
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

Interactive Productivity-Enhancing iOS Application

Bc. Petr Šmejkal

Ing. Marek Suchánek, Ph.D. et Ph.D.

Informatics

Software Engineering

Department of Software Engineering

until the end of summer semester 2024/2025

Instructions

The goal of this diploma thesis is to create a mobile application for the iOS platform that

is intended to increase users' productivity in an interactive way. The resulting application

will incorporate a range of productivity-enhancing features, including interval-based

studying techniques, long-term planning capabilities, user performance comparisons,

and more. It will satisfy both immediate study objectives and long-term educational

goals. Furthermore, users will have the flexibility to customize the application's settings

to align with their specific study needs.

Follow the principles of software engineering in the following steps:

- Examine the domain of studying, self-improvement, and productivity-enhancing

techniques, employ conceptual modeling techniques, and elucidate the essential

processes involved.

- Evaluate existing solutions for these issues, highlighting their strengths and

weaknesses.

- Define the application requirements and specify use cases for the new application.

- Design the mobile application according to the requirements, using SwiftUI for the

frontend technology and Google Firebase for the backend technology.

- Implement, document, and thoroughly test the application prototype.

- Assess the outcomes and propose potential further development.

Electronically approved by Ing. Michal Valenta, Ph.D. on 18 November 2023 in Prague.

Master’s thesis

Interactive Productivity-Enhancing iOS
Application

Bc. Petr Šmejkal

Department of Software Engineering
Supervisor: Ing. Marek Suchánek, Ph.D. et Ph.D.

May 9, 2024

Acknowledgements

I would like to acknowledge and express my deepest gratitude to my supervisor,
Ing. Marek Suchánek, Ph.D. et Ph.D., for his invaluable guidance, patience,
and expertise throughout the research and writing of my Master’s thesis. His in-
sights and suggestions were crucial to its completion. I also extend heartfelt
thanks to my family and friends for their unwavering support and guidance
throughout my studies.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46 (6) of the Act, I hereby grant a nonexclusive autho-
rization (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any way
(including for-profit purposes) that does not detract from its value. This au-
thorization is not limited in terms of time, location and quantity. However, all
persons that makes use of the above license shall be obliged to grant a license
at least in the same scope as defined above with respect to each and every
work that is created (wholly or in part) based on the Work, by modifying the
Work, by combining the Work with another work, by including the Work in
a collection of works or by adapting the Work (including translation), and at
the same time make available the source code of such work at least in a way
and scope that are comparable to the way and scope in which the source code
of the Work is made available.

In Prague on May 9, 2024

Czech Technical University in Prague
Faculty of Information Technology
© 2024 Petr Šmejkal. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of In-
formation Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Šmejkal, Petr. Interactive Productivity-Enhancing iOS Application. Master’s
thesis. Czech Technical University in Prague, Faculty of Information Technol-
ogy, 2024.

Abstrakt

Tato diplomová práce popisuje celý proces vývoje interaktivńı mobilńı aplikace
pro zlepšováńı produktivity pro platformu iOS s využit́ım standardńıch po-
stup̊u softwarového inženýrstv́ı. Tento proces zahrnuje analýzu domény, analýzu
konkurenčńıch řešeńı, specifikaci požadavk̊u a př́ıpad̊u užit́ı, návrh, imple-
mentaci s využit́ım SwiftUI a Firebase, testováńı a vytvořeńı dokumentace.
Práce je zakončena zhodnoceńım dosažených výsledk̊u a nast́ıněńım možného
budoućıho rozvoje. Výsledkem je kompletńı aplikace připravená pro budoućı
rozš́ı̌reńı.

Kĺıčová slova mobilńı aplikace, iOS vývoj, Swift, SwiftUI, Firebase, Pomo-
doro technique, produktivita, metody výuky, softwarové inženýrstv́ı, testováńı
software, dokumentace

vii

Abstract

This Master’s thesis outlines the comprehensive development process of an in-
teractive productivity-enhancing mobile application for the iOS platform, em-
ploying established Software Engineering methodologies. This process includes
domain analysis, evaluation of existing solutions, specification of requirements
and use cases, design, implementation with SwiftUI and Firebase, testing,
and documentation. The thesis is concluded with the presentation of the results
and an outline of possible future development of the application. The outcome
is a complete application that is ready for future extensions.

Keywords mobile application, iOS development, Swift, SwiftUI, Firebase,
Pomodoro technique, productivity, learning methods, software engineering,
software testing, documentation

viii

Contents

Introduction 1

1 Goals of the Thesis 3

2 Learning Approaches and Cognitive Processes 5
2.1 Psychological Foundations of Learning 5

2.1.1 Learning Theories . 5
2.1.1.1 Behaviorism 5
2.1.1.2 Cognitivism 6
2.1.1.3 Constructivism 6
2.1.1.4 Other Learning Theories 7

2.1.2 Cognitive Load Theory 7
2.1.3 Motivation in Learning 7

2.1.3.1 Intrinsic vs. Extrinsic Motivation 7
2.1.3.2 Self-Determination Theory 8

2.1.4 Memory and Retention 8
2.1.5 Colors . 8
2.1.6 Other Concepts . 8

2.2 Effective Learning Methods . 9
2.2.1 Active Learning . 9

2.2.1.1 Foundations of the Method 10
2.2.1.2 Evidence-based Studies 11
2.2.1.3 Advantages and Disadvantages 11
2.2.1.4 Summary of Active Learning 12

2.2.2 Spaced Repetition . 12
2.2.2.1 Foundations of the Method 12
2.2.2.2 Evidence-based Studies 13
2.2.2.3 Advantages and Disadvantages 14
2.2.2.4 Summary of Spaced Repetition 15

2.2.3 Collaborative Learning 15
2.2.3.1 Foundations of the Method 15
2.2.3.2 Evidence-based Studies 16
2.2.3.3 Advantages and Disadvantages 17
2.2.3.4 Summary of Collaborative Learning 17

2.2.4 Gamification of Learning 18

ix

2.2.4.1 Foundations of the Method 18
2.2.4.2 Evidence-based Studies 20
2.2.4.3 Advantages and Disadvantages 20
2.2.4.4 Summary of Gamification in Learning 21

2.2.5 Pomodoro Technique . 22
2.2.5.1 Foundations of the Method 22
2.2.5.2 Evidence-based Studies 22
2.2.5.3 Advantages and Disadvantages 22
2.2.5.4 Summary of Pomodoro Technique 23

2.2.6 Other Methods . 23
2.3 Individual Differences . 23
2.4 Learning and Technology . 24
2.5 Pomodoro Technique Research 24

2.5.1 Introduction . 24
2.5.2 Motivation and Research Questions 25
2.5.3 Methods . 25

2.5.3.1 Interview Study 26
2.5.3.2 Survey Study 26

2.5.4 Results and Discussion 27
2.5.4.1 Interview Study Findings 27
2.5.4.2 Survey Study Findings 28
2.5.4.3 Summary of Results 31

2.5.5 Research Conclusion . 31
2.6 Summary of Learning Approaches and Cognitive Processes . . 31

3 Domain Analysis 33
3.1 Competition Analysis . 33

3.1.1 Forest: Focus for Productivity 33
3.1.1.1 How It Works 34
3.1.1.2 Key Features 34
3.1.1.3 Advantages and Disadvantages 35
3.1.1.4 Summary of Forest Analysis 35

3.1.2 Focus To-Do: Focus Timer&Tasks 36
3.1.2.1 How It Works 36
3.1.2.2 Key Features 36
3.1.2.3 Advantages and Disadvantages 37
3.1.2.4 Summary of Focus To-Do Analysis 37

3.1.3 Study Bunny: Focus Timer 38
3.1.3.1 How It Works 38
3.1.3.2 Key Features 38
3.1.3.3 Advantages and Disadvantages 39
3.1.3.4 Summary of Study Bunny Analysis 39

3.2 Domain Model . 40
3.2.1 Domain Model Notations 40
3.2.2 Productivity-Enhancing Application Domain 42

3.2.2.1 Storylines . 43
3.2.2.2 Guilds . 45
3.2.2.3 Board . 46

3.2.3 Summary of Domain Model 46
3.3 Application Requirements . 47

x

3.3.1 Frameworks for Requirement Definition 47
3.3.1.1 SMART . 47
3.3.1.2 FURPS . 47
3.3.1.3 MoSCoW . 48

3.3.2 Requirements Specification 48
3.3.3 Summary of Application Requirements 48

3.4 Application Use Cases . 48
3.4.1 Use Case Diagram Notation 49

3.4.1.1 Use Case . 49
3.4.1.2 Association . 50
3.4.1.3 Actor . 50
3.4.1.4 System . 51
3.4.1.5 Include . 51
3.4.1.6 Extend . 51
3.4.1.7 Dependency 52
3.4.1.8 Generalization 52
3.4.1.9 Realization . 52
3.4.1.10 Collaboration 53

3.4.2 Use Case Specification 53
3.4.3 Summary of Application Use Cases 53

3.5 Summary of Domain Analysis 54

4 Technology Analysis 55
4.1 Firebase Backend . 55

4.1.1 Firebase Authentication 55
4.1.2 Firestore Cloud . 56
4.1.3 Other Firebase Services 56

4.2 Swift Language . 56
4.2.1 Key Features . 57
4.2.2 Automatic Reference Counting 58

4.2.2.1 Weak References 58
4.2.2.2 Unowned References 60

4.3 iOS SDK . 62
4.4 SwiftUI . 63

4.4.1 How It Works . 65
4.4.1.1 View Identity 65
4.4.1.2 View Lifetime 65
4.4.1.3 View Dependencies 65

4.5 Xcode . 66
4.6 Swift Package Manager . 67
4.7 Testflight and AppStore . 67

4.7.1 Testflight . 67
4.7.2 AppStore . 68

4.8 Summary of Technology Analysis 68

5 Design 69
5.1 Choosing Architecture and Design Patters 69

5.1.1 Clean Architecture . 70
5.1.2 MVVM . 71
5.1.3 Architecture in Practice 72

xi

5.1.3.1 Domain Layer 72
5.1.3.2 Data Layer . 72
5.1.3.3 Presentation Layer 73

5.2 Database Schema . 74
5.2.1 ER Diagram Notation 74

5.2.1.1 Types, Keys and Fields 74
5.2.1.2 Cardinality and Ordinality 74

5.2.2 ER Diagram . 75
5.3 User Interface Design . 76

5.3.1 Usability . 76
5.3.2 Colors . 77
5.3.3 Wireframes . 78

5.3.3.1 Authentication 78
5.3.3.2 Navigation Bar 79
5.3.3.3 Storylines . 79
5.3.3.4 Guilds . 80
5.3.3.5 Board . 80
5.3.3.6 Settings . 81

5.3.4 Miscellaneous . 82
5.4 Summary of Design . 82

6 Implementation 83
6.1 Intial Setup . 83

6.1.1 Jira and BitBucket Setup 83
6.1.1.1 Jira Setup . 84
6.1.1.2 BitBucket Setup 87
6.1.1.3 Jira and BitBucket Integration 90

6.1.2 Xcode Project Setup . 91
6.1.3 Firebase Setup . 93

6.1.3.1 Create New Firebase Project 93
6.1.3.2 Register iOS App 93

6.1.4 AppStore Connect Setup 95
6.2 Core Components . 97

6.2.1 NSLogging . 97
6.2.2 Dependency Injection 98
6.2.3 String Catalog . 98
6.2.4 Navigation Routing . 99

6.3 Typical Workflow . 102
6.3.1 Issue and Branch Creation 102
6.3.2 Module Implementation 102
6.3.3 Committing, Reviewing, Merging and Deployment . . . 107

6.4 Storylines Module . 109
6.5 Other Modules . 110
6.6 Summary of Implementation 111

7 Testing and Documentation 113
7.1 Testing . 113

7.1.1 Unit Testing . 113
7.1.1.1 Characteristics of Unit Testing 113
7.1.1.2 Mocking . 114

xii

7.1.1.3 Unit Testing Example 115
7.1.2 User Interface Testing 118
7.1.3 Usability Testing . 118

7.1.3.1 Usability Testing Scenarios 120
7.1.3.2 Changes Made Based On Feedback 120

7.1.4 Performance Testing . 121
7.1.4.1 Launch Performance Testing 121

7.1.5 Network Performance Testing 122
7.1.6 Summary of Testing . 123

7.2 Documentation . 124
7.2.1 Code Commentary Format 124
7.2.2 DocC . 124
7.2.3 Summary of Documentation 125

8 Results and Future Development 127
8.1 Results . 127

8.1.1 Analysis, Design, Implementation and Testing 127
8.1.2 Requirements Fulfillment 128
8.1.3 Summary of the Results 128

8.2 Future Development . 128
8.2.1 Usability Testing Feedback 128
8.2.2 Remaining Requirements 128
8.2.3 Other Possible Enhancements 129
8.2.4 Summary of Future Development 129

Conclusion 131

Bibliography 133

A Requirement Specification 145
A.1 Non-Functional Requirements 145
A.2 Functional Requirements . 146

B Use Case Specification 151

C Wireframes 159

D Final Appliacation Interface Screenshots 169

E Usability Testing Scenarios 191

F List of Abbreviations 199

G Contents of Attachments 201

xiii

List of Figures

2.1 Complexity of Tasks Performed During a Lecture [1] 9
2.2 Possible Lecture Organization According to Active Learning [1] . . 10
2.3 The Forgetting Curve [2] . 13
2.4 The Forgetting Curve with Repeated Review of Material [3] 14
2.5 Basic Steps in Collaborative Learning [4] 16
2.6 Gamification Taxonomy [5] . 19
2.7 Work approaches of the Survey Participants 28
2.8 Survey Participant’s Satisfaction With Their Study Approaches . . 29
2.9 Pomodoro Timer Usefulness For Different Tasks 29
2.10 Influence of the Pomodoro Technique 30
2.11 Comparison of Gaminifed and Non-Gamified Pomodoro Technique 30

3.1 Screenshots of Forest: Focus for Productivity [6] 34
3.2 Screenshots of Focus To-Do: Focus Timer&Tasks [7] 36
3.3 Screenshots of Study Bunny: Focus Timer [8] 38
3.4 Class Example; based on [9] . 40
3.5 Association Example; based on [9] 40
3.6 Aggregation Example; based on [9] 41
3.7 Composition Example; based on [9] 41
3.8 Generalization Example; based on [9] 42
3.9 Productivity-Enhancing Application Domain 43
3.10 Storylines Subdomain . 44
3.11 Guilds Subdomain . 45
3.12 Board Subdomain . 46
3.13 Requirement Specification Format 48
3.14 Requirements Specification Overview 49
3.15 Use Case Notation; based on [10] 50
3.16 Association Notation; based on [10] 50
3.17 Actor Notation; based on [10] . 50
3.18 System Notation; based on [10] . 51
3.19 Include Notation; based on [10] . 51
3.20 Extend Notation; based on [10] . 52
3.21 Dependency Notation; based on [10] 52
3.22 Generalization Notation; based on [10] 52
3.23 Realization Notation; based on [10] 53

xv

3.24 Collaboration Notation; based on [10] 53
3.25 Use Case Specification Format . 53
3.26 Use Case Diagram . 54

4.1 Cloud Firestore Collections and Documents Example 56
4.2 Swift Weak Referencing Example [11] 59
4.3 Relation Between Person and Apartment Objects [11] 59
4.4 Discarding Reference to Person Object [11] 60
4.5 Discarding Reference to Apartment Object [11] 60
4.6 Swift Unowned Referencing Example [12] 61
4.7 Relation Between Customer and CreditCard Objects [12] 61
4.8 Relation Between Customer and CreditCard Objects [12] 62
4.9 iOS SDK Architecture [13] . 63
4.10 SwiftUI Declarative Code Example 64
4.11 Xcode 15.3 IDE . 66

5.1 Clean Architecture as Described by Robert C. Martin [14] 71
5.2 MVVM Pattern; based on [15] . 72
5.3 Architecture of the Feature Module 73
5.4 Fields, Private and Foreign Keys and Types Notation [16] 74
5.5 Cardinality and Ordinality Notation [16] 75
5.6 ER Diagram for Productivity-Enhancing Application 76
5.7 Primary and Secondary Colors for the UI Design 77
5.8 Wireframes of the Authentication Screens 78
5.9 Wireframe of the Navigation Bar 79
5.10 Wireframes of the Home and Storylines Tabs 79
5.11 Wireframes of the Guilds Tab . 80
5.12 Wireframes of the Board Tab . 81
5.13 Wireframe of the Settings Tab . 81

6.1 Jira Team-Managed vs. Company-Managed Projects [17] 85
6.2 Jira Setup Overview . 85
6.3 Jira Kanban Board After Project Creation 86
6.4 Jira Issue Creation . 87
6.5 BitBucket Project Creation . 88
6.6 BitBucket Repository Creation . 89
6.7 BitBucket Initial Page . 89
6.8 Jira-BitBucket Integration . 90
6.9 Xcode Project Creation . 91
6.10 Xcode Project Git Setup . 92
6.11 Adding Firebase SDK Dependency to Xcode 94
6.12 AppDelegate Class . 94
6.13 AppDelegate Connection to App Struct 95
6.14 Bundle Identifier Registration . 95
6.15 AppStore Connect App Registration 96
6.16 Skeleton of MemorizifyLogger . 97
6.17 Xcode String Catalog . 99
6.18 Router Class Skeleton . 99
6.19 ComponentRoute Enumeration . 100
6.20 Router Class Initialization and Passing 100

xvi

6.21 NavigationStack Usage Example 101
6.22 User Model . 102
6.23 IncreaseScoreUseCase Protocol 103
6.24 Update of UserRepository Protocol 103
6.25 Update of UserRepository Implementation 104
6.26 Update of UserRepository Implementation 105
6.27 UserRepository and IncreaseScoreUseCase Registration 105
6.28 UserScoreViewModel Implementation 106
6.29 UserScoreView Implementation 107
6.30 Merged BitBucket Pull Request . 108
6.31 Testflight Distribution . 109
6.32 Storyline Custom Encoding and Decoding 110
6.33 Memorizify Jira Board Overview 111
6.34 Memorizify BitBucket PRs Overview 111

7.1 Implementation of OnboardingRepository 115
7.2 Mock of KeychainProvider . 116
7.3 Unit Testing of OnboardingRepository 117
7.4 UI Testing of Reset Password Feature 119
7.5 Usability Test Scenario Format . 120
7.6 Implemented Usability Testing Changes 121
7.7 Xcode Network Performance Presets 122
7.8 Memorizify Network Conditions Handling 123
7.9 Xcode Code Comment Format . 124
7.10 Xcode DocC Referencing . 125

C.1 Initial Home . 159
C.2 Sign Up . 159
C.3 Log In . 160
C.4 Reset Password . 160
C.5 Home Tab . 161
C.6 Plain Timer . 161
C.7 Storylines Tab . 162
C.8 Storyline Detail . 162
C.9 Storyline Setup . 163
C.10 Storyline Timer . 163
C.11 Guilds Tab . 164
C.12 Guild Detail . 164
C.13 Create Guild . 165
C.14 Invite Friend . 165
C.15 Board Tab . 166
C.16 Board Detail . 166
C.17 Settings Tab . 167
C.18 Navigation Bar . 167

D.1 Launch Screen . 169
D.2 Onboarding 1st Page . 169
D.3 Onboarding 2nd Page . 170
D.4 Onboarding 3rd Page . 170
D.5 Initial Home . 171

xvii

D.6 Sign Up . 171
D.7 Sign Up Done . 172
D.8 Log In . 172
D.9 Reset Password . 173
D.10 Password Reset Done . 173
D.11 Home Tab . 174
D.12 Storyline Menu . 174
D.13 Plain Timer Setup . 175
D.14 Plain Timer . 175
D.15 Storylines Tab . 176
D.16 Storyline Detail . 176
D.17 Storyline Setup . 177
D.18 Storyline Timer . 177
D.19 Guilds Tab . 178
D.20 Guild Invitation . 178
D.21 Create Guild . 179
D.22 Update Guild . 179
D.23 Guild Detail . 180
D.24 Guild Detail (Dark) . 180
D.25 Leader Actions . 181
D.26 Invite Friend . 181
D.27 Member Context Menu (Leader’s Point of View) 182
D.28 Member Context Menu (Common Member’s Point of View) 182
D.29 Board Tab . 183
D.30 Board Detail . 183
D.31 Board Tab (iPad OS) . 184
D.32 Board Detail (iPad OS) . 185
D.33 Settings Tab . 186
D.34 Change Password . 186
D.35 Change Language . 187
D.36 Change Notifications . 187
D.37 Delete Account 1st . 188
D.38 Delete Account 2nd . 188
D.39 Delete Account 3rd . 189
D.40 Push Notification . 189
D.41 Loading Placeholders . 190
D.42 No Connection . 190

xviii

Introduction

In our contemporary world full of distractions, from video games to social
media, staying focused and productive can be a difficult challenge. These
distractions not only hinder progress but can also lead individuals to aban-
don their goals entirely. In such an environment, maintaining concentration
and productivity becomes increasingly difficult for many.

However, there are evidence-based solutions designed to combat these is-
sues. Research in various scientific disciplines has led to the development
of strategies that can help individuals reclaim their focus and enhance produc-
tivity. Leveraging these insights, technology offers powerful tools to support
these strategies, transforming theoretical solutions into practical applications.

This leads to the introduction of a specialized mobile application developed
for the iOS platform. The app utilizes scientifically-backed methods to enhance
focus and productivity, integrating gamification elements through engaging sto-
rylines that users can advance through using a Pomodoro timer. Additionally,
it facilitates the formation of guilds, allowing users to either compete in com-
pleting storyline goals or simply study together, while monitoring each other’s
progress.

The thesis will detail the journey from analysis and design to implemen-
tation and testing of this application, conducted according to standard pro-
cesses of Software Engineering. It showcases the functionality and development
of the app as a strategic tool for improving productivity in a distraction-filled
environment.

1

Chapter 1
Goals of the Thesis

The main goal of this thesis is to develop an interactive productivity-enhancing
mobile application for the iOS platform, following the standard processes of Soft-
ware Engineering. This process involves domain analysis, evaluation of existing
solutions, specification of requirements and use cases, design, implementation
using SwiftUI and Firebase, testing, and documentation. These partial goals
contribute to the fulfillment of the main goal.

Initially, a comprehensive analysis of the psychological principles underlying
learning processes is required, along with an exploration of effective learning
methods. Additionally, a detailed examination of the domain of interactive
productivity-enhancing applications is essential. These analyses will guide
the specification of requirements and use cases. Subsequently, a technology
assessment is crucial to fully understand the capabilities of the tools employed.
The design phase will then involve selecting appropriate architectures and de-
sign patterns, as well as the development of the user interface. Implementation
will follow, supported by thorough testing and comprehensive documentation.
The thesis will conclude with an evaluation of the results and possibilities
for future development.

3

Chapter 2
Learning Approaches and Cognitive

Processes

This chapter explores foundational learning approaches and cognitive processes
that shape educational practices. It examines key theories and reveals how
they influence the acquisition, processing, and retention of knowledge. By un-
derstanding these theories, it is possible to enhance educational strategies
and teaching methods, ultimately improving learning outcomes. This discus-
sion aims to provide insights into effectively integrating these theories into
practical educational settings, offering a deeper understanding of their impact
on both teaching and learning.

2.1 Psychological Foundations of Learning

The section explores the psychological foundations that shape how people learn,
focusing on key theories and methods. These perspectives provide valuable
insights into the processes of acquiring, processing, and retaining knowledge,
influencing modern educational practices. Understanding these theories helps
educators and learners optimize learning strategies and improve educational
outcomes.

2.1.1 Learning Theories

This section delves into the fundamental psychological theories that shape mod-
ern educational practices, exploring how different schools of thought — behav-
iorism, cognitivism, and constructivism — contribute to our understanding
of learning processes. Each theory offers a distinct perspective on how indi-
viduals acquire, process, and retain knowledge, influencing various educational
strategies and teaching methods. By examining these theories, it is possi-
ble to appreciate the diverse approaches to education and their implications
for both teaching and learning in various contexts.

2.1.1.1 Behaviorism

Behaviorism is a psychological approach that emphasizes the study of observ-
able behaviors over internal mental states, seeking a level of scientific rigor

5

2. Learning Approaches and Cognitive Processes

comparable to that in the physical sciences. Initiated by John B. Watson, be-
haviorism was a response to the introspective methods prevalent at the time,
which Watson criticized as unscientific. He insisted that psychology should
only deal with behaviors that are observable and measurable, dismissing the use
of introspection and subjective accounts of consciousness as unreliable. Wat-
son’s stance was significantly influenced by Ivan Pavlov’s work on conditioning,
which he saw as essential for a scientific approach to studying human behavior.
He advocated that through conditioning, simple responses could be developed
into complex behaviors, emphasizing the powerful role of environmental influ-
ence in human development. This idea was highlighted by Watson’s assertion
that he could train any child to become any specialist, highlighting his belief
in the power of environmental conditioning. [18, 19]

As the dominant force in psychology from the 1920s through the early 1960s,
behaviorism shaped various educational theories and practices. The frame-
work of behaviorism includes key theories like Ivan Pavlov’s Classical Con-
ditioning and B.F. Skinner’s Operant Conditioning. These theories explain
learning through environmental interactions that modify behavior via conse-
quences, thus shaping and maintaining behaviors. Despite challenges from
the rise of cognitive psychology, the principles of behaviorism remain integral
to many educational methods today, emphasizing the enduring influence of en-
vironmental factors on the learning process. [18, 19]

2.1.1.2 Cognitivism

Cognitivism emerged as a significant learning theory, countering behaviorism’s
focus on observable behaviors by emphasizing the importance of internal men-
tal processes. This approach views learners as active participants who process
information, rather than passive recipients of stimuli. Cognitivism posits that
the mind functions like a complex machine, where information is received,
processed, stored, and retrieved. Key elements of this theory include the un-
derstanding of how attention and memory work together to influence learning.
Cognitivists study how learners perceive, think, understand, and remember
information, emphasizing strategies like organization, metaphorical thinking,
and problem-solving to facilitate deeper learning. Through understanding these
cognitive processes, educators can design more effective teaching methods that
enhance comprehension and retention, ultimately leading to more meaningful
educational experiences. [18, 20]

2.1.1.3 Constructivism

Constructivism in learning theories posits that learners actively construct their
own understanding and knowledge of the world, through experiencing things
and reflecting on those experiences. This approach emphasizes that learning
is inherently personal, influenced by the learner’s own perspectives and inter-
pretations. Constructivists argue that people learn by integrating new informa-
tion with our existing cognitive frameworks and knowledge bases, thus making
learning a highly individualized process. [21]

Educational strategies based on constructivism focus on hands-on, activity-
based teaching and learning that encourage students to discover principles
for themselves and to construct knowledge by working to solve realistic prob-

6

2.1. Psychological Foundations of Learning

lems. The role of the teacher shifts from the dispenser of information to a guide
or facilitator, providing support and scaffolding to students as they build their
own understanding. This method encourages collaboration and the sharing
of perspectives among students, enhancing the depth and breadth of learning
through social interaction. [21]

2.1.1.4 Other Learning Theories

Several learning theories complement the main educational frameworks. Con-
nectivism deals with learning through digital and social networks, reflecting
modern technological impacts. Social Learning Theory, by Albert Bandura,
emphasizes learning through observation and modeling others. Experiential
Learning, proposed by David Kolb, involves a cyclic process of gaining knowl-
edge through direct experience, reflection, conceptualization, and active experi-
mentation. These theories offer diverse perspectives on how people absorb, pro-
cess, and retain information, shaping contemporary educational practices. [18]

2.1.2 Cognitive Load Theory
Cognitive Load Theory (CLT), developed by John Sweller, focuses on how
cognitive resources are utilized during learning and the impact on the ability
to process new information efficiently. CLT distinguishes three types of cogni-
tive load: intrinsic (related to the complexity of the material itself), extraneous
(how information is presented), and germane (the construction and automation
of schemas). [22, 23]

In the realm of mobile apps, CLT has profound implications for design
and usability. Effective mobile app design should minimize extraneous load
by reducing clutter and simplifying navigation, and maximize germane load
by encouraging deep cognitive processing. By carefully managing these ele-
ments, app designers can enhance usability and facilitate smoother learning
experiences. Apps that effectively balance cognitive loads help users learn
and retain information more efficiently, thus enriching the learning experi-
ence. [24]

2.1.3 Motivation in Learning
This section explores the psychological underpinnings of learning in the context
of mobile applications, focusing on intrinsic and extrinsic motivation and Self-
Determination Theory (SDT). The section delve into how mobile apps can
effectively harness these motivational strategies to enhance learning experi-
ences. Understanding these foundational theories helps in designing mobile
apps that not only engage users but also sustain their interest and facilitate
deeper learning through well-structured interactive elements. [18]

2.1.3.1 Intrinsic vs. Extrinsic Motivation

Recent research highlights that mobile apps can enhance learning by balanc-
ing intrinsic and extrinsic motivational elements. Intrinsic Motivation in mo-
bile learning is driven by engaging content that resonates with users’ interests
or challenges them at a cognitive level, promoting deeper engagement and sat-
isfaction. Conversely, Extrinsic Motivation can be fostered through the use

7

2. Learning Approaches and Cognitive Processes

of gamified elements such as digital badges or progress trackers, which provide
external rewards and serve as performance feedback to encourage continuous
engagement and achievement. [25]

2.1.3.2 Self-Determination Theory

Self-Determination Theory (SDT) suggests that for mobile apps to be effec-
tive in learning, they need to support autonomy, competence, and relatedness.
Autonomy can be promoted by offering customizable learning paths that allow
users to control their learning experience. Competence is encouraged through
adaptive challenges and real-time feedback that help users gauge their progress.
Lastly, relatedness can be enhanced through social features like community
forums or group challenges, which connect learners with peers and mentors,
thereby increasing their engagement and motivation to learn. [25]

2.1.4 Memory and Retention
In mobile apps, enhancing memory retention can be effectively achieved through
strategies like Spaced Repetition and Retrieval Practice. For detailed overview
of spaced repetition method refer to Section 2.2.2.

Spaced repetition involves presenting information at gradually increasing in-
tervals to reinforce learning over time, while retrieval practice focuses on recall-
ing information to strengthen memory retention. These methods are supported
by research indicating that engaging with material repeatedly over spaced inter-
vals and actively retrieving information helps in solidifying memories, making
them more resistant to forgetting. [26, 27]

2.1.5 Colors
Colors play a significant role in psychology as they can influence mood, behav-
ior, and perceptions. In the field of environmental psychology, colors are known
to have specific psychological effects—for example, blue often induces feelings
of calmness and serenity, while red can evoke emotions of passion and urgency.
These effects are not just limited to static environments but are also impactful
in dynamic digital interfaces. [28]

In the context of mobile applications, the psychology of colors is critical
in user interface design. Choosing the right color scheme can enhance user ex-
perience, influence user behavior, and increase engagement. For instance, using
blue might promote trust and reliability, which is ideal for banking or healthcare
apps, whereas using bright and energetic colors like orange or red might be more
effective in fitness apps to motivate users. By understanding the psychological
impact of different colors, developers can create more effective and appealing
mobile applications. [29]

2.1.6 Other Concepts
Psychology in learning integrates various other concepts. Attention and In-
formation Processing examines how UI/UX design influences user attention
and information processing. Neuroscience of Learning applies brain-based in-
sights to enhance app functionality. Social Learning Theory leverages app-

8

2.2. Effective Learning Methods

based social features to promote interactive learning. Metacognition and Self-
regulated Learning foster reflective learning practices and goal setting. Lastly,
Psychological Impact of Technology explores both the benefits and potential
issues of mobile learning, such as the digital divide. [30]

2.2 Effective Learning Methods

Effective learning methods are crucial for enhancing educational outcomes
and personal growth. This section distinguishes between methods, techniques,
and strategies within education, clarifying their roles: methods encompass over-
arching theories like active learning or spaced repetition, techniques are spe-
cific practices within these methods, and strategies are personal adaptations
by learners [31]. By exploring these various approaches, backed by historical ev-
idence and contemporary research, educators and learners can significantly im-
prove engagement, retention, and comprehension. The discussions that follow
will detail Active Learning, Spaced Repetition, Collaborative Learning, Gam-
ification of Learning, and other effective strategies to enrich the educational
experience.

2.2.1 Active Learning

As many people have experienced, traditional lectures typically involve a pro-
fessor standing in front of a blackboard, explaining a topic while students sit
at their desks and listen. This educational method is considered outdated
by many [32]. The issue is that the length of such classes is often too long
for students to remain concentrated and motivated throughout the entire lec-
ture. The following Figure 2.1 illustrates the difficulty of typical tasks per-
formed during a lecture.

Figure 2.1: Complexity of Tasks Performed During a Lecture [1]

9

2. Learning Approaches and Cognitive Processes

However, there are newer approaches to education, one of which is Ac-
tive Learning. As the name suggests, active learning (sometimes also refer-
eed as student-centered learning [33]) involves students actively participating
in the learning process, rather than passively attending lectures. This approach
is commonly used when a group of students is assigned the same task to com-
plete. Typically, students are encouraged to collaborate and work together
to accomplish the task. The term active learning does not have a single, precise
definition, as it encompasses various learning strategies including group work,
project-based methods, learning through play, and technology-based learning.
Despite the diversity of these approaches, they share a common element: ac-
tive participation. This means that students take an active role in their own
learning process. [1] Time in a lecture can be organized for example as shown
in Figure 2.2 below.

Figure 2.2: Possible Lecture Organization According to Active Learning [1]

2.2.1.1 Foundations of the Method

The concept of active learning has existed for centuries, but the specific term
active learning as it is understood today has been in use since the late 1970s.
During this period, the method gained significant popularity, leading to its en-
dorsement by educators, researchers, cognitive psychologists, and instructional
designers. These professionals advocated for educational models that em-
phasized a greater level of student participation in the learning process [33].
Prominent educators who contributed significantly to this shift include Paulo
Freire [33, 34], who profoundly redefined student-teacher interactions. Oth-
ers who have influenced this method include John Dewey and Maria Montes-
sori, each bringing unique perspectives to active and experiential learning ap-
proaches [33, 35, 36].

To more clearly delineate the essence of active learning, the following prin-
ciples are commonly suggested to guide the active learning methodology:

1. Purposive: The significance of the task is aligned with the students’
interests and concerns.

2. Reflective: Encouragement for students to contemplate the implications
and significance of their learning.

10

2.2. Effective Learning Methods

3. Negotiated: The process of learning involves students and teachers col-
laboratively determining the goals and methods.

4. Critical: Emphasis on students recognizing diverse approaches and meth-
ods to absorb the content.

5. Complex: Tasks are compared to real-world complexities while fostering
deeper analytical thinking among students.

6. Situation-driven: Learning tasks are shaped by situational needs, en-
suring relevance and applicability.

7. Engaged: Activities mirror real-life tasks, enhancing the practical ap-
plication of learning. [37]

2.2.1.2 Evidence-based Studies

Numerous studies support the effectiveness of active learning, demonstrating
robust and comprehensive results across various disciplines and contexts over
an extended period. Generally, these studies indicate that student groups
employing active learning methods outperform those using traditional, pas-
sive learning approaches [38]. Furthermore, research shows that active learn-
ing not only enhances basic study effectiveness but also fosters critical think-
ing [38], improves learning attitudes [39], boosts collaboration skills [38], in-
creases the ability to solve real-world problems [40], increases knowledge reten-
tion [41] and more. Overall, the research strongly suggests that active learning
is an effective educational method.

2.2.1.3 Advantages and Disadvantages

Below is a list of the advantages and disadvantages of active learning.

Active Learning Advantages:

• Providing context that helps students recognize the relevance of their
studies.

• Enhancing the retention of knowledge.

• Deepening understanding and improving the ability to apply knowledge
in real-life situations.

• Increasing student engagement, making the learning process more enjoy-
able.

• Accommodating a wider variety of learning styles. [42]

Active Learning Disadvantages:

• Often requiring more time for instructors to prepare effectively.

• Being less efficient than traditional didactic methods for conveying foun-
dational knowledge.

• Potentially causing frustration among students who are unprepared to par-
ticipate actively. [42]

11

2. Learning Approaches and Cognitive Processes

2.2.1.4 Summary of Active Learning

Active learning and technology can seamlessly integrate to create a fun and in-
teractive environment that enhances learning effectiveness. There are numerous
ways to utilize technology during active learning. Technology serves as a crucial
element for connecting students, allowing them to interact with each other with-
out needing to be physically present. It also enables methods that would not
be possible otherwise, such as advanced visualization techniques. Another sig-
nificant aspect that technology introduces is the element of fun—gamification
plays a major role in learning by making it enjoyable, which in turn boosts
both attitude and effectiveness. [43, 44]

In conclusion, this section explains what active learning entails, how it is pos-
sible to implement its principles, its benefits in learning, and its advantages
and disadvantages. It also discusses how active learning can be integrated
with technology. This section provides a solid foundation for later designing
a productivity-enhancing mobile app.

2.2.2 Spaced Repetition
This section explores another learning method known as Spaced Repetition.
Imagine there is a substantial amount of information that a student needs
to learn. To manage this effectively, the information can be broken down into
smaller, more manageable chunks. Each chunk can then be learned individu-
ally, allowing the student to focus on specific segments of the overall material.

2.2.2.1 Foundations of the Method

Spaced repetition is particularly effective because it prioritizes the mastery
of all information based on the learner’s familiarity and recall difficulty. The
method involves reviewing the chunks that the student knows the least more
frequently, ensuring these more challenging areas are reinforced. Conversely,
the chunks that are easiest for the student are repeated less often. This strategic
approach to repetition helps optimize the learning process, making it both
efficient and adaptive to the student’s individual needs. [45]

This method has been recognized since the 1880s when it was first stud-
ied by Hermann Ebbinghaus, a German psychologist. Ebbinghaus described
how people tend to forget information over time in a phenomenon he called
the Forgetting Curve. He conducted experiments to investigate memory re-
tention and discovered that memory loss occurs rapidly after initial learning.
Specifically, he found that up to 75% of learned material can be forgotten
within the first 48 hours, with the most significant memory loss occurring
within the first hour after learning [46] as shown in the following Figure 2.3.
Also note that the student will not remember everything that was presented
in the material.

The process of forgetting is a natural aspect of human memory, but it can
be disrupted. One initial strategy might be to review the material immediately
after learning, such as right after a class. This immediate review can indeed
extend the duration for which the student retains the information, but the ben-
efit is typically short-lived. Studies have shown that within about 24 hours,
the level of knowledge retention between a student who reviewed the material
immediately after class and one who did not is nearly identical [47]. To combat

12

2.2. Effective Learning Methods

Figure 2.3: The Forgetting Curve [2]

this rapid decline in memory, more effective methods such as spaced repetition
can be applied, which strategically spaces out review sessions to enhance long-
term retention. [48]

As previously mentioned, this method is based on repetitive learning, with
a focus on prioritizing more difficult material. If a repetitive method is applied,
it will alter the forgetting curve as depicted in Figure 2.4. It is important
to note that, as mentioned earlier, retention does not significantly increase
after just one immediate repetition. This method becomes truly effective only
when it is performed multiple times, extending the intervals between reviews
to better reinforce memory and comprehension.

2.2.2.2 Evidence-based Studies

Numerous evidence-based studies highlight the benefits of spaced repetition
in learning. The technique is particularly effective in improving long-term
memory retention and enhancing recall efficiency [49], which are vital for aca-
demic success. By spacing out learning over time, it also helps prevent mental
fatigue [50], maintaining cognitive performance throughout extended study pe-
riods [51]. Additionally, spaced repetition makes learners to think about their
learning process more reflectively, improving their ability to regulate their own
learning and making judgements about what, how, and when to study [50].
These benefits collectively contribute to a more efficient and enriching learning
experience.

13

2. Learning Approaches and Cognitive Processes

Figure 2.4: The Forgetting Curve with Repeated Review of Material [3]

2.2.2.3 Advantages and Disadvantages

Below is a list of the advantages and disadvantages of spaced repetition.

Spaced Repetition Advantages:

• Spaced repetition enhances flexibility and allows for just a short time
of daily practice.

• It is beneficial for visual learners by linking imagery to information.

• Effective for memorizing isolated facts, vocabulary, or rules.

• Numerous implementations and tools are available to assist in creating
and using flashcards. [52]

Spaced Repetition Disadvantages:

• Spaced repetition requires advance planning and sufficient time alloca-
tion.

• It demands long-term commitment to observe noticeable results.

• It is less effective for memorizing larger theories or extensive information.

• Preparations can be time-consuming and necessitates significant creativ-
ity. [52]

14

2.2. Effective Learning Methods

2.2.2.4 Summary of Spaced Repetition

Spaced repetition is a powerful learning strategy that can be effectively inte-
grated with technology, making it highly accessible and customizable. A num-
ber of mobile apps and web applications have already successfully adopted this
approach, leveraging the benefits of spaced repetition to enhance educational
outcomes. [53]

Among the well-known implementations of spaced repetition is the Leitner
System, a learning method that utilizes flashcards (cards with questions) cat-
egorized into different boxes, typically three. All cards start in the first box,
which is considered the easiest. During a session, a learner reviews a card
from the first box; if they answer correctly, the card moves to the next box,
which is considered more difficult. If the answer is incorrect, the card remains
in the current box or moves back to an easier one, if applicable. The system
is designed so that cards in more difficult boxes are reviewed more frequently,
ensuring that the learner spends more time on challenging material, thus rein-
forcing their understanding and retention.

In conclusion, spaced repetition is a proven and effective learning method
that strategically utilizes the human memory process to enhance information
retention and recall. By scheduling reviews to counteract the natural tendency
to forget, it allows learners to concentrate more frequently on challenging ma-
terial, thus enhancing overall learning efficiency. Additionally, this method
integrates well with technology, as evidenced by the wide array of tools avail-
able for its implementation.

2.2.3 Collaborative Learning
One of the popular methods of learning is Collaborative Learning, which can
occur either peer-to-peer or in larger groups. Peer learning involves students
working in pairs or small groups to achieve a specified goal. This approach
allows students to teach each other as they work toward solving the given
problem. [54]

Collaborative learning originated in the 1960s in the UK, when researchers
such as Basil Bernstein and Michael Young began to create environments
to study how language and social structure influenced learning, with a particu-
lar focus on interaction and group work. In the 1980s, this concept was further
formalized, providing a robust foundation for other researchers to build upon.
This groundwork allowed for the expansion and diversification of collaborative
learning concepts during the 1990s, including the integration of modern tech-
nologies. Recently, this approach has continued to evolve with contemporary
advancements. [55]

2.2.3.1 Foundations of the Method

Students work together to solve problems and share knowledge, benefiting from
diverse perspectives and enhancing their understanding through mutual inter-
action. This form of learning integrates various theoretical and methodological
insights from multiple disciplines, emphasizing the importance of group dynam-
ics in education. Students are encouraged to engage actively with the content,
leading to deeper understanding, retention of the material, and the develop-
ment of critical thinking and communication skills. Research supports the effec-

15

2. Learning Approaches and Cognitive Processes

tiveness of collaborative learning in fostering higher cognitive processes and so-
cial skills, crucial for academic and professional success. With the rise of digital
platforms, collaborative learning has expanded to include computer-supported
environments, making it accessible to a wider audience and providing new op-
portunities for interaction and learning across geographical boundaries. [56]
Five basic steps to achieve a collaborative learning environment are depicted
in the following Figure 2.5.

Figure 2.5: Basic Steps in Collaborative Learning [4]

2.2.3.2 Evidence-based Studies

Numerous studies support the effectiveness of collaborative learning, demon-
strating its superiority over traditional learning methods in various aspects.
Research consistently shows that collaborative learning enhances communica-
tion skills, exposes students to diverse perspectives, and significantly improves
retention rates. [57]

Another study employs evolutionary game theory to analyze collaborative
learning dynamics, revealing that perceived academic value and social benefits
motivate students, while time and effort costs deter them. This theoretical
evidence provides insights into the factors that influence collaborative learn-
ing, aiding educational theorists and policymakers in enhancing its effective-
ness. [58]

Furthermore, this approach fosters deeper understanding and engagement
with the material, as students actively participate and learn from each other’s
insights and experiences. This collective learning environment not only boosts
academic performance but also cultivates essential social skills and critical
thinking abilities, making it a valuable educational strategy. [59]

16

2.2. Effective Learning Methods

2.2.3.3 Advantages and Disadvantages

Below is a list of the advantages and disadvantages of collaborative learning.

Collaborative Learning Advantages:

• Collaborative learning requires students to communicate, debate, and ne-
gotiate fostering essential skills for workplace readiness as they reach con-
sensus on various topics.

• Through collaborative efforts, students interact with peers from different
cultures and backgrounds, gaining valuable insights and observing diverse
learning strategies.

• Collaboration allows students to learn from each other, broadening their
perspectives and deepening their understanding. This process includes
providing peer feedback, which serves as an effective check on each other’s
work. [60]

Collaborative Learning Disadvantages:

• Introverted students often prefer time to think and process information
internally. They may find it challenging to participate in social settings
where immediate verbal interaction and openness are required.

• Effective group work doesn’t happen automatically; it requires structured
guidance. Educators should teach students about positive interdepen-
dence, managing diverse learning styles, and ensuring inclusivity.

• Evaluating group work can lead to perceived inequities. Some students
might feel that their peers do not deserve a share of the group’s high
marks due to minimal contribution, while others may worry about un-
derperformers affecting their own grades. [60]

2.2.3.4 Summary of Collaborative Learning

Technology in collaborative learning has two sides. On one hand, it can
be extremely beneficial, opening up new possibilities and experiences such
as communication tools, team management tools, and collaboration platforms
like 360Learning1, EdApp2, or Slack3. These technologies can enhance effi-
ciency, attitude, and retention, and can help bridge the gap between students,
among other benefits. On the other hand, technology can sometimes obstruct
the learning process, which some studies have indeed shown. Additionally, set-
ting up a collaborative learning environment may be challenging due to limited
resources, such as when every participant requires a tablet, computer, or spe-
cific software. [61]

This section offers a comprehensive overview of collaborative learning, in-
cluding its definition, history, applications, and the evidence-based studies

1The full company name is 360Learning UK Ltd
2The full company name is EdApp Pty Ltd.
3The full company name is Slack Technologies owned by Salesforce Inc.

17

2. Learning Approaches and Cognitive Processes

that support this learning method. Additionally, it outlines the advantages
and disadvantages of collaborative learning. This information will serve as part
of a solid foundation for designing a productivity-enhancing mobile application.

2.2.4 Gamification of Learning
This section is about Gamification of Learning, which is a method designed
to enhance students’ motivation and engagement by integrating elements typ-
ical of video games or any other game environment into educational content.
This approach aims to make the learning process more enjoyable and encour-
ages learners to engage with the material consistently. [62]

Gamification in education has been present in various forms for many years
but has seen significant development over the last 50 years. In the 1970s,
the release of multiplayer games with text-only interfaces marked the begin-
ning of social online gaming, sparking the initial interest in the gamification
of learning. This potential was recognized in the 1980s by academic researchers,
who then began to further develop and research gamification. The concept
of gamification as it is known today emerged in the early 2000s, with badge
systems and social gamification becoming more prominent. Around the 2010s,
gamification experienced a surge in popularity, driven by increased accessibility
to suitable technology and the broader expansion of gamification strategies. [63]

2.2.4.1 Foundations of the Method

Gamification in learning refers to the strategic application of game-like el-
ements and mechanics in non-game contexts to enhance engagement, moti-
vation, and problem-solving. Traditionally associated with fun and games,
these elements are leveraged to encourage learning, foster behavioral change,
and solve various problems in innovative ways. As various thought leaders
and organizations have defined, gamification incorporates game mechanics such
as levels, points, and badges into everyday activities to make them more in-
teractive and enjoyable. This process is aimed at capturing and retaining
interest by transforming mundane tasks into compelling challenges that offer
feedback and rewards. By integrating game dynamics into learning or work
environments, gamification seeks to stimulate participation, enhance perfor-
mance, and promote continuous engagement. Through its psychological appeal,
gamification turns routine interactions into stimulating experiences, driving in-
dividuals to achieve specific outcomes while enjoying the process. [62]

The term Gamification Taxonomy was introduced to classify and organize
the various elements and approaches within gamification. This taxonomy is es-
sential for differentiating the diverse strategies and components used to ap-
ply game mechanics in non-game contexts. When a gamification taxonomy
is clearly defined, it can be effectively utilized in implementing gamification
as a learning method in specific cases. It’s important to note that there
is not just one definitive gamification taxonomy; rather, there are multiple
taxonomies, and they are continuously evolving as research progresses. [64]

One of the taxonomies introduced by a group of researchers in 2019 defines
the taxonomy across five dimensions: Performance, Ecological, Social, Per-
sonal, and Fictional [5]. Each dimension encompasses its own unique aspects
(also referred as elements [5]), as depicted in Figure 2.6.

18

2.2. Effective Learning Methods

Figure 2.6: Gamification Taxonomy [5]

1. Performance: This dimension focuses on elements that provide feed-
back to learners about their progress and achievements. This includes
points, progression metrics, levels, statistical feedback, and acknowledg-
ments. These elements are crucial as they help learners understand
the impact of their actions and their progress within the learning en-
vironment. Without such feedback, learners may feel disoriented and un-
sure about the effectiveness and relevance of their activities, as there
is no mechanism to indicate success or areas for improvement. This di-
mension consists of Acknowledgement, Level, Progression, Point and Stats
aspects.

2. Ecological: The Ecological dimension in gamification pertains to the en-
vironment in which the gamification is implemented, represented through
various properties that affect user interaction. Key elements in this di-
mension include Chance, Imposed Choice, Economy, Rarity, and Time
Pressure. These components are essential for creating a dynamic and en-
gaging environment, as they foster interactions and challenge the user.
Without these ecological elements, the gamification setting may appear
dull and fail to stimulate active participation or sustained interest from
users.

19

2. Learning Approaches and Cognitive Processes

3. Social: This dimension in gamification focuses on the interactions among
learners within the environment. Key elements of this dimension include
Competition, Cooperation, Reputation, and Social Pressure. These el-
ements are crucial for fostering a sense of community and engagement
among participants. They enable learners to interact, compete, collabo-
rate, and build reputations within the learning context. A lack of social
elements can lead to isolation among students, as it prevents them from
engaging with peers and benefiting from the motivational and educational
advantages of social interactions.

4. Personal: The Personal dimension relates to the individual learner
and their direct engagement with the environment. This dimension in-
cludes elements such as Sensation, Objective, Puzzle, Novelty, and Ren-
ovation. These elements are integral in providing a tailored and mean-
ingful experience that resonates with the learner’s interests and goals.
They help to stimulate personal motivation and satisfaction by aligning
the gamification elements with individual needs and preferences. A defi-
ciency in these personal elements can lead to demotivation, as the system
may fail to provide meaningful and relevant experiences that captivate
and engage the learner.

5. Fictional: The last dimension is a hybrid category that intersects with
both the user and the environment. It primarily involves the use of Nar-
rative and Storytelling to connect the user’s experience with the broader
context of the activity. This dimension is crucial for providing a cohesive
and immersive setting that explains the rationale behind tasks and en-
hances the overall quality of the user experience. When fictional elements
are lacking, there can be a significant loss of context and meaning, mak-
ing it unclear why tasks need to be performed. This absence can diminish
the depth and impact of the experience, directly affecting user engage-
ment and satisfaction. [5]

2.2.4.2 Evidence-based Studies

There are numerous studies supporting the positive effects of gamification
on enhancing interest in learning [65], as well as improving cognitive, moti-
vational, and behavioral learning outcomes [66], among others. However, some
of these studies also indicate that the results can be variable, meaning that
they depend on the context and subject matter, which may lead to differing
outcomes [67].

2.2.4.3 Advantages and Disadvantages

Below is a list of the advantages and disadvantages of gamification in learning.

Gamification Learning Advantages:

• Gamification transforms learning into an enjoyable and engaging ac-
tivity, encouraging wholehearted participation and fostering a compet-
itive yet friendly atmosphere among learners. This emotional connection
to the content significantly increases knowledge retention.

20

2.2. Effective Learning Methods

• Through the use of game elements like badges and rewards, gamification
motivates learners to achieve course objectives and continue progressing
through learning materials. These rewards provide a sense of accomplish-
ment and can enhance the learner’s self-esteem and perception of skill.

• Gamification allows for instant feedback, helping learners understand
what they know and where they need to improve. Tools like leader-
boards also offer additional feedback, showing learners how they compare
to peers, which can motivate further improvement and engagement.

• Gamification accommodates different learning speeds, allowing learners
to engage with content at a pace that suits them best. This personalized
approach helps maximize the learning experience by aligning with each
individual’s comfort level and capacity. [68]

Gamification Learning Disadvantages:

• Effective gamification requires that games are interactive and engaging,
and not merely quizzes disguised as games. Creating truly engaging game
content that resonates with and motivates learners can be challenging
and requires a deep integration of learning objectives with game design.

• The use of points, badges, and leaderboards, often referred to as pointsifi-
cation, can sometimes lead to negative effects such as lack of motivation,
irrelevance, and even worsened performance. There are also concerns
about ethical issues, such as gaming the system and cheating.

• Introducing gamification in educational and training settings can inadver-
tently foster a competitive environment that may not align with organi-
zational goals that emphasize cooperation and teamwork. This misalign-
ment can create a culture clash where individual achievements are prior-
itized over collaborative success. [68]

2.2.4.4 Summary of Gamification in Learning

All the previously mentioned methods facilitate more engaging, interactive
learning experiences that keep learners motivated and effective. Gamification
of learning method and its strategies, such as reward systems, levels, and in-
teractive challenges, naturally complement digital environments, making them
ideal for implementing in educational technologies. Technology together with
gamification have the potential to revolutionize education, providing a dynamic
and effective approach to teaching complex subjects. [69]

The section on gamification of learning discusses how integrating game-like
elements into educational settings boosts student engagement and motivation.
It applies these elements across various dimensions—performance, ecological,
and social—to improve effectiveness. Studies generally support gamification’s
positive impact on learning outcomes, though results can vary with context
and implementation. This section can serve as reference material when design-
ing a productivity-enhancing mobile application.

21

2. Learning Approaches and Cognitive Processes

2.2.5 Pomodoro Technique
This section begins with a comprehensive introduction to the Pomodoro Tech-
nique, providing detailed insights into its origins and development. It explores
the foundational concepts behind the timer, its historical context, and its pri-
mary functionalities. Additionally, the section explains how the Pomodoro
Timer can be effectively implemented in various settings, discussing its benefits
in enhancing productivity and focus. The introduction aims to equip readers
with a solid understanding of how this time management tool can be integrated
into their daily routines for optimal performance.

2.2.5.1 Foundations of the Method

The Pomodoro technique, as detailed by its creator, F. Cirillo, is a produc-
tivity method that emphasizes the division of work into finite intervals known
as Pomodoros. This technique is designed to help individuals break down
their workday into manageable segments, thereby facilitating a structured ap-
proach to tasks. Each Pomodoro session typically lasts for 25 minutes, fol-
lowed by a short break (traditionally 5-minutes). This structure not only
aids in maintaining concentration but also allows for tracking and recording
the number of Pomodoros spent on each task. By seeing the amount of time
dedicated to different activities, users can gauge their productivity and plan
their schedules more effectively, providing a tangible measure of task comple-
tion and progress. [70]

2.2.5.2 Evidence-based Studies

Research has explored various aspects of the Pomodoro technique’s effective-
ness, particularly in combating common workplace issues like procrastination
and lack of focus. For instance, a study conducted by Dizon et al. observed
that while the Pomodoro technique helped nursing students reduce procrasti-
nation, it also slightly diminished their motivation [71]. Meanwhile, another
study by Sarkar et al. suggested that the technique is beneficial in managing
mental fatigue among developers during intensive coding sessions [72]. These
studies highlight that while the Pomodoro technique can significantly enhance
focus and reduce the inclination to procrastinate, the impacts on motivation
can vary, suggesting the need for additional motivational elements such as gam-
ification to further optimize its benefits.

2.2.5.3 Advantages and Disadvantages

Below is a list of the advantages and disadvantages of Pomodoro technique.

Pomodoro Technique Advantages:

• Forces regular breaks before feeling overwhelmed, using breaks for simple,
relaxing activities to maintain focus.

• Encourages breaking tasks into smaller, manageable parts, improving
productivity and planning.

22

2.3. Individual Differences

• Helps in better planning and dedicating more effort to tasks, especially
useful in multi-step projects.

• Timers provide a sense of urgency that can motivate and help maintain
focus. [73]

Pomodoro Technique Disadvantages:

• The short, 25-minute intervals can disrupt focus just as engagement in-
creases, though longer intervals can be adapted.

• Particularly in public or office settings, external disturbances can disrupt
the technique’s effectiveness.

• Without prior planning, it can be challenging to decide what to work on,
making spontaneous task initiation difficult.

• The structured nature of scheduled work and break times can be restric-
tive for those who prefer flexibility or struggle with routine adherence. [73]

2.2.5.4 Summary of Pomodoro Technique

This section explored the Pomodoro technique, initially outlining its develop-
ment by Francesco Cirillo to improve productivity by structuring work into
25-minute intervals, each followed by short breaks. It discusses the method’s
benefits in maintaining focus and organizing tasks, but also notes potential
drawbacks, such as reduced motivation and the disruptive nature of its rigid
timing in certain environments. Research suggests the technique’s effectiveness
in reducing procrastination and managing fatigue, though it may not suit ev-
eryone due to its structured approach. The section highlights the technique’s
utility and challenges, suggesting a need for flexible application.

2.2.6 Other Methods
In addition to active learning, spaced repetition, collaborative learning, gamifi-
cation in learning, and the Pomodoro technique, several other effective learning
methods can be utilized. Dual Coding combines verbal and visual information
to enhance memory and understanding. Interleaved Practice, which involves
mixing different topics or forms of practice, can improve problem-solving skills
and long-term retention. Elaborative Interrogation encourages learners to gen-
erate explanations for why stated facts are true, fostering deeper engagement
with the material. These methods diversify learning approaches and can en-
hance educational outcomes across various disciplines. [74, 75]

2.3 Individual Differences

Individual differences in learning refer to the unique ways in which individuals
acquire, process, and retain information. These differences encompass a wide
range of factors, including cognitive abilities, personality traits, motivational
tendencies, and socio-cultural backgrounds. Understanding these variations
is crucial for designing effective educational interventions that cater to diverse

23

2. Learning Approaches and Cognitive Processes

learning needs. For instance, some individuals may excel in visual learning
tasks, while others may prefer auditory or kinesthetic approaches.

Moreover, factors such as attentional control, working memory capacity,
and learning styles play significant roles in shaping how individuals engage
with educational material. Learning is a socially mediated process, influenced
by interactions with peers, teachers, and the broader socio-cultural context. [76]
Thus, a comprehensive understanding of individual differences in learning re-
quires consideration of both cognitive and socio-cultural factors. By acknowl-
edging and accommodating these differences, educators can create inclusive
learning environments that support optimal learning outcomes for all stu-
dents. [77]

2.4 Learning and Technology

The integration of technology into learning environments has revolutionized ed-
ucational practices, offering diverse avenues for knowledge acquisition and en-
gagement. Digital tools provide personalized learning experiences tailored
to individual preferences and abilities, fostering self-directed learning [78].
Virtual simulations, multimedia resources, and online collaboration platforms
enhance understanding and retention by catering to different learning styles
and preferences [79]. Furthermore, technology facilitates access to vast reposi-
tories of information, enabling learners to explore topics in depth and at their
own pace [80]. However, the effective utilization of technology in education
requires careful consideration of factors such as digital literacy, access to re-
sources, and equitable distribution of learning opportunities [81]. By leveraging
technology thoughtfully, educators can create dynamic learning environments
that empower students to thrive in the digital age.

2.5 Pomodoro Technique Research

This section offers a detailed overview of a research study conducted by the au-
thor of this thesis and his classmates in Montreal, Canada, in December 2022.
The environment of exchange students from various countries, along with local
Canadian students who attended the same classes, provided a unique opportu-
nity to conduct research with a broad audience featuring diverse opinions, cul-
tural differences, and attitudes. The research was carried out by Petr Šmejkal,
Lucia Čahojová, and Diederik Ponfoort. At the time, the topic was specifi-
cally chosen to provide a foundational basis for developing the productivity-
enhancing application discussed in this thesis. The output document of the re-
search is included in the electronic attachments, as detailed in Appendix G.

Initially, the concept of the research is introduced, followed by the presenta-
tion of the motivation and research questions. This is followed by a description
of the methodologies employed, concluding in a discussion of the results ob-
tained from these methods.

2.5.1 Introduction
The recent surge in the popularity of tools designed to enhance focus and mo-
tivation can be attributed not only to their increased accessibility and user-

24

2.5. Pomodoro Technique Research

friendliness but also to the positive experiences reported by their users. Among
these tools, the Pomodoro technique stands out as a particularly influential
method. This approach has evolved over time, adapting to modern needs
through various applications, each offering different features from engaging
user interfaces and customizable settings to elements of gamification, catering
to a diverse range of preferences and enhancing user engagement.

The necessity for such tools has become more pronounced in today’s envi-
ronment, where distractions are ubiquitous, particularly through digital chan-
nels like social media, streaming services, and video games. These distractions
contribute significantly to procrastination, particularly when work and leisure
devices overlap. This research aims to delve deeper into the motivations
and habits that drive user engagement with productivity tools, seeking insights
that could guide the development of applications that resonate more deeply
with user needs. This focus is especially pertinent in the post-pandemic era,
where many continue to work from home, necessitating a reevaluation of work
habits and the promotion of strategies that support sustained concentration
and effective task management.

2.5.2 Motivation and Research Questions

Our environment is filled with distractions like social media, streaming apps,
and video games, which often lead to procrastination as they compete with our
work tasks, especially since most of our work is done on phones and computers.
To address the challenges of lost focus and the shift in habits post-pandemic,
many tools and techniques have been developed as mobile or desktop applica-
tions aimed at fostering healthier work habits and improving focus. The study
aims to explore people’s habits and motivations in detail to tailor these tools
to user needs more effectively. Specifically, it assesses the impact of the Po-
modoro technique and its gamified versions, which might include interactions
with virtual animals or plants, to see if these can enhance focus and produc-
tivity more than traditional methods.
Research Questions

• RQ1: What are peoples’ approaches to accomplishing their academic
or work tasks?

• RQ2: How does the Pomodoro Technique help people accomplish their
academic/work tasks?

• RQ3: How does someone’s motivation change when the Pomodoro tech-
nique with the element of gamification is used?

2.5.3 Methods

This section describes the methods used to evaluate the Pomodoro technique’s
effectiveness through two phases: an interview and a survey study. The inter-
view involved four participants discussing their experiences with the technique
in work and study environments, analyzed qualitatively to identify themes. The
survey, involving eight participants, delved deeper into usage patterns of both

25

2. Learning Approaches and Cognitive Processes

traditional and gamified Pomodoro techniques, exploring participant strate-
gies, satisfaction, and specific applications to understand its practical benefits
comprehensively.

2.5.3.1 Interview Study

In a recent study focused on exploring the efficacy of the Pomodoro technique
among office workers and students, four participants were recruited through
convenience sampling. These individuals, averaging 29 years in age and hav-
ing varied experience with the Pomodoro technique—from one week to a few
months—participated in semi-structured online interviews that lasted about 30
minutes each. All participants were either pursuing or had completed higher
education degrees and were fluent in English. The interviews aimed to cap-
ture their experiences with the Pomodoro technique, delving into their current
work or study environments and any modifications they might consider bene-
ficial to their productivity methods.

The interview process was structured to gradually deepen into the sub-
ject matter, beginning with a warm-up session where participants described
their professional or academic background and their familiarity with the Po-
modoro technique. The discussion then moved on to how participants handle
their workload and their typical work or study environments. Following this,
the conversation focused on their specific experiences with the Pomodoro tech-
nique, including a comparison between the traditional and a gamified version
of the technique, which incorporates elements like caring for a virtual plant
or animal. For those unfamiliar with the gamified version, it was briefly ex-
plained, and their expectations were discussed.

Data from these interviews were analyzed through qualitative content anal-
ysis, using an inductive approach to identify themes across the conversations.
Codes were assigned to specific interview sections, allowing for the comparison
and extraction of common themes. These findings were summarized in a code-
book, providing a structured overview of the insights gained regarding the use
and perception of the Pomodoro technique among the participants. This
methodological approach helped to pinpoint the potential benefits and pref-
erences regarding productivity techniques among young professionals and stu-
dents.

2.5.3.2 Survey Study

A follow-up survey study was designed to delve deeper into the effectiveness
of the Pomodoro technique based on findings from prior interviews. This survey
collected data from eight participants, predominantly in their early twenties,
with educational backgrounds ranging from high school to master’s degrees.
The gender distribution included five females and three males. The survey
aimed to understand participants’ usage patterns with both the traditional
and gamified versions of the Pomodoro technique, exploring frequency and con-
text of use.

The survey methodology employed convenience sampling and was struc-
tured into four distinct sections. The initial part gathered demographic data
and provided background on the Pomodoro technique. The subsequent sec-
tions delved into participants’ current strategies for managing workloads, their

26

2.5. Pomodoro Technique Research

satisfaction with these methods, and specific usage details about the Pomodoro
technique, both traditional and gamified. Questions focused on the frequency
of use, perceived stress levels, task suitability, and overall work-life balance.
The final section invited participants to compare their experiences with both
versions of the Pomodoro technique, aiming to identify preferences and effec-
tiveness.

Data from the survey were analyzed by correlating responses to several re-
search questions designed to assess how participants manage their workloads,
the perceived utility of the Pomodoro timer, and the comparative effectiveness
of its gamified version. The analysis involves creating visual representations
of the data, such as graphs, to facilitate a clear understanding of trends and con-
clusions. This structured approach aims to provide insights into the practical
application and benefits of the Pomodoro technique in real-world settings.

2.5.4 Results and Discussion
This section presents results from studies on the Pomodoro technique’s effec-
tiveness in managing work and academic tasks. Through interviews and a sur-
vey, varied task management strategies and environmental and their impact
on productivity were explored. The findings illuminate how individuals tailor
their work habits to enhance efficiency and satisfaction, highlighting prefer-
ences from structured task lists to gamification elements.

2.5.4.1 Interview Study Findings

The findings from an interview study exploring the use of the Pomodoro tech-
nique revealed a variety of themes related to environment, task management,
and overall satisfaction with personal work habits. Participants highlighted
the importance of their environment in facilitating productivity, with pref-
erences varying from quiet spaces like libraries to dynamic ones like offices,
though each setting had its own set of distractions and benefits. Regarding
task management, approaches varied significantly; some participants utilized
structured methods like checklists and to-do lists to feel productive, while oth-
ers had no specific strategy and relied on situational motivation. This var-
ied approach also extended to the Pomodoro technique itself, where opinions
on its effectiveness depended on individual work habits and task types.

The study further delved into the nuances of using the Pomodoro timer
and its gamified versions. While some found the traditional timer format
stressful and interruptive, particularly when it cut into work flow or creative
processes, others appreciated the structure it provided, especially for intensive
tasks like studying for exams. The gamified version, which included elements
like growing virtual trees, was particularly motivating for some as it added
a layer of visual progress and environmental contribution. However, others
found these features distracting, preferring simpler, less intrusive methods
to manage work periods.

In conclusion, while the Pomodoro technique and its gamified enhancements
received mixed reviews, they were generally more favored for academic tasks
over creative professional work. Participants’ satisfaction with their productiv-
ity techniques varied, with many acknowledging room for improvement in man-
aging procrastination and work-life balance. These insights reflect the complex

27

2. Learning Approaches and Cognitive Processes

interplay between personal preferences, work environment, task type, and pro-
ductivity strategies, underscoring the importance of tailoring time management
tools to individual needs.

2.5.4.2 Survey Study Findings

In this survey study, it was explored that different approaches individuals adopt
to manage their academic or work-related tasks, addressing the first research
question. The predominant strategies identified were using task lists, estab-
lishing routines, and prioritizing tasks according to importance. The data,
as depicted in Figure 2.7, shows that task lists are the most favored method,
utilized by the majority of participants.

Figure 2.7: Work approaches of the Survey Participants

Furthermore, the survey probed into the participants’ satisfaction with their
chosen methods. As illustrated in Figure 2.8, the responses ranged from neutral
to strongly satisfied, indicating a general approval of their methods for man-
aging tasks.

The second research question delved into the effectiveness of the Pomodoro
technique in aiding task accomplishment. Participants evaluated the appli-
cability of this technique to different types of tasks, particularly highlighting
its benefits for structured tasks like reading and writing, as shown in Figure 2.9.

However, it was noted that creative tasks might not be as suitable for this
method. Additionally, the impact of the Pomodoro technique on enhancing
focus, motivation, and overall workflow efficiency was positively acknowledged
by the respondents. The influence of the Pomodoro technique on these as-
pects is further detailed in Figure 2.10, suggesting its utility in maintaining
concentration and aiding in workflow integration.

The third research question explored the impact of incorporating gami-
fication into the Pomodoro technique on participants’ motivation and focus.

28

2.5. Pomodoro Technique Research

Figure 2.8: Survey Participant’s Satisfaction With Their Study Approaches

Figure 2.9: Pomodoro Timer Usefulness For Different Tasks

The survey results, as depicted in Figure 2.11, show that the gamified version
of the Pomodoro technique has a predominantly positive impact, with half
of the participants strongly affirming an increase in their efficiency and mo-
tivation compared to the classical version. This indicates that the addition
of game-like elements can significantly enhance the effectiveness of the Po-
modoro technique, making task completion not only more engaging but also

29

2. Learning Approaches and Cognitive Processes

Figure 2.10: Influence of the Pomodoro Technique

more productive.

Figure 2.11: Comparison of Gaminifed and Non-Gamified Pomodoro Technique

In summary, the study not only highlighted preferred learning strategies
and their satisfaction levels but also validated the effectiveness of the Pomodoro
technique for certain types of tasks. The integration of this technique into
regular work routines has been shown to positively affect focus and efficiency.

30

2.6. Summary of Learning Approaches and Cognitive Processes

2.5.4.3 Summary of Results

The findings indicate that while many are somewhat satisfied with their cur-
rent work approaches, there is room for improvement, particularly for those
working from home who struggle with initiating tasks. The Pomodoro tech-
nique and its variations, including gamified elements, can enhance productivity
and make work more engaging. However, this technique is not universally suit-
able. Therefore, it is suggested to explore and incorporate variety of methods
to find what best enhances workflow. A potential improvement would be devel-
oping applications that offer not only the Pomodoro technique but also other
task-based methods, allowing users to tailor their productivity tools to fit vari-
ous tasks, such as creative work or memorizing, within a single, versatile appli-
cation. This could simplify usage and help in developing more effective work
habits.

2.5.5 Research Conclusion
The study explored work behaviors and task management, focusing on the Po-
modoro technique and its gamified version to assess their impact on motivation.
Initial insights from semi-structured interviews with four participants were vali-
dated through a survey with eight participants. While the Pomodoro technique
showed varied effectiveness, the gamification element emerged as a significant
motivator, offering visual progress tracking. Limitations included a small sam-
ple size and participant bias, suggesting the need for larger, more diverse stud-
ies. Future research could explore specific task contexts and develop versatile
productivity applications.

2.6 Summary of Learning Approaches and Cognitive
Processes

This chapter has explored foundational learning approaches and cognitive pro-
cesses, emphasizing their significant impact on educational practices. It high-
lights how deep understanding and strategic integration of these theories can
enhance learning strategies and teaching methods, thereby improving educa-
tional outcomes. Additionally, the chapter includes a tailored study on the Po-
modoro technique, extending beyond typical Software Engineering analyses
to inform the design of a productivity-enhancing iOS application. This com-
prehensive exploration serves as a robust foundation for future application
development.

31

Chapter 3
Domain Analysis

This chapter delves into the domain analysis necessary for the development
of a productivity-enhancing iOS application. Domain analysis is a crucial step
in Software Engineering as it helps to understand the competitive landscape,
identify user needs, and define system requirements comprehensively. By eval-
uating existing applications and their features, this analysis informs the de-
sign and development process, ensuring the final product is well-positioned
in the market and meets user expectations effectively. This chapter covers
several key areas, including a detailed competition analysis, domain model-
ing, application requirements specification, and use case scenarios, each critical
for laying a solid foundation for the application’s success.

3.1 Competition Analysis

This section presents an analysis of the competition and similar solutions
(for the iOS platform) related to the mobile application discussed in this thesis.
By examining existing apps in the market, this research aims to provide insights
that will inform the further design and development of the mobile app. Identi-
fying what features are well-received by users and which ones are not, drawing
valuable lessons from both. The analysis of competitors is a fundamental step
in the standard Software Engineering process, ensuring that the application
is well-positioned to meet user needs and stand out in a marketplace. This thor-
ough evaluation not only helps in enhancing the app’s functionality but also
in adopting best practices and avoiding common pitfalls observed in similar
applications. The selection of competitors was strategic, focusing on market
leaders and innovators to derive lessons from their successes and shortcomings,
and to benchmark against established standards in the industry.

3.1.1 Forest: Focus for Productivity

Currently ranked number one in the Productivity app category on the App
Store, the app Forest: Focus for Productivity is highly popular. Forest is de-
signed to enhance users’ focus and time management effectively with a simple
yet engaging concept: users grow a virtual forest by staying focused and avoid-
ing non-essential phone use. A detailed breakdown and review of its features
and functionality will follow in this section.

33

3. Domain Analysis

3.1.1.1 How It Works

Users start by setting a timer in the Forest app, choosing how long they want
to focus, which can vary from 10 minutes to several hours based on the task.
Once the timer begins, a virtual tree starts to grow on the user’s screen
and will continue to grow as long as the user remains in the app and re-
frains from using their phone for other activities. Each successful focus session
contributes a new tree to the user’s virtual forest, allowing them to visually
track their accumulated focused time through the development of a lush virtual
forest over time. [82, 6]

Figure 3.1: Screenshots of Forest: Focus for Productivity [6]

3.1.1.2 Key Features

• Virtual Forest: The core feature of the app is the virtual forest that
grows as users spend time away from their phone. This provides a visual
incentive to stay focused and avoid distractions.

• Variety of Tree Species: Users can unlock different species of trees
as they accumulate focus time, adding variety and interest to the virtual
forest.

• Statistics and Tracking: Forest provides detailed statistics about users’
focus habits, including daily, weekly, and monthly summaries. This al-
lows users to track their progress and set goals.

• Rewards and Achievements: The app offers rewards and achieve-
ments to motivate users. These can include new tree species or other
virtual items as users reach certain milestones.

• FocusWhitelist: Users can create a whitelist of apps that they can ac-
cess without stopping the tree from growing. This is useful for those who
need certain tools or apps for their work.

34

3.1. Competition Analysis

• Collaborative Focus: Users can join rooms with friends or colleagues
to focus together. This feature helps in creating a community of focused
individuals, providing mutual support and motivation.

• Real-World Impact: Through partnerships with organizations focused
on reforestation and environmental sustainability, Forest allows users
to spend virtual coins earned during focus sessions to plant real trees
around the world.

• Forest combines gamification with productivity, making it an en-
gaging tool for those looking to improve their focus and manage their
time more efficiently. Its simple yet effective design has made it a pop-
ular choice among students, professionals, and anyone looking to reduce
distractions and enhance productivity. [83]

3.1.1.3 Advantages and Disadvantages

Below is a list of the advantages and disadvantages of the Forest app.

Forest Advantages:

• Eliminates interruptions from incoming messages and notifications.

• Offers a variety of extra trees.

• Real-world trees are planted when enough coins are collected.

Forest Disadvantages:

• User interface lacks intuitiveness.

• Requires a large number of coins to access extra trees or plant an actual
tree.

• Includes a whitelist option that permits exceptions, which may dilute
its effectiveness.

3.1.1.4 Summary of Forest Analysis

The section presents an analysis of Forest: Focus for Productivity, a top app
in the Productivity category. It outlines the app’s core functionality, encom-
passing its virtual forest concept and key features like diverse tree species, focus
statistics, rewards, and collaborative sessions. The advantages and disadvan-
tages of the app are assessed, with particular attention to its ability to minimize
interruptions and its interface usability. This analysis adheres to standard pro-
cesses in Software Engineering and will inform the design of the productivity-
enhancing mobile application.

35

3. Domain Analysis

3.1.2 Focus To-Do: Focus Timer&Tasks
The analysis of the Focus To-Do: Focus Timer&Tasks iOS application explores
its fundamental operational approach, which revolves around enhancing users’
productivity and focus. This examination delves into the core mechanisms
driving the app’s functionality, emphasizing its overarching goal of facilitating
improved task management and concentration among its users. [7]

3.1.2.1 How It Works

Users initiate their productivity sessions by setting timers for their tasks,
prompting the app’s focus timer to activate. Through features such as task
lists and notification blocking, distractions are effectively minimized, enabling
users to concentrate fully on their designated tasks. Progress is meticulously
tracked through visual indicators, including completed tasks and time alloca-
tion for each activity, offering invaluable insights into users’ productivity habits.
Additionally, the app provides users with a suite of tools for task organization,
prioritization, and scheduling, empowering them to efficiently manage their
time and accomplish their goals with heightened focus and efficacy. [7, 84]

Figure 3.2: Screenshots of Focus To-Do: Focus Timer&Tasks [7]

3.1.2.2 Key Features

• Focus Timer: Utilizes a timer-based system to help users concentrate
on their tasks for specific durations.

• Task Lists: Allows users to create, organize, and prioritize their tasks,
ensuring clarity and focus on what needs to be accomplished.

36

3.1. Competition Analysis

• Notification Blocking: Enables users to minimize distractions by tem-
porarily blocking notifications during focus sessions.

• Progress Tracking: Provides visual indicators and progress statistics
to help users monitor their productivity and stay motivated.

• Task Organization: Offers tools for task categorization, setting re-
minders, and scheduling activities to enhance task management and effi-
ciency.

• Pomodoro Technique Support: Integrates the popular Pomodoro
technique, which involves timed work intervals followed by short breaks,
to optimize productivity.

• Focus Insights: Provides insights into users’ focus habits and produc-
tivity trends through analytics and reports, facilitating self-improvement
and goal setting. [84, 85]

3.1.2.3 Advantages and Disadvantages

Below is a list of the advantages and disadvantages of the Focus To-Do app.

Focus To-Do Advantages:

• Features like focus timers and task lists help minimize distractions.

• Application offers efficient organization, prioritization, and scheduling
of tasks.

• Visual indicators and statistics offer valuable productivity insights.

Focus To-Do Disadvantages:

• Some users find the design chaotic and distracting, making it difficult
to focus effectively.

• Some users have experienced instances where all their tasks and study
hours were deleted, leading to frustration and dissatisfaction.

• The app lacks flexibility for users to revert to the older, simpler red
version, indicating a need for improved customization options.

3.1.2.4 Summary of Focus To-Do Analysis

This section starts by detailing the functionality of the Focus To-Do app, high-
lighting tools that boost productivity. It covers key features such as focus
timers and task lists, which are designed to minimize distractions and en-
hance task management. The section concludes with a table that summarizes
the app’s strengths and weaknesses, providing a comprehensive view of its ef-
fectiveness in promoting focus and efficiency. The analysis employs standard
Software Engineering processes and will inform the design of a productivity-
enhancing iOS app.

37

3. Domain Analysis

3.1.3 Study Bunny: Focus Timer

This section introduces the Study Bunny app, an engaging iOS application that
enhances the studying experience by blending gamification with task manage-
ment. The app features a customizable digital bunny to motivate users during
study sessions. Equipped with tools like timers and progress tracking, Study
Bunny turns routine learning into a fun and rewarding activity, promoting
effective study habits through interactive incentives. [8]

3.1.3.1 How It Works

The Study Bunny app motivates users by integrating gamification elements
into its task management system. Users start by setting specific study goals
and tasks, which are represented by a digital bunny that they can interact
with and nurture. Completing tasks earns users coins, which can be used
to buy accessories for their bunny or unlock new features. The app includes
a timer to encourage focused study sessions using techniques like the Pomodoro
technique and provides statistics to monitor progress over time. This playful
approach not only makes studying more engaging but also aids in maintaining
focus and managing time efficiently. [8, 86]

Figure 3.3: Screenshots of Study Bunny: Focus Timer [8]

3.1.3.2 Key Features

• Customizable Digital Bunny: Users can personalize their digital
bunny, enhancing engagement and motivation during study sessions.

• Task Management: Allows users to set specific study goals and tasks,
organizing their learning schedule effectively.

• Reward System: Completing tasks earns coins that can be spent on ac-
cessories for the bunny or to unlock new app features.

38

3.1. Competition Analysis

• Focus Timer: Integrates a timer with options like the Pomodoro tech-
nique to help users maintain focus and manage study time efficiently.

• Progress Tracking: Provides visual statistics to track and analyze
users’ study habits and progress over time. [86, 87]

3.1.3.3 Advantages and Disadvantages

Below is a list of the advantages and disadvantages of the Study Bunny app.

Study Bunny Advantages:

• Engages users with a customizable digitalbunny, making the learning
process fun and interactive.

• Includes a built-in timer that supports focused study sessions through
the Pomodoro technique.

• Completing tasks earns rewards, encouraging engagement and motiva-
tion.

• Features an intuitive design that simplifies task management and progress
tracking.

Study Bunny Disadvantages:

• The app has restricted customization options, which may not satisfy all
user preferences as well as ofter displays distractive ads which interrupt
studying.

• The reliance on rewards might not foster intrinsic learning habits, poten-
tially affecting long-term engagement.

• Study Bunny can be demanding on device resources, potentially draining
battery life and affecting performance on older devices. As well as occa-
sional glitches and bugs appear in the app.

3.1.3.4 Summary of Study Bunny Analysis

This section explores the Study Bunny app, an iOS application that enhances
studying through gamification and task management. It highlights features
like a customizable digital bunny, a Pomodoro timer, rewards, and progress
tracking, which collectively make learning engaging and effective. The sec-
tion concludes with a table summarizing the app’s pros and cons, providing
a clear view of its utility in promoting focused and enjoyable study habits.
This analysis employs standard processes of Software Engineering and under-
scores the potential of gamification to improve educational tools and learning
experiences.

39

3. Domain Analysis

3.2 Domain Model

A domain model describes the entities within a specific domain and their re-
lationships, while remaining implementation-agnostic unlike class diagrams.
It also includes the properties of these entities, offering a conceptual overview
of the domain’s structure for clearer communication and effective system de-
sign.

The following text in this section uses UML (Unified Modeling Language)
according to the ISO/IEC 19505-2:2012 standard, created by the International
Organization for Standardization. [88]

3.2.1 Domain Model Notations
This subsection of the introduces and explains the different types of relation-
ships that can exist between entities in a domain model. These relationships
are crucial for understanding how entities interact with one another within
a system, covering various forms of connections from basic associations to more
complex hierarchical dependencies.

• Class: In UML, each entity is depicted as a class, featuring key attributes
without methods to ensure the model remains platform-independent.
Classes are illustrated as rectangles split into two parts: the upper sec-
tion for the class name and the lower for its attributes. [9] An example
of such a class is shown in Figure 3.4.

Figure 3.4: Class Example; based on [9]

• Association: In UML, Association represents a relationship between two
independent entities, depicted as a solid line. Typically bi-directional,
this can be modified to uni-directional by adding an arrow, showing that
only one entity maintains a reference to the other. The example of a Car
and Driver in Figure 3.5 illustrates such an association. [9]

Figure 3.5: Association Example; based on [9]

40

3.2. Domain Model

• Aggregation: Aggregation in UML depicts the relationship between
a whole and its parts, illustrated as a solid line with an empty diamond
at the whole entity, like a section of an article. This entity holds a col-
lection, and the part entities, such as articles in Figure 3.6, can exist
independently and belong to multiple collections. The line’s endpoints
indicate the relationship’s multiplicity, showing that a section can contain
numerous articles, and each article must belong to at least one section. [9]

Figure 3.6: Aggregation Example; based on [9]

• Composition: Composition in UML represents a stronger relationship
than aggregation, indicated by a filled diamond shape on the line con-
necting entities. It shows a dependency where parts cannot exist without
the whole; if the whole is removed, its parts are also removed. For in-
stance (as depicted in Figure 3.7), in a composition between Order and Or-
der Item, the order item is meaningless without its associated order, un-
like parts in an aggregation that can exist independently. The multiplic-
ity for the whole in a composition is always 1, emphasizing its exclusive
relationship with its parts. [9]

Figure 3.7: Composition Example; based on [9]

• Generalization: Generalization in UML is depicted as a solid line
with an empty arrow, representing inheritance where one entity adopts
the properties and behavior of another. For instance, in a model where
Square and Circle classes inherit from a Shape class, the arrow points
towards the Shape, indicating the source of inheritance. See Figure 3.8
to visualize the mentioned example. [9]

41

3. Domain Analysis

Figure 3.8: Generalization Example; based on [9]

• Multiplicity: Multiplicity in UML specifies the number of instances
in relationships like association, aggregation, and composition. It deter-
mines how entities like sections and articles relate in terms of quantity.
Here are the key points:

1. Specific Value (1): Indicates an exact number of instances, such
as one section or article.

2. Asterisk (*) or N: Represents any number of instances, including
zero.

3. Interval (1..*): Defines a range using two numbers, commonly
separated with dots, allowing for expressions such as 1..*, 2..6, or 0..1
to specify minimum and maximum counts.

Multiplicity can also be combined in formats such as ”1, 2, 3, 7..*”, cover-
ing specific numbers or any number starting from a threshold. Moreover,
multiplicity defaults to 1. [9]

In summary, this section offers a foundational understanding of the en-
tities and relationships within a specific domain, utilizing UML according
to the ISO/IEC 19505-2:2012 standards. It outlines various types of rela-
tionships crucial for system design, including association, aggregation, compo-
sition, and generalization. This comprehensive framework will now be used
in this section to model a domain for the productivity-enhancing application
that is the subject of this thesis. This domain model can later be used as a foun-
dation for other diagrams.

3.2.2 Productivity-Enhancing Application Domain
This subsection provides a detailed analysis of the domain for the productivity-
enhancing application, thoroughly examining the various components within
the domain. It describes the purpose of each entity and explores the rela-
tionships among them. By doing so, it offers insights into how these entities
interact and contribute to the overall functionality of the application. The do-
main model is divided into three subdomains, as shown in Figure 3.9. Detailed
overview of each subdomain follows.

42

3.2. Domain Model

Figure 3.9: Productivity-Enhancing Application Domain

3.2.2.1 Storylines

The first subdomain, labeled as Storylines and outlined with a green dashed line
in the diagram shown in Figure 3.10, integrates a Pomodoro timer with cap-
tivating storylines, thereby adding a gamification element to the traditional
Pomodoro technique. To find out more about Pomodoro technique see Sec-
tion 2.2.5. This integration aims to enhance productivity by making the process
of time management more engaging and enjoyable for the user. A detailed de-
scription of each entity within this subdomain follows, providing further insight
into their roles and interactions within the system.

43

3. Domain Analysis

Figure 3.10: Storylines Subdomain

1. Storyline: The Storyline entity
is the central entity of this sub-
domain, representing a storyline
as a whole. The goal property
of the Storyline is the total score
that the user sets as their target
to achieve. The Phase enum prop-
erty determines whether the storyline
will appear during the break phase
or the study phase of the Pomodoro
technique. A storyline belogs either
to the User entity or to the Guild en-
tity, depending on context.

2. Storyline Kind, Storyline Data,
Storyline Page: These three enti-
ties together constitute the content
of a storyline. A Storyline entity
cannot exist without without those
three entities.
The Storyline Kind entity de-
fines the general category or topic
of the storyline, identified by its name
property. Each Storyline is asso-
ciated with one Storyline Kind,
but multiple Storyline entities
can belong to the same kind.
The Storyline Data entity pertains
to the specific content of the story-
line, described by the description
property, which provides a brief sum-
mary. There is always a one-to-
one relationship between Storyline
Data and Storyline Kind entities.
The Storyline Page represents
an individual segment of the story,
characterized by title and story
properties. There are always ten
pages, and each page belongs ex-
clusively to one Storyline Data
entity.

3. Pomodoro Timer: The Pomodoro
Timer entity is a countdown timer
used in the Pomodoro tech-
nique. The timer is configured
with a duration setting. Each
Storyline entity is associated
with one timer, and each timer
is linked exclusively to one storyline.

44

3.2. Domain Model

3.2.2.2 Guilds

Guilds represent another subdomain of the application. This subdomain fa-
cilitates the connection between users, allowing them to form guilds, which
are groups of members who can either compete or cooperate to achieve a set
goal. This functionality supports active and collaborative learning, which is fur-
ther detailed in Chapter 2. The following text provides a detailed description
of the Guilds subdomain, its entities, and their relationships, supported by Fig-
ure 3.11.

Figure 3.11: Guilds Subdomain

1. Guild: The Guild entity is the main entity of this subdomain. It is char-
acterized by its name and goal properties. This entity is closely linked
with the Storyline entity, which was discussed earlier in Section 3.2.2.1.
Each guild is required to have a specific storyline associated with it.
A guild also has its members (at least one).

2. Member: In the Storylines subdomain, the Member entity represents
an individual member of a guild. Each member is associated with a spe-
cific guild and is described by the username property and the finished
property. The finished property indicates how much of the guild’s goal
the member has completed.
There are different types of the Member entity based on their privileges.
The Leader has full control over the guild. The Elevated Attender pos-
sesses rights determined by the guild leader. The Attender is a regular
member with basic privileges.

45

3. Domain Analysis

3. Invitation: The Invitation entity is employed to invite new members
to a guild. This entity possesses properties such as sender, receiver,
and date. Any number of invitations can be linked to a guild. An invi-
tation entity is meaningless without a guild association.

3.2.2.3 Board

The Board subdomain is a feature that enables users to compare their per-
formances with each other. This comparative element is designed to foster
a sense of competition and community among users, enhancing engagement
and motivation within the application.

Figure 3.12: Board Subdomain

1. User: The User entity encapsulates information about the user, includ-
ing properties such as username and email. Additionally, the score
property represents all the points a user has gained by completing ses-
sions using the Pomodoro timer during study periods. Each user is part
of a board, which ranks all users based on their scores.

2. Board: The Board entity is a ranked list of users, ordered by the score
property. Each board can include multiple users, but each user is associ-
ated with only one board.

3.2.3 Summary of Domain Model

In summary, this section explores the domain of a productivity-enhancing appli-
cation, focusing on three subdomains: Storylines, Guilds, and Board. The Sto-
rylines subdomain enhances time management through gamification, Guilds en-
ables collaborative and competitive user groups, and Board offers a competitive
platform for performance comparison. Each subdomain is designed with spe-
cific entities to optimize user engagement and functionality within the applica-
tion. This domain model will later serve as a foundation for the proper design
of the application and for developing other diagrams and models.

46

3.3. Application Requirements

3.3 Application Requirements

Before beginning the design of the application, it is essential to gather require-
ments to accurately define the behavior of the final product. This initial step
not only helps in estimating the effort required for the project but also in setting
clear boundaries for its scope. [89]

Gathering requirements involves distinguishing between functional and non-
functional requirements, which are both critical for the development process.
Functional requirements describe what the system should do, detailing the be-
haviors, functionalities, and interactions that the software must support. [89]

In contrast, non-functional requirements focus on how the system performs
certain operations and qualities it must have, such as security, usability, relia-
bility, and performance. These two categories of requirements together ensure
that the application is both effective in fulfilling its intended purpose and ef-
ficient in its operation, thereby aligning with user expectations and technical
specifications. [89]

3.3.1 Frameworks for Requirement Definition
There are multiple frameworks available for defining and categorizing require-
ments. For the purposes of this thesis, the FURPS, MoSCoW, and SMART
frameworks will be utilized. Each of these frameworks offers a unique ap-
proach to requirement analysis and prioritization, which will aid in structur-
ing and clarifying the requirements effectively for the project. These mod-
els will help ensure that the requirements are comprehensive, well-defined,
and aligned with the project’s goals.

3.3.1.1 SMART

The SMART criteria is a framework designed to set clear, well-defined, and most
importantly achievable goals. It stands for Specific, Measurable, Achievable,
Relevant, and Time-bound. Each component of the SMART framework helps
in creating effective and actionable objectives. Goals are made specific to elim-
inate ambiguity, measurable to track progress, achievable to ensure they are re-
alistic, relevant to align with broader business objectives, and time-bound
to provide a deadline. This approach is particularly valuable in project manage-
ment and personal development contexts, as it provides a structured and clear
methodology for goal-setting, ensuring that all objectives are not only clear
and practical but also aligned with the overarching priorities of the project
or organization. [90]

3.3.1.2 FURPS

The FURPS model is an acronym that stands for Functionality, Usability, Re-
liability, Performance, and Supportability - categories that encompass a com-
prehensive range of software qualities. Developed by Hewlett-Packard, FURPS
is widely used in software development to help define and categorize system
requirements. Beyond these primary categories, it also considers design con-
straints, implementation requirements, interface requirements, and physical
requirements. By employing FURPS, developers and project managers can en-
sure a holistic approach to software design, addressing both functional require-

47

3. Domain Analysis

ments and user experience aspects, which are crucial for the successful deploy-
ment and operation of software systems. [91]

3.3.1.3 MoSCoW

The MoSCoW method is a prioritization technique used in project manage-
ment and requirement analysis to categorize the importance of various deliv-
erables into four groups: Must have, Should have, Could have, and Won’t
have. This method helps project managers and teams to clearly distinguish
between essential and optional features, ensuring that critical requirements
are addressed first and resources are allocated efficiently. By focusing on these
priorities, the MoSCoW method aids in creating a structured approach to man-
aging tasks and expectations, streamlining the development process and facili-
tating clearer communication among stakeholders regarding project objectives
and deliverables. [92]

3.3.2 Requirements Specification
The specification of requirements for the productivity-enhancing application
follows the frameworks described in the previous section. All requirements
are specified in the format shown in Figure 3.13. To view all the requirements
for the application, refer to Appendix A.

Identifier: Identifier of the requirement.
Name: Name of the requirement.
Description: Description of the requirement.
FURPS: Categorization according to the FURPS framework [91].
MoSCoW: Categorization according to the MoSCoW framework [92].

Figure 3.13: Requirement Specification Format

To see a detailed diagram of both the functional and non-functional require-
ments, please refer to Figure 3.14.

3.3.3 Summary of Application Requirements
In summary, this section provides an overview of the requirements catego-
rization frameworks used in this thesis, as well as the specification of the re-
quirements for the productivity-enhancing application. These requirements
were specified by employing commonly used processes in Software Engineering
and will later be used to properly design the application.

3.4 Application Use Cases

Use cases depict specific scenarios that demonstrate how functional require-
ments are applied within the system. They provide a detailed view of the appli-
cation’s capabilities and the specific business processes it supports. It is crucial
that these use cases comprehensively cover all functional requirements to en-
sure a complete understanding of the system’s functionality and its operational
context. [93]

48

3.4. Application Use Cases

Figure 3.14: Requirements Specification Overview

3.4.1 Use Case Diagram Notation

This section explores Use Case Diagram Notation, detailing key components
and their interactions within a system. It covers elements like Use Cases, As-
sociations, Actors, and System boundaries, as well as relationships such as In-
clude, Extend, and Dependency, all depicted through concise figures and de-
scriptions. Each part adheres to Unified Modeling Language (UML) standards
(ISO/IEC 19505-2:2012 standard), providing a clear framework for understand-
ing and implementing system specifications effectively.

3.4.1.1 Use Case

A use case outlines the sequence of actions a system performs to deliver a valu-
able, observable outcome for actors or stakeholders involved with the sys-
tem. [88, 10]

49

3. Domain Analysis

Figure 3.15: Use Case Notation; based on [10]

3.4.1.2 Association

An association in modeling represents a semantic relationship through tuples
that link typed instances, known as links. Each link corresponds to association
ends, defined by properties related to specific types. Navigation of an associa-
tion depends on whether an end property is owned or navigable, determining
if it can be accessed from the opposite ends. [88, 10]

Figure 3.16: Association Notation; based on [10]

3.4.1.3 Actor

An actor in a system represents a role played by a user or another system
that interacts with a subject, but is external to it. This role, which involves
exchanging signals and data, does not necessarily correspond to a specific phys-
ical entity but rather to a facet of an entity relevant to the use cases. An actor
can represent humans, external hardware, or other systems, and a single phys-
ical entity may assume multiple actor roles or vice versa. [88, 10]

Figure 3.17: Actor Notation; based on [10]

50

3.4. Application Use Cases

3.4.1.4 System

If a subject or system boundary is depicted, the use case ellipse is visually
placed inside the system boundary rectangle. This placement indicates that
the use case is relevant to that classifier, but not necessarily that it is owned
by it. [88, 10]

Figure 3.18: System Notation; based on [10]

3.4.1.5 Include

An include relationship specifies that one use case incorporates the behavior
defined in another use case. [88, 10]

Figure 3.19: Include Notation; based on [10]

3.4.1.6 Extend

An extend use case relationship specifies that the behavior of one use case
can enhance another, typically at designated extension points in the extended
use case. While the extended use case functions independently, the extending
use case often describes supplementary behavior that adds value under certain
conditions but may not be standalone. [88, 10]

51

3. Domain Analysis

Figure 3.20: Extend Notation; based on [10]

3.4.1.7 Dependency

A dependency is a relationship in modeling that indicates one or more model ele-
ments rely on other elements for their specification or implementation. This re-
lationship shows that the full meaning or structure of the dependent elements
is contingent on the elements they depend on. [88, 10]

Figure 3.21: Dependency Notation; based on [10]

3.4.1.8 Generalization

A generalization is a relationship where a specific classifier inherits features
from a more general classifier, meaning each instance of the specific classifier
is also considered an instance of the general classifier. [88, 10]

Figure 3.22: Generalization Notation; based on [10]

3.4.1.9 Realization

Realization is an abstraction relationship where one set of model elements
(the supplier) provides a specification, and another set (the client) implements
it. This relationship facilitates modeling processes such as stepwise refinement,
optimizations, transformations, and framework composition. [88, 10]

52

3.4. Application Use Cases

Figure 3.23: Realization Notation; based on [10]

3.4.1.10 Collaboration

A collaboration describes a structure where various elements each perform spe-
cialized functions to collectively achieve a desired functionality. It aims to ex-
plain how a system operates, focusing only on relevant aspects and omitting de-
tails like the identities or specific classes of the participating instances. [88, 10]

Figure 3.24: Collaboration Notation; based on [10]

3.4.2 Use Case Specification
This subsection details the specification of use cases for the productivity-
enhancing mobile application. The use cases are specified according to stan-
dardized processes in Software Engineering. The textual format of the use
cases is as shown in Figure 3.25.

Identifier: Identifier of the use case.
Name: Name of the use case.
Description: Description of the use case.
Requirements Covered: Identifiers of requirements that the use case covers.

Figure 3.25: Use Case Specification Format

Figure 3.26 illustrates all the use cases within the system using a UML Use
Case diagram, conforming to the ISO/IEC 19505-2:2012 standard [88]. To see
the full textual use case specification, refer to Appendix B.

3.4.3 Summary of Application Use Cases
This section outlines the use case scenarios for a productivity-enhancing mo-
bile application, demonstrating how functional requirements are implemented
within the system. By employing UML notations and various relationship
types, it depicts the application’s functionalities and interactions with users.

53

3. Domain Analysis

Figure 3.26: Use Case Diagram

This comprehensive coverage ensures a full understanding of the system’s ca-
pabilities. The use cases are specified following standard processes in Software
Engineering.

3.5 Summary of Domain Analysis

This chapter has conducted a thorough domain analysis for a productivity-
enhancing iOS application, adhering to standard Software Engineering pro-
cesses. Together with Chapter 2, it establishes a strong foundation for the fu-
ture design of a productivity-enhancing mobile application and fulfills one
of the requirements specified in the thesis assignment.

54

Chapter 4
Technology Analysis

This chapter provides an overview of various technologies relevant to iOS de-
velopment, offering insights into the tools and frameworks essential for building
mobile applications. It discusses Firebase services, which will be utilized to de-
sign the backend of a productivity-enhancing application as specified in the the-
sis assignment. Additionally, the chapter mentions features of the Swift lan-
guage, iOS SDK architecture, SwiftUI, Xcode, Swift Package Manager, and App
Store tools, providing a comprehensive understanding of the technological land-
scape for iOS development.

4.1 Firebase Backend

Firebase services, developed by Google4, offer a comprehensive suite of tools
for mobile and web application development. These services are categorized
into three main groups: Build, Release & Monitor, and Engage. The Build ser-
vices provide the backend infrastructure essential for app development, while
the Release & Monitor services focus on the deployment of applications and their
ongoing monitoring. The Engage services aim to enhance user engagement
through features like analytics, A/B testing, and messaging campaigns. [94]
A detailed overview of specific services Authentication, and Firestore Cloud
which fall under the Build category, is provided in the following sections.
These services were chosen because they collectively establish a solid foun-
dation for building mobile applications.

4.1.1 Firebase Authentication
Firebase Authentication offers a comprehensive backend service that facili-
tates secure user authentication across various platforms. It provides SDKs
and pre-built UI libraries supporting numerous authentication methods, in-
cluding email, phone numbers, and federated identity providers like Google
and Facebook. Integrated with Firebase services and adhering to standards
like OAuth 2.0, it ensures seamless backend integration. For enhanced security,
Firebase Authentication with Identity Platform adds features such as multi-
factor authentication and enterprise-level support, making it a versatile tool
for managing user identities in both mobile and web applications. [95]

4The full company name is Google LLC.

55

4. Technology Analysis

4.1.2 Firestore Cloud

Cloud Firestore is a scalable NoSQL database from Firebase and Google Cloud,
designed for mobile and web development. It ensures real-time data syn-
chronization and robust offline support, allowing apps to remain responsive
regardless of network connectivity. Built on Google Cloud’s infrastructure,
Firestore offers strong consistency, automatic data replication, and transac-
tion support, making it highly scalable. It supports complex data structures
through documents and collections, facilitating expressive querying and real-
time updates. [96]

As mentioned, Firestore organizes data using documents and collections
rather than tables. In this structure, documents are stored within collections,
and these documents can hold references to other collections, thereby forming
complex, hierarchical data structures. This allows for greater flexibility in data
organization and retrieval. An example of such a data structure is illustrated
in Figure 4.1.

Figure 4.1: Cloud Firestore Collections and Documents Example

4.1.3 Other Firebase Services

Firebase offers a range of services beyond Authentication and Firestore, includ-
ing Firebase Cloud Messaging for notifications, Firebase Hosting for web host-
ing, Realtime Database for live data syncing, Firebase Functions for serverless
backend code, Google Analytics for comprehensive app analytics and more. [94]

4.2 Swift Language

Swift, currently in its 5.10 version, is a powerful programming language suitable
for a wide range of applications, from mobile devices to server environments.
It skillfully blends contemporary language features with the insights of an open-
source community, making it both safe and fast—qualities that attract both
novice and seasoned developers. Swift proactively prevents common program-
ming errors like uninitialized variables, out-of-bounds array indices, and integer

56

4.2. Swift Language

overflows, thus boosting both its safety and reliability. The language is in con-
stant evolution, regularly incorporating new features that enhance its utility
and ease of use. [97]

The language’s syntax is intuitive and optimized for performance, supported
by a comprehensive standard library that adheres to modern programming
standards. This simplicity in coding, combined with functional depth, ensures
that Swift’s straightforward code also results in optimal performance without
sacrificing readability. This balance underscores Swift’s dedication to delivering
performance without compromise, making it a forward-looking choice for devel-
opers interested in building enduring and influential software applications. [98]

Expanding beyond Apple’s ecosystem, Swift is a versatile, multi-platform
language that also supports Linux and is making strides toward compatibility
with Windows. It integrates with Objective-C, allowing for mixed-language
projects that can modernize legacy code or incorporate existing Objective-C
libraries. Swift Playgrounds, an innovative educational tool, democratizes lan-
guage learning, making Swift accessible and engaging. The language also em-
phasizes protocol-oriented programming, enhancing code reusability and flex-
ibility. Optimized by the LLVM compiler for both compile-time and run-
time performance, Swift ensures efficient execution on modern hardware. Fur-
thermore, its open-source model encourages community contributions through
Swift.org5 and GitHub6, fostering a collaborative environment that propels
Swift forward in the competitive world of programming languages. [98]

4.2.1 Key Features
• Simplified Syntax: Swift allows entire programs to be written with less

syntactic complexity, eliminating the need for a separate library to handle
common tasks like outputting text or managing strings.

• Type Inference: Swift provides powerful type inference capabilities
where the compiler can deduce the type of variable or constant without
explicit type annotations.

• String Interpolation: Swift supports advanced string interpolation
which enables embedding values directly within strings using a simple
and readable syntax.

• Memory Management: Swift uses automatic reference counting (ARC)
for memory management without the need for programmers to explicitly
free up memory. This helps in managing the lifecycle of objects through
strong and weak references.

• Control Structures: Swift supports a range of control flow struc-
tures including for-in, while, and repeat-while loops, alongside if
and switch statements which can use pattern matching to execute more
complex checks.

• Functions and Closures: Functions in Swift are first-class types. Swift
supports closures, which are blocks of functionality that can be passed
around and used in the code.

5Swift.org is the official resource and community hub for the Swift programming language.
6GitHub is a platform for hosting and collaborating on software projects.

57

4. Technology Analysis

• Optionals and Error Handling: Swift introduces optionals to handle
the absence of a value, and robust error handling using try, catch, throw,
and throws keywords, improving the safety and robustness of the code.

• Protocols and Extensions: Swift allows for defining protocols which
are interfaces that define a blueprint of methods, and extensions which
help in adding additional functionality to existing classes, structures,
or types.

• Generics: Swift supports generic programming, enabling users to write
flexible, reusable functions and types that can work with any type, subject
to constraints defined by the developer.

• Concurrency: Swift provides modern features for handling concurrency
including async and await syntax, which simplify writing asynchronous
code. [97]

4.2.2 Automatic Reference Counting
Swift employs Automatic Reference Counting (ARC) to manage memory effi-
ciently, thus enhancing both application safety and performance. ARC auto-
matically tracks and manages the life cycle of objects in memory, deallocating
them when no longer needed. This mechanism simplifies memory manage-
ment by eliminating manual processes, reducing the likelihood of errors such
as memory leaks. Despite its advantages, ARC can encounter issues with refer-
ence cycles, which are resolved using weak and unowned references to prevent
memory leaks, thereby ensuring robust memory management across applica-
tions. [99, 100]

4.2.2.1 Weak References

In Swift, weak references are used to prevent strong reference cycles that could
lead to memory leaks, as described in the language’s memory management
strategy. A weak reference does not hold a strong claim on the object it refer-
ences, allowing ARC to deallocate the referenced object when there are no more
strong references to it. This characteristic of weak references ensures that they
do not prevent the garbage collection of objects that are no longer in use,
thereby enhancing memory management. Further technical detail reveals that
when a property is declared as weak, ARC automatically sets the reference
to nil when the instance it points to is deallocated. This automatic nil-setting
feature prevents the reference from becoming a dangling pointer, thus avoiding
potential runtime crashes associated with accessing deallocated memory. This
aspect of weak references is crucial for the stability and reliability of applica-
tions, especially those with complex data models involving multiple relation-
ships among objects. [11, 100, 101]

58

4.2. Swift Language

class Person {
let name: String
init(name: String) { self.name = name }
var apartment: Apartment?

}

class Apartment {
let unit: String
init(unit: String) { self.unit = unit }
weak var tenant: Person?

}

Figure 4.2: Swift Weak Referencing Example [11]

Weak references are particularly useful in relationships where one object
does not own the other, as demonstrated in the example Figure 4.2 involv-
ing a Person and an Apartment. In this scenario, while a Person might live
in an Apartment, the Apartment does not own the Person. By declaring
the tenant property of the Apartment as a weak reference, Swift sets this ref-
erence to nil automatically when the Person instance is deallocated. This au-
tomatic nullification helps avoid dangling pointers, which could lead to crashes
or unexpected behaviors if accessed. [101] If each of the two classes are ini-
tialized and assigned to each other, the relationship between them will appear
as shown in Figure 4.3.

Figure 4.3: Relation Between Person and Apartment Objects [11]

Furthermore, weak references must be declared as optional variables be-
cause their value can become nil when the instance they refer to is deallocated.
This property of weak references also means that checks for their existence
must be handled just like any other optional in Swift, ensuring runtime safety
and robustness in the application’s memory management practices. Notably,
property observers do not fire when ARC sets a weak reference to nil, indi-
cating the non-intrusive nature of ARC’s memory management. This behavior
exemplifies how Swift’s memory management is designed to be both efficient
and safe, reducing the cognitive load on developers and allowing them to focus

59

4. Technology Analysis

more on application logic rather than memory management intricacies. [101]
The deallocation can be demonstrated by discarding the reference to the ob-

ject of Person class7. If this reference is released, the object is deallocated be-
cause it only has a weak reference to the Apartment instance; there is no other
instance holding a strong reference to the Person object. [101] In this example,
the objects in memory would appear as shown in Figure 4.4.

Figure 4.4: Discarding Reference to Person Object [11]

Finally, when reference to Apartment object is removed, there would be no ob-
jects left allocated in the memory [101], as depicted in Figure 4.5.

Figure 4.5: Discarding Reference to Apartment Object [11]

4.2.2.2 Unowned References

Unowned references are similar to weak references in that they do not create
a strong hold on the object they refer to. However, they differ in a crucial
aspect: unowned references are used when the other instance they reference
has the same or longer lifetime. Therefore, unlike weak references, an unowned
reference is always expected to hold a value and is not made optional by Au-
tomatic Reference Counting, which does not set it to nil. [12]

Unowned references should only be used when there is certainty that the ref-
erenced instance will not be deallocated while the reference is still in use. Ac-
cessing an unowned reference after the object it points to has been deallocated
will lead to a runtime error. This emphasizes the importance of understanding
the lifecycle of objects within the application to avoid unwanted crashes. [12]

7Note that to fully understand the context, the Person object is strongly referenced
by the john variable, and the Apartment object is strongly referenced by the unit4A variable.

60

4.2. Swift Language

class Customer {
let name: String
var card: CreditCard?
init(name: String) {

self.name = name
}

}

class CreditCard {
let number: UInt64
unowned let customer: Customer
init(number: UInt64, customer: Customer) {

this.number = number
this.customer = customer

}
}

Figure 4.6: Swift Unowned Referencing Example [12]

The usage of unowned references is demonstrated with two classes, Customer
and CreditCard, which model a relationship where a credit card always ref-
erences a customer, but not necessarily vice versa. This setup helps avoid
strong reference cycles, with the CreditCard class having an unowned refer-
ence to a Customer. A CreditCard instance is always linked to a Customer in-
stance at initialization, ensuring that the reference is valid as long as the credit
card exists. [101] This example is shown in Figure 4.6, followed by depiction
of memory of such case in Figure 4.7.

Figure 4.7: Relation Between Customer and CreditCard Objects [12]

In the provided scenario, as it has already been mentioned, the Customer
instance forms a strong reference to the CreditCard instance, while the in-
stance of CreditCard maintains an unowned reference to the Customer in-
stance. This arrangement ensures that when the john variable8, is set to nil,
it effectively breaks the strong reference chain (as shown in Figure 4.8), lead-

8Note that the john variable holds a strong reference to the Customer instance

61

4. Technology Analysis

ing to the deallocation of the Customer instance due to the absence of any other
strong references. Subsequently, the CreditCard instance is also deallocated. [101]

Figure 4.8: Relation Between Customer and CreditCard Objects [12]

4.3 iOS SDK

The iOS Software Development Kit (SDK) is fundamental to Apple’s mobile
ecosystem, providing a structured framework for developing applications on de-
vices like iPhones, iPads, and iPods. Designed with a layered architecture,
the SDK compartmentalizes functionalities to simplify development and en-
hance security. From the foundational Core OS layer, which manages direct
hardware interaction, to the Cocoa Touch layer at the top that enables intu-
itive user interfaces, each layer is equipped with specific frameworks targeting
various app functionalities such as multimedia handling and user interface de-
sign. This hierarchical structure not only streamlines the development process
but also strengthens app security by reducing exposure of higher-level APIs. [13]
A detailed description of the iOS SDK layers follows after Figure 4.9, which
depicts the overall architecture.

1. Core OS Layer

• Directly interfaces with device hardware.
• Manages low-level operations such as memory management, file sys-

tem, and basic networking.
• Houses specific frameworks like Core Bluetooth for device connec-

tivity and Security Services for app security.

2. Core Services Layer

• Provides high-level APIs abstracted from the Core OS services.
• Includes frameworks such as Core Location for location services

and Core Data for data management.
• Facilitates easier access to essential services needed by all apps.

3. Media Layer

• Supports multimedia functionalities, allowing manipulation of au-
dio, video, and graphics.

62

4.4. SwiftUI

• Contains frameworks such as AV Foundation for audiovisual content
and Core Graphics for drawing and animations.

• Critical for developing apps with rich multimedia content.

4. Cocoa Touch Layer

• The highest abstraction layer, focused on the user interface and in-
teraction.

• Supports touch input, notifications, and other high-level system ser-
vices.

• Includes frameworks like UIKit for graphical and event-driven apps
and Map Kit for integrating maps. [13]

Figure 4.9: iOS SDK Architecture [13]

4.4 SwiftUI

SwiftUI, built on the Swift programming language, offers a framework for devel-
oping visually appealing applications across Apple’s diverse device ecosystem
with minimal code. This framework unifies a variety of tools and APIs to en-
sure consistent user experiences across different devices, such as the MacBook
Pro, iPad, and iPhone. SwiftUI introduced sophisticated animation tools that
facilitate the creation of complex and smooth transitions. Additionally, data
management is streamlined through the use of @Observable, which enhances
UI responsiveness by updating views only when necessary. Furthermore, Swif-
tUI has expanded its capabilities to support the creation of spatial applications
and interactive widgets, which can be customized for various device contexts.
This includes the integration of 3D objects and immersive experiences leverag-
ing RealityKit. [102]

63

4. Technology Analysis

In its approach to user interface design, SwiftUI adopts a declarative syn-
tax, simplifying the specification of UI components such as lists and text fields.
This syntax shift aids developers in focusing on the end goals of UI, rather than
the detailed steps to achieve these goals, which streamlines the development
process and enhances maintainability. SwiftUI is also designed to integrate
seamlessly with existing Apple frameworks like UIKit and AppKit, facilitat-
ing its incremental adoption in legacy applications. Complementary to this,
Xcode’s design tools enhance SwiftUI’s utility by providing instantaneous pre-
views and updates, reflecting code changes in real time. This feature establishes
a dynamic development environment, where developers can immediately ob-
serve the impact of modifications in various configurations, promoting a more
effective and iterative process. [102]

import SwiftUI

struct ProfileView: View {
@State private var isFollowing = false

var body: some View {
VStack(spacing: 10) {

Image("profilePicture")
.resizable()
.aspectRatio(contentMode: .fill)
.frame(width: 100, height: 100)
.clipShape(Circle())
.shadow(radius: 10)

Text("John Doe")
.font(.title)
.fontWeight(.medium)

Button {
isFollowing.toggle()

} label: {
Text(isFollowing ? "Unfollow" : "Follow")

.foregroundColor(.white)

.padding()

.background(
isFollowing ? Color.red : Color.blue

)
.cornerRadius(10)

}
}
.padding()

}
}

Figure 4.10: SwiftUI Declarative Code Example

64

4.4. SwiftUI

4.4.1 How It Works
This section offers an overview of three fundamental mechanisms used in Swif-
tUI. By understanding these mechanisms, developers can optimize their Swif-
tUI applications more effectively. They can ensure that views maintain stable
identities to prevent unnecessary redraws, manage lifetimes to keep the user in-
terface responsive, and handle dependencies to accurately update the interface
based on changes in underlying data. This detailed exploration of SwiftUI’s
functional principles enables developers to fully leverage its capabilities for cre-
ating efficient, dynamic, and responsive applications. [103]

4.4.1.1 View Identity

SwiftUI treats views as value types, unlike UIKit where views are reference
types with unique pointers. This difference is crucial for understanding how
SwiftUI manages view updates. SwiftUI needs to determine whether a view
at a particular moment is the same as another view at a different moment
or if they are completely distinct. For instance, consider a scenario where
a SwiftUI view displays a user profile. If the user’s name in the profile is up-
dated, SwiftUI must decide whether this is still the same view with a modified
state or a different view altogether. To make this distinction, SwiftUI uses two
types of identities:

• Explicit Identity: It is possible to assign explicit identifiers to views
using the .id() modifier, binding the view’s identity to a hashable value.
This is particularly useful for dynamic content, such as a list where each
entry must be distinguishable from the others for proper updates and an-
imations.

• Structural Identity: By default, SwiftUI uses the view’s type and its po-
sition in the view hierarchy to determine its identity. This automatic
mechanism ensures that views are recognized and updated efficiently
based on their structural context within the UI. [103]

4.4.1.2 View Lifetime

The lifetime of a SwiftUI view is tied to its identity. As long as the identity re-
mains consistent, SwiftUI maintains the view’s state across updates. For exam-
ple, when toggling between different tabs in a view, SwiftUI does not recreate
the entire view hierarchy; instead, it reuses the existing views as much as pos-
sible, updating only those parts that have changed based on their identities.
This efficient management of view lifetimes significantly improves performance
by avoiding unnecessary rendering of unchanged content. [103]

4.4.1.3 View Dependencies

Dependencies in SwiftUI are the properties and data a view relies on to render
its UI. SwiftUI tracks these dependencies to determine when a view needs
to be updated. If a dependency changes, SwiftUI re-evaluates the view’s
body to reflect the change. For example, consider a view displaying a tog-
gle switch bound to a @State variable. When the toggle is flipped, the change

65

4. Technology Analysis

in the @State variable triggers SwiftUI to recompute the view’s body, updating
the UI to reflect the new state. [103]

4.5 Xcode

Xcode (current latest version is Xcode 15), Apple’s Integrated Development
Environment (IDE), is a comprehensive tool designed to support the devel-
opment, testing, and distribution of applications across all Apple9 platforms.
It provides a suite of enhancements that facilitate faster and more efficient app
development. These improvements include advanced code completion that ref-
erences all assets, leading to more robust and error-free coding. Xcode 15 also
features interactive previews and live animations, allowing developers to see im-
mediate impacts of their changes, which is especially beneficial in the context
of dynamic content creation.

The IDE has been optimized for Apple’s multicore silicon architecture, re-
sulting in quicker project builds through a new linker and improved compiler
performance. Additionally, Xcode integrates tools such as Git for version con-
trol directly within the development environment, enabling developers to man-
age code changes more effectively without needing to switch contexts. Overall,
Xcode is the default IDE for Swift development. There are no other currently
supported IDE options for Swift development. [104]

Figure 4.11: Xcode 15.3 IDE

9Full company name is Apple Inc.

66

4.6. Swift Package Manager

4.6 Swift Package Manager

The Swift Package Manager (SwiftPM) serves as a comprehensive tool within
the Swift ecosystem, streamlining the management and distribution of Swift
code. Integrated with Swift’s build system from version 3.0 onwards, SwiftPM
automates the downloading, compiling, and linking of dependencies necessary
for project development. The essence of SwiftPM lies in its ability to manage
complex dependencies efficiently through a defined package system, which in-
cludes Swift source files and a manifest file known as Package.swift. This man-
ifest dictates the structure of a package, specifying its name, contents, and de-
pendencies, thereby organizing code into reusable modules that can enhance
productivity and reduce redundancy across different applications. [105]

Each package can define one or more targets, specifying the products they
generate, such as libraries or executables, and listing any other modules they
depend on. SwiftPM simplifies the development workflow by automatically
handling the dependency graph - a recursive breakdown of each package’s
requirements. This process ensures that all necessary components, includ-
ing transitive dependencies, are correctly assembled without manual oversight.
The package manager’s capability extends to resolving versions and maintain-
ing compatibility across various components, highlighting its role in facilitat-
ing a more manageable and robust development environment. This approach
not only accelerates the development process by removing manual setup tasks
but also enhances project maintainability and scalability. [105]

4.7 Testflight and AppStore

This section explores two essential Apple tools that support application devel-
opment and distribution: TestFlight and the App Store. TestFlight enables de-
velopers to beta test their applications with extensive user feedback before offi-
cial release, while the App Store provides a comprehensive platform for launch-
ing and managing applications globally. Both those tools can be maintained
through AppStore Connect service. These tools are integral in supporting de-
velopers from the initial testing phase through to widespread distribution, op-
timizing both app functionality and market reach.

4.7.1 Testflight
TestFlight is an essential tool for developers aiming to beta test their applica-
tions with up to 10,000 users before releasing them on the App Store. By up-
loading a beta version of an application to App Store Connect, it is possible
for testers to download the application via the TestFlight app, which facili-
tates the collection of vital feedback. The platform supports various Apple
operating systems including iOS, iPadOS, macOS, and others. Features such
as automatic updates ensure that testers always have access to the latest builds,
and the capability to manage up to 100 apps simultaneously allows for com-
prehensive testing scenarios. Additionally, detailed tester metrics are available
to enhance engagement and feedback analysis. With facilities for both internal
team testing and external public testing, developers can customize the test-
ing environment to optimize application functionality and refinement before
its final release on the App Store. [106]

67

4. Technology Analysis

4.7.2 AppStore
Apple’s App Store has become an essential platform for developers aiming
to distribute and grow their applications on a global scale. It supports a vari-
ety of business models and provides comprehensive tools for app management
and marketing, enabling developers to reach a vast audience across Apple de-
vices like iPhones, iPads, and Macs. The App Store offers developers seamless
integration with Apple’s payment systems and access to a user base that spans
over 175 regions and multiple languages. Additionally, it provides promotional
opportunities and exclusive analytics to help developers maximize their app’s
potential. [107]

4.8 Summary of Technology Analysis

In summary, this chapter has provided a detailed look at the technologies rel-
evant to iOS development. The findings from this analysis will be essential
in shaping the design of the productivity-enhancing mobile app and its infras-
tructure. By following established Software Engineering practices, this analysis
meets a key objective of the thesis, laying a strong groundwork for the next
phases of development.

68

Chapter 5
Design

This chapter begins with the selection of architecture and design patterns
to be utilized in the productivity-enhancing app, along with an examina-
tion of their advantages and trade-offs. Following this, the chapter proceeds
to the process of designing a database schema using an entity-relationship
diagram. Finally, the chapter delves into the design of the user interface, em-
ploying wireframes to visualize interface ideas and concepts, alongside other
miscellaneous user interface considerations.

5.1 Choosing Architecture and Design Patters

This section examines the decision-making process for selecting an appropriate
architectural pattern for the productivity-enhancing mobile app. With several
options available in iOS development, it is crucial to choose an architecture
that aligns with the project’s needs, and long-term maintainability.

Among the considered architectures, VIPER (View, Interactor, Presenter,
Entity, and Router) stands out for applications where modularity, testability,
and clear separation of concerns are crucial. Its component-based design makes
it highly suitable for larger teams where responsibilities need to be clearly di-
vided. VIPER’s structured approach also simplifies debugging and testing,
which are essential for maintaining code quality in complex applications. How-
ever, the complexity of VIPER can introduce a steep learning curve and may
lead to over-engineering in smaller projects, which can deter its use in more
straightforward applications. [108]

On the other hand, Clean Architecture is chosen for its flexibility and scal-
ability, which are beneficial for applications expected to evolve over time.
This architecture supports easy adaptation to changing requirements and tech-
nologies without significant disruptions. Clean Architecture’s emphasis on sep-
aration of concerns at a higher level than VIPER makes it ideal for projects
that anticipate significant business logic changes, ensuring that the app remains
robust, testable, and easy to update. Despite these advantages, Clean Archi-
tecture can result in increased initial setup time and complexity, potentially
slowing down early development stages as developers adapt to its demanding
structural requirements. [109]

Another option would be to implement a basic structure for the iOS project
by employing a 2-tier architecture, which basically separates the View and View-

69

5. Design

Model into one tier, with the remaining components in another tier. This ap-
proach is relatively inflexible and is only suitable for very small simple apps [110].
Therefore, it will not be used for the productivity-enhancing application due
to its limited scalability and adaptability.

Clean Architecture was chosen for the project due to its flexibility and adapt-
ability, essential for a productivity-enhancing application in its early develop-
ment phase. This architecture supports easy modifications and integrates user
feedback without disrupting the overall structure, making it ideal for an app
exploring new concepts. Its ability to evolve as the app transitions from a proto-
type to a refined product ensures that the project remains manageable and scal-
able, positioning it well for future expansions.

This architecture will be used in conjunction with the MVVM (Model-View-
ViewModel) pattern for the presentation layer of the application. This pattern
was chosen for its excellent compatibility with SwiftUI, particularly through
the use of the @Observable property. More details about these two concepts
will be discussed in the following sections.

5.1.1 Clean Architecture
Clean Architecture, much like various other architectural frameworks, is de-
signed to segregate responsibilities effectively. This objective is accomplished
by structuring the application into distinct layers, each with a specific role
and responsibility. The separation of these layers is governed by the Depen-
dency Rule, which ensures that dependencies flow inwards and that the outer
layers can interact with the inner layers only through defined interfaces. [111]

The architecture itself consists of four primary layers: Entities, Use Cases,
Interface Adapters, and Frameworks and Drivers. Each layer serves a unique
function, as depicted in Figure 5.1 and further described.

• Entities: These are the core business objects of the application.

• Use Cases: This layer contains application-specific business rules.

• Interface Adapters: This layer converts data between the format most
convenient for the use cases and entities, and the format most convenient
for some external agency such as the Database or the Web.

• Frameworks and Drivers: This outermost layer generally consists
of frameworks and tools such as the Database and the Web Frame-
work. [111]

As moving toward the center from the Frameworks and Drivers to Entities,
the level of abstraction increases, centralizing and protecting the application’s
core logic. This arrangement allows changes to external frameworks without
significant impact on the core business logic. Such a design ensures a clean
separation of concerns, making the system more maintainable and adaptable
to change over time. [111]

70

5.1. Choosing Architecture and Design Patters

Figure 5.1: Clean Architecture as Described by Robert C. Martin [14]

5.1.2 MVVM

The Model-View-ViewModel (MVVM) pattern is highly regarded in iOS app
development for promoting clean, maintainable, and testable code. It effec-
tively separates the user interface (View) from the application’s underlying
data (Model) by introducing an intermediary layer known as the ViewModel,
which manages presentation logic. This pattern ensures that the user interface
layer, where user interactions occur, remains distinctly separate from the data
and business logic layers. The ViewModel acts as a conduit between the View
and the Model, managing data presentation and handling user interactions
to facilitate updates and interactions within the app. [15, 112]

MVVM’s structured approach provides numerous benefits, such as enhanc-
ing testability by allowing the ViewModel, which contains most of the appli-
cation logic, to be tested independently from the user interface. This sepa-
ration simplifies the codebase, making it more organized and easier to main-
tain. However, the pattern also introduces some complexities, such as the need
for additional boilerplate code to bind the View to the ViewModel and po-
tential increases in memory usage due to separate instances of the ViewModel
and Model. Despite these challenges, MVVM remains an ideal choice for com-
plex applications due to its ability to facilitate clean modifications and accom-
modate changing requirements without significant disruptions, making it highly
scalable and flexible for evolving project needs [112], which is also required
by the productivity-enhancing app.

71

5. Design

Figure 5.2: MVVM Pattern; based on [15]

5.1.3 Architecture in Practice

This section details the application of the previously discussed Clean Architec-
ture and MVVM pattern within the productivity-enhancing app, demonstrat-
ing their effectiveness through a Feature module that incorporates both frame-
works. This methodology will be uniformly applied across all modules of the ap-
plication. The architecture of the Feature module is depicted in the Figure 5.3,
followed by detailed description of all components.

5.1.3.1 Domain Layer

The domain layer is the core component of the design, consisting of mod-
els and use cases. Models, alongside Errors—which represent error states
of the module—define the entities within the module, outlining data structures
critical for the application’s functionality. Use cases further detail the business
logic associated with these models, specifying how data is processed and manip-
ulated in response to user interactions or system events. As shown in Figure 5.3,
the use cases are reliant on the models, indicating a structured dependency
that ensures business rules are correctly implemented and maintained, thereby
enhancing the application’s robustness and maintainability.

5.1.3.2 Data Layer

This layer comprises Toolkits and Providers, with Providers specifically de-
signed to offer straightforward services or simple data as comprehensive toolk-
its. For the productivity-enhancing application, notable examples include
the Keychain10 and User Defaults11 from the iOS SDK, which are utilized
for storing small amounts of data. For instance, the Keychain Provider offers
a simple interface with CRUD operations for this secure storage.

Toolkits leverage these Providers to deliver comprehensive service pack-
ages, including repository implementations associated with the module. These

10Keychain is a secure storage for saving passwords and other sensitive information.
11User Defaults is used for storing lightweight data such as user settings and preferences.

72

5.1. Choosing Architecture and Design Patters

Figure 5.3: Architecture of the Feature Module

repositories ensure robust and consistent data management within the applica-
tion, thereby enhancing its modularity and scalability for easier maintenance
and potential system expansion. For example, a repository might fetch data
using both the Keychain and User Defaults Providers to support a specific use
case from the domain layer.

5.1.3.3 Presentation Layer

The presentation layer of the Feature module consists of Views, ViewModels,
and a Router. The Router functions as a singleton (in SwiftUI often impl-
mented as an @EnvironmentObject) and is passed throughout the presentation
layer, managing the state of the view hierarchy.

Views are responsible for displaying the state contained within ViewModels
to the user. If user interaction triggers a business logic operation, this is facil-
itated through use cases that are injected into the ViewModel via dependency
injection. For instance, in a view displaying app settings, the settings con-
tent is maintained in the ViewModel. Meanwhile, actions invoked by user
inputs are managed through use cases that originate from the domain layer.
This structure ensures that the application’s business logic remains separate
from its user interface.

73

5. Design

5.2 Database Schema

This section begins by defining the entity-relationship diagram (ER Diagram)
notation, which is later used to create a database schema. Although Firestore,
a document-based database, will be used, a database schema is still beneficial.
Employing an ER diagram provides an abstract overview of the data that
the application will store. This schema will later guide the implementation
of the productivity-enhancing application. The schema is constructed using
standard Software Engineering processes.

5.2.1 ER Diagram Notation
The physical data model is the deepest level of entity-relationship diagrams
and is critical for refining the database structure. It includes comprehensive
details of table structures such as column names, data types, constraints, keys,
and relationships between tables. [16]

5.2.1.1 Types, Keys and Fields

Fields in an ER diagram represent the attributes of the entity, typically visual-
ized as columns within the database. These fields delineate the characteristics
of the entity, such as InterestRate and LoanAmount.

Keys in ER diagrams categorize attributes to ensure efficient database orga-
nization. They are crucial for linking tables effectively. Primary keys uniquely
identify an instance of an entity within a table. Foreign keys link tables to-
gether, often representing relationships like one-to-one or one-to-many.

Types in an ER diagram refer to the data types assigned to fields, affecting
how data is stored and interacted with within the database. This can also
encompass the conceptual types of entities involved. [16]

[PK and FK]
[Fields]

[Types]

Figure 5.4: Fields, Private and Foreign Keys and Types Notation [16]

5.2.1.2 Cardinality and Ordinality

Cardinality and ordinality describe the relationship constraints between two
entities in a database. Cardinality specifies the maximum number of times
an instance of one entity can relate to instances of another entity, while ordi-
nality indicates the minimum required associations. These constraints are de-
picted in entity-relationship diagrams through the style of lines and endpoints,
illustrating the range of possible relationships. This representation aids in vi-
sualizing and understanding the database structure’s relational dynamics. [16]
The notation is shown in Figure 5.5.

74

5.2. Database Schema

Figure 5.5: Cardinality and Ordinality Notation [16]

5.2.2 ER Diagram
This section presents the entity-relationship diagram for the productivity en-
hancing application, applying concepts previously discussed. It visually out-
lines the database structure and the relationships between entities, aiding in ef-
fective database design and development.

The ER diagram, depicted in Figure 5.6, visaully represents the structure
of a database designed to facilitate interactions within a productivity-enhancing
application, encompassing entities like User, Storyline, Guild, Invitation,
and Member. Each entity is characterized by a unique identifier designated
as the primary key (PK), such as uid for User and id for other entities.
The Storyline entity, which records various user activities, connects to both
the User and Guild entities via foreign keys (userUid and guildId), indicating
which user the storyline belongs to and the guild it is associated with if appli-
cable.

Inter-entity relationships within the diagram articulate how users inter-
act with different components of the application. The User entity, central
to the model, links to Invitation and Member through the userUid, signifying
that a user can receive multiple invitations. Additionally, Member is associated
with Guild through the guildId, illustrating members’ affiliation with specific
guild.

75

5. Design

Figure 5.6: ER Diagram for Productivity-Enhancing Application

5.3 User Interface Design

In this section, key usability concepts by Jakob Nielsen are explored, followed
by the reasoning behind the user interface design choices for the application,
establishing the foundation of UI design concepts. Later in the section, wire-
frames are introduced and described in detail. Finally, miscellaneous user in-
terface decisions are stated, such as support for device rotation, and the intro-
duction and reasoning behind the app’s name.

5.3.1 Usability
Understanding usability principles is critical in the design of interactive sys-
tems, such as mobile applications, to ensure they meet user needs effectively
and efficiently. Key concepts from the book Usability Engineering by Jakob
Nielsen include:

• Learnability: This refers to how easily and intuitively new users can un-
derstand how to navigate and interact with the system. A user-friendly
system should allow users to achieve their objectives with minimal effort
and training. For instance, an app that is easy to navigate improves user
onboarding and reduces frustration, leading to a better user experience.

• Efficiency: Once users have become familiar with the system that that
are using, how quickly can they perform tasks? Usability aims to min-
imize the time and effort required for users to complete their tasks ef-
fectively. This involves streamlining user flows and optimizing interface
elements to enhance productivity.

76

5.3. User Interface Design

• Memorability: When users return to the design after a period of not us-
ing it, how easily can they reestablish proficiency? A usable system
should be easy to remember, reducing the need for retraining and allowing
users to quickly pick up where they left off, enhancing user satisfaction.

• Errors: This aspect deals with how many errors users make, how severe
these errors are, and how easily they can recover from them. A well-
designed system should minimize the occurrence of errors and offer clear
recovery paths, which helps in maintaining user confidence and reducing
frustration.

• Satisfaction: Ultimately, how pleasant is it to use the design? User
satisfaction is a subjective measure of the overall user experience. A us-
able system should not only meet the functional needs but also deliver
a positive emotional experience, making the interaction enjoyable and en-
gaging. [113]

By integrating these usability principles into the application design, it is pos-
sible to create more effective, efficient, and enjoyable applications that align
with user expectations and preferences, thereby enhancing overall user engage-
ment and satisfaction.

5.3.2 Colors
Based on the analysis of psychological influences of colors discussed in Sec-
tion 2.1.5, it has been determined that the design of the productivity-enhancing
app should embody a friendly, cheerful, and motivating atmosphere. To achieve
this, the design will utilize bright, pastel colors. The primary color selected
is green (#4A887C), which symbolizes balance and harmony, essential for creat-
ing a calming and focused environment. The secondary color, yellow (#FFF38B),
represents warmth and energy, contributing to an uplifting and invigorating
user experience. Together, these colors aim to foster a pleasant and productive
environment that enhances focus and motivation for its users. This thought-
ful choice of color palette is expected to positively influence user engage-
ment and satisfaction by aligning the app’s aesthetic with its functional goals.
The primary and secondary colors are shown in Figure 5.7.

Figure 5.7: Primary and Secondary Colors for the UI Design

77

5. Design

5.3.3 Wireframes

To sketch a basic concept of the user interface for the productivity-enhancing
application, a lo-fi (low fidelity) wireframing technique is employed. Wirefram-
ing is a essential step in user interface design, establishing the basic structure
of the app’s interface. By mapping out essential interface elements, it enables
effective planning of content and functionality to meet user needs. Wireframes
facilitate iterative adjustments that are both cost-effective and time-efficient,
ensuring the final design aligns with user expectations and business goals. [114]

The wireframes for this productivity-enhancing application are crafted based
on concepts previously defined and analyzed in earlier chapters. These wire-
frames are created using a tool called proto.io [115], a prototyping tool uti-
lized in the design and development of web and mobile applications. It en-
ables the creation of both wireframes and detailed, interactive prototypes that
closely simulate the final products. Wireframes of the main screens are pre-
sented in the following sections. For a comprehensive view of all wireframes,
please refer to Appendix C.

5.3.3.1 Authentication

The design of all screens in this section aims for a clean and minimalist aes-
thetic, enhanced with images which align with the overall design language
of the application. Buttons are always displayed in contrasting colors, utilizing
the primary and secondary colors defined earlier in this chapter.

Upon launching the application, the user is presented with the initial au-
thentication screen. Here, they can choose to either log in or sign up. Depend-
ing on their choice, they are redirected to the login screen, which also offers
access to password recovery if needed, or the sign-up screen. All screens con-
sistently adhere to the established design aesthetic. For a more detailed view,
see Figure 5.8.

Figure 5.8: Wireframes of the Authentication Screens

78

5.3. User Interface Design

5.3.3.2 Navigation Bar

After logging in, a standard approach to navigation is employed. The interface
features a navigation bar with five tabs at the bottom, as depicted in Figure 5.9.
These tabs are Home, Storylines, Guilds, Board, and Settings, and they are fur-
ther described in the following sections.

Figure 5.9: Wireframe of the Navigation Bar

5.3.3.3 Storylines

The Storylines tab showcases available storylines, each represented as a tile
with a title and a descriptive image that complements the app’s design lan-
guage. Each tile is interactive; tapping on one opens a detailed view that
presents a teaser of the storyline along with a button to initiate a new sto-
ryline setup. During this setup phase, users can set goals for the storyline
and adjust settings for the Pomodoro timer. Once satisfied with their config-
urations, users can create the new storyline by tapping a button, which then
adds a new tile to the Home tab.

On the Home tab, users can start the storyline timer by tapping this newly
added tile. Additionally, each storyline tile on the Home tab is equipped
with a context menu for updating or deleting the storyline. The Home tab
also features a plain Pomodoro timer, accessible by tapping the Plain Timer
tile located at the top of the screen. This design facilitates easy access to both
specialized (Storylines) and general (Plain Timer) productivity tools within
the app. Wireframes for the Storylines are illustrated in Figure 5.10.

Figure 5.10: Wireframes of the Home and Storylines Tabs

79

5. Design

5.3.3.4 Guilds

The Guilds tab features a similar interface to the storylines list on the Home
tab, ensuring familiarity and ease of use throughout the application. At the top
of the Guilds tab, the invitations section displays invitations that others have
sent to the user, with two buttons available to either accept or decline an invi-
tation.

Below this invitations section, there is a list of guilds that the user is a mem-
ber of, displayed as tiles. Tapping a guild tile opens a detailed view of the guild.
At the top of this detail view, users can see information about the guild, such
as its goals and the number of members, as well as a leader actions button.
This button, available only to members with sufficient permissions, brings up
a context menu offering options to invite members, change guild parameters,
or delete the guild, depending on the member’s permissions. Below this top
information section, a timer section allows setting parameters and starting
a Pomodoro timer for the guild. Further down, a list of members displays
the scores and names of the users.

Returning to the Guilds tab, below the tiles for the user’s guilds, there
is an additional tile that leads to a new guild creation screen. To view the wire-
frames for these features, see Figure 5.11.

Figure 5.11: Wireframes of the Guilds Tab

5.3.3.5 Board

The Board tab displays a list of the top 10 users with the highest scores. If there
are more than 10 users overall, a Show More button appears below the list.
This button opens another screen that shows a comprehensive list of all users
and their scores. Users can sort this list according to their preferences by us-
ing a context menu button located above the list. Wireframes of this section
are illustrated in Figure 5.12.

80

5.3. User Interface Design

Figure 5.12: Wireframes of the Board Tab

5.3.3.6 Settings

The Settings tab adopts a design familiar to Apple users from the System
Preferences, enhancing it with a user information section at the top of the set-
tings list. This section displays the user’s avatar, username, and email. Be-
low this section, individual settings items allow users to perform actions such
as changing their password, modifying the language, logging out, and more.
For a detailed view of the wireframes for these sections, see Figure 5.13.

Figure 5.13: Wireframe of the Settings Tab

81

5. Design

5.3.4 Miscellaneous
The application’s design is made to ensure seamless adaptation across various
screen sizes and device types, including iPads. Designed with flexibility and re-
sponsiveness in mind, it maintains optimal functionality regardless of the device
employed. This universal accessibility enhances user experience, accommodat-
ing diverse user preferences.

Moreover, the selection of the name Memorizify was the result of a com-
prehensive analysis of the application’s functionality. With a focus on memory
enhancement and cognitive exercises rather than creative tasks, as discussed
in Chapter 2, the chosen name embodies the essence of the application suc-
cinctly. Its contemporary and trendy appeal aligns with prevailing app naming
conventions, facilitating easy recall among users.

5.4 Summary of Design

This chapter has followed standard Software Engineering processes. After an-
alyzing various options, appropriate architecture and design patterns were se-
lected and elaborated upon. Subsequently, a database schema was designed,
followed by the prototyping of the user interface using wireframes accompa-
nied by detailed descriptions. These efforts collectively fulfill the requirements
of the thesis assignment.

82

Chapter 6
Implementation

The chapter about implementation details the entire process of developing
the Memorizify application, based on findings from the previous design chap-
ter. It begins with a description of the initial setup, followed by an exploration
of the core components used in the project. Later in the chapter, an ex-
ample workflow is thoroughly explained, demonstrating practical application
of the concepts discussed. The chapter concludes with a noteworthy example
of a particularly interesting part of the implementation and briefly mentions
the implementation of other modules.

6.1 Intial Setup

Setting up a new project and its infrastructure correctly is a fundamental
step for a successful project. This section provides a comprehensive overview
of the necessary steps to properly set up a new Xcode project, establish a Fire-
base backend and integrate it with the application, configure Jira12, and set up
Bitbucket13. Finally, the configuration of AppStore Connect and its TestFlight
is demonstrated.

6.1.1 Jira and BitBucket Setup

Jira and Bitbucket are platforms developed by Atlassian14. Jira is an agile
project management tool that assists in planning, tracking, and releasing soft-
ware. It offers a centralized platform for managing both simple and complex
projects, enhancing team alignment and communication throughout the devel-
opment lifecycle. [116]

Bitbucket is a Git-based code hosting and collaboration platform. It inte-
grates with Jira to support the software lifecycle from planning to deployment,
featuring tools like automated testing and secure deployment[117]. Utilizing
these tools will benefit Memorizify by maintaining historical records and facil-
itating easier integration for future development by other developers.

12Jira is a project management tool for tracking and organizing tasks.
13Bitbucket is a version control and collaboration platform for software teams.
14Full company name is Atlassian Corporation Plc.

83

6. Implementation

6.1.1.1 Jira Setup

Setting up Jira begins with creating a new Atlassian account, which pro-
vides universal access to all Atlassian platforms, including Jira, Bitbucket,
and Confluence, the latter being used for documentation. After account cre-
ation, users encounter a questionnaire that probes their intentions with Jira,
such as the type of project they plan to work on—be it a software project,
management project, or other. This can be used for a quick setup.

However, to manually initiate a new project in Jira, one must choose
from various project templates, each designed to serve specific purposes. Here
are the three primary project types, each with its own template:

• Kanban: Ideal for projects that manage and visualize their work at var-
ious stages of the process. The Kanban template allows for continuous
delivery and helps to manage workflow with greater flexibility.

• Scrum: Best suited for projects that plan their work in sprints, strictly
following the agile development principles. The Scrum template helps
organize tasks into manageable units with defined timelines, encouraging
iterative progress, regular reflection, and adjustment.

• Bug Tracking: Designed to help to capture, assign, and prioritize
bugs or issues. This Bug Tracking template is suitable for maintain-
ing for more complex but high-quality software by ensuring all issues
are tracked and resolved systematically. [118]

For the Memorizify project, a Kanban board was selected as the most
suitable choice due to its simplicity, intuitiveness, and the way it mirrors
the project’s workflow dynamics effectively.

Another important decision to be made is whether the project will be team-
managed or company-managed. Team-managed projects offer less functionality
but allow greater control for non-administrator Jira users. On the other hand,
a company-managed project unlocks all Jira features, some of which can only
be managed by Jira administrators. [17] For Memorizify project, company-
managed project will be used to be able to use all Jira features. Overview
of the comparison of team-managed vs. company-managed is shown in Fig-
ure 6.1.

To complete the setup process, the user is required to enter the project
name, which for this instance is Memorizify iOS. This crucial step triggers
the generation of a project key, which acts as a unique identifier for the project
within the workspace. This key is particularly important as it facilitates
the management and retrieval of project-specific data across various system
components. Although the key can be customized initially to suit organiza-
tional naming conventions, it is generally advisable to retain the original key
once set. Changing the key later in the project lifecycle could necessitate
a comprehensive reindexing of the Jira project database, potentially leading
to disruptions in external references and integration links. Such changes could
introduce complexities in project management and data consistency, making
the initial choice of key quite significant. This final step of the project setup
process, crucial for ensuring smooth project tracking and management, is illus-
trated in Figure 6.2.

84

6.1. Intial Setup

Figure 6.1: Jira Team-Managed vs. Company-Managed Projects [17]

Figure 6.2: Jira Setup Overview

Finally, the Jira project is created, and the project home screen, which
is the Kanban board, is displayed as shown in Figure 6.3. The Kanban board
features swimlanes for organizing issues into categories. These swimlanes reflect
the issue lifecycle states based on the specific setup.

For the Memorizify project, a board with four swimlanes will be used. These
are Backlog, Selected for Development, In Progress, and Done which also re-
flect allowed states of issue within the project. The Backlog state holds issues

85

6. Implementation

that are ideas for potential changes to the application that may eventually
be implemented. Selected for Development contains issues that are planned
to be implemented soon. The In Progress state includes issues currently un-
der implementation or review. Finally, the Done state consists of issues that
have been resolved and closed.

Figure 6.3: Jira Kanban Board After Project Creation

From the Jira home screen, it is possible to create new issues of various
types (such as Task, Bug, Epic, and Story) using the blue Create button lo-
cated on the top bar of the page. When creating a new issue, it is recommended
to not only fill in its name but also provide a detailed description to clarify
the purpose of the issue and the criteria for its completion, known as the Def-
inition of Done (DoD). Additional information for the issue can be specified,
such as its label. For Memorizify, labels will categorize features according
to the MoSCoW framework. Once created, the issue appears in a swimlane.
For detailed view of the issue creation, see Figure 6.4.

In summary, Jira will be utilized as the central platform for issue tracking
and management within the Memorizify project. This system will play a pivotal
role in enabling an effective and clear definition of the project’s implementation
goals. By organizing and maintaining detailed records of all project activities
and issues, Jira not only enhances the visibility and accountability of the devel-
opment process but also greatly improves project coordination. Furthermore,
it facilitates the thorough tracking of the project’s history, preserving a com-
prehensive log of all decisions and changes. This historical record is invaluable
for audit purposes and for understanding the evolution of the project over time.
Additionally, should the need arise, the detailed and organized nature of Jira
will allow new developers to seamlessly integrate into the app development pro-
cess. This capability ensures that the project can adapt to expanding develop-
ment needs, making it easier to onboard new team members who can quickly
understand and contribute to ongoing tasks.

86

6.1. Intial Setup

Figure 6.4: Jira Issue Creation

6.1.1.2 BitBucket Setup

After configuring Jira for issue management, there is a need for a system
to manage the codebase. Bitbucket was selected due to its seamless integra-
tion with Jira and its Git-based architecture, which has become the standard
for code versioning. This section outlines the process of establishing a new
Bitbucket project.

To leverage the integration with Jira, a valuable feature that will undoubt-
edly benefit Memorizify, the Bitbucket project must be created within the same
Atlassian account as the Jira project. Upon the initial login to BitBucket, there
is a prompt to create a Bitbucket Workspace. A Workspace serves as a central-
ized location for all projects and repositories within an organization. In the case
of Memorizify, this implies that all future projects, such as the iOS app, An-
droid app, and web application, will be housed under a single workspace.
This concept facilitates efficient management and clear organization.

87

6. Implementation

Once a workspace is established, a new project can be initiated using
the blue Create button located on the top bar. Similar to a Jira project,
a project in Bitbucket has its name and is identified by its key. This process
is detailed in Figure 6.5. It’s important to note that repositories are grouped
within projects within the workspace. Each repository must belong to a project,
which enhances the organization of repositories.

Figure 6.5: BitBucket Project Creation

Upon creating a new project, a repository for the Memorizify iOS applica-
tion can be initialized. This process also involves utilizing the Create button,
where BitBucket prompts input for the repository name and key (optionally),
along with minor repository settings such as specifying the inclusion of a git-
ignore file and/or a readme file. The setup page is depicted in Figure 6.6.

Upon creation, the main repository page is displayed, as shown in Fig-
ure 6.7, offering instructions for initiating a project within the repository.

In summary, a new Bitbucket repository has been established for the Mem-
orizify iOS application, facilitating a code versioning system for tracking his-

88

6.1. Intial Setup

Figure 6.6: BitBucket Repository Creation

Figure 6.7: BitBucket Initial Page

tory and potential future collaborative development by teams. This repos-
itory will store an Xcode project, the setup of which will be detailed in one
of the upcoming sections. The subsequent section will demonstrate the integra-
tion process between Jira and Bitbucket, unlocking the full potential of these
two tools.

89

6. Implementation

6.1.1.3 Jira and BitBucket Integration

The integration between Jira and Bitbucket provides a collaborative environ-
ment for software development. By linking these two powerful tools, it is possi-
ble to streamline workflow and enhance productivity. One key feature of this in-
tegration is the ability to effortlessly link issues in Jira to branches, pull re-
quests, and commits in Bitbucket, providing clear traceability between code
changes and project tasks. Additionally, automatic updates in Jira reflect
changes made in Bitbucket, ensuring that all developers stay informed about
the progress. This integration also enables smart commits, allowing developers
to update Jira issues directly from their commit messages, further enhancing
efficiency and reducing the need for manual updates. Overall, the integration
between Jira and Bitbucket empowers teams to collaborate more effectively,
improve transparency, and accelerate the software development process. [119]

To begin the integration, one must ensure that this feature is enabled.
The setting for this feature can be found in Jira’s left menu bar, under Project
Settings — Features — Code. When this feature is enabled, the integration
itself is completed by navigating to the Code menu item on the main page
of Jira. This option allows users to find and link the repository in Bitbucket
to the Jira project, as shown in Figure 6.8.

Figure 6.8: Jira-BitBucket Integration

Once this connection is established between the development tools, com-
mits, branches, and pull requests in the repository can be linked directly
to specific Jira issues by including the Jira project key in the commit mes-
sage or within the names of the branches or pull requests.

Establishing such a link means that the project key acts as a direct con-
nector to the issue, enabling to view details of Jira issues right from within
the Bitbucket repository. This integration facilitates a streamlined workflow
where updates to code and corresponding tracking in Jira are seamlessly inter-
connected, enhancing project transparency.

90

6.1. Intial Setup

6.1.2 Xcode Project Setup
Once the Jira and Bitbucket tools are set up and linked, it’s time to create
an Xcode project. When creating an Xcode project, the first step is to select
the correct platform, which for the Memorizify app is iOS. Then, there are sev-
eral templates from which a project can be initialized, such as Game, Document
App, Augmented Reality App, Safari Extension, and more. For the purpose
of Memorizify, the basic App template will be used, as it is the most suitable
option for a general iOS application.

Once the platform and template are chosen, the project information form
must be filled in. The form, depicted in Figure 6.9. Description of the fields
follows.

Figure 6.9: Xcode Project Creation

• Product Name: The full name of the iOS application.

• Team: The app must belong to a team in order to be deployable to App-
Store Connect. The team is selected from a dropdown menu.

• Organization Identifier: The organization identifier is a unique string
identifying the organization that the app is being developed under.

• Bundle Identifier: Bundle Identifier is a basic project property which
is a unique identifier of the application. It usually consists of the format:
OrganizationIdentifier(dot)ProductName.

91

6. Implementation

• Interface: This dropdown menu offers to choose frameworks for UI
building. The options are SwiftUI and UIKit.

• Language: Select the language for the project. Xcode 15 offers only
Swift. Previously, Objective-C was also an option.

• Store: Optionally, select which kind of storage framework will be used.
The options are SwiftData and Core Data, with the former being a newer,
more modern solution.

• Host in CloudKit: If previously set up, it is possible to opt in to host
the app on the CloudKit Apple service by checking the checkbox.

• Include Tests: If checked, Xcode will prepare targets for unit tests
and UI tests. The targets can be added manually later.

After clicking on the Next button, the destination for the project files must
be chosen and confirmed, thereby creating the new project. Subsequently,
the project needs to be initialized with a Git repository and pushed to Bit-
bucket. This setup can be accomplished using a terminal window and a com-
mand sequence, as detailed in Figure 6.10. It’s important to note that in order
to communicate with the Bitbucket server, a private-public key pair must be set
up between the local machine and Bitbucket servers.

MacBook-Pro: smejkalp$ cd Memorizify/
MacBook-Pro: smejkalp$ git init
MacBook-Pro: smejkalp$ git add .
MacBook-Pro: smejkalp$ git commit -m "Initial commit"
MacBook-Pro: smejkalp$ git remote add origin <repsitory-url>
MacBook-Pro: smejkalp$ git push -u origin main

Figure 6.10: Xcode Project Git Setup

This completed the Xcode setup, preparing the project for development.
At this point, it is possible to create issues in Jira, generate branches from those
issues in Bitbucket, and pull them to this local repository. Once changes
are made, they can be merged into the main branch using a pull request, es-
tablishing a complete workflow used for development of Memorizify. The work-
flow ensures efficiency, excellent history trackability, and fine organization.
This structured approach not only streamlines the development process but also
enhances the ability to monitor changes and progress over time.

92

6.1. Intial Setup

6.1.3 Firebase Setup
This section will describe the process of integrating Firebase backend services
with an Xcode project. The setup procedure may vary depending on the plat-
form for which the Firebase services are being used; this text focuses on the iOS
setup. The following sections detail the steps necessary to complete the setup.

6.1.3.1 Create New Firebase Project

A new Firebase project can be created on the Firebase Console website, which
serves as a central hub for managing Firebase services. To initiate a new
project, one must first log in with a Google account (or create one if neces-
sary). Subsequently, a new Firebase project can be set up with the following
information:

• Project Name: The name of the Firebase project. Based on this name,
a unique project identifier is generated, which is then used in various
communications, such as email verification and password reset emails
sent to users.

• Google Analytics (Optional): Enabling Google Analytics is an op-
tional step when creating a new Firebase project. This service provides
detailed statistics about the applications within the project.

• Region: Selecting a region from a list of available options can impact
the latency of Firebase services depending on the geographical location
of the user base. This option is only available when setting up the first
project.

6.1.3.2 Register iOS App

Once the project is created, it is possible to register a new iOS application
within the project. This involves the following steps:

• App Name (Optional): The name of the iOS application. This name
helps organize applications within the project.

• AppStore ID (Optional): The ID of the application on the App Store.

• Bundle ID: As previously mentioned, the Bundle ID is a unique iden-
tifier for the Xcode project. Firebase uses the Bundle ID to recognize
the newly registered iOS app.

Based on the information provided during the Firebase backend setup,
a GoogleService-Info.plist file will be generated. This file serves as the sole
configuration file for Firebase services within the application and must be incor-
porated into the Xcode project. After adding it to the Xcode project, the Fire-
base SDK must be installed using SwiftPM. To add the Firebase SDK, navi-
gate to File — Add Package Dependencies... in Xcode. This opens a SwiftPM
window, where you can search for and add the Firebase SDK to the project,
as depicted in Figure 6.11.

Once the Firebase SDK has been incorporated into the Xcode project,
it is possible to configure the Firebase services using the configuration file upon

93

6. Implementation

Figure 6.11: Adding Firebase SDK Dependency to Xcode

application startup. Since new Xcode projects no longer include AppDelegate
class by default, this class must be manually added to handle application events
such as application launch, termination, deep links, push notifications, and oth-
ers. To handle AppDelegate events, the class must first be created. This pro-
cess is illustrated in Figure 6.12, where the AppDelegate contains only one
method, which is invoked upon the successful launch of the app.

class AppDelegate: NSObject, UIApplicationDelegate {
func application(

_ application: UIApplication,
didFinishLaunchingWithOptions launchOptions: [

UIApplication.LaunchOptionsKey: Any
]? = nil

) -> Bool {
// code will later go here
return true

}
}

Figure 6.12: AppDelegate Class

When the AppDelegate class is created, it must be linked to the @main
annotated SwiftUI App struct, which serves as the entry point of the application.
This linkage is demonstrated in Figure 6.13.

94

6.1. Intial Setup

@main
struct MemorizifyApp: App {

@UIApplicationDelegateAdaptor(AppDelegate.self)
var appDelegate

var body: some Scene {
WindowGroup {

ContentView()
}

}
}

Figure 6.13: AppDelegate Connection to App Struct

After these steps, the AppDelegate can be modified to incorporate the Fire-
base SDK. Its method, which is called on didFinishLaunchingWithOptions,
should invoke FirebaseApp.configure(). This command will locate the Fire-
base .plist configuration file if it is in the root project directory. If the file
is located elsewhere, its path must be specified in the configure() function.
Completing these steps will finalize the Firebase setup for the Memorzify appli-
cation, enabling the selection and configuration of suitable services in the Fire-
base Console, which can then be fully utilized in the application code.

6.1.4 AppStore Connect Setup
Setting up AppStore Connect is essential for deploying apps to both Test-
Flight and the App Store. This section will provide a detailed description
of configuring AppStore Connect for TestFlight deployment, which simplifies
the distribution of iOS apps to beta testers. It is also important to note that
access to AppStore Connect requires a subscription to the Apple Developer
Program, which is an annually paid service.

After logging into AppStore Connect on their website, it is necessary to log
in with the same Apple Developer Account in Xcode. Initially, the applica-
tion’s Bundle ID must be registered in Xcode’s Identifiers section. Details
such as the application type and capabilities need to be provided. This setup
is illustrated in Figure 6.14. Once complete, the application can be registered
in AppStore Connect.

Figure 6.14: Bundle Identifier Registration

95

6. Implementation

The app can be registered in AppStore Connect by navigating to the New
App button in the Apps section. This action opens a form to enter details about
the application being registered. The required information includes the app’s
name, preferred language, Bundle ID, and SKU, which serves as a unique
identifier for the app within AppStore Connect. Additionally, the platform
for which the app is developed and its availability must be specified, as depicted
in Figure 6.15.

Figure 6.15: AppStore Connect App Registration

With this setup complete, the development toolchain is fully established,
and development of the Memorizify application can begin. Tester groups
and individual testers can be added to the app through AppStore Connect,
which offers extensive management features for greater control over tester
groups. Builds will then be deployed to AppStore Connect straightforwardly

96

6.2. Core Components

from the Xcode IDE. Testers will subsequently be notified via email that a new
build is available for testing.

6.2 Core Components

The section on core components outlines the application of the NSLog frame-
work, explains the usage of dependency injection, and discusses the implemen-
tation of string catalogs for localization. It concludes by delving into the im-
plementation of navigation within the app.

6.2.1 NSLogging

To enable event logging within the application, a logging component was imple-
mented using Apple’s NSLog framework. It was determined that direct usage
of NSLog methods would suffice for basic logging tasks. However, for logging
Firebase events, a static struct named MemorizifyLogger was introduced.
This struct provides functions specifically designed for logging the fetch and up-
date actions related to Firebase documents. Figure 6.16 displays the signatures
of these logging functions.

struct MemorizifyLogger {
static func logDocumentsUpdate(

file: String,
line: Int,
documentPath: String,
data: [String: Any],
description: String? = nil

) { /* logging of documents update */ }

static func logDocumentsFetch(
file: String,
line: Int,
documentPath: String,
description: String? = nil

) { /* logging of documents fetch */ }

static func logDocumentsDelete(
file: String,
line: Int,
documentPath: String,
description: String? = nil

) { /* logging of documents delete */ }
}

Figure 6.16: Skeleton of MemorizifyLogger

97

6. Implementation

Together with the #line and #file constructs, which record the line num-
ber and file name where they are invoked, this structure creates a powerful
framework for logging.

6.2.2 Dependency Injection
Dependency injection (DI) is a software design pattern that enhances modular-
ity and maintainability by managing dependencies between classes through In-
version of Control (IoC). Rather than classes creating dependencies internally,
DI facilitates the external provision of dependencies, which reduces hard-coded
dependencies and promotes component decoupling. This approach allows easy
runtime changes and simplifies testing, as components can receive different im-
plementations of their dependencies, such as service interfaces, without needing
code modifications. By decreasing coupling and increasing component reusabil-
ity, DI contributes significantly to improving the scalability and maintainability
of software systems. [120]

In the Memorizify project, dependency injection framework called Resolver
will be used. Resolver is a lightweight dependency injection framework for Swift
5.x on iOS, supporting various injection methods like constructor, property,
and service locator. It streamlines dependency management by enabling sim-
ple registration and resolution of services, and is known for its speed and ease
of use, encapsulated in a single file. Although now deprecated and replaced
by Factory, Resolver is celebrated for its efficient handling of automatic type in-
ference, custom containers, and cyclic dependencies, making it highly effective
in production environments. [121]

The Resolver framework package can be added in the same way as the Fire-
base SDK, as detailed in Section 6.1.3. Dependencies should be registered
at app launch in the AppDelegate, similar to the configuration of Firebase.
Subsequently, it can be utilized to inject dependencies throughout the Memo-
rizify application. The usage of Resolver will be showcased later in this chapter.

6.2.3 String Catalog
Since Memorizify is designed to support multiple languages, a string catalog
will be employed to manage localizations. A string catalog in Xcode central-
izes all localizable strings, managing translations and pluralizations for various
languages, and simplifies updates and maintenance by automatically track-
ing changes within the project. Adding string catalogs to the project through
Xcode enhances the ease and accuracy of application localization. A populated
string catalog is illustrated in Figure 6.17.

To add a new string catalog, a new file can simply be created in Xcode
and String Catalog file type should be selected. This action initiates the auto-
matic detection of all localizable strings within the application’s code base upon
building, marking them for translation. However, not all strings will be iden-
tified automatically, as Xcode searches for the LocalizableStringResource
type, not String. Common UI elements such as Text or Button that use
LocalizableStringResource in their constructors will automatically be added
to the catalog. To manually add a string of the String type to the catalog, use
the initializer with the localized label, as in: String(localized: "String
to be localized"). This ensures the string is included in the catalog.

98

6.2. Core Components

Figure 6.17: Xcode String Catalog

This approach ensures Memorizify is ready for internationalization, sim-
plifying updates and reducing complexity in supporting multiple languages.
The use of a string catalog enhances adaptability and user experience by mak-
ing content accessible and relevant across various languages.

6.2.4 Navigation Routing
Last for the Core Components section, a routing system is defined and ex-
plained in detail. There are several navigation options in SwiftUI applications,
but for a project like Memorizify, the most suitable is the NavigationStack, in-
troduced in iOS 16.0. This option was chosen for its reliability and ease of setup
and use, in contrast to other historically used approaches that often required
a steep learning curve or other SwiftUI options with limited features. [122]

To set up the routing, a Router class will manage the state of the view hier-
archy. This class maintains the state in a navigation path, as illustrated in Fig-
ure 6.18. It is designated as an @ObservableObject, enabling views that use
the path variable, marked @Published, to automatically respond to changes
in the routing state.

import SwiftUI

final class Router: ObservableObject {
// Navigation path for the application
@Published var path = NavigationPath()

}

Figure 6.18: Router Class Skeleton

This approach offers precise control over which views are displayed and al-
lows for responses to events such as deeplinks, which may trigger the addition

99

6. Implementation

or removal of a view to or from the path variable, which behaves like any other
array.

With the Router class established, it is necessary to define the routes avail-
able for navigation within the app’s component. These routes are specified
in an enum that conforms to the Hashable protocol. It is important to note
that Swift enums can have associated values, such as a String, as depicted
in Figure 6.19. This feature is beneficial for passing data to views being in-
stantiated.

// Defines available routes (screens)
enum ComponentRoute: Hashable {

case firstScreen
case secondScreen(String)

}

Figure 6.19: ComponentRoute Enumeration

To utilize the state for routing, the Router must be initialized at the root
level of the application and marked with @EnvironmentObject. It can then
be passed to a view using the .environmentObject() modifier. This setup
is detailed in Figure 6.20.

import SwiftUI

@main
struct MemorizifyApp: App {

// Initialize Router class as env. object
@EnvironmentObject var router = Router()

var body: some Scene {
WindowGroup {

ContentView()
// Pass Router to view
.environmentObject(router)

}
}

}

Figure 6.20: Router Class Initialization and Passing

Additionally, the root view’s body must contain a NavigationStack, incor-
porating the path property. With this configuration, it is possible to respond
to changes in the Router’s path variable using the .navigationDestination()
view modifier applied to the root view of the hierarchy. To modify the path
(to present or dismiss a view), the path can be altered from within any view

100

6.2. Core Components

in the hierarchy by calling .append() or .remove() on the path. This func-
tionality is illustrated in Figure 6.21.

import SwiftUI

struct ContentView: View {
// "Catching" Router passed from parent Scene
@EnvironmentObject var router = Router()

var body: some View {
// Using the Router's path for this root view
NavigationStack(path: router.path) {

VStack {
Button("Present View") {

// Button tap presents FirstView() screen
router.path.append(ComponentRoute.firstScreen)

}
}
.padding()
// Reacting to path changes made from
// this or any child view
.navigationDestination(

for: ComponentRoute.self
) { route in

switch route {
case .firstScreen:

FirstView()
// Passing Router to child view
.environmentObject(router)

case let .secondScreen(name):
// Using "name" to initialize view
SecondView(name)

}
}

}
}

}

Figure 6.21: NavigationStack Usage Example

In summary, this setup establishes a robust and flexible navigation system
for the Memorizify application, utilizing NavigationStack to efficiently man-
age view hierarchies and state changes. Integrating the Router class at the core
of the application’s structure allows dynamic handling of user interactions.
The use of NavigationStack, in conjunction with Router and defined routes,
streamlines development and ensures scalability and maintainability of the nav-
igation system.

101

6. Implementation

6.3 Typical Workflow

In this section, the typical workflow within the Memorizify app development
process is detailed, starting from the creation of a Jira issue. It covers the sub-
sequent steps of branch creation, followed by the implementation of changes.
The process continues with the reviewing and merging of changes in the code-
base. Finally, it concludes with the deployment of the new build to Testflight.

6.3.1 Issue and Branch Creation

Before the implementation begins, it is necessary to select the task to be ad-
dressed in Jira. Each feature task in Jira is labeled according to the MoSCoW
method described in Section 3.3.1.3, facilitating clearer prioritization. Upon
selection of the task, the Create Branch functionality is available in the task
detail view. This leads to a new page that enables the creation of a new
branch in a specified repository. In the example of implementing the fea-
ture, the branch is created in the Memorizify iOS repository and is catego-
rized as a feature branch; BitBucket automatically prefixes the branch name
with feature/. Once the branch is created, it can be pulled to the local reposi-
tory and checked out, preparing the environment for development.

6.3.2 Module Implementation

Overall, the implementation of score addition will follow the example Fea-
ture detailed in Figure 5.3, as discussed in the previous chapter on design.
For the feature currently being implemented, the process begins at the core
of the architecture, within the domain layer, as described in Section 5.1.1
on Clean Architecture.

Initially, it is necessary to add models that represent the entities relevant
to this issue. Consequently, a User structure will be introduced. A user
in the Memorizify domain has the following properties: username, email,
and score, where the latter is used to track the user’s progress. The new
User model is illustrated in Figure 6.22.

// Represents a user in the system
struct User: Codable {

// The username of the user.
let username: String

// The email address of the user
let email: String

// The score of the user
let score: Int

}

Figure 6.22: User Model

102

6.3. Typical Workflow

After creating the user model, it is necessary to define a use case for the de-
scribed functionality. In this instance, the requirement is to create a use case
that can increase the user’s score; therefore, a new IncreaseUserScoreUseCase
protocol is defined. Memorizify adheres to a convention whereby use cases
only have one execute() method. Since this method involves communica-
tion with the Firebase backend, it must be marked with async, and it is also
expected to possibly throw an error (hence it is marked with throws), as illus-
trated in Figure 6.23.

protocol IncreaseUserScoreUseCase {
func execute(_ scoreIncrease: Int) async throws

}

Figure 6.23: IncreaseScoreUseCase Protocol

Upon defining the protocol for the use case, it is necessary to implement
the business logic that the use case will execute. In this instance, the logic
is straightforward: it simply needs to update the score property of the current
user. This update, involving a backend call, will be executed using a repository,
specifically the UserRepository. Consequently, it is now necessary to add
a new method for increasing score to the repository’s interface, as illustrated
in Figure 6.24.

protocol UserRepository {
...
// Add the new method for increasing the score
func increaseScore(by score: Int) async throws
...

}

Figure 6.24: Update of UserRepository Protocol

With the addition of the new repository method, the focus shifts towards
its implementation. Transitioning from the domain layer, the implementation
is placed in UserRepositoryImpl located within the data layer. This place-
ment is consistent with the principles of Clean Architecture, which advocates
for a separation of concerns to enhance maintainability and scalability.

The implementation consists of making Firebase backend calls to update
the document pertaining to the current user. Specifically, these calls facil-
itate the incrementation of the user’s score, a essential feature for user en-
gagement and tracking progress. This process of updating and managing user
data through Firebase is detailed in Figure 6.25, which provides a code snippet
to understand the sequence of operations.

103

6. Implementation

import Firebase

struct UserRepositoryImpl: UserReposiory {
...
// Add implementation of the new method
func increaseScore(by score: Int) async throws {

// Create reference to Firestore
let db = Firestore.firestore()

// Get current Firebase User
let firUser = getFirUser()

// Create reference to users collection
let usersCollectionRef = db.collection(

Constants.FIREBASE_COLLECTION_USERS
)

// Fetch the document for current user
let query = usersCollectionRef.whereField(

"uid", isEqualTo: firUser.uid
)

let querySnapshot = try await query.getDocuments()

// There must only be one user with that uid
guard let userDoc = querySnapshot.documents.first else {

throw UserError.dupliciteUser
}

// Decode the user data and increase score
var user = try userDoc.data(as: User.self)
user.score += score

// Encode the User and update remote document
let userData = try Firestore.Encoder().encode(user)
try await userDoc.setData(userData)

}
...

}

Figure 6.25: Update of UserRepository Implementation

Once the new repository method is implemented, it can be invoked in the im-
plementation of the new use case. This is illustrated in Figure 6.26. This com-
pletes the first part of the implementation, resulting in defined models and use
cases that support the described functionality.

104

6.3. Typical Workflow

struct IncreaseScoreUseCaseImpl: IncreaseScoreUseCase {
private let userRepository: UserRepository

init(userRepository: UserRepository) {
self.userRepository = userRepository

}

func execute(_ scoreIncrease: Int) async throws {
try await userRepository.increaseScore(by: scoreIncrease)

}
}

Figure 6.26: Update of UserRepository Implementation

Now, the repository and use case need to be registered with the Resolver
framework to enable the injection of the use case into a view model. The reg-
istration process is detailed in Figure 6.27. It is also worth noting that the Re-
solver’s registration functions are called in AppDelegate upon the app’s launch.

extension Resolver {
static func registerRepositories() {

// Register the repository
register {

UserRepositoryImpl(
authenticationRepository: resolve()

) as UserRepository
}

}

static func registerUseCases() {
// Register the use case
register {

IncreaseScoreUseCaseImpl(
userRepository: resolve()

) as IncreaseScoreUseCase
}

}
}

Figure 6.27: UserRepository and IncreaseScoreUseCase Registration

105

6. Implementation

After registering the new repository and use case, it is possible to pro-
ceed to the presentation layer to create a new view and its corresponding view
model. This new view will also need to be added to the view hierarchy as de-
scribed in Section 6.2.4. The implementation of the new view model is shown
in Figure 6.28.

import Resolver
import SwiftUI

final class UserScoreViewModel: ObservableObject {

@Published var state = State()
// Use case injetion
@Injected
private var increaseScoreUseCase: IncreaseScoreUseCase

// Encapsulated view state
struct State {

var alert: AlertData?
var isLoading = false
var scoreIncrease = 5

}

func increaseScore() {
Task {

// Loading state handling
defer { state.isLoading = false }
state.isLoading = true

do {
// Call the use case and increase score
try await increaseScoreUseCase.execute(scoreIncrease)

} catch {
// Show alert in case of an error
state.alert = AlertData(

title: "Error Increasing Score"
)

}
}

}
}

Figure 6.28: UserScoreViewModel Implementation

This view model can then be used to manage the state of a view, such
as in the example UserScoreView, detailed in Figure 6.29. With the implemen-
tation of the view, the entire process of implementation of increasing a user’s

106

6.3. Typical Workflow

import SwiftUI

struct UserScoreView: View {
@ObservedObject var viewModel: UserScoreViewModel

var body: some View {
VStack {

Text("Increase Score By")
TextField(

"Score",
value: viewModel.state.scoreIncrease

)
Button("Increase Score") {

viewModel.increaseScore()
}

}
.padding()

}
}

Figure 6.29: UserScoreView Implementation

score is completed. The view provided is merely an example, but it effectively
illustrates the overall workflow. In the following sections, changes will be com-
mitted, reviewed, and merged according to the process that has been applied
across all modules of the Memorizify application.

6.3.3 Committing, Reviewing, Merging and Deployment
After implementing the changes, it is necessary to update the version and build
number. These updates must be committed and pushed to the BitBucket
repository to ensure that they are securely stored in version control. Commit
messages should be clear and descriptive, helping to understand and assess
the changes effectively. Pushing these commits to BitBucket updates the re-
mote repository, thereby backing up the changes and making them accessible
from other devices.

Once the implementation is complete and the pushed changes are available
on the server, a pull request (PR) can be initiated using the BitBucket web
UI. This interface allows to name the PR, provide a comprehensive descrip-
tion—Memorizify requires a list of all changes—and select the target merge
branch, typically the develop branch. In this stage, it is also possible to add
reviewers and attach commentaries, attachments, and more. After the PR
details are entered, it is formally created.

The PR then undergoes a review process. If there are any flaws identified,
comments are added to the PR, and the issues must be resolved. Once the PR
is deemed flawless, it can be merged using a squash merge to maintain a tidy
develop branch. After merging, a git tag corresponding to the version is added

107

6. Implementation

to the repository. A link to this tag is also included as a comment in the merged
PR, as illustrated in Figure 6.30. Memorizify consistently follows this process
for all application changes, ensuring robust trackability and maintaining a clean
history.

Figure 6.30: Merged BitBucket Pull Request

To finalize the workflow, the build of the new version is deployed to Test-
Flight from Xcode, an essential step for testing applications on iOS devices
before their final release. The deployment process begins by creating a deploy-
able build, which necessitates archiving the current state of the application.
This is accomplished through the Product menu in Xcode, where selecting
the Archive option initiates the compilation and packaging of the application
into a single, distributable entity known as an archive.

Archiving is more than just compressing the files; it involves compiling
the application’s code, linking required libraries, and embedding assets in a way
that conforms to Apple’s requirements for distribution. This process ensures
that the build is stable and encapsulates all necessary configurations and re-
sources. Once the build is successfully archived, Xcode automatically opens
the Archive Manager, a tool that lists all the archived versions of applications.
From the Archive Manager, it is possible to select the appropriate build and up-
load it directly to TestFlight. This step is crucial as it allows for the beta testing
of the application in a real-world environment, which is invaluable for iden-
tifying and addressing potential issues before the public release. The process
of uploading the build of the Memorizify application to TestFlight is illustrated
in Figure 6.31.

108

6.4. Storylines Module

Figure 6.31: Testflight Distribution

Upon completion of the distribution upload, the build is processed, while
its status can be monitored in AppStore Connect. When the processing is fin-
ished, testers are notified via email and can download the new build to their
devices to begin testing.

This completes the workflow, which has been employed for all modules
implemented in the Memorizify app, achieving excellent history trackability
and a clean process. This workflow is based on the best practices of Software
Engineering.

6.4 Storylines Module

The Storyline module has specific implementation characteristics that are worth
noting and are described in this section. The structure of the Storyline model
is derived from the domain model introduced in Section 3.2.2. This means
that a Storyline has a StorylineKind. Moreover, each StorylineKind has
StorylineData consisting of multiple StorylinePage. Consequently, when
the Storyline is uploaded to the backend, only key (id) of the StorylineKind
is sent. Conversely, when it is received, the Storyline must be locally recon-
structed starting from the StorylineKind entity. This is an effective way
to handle the Storyline model.

This behavior is facilitated by using a custom encoder and decoder (ideally
via a Swift extension) for the StorylineKind model. The key is to avoid
encoding the StorylineKind, StorylineData, and StorylinePage entities
recursively but rather save the kind identifier as a String. Conversely, when
a Storyline is decoded, it constructs the StorylineKind, StorylineData,
and all StorylinePage entities based on the single String key. An outline
of the implementation of the custom encoder and decoder for the Storyline
entity is shown in Figure 6.32.

109

6. Implementation

struct Storyline: Codable {
...
// Custom encoding
func encode(to encoder: Encoder) throws {

var container = encoder.container(
keyedBy: CodingKeys.self

)
// Just encode the rawValue (identifier)
try container.encode(kind.rawValue, forKey: .kind)
...

}

// Custom decoding
init(from decoder: Decoder) throws {

let container = try decoder.container(
keyedBy: CodingKeys.self

)
// Get the key identifier
let kindRawValue = try container.decode(

StorylineKind.RawValue.self,
forKey: .kind

)
// Attempt to intialize the given StorylineKind
guard let kind = StorylineKind(

rawValue: kindRawValue
) else {

throw DecodingError.dataCorruptedError(
forKey: .kind,
in: container,
debugDescription: "Invalid StorylineKind value"

)
}
self.kind = kind

}
...

}

Figure 6.32: Storyline Custom Encoding and Decoding

6.5 Other Modules

The workflow described earlier in this chapter is employed across all modules
in the Memorizify application, including key modules such as Authentication,
Home, Storylines, Board, Guilds, Settings, and others. This is further sup-
ported by Figure 6.33 and Figure 6.34.

110

6.6. Summary of Implementation

Figure 6.33: Memorizify Jira Board Overview

Figure 6.34: Memorizify BitBucket PRs Overview

6.6 Summary of Implementation

This chapter begins by discussing the setup of the development environment,
then moves on to describe the implementation and usage of fundamental com-
ponents, followed by an example showcasing a typical workflow employed dur-
ing the development of all Memorizify modules. The chapter also includes
a detailed description of a particularly interesting part of the code and con-
cludes with a brief section on other modules.

All requirements categorized as Must Have and Should Have have been sat-
isfied, and most of the Could Have requirements were also implemented. The ini-
tial goal was to create a prototype of a productivity-enhancing application;
however, the outcome is a production-ready mobile application, thereby exceed-
ing the objectives set for this thesis. Screenshots of the application’s interface
are included in Appendix D.

111

6. Implementation

In total, over 13,000 lines of code were written in Swift files during the devel-
opment of the Memorizify application. Additionally, more than 90 Jira issues
were created, over 60 PRs were merged, among other achievements. Overall,
the result is a well-implemented mobile application, with the adoption of best
practices and standard processes of Software Engineering throughout the de-
velopment.

112

Chapter 7
Testing and Documentation

Testing and documentation phases are both integral components of the thesis
assignment, detailed in this chapter. Following the implementation discussed
in the previous chapter, these phases are conducted to ensure the robustness
and usability of the developed software. Testing is aimed at verifying the func-
tionality and performance of the application through various methodologies,
while documentation provides clear and useful guides for future developers
and users. Together, these steps are essential for refining and detailing the work
completed, underscoring their importance in the overall software development
lifecycle as prescribed by this thesis.

7.1 Testing

Both testing during the main implementation phase and subsequent refine-
ments to the final product are important elements of software development.
This section offers a comprehensive overview of all testing activities conducted
throughout this thesis. It starts with unit testing, aimed at identifying early
bugs during the development process. This is followed by UI testing, which
addresses any issues arising from changes in the user interface—changes antici-
pated and adjusted for based on insights from usability testing. The discussion
concludes with performance testing, which evaluates the app’s behavior under
various network conditions and assesses its launch performance.

7.1.1 Unit Testing

Unit testing is a fundamental aspect of software development that enables de-
velopers to catch logical errors early in the development process. This approach
involves decomposing application functionality into testable units and writing
tests to assess these units under various input conditions. Typically, the unit
size corresponds to a method, meaning that a unit test validates the correct
behavior of a method. [123]

7.1.1.1 Characteristics of Unit Testing

Unit testing is a fundamental testing method that can be beneficial in identi-
fying bugs early in the development cycle, providing developers with sufficient

113

7. Testing and Documentation

time to fix these bugs before the product is released. Since unit tests isolate
a small portion of code functionality, they are reliable as they focus on very
basic logic. However, this is also a limitation of unit tests—they cannot detect
more complex systematic issues. In such cases, a different type of test, such
as integration testing, is required. [123]

Unit testing typically involves three key phases: Arrange, Act, and Assert.

• In the Arrange phase, the testing environment is set up, and the necessary
objects are initialized to prepare for the test.

• The Act phase involves executing the specific functionality being tested,
usually by calling a method or a function with the prepared objects.

• Finally, the Assert phase checks the outcomes of the action against ex-
pected results to verify that the code behaves as intended. [123]

This structured approach helps ensure that each unit test is clear and main-
tains a consistent methodology for verifying software functionality. [123]

In addition to the three phases of unit testing that define how a unit test
should behave, there are several methods to evaluate the quality of unit tests.
One such method is A TRIP, an acronym standing for Automatic, Thorough,
Repeatable, Independent, and Professional. These criteria help ensure that each
test is robust, reliable, and effective in maintaining high software quality. [124]

• Automatic tests are executed without manual intervention, facilitating
continuous integration processes.

• Thorough testing means that all conceivable scenarios, including edge
cases, are considered and tested.

• Repeatable tests ensure that running the tests repeatedly in the same en-
vironment produces the same results, demonstrating reliability and sta-
bility.

• Independent tests verify that each test can run alone and in any order,
not affecting the outcomes of other tests.

• Finally, Professional tests are well-documented, clearly written, and main-
tained to uphold standards over time, making them useful not just for cur-
rent development but for future modifications as well. [124]

These principles help maintain the integrity and utility of the testing pro-
cess, contributing to the overall robustness of the software product. [124]

7.1.1.2 Mocking

Mocking in unit testing involves substituting real dependencies with mock ob-
jects to isolate software system components. These mock objects simulate
the behavior of actual components and concentrate on verifying interactions
rather than states, thereby enhancing testability and design modularity. Of-
ten, unit testing cannot be conducted with real components, making mocks
essential for feasible testing. [125]

114

7.1. Testing

struct OnboardingRepositoryImpl: OnboardingRepository {
private let keychainProvider: KeychainProvider

init(keychainProvider: KeychainProvider) {
self.keychainProvider = keychainProvider

}

// Saves the information that the user
// has seen the onboarding.
func saveHasUserSeenOnboarding() throws {

try keychainProvider.add(
.hasUserSeenOnboarding, value: "true"

)
}

// Loads the information about whether
// the user has seen the onboarding.
func loadHasUserSeenOnboarding() throws -> String {

return try keychainProvider.read(.hasUserSeenOnboarding)
}

}

Figure 7.1: Implementation of OnboardingRepository

On the other hand, mocking closely binds tests to specific implementa-
tions, which can complicate test maintenance when behaviors change. Despite
these challenges, mocking continues to be a important aspect of unit testing,
supported by various frameworks that ensure that components functioning in-
dependently behave as expected. [125]

7.1.1.3 Unit Testing Example

This section presents a unit testing example that employs the mehods adn con-
cepts previously introduced. The tests are conducted using the XCTest frame-
work, a suite of testing tools included with the iOS SDK. For simplicity, the ex-
ample focuses on a straightforward repository named OnboardingRepository,
which manages Keychain data stored in secure storage. The implementation
of the repository is illustrated in Figure 7.1.

From Figure 7.1, it is evident that the OnboardingRepositoryImpl strictly
adheres to the OnboardingRepository protocol and maintains a single depen-
dency, the KeychainProvider. To ensure rigorous and accurate unit testing,
it is essential to isolate the behavior of the repository. This isolation is cru-
cial for verifying that the repository interacts correctly with its dependen-
cies without unintended side effects. Fortunately, the extensive use of depen-
dency injection throughout the Memorizify app greatly facilitates this process.
For instance, by introducing a KeychainProviderMock, which also conforms
to the KeychainProvider protocol, as depicted in Figure 7.2.

115

7. Testing and Documentation

struct KeychainProviderMock: KeychainProvider {

private var data: [String: String] = [:]

// Adds value to the secure storage
func add(_ key: KeychainKey, value: String) throws {

data[key.rawValue] = value
}

// Adds loads value at key from the secure storage
func read(_ key: KeychainKey) throws -> String {

guard let value = data[key.rawValue] else {
throw KeychainError.valueForKeyNotFound

}
return value

}

// Removes value at the key
func remove(_ key: KeychainKey) throws {

data[key.rawValue] = nil
}

// Removes all values in Keychain
func removeAll() throws {

data.removeAll()
}

// Removes all values except those at keys in 'values'
func removeAll(except values: [KeychainKey]) throws {

let keysToRemove = data.keys.filter {
!values.contains(

KeychainKey(rawValue: $0)!
)

}
for key in keysToRemove {

data[key] = nil
}

}
}

Figure 7.2: Mock of KeychainProvider

116

7.1. Testing

import XCTest
@testable import Memorizify

final class OnboardingRepositoryTests: XCTestCase {
var repository: OnboardingRepositoryImpl!
var mockKeychainProvider: KeychainProviderMock!

// Sets up necessary objects before each test runs
override func setUpWithError() throws {

mockKeychainProvider = KeychainProviderMock()
repository = OnboardingRepositoryImpl(

keychainProvider: mockKeychainProvider
)

}

// Tests saving the onboarding status to the keychain.
func testSaveHasUserSeenOnboarding() {

// Verifies no exceptions are thrown when saving
XCTAssertNoThrow(

try repository.saveHasUserSeenOnboarding()
)

do {
// Attempts to read the saved value
let value = try mockKeychainProvider.read(

.hasUserSeenOnboarding
)
XCTAssertEqual(value, "true") // Asserts the value

} catch { XCTFail("Unexpected error: \(error)") }
}

// Other tests such as loading value will follow here
}

Figure 7.3: Unit Testing of OnboardingRepository

Once the dependency is mocked, unit testing can commence. The tests
are conducted using the previously mentioned Xcode XCTest framework within
a MemorizifyTests target, a separate target in the Xcode project. This sep-
aration is standard practice in iOS development, ensuring a clear distinction
between the app’s codebase and its tests. As depicted in Figure 7.3, to unit
test the repository, the repository instance and its dependency mocks are first
prepared within the setUpWithError function, followed by the unit tests them-
selves, which conclude this section. Tests such as the one showcased cover
the key functionality of the Memorizify application.

117

7. Testing and Documentation

7.1.2 User Interface Testing

UI testing focuses on verifying the user interface of an application by simulating
interactions with UI elements through tests. This type of testing is essential
for ensuring that the UI functions correctly and to identify any regressions that
may occur from changes in UI-related code. Apple supports this testing ap-
proach with the XCTest framework, which utilizes accessibility data to interact
with on-screen elements. Similar to unit testing, it is possible to create UI test
cases by adding methods that interact with UI components. These methods
include code that manipulates UI elements and uses assertions to confirm that
the outcomes match expected result. [126] An example of code of a UI test
is illustrated in Figure 7.4, while a video demonstrating a UI test suite that
tests various elements in the authentication section of Memorizify is included
in the electronic attachments detailed in Appendix G.

One powerful feature of modern UI testing frameworks including XCTest,
is the ability to record interactions within a simulator and convert these ac-
tions into executable test code. This capability allows developers to inter-
act with the application’s UI as a user would, with the framework capturing
each click, scroll, or input. After the recording session, the framework trans-
lates these interactions into a set of instructions that can be run as a UI test.
This method not only speeds up the test creation process but also ensures that
the tests accurately reflect real user behaviors, making it an invaluable tool
for enhancing test coverage and reliability. [126]

The Memorizify app ensures that all primary components of the application
are at least partially covered by UI tests, which enhances the overall robustness
of the application.

7.1.3 Usability Testing

Usability testing is a method that assesses how easily real users can interact
with an app by having them complete specific tasks while being observed.
Either in person or remotely, this form of testing aims to identify confusing
areas and pain points within the user journey, thereby pinpointing opportuni-
ties for enhancing the overall user experience. The primary focus of usability
testing is to measure the product’s practical functionality, particularly in terms
of how effectively and efficiently users can achieve predefined goals. This testing
is essential for understanding user interaction patterns and improving interface
design to meet user needs more effectively. [127]

Usability testing offers several advantages, including the ability to test prod-
ucts with real users before deployment. This preemptive feedback can enhance
usability and satisfaction by allowing developers to observe real user behaviors
and preferences, thereby supporting a user-centered design approach. However,
usability testing also has drawbacks. It can be time-consuming and costly, espe-
cially if it requires specialized facilities. Furthermore, the results can be subjec-
tive and depend on the participant selection, potentially leading to data that
does not accurately represent the entire target user base and may not fully
capture broader user needs or experiences. [127]

118

7.1. Testing

import XCTest

final class AuthenticationUITests: XCTestCase {

override func setUpWithError() throws {
continueAfterFailure = false

}

func testResetPassword() {
let app = XCUIApplication()
app.launch() // Launch the app

// Tap the "Log In" button
app.buttons["Log In"].tap()

let scrollViewsQuery = app.scrollViews
// Find a "Reset Password" button in the scroll view
scrollViewsQuery

.otherElements

.buttons["Reset it now!"].tap()

// Find the text field to fill in email
// and type in the email
scrollViewsQuery

.otherElements

.containing(
.staticText,
identifier: "Please, fill in your email"

)
.children(matching: .textField)
.element.typeText("pesmejkal@post.cz")

// Tap on "Reset Password" and then tap "Back" button
app.buttons["Reset Password"].tap()
app.buttons["Back"].tap()

}
}

Figure 7.4: UI Testing of Reset Password Feature

119

7. Testing and Documentation

7.1.3.1 Usability Testing Scenarios

Usability testing scenarios effectively translate user goals into actionable tasks,
allowing testers to observe real users navigating an app to complete specific
activities. These tasks are designed to reflect actual user behavior, helping
identify usability issues and measure user efficiency and satisfaction. The aim
is to create engaging and realistic scenarios without overly directing the user,
thereby preserving the integrity of their natural interactions. Testing scenarios
often originate from the application’s use cases. [128]

Creating effective scenarios is crucial for usability testing. The scenar-
ios should guide users without dictating every step, allowing them to explore
the interface independently. For example, instructing a user to ”find a product
within a specific budget” rather than ”click here, then there” helps collect data
on true user behavior rather than their ability to follow instructions. This ap-
proach ensures that usability tests genuinely reflect an interface’s ease of use
and guide improvements in intuitive design. [128]

The Memorizify application underwent usability testing with seven testers
across multiple sessions. The group included four males and three females,
ranging in age from 19 to 53. Among the testers, five were university students,
one had completed higher education, and another held a university degree.

Each testing scenario was structured, starting with specific prerequisites
to effectively set the stage. For example, if the scenario involved changing
the app language to English, the initial setting would be a different language.
The preparatory phase also ensured that each scenario provided sufficient con-
text to align the testers with its objectives. Then, the task of the scenario
was outlined, and the tester was given free rein to complete it. Furthermore,
each scenario outlined the expected steps that testers might take to success-
fully achieve the scenario’s goals. These expected actions were not disclosed
to the testers but were used to compare their actual actions with the expected
ones. Detailed descriptions of these scenarios are available in Appendix E.
These details follow the format specified in Figure 7.5.

Identifier: Identifier of the scenario.
Name: Name of the scenario.
Prerequisites: Prerequisites that must be fulfilled before starting the test
scenario.
Context: Context provided for a better understanding of the situation.
Success: Definition of what constitutes success in the scenario.
Expected Steps: List of steps that the user is expected to perform in order
to achieve the scenario’s goal.

Figure 7.5: Usability Test Scenario Format

7.1.3.2 Changes Made Based On Feedback

Based on the outcomes of the usability testing, several modifications were im-
plemented to enhance the user experience and interface design of the applica-
tion. Notably, button placements were adjusted to the bottom of the screen,
rather than above forms, to improve accessibility and ease of reach for users.
This change is depicted in Figure 7.6. Moreover, flat pull-down indicators

120

7.1. Testing

were added to the bottom sheets throughout the application to make dismiss-
ing the sheet easier and more intuitive. Additionally, scroll views were incor-
porated into forms to better accommodate smaller devices; this adjustment
ensures that when a keyboard appears during text entry, the text fields remain
visible and accessible, preventing them from being obscured. Lastly, various
other UI details were refined to enhance overall aesthetic appeal and function-
ality.

Figure 7.6: Implemented Usability Testing Changes

7.1.4 Performance Testing
Xcode, in combination with XCTest, offers powerful features for testing var-
ious metrics including CPU, GPU, and memory performance. These metrics
can be assessed under different conditions, while the app is running, as well
as under simulated conditions such as an overheated device, various GPU
states, and more [129]. For the Memorizify app, launch performance and net-
work performance were tested. It’s worth noting that this text does not use
any standardized measurements for this kind of testing, therefore, the results
are more subjective in nature.

7.1.4.1 Launch Performance Testing

Testing launch performance in Xcode is important for optimizing the initial
responsiveness of the application. XCTest provides several metrics to mea-
sure app launch performance [130]. For Memorizify, launch tests were con-
ducted, specifically, the duration (XCTApplicationLaunchMetric), CPU uti-
lization (XCTCPUMetric), memory usage (XCTMemoryMetric), and storage us-
age (XCTStorageMetric) were measured. These tests were performed 20 times
across various devices. The results are detailed in Table 7.1.

As menotioned in the introduction of this section, those tests do not fol-
low any specification for evaluation of the results, hence the results are kind
of subjective. Anyways, the application feels fast during launch, which is sup-
ported by the average launch duration of 1.142 seconds. The CPU utilization
is also very low, with only 0.043 seconds of total CPU time during launch.

121

7. Testing and Documentation

LAUNCH METRIC [unit] AVERAGE VALUE
Duration [seconds] 1.142s

CPU Utilization [cycles,
instructions retired, seconds] 98436.276 kC, 126709.696 kI, 0.043s

Memory Usage [kB peak, kB] 25994.445 kB, 9.830 kB
Storage Usage [kB] 0.000 kB

Table 7.1: Results for the Launch Performance Testing

The memory usage is also low, with only 9.8 MB on average, which is very
few since the least memory capacity on an iOS that supports iOS 17 is 4GB.
There’s no storage usage recorded during launch, whihc makes sense, because
the application manipulates storage only later (not during launch). Overall,
the app subjectively feels very responsive and swift during launch and it should
satisfy all users’ needs in this regard.

7.1.5 Network Performance Testing
Another type of performance testing conducted for Memorizify is network test-
ing. When a real device is connected, Xcode offers options to throttle the net-
work based on defined presets, such as EDGE, 3G, 4G, among others (see
Figure 7.7). This testing is useful for evaluating how the application behaves
under various network conditions.

Figure 7.7: Xcode Network Performance Presets

For Memorizify, presets testing several network conditions were used. Specif-
ically, these were 100% packet loss, Edge Network - average, 3G Network - av-

122

7.1. Testing

erage, and LTE Network. Memorizify is designed to handle different network
states, always keeping the user informed about the current situation during
network requests.

For the 100% packet loss preset, a No Internet Connection sign is displayed
over the view. If the user attempts to pull down to refresh, the connection
state is checked and updated accordingly in the view. For the Edge Network
- average, the application takes a significant amount of time to load; however,
the views usually load eventually, and if they don’t, an error message is dis-
played. During the loading time, a view with pulsing placeholders is shown.
Lastly, for both 3G Network - average and LTE Network, the application be-
haves normally, with no significant delays in loading, with the LTE Network
being slightly faster. To view all network states in Memorizify, see Figure 7.8.
Overall, the app demonstrates excellent handling of network states and loading
processes, contributing to a great user experience.

Figure 7.8: Memorizify Network Conditions Handling

7.1.6 Summary of Testing
The testing phase of this chapter involved various methods, starting with unit
testing conducted during implementation. Unit tests were employed to identify
bugs as early as possible in the development process. As the UI of the ap-
plication was implemented, UI tests were introduced to ensure functionality
during iterative changes. Additionally, Memorizify underwent usability testing
with seven testers, whose valuable feedback contributed to subsequent usability
enhancements. Performance testing was also conducted, assessing both launch
performance and the application’s ability to handle various network conditions.
Overall, the application was thoroughly tested according to standard processes
in Software Engineering, thus fulfilling one of the thesis’ objectives.

123

7. Testing and Documentation

7.2 Documentation

Documentation is a important yet often underemphasized part of the software
development lifecycle. The documentation will be particularly useful in the fu-
ture when the application undergoes further development, allowing other de-
velopers to easily join the project and understand the logic of the codebase.
The following sections describe the specific tools and strategies used to docu-
ment Memorizify.

7.2.1 Code Commentary Format
There is a code commentary format recommended by Apple that facilitates
the use of other Xcode tools. This format, which is similar to those used in other
languages, allows for comment annotations for classes, functions, and variables,
as depicted in Figure 7.9. While additional inline comments can be added any-
where in the code, they will not be utilized by Xcode documentation tools. [131]
This format is consistently used throughout Memorizify.

Figure 7.9: Xcode Code Comment Format

7.2.2 DocC
DocC is a documentation compiler specifically designed for Swift frameworks
and packages, transforming Markdown-based text into comprehensive API doc-
umentation and interactive tutorials. It enables developers to preview their

124

7.2. Documentation

work in real-time. Using a custom version of Markdown known as docu-
mentation markup, DocC incorporates features such as cross-symbol linking
and code listings, allowing developers to integrate detailed documentation di-
rectly into their source code. Additionally, it supports the creation of a doc-
umentation archive from comments within a package, which can be exported
from Xcode and either browsed on a Mac or hosted as a website. [132]

Memorizify utilizes this tool throughout the entire codebase, documenting
the code thoroughly. This allows developers to quickly view documentation
on all classes, methods, and properties, as shown in Figure 7.10. The documen-
tation is also available as a DocC Archive, which is included in the electronic
attachments, described in Appendix G.

Figure 7.10: Xcode DocC Referencing

7.2.3 Summary of Documentation
As outlined in the thesis assignment, one of the objectives is comprehensive
documentation. The documentation for Memorizify was meticulously carried
out using Apple’s DocC documentation tool, resulting in an interactive archive
that is included as part of the electronic attachments. With this, the thesis
successfully achieves its stated documentation objective.

125

Chapter 8
Results and Future Development

The results of the thesis and future development are outlined in this final
chapter, which completes the fulfillment of all the thesis goals.

8.1 Results

This section provides a retrospective evaluation of the decisions made dur-
ing the analysis and design phases, which can only be effectively assessed af-
ter implementation. It then evaluates the implementation and its fulfillment
of the non-functional and functional requirements specified during the domain
analysis.

8.1.1 Analysis, Design, Implementation and Testing
An in-depth analysis of learning approaches and cognitive processes conducted
in this thesis provided substantial insights into designing an interactive produc-
tivity enhancing iOS application. It identified and detailed the learning meth-
ods that are most effective and appropriate for such tools, ensuring that the ap-
plication’s design is both scientifically grounded and practically relevant. Ad-
ditionally, domain analysis and evaluation of similar solutions revealed pitfalls
and flaws in existing applications, guiding the avoidance of these issues while
highlighting user-preferred features. Based on these comprehensive findings,
the necessary requirements and use cases were specified.

Subsequently, in the technology analysis, Clean Architecture was chosen
as the choice for the architecture together with the MVVM pattern. This choice
proved to be very beneficial, as it provided a robust framework for maintaining
separation of concerns, enhancing the modularity and scalability of the appli-
cation. This architectural decision facilitated easier testing and modifications,
allowing for more efficient iteration and improvements throughout the devel-
opment process. However, the only downside of this choice was the increased
amount of boilerplate code required. While this architectural approach im-
proved modularity and maintainability, it also introduced more complexity
in initial setup and increased the overall codebase.

The testing phase played a important role in refining the application. Thor-
ough unit, UI, performance, and usability tests ensured seamless functional-
ity. Usability testing was particularly valuable, providing feedback from actual

127

8. Results and Future Development

users, which informed subsequent modifications. Additionally, network per-
formance testing was beneficial, allowing the app’s behavior to be fine-tuned
across different network conditions.

8.1.2 Requirements Fulfillment
All non-functional requirements were met, except for the WatchOS support,
which was categorized as a Won’t Have priority requirement. All functional
requirements with Must Have and Should Have priorities were fulfilled. Re-
garding the Could Have functional requirements, 7 out of 9 were successfully
implemented. The Won’t Have priority requirements were not implemented
at all.

8.1.3 Summary of the Results
In summary, all main and partial goals of the thesis were achieved by conduct-
ing thorough analyses of learning approaches and cognitive processes, explor-
ing the domain of interactive productivity-enhancing applications, specifying
requirements and use cases, and evaluating the tools used. The application
was successfully implemented, meeting all Must Have and Should Have re-
quirements, and most of the Could Have requirements. Additionally, the ap-
plication underwent comprehensive testing which not only enhanced the ap-
plication’s stability and performance but also elevated it from a prototype
to a production-ready product, surpassing the original thesis requirements. Fi-
nally, the codebase was meticulously documented using the DocC framework.

8.2 Future Development

This section offers a comprehensive outline of potential directions for future
development of the application, detailing various enhancements and expansions
that could enhance its functionality.

8.2.1 Usability Testing Feedback
The first area for potential development emerges from feedback gathered dur-
ing usability testing. Users frequently expressed a desire for the application
to have the capability to block notifications from selected apps, enhancing fo-
cus and reducing interruptions. Additionally, there was a common request
for the ability to revisit previously unlocked storyline pages, suggesting a need
for greater navigational freedom within the app. Lastly, although minor, some
users suggested changes in the placement and design of certain UI elements
to improve the overall user interface aesthetics and functionality. These en-
hancements could significantly improve user satisfaction and app usability.

8.2.2 Remaining Requirements
Future development could also focus on implementing features from the Won’t
Have and currently not implemented Could Have requirements. Adding a statis-
tics view would allow users to monitor their learning progress, enhancing mo-
tivation. Introducing WatchOS support could increase accessibility and user

128

8.2. Future Development

interaction, while in-app purchases for new storylines would provide a revenue
stream and keep content fresh. These enhancements among other currently
not implemented requirements would effectively expand the app’s functional-
ity.

8.2.3 Other Possible Enhancements
For further expansion, the application is partially prepared for broader infras-
tructure development due to its existing integration with Firebase. Developing
a companion web platform would enhance accessibility, allowing users to engage
with the application across multiple devices seamlessly. Additionally, creating
a macOS version could leverage the continuity features of the Apple ecosystem,
providing a more integrated experience for users who utilize multiple Apple de-
vices. This expansion is facilitated by Firebase, which supports cross-platform
synchronization and management.

8.2.4 Summary of Future Development
In summary, thanks to the robust design of the application and the numerous
development ideas outlined in this section, the app is well-prepared for imme-
diate further development and expansion. The foundational architecture, built
with flexibility and scalability in mind, ensures that the application can easily
incorporate additional features and thanks to Firebase extend across different
platforms.

129

Conclusion

The goal of this thesis was to develop an interactive productivity-enhancing
mobile application for the iOS platform, adhering to the standard processes
of Software Engineering. This involved analyzing the domain of productivity-
enhancing mobile applications, specifying requirements and use cases, design-
ing the application, implementing it, testing, and documenting the process.
Finally, the application’s results were discussed, and potential avenues for fu-
ture development were outlined.

The second chapter, after stating the thesis’ goals in the first chapter, pro-
vided a thorough analysis of learning approaches and cognitive processes. Ad-
ditionally, a research study supporting the main application concepts was con-
ducted in cooperation with the author’s classmates.

The third chapter delved into the domain of productivity-enhancing appli-
cations, including an evaluation of current solutions and a discussion of their
strengths and weaknesses.

The fourth chapter evaluated tools such as SwiftUI and the Firebase back-
end services to explore their capabilities, which was followed by the specifica-
tion of requirements and use cases discussed in the fifth chapter. This chapter
also introduced both the architectural and user interface design.

Building on insights from previous chapters, the sixth chapter detailed im-
plementation of the application. All requirements in categorized as Must Have
and Should Have were implemented, along with most Could Have requirements,
using the tools specified in the thesis assignment.

The application underwent extensive and comprehensive testing described
in the seventh chapter, which included unit tests, UI tests, usability tests,
and selected performance tests. Subsequently, it was meticulously documented
as part of the same chapter using the DocC framework.

The final chapter reviewed the thesis results and proposed future devel-
opment directions for the application. Altogether, the thesis goals were met
by fulfilling all main and partial goals outlined in the assignment.

131

Bibliography

[1] Active Learning. Center for Educational Innovation [online], April
2024, [ref. 2024-04-29]. Available from: https://cei.umn.edu/teaching-
resources/active-learning

[2] Cloke, H. The Forgetting Curve: Why we forget and how to re-
member [online]. 2024, [ref. 2024-04-30]. Available from: https://
www.growthengineering.co.uk/forgetting-curve/

[3] What you need to know about The Curve of Forgetting [online]. 2018, [ref.
2024-04-30]. Available from: https://medium.com/@WeAreHowDoI/what-
you-need-to-know-about-the-curve-of-forgetting-dff1bb3e6d26

[4] Prashanti, E.; Salian, K.; et al. Cooperative learning through jigsaw
classroom technique for designing cast partial dentures - a comparative
study. MedEdPublish, volume 6, 06 2017, doi:10.15694/mep.2017.000088.

[5] Toda, A. M.; Klock, A. C. T.; et al. Analysing gamification elements
in educational environments using an existing Gamification taxonomy.
Smart Learning Environments, volume 6, Dec 2019: p. 16, ISSN 2196-
7091, doi:10.1186/s40561-019-0106-1. Available from: https://doi.org/
10.1186/s40561-019-0106-1

[6] Apple. Forest: Focus for Productivity [online]. 2024, [ref. 2024-05-02].
Available from: https://apps.apple.com/us/app/forest-focus-for-
productivity/id866450515

[7] Apple. Focus To-Do: Focus TimerTasks [online]. 2024, [ref. 2024-05-
02]. Available from: https://apps.apple.com/us/app/focus-to-do-
focus-timer-tasks/

[8] Apple. Study Bunny: Focus Timer [online]. 2024, [ref. 2024-05-
02]. Available from: https://apps.apple.com/us/app/study-bunny-
focus-timer/id1478345385

[9] Capka, D. Lesson 4 - UML - Domain Model [online]. 2021, [ref. 2024-05-
03]. Available from: https://www.ictdemy.com/software-design/uml/
uml-domain-model

133

https://cei.umn.edu/teaching-resources/active-learning
https://cei.umn.edu/teaching-resources/active-learning
https://www.growthengineering.co.uk/forgetting-curve/
https://www.growthengineering.co.uk/forgetting-curve/
https://medium.com/@WeAreHowDoI/what-you-need-to-know-about-the-curve-of-forgetting-dff1bb3e6d26
https://medium.com/@WeAreHowDoI/what-you-need-to-know-about-the-curve-of-forgetting-dff1bb3e6d26
https://doi.org/10.1186/s40561-019-0106-1
https://doi.org/10.1186/s40561-019-0106-1
https://apps.apple.com/us/app/forest-focus-for-productivity/id866450515
https://apps.apple.com/us/app/forest-focus-for-productivity/id866450515
https://apps.apple.com/us/app/focus-to-do-focus-timer-tasks/
https://apps.apple.com/us/app/focus-to-do-focus-timer-tasks/
https://apps.apple.com/us/app/study-bunny-focus-timer/id1478345385
https://apps.apple.com/us/app/study-bunny-focus-timer/id1478345385
https://www.ictdemy.com/software-design/uml/uml-domain-model
https://www.ictdemy.com/software-design/uml/uml-domain-model

Bibliography

[10] Yeung, J. Use Case Diagram notations guide [online]. 2018, [ref. 2024-
05-03]. Available from: https://circle.visual-paradigm.com/docs/
uml-and-sysml/use-case-diagram/use-case-diagram-notations-
guide/

[11] Apple. Weak References [online]. 2024, [ref. 2024-05-04]. Available
from: https://docs.swift.org/swift-book/documentation/the-
swift-programming-language/automaticreferencecounting#Weak-
References

[12] Apple. Unowned References [online]. 2024, [ref. 2024-
05-04]. Available from: https://docs.swift.org/swift-
book/documentation/the-swift-programming-language/
automaticreferencecounting#Unowned-References

[13] iOS Architecture [online]. 2022, [ref. 2024-05-05]. Available from: https:
//redfoxsec.com/blog/ios-architecture/

[14] Martin, R. C. The Clean Architecture [online]. 2012, [ref. 2024-05-
05]. Available from: https://blog.cleancoder.com/uncle-bob/2012/
08/13/the-clean-architecture.html

[15] Pasquier, B. How to implement MVVM pattern in Swift from
scratch [online]. 2018, [ref. 2024-05-05]. Available from: https://
benoitpasquier.com/ios-swift-mvvm-pattern/

[16] Entity-Relationship Diagram Symbols and Notation [online]. 2024, [ref.
2024-05-05]. Available from: https://www.lucidchart.com/pages/ER-
diagram-symbols-and-meaning

[17] Atlassian. What are team-managed and company-managed
projects? [online]. 2024, [ref. 2024-05-07]. Available from:
https://support.atlassian.com/jira-software-cloud/docs/what-
are-team-managed-and-company-managed-projects/

[18] Schunk, D. H. Learning theories an educational perspective. Pearson Ed-
ucation, Inc, 2012, 72–73 pp.

[19] Baulo, J.; Nabua, E. Behaviourism: Its implication to education. 12 2019.

[20] Yilmaz, K. The Cognitive Perspective on Learning: Its Theoret-
ical Underpinnings and Implications for Classroom Practices. The
Clearing House, volume 84, 08 2011: pp. 204–212, doi:10.1080/
00098655.2011.568989.

[21] Gunduz, N.; Hursen, C. Constructivism in Teaching and Learn-
ing; Content Analysis Evaluation. Procedia - Social and Behavioral
Sciences, volume 191, 2015: pp. 526–533, ISSN 1877-0428, doi:
https://doi.org/10.1016/j.sbspro.2015.04.640, the Proceedings of 6th
World Conference on educational Sciences. Available from: https://
www.sciencedirect.com/science/article/pii/S1877042815029079

134

https://circle.visual-paradigm.com/docs/uml-and-sysml/use-case-diagram/use-case-diagram-notations-guide/
https://circle.visual-paradigm.com/docs/uml-and-sysml/use-case-diagram/use-case-diagram-notations-guide/
https://circle.visual-paradigm.com/docs/uml-and-sysml/use-case-diagram/use-case-diagram-notations-guide/
https://docs.swift.org/swift-book/documentation/the-swift-programming-language/automaticreferencecounting##Weak-References
https://docs.swift.org/swift-book/documentation/the-swift-programming-language/automaticreferencecounting##Weak-References
https://docs.swift.org/swift-book/documentation/the-swift-programming-language/automaticreferencecounting##Weak-References
https://docs.swift.org/swift-book/documentation/the-swift-programming-language/automaticreferencecounting##Unowned-References
https://docs.swift.org/swift-book/documentation/the-swift-programming-language/automaticreferencecounting##Unowned-References
https://docs.swift.org/swift-book/documentation/the-swift-programming-language/automaticreferencecounting##Unowned-References
https://redfoxsec.com/blog/ios-architecture/
https://redfoxsec.com/blog/ios-architecture/
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://benoitpasquier.com/ios-swift-mvvm-pattern/
https://benoitpasquier.com/ios-swift-mvvm-pattern/
https://www.lucidchart.com/pages/ER-diagram-symbols-and-meaning
https://www.lucidchart.com/pages/ER-diagram-symbols-and-meaning
https://support.atlassian.com/jira-software-cloud/docs/what-are-team-managed-and-company-managed-projects/
https://support.atlassian.com/jira-software-cloud/docs/what-are-team-managed-and-company-managed-projects/
https://www.sciencedirect.com/science/article/pii/S1877042815029079
https://www.sciencedirect.com/science/article/pii/S1877042815029079

Bibliography

[22] Fred Paas, A. R.; Sweller, J. Cognitive Load Theory and Instruc-
tional Design: Recent Developments. Educational Psychologist, vol-
ume 38, no. 1, 2003: pp. 1–4, doi:10.1207/S15326985EP3801\ 1,
https://doi.org/10.1207/S15326985EP3801_1. Available from: https:
//doi.org/10.1207/S15326985EP3801_1

[23] Sweller, J.; Ayres, P.; et al. Cognitive Load Theory. Springer, 2011.

[24] Clark, R.; Nguyen, F.; et al. Efficiency in Learning: Evidence-Based
Guidelines to Manage Cognitive Load. Performance Improvement, vol-
ume 45, 10 2006, doi:10.1002/pfi.4930450920.

[25] Wang, Y.-T.; Lin, K.-Y. Understanding Continuance Usage of Mo-
bile Learning Applications: The Moderating Role of Habit. Fron-
tiers in Psychology, volume 12, 2021, ISSN 1664-1078, doi:10.3389/
fpsyg.2021.736051. Available from: https://www.frontiersin.org/
journals/psychology/articles/10.3389/fpsyg.2021.736051

[26] Cepeda, N. J.; Pashler, H.; et al. Distributed practice in verbal re-
call tasks: A review and quantitative synthesis. Psychological bul-
letin, volume 132 3, 2006: pp. 80–354. Available from: https://
api.semanticscholar.org/CorpusID:18831615

[27] Karpicke, J. D.; Blunt, J. R. Retrieval Practice Produces More Learning
than Elaborative Studying with Concept Mapping. Science, volume 331,
no. 6018, 2011: pp. 772–775, doi:10.1126/science.1199327. Available from:
https://www.science.org/doi/abs/10.1126/science.1199327

[28] Terwogt, M. M.; Hoeksma, J. B. Colors and Emotions: Preferences and
Combinations. The Journal of General Psychology, volume 122, no. 1,
1995: pp. 5–17, doi:10.1080/00221309.1995.9921217, pMID: 7714504.
Available from: https://doi.org/10.1080/00221309.1995.9921217

[29] Elliot, A. J. Color and psychological functioning: a review of theoretical
and empirical work. Frontiers in Psychology, volume 6, 2015: p. 368.

[30] Tarpy, R.; Mayer, R. Foundations of Learning and Memory. Scott, Fores-
man, 1978, ISBN 9780673150745.

[31] Gauthier, L. How Learning Works: 7 Research-Based Principles for
Smart Teaching. Journal of the Scholarship of Teaching and Learning,
volume 14, 02 2013: p. 126, doi:10.14434/josotl.v14i1.4219.

[32] Sarrica, T. Active Learning vs Traditional Lecture. Which Im-
pacts Students More? [online]. 2018, [ref. 2024-04-30]. Available
from: https://teaching-learning.hastac.hcommons.org/2018/11/
30/active-learning-vs-traditional-lecture-which-impacts-
students-more/

[33] Theresa Pesavento, D. M. C. S. S. W., Jonathan Klein. Teaching with
Technology [online]. 2015, [ref. 2024-04-30]. Available from: https://
wisc.pb.unizin.org/teachingwithtech/

135

https://doi.org/10.1207/S15326985EP3801_1
https://doi.org/10.1207/S15326985EP3801_1
https://doi.org/10.1207/S15326985EP3801_1
https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2021.736051
https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2021.736051
https://api.semanticscholar.org/CorpusID:18831615
https://api.semanticscholar.org/CorpusID:18831615
https://www.science.org/doi/abs/10.1126/science.1199327
https://doi.org/10.1080/00221309.1995.9921217
https://teaching-learning.hastac.hcommons.org/2018/11/30/active-learning-vs-traditional-lecture-which-impacts-students-more/
https://teaching-learning.hastac.hcommons.org/2018/11/30/active-learning-vs-traditional-lecture-which-impacts-students-more/
https://teaching-learning.hastac.hcommons.org/2018/11/30/active-learning-vs-traditional-lecture-which-impacts-students-more/
https://wisc.pb.unizin.org/teachingwithtech/
https://wisc.pb.unizin.org/teachingwithtech/

Bibliography

[34] Darder, A. Reinventing Paulo Freire: A Pedagogy of Love. Routledge,
2017, ISBN 9781315560779. Available from: https://doi.org/10.4324/
9781315560779

[35] Dewey, J. The Philosophy of Education: Democracy Education in USA,
Moral Principles in Education, Health and Sex in Higher Education, The
Child and the Curriculum. DigiCat, 2023.

[36] Montessori, M. The Montessori Method. Dover Publications Inc., 2002,
ISBN 0486421627.

[37] Barnes, D. R. Active Learning. Leeds University TVEI Support Project,
1989, ISBN 9781872364001.

[38] Marcela de Oliveira e Silva Lemos, D. W., Kevin Mudavadi. Evi-
dence Based Teaching: Active Learning [online]. 2024, [ref. 2024-04-
30]. Available from: https://citl.indiana.edu/teaching-resources/
evidence-based/active-learning.html

[39] Valverde, C.; Allen, K.; et al. Active Learning Interventions in a Predom-
inantly Black, Urban College Increase Positive Attitudes toward Class
Participation. The International Journal of Science, Mathematics and
Technology Learning, volume 30, January 2022, doi:10.18848/2327-7971/
CGP/v30i01/17-30.

[40] Tientongdee, S. Development of problem-solving skill by using active
learning for student teachers in Introductory Physics. Journal of Physics:
Conference Series, volume 1144, December 2018, doi:10.1088/1742-6596/
1144/1/012002. Available from: https://dx.doi.org/10.1088/1742-
6596/1144/1/012002

[41] Millenbah, K.; Millspaugh, J. Using Experiential Learning in Wildlife
Courses to Improve Retention, Problem Solving, and Decision-Making.
Wildlife Society Bulletin, volume 31, 03 2003: pp. 127–137, doi:10.2307/
3784366.

[42] of Redlands, U. Active Learning [online]. 2024, [ref. 2024-04-30]. Avail-
able from: https://sites.redlands.edu/information-technology-
services/its-organization/instructional-technology/course-
design-assistance/pedagogy/active-learning/

[43] Stranford, S. A.; Owen, J. A.; et al. Active Learning and Technology
Approaches for Teaching Immunology to Undergraduate Students. Fron-
tiers in Public Health, volume 8, 2020, ISSN 2296-2565, doi:10.3389/
fpubh.2020.00114. Available from: https://www.frontiersin.org/
journals/public-health/articles/10.3389/fpubh.2020.00114

[44] Chinge, E.; Yii, T.; et al. Use of Technology in Active Learning Teach-
ing Practices to Enhance Lecturers’ Self-Efficacy in Technical University
Environment. International Journal of Engineering and Technology, vol-
ume 9, 07 2020: pp. 436–443.

136

https://doi.org/10.4324/9781315560779
https://doi.org/10.4324/9781315560779
https://citl.indiana.edu/teaching-resources/evidence-based/active-learning.html
https://citl.indiana.edu/teaching-resources/evidence-based/active-learning.html
https://dx.doi.org/10.1088/1742-6596/1144/1/012002
https://dx.doi.org/10.1088/1742-6596/1144/1/012002
https://sites.redlands.edu/information-technology-services/its-organization/instructional-technology/course-design-assistance/pedagogy/active-learning/
https://sites.redlands.edu/information-technology-services/its-organization/instructional-technology/course-design-assistance/pedagogy/active-learning/
https://sites.redlands.edu/information-technology-services/its-organization/instructional-technology/course-design-assistance/pedagogy/active-learning/
https://www.frontiersin.org/journals/public-health/articles/10.3389/fpubh.2020.00114
https://www.frontiersin.org/journals/public-health/articles/10.3389/fpubh.2020.00114

Bibliography

[45] Reddy, S.; Labutov, I.; et al. Unbounded Human Learning: Optimal
Scheduling for Spaced Repetition. 2016, doi:10.1145/2939672.2939850.
Available from: https://doi.org/10.1145/2939672.2939850

[46] Wittman, D. J. The Forgetting Curve (California State Univer-
sity Stanislaus) [online]. 2024, [ref. 2024-04-30]. Available from:
https://www.csustan.edu/sites/default/files/groups/Writing%
20Program/forgetting_curve.pdf

[47] Schimanke, F.; Mertens, R.; et al. What to learn next? Content selection
support in mobile game-based learning. 10 2013.

[48] Kang, S. Spaced Repetition Promotes Efficient and Effective Learn-
ing: Policy Implications for Instruction. Policy Insights from the Be-
havioral and Brain Sciences, volume 3, January 2016, doi:10.1177/
2372732215624708.

[49] Baturay, M. H.; Yildirim, S.; et al. Effects of Web-Based Spaced Repe-
tition on Vocabulary Retention of Foreign Language Learners. Eurasian
Journal of Educational Research (EJER), volume 8, December 2009.

[50] Yuan, X. Evidence of the Spacing Effect and Influences on Percep-
tions of Learning and Science Curricula. 2022. Available from: https:
//www.ncbi.nlm.nih.gov/pmc/articles/PMC8759977/

[51] Paul Kelley, T. W. Making long-term memories in minutes: a spaced
learning pattern from memory research in education. Frontiers in hu-
man neuroscience, 2013. Available from: https://doi.org/10.3389/
fnhum.2013.00589

[52] Vole, M. Improve Your Learning With Spaced Repetition [online]. 2022,
[ref. 2024-04-30]. Available from: https://insights.gostudent.org/
en/spaced-repetition

[53] Keder, B. D. Computer-assisted language learning using spaced rep-
etition [online]. 2009, [ref. 2024-04-30]. Available from: https://
is.muni.cz/th/uwa3f/diplomka.pdf

[54] for Teaching Innovation, C. Collaborative Learning [online]. 2024,
[ref. 2024-04-30]. Available from: https://teaching.cornell.edu/
teaching-resources/active-collaborative-learning/
collaborative-learning

[55] Yang, X. A Historical Review of Collaborative Learning and Cooperative
Learning. TechTrends, 2023. Available from: https://doi.org/10.1007/
s11528-022-00823-9

[56] Cindy Hmelo-Silver, C. C. A. O., Clark Chinn. The International Hand-
book of Collaborative Learning. Routledge, 2013, ISBN 9780203837290,
1–2 pp.

[57] University, C. Why use collaborative learning? [online]. 2024, [ref. 2024-
04-30]. Available from: https://teaching.cornell.edu/teaching-
resources/active-collaborative-learning/collaborative-
learning

137

https://doi.org/10.1145/2939672.2939850
https://www.csustan.edu/sites/default/files/groups/Writing%20Program/forgetting_curve.pdf
https://www.csustan.edu/sites/default/files/groups/Writing%20Program/forgetting_curve.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8759977/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8759977/
https://doi.org/10.3389/fnhum.2013.00589
https://doi.org/10.3389/fnhum.2013.00589
https://insights.gostudent.org/en/spaced-repetition
https://insights.gostudent.org/en/spaced-repetition
https://is.muni.cz/th/uwa3f/diplomka.pdf
https://is.muni.cz/th/uwa3f/diplomka.pdf
https://teaching.cornell.edu/teaching-resources/active-collaborative-learning/collaborative-learning
https://teaching.cornell.edu/teaching-resources/active-collaborative-learning/collaborative-learning
https://teaching.cornell.edu/teaching-resources/active-collaborative-learning/collaborative-learning
https://doi.org/10.1007/s11528-022-00823-9
https://doi.org/10.1007/s11528-022-00823-9
https://teaching.cornell.edu/teaching-resources/active-collaborative-learning/collaborative-learning
https://teaching.cornell.edu/teaching-resources/active-collaborative-learning/collaborative-learning
https://teaching.cornell.edu/teaching-resources/active-collaborative-learning/collaborative-learning

Bibliography

[58] Qiannan Zhang, J. L., Sheng Lin; Jin, Y. A game perspective on col-
laborative learning among students in higher education. Cogent Educa-
tion, volume 9, no. 1, 2022, doi:10.1080/2331186X.2022.2115617. Avail-
able from: https://doi.org/10.1080/2331186X.2022.2115617

[59] Rutherford, S. Collaborative learning: Theory, strategies and educational
benefits. January 2014.

[60] Drew, C. Collaborative Learning: Pros Cons [online]. 2023, [ref. 2024-05-
01]. Available from: https://helpfulprofessor.com/collaborative-
learning/

[61] Vali, I. The Impact of Technology on Collaborative Learning. Euro-
pean Proceedings of Educational Sciences, volume 5, 2023, doi:10.1080/
2331186X.2022.2115617. Available from: https://doi.org/10.15405/
epes.23045.13

[62] Kapp, K. M. The gamification of learning and instruction: Game-based
methods and strategies for training and education. Pfeiffer, 2012, ISBN
9781118096345, 7–12, 9–15 pp.

[63] A Brief History Of Gamification In Education [online]. 2023, [ref. 2024-
05-01]. Available from: https://www.teachthought.com/education/a-
brief-history-of-gamification-in-education/

[64] Toda, A. M.; Klock, A. C. T.; et al. Analysing gamification elements
in educational environments using an existing Gamification taxonomy.
Smart Learning Environments, volume 6, Dec 2019: p. 16, ISSN 2196-
7091, doi:10.1186/s40561-019-0106-1. Available from: https://doi.org/
10.1186/s40561-019-0106-1

[65] Deterding, S.; Sicart, M.; et al. Gamification. using game-design ele-
ments in non-gaming contexts. New York, NY, USA: Association for
Computing Machinery, 2011, ISBN 9781450302685, p. 2425–2428, doi:
10.1145/1979742.1979575. Available from: https://doi.org/10.1145/
1979742.1979575

[66] Yildirim, I.; Sen, S. The effects of gamification on students’ aca-
demic achievement: a meta-analysis study. Interactive Learning En-
vironments, volume 29, no. 8, 2021: pp. 1301–1318, doi:10.1080/
10494820.2019.1636089. Available from: https://doi.org/10.1080/
10494820.2019.1636089

[67] Mehrnoosh Khoshnoodifar, M. T., Asieh Ashouri. Effectiveness of Gam-
ification in Enhancing Learning and Attitudes: A Study of Statistics
Education for Health School Students. Journal of advances in medi-
cal education professionalism, volume 11, 2023: p. 230–239, doi:https:
//doi.org/10.30476/JAMP.2023.98953.1817. Available from: https://
www.ncbi.nlm.nih.gov/pmc/articles/PMC10611935/

[68] Mirzaie Feiz Abadi, B.; Khalili Samani, N.; et al. Pros and Cons of To-
morrow’s Learning: A Review of Literature of Gamification in Education
Context. Medical Education Bulletin, volume 3, no. 4, 2022: pp. 543–554,

138

https://doi.org/10.1080/2331186X.2022.2115617
https://helpfulprofessor.com/collaborative-learning/
https://helpfulprofessor.com/collaborative-learning/
https://doi.org/10.15405/epes.23045.13
https://doi.org/10.15405/epes.23045.13
https://www.teachthought.com/education/a-brief-history-of-gamification-in-education/
https://www.teachthought.com/education/a-brief-history-of-gamification-in-education/
https://doi.org/10.1186/s40561-019-0106-1
https://doi.org/10.1186/s40561-019-0106-1
https://doi.org/10.1145/1979742.1979575
https://doi.org/10.1145/1979742.1979575
https://doi.org/10.1080/10494820.2019.1636089
https://doi.org/10.1080/10494820.2019.1636089
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10611935/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10611935/

Bibliography

ISSN 2783-1809, doi:10.22034/meb.2022.350941.1063. Available from:
https://www.medicaleducation-bulletin.ir/article_153199.html

[69] Kayimbasioglu, D.; Oktekin, B.; et al. Integration of Gamifica-
tion Technology in Education. Procedia Computer Science, volume
102, 2016: pp. 668–676, ISSN 1877-0509, doi:https://doi.org/10.1016/
j.procs.2016.09.460, 12th International Conference on Application of
Fuzzy Systems and Soft Computing, ICAFS 2016, 29-30 August 2016,
Vienna, Austria. Available from: https://www.sciencedirect.com/
science/article/pii/S1877050916326400

[70] Cirillo, F. The Pomodoro Technique. Creative Commons, 2009, ISBN
9781445219943. Available from: https://books.google.cz/books?id=
ThkbQwAACAAJ

[71] R. Dizon, D. E., H. Ermitanio. The Effects of Pomodoro Technique on
Academic-Related Tasks, Procrastination Behavior, and Academic Moti-
vation Among College Students in a Mixed Online Learning Environment.
Globus Journal of Progressive Education, 2021, doi:10.46360.

[72] Sarkar, S.; Parnin, C. Characterizing and Predicting Mental Fatigue Dur-
ing Programming Tasks. In Proceedings of the 2nd International Work-
shop on Emotion Awareness in Software Engineering (SEmotion ’17),
IEEE Press, 2017, pp. 32–37.

[73] Schoolfield, N. Pomodoro Technique Pros And Cons [online]. 2021,
[ref. 2024-05-01]. Available from: https://beextrayoga.com/pomodoro-
technique-pros-and-cons/

[74] Weinstein, Y.; Madan, C. R.; et al. Teaching the science of learning.
Cognitive Research: Principles and Implications, volume 3, no. 1, Jan
2018: p. 2.

[75] Rohrer, D. Interleaving helps students distinguish among similar con-
cepts. Educational Psychology Review, volume 24, no. 3, 2012: pp. 355–
367.

[76] Vygotsky, L. S. Mind in Society: Development of Higher Psychological
Processes. Harvard University Press, 1978, ISBN 9780674576285. Avail-
able from: http://www.jstor.org/stable/j.ctvjf9vz4

[77] Garcia, T.; Pintrich, P. R. The Effects of Autonomy on Motivation
and Performance in the College Classroom. Contemporary Educational
Psychology, volume 21, no. 4, 1996: pp. 477–486, ISSN 0361-476X, doi:
https://doi.org/10.1006/ceps.1996.0032.

[78] Gupta, S.; Bostrom, R. Technology-Mediated Learning: A Compre-
hensive Theoretical Model. J. AIS, volume 10, 09 2009, doi:10.17705/
1jais.00207.

[79] Hwang, G.-J.; Wu, P.-H. Applications, impacts and trends of mobile
technology-enhanced learning: A review of 2008-2012 publications in se-
lected SSCI journals. Int. J. of Mobile Learning and Organisation, vol-
ume 8, 01 2014: pp. 83–95, doi:10.1504/IJMLO.2014.062346.

139

https://www.medicaleducation-bulletin.ir/article_153199.html
https://www.sciencedirect.com/science/article/pii/S1877050916326400
https://www.sciencedirect.com/science/article/pii/S1877050916326400
https://books.google.cz/books?id=ThkbQwAACAAJ
https://books.google.cz/books?id=ThkbQwAACAAJ
https://beextrayoga.com/pomodoro-technique-pros-and-cons/
https://beextrayoga.com/pomodoro-technique-pros-and-cons/
http://www.jstor.org/stable/j.ctvjf9vz4

Bibliography

[80] Liu, R.; Wang, L.; et al. Effects of an immersive virtual reality-based
classroom on students’ learning performance in science lessons. British
Journal of Educational Technology, volume 51, 11 2020: pp. 2034–2049,
doi:10.1111/bjet.13028.

[81] Pimmer, C.; Linxen, S.; et al. Mobile learning in resource-constrained
environments: a case study of medical education. Med Teach, volume 35,
no. 5, Nov 2012: pp. e1157–65.

[82] Henderson, A. App Review: Is Forest The Best Productiv-
ity App? [online]. 2021, [ref. 2024-05-02]. Available from:
https://aniahenderson.com/app-review-is-forest-the-best-
productivity-app/

[83] Gallucci, N. Forest is a useful app that helps you go phone-free by
inspiring you to plant trees [online]. 2019, [ref. 2024-05-02]. Available
from: https://mashable.com/article/forest-app-productivity-
focus-review

[84] Song, V. How a Pomodoro timer app helped me regain my focus [online].
2022, [ref. 2024-05-04]. Available from: https://www.theverge.com/
23466074/pomodoro-timers-focus-productivity-app

[85] SuperElement. Focus To-Do - Pomodoro Technique Tasks - Fea-
tures [online]. 2024, [ref. 2024-05-04]. Available from: https://
www.focustodo.cn/#features

[86] Zelia. Case Study: Study Bunny App Redesign — What my first
UI/UX project has taught me [online]. 2024, [ref. 2024-05-04]. Available
from: https://bootcamp.uxdesign.cc/what-my-first-ui-ux-case-
study-has-taught-me-study-bunny-app-redesign-496ec1b91258

[87] Silang, J. P. Case Study: Study Bunny App Redesign — What my first
UI/UX project has taught me [online]. 2024, [ref. 2024-05-04]. Available
from: https://superbyte.site/tutorial

[88] ISO/IEC 19505-2:2012. Information technology – Object Management
Group Unified Modeling Language (OMG UML), 2012, available from
ISO, ISO/IEC 19505-2:2012.

[89] Wiegers, K. E.; Beatty, J. Software Requirements 3. USA: Microsoft
Press, 2013, ISBN 0735679665, 9–14 pp.

[90] Mannion, M.; Keepence, B. SMART requirements. SIGSOFT Softw.
Eng. Notes, volume 20, no. 2, apr 1995: p. 42–47, ISSN 0163-5948,
doi:10.1145/224155.224157. Available from: https://doi.org/10.1145/
224155.224157

[91] Al-Qutaish, R. Quality Models in Software Engineering Literature: An
Analytical and Comparative Study. Journal of American Science, vol-
ume 6, 11 2010.

140

https://aniahenderson.com/app-review-is-forest-the-best-productivity-app/
https://aniahenderson.com/app-review-is-forest-the-best-productivity-app/
https://mashable.com/article/forest-app-productivity-focus-review
https://mashable.com/article/forest-app-productivity-focus-review
https://www.theverge.com/23466074/pomodoro-timers-focus-productivity-app
https://www.theverge.com/23466074/pomodoro-timers-focus-productivity-app
https://www.focustodo.cn/##features
https://www.focustodo.cn/##features
https://bootcamp.uxdesign.cc/what-my-first-ui-ux-case-study-has-taught-me-study-bunny-app-redesign-496ec1b91258
https://bootcamp.uxdesign.cc/what-my-first-ui-ux-case-study-has-taught-me-study-bunny-app-redesign-496ec1b91258
https://superbyte.site/tutorial
https://doi.org/10.1145/224155.224157
https://doi.org/10.1145/224155.224157

Bibliography

[92] Kravchenko, T.; Bogdanova, T.; et al. Ranking Requirements Using
MoSCoW Methodology in Practice. In Cybernetics Perspectives in Sys-
tems, edited by R. Silhavy, Springer International Publishing, 2022, ISBN
978-3-031-09073-8, pp. 188–199.

[93] Gomaa, H. Software Modeling and Design. Cambridge University Press,
2012, ISBN 9780511779183, 71–76 pp.

[94] Google. Firebase Documentation [online]. 2024, [ref. 2024-05-05]. Avail-
able from: https://firebase.google.com/docs

[95] Google. Firebase Authentication [online]. 2024, [ref. 2024-05-05]. Avail-
able from: https://firebase.google.com/docs/auth

[96] Google. Cloud Firestore [online]. 2024, [ref. 2024-05-05]. Available from:
https://firebase.google.com/docs/firestore

[97] Apple. A Swift Tour [online]. 2024, [ref. 2024-05-05]. Avail-
able from: https://docs.swift.org/swift-book/documentation/
the-swift-programming-language/guidedtour

[98] Apple. Swift [online]. 2024, [ref. 2024-05-05]. Available from: https://
developer.apple.com/swift/

[99] Apple. Automatic Reference Counting [online]. 2024, [ref.
2024-05-04]. Available from: https://docs.swift.org/swift-
book/documentation/the-swift-programming-language/
automaticreferencecountingl

[100] Hoffman, J. Mastering Swift 5. Packt Publishing Limited, 2019, ISBN
9781789139860, 131–140 pp.

[101] Apple. The Swift Programming Language. Apple Inc., 2022, ISBN
9781789139860, 159–167 pp.

[102] Apple. SwiftUI [online]. 2024, [ref. 2024-05-04]. Available from: https:
//developer.apple.com/xcode/swiftui/

[103] Kannan, S. How SwiftUI View Works [online]. 2023, [ref. 2024-05-05].
Available from: https://medium.com/@sarathiskannan/how-swiftui-
view-works-7095f717d1c2

[104] Trogrlic, I. Best mobile app development tech stacks to use in 2024 [on-
line]. 2024, [ref. 2024-05-05]. Available from: https://decode.agency/
article/best-mobile-app-development-tech-stack/

[105] Apple. Package Manager [online]. 2024, [ref. 2024-05-05]. Available from:
https://www.swift.org/documentation/package-manager/

[106] Apple. Testflight [online]. 2024, [ref. 2024-05-05]. Available from: https:
//developer.apple.com/testflight/

[107] Apple. AppStore: Built for growth and scale [online]. 2024, [ref. 2024-
05-05]. Available from: https://developer.apple.com/app-store/
features/

141

https://firebase.google.com/docs
https://firebase.google.com/docs/auth
https://firebase.google.com/docs/firestore
https://docs.swift.org/swift-book/documentation/the-swift-programming-language/guidedtour
https://docs.swift.org/swift-book/documentation/the-swift-programming-language/guidedtour
https://developer.apple.com/swift/
https://developer.apple.com/swift/
https://docs.swift.org/swift-book/documentation/the-swift-programming-language/automaticreferencecountingl
https://docs.swift.org/swift-book/documentation/the-swift-programming-language/automaticreferencecountingl
https://docs.swift.org/swift-book/documentation/the-swift-programming-language/automaticreferencecountingl
https://developer.apple.com/xcode/swiftui/
https://developer.apple.com/xcode/swiftui/
https://medium.com/@sarathiskannan/how-swiftui-view-works-7095f717d1c2
https://medium.com/@sarathiskannan/how-swiftui-view-works-7095f717d1c2
https://decode.agency/article/best-mobile-app-development-tech-stack/
https://decode.agency/article/best-mobile-app-development-tech-stack/
https://www.swift.org/documentation/package-manager/
https://developer.apple.com/testflight/
https://developer.apple.com/testflight/
https://developer.apple.com/app-store/features/
https://developer.apple.com/app-store/features/

Bibliography

[108] Jeff Gilbert, C. S. Architecting iOS Apps with VIPER [online]. 2014,
[ref. 2024-05-05]. Available from: https://www.objc.io/issues/13-
architecture/viper/

[109] Allies, P. Clean Architecture: iOS App [online]. 2022, [ref. 2024-
05-05]. Available from: https://nanosoft.co.za/blog/post/clean-
architecture-ios

[110] Thomas, C. Breaking a Monolith: Using Cocoa Frame-
works in iOS [online]. 2019, [ref. 2024-05-05]. Available from:
https://medium.com/john-lewis-software-engineering/breaking-
a-monolith-using-cocoa-frameworks-in-ios-5f66a046c2aa

[111] Martin, R. C. Clean Architecture: A Craftsman’s Guide to Software
Structure and Design. USA: Prentice Hall Press, first edition, 2017, ISBN
0134494164, 176 pp.

[112] Zeba. MVVM in iOS Swift [online]. 2023, [ref. 2024-05-05].
Available from: https://medium.com/@zebayasmeen76/mvvm-in-ios-
swift-6afb150458fd

[113] Nielsen, J. Usability Engineering. San Francisco, CA, USA: Morgan Kauf-
mann Publishers, 1994, ISBN 9780080520292.

[114] Alicar, M. What is wireframing? [online]. 2024, [ref. 2024-05-
06]. Available from: https://www.experienceux.co.uk/faqs/what-is-
wireframing/

[115] ProtoIo. Prototyping for all. [online]. 2024, [ref. 2024-05-06]. Available
from: https://proto.io

[116] Atlassian. Welcome to Jira [online]. 2024, [ref. 2024-05-07]. Available
from: https://www.atlassian.com/software/jira/guides/getting-
started/introduction#what-is-jira-software

[117] Atlassian. A brief overview of Bitbucket [online]. 2024, [ref. 2024-05-07].
Available from: https://bitbucket.org/product/guides/getting-
started/overview#a-brief-overview-of-bitbucket

[118] Atlassian. Jira for teams [online]. 2024, [ref. 2024-05-07]. Available
from: https://www.atlassian.com/software/jira/guides/getting-
started/who-uses-jira#for-agile-teams

[119] Atlassian. Jira Bitbucket Integaration [online]. 2024, [ref. 2024-
05-07]. Available from: https://www.atlassian.com/software/jira/
bitbucket-integration

[120] Microsoft. .NET dependency injection [online]. 2024, [ref. 2024-05-07].
Available from: https://learn.microsoft.com/en-us/dotnet/core/
extensions/dependency-injection

[121] Long, M. Resolver [online]. 2024, [ref. 2024-05-07]. Available from:
https://github.com/hmlongco/Resolver

142

https://www.objc.io/issues/13-architecture/viper/
https://www.objc.io/issues/13-architecture/viper/
https://nanosoft.co.za/blog/post/clean-architecture-ios
https://nanosoft.co.za/blog/post/clean-architecture-ios
https://medium.com/john-lewis-software-engineering/breaking-a-monolith-using-cocoa-frameworks-in-ios-5f66a046c2aa
https://medium.com/john-lewis-software-engineering/breaking-a-monolith-using-cocoa-frameworks-in-ios-5f66a046c2aa
https://medium.com/@zebayasmeen76/mvvm-in-ios-swift-6afb150458fd
https://medium.com/@zebayasmeen76/mvvm-in-ios-swift-6afb150458fd
https://www.experienceux.co.uk/faqs/what-is-wireframing/
https://www.experienceux.co.uk/faqs/what-is-wireframing/
https://proto.io
https://www.atlassian.com/software/jira/guides/getting-started/introduction##what-is-jira-software
https://www.atlassian.com/software/jira/guides/getting-started/introduction##what-is-jira-software
https://bitbucket.org/product/guides/getting-started/overview##a-brief-overview-of-bitbucket
https://bitbucket.org/product/guides/getting-started/overview##a-brief-overview-of-bitbucket
https://www.atlassian.com/software/jira/guides/getting-started/who-uses-jira##for-agile-teams
https://www.atlassian.com/software/jira/guides/getting-started/who-uses-jira##for-agile-teams
https://www.atlassian.com/software/jira/bitbucket-integration
https://www.atlassian.com/software/jira/bitbucket-integration
https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection
https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection
https://github.com/hmlongco/Resolver

Bibliography

[122] Apple. Navigation Stack [online]. 2024, [ref. 2024-05-07]. Avail-
able from: https://developer.apple.com/documentation/swiftui/
navigationstack

[123] van Elsloo, T. Unit test basics [online]. 2022, [ref. 2024-05-07].
Available from: https://learn.microsoft.com/en-us/visualstudio/
test/unit-test-basics

[124] Langr, J.; Hunt, A.; et al. Pragmatic Unit Testing in Java 8 with JUnit.
Pragmatic Bookshelf, first edition, 2015, ISBN 1941222595, 78-82 pp.

[125] Fowler, M. Mocking in Unit Tests [online]. 2023, [ref. 2024-05-07]. Avail-
able from: https://microsoft.github.io/code-with-engineering-
playbook/automated-testing/unit-testing/mocking/

[126] Riyam, R. UI Testing in Swift [online]. 2021, [ref. 2024-05-08]. Available
from: https://semaphoreci.com/blog/ui-testing-swift

[127] Hotjar. Usability testing: your 101 introduction [online]. 2023, [ref. 2024-
05-08]. Available from: https://www.hotjar.com/usability-testing/

[128] McCloskey, M. Turn User Goals into Task Scenarios for Usability
Testing [online]. 2014, [ref. 2024-05-08]. Available from: https://
www.nngroup.com/articles/task-scenarios-usability-testing/

[129] Apple. Performance Tests [online]. 2024, [ref. 2024-05-08]. Avail-
able from: https://developer.apple.com/documentation/xctest/
performance_tests

[130] Apple. Reducing your app’s launch time [online]. 2024, [ref. 2024-05-
08]. Available from: https://developer.apple.com/documentation/
xcode/reducing-your-app-s-launch-time

[131] Apple. Writing symbol documentation in your source files [online].
2024, [ref. 2024-05-08]. Available from: https://developer.apple.com/
documentation/xcode/writing-symbol-documentation-in-your-
source-files

[132] Apple. DocC [online]. 2024, [ref. 2024-05-08]. Available from: https:
//www.swift.org/documentation/docc/

143

https://developer.apple.com/documentation/swiftui/navigationstack
https://developer.apple.com/documentation/swiftui/navigationstack
https://learn.microsoft.com/en-us/visualstudio/test/unit-test-basics
https://learn.microsoft.com/en-us/visualstudio/test/unit-test-basics
https://microsoft.github.io/code-with-engineering-playbook/automated-testing/unit-testing/mocking/
https://microsoft.github.io/code-with-engineering-playbook/automated-testing/unit-testing/mocking/
https://semaphoreci.com/blog/ui-testing-swift
https://www.hotjar.com/usability-testing/
https://www.nngroup.com/articles/task-scenarios-usability-testing/
https://www.nngroup.com/articles/task-scenarios-usability-testing/
https://developer.apple.com/documentation/xctest/performance_tests
https://developer.apple.com/documentation/xctest/performance_tests
https://developer.apple.com/documentation/xcode/reducing-your-app-s-launch-time
https://developer.apple.com/documentation/xcode/reducing-your-app-s-launch-time
https://developer.apple.com/documentation/xcode/writing-symbol-documentation-in-your-source-files
https://developer.apple.com/documentation/xcode/writing-symbol-documentation-in-your-source-files
https://developer.apple.com/documentation/xcode/writing-symbol-documentation-in-your-source-files
https://www.swift.org/documentation/docc/
https://www.swift.org/documentation/docc/

Appendix A
Requirement Specification

A.1 Non-Functional Requirements

1. Identifier: NR1
Name: iOS 17.0+ Compatibility
Description: The application is compatible with the iOS platform ver-
sion 17.0 or later.
FURPS: Usability
MoSCoW: Must Have

2. Identifier: NR2
Name: iPadOS 17.0+ Compatibility
Description: The application is compatible with the iPadOS platform
version 17.0 or later.
FURPS: Usability
MoSCoW: Could Have

3. Identifier: NR3
Name: User-Friendly Interface
Description: The application is designed with ease of use in mind, en-
suring a user-friendly experience.
FURPS: Usability
MoSCoW: Should Have

145

A. Requirement Specification

4. Identifier: NR4
Name: Application Extensibility
Description: The application is developed with extensibility in mind,
allowing for easy expansion and customization.
FURPS: Supportability
MoSCoW: Must Have

5. Identifier: NR5
Name: WatchOS Compatibility
Description: The application is compatible with the WatchOS platform.
FURPS: Usability
MoSCoW: Won’t Have

A.2 Functional Requirements

1. Identifier: FR1
Name: Account Creation
Description: Users can create a new account to access the application.
FURPS: Functionality
MoSCoW: Must Have

2. Identifier: FR2
Name: Log In
Description: Users can log in to their existing accounts.
FURPS: Functionality
MoSCoW: Must Have

3. Identifier: FR3
Name: Log Out
Description: Users can log out of their accounts.
FURPS: Functionality
MoSCoW: Must Have

4. Identifier: FR4
Name: Email Verification
Description: User accounts require email verification before accessing
the application.
FURPS: Functionality
MoSCoW: Should Have

146

A.2. Functional Requirements

5. Identifier: FR5
Name: Reset Password
Description: Users can reset their forgotten passwords.
FURPS: Functionality
MoSCoW: Should Have

6. Identifier: FR6
Name: Change Password
Description: Users can change their existing passwords.
FURPS: Functionality
MoSCoW: Could Have

7. Identifier: FR7
Name: Change Username
Description: Users can update their usernames.
FURPS: Functionality
MoSCoW: Could Have

8. Identifier: FR8
Name: Change Email
Description: Users can modify their registered email addresses.
FURPS: Functionality
MoSCoW: Could Have

9. Identifier: FR9
Name: Account Deletion
Description: Users can permanently delete their accounts and associ-
ated data.
FURPS: Functionality
MoSCoW: Must Have

10. Identifier: FR10
Name: English Localization
Description: Users can switch the application language to English.
FURPS: Functionality
MoSCoW: Must Have

147

A. Requirement Specification

11. Identifier: FR11
Name: Czech Localization
Description: Users can switch the application language to Czech.
FURPS: Functionality
MoSCoW: Could Have

12. Identifier: FR12
Name: Plain Timer
Description: Users can start a basic Pomodoro Timer and adjust study
and break durations.
FURPS: Functionality
MoSCoW: Must Have

13. Identifier: FR13
Name: Create Storyline
Description: Users can create interactive storylines, integrating gamifi-
cation with the Pomodoro technique.
FURPS: Functionality
MoSCoW: Must Have

14. Identifier: FR14
Name: Delete Storyline
Description: Users can delete their created storylines.
FURPS: Functionality
MoSCoW: Must Have

15. Identifier: FR15
Name: Update Storyline
Description: Users can modify timer settings and goals for their story-
lines.
FURPS: Functionality
MoSCoW: Could Have

16. Identifier: FR16
Name: Create Guild
Description: Users can create guilds for collaborative or competitive
activities.
FURPS: Functionality
MoSCoW: Must Have

148

A.2. Functional Requirements

17. Identifier: FR17
Name: Update Guild
Description: Guild leaders can update the guild’s goal.
FURPS: Functionality
MoSCoW: Could Have

18. Identifier: FR18
Name: Delete Guild
Description: Guild leaders can delete their guilds.
FURPS: Functionality
MoSCoW: Must Have

19. Identifier: FR19
Name: Invite Guild Member
Description: Guild members with sufficient permissions can invite new
members.
FURPS: Functionality
MoSCoW: Must Have

20. Identifier: FR20
Name: Remove Guild Member
Description: Guild leaders can remove members from their guilds.
FURPS: Functionality
MoSCoW: Could Have

21. Identifier: FR21
Name: Board
Description: The application includes a board where users can compare
their total scores.
FURPS: Functionality
MoSCoW: Must Have

22. Identifier: FR22
Name: Board Sorting
Description: Users can customize the sorting order of the board list.
FURPS: Functionality
MoSCoW: Could Have

149

A. Requirement Specification

23. Identifier: FR23
Name: Notifications
Description: The application sends push notifications to update users
on Pomodoro timer changes.
FURPS: Functionality
MoSCoW: Could Have

24. Identifier: FR24
Name: Calendar Progress Tracker And Organizer
Description: Users can track their study progress with a calendar view
and access charts and statistics.
FURPS: Functionality
MoSCoW: Won’t Have

25. Identifier: FR25
Name: Authentication Process Deeplinks
Description: Incorporates deeplinks for a smoother authentication pro-
cess.
FURPS: Functionality
MoSCoW: Won’t Have

26. Identifier: FR26
Name: In-App Purchases
Description: Users can purchase additional storylines within the appli-
cation.
FURPS: Functionality
MoSCoW: Won’t Have

27. Identifier: FR27
Name: Dynamic Island Support
Description: Displays Pomodoro timer progress on the Dynamic Island
feature.
FURPS: Functionality
MoSCoW: Won’t Have

150

Appendix B
Use Case Specification

1. Identifier: UC1
Name: Sign Up
Description: Initially, users are directed to a sign up form where they
are prompted to input their username, email, password (adhering to secu-
rity standards), and confirm their password. After completing the form,
users click the Sign Up button. If the form is filled out correctly, users
receive a notification confirming that an activation email has been sent
along with additional instructions. If there are errors in the form, users
are prompted to correct them.
Requirements Covered: FR1, FR4, FR25

2. Identifier: UC2
Name: Log In
Description: Upon clicking the Login button at the bottom of the screen,
users are prompted to enter their email and password into the login form.
If the combination of these details is valid, users gain access to the applica-
tion’s home screen. Otherwise, they are informed of the reason for the un-
successful login attempt.
In the event of a forgotten password, users can utilize the Reset Password
link at the bottom of the login form. They are prompted to enter their
email, and an email with additional instructions for password reset is sent
to them. If the account is not registered with the provided email, users
are alerted accordingly.
Requirements Covered: FR2, FR5, FR25

151

B. Use Case Specification

3. Identifier: UC3
Name: Log Out
Description: Logging out is possible only for logged-in users. This op-
tion is located in the Settings tab. Upon selecting the Log Out option
in the scroll menu, the application logs the users out and redirects them
to the initial home screen.
Requirements Covered: FR2, FR3

4. Identifier: UC4
Name: Change Password
Description: To change the password, users need to navigate to the Set-
tings tab after logging into the application. Clicking on the Change Pass-
word option opens a form where users must input their current password,
new password, and confirm the new password. The new password must
meet the same security standards as the original. Upon successfully filling
out the form, users receive a notification confirming that their password
has been changed. In case of any errors, users are alerted to the specific
inconsistency.
Requirements Covered: FR2, FR6

5. Identifier: UC5
Name: Change Email
Description: To change the email, users must navigate to the Set-
tings tab after logging into the application. Clicking on the Email op-
tion opens a form where users must input their current password, new
email, and confirm the new email. Upon successfully filling out the form,
users receive a notification confirming that their email has been changed
and a verification link has been sent to the new email. In case of any
errors, users are alerted to the specific inconsistency.
Requirements Covered: FR2, FR4, FR8, FR25

6. Identifier: UC6
Name: Change Username
Description: To change the username, users must navigate to the Set-
tings tab after logging into the application. Clicking on the Username op-
tion opens a form where users must input their current password and new
username. Upon successfully filling out the form, users receive a notifi-
cation confirming that their username has been changed. In case of any
errors, users are alerted to the specific inconsistency.
Requirements Covered: FR2, FR4, FR7

152

7. Identifier: UC7
Name: Delete Account
Description: To delete an account, users must navigate to the Settings
tab after logging into the application. Clicking on the Delete Account op-
tion opens a form where users must enter their current password and con-
firm it. Upon successfully completing the form, users are presented with
an alert asking if they are sure about this action. If they accept, another
alert detailing what data will be deleted is shown. If the user confirms
this second alert, the account and all associated data are deleted. If ei-
ther alert is dismissed, the action is aborted. Upon successful account
deletion, the application returns to the initial home screen.
Requirements Covered: FR2, FR9

8. Identifier: UC8
Name: Show My Storylines
Description: To view their storylines, users navigate to the Home tab
after logging into the application. In this tab, all the user’s storylines
are listed in the My Storylines section.
Requirements Covered: FR2

9. Identifier: UC9
Name: Start Plain Timer
Description: To start a new plain Pomodoro timer, users navigate
to the Home tab after logging into the application. Here, users can
tap on the Plain Timer tile at the top of the screen. After tapping,
a bottom sheet appears allowing the users to set parameters for the Po-
modoro Timer (study and break interval lengths). When users are satis-
fied with their settings, they can tap on the Start button at the bottom
of that sheet to start the timer. The timer will send a push notification
at the end of the timer period if users have opted to allow notifications
during the first start of the application.
Requirements Covered: FR2, FR12, FR23, FR27

153

B. Use Case Specification

10. Identifier: UC10
Name: Create New Storyline
Description: To create a new storyline, users navigate to the Story-
line tab after logging into the application. In this tab, users select their
desired storyline and tap on it. A quick presentation of the storyline
is displayed, allowing the users to set up the new storyline with the Setup
Storyline button at the bottom of that screen. After tapping on that
button, users are presented with a setup screen, where they can set their
goals for that storyline as well as study and break interval lengths (pa-
rameters for the Pomodoro timer). When users are satisfied with their
storyline settings, they can tap the Create Storyline button at the bottom
of the setup screen. After creating a new storyline, users are automati-
cally redirected to the Home tab.
Requirements Covered: FR2, FR13

11. Identifier: UC11
Name: Delete Storyline
Description: To delete a storyline, users navigate to the Home tab
after logging into the application. In this tab, users select one of their
storylines listed under the My Storylines section. By long pressing that
storyline, a context menu appears. Users select the Delete menu option
to delete the storyline. Users are prompted with an alert asking them
to confirm their action. If confirmed, the storyline is deleted; otherwise,
the action is aborted.
Requirements Covered: FR2, FR14

12. Identifier: UC12
Name: Update Storyline
Description: To update a storyline, users navigate to the Home tab
after logging into the application. In this tab, users select one of their
storylines listed under the My Storylines section. By long pressing that
storyline, a context menu appears. Users select the Update menu option
to change the parameters of the storyline. A bottom sheet then appears,
allowing users to change the parameters of the storyline. When users
are done with their settings, they can tap the Setup Storyline button,
which saves the new settings.
Requirements Covered: FR2, FR15

154

13. Identifier: UC13
Name: Show My Guilds or Guild Detail
Description: To view their guilds, users navigate to the Guilds tab after
logging into the application. In this tab, all guilds to which the users
belong are listed in the Guilds section. By tapping on a guild preview
in the list, a detailed view of the guild is presented.
Requirements Covered: FR2

14. Identifier: UC14
Name: Create New Guild
Description: To create a new guild, users navigate to the Guilds tab
after logging into the application. Users tap the Create New Guild tile
at the bottom of the Guilds tab. A new bottom sheet appears allowing
users to set parameters for the new guild. They are presented with a form
asking them to fill in the name for the new guild, pick a storyline that
the guild will be based on, and set the guild goal. Optionally, they can
add the email(s) of their friends to whom they want invitations sent
along with the guild creation. After setting up the guild, users can tap
the Create Guild button at the bottom of the presented sheet. After
tapping the button, a new guild is created and a preview of it is displayed
in the list of guilds on the Guilds tab.
Requirements Covered: FR2, FR16

15. Identifier: UC15
Name: Update Guild
Description: To update a guild, users must navigate to the Guilds tab
after logging into the application. They also need to be a guild leader
or have elevated permissions to be able to make changes to the guild
settings. At the Guilds tab, users open the detail of a guild by tapping
on its preview tile. After that, there is a Leader Actions button at the top
of the detail that users can tap. This button presents a context menu
which offers guild administration options based on the users’ guild permis-
sions. One of those options is Update Guild. Tapping this option presents
a bottom sheet which allows the users to change the goal of the guild,
its name, and the storyline it has set. When users are satisfied with
their new settings, they can tap the Setup Guild button at the bottom,
effectively changing the settings of the guild.
Requirements Covered: FR2, FR17

155

B. Use Case Specification

16. Identifier: UC16
Name: Delete Guild
Description: To delete a guild, users must navigate to the Guilds tab
after logging into the application. They also need to be a guild leader
to be able to delete a guild. At the Guilds tab, users open the detail
of a guild by tapping on its preview tile. After that, there is a Leader
Actions button at the top of the detail that users can tap. This button
presents a context menu which offers guild administration options based
on the users’ guild permissions. One of those options is Delete Guild.
Tapping this option presents an alert which prompts the users to confirm
their action. If confirmed, the guild is deleted. The action is aborted
otherwise.
Requirements Covered: FR2, FR18

17. Identifier: UC17
Name: Invite Someone To a Guild
Description: To invite someone new to a guild, users must navigate
to the Guilds tab after logging into the application. They also need to be
a guild leader or have elevated permissions to be able to invite a new
member. At the Guilds tab, users open the detail of a guild they want
to invite someone to by tapping on its preview tile. After that, there
is a Leader Actions button at the top of the detail that users can tap.
This button presents a context menu which offers guild administration
options based on the users’ guild permissions. One of those options is In-
vite Friend. Tapping this option presents a bottom sheet where users
need to fill in the email of the user they want to invite. After that, they
can tap on the Invite Friend button at the bottom of the sheet. After
that, an alert is presented to the users informing them about the status
of their invitation—either it was sent to the user, the user was not found,
or there was an error. In any case, the users are properly informed about
what is happening.
Requirements Covered: FR2, FR19

156

18. Identifier: UC18
Name: Remove Someone From a Guild
Description: To remove someone from a guild, users must navigate
to the Guilds tab after logging into the application. They also need
to be a guild leader or have elevated permissions to be able to remove
a guild member. At the Guilds tab, users open the detail of a guild
they want to remove someone from by tapping on its preview tile. Af-
ter that, they need to find the user they want to remove from the guild
in the list of members under the Members section of the detail screen.
Long pressing on the member’s name will bring up a context menu, offer-
ing the item Kick from the Guild. Pressing this will present a confirmation
alert prompt. If confirmed, the member is removed; otherwise, the action
is aborted.
Requirements Covered: FR2, FR20

19. Identifier: UC19
Name: Show Board With Optional Sorting
Description: To show a board, users navigate to the Board tab after
logging into the application. This tab will present a list of users, sorted
by score from highest to lowest. Only the top 10 users will be displayed
on this tab. If there are more than 10 users in total, a Show More button
will appear at the bottom of the tab. Tapping this button will present
a new view with all members. Optionally, if users prefer a different sorting
of the board, by pressing the Sorting button at the top of the screen,
the board sorting can be modified. This button will show a context
menu with the following options: Score Descending, Score Ascending,
Username (a-z), and Username (z-a). Tapping an option from the menu
will change the order of the users in the board.
Requirements Covered: FR2, FR21, FR22

20. Identifier: UC20
Name: Change Language
Description: To change the language, users navigate to the Settings tab
after logging into the application. At this tab, users tap on the Change
Language item in the settings list. This option will present an alert
explaining to users that the language can be set in System Settings.
The alert provides two options—Continue and Cancel, where Continue
opens System Settings allowing users to switch to the desired language
there. The other available option, which is a Cancel button, aborts the ac-
tion.
Requirements Covered: FR2, FR10, FR11

157

B. Use Case Specification

21. Identifier: UC21
Name: Change Notification Preferences
Description: To change to desired notification preferences, users navi-
gate to the Settings tab after logging into the application. There, users
tap on the Change Notification Preferences item in the settings list.
This option will present an alert explaining to users that notification
preferences can be changed in System Settings. The alert provides two
options—Continue and Cancel, where Continue opens System Settings
allowing users to change notification preferences there. The Cancel op-
tion aborts the action.
Requirements Covered: FR2, FR23

22. Identifier: UC22
Name: Show Statistics
Description: To show statistics, users navigate to the Board tab after
logging into the application. At this tab, users tap the Statistics button
at the top of the screen. This will present a new screen with a calendar
and individual statistics of the users’ studying which the user can browse.
Requirements Covered: FR2, FR24

23. Identifier: UC23
Name: Unlock a Storyline
Description: To unlock a storyline, users navigate to the Storylines tab
after logging into the application. At this tab, users tap a locked storyline
(grayed out). This will present a new screen stating information about
the payment that is required to unlock the storyline. In case of successful
payment, the storyline is unlocked.
Requirements Covered: FR2, FR26

158

Appendix C
Wireframes

Figure C.1: Initial Home Figure C.2: Sign Up

159

C. Wireframes

Figure C.3: Log In Figure C.4: Reset Password

160

Figure C.5: Home Tab Figure C.6: Plain Timer

161

C. Wireframes

Figure C.7: Storylines Tab Figure C.8: Storyline Detail

162

Figure C.9: Storyline Setup Figure C.10: Storyline Timer

163

C. Wireframes

Figure C.11: Guilds Tab Figure C.12: Guild Detail

164

Figure C.13: Create Guild Figure C.14: Invite Friend

165

C. Wireframes

Figure C.15: Board Tab Figure C.16: Board Detail

166

Figure C.17: Settings Tab Figure C.18: Navigation Bar

167

Appendix D
Final Appliacation Interface

Screenshots

Figure D.1: Launch Screen Figure D.2: Onboarding 1st Page

169

D. Final Appliacation Interface Screenshots

Figure D.3: Onboarding 2nd Page Figure D.4: Onboarding 3rd Page

170

Figure D.5: Initial Home Figure D.6: Sign Up

171

D. Final Appliacation Interface Screenshots

Figure D.7: Sign Up Done Figure D.8: Log In

172

Figure D.9: Reset Password Figure D.10: Password Reset Done

173

D. Final Appliacation Interface Screenshots

Figure D.11: Home Tab Figure D.12: Storyline Menu

174

Figure D.13: Plain Timer Setup Figure D.14: Plain Timer

175

D. Final Appliacation Interface Screenshots

Figure D.15: Storylines Tab Figure D.16: Storyline Detail

176

Figure D.17: Storyline Setup Figure D.18: Storyline Timer

177

D. Final Appliacation Interface Screenshots

Figure D.19: Guilds Tab Figure D.20: Guild Invitation

178

Figure D.21: Create Guild Figure D.22: Update Guild

179

D. Final Appliacation Interface Screenshots

Figure D.23: Guild Detail Figure D.24: Guild Detail (Dark)

180

Figure D.25: Leader Actions Figure D.26: Invite Friend

181

D. Final Appliacation Interface Screenshots

Figure D.27: Member Context Menu
(Leader’s Point of View)

Figure D.28: Member Context Menu
(Common Member’s Point of View)

182

Figure D.29: Board Tab Figure D.30: Board Detail

183

D. Final Appliacation Interface Screenshots

Figure D.31: Board Tab (iPad OS)

184

Figure D.32: Board Detail (iPad OS)

185

D. Final Appliacation Interface Screenshots

Figure D.33: Settings Tab Figure D.34: Change Password

186

Figure D.35: Change Language Figure D.36: Change Notifications

187

D. Final Appliacation Interface Screenshots

Figure D.37: Delete Account 1st Figure D.38: Delete Account 2nd

188

Figure D.39: Delete Account 3rd Figure D.40: Push Notification

189

D. Final Appliacation Interface Screenshots

Figure D.41: Loading Placeholders Figure D.42: No Connection

190

Appendix E
Usability Testing Scenarios

1. Identifier: UTS1
Name: User Registration and Authentication
Prerequisites: The application is running and the initial screen is pre-
sented.
Context: You want to start using the application, so create a new ac-
count with testuser username, testmemorizify@gmail.com email and AB-
Cabc123 password.
Success: Successful completion of the registration and login process,
granting the user access to the application.
Expected Steps:

a) The user taps the Sign Up button.
b) The user fills in all the required form fields.
c) The user consents to the application’s Privacy Policy.
d) The user confirms registration by selecting the Sign Up button.
e) The user verifies their email by accessing the email sent by the ap-

plication and following the enclosed link.
f) The user returns to the application after email verification.
g) The user taps the Sign Up option.
h) The user fills in the necessary login credentials.
i) The user logs in by tapping the Sign Up button.

191

E. Usability Testing Scenarios

2. Identifier: UTS2
Name: Plain Timer Usage
Prerequisites: The user is logged into the application and located
on the Home tab.
Context: You just want to start working as soon as possible, so turn
on the Pomodoro timer with a 25-minute study interval and 5-minute
break period.
Success: Successful activation of the timer with the specified settings.
Expected Steps:

a) User taps the Plain Timer button.
b) User configures the study interval to 25 minutes.
c) User sets the break interval to 5 minutes.
d) User initiates the timer by selecting the Start button.

192

3. Identifier: UTS3
Name: Storyline Setup and Usage
Prerequisites: The user is logged into the application and located
on the Home tab.
Context: You want to enhance your motivation by introducing a story-
line to read during your study breaks. Set up the Embers Tale storyline
with a total goal of 50 hours, 30-minute study intervals, and 5-minute
breaks, then proceed to start working immediately.
Success: Successful setup of the Embers Tale storyline and activation
of its timer.
Expected Steps:

a) User navigates to the Storylines tab.
b) User selects the Embers Tale storyline.
c) User chooses the Setup Storyline option.
d) User sets the hour goal to 50.
e) User sets the minute goal to 0.
f) User configures the study interval to 30 minutes.
g) User sets the break interval to 5 minutes.
h) User confirms the setup by selecting the Done button.
i) Upon being redirected to the Home tab, the user locates the Embers

Tale storyline, accesses it, and activates the timer.

193

E. Usability Testing Scenarios

4. Identifier: UTS4
Name: Guild Creation
Prerequisites: The user is logged into the application and located
on the Home tab.
Context: You aim to track study progress alongside three friends, identi-
fied by their email addresses: chburns@email.com, daphchar@email.com,
and aveburns@email.com. Create a new guild named School Crew with
your goal set to 40 hours.
Success: Successful creation of the School Crew guild and invitation
of the three specified friends via their email addresses.
Expected Steps:

a) User navigates to the Guilds tab.
b) User taps on the Tap here to create a new guild button.
c) User names the guild School Crew.
d) User sets the hour goal to 40.
e) User invites the three friends by their email addresses.
f) User confirms creation by selecting the Create Guild button.

194

5. Identifier: UTS5
Name: Guild Members Management
Prerequisites: The user is logged into the application and located
on the Home tab. The user is the leader of a guild called Geek Guild,
which contains player with username Charles Burns.
Context: You have discovered that your friend Charles Burns is not meet-
ing the guild’s goals in Geek Guild. However, you know that Lisa Mont-
gomery is a dedicated team player. Therefore, you intend to remove
Charles Burns from Geek Guild and invite Lisa Montgomery to join
the guild instead, using her email lisam@email.com.
Success: The user removes Charles Burns from Geek Guild and invites
Lisa Montgomery to join the same guild.
Expected Steps:

a) User navigates to the Guilds tab.
b) User opens the detail of the Geek Guild.
c) User performs a long press on the user Charles Burns in the Members

section.
d) After being presented context menu with possible actions, the user

taps on Kick from Guild option.
e) User taps on the Leader actions button and chooses Invite Friend

from the context menu.
f) User fills in the form with lisam@email.com and taps on Invite

Friend button.

195

E. Usability Testing Scenarios

6. Identifier: UTS6
Name: Identifying the Player with the Fewest Points
Prerequisites: The user is logged into the application and located
on the Home tab. There are more than 10 global users of the app
in the user board. The user with the fewest points has the username
Charles Burns.
Context: You aim to determine the user with the lowest number of points
in the global rankings.
Success: The user identifies Charles Burns as the user with the fewest
points in the global board.
Expected Steps:

a) User navigates to the Board tab.
b) User taps on the Score.
c) After accessing the board details, the user taps on the Sorting button

and selects Score Ascending.
d) User locates the player Charles Burns at the top of the board.

196

7. Identifier: UTS7
Name: Switch Language to Czech
Prerequisites: The user is logged into the application and the applica-
tion language is set to English. The user is located on the Home tab.
Context: You aim to demonstrate the application to your good friend,
who speaks only Czech. You intend to switch the application language
to Czech.
Success: The application language is successfully switched to Czech.
Expected Steps:

a) User navigates to the Settings tab.
b) User taps on the Switch Language setting in the Other section.
c) After being presented the Switch Language alert, user clicks on Con-

tinue button to access Settings.
d) User is redirected to the System Settings and chooses Czech lan-

guage as the preferred language.
e) User returns to the application.

197

Appendix F
List of Abbreviations

• API: Application Programming Interface

• ARC: Automatic Reference Counting

• AV: AudioVisual

• CLT: Cognitive Load Theory

• CPU: Central Processing Unit

• CRUD: Create, Read, Update, Delete

• DocC: Documentation Compiler

• ER: Entity-Relationship

• ERD: Entity Relationship Diagram

• FK: Foreign Key

• FURPS: Functionality, Usability, Reliability, Performance, and Sup-
portability

• GPU: Graphics Processing Unit

• HTTPS: Hypertext Transfer Protocol Secure

• ID: Identifier

• IDE: Integrated Development Environment

• iOS: iPhone Operating System

• ISO/IEC: International Organization for Standardization/International
Electrotechnical Commission

• JSON: JavaScript Object Notation

• MVC: Model-View-Controller

• MVVM: Model-View-ViewModel

199

F. List of Abbreviations

• MoSCoW: Must have, Should have, Could have, and Won’t have

• NoSQL: Not Only SQL

• OAuth: Open Authorization

• PK: Primary Key

• PR: Pull Request

• SDK: Software Development Kit

• SDT: Self-Determination Theory

• SMART: Specific, Measurable, Achievable, Relevant, and Time-bound

• SQL: Structured Query Language

• UI: User Interface

• URL: Uniform Resource Locator

• UML: Unified Modeling Language

• UX: User Experience

• VIPER: View, Interactor, Presenter, Entity, and Router

• XML: eXtensible Markup Language

200

Appendix G
Contents of Attachments

demo..............................directory containing various demo files
screenshots........directory with screenshots of the final application
wireframes..............directory with wireframes of the application
ui-tests............................directory with UI test examples

src .. directory with source files
implementation.........source files for the Memorizify Xcode project
thesis.......................source files for the thesis LaTeX project

doc directory with application documentation
Memorizify.doccarchive...............DocC documentation archive

text......................................directory with the thesis text
thesis.pdf.................................thesis text in pdf format

other.....................................additional related documents
research-study.pdf..........research study on Pomodoro technique

readme.txt..............readme file with description of this attachments

201

	Introduction
	Goals of the Thesis
	Learning Approaches and Cognitive Processes
	Psychological Foundations of Learning
	Learning Theories
	Behaviorism
	Cognitivism
	Constructivism
	Other Learning Theories

	Cognitive Load Theory
	Motivation in Learning
	Intrinsic vs. Extrinsic Motivation
	Self-Determination Theory

	Memory and Retention
	Colors
	Other Concepts

	Effective Learning Methods
	Active Learning
	Foundations of the Method
	Evidence-based Studies
	Advantages and Disadvantages
	Summary of Active Learning

	Spaced Repetition
	Foundations of the Method
	Evidence-based Studies
	Advantages and Disadvantages
	Summary of Spaced Repetition

	Collaborative Learning
	Foundations of the Method
	Evidence-based Studies
	Advantages and Disadvantages
	Summary of Collaborative Learning

	Gamification of Learning
	Foundations of the Method
	Evidence-based Studies
	Advantages and Disadvantages
	Summary of Gamification in Learning

	Pomodoro Technique
	Foundations of the Method
	Evidence-based Studies
	Advantages and Disadvantages
	Summary of Pomodoro Technique

	Other Methods

	Individual Differences
	Learning and Technology
	Pomodoro Technique Research
	Introduction
	Motivation and Research Questions
	Methods
	Interview Study
	Survey Study

	Results and Discussion
	Interview Study Findings
	Survey Study Findings
	Summary of Results

	Research Conclusion

	Summary of Learning Approaches and Cognitive Processes

	Domain Analysis
	Competition Analysis
	Forest: Focus for Productivity
	How It Works
	Key Features
	Advantages and Disadvantages
	Summary of Forest Analysis

	Focus To-Do: Focus Timer&Tasks
	How It Works
	Key Features
	Advantages and Disadvantages
	Summary of Focus To-Do Analysis

	Study Bunny: Focus Timer
	How It Works
	Key Features
	Advantages and Disadvantages
	Summary of Study Bunny Analysis

	Domain Model
	Domain Model Notations
	Productivity-Enhancing Application Domain
	Storylines
	Guilds
	Board

	Summary of Domain Model

	Application Requirements
	Frameworks for Requirement Definition
	SMART
	FURPS
	MoSCoW

	Requirements Specification
	Summary of Application Requirements

	Application Use Cases
	Use Case Diagram Notation
	Use Case
	Association
	Actor
	System
	Include
	Extend
	Dependency
	Generalization
	Realization
	Collaboration

	Use Case Specification
	Summary of Application Use Cases

	Summary of Domain Analysis

	Technology Analysis
	Firebase Backend
	Firebase Authentication
	Firestore Cloud
	Other Firebase Services

	Swift Language
	Key Features
	Automatic Reference Counting
	Weak References
	Unowned References

	iOS SDK
	SwiftUI
	How It Works
	View Identity
	View Lifetime
	View Dependencies

	Xcode
	Swift Package Manager
	Testflight and AppStore
	Testflight
	AppStore

	Summary of Technology Analysis

	Design
	Choosing Architecture and Design Patters
	Clean Architecture
	MVVM
	Architecture in Practice
	Domain Layer
	Data Layer
	Presentation Layer

	Database Schema
	ER Diagram Notation
	Types, Keys and Fields
	Cardinality and Ordinality

	ER Diagram

	User Interface Design
	Usability
	Colors
	Wireframes
	Authentication
	Navigation Bar
	Storylines
	Guilds
	Board
	Settings

	Miscellaneous

	Summary of Design

	Implementation
	Intial Setup
	Jira and BitBucket Setup
	Jira Setup
	BitBucket Setup
	Jira and BitBucket Integration

	Xcode Project Setup
	Firebase Setup
	Create New Firebase Project
	Register iOS App

	AppStore Connect Setup

	Core Components
	NSLogging
	Dependency Injection
	String Catalog
	Navigation Routing

	Typical Workflow
	Issue and Branch Creation
	Module Implementation
	Committing, Reviewing, Merging and Deployment

	Storylines Module
	Other Modules
	Summary of Implementation

	Testing and Documentation
	Testing
	Unit Testing
	Characteristics of Unit Testing
	Mocking
	Unit Testing Example

	User Interface Testing
	Usability Testing
	Usability Testing Scenarios
	Changes Made Based On Feedback

	Performance Testing
	Launch Performance Testing

	Network Performance Testing
	Summary of Testing

	Documentation
	Code Commentary Format
	DocC
	Summary of Documentation

	Results and Future Development
	Results
	Analysis, Design, Implementation and Testing
	Requirements Fulfillment
	Summary of the Results

	Future Development
	Usability Testing Feedback
	Remaining Requirements
	Other Possible Enhancements
	Summary of Future Development

	Conclusion
	Bibliography
	Requirement Specification
	Non-Functional Requirements
	Functional Requirements

	Use Case Specification
	Wireframes
	Final Appliacation Interface Screenshots
	Usability Testing Scenarios
	List of Abbreviations
	Contents of Attachments

