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Abstract and contributions

This dissertation thesis deals with the threat of side-channel attacks to all implementations
of cryptographic algorithms, which is an extensively researched area. The main aim of this
thesis is non-provable secure countermeasures, which, despite that fact, make side-channel
attacks much harder, sometimes practically infeasible.

We propose the usage of known countermeasures for more complex ciphers and our new
countermeasure scheme for hardware implementations.

We have secured AES and Serpent by countermeasures proposed for PRESENT cipher.
Our implementations have no leakage being evaluated by first-order Welch’s t-test and
have resisted second-order DPA/CPA attacks.

The new countermeasure proposed by us is called Dummy Runds, and it is straight-
forwardly applicable to any round-based cryptographic algorithm. Dummy Rounds are a
hardware scheme for the implementation of shuffling when shuffling is a common counter-
measure for software implementations.

In particular, the main contributions of the dissertation thesis are as follows:

1. Second-order DPA and CPA attacks resistance implementations of AES and Serpent:
This work describes an implementation of AES and Serpent secured with previously
proposed countermeasures implemented for PRESENT. This work evaluates the im-
plementations as leakage-free using the non-specific univariate first-order Welch’s
t-test. In later work, these implementations resisted second-order DPA and CPA
attacks.

2. Hardware Dummy Rounds countermeasure scheme: We present our proposed and
continually evolved Dummy Rounds countermeasure. Its results are competitive
with some other solo-used previously proposed countermeasures. The advantages of
our Dummy Rounds are a straightforward approach to implementing the scheme and
an implicit trade-off between security and area overhead.

3. Dummy Rounds linear overhead regardless of an implemented algorithm: Although
Dummy Rounds has high area overhead in comparison with other countermeasures
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considering light-weight ciphers (PRESENT is the case study), it has good area
overhead results in comparison with the same countermeasures considering more
complex ciphers.

4. Bringing attention to the control part of the circuit, as opposed to the usual focus
on side channels of the datapath, optimization of the control algorithm and safe
controller design.

Keywords:
Security, Side-channel analysis, Side-channel countermeasures, Dummy rounds, Field

programmable gate arrays.
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Abstrakt

Tato práce se zabývá útoky postranńımi kanály, které představuj́ı hrozbu pro všechny
kryptografické implementace a jsou rozsáhle zkoumanou oblast́ı. Hlavńı zkoumanou oblast́ı
práce jsou taková protiopatřeńı, jejichž bezpečnost nelze prokázat, ale navzdory tomu dělaj́ı
útoky výrazně těžš́ımi až prakticky neuskutečnitelnými.

Představujeme použit́ı již známých protiopatřeńı pro zabezpečeńı složitěǰśıch šifer,
a také navrhujeme naše nové protiopatřeńı pro hardwarové implementace.

Zabezpečili jsme šifry AES a Serpent protiopatřeńımi použitými pro šifru PRESENT.
Z našich implementaćı podle testu Welchovým t-testem prvńıho řádu neuniká žádná infor-
mace a odolaly také útok̊um Rozd́ılovou a Korelačńı odběrovou analýzou druhého řádu.

Naše nové protiopatřeńı se jmenuje Dummy Rounds a je snadno implementovatelné pro
libovolnou šifru založenou na rundovém schématu. Dummy Rounds je schéma pro použit́ı
v hardwaru, které spadá do kategorie protiopatřeńı Shuffling, jinak běžné pro softwarové
implementace.
Kĺıčová slova:

Bezpečnost, Analýza postranńıch kanál̊u, Protiopatřeńı proti útok̊um postranńımi
kanály, Dummy rounds, Programovatelná hradlová pole.
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Chapter 1

Introduction

Technology, especially communication technologies, has experienced rapid development in
past decades. Personal computers and various smart devices have become a part of our lives
on a daily basis, both professionally and personally. We often do not even realise all these
electronic smart devices containing chips, such as payment cards, biometric passports, etc.
Many other smart devices are connected to the Internet for various reasons, which exhibit
our privacy.

1.1 Motivation

As implied above, we should give special attention to ensuring the security of computer
systems and their users. We know various methods to ensure confidentiality, integrity,
availability, and non-repudiation of data with efficiency, ease of use, and cost in mind.
Nowadays, widely used cryptographic algorithms are considered secure from the crypto-
analytic point of view. However, implementations of these and other algorithms may leak
sensitive information through the side channels of the physical device.

Side-channel attacks exploit side channels, e.g., device power consumption and data
dependency. Thanks to information leakage, secret information such as cipher keys can
be extracted, compromising the whole system. The threat is even bigger considering IoT
devices, where the attacker can easily get physical access to a device. Various counter-
measures were proposed as a reaction to the existence of side-channel attacks. They can
be implemented in both hardware and software and have various levels of security, perfor-
mance, and cost overheads. Ideal countermeasures should have low overhead and cost and
offer straightforward implementation for various algorithms, possibly in both software and
hardware.
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1. Introduction

1.2 Problem Statement

Side-channel attacks are a threat to all cryptographic implementations. Many countermea-
sures have been proposed, offering various trade-offs considering cost, efficiency, security,
effort required for implementation and other aspects of those countermeasures. Also, prov-
ably secured countermeasures at arbitrary order are known. However, their other spec-
ifications, such as overhead, are often infeasible. Therefore, an approach that does not
offer proven security but makes things harder enough for an attacker can be an acceptable
solution. These solutions can apply to relatively simple devices, especially in the industry.
Considering the hardness of performing the attack, even if not proveable impossible, the
attack can be, e.g., practically infeasible or at least too expensive, that the effort is higher
than the returns from a successful attack.

1.3 Goals of the Dissertation Thesis

1. Implementation of complex cryptographic algorithms secured by known countermea-
sures used primarily for lightweight algorithms.

2. Proposal of new countermeasure implemented in hardware offering better or at least
competitive combination of security, overhead and implementation complexity.

3. Examine countermeasures used in software implementations and the transferability
of their principles to hardware implementations.

1.4 Structure of the Dissertation Thesis

The thesis is organized into . . . chapters as follows:

1. Introduction: Describes the motivation behind our efforts together with our goals.
There is also a list of contributions of this dissertation thesis.

2. Background and State-of-the-Art : Introduces the reader to the necessary theoretical
background and surveys the current state-of-the-art.

3. Dynamic Logic Reconfiguration Based Side-Channel Protection of AES and Ser-
pent : Describes our implementation of known hardware countermeasures used in
lightweight cryptographic algorithms for more complex algorithms published in [A.3].

4. Dummy Rounds Scheme: Presents Dummy Rounds scheme – our side-channel anal-
ysis hardware countermeasure published iteratively in [A.1, A.2, A.4, A.5].

5. Conclusions : Summarizes the results of our research, suggests possible topics for
further research, and concludes the thesis.

2



Chapter 2

Background and State-of-the-Art

In this chapter, we present the work related to the topic of this thesis. In Section 2.1, we
present an overview of side-channel attacks with a bigger focus on non-profiled attacks.
Section 2.2 presents an overview of countermeasures against side-channel attacks. Counter-
measures used in programmable hardware are described more deeply. Section 2.3 presents
a methodology for leakage assessment of hardware implementations focused on non-specific
Welch’s t-test as a method used in our research.

Side-channel analysis is a group of attacks that uses digital systems’ physical properties
to compromise them. In this way, even algorithms such as Rijndael/AES [25, 26] or
RSA [79], which are considered secure from the cryptoanalytic point of view and, therefore,
widely used nowadays, can be compromised.

To do so, many side channels can be exploited. Possibly exploitable side channels (extra
information that can be gathered because of the fundamental way of implementaion) in-
clude power consumption [43, 28, 13, 19], electromagnetic radiation [75], temperature [42],
combinational logic delay [83, 109], timing [44], and more. Some side channels are not inde-
pendent, e.g. combinational logic delay is proportionally inversion to the voltage drop (the
difference of the voltage at the start and at the and of combinational logic) [69], and the re-
lationship between a magnetic field and current intensity is described with electromagnetic
induction [90].

We can classify side-channel attacks in many ways, such as active/passive, invasive/non-
invasive or vertical/horizontal [90]. Active attacks manipulate the proper functionality of
the attacked device (e.g., by inserting faults); meanwhile, passive attacks only observe the
device while running without any disturbance. Invasive attacks require the depackaging
of the chip before the attack itself, where the attacker accesses internal parts such as data
buses. Non-invasive attacks do not require anything like that, and all the data an attacker
needs can be collected just by observing and exploiting external access. Vertical attacks use
information from multiple measurements at the same time point, so we need multiple runs
of the device under attack to collect sufficient data (e.g. power traces), when performing
vertical attacks. Then, the measured data is used to resolve the attack, typically with a
statistical method. Horizontal attacks are rare and work rather as the examples of attacks

3



2. Background and State-of-the-Art

against näıve implementations. Considering näıve hardware RSA implementation using
square and multiply exponentiation, we can easily distinguish either square and multiply
(bit value one) or only square operations (bit value zero) are performed for every bit of
exponent. The usage of square and multiply or square only influences the execution time
of the encryption. Also, in some cases, we can directly read the secret key from a single
measured power trace as the square and square and multiply operations form different
patterns [44].

2.1 Side-Channel Attacks

It began in 1999 when Paul Kocher et al. introduced the first two side-channel attacks,
which became a foundation of side-channel analysis research – Simple Power Analysis and
Differential Power Analysis [43]. Till now, power consumption has been the most com-
monly used side channel, which is also the primary focus of our research. This thesis then
focuses on dynamic power consumption side-channel attacks and primarily countermea-
sures against them. However, the majority of attacks described in this thesis can be used
with other side channels than power consumption.

2.1.1 Non-Profiled Attacks

Simple Power Analysis is a way to identify particular encryption operations from just a
few or even a single power trace and reveal the secret information. This attack is es-
pecially efficient against näıve implementations of asymmetric ciphers based on modular
exponentiation like RSA [44], where we can visually identify square and square and mul-
tiply operations. Later, this attack evolved to other types of ciphers, e.g. to exploit key
expansion procedures in AES [51, 26].

Differential Power Analysis – the second attack presented by Kocher et al. [43] – exploits
the fact that the power consumption of the device under attack depends on currently
processed data. This attack presumes that an attacker is able to send arbitrary input data
(e.g. plaintext) to the device and then is able to measure the power consumption during
runs with this data inserted.

The Differential Power Analysis attack starts with measuring the device’s power con-
sumption under attack with random plaintexts at the input. The amount of traces required
for a successful attack depends on the device and the amount of leaked information. The
key is then guessed one part after another in this way:

We use a function of a key and plaintext or ciphertext to compute a hypothetical
intermediate internal value of the implemented encryption algorithm. We compute those
predicted intermediate values for each part of the key (e.g. byte of the key), each key
candidate and each measured encryption. Then, for each combination of key candidate
and part of the key, we split the traces into two sets according to the value of the chosen

4



2.1. Side-Channel Attacks

bit (e.g. LSB). We compute the means of these sets and then the difference of the means1.
When a wrong key candidate is assumed, then the difference will be nearly constant (with
some small noise peaks) and very close to zero (the traces are theoretically uniformly
distributed in both sets). Otherwise, with the correct key candidate, major peaks will
appear at time points where the predicted intermediate value is being processed due to the
bias caused by the fixed bit. In this way, we can extract the whole secret cipher key part
by part.

Differential Power Analysis described by Kocher et al. [43] became the foundation of
a highly researched topic. Since then, many improvements and related topics have been
published. For example, Quisquater and Samyde [75] proposed an attack using electro-
magnetic radiation based on DPA. Messerges et al. [59] proposed a Multi-bit Differential
Power Analysis, where the measured power traces are grouped into two sets by Hamming
weight of predicted hypothetical value. Another approach deals with power consumption
estimates based on its model (e.g. Hamming weight of hypothetical value or Hamming
distance between that value and the consequent value in the previous/next stage of en-
cryption). Then, the correlation between these estimations and measured power traces is
done; thus, this attack is called Correlation Power Analysis [13]. The result of the at-
tack is the key with the highest correlation (absolute value) between the estimation and
traces. Correlation power analysis assumes a linear relationship between the estimation
from a model and the physical observation [24]. Using the Spearman coefficient instead,
this requirement is relaxed to the monotonicity requirement [5].

Gierlichs et al. proposed Mutual Information Analysis, which ranks the key candi-
dates using mutual information between the hypothetical leakage and the measured power
consumption [31]. Mutual information can be interpreted as the amount of information
about leakage from the device under attack obtained by observing its power consumption.
With this attack, the problematic task is to estimate the probability densities of leakage
model functions, whereas with the trivial ones, the attack will always fail [103, 91, 106].
Another attack is Kolmogorov–Smirnov Analysis [103, 105], which, unlike Mutual Infor-
mation Analysis, can be used with a trivial identity leakage model and, therefore, without
precise knowledge about leakage of implementation [105]. In recent years, Differential Deep
Learning Analysis using neural networks was proposed [17]. For the attack itself, various
deep-learning architectures may be used.

2.1.1.1 Higher-Order Analysis

The Higher-Order moment based attack means that a sample is analyzed in a higher sta-
tistical moment [43]. There are two variants, univariate and multivariete. Multivariete
higher-order analysis, combines samples in more time points of a trace, which is help-
ful when the predicted value is processed at different times, typically for sequentional
software implementations or when some hardware timing (hiding in time) countermeasure
(described later in Section 2.2.2) is implemented. Instructions on how to find timing points

1In more recent research, the statistically more correct t-test is used to test distribution averages
instead of the difference of the means.
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2. Background and State-of-the-Art

for multivariete higher order analysis were proposed in [84], highlighting possible problems
with this quite complex task. When the intermediate values are (masked and) processed
in parallel, so they influence the power traces simultaneously, we use univariate fashion
of higher-order analysis. Higher-Order moment based attack are typically realized in a
similar fashion like first-order attacks after the traces are preprocessed as described in [68].

2.1.2 Profiled Attacks

To have a fully controlled identical copy of the device under attack allows profiled attacks
to be performed. The attacker can observe the copy (its side channels) during any required
operation, primarily the identical cryptographic implementation with arbitrary inputs and
keys. These attacks are tailored for a specific device and implementation; thus, the number
of required traces to measure and analyze compared to non-profiled attacks is much lower.
Profiled attacks consist of two phases, where first, thanks to observation, the empirical
leakage model is created, and then the attack with this accurate leakage model is made.
The most known profiled attack is the Template Attack [19, 76].

Also, a lot of Machine Learning-Based Attacks have been proposed, which can solve
a problem without being explicitly programmed to solve that problem. Considering the
side-channel analysis, the learning phase is used to build an empirical model by observing
the device, and then during the solving phase, the real data is evaluated with the usage of
the model. So, profiled side-channel attacks can be reduced to a general classifying task in
the context of machine learning [45]. The attack itself is performed similarly to a Template
attack, and they are often classified as one. The difference is in the model, where a machine-
learning-based classifier is used. Many different machine-based learning classifiers can be
used, such as support vector machines [41, 40, 4], decision trees or random forests [46,
47]. Neural network-based deep learning classifiers are a popular choice considering side-
channel security [8, 39], where both multilayer perceptron [55, 54] and convolutional neural
network [16, 50] can be used to perform a profiling attack.

2.2 SCA Countermeasures

Over the years of side-channel analysis research, many countermeasures against the attacks
were proposed. In this section, we describe them with a focus on the countermeasures
implemented in hardware, as it is the field of this thesis. We also briefly describe some
countermeasures implemented in software, which ideas can be implemented in hardware,
and which inspired our Dummy Rounds described in Chapter 4.

Still, even the correct implementation of proposed countermeasures does not provide
absolute security. The goal of the countermeasures is to make an attack infeasible. It is
made typically by increasing the number of measurements necessary for a successful attack,
making the attack practically unavailable or at least unfavourable in comparison with the
cost of the attack. With increasing computational capacities worldwide, the proposed
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real-world attack example shows that resilience against many measurements would be
needed [49].

The side-channel attack countermeasures can be divided into two basic groups: Masking
and Hiding [52].

2.2.1 Masking

The most common masking method is Boolean masking [18], also multiplicative [34], or
affine masking [30] can be used. With each of these masking techniques used, implementa-
tion of masking countermeasures requires good knowledge of the cryptographic algorithm
because masking randomizes the internal intermediate values of encryption while the result
is still correct. In the ideal case, the intermediate values inside the device appear abso-
lutely random and are independent of the intermediate values of an unmodified encryption
algorithm.

In Boolean masking, which is assumed further in this section, sensitive intermediate
value x is split into d+ 1 shares xi, where

x =
d⊕

i=0

xi. (2.1)

For the splitting, d uniform random masks x1, . . . , xd, where x0 = x⊕ x1 ⊕ · · · ⊕ xd are
used. According to the number of masks d, we call the final implementation d-order masked,
which should be ideally secured against attacks up to d-th order [18, 74] as described
in Section 2.1.1.1. In practice, achieved security is often lower because of unpredicted
weaknesses [53, 61].

When masking a typical cryptographic algorithm, which consists of several linear and
nonlinear operations, some of them have to be changed to preserve the correct result.
With linear operations, it is trivial because the operations with shares can be made inde-
pendently:

f(x) = f(x0 ⊕ · · · ⊕ xd) = f(x0)⊕ · · · ⊕ f(xd). (2.2)

The typical non-linear operation, considering substitution-permutation network-based
ciphers focused on in this thesis, is substitution boxes (S-boxes). The most common
approach is to pre-compute masked S-boxes, which were proposed first for software im-
plementations [60] and later adapted for hardware implementations [36, 82]. One of the
vulnerabilities of these implementations is data-dependent glitches observable during S-
box computations [53]. This problem is solved by glitch-resistant masking schemes, which
were proposed, like Threshold implementation [66, 67, 10], Domain-oriented masking [35]
or Consolidated masking schemes [77]. Threshold implementation is provably secured to
an arbitrary d-th order. However, its required properties for non-linear transformations
(correctness, non-completeness and uniformity) cause huge overhead for implementations
of more complex ciphers with the function of higher algebraic degree [10, 11].
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2.2.2 Hiding

The main objective of hiding is to remove the dependency of processed data and side-
channel output from an attacker’s point of view. However, the information is still present,
therefore hiding. In other words, remove the dependency of processed data and side-channel
output from an attacker’s point of view. There are, in general, two options: how to hide
the value, hiding in amplitude and hiding in time.

Hiding in amplitude is naturally used, especially with hardware implementations, which
are much closer to the physics of the device. Hiding in amplitude generally focuses on the
reduction of signal-to-noise ratio with, e.g. noise generation [48], switching capacitors [85,
73] or pipelining [92]. Another hardware approach helpful in hiding in amplitude is Dual-
Rail Logic [27, 94, 98] or even Quadruple-Rail Logic [99], which can be combined with
precharge logic. Designs using this countermeasure are built with special logic gates with
the same switching activity for any logic transition. The value is given by a combination
of signals on two/four semi-wires, which have the opposite value (their sum is constant),
so the power consumption is constant and independent of internal values. Many schemes
using this principle exist, e.g. WDDL [98, 97] or STTL [87]. An overview of Dual-Precharge
Logic techniques is presented in [27].

Hiding in time is typically achieved by the usage of a specific clock signal or by modifi-
cations of the cryptographic algorithm. The clock signal can be randomized [36] or isolated
into the clock network and so unavailable to an attacker for synchronization [72]. There
can be some random delays added both in hardware way by D flip-flop with a randomized
propagation [15] and software by placing dummy cycles [22] or random delays [23, 100].

2.2.2.1 Shuffling

Although its effect is similar to that of hiding, Shuffling [102] is sometimes, just as in this
thesis, considered a separate category. As it is implemented on the algorithm level, it
is naturally implemented in software (or in hardware as processor extensions). Shuffling
randomizes the algorithm flow and then breaks the dependency of data and leakage, or at
least hides the sensitive value to another time point than an attacker assumes.

Shuffling randomizes the algorithm flow and then breaks the dependency of data and
leakage, or at least hides the sensitive value to another time point than an attacker assumes.
This approach is usually used in software. It can be implemented, e.g. as random order
execution [96, 78], or achieved by processor extensions, making them non-deterministic [7,
56].

The technique called Dummy Rounds appeared before in software implementation [32].
The Dummy Rounds method is similar to some other software countermeasures, such as
Dummy Cycles [22], which is hiding in time, or shuffling methods [96, 102]. Dummy Rounds
were studied, in conjunction with other methods, as a countermeasure against fault and
combined attacks [32, 70, 71]. Usage of Dummy Rounds has been also proposed as a DPA
countermeasure [38]. As some of the previous applications were shown to be flawed [6, 101],

8



2.3. Leakage Assessment

we limited our study to mere DPA. However, the principle is still the same as in the other
software implementations – insertion of dummy round function instructions.

2.2.3 Countermeasures in FPGAs

Considering programmable hardware, especially FPGAs, its reconfigurability is an oppor-
tunity to implement specialized countermeasures. For example, Mesquita et al. in [58]
proposed a coarse grain reconfigurable architecture based on leak-resistant arithmetic [2].
Specific hiding countermeasures can be implemented with temporal jitter [57] or FPGA-
specific design units [36]. Dynamically adjustable decomposition of S-box using a config-
urable look-up table (CFGLUT) reconfiguration can be used as a specific masking tech-
nique [80].

Implementation of some countermeasures described above on FPFA was proposed
in [82]. These countermeasures are

1. S-Box Random Decomposition,

2. Boolean Masking,

3. Register Precharge.

As a case study, the PRESENT [12] cipher was used. Its S-Boxes functions S are
randomly decomposed into two functions R1, R2 in such a way that

∀x,R2(R1(x)) = S(x). (2.3)

The registers are there between functions R1 and R2, so the S-box output is never
stored in a register. The stored values are also masked using Boolean masking described in
Section 2.2.1. Register precharge is then hiding in amplitude method, where a random value
is stored in the registers between storing two consecutive intermediate values. Otherwise,
a leakage by storing the consecutive round inputs can be easily detected by a Hamming
distance (HD) model as

HD(x⊕m, y ⊕m) = HW (x⊕ y). (2.4)

This implementation is used during our research to compare our designs and imple-
mentations.

2.3 Leakage Assessment

Considering the amount of side-channel attack countermeasures proposed in more than
twenty years and described in the previous section, a method for evaluating and comparing
the countermeasures is needed. A näıve approach to mount all the attacks would be time-
consuming and expensive. Instead, the Leakage assessment methodology examines whether
there is an information leakage from the tested device in a more general way, requiring less
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less time and computational resources. The methods described in this section are based on
dividing measurements into two or more sets and examining the difference between those
sets.

Several tests for Leakage Assessment were proposed. First, statistical tests based on
Mutual Information were proposed [20, 21]. These tests require an estimate of the probabil-
ity distribution. Later tests based on Student’s t-distribution were proposed [33]. Welch’s
t-test, one of them, will be described later as the test is used in our research. This test was
also used for leakage assessment without a deeper examination of the procedure in some
works, e.g. [3, 10]. There is an extensive evaluation of leakage assessment using Welch’s
t-test described in [84], and it became a widely used method. Other methods were recently
published, e.g. chi-square test-based [64] or deep learning-based [62]. For all these tests,
the evaluater’s full control over the implementation is assumed.

The Leakage assessment tests can be categorized as specific or non-specific tests. The
specific tests [33] typically evaluate measurements of random uniform plaintext with a
fixed key. These measurements are divided into two or more groups according to the
intermediate value – groups are distinguished by an expected leakage considering the chosen
leakage function and known input plaintext. Hypothetical statistical distinguishability of
the groups suggests an information leakage from the chosen sensitive bit(s), although not
suggesting anything about its usability for an attack.

The non-specific tests [33, 84] then do not target any chosen specific sensitive interme-
diate value but evaluate the traces as a whole. Measurements of an encryption of either
random uniform plaintext or of a pre-selected fixed plaintext are typically used. Such tests
are called random vs. fixed tests. The other option is a fixed vs. fixed test, where two
different pre-selected plaintexts are used. In both options, the measurements of both types
(traces measured into both groups) have to be randomly interleaved to prevent false results
caused by external effects such as environmental noise [84]. Once again, a distinguishability
between the groups of traces suggests an information leakage. Non-specific tests are more
sensitive and general, although, on the other hand, they provide only limited information
about the leakage as they evaluate the traces as a whole.

2.3.1 Non-Specific Welch’s t-Test

In this section, we focus on non-specific, fixed vs. random Welch’s t-test, as it is proposed
in [84] and also used for leakage assessment during our research in this thesis. With a
two-tailed Welch’s t-test, we examine a null hypothesis that two groups’ means are equal;
hence, we use it to test whether traces measured with fixed/random plaintext fit into one
same population. Welch’s t-test is a generalization of the Student’s t-test for populations
with different variances [104]. Welch’s t-test is a univariate moment-based statistic, so the
measurements must be aligned. We can compute the Welch’s statistic t for the two groups
in every sampling point independently as

t =
µ1 − µ2√

s21
n1

+
s22
n2

, (2.5)
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where µ1, µ2 are sample means, s21, s
2
2 are sample variances, and n1, n2 are cardinalities

of the first, respectively the second group. The number of degrees of freedom v then can
be estimated as

v ≈
(
s21
n1

+
s22
n2
)2

(
s21
n1

)2

n1−1
+

(
s22
n2

)2

n2−1

. (2.6)

No assumptions about the implementation are needed when assuming a non-specific test
such as this. We measure traces and divide them into two groups according to the plaintext,
which is fixed or random. To avoid statistically false results, we have to interleave both
sets as mentioned before, e.g. with a coinflip before each measurement. Then, we compute
the results. Under the null hypothesis, the statistic t follows Student’s t-distribution with
v degrees of freedom. At the same time, for simplicity, a threshold ±4.5 or ±5 is usually
defined to reject the null hypothesis without considering the degrees of freedom v. The
threshold roughly corresponds to a significance level α ≤ 10−5. Therefore, having |t| > 5
means that with a significance level α ≤ 10−5, the null hypothesis is rejected, and it
suggests an information leakage (the traces are not from the same population). However,
it says nothing about the leakage and its usability for an attack. Not rejecting the null
hypothesis suggests nothing; most importantly, it does not suggest the implementation is
leakage-free. Welch’s t-test can also be used as a higher-order leakage assessment, which
is realized in the same fashion (using preprocessing) as higher-order attacks described in
Section 2.1.1.1.
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Chapter 3

Dynamic Logic Reconfiguration Based
Side-Channel Protection of AES and

Serpent

In this chapter, we extend the work presented in [82] by using dynamic logic reconfigu-
ration to secure two of the Advanced Encryption Standard (AES) competition finalists,
Rijndael [26] (winner of the competition, nowadays therefore known as the AES) and Ser-
pent [9]. We describe our implementations and the non-straightforward way in which we
tailored the countermeasures in [82] to AES and Serpent. We evaluate the side-channel
leakage and the effectiveness of different countermeasure combinations.

3.1 Theoretical Background

In this work, we intend to secure AES and Serpent using the approach described in [82].
In the following subsections, we first describe both AES/Rijndael and Serpent. Then we
explain the concept of dynamic logic reconfiguration on FPGA, and finally we describe the
implemented and evaluated countermeasures.

3.1.1 AES Finalists: Rijndael and Serpent

Both ciphers share common features [65]. They are iterated substitution-permutation
networks (SPN) with a block size of 128 bits and possible key sizes of 128, 192 or 256
bits. The plaintext (i.e. the data to be encrypted) is transformed into a ciphertext by
iteratively applying a number of operations. Each iteration is called a round. Both ciphers
also describe a method for expanding the secret key into a number of subkeys which are
used as an input to each round.
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3.1.1.1 AES/Rijndael

Rijndael [26] consists of 10, 12 or 14 rounds (depending on the key length). First, the
secret key is XORed with the plaintext. After that, a number of round transformations is
performed. Each round consists of four layers: a non-linear substitution layer (SubBytes,
i.e. 16 parallel applications of an 8-bit substitution box or S-box), two linear mixing layers
(ShiftRows and MixColumns) and a XOR with the round subkey (AddRoundKey). In the
last round, the MixColumns transformation is omitted.

3.1.1.2 Serpent

Serpent [9] consists of 32 rounds. First, an initial permutation is applied and then the
round transformations take place. Each round consists of three layers: a XOR with the
round subkey, a non-linear substitution layer (i.e. 32 parallel applications of one of the
eight specified 4-bit S-boxes, which are different in the consecutive rounds), and a lin-
ear transformation. In the last round, a second XOR takes place instead of the linear
transformation. In the end, the final permutation is applied.

3.1.2 Dynamic Logic Reconfiguration

In FPGAs, combinational circuits are typically implemented using Look-Up Tables (LUTs),
i.e. configurable primitives which store truth tables of k-input Boolean functions f : Bk →
B. Dynamic logic reconfiguration allows for the run-time alteration of the circuit behaviour
by modifying the content of specific look-up tables, while leaving the routing intact. The
reconfiguration of LUTs is done from within the chip itself and can be achieved e.g. by
using a shift register (allowing for serial programming) and a cascade of addressing mul-
tiplexers. In Xilinx FPGAs [107], this functionality is provided by k-input Configurable
Look-Up Tables (CFGLUTs) with a serial configuration input and output (allowing to con-
nect CFGLUTs in separately configurable chains). In Xilinx Spartan-6 FPGAs, 5-input
CFGLUTs are available.

In order to implement dynamically reconfigurable Boolean functions f : Bn → B, where
n > k, multiple k-input CFGLUTs are required in combination with addressing multiplex-
ers (using Boole’s expansion, also referred to as the Shannon expansion [14]). Specifically,
to implement an n-input function using k-input CFGLUTs and 2-to-1 multiplexers, we
need 2n−k CFGLUTs and 2n−k − 1 multiplexers.

Multiple-output Boolean functions f : Bn → Bm can be trivially implemented as m
single-output Boolean functions fi : Bn → B.

3.1.3 Countermeasures

To protect AES and Serpent, we have implemented countermeasures that were proposed
(and evaluated on PRESENT) by Sasdrich et al. in [82]. In this subsection, we briefly
describe these countermeasures.
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3.1.3.1 S-box Decomposition

Since information leakage often occurs based on changing values in registers, and since the
output of the non-linear substitution layer is a frequent target of side-channel attacks, the
S-box decomposition countermeasure is based on avoiding the storage of the S-box outputs
into such registers. This is done by decomposing the S-box into two bijections R1, R2,
where

S-box(x) = R2(R1(x)), (3.1)

and placing the register in between the two bijections. The number of possible n-bit
bijections for R1 is equal to (2n)!. For each option, a bijection R2 can be found such that
Eq. (3.1) holds.

Thanks to dynamic logic reconfiguration, different bijections R1, R2 can easily be used
for every encryption. Starting with R1 being an identity and R2 being the actual S-box,
the bijections for the next encryption are computed by randomly selecting two pairs of
elements in the R1 mapping, swapping them, and recomputing R2 accordingly.

3.1.3.2 Boolean Masking

In order to randomize intermediate values, a random mask is added (XORed) to the data
prior to encryption, and subtracted (i.e. once again XORed) after the encryption. For
the cipher to produce valid results working with masked data, various alterations must be
done.

Boolean masking can be combined with the previously mentioned bijective S-box de-
composition and can once again take advantage of dynamic logic reconfiguration. Two
different random masks m1,m2 are used for every encryption: mask m1 is used outside the
decomposed S-box, and mask m2 is used inside of it. If the substitution layer would be the
only layer in the round, the previously mentioned bijections R1, R2 would get adjusted as
follows:

R′
1(x) = R1(x⊕m1)⊕m2, (3.2)

R′
2(x) = R2(x⊕m2)⊕m1. (3.3)

The function R′
1 first subtracts/removes maskm1, then performs the R1 bijection mapping,

and finally masks this value using m2. The output of this function is stored in the register.
Analogically, the function R′

2 subtracts the mask m2, does the R2 mapping and masks
the result using m1. This way, the same CFGLUTs can be used for both the S-box
decomposition and the masking, saving both area and reconfiguration time.

However, to deal with the linear transformation layers, further alterations to the R′
1, R

′
2

bijections need to be done. We can exploit one of these two facts:

f(x) = f(x⊕ f−1(m))⊕m, (3.4)

f(x) = f(x⊕m)⊕ f(m), (3.5)
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which both hold when f(x) is a linear mapping. These give us two different and fairly
straightforward approaches to take linear transformations f(·) into account.

One option is to alter R′
2 function in terms of Eq. (3.4) so that m1 processed by the

inverse transformation is used to mask the data, allowing to subtract m1 in R′
1:

R′
1(x) = R1(x⊕m1)⊕m2, (3.6)

R′
2(x) = R2(x⊕m2)⊕ f−1(m1). (3.7)

The second option is to usem1 for masking in R′
2, and to alter R′

1 according to Eq. (3.5),
so that m1 processed by the linear transformation gets subtracted:

R′
1(x) = R1(x⊕ f(m1))⊕m2, (3.8)

R′
2(x) = R2(x⊕m2)⊕m1. (3.9)

Notice that further alterations may be required for the first and the last round, de-
pending on the selected approach.

The last obstacle is the subkey XOR layer, which can be considered an affine transfor-
mation. Suppose we have a vector x, which gets XORed with the subkey: x⊕ k. Suppose
we process masked data the same way: (x⊕m)⊕ k, then by subtracting the mask m with
no alterations we have:

((x⊕m)⊕ k)⊕m) = x⊕ k. (3.10)

Therefore, no further alterations need to be done to take the XOR layer into account.

3.1.3.3 Register Precharge

Because the same masks are used for the whole encryption (i.e. for every round), the leakage
occurs in the register, since

HD(x⊕m, y ⊕m) = HD(x, y), (3.11)

where HD(x, y) denotes the Hamming distance between x and y. To avoid this leakage,
the register is duplicated and the processed data are interleaved with random data. This
technique avoids leakage, however, it reduces the throughput of the circuit when it is
implemented using an architecture that is not fully unrolled.

3.2 Secure Cipher Design

In this section, we examine the specifics of both AES/Rijndael and Serpent and we propose
a manner in which these ciphers can be secured against side-channel attacks using the
countermeasures explained in Section 3.1.3.

In order for our implementations to fit into a Xilinx Spartan-6 FPGA device, we take
into account that CFGLUTs with at most 5 input bits are available. When a platform
with smaller CFGLUTs is available, the dynamic logic reconfiguration method can be
implemented using the approach described in Section 3.1.2.

16



3.2. Secure Cipher Design

3.2.1 AES/Rijndael

Rijndael employs an 8×8 S-box, which can be considered as a function S-boxRijndael : B8 →
B8. Therefore, to implement the Rijndael S-box using reconfigurable logic, 8 · 28−5 = 64
(5-input) CFGLUTs and 8 · (28−5 − 1) = 56 (2-to-1) multiplexers are necessary. Moreover,
the S-box decomposition countermeasure suggests the S-box to be split into two bijections
R1, R2 : B8 → B8, which doubles the amount of CFGLUTs and multiplexers in the secured
version. Since the Rijndael algorithm applies 16 S-boxes in parallel, this brings the total
count up to 2048 (5-input) CFGLUTs and 1792 (2-to-1) multiplexers.

The decomposition into two bijections is done in a similar fashion as described in
Section 3.1.3, with the round register being placed in between the two bijections. For the
AES algorithm, we have decided to swap 8 pairs of elements in the R1 bijection after every
encryption (in contrast to the PRESENT 4-bit S-box decomposition in [82], where only
two pairs get swapped).

To implement the Boolean masking countermeasure as described in Section 3.1.3, bi-
jections R′

1, R
′
2 (i.e. the decomposed S-box combined with masking) must be altered. We

choose the option where R′
2 adds the mask m1 and R′

1 subtracts m1 processed by the linear
transformations (see Eq. (3.8)):

R′
1(x) = R1(x⊕MixColumns(ShiftRows(m1)))⊕m2, (3.12)

R′
2(x) = R2(x⊕m2)⊕m1. (3.13)

Note that the data are masked by m1 in the second bijection R2 and that this mask is
subtracted in the following round. Therefore prior to the first round, the input data must
be masked properly. Also, the last round of Rijndael omits the MixColumns operation.
Therefore, in the last round, only ShiftRows(m1) must be subtracted in R′

1, or additional
unmasking of the output must be done (which is our choice).

The implementation of the register precharge requires the register to be duplicated and
the controller to be adjusted appropriately, such that the processed data are interleaved
with random data.

3.2.2 Serpent

Unlike Rijndael or PRESENT, Serpent defines eight different 4 × 4 S-boxes. Each S-
box is used in a different round. One way to implement the S-box decomposition is to
decompose each of these S-boxes into two bijections, resulting in 16 bijections in total.
We have decided for an approach where the first bijection R1 is shared among all S-
boxes, while the other 8 bijections Ri

2, i ∈ {0, .., 7}, implement the eight S-boxes, with the
correct output being selected by a multiplexer. The eight decomposed Serpent S-boxes are
depicted in Figure 3.1. Notice the demultiplexer, which selects the right Ri

2 bijection,
while the other bijections are fed with zeroes. This demultiplexer is necessary to prevent
glitches that lead to information leakage. Since the Serpent S-boxes realize the functions
S-boxiSerpent : B4 → B4, only four CFGLUTs are necessary to implement the bijection.
Given the selected architecture, 4 + 8 · 4 = 36 CFGLUTs are required to decompose all
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Figure 3.1: Serpent S-box Decomposition

eight S-boxes. Since the S-box is applied 32 times in parallel, this results in 1152 CFGLUTs
in total.

Boolean masking is implemented similarly to the Rijndael algorithm, withm1, processed
by the linear transformation, being subtracted in the R′

1 bijection (see Eq. (3.8)). Suppose
the Serpent linear transformation is LSerpent, then:

R′
1(x) = R1(x⊕ LSerpent(m1))⊕m2, (3.14)

R′
2(x) = R2(x⊕m2)⊕m1. (3.15)

Regarding the first round, similarly to the Rijndael approach, appropriate initial masking
of the input data must be performed first. Also, there is no linear transformation in the last
round, therefore, either the unprocessed mask m1 gets subtracted in R′

1, or final unmasking
must be performed.

Register precharge is once again implemented simply by duplicating the round register
and altering the controller appropriately to interleave the processed data with random
data.

3.2.3 Reconfiguration Controller

For every encryption, new bijections are generated (as described in Section 3.1.3), as well
as new masks m1,m2. This requires the CFGLUTs configurations to be computed and
loaded prior to every encryption. The reconfiguration of all CFGLUTs can be done using
different levels of parallelism (the CFGLUTs “programming” I/O can be variously chained,
given its shift register nature).

3.3 Side-Channel Leakage Evaluation

In this section, we present our experimental set-up and a leakage methodology used to
evaluate all combinations of previously described countermeasures.
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3.3.1 Set-up and Methodology

We choose the Sakura-G board [37] with a Xilinx Spartan-6 FPGA as our evaluation plat-
form. AES/Rijndael and Serpent VHDL implementations with a 128-bit key are evaluated.
The power traces are measured using a PicoScope 6406D oscilloscope. Leakage is evaluated
using the non-specific univariate first-order Welch’s t-test as described in [84]. For every
evaluation, 1 million power traces are captured.

The necessary random data (random pairs to be swapped in the bijection, random
masks, register precharge with random values) are generated externally and sent to the
cryptographic device alongside the plaintext. This approach allows us to easily enable or
disable specific countermeasures.

3.3.2 Results

We evaluate every possible combination of the proposed countermeasures:

(a) Unprotected

(b) Register Precharge

(c) Masking

(d) Masking + Register Precharge

(e) S-box Decomposition

(f) S-box Decomposition + Register Precharge

(g) S-box Decomposition + Masking

(h) S-box Decomposition + Masking + Register Precharge

For every implementation, 1 million power traces are measured and processed using a
non-specific first-order t-test, as described earlier. Figure 3.2 depicts the t-values during
the AES encryption and Figure 3.3 depicts the t-values during the Serpent encryption.
The sensitive information leakage is the most prominent for the unprotected versions, as
expected.

It is also visible that different countermeasures and their combinations have various
influence on the significance of the detected leakage. Figures 3.2c and 3.3c show that
a countermeasure based on masking only protects the first round of the cipher, while,
starting from the second round, the leakage is comparable to the unprotected version (cf.
Figures 3.2a and 3.3a). Figures 3.2d and 3.3d suggest that masking becomes more effective
in combination with register precharge (which is expected, as discussed in Section 3.1.3).

Figures 3.2h and 3.3h show results with all three countermeasures combined. As can
be seen, no significant first-order leakage is detected when evaluating these fully protected
implementations. Therefore we need to combine all presented countermeasures to get first-
order secured implementations.
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Figure 3.2: Results of the AES/Rijndael t-test, where the t-value is shown on the vertical
axis and the time samples during encryption are shown on the horizontal axis
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Figure 3.3: Results of the Serpent t-test, where the t-value is shown on the vertical axis
and the time samples during encryption are shown on the horizontal axis
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3.3.3 Second-Order Evaluation

Using the same power traces as we measured evaluating these implementations, Socha et
al. in [88] detected apparent second-order leakage from Serpent encryption, while AES
encryption second-order leakage was barely detectable. Furthermore, to provide more
confidence about the implementation resilience, they attempted to break the protected
AES implementation using second-order DPA and CPA attacks targeting both the first
and last rounds. All attacks failed with 1.25 million power traces available.

3.4 Conclusion

In this chapter, we describe our implementation of countermeasures originally presented
for PRESENT cipher in [82] and described in Section 2.2.3. We implemented these coun-
termeasures for two of the Advanced Encryption Standard (AES) competition finalists,
Rijndael [26] (winner of the competition, nowadays therefore known as the AES) and
Serpent [9]. Leakage of our implementations is evaluated using the non-specific univari-
ate first-order Welch’s t-test as described in [84] for all combinations of countermeasures –
starting with unprotected versions through solo usage of countermeasures ending with fully
protected implementations. As can be seen in the results, no significant first-order leakage
is detected when evaluating implementations fully protected by our countermeasures. This
contribution was published in [A.3].

Socha et al. in [88] presented detected apparent second-order leakage from our Ser-
pent implementation using the same power traces, while AES encryption second-order
leakage was barely detectable. Furthermore, they attempted to break the protected AES
implementation using second-order DPA and CPA attacks targeting both the first and last
rounds and all attacks failed with 1.25 million power traces available.
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Chapter 4

Dummy Rounds Scheme

In this chapter, we present our hardware Dummy Rounds countermeasure scheme. In Sec-
tion 4.1, we describe countermeasures used to inspire our method proposed in [A.1] for
the first time. Then, we describe the initial principle of Dummy Rounds, its architecture
and operations, and the scheme’s control. We present an analysis published in [A.2] of
the scheme in Section 4.2. In the analysis, we examine the architectural parameters of the
scheme, its slot-level model and probabilities throughout the design and scheme flow. Sec-
tion 4.3 presents primarily the final version of Dummy Rounds scheme datapath published
in [A.4] followed by the controller description published in [A.5] in Section 4.4. Section 2.3
evaluates leakage assessment of the Dummy Rounds case study securing PRESENT cipher
followed by the conclusion of this chapter.

4.1 Dummy Rounds Scheme Principle

Cryptographic algorithms are typically iterative; thus, they are implemented by so-called
rounds, where each of them performs similar computations. Common classes of itera-
tive ciphers are Feistel Networks [29] such as DES [93] or, more recently, Substitution-
Permutation Networks [86] such as AES [26] or PRESENT [12]. The similarity greatly
simplifies implementation, yet the iterations can be recognized, and some distinctive time
points can be set as targets for cryptanalysis. One possible countermeasure is to hide them
from an attacker. Our research intends to use additional rounds and randomization as a
method of hiding power consumption, respectively shuffling both described in Section 2.2.2,
preventing side-channel attacks.

The Dummy Rounds hardware SCA countermeasure scheme, as we propose, combines
software hiding in time, shuffling and common hardware hiding of the circuitry power
consumption. There are more parts of hardware design which are executed but their
outputs are randomly used or not used for computation in every single clock cycle. So,
the structure of the design is the same for every clock cycle and power consumption stays
the same. Such a behavior can be seen as a kind of dynamic reconfiguration, used also in
other methods [57, 82, 81] described in Section 2.2.3.
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4. Dummy Rounds Scheme

While the output of the computation in a single clock cycle changes randomly, the
final result stays correct due to round scheduling. Hence, the decision which round to use,
although randomized, must follow an algorithm, which we discuss later in this section.

4.1.1 Architecture and Operation

Let us assume a round-based cipher with C rounds. Also, let us assume that we can design
a hardware implementation of a round so that at least m and no more than M rounds can
be executed in a single clock cycle. Then the Dummy Rounds method can be applied as
in Figure 4.1, where m = 1 and M = 3. Using a fourth input to the multiplexer, m = 0
can be implemented. The round control determines which successive result to use. The
unused round results will also cause switching activity in each clock cycle, but their results
will not be stored in the result register. Constant switching activity is also the principle
of hardware countermeasure called hiding [27, 94, 99]. This method is feasible for both
cipher structures, Feistel Networks [29] and Substitution-Permutation Networks [86].

There are two important design parameters in the Dummy Rounds application. The
maximum number of rounds per clock cycle M determines clock frequency and influences
both time and area overhead. The average number of actually used rounds determines the
(constant) number of clock cycles needed for execution, and hence influences time overhead.

The constant number of clock cycles parameter avoids possible information leakage
caused by extreme random values. Without the parameter, there would be a very small (but
still higher than zero) probability, that the design will compute only one round (or other
value of m parameter) in each clock cycle. In that case, the design could be attacked nearly
as a design without any countermeasure. The only difference is the power consumption of
the next implemented rounds. However, if there are assumptions of the first round values,
the additional rounds can be predicted. The case of encryption using maximum possible
count of clock cycles with M rounds computed is quite similar. With this parameter and
a corresponding controller schedule, such a situation cannot occur.

Let us illustrate the architectural parameters on an implementation of the PRESENT
cipher. The cipher has 31 rounds and one extra sub-key, which is considered to be another
round, so there are total C = 32 rounds. Let us assume the original architecture has one
round per clock cycle, which is common. Let us further assume we decided to implement
M = 3 PRESENT rounds per clock cycle, which is a practical choice in most circumstances.
With this hardware architecture, we need N = 16 clock cycles with 2 actually used rounds
per clock cycle on average. The clock period will be approximately three times longer,
but 16 clock cycles instead of 32 will be needed for an encryption. Therefore, the time
overhead will be approximately 50%. The round logic dominates the design, so that the
upper bound on area overhead is 200%.

4.1.2 Rounds Control

The rounds controller has two tasks. The first one is to assure that the correct number of
rounds are executed within the designed clock count. The other one is to prevent uniform
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4.1. Dummy Rounds Scheme Principle

Figure 4.1: Dummy cycles countermeasure scheme.

computations to occur. In our case, the control is implemented in hardware and should be
as simple as possible.

For the first task, the controller has to monitor the number of clock cycles executed
and the number of used rounds. Let cn be the number of rounds accepted up to the step
n, n ≤ N . Then, obviously,

cn ≤ Mn (4.1)

cn ≥ mn (4.2)

To be able to reach precisely C rounds at step N , the following must hold

cn +m(N − n) ≤ C (4.3)

cn +M(N − n) ≥ C (4.4)

For an example of the space delimited by these inequalities, refer to Figures 4.2 and 4.3.
Notice how a small change in one parameter (m = 0 versus m = 1) can cause a large
change in the controller state space.

When a controller decides at step n to perform sn rounds in the next clock cycle, for
the resulting number cn+1 of accepted rounds, Inequalities 4.3 and 4.4 must also hold, so
that

sn ≤ C −m(N − n− 1)− cn (4.5)

sn ≥ C −M(N − n− 1)− cn (4.6)

These are minimal correctness ensuring requirements. A simple controller may not utilize
the entire space delimited by Inequalities 4.1 thru 4.4. A more sophisticated controller
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can react before Inequalities 4.3 and 4.4 apply and only modify the probabilities of future
round counts to ensure better randomness of the process.

To continue the PRESENT example, M = 3 rounds are computed at each clock cycle.
The output from a randomly chosen round (1 to 3) is stored in the output register. The
round controller keeps the count of already evaluated rounds and clock cycles, so that for
every encryption/decryption, the total clock cycles is 16 (in average, 2 rounds per clock
cycle are evaluated). The controller must ensure that the number cn of rounds accepted
up to the step n remains in the permissible points in Figure 4.2.

With the architectural parameters chosen for the example (3 rounds per clock cycle, 2
rounds on average used in every of 16 clock cycles), there are 5 196 627 ways to evaluate 32
rounds total in 16 clock cycles, while constraint of at least one and at most three rounds
is respected. The number of possible combinations has been counted empirically, as it is
the count of possible sequences of 16 integers from one to three, where their sum is 32.
However, a DPA attack usually targets the first or the last cycle (round) so not all number
sequences are different from the attacker’s point of view.

4.2 Dummy Rounds Scheme Analysis and Optimization

In previous section, we describe the Dummy Rounds scheme to make hardware implemen-
tations of Feistel Networks [29] and Substitution-Permutation Networks [86] more resistant
against Side-channel attacks (SCA) such as Differential Power Analysis (DPA) [43, 1] and
others non-profiled SCA attacks described in Section 2.1.1.

The Dummy Rounds scheme employs the fact that the cipher networks consists of
similar rounds. It further assumes that the implementing hardware can execute M > 1
rounds in a clock cycle.

In each clock cycle, all the M rounds are cascaded. The controller chooses a random
number µ,m ≤ µ ≤ M , where the minimum m is another architectural constant. The
result of the first µ rounds is used as the result of that clock cycle. These rounds are
the active rounds. The results from the rest of the rounds (the redundant rounds) are
discarded, see Figure 4.1.

The randomness of the execution is supposed to hide the real computation from an
attacker. To prevent redundant rounds from leaking data, they process random data
rather than the real data from preceding rounds.

The choice of µ is limited in certain states of the algorithm. It may need to execute all
active rounds in a given number of clock cycles, or there can be lack of unexecuted active
rounds with respect to the minimum m.

In this analysis, we follow all the equations introduced above in section 4.1.2. An
example of the state space resulting from m = 1, M = 3, C = 32, N = 16 is in Figure 4.2.
This is the state space of the tested PRESENT implementation. We can see why clock
cycle 1 is a problem. Due to m = 1, the first clock cycle must execute the first round
as active, and the last clock cycle must execute the 32nd round as active. In the case of
PRESENT, those are the rounds that leak most information [108].
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Figure 4.2: A state space for m = 1, M = 3, C = 32, N = 16. The lines represent
Equations 4.1 to 4.4.

The states of the algorithm, together with transition probabilities, form a Markov chain.
Using the state probabilities, we can calculate the probability that the round r was executed
as active in a given state. In general, these probabilities vary with clock cycle number for
any given round number. The clock cycle with the maximum round execution probability
offers the best point for an attack on the given round. The gist of this contribution is to
design the transition probabilities so that the probability of round execution remains the
minimum possible over the entire computation.

4.2.1 Architectural Parameters

The problem with the first and last rounds follows directly from the fact that m > 0. There
is no freedom and no randomness in the first and last clock cycle. Therefore, we have to
fix m = 0 in all cases. The modified state space is in Figure 4.3.

As a remedy to the leak in clock cycle 0, the original proposal suggest to randomly
postpone the beginning of the computation. This is precisely what can happen withm = 0:
there can be a random number of redundant rounds at the beginning, and then some active
rounds can occur. Therefore, any scheme with m = 0 fulfills this request as a special case.
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Figure 4.3: A state space for m = 0, M = 3, C = 32, N = 16. The lines represent
Equations 4.1 and 4.3.

4.2.2 A Slot-Level Model and Round Control

In the above mentioned Markov chain, the transitions have a regular structure. Let Sn,r be
the state that has executed rounds 1 . . . r in the clock cycle n. From this state, transitions
to states Sn+1,r+m, . . . Sn+1,r+M are possible.

In the original proposal, M rounds are executed serially, and a random output is chosen.
We have to suppose that the attacker can distinguish the execution of a particular round.
Then, instead of N clock cycles, we model K = MN + 1 slots. Then, a yet simpler (but
larger) model can be constructed.

Let Sk,r be the state that has executed rounds 1 . . . r in the slot k. From this state,
only two transitions are possible. Either, the next round will be taken as active, which
leads to the state Sk+1,r+1. Or, the round is redundant, which transits to the state Sk+1,r.
An example is in Figure 4.4.

This model is more general than the round control in the original proposal. That
controller takes m. . .M active rounds, and the rest is discarded, so that only thick lines
in Figure 4.4 can be followed. Practically at no hardware cost, we can obtain finer control,
more random operation and simpler analysis.

The model is still a Markov chain, thanks to m = 0. Without this restriction, it would
lose the Markov property.

We made the following formal step to simplify the expressions describing the model
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Figure 4.4: A part of a slot-level model with m = 0, M = 3

(esp. their indices). With m = 0, the accessible part of the state space is always a
rhomboid. Therefore, we use an alternate coordinate system of rows and columns along
the sides of the rhomboid (Figure 4.4). As in the previous model, the row r corresponds
to the completed sequence 1 . . . r.

The width W of the rhomboid is

W = MN − C − 1 (4.7)

Whereas the architectural parameter M expresses the overhead in hardware, W captures
the overall relative overhead in work effort, and, thus, in energy consumption. The unpro-
tected computation has, of course, M = 1 and W = 1.

4.2.3 Probabilities Analysis

In the above described model, let

◦ sc,r be the probability of the state Sc,r in column c and row r,

◦ pc,r be the probability, that the next round will be active in the state Sc,r,

◦ ρc,r be the probability, that the model will arrive at Sc,r by executing the round r.

Then, the correctness of the computation requires that

p(W, r) = 1, r = 0 . . . C − 1 (4.8)

and
p(c, C) = 0, c = 1 . . .W (4.9)
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The initial state has probability 1, that is,

s1,0 = 1 (4.10)

For chosen probabilities pc,r, c = 1 . . .W − 1, r = 0 . . . C − 1, state and round execution
probabilities can be calculated as

sc,0 = sc−1,0(1− pc−1), c = 1 . . .W (4.11)

sc,r = sc,r−1pc,r−1 + sc−1,0(1− pc−1), c = 1 . . .W, r = 1 . . . C (4.12)

ρc,r = sc,r−1pc,r−1, c = 1 . . .W, r = 1 . . . C (4.13)

The calculation proceeds from bottom row up, and within a row, from left to right. Refer
also to Figures 4.5 and 4.6.

Figure 4.5: State probability derivation in a slot-level model

Figure 4.6: Round execution probability in a slot-level model

4.2.4 Probability Design

Let us consider an attack to round r. The weakest point for this attack is the slot c + r
(in the original coordinates) where the round probability ρc,r is maximum. Yet, the round
r must be executed at some time, that is

W∑
c=1

ρc,r = 1, r = 1 . . . C (4.14)
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For optimum protection, we thus require

ρc,r
!
= 1/W, c = 1 . . .W, r = 1 . . . C (4.15)

Using Equation 4.13, we obtain

pc,r
!
= 1/Wsc,r−1, c = 1 . . .W, r = 1 . . . C (4.16)

Combining Equations 4.11, 4.12 and 4.16, we again define a calculation that proceeds
bottom-up and left-to-right and gives the optimum transition probabilities together with
state probabilities as a by-product. Notice that there is no choice in the process, that is,
all the transition probabilities follow from the requirement in Equation 4.15 and there is
only one solution.

There are explicit formulas for the transition probabilities. It can be proven (by a
rather tedious proof) that the above recurrent computation gives

pc,0 =
1

W − c+ 1
, c = 1 . . .W (4.17)

pc,r = 1, c = 1 . . .W, r = 1 . . . C − 1 (4.18)

This means that the optimum protection executes a number of redundant rounds first,
given by transition probabilities in Equation 4.17. Then, it executes all rounds as active,
and finally executes redundant rounds to the required number of slots. Refer also to
Figure 4.7.

Figure 4.7: Optimum trajectories in a slot-level model

4.2.5 Analysis Results

Section 4.2.4 proves that there is always an optimum solution which satisfies Equation 4.15.
An attack to any round must collect more traces to achieve certain probability, that the

31



4. Dummy Rounds Scheme

desired round has been executed with a given probability in the collected traces. For hit
probability h, the relative increase q in the number of traces is

q =
log(1− h)

log(1− 1/W )
(4.19)

It can be seen that the amount of protection depends on work effort only. The function is,
unfortunately, almost linear in the practical range of work effort, see Table 4.1. With an
average work effort, around 40 times the number of traces are required to collect compared
with the unprotected circuit.

W q W q
2 7 11 49
3 12 12 53
4 17 13 58
5 21 1 4 63
6 26 15 67
7 30 16 72
8 35 17 76
9 40 18 81
10 44 19 86

Table 4.1: Multiples of required traces q as a function of work effort W for h = 0.99

4.3 Final Dummy Rounds Scheme Datapath Design

In this section, we describe our implementation of the Dummy Rounds scheme described
at first in Section 4.1. In this section, we describe further optimizitations solving problems
of the initial implementation and we also implement modifications proposed in analysis of
the scheme described in Section 4.2.

4.3.1 Design A

At first, we have reimplemented Dummy Rounds for PRESENT cipher without any pro-
posed optimizations. We named this version as Design A and we have done several measure-
ments for this design to compare it with first proposed Dummy Rounds implementation.
The leakage assessment scenarios are the same.

4.3.2 Design B

The initial design did not allow a lot of configuration, so we implemented another version
of PRESENT with Dummy rounds countermeasure from the ground up. This time the
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number of valid rounds in each clock cycle was not determined by the in-circuit generator,
but the random values are sent together with plaintext and the key. This modification
gives us the possibility to have one bitstream and use it for more (not so much random)
scenarios. We have also implemented an option of the first round as dummy one. It
that case, the intermediate result is written again in the same register. The design is in
Figure 4.8.

Figure 4.8: Desing B implementing option of firts dummy round.

4.3.3 Design C

As seen from the Table 4.2 later in the results, the usage of empty cycles, where all rounds
are dummy, worsened the results of the t-test significantly. During these cycles, all rounds
process random values and no new intermediate data are available. Therefore the values
stored in registers do not change, and power consumption differs significantly in comparison
with active cycles, where new computed intermediate value is stored into the registers.

In pursuit of making power consumption more even and less dependent on specific
configuration, dummy registers were added into the circuit. These registers were used
only during empty cycles and a random value is then written in there overwriting another
random value. Usage of the dummy register causes a random power consumption similar
to overwriting an intermediate value in the real register. The design is in Figure 4.9.

Figure 4.9: Desing C implementing dummy (shadow) register for empty cycles.
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4.3.4 Design D

The first implementation of dummy registers was more of an ad-hoc approach than a rigor-
ous solution. To make the most out of added registers, their effect needed to be extended
to active rounds without adding any leakage.

Fortunately, the next version satisfied both requirements. Valid and dummy registers
became indistinguishable, and their contents switched after each clock cycle. The switching
means that new random value will always overwrite valid data and vice versa. An overall
number of changes in every register should be completely random, even in cases of multiple
consequent empty cycles. Design implementing this countermeasure enhancement is shown
in Figure 4.10.

Figure 4.10: Desing D implementing switching registers.

4.4 Final Dummy Rounds Scheme Controller Design

The leakage assessment (described in detail in next Section 2.3) of the Dummy Rounds
Scheme design described above revealed that potential leakage remains within the first
clock cycle of encryption, even if no active rounds are processed during the first cycle. To
tackle this problem, we designed a new Dummy Rounds controller described in this section
and evaluated together with the datapath in the next section.

4.4.1 Dummy Rounds Controller Modification

The test vector leakage assessment using Welch’s t-test [84] described in Section 2.3.1
showed that the leakage of Design D from Section 4.3 has been significantly reduced,
compared to first version described in Section 4.1 and reimplemented in previous section
as Design A. The maximum leakage is now at the beginning of encryption, see Figure 4.20,
reaching maximum t-value of 14.27. As discussed in [A.2], this leakage is caused by the
presence of the plaintext in the working registers since the beginning of the encryption,
even if multiple empty clock cycles (µi = 0) are executed after the start. Similar problem
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happens by the end of the encryption, when the working register holds the ciphertext until
the last clock cycle even if the execution is filled with series of empty clock cycles.

To tackle this problem, we modified the controller of Design D to fill the working
registers with random data after the start of each encryption. The registers are loaded with
the plaintext and the key just before these data are needed, i.e., just before the beginning of
the first non-empty clock cycle. In the end of the encryption, once the correct ciphertext is
computed and processed by the other parts of the design (e.g. the communication protocol
part), it is overwritten with random data.

4.5 Dummy Rounds Scheme Leakage Assessment

4.5.1 Measurement Setup

We implemented the Design D of PRESENT cipher [12] with both the original and en-
hanced controller. The design was implemented in SAKURA-G board [37], which is
equipped with Xilinx Spartan 6 FPGA. The design implements M = 3 rounds, with at
least m = 0 rounds to be executed in every clock cycle throughout the course of Nmax = 35
clock cycles for the entire encryption. The design is clocked at 1.5 MHz.

All versions of design have been implemented and evaluated on the SAKURA-G board [37].
Our first goal was to directly compare our newly implemented Design A with initial Dummy
rounds implementation results. For that reason, only 100 000 power traces were measured
during these scenarios.

Since Design B further all the designs implement M = 3 rounds, with at least m = 0
rounds to be executed in every clock cycle throughout the course of Nmax = 35 clock cycles
for the entire encryption. The design is clocked at 1.5 MHz. We raised the amount of
measured power traces raised to 1 000 000 according to [84] in the rest of the scenarios,
where our new implementation, including all new latest enhancements, is evaluated.

The traces were collected by PicoScope 6404D oscilloscope [95] at the sampling fre-
quency of 312 MS/s. Hence, every clock cycle is covered by 208 samples. SICAK toolkit [89]
controlled the measurement—it communicated with the design, collected the power traces
from the oscilloscope, and evaluated them with the Welch’s t-test. To provide support
for our version of PRESENT cipher specialized measurement plug-in was also developed.
Using this plug-in is possible to easily create configurations of (pseudo)random runs of the
encryptions through the (pseudo)random numbers sent together with key and plaintext.

4.5.2 Results

We have evaluated several designs, where Designs A, B, C and D are described in the
Datapath Section 4.3 and implement corresponding optimizations. Scenario E uses Design
C (without switching registers), scenario F then full Design D. Both of them also uses
enhanced master controller with better random values usage and better work with plaintext
on the input of encryption.
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Table 4.2: Measurement scenarios

Design Setup Max.
t-value

A.01 1 round per cycle, 32 cycles 142.32
A.02 2 rounds per cycle, 16 cycles 288.96
A.03 8x3 + 8x1 rounds per cycle, 16 cycles 353.03
A.04 alternating 3 and 1 rounds per cycle, 16 cycles 242.87
A.06 random 1 to 3 rounds per cycle, 16 cycles 19.98
B.09 random cycles 60.31
B.10 random cycles, first clock cycle not empty 47.99
B.11 random cycles, first clock cycle empty 1291.42
C.12 random cycles, first clock cycle empty 19.16
D.13 random cycles 14.27
E.18 random cycles without switching registers 11.83
F.19 random cycles with switching registers 8.63

There is a list of designs summarizing their differences:

◦ Design A - This design implements countermeasures used in [A.1]. For this de-
sign all the scenarios are measured with only 100 000 power traces, because of its
comparability with initial Dummy rounds version results.

◦ Design B - Design has the same countermeasures, but there is no PRNG in the
design. The random values are transmitted into the FPGA board together with
key and plaintext. We have still used 64-bit linear feedback shift register for our
experimental evaluation.

◦ Design C - Design C in comparison with design B includes dummy registers. Dummy
registers are used as intermediate value storage in case of no active round in that
clock cycle.

◦ Design D - In comparison with design C, where the value in only one set of inter-
mediate values is changed, in design D are changed values in all the registers in every
clock cycle. Current valid data are stored into registers containing a random value
and vice versa, which we further call as switching registers.

◦ Desings/Scenarios E and F - These scenarios were measured on a design including
an enhanced master controller described in Controller Section 4.4.

Here you can see the table of used designs and scenarios and their maximal t-values
and also graphs with measures t-values in time, where vertical lines show edges of clock
cycles.

Design A gives better results for the strictly random scenario. The maximal t-value
19.98 is still approximately four times bigger than the allowed threshold according to [84]
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with only 100 000 measured power traces. There is still the most significant problem after
the first clock cycle, as it has been proposed and discussed in [A.2]. The result of random
Dummy Rounds scenario is visible in Figure 4.15.

For Design B, the maximal t-values are bigger than for scenario A.06. However, it is
also because of 1 000 000 measured power traces per scenario. It can be seen as a paradox,
but the best result has the scenario with some active rounds during the first clock cycle.
There is enormous t-value of 1291.42 when there is no active round in the first clock cycle.
This is because no change in the register after the first cycle makes the switching activity
in two first cycles wholly dependent on used plaintext.

This problem is well solved with dummy (shadow) register in Design C. The modifica-
tion gives result t-value 19.16, which is the best to this point. The t-values of this scenario
are in Figure 4.19. With Design D, the switching registers modification gives even better
result with maximal t-value of 14.27 in Figure 4.20.

With the controller modification, scenario F.19 gives the best result ever, with 8.63
getting close to threshold 4.5. It is important to say that this is a better result than
the results of all countermeasures used in [82] without combining them. The graphs with
the results of the last two scenarios are in Figures 4.21 and 4.22. The modification of the
Dummy Rounds controller described in Section 4.4 and evaluated in this section, combined
with internal modifications from [A.4] described in Section 4.3 (Design D), makes the
Dummy Rounds even more competitive with other SCA hardware-level countermeasures.
For example, countermeasures proposed in [82] (S-box decomposition, register precharge,
masking) provided sufficient security level only if all of them were employed to protect the
design together. Sole countermeasures exceeded the level of 4.5 several times.

Considering other aspects, the Dummy Rounds scheme offers an implicit trade-off be-
tween security and overhead. In the setup used in this case study, the area overhead is
roughly 200 % (3 rounds blocks instead of just 1) compared to countermeasures proposed
in [82], where area overhead of logic (LUTs) is roughly 400 % (most of them occupied by
decomposed and masked S-boxes).

4.6 Conclusion

This chapter describes our Dummy Rounds hardware SCA countermeasure scheme, which
combines software hiding in time, shuffling and common hardware hiding of the circuitry
power consumption. All our contributions to Dummy Rounds scheme were published
in [A.1, A.2, A.4, A.5]. The main idea of the scheme is that there are more parts of hardware
design (typically rounds of iterative cryptographic algorithms) that are all executed. Still,
their outputs are randomly used or not used for computation in every clock cycle. So, the
design structure is the same for every clock cycle, and power consumption stays the same.
While the computation output in a single clock cycle changes partially randomly, the final
result stays correct due to round scheduling.

This chapter includes an analysis of the scheme and optimizations of the scheme da-
tapath and controller, resolving from the analysis. Compared with other countermeasures
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Figure 4.11: Scenario A.01 t-values.
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Figure 4.12: Scenario A.02 t-values.
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Figure 4.13: Scenario A.03 t-values.
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Figure 4.14: Scenario A.04 t-values.
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Figure 4.15: Scenario A.06 t-values.
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Figure 4.16: Scenario B.09 t-values.
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Figure 4.17: Scenario B.10 t-values.
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Figure 4.18: Scenario B.11 t-values.
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Figure 4.19: Scenario C.12 t-values.
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Figure 4.20: Scenario D.13 t-values.
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Figure 4.21: Scenario E.18 t-values.
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Figure 4.22: Scenario F.19 (with best results) t-values.

41



4. Dummy Rounds Scheme

described in Section 2.2.3, our Dummy Rounds scheme has several advantages and disad-
vantages. The Dummy Rounds performance is competitive with countermeasures proposed
in [82]. If used alone, none of the countermeasures in [82] fulfils the requirement of the
t-test value threshold. The requirement is fulfilled when all the proposed countermeasures
are combined. Our Dummy Rounds scheme also does not fulfil the threshold, but its results
are better than the other countermeasures used alone. However, our final Dummy Rounds
scheme includes Shadow register, which is in its principle the same as Register precharge
proposed in [82].

The Dummy Rounds scheme is straightforward to implement. The round part of the
design is copied without any modifications; only the controller has to be modified. The
Dummy Rounds scheme also offers an implicit trade-off between security and area over-
head, which is given by a number of the round block copies (it is always M = 3 in our
experimentally evaluated case study).

On the other hand, the Dummy Rounds is not provably secure contrary to, e.g. Thresh-
old Implementation [67], Domain Oriented Masking [35], and other similar schemes. How-
ever, compared to masking schemes used with more complex cryptographic algorithms
such as AES, the area overhead of Dummy Rounds can be much lower. Considering still
M = 3, the area overhead of Dummy Rounds is still about 200% for any round-based
cipher. Contrary to, e.g. Threshold Implementation implemented for AES, even if the
state-of-the-art implementation proposed by Moradi et al. [63], where the area overhead is
approx. 360%.
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Chapter 5

Conclusions

An introduction to the topic and goals of this thesis are presented in Chapter 1.
In Chapter 2, we present the theoretical background and state of the art of the topic.

We introduce side-channel analysis, side-channel attacks, and countermeasures, primar-
ily focusing on countermeasures against these attacks used in FPGA implementations.
Although our research is based on hardware approaches, we also introduce some counter-
measures and their typical software implementations, which inspired our research.

Our implementations of AES and Serpent secured by countermeasures proposed earlier
for PRESENT cipher are presented in Chapter 3. We have measured no leakage using first-
order non-specific Welch’s t-test for these implementations. Further Socha et al. in [88]
presented leakage assessment of our implementations with second-order t-test, where only
apparent leakage from Serpent encryption was detected. Both implementations further
resisted second-order DPA/CPA attacks.

In Chapter 4, we present our hardware Dummy Rounds countermeasure scheme. The
chapter starts with describing the principle and where the inspiration comes from. Analysis
of the scheme resulting in a proposal of modifications follows, and these proposed and
some more modifications are presented further. Finally, the leakage assessment of our
implementations using Welch’s t-test and a discussion of the results are presented.

5.1 Summary

The implementations of two more complex cryptographic algorithms, specifically secured
by previously proposed countermeasures, were proposed. Both implementations were eval-
uated as first-order leakage-free. These implementations were in later work of the com-
munity evaluated as second-order secured. There was an apparent leakage detected in the
leakage assessment; however, both implementations then resisted second-order DPA/CPA
attacks.

Our Dummy Rounds scheme is a hardware SCA countermeasure, which is not provable
secure. Still, it is straightforward to implement and offers an implicit trade-off between
security and overhead. The final version of the scheme, with all the modifications coming
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from the analysis of the scheme, is competitive with other non-provable countermeasures
used in hardware, especially FPGAs, offering still easier implementation and lower over-
head, especially with more complex cryptographic algorithms.

All results were presented and discussed in the scientific community and published in
proceedings of 5 international conferences, most of papers were cited in WoS and/or Scopus
databases.

5.2 Contributions of the Dissertation Thesis

1. Second-order DPA and CPA attacks resistance implementations of AES and Serpent:
This work describes an implementation of AES and Serpent secured with previously
proposed countermeasures implemented for PRESENT. This work evaluates the im-
plementations as leakage-free using the non-specific univariate first-order Welch’s
t-test. In later work, these implementations resisted second-order DPA and CPA
attacks.

2. Hardware Dummy Rounds countermeasure scheme: We present our proposed and
continually evolved Dummy Rounds countermeasure. Its results are competitive
with some other solo-used previously proposed countermeasures. The advantages of
our Dummy Rounds are a straightforward approach to implementing the scheme and
an implicit trade-off between security and area overhead.

3. Dummy Rounds linear overhead regardless of an implemented algorithm: Although
Dummy Rounds has high area overhead in comparison with other countermeasures
considering lightweight ciphers (PRESENT is the case study), it has good area over-
head results in comparison with the same countermeasures considering more complex
ciphers.

4. Bringing attention to the control part of the circuit, as opposed to the usual focus
on side channels of the datapath, optimization of the control algorithm and safe
controller design.

5.3 Future Work

The author of the dissertation thesis suggests to explore the following:

◦ It would be interesting to implement more complex cryptographic algorithms such as
AES or Serpent with Dummy Rounds scheme. It could offer an interesting trade-off
between its security and implementation results, especially compared to a provable
secure implementation, such as threshold implementation.

◦ Consider using the Dummy Rounds scheme as a combined countermeasure against
side-channel and fault analyses. The redundancy in dummy rounds (not used for the
result in that clock cycle) could be used.
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