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Abstract
Wireless sensor networks have become popular in the domain of environmental noise mon-
itoring in recent years. However, low-cost and high quality microphones are needed when
there are numerous sensor nodes. Theoretical models of miniaturized low-cost electroa-
coustic transducers and experimental verification of their performance in noise sensors is,
therefore, of interest.

This thesis deals with analytical and semi-analytical approaches describing the be-
haviour of the square clamped plate. The plate is used as a moving electrode of a minia-
turized condenser microphone coupled with an acoustic pressure field inside a thin layer
of thermo-viscous fluid trapped between the square plate and the backing electrode of the
electrostatic transducer. The analytically calculated pressure sensitivity of the receiver is
compared to the numerically (FEM) calculated value. The classical simple lumped-element
model of an electret microphone, which is used in a previous version of the sensor network
developed by the Laboratory of Special Projects UBTI FD CTU in Prague, is also de-
scribed. Several experimental results measured on both prototype versions of the sensor,
previous and recent, are presented including, the normalized transfer function of the elec-
troacoustic path and the dynamic range of the present sensor, along with the temperature
dependence of the new sensor.
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Chapter 1

Introduction

1.1 Motivation
Noise is major public health issue. It has negative impacts on human health and well-being,
and is a growing concern. According to Environmental Noise Guidelines for the European
Region (2018), the negative impact of acoustic pollution has been increasing significantly,
especially in inhabited areas, and transport noise is now ranked among the most intensive
sources of acoustic pollution.

As stated by the Environmental Noise Directive, it is necessary to monitor, under-
stand and reduce the negative impact of acoustic pollution. To achieve this, a process of
long-term acoustic measurements and analysis is required. The traditional method of en-
vironmental acoustic monitoring (noise mapping) utilizes short term measurement periods
using expensive equipment and an expensive setup.

As new methods and approaches to noise monitoring evolved, sensor networks for con-
tinuous noise assessment became a trend. It is evident that long-term automated moni-
toring significantly improves the precision of the measurement results. In fact, a sensor
network that densely covers a selected area provides location-specific data that can be
used to create and verify propagation models of noise pollution for use in planning and
in implementing traffic engineering solutions. Several developments and architectures for
the application of acoustic sensor networks have been reported in the literature [1, 2, 3].
The networks vary from the application of expensive dedicated hardware to low-cost sensor
nodes and even sensor networks based on smartphones. One category of such networks in
particular offers custom-built sensor network solutions designed to be low-cost, low-power
and autonomous, and therefore suitable for wide-ranging deployment. The potential of a
network with low-cost hardware has been demonstrated in the Trafficsensnet project devel-
oped at the Department of Security Technologies and Engineering of the Czech Technical
University in Prague, which works on measuring levels of air pollution, including noise re-
lated to road-based transport. Other categories are briefly discussed in Chapter 2.3 ("Noise
sensors and wireless sensor networks").

Within the Trafficsensnet project, 20 master sensor units and 6 slave units were devel-
oped by the laboratory of the Department of Security Technologies and Engineering and
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1.2. STRUCTURE OF THE THESIS 3

were deployed in Prague in 2015-2017. The master unit was developed as a gateway unit
for the measurements. The slave unit, in its turn, was a small, stand-alone platform with
the potential to be battery-powered. The slave unit contained a noise senor consisting
of a small elecret microphone, an analog A-filter and digital signal processing in a tiny
microcontroller.

A recent version of this noise sensor is based on the MEMS microphone with digital
signal processing. Since these types of low-cost microphones are dedicated to the speech
frequency range, a detailed experimental verification of the noise sensor along with the
theoretical models of miniaturized low-cost transducers are needed.

This thesis presents a study of new types of electroacoustic transducers. Sensor pro-
totypes designed and implemented for specific requirements are verified experimentally.
Further miniaturization and greater precision of acoustic sensors are also investigated.

1.2 Structure of the thesis

The Introduction surveys the context of long-term acoustic measurements and analyses,
addressing the growing interest in new methods and in custom built noise monitoring
solutions.

Chapter 2 ("Current practices and developments in noise monitoring technology") sets
the starting points for further analysis in modelling miniaturized devices and related acous-
tic measurements, raises some common methodological issues encountered by researchers,
and introduces some of the challenges that will be faced.

Chapter 3 ("A theoretical investigation into the behaviour of miniaturized transducers")
is divided into two main subsections. This chapter introduces transducers with a non-
perforated plate and also with a perforated plate.

The first subsection ("A non perforated plate as a moving electrode of the MEMS
transducer") is followed by a discussion about the displacement field of a non-perforated
rectangular clamped plate, presents three different methods for finding the approximate
form of the moving electrode eigenfunctions: first, through the use of a double cosine
series; second, through the use of 1D beam eigenfunctions; and third, through the use of
a linear approximation of the numerical solution together with an exact analytical form of
the eigenfunction based on modal wave function of 1D beam normalized eigenfunctions as
a solution to circumvent the difficulties encountered when previous methods are used.

The second subsection ("A perforated plate as a moving electrode of the MEMS trans-
ducer") investigates plates with perforation and introduces the complexity of the coupling
effect between the perforated plate displacement and the acoustic pressure in the thin fluid
layer, with refer to fundamental physical concepts.

Chapter 4 ("Measurements on the noise sensor prototypes, and an analysis") is dedi-
cated to separated, consecutive measurements on two versions of a noise sensor developed
at the Laboratory of Special Projects UBTI FD CTU in Prague. This chapter investigates
detailed experimental case studies of a low-cost electret microphone, including an experi-
mental estimate of some parameters of the equivalent circuit of an electret microphone that
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cannot be measured directly. There are some measurements on the MEMS microphone
A-filter system, and on MEMS itself. A raw data provided by the present version of the
noise monitoring sensor giving an idea of the ability of the microphone to provide useful
technical information.

The section on conclusions provides a summary of the central ideas, findings and aspects
of the thesis, along with some suggestions for solving the problem of modelling more
complex shapes than square membranes or plates. Finally, in the section on Perspectives
suggestions are made for further research.
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Chapter 2

Current practices and developments in
noise monitoring technology

2.1 Noise control legislation

Chaotic disturbances of signals, classified as noise [4], pose a fundamental problem for
information processing and affect all aspects of the function of the nervous system [5, 6].
The relationship between environmental noise and public health is perhaps the most sig-
nificant reason why environmental noise has emerged as a major issue in environmental
legislation and policy in recent years. Much research including The World Health Organi-
zation (WHO) investigation has emerged over the last two decades linking environmental
noise with detrimental health impacts such as disturbed sleep, impaired work performance,
impedes the learning process, hinders social activity and verbal communication, and many
other issues.

Noise mapping is becoming a necessary tool for evaluating the noise exposure of citizens
in inhabited areas, as reported in the European Directive 2002/49/EC and the 2018 WHO
Environmental noise guidelines. Until recently, mean vehicle flows, averaged over a period
of one year [4] were the input parameters required for noise mapping. Yet this simple
approach can determine significant uncertainty when dealing with varying noise on a daily
basis, and the trouble of manual operation becomes a difficulty, when it comes to the
demand for long-term measurements. As a result noise maps had been evolving towards a
promising direction of network predictive approach.

The Guidelines on Directive have had a direct and immediate impact on policy-making
in a member states including Czech Republic and have prompted the adaptation of local
and national strategic noise maps and new noise action plans aimed at mitigating environ-
mental noise, as well to take a harmonized approach when estimating the health effects
from environmental noise [7].

The overall problem is being tackled to a limited extent both by legislative measures and
traffic engineering (road construction and building technology) as traffic noise emissions
can and should be reduced at a source, by establishing limits for the noise of vehicle engines

6
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or speed limits, promotion of quieter tyres and development of low-noise road surfaces.

As a consequence the support from automobile manufacturers and traffic engineering
experts is also needed to maximise the potential of quiet vehicles in everyday road traffic,
and to make the progress in traffic noise reduction. The European Automobile Manufac-
turers’ Association (ACEA), the European Tyre and Rubber Manufacturers’ Association
(ETRMA) and the European Tyre and Rim Technical Organisation (ETRTO) join forces
to make several key recommendations on noise reduction and environmental noise in [8].

Current vehicle noise legislation reflects both aspects: noise nuisance (single incidents)
and noise pollution (latent noise exposure). Vehicles are measured for type approval in
a way that the determined sound level is representative of the use of the vehicle in ur-
ban driving conditions. A particular sound emission of the vehicles should be taken into
consideration by the noise legislation, which not only prescribes maximum levels for envi-
ronmental protection, but (in the EU since July 2021) minimum levels for safety reasons
in order to ensure that vehicles, like electric cars for example, can be adequately detected
when in motion [8].

Road traffic noise is caused by a combination of elements: rolling noise (interactions
between the tyre and road surface) and propulsion noise (originating from the engine and
drive train). For road traffic noise, the type of road surface plays a major role. A low
tyre-rolling sound can only be achieved when all technologies to minimise noise are applied
to the road surface in the same manner as for tyre technologies.

While the acoustic properties of tyres are the subject of European regulation, low-noise
road surfaces are the responsibility of local and national road administrations.

2.2 Technical issues

The key requirements specified in the standards are measurement methods and instrumen-
tation. The measurements of traffic noise in Europe governs by the European Environ-
mental Noise Directive is based on the ISO 9613-2 standard. While the most widely-used
instruments used for measuring noise are sound level meters. They have an A-weighting
filter to simulate the subjective response of the human ear. Upon comparison of differ-
ent sound level meters, it can be observed that the devices have varying measurement
ranges and accuracy rates, with some devices capable of measuring a broader range of
noise levels than others. However despite of that, each of them need to meet a variety
of performance requirements, such as frequency response, sensitivity, and dynamic range.
IEC 61672-1:2013 is the current international standard that specifies the sound level meter
functionality, performance and calibration criteria that instruments must meet in order to
be considered fit for purpose.
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2.3 Noise sensors and wireless sensor networks
Sensor networks for environmental noise monitoring can be divided into four categories,
based on: hardware costs, scalability, flexibility, reliability, and accuracy, which all together
determine the range of applications for which a network is suited [1].

Category 1 monitoring equipment uses high-end sensors and custom hardware compo-
nents. Category 2 balances between expensive dedicated monitoring hardware and cheap
sensors for general use. Category 3 is for networks based on the usage of smartphones.
Category 4 is for low-cost acoustic sensor networks such as Trafficsensnet. These systems
are generally based on low cost microphones and the signal processing chain required by the
norms (Fig. 2.1), and they can be implemented on a single board computer [2]. Modelling
on an acceptable level of approximation of such devices is of vital importance in developing
innovative products and in reducing time-to-market at lower overall cost [1].

Further information about the implementation of such wireless sensor networks can be
found in [2] and [3].

A lter RMS dB Communication

interface

Figure 2.1: General block diagram of a noise sensor.

2.3.1 Miniaturized microphones

Many realizations of miniaturized electroacoustic transducers based on various transduc-
tion principles (condenser, piezoelectric and piezoresistive) are used as acoustic receivers.
The first mention of a silicon condenser microphone, which became the post-electret gen-
eration of microphones, is summarized in [9], which provides a detailed review of such
microphones. Since the mid 1990s, there have been numerous developments in design and
fabrication methods [10] and [11] have summarized the academic research on microma-
chines in the past 30 years. An outstanding more recent paper, [12], covers various types
of backplate configurations with the moving electrode surrounded by perforated back plates
on both sides.

2.4 Modelling miniaturized devices

2.4.1 Introduction to the modelling of miniaturized devices

MEMS devices and transducers have been growing in use as the technology of fabrication
becomes more sophisticated. Modelling these miniature elements helps developers to un-
derstand the devices and to optimize them by designing devices that are smaller, more
sophisticated and cheaper to manufacture. There has been increasing interest in designing
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miniaturized vibrating devices using MEMS processes, and in using them for consumer
audio devices and also in the field of measurement applications such as noise monitoring
using wireless sensor networks [3].

In recent years, extensive research and development work has been carried out on
MEMS, and a large number of techniques (series methods, approximate analytical tech-
niques, finite difference techniques, the Galerkin technique, the Rayleigh-Ritz method)
have appeared in the literature to tackle this complicated modelling problem. Each devel-
opment solution has its own advantages and limitations. The experimental studies include
approximate theoretical models ([13], e.g., using the "porosity" approach and [14], which
deals with the acoustic short circuit through the opening hole), and is mainly based on the
lumped elements approach. More recent and more advanced approaches can be found in
[15, 16]. These model are fully analytical and achieve high-precision results for sensitiv-
ity. Several other fully analytical models [17, 18, 19, 20, 21] have been developed aimed
at meeting the requirements on the edge conditions that relate to both the solution for
the displacement field of the diaphragm and its first spatial derivative (clamped plate).
These studies are dedicated analytic investigations that enable a description of the strong
coupling between a diaphragm and a thin fluid layer. MEMS can primarily be modelled in
one of two ways, by, analytical modelling or by numerical modelling. Analytical modelling
makes use of one or more theories to achieve results. The scientific examination presented
in [22]is an example in which a model is developed that relies on the modal expansion for
the displacement field (Dirichlet eigenmodes). These models are efficient for comparatively
simple designs, and they address two particular problems: reasoning out analytically the
modal behavior of the loaded clamped plate, and choosing an appropriate analytical ap-
proach for the acoustic field in the fluid gap. These models are therefore convenient for
describing the coupling of the acoustic pressure in the thin fluid layer with the displacement
field of the plate.

An unfortunate limitation in this way of expressing the acoustic field in the fluid gap is
that there is not only a marked shortcoming in terms of coupling with the modal expansion
of the displacement field of the diaphragm. It is also also not obvious how to match this
expression with the boundary condition at the entrance of the reservoir, especially when
dealing with the high frequency range.

Most of the attempts therefore rely on numerical [34] techniques rather than analytical
techniques, due to the potential of numerical methods to model structures with complex
geometrical shapes. Despite the advantages of numerical techniques researchers have been
faced with a number of difficulties when trying to use commercial simulation packages and
to adapt traditional numerical methods. The difficulties and challenges that face MEMS
modelling and simulation experts are due to the very nature of MEMS and are related to
the physical principle of operation, the geometrical structure, miniaturization, packaging,
manufacturing and processing of MEMS. Environmental conditions also have to be taken
into account. Moreover, numerical modelling requires a high-end computer to perform
simulations on, and even then the modelling can be extremely time consuming.
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2.4.2 Electrostatic transduction principles

Figure 2.2: Simplified electrostatic transducer scheme.

Most miniaturized acoustic pressure sensors (MEMS microphones) use the electrostatic
principle of transduction [23] (condenser microphones were first presented in [24]), though
some of them are piezoelectric [25]. The electrostatic type of microphone (condenser mi-
crophone) is essentially a parallel-plate capacitor. A capacitor consists of a movable front
plate (the capsule diaphragm/membrane) and a stationary backplate (Fig. 2.2). The oper-
ation of the capacitor depends on the interaction between its electric field and the change
in its electrostatic capacitance when exposed to the pressure of a sound wave. The elec-
trostatic principle behind the transducer is as follows: the charge in a capacitor can be
expressed as Q = CU , where the total static capacitance C is the sum of the active static
capacitance and the parasitic capacitance. The total differential of the charge can then
be expressed as dQ = dCU + CdU , where U is the total voltage at the output of the
condenser microphone consisting of the static component, the polarization voltage U0, and
the varying component u caused by the change in the capacitance dC. Assuming the effect
of the polarization resistor of huge value and assuming dU ≈ u along U ≈ U0, we get the
output voltage of the microphone directly in the form [26]

u = U0
dC

C
, (2.1)

where the total time-dependent capacitance is given by

Ct(t) = Cr +
ε0S

ξ̄(t) + hg
= Cr + C0

1

1 + ξ̄(t)
hg

, (2.2)

with ξ̄(t) =
s

Se
ξ(x, y, t)dSe being the mean value of the displacement ξ(x, y, t) of the

moving electrode over the surface of the fixed electrode Se, C0 is the static capacitance
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of the transducer at rest and Cr is the parasitic capacitance. Using the Taylor series
1

1+x
= 1− x+ x2 − x3 + x4... and assuming that Ct(t) = Cr + C0 + dC(t) we get

dC(t) = −C0

[
ξ̄(t)

hg
−
(
ξ̄(t)

hg

)2

+

(
ξ̄(t)

hg

)3

− ...

]
. (2.3)

Substituting (2.3) into (2.1), the time-dependent output voltage of the condenser micro-
phone is then given by

u(t) = U0
C0

Cr + C0

[
ξ̄(t)

hg
−

(
ξ̄(t)

hg

)2

+

(
ξ̄(t)

hg

)3

− ...

]
. (2.4)

In the case of a linear model of the microphone and negligible parasitic capacitance, this
output voltage becomes

u(t) = U0
ξ̄(t)

hg
. (2.5)

The acoustic pressure sensitivity of the transducer, calculated as the ratio of the output
voltage u and the incident acoustic pressure pinc, can be expressed as follows

σ =
u

pinc
= U0

ξ̄(t)

pinchg
. (2.6)

This shows the importance of a precise model giving the displacement of the moving
electrode. This displacement is strongly influenced by the acoustic field in the system
behind the moving electrode. Therefore, any model has to take into account the acoustic
behaviour of the system, including the thermoviscous losses originating in the narrow
regions in the system (air gap, holes, etc.).

2.4.3 General governing equations

The acoustic field propagation in the gap can be described [27, 28, 29] using the Navier-
Stokes equation

1

c0

∂v

∂t
+

1

ρ0c0

−−→
grad p = lv

−−→
grad div v⃗ − l′v

−→
rot

−→
rot v⃗, (2.7)

the law of the conservation of mass

ρ0c0 div v +
γ

c0

∂

∂t
(p− βτ) = 0, (2.8)

and the Fourier equation for heat conduction(
1

c0

∂

∂t
− lh∆

)
τ =

γ − 1

βγ

1

c0

∂

∂t
p, (2.9)
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where the viscous characteristic lengths are l′v = µ
ρ0c0

, lv = 1
ρ0c0

(4
3
µ + ν) and the thermal

characteristic length is lh = λh

ρ0c0Cp
, the properties of the fluid being the density ρ0, the

adiabatic speed of sound c0, the specific heat ratio γ, the shear viscosity coefficient µ, the
bulk viscosity ν, the thermal conductivity coefficient λh, the heat capacity at constant
pressure per unit of mass Cp, and the increase in pressure per unit increase in temperature
at constant density β.

Assuming that w designates one of the inplane coordinates x or y (or radial coordinate r
for circular geometries), and taking into account the simplifications vw ≫ vz, ∂zvw ≫ ∂wvw,
∂zτ ≫ ∂wτ , p(w, z) ∼= p(w) valid for the thin fluid layer in the gap, eq. (2.7) to (2.9)
becomes (

1

c0

∂

∂t
− lv

∂2

∂z2

)
vw(w, z) = − 1

ρ0c0

∂

∂w
p (w) , (2.10)

(
1

c0

∂

∂t
− lh

∂2

∂z2

)
τ(w, z) =

γ − 1

βγc0

∂p (w)

∂t
, (2.11)

Since the time dependence is assumed to be ejωt, ω being the angular frequency, (2.10)
and (2.11) can be rewritten in the frequency domain(

∂2

∂z2
+ k2v

)
vw(w, z) =

1

µ

∂p (w)

∂w
, (2.12)

(
∂2

∂z2
+ k2h

)
τ(w, z) =

γ − 1

βγ
k2hp (w) , (2.13)

where

kv =
1− j√

2

√
ρ0ω

µ
, (2.14)

kh =
1− j√

2

√
ρ0ωCp

λh
, (2.15)

are the wave numbers respectively associated with the vertical movement due to viscosity
effects and with the entropic movement due to heat conductivity effects.

To solve the equations (2.12) and (2.13) above, we need to specify boundary conditions
for the particle velocity and the temperature variation on the backplate (z = 0) and on
the moving electrode (z = hg)

vw (w, z = 0) = vw (w, z = hg) = 0, (2.16)

τ (w, z = 0) = vw (w, z = hg) = 0. (2.17)

The solutions of the equations (2.12), (2.13) are thus given respectively by
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vw (w, z) = − 1

jωρ0

∂p (w)

∂w

[
cos (kvhg)− 1

sin (kvhg)
sin(kvz)− cos (kvz) + 1

]
, (2.18)

τ (w, z) =
γ − 1

γβ
p (w)

[
cos (khhg)− 1

sin (khhg)
sin(khz)− cos (khz) + 1

]
. (2.19)

The mean values of the particle velocity and the temperature variation across the
thickness of the gap take the form of

< vw (w, z) >z= − 1

jωρ0

∂p(w)

∂w
Fvg, (2.20)

where

Fvg =
1

hg

∫ hg

0

[
cos (kvhg)− 1

sin (kvhg)
sin(kvz)− cos (kvz) + 1

]
dz = 1− tan (kvhg/2)

kvhg/2
, (2.21)

and

< τw (w, z) >z=
γ − 1

βγ
p(w)Fhg, (2.22)

where

Fhg =
1

hg

∫ hg

0

[
cos (khhg)− 1

sin (khhg)
sin(khz)− cos (khz) + 1

]
dz = 1− tan (khhg/2)

khhg/2
. (2.23)

For rectangular geometries, the law of conservation of mass (in Cartesian coordinates
x, y), taking into account the velocity of the moving electrode vm(x, y) = jωξ(x, y), ξ(x, y)
being the displacement field of the moving electrode (positive when outwardly directed),
can be expressed as follows

−ρ0
∂vx
∂x

hg dx dy − ρ0
∂vy
∂y

hg dx dy − ρ0vm (x, y) dx dy =
∂ρa
∂t

hg dx dy, (2.24)

where the acoustic density variation ρa = (p− βτ)γ/c20 becomes, after applying (2.22),

ρa =
pg (x, y)

c20
[γ − (γ − 1)Fhg] . (2.25)

Substituting (2.20) and (2.25) into (2.24) gives the wave equation for the acoustic pressure
in the air gap pg(x, y) (

∂2xx + ∂2yy + χ2
)
pg (x, y) = −U (x, y) , (2.26)

where ∂2xx and ∂2yy are second spatial derivatives,

χ2 =
ω2

c20

[
1 + (γ − 1) (1− Fhg)

Fvg

]
, (2.27)
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is the complex wavenumber and

U (x, y) =
ρ0ω

2

hgFvg

ξ(x, y), (2.28)

is the source term.
The behaviour of the moving electrode, here the thin membrane, is described by the

wave equation for its displacement field

T

(
∂2

∂x2
+

∂2

∂y2
+ k2

)
ξ (x, y) = pinc − pg (x, y) , (2.29)

where k = ω
√
ms/T is the membrane wavenumber, T is the tension of the membrane,

ms = hmρm is the membrane mass per unit area, hm, ρm are the membrane thickness and
density, respectively. The Dirichlet boundary condition is applied at the periphery of the
square membranes

ξ(a, y) = ξ(−a, y) = 0,

ξ(x, a) = ξ(x,−a) = 0,
(2.30)

where 2a is the dimension of the side of the membrane. The general solution of 2.29 can
be written as an expansion over the orthonormal eigenfunctions ψmn(x, y)

ξ (x, y) =
∑
mn

ξmnψmn (x, y) . (2.31)

These eigenfunctions are the solution of the homogeneous equation associated with (2.29)

(
∂2xx + ∂2yy + k2mn

)
ψmn(x, y) = 0 (2.32)

and are given in the case of the square membrane by

ψmn (x, y) =
1

a
cos (kxmx) cos (kyny) , (2.33)

where the eigennumbers are given by kxm = mπ
2a

, kyn = nπ
2a

. Using the orthogonality
property of the eigenfunctions, the modal coefficients ξmn can be expressed as follows

ξmn =
1

T (k2mn − k2)
·
∫ a

−a

∫ a

−a

ψmn(x, y)[pg(x, y)− pinc] dxdy, (2.34)

where k2mn = k2xm + k2yn.
The wave equations (2.26) and (2.29) form a coupled system, which can be solved using

multimodal methods [27, 28, 32] or using the integral formulation for the acoustic pressure
in the gap, which is the main method used in this thesis.
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2.4.4 Integral formulation for acoustic pressure

A method using the integral formulation for describing the acoustic pressure field inside the
air gap of an electrostatic transducer consisting of a square membrane, a square backplate
and a peripheral cavity (Fig. 2.3) has been published recently [15].

Figure 2.3: Geometry of the system: a) dimensions of the square diaphragm, and b)
geometry of the transducer in the 1st quadrant [15].

The analytical solution for the acoustic field in the fluid-gap presented in [15] can
be used to avoid the procedural difficulties, namely the coupling between Dirichlet and
Neumann eigenfunctions. This does not make use of modal expansion for the acoustic
pressure, but uses an integral formulation with the appropriate two-dimensional Green’s
function, which is not expressed as the sum over the eigenfunctions.

This solution is also assumed to have the same symmetry as the diaphragm, which
enables the problem to be expressed for the acoustic pressure in the first quadrant only.
The acoustic field in the small reservoir is assumed to be uniform. The integral equation
for the pressure variation in the fluid gap x, y ∈ (0, a) therefore takes the following form
[15]:

pg (x, y) =

∫ a

0

∫ a

0

G (x, x0; y, y0)U (x0, y0) dx0dy0 + pcIG (x, y) (2.35)

where

IG (x, y) =

∫ a

0

[ΛcG(x, x0; y, a)− ∂y0G(x, x0; y, a)] dx0

+

∫ a

0

[ΛcG(x, a; y, y0)− ∂x0G(x, a; y, y0)] dy0

(2.36)

with Λc = (−jωρ0) / (8ahgFvZc) (2.37)

using the relation for the first derivative at the air-gap boundary ∂npg = −jωρ0pc/8FvZchga
with the input impedance of the peripheral cavity being [37]
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Zc = ρ0c
2
0/ (jωVc) . (2.38)

Thanks to the symmetry mentioned above, the Green’s function associated with the
problem 2.26 can be taken as

G(x, x0; y, y0) = g(x, x0; y, y0)+g(x,−x0; y, y0)+g(x, x0; y,−y0)+g(x,−x0; y,−y0), (2.39)

with g(x, x0; y, y0) =
−jH−

0

4

(
χ

√
(x− x0)

2 + (y − y0)
2

)
, (2.40)

where H−
0 denotes the Hankel function of the second kind of order "0".

Note that on the boundaries in equation (2.36), the functions p (x0, a) and p (a, y0)
have been replaced by their mean values pg along the x-axis and y-axis, and are given
approximately by the mean value of the pressure pg (x, y) over the length of any external
edge of the quadrant, namely, pc = ⟨pg⟩x = (1/a)

∫ a

0
pg (x, a) dx or equivalently pg =

⟨pg⟩y = (1/a)
∫ a

0
pg (a, y) dy, calculated from eq. (2.35).

2.4.5 Coupling between the membrane displacement and the acous-
tic pressure inside the transducer

Substituting eq. (2.35) into eq. (2.34) and taking into account eq. (2.31) and eq. (2.36
- 2.38) leads to the relation for modal coefficients ξmn, which can be expressed in matrix
form

[−A+ B] (Ξ) = (C), (2.41)
where (Ξ) and (C) are the column vectors of elements ξmn and cmn = −pinc

∫ a

−a

∫ a

−a
ψmn(x, y)dxdy

respectively, B is a diagonal matrix of elements T
[
k2xm + k2yn − k2

]
and the elements of ma-

trix A are given by [15]

A(mn),(qr) =
ρ0ω

2

hgFv

∫ a

−a

∫ a

−a

[
ψmn(x, y)

∫ a

0

∫ a

0

G(x, x0; y, y0)ψqr(x0, y0)dx0dy0

− 1

1 + ⟨IG(x, a)⟩x

∫ a

0

∫ a

0

⟨G(x, x0; a, y0)⟩x ψqr(x0, y0)dx0dy0{[
jωρ0

8FvZchga
ψmn(x, y) + ∂yψmn(x, y)

] ∫ a

0

G(x, x0; y, a)dx0

+

[
jωρ0

8FvZchga
ψmn(x, y) + ∂xψmn(x, y)

] ∫ a

0

G(x, a; y, y0)dy0

}]
dxdy.

(2.42)

As a result, we have two coupled equations which relate respectively the acoustic pres-
sure inside the fluid behind the moving electrode to the displacement field of it and, con-
versely, the equation which relates the displacement field of the moving electrode to the
acoustic pressure behind it.
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2.4.6 Numerical methods

Numerical analysis is branch of mathematics responsible for designing effective ways to
find numerical solutions to complex mathematical problems, which sometimes cannot be
solved directly. Due to the great advances in computational technology, numeracy has
become very popular and is a modern tool for scientists and engineers. Numerical analysis
methods (such as the Finite Element Method) (the main idea of which can be wrapped up
as "replacing a given problem by an approximated problem that can be easily solved") are
also used in the area of acoustic devices filled with a thermoviscous fluid, where the accurate
representation of boundary layer effects requires a very large number of mesh modes. This
highlights the importance of precise analytical modelling. In many theoretical works [15,
16], and also in this thesis, the numerical methods (namely FEM) are used as a reference
for validating analytical methods. The design of experiments or optimization techniques
can be used along with FEM to design an optimal product with specific requirements.

In this problem-solving process, we can distinguish several more or less distinct phases.
The first phase is formulation. Two main FEM formulations for the acoustic field in a
thermovicous fluid are used in this thesis. The first formulation is based on the calculation
of the acoustic particle velocity v⃗ and temperature variation τ , the acoustic pressure then
being expressed from these two variables. The equations (2.7) - (2.9) are rewritten in the
form of two bonded equations in the frequency domain, as follows [30]

ω2v +B
−−→
grad div v⃗ + C

−→
rot

−→
rot v⃗ −D

−−→
grad τ = 0, (2.43)

jωτ +Q div
−−→
grad τ −R div v = 0, (2.44)

where B =
c20
γ
+ jωc0lv, C = −jωc0l′v, D = jωβ

ρ0
, Q = −γlhc0, R =

−(γ−1)ρ0c20
γβ

. The
corresponding weak forms, which can be implemented in FEM software, e.g. in Comsol
Multiphysics, can be found in [31]. The acoustic pressure is then obtained from (2.8)

p = βτ − ρ0c
2
0

jωγ
div v. (2.45)

The boundary conditions on the rigid isothermal wall are vx = vy = vz = 0, τ = 0.
On the moving electrode (membrane) the corresponding velocity component is coupled
with the wall displacement, for example vz = jωξ. An example of such coupling for a 2D
axisymmetrical transducer is shown in [32]. If the problem is solved in 3D, the 2D weak
form for the membrane displacement derived from eq. (2.29) takes the following form [32]∫∫

ΓM

[
−∂xξ ∂xwξ − ∂yξ ∂ywξ + k2ξwξ +

p(x, y)− pinc
T

wξ

]
dΓM = 0, (2.46)

where ΓM is the membrane part of the domain boundary and wξ is the test functions
related to the membrane displacement ξ. Note that this approach is used as the reference
FEM model in section 4.2.3 ("The lumped element model").
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Another approach is used in the Acoustic Module of Comsol Multiphysics software.
The main difference is that the particle velocity v⃗, the temperature variation τ and the
acoustic pressure p are calculated simultaneously [33, 34, 35]. The fundamental laws are
expressed as follows [35]

iωρ0v −∇ ·
[
−pI+ µ(∇v +∇vT)−

(
2

3
µ− µB

)
(∇ · v) I

]
= 0,

iωρ+ ρ0∇ · v = 0,

iω (ρ0CP τ − pT0α0) +∇ · (−λh∇τ) = 0,

(2.47)

where
ρ = ρ0 (βTp− α0τ) ,

α0 = − 1

ρ0

∂ρ0
∂T0

∣∣∣∣
P0

,

βT =
1

ρ0

∂ρ0
∂P0

∣∣∣∣
T0

,

(2.48)

the dependence of the equilibrium density ρ0 on the static pressure P0 and the static
temperature T0 being given by ρ0(P0, T0) = 0.02897P0/(8.314T0) [35].

The numerical modelling of the vibrating electrodes in the form of a flexible clamped
plate (both perforated and unperforated) is based on the classical linear formulation [36]

−ω2u = ∇σm,
σm = C : ε,

ε =
1

2

(
[∇u]T +∇u

)
,

(2.49)

where u is the displacement vector, σm and ε are the stress and strain tensor respectively,
’:’ stands for a double contraction over two indices (σij = Cijkl εkl), C being the elasticity
tensor whose elements depend on the Young’s modulus E and Poisson’s ratio ν [36] (linear
elastic isotropic material). Note that this approach is used in Chapter 3 ("A theoretical
investigation into the behaviour of miniaturized transducers").
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Chapter 3

A theoretical investigation into the
behaviour of miniaturized transducers

This section is dedicated to a theoretical investigation into the behaviour of miniaturized
transducers. Exploring and describing the behaviour of the MEMS microphone requires
theoretical modelling, which should be chosen at the appropriate level of accuracy. The
modelling methods described in several classical textbooks can be generally classified into
three categories: equivalent circuit methods [37, 40], fully analytical approaches, which
take into consideration the coupling effect between the moving plate and the fluid gap, and
various numerical techniques section 2.4.6 ("Numerical methods"). The simple lumped-
element model (discussed in 4.2.3 ("The lumped element model") seems to be sufficient
to provide a good estimate of the behaviour of the microphone in the frequency range up
to the frequency of the first resonance with low computational complexity. However, we
want to explore the two other approaches, which can achieve greater precision. The author
makes the following assumption: if the proposed methods work on a non-perforated plate,
they are more likely to work on plates with perforation as the moving electrode of a MEMS
transducer.

3.1 A non perforated plate as a moving electrode of the
MEMS transducer

The transducer considered here (Fig. 3.1) consists of a square elastic clamped plate (moving
electrode) with dimensions given in Table 3.1, set at the coordinate z = 0 and fixed at its
periphery to a rigid frame whose coordinates x and y are equal to ±a in both directions.
A thin fluid layer (an air gap herein) of thickness hg is trapped between the plate and a
back rigid electrode having the same shape as the elastic plate. This fluid layer is loaded
at its periphery by a small cavity of volume Vc.

20
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Figure 3.1: Geometry of the system: a) dimensions of the square plate, and b) geometry
of the transducer in the 1st quadrant.

Parameter Value Unit
Plate half-side a 0.5 · 10−3 m
Plate thickness hp 10−6 m
Air-gap thickness hg 10−6 m
Cavity volume 10−10 m3

Table 3.1: Common dimensions of the system.

Parameter Value Unit
Silicon diaphragm density
ρd

2330 kg/m3

Plate Poisson’s ratio ν 0.27 −
Plate Young’s modulus E 160 · 109 Pa
Adiabatic sound speed c 343.2 m · s−1

Air density ρ0 1.20 kg ·m−3

Shear dynamic viscosity µ 1.81 · 10−5 Pa · s
Permittivity ε0 8.8542 · 10−12 F ·m−1

Thermal conductivity λh 25.7 · 10−3 W/(m ·K)
Specific heat coefficient at
constant pressure per unit
of mass Cp

1005 J/(kg ·K)

Ratio of specific heats γ 1.4 −

Table 3.2: Plate material and air properties.



22 CHAPTER 3. A THEORETICAL INVESTIGATION

3.1.1 The displacement field of a rectangular clamped plate

A monochromatic incident acoustic wave of angular frequency ω excites the plate; the
incident pressure on the plate denoted below pinc, is assumed to be uniform over the entire
surface of the plate and the time factor is given by ejωt. Then, the symmetrical movement
with respect to the axes passing through the centre of the plate and parallel to its edges is
the only movement considered here.

The equation which governs the complex amplitude of the displacement field of the
plate loaded by acoustic fields on both sides pinc and p can be written classically as [39][

∂4

∂x4
+ 2

∂4

∂x2∂y2
+

∂4

∂y4
− k4p

]
ξ (x, y) =

1

D
[−pinc + p (x, y)] , (3.1)

The boundary conditions are

ξ (x, y) =
∂

∂x
ξ (x, y) = 0, x = ±a,∀y ∈ (−a, a) , (3.2)

ξ (x, y) =
∂

∂y
ξ (x, y) = 0, y = ±a,∀x ∈ (−a, a) , (3.3)

with D = Ehp

12(1−ν2)
being the flexural rigidity, ν being the Poisson’s ratio, E is the Young’s

modulus, hp is the thickness of the plate, k4p =
Ms

D
ω2 is the plate wave number, Ms = hpρp

is the mass per unit area, and ρp is the density of the plate.
The general solution can be written as an expansion over the orthonormal eigenfunc-

tions:

ξ (x, y) =
∑
mn

ξmnψmn (x, y) , (3.4)

where ψmn (with m,n = 1, 2 . . .) are the solutions of the homogeneous equation associated
with eq.(3.1): (

∆∆− k4mn

)
ψmn = 0, (3.5)

with k4mn =
(
k2xm + k2yn

)2. The modal coefficients ξmn are then given by [19]

ξmn =
1

D
[(
k2xm + k2yn

)2 − k2p

] ·
∫ a

−a

∫ a

−a

ψmn(x, y)[p(x, y)− pinc] dxdy. (3.6)

3.1.1.1 An approximate analytical expression of eigenfunctions [A.6]

A thorough search of the relevant literature did not yield any result, indicating there is an
exact analytical expression for the eigenfunctions that describe the modal behavior of the
square clamped plate. Nevertheless, the right eigenfunctions can be obtained for a plate
with particular parameters. They can be reconstructed using various approaches, and the
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coefficients can subsequently be fitted in order to make this method applicable for any
plate dimensions.

The homogeneous equation associated with (3.1) has been solved numerically by the
finite element method using Comsol Multiphysics software, and these numerically calcu-
lated eigenfunctions nψmn of the clamped plate are then approximated using double cosine
series

ψmn (x, y) =
N∑

q,r=1

c(qr),(mn) cos
(πqx

2a

)
cos

(πry
2a

)
, (3.7)

with q, r = 1, 3, 5, . . . N . The coefficients of the series have been calculated from the
numerically calculated eigenfunctions nψmn, using the relation

c(qr),(mn) =
4

a2

∫ a

−a

∫ a

−a

nψmn(x, y) · cos
(πqx

2a

)
cos

(πry
2a

)
dxdy, (3.8)

where all integration has been performed numerically. The eigenvalues kxm, kyn are ex-
pressed from the numerically calculated eigenfrequencies numfmm, as follows

kxm =

√
2π numfmm

2cp
, (3.9)

where cp =
√
D/Ms is the wave speed on the plate and kyn has the same values as kxm in

the case of a square plate.
These coefficients are calculated for several different parameters (plate side a, thickness

hp and flexural rigidity D). Finally it is concluded that the coefficients c(qr),(mn) depend
only on the plate side a, and this dependence is found to be linear. Each coefficient
c(qr),(mn) can then be fitted using the following relation, which provides an opportunity to
get regression coefficients for any plate dimensions

c(qr),(mn) = s1(qr),(mn)a+ s2(qr),(mn). (3.10)

The coefficients s1(qr),(mn), s2(qr),(mn) are given in Appendix A.1. The eigenvalues kxm and
kyn have been fitted by the same way.

The analytical approach relies on the integral formulation of the acoustic pressure in
the thin fluid layer (section 2.4 "Modelling miniaturized devices") coupled with the plate
displacement, in other words, using the approximated eigenfunction discussed above and
inserting (2.35) into the equation (3.6) we get ξmn. This equation can be rewritten in
matrix form

[−A+ B] (Ξ) = (C), (3.11)

where (Ξ) and (C) are the column vectors of elements ξmn and cmn = −pinc
∫ a

−a

∫ a

−a
ψmn(x, y)dxdy,

respectively, B is a diagonal matrix of elements D
[(
k2xm + k2yn

)2 − k2p

]
and the elements of

the matrix A are given by [15]
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A(mn),(qr) =
ρ0ω

2

hgFv

∫ a

−a

∫ a

−a

[
ψmn(x, y)

·
∫ a

0

∫ a

0

G(x, x0; y, y0)ψqr(x0, y0)dx0dy0

− 1

1 + ⟨IG(x, a)⟩x

·
∫ a

0

∫ a

0

⟨G(x, x0; a, y0)⟩x

· ψqr(x0, y0)dx0dy0{[
jωρ0

8FvZchga
ψmn(x, y) + ∂yψmn(x, y)

]
·
∫ a

0

G(x, x0; y, a)dx0

+

[
jωρ0

8FvZchga
ψmn(x, y) + ∂xψmn(x, y)

]
·
∫ a

0

G(x, a; y, y0)dy0

}]
dxdy.

(3.12)

All the notation used here is the same as in section 2 ("Current practices and developments
in noise monitoring technology"), including the Green’s function given by equations (2.39)
and (2.40). As for the terms with the spatial derivatives of ∂xψmn(x, y), ∂yψmn(x, y) in
the eq. (3.12), they are odd functions in the direction of the derivative and their integrals
over the surface are zero. The functions

∫ a

0
G(x, x0; y, a)dx0,

∫ a

0
G(x, a; y, y0)dy0 are even

functions with the same shape. The multiplication of such an even function with an odd
function results in an odd function, so it is clear that the spatial derivatives vanish.

Finally, a comparison between the obtained result and the numerical result is critical for
assessing the proposed method and any differences must be carefully interpreted. Figure
3.2 displays the eigenfunction reconstructed using 2D cosine series (the test result) versus
the numerically calculated eigenfunction.

While the difference and comparison graphs provide visual impressions of the error
between the test result and comparative result, the estimates of these errors accounting
for varying number of members of the series can be calculated as follows

Err =

√∑M
i=1(ψmni − nψmni)

2∑M
i=1

nψmn
2
i

· 100%, (3.13)

where ψmni is the value of the approximate ψmn at the i-th node of the mesh used for calcu-
lating the numerical result (similarly for the reference numerically calculated eigenfunction
nψmn), and M is the number of mesh nodes. It is clear from Fig. 3.3, that an approximate
expression in the form of the two-dimensional cosine series proposed here unfortunately
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Figure 3.2: The numerically calculated eigenfunction (left) and the reconstructed eigen-
function (right) using 2D cosines series (m,n=1,1 here).

suffers from relatively slow convergence.
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Figure 3.3: Error estimate versus the summation limit N in eq. (3.7).

The frequency dependence of the pressure sensitivity given by σ = −U0
ξ̄

pinchg
(with po-

larization voltage U0 = 30V and mean displacement of the plate ξ̄ = [
∫ a

0

∫ a

0
ξ(x, y)dxdy]/a2)

(sec. 2.4.2) obtained by using this form of eigenfunctions to describe the behavior of the
transducer with the rectangular clamped plate has been verified by the numerical FEM
model using the Comsol Multiphysics, version 5.3 software. The complete linear 3D model
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of the transducer has been developed, taking into account the thermoviscous losses and the
strong coupling between the displacement field of the clamped plate and the acoustic field
in the thin fluid layer in the fluid without any further approximation. The results (Fig.
3.4) show good agreement between the approximate solution presented in this section and
the exact numerical (FEM) solution against which the analytical results are tested. The
detail of the flat part of the frequency response presented in Fig. 3.5 shows that the dif-
ference between the approximate analytical result and the reference numerical result does
not exceed 0.2 dB in this frequency range that is of interest for audio applications.
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Figure 3.4: A comparison between the acoustic pressure sensitivity obtained using 2D
cosine series coefficients (full line) and FEM simulations (circules).

3.1.1.2 Eigenfunctions of a 1D beam

In this section, the construction of the solutions of equations (3.1) to (3.3) presented
above relies on the known modal wave functions of the 1D beam that are solutions of the
homogeneous equations[

d4

dx4
− α4

m

]
ϕm (x) = 0 and

[
d4

dy4
− α4

n

]
ϕn (y) = 0. (3.14)

The solutions of the equation (3.14) for the coordinate x and y, eigenfunctions and
eigenvalues, take the symmetric form and the antisymmetric form. However, the symmetric
solution is the only solution that is useful in our problem
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Figure 3.5: Detailed view of the sensitivity module.

ϕs
m (x) =

1√
2a

[
cos (αs

mx)

cos (αs
ma)

− cosh (αs
mx)

cosh (αs
ma)

]
, where tan (αs

ma) = − tanh (αs
ma) , (3.15)

and similarly for ϕs
n(y). These eigenfunctions have been used for example in [19] to con-

struct the approximated eigenfunctions for the clamped plate in the form of ψmn(x, y) =
ϕs
m(x) · ϕs

n(y). Such an eigenfunction does not verify the equation (3.5), but verifies the
boundary conditions (3.2), (3.3), unlike the cosine functions used in section 3.1.1.1 ("An
approximate analytical expression of eigenfunctions").

3.1.1.3 1D beam eigenfunctions as the basis of the series [A.5]

As an improvement to the model described in 3.1.1.1, the eigenfunctions ψmn (x, y) can be
approximated, similarly to (3.7), using the eigenfunctions of a 1D beam (3.15) instead of
the cosine functions, as follows

ψmn (x, y) =
N∑

q,r=1

c(qr),(mn) ϕ
s
q (x) · ϕs

r (y) , (3.16)

the coefficients c(qr),(mn) are obtained as in the previous case

c(qr),(mn) =
4

a2

∫ a

−a

∫ a

−a

nψmn(x, y) · ϕs
q (x) · ϕs

r (y) dxdy. (3.17)
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In this case, the approximate eigenfunctions verify the boundary conditions, as men-
tioned above. Fig. 3.6 shows significantly smaller differences between the approximate
eigenfunctions and the reference numericall eigenfunctions (here for the first mode nψ11)
for different numbers of the elements N of the series (3.16), in comparison with the previous
approximation using the cosine functions.

Figure 3.6: Difference between the numerical solution nψ(11) and a) an analytical approx-
imation using the eigenfunctions of a 1D beam eq.(3.15) and b) an approximation from
3.1.1.1.

The mean error, calculated using (3.13) depicted in Fig. 3.7, presents much faster
convergence with increasing numbers of elements N of the series (3.16) than in the previous
case.

Fig. 3.8 shows the frequency dependence of the acoustic pressure sensitivity of the
transducer calculated using the approximation described in this section, in contrast with
the numerically calculated approximation. Good agreement is obtained. The difference in
the flat part of the curve does not exceed 0.2 dB, but the damping of the resonances seems
to be slightly underestimated.
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Figure 3.7: Mean error of the approximation for m,n = 1, 1 using cosine functions (circles)
and 1D beam eigenfunctions (crosses).

3.1.1.4 Analytical solution [A.2]

In order to express the modal behavior of the square clamped plate, it is also possible to
construct the solution using the analytically given modal function (3.15)

aψmn(x, y) = ϕs
m (x) · ϕs

n (y) , (3.18)

and the solution for the plate displacement is searched for in the form

ξ (x, y) =
∑
mn

ξmn
aψmn (x, y) . (3.19)

Even though aψmn (x, y) does not satisfy the eigen-problem of the plate but satisfies only
the boundary conditions (3.2) and (3.3), because here the coefficients ξmn are assumed to
reflect an elastic coupling mechanism between the 1-D modal solutions along the two axes
x and y. When the expression (3.19) is substituted into the equation for the displacement
field of the plate (3.1) it is found that

∑
m,n

ξmn

(
α4
m + α4

n − k4p
)
aψmn (x, y) + 2

∑
m,n

ξmnϕ
′′
m (x)ϕ′′

n (y) =
1

D
[−pinc + p (x, y)] ,

(3.20)
where (′′) means the second spatial derivative.

Accounting for the orthogonality of the normalized modal functions aψmn (x, y), the
inner product defined as

[∫ a

−a

∫ b

−b
f1 (x, y) f2 (x, y) dxdy

]
of equation (3.20) and aψm′n′ (x, y)
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Figure 3.8: A comparison between the acoustic pressure sensitivity obtained using 1D beam
normalized eigenfunction (full line) and the eigenfunction obtained from FEM simulations
(black points), module and phase of the sensitivity, a) in the whole frequency range (20
Hz - 1 MHz) b) a detail on the flat part of the frequency response (10 Hz - 100 kHz), c)
a detail on the first resonance, and d) a detail on the frequency range of higher modes of
the plate.

leads readily to (
K4

mn − k4p
)
ξm′n′ + 2

∑
mn

σmm′τnn′ξmn = Qm′n′ , (3.21)

where
σmm′ =

∫ a

−a

ϕ′′
m(x)ϕm′(x)dx (3.22)

and
τnn′ =

∫ a

−a

ϕ′′
n(y)ϕn′(y)dy. (3.23)

Considering the requirement on vectors to be orthonormal, we get
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σmm′ (x) =
4α2

mα
2
m′

a (α4
m − α4

m′)
[αm tan (αma)− αm′ tan (αm′a)] (3.24)

if m = m′, otherwise

σmm′ (x) =− αm

a
tan (αma) [1 + αma tan (αma)] , (3.25)

the same applies for τnn′ . Going back to the eq.(3.21), we have

Qm′n′ =

∫ a

−a

∫ a

−a

1

D
[−pinc + p (x, y)] aψm′n′ (x, y) dxdy, (3.26)

and
K4

mn = α4
m + α4

n. (3.27)

Substituting the acoustic pressure p (x, y) given by eq.(2.35) to eq. (3.26) leads to the
expression of the modal coefficients ξmn from eq. (3.21) rewritten in the matrix form as
follows

([A]− [C]− [H]) (Ξ) = (E), (3.28)

where [A] is the "plate-fluid" coupling square matrix of elements

Amn,m′n′ =

∫ a

−a

∫ a

−a

Bmn (x, y)
aψm′n′(x, y) dxdy, (3.29)

where the known functions Bmn (x, y) are given by (note that p(x, y) =
∑

mnBmn (x, y) ξmn)

Bmn (x, y) = ζ

∫ a

0

∫ a

0

[
G(x, x0; y, y0) +

IG(x, y) ⟨G(x, x0; y, y0)⟩
1 + ⟨IG (x, a)⟩

]
aψmn(x0y0) dx0dy0.

(3.30)
Matrix [C] is the "internal elastic plate coupling" square matrix of elements

Cmn,m′n′ = 2Dσmm′τnn′ , (3.31)

and [H] is the diagonal matrix of elements (which include the effects of the eigenvalues)

Hm′n′ = D
[
K4

m′n′ − k4p
]
, (3.32)

and where (Ξ) and (E) are the column vectors of, respectively, the unknown coefficients
ξm′n′ and the elements Em′n′ , which involve the external source pressure field pinc,

Em′n′ = pinc

∫ a

−a

∫ a

−a

aψm′n′(x, y) dxdy. (3.33)

Note that two main differences between the method presented here and the method
described in [19] are the presence of the term related to the "internal elastic plate coupling"
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expressed in matrix [C] and the use of the integral formulation for the acoustic pressure
field in the fluid gap, which prevents us from using the truncated multimodal expression
leading to coupling of the Neumann and Dirichlet modes.

A comparison between the analytical results presented here, using the first 4 eigenmodes
and the result obtained numerically for the real part of the plate displacement field in
metres, is presented in Figure 3.9. Good agreement can be noted. A slightly overestimated
amplitude (520 kHz) and a small difference in shape (800 kHz) can be found only at very
high frequencies.

Figure 3.9: The real part of the plate displacement in metres given by the analytical
method and by the FEM method at 10kHz, 200kHz, 520kHz and 800kHz.

Figures 3.10 - 3.13 present a comparison between the frequency dependence of the pres-
sure sensitivity obtained from the method proposed here for different numbers of eigen-
modes and the numerical result obtained from same numerical FEM model, as was used in
the previous chapter (points) of the whole structure (a plate coupled with air-filled acous-
tic elements). The analytical results are tested against Comsol Multiphysics software in
Figures 3.10 - 3.13.

Fig. 3.11 shows that the difference between the analytical result and the numerical
results diminishes with increasing numbers of series elements (3.19). Note that this dif-
ference does not exceed 0.25 dB in the audio frequency range (20 Hz - 20 kHz) when the
first nine terms in the series (m,n = 1, 2, 3) are used. Figures 3.12, 3.13 show the details
of the sensitivity near the first resonance (50 kHz - 220 kHz) and in the higher frequency
range (300 kHz - 1.3 MHz), respectively, where the solution with four terms in the series
(m,n = 1, 2) is no longer able to provide correct results above approximately 1 MHz,
while the solution with nine terms (m,n = 1, 2, 3) still remains very close to the reference
numerical solution.
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Figure 3.10: A comparison between the acoustic pressure sensitivity obtained using the
present method (full and dashed lines) and the value obtained from FEM simulations (black
points).
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Figure 3.11: Module and phase of the sensitivity in the flat part of the frequency response.
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Figure 3.12: Detailed view of the sensitivity module and the phase near the first resonance.
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3.2 A perforated plate as a moving electrode of the
MEMS transducer

Modelling perforated plates could be a challenging task, due to the complexity of their
shape and due to the fact that a perforated plate contains many tiny cutouts. The simplest
and most common shapes of holes of MEMS are square holes in a straight row. For
simplicity, we will approximate the perforation cell as a circle in this study, and we will
introduce an analytical model which is accurate in a specific range of dimensions such as
the perforation ratio R, which reflects how much of the plate surface is occupied by holes,
the plate thickness (or the length of the perforation) hp, and hole number N . The geometry
that was used is shown in Fig. 3.14.

Peripherical cavity

Air gap

a) b)

Figure 3.14: Geometry of the transducer: a) the dimensions of the perforated plate, b) a
3D cut view of the transducer in the 1st quadrant.

The coupling effect seems to be relatively simple, but it becomes increasingly complex
when plate perforation occurs. In order to find out what happens to an airgap - perforated
plate coupled system, it is necessary to address fundamental concepts and principles of
physics. This chapter will investigate the vibration behaviour of a clamped perforated
plate in an effort to reveal the science behind the coupling problem.

3.2.1 Acoustic pressure in the gap

Let us consider an infinitesimal volume element of the gap as represented in Figure 3.16,
while a sketch of the whole system is shown in Fig. 3.15.

To construct the governing equation of motion, it is necessary to assemble the mass
flow rate entering the gap element as the dynamic response. This task involves a twofold
effort: firstly,assembling the mass flow rate along the x- and the y- axis in a given control
volume of the air gap:
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Figure 3.15: Sketch of the whole system.

Figure 3.16: Element of the fluid gap.

ρ0vxhg dy −
{
ρ0vx +

∂vx
∂x

dxρ0

}
dyhg = −ρ0

∂vx
∂x

hg dx dy

ρ0vyhg dx−
{
ρ0vy +

∂vy
∂y

dyρ0

}
dxhg = −ρ0

∂vy
∂y

hg dx dy

(3.34)

Secondly, while the force (incident pressure) is acting in the system, the fluid (air)
is entering along the vertical axis, resulting in mass movement, which refers to a term
consisting of two components: one that expresses the motion of the plate itself through the
mass flow rate, which is similar to the case of a non-perforated plate or eq. (2.24), except
for the surface occupied by the perforation

−jωξ(x, y)ρ0(1−R) dx dy, (3.35)

where R =
∑N Sd

4a2
is the perforation ratio. The second term, which occurs in this case as

an indicator of the impact of the perforation on the total mass flow rate, with Fvd = 1 −
2J1(kvRh)

kvRhJ0(kvRh)
being the mean value of the normalized profile function of the particle velocity

in the perforation, Rh =
√
a2h/π being the equivalent radius of the circular perforation
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−ρ0 ⟨vz⟩r Rdx dy =
−Fvd

jω

pinc − p (x, y)

hp
dx dy. (3.36)

Utilizing the law of conservation of mass on the equations (3.34), (3.35), (3.36) we got

−ρ0
∂vx
∂x

hg dx dy − ρ0
∂vy
∂y

hg dx dy − ρ0 ⟨vz⟩r Rdx dy

+(1−R) (−jωξ(x, y)) dx dyρ0 = jωρhg dx dy.

(3.37)

Applying the Navier-Stokes equation and Fourier’s law of heat conduction as well as the
equation of state, as in section 2.4.3 ("General governing equations"), we then obtain

hgFvg

(
∂2p (x, y)

∂x2
+
∂2p (x, y)

∂y2

)
+
RpincFvd

hp
+ (1−R)ω2ρ0ξ (x, y)

= −ω
2

c20
[1 + (γ − 1) (1− Fhg)] p (x, y) +

RFvd

hp
p (x, y) .

(3.38)

The wave equation governing the propagation of the acoustic pressure in the air gap is
the second order partial differential equation given by(

∂2xx + ∂2yy + χ2
)
p (x, y) = −U (x, y) , (3.39)

where the complex wavenumber accounting for the effect of the thermoviscous losses in the
air gap and the 2nd term here represents the effect of the volume velocity coming though
the perforation

χ2 =
ω2

c20

[
1 + (γ − 1) (1− Fhg)

Fvg

]
− RFvd

hphgFvg

. (3.40)

The presence of perforation can be identified in a source term on the right-hand side of the
equation (3.39), namely

U (x, y) = (1−R) ζξ(x, y) +
RpincFvd

hphgFvg

, (3.41)

where, for the sake of simplicity, we use ζ = ρ0ω2

hgFv
. Then the integral method can be used

to obtain the solution of the equation (3.39)

p (x, y) =

∫ a

−a

∫ a

−a

G (x, x0; y, y0)U (x0, y0) dx0dy0 − pcIG (x, y) , (3.42)

where G (x, x0; y, y0) denotes Green’s function calculated in the 1st quadrant, eq.(2.39) and
IG calculated as eq. (2.36). The pressure in the peripheral cavity is assumed to be equal
to the mean value of the pressure at periphery of the air gap pc = ⟨p (x, a)⟩x, thus

pc =

∫ a

0

pg(x, a)dx =
1

1 + ⟨IG (x, a)⟩x

∫ a

0

∫ a

0

⟨G(x, x0; a, y0)⟩x U(x0, y0)dx0dy0, (3.43)
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where the symbol ⟨⟩x denotes the mean value over the x-coordinate.

3.2.2 Approximation of modal coefficients [A.4]

The analytical expression of eigenfunctions ψmn presented here is based on an approxima-
tion of their numerical (FEM) solution, as in sec. 3.1.1.3. It employs the symmetric eigen-
functions of the 1D beam known from Chapter 3.1.1.2 ("Eigenfunctions of a 1D beam")
as the basis of the series in the following manner

ψmn (x, y) =
N∑
q=1

N∑
r=1

c(qr),(mn)ϕq (x)ϕr (y) , (3.44)

ϕq (x) and ϕr (x) are in the same form given by 3.15.
The coefficient c(qr),(mn) has been calculated from the numerically calculated eigenfunc-

tions of the perforated plate nψmn, as follows

c(qr),(mn) =
1

2a2

∫ a

−a

∫ a

−a

nψmnϕq (x)ϕr(x, y)dxdy. (3.45)

A comparison between the analytical approximation of the eigenfunction and its numeri-
cally (FEM) calculated solution (both presented in Fig. 3.17 for the 1st mode) reveals the
accuracy of the proposed method.

Figure 3.17: Eigenfunction ψ11(x, y) of the perforated plate given a) by a numerical
solution and b) by an analytical approximation.
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Figure 3.18: Differences between the eigenfunctions given by the numerical solution and
by the present analytical approximation for given m,n and N .

The differences between the eigenfunctions nψmn(x, y) given by the numerical solution
and the values given by the present analytical approximation ψmn(x, y) for modes 11, 13,
33 and 55 for the number N2 of coefficients in the series (3.44) (N being the summation
limit) is shown in Fig. 3.18.

In order to analyze the differences between the reference numerical solution and the
approximate solution, the mean error is calculated using eq.(3.13). Fig. 3.19 shows the
decreasing mean error as the number of terms increases to a certain level.

3.2.3 Coupling between the perforated plate displacement and the
acoustic pressure in the thin fluid layer

In order to express modal coefficients ξmn, the solution for the acoustic pressure (3.42) has
to be substituting into (3.6), taking into account (3.41), where the approximate eigenfunc-
tions from section 3.2.2 ("Approximation of modal coefficients") have to be used. Note the
different indexing q, r in the sum contained in the solution of the acoustic pressure (3.42)
which does not mix up with m,n indexing of the modal coefficients. The integral in (3.6)
then splits into two integrals, the first of them being expressed as follows
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Figure 3.19: Mean error of the approximation of ψmn(x, y).

∫ a

−a

∫ a

−a

ψmn (x, y) pg(x, y)dxdy =∑
q

∑
r

(1−R) ζξqr

∫ a

−a

∫ a

−a

ψmn (x, y)

{∫ a

0

∫ a

0

G(x, x0; y, y0)ψqr (x0, y0) dx0dy0−

IG(x, y)

1 + ⟨IG⟩x

∫ a

0

∫ a

0

⟨G(x, x0; a, y0)⟩x ψqr (x0, y0) dx0dy0

}
dxdy+

RpincFvd

hphgFv

∫ a

−a

∫ a

−a

ψmn (x, y)

{∫ a

0

∫ a

0

G(x, x0; y, y0)dx0dy0−

IG(x, y)

1 + ⟨IG⟩x

∫ a

0

∫ a

0

⟨G(x, x0; a, y0)⟩x dx0dy0
}
dxdy

(3.46)

The whole integral in (3.6) can be written in the following form∫ a

−a

∫ a

−a

ψmn (x, y) [pg(x, y)− pinc] dxdy =
∑
q

∑
r

ξqramnqr + cmn, (3.47)

where

amnqr =(1−R) ζ

∫ a

−a

∫ a

−a

ψmn (x, y)

{∫ a

0

∫ a

0

G(x, x0; y, y0)ψqr(x0, y0)dx0dy0

− IG(x, y)

1 + ⟨IG(x, a)⟩x

∫ a

0

∫ a

0

⟨G(x, x0; a, y0)⟩x ψqr (x0, y0) dx0dy0

}
dxdy,

(3.48)
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and
cmn =− pinc

∫ a

−a

∫ a

−a

ψmn(x, y)dxdy+

RpincFvd

hphgFv

∫ a

−a

∫ a

−a

ψmn (x, y)

{∫ a

0

∫ a

0

G (x, x0; y; y0) dx0dy0

− IG(x, y)

1 + ⟨IG(x, a)⟩x

∫ a

0

∫ a

0

⟨G(x, x0; a, y0)⟩x dx0dy0
}
dxdy.

(3.49)

The expression for the modal coefficients (3.6) then becomes

D
[
(k2xm + k2yn)

2 − k2p
]
ξmn =

∑
q

∑
r

ξqramnqr + cmn, (3.50)

which can be written in matrix form

[−A+ B] (Ξ) = (C), (3.51)

where A is the square matrix of elements amnqr, B is a diagonal matrix of elements
D

[(
k2xm + k2yn

)2 − k4p

]
, kxm, kyn are given by the numerically calculated eigenfrequencies,

eqs. (3.9), (Ξ) and (C) are respectively the column vectors of elements ξmn and cmn.
Figures 3.20-3.23 show the frequency dependence of the sensitivity of the transducer

calculated using the present approach and compared to the numerical (FEM) result. Good
agreement between these two results can be observed in the frequency range of interest, ex-
cept at the very low frequencies, where the discrepancy is likely due to the lack of precision
of the numerical integration when calculating the elements of the matrix A (the pressure
differences on both sides of the plate being very low at low frequencies, the accuracy of the
numerical integration becomes more important).
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Figure 3.20: A comparison between the sensitivity of a MEMS transducer with a perforated
plate: the present model (full line), the module and the phase of the sensitivity with a
perforated cell 2 µm regarding the selected gap thicknesses.
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Figure 3.21: A comparison between the sensitivity of a MEMS transducer with a perforated
plate: the present model (full line), the module and the phase of the sensitivity with a
perforated cell 3 µm regarding the selected gap thicknesses.

Moreover, observing Fig. 3.24, which depicts the difference in the acoustic pressure on
both sides of the plate in relation to the different cutout sizes (from 2 µ m to 7 µ m), it
is clear that there is a direct correlation between the size of the holes and the numerical
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Figure 3.22: A comparison between the sensitivity of a MEMS transducer with a perforated
plate: the present model (full line), the module and the phase of the sensitivity with a
perforated cell 5 µm regarding the selected gap thicknesses.
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Figure 3.23: A comparison between the sensitivity of a MEMS transducer with a perforated
plate: the present model (full line), the module and the phase of the sensitivity with a
perforated cell 7 µm regarding the selected gap thicknesses.

noise originating in the integrals as the microphone becomes more short-circuited with
bigger perforation at low frequencies. An examination of Fig. 3.20-3.23, which depicts the
discrepancies in relation to the size of the cutouts, further confirms this assumption.
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Figure 3.24: The real part of the difference of the acoustic pressure on both sides of the
plate in the 1st quadrant (x, y ∈ (0; a⟩) for a perforated cell a) 2 µm, b) 3 µm, c) 5 µm
and d) 7 µm, respectively.

As regards the thickness of the fluid gap between the moving electrode and the backplate
in relation to perforation cell size, the following findings can be noted: The plate with 1
µm cell size exhibits a well-known change in sensitivity, i.e. gap thickness doubling results
in a 6 dB decrease in sensitivity (Fig. 3.25). As the cutouts become bigger, this effect is
less and less prominent (Fig.3.26-3.28), forcing the sensitivity curve to demonstrate more
linear-like behaviour at low frequencies.
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Figure 3.25: A comparison between the sensitivity of the MEMS transducer with a per-
forated plate: the module of the sensitivity, the perforated cell being 1 µm with different
thicknesses of the gap hg.
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Figure 3.26: A comparison between the sensitivity of the MEMS transducer with a per-
forated plate: the module of the sensitivity, the perforated cell being 2 µm with different
thicknesses of the gap hg.
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Figure 3.27: A comparison between the sensitivity of the MEMS transducer with a per-
forated plate: the module of the sensitivity, the perforated cell being 5 µm with different
thicknesses of the gap hg.
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Figure 3.28: A comparison between the sensitivity of the MEMS transducer with a per-
forated plate: the module of the sensitivity, the perforated cell being 7 µm with different
thicknesses of the gap hg.
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Chapter 4

The measurements and an analysis on
the noise sensor prototypes

This chapter deals with the experimental studies performed on two noise sensor prototypes
developed by the Laboratory of Special Projects UBTI FD CTU in Prague. The work
on electronic circuits design, the programming of the microcontrollers and the overall
mechanical concept was carried out by the staff of the Laboratory of Special Projects
UBTI FD CTU in Prague and is not the subject of this thesis. The electric schematics of
both prototypes can be found in Appendix B and C. All the measurements and analysis
presented here have been performed in order to improve the design process, and to confirm
that the versions of the noise sensor perform appropriately.

4.1 The spectrum of traffic noise

Measurements of mean traffic noise with four hours averaging at a measurement site located
near a roundabout (measurement GPS position 50.085607, 14.594737) within single working
day (approx. from 8 AM till 12 AM) were carried out using 1/2′′ microphone B&K 4189
and dynamic signal analyzer B&K Photon+. The 1/3 octave analysis of the recorded
noise is shown in Fig. 4.1, presenting an approximately flat spectrum up to 1kHz and a
-40 dB/dec slope above 1kHz. The Figure 4.2 shows the spectrum of the same traffic noise
suffering from relatively low frequency resolution at low frequencies, but confirming the -40
dB/dec slope above 1kHz. The signal that was used for the experimental measurements
was configured to mimick this spectrum at the measurement site (Fig.4.1), meaning that
the spectrum of the signal (low-pass filtered white noise) is and should be almost flat from
10 Hz to 1 kHz with the fluctuation being almost ± 5dB, from 1 kHz to 20 kHz the signal
drops by -40 dB/dec (-12 dB/oct).

48
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Figure 4.1: The traffic noise 1/3 octave analysis measured at the measurement site.

Figure 4.2: The traffic noise spectrum.

4.2 Earlier noise sensor prototype
Aiming to provide high bandwidth information about the urban sound environment and to
explore forways to extract useful information and knowledge from the measurements, which
can be labelled as big data, the Laboratory for Special Projects UBTI FD CTU in Prague
developed a low-cost prototype sound sensor capable of making continuous measurements
of noise levels.

This sound sensor consists of a measurement microphone, an analog path (containing a
preamplifier, an A-filter and an antialiasing filter) and a processor (Fig. 4.3). The overall
noise sensor scheme is given in Appendix B. In connection with electro-acoustic systems,
which sensors essentially are, we touch on the quality of the electro-acoustic devices, which
is closely related to the quality of their individual parts, especially the quality of the weakest
element in the electroacoustic chain: i.e. the microphone.

4.2.1 Description of an electret microphone

The sound sensor prototype has an MCE 2500 electret microphone (Fig. 4.4) because of the
requirement for a high number of sensor nodes. This raises the need to implement low-cost
solutions, small dimensions, a relatively large frequency response and reasonable sensitivity.
Moreover, there is no need for external polarization voltage in this type of microphone,
which is a practical advantage compared to the classical condenser microphones. This
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Figure 4.3: Noise sensor block diagram.

microphone consists of a circular membrane of radius Rm, a circular backplate separated
from the membrane by a thin air gap of thickness hg, and contains three holes of radius Rh

regularly azimuthally distributed at distance of h from the border of the electrode, which
are opened into a back cavity of volume V . The aluminium housing of the microphone
contains a small opening of radius Rin for acoustic access to a diaphragm. These parameters
are summarized in Table 4.1.

Figure 4.4: A cross-section view of the electret microphone and a top view of the backplate
with holes.

The usual value of the density of the membrane material (mylar) of ρm = 1380 kg/m3

is used in the calculations hereafter, because of the high uncertainty of the measurements
of the mass and volume of such small samples.

4.2.2 Measurements on the noise sensor

The frequency response of several microphone samples was measured using the experimen-
tal setup shown in Fig. 4.5. From the results shown in Figure 4.6, it appears, that the
pressure sensitivity values of the measured microphone samples differ in a relatively wide
range (from 3.8 mV/Pa to 16.4 mV/Pa, which represents at range of 12.7 dB). However,
the position of the first resonance of the whole system, which determines bandwidth of the
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Table 4.1: Dimensional parameters of the microphone.
Parameter Symbol Value
Diaphragm radius Rm = Dm/2 1.975 · 10−3 m
Diaphragm thickness hm 18 · 10−6 m
Air gap thickness hg 29.75 · 10−6 m
Air gap radius Rg = Dg/2 1.975 · 10−3 m
Radius of the hole in the backplate Rd = Dd/2 0.395 · 10−3 m
Cavity radius Rc = Dc/2 2.14 · 10−3 m
Opening radius Rc1 = Dc1/2 0.735 · 10−3 m
Edge distances to hole h 1.12 · 10−3 m
Electrode thickness he 0.29 · 10−3 m
Opening length ld 0.20 · 10−3 m
Input cavity thickness hc1 313 · 10−6 m
Back cavity thickness hd 1.2 · 10−3 m
Cavity volume Vc 1.856 · 10−8 m3

microphone, seems to be similar for all measured samples of the microphone (around 10
kHz).

PC

 Analyzer

B&K Photon+

Loudspeaker

MSI aktiv 05

Measured microphone

         MCE-2500

Reference microphone

         B&K 4944B

IN1

IN2

OUT
USB

preamp

Figure 4.5: Experimental setup for measurements of the sensitivity of the microphone.

The acoustic pressure sensitivities at 1kHz in dB and in mV/Pa are summarized in Table
4.2. The last column of this table presents the height of the sensitivity peak, calculated as
the difference between the sensitivity at 1 kHz and at the peak of the sensitivity curve in
dB, giving an idea about the damping in the system.

In order to explore the behaviour of the whole electroacoustic chain in the noise sensors,
the normalized transfer functions of the electroacoustic path from the microphone input to
the output of the antialiasing filter were measured on several noise sensor samples. Figure
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Figure 4.6: The measured pressure sensitivities of MCE 2500 microphones.

Table 4.2: The measured pressure sensitivities and the heights of the resonance peaks.
No. σ1kHz[dB] mV/Pa ∆ dB
1 −35.6 16.4 5.0
2 −39.0 11.1 6.8
3 −40.9 8.9 5.8
4 −41.4 8.4 5.3
5 −40.3 9.5 6.4
6 −41.9 7.9 8.5
7 −39.0 11.2 5.8
8 −40.2 9.7 5.8
9 −45.1 5.5 5.8
10 −48.3 3.8 6.8
11 −39.6 10.3 5.8

4.7 depicts an example of such a transfer function for one sample (red curve) in comparison
with the transfer function of the A-filter given by the norm [41] (blue curve). For better
clarity, the Figure 4.8 shows the differences of the measured transfer functions of selected
samples from the transfer function of the A-filter given by the norm.
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Figure 4.7: Transfer function of the electroacoustic path of the sensor (red curve) in com-
parison with the transfer function of the A-filter given by the norm [41] (blue curve).
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Figure 4.8: Difference between the measured transfer functions from the A-filter (continu-
ous lines) and the class II tolerance limits (dashed lines).

It seems that the analog path of the measured noise sensor samples results in a category
II rating (limits given by black dashed lines in Fig. 4.8, 4.7) in the major part of the
frequency range of interest. At very low frequencies (below 60 Hz), the precision of the
measurement is affected by a low signal-to-noise ratio, which leads to invalid measurement
results.
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In the following sections, the lumped element model of the microphone will be presented
and a set of measurements of its parameters will be described in order to explain the
differences in microphone sensitivities.

4.2.3 The lumped element model

The classical lumped-element model [37, 40, 29] of the microphone (with some particular-
ities described in this section) is considered in this section. The equivalent circuit shown
in Figure 4.9 consists of acoustic, mechanical and electric parts.

The link between the acoustic and mechanical domain is modelled by the mechano-
acoustic transformer with a ratio of 1 : Sm at the input of the model, Sm = πR2

m represent-
ing the diaphragm area, and pinc is the incident acoustic pressure. The second transformer
represents the coupling between the electric and mechanical domain with a ratio of 1 : kb,
where kb = C0U0

hg
is the transducer factor, C0 =

ε0Sm

hg
being the static capacitance of the mi-

crophone (the effect of the holes in the back electrode on the microphone static capacitance
is neglected because of their small dimensions, along with the edge effect of the electrostatic
field near the holes). Since the transducer is assumed to operate with constant charge, the
negative compliance −cn = −C0/k

2
b (which should theoretically be present in the equiva-

lent circuit) can be neglected [37]. The mechanical domain between the two transformers
mentioned above consists of the components representing the membrane and the air-filled
acoustic elements behind the membrane (transformed to the mechanical domain).

ZdZgc1m1

C2

CVmc0

1:Sm

kb :1

uout

pinc

Figure 4.9: Complete equivalent circuit of the microphone.

The mechanical impedance of the air gap between the membrane and the backplate
with holes of radius Rd can be calculated as follows [37]

Zg = N

(
6µπX4

0β

h3g
+ jω

ρ0πX
4
0β

2hg

)
, (4.1)

N is the number of holes in the backplate, in this case N = 3, X0 =
√
Sm/(Nπ) is an

equivalent circular region collecting the air flow from each hole and β = ln X0

Rd
− 3

4
+

R2
d

X0
− 1

2

R4
d

X4
0
.
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The holes are modelled by the mechanical impedance

Zd =
S2
m

N

[
8heµ

πR4
d

+ jω
4ρ0he
3πR2

d

+

+2jω
ρ0
X0

(
0.26164− 0.353α + 0.0809α3

)]
,

(4.2)

where the first two terms in the bracket represent the resistance and the mass of the holes
[37] and the third term with α = Rd/X0 (Rd is the radius of the holes) is the added mass
modelling the influence of the sharp edges of the holes [42].

The membrane behavior is described by the components [37]

c1 =
4

j41πT
,

m1 =
j21
4
msSm,

C2∞ = C∞ − c1,

(4.3)

where the mechanical compliance c1 and the mass m1 determine the first membrane eigen-
frequency, C∞ = 1

8πT
is the quasistatic compliance of the membrane, and C2∞ provides a

correction of the low-frequency behavior.
The comparison between the results obtained from the equivalent circuit and from the

numerical (FEM) model is shown in Figure 4.10, the parameters of the air being given in
Table 4.3 and the dimensions of the microphone being given in Table 4.1, T = 100 N/m
and U0 = 100 V. Good agreement can be observed between the theoretical results obtained
from the lumped element model with the estimated parameters and the FEM results.

Table 4.3: Parameters of the air.
Parameter Symbol Value Unit
Adiabatic sound speed c 345.9 [m · s−1]
Air density ρ0 1.18 [kg ·m−3]
Shear dynamic viscos-
ity

µ 1.83 · 10−5 [Pa · s]

Permittivity ε0 8.8542 · 10−12 [F ·m−1]
Thermal conductivity λh 24.4 · 10−3 [W/(m ·K)]
Specific heat coeffi-
cient at constant pres-
sure per unit of mass

Cp 1010 [J/(kg ·K)]

Ratio of specific heats γ 1.4 [−]
Static pressure P0 101.325 [Pa]
Static temperature T0 293.15 [K]
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Figure 4.10: The magnitude and the phase of the pressure sensitivity of the transducer
calculated using the lumped element model and the reference numerical (FEM) solution.

4.2.4 Measurements on low-cost electret microphones [A.3]

Most of the parameters of such a model can usually be determined from directly measured
dimensions of the system and from the material parameters. The accuracy of the model
can then be verified by measurements such as laser vibrometry [16, 43] and electrostatic
excitation [16, 45, 46, 47] of the membrane movement. However, two parameters, the
tension of the membrane and the equivalent polarization voltage produced by the electret
layer, cannot be measured directly.

The influence of the membrane tension, the equivalent polarization voltage and the air
gap thickness on the changes in sensitivity between the measured samples was observed.

The mechanical tension of the membrane was measured using the electrostatic method
[45] in vacuum (measurement setup in Figure 4.11). The tension of the membrane can
be calculated from the measured frequency of the first mode of the membrane. In order
to eliminate the impact of all acoustical elements except the membrane, the measurement
of the resonance frequency has to be performed in a vacuum chamber. The well-known
method using the electrostatic grid to excite the motion of the membrane is applied in the
present study.

Unlike classical condenser microphones, the electret microphone considered here has no
direct access to the membrane. The classical electrostatic grid [16, 45] therefore cannot be
used. For this reason, a special electrostatic grid was fabricated.

Since the eigenfrequencies fn (n = 1, 2, . . . ) of the membrane modes in vacuo are given
by the equation J0(2πfn/

√
T/ms) = 0 [37, 29], ms = ρmhm being the surface density of

the membrane, J0(x) being the 0-th order Bessel function of the first kind, the tension T
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Figure 4.11: Measurement setup for the measurement in the vacuum.

of the membrane can be calculated from the measured first eigenfrequency fres = f1, as
follows

T = ms

(
2πfresRm

j1

)2

, (4.4)

where j1 ≈ 2.4048 is the first solution of the equation J0(jn) = 0.
The measured membrane tensions T (Table 4.4) present certain variations among the

measured microphone samples, resulting in the variation of the pressure sensitivities of the
microphones, namely the measured eigenfrequencies of the membranes range from 11.595
kHz to 12.364 kHz, which leads to the tensions of the membranes ranging from 88.9 N/m
to 101.1 N/m.

The adimensional sensitivities [19] calculated using the lumped-element model with
the measured membrane tensions used as model inputs are calculated here, the other
parameters of the model being fixed. Table 4.5 presents the adimensional sensitivities at
1 kHz for the maximal and minimal membrane tension, showing that the variation of the
measured tensions (from 88.9 N/m to 101.1 N/m) cannot cause such a huge variation of
acoustic pressure sensitivities measured in Table 4.2 (12.7 dB). The modelled sensitivities
here are in the range of 1.3 dB.

As for the air gap thickness hg, the change of hg from 30 µm to 35 µm (the membrane
tension being T = 100 N/m) causes the change in the height of the sensitivity peak, which
is similar to the range of the measured variation, while the adimensional sensitivity at
1 kHz decreases only by 1.3 dB (Table 4.6). This shows that the measured variation of the
acoustic pressure sensitivity of 12.7 dB, while the measured height of the sensitivity ranges
from 5 dB to 8.5 dB, cannot be caused by a variation in the thickness of the airgap.
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Table 4.4: The measured resonance frequencies and tensions.
No. P0 [Pa] fres [kHz] T [N/m]
1 0.62 11.946 94.4
2 0.59 12.364 101.1
3 0.60 11.879 93.3
4 0.64 11.681 90.2
5 0.46 11.813 92.3
6 0.60 11.665 90.0
7 0.28 11.662 89.9
8 0.47 12.154 97.7
9 0.62 11.737 91.1
10 0.59 11.595 88.9
11 0.60 12.222 98.7

Table 4.5: Dependence of the adimensional sensitivity on the membrane tension calculated
from the microphone model.

T [N/m] σadim(1kHz) [dB]
101.1 −79.2
88.9 −78.5

Table 4.6: Dependence of the adimensional sensitivity and the height of the sensitivity
peak on the gap thickness calculated from the microphone model.

hg [m] ∆dB [dB] σadim(1kHz) [dB]
30 · 10−6 4.6 −79.2
35 · 10−6 8.2 −80.5

The only model parameter, that remains and that needs to be examined is the equiv-
alent polarization voltage U0. This parameter was estimated from the measured pressure
sensitivities, using a significantly simplified equivalent circuit (Fig.4.13). The impedance of
the airgap and the holes in the backplate is much lower in terms of absolute value than the
impedance of the membrane and the back cavity at low frequencies (more than 100 times
at 100 Hz, Fig. 4.12), and can be neglected in order to form a low-frequency equivalent
circuit. Furthermore, when omitting the mass of the membrane, the change in the value of
the impedance at low frequencies is negligible. Note, that the effects of the thermal losses
in the backing cavity cannot be neglected at very low frequencies. The complex equivalent
volume (4.5) [29] should therefore be used here.

Vcplx = Vc

1 + (1− j)(γ − 1)Sc

√
c lh
ω

Vc
√
2

 , (4.5)

where Sc = 2πRm·(Rm+hd) is the surface of the cavity, lh = λh/(ρ0cCp) is the characteristic
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thermal length, and the other parameters of the fluid are given in Table 4.3.
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Figure 4.12: Mechanical impedances of parts of the complete equivalent circuit.

C

CVm

Figure 4.13: The low-frequency equivalent circuit.

Since the input impedance at low frequencies is given by the equivalent circuit from
Figure 4.13 as Zm, a rough estimate of the equivalent polarization voltage can be calculated
from the value of the measured acoustic pressure sensitivity σmeas at low frequency (here
100 Hz) as follows

U0 =

∣∣∣∣hgσmeas(100Hz)

Sm(C∞ + CV m)

∣∣∣∣ . (4.6)

The calculated estimates of the equivalent polarization voltages of all measured samples of
the electret microphone are shown in Table 4.7.

Figure 4.14 shows comparison between the measured and the calculated acoustic pres-
sure sensitivity of three microphone samples, one for the lowest sensitivity, one for the
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Table 4.7: The estimated equivalent polarization voltages.
No. U0 [V ]
1 147.7
2 100.9
3 78.1
4 72.9
5 85.2
6 70.0
7 100.3
8 84.1
9 48.7
10 34.2
11 92.5

highest sensitivity, and one for the middle level. Good agreement can be observed between
the theoretical results obtained from the full equivalent circuit (Figure 4.9), the estimated
parameters and the measured sensitivity curves. The slight shift in the resonance frequency
can be caused by the fact that the density of the membrane was not measured (the usual
value was used). The damping of the system (according to the height of the resonance
peak) seems to be predicted correctly for sample No. 1 and slightly overestimated for the
other two samples shown in Figure 4.14, as in the case of the comparison between the
lumped element model and the FEM results (see the previous subsection). Ultimately, the
only key factor that affects the differences between sensitivities of the microphone samples
is the equivalent polarization voltage U0.
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Figure 4.14: The measured and calculated acoustic pressure sensitivity of three microphone
samples.
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4.3 The present version of the noise sensor
The main issues with the previous sensor design(section 4.2 "Earlier noise sensor proto-
type") were some problems with the technology and with rational functioning (e.g. the
sensitivity spread). This implies that the new prototype (introduced here) has superior
hardware and software, such as fully digital communication between the MEMS microphone
and the microcontroller and also the avoidance of the use of the electret microphone, which
reduces the sensitivity spread in the components of the noise sensor. The present version
of the noise sensor consists of the MEMS microphone ICS-43432 and microcontroller PIC
32 with 24.576 MHz input clocking (Figure 4.15). The whole detailed noise sensor scheme
is given in Appendix C.

Figure 4.15: Noise sensor block diagram.

4.3.1 A description of the MEMS microphone

The ICS-43432 microphone that is used in the new version of the noise sensor, is a digital
low-noise microphone with a I2S interface that allows the microphone to connect directly
to the digital processors [44]. Some specifications found in the MEMS microphone data
sheets [44], explaining the specifications and terms for the microphone to be appropriately
integrated into a system, are as follows: a) the sensitivity uncertainty is ± 1 dB, which
gives us a solid understanding of perhaps the most important microphone specification,
b) the Equivalent Input Noise is 29 dB(A) SPL, c) the level of distortion on the output
signal for a given pure tone input signal Total Harmonic Distortion is 0.3 % for 105 dB
SPL. This information can help us to choose an appropriate type of microphone for specific
applications, d) Acoustic Overload Point 116 dB SPL is the sound pressure level at which
the THD of the output of the microphone equals 10%, and e) the supply current is 1.1-1.5
mA for 3.3V of supply voltage.

According to the datasheet mentioned above, microphones of this type also offer high
linearity and a flat magnitude response from about 100 Hz to 10 kHz (Fig. 4.16).
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Figure 4.16: Typical frequency response. [44]

Figure 4.17: Total Harmonic Distortion + Noise (THD+N) vs. Input SPL. [44]

The THD increases rapidly starting at about 113 dB, and reaching a whopping 10% at
116 dB (Fig. 4.17).
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Figure 4.18: Time diagram output I2S. [44]

Fig. 4.18 shows the timing of the data driven by the microphone with respect to the clock
and the word select signal generated by the master. The Block Diagram Fig. 4.19 shows
the interconnection of the various pieces of equipment in a microphone system and the flow
of the signal through the system. Note, that only the left side of both the stereo input
and the system block diagram applies here, the system master being PIC 32. Since the
sampling rate of the system is influenced by the I2S clock signal generated by the master,
the stability of the sampling rate depends on the generator of the 24.576 MHz clock for
the microcontroller (Fig. 4.15).

Figure 4.19: System block diagram. [44]

4.3.2 Measurements on the MEMS microphones

A set of measurement tests of the noise sensor components needs to be conducted to check
if the whole sensor is properly configured and performs appropriately. The task follows the
MEMS microphones measurements as it must be examined.
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Figure 4.20: The measurement scheme.

The measurement setup (Fig.4.20) includes the B& K Photon+ dynamic signal ana-
lyzer, which drives the SI activ 05 loudspeaker with the reference 1/4” microphone B& K
4944 at the input. The measured ICS-43432 microphone is connected to the input of the
analyzer through the ADAU 1761 audio codec to translate the digital signal to an analog
signal. The measurement was carried out at about 94 dB(A), and the swept sine signal
generated by the analyzer was used as the measurement signal.

It is also necessary to define the ranges that may be targeted. Since the sampling rate of
the sensor is 32 kHz, and since the traffic noise is negligible at very high frequencies (section
4.1 "The spectrum of traffic noise"), the frequency range of interest in the measurement
should be narrowed down to 16 kHz. This leads to fewer computational issues in processing
than when more frequently-used sample rate of 48 kHz is used.

Fig. 4.21 depicts the different frequency responses (the magnitude of the transfer func-
tion) among all measured microphones (20 samples), where thick black curve of the sensi-
tivity waveform represents the mean of all samples, with the exception of a single outlier.

Fig.4.22 shows the differences of the measured frequency responses from their mean.
This seems to indicate that the sensitivity rating of most of the measured microphones
is ±1 dB up to approximately 10 kHz (the one outlier may have been caused by some
issues during the measurement). The discrepancies at the highest frequencies cause only
negligible error in SPL measurements because of the frequency spectrum of transportation
noise (section 4.1 "The spectrum of traffic noise").

Fig. 4.23 compares the normalized mean frequency responses measured at sample rates
of 32 kHz (red curve) and 48 kHz (blue curve), showing the effects of the antialiasing filter
cutoff frequency along the sensitivity peak of the microphone.
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Figure 4.21: The measured frequency responses of the microphones (grey lines) and their
mean (thick black curve).
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Figure 4.22: Differences of the measured frequency responses from the mean (detailed
view).
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Figure 4.23: The normalized mean frequency responses of the microphones measured using
sampling frequencies of 32kHz and 48kHz.

4.3.3 Measurements on the MEMS microphone + A-filter system

The A-filter is composed of three stages of filtering: two low-pass filters and one high-pass
filter.
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Figure 4.24: The transfer function of the MEMS microphone + A-filter containing two
biquads (one biquad is removed, all coefficients of 2 others remained unchanged).
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Figure 4.25: Difference between the measured transfer function and the transfer function
given by the norm for the A-filter (one biquad is removed, all coefficients of 2 others
remained unchanged).

One of the two high-pass filters (the filter with the lower cutoff frequency) was removed
here, since the microphone itself acts as a high-pass filter; i.e. it allows high frequencies to
pass while cutting out low frequencies, Fig. 4.21. First, the measurement was performed
with all coefficients of the two remaining biquads (digitally implemented second order IIR
filters) remaining, as they were designed using Matlab software (Fig. 4.24). The red curve in
Fig. 4.24 shows the frequency response of the MEMS microphone + digital A-filter system
compared to the norm [41] (blue curve) and the limits for class I (green dashed curve) and
class II (black dashed curve). Discrepancies at low frequencies (below approximately 100
Hz) can be observed here. Hovewer, they are more visible in Fig. 4.24, which shows the
difference between the measured frequency response and the norm.

Biquad coefficients No.1 No.2 No.3
b0 1.0 1.0 1.0
b1 2.0 −2.0 −2.0
b2 1.0 1.0 1.0
a1 0.179471731469 −1.843990656105 −1.991927118597
a2 0.008052525599 0.846816324065 0.991943411450

Table 4.8: The original coefficients for second order IIR biquads forming the A-filter ac-
cording to the norm. [41]

Since discrepancies at low frequencies are much more important than discrepancies at
higher frequencies in measurements of transportation noise (because of the shape of the
spectrum), the remaining low-pass filter of the A-filter was then modified. The coeffi-
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cient a2 (all the original coefficients in Table 4.8) of the second high-pass filter was set to
0.846138871005, so that the whole microphone + HPbiquad + LPbiquad system would as
much as possible satisfy the A-filter norm (Fig. 4.25).
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Figure 4.26: The transfer function of the MEMS microphne + A-filter containing two
biquads (coefficient a2 is modified).
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Figure 4.27: Difference between the measured transfer function and the transfer function
given by the norm for the A-filter (containing two biquads, coefficient a2 is modified).

The results (Fig. 4.26 and Fig. 4.27) provide evidence that the measured MEMS mi-
crophone system along with the modified A-filter complies with the norm for class I and
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II tolerance in a wider frequency range (up to approximately 10 kHz) and offers better
fitting.

4.3.4 Measurements of the dynamic range of the noise sensor

This section focuses on measurements of the dynamic range of the sensor, which gives an
idea of the ratio of the largest signal that the sensor can handle (linearly) to the noise
level. The measurements were performed using the reference prepolarized Free-field B &K
4189 1/2” microphone and the B&K Photon+ dynamic analyzer operating the SI activ 05
loudspeaker. The set of 21 prototypes of the noise sensor (each contained the microphone
and PIC 32 processor, and each was connected through SPI to a small Raspberry Pi single
board computer). The prototypes were measured one after another (the setup in Fig.
4.28), where the calibration constants were observed throughout the measurements.

Figure 4.28: The setup scheme for the noise sensor dynamic range measurement.

The measured calibration constant of all measured sensor samples are shown in Table
4.3.4, where the maximum value is in bold.

It is clear that all the differences between the constants of all sensors are below 0.5
dB, so that an average value (115268.4101565 [1/Pa]) can be used, instead of using each
calibration constant for a particular sensor.

The dynamic range of the sensor was measured using the measurement setup shown in
Fig. 4.28. Fig. 4.29 shows the measured dynamic range of the sensor (red curve) compared
to the ideal linear curve (black dashed line). The discrepancies at low levels are caused by
selfnoise of the microphone, and the discrepancies at high levels are likely related to the
nonlinear behaviour of the microphone at high incident acoustic pressure [38]. Fig. 4.30
shows the differences between the sensor output and the reference SPL.
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No. Calibration constant [1/Pa] Difference from average [1/Pa] Difference in [dB]

203 169277.093750 54008.6835935 0.236
204 173857.625000 58589.2148435 0.238
209 105882.937500 −9385.4726565 0.198
210 105574.554688 −9693.8554685 0.199
212 107470.039063 −7798.3710935 0.194
214 106491.250000 −8777.1601565 0.197
215 103572.445313 −11695.9648435 0.203
216 107357.296875 −7911.1132815 0.194
217 105020.085938 −10248.3242185 0.200
218 108871.820313 −6396.5898435 0.190
219 109492.015625 −5776.3945315 0.188
220 107598.445313 −7669.9648435 0.194
221 109241.742188 −6026.6679685 0.189
222 108974.492188 −6293.9179685 0.189
223 109640.078125 −5628.3320315 0.187
225 105972.640625 −9295.7695315 0.198
226 106593.828125 −8674.5820315 0.196
227 103535.039063 −11733.3710935 0.203
228 108960.710938 −6307.6992185 0.189
229 107988.062500 −7280.3476565 0.193
230 108588.304688 −6680.1054685 0.191

Table 4.9: Calibration constants of the sensor.

The results presented in Fig. 4.30 show that for tolerance ± 1 dB the upper limit is
approximately 109 dB(A) SPL and the lower limit is 35 dB(A) SPL.

4.3.5 Temperature dependence of the noise sensor

In this part of the thesis, the temperature dependence of the MEMS microphone as a part
of the noise sensor is analyzed and measured mimicking the areas of application of the
devices. The main objective of this investigation was to determine whether the sensitivity
of the microphone sensor drifts significantly with respect to the sensitivity of the reference
microphone. The results are intended to provide insight into the thermal stability of the
device.

First, it is necessary to mention the operating temperature ranges of components of
the sensors, which may reduce the reliability and the performance of the device. These
components are i) the ICS-43432 MEMS microphone, the temperature range of which,
according to [44], is -40 to +85 ◦ C, ii) the PIC32MX170F256BIML processor with a
temperature range from -40 to +105 ◦ C, and iii) the oscillator’s DSC6083CI2A-032K768
range from -40 to +85◦ C.

The B&K 4189 reference microphone 1/2" has its own operating temperature range,
which is -30 to +150 ◦ C. The temperature coefficient is -0.006 dB/K when measured at
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Figure 4.29: The measured dynamic range versus the reference.
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250 Hz.
A test board assembly shown in Fig. 4.31 along with the reference microphone was

placed in the Shjianheng SDJ6005 temperature chamber and was subjected to the range
of harsh environmental condition from 60◦ C to -20◦ C, with a humidity level of up to 60
%. White noise was played as the test sound, and a level of 94 dB was maintained. The
tracked values are shown in Table 4.3.5.

Figure 4.31: The measurement setup: the measured MEMS microphone ICS-43432 placed
in the Shjianheng SDJ6005 temperature chamber.

Overall, the results indicated the following finding (Fig. 4.32): up to 1 percent changes
in microphone sensitivity per degree Celsius change in temperature, which is a sufficiently
low level. It can therefore be stated, that the temperature coefficient of the whole noise
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Sensor SPL[dB] Differences [dB] Temperature [C◦]

94.3 0.3 −20
94.3 0.3 −10
94.2 0.2 −5
94.1 0.1 0
94.2 0.2 12
94.1 0.1 20
94.0 0 30
94.1 0.1 40
94.1 0.1 50
94.1 0.1 60

Table 4.10: Differences between the maintained referential dB level and the output of the
tested noise sensor.

sensor is comparable with the coefficient of the measured microphone. The tested micro-
phone demonstrated weak dependence on temperature, which is the main result obtained
from the experiment.
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Figure 4.32: Differences between the maintained referential dB level and the output of the
tested microphone.

4.3.6 Sound scattering on the Airtracker master unit

The Airtracker master unit (the dimensions are shown in Table 4.3.6) consists of the noise
sensor, the VLC box and the main box. The scattered sound field is simulated numerically
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(using Comsol Multiphysics software) inside a spherical domain from which the Airtracker
master geometry is subtracted Fig. 4.34.

Figure 4.33: The Airtracker master unit. Figure 4.34: The scattering field on the
Airtracker master unit.

Dimensions [mm]
Airtracker box 165 x 85 x 55
VOC sensor �35 x 30
Noise sensor �27 x 37

Table 4.11: Dimensions of the Airtracker master unit.

The resulting acoustic pressure field (the addition of the incident and scattered field)
is shown in Fig. 4.35 for different frequencies.

The frequency dependence of the difference of the sound pressure level caused by the
scattering (with and without the box) in the position of the microphone is shown in
Fig. 4.36. The Figure shows that the master unit box causes a difference in measure-
ment of up to approximately 2 dB SPL in the higher frequency range (above 2kHz).

The difference remains small (below ± 0.5 dB) in the lower frequency range (up to 1
kHz), where most traffic noise energy occurs (Fig. 4.1). Note, that the dimensions of the
Airtracker master unit seem to be smaller than the dimensions of the units found in other
realizations [1, 3].

4.3.7 Results of noise monitoring using a wireless sensor network

The sound pressure level in a particular location generally varies due to fluctuations in the
noise levels from the various noise sources in the area. Here we show examples of sensor
network measurements in real conditions.
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a) b)

c) d)

Figure 4.35: The effect of sound scattering on the acoustic pressure field, examples at a)
1.6kHz, b) 3.15 kHz, c) 5kHz, d) 8 kHz.

The contribution of various sources can be used to characterize the noise in the location.
More detailed statistical distributions could potentially help to identify and distinguish
between the sound from a specific activity and from traffic noise. This statement be
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Figure 4.36: The frequency dependence of difference in sound pressure level caused by
scattering.

illustrated by the sensor network deployed in the town of Lovosice, data from which are
shown in this section. The data were transmitted every 15 minutes for a period of 12
months. Each record contains the average value and the maximum value of the sound
pressure levels with an RMS integration time of 1s in dB(A) over the most recent 15
minutes.

Figure 4.37 shows the raw measured data from master unit No.343, representing the
average and maximum values of the sound pressure level over a period of 12 months. It is
clear that this type of a graphical representation of the data is not very useful.
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Figure 4.37: Measured data from master unit No.343.
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Figure Fig. 4.38 presents more a relevant analysis. The histogram of the sound pressure
levels shows the most frequent average and maximum values for the same period. The most
frequent average SPL at this unit was around 70 dB(A)SPL, which is quite high. However,
the maximum SPL does not exceed 90 dB(A)SPL, which can also be useful information.

Figure 4.38: Histogram of sound pressure levels over a year (sensor node No.343).

The interpolated levels averaged over one hour during one day (y-axis) represented
using the colormap in dB(A)SPL are shown in Figure Fig. 4.39 for the same period of
12 months (x-axis). The analysis shows the evaluation of the noise during each day of
the 12-month period. Note that the white spots represent periods when no records were
obtained from the sensor unit due to communication issues.

Figure 4.39: Interpolated sound pressure levels (sensor node No.343).

Fig. 4.40 shows an evaluation of the noise during the hours of the days of the week
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averaged over the whole one-year period. The analysis shows clear differences between
the night and day hours, but there are almost no differences between working days and
weekends.
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Figure 4.40: Averaged sound pressure levels over a week (sensor node No.343).

An evaluation of the traffic noise during each day of the 12-month period is shown in
Fig. 4.41. The dark spots represent periods when no records were obtained from the sensor
unit. There is no obvious pattern in the noise fluctuation, or rather the sound pressure
levels are quite homogeneous over the course of a year in the measured area.
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Figure 4.41: Day averaged sound pressure levels over a year (sensor node No.343).
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Chapter 5

Conclusions and perspectives

5.1 Conclusions

This thesis aims to model an electroacoustic MEMS transducer with a moving square
shaped clamped plate loaded by a thin fluid gap and a peripheral cavity. Several approaches
are presented that involve an integral method for describing the acoustic pressure in the
fluid gap and that require an analytical expression of the eigenfunctions of the square
shaped clamped plate.

The first proposed approach aims to find an approximate form of the eigenfunctions of
the moving electrode, which are searched for in the form of two-dimensional cosine series.
The coefficients of the series are derived from a simple numerical solution for the moving
electrode displacement without the loading acoustic elements.

The second approach presented in this study proposes an improved version of the ap-
proximated eigenfunctions of the rectangular clamped plate. It starts from the product of
the orthonormal eigenfunctions ϕ(x) and ϕ(y) for elastic beams in x and y directions, which
satisfy the boundary conditions of the clamped plate. The relevant point here is that, with
this construction of the solution, satisfaction of the boundary conditions follows automat-
ically from the fact that each of the eigenfunctions satisfies these boundary conditions.
The use of the cosh functions leads to faster convergence. The second approach expressing
the eigenfunctions is used in modelling the micromachined transducer with a perforated
plate as a moving electrode. Perforation of the moving electrode is advantageous from the
point of view of the MEMS fabrication process. The integral formulation for the acoustic
pressure in the fluid gap needed to be adapted in order to take into account the coupling
between this pressure and the incident acoustic pressure through the holes.

The third approach introduced in the thesis employs the same functions as in the second
approach. Nevertheless, the proposed method is fully analytical and does not require any
approximation from the numerical calculations. The "internal elastic plate coupling" also
needs to be considered here. The method proposed here provides analytical results with
precision in the frequency range of interest that is comparable with the precision of the
numerically calculated results, but with much lower computational costs. In addition, this
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approach can be useful not only in the domain of miniaturized transducers, but also in a
wide range of other devices.

The measurements on the elements of the first version of the noise sensor prototype
developed at the Department of Security Technologies and Engineering (the microphone
alone and the full electroacoustic analog path) have shown that the sensor complies with the
requirements for class II sound level meters in almost the whole frequency range of interest
except at very low frequencies, where the validity of the measurement is questionable. The
pressure sensitivities of the microphones used in the sensors show major dispersion (12.7
dB). Subsequent measurements proved that the variation in sensitivity depends strongly
upon the variation of the equivalent polarization voltage originating in the electret layer,
while the effect of the air gap thickness and the tension of the diaphragm is found to be much
smaller. From the practical point of view, this means that applying a calibration constant
(measured for each microphone) in the microcontroller is sufficient to compensate for the
differences between the microphone samples. No major, variations in the shape of the
frequency response are expected. In addition, good agreement was observed between the
measured frequency responses of the measured microphones and the theoretical sensitivity
curves calculated using the equivalent circuit with the estimated parameters.

A set of measurements was also carried out on a new version of the noise sensor pro-
totype that has been developed recently at the Department of Security Technologies and
Engineering. This noise sensor contains a low-cost MEMS microphone with digital output
and a microcontroller (PIC32), where all of the remaining operations (A-filter, RMS calcu-
lation, conversion to dB SPL, output on SPI interface) are performed. The measurements
investigated whether increased precision and reduced variation between the individual sam-
ples have been achieved. The results of the experiments confirm that the new version of
the prototype produces superior results.

5.2 Perspectives
Further research will include a detailed examination of another MEMS microphone
(ICS-43432 could potentially be replaced in the noise sensor by MEMS microphone
SPH0645LM4H-1 designed by Knowles), which has a flatter frequency response.

Possible future research within a theoretical framework could proceed from the basis
that only the first mode of the flexible perforated plate vibration has been taken into
account here in using the analytically expressed approximation of its first eigenfunction
calculated numerically. This is sufficient in the audio frequency range, but further research
should focus on improved expression of the eigenfunctions to provide better results at
frequencies above the first resonance, where higher modes of perforated plate vibration
occur.

Another path of future research might be in modelling MEMS microphones with more
complex shapes of the plates (the residual stress should be taken into account), and also
in modelling some other forms of MEMS microphones (microbeams, elastically supported
plates, etc.).
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Appendix A

Calculated Fourier coefficients for 4
eigenmodes

A.1 Non perforated plate

No. s1 s2
c11,11 0.488190745771422 7.21754150443867e− 7
c31,11 −0.0737463299597355 2.22534579917150e− 6
c51,11 −0.0171173798396425 6.07182707413524e− 7
c71,11 −0.00644092129888515 2.41794961950658e− 7
c91,11 −0.00307494871380977 1.18161536696161e− 7
c11 1,11 −0.00169711723790527 6.59485320057648e− 8
c13 1,11 −0.00103278098231332 4.03756342326086e− 8
c31,11 −0.0737463280700063 2.22534685208489e− 6
c33,11 0.00936706525881666 −1.06703190864108e− 6
c35,11 0.00245237204276270 −3.05958119225808e− 7
c37,11 0.00105423349210170 −1.27417949228831e− 7
c39,11 0.000547147168682302 −6.47518517328576e− 8
c3 11,11 0.000317693033198022 −3.72316151754252e− 8
c3 13,11 0.000199617307025568 −2.32962396165433e− 8
c51,11 −0.0171173785937966 6.07182240649809e− 7
c53,11 0.00245237374318393 −9.53731853933569e− 8
c55,11 0.000504432021800605 −9.53731853933569e− 8
c57,11 0.000202055483703816 −4.10322340978887e− 8
c59,11 0.000109026261566279 −2.16992345318963e− 8
c5 11,11 6.67880241559604e− 5 −1.30098728762035e− 8
c5 13,11 4.38957723646164e− 5 −8.43960442924219e− 9
c71,11 −0.00644092167331908 2.41795085264055e− 7
c73,11 0.00105423245041900 −1.27418157073933e− 7
c75,11 0.000202056136518160 −4.10320728243872e− 8

No. s1 s2
c77,11 6.58044736640952e− 5 −1.69085332954968e− 8
c79,11 3.18410648116090e− 5 −8.62130755264389e− 9
c7 11,11 1.92482769507957e− 5 −5.15587565494236e− 9
c7 13,11 1.29313329223793e− 5 −3.40668629845524e− 9
c91,11 −0.00307495046344632 1.18161495734019e− 7
c93,11 0.000547146267945613 −6.47519538780576e− 8
c95,11 0.000109026060402378 −2.16992411094820e− 8
c97,11 3.18420619243436e− 5 −8.62118873402473e− 9
c99,11 1.29048897489829e− 5 −4.05326521224082e− 9
c9 11,11 6.95931111603567e− 6 −2.26860325258746e− 9
c9 13,11 4.49420158222402e− 6 −1.45697222042485e− 9
c111,11 −0.00169711713217699 6.59483578304569e− 8
c113,11 0.000317692494238966 −3.72314862180483e− 8
c115,11 6.67887937641841e− 5 −1.30099079897188e− 8
c117,11 1.92481264772312e− 5 −5.15588728791365e− 9
c119,11 6.95985380240264e− 6 −2.26853463250392e− 9
c11 11,11 3.18237568446832e− 6 −1.15357735914955e− 9
c11 13,11 1.83442979303910e− 6 −6.81895687826475e− 10
c131,11 −0.00103278041942973 4.03758858173053e− 8
c133,11 0.000199618902747248 −2.32963059504384e− 8
c135,11 4.38954208741069e− 5 −8.43957327062881e− 9
c137,11 1.29311950549552e− 5 −3.40669627015491e− 9
c139,11 4.49399519412351e− 06 −1.45698922163830e− 09
c1311,11 1.83500882240605e− 06 −6.81870930991587e− 10
c1313,11 8.95910792298620e− 07 −3.62678479126576e− 10

Table A.1: The example of the fit of the Fourier coefficients for mn=11.
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Coefficients for modes 13 and 31 was found to be same for any plate dimentions. There-
fore there was no need in fitting them.

No. c
c11,13 −6.67737042523633e− 05
c31,13 −4.785039725658190e− 04
c51,13 1.112825047752510e− 04
c71,13 3.385005727043630e− 05
c91,13 1.547472333264460e− 05
c11 1,13 8.424210311062590e− 06
c13 1,13 5.098644735906600e− 06
c31,13 7.289941033761830e− 06
c33,13 4.63610843367581e− 05
c35,13 −9.69194541077473e− 06
c37,13 −3.13344223105061e− 06
c39,13 −1.51507149725621e− 06
c3 11,13 −8.57377032777803e− 07
c3 13,13 −5.33060641827742e− 07
c51,13 2.90259372723181e− 06
c53,13 1.63885421277902e− 05
c55,13 −3.33871340731213e− 06
c57,13 −1.01050839312636e− 06
c59,13 −4.96599912246719e− 07
c5 11,13 −2.91816985150812e− 07
c5 13,13 −1.87597442735206e− 07
c71,13 1.03237795384463e− 06
c73,13 7.49385173136028e− 06
c75,13 −1.59405375305903e− 06
c77,13 −4.38962219543678e− 07

No. c
c79,13 −2.00890637521799e− 07
c7 11,13 −1.16661293775300e− 07
c7 13,13 −7.62005396092702e− 08
c91,13 4.96009500028628e− 07
c93,13 3.94592369256562e− 06
c95,13 −8.95370810082374e− 07
c97,13 −2.38426650077578e− 07
c99,13 −1.00304276166359e− 07
c9 11,13 −5.42367497260328e− 08
c9 13,13 −3.47116827018831e− 08
c111,13 2.75120695568125e− 07
c113,13 2.30011325327934e− 06
c115,13 −5.51746067548069e− 07
c117,13 −1.48088905029414e− 07
c119,13 −5.93105872978073e− 08
c11 11,13 −2.98722435621562e− 08
c11 13,13 −1.76823742505975e− 08
c131,13 1.67872349650443e− 07
c133,13 1.44680525550709e− 06
c135,13 −3.62013395612060e− 07
c137,13 −9.97047402138945e− 08
c139,13 −3.91545874916337e− 08
c1311,13 −1.87825583398677e− 08
c1313,13 −1.05052972571717e− 08

Table A.2: Calculated Fourier coefficients for mn=13.
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No. s1 s2
c11,33 −0.00398090971332984 2.87183254824234e− 08
c31,33 −0.0420252206223733 1.76254302310435e− 07
c51,33 0.00999918685432539 −4.16001822847450e− 08
c71,33 0.00281649522310030 −3.40832009532651e− 08
c91,33 0.00131617894906873 −1.94755452060153e− 08
c11 1,33 0.000725312591171632 −1.14761641104847e− 08
c13 1,33 0.000441645179998452 −7.47217013386350e− 09
c31,33 −0.0420252171920166 1.76254607094884e− 07
c33,33 −0.476156895841691 −4.65383027908614e− 07
c35,33 0.0901868918808722 −9.14619606782036e− 07
c37,33 0.0323034605226375 −3.48961012006396e− 07
c39,33 0.0160345589962290 −1.86520671760075e− 07
c3 11,33 0.00916066162103240 −1.12150674758224e− 07
c3 13,33 0.00571497123710600 −7.22117077917541e− 08
c51,33 0.00999921413770601 −4.15457996831938e− 08
c53,33 0.0901868929124563 −9.14598494866312e− 07
c55,33 −0.0156217992966271 4.42962243820755e− 07
c57,33 −0.00564490877700571 1.75557178667705e− 07
c59,33 −0.00292696819438076 9.25811873618122e− 08
c5 11,33 −0.00174553515452202 5.47435160072980e− 08
c5 13,33 −0.00112763515513656 3.49550112244560e− 08
c71,33 0.00281647462817071 −3.41153959045479e− 08
c73,33 0.0323034591419585 −3.48955436035397e− 07
c75,33 −0.00564491125796605 1.75567566020794e− 07

No. s1 s2
c77,33 −0.00190705728715948 7.69696609741327e− 08
c79,33 −0.000959486575507188 4.29311735104329e− 08
c7 11,33 −0.000574888412155458 2.63401672351434e− 08
c7 13,33 −0.000378521242779634 1.71077070131027e− 08
c91,33 0.00131618686717522 −1.94691557542368e− 08
c93,33 0.0160345523022928 −1.86539613449221e− 07
c95,33 −0.00292697365111587 9.25858943731007e− 08
c97,33 −0.000959494141418017 4.29352024921190e− 08
c99,33 −0.000456683182729847 2.52617726575361e− 08
c9 11,33 −0.000263671160839958 1.59429176117693e− 08
c9 13,33 −0.000171691278974817 1.06600395406921e− 08
c111,33 0.000725307604138401 −1.14855365571149e− 08
c113,33 0.00916066193056145 −1.12147391554004e− 07
c115,33 −0.00174554339236310 5.47331694553856e− 08
c117,33 −0.000574891734905042 2.63402708161837e− 08
c119,33 −0.000263677628030128 1.59445750958518e− 08
c11 11,33 −0.000144886381791387 1.04027079942212e− 08
c11 13,33 −9.08698186057590e− 05 6.98852093834848e− 09
c131,33 0.000441639749150563 −7.46861213467608e− 09
c133,33 0.00571496188090708 −7.22173575881849e− 08
c135,33 −0.00112763035590078 3.49538943160926e− 08
c137,33 −0.000378521996313767 1.71028364909655e− 08
c139,33 −0.000171693074158633 1.06621216469665e− 08
c1311,33 −9.08789916396711e− 05 6.98725566533366e− 09
c1313,33 −5.44095286615958e− 05 4.84608732579676e− 09

Table A.3: The example of the fit of the Fourier coefficients for mn=33.
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A.2 Perforated plate

No. c
c11,11 1.04807751064599
c31,11 0.0142971369156299
c51,11 0.00180972134580043
c71,11 0.000339039037047805
c91,11 5.11886167190213e− 05
c11 1,11 −1.91142395231611e− 05
c13 1,11 −3.41869137986796e− 05
c31,11 0.0142524202590173
c33,11 −0.00332162565461653
c35,11 −0.00102566474952723
c37,11 −0.000332752278644111
c39,11 −0.000125141152834547
c3 11,11 −5.45844813321501e− 05
c3 13,11 −2.61262165799268e− 05
c51,11 0.00178027429191334
c53,11 −0.00102572522523699
c55,11 −0.000474601238265698
c57,11 −0.000198380502067025
c59,11 −8.69412595996356e− 05
c5 11,11 −4.11460501403820e− 05
c5 13,11 −2.10405673922715e− 05
c71,11 0.000347056510440440
c73,11 −0.000336023966506700
c75,11 −0.000199501984906411
c77,11 −9.96565997735157e− 05

No. c
c79,11 −4.95233875228989e− 05
c7 11,11 −2.65700295662084e− 05
c7 13,11 −1.34416879561769e− 05
c91,11 3.98577276907604e− 05
c93,11 −0.000125745706451521
c95,11 −8.53849552823899e− 05
c97,11 −4.95585386805969e− 05
c99,11 −2.78835952720372e− 05
c9 11,11 −0.000102347362568194
c9 13,11 −5.59242414752907e− 05
c111,11 −2.21846599307364e− 05
c113,11 −5.51135461535711e− 05
c115,11 −4.05511338192234e− 05
c117,11 −2.63030839462802e− 05
c119,11 −1.54999571081649e− 05
c11 11,11 −9.59673588217139e− 06
c11 13,11 −5.68383880011744e− 06
c131,11 −3.25998854904130e− 05
c133,11 −2.63188772048206e− 05
c135,11 −2.03137992661928e− 05
c137,11 −1.41628079014941e− 05
c139,11 1.43100703964290e− 06
c1311,11 −1.70409878423349e− 06
c1313,11 4.29244279652475e− 07

Table A.4: Calculated Fourier coefficients for mn=11 (a = 0.5 · 10−3m)



96 APPENDIX A. CALCULATED FOURIER COEFFICIENTS FOR 4 EIGENMODES

No. c
c11,13 −0.01386009839898147
c31,13 1.045962023924494
c51,13 0.005640082661587015
c71,13 9.324765245784676e− 4
c91,13 4.0955124617555475e− 5
c11 1,13 −1.616849772356883e− 4
c13 1,13 −1.8575320879015182e− 4
c31,13 −0.006161614623744604
c33,13 0.06604605423884422
c35,13 −0.0015478055340508098
c37,13 −6.044758324041494e− 4
c39,13 −2.6184664653500743e− 4
c3 11,13 −1.2191777658351821e− 4
c3 13,13 −6.856562161350114e− 5
c51,13 −0.001679006478282459
c53,13 0.01347448505715955
c55,13 −0.00113647598686944
c57,13 −5.398034834671719e− 4
c5 11,13 −2.554735144263518e− 4
c5 13,13 −1.3032586387997405e− 4
c71,13 −7.155024628023731e− 5
c73,13 −4.612193105135955e− 4
c75,13 0.0039256330452609785
c77,13 0.0039256330452609785

No. c
c79,13 −3.4554049965732347e− 4
c7 11,13 −1.8994843188372613e− 4
c7 13,13 −1.0354783220188967e− 4
c91,13 −5.752332067375438e− 5
c93,13 −1.5496230872434117e− 4
c95,13 0.00135621501509748
c97,13 −2.7977422600839933e− 4
c99,13 −1.9460964451622855e− 4
c9 11,13 −1.2021469140615107e− 4
c9 13,13 −4.2121837462063557e− 4
c111,13 −2.706654091986014e− 4
c113,13 −6.475155256234491e− 5
c115,13 5.43734059988866e− 4
c117,13 −1.48219431347573e− 4
c119,13 −1.1097977961562195e− 4
c11 11,13 −7.373607757828233e− 5
c11 13,13 −5.114229464518724e− 5
c131,13 −3.389301175924554e− 5
c133,13 −3.2807223571326145e− 5
c135,13 2.361907784687748e− 4
c137,13 −7.718525273482814e− 5
c139,13 −6.0573551354565225e− 5
c1311,13 1.1548699064095416e− 5
c1313,13 −7.186100692208483e− 6
c1313,13 1.5418706994935512e− 7

Table A.5: Calculated Fourier coefficients for mn=13 (a = 0.5 · 10−3m)
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No. c
c11,31 0.01387809945563094
c31,31 −0.0018292698768895125
c51,31 0.001620696212191238
c71,31 4.4962047936946624e− 4
c91,31 1.5955223141127491e− 4
c11 1,31 7.01383828927337e− 5
c13 1,31 3.1777340498011816e− 5
c31,31 −1.0459427657365976
c33,31 −0.06664227798427742
c35,31 −0.013532455909353888
c37,31 −0.0038867813800467377
c39,31 −0.0013688228774160712
c3 11,31 −5.464382649936792e− 4
c3 13,31 −2.3357829879623381e− 4
c51,31 −0.005448935914227867
c53,31 0.0014652438473695612
c55,31 0.001132045537597591
c57,31 5.868603011952376e− 4
c59,31 2.8324636593608603e− 4
c5 11,31 1.4735936118090648e− 4
c5 13,31 8.029610273034155e− 5
c71,31 −8.718413818525627e− 4
c73,31 5.77797668948919e− 4
c75,31 5.372407346228706e− 4
c77,31 3.4351934525776636e− 4

No. c
c79,11 1.9634326599968067e− 4
c7 11,31 1.1151601634043005e− 4
c7 13,31 6.541862753917567e− 5
c91,31 −2.718947004001723e− 5
c93,31 2.399361107398117e− 4
c95,31 2.640804401951214e− 4
c97,31 1.948437006398449e− 4
c99,31 1.2192918158470569e− 4
c9 11,31 2.624236030659881e− 4
c9 13,31 1.9902454404194082e− 4
c111,31 1.8242706615778748e− 4
c113,31 1.1542298202362265e− 4
c115,31 1.284686011771757e− 4
c117,31 1.0558505491976287e− 4
c119,31 7.076698604727349e− 5
c11 11,31 5.1011041454924356e− 5
c11 13,31 3.445898615473438e− 5
c131,31 1.921568115055954e− 4
c133,31 7.130571252279952e− 5
c135,31 6.579755168273157e− 5
c137,31 6.0998298687631704e− 5
c139,31 −1.1422610778644582e− 5
c1311,31 8.28522710271449e− 6
c1313,31 −3.9359340331396015e− 7

Table A.6: Calculated Fourier coefficients for mn=31 (a = 0.5 · 10−3m)
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No. c
c11,33 0.00523214854931386
c31,33 −0.06656969184006789
c51,33 −0.0067883015453799305
c71,33 −0.0015753928978537802
c91,33 −5.670381024377198e− 4
c11 1,33 −2.2913313021308683e− 4
c13 1,33 −1.0735118829407634e− 4
c31,33 −0.06666386929818931
c33,33 1.0418779416448622
c35,33 0.04467412539282639
c37,33 0.01237400383746014
c39,33 0.00439706843847553
c3 11,33 0.001776022672821517
c3 13,33 7.68772145437416e− 4
c51,33 −0.006829343772764762
c53,33 0.044544493704352824
c55,33 −8.827935297078511e− 4
c57,33 −8.998662670052963e− 4
c59,33 −5.293558579865438e− 4
c5 11,33 −2.8853943923067303e− 4
c5 13,33 −1.6983358148758615e− 4
c71,33 −0.0015753093063171839
c73,33 0.012364426768610257
c75,33 −8.942469858831488e− 4
c77,33 −7.859554088437906e− 4

No. c
c79,33 −4.979033469804656e− 4
c7 11,33 −2.999208052662734e− 4
c7 13,33 −1.8167688459170766e− 4
c91,33 −5.505224438993467e− 4
c93,33 0.004421205417406707
c95,33 −5.320013937798329e− 4
c97,33 −5.114566558906201e− 4
c99,33 −3.545321223359861e− 4
c9 11,33 −7.312724534400147e− 4
c9 13,33 −6.055877322453647e− 4
c111,33 −2.2152568070663015e− 4
c113,33 0.0017589243214572628
c115,33 −2.8597706916151677e− 4
c117,33 −2.957463761403997e− 4
c119,33 −2.3260108224379468e− 4
c11 11,33 −1.6650352968780873e− 4
c11 13,33 −1.1487929538559836e− 4
c131,33 −1.0678677578335759e− 4
c133,33 7.623827988986329e− 4
c135,33 −1.7308038429235395e− 4
c137,33 −1.7919681349800698e− 4
c139,33 4.821241935536352e− 5
c1311,33 −2.6843810238848457e− 5
c1313,33 −4.931066705055315e− 6

Table A.7: Calculated Fourier coefficients for mn=33 (a = 0.5 · 10−3m)
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Appendix B

Prior noise sensor prototype schematics
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Figure C.1: Present noise sensor schematics
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