
Title:

Student:
Supervisor:
Study program:

Branch / specialization:

Department:
Validity:

Assignment of master’s thesis

The Development of a New Visualization Tool for the IKEM

Bc. Karel Vrabec
Ing. Petr Pauš, Ph.D.
Informatics

Software Engineering

Department of Software Engineering
until the end of summer semester 2024/2025

Instructions

The IKEM is one of the most prominent medical facilities for healthcare, treatment, and

scientific research in the Czech Republic, known worldwide. It is specialized in

cardiology, diabetes, and human organ transplantation.

Doctors use a magnetic resonance imaging (MRI) machine to see the human organs and

body from the inside. Scientists from the IKEM search for new methods and

improvements in this field. They use ParaView as a special software tool for working with

MRI machines, but it is difficult, complicated, and overwhelming for both groups.

The goal is to develop a brand new web application as a layer lying above ParaView,

reducing its redundant functionalities and simplifying the whole work process. In

cooperation with the doctors and scientists from the IKEM, study the domain and analyze

all software requirements. Design and implement the web application accessible in the

web browser with the help of modern web technologies. Focus on the user interface and

test its functionalities and usability with relevant users.

This assignment arose as a result of mutual cooperation between the experts from the

IKEM in Prague, CZE, and the University of Texas Southwestern Medical Center in Dallas,

USA. Its successful realization might be very helpful to scientists, doctors, and eventually

patients.

Electronically approved by Ing. Michal Valenta, Ph.D. on 8 February 2024 in Prague.

Master’s thesis

The Development of a New Visualization
Tool for the IKEM

Bc. Karel Vrabec

Department of Software Engineering
Supervisor: Ing. Petr Pauš, Ph.D.

May 8, 2024

Acknowledgements

I would like to thank my supervisor, Ing. Petr Pauš, Ph.D., for the lead-
ership, time, and advice he gave me while I was working on this master’s
thesis. Another huge thanks goes to Ing. Kateřina Škardová, Ph.D., and
doc. Ing. Tomáš Oberhuber, Ph.D., for their great help, clarifications, and
explanations of the client’s requirements and needs. Next, I am really grateful
to Dr. Sandeep Kuttal for being my advisor while I was studying at North
Carolina State University in the USA. Last but not least, I would like to
thank Ing. Jakub Klinkovský, Ph.D., for the deployment of the newly cre-
ated web application and making it accessible for the users. Thank you very
much, Sébastien Jourdain from Kitware, for your technical and professional
help while I was struggling with modern web technologies. Thanks to all the
testers for participating in the usability testing, my family for their support,
and other great people for encouraging me.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46 (6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity.

In Prague on May 8, 2024

Czech Technical University in Prague
Faculty of Information Technology
© 2024 Karel Vrabec. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Vrabec, Karel. The Development of a New Visualization Tool for the IKEM.
Master’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2024.

Abstrakt

Tato diplomová práce se zabývá tvorbou nové webové aplikace pro poho-
dlněǰśı práci s výstupy z magnetické rezonance (MRI). Zadavatelem je Insti-
tut klinické a experimentálńı medićıny (IKEM), české zdravotnické zař́ızeńı
známé d́ıky svému zaměřeńı na transplantaci lidských orgán̊u, diabetes a kar-
diovaskulárńı choroby, jejich léčbu a vědecký výzkum. Výzkumńıci z IKEM
použ́ıvaj́ı ParaView, populárńı nástroj pro komplexńı a interaktivńı vizuali-
zace, pro prohĺıžeńı MRI výstup̊u. Prostřed́ı tohoto programu je pro ně však
velice komplikované. Kromě toho je nástroj ParaView př́ıstupný pouze jako
desktopová aplikace. Pomoćı moderńıch technologíı, jako jsou Trame, VTK
a Vuetify, je navrženo a vyvinuto zcela nové řešeńı. Výsledkem práce je kon-
tejnerizovaná, nasaditelná webová aplikace, která poskytuje nové interaktivńı
a zjednodušené uživatelské rozhrańı pro snadnou správu, prohĺıžeńı a interakci
s MRI výstupy dle požadavk̊u zadavatele.

Kĺıčová slova webová aplikace, IKEM, magnetická rezonance, vizualizace,
ParaView, UI, Python, Trame, VTK, Vuetify

vii

Abstract

This master’s thesis deals with the development of a brand new web appli-
cation for better and more convenient work with outputs from magnetic res-
onance imaging (MRI) machines. The web application was created for the
Institute for Clinical and Experimental Medicine (a client), a Czech medical
facility well known for its focus on human organ transplantation, diabetes and
cardiovascular therapies, treatments, and scientific research. The researchers
of the IKEM (a user) use ParaView, a popular tool for complex and interactive
visualizations, for viewing MRI outputs. However, the environment of Para-
View is very complicated. Additionally, the user is able to access ParaView
as a desktop application only. Therefore, in this thesis, all user’s work pro-
cesses and requirements are analyzed. Finally, a new solution is designed and
developed with the help of modern technologies, such as Trame, VTK, and
Vuetify. The result of this work is a containerized, deployable web application
that provides a new interactive and simplified user interface to manage, view,
and control MRI outputs easily.

Keywords web application, IKEM, magnetic resonance imaging, visualiza-
tion, ParaView, UI, Python, Trame, VTK, Vuetify

viii

Contents

Introduction 1

1 Goal 3

2 Context 5
2.1 IKEM . 5
2.2 Magnetic Resonance Imaging 6

2.2.1 Principle . 7
2.2.2 4D Flow MRI . 8

2.3 ParaView . 8
2.4 Medical File Formats . 9

2.4.1 DICOM . 9
2.4.2 VTI . 10

3 Analysis 11
3.1 Previous State . 11

3.1.1 Workflow in ParaView 12
3.2 Desired State . 14

3.2.1 Functional Requirements 15
3.2.2 Non-Functional Requirements 16
3.2.3 Use Cases . 17
3.2.4 Use Case Diagram . 22

3.3 Similar Solutions . 23
3.3.1 Visualizer . 23
3.3.2 LightViz . 24
3.3.3 ArcticViewer . 24
3.3.4 Decision . 24

3.4 Technical Ways . 24
3.4.1 WebGL . 24
3.4.2 Three.js . 25

ix

3.4.3 ParaViewWeb . 25
3.4.4 Trame . 25
3.4.5 Decision . 26

4 Design 27
4.1 MRI Viewer . 27
4.2 Personas . 27

4.2.1 Persona A . 28
4.2.2 Persona B . 28
4.2.3 Persona C . 29

4.3 Wireframes . 29
4.4 Prototype . 31

5 Implementation 35
5.1 Technologies . 35

5.1.1 Trame . 35
5.1.1.1 MVVM Pattern 36
5.1.1.2 Cookiecutter 37

5.1.2 VTK . 37
5.1.2.1 VTK.js . 38
5.1.2.2 Visualization Example 38

5.1.3 Vuetify . 40
5.1.3.1 Usage in Trame 40

5.2 Development . 41
5.3 Web Application . 42

5.3.1 Engine . 42
5.3.2 File Manager . 43
5.3.3 Language Manager . 43
5.3.4 VTK Manager . 43

5.3.4.1 Interaction . 44
5.3.4.2 Picking . 44
5.3.4.3 Rendering . 44
5.3.4.4 Slicing . 44

5.3.5 Architecture . 45
5.3.6 User Interface . 46

5.3.6.1 Components 46
5.3.7 Design Patterns . 48

5.3.7.1 Decorator . 49
5.3.7.2 Facade . 50
5.3.7.3 Singleton . 51

6 Testing 53
6.1 Tests . 53
6.2 Test Data . 53

x

6.3 Compatibility . 54
6.4 Usability . 55

6.4.1 Results . 55

Conclusion 57

Bibliography 59

A Acronyms 63

B User Guide 65
B.1 MRI Viewer . 65
B.2 Features . 65

B.2.1 Upload Files . 66
B.2.1.1 Limitations . 66
B.2.1.2 Error Codes 66
B.2.1.3 Recommendations 67

B.2.2 Manage Files . 68
B.2.3 File . 68

B.2.3.1 Groups . 69
B.2.3.2 Memorization 69

B.2.4 Data Array . 69
B.2.5 Representation . 69
B.2.6 Color Map . 70
B.2.7 Interaction . 70

B.2.7.1 Slice . 71
B.2.7.2 Zoom . 72
B.2.7.3 Translation . 72
B.2.7.4 Rotation . 73

B.2.8 Player . 73
B.2.8.1 Recommendations 74

B.2.9 Point and Cell Information 74
B.2.10 Axes Information . 75
B.2.11 Axes Widget . 76
B.2.12 Scalar Bar . 77
B.2.13 Reset View . 77
B.2.14 Dark and Light Themes 77
B.2.15 Languages . 78
B.2.16 Progress Bar . 78

B.3 Contact . 79

C Test Scenarios 81
C.1 Language . 81
C.2 Slice Tool . 83

xi

C.3 Player . 84
C.4 Picking . 86

D Contents of CD 89

xii

List of Figures

2.1 The logo of the IKEM . 5
2.2 The MRI machine . 6
2.3 Visualization in ParaView . 9

3.1 Activity diagram showing the workflow in ParaView 5.12 12
3.2 The overview of functional requirements 15
3.3 The overview of non-functional requirements 16
3.4 Mapping requirements to use cases 17
3.5 The overview of use cases . 18
3.6 Use case diagram . 22
3.7 Visualization in Visualizer . 23

4.1 Loading options . 29
4.2 Working environment . 30
4.3 Cell information . 31
4.4 Dialog for uploading files . 32
4.5 Working environment . 32
4.6 Selects . 33
4.7 Upper bar . 33
4.8 Tools . 33

5.1 The MVVM pattern of Trame . 36
5.2 The output of the visualization example 40
5.3 The human brain visualized in MRI Viewer 42
5.4 The architecture of the web application 45
5.5 The architecture of the user interface 46

6.1 The blood flow in the aorta visualized in MRI Viewer 54

B.1 A dialog for uploading files . 66
B.2 An error while uploading files . 67

xiii

B.3 A dialog for managing files . 68
B.4 The list of files . 68
B.5 The list of data arrays . 69
B.6 The list of representations . 70
B.7 The list of color maps . 70
B.8 Slice tool . 71
B.9 A slice example . 71
B.10 Zoom tool . 72
B.11 Translation tool . 72
B.12 Rotation tool . 73
B.13 Player . 73
B.14 Point and cell information . 74
B.15 Point information . 74
B.16 Cell information . 75
B.17 Axes information . 75
B.18 An axes information example . 76
B.19 Axes widget . 76
B.20 Scalar bar . 77
B.21 Reset view . 77
B.22 Theme . 78
B.23 Languages . 78
B.24 Progress bar . 79

C.1 Starting point in the first test scenario 82
C.2 Ending point in the second test scenario 84
C.3 Ending point in the third test scenario 86
C.4 Picking a random point in the data 88

xiv

List of Codes

2.1 The basic XML structure of the VTI file 10
5.1 The basic visualization in VTK 39
5.2 The Decorator design pattern in MRI Viewer 49
5.3 The Facade design pattern in MRI Viewer 50
5.4 The Singleton design pattern in MRI Viewer 51

xv

Introduction

Magnetic resonance imaging (abbreviated as “MRI”) is commonly known as
a clinical and medical method for examination and visualization of the internal
human body. MRI has evolved at a high pace since its very beginning in the
last century. In today’s world, it is a commonly used technique accessible in
the form of robust MRI machines in any major hospital.

IKEM is a healthcare facility that possesses and uses MRI machines for
medical and research purposes. The researchers at the IKEM are able to view
outputs from MRIs through the ParaView visualization tool. With the help of
the four-dimensional flow MRI technique, they can examine blood flow in the
vessels and diagnose possible anomalies. The technique encodes 3D images
of velocities in time. Although it was already invented in the last century,
the 4D flow MRI method was practically used only recently due to a lack of
hardware performance.

However, there is an omnipresent problem with the availability and usabil-
ity of these modern scientific achievements. ParaView has an overwhelming
and complex environment full of many various features. Therefore, the pro-
cess of loading, viewing, tuning parameters, and examining MRI outputs is
difficult in this environment. If the researchers have a problem with com-
plexity, doctors without any knowledge of ParaView and similar visualization
tools will have the problem, too. That is the main reason for creating a new
lightweight solution that will be conveniently available in the web browser and
usable by researchers and, in the future, doctors. It may help support not only
medical research but also healthcare in the Czech Republic.

In the theoretical part of this thesis, the reader is introduced to the IKEM,
the principles and specific types of MRI (i.e., 4D flow MRI), and the ParaView
visualization tool. This part of the work also contains a brief description
of DICOM and VTI as the file formats commonly used in healthcare. In
the second half of the part, an analysis of the previous and desired states is
conducted. The client’s requirements, use cases, user’s work process, similar
solutions, and technical ways to solve the problem are described.

1

Introduction

In the practical part of the thesis, the reader can continue with three chap-
ters. The first chapter focuses on the web application’s design, as described
with the help of wireframes and a final prototype. The second chapter de-
scribes the implementation of the web application with the help of modern
web technologies, such as Trame. This part of the work also contains the defi-
nitions of all necessary terms and a description of these technologies. Finally,
the last chapter presents testing in terms of functionalities, compatibility, and
usability. All chapters are supplemented with auxiliary images and diagrams.

2

Chapter 1
Goal

The main goal of this master’s thesis is to develop a containerized, deploy-
able, and lightweight web application according to the client’s requirements
and needs. The web application features a new interactive and simplified user
interface for managing, visualizing, and controlling MRI outputs. The selected
distribution type (i.e., a web application), less complexity (i.e., only desired
and important functionalities), and appropriate modern web technologies to-
gether achieve this goal. Therefore, to accomplish it systematically, the thesis
has several smaller aims.

The first aim is to analyze the client’s requirements and needs with the
help of researchers from the IKEM. This also includes getting to know the
client and the respective domain.

The second aim is to design and implement the web application with the
help of modern web technologies (with a focus on the user interface). It is
important to develop a usable and clear UI that is understandable even for
non-technical users.

The last aim is to test the web application’s features, compatibility, and
usability (with relevant users). Additionally, there is an optional aim to deploy
the web application using Docker with the help of engineers from the IKEM.

3

Chapter 2
Context

This chapter provides background for a reader to become familiar with the
topic. It contains brief descriptions of the IKEM (as the client), MRI and its
principle, ParaView (as the visualization tool), and two medical file formats
relevant for the following chapters.

2.1 IKEM

IKEM is one of the specialized medical care facilities in the Czech Repub-
lic. The abbreviation stands for the Institute for Clinical and Experimental
Medicine. The institution was established in the early 1970s and is located in
Prague. The local staff is composed of doctors, nurses, paramedics, scientists,
researchers, and collaborators from other institutions, like universities. [1]

Its goal is to enhance and evolve health care, therapies, and treatments
to make the whole process much better, more modern, and more pleasant for
patients. The main focus is on solving the most serious diseases and perform-
ing ambitious acts in healthcare. These are primarily cardiovascular problems
(i.e., heart and vascular diseases), diabetes (i.e., metabolic disorders), and
the transplantation of human organs. In addition, the IKEM is also a scien-
tific research center, which makes it possible to put the latest knowledge and
discoveries into practice. [1]

Figure 2.1: The logo of the IKEM [2]

5

2. Context

2.2 Magnetic Resonance Imaging

Magnetic resonance imaging (abbreviated as “MR” or “MRI”) is a modern,
non-invasive medical technology, a method, and a tool for displaying human
organs and tissues. It is used to reveal, diagnose, and localize diseases, anoma-
lies, and defects such as tumors. MRI was put into practice in the 1970s based
on the discoveries by Nobelists Paul Lauterbur and Peter Mansfield [3]. [4] [5]

The method is safe, precise, painless, and reliable. Unlike a CT (that is,
“Computed Tomography”) scan, there is no ionizing radiation or x-rays. It
is used in different branches of medicine, such as neurology, cardiology, or
oncology. With the help of MRI, doctors can examine, for example, the brain,
spinal cord, spine, heart, liver, kidneys, pancreas, stomach, knees, shoulders,
and so forth. [4] [5]

An MRI machine is a huge magnet in the shape of a tunnel. It also
includes a movable bed, a service stand, and a processing system. The machine
is operated by a specialized radiology technician. During the examination,
a patient is lying still on the bed that is moved inside the MRI machine.
The work of the MRI machine is accompanied by a loud noise. Therefore,
headphones are usually available. There is also a communication device so
that the patient remains in contact with the technician. Nowadays, the whole
process takes 15 minutes, sometimes up to an hour or even more (depending
on the specific procedure). Thus, the examinations and the work of MRI
machines can be time-consuming. [4] [5]

Figure 2.2: The MRI machine [6]

6

2.2. Magnetic Resonance Imaging

The MRI machine scans and slices a specific part of a human body. These
slices can then be merged together to create a detailed 3D image. To im-
prove the quality of the output, contrast substances (such as gadolinium) can
be applied. A DICOM (that is, “Digital Imaging and Communications in
Medicine”) format is used for storing the results of the MRI examination [7].
These results are evaluated and interpreted by a radiologist, who sends them
to a treating doctor within several days. [4] [5]

The purchase, installation, and service of the MRI machine are very ex-
pensive, including related operational costs (such as power consumption or
maintenance). Therefore, only major hospitals, centers, or facilities usually
possess these machines. [8]

The patient should not have any type of metal gear in or on his or her body
while being examined with the MRI machine. It can be dangerous to conduct
the examination if the patient’s body contains metal implants or devices,
such as cardiac pacemakers. Last but not least, such items can distort and
misrepresent final images. Additionally, pregnancy and claustrophobia may
be problematic, too. Either way, the situation should be assessed by a doctor
first. There is no problem with braces or dental fillings. [4] [5]

2.2.1 Principle

MRI is based on a very strong static magnetic field (with the power of several
Tesla units) and electromagnetic waves. When the patient is being examined
with the help of the MRI machine, it sends radio-frequency impulses to disrupt
the strong magnetic field. Afterwards, it receives and decodes signals from the
particles in the patient’s body that react to these external changes in the outer
magnetic field. [5] [9] [10]

The core of an atom contains protons and neutrons. Protons rotate around
their axes, which is generally called a spin. Together with their natural positive
electrical charges, the core can generate a small magnetic field. The human
body is composed of water, which is present in every human cell. The water
contains hydrogen, which has a strong magnetic potential. [9] [10] [11]

The MRI machine creates a strong static magnetic field around a patient’s
body. This field influences and aligns the protons’ spins to rotate around their
axes in the direction of the outer magnetic field (or opposite). Then, radio-
frequency pulses are applied perpendicularly to the magnetic field to briefly
disturb the protons out of alignment. These disruptions create signals that
are captured by special sensors. Received signals are different according to
the type of tissue. In the end, they are converted to digital images. [5] [9] [10]

7

2. Context

2.2.2 4D Flow MRI

MRI has wide applications in healthcare, where it can be used to diagnose,
for example, cardiovascular diseases. Such an MRI application is called CMRI
(that is, “Cardiac Magnetic Resonance Imaging”) [12].

Phase-contrast MRI (abbreviated as “PC-MRI”) is a variant of MRI used
to obtain velocities of the flow, such as the blood flow in the case of CMRI.
Velocity is the speed and direction of a moving object. PC-MRI can be further
divided into 2D and 4D flow MRI. [13] [14]

2D flow MRI is an older type of PC-MRI, where the velocity is encoded
in two dimensions (i.e., one direction and time) at every node of a plane. On
the other hand, 4D flow MRI is a more recent extension of PC-MRI, enabling
a more comprehensive understanding of the blood flow. The velocity is en-
coded into three dimensions (x, y, and z) at every node of a space throughout
time (i.e., a sequence of MRI datasets). Then, one MRI dataset contains three
velocity components. [13] [14]

4D flow MRI is typically used in healthcare for imaging and examining the
blood flow in vessels, veins, and arteries, especially in the human heart and
aorta. However, due to a lack of performance, high complexity, and a long
processing period, it is still not usual for clinical use. [13] [14]

2.3 ParaView

ParaView is complex, cross-platform, and open-source software for the anal-
ysis, exploration, and visualization of large datasets. It started in 2000 as
a shared project between Kitware (as the author and developer of ParaView)
and Los Alamos National Laboratory. The tool is able to display datasets
and specific simulations in many scientific domains, such as aerospace, astro-
physics, climate science, fluid dynamics, medical science, mechanical engineer-
ing, structural analysis, and so forth. Nowadays, ParaView is a common tool
in many laboratories, universities, and the commercial sector. [15]

Besides visualizing the data, it has plenty of customizable capabilities and
techniques. These are especially coloring, slicing, clipping, plotting, volume
rendering, animation, data selection and highlighting, and many other features
for gaining insight into the data. Furthermore, ParaView can be extended by
creating Python scripts. It also has extensive support for different file formats,
such as DICOM or VTI (for visualizing CT and MRI data). [15]

ParaView can be downloaded as a desktop application, along with the doc-
umentation and test data. On top of that, it can be run in client/server mode
to perform remote parallel computation on HPC (that is, “High-Performance
Computing”). The client serves as a data viewer, while the server runs as an
MPI (that is, “Message Passing Interface”) process that works with the data.
Kitware supports the ParaView community extensively by creating tutorials,
webinars, and training courses. [15]

8

2.4. Medical File Formats

Figure 2.3: Visualization in ParaView

2.4 Medical File Formats

Although there are more medical file formats, such as Analyze, NIfTI, or
MINC, only DICOM and VTI are briefly described below, as they will be
useful for the coming chapters. In fact, VTI is not considered a pure medical
file format, but it is also used in the field of medical science. [16]

2.4.1 DICOM

Digital Imaging and Communications in Medicine (abbreviated as “DICOM”)
is a standard file format for storing medical images used in healthcare and
medical research. It was initially published in 1993. Nowadays, the usage of
this file format is very widespread. DICOM is widely used in many healthcare
domains, such as radiology (i.e., X-ray, CT, ultrasound, and MRI devices),
cardiology, veterinary medicine, dentistry, and so forth. For instance, DICOM
is used for storing raw outputs from the MRI machines. [16] [17]

A DICOM file contains metadata and image data. The header of the
file includes the patient’s information, such as name, gender, age, and so
on. Generally, DICOM allows doctors to make faster diagnoses. Therefore,
patients can be treated effectively and quickly. It also helps in terms of data
compatibility, exchange, and unification. [16] [17]

9

2. Context

2.4.2 VTI

Visualization Toolkit Image Data (abbreviated as “VTI”) is a file format
typically associated with ParaView, which is a visualization tool built upon
VTK (that is, “Visualization Toolkit”). It uses the XML (that is, “eXtensible
Markup Language”) syntax to store the image data and related information.
Additionally, the VTI format has support for compression, various encodings,
and byte order. [18] [19]

Essentially, VTI is a serial and structured file format. The operations of
reading and writing are executed by a single process, and the data is included
in only one file. Moreover, the dataset is a regular grid of the image data.
By default, there are two kinds of data (i.e., points and cells) to be defined in
each of the VTI files. [18] [19]

<VTKFile type="ImageData" ...>
<ImageData WholeExtent="x1 x2 y1 y2 z1 z2"
Origin="x0 y0 z0" Spacing="dx dy dz">

<Piece Extent="x1 x2 y1 y2 z1 z2">
<PointData>...</PointData>
<CellData>...</CellData>

</Piece>
...

</ImageData>
</VTKFile>

Code 2.1: The basic XML structure of the VTI file [19]

10

Chapter 3
Analysis

In this chapter, the reader is introduced to the previous state, when the re-
searchers worked with ParaView. It includes all the problems the researchers
had and a description of a workflow with typical actions they used to do while
working with ParaView. Afterwards, the desired state, including all the re-
quirements and use cases, is described. Finally, an analysis of similar solutions
and technical ways to solve the researchers’ problems is conducted. Then, the
next chapter focuses on the proposed solution.

3.1 Previous State

While working with an MRI machine and receiving 4D flow MRI data, re-
searchers converted these data from the DICOM format to VTI. The reason
was that the DICOM format and its file viewers were not appropriate and
user-friendly for them. Besides, the data were also anonymized and denoised.
Finally, researchers used ParaView to visualize the exported .vti file. However,
ParaView was not accepted by the doctors because of its complexity.

Researchers at the IKEM use ParaView as a desktop application. It is nec-
essary to install the software directly on the computing machine. Of course,
this can be very limiting, binding users to specific computers. Unfortunately,
ParaView is also a huge software with a complex user interface containing
all possible features. Beginning users may have problems familiarizing them-
selves, getting oriented, and working in this complex environment, even if they
are technically talented. The main reason is the large number of functional-
ities, icons, tools, shortcuts, and so forth. Typically, researchers need to use
only basic tools, such as slicing.

Moreover, working with the input data in ParaView at the very beginning
is difficult, time-consuming, and consists of many clicks. In addition, the
process of loading and researching the data is very regular and repetitive
for the researchers. Kitware (as the author of ParaView) does offer support
services to customize ParaView, but they are pre-paid and expensive [20].

11

3. Analysis

This status quo is neither appropriate for the researchers nor the doctors.
Therefore, it is necessary to create an effective, free, and lightweight solution
containing only the capabilities and features that are really necessary.

3.1.1 Workflow in ParaView

Our user is a researcher from the IKEM who works with ParaView. While
working with the program, the user wants to achieve his or her goals (e.g., to
see the blood flow in the aorta over time). The user’s goals can be accom-
plished by going through a work process that is composed of different actions.
By revealing this work process, the user’s goals and needs can be better under-
stood. Therefore, the new solution contains only the features that are really
necessary, whereas other features are filtered out. The work process of the
researcher in ParaView is depicted in the following activity diagram, which
was discussed and approved by the client. All activities are described below.

Figure 3.1: Activity diagram showing the workflow in ParaView 5.12

12

3.1. Previous State

Shortcut: A1
Title: Opening a Program
Description: The user opens ParaView.

Shortcut: A2
Title: Loading Data
Description: The user clicks File → Open and selects the data (i.e., VTI
files). Finally, he or she approves by clicking OK.

Shortcut: A3
Title: Showing Data
Description: The user clicks on the eye icon to show the data. The default
representation is Outline.

Shortcut: A4
Title: Selecting the Data Arrays to Load
Description: VTI files are composed of different point or cell data arrays.
The user checks or unchecks the checkboxes depending on what data arrays
he or she wants to load. Finally, he or she approves by clicking Apply, which
also shows the data. The default representation is Outline.

Shortcut: A5
Title: Selecting the Data Array to Show
Description: The user opens the respective menu and selects the data array
to visualize.

Shortcut: A6
Title: Selecting the Representation
Description: The user opens the respective menu and selects the represen-
tation (e.g., Points, Slice, Surface, Volume, etc.).

Shortcut: A7
Title: Controlling the Player
Description: The user clicks to play, pause, or skip to the previous or next
file. The group of VTI files is played only once by default, unless the user
clicks the loop icon.

Shortcut: A8
Title: Zooming
Description: The user zooms the data in or out with the help of the mouse.

Shortcut: A9
Title: Translating
Description: The user translates the data with the help of the mouse.

13

3. Analysis

Shortcut: A10
Title: Rotating
Description: The user rotates the data with the help of the mouse.

Shortcut: A11
Title: Setting the Orientation of the Slice
Description: The user opens the respective menu in the left column and
selects the slice orientation (i.e., XY, YZ, or XZ).

Shortcut: A12
Title: Setting the Position of the Slice
Description: The user moves with a slider or types a value in the left column
to change the slice position.

Shortcut: A13
Title: Enabling Point Information
Description: The user clicks on the hover points on icon to show the point
information (i.e., an identificator, coordinates, and the values of point data
arrays at that particular point) while hovering over points.

Shortcut: A14
Title: Enabling Cell Information
Description: The user clicks on the hover cells on icon to show the cell
information (i.e., an identificator and the values of cell data arrays at that
particular cell) while hovering over cells.

Shortcut: A15
Title: Closing the Program
Description: The user closes ParaView.

3.2 Desired State

An ideal solution is to create a new web application with only the relevant
features (such as the visualization of VTI files). It solves the complexity
and availability problems. Unnecessary functionalities are removed, including
redundant steps (clicks) in the workflow above (such as A3, A4, or setting
Outline as the default representation). The web application is also accessible
through the web browser. Additionally, the user support is enhanced with
multilingual user documentation, tooltips, or information icons.

The web application is intended for use by researchers first rather than
doctors in hospitals, as this would require a far more complicated process.
For now, it is important to create a simplified web user interface, preserve
functionalities used by researchers, and get rid of ParaView.

14

3.2. Desired State

3.2.1 Functional Requirements

All required features for the web application are listed below.

Figure 3.2: The overview of functional requirements

Shortcut: F1
Title: The Selection of the Input Files
Description: The user is able to load the VTI files. Such a file represents a 3D
image of a certain human organ (typically a heart with an aorta). Because
these files are the output of 4D flow MRI, they also include several data arrays
(i.e., anatomy, three velocity components, and velocity magnitude through the
different depths, including the denoised version). It is possible to switch files
and their data arrays on the fly. All the provided data is anonymized.

Shortcut: F2
Title: The Visualization of the Input Files
Description: The web application is able to visualize the VTI files and their
data arrays. The user is able to switch the representation of the visualized
VTI file. It is possible to control the player (and see the blood flow in the
heart, for example) if there is a group of more VTI files.

Shortcut: F3
Title: The Interaction with the Input Files
Description: The user is able to manipulate and interact with the VTI data
displayed in the web application by using the set of available support tools.
It is possible to zoom in or out, translate, and rotate the data along the three
basic (x, y, and z) axes.

15

3. Analysis

Shortcut: F4
Title: Slice Tool
Description: The user is able to slice the VTI data with a plane and see the
cut. It is possible to change the position and orientation of the cutting plane.

Shortcut: F5
Title: Point and Cell Information
Description: The web application is able to display information about the
point or cell if the user clicks on it. For a point, it shows an identifier, coor-
dinates, and the values of point data arrays. For a cell, it shows an identifier
and the values of cell data arrays. The display of this information is exclusive
(either the point, cell, or none of them).

3.2.2 Non-Functional Requirements

All required properties for the web application are listed below.

Figure 3.3: The overview of non-functional requirements

Shortcut: N1
Title: Usability
Description: The application is going to be used by researchers. Another
expected user is also a radiologist (i.e., a doctor specialized in diagnosis of
diseases with the help of imaging methods such as MRI). Therefore, it is
critical to include only simple and relevant features. Users do not have to
understand programming or technology.

Shortcut: N2
Title: Availability
Description: The web application is publicly available through the web
browser. It is not required to be compatible with different devices (desk-
top computers only), but compatibility with modern web browsers (especially

16

3.2. Desired State

with Google Chrome and Microsoft Edge) should be satisfied. It also runs
continuously, even if not necessary (when research is not in progress).

Shortcut: N3
Title: User Support
Description: All the icons are accompanied by descriptions that help users
understand their meaning and consequences of their usage. If it is necessary,
the information icons should be used. The user documentation is multilingual
and available directly in the web application.

Shortcut: N4
Title: Localization
Description: The web application is available in English by default, but the
user can switch to Czech if necessary.

Shortcut: N5
Title: Architecture
Description: The web application is modularized and containerized. It fol-
lows various design principles and patterns. Therefore, it is easily extensible,
deployable, and maintainable.

Shortcut: N6
Title: Technologies
Description: The web application should be built on modern web technolo-
gies. The IKEM plans to create another visual analytics applications in the
future. Therefore, it is required to choose appropriate technologies and deter-
mine the technical direction.

3.2.3 Use Cases

The requirements are mapped to the use cases as follows:

Figure 3.4: Mapping requirements to use cases

17

3. Analysis

Figure 3.5: The overview of use cases

Shortcut: UC1
Title: Loading VTI Files
Description: The user expects to browse the local computer and load VTI
files locally. Additionally, he or she can paste a URL (that is, “Uniform
Resource Locator”) and load a VTI file remotely.
Scenario: The web application shows a dialog for uploading VTI files that
contains two separate sections. The first section includes an icon (local com-
puter) and a file input for choosing VTI files from the local computer. After
clicking the file input, the web application shows the GUI (that is, “Graphical
User Interface”) for browsing the file system of the user’s computer. When
the user is finished with browsing and confirms the selection, the local VTI
files are automatically loaded. The second section includes an icon (remote
server) and a text field for pasting the URL, along with a button for loading
a remote VTI file. After pasting the URL into the text field and clicking on
the load button, the remote VTI file is loaded over the network. There is also
a button to cancel the dialog in the bottom-right corner.

Shortcut: UC2
Title: Switching VTI Files
Description: The user expects to switch between different VTI files after
they are uploaded into the web application.

18

3.2. Desired State

Scenario: The web application shows a select with items. Each item contains
the file name of the uploaded VTI file. The user can select only one of these
items. After selecting the specific item, the respective VTI file is visualized.
If there are many items in the select, a side scrollbar is available.

Shortcut: UC3
Title: Switching Data Arrays
Description: The user expects to switch between different data arrays of the
particular VTI file after it is uploaded into the web application.
Scenario: The web application shows a select with items. Each item contains
the name of the particular data array. The user can select only one of these
items. After selecting the specific item, the respective data array is visualized.
If there are many items in the select, a side scrollbar is available.

Shortcut: UC4
Title: Visualizing VTI Files
Description: The user expects the web application to visualize the particular
VTI file after it is uploaded or selected. If the user uploads multiple VTI files,
then the first one is visualized when the upload is complete.
Scenario: The web application shows the visualization of the respective VTI
file with the help of a particular visualization library. The visualization is
centered and focused on the camera by default. It can be changed by manip-
ulation or by selecting another VTI file, data array, or representation.

Shortcut: UC5
Title: Switching Representations
Description: The user expects to switch between different representations of
the particular VTI file after it is uploaded into the web application.
Scenario: The web application shows a select with items. Each item con-
tains the name of the particular representation. Available representations are
Points, Slice, Surface, Surface with Edges, and Wireframe. The user can se-
lect only one of these items. After selecting the specific item, the respective
representation is applied and visualized. If there are many items in the select,
a side scrollbar is available.

Shortcut: UC6
Title: Controlling the Player
Description: The user expects to play or pause the player and skip to the
previous or next VTI file. It is possible to control the player only if there are
multiple VTI files uploaded into the web application. If there is only one, the
player options are not available.

19

3. Analysis

Scenario: The web application shows multiple icons (backward, play, pause,
and forward) next to each other. By clicking on the backward icon, the previ-
ous VTI file is visualized. By clicking on the forward icon, the next VTI file is
visualized. By clicking on the play icon, the player goes through the VTI files
and displays them one after another. Each VTI file is shown with a duration
of 0.25 seconds. By clicking on the pause icon, the player is stopped.

Shortcut: UC7
Title: Zooming the VTI Data
Description: The user expects to zoom in or out on the respective VTI data
shown in the web application.
Scenario: The web application shows a section with the “Zoom” title and
two buttons (plus and minus) for zooming in or out. Next to the title, there
is an information icon with a hint to use a shortcut for faster work. Under
the buttons, a slider for setting the power of zooming is possible to adjust.

Shortcut: UC8
Title: Translating the VTI Data
Description: The user expects to translate the respective VTI data shown
in the web application in the direction of three basic axes (x, y, and z).
Scenario: The web application shows a section with the “Translation” title
and six arrow buttons (each pair for each axis) for moving the data along the
specific axis. Next to the title, there is an information icon with a hint to use
a shortcut for faster work. Under the buttons, a slider for setting the step of
translation is possible to adjust.

Shortcut: UC9
Title: Rotating the VTI Data
Description: The user expects to rotate the respective VTI data shown in
the web application around three basic axes (x, y, and z).
Scenario: The web application shows a section with the “Rotation” title
and six rounded-arrow buttons (each pair for each axis) for rotating the data
around the specific axis. Next to the title, there is an information icon with
a hint to use a shortcut for faster work. Under the buttons, a slider for setting
the angle of rotation is possible to adjust.

Shortcut: UC10
Title: Slicing the VTI Data
Description: The user expects to slice the respective VTI data shown in the
web application with a plane.
Scenario: The web application shows a section with the “Slice” title when
the Slice representation is selected. The slice is also applied to the respective
VTI data and visualized with the help of a particular visualization library.

20

3.2. Desired State

Shortcut: UC11
Title: Setting the Orientation of a Cutting Plane
Description: The user expects to set the orientation of the cutting plane.
Available orientations are XY, YZ, and XZ.
Scenario: The web application shows a select with items. Each item contains
the name of the particular orientation (XY, YZ, or XZ). The user can select
only one of these items. After selecting the specific item, the slice in that
respective orientation is applied and visualized. Default orientation is XY.

Shortcut: UC12
Title: Setting the Position of a Cutting Plane
Description: The user expects to set the position of the cutting plane in the
direction of the remaining axis (e.g., the z-axis for XY orientation).
Scenario: The web application shows a slider with the current position of
the cutting plane. The slider ranges within the data extent in the direction of
the remaining axis. Default position is the minimum value of the data extent
in that direction. While moving the slider, the position of the cutting plane
changes accordingly.

Shortcut: UC13
Title: Displaying Information
Description: The user expects to choose whether the point or cell informa-
tion is shown while clicking on the specific primitive in the VTI data.
Scenario: The web application shows a group of three buttons (off, points,
and cells). The user can select one of them if he or she wants to show (or hide)
specific information about the primitives (i.e., points or cells) after clicking on
them. Only one of these buttons is selected at a given time.

Shortcut: UC14
Title: Displaying Point Information
Description: The user expects to see the point information (i.e., an identifier,
coordinates, and the values of point data arrays) while clicking on the specific
points in the VTI data.
Scenario: The web application shows a dialog with the “Point Information”
title. The dialog contains all relevant information about the selected point,
which is an identifier, coordinates (x, y, and z), and the values of point data
arrays (if they are available in the visualized VTI file). It appears centered on
the bottom part of the screen. The dialog can be hidden by clicking anywhere
else or by clicking on the off or cells buttons.

21

3. Analysis

Shortcut: UC15
Title: Displaying Cell Information
Description: The user expects to see the cell information (i.e., an identifier
and the values of cell data arrays) while clicking on the specific cells in the
VTI data.
Scenario: The web application shows a dialog with the “Cell Information”
title. The dialog contains all relevant information about the selected cell,
which is an identifier and the values of cell data arrays (if they are available in
the visualized VTI file). It appears centered on the bottom part of the screen.
The dialog can be hidden by clicking anywhere else or by clicking on the off
or points buttons.

3.2.4 Use Case Diagram

The only actor in the diagram is labeled as a user. Primarily, the user is
a researcher, but it can also be a radiologist. Both of them have the same
capabilities in the web application. No distinction is made between these roles
in the following diagram.

Figure 3.6: Use case diagram

22

3.3. Similar Solutions

3.3 Similar Solutions

Before discussing technical details and building a new web application, it is
important to analyze all the existing similar solutions and check how much
they cover the user’s requirements and needs. Afterwards, the decision is
made. All of the following web applications are based on the ParaViewWeb
framework and available on NPM (that is, “Node Package Manager”). They
were developed by Kitware, Inc.

3.3.1 Visualizer

The Visualizer application provides a user interface to ParaView accessible in
the web browser. In fact, Visualizer is a part of ParaView and can be run with
the help of its built-in Python environment. It is very similar to ParaView
and, therefore, most suitable to the user’s requirements and needs.

The user interface is simplified but still rather complex and overwhelming,
containing unnecessary features and parameters hidden in the left column.
The provided capabilities (such as slice, player, data array select, or represen-
tation select) are similar to those in ParaView. However, Visualizer is rather
a flawed and old web application. Icons have no tooltips, and sometimes they
are not intuitive. For applying changes (such as a different position of the cut-
ting plane), it is necessary to click on the specific icon. Moreover, the player
is not working properly. There are no support tools for transformations, and
point or cell information is also missing.

Figure 3.7: Visualization in Visualizer

23

3. Analysis

3.3.2 LightViz

The LightViz application is a visualization tool similar to Visualizer. Likewise,
it provides a simplified interactive user interface. Besides the visualization,
LightViz offers the mostly used tools from ParaView (e.g., player, slice, multi-
slice, volume rendering, etc.). These tools are configurable and can be added
or removed as the user requires. Therefore, LightViz is sufficient in terms of
complexity. However, it is nowadays a flawed, obsolete, and old web appli-
cation with three years of no maintenance. Additionally, the developers of
LightViz recommend not using this application in production [21].

3.3.3 ArcticViewer

The ArcticViewer application is a standalone scientific visualization tool that
serves as a data viewer for large datasets. Apart from Visualizer and LightViz,
ArcticViewer does not require ParaView as a backend. Again, it has a sim-
plified user interface for visualization purposes that is accessible in the web
browser. Slice, zoom, and pan manipulations are also available. On the other
hand, ArcticViewer is a deprecated application that is no longer supported.

3.3.4 Decision

Of course, there are more similar solutions available on the internet. Worth
mentioning is the GitHub profile KitwareMedical that keeps over 100 reposi-
tories with various medical tools and utilities. In summary, all similar solutions
found fulfilled only a subset of the users’ requirements. Their user interfaces
are simplified, but they still have more features than desired. Additionally,
some of them cannot even be launched due to their obsolescence, high error
rate, and lack of maintenance. Overall, similar solutions are not suitable for
the researchers at the IKEM. Therefore, it is necessary to develop a new web
application tailored to our users’ needs and requirements.

3.4 Technical Ways

For the time being, previous and desired states were described in this chapter,
including all problems and requirements that users have. The web application
is certainly going to be based on a visualization library and available in the
web browser. Therefore, it is necessary to analyze the technical options and
make a decision. All of the following technical ways are ordered from the most
challenging to the most convenient in terms of realization.

3.4.1 WebGL

WebGL is a cross-browser and cross-platform API (that is, “Application Pro-
gramming Interface”) for creating 3D graphics directly in the web browser. It

24

3.4. Technical Ways

is a low-level library based on OpenGL and GLSL (that is, “OpenGL Shading
Language”) that runs in the HTML5 (that is, “HyperText Markup Language”)
<canvas> element. Therefore, WebGL can be easily integrated into the web
application and work along with HTML5, CSS3 (that is, “Cascading Style
Sheets”), and JavaScript. [22]

3.4.2 Three.js

Three.js is a 3D library that streamlines the creation of 3D graphics in the
web browser. It leverages WebGL and simplifies work with this low-level API.
Therefore, it is possible to create stunning and powerful web applications
with 3D graphics in a high-level way. The basic building blocks of Three.js
are the renderer, camera, scene, meshes, geometries, materials, textures, and
lights. Moreover, the library offers plenty of built-in geometry primitives. On
the other hand, Three.js is a modern framework, and its compatibility with
the old browsers is not guaranteed. However, it has comprehensive and well-
arranged documentation. Similarly to WebGL, it can also be easily integrated
with HTML5, CSS3, and JavaScript. [23]

3.4.3 ParaViewWeb

ParaViewWeb is an open-source JavaScript library for creating web appli-
cations that use scientific visualizations and run in the web browser. The
framework leverages Three.js for handling 3D graphics, but it is migrating
to VTK.js (that is, “Visualization Toolkit”). It is possible to use ParaView
or VTK as a backend for data processing and rendering. Communication
between the client and the server is provided by WebSocket. [24]

The library offers several modules regarding data handling, interaction,
rendering, and UI (that is, “User Interface”). It provides many React and
visualization components (such as 1D or 2D histograms, parallel coordinates,
various kinds of editors, etc.) that support a user in interaction, exploration,
focusing on details, customizing, and modifying the visualization. [24]

Working with ParaViewWeb requires deep knowledge of web development
and modern JavaScript (i.e., Webpack, Babel, ES6, etc.). In the end, a de-
veloper only picks features and capabilities that are desired. Nowadays, there
are many web applications powered by ParaViewWeb, such as Visualizer,
LightViz, ArcticViewer, and so forth. [24]

3.4.4 Trame

Trame is an open-source Python library for building interactive, fashionable,
and powerful visualization applications. The framework works along with
VTK (i.e., a library for visualizing scientific data) and Vuetify (i.e., a frame-
work for building user interfaces). It is built on ParaViewWeb, but the overall

25

3. Analysis

underlying complexity is hidden. Moreover, minimal knowledge of web de-
velopment and modern technologies is required. This approach makes the
development of web applications much more simple and fast. [25]

3.4.5 Decision

All of the previous technical ways can be used to solve the users’ problems
and fulfill their requirements. However, each of them is more or less appro-
priate. WebGL is considered inappropriate because it is a low-level API, and
even the simplest things take a lot of code to write. Such an inconvenience is
successfully solved by Three.js through its simplified and high-level work with
objects such as renderer, camera, scene, and so forth. On the other hand,
the support of VTI files is problematic in this library. Taking into account
the users’ requirements, Three.js is not appropriate either. ParaViewWeb is
considered appropriate because it is the complete web framework for building
web applications with scientific visualizations. However, it still takes knowl-
edge, money, and time to make such a web application. Trame is much more
modern, and the building of web applications is simplified and accelerated.
On the other hand, Trame is a truly high-level framework, and it may not be
easy to get into low levels to change some configuration parameters, for exam-
ple. According to N6, the client is looking for modern web technologies and
planning to build another visual analytics applications in the future. Addi-
tionally, both Trame and ParaView are based on VTK. All these technologies
are developed by Kitware. Actually, it is advantageous, and the features of
ParaView should be feasible in Trame. In summary, Trame is considered the
best option. Trame, VTK, and Vuetify will be described in more detail later.

26

Chapter 4
Design

Based on the previous analysis, the final solution is proposed in this chapter.
It was designed with the help of personas as the archetypes of our users.
Therefore, personas are described at first. Then, the chapter continues with
wireframes drawn immediately after collecting all requirements. Afterwards,
the final design of the web application is presented using the prototype that
was created with knowledge of the final technologies before the implementation
phase. Finally, the next chapter concentrates on the implementation details
of the MVP (that is, “Minimum Viable Product”).

4.1 MRI Viewer

The proposed solution is a web application called “MRI Viewer”. Basically, it
is a viewer of scientific VTI files with data coming from MRI machines. The
tool is intended for the analysis of 4D flow MRI medical data. Its greatest ben-
efits are availability through the web browser, complexity reduction, a simpli-
fied work process, better user support, localization, and modern technologies
described later. MRI Viewer is oriented especially towards the researchers.

4.2 Personas

Personas are fictional characters that represent specific groups of users. Each
persona is a group of behaviors, goals, characteristics, needs, and opinions. It
is helpful for designers, as they can understand their users and look at the
design through the eyes of a specific persona.

There are three types of personas: typical user (labeled as A), occasional
user (B), and negative user (C). Persona A is the most important user (i.e.,
a researcher). The web application is designed especially for him or her. These
users are also the main testers in the usability testing discussed later. Persona
B is a secondary user (i.e., a doctor). It is not expected that this user will

27

4. Design

use the web application on a regular basis, but he or she should be able to
handle it. Persona C is an antipersona. The web application is not designed
for these users, as they will probably not understand and use it. All three
personas are described in the following subchapters. Each of them is based
on the information gathered from interviews, calls, and observations.

4.2.1 Persona A

Type: Typical user
Name: Elise Wilson
Age: 30
Gender: Female
Hobbies: Reading, traveling, meeting with new people, painting with a focus
on details, writing papers and research publications
Description: Elise is a research scientist at a specialized research facility. She
studied very hard and achieved a PhD title. She gets up every day at 7 a.m.
Her working hours are from 9 a.m. to 5 p.m. Her work focuses mostly on
research. She is not afraid of working with modern software tools, applications,
and programming languages. In her opinion, they make our lives easier and
more effective. There is no problem with learning new things and approaches
for her. Otherwise, she is kind, helpful, and curious, sometimes shy. From time
to time, she visits conferences on her favorite topic: medical care technologies.
However, her medical background is rather limited. On the other hand, she has
vast experience with image processing and 3D visualizations. Being punctual
and focused on details are some of her strengths.

4.2.2 Persona B

Type: Occasional user
Name: Walter Fritz
Age: 45
Gender: Male
Hobbies: Helping and talking to other people, cooking healthy food and
drink, running, drinking tea, self-education, training new doctors, tennis
Description: Walter is a doctor with a specialization in radiology. He is
rather introverted by nature. In his childhood, he avoided parties, fun, and
computer games. Instead, he was focused on his future job as a radiologist. He
studied really hard to become a doctor at a specialized medical facility. That
is why he is so successful and smart today. He has managed to have effective
time management. He avoids useless things and rather works effectively as
much as possible. If he works with complex and difficult software, he loses
patience very soon. On the other hand, he welcomes simple, effective, and
well-organized support tools that make his work go faster.

28

4.3. Wireframes

4.2.3 Persona C

Type: Negative user
Name: Roy Dennis
Age: 68
Gender: Male
Hobbies: Gardening, watching TV, reading newspapers, spending time with
his family, walking, meeting with his friends in the pub or cafe, petting his
dog, discussing his problems and politics
Description: Roy is a retired newsagent’s worker. He used to have an im-
mutable routine in his life. Therefore, he does not like learning new things. He
wants to have his work done as soon as possible. Working with mobile phones
and computers makes him nervous. He is afraid of doctors and the machines
they use because he does not know how they work. Being in a hospital and
having examinations makes him feel anxious.

4.3 Wireframes

After finishing the first round of requirements analysis, six frontend screens
were painted using the Balsamiq tool. Their objective was to gain a more
comprehensive understanding of the client’s requirements. Wireframes cover
all use cases and show only the initial design because they were created without
knowledge of final technologies. All of them were discussed and approved by
the client. Of course, there are other requirements (not captured on screens)
that were added in later phases. Only a few significant wireframes are included
in the following text. The attached CD contains the rest of them.

The following figure depicts the startup options that are shown first while
approaching the web application. It covers the UC1 use case. After choosing
VTI files, there was another screen where the user could change the selection
of data arrays to be loaded. However, this was classified as a redundant step
and skipped in the final prototype.

Figure 4.1: Loading options

29

4. Design

The web application’s working environment is shown in the wireframe
below. It covers most use cases (i.e., UC2–10 and UC13). All tools are
organized evenly around the visualization. The emphasis is on a minimalistic
user interface with the least possible number of functionalities. Every tool
has a help icon for assistance that explains its usage. Additionally, there
is a section containing a filter for reducing the noise of the visualized data.
However, denoised data was added as a new data array to the VTI files of the
researchers, and this section was no longer required. Therefore, it was skipped
in the final prototype.

Figure 4.2: Working environment

In the following wireframe, information about the particular cell (i.e., the
UC15 use case) is shown while hovering the mouse over it. It was later modi-
fied to show the information only after clicking the respective cell. The reason
was that the user was overwhelmed by the information of the surrounding
irrelevant cells each time he or she moved a mouse.

30

4.4. Prototype

Figure 4.3: Cell information

4.4 Prototype

The final prototype was built with the help of the Axure tool. In contrast
to wireframes, the prototype is clickable. It contains colors that match those
of the IKEM (i.e., red and white). Not all features were included, as Axure
and other prototyping tools are simply not capable of implementing them (for
example, the rotation of a 3D visualization). However, the presented user
interface is based on Vuetify, which was used for the implementation. There
are minimal differences between the final prototype and implementation, even
though many other features were added later (such as axes information, axes
widget, scalar bar, resetting the view, different themes, etc.). Based on the
final prototype, use case scenarios were created and further used for usability
testing. The prototype was discussed with and approved by the client. The
full version is available on the attached CD.

The first part of the prototype is a dialog for uploading files that shows
up at startup. It provides two ways of loading data (locally or remotely),
accompanied by an introductory text on limitations. These limitations are
checked later in the code, keeping the user posted if they are violated.

31

4. Design

Figure 4.4: Dialog for uploading files

The second part of the prototype is the working environment that appears
after uploading files. It consists of the upper bar, left column, and main
content for visualizing the uploaded files.

Figure 4.5: Working environment

Eventually, select components were used instead of menus as they save
space, which is a difference from wireframes. The only disadvantage is one
extra click for the user. Selects hold files, data arrays, and representations.
More select components can be easily added in the future.

32

4.4. Prototype

Figure 4.6: Selects

The upper bar contains the IKEM logo with a link to their website, a but-
ton to open the dialog for uploading files, and a multilingual user guide. Fur-
thermore, there is also a player, point and cell information control, and a lan-
guage switch.

Figure 4.7: Upper bar

The following figure shows all the tools available in the left column. Trans-
formation tools (i.e., zoom, translation, and rotation) contain information
icons that recommend using specific shortcuts for faster work. Thus, they are
only supportive and intended for novice users. These tools also contain sliders
for customizing their factors (e.g., the angle of rotation).

Figure 4.8: Tools

33

Chapter 5
Implementation

This chapter provides a description of the web application’s implementation.
The final implementation is based on the client’s requirements and the pro-
totype, which were both discussed in the previous chapters. The content of
this chapter is further supplemented with auxiliary diagrams. Testing will be
discussed in the following chapter.

5.1 Technologies

MRI Viewer relies on three modern frameworks and libraries – Trame, VTK
(including VTK.js), and Vuetify. The author of these technologies (except
Vuetify) is Kitware, Inc. This is also the creator of the ParaView tool, which
was previously used by the client. These mentioned technologies are described
in the following subchapters, as they will be needed later in the text.

5.1.1 Trame

Trame is an open-source, stateful web framework for developing interactive
visualization applications in plain Python. It was initially released in 2021
and has been rapidly evolving since then [26]. [25]

The framework is built upon ParaView, ParaViewWeb, VTK, VTK.js,
Vue.js, HTML5, CSS3, and other underlying technologies, but their complex-
ity is completely hidden. There is no need for deep knowledge of web devel-
opment to build a Trame application. A Python developer simply writes .py
scripts and can mainly focus on data analysis, manipulation, and visualiza-
tion. With this approach, it is possible to build visual analytics applications
easily and faster than before. [25]

Other tools (such as Matplotlib, Pandas, or NumPy) can be integrated
with the help of pip (PyPI) or Conda. After all, Trame itself is implemented
as a Python package, too. It is also an integration framework, which means
that the building of a web application is just a matter of orchestrating several

35

5. Implementation

Python packages together. Any missing functionality can be easily added.
However, it is still the best practice to install all the dependencies within the
Python virtual environment so that the global space is not cluttered. [25]

5.1.1.1 MVVM Pattern

The client-server architecture of Trame is based on the MVVM (that is,
“Model-View-ViewModel”) pattern. It is necessary for a developer to define
each of the three components to make a working application. [25]

Model represents the business logic of the application. It consists of
functions, methods, and classes that define behaviors together. They can
modify the shared state (ViewModel) and bind events to functions managed
by the controller. With the help of @change decorators, it is also possible to
react to the changes in the shared state. [25]

View represents the user interface of the application. It is based on Vue-
tify, which is a Vue.js component library, but the whole UI is declared in
Python. View converts the shared state into the UI, where the user can mod-
ify it (e.g., by clicking a button or moving a slider). It is always up-to-date
after making changes to the shared state. [25]

ViewModel represents the shared state of the application. It is a dictio-
nary for important serializable data to be presented in the View. Its purpose
is to synchronize the client with the server and bind the UI with the business
logic. The shared state can be modified internally (from within the business
logic) or externally (from the user interface). Variables from the shared state
can be bound to particular UI elements. [25]

Figure 5.1: The MVVM pattern of Trame [27]

36

5.1. Technologies

5.1.1.2 Cookiecutter

Cookiecutter is a CLI (that is, “Command Line Interface”) utility for the
instant creation of a new project from a ready-made project template. These
templates are called “cookiecutters”, and they are used to generate mostly
Python projects. On the other hand, there are many cookiecutters available
on the internet today. It is possible to generate a wide range of projects
that include but are not limited to Python, Django, Flask, or even Go and
C projects. Using the Cookiecutter tool at the beginning of the development
phase can significantly speed up the whole process. [28]

The authors of Trame also created their own cookiecutter for generating
Trame projects. Their cookiecutter creates a sample Trame project, which
is a web application for visualizing a simple cone. Moreover, there is a code
infrastructure for various kinds of deployment. Therefore, Trame applications
can easily be:

• deployed in the cloud with the help of Docker;

• distributed as desktop applications (for Windows, Linux, and MacOS);

• uploaded to PyPI (that is, “Python Package Index”); or

• run in JupyterLab. [29]

The generation process of Trame applications is very simple. At the begin-
ning, it is necessary to install Cookiecutter (using pip, for instance). After-
wards, a developer runs the cookiecutter command with a reference to the
Trame’s cookiecutter. Then, the developer answers a set of basic questions
(e.g., project name, type, author, description, license, etc.). Finally, the basic
code template is generated. [29]

5.1.2 VTK

VTK (that is, “Visualization Toolkit”) is an open-source library for visual-
izing, manipulating, and interacting with scientific and medical data. It is
a backward-compatible, object-oriented, and truly complex system capable of
converting data (e.g., .vti, .vtp, .dcm, .stl, .ply, .obj file formats) into graphical
representations. Besides, VTK is also able to modify the data, play anima-
tions, show different widgets, and much more. Fortunately, VTK is already
a part of the Trame framework and can be integrated into the Python virtual
environment using pip. The best way to learn such a comprehensive tool is
by inspecting examples and studying the VTK’s user guide. [19]

The library is composed of the compiled C++ core and an interpreted
(e.g., Python) wrapper for working with this core. The basic flow is to read
(or generate) some data, render it, and let the user interact with it. There are
two main VTK components that are used to achieve it:

37

5. Implementation

• Visualization pipeline reads (or creates) data, processes it, and writes
it to a file or passes it to the rendering engine to visualize.

• Rendering engine creates the visual representation of the passed data
and renders the result into a window. [19]

VTK accepts data of various types (e.g., vtkImageData, vtkPolyData, vtk-
StructuredGrid, etc.). These data contain points (as single geometric spots in
space) and cells (as single topological groups of points in space). Moreover,
they may include attribute data (such as scalars, vectors, normals, tensors,
etc.) associated with them. To be able to render the data using VTK, several
objects are required:

• Mapper holds a reference to the raw data and converts it to a visual
representation.

• Actor connects to the mapper and represents the data in the scene. It
uses the property object to control the appearance of the data.

• Renderer creates a scene and puts actors, camera, and lights into it.
It is responsible for rendering.

• RenderWindow connects the operating system with VTK. It opens
a platform-specific window and manages the display process. Several
renderers can be contained.

• RenderWindowInteractor listens and processes the events with the
help of a Command/Observer design pattern to provide corresponding
features, such as rotating, panning, or zooming. [19]

5.1.2.1 VTK.js

VTK.js is the implementation of VTK in vanilla JavaScript ES6. The goal of
this library is to make the visualization capabilities of VTK available in the
web browser, where it leverages WebGL. However, VTK.js is still in develop-
ment. Therefore, it should not be considered equivalent to VTK. [30]

5.1.2.2 Visualization Example

The following code snippet shows the visualization of a cone using VTK. It
was written in the Python programming language. The image below the code
displays the output.

38

5.1. Technologies

Create polygonal cone
cone_source = vtkConeSource()

Map polygonal data (geometry) to graphic primitives
cone_mapper = vtkPolyDataMapper()
cone_mapper.SetInputConnection(cone_source.GetOutputPort())

Represent object (geometry and properties) in rendered scene
cone_actor = vtkActor()
cone_actor.SetMapper(cone_mapper)

Create helper for accessing named colors
colors = vtkNamedColors()

Set color of actor to be white
cone_actor.GetProperty().SetColor(colors.GetColor3d("White"))

Create renderer to control rendering process for actors
renderer = vtkRenderer()

Create window for renderers to draw their images into
render_window = vtkRenderWindow()
render_window.AddRenderer(renderer)

Create interactor to provide interaction mechanism for events
render_window_interactor = vtkRenderWindowInteractor()
render_window_interactor.SetRenderWindow(render_window)
render_window_interactor.Initialize()

Add actor to renderer
renderer.AddActor(cone_actor)

Set camera to see every actor
renderer.ResetCamera()

Command local renderers to render their image
render_window.Render()

Start event loop
render_window_interactor.Start()

Code 5.1: The basic visualization in VTK

39

5. Implementation

Figure 5.2: The output of the visualization example

5.1.3 Vuetify

Vue.js is a popular JavaScript framework for building user interfaces. Simi-
larly to React and Angular, the user interface here is composed of components.
A component is a small, reusable module of HTML, CSS, and logic that rep-
resents some part of the user interface. Vuetify is an open-source library of
customizable, ready-made, and responsive Vue.js components (for instance,
autocomplete, card, carousel, dialog, file input, snackbar, stepper, tooltip, and
many more). Thanks to the comprehensive documentation, clear API, and
large community, it is easy to learn, and no design skills are needed. Develop-
ers can use Vuetify to build UI and UX (that is, “User eXperience”) simply
and effortlessly, saving their time. [31]

5.1.3.1 Usage in Trame

The user interface of a Trame application is based on Vuetify. However, Trame
uses its own version of Vuetify that is completely rewritten in Python. Con-
sequently, there are syntax differences between both versions. Vuetify is used
in two groups of elements that Trame provides – UI and widgets. [25]

UI is a group of layout components. Layouts are top-level components
that define the organization and structure of the whole UI. Additionally, they
define regions in the UI where widgets can be placed. The user interface of
the Trame application is built on a single layout component, which might be:

40

5.2. Development

• VAppLayout (i.e., a blank fullscreen);

• SinglePageLayout (i.e., VAppLayout with icon, title, toolbar, content,
and footer); or

• SinglePageWithDrawerLayout (i.e., SinglePageLayout with a column
on the left side). [25]

Widgets is a group of basic elements (including but not limited to Vuetify
components) that are used to fill the predefined layout. [25]

5.2 Development

The development of MRI Viewer took four months in total. It was written
and debugged in Visual Studio Code as the primary IDE (that is, “Integrated
Development Environment”). The project is stored in a public repository on
GitHub and contains three Git branches: main, dev, and deploy. Naturally,
the code is accompanied by Python docstrings and comments.

Technologies used for the development (i.e., Trame, VTK, and Vuetify)
were completely new and unknown to the author of this thesis. Moreover,
Trame is a very modern and rapidly evolving technology in the field of web-
based visualization. The lack of experience, in combination with the originality
of Trame, caused time delays and issues while developing.

The method of learning by examples (available on the internet) was the
most effective one, even though many examples were obsolete, because the
syntax has slightly changed with every new version of Trame. Moreover, the
official Trame documentation (including the code documentation) remains un-
finished, which caused issues (for instance, while deploying). Although Kit-
ware (as the author of Trame) offers support, educational courses, and training
opportunities for their users, it is unfeasible from an academic perspective as
these services are very expensive (even with student discounts included).

However, Kitware stores projects (including Trame) on GitHub, where
users can raise questions in GitHub issues and discussions. In this way, it is
possible to get in touch with Kitware developers and solve all the problems
together. Additionally, ChatGPT has been used in practice to provide hints
on how to implement certain features in VTK. Although the code produced
by this LLM (that is, “Large Language Model”) was mostly incorrect, it pro-
vided specific functions and methods from the VTK’s large API that could
be explored further. Nonetheless, it was very easy to create a web application
using Trame, VTK, and Vuetify, but very hard to develop a practical tool (as
MRI Viewer) with no prior knowledge of these technologies.

41

5. Implementation

5.3 Web Application

MRI Viewer is a Python package that can be launched as a web (or desktop)
application. Additionally, it is also possible to execute it in JupyterLab. The
application has been containerized, and therefore, it is easily deployable using
Docker. MRI Viewer has already been deployed and integrated with the help
of FNSPE (that is, “Faculty of Nuclear Sciences and Physical Engineering”)
CTU (that is, “Czech Technical University”).

It leverages Trame, VTK, and Vuetify. Trame provides the basic infras-
tructure for building the web application. VTK powers visualizations, and
Vuetify simplifies the process of building the user interface. MRI Viewer
was built upon the MVVM pattern with the help of OOP (that is, “Object-
Oriented Programming”) principles. Based on a client-server model, the client
(front end) is used for interacting, and the server (back end) processes requests.
The implementation is described in the following subchapters, and the user
guide is available in the attachments (appendix B).

Figure 5.3: The human brain visualized in MRI Viewer

5.3.1 Engine

MRIViewerApp is a core class of MRI Viewer. It holds the server instance and
controls the state (ViewModel) of the web application. Moreover, the class
has access to the user interface (View) that is built during the initialization
time with the build ui method. This method provides a reference to the
SinglePageWithDrawerLayout as a top-level element.

42

5.3. Web Application

GUI elements and widgets are linked directly to the state via the v model
attribute. MRIViewerApp defines listeners to the state variables using the
@change decorators so that the web application can react to changes from the
user interface. Another way of connecting the user interface with the logic
(Model) is by using a controller, which is a simple container for methods.
Moreover, it serves as a mediator (which is also one of the behavioral design
patterns) that helps reduce dependencies between classes by forcing them to
use the controller’s methods.

In fact, MRIViewerApp serves as a high-level facade that uses the concept
of managers to divide and conquer the problem. It delegates the work to
lower-level specialized classes (called “managers” or “subfacades”) that solve
smaller problems. This architecture helps to follow the single responsibility
principle and prevents MRIViewerApp from becoming a god object.

5.3.2 File Manager

The responsibility of the file manager is the management of VTI files. It
organizes files into groups. Files within the same group have the same prop-
erties (such as extent, origin, spacing, and data arrays). Moreover, groups
save parameters set while working with these files (such as current representa-
tion, color map, camera view, slice orientation and position, etc.). Therefore,
groups automatically remember and restore work in progress when the user
switches between files. Besides, the file manager also handles uploading, vali-
dating, and deleting files.

5.3.3 Language Manager

The responsibility of the language manager is the management of languages
(currently Czech and English only). All languages are represented as dictionar-
ies sharing the same interface. The user can switch between these languages
in the web application. Additionally, the language manager provides different
user guides based on the selected language.

5.3.4 VTK Manager

The responsibility of the VTK manager is the management of VTK objects.
It uses the custom VTKCreator class for creating tailored VTK objects (such
as renderer, render window, render window interactor, mappers, actors, etc.).
Each file group has its own set of VTK objects. Of course, many VTK objects
are shared across file groups (such as the render window, because there is
only one window for the whole time). VTK manager offers several features,
as described in the following subchapters.

43

5. Implementation

5.3.4.1 Interaction

MRI Viewer provides support tools for user interaction and manipulating the
visualized data. In fact, the user does not manipulate the data themselves,
but the camera while zooming, translating, and rotating. The data remains
static for the entire time. For zooming, the manager uses the Zoom method of
vtkCamera. For translating, the manager sets the new camera position and
focal point with the help of the SetPosition and SetFocalPoint methods.
For rotation, the manager executes the Translate and Rotate methods of
vtkTransform that are applied to the camera. Simply put, the camera is
relocated from its original position to the center of the data. Then, the camera
rotates around the specific axis. Finally, it is relocated using the same (but
negative) translation as before, which moves it to a new position.

5.3.4.2 Picking

Speaking of picking points and cells, it is necessary to synchronize the server
camera with the client camera after every user interaction. While clicking the
particular point or cell on the client, a new event object emerges containing the
position in display coordinates. This event position is sent to the server, where
it is used as the parameter of the Pick method executed by vtkCellPicker on
the respective vtkRenderer. Basically, vtkCellPicker shoots a ray from the
specified position into the scene and returns the information about the first
actor it hits (for instance, the particular point or cell identificator). Then, the
process of retrieving information about a hit point or cell is trivial. Moreover,
the affected primitive is highlighted. Picking would be impossible without
client-server camera synchronization. Otherwise, the ray would be cast to
a different rendered image and return the wrong information.

5.3.4.3 Rendering

MRI Viewer uses vtkXMLImageDataReader as a VTI file reader. After reading
the particular VTI file, the reader is connected to the vtkDataSetMapper
object together with the vtkLookupTable. The lookup table contains colors
gained by the rasterization of the specific vtkColorTransferFunction, which
is defined by the specific color map (e.g., grayscale). Therefore, scalars saved
in the VTI file can be mapped to colors with the help of the lookup table.
Afterwards, the mapper is linked to the vtkActor that is put into the scene.
Finally, the scene is rerendered, and the client is synchronized with the server
so that the user can see the most recent image.

5.3.4.4 Slicing

Slicing is based on the vtkExtractVOI filter that selects the VOI (that is,
“Volume Of Interest”) from the specific VTI data. First, the filter is linked to

44

5.3. Web Application

the data gained by the VTI file reader. Then, it follows the same rendering
procedure as for other objects. The filter is linked to the vtkDataSetMapper
object together with the lookup table. After that, it is connected to the
vtkActor that is visualized in the scene. In addition, the VOI must be selected
using the SetVOI method in the range of all three axes. Slicing is done by
setting this range to the VTI data extent and narrowing the range of one
specific axis to a single unit. Therefore, a 2D image of the VTI data can be
rendered and positioned across the specific axis.

5.3.5 Architecture

The following class diagram depicts the architecture of the web application.
It contains each of the classes and dependencies between them. Due to the
complexity, the diagram is simplified and some parts are deliberately omitted.

Figure 5.4: The architecture of the web application

45

5. Implementation

5.3.6 User Interface

The user interface of MRI Viewer represents the View in the MVVM pattern.
It is based on the SinglePageWithDrawerLayout layout. The basic building
blocks of this layout are icon, title, toolbar, drawer, content, and footer. These
blocks are filled with components (i.e., groups of widgets). The following
diagram depicts the architecture of the UI in a more clear manner.

Figure 5.5: The architecture of the user interface

5.3.6.1 Components

A component is a Python function with the respective widgets (e.g., html,
vtk, vuetify3, etc.) declared. Components are connected to the shared state
with the help of the v model attribute. They can also use the functions or
methods stored in the controller for event handling. However, components in
MRI Viewer do not contain any logic (to keep the MVVM pattern), which
is the difference from, for instance, React components. The following list
contains each of the components with a little description:

46

5.3. Web Application

• upload files dialog consists of a visible button (vuetify3.VBtn) that
opens the dialog for uploading files (vuetify3.VDialog). The dialog is
further composed of other elements, such as a file input for uploading
files from the computer (vuetify3.VFileInput) or a specialized text
field for uploading files via URL (vuetify3.VTextField).

• manage files dialog consists of a visible button (vuetify3.VBtn) that
opens the dialog for managing files (vuetify3.VDialog). The dialog
contains the list of files where each file (except the visualized one) can
be deleted. Furthemore, it includes the confirmation page for the user
to confirm the deletion.

• user guide button is a button (vuetify3.VBtn) for opening the user
guide of MRI Viewer on a specific URL (html.A) in a new tab of the
web browser.

• player icons consists of three icons (vuetify3.VIcon) for controlling
the player (i.e., previous file, play/pause, next file). Each of the icons is
decorated with the @tooltip decorator, which shows a short description
for the user after hovering the mouse over the icon.

• progress bar is a component that represents an endless progress indica-
tor (vuetify3.VProgressLinear) located under the toolbar. Whenever
it is active, it means that the web application is busy processing requests.

• picker modes icons consists of one button (vuetify3.VBtn) for turn-
ing off the picking and two icons (vuetify3.VIcon) for turning on the
point or cell picking. The icons are decorated with a tooltip.

• toolbar icons consists of three icons (vuetify3.VIcon) for turning
on/off the axes information, resetting the view, and changing the theme.
Again, all of them have tooltips.

• language buttons is a group of buttons (vuetify3.VBtn) for switching
between the Czech and English versions of the web application.

• file name select is a file selector (vuetify3.VSelect) containing all
the uploaded files. The user can switch between different files with the
help of this component. Afterwards, the selected file is visualized.

• data array select is a data array selector (vuetify3.VSelect) con-
taining all point/cell arrays included in the visualized file. The user can
switch between different data arrays with the help of this component.

• representation select is a specialized selector (vuetify3.VSelect)
for different ways of displaying the selected file. The user can switch
between different representations with the help of this component.

47

5. Implementation

• color map select is a specialized selector (vuetify3.VSelect) for dif-
ferent ways of coloring the selected file. The user can switch between
grayscale and temperature colors with the help of this component.

• slice tool is a component that represents a tool for controlling the data
slicing. It consists of elements, such as a selector (vuetify3.VSelect)
for different orientations or a slider (vuetify3.VSlider) for setting the
slice position within the data extent.

• zoom tool is a component that represents a tool for zooming the data.
It consists of tooltiped icons (vuetify3.VIcon) for controlling the zoom
(i.e., zoom in or out). There is also a slider (vuetify3.VSlider) for
setting the power of the zoom.

• translation tool is a component that represents a tool for translating
the data. It consists of tooltiped icons (vuetify3.VIcon) for control-
ling the translation in the directions of all axes. There is also a slider
(vuetify3.VSlider) for setting the step of the translation.

• rotation tool is a component that represents a tool for rotating the
data. It consists of tooltiped icons (vuetify3.VIcon) for controlling the
rotation around all axes. There is also a slider (vuetify3.VSlider) for
setting the angle of the rotation.

• visualization is a component for performing VTK visualizations and
rendering (vtk.VtkLocalView). The data is rendered locally on the
client side using the hardware resources of the client, which is more
performant in terms of FPS (that is, “Frames Per Second”). On the
other hand, the data must be transferred from the server, which might
cause latency. [32]

• picker info represents a small window (vuetify3.VCard) with infor-
mation (such as an identificator, position, or data array values) appear-
ing while picking points or cells.

All the above components are decorated with the hot reload decorator.
Together with the watchdog Python package, it performs live updates to the
user interface displayed in a web browser when the developer saves a file.
Thus, it is not necessary to restart the server each time while tuning the UI.

5.3.7 Design Patterns

Design patterns are commonly known solutions for typical problems in soft-
ware development. By using them, the code can be more readable, extensible,
and maintainable. While developing MRI Viewer, several design patterns were
used, as described in the following subchapters. There are also code samples
(with comments omitted) for each of the patterns.

48

5.3. Web Application

5.3.7.1 Decorator

Decorator is a structural design pattern that adds new behaviors to wrapped
objects if they are placed into wrappers containing these functionalities. Fur-
thermore, it is possible to nest decorators so that the wrapped objects have
multiple different behaviors at once.

Python functions can be decorated by adding @name of decorator above
their definitions. It causes the decorated function to be put as an argument
into the decorator, which can add new behaviors to it. There are several
decorators used in MRI Viewer :

• TrameApp is a Trame decorator for Trame applications.

• change is a Trame decorator for state change. It runs the decorated
function every time the particular state variable changes.

• hot reload is a Trame decorator for reloading the decorated function.

• tooltip is a custom decorator for adding a simple tooltip to the deco-
rated function, which is used especially for icons.

def tooltip(content):
def wrapper(**kwargs):

with vuetify3.VTooltip(
text=kwargs["tooltip"],
location=kwargs["tooltip_location"],

):
with vuetify3.Template(

...
):

content(**kwargs)

return wrapper

...

@tooltip
def icon(**kwargs):

...

Code 5.2: The Decorator design pattern in MRI Viewer

49

5. Implementation

5.3.7.2 Facade

Facade is a structural design pattern that represents a simplified interface to
a complex subsystem (e.g., a framework). The client does not have to deal
with the complex code hidden under the subsystem because the facade hides
all the details. Instead, the client uses the methods of the interface.

The architecture of MRI Viewer is based on classes called “managers”. In
fact, all of these managers are facades that work with some underlying and
complex set of classes. For instance, there is a class VTKManager that simplifies
the work with the VTK library. By the way, this is the most used facade in
the web application.

class VTKManager():
...

def render_file(self, ...):
...

def render_data_array(self, ...):
...

def render_representation(self, ...):
...

def set_slice(self, ...):
...

def render(self):
...

def get_picked_point_info(self, ...):
...

def show_picked_point(self, ...):
...

def hide_picked_point(self):
...

...

Code 5.3: The Facade design pattern in MRI Viewer

50

5.3. Web Application

5.3.7.3 Singleton

Singleton is a creational design pattern that represents a class with only one
instance available. The constructor of this class is private. Instead, there is
a method that returns the existing instance and serves as an access point.

Each of the managers (or facades) in the web application is a singleton
because it does not make sense to create more instances. In Python, the
singleton class is created with the help of the new method, as shown in the
following code snippet.

class FileManager:
def __new__(cls):

if not hasattr(cls, "instance"):
cls.instance = super().__new__(cls)

return cls.instance

...

Code 5.4: The Singleton design pattern in MRI Viewer

51

Chapter 6
Testing

The last chapter describes the testing of MRI Viewer as a new medical tool
designed for researchers from the IKEM. Testing was divided into the testing
of features (and writing unit tests for them), compatibility (of devices and
browsers), and usability (with end users). This chapter is further followed by
a conclusion, a user guide, and test scenarios.

6.1 Tests

There are up to 50 unit tests available for testing the features of MRI Viewer
(i.e., the controller methods and file, language, and VTK managers). In order
to run tests, it is required to install the pytest package and execute the com-
mand of the same name. However, the test coverage is not 100%. Therefore,
the test base is not complete, and more unit tests can be added in the future
while building the CI/CD pipeline.

6.2 Test Data

MRI Viewer was tested with up to 25 various VTI files. The IKEM provided
10 VTI files showing the 4D blood flow in the human aorta. These data con-
tains several data arrays, such as anatomy, velocity (in x, y, and z directions),
and velocity magnitude (through the different layer thicknesses), including
the denoised version. Other VTI files were obtained from the Kitware Data
platform or found publicly available on the internet.

53

6. Testing

Figure 6.1: The blood flow in the aorta visualized in MRI Viewer

6.3 Compatibility

Although it was not required by the client, MRI Viewer was tested as a
web application, a desktop application, in JupyterLab, and in Docker on the
Windows operating system, where it worked with no problems. The web
application was also successfully tested with the following versions of web
browsers:

• Google Chrome 124;

• Microsoft Edge 124;

• Mozilla Firefox 125; and

• Opera 109.

Regarding different devices, MRI Viewer was seamlessly tested on mobile,
tablet, laptop, and desktop computers. However, there are no shortcuts or
tooltips available on mobile and tablet devices. Moreover, while swiping the
sliders of slice, zoom, translation, or rotation tools to the left, it simultaneously
closes and hides the left column, where these tools are located. This can be
considered a Vuetify flaw. However, these issues were not further addressed,
as MRI Viewer is primarily used on desktop computers.

54

6.4. Usability

6.4 Usability

The purpose of the usability testing was to receive feedback from potential
users and modify the web application accordingly. It took place after the
completion of the web application. However, there was a problem with the
lack of testers. In the end, the usability testing was done with 3 testers of
persona A (a researcher) and informally with 2 testers of persona C.

The testing was conducted mostly via Zoom calls (with audio and video
enabled). Each test session lasted 30 minutes to an hour. The goal of the
usability testing was to let the tester pass all four test scenarios (available in
appendix C) that he or she had to go through. These test scenarios covered all
features (at the time of the testing) and represented common user activities
in the web application.

At the beginning, the moderator introduced himself and started the con-
versation. The tester shared audio, video, and screen. After that, the moder-
ator introduced the tester to MRI Viewer and the usability testing. Then, the
tester gradually passed all four test scenarios with the help of the moderator’s
instructions. At the end, the moderator thanked the tester and said goodbye.

6.4.1 Results

The usability testing was successful. All testers provided huge feedback and
ideas so that MRI Viewer could be further improved. In this section, there
are the results from the testing. These results do not contain findings coming
from the testers of persona C, as they will never use the web application.

• All testers provided a comprehensive, in-depth discussion regarding po-
tential nice2have features;

• All testers required picking while slicing to measure the blood flow,
which was unavailable during the usability testing. This feature was
implemented later, together with the scalar bar;

• The layout of the dialog for uploading files was modified and divided
into different screens (i.e., options menu, uploading files from PC, and
uploading file from URL);

• Selectors items are newly alphabetically sorted (except for data arrays);

• A new feature (i.e., a dialog for managing files) was added;

• A new feature (i.e., a color map selector providing grayscale and tem-
perature color maps) was added;

• A new nice2have feature (i.e., slice in an arbitrary orientation) on top
of the current slice capabilities was proposed for future development;

55

6. Testing

• A new nice2have feature (i.e., measuring blood flow in the selected region
of interest) on top of the current picking capabilities was proposed for
future development; and

• A new nice2have feature (i.e., storing uploaded VTI files by user account)
on top of the current file management capabilities was proposed for
future development.

56

Conclusion

In the theoretical part of this thesis, the reader was briefly introduced to
the IKEM, MRI and its principles, ParaView, and two medical file formats,
DICOM and VTI. Next, the analysis of previous and desired states, together
with the analysis of similar existing solutions, was conducted. Furthermore,
the discussion of technical ways to solve the problem was also included.

In the practical part of the thesis, a solution in the form of a web appli-
cation was proposed based on the previous analyses. The wireframes and the
final prototype were elaborated, described, and communicated with the client.
Finally, the implementation of the web application was explained, including
the testing. Proposals were UI-oriented, and modern technologies, such as
Trame or Vuetify, were used.

The main goal of this master’s thesis was to develop a web application for
visualizing VTI files. This goal was met in the form of a new web application
named MRI Viewer that complied with all client’s requirements and needs.
Furthermore, it was containerized and deployed on the servers of FNSPE
CTU with the help of Docker, which makes it available and reachable for the
researchers at the IKEM. It means that all partial goals (i.e., analysis, design,
implementation, and testing) along with optional goals (i.e., deployment) were
also successfully met and accomplished.

Nowadays, MRI Viewer is fully available for the IKEM. It was built on
Trame, which is a new modern technology from 2021. Therefore, the de-
velopment of MRI Viewer was very demanding and time-consuming due to
the unfinished documentation of the framework, frequent minor (or major)
version changes, and obsolete examples available on the internet. However,
MRI Viewer is the web application that can be further built upon. The
CI/CD pipeline for faster delivery of new versions is currently being worked
on. Furthermore, there are certain intentions to build another visual analytics
applications from the client’s side. This master’s thesis, together with MRI
Viewer, may serve as a guide for future developers (besides the fact that it
already simplifies the work of researchers at the IKEM).

57

Conclusion

In the future, there are plans to extend MRI Viewer in 2025, although new
features are categorized as nice2have by the client or belong to the author’s
ideas. Some of them cannot even be implemented now as they require the
work of Kitware. Their technology is still evolving (such as VTK.js), and
some features will only work in the future.

Speaking of MRI Viewer, it is still possible to refactor and improve speed
and performance (regarding uploading files, picking, or client/server synchro-
nization). There will be a general slice that will enable the user to set a slice
in any orientation (not only XY, YZ, and XZ). Other types of representations
are planned, such as volume rendering. Additionally, support for the DICOM
file format is also intended. Finally, the progress bar should be improved by
adding percentages and the current state while uploading files. There are
many more new ideas on how to enhance the current version of MRI Viewer,
but it still needs to be discussed with the client so as not to increase the
complexity of the web application and keep it simple.

58

Bibliography

[1] IKEM – Institute for Clinical and Experimental Medicine [online]. IKEM.
[cit. 2024-04-02]. Available at: https://www.ikem.cz/en/.

[2] The logo of IKEM. In: IKEM – Institute for Clinical and Experimental
Medicine [online]. IKEM, 2024. [cit. 2024-04-02]. Available at: https:
//www.ikem.cz/en/usek-reditele/odbor-pr-a-marketingu/a-2199/.

[3] NICHOLLS, M. Paul Lauterbur and Sir Peter Mansfield for MRI. In:
European Heart Journal [online]. June 2019, vol. 40, issue 24, pp. 1898-
1899. ISSN 1522-9645. [cit. 2024-04-02]. Available at: https://doi.org/
10.1093/eurheartj/ehz397.

[4] MRI – Mayo Clinic [online]. Mayo Foundation for Medical Education and
Research. [cit. 2024-04-02]. Available at: https://www.mayoclinic.org/
tests-procedures/mri/about/pac-20384768.

[5] Magnetic Resonance Imaging (MRI) [online]. National Institute of
Biomedical Imaging and Bioengineering. [cit. 2024-04-02]. Avail-
able at: https://www.nibib.nih.gov/science-education/science-
topics/magnetic-resonance-imaging-mri.

[6] The MRI Machine. In: IKEM – Institute for Clinical and Experimental
Medicine [online]. IKEM, 2024. [cit. 2024-04-02]. Available at: https:
//www.ikem.cz/en/o-nas/zakladni-informace/a-11/.

[7] Reading and Visualizing Structural MRI Data – Neural Data Science in
Python [online]. Aaron J. Newman. [cit. 2024-04-02]. Available at: https:
//neuraldatascience.io/8-mri/read_viz.html.

[8] Why Is an MRI So Expensive at a Hospital? [online]. South Jersey Radi-
ology Associates. [cit. 2024-04-02]. Available at: https://sjra.com/why-
is-an-mri-so-expensive-at-a-hospital/.

59

https://www.ikem.cz/en/
https://www.ikem.cz/en/usek-reditele/odbor-pr-a-marketingu/a-2199/
https://www.ikem.cz/en/usek-reditele/odbor-pr-a-marketingu/a-2199/
https://doi.org/10.1093/eurheartj/ehz397
https://doi.org/10.1093/eurheartj/ehz397
https://www.mayoclinic.org/tests-procedures/mri/about/pac-20384768
https://www.mayoclinic.org/tests-procedures/mri/about/pac-20384768
https://www.nibib.nih.gov/science-education/science-topics/magnetic-resonance-imaging-mri
https://www.nibib.nih.gov/science-education/science-topics/magnetic-resonance-imaging-mri
https://www.ikem.cz/en/o-nas/zakladni-informace/a-11/
https://www.ikem.cz/en/o-nas/zakladni-informace/a-11/
https://neuraldatascience.io/8-mri/read_viz.html
https://neuraldatascience.io/8-mri/read_viz.html
https://sjra.com/why-is-an-mri-so-expensive-at-a-hospital/
https://sjra.com/why-is-an-mri-so-expensive-at-a-hospital/

Bibliography

[9] SCHILD, H. H. MRI Made Easy (...Well Almost) [online]. Berlin:
Schering AG, 1990. ISBN 3-921817-41-2. [cit. 2024-04-02]. Available
at: https://rads.web.unc.edu/wp-content/uploads/sites/12234/
2018/05/Phy-MRI-Made-Easy.pdf.

[10] GROVER, V. P. et. al. Magnetic Resonance Imaging: Principles and
Techniques: Lessons for Clinicians. In: Journal of Clinical and Exper-
imental Hepatology [online]. September 2015, vol. 5, issue 3, pp. 246-
255. ISSN 2213-3453. [cit. 2024-04-02]. Available at: https://doi.org/
10.1016/j.jceh.2015.08.001.

[11] Johns Hopkins Medicine. MRI Physics – Magnetic Resonance and Spin
Echo Sequences – Johns Hopkins Radiology [video]. YouTube [online].
Johns Hopkins Medicine, 2022. [cit. 2024-04-02]. Available at: https:
//www.youtube.com/watch?v=jLnuPKhKXVM.

[12] Cardiac Magnetic Resonance Imaging (MRI) [online]. American
Heart Association, Inc. [cit. 2024-04-03]. Available at: https:
//www.heart.org/en/health-topics/heart-attack/diagnosing-
a-heart-attack/magnetic-resonance-imaging-mri.

[13] STANKOVIC, Z., B. D. ALLEN, J. GARCIA, K. B. JARVIS and M.
MARKL. 4D Flow Imaging with MRI. In: Cardiovascular Diagnosis &
Therapy [online]. April 2014, vol. 4, issue 2, pp. 173-192. ISSN 2223-3660.
[cit. 2024-04-03]. Available at: https://doi.org/10.3978/j.issn.2223-
3652.2014.01.02.

[14] WYMER, D. T., K. P. PATEL, W. F. BURKE and V. K. BHATIA.
Phase-Contrast MRI: Physics, Techniques, and Clinical Applications. In:
RadioGraphics [online]. January 2020, vol. 40, issue 1, pp. 122-140. ISSN
1527-1323. [cit. 2024-04-03]. Available at: https://doi.org/10.1148/
rg.2020190039.

[15] ParaView – Open-source, multi-platform data analysis and visualization
application [online]. Kitware, Inc. [cit. 2024-04-03]. Available at: https:
//www.paraview.org/.

[16] LAROBINA, M. and L. MURINO. Medical Image File Formats. In: Jour-
nal of Digital Imaging [online]. April 2014, vol. 27, issue 2, pp. 200-
206. ISSN 0897-1889. [cit. 2024-04-04]. Available at: https://doi.org/
10.1007/s10278-013-9657-9.

[17] DICOM [online]. The Medical Imaging Technology Association. [cit.
2024-04-04]. Available at: https://www.dicomstandard.org/.

[18] VTI File Extension – What Is It? How to Open a VTI File? [on-
line]. FILExt. [cit. 2024-04-04]. Available at: https://filext.com/file-
extension/VTI.

60

https://rads.web.unc.edu/wp-content/uploads/sites/12234/2018/05/Phy-MRI-Made-Easy.pdf
https://rads.web.unc.edu/wp-content/uploads/sites/12234/2018/05/Phy-MRI-Made-Easy.pdf
https://doi.org/10.1016/j.jceh.2015.08.001
https://doi.org/10.1016/j.jceh.2015.08.001
https://www.youtube.com/watch?v=jLnuPKhKXVM
https://www.youtube.com/watch?v=jLnuPKhKXVM
https://www.heart.org/en/health-topics/heart-attack/diagnosing-a-heart-attack/magnetic-resonance-imaging-mri
https://www.heart.org/en/health-topics/heart-attack/diagnosing-a-heart-attack/magnetic-resonance-imaging-mri
https://www.heart.org/en/health-topics/heart-attack/diagnosing-a-heart-attack/magnetic-resonance-imaging-mri
https://doi.org/10.3978/j.issn.2223-3652.2014.01.02
https://doi.org/10.3978/j.issn.2223-3652.2014.01.02
https://doi.org/10.1148/rg.2020190039
https://doi.org/10.1148/rg.2020190039
https://www.paraview.org/
https://www.paraview.org/
https://doi.org/10.1007/s10278-013-9657-9
https://doi.org/10.1007/s10278-013-9657-9
https://www.dicomstandard.org/
https://filext.com/file-extension/VTI
https://filext.com/file-extension/VTI

Bibliography

[19] KITWARE, INC. The VTK User’s Guide [online]. 11th Edition.
Columbia: Kitware, Inc., 2010. ISBN 978-1-930934-23-8. [cit. 2024-
03-22]. Available at: https://vtk.org/wp-content/uploads/2021/08/
VTKUsersGuide.pdf.

[20] Get Support From Our Experts – Kitware Europe [online]. Kitware, Inc.
[cit. 2024-04-06]. Available at: https://www.kitware.eu/get-support/.

[21] GitHub - Kitware/light-viz [online]. GitHub, Inc. [cit. 2024-04-12]. Avail-
able at: https://github.com/kitware/light-viz.

[22] Getting Started - WebGL Public Wiki [online]. The Khronos Group, Inc.
[cit. 2024-04-11]. Available at: https://www.khronos.org/webgl/wiki/
Getting_Started.

[23] Fundamentals - Three.js Manual [online]. Three.js. [cit. 2024-04-11].
Available at: https://threejs.org/manual/#en/fundamentals.

[24] ParaViewWeb [online]. Kitware, Inc. [cit. 2024-04-11]. Available at:
https://kitware.github.io/paraviewweb/docs/.

[25] Trame [online]. Kitware, Inc. [cit. 2024-03-14]. Available at: https://
kitware.github.io/trame/.

[26] Releases – Kitware/trame [online]. GitHub, Inc. [cit. 2024-03-20]. Avail-
able at: https://github.com/Kitware/trame/releases.

[27] MVVM Pattern: Model-View-ViewModel. In: Trame [online]. Kitware,
Inc., 2023. [cit. 2024-03-20]. Available at: https://kitware.github.io/
trame/guide/.

[28] cookiecutter/cookiecutter [online]. GitHub, Inc. [cit. 2024-03-21]. Avail-
able at: https://github.com/cookiecutter/cookiecutter.

[29] Kitware/trame-cookiecutter [online]. GitHub, Inc. [cit. 2024-03-21]. Avail-
able at: https://github.com/Kitware/trame-cookiecutter.

[30] Overview – vtk.js [online]. Kitware, Inc. [cit. 2024-03-22]. Available at:
https://kitware.github.io/vtk-js/docs/.

[31] Vuetify — A Vue Component Framework [online]. Vuetify. [cit. 2024-03-
21]. Available at: https://vuetifyjs.com/en/.

[32] VTK – Trame [online]. Kitware, Inc. [cit. 2024-03-26]. Available at:
https://kitware.github.io/trame/guide/tutorial/vtk.html.

61

https://vtk.org/wp-content/uploads/2021/08/VTKUsersGuide.pdf
https://vtk.org/wp-content/uploads/2021/08/VTKUsersGuide.pdf
https://www.kitware.eu/get-support/
https://github.com/kitware/light-viz
https://www.khronos.org/webgl/wiki/Getting_Started
https://www.khronos.org/webgl/wiki/Getting_Started
https://threejs.org/manual/#en/fundamentals
https://kitware.github.io/paraviewweb/docs/
https://kitware.github.io/trame/
https://kitware.github.io/trame/
https://github.com/Kitware/trame/releases
https://kitware.github.io/trame/guide/
https://kitware.github.io/trame/guide/
https://github.com/cookiecutter/cookiecutter
https://github.com/Kitware/trame-cookiecutter
https://kitware.github.io/vtk-js/docs/
https://vuetifyjs.com/en/
https://kitware.github.io/trame/guide/tutorial/vtk.html

Appendix A
Acronyms

API Application Programming Interface

CLI Command Line Interface

CMRI Cardiac Magnetic Resonance Imaging

CSS Cascading Style Sheets

CT Computed Tomography

CTU Czech Technical University

DICOM Digital Imaging and Communications in Medicine

FNSPE Faculty of Nuclear Sciences and Physical Engineering

FPS Frames Per Second

GLSL OpenGL Shading Language

GUI Graphical User Interface

HPC High-Performance Computing

HTML HyperText Markup Language

IDE Integrated Development Environment

IKEM Institute for Clinical and Experimental Medicine

LLM Large Language Model

MPI Message Passing Interface

MRI Magnetic Resonance Imaging

MVP Minimum Viable Product

63

A. Acronyms

MVVM Model-View-ViewModel

NPM Node Package Manager

OOP Object-Oriented Programming

PC-MRI Phase-Contrast Magnetic Resonance Imaging

PyPI Python Package Index

UI User Interface

URL Uniform Resource Locator

UX User eXperience

VOI Volume Of Interest

VTI Visualization Toolkit Image Data

VTK Visualization Toolkit

XML eXtensible Markup Language

64

Appendix B
User Guide

The full version of this document is available on the attached CD.

Introduction

Welcome to the user guide for the MRI Viewer. Please review the following
table of contents and refer to the appropriate section in order to resolve your
issue as quickly as possible. If you did not find what you were looking for,
proceed to the last chapter and contact us directly via email. We are still
developing this user guide, and your feedback is very valuable to us. Thank
you, and happy visualizing!

Table of Contents

(skipped)

B.1 MRI Viewer

MRI Viewer is a web application for visualizing .vti files. The purpose of the
application is to simplify scientific work with data coming from MRI machines.
It is a replacement for the ParaView tool in terms of specific workflows and
aims to reduce its complexity and enhance its availability. The original client
is the IKEM in Prague, Czech Republic.

B.2 Features

MRI Viewer offers several features, as stated in the following chapters.

65

B. User Guide

B.2.1 Upload Files

This feature enables you to upload .vti files to the application. You can use
this functionality on startup or by clicking the Upload button.

Figure B.1: A dialog for uploading files and a button to open it

B.2.1.1 Limitations

• You can either upload files from your computer or provide a URL.

• You can upload only .vti files.

• Each of the uploaded files must not exceed 100 MB.

• If you want to upload data from your computer, you can upload one or
more files, but no more than 10.

• If you want to upload files using the URL, you can upload only one file
at a time.

B.2.1.2 Error Codes

There is a list of common error codes that can occur while uploading files:

• WRONG-FILE-EXTENSION
You are trying to upload a file with an extension other than .vti, which
violates the limitation. Please upload .vti files only.

• FILE-IS-TOO-LARGE
You are trying to upload a file larger than 100 MB, which violates the
limitation. Please compress your data or use smaller files.

66

B.2. Features

• TOO-MANY-FILES-TO-UPLOAD
You are trying to upload more than 10 files, which violates the limitation.
Please load your data in small batches (e.g., groups of three files).

• INVALID-URL
You provided an incorrect URL. Please check the URL and make sure
there is a .vti file on the other side.

• MISSING-...
Error codes starting with “MISSING-” indicates that there are some
troubles with reading uploaded .vti files, and some parts may be miss-
ing. It may also happen that there is no .vti file to be uploaded (while
uploading via URL). Please check the .vti file you are trying to upload,
or use another .vti file.

Figure B.2: An example of an error while uploading files

If you encounter an error code that is different from those mentioned above,
please contact us and let us know.

B.2.1.3 Recommendations

Please be patient while uploading .vti files. This action may take some time
(up to one minute or even more), as the data must be properly loaded and
processed. It depends not only on the size of your files. Do not upload a large
group of files at once. Try to upload data in small groups of files instead.

67

B. User Guide

B.2.2 Manage Files

This feature enables you to delete uploaded .vti files. You cannot delete the
file that is currently visualized. Therefore, there is always at least one .vti
file in the web application after the initial upload. After clicking the Delete
button, another dialog appears to confirm the deletion.

Figure B.3: A dialog for managing files and a button to open it

B.2.3 File

This feature enables you to select one of the uploaded .vti files to show. You
can use this functionality by clicking the File select and choosing the file to
visualize. If you upload a group of files, then the first file in this group is
selected and visualized. The visualized file is initially temperature-colored.

Figure B.4: The list of files to visualize is located in the left column

68

B.2. Features

B.2.3.1 Groups

A file group is automatically created while uploading a file. It always contains
at least one file. If you upload 10 different files, then there are implicitly 10
different file groups (each of them contains one file). The main advantage of
the file group is that it remembers your work.

If there is already a file group with a very similar file(s) (in terms of data),
then the newly uploaded file is added to this group. Groups with more than
one file can be played using the player.

B.2.3.2 Memorization

File groups are able to remember the following things: current slice (in all
orientations), zoom, translation, rotation, selected data array, representation,
and color map. If you switch to another group, then the work in the old group
is remembered and the work in progress in the new group is loaded.

B.2.4 Data Array

This feature enables you to select one of the data arrays defined in the selected
file. You can use this functionality by clicking the Data Array select and
choosing the data array to apply. The list contains only point or cell arrays.
If there are point and cell arrays defined in a single file simultaneously, then
only cell arrays are listed.

Figure B.5: The list of data arrays to apply is located in the left column

B.2.5 Representation

This feature enables you to select one of the representations of the visualized
file. You can use this functionality by clicking the Representation select and

69

B. User Guide

choosing the representation to apply. You can represent the visualized file as
points, slice, surface, surface with edges, or wireframe.

Figure B.6: The list of representations is located in the left column

B.2.6 Color Map

This feature enables you to select one of the color maps of the visualized file.
You can use this functionality by clicking the Color Map select and choosing
the color map. Currently, you can use grayscale or temperature color maps.

Figure B.7: The list of color maps is located in the left column

B.2.7 Interaction

You can use several available tools to interact with the data, as stated in the
following chapters.

70

B.2. Features

B.2.7.1 Slice

This particular tool creates a slice of the data in the pre-selected orientation
and position. The list of available orientations contains XY, YZ, and XZ.
These are the axes along which the final slice is inserted.

Figure B.8: The slice tool

You can also set the position of the slice in the direction of the remaining
axis (e.g., for the XY orientation, you set the position within the Z-axis).
This position is limited by the data boundaries in that particular direction.

Figure B.9: There is a slice inserted along the X and Y axes and positioned
within the data boundaries in the direction of the Z-axis

71

B. User Guide

B.2.7.2 Zoom

This particular tool enables you to zoom the data in or out. The minus icon is
for zooming out, and the plus icon is for zooming in. The power determines the
depth of zooming. We recommend using the right mouse button for zooming
in or out smoothly and quickly rather than using the zoom tool.

Figure B.10: The zoom tool

B.2.7.3 Translation

This particular tool enables you to pan the data in the direction of any axis.
The left arrow icon is for shifting to the negative values of the particular axis.
The right arrow icon is for shifting to the positive values of the particular
axis. The step determines the length of the shift. We recommend using the
middle mouse button for panning smoothly and quickly rather than using the
translation tool.

Figure B.11: The translation tool

72

B.2. Features

B.2.7.4 Rotation

This particular tool enables you to rotate the data around any axis. The left-
rounded arrow icon is for rotating counterclockwise around a particular axis.
The right-rounded arrow icon is for rotating clockwise around a particular axis.
You can set the angle of the rotation. We recommend using the left mouse
button for rotating smoothly and quickly rather than using the rotation tool.

Figure B.12: The rotation tool

B.2.8 Player

A player is available only for groups of files with more than one file. If you
choose the file that is included in such a group, then you can start this player
by clicking the play icon. The player goes through these files one after another.
You can skip to the previous or next file by clicking the side icons (this action
also stops the player). You can stop the player by clicking the stop icon that
will appear instead of the play icon while playing.

Figure B.13: The player is located in the middle of the upper bar

73

B. User Guide

B.2.8.1 Recommendations

Be patient while playing the first round. The animation might be slow because
of the data loading and rendering. The next rounds should be faster.

B.2.9 Point and Cell Information

You can see the values of point or cell data arrays stored in the visualized file
by clicking on the particular buttons in the toolbar (off, points, cells).

Figure B.14: Point and cell information can be turned on/off in the upper bar

When you click on some point or cell in your data afterwards, the dialog
with the values of the particular data arrays will appear. Additionally, there
is an identifier and location (for points) and an identifier (for cells). Point or
cell information is automatically disabled while playing.

Figure B.15: Point information (i.e., identifier, location, and point data array
values, if available) can be found in the bottom part of the screen

74

B.2. Features

Figure B.16: Cell information (i.e., identifier and cell data array values, if
available) can also be found in the bottom part of the screen

B.2.10 Axes Information

You can turn on or off the axes information by clicking on the particular icon
in the toolbar.

Figure B.17: Axes information can be turned on/off in the upper bar

75

B. User Guide

This will show the axes labels, a grid, and the bounds of your data.

Figure B.18: You have more insight by activating the axes information

B.2.11 Axes Widget

For even better orientation in data and space, there is a small axes widget com-
posed of three basic axes perpendicular to each other. The X-axis is red, the
Y-axis is green, and the Z-axis is blue. The axes widget copies the orientation
of the data. If you rotate your data, the widget is rotated accordingly.

Figure B.19: The axes widget is located in the bottom-left corner

76

B.2. Features

B.2.12 Scalar Bar

There is also another helper on the other side of the screen. The scalar bar
maps the data array values to the colors of the selected color map. Therefore,
you can determine values in the interesting parts of the visualized data.

Figure B.20: The scalar bar is on the right side

B.2.13 Reset View

By clicking the Reset View icon, you reset all the zoom, translation, and
rotation interactions you have made in history.

Figure B.21: The reset view can be found in the upper bar

B.2.14 Dark and Light Themes

You can switch between the light and dark themes by clicking the Mode icon.

77

B. User Guide

Figure B.22: Mode can be switched in the upper bar

B.2.15 Languages

You can switch between the Czech and English languages by clicking the
particular button in the top-right corner.

Figure B.23: Languages can be switched in the upper bar

B.2.16 Progress Bar

When you see a progress bar under the toolbar, then the application is busy
working. The progress bar appears while file uploading, data processing, ren-
dering, picking points or cells, switching files, data arrays or representations,
and so on. Please be patient and let it disappear. The style of the progress
bar indicates the blood flow, as the application is primarily determined for
medical purposes.

78

B.3. Contact

Figure B.24: The progress bar appears under the upper bar

B.3 Contact

In case of trouble, please contact us at karelvrabeckv@gmail.com. Your ques-
tions and ideas will make this user guide better for future users. Thank you
very much!

79

Appendix C
Test Scenarios

C.1 Language

The first test scenario is focused on the selection of language. This might be
a desired functionality if a user is not familiar with the English language (as
the default language of the web application). Therefore, a tester is tasked
with selecting the language according to his or her needs.

Expected Time

10–30 seconds.

Covered Features

• Localization.

Preconditions

• The tester has access to the application (either desktop or web). In the
case of a desktop application, the .exe file (currently around 80 MB)
is sent to the tester. In the case of a web application, the URL is
communicated to the tester. The choice of the application type depends
on the deployment progress in the IKEM.

• The tester has received a package with the test data (i.e., a group of
heart *.vti files with blood flow in the human heart and aorta).

Starting Point

The tester launched the application and is waiting for instructions on the
startup screen with a dialog for uploading files.

81

C. Test Scenarios

Figure C.1: Starting point in the first test scenario

Instructions

1. Which language is comfortable for you?

2. (if English) Skip to the next test scenario, as English is the default
language of the application.

3. (if Czech) Close the dialog for uploading files and switch to the Czech
language.

4. (if Czech) Open the dialog for uploading files again.

Expected Steps

1. (if Czech) The tester clicks the Cancel button in the dialog.

2. (if Czech) The tester clicks the CZ button in the top-right corner.

3. (if Czech) The tester clicks the Load Files button in the toolbar.

Ending Point

The same as the starting point.

82

C.2. Slice Tool

C.2 Slice Tool

The second test scenario is focused on the slice tool, as it is the most powerful
tool in the web application. The slice tool is able to inspect data from the
inside. Therefore, the tester is tasked with setting the slice so that the blood
flow in the human heart is visible.

Expected Time

1 minute 30 seconds.

Covered Features

• Uploading files from PC;

• Data array selection;

• Representation selection;

• Rotation tool; and

• Slice tool.

Preconditions

• The tester successfully finished the previous test scenario.

Starting Point

The same as the ending point of the previous test scenario.

Instructions

1. Upload heart 4.vti from your computer.

2. Set the data array to Velocity magnitude.

3. Set the representation to Slice.

4. Turn the data upside down.

5. Set the orientation and position of the slice so that the blood flow in the
human heart can be seen.

83

C. Test Scenarios

Expected Steps

1. The tester clicks on the Load files from PC text field and picks heart 4.vti
from his or her computer.

2. After the file upload, the tester clicks the Data Array select and selects
Velocity magnitude.

3. The tester clicks the Representation select and selects Slice.

4. The tester goes to the Rotation section in the left column and clicks
twice on the rounded right arrow icon to rotate around the Z-axis.

5. The tester leaves the orientation as is and sets the position approxi-
mately to the middle of the slider range, which is the spot with a visible
blood flow.

Ending Point

The tester can see the blood flow in the human heart and aorta.

Figure C.2: Ending point in the second test scenario

C.3 Player

The third test scenario is focused on the player, as it is able to play an an-
imation composed of similar .vti files. Therefore, the tester is tasked with

84

C.3. Player

uploading the remaining test data and starting the player so that the anima-
tion of the blood flow in the human heart can be played.

Expected Time

1 minute 30 seconds.

Covered Features

• Uploading files from PC;

• Player;

• File selection;

• Axes information with grid; and

• Theme switching.

Preconditions

• The tester successfully finished the previous test scenario.

Starting Point

The same as the ending point of the previous test scenario.

Instructions

1. Upload heart 0.vti, heart 1.vti, heart 2.vti, and heart 3.vti from your
computer.

2. Try switching between the uploaded files.

3. Start the player to play the animation of the uploaded files.

4. Turn off the axes information with grid.

5. Switch the current theme to dark.

6. Stop the player.

Expected Steps

1. The tester clicks on the Load files from PC text field and picks the
remaining heart 0.vti, heart 1.vti, heart 2.vti, and heart 3.vti from his or
her computer.

85

C. Test Scenarios

2. After the file upload, the tester clicks the Previous File icon or Next File
icon within the player to switch between the uploaded files. This can
also be accomplished by clicking the File select in the left column and
selecting particular file.

3. The tester clicks the Play icon to start the player.

4. The tester clicks the Axes Info with Grid icon to turn off the axes infor-
mation with grid.

5. The tester clicks the Theme icon to switch to the dark theme.

6. The tester clicks the Pause icon to stop the player.

Ending Point

The tester can replay the blood flow in the human heart.

Figure C.3: Ending point in the third test scenario

C.4 Picking

The fourth test scenario is focused on picking points and cells in the interesting
parts of the data. Moreover, these data are loaded via URL into the web
application. Therefore, the tester is tasked with loading the data via the
network and picking some interesting points and cells from them.

86

C.4. Picking

Expected Time

2 minutes 30 seconds.

Covered Features

• Uploading files from URL;

• Representation selection;

• Point and cell picking;

• Zoom tool;

• Translation tool;

• Rotation tool; and

• Reset the view.

Preconditions

• The tester successfully finished the previous test scenario.

Starting Point

The same as the ending point of the previous test scenario.

Instructions

1. Load the VTI file from the following URL: https://data.kitware.com/
api/v1/file/5aaf9e688d777f068578dbca/download

2. With the help of zoom, translation, and rotation tools, focus on the
human ear.

3. Set representation to Surface with Edges.

4. Turn on the point-picking and pick a random point in the data.

5. Switch to cell-picking and pick a random cell in the data.

6. Turn off picking.

7. Set representation to Surface.

8. Reset the view.

87

https://data.kitware.com/api/v1/file/5aaf9e688d777f068578dbca/download
https://data.kitware.com/api/v1/file/5aaf9e688d777f068578dbca/download

C. Test Scenarios

Expected Steps

1. The tester clicks on the Load Files button, which pops up the dialog for
uploading files. After that, he or she inserts the URL into the Load file
from URL text field and clicks on the Load button.

2. After the file fetch, the tester uses the combination of the zoom, trans-
lation, or rotation tools from the left column to focus on the ear.

3. The tester clicks the Representation select and selects Surface with Edges.

4. The tester clicks the Point Picking button to turn on the point-picking.
After that, he or she selects a random point in the data.

5. The tester clicks the Cell Picking button to turn on the cell-picking.
After that, he or she selects a random cell in the data.

6. The tester clicks the Off button to turn off the picking.

7. The tester clicks the Representation select and selects Surface.

8. The tester clicks the Reset View icon to reset the view.

Figure C.4: Picking a random point in the data

Ending Point

The tester can pick points and cells in the interesting parts of the data.

88

Appendix D
Contents of CD

mri-viewer..source code
wireframes.bmpr.....................wireframes openable in Balsamiq
prototype.rp.........................prototype openable in Axure RP
thesis.pdf......................................thesis in PDF format
thesis.tex.....................................thesis in LATEX format
user-guide-en.pdf...................user guide for international users
user-guide-cz.pdf user guide for Czech users

89

