol. 48,
no. 2, pp. 246–258, 2003.

[34] R. E. Kalman, “A new approach to linear filtering and prediction prob-
lems,” Transactions of the ASME–Journal of Basic Engineering, vol. 82,
no. Series D, pp. 35–45, 1960.

[35] S. Julier and J. Uhlmann, “Unscented filtering and nonlinear estimation,”
Proceedings of the IEEE, vol. 92, no. 3, pp. 401–422, 2004.

[36] Grune, J. P. Pannek, Jurgen, and Lars, Nonlinear Model Predictive
Control: Theory and Algorithms, 2nd ed. Cham: Springer, 2016;2017;.

[37] S. Lucia, A. Tatulea-Codrean, C. Schoppmeyer, and S. Engell, “Rapid
development of modular and sustainable nonlinear model predictive
control solutions,” Control Engineering Practice, vol. 60, p. 51–62, 03
2017. [Online]. Available: https://www.do-mpc.com/

[38] K. H. Ang, G. Chong, and Y. Li, “PID control system analysis, design,
and technology,” IEEE Transactions on Control Systems Technology,
vol. 13, no. 4, pp. 559–576, 2005.

[39] F. Lewis, Optimal Control. John Wiley & Sons Australia,
Limited, 2005. [Online]. Available: https://books.google.cz/books?id=
FGGIPwAACAAJ

[40] N. Lehtomaki, N. Sandell, and M. Athans, “Robustness results in linear-
quadratic gaussian based multivariable control designs,” IEEE Transac-
tions on Automatic Control, vol. 26, no. 1, pp. 75–93, 1981.

[41] J. Nocedal and S. Wright, Numerical Optimization, ser. Springer Series
in Operations Research and Financial Engineering. Springer New
York, 2006. [Online]. Available: https://books.google.cz/books?id=
VbHYoSyelFcC

[42] D. Arrowsmith and C. Place, Dynamical Systems: Differential
Equations, Maps, and Chaotic Behaviour, ser. Chapman Hall/CRC
Mathematics Series. Taylor & Francis, 1992. [Online]. Available:
https://books.google.cz/books?id=8qCcP7KNaZ0C

[43] A. Galántai, “The theory of newton’s method,” Journal of Computational
and Applied Mathematics, vol. 124, no. 1, pp. 25–44, 2000, numerical
Analysis 2000. Vol. IV: Optimization and Nonlinear Equations.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0377042700004350

[44] J. Velebil, Abstraktní a konkrétní lineární algebra. Departement of
mathematics, FEE CTU in Prague, 2023. [Online]. Available: https:
//math.fel.cvut.cz/en/people/velebil/files/akla/akla_2023_09_15.pdf

60

https://www.do-mpc.com/
https://books.google.cz/books?id=FGGIPwAACAAJ
https://books.google.cz/books?id=FGGIPwAACAAJ
https://books.google.cz/books?id=VbHYoSyelFcC
https://books.google.cz/books?id=VbHYoSyelFcC
https://books.google.cz/books?id=8qCcP7KNaZ0C
https://www.sciencedirect.com/science/article/pii/S0377042700004350
https://www.sciencedirect.com/science/article/pii/S0377042700004350
https://math.fel.cvut.cz/en/people/velebil/files/akla/akla_2023_09_15.pdf
https://math.fel.cvut.cz/en/people/velebil/files/akla/akla_2023_09_15.pdf

..................................... A. Bibliography

[45] K. Levenberg, “A method for the solution of certain non – linear problems
in least squares,” Quarterly of Applied Mathematics, vol. 2, pp. 164–168,
1944.

[46] D. W. Marquardt, “An algorithm for least-squares estimation of non-
linear parameters,” Journal of the Society for Industrial and Applied
Mathematics, vol. 11, no. 2, pp. 431–441, 1963.

[47] K. Madsen, H. Nielsen, and O. Tingleff, Methods for Non-Linear Least
Squares Problems (2nd ed.), 01 2004.

[48] J. Hadamard, Mémoire sur le problème d’analyse relatif a
l’équilibre des plaques élastiques encastrèes, ser. Académie des
sciences. Mémoires. Imprimerie nationale, 1908. [Online]. Available:
https://books.google.cz/books?id=8wSUmAEACAAJ

[49] Y. Bard, Nonlinear Parameter Estimation. Academic Press, 1974.
[Online]. Available: https://books.google.cz/books?id=fNo6MR1iS1UC

[50] S. Agarwal, “Trust region methods,” 2023, Ceres Solver Documenta-
tion. [Online]. Available: http://ceres-solver.org/nnls_solving.html#
trust-region-methods

[51] S. Agarwal, K. Mierle, and The Ceres Solver Team, “Ceres solver,”
2023, A large scale non-linear optimization library. [Online]. Available:
http://ceres-solver.org

[52] J. Gram, “Ueber die entwickelung reeller functionen in reihen mittelst
der methode der kleinsten quadrate.” Journal für die reine und
angewandte Mathematik, vol. 1883, no. 94, pp. 41–73, 1883. [Online].
Available: https://doi.org/10.1515/crll.1883.94.41

[53] E. Schmidt, “Zur theorie der linearen und nichtlinearen integralgle-
ichungen. i. teil: Entwicklung willkürlicher funktionen nach systemen
vorgeschriebener,” Mathematische Annalen, vol. 63, pp. 433–476, 1907.
[Online]. Available: http://eudml.org/doc/158296

[54] A.-L. Cholesky, “Note sur une méthode de résolution des équations
normales provenant de l’application de la méthode des moindres carrés
a un système d’équations linéaires en nombre inférieur a celui des
inconnues. — application de la méthode a la résolution d’un système
defini d’équations linéaires,” Notices Scientifiques, 1924. [Online].
Available: https://doi.org/10.1007/BF03031308

[55] M. Lira, R. Iyer, A. Trindade, and V. Howle, “Qr versus cholesky: A
probabilistic analysis,” International Journal of Numerical Analysis and
Modeling, vol. 13, no. 1, pp. 114–121, 2016.

[56] G. Fasshauer, “Least squares problems,” 2007, lecture at Illinois
Institute of Technology. [Online]. Available: http://www.math.iit.edu/
~fass/477577_Chapter_5.pdf

61

https://books.google.cz/books?id=8wSUmAEACAAJ
https://books.google.cz/books?id=fNo6MR1iS1UC
http://ceres-solver.org/nnls_solving.html#trust-region-methods
http://ceres-solver.org/nnls_solving.html#trust-region-methods
http://ceres-solver.org
https://doi.org/10.1515/crll.1883.94.41
http://eudml.org/doc/158296
https://doi.org/10.1007/BF03031308
http://www.math.iit.edu/~fass/477577_Chapter_5.pdf
http://www.math.iit.edu/~fass/477577_Chapter_5.pdf

A. Bibliography.....................................
[57] T. Davis, Direct Methods for Sparse Linear Systems,

ser. Fundamentals of Algorithms. SIAM, Society for In-
dustrial and Applied Mathematics, 2006. [Online]. Available:
https://books.google.cz/books?id=aTLYrafw3vUC

[58] Ryze, “Tello user manual,” 2023. [Online]. Avail-
able: https://dl-cdn.ryzerobotics.com/downloads/Tello/Tello%20User%
20Manual%20v1.4.pdf

[59] R. B. Heywood, The Works of the Mind ... Edited ... by R.B.
Heywood, Etc. University of Chicago Press, 1947. [Online]. Available:
https://books.google.cz/books?id=w4wjMwEACAAJ

[60] B. Stroustrup, The C++ Programming Language, Third Edition, 3rd ed.
USA: Addison-Wesley Longman Publishing Co., Inc., 1997.

[61] G. Van Rossum and F. L. Drake, Python 3 Reference Manual. Scotts
Valley, CA: CreateSpace, 2009.

[62] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing in
Science & Engineering, vol. 9, no. 3, pp. 90–95, 2007.

[63] B. Crow, I. Widjaja, J. Kim, and P. Sakai, “Ieee 802.11 wireless local
area networks,” IEEE Communications Magazine, vol. 35, no. 9, pp.
116–126, 1997.

[64] Ryze, “Tello SDK 2.0 User Guide,” 2018. [Online]. Avail-
able: https://dl-cdn.ryzerobotics.com/downloads/Tello/Tello%20SDK%
202.0%20User%20Guide.pdf

[65] J. Postel, “Rfc0768: User datagram protocol,” USA, 1980.

[66] V. Cerf and R. Kahn, “A protocol for packet network intercommuni-
cation,” IEEE Transactions on Communications, vol. 22, no. 5, pp.
637–648, 1974.

[67] G. Guennebaud, B. Jacob et al., “Eigen v3,” http://eigen.tuxfamily.org,
2010.

[68] R. Verschueren, G. Frison, D. Kouzoupis, J. Frey, N. van Duijkeren,
A. Zanelli, B. Novoselnik, T. Albin, R. Quirynen, and M. Diehl, “acados
– a modular open-source framework for fast embedded optimal control,”
Mathematical Programming Computation, 2021.

[69] K. Alligood, T. Sauer, and J. Yorke, Chaos: An Introduction to
Dynamical Systems, ser. Textbooks in Mathematical Sciences. Springer
New York, 2000. [Online]. Available: https://books.google.cz/books?id=
48YHnbHGZAgC

[70] B. Efron, “Bootstrap methods: Another look at the jackknife,”
Annals of Statistics, vol. 7, pp. 1–26, 1979. [Online]. Available:
https://api.semanticscholar.org/CorpusID:227312712

62

https://books.google.cz/books?id=aTLYrafw3vUC
https://dl-cdn.ryzerobotics.com/downloads/Tello/Tello%20User%20Manual%20v1.4.pdf
https://dl-cdn.ryzerobotics.com/downloads/Tello/Tello%20User%20Manual%20v1.4.pdf
https://books.google.cz/books?id=w4wjMwEACAAJ
https://dl-cdn.ryzerobotics.com/downloads/Tello/Tello%20SDK%202.0%20User%20Guide.pdf
https://dl-cdn.ryzerobotics.com/downloads/Tello/Tello%20SDK%202.0%20User%20Guide.pdf
https://books.google.cz/books?id=48YHnbHGZAgC
https://books.google.cz/books?id=48YHnbHGZAgC
https://api.semanticscholar.org/CorpusID:227312712

Appendix B

Repository

The code source repository is available from https://github.com/svrc-jan/
master-thesis/, including instructions for building and running the pro-
grams in README.md.

repository

config

ident_boostrap.json

ident_real.json

mhe_real.json

mpc_real.json

io_real.json

tar_square.json

...

logs
...

logs_square
...

logs_ident
...

63

https://github.com/svrc-jan/master-thesis/
https://github.com/svrc-jan/master-thesis/

B. Repository......................................
repository

src

filter

vicon_filter.cpp

vicon_filter.hpp

model

drone_model.hpp

model_sim.hpp

optim

mhe.hpp

model_ident.hpp

mpc.hpp

tello

tello.cc (supervisor)

tello.h (supervisor)

utils

keyboard_handler.cpp

keyboard_handler.hpp

logger.hpp

parser.hpp

vicon

vicon_client.cc (supervisor)

vicon_client.h (supervisor)

vicon_handler.cpp

vicon_handler.hpp

run_model_ident.cpp

mpc_control.cpp

...

64

Appendix C

Configuration file specifications

All of the configuration files are in the JSON format.

C.1 System identification

. dt: discretization step. u_delay: input delay. C_o: weighing coefficients for observations (size no). C_s: weighing coefficients for state transitions (size ns). C_p: weighing coefficients for parameter priors (size np). p_prior: prior values for parameters (size np). p_lb: lower bound values for parameters (size np). p_ub: upper bound values for parameters (size np). obs_loss_s: 1 to use Tukey loss for observations, 0 for normal loss. state_loss_s: 1 to use Tukey loss for state transitions, 0 for normal
loss. max_models: maximum number of logs to load. log_dir: folder from where to load the trajectory logs

65

C. Configuration file specifications.............................
. clear_log_est_dir: boolean, if true delete contents of the estimation

folder. solver_tol: solver relative functional tolerance. solver_threads: number of threads to use for optimization. solver_linear_solver_type: what factorization the solver uses (exam-
ple sparse_cholesky). solver_stdout: boolean, if true, solver prints optimization progress

C.2 Moving horizon estimate

Configuration parameters are the same as for system identifications (appendix
C.1), with the addition of

. h: length of the horizon. solver_max_time: maximum time for solving in seconds

and without max_models, log_dir and clear_log_est_dir.

C.3 Model predictive control

. dt: discretization step. h: length of the horizon. u_delay: input delay. max_target_distance: distance to which the target is clipped. C_s: weighing coefficients for stage state distance (size ns). C_s_end: weighing coefficients for terminal state distance (size ns). C_u: weighing coefficients for inputs (size nu). u_lb: lower bound values for inputs (size nu)

66

................................... C.4. Control program

. u_ub: upper bound values for inputs (size nu). use_u_diff: boolean, true for using input difference term, false for using
absolute value. solver_tol: solver relative functional tolerance. solver_max_time: maximum time for solving in seconds. solver_threads: number of threads to use for optimization. solver_linear_solver_type: what factorization the solver uses (exam-
ple sparse_cholesky). solver_stdout: boolean, if true, solver prints optimization progress

C.4 Control program

. input_c: constant for manual control. u_delay: input delay D. filter_horizontal_threshold: horizontal threshold for the Vicon fil-
ter. filter_vertical_threshold: horizontal threshold for the Vicon filter. filter_angle_threshold: angular threshold for the Vicon filter. keyboard_device: device for user input. vicon_ip: IP address for Vicon communication. tello_port: port for Tello communication. tello_net_interface: network interface string for Tello communication. mpc_config: path to the MPC config file. mhe_config: path to the MHE config file. log_dir: path to the directory where the logs will be saved

67

68

Appendix D

Used coefficients

It should be noted that in the code, weighing vectors co, cs, cp, cu and ct are
applied to residual, not their squared norm, thus the values here are squared
values of what is in the configuration files.

x y z θ

co 9 9 4 0.09
cs 1 1 0.01 0.09

λh λv λa θ0
cp 1 1 1 1
p0 0.9 0.6 0.9 0

Table D.1: Coefficients used for system identification

x y z θ

co 9 9 4 0.25
cs 0.16 0.16 0.16 0.04

λh λv λa θ0
cp 400 400 400 10000
p0 1.061 0.447 0.955 -0.171

Table D.2: Coefficients used for MHE

69

D. Used coefficients

roll pitch yaw throttle

cu 9 9 4 0.25
x y z θ

cs 2.25 2.25 1 1
ct 225 225 100 100

λh λv λa θ0
padjust 0 0 0 -0.3

Table D.3: Coefficients used for MPC

70

	Introduction
	Key concepts
	Quadrocopter
	Closed-loop control

	Literature review
	Theses working with Tello robotic helicopters
	State of the art

	Theoretical background
	Dynamical systems
	State-space model
	Discretization
	Parameter identification problem
	Moving horizon estimator
	Model predictive control

	Non-linear least-squares optimization
	Modeling
	Solving
	Deriving Jacobians

	Technical solution
	Hardware
	Robotic helicopter Tello
	Motion capture system Vicon

	Drone model
	Discretization
	Input delay

	Software
	Tello communication
	Vicon communication
	Vicon filter
	Logging
	Ceres solver
	Model template
	System identification
	Moving horizon estimate
	Model predictive control
	Adjusting for input delay
	Control loop

	Results
	System identification
	Input delay
	Model parameters

	Flight control
	Control loop configuration
	Prediction inconsistency
	Controller performance
	Additional trajectories

	Discussion
	System identification
	Input delay
	Parameter values
	Parameter variance

	Flight control
	Heading adjustment
	Computation feasibility
	Prediction inconsistency
	Controller performance
	Trajectory progression

	Conclusion
	Bibliography
	Repository
	Configuration file specifications
	System identification
	Moving horizon estimate
	Model predictive control
	Control program

	Used coefficients

