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Abstract

This thesis focuses on the topic of distributed multiple-target tracking. It
presents the necessary mathematical concepts needed to understand the sub-
ject. Then, it introduces the concept of hidden state estimation with the hid-
den Markovian model and measurement model. Next, it introduces and derives
the Kalman filter using the exponential family of distributions. The Kalman
filter is then gradually evolved into the PDA filter, IPDA filter and JIPDA fil-
ter. Once these concepts are established, they deal with collaborative filtering
methods, focusing mainly on the diffusion approach. The diffusion approach is
initially described in a general manner. After that, a diffusion algorithm based
on the JIPDA filter is proposed. The performance of the proposed algorithm
is then evaluated in several experiments.

Keywords PDAF, JPDAF, single-target tracking, multi-target tracking,
data fusion, information fusion, diffusion network, Kalman filter, Bayesian
interference, Gaussian mixture

Abstrakt

Tato práce se zaměřuje na téma distribuovaného sledováńı v́ıce ćıl̊u. Nejprve
popisuje nezbytné matematické koncepty potřebné k porozuměńı tématu. Poté
představuje koncept odhadu skrytého stavu s pomoćı skrytého Markovova
modelu a modelu měřeńı. Následně představuje a odvozuje Kalman̊uv filtr
s využit́ım exponenciálńı rodiny distribućı. Z Kalmanova filtru jsou dále
postupně odvozen PDA, IPDA, JIPDA a JIPDA filtry. Jakmile jsou tyto
koncepty zavedeny, zabývá se metodami distribuovaného filtrováńı, přičemž
se hlavně zaměřuje na difúzńı př́ıstup. Difúzńı př́ıstup je nejprve popsán
obecným zp̊usobem. Poté je navržen difúzńı algoritmus založený na JIPDA
filtru. Funkčnost navrženého algoritmu je pak vyhodnocena v několika exper-
imentech.
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Introduction

Ever since the development of the first radar installation before the 2nd World
war, the development of target-tracking techniques has been mainly driven by
military applications. The invention of long-range guided rockets has under-
lined the need to develop methods of identifying and tracking a target, with
the aim of modeling and predicting its position in time to deploy appropriate
countermeasures.

The results of the military research have later found applications in the
civilian sector, notably, the first civilian application was air traffic control and
maritime navigation aid, also known as automatic radar plotting aid (ARPA).
The primary purpose of these systems was the very opposite of the military
application that is, to prevent collisions of nearby airplanes or ships by keeping
track of their whereabouts.

With the start of the space race arose the need to develop robust guidance
systems, probes, and shuttles. This culminated in one of the most widely
known examples of usage of the Kalman filter in the Apollo program as a part
of its navigational and guidance computer. Later on, space agencies around the
world started to employ target tracking algorithms to monitor the movement
of space debris [1], asteroids in our solar system [2], or in guidance and tracking
systems in autonomous probes [3], [4]. Today, these same methods are used
in, e.g., autonomous vehicles to scan, detect, and model surrounding objects
to prevent colisions [5], [6].

To track a target, we need to use some kind of sensor to collect information
from the environment. The sensor can be of any kind 1: a camera, lidar,
radar, etc. If all we are interested in is the current position of the target, then
a simple radar could be enough complete the task. This way, however, the
information received would not be particularly precise as radar measurements
can be affected by interferences from the environment, i.e., the measurements
are noisy. We would also not be able to predict the movement of a target very
accurately, if at all. Most importantly, we would not be able to automatically

1In this thesis we will use radars in examples.

1
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detect a target since we would have no way of telling if a bright spot on an
operator’s screen is a reflection from a cloud, a mountain, or an airplane.
For this reason, we need a more sophisticated method to process the incoming
information. The method should be able to detect appearing and disappearing
targets and handle uncertainty regarding the accuracy of radar measurements
while also being able to predict future movement based on already acquired
data. To achieve the last requirement, the method will have to infer properties
or parameters of the target that are not directly observable, e.g., the velocity,
acceleration, turn-rate, etc.

The Kalman filter proposed in [7] is one of such estimators. First proposed
in 1960 by Rudolf E. Kalmán, it is still one of the most widely used estimators
to this day. Its usage is not limited to target tracking only. To this day, it is
being used in, e.g., predicting the state of a battery [8], [9] in electronic devices
such as mobile phones or even electric vehicles. In its basic form, the Kalman
filter applies only to linear models. For extended usage on non-linear problems,
the Unscented Kalman and Extended Kalman filters [10] were proposed. In
contrast with the linear Kalman filter, these variants are not optimal, i.e.,
covariances of predicted values are not minimal; moreover, in the case of the
Extended Kalman filter, the filter may diverge completely. In target tracking,
the Kalman filter can track only a single target. We do not allow any false
alarm (false measurements) to appear in the observed region. Lastly, the filter
cannot handle appearing or disappearing targets.

Even though the Kalman filter can be modified to handle multiple mea-
surements by, e.g., choosing the nearest measurement to target the predicted
location (NN-KF [11]), this approach is not ideal, as the filter can quickly
diverge from the actual location if the nearest measurement is false. To ad-
dress this issue more robustly, the probability data association (PDA) filter
[12] has been proposed. The PDA filter computes an association probability
for every measurement. Based on these probabilities, a weight is assigned to
every measurement. This results in a weighted mixture of probability densi-
ties of possible locations of the target. This mixture is then combined using a
moment-matching method, resulting in a final estimate of the target’s location.

By solving the issue of processing multiple measurements at a time, the
leap towards multiple target tracking filters becomes straightforward. The
PDA filter is already suited for tracking multiple targets in our surveillance
region. The simplest approach is to run the PDA filter for every target in
the region independently. If these targets do not interact with each other,
i.e., do not approach each other, the PDA filter will not be affected as distant
measurements will be assigned weights close to zero, thus not interfering with
its predictions. However, if these targets were to cross trajectories or move side-
by-side, the association weights would suddenly increase to a non-insignificant
value, resulting in fusing the predicted position of both targets to appear
between them. This phenomenon is also called track coalescence. In such
a situation, the PDA filter’s accuracy is reduced. It will not be able to handle
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the possible separation of said targets. A modification to the PDA filter was
presented to minimize the probability of track coalescence occurring. The
PDA filters cannot run isolated from each other; the association probabilities
have to account for the possibility of a measurement originating from a different
target, i.e., the association probabilities have to be computed jointly. The joint
probability data association (JPDA) filter [12] works with the premise that only
a single measurement can originate from a target at any given time. If two
targets get sufficiently close to each other, the JPDA filter computes all possible
association hypotheses with their respective probabilities. By marginalizing
over the hypotheses, the JPDA filter computes the association weights of each
measurement for each target, considering the possibility of a measurement
originating from a different target. Once these weights are computed, the filter
continues to form a probability density mixture for each target and merge them
as in the PDA variant.

Being able to track multiple targets, the JPDA filter is still unable to
detect and handle the appearing and disappearing targets. For this purpose,
another modification of the joint integrated data association (JIPDA) filter
[13] and IPDA [14] for the PDA filter variant was introduced. The integrated
variant assigns a Bernoulli probability of existence to every target. With every
timestep, the target is expected to survive with an arbitrary probability. If
a measurement is associated with the given target, its probability is updated
(increased) proportionally to the likelihood of the associated measurement. A
target is then declared nonexisting if its existence probability falls below a
specific value. On the other hand, in the JIPDA and IPDA approach, every
measurement that is not associated with any target at an arbitrary timestep is
declared a new target with its existence probability set reasonably close to the
existence threshold. This ensures that measurements falsely declared a target
will be removed in subsequent timesteps.

One could argue that the JPDA and PDA filters – while offering good
tracking accuracy – approach the problem of measurement association as hun-
gry algorithms. After every timestep, we merge all possible associations into a
single ”pseudo” association, thus choosing the local optima. Instead, we could
keep track of every association hypothesis separately, and with every incoming
measurement set, we could incorporate them into every hypothesis separately.
This way, we could filter out all wrong association hypotheses as they would
become less probable. This approach is known as the Multiple hypothesis
tracker (MHT). The most basic form proposed by Reid [15]. While the mathe-
matics is similar to JPDA, the MHT filter (the MHT filter computes multi-scan
associaton hypotheses) creates child hypotheses with every measurement scan.
This results in an exponential increase in the number of tracked hypotheses.
To keep the computational performance at reasonable levels, very aggressive
pruning methods must be implemented. One of the issues of MTH filters is
their implementation complexity, as multiple sophisticated techniques, search
techniques, and data structures have to be used to keep the computational
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complexity reasonable [16].
JPDA, PDA, and subsequently, JIPDA and IPDA filters are examples of

the association-based paradigm of the target tracking topic. These filters of-
fer good tracking performance in an environment with a low rate of clutter
measurements while also keeping the computational complexity is relatively
low.

Another fundamentally different paradigm is the random finite set (RFS)
approach, which has gained traction in recent decades. One of the simpler
RFS-based filters is the probability density hypothesis (PHD) filter [17] and
its Gaussian variant GM-PHD [18]. The PHD filter approximates a Bayesian
filter as it propagates only the first moment of the first-order multi-object
density. In the point process theory, the first moment is usually called the
intensity, the probability density function in target tracking. We expect the
PHD to follow the multi-object Poisson distribution approximately to derive
a closed-form solution. The reasonably straightforward implementation and
low computational complexity are some of its advantages. The computational
complexity stays low as it only approximates the multi-object density using
the PHD and because it does not need to compute association probabilities.
The main drawback of the filter is its unstable prediction of several targets in
the region, which is caused by the approximation of the mixture and a lack of
a rigorous way to provide track history for targets. To address these issues, the
cardinality PHD (CPHD) filter [19], [20] – which also propagates the second
moment of the density – and trajectory CPHD (TCPHD) filter [21] have been
developed.

Recent developments in smart devices equipped with sensors and ever-
increasing computing power has driven development in the field of sensor net-
works and smart grids. These networks allow us to collect data using different
instruments, e.g., radar with lidar and camera, that can be placed in differ-
ent locations and process it in a distributed and collaborative manner, e.g.,
autonomous vehicles and radar arrays.

The main approaches to collaborative filtering can be divided into several
types: centralized architectures with a fusion center, incremental strategy with
the Hamiltonian cycle, consensus-based, diffusion-based. In the centralized
approach, each node with a sensor contains a local instance of a target-tracking
agent. Data from all agents is then sent to a single central node, where it is
processed, and the final estimate is computed [22]. An example of a fusion
center-based Kalman filter can be found in [23] or in [24] for a PDA-based
filter. The incremental strategy with the Hamiltonian cycle does not offer
high robustness, as all nodes must form a cycle, thus rendering the network
vulnerable to link failures. Additionally, establishing the Hamiltonian cycle
is an NP-complete problem, which can severely affect performance in case
of a link failure, as the cycle has to be computed anew. Lastly, the network
limits the node-to-node communication to only a single neighbor, hindering the
propagation of information and limiting the potential performance of the whole
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network. The consensus and diffusion strategies are so-called fully distributed
strategies. They do not impose restrictions on the network itself. In the
consensus-based strategy, every node tries to iteratively find a combination of
all its neighbor estimates [25]. This iteration lasts until a consensus among all
neighbors is found. Due to this nature, real-time tracking is problematic [26].
The information fusion in the diffusion strategy happens in a single step. Every
node receives information from its neighbors and incorporates it immediately
into its estimate. Therefore, real-time tracking is not as problematic as in the
consensus strategy.

While RFS-based filters outperform association-based ones, their distributed
variants exist, e.g., [27] [28]. Their high computational complexity and memory
demand require more powerful sensor devices to handle the computations in
real time. One could argue that simpler association-based filters collaborating
together could significantly improve the filtering performance while keeping the
computational complexity and memory demand significantly lower compared
to their RFS-based alternatives.



Chapter 1

Prerequisites

To understand the basis on which tracking algorithms are built, we need to
introduce several mathematical concepts from the probability theory and sta-
tistical processing first.

1.1 Bayesian theorem

Bayesian theorem is the most fundamental theorem that allows us to determine
the probability of a hypothesis given additional information (i.e., observations).

▶ Theorem 1.1. Assume a real random variable X and its realization x and
parameter θ, the following is true:

π(θ|X = x) = π(θ|x) = f(x|θ)π(θ)
f(x) , f(x) > 0, (1.1)

where

f(x) is marginal density of observations

π(θ|x) is the posterior density of θ

π(θ) is prior density of θ

f(x|θ) is the likelihood of observations

Since f(x) is normalization factor, we can simply Equation (1.1) into:

π(θ|x) ∝ f(x|θ)π(θ), (1.2)

where ∝ stands for proportionality, i.e., equality up to the normalizing
factor.

For example, in linear regression, X is the observed (modeled) variable, θ
are estimated regression coefficients, and f(x|θ) is a Gaussian distribution. In

6



Prior, posterior distributions and conjugate prior 7

state-space modeling, X is the observed (modeled) variable, θ are estimated
system states, and f(x|θ) is a corresponding distribution. In GPS-based lo-
calization of a static target, X is the raw location measurement, θ is the true
location to be estimated, and f(x|θ) is a two- or three-dimensional Gaussian
distribution.
▶ Note 1.2. ”For convenience, we will not distinguish between random vari-
ables and their realizations and use lowercase letters universally. The particular
case is clear from the context.

1.2 Prior, posterior distributions and conjugate prior

Adhering to the Bayesian sequential framework, we aim to estimate parameter
θ using its prior distribution π(θ), representing accumulated information from
all previous observations. Using Equation (1.2), we get posterior distribution
π(θ|x) representing updated information about the parameter.

Unfortunately, one of the main problems of the Bayesian approach is the
rare existence of analytically tractable or computationally low-cost solutions
to the posterior distribution[26]. This is where the concepts of conjugate prior
and exponential family of distributions help us find an analytical solution of
the posterior.

▶ Definiton 1.3 (Exponential family of distributions). A family {Fθ} of dis-
tributions of a random variable x parametrized by a scalar or multivariate
parameter θ is said to form an exponential family if the probability density
function can be written in the form

f(x|θ) = h(x)g(θ) exp{η(θ)⊺T (x)}, (1.3)

where h(x) is the base measure, T (x) is a sufficient statistic, g(θ) is a known
normalizing function and ν(θ) is the natural parameter. If η(θ) = θ, then the
family is called canonical [26]

▶ Definiton 1.4 (Conjugate prior). Let f(x|θ) be a member of exponential
family of distributions. Prior distribution π(θ) with hyperparameters ξ, ν is
conjugate to it if its probability density has form,

π(θ) = q(ξ, ν)g(θ)ν exp{η(θ)⊺ξ}, (1.4)

where ξ is a hyperparameter of the same size as T (x), ν ∈ R+ is scalar hyper-
parameter, q(ξ, ν) is a known function and g(θ) is the same function as in the
exponential family distribution.

By choosing our model f(x|θ) from the exponential family of distributions
and its appropriate conjugate prior π(θ), we ensure that the resulting poste-
rior distribution also belongs to the exponential family and that the Bayesian
update (1.2) has an analytical solution.
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It is easy to show that the Bayesian update under conjugancy reduces to
a simple update of hyperparameters ξ and ν [26] as:

ξk = ξk−1 + T (xk),
νk = νk−1 + 1. (1.5)

1.3 Kullback-Leilbler divergence

Let f(x) and g(x) be probability density functions of a random variable x.
Their Kullback-Leilbler divergence is then defined as

D(f ||g) = Ef(x)

[
log f(x)

g(x)

]
=
∫

f(x) log f(x)
g(x) dx.

The KL-divergence allows us to compare two probability density functions.
It does not satisfy Euclid’s triangle inequality, nor is it symmetric. Despite
this, it is still widely used as a ”similarity measure” in the Bayesian approach
to probability.



Chapter 2

Single target tracking

In Chapter 1, model parameters represented by θ were considered static. This
is, however, not the case in real-world scenarios where we are dealing with a
dynamic stochastic system. Our main goal is to estimate the system’s state
with each incoming set. The state itself is usually not directly observable;
therefore, we have to estimate it using a sequence of noisy measurements.
For example, when we are tracking a plane in the sky, the state model may
include x, y, z coordinates, velocity and acceleration in each direction. Yet the
radar or other sensor can only provide the plane’s position, and the rest of the
parameters must be inferred. This process of state estimation is commonly
referred to as filtering.

In this chapter, we will gradually lay the foundations of state representa-
tion, how we can connect received information (measurements) with the un-
known state, which itself is not directly observable, to improve our knowledge
of its parameters. Next, we will describe and derive one of the most funda-
mental filter algorithms, the Kalman filter. We will introduce the concept of
clutter and its modeling and improve upon the Kalman filter to derive the
PDA filter, which is built to work better in cluttered environments.

2.1 State-space model

Before tracking the model’s state with incoming measurements, we must make
two informed decisions. First, we need to know or estimate the model’s state
at a starting point in time k0. Second, we must decide which evolution model
best suits our tracking scenario.

Because these evolutionary models describe only the unobservable (hidden)
model, they are also accompanied by the measurement model, which describes
how the incoming measurements relate to the estimated model. The evolution-
ary and measurement models together form the state-space model. The most
commonly used state-space models are the constant velocity model (CVM)

9
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and constant acceleration model (CAM), which are shown in Examples 2.1
and 2.2.

▶ Example 2.1 (CVM). The most common for target tracking is called the
constant velocity model [16]. The state vector contains only the position and
velocity of the target. For a two-dimensional scenario, the state vector has the
following form:

x =


x
y
vx

vy

 , (2.1)

xk =


1 0 ∆k 0
0 1 0 ∆k
0 0 1 0
0 0 0 1

xk−1 + vk, (2.2)

zk =
[
1 0 0 0
0 1 0 0

]
xk + wk, (2.3)

where vk ∼ N (0, Qk) and wk are the process and measurement noise variable,
respectively.

▶ Example 2.2 (CAM).

x =



x
y
vx

vy

ax

ay


, (2.4)

xk =



1 0 ∆k 0 1
2∆k2 0

0 1 0 ∆k 0 1
2∆k2

0 0 1 0 ∆k 0
0 0 0 1 0 ∆k
0 0 0 0 1 0
0 0 0 0 0 1


xk−1 + vk, (2.5)

zk =
[
1 0 0 0 0 0
0 1 0 0 0 0

]
xk + wk, (2.6)

where vk ∼ N (0, Qk) and wk are defined as above.
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2.1.1 Process model
The hidden process model can be described using the following equation

xk = Fxk−1 + vk, (2.7)

where x is the state vector times k and k − 1, and F is a known transition
matrix. Since no mathematical model is perfect, there will always be a part
of real-world dynamics that cannot be described and modeled precisely. This
indescribable part is, therefore, considered a noise of the model itself and is
included in the noise term vk.

To be able to derive a closed-form solution for the Kalman filter later in
this chapter using concepts described in Chapter 1, we also have to assume
that vk is independent, centered at zero and Gaussian, i.e., white noise:

vk ∼ N (0,Q) (2.8)

Since vk is a Gaussian variable and xk is a random variable, using a linear
transformation, we get:

xk ∼ N (Fxk−1,Q), (2.9)

with its distribution represented by a probability density function p(xk|xk−1).

2.1.2 Measurement model
Having described the model itself, we now have to describe the relation of
incoming measurements to the model’s state. To do so, we have to introduce
a new measured variable zk, defined as

zk = Hxk + wk, (2.10)

where xk is a state vector, H is a matrix of compatible shape, also known as
the measurement matrix, wk is the noise the sensor induces. As in the process
model, we assume the measurement noise is Gaussian and centered at 0.

wk ∼ N (0,R) (2.11)

Once again, using a linear transformation as in 2.9 we get:

zk ∼ N (Hxk,R), (2.12)

with probability distribution function p(zk|xk).
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x0 x1 x2 x3 · · · xk−1 xk xk+1 · · ·

z1 z2 z3 zk−1 zk zk+1

Figure 2.1 Graphical visualization of the Bayesian model estimation

2.1.3 Markov property
Lastly, we assume that both process and measurement models with their re-
spective densities as p(xk|xk−1) and p(zk|xk) comply with the Markov prop-
erty. The Markov property states that the state at time k is directly dependent
only on the previous state at time k − 1:

p(xk|x1, . . . , xk−2, xk−1, z1, . . . , zk−2, zk−1) = p(xk|xk−1), (2.13)

p(zk|x1, . . . , xk−2, xk−1, xk, z1, . . . , zk−2, zk−1) = p(zk|xk), (2.14)

i.e., we assume that the information known now or in the past does not provide
information about the future behavior of the target. Due to this assumption,
the hidden process model is also called the hidden Markovian model.

2.2 Kalman filter

Kalman filter is one of the most basic filtering algorithms. Being used first in
the Apollo navigation program, it continues to be one of the most fundamen-
tal sequential estimation and filtering algorithms in 3D modeling, time-series
analysis, electronics, and many other fields. Its use is not limited to state
estimation only, but it has proven to be useful in signal smoothing, e.g., the
remaining battery time indication. The Kalman filter in its basic form, which
will be described in this chapter, applies to linear problems only; however,
non-linear formulations such as extended Kalman filter or unscented Kalman
filter do exist.

2.2.1 Derivation
Like most filtering algorithms, the Kalman filter estimates the process model
using feedback control. First, the filter estimates the process state at time
k, and once a measurement from a sensor arrives, it corrects its predicted
state in a Bayesian fashion. Note that if a measurement at timestep k and/or
any subsequent timesteps won’t arrive, the filter will keep predicting the state
based on measurements that have arrived until that point.
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Given the process model and measurements model from the previous sec-
tion

xk = Fxk−1 + vk, vk ∼ N (0,Q) (2.15)
zk = Hxk + wk, wk ∼ N (0,R) (2.16)
x0 = N (x̂0, P0), (2.17)

process and measurement noise represented as white noise and random vari-
ables xk and zk as:

xk ∼ N (Fxk−1,Q), with probability density p(xk|xk−1) (2.18)
zk ∼ N (Hxk,R), with probability density p(zk|xk). (2.19)

We can derive analytical solutions to the prediction and update steps.

2.2.2 Prediction step
The prediction step, also known as the Chapmap-Kolmogorov equation, up-
dated the posterior distribution with the evolution model:

p(xk|z0:k−1) =
∫

p(xk, zk−1|z0:k−1)dxk−1 (2.20)

=
∫

p(xk|xk−1)p(xk−1|zk−1)dxk−1. (2.21)

Multiplying two Gaussian distributions yields a single multivariate Gaussian
distribution. By marginalizing the multivariate Gaussian over xk−1 we get a
prior Gaussian distribution N (xk|k−1, Pk|k−1) with parameters

xk|k−1 = Fxk +Q, (2.22)
Pk|k−1 = HPkHT +R. (2.23)

2.2.3 Update step
The filter uses the Bayesian theorem to correct the estimate based on the new
measurement zk in the update step.

p(xk|z0:k) = p(zk|xk)p(xk|z0:k−1)
p(zk|z0:k−1)

(2.24)

∝ p(zk|xk)p(xk|z0:k−1). (2.25)

From Section 1.2, we know that if the prior is conjugate, the Bayesian
update can be reduced to a sum of hyperparameters and sufficient statistics.

We must rewrite the model and prior distributions in exponential form to
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get the desired result. For the model distribution, we get

p(zk|xk) ∝ exp
{
−1

2(zk −Hxk)⊺R−1(zk −Hxk)
}

= exp
{

Tr

(
−1

2

[
−1
xk

] [
−1
xk

]⊺ [
z⊺k
H⊺

]
︸ ︷︷ ︸

η

R−1
[

z⊺k
H⊺

]⊺
︸ ︷︷ ︸

T (zk)

)}
, (2.26)

and for the prior distribution

p(xk|z0:k−1) ∝ exp
{
−1

2(xk − xk|k−1)⊺P −1
k|k−1(xk − xk|k−1

}
= exp

{
Tr

(
−1

2

[
−1
xk

] [
−1
xk

]⊺
︸ ︷︷ ︸

η

[
x⊺

k|k−1
I

]
P −1

k|k−1

[
x⊺

k|k−1
I

]⊺
︸ ︷︷ ︸

ξk

)}
,

(2.27)

where I is the identity matrix.
Now that we have derived forms of the sufficient statistic and hyperparam-

eter ξk, we can write the Bayesian update as

ξk = ξk−1 + T (zk)

=

x⊺
k|k−1P −1

k|k−1xk|k−1 + z⊺kR−1zk, x⊺
k|k−1P −1

k|k−1 + z⊺kR−1H

P −1
k|k−1x−1

k|k−1 + H⊺R−1zk, P −1
k|k−1 + H⊺R−1H

 . (2.28)

Parameters of the posterior distribution can be derived as

Pk = (ξk;[2,2])−1

= [P −1
k|k−1 + H⊺R−1H]−1

= (I −WkH)Pk|k−1, (2.29)
xk = (ξ−1

k;[2,2])ξk;[2,1]

= Pk[P −1
k|k−1x⊺

k|k−1 + H⊺R−1zk]

= xk|k−1 + PkH⊺R−1(zk −Hxk|k−1). (2.30)

where

Wk = Pk|k−1H⊺(R + HPk|k−1H⊺)−1 (2.31)

is called the Kalman gain. With growing Kalman gain, newer measurements
are considered more relevant, making the filter more sensitive but less able to
filter out incoming noise. Another relevant way of thinking about the Kalman
gain is that the actual measurement zk is trusted more as the covariance R
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Figure 2.2 Annotated radar clutter (Source: www.radartutorial.eu)

approaches zero, while the predicted measurement Hxk|k−1 is trusted less [29].

2.3 Clutter

In many target-tracking applications, measurements may not necessarily orig-
inate from a currently tracked target. This is especially true in multiple target
tracking scenarios, where targets appear and disappear as time goes on. Ad-
ditionally, the tracking algorithm should be able to work with and potentially
filter out so-called false alarms. These measurements do not necessarily origi-
nate from a target; instead, they result from the imperfection of the radar it-
self. This phenomenon can be even amplified if we need to increase the radar’s
sensitivity, e.g., if we are tracking objects that are hard to detect. These
measurements with unknown origin are commonly referred to as clutter.

To incorporate our beliefs and estimates into the tracking algorithm, we
must first choose a model for the clutter behavior. Now, let us focus on
where we are using radar as a sensor. Measurements that are usually fed to
the tracking algorithm are extracted from a radar image. The image consists
of many resolution cells, each having a Boolean detector. The detector is
responsible for reporting if the target resides in its cell. Since no sensor is
perfect, we expect some cells to misreport a residing target. We define a false
alarm rate PF A to quantify this phenomenon. Typical value of the PF A is
between 10−6 and 10−2 [16]. We also assume that these false detections are
are i.i.d. in different cells. With these assumptions, the total number of false

https://www.radartutorial.eu/11.coherent/co04.en.html
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alarms (ϕ) is distributed according to the binomial distribution

µ(ϕ) =
(

N

ϕ

)
P ϕ

F A(1− PF A)N−ϕ, (2.32)

where N is the total number of resolution cells. We also expect the N to
be a large number, and since PF A is small, we can approximate the binomial
distribution using Poisson distribution. Defining Λ = NPF A, we can express
the clutter as

µ(ϕ) = e−Λ Λϕ

ϕ! (2.33)

Moving a step forward, we take into account our region of interest R and its
volume V . We can then define λ = Λ

V and by substituting for Λ in Equation
(2.33) we obtain

µ(ϕ) = e−(λV ) (λV )ϕ

ϕ! . (2.34)

This allows us to model the clutter cardinality without necessarily knowing
PF A and N . Instead, we need to know the region’s volume of interest V and
estimate λ. Equation (2.34) also relates closer to the standard way of modeling
clutter, the homogenous Poisson point process (HPPP) with intensity λ.

Lastly, we must model the spatial distribution of clutter measurement along
region R. To do so, we can use a property of HPPP, which states that the
position of events will be uniformly distributed [30]. The whole process of
modeling clutter is presented in pseudocode 1

Algorithm 1 Generating clutter using the HPPP
Require: 0 < λ < 1, V > 0

1: Zk ← ∅
2: mk ← Po(λV )
3: for j ← 1, mk do
4: zj

k ← Unif(V )
5: Zk ← Zk + zj

k

6: end for

2.4 Misdetections

Another complication in the target tracking problem is that the target may or
may not be detected at any timestep with a certain probability. We assume
that the detection events (i.e., if the target is detected) are independent at
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times k, l when k ̸= l. Given this assumption, a simple detection model using
a Bernoulli random variable

P (δ) =

PD if δ = 1,

1− PD if δ = 0.
(2.35)

However, this creates another complication in choosing the correct value
of the underlying parameter PD. Typical values can range from 0.5 for sonar
tracking applications to 0.95 for radar tracking of airplanes. The clutter in-
tensity λ and detection probability PD are not independent. We can lower
the detection threshold on a sensor to increase detection probability. However,
this also increases the rate of false alarms. Choosing the best value is a matter
of engineering judgment [16].

2.5 Probabilistic Data Association filter

Even though the Kalman filter can handle misdetections of a target, it falls
short when false measurements (clutter) are introduced to the measurement
process, since it must associate the only measurement with the target.

The simplest heuristic solution to this problem would be the nearest neigh-
bor Kalman filter (NN-KF), which selects the closest measurement, based on
an arbitrary distance metric, to the predicted position as the correct one. How-
ever, this approach is viable only when false measurements are low. We can
also view it as choosing local optima in every timestep, which leads to a high
chance of the filter being led astray from the trajectory of the actual target.

In general, two other options exist for selecting optimal associations. The
first option is to select measurement to target the association in a way that
maximizes the posterior distribution probability (i.e., maximum posterior me-
thod or MAP), the second option, which the PDAF is based on, is minimizing
the mean square error over all possible associations [12].

2.5.1 Model assumptions
Before we describe the mathematical principles behind the PDA filter, we need
to address several assumptions about the process model and measurement
model that need to be made [16], [12]:

1. If multiple measurements fall inside the validation region of a target, then
at most one of the measurements is considered to come from the target.

2. The remaining measurements are considered false alarms or clutter and are
modeled as i.i.d. with uniform spatial distribution. The number of false
targets obeys the Poisson process with spatial density λ.

3. The prior density of xk−1 is given as pk|k−1(xk−1).
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4. The state vector evolves according to the Markov process model f(xk|xk−1).

5. If a target-originated measurement exists, it is related to xk according to
the likelihood of f(zk|xk).

6. Target detections occur independently over time with probability PD.

7. The track has already been initialized

8. At time step k − 1 only one target exists in the surveillance region with
state xk−1.

Additionally, we assume the prior and posterior models to be linear and
Gaussian with their pdfs

pk|k−1(xk) = N (xk; x̂k|k−1, Pk|k−1),
f(xk|xk|k−1) = N (xk, Fxk−1,Q), (2.36)

f(zk|xk) = N (zk, Hxk,R),

thus ensuring that the prediction and update steps will have analytical solu-
tions. Lastly, we define mk as a number of measurements a time k and a set
of all measurements at the time k as Zk = {z1

k, z2
k, . . . , zmk

k }.

2.5.2 Posterior density as a mixture
According to [16], the posterior density can be written as

pk|k(xk) =
mk∑
i=0

p(xk|ak = i, Z0:k)Pr{ak = i|Z0:k}, (2.37)

where ak = i, i ∈ {0, 1, . . . , mk} means that the measurement i originates from
the target, with ak = 0 meaning no measurement originates from the target,
and Z0:k represents the collection of measurement sets received at timestep k.

For notational convenience, we will further confuse the random variable ak

and its realization, thus simplifying the previous equation to

pk|k(xk) =
∑
ak

p(xk|ak, Z0:k)Pr{ak|Z0:k}. (2.38)

Equation (2.38) shows that the PDA filter calculated probabilities of all
possible realizations of the variable ak and creates a weighted posterior mix-
ture. The PDA filter aims to reduce this mixture into a single posterior dis-
tribution.
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2.5.3 PDA posterior
As is in the case with the Kalman filter, the prior density of the PDA filter is
given by the Chapman-Kolmogorov equation

pk|k−1(xk) =
∫

f(xk|xk−1)pk(xk−1)dxk−1. (2.39)

The form posterior density in the PDA filter is dependent on the detection
event.

pk|k(xk|ak) ∝

pk|k−1(xk) if ak = 0,

f(zak
k |xk)pk|k−1(xk) if ak > 0.

(2.40)

The notation zak
k implies that the number ak of the mk measurements is

used.
If at timestep k, no measurement is assigned to the target. The prior distri-

bution remains unchanged and continues to be used as posterior distribution
in the subsequent step. If a measurement from Zk is assigned to the target,
then Equation (2.40) leads to an update of the prior distribution in a Bayesian
manner. Assuming a linear Gaussian model, the second line reduces to the
Kalman filter update.

2.5.4 Validation gating
Until now, we have considered that every single measurement across
the surveilled region could originate from a given target. While we measure
how related a measurement is using likelihood (Assumption 5), limiting the
considered region to a ”reasonable” distance from the predicted target position
would make practical sense. The likelihood of measurements falling outside this
validation region would be near zero, thus making them irrelevant. According
to [16] and [12], the region is usually constructed as an ellipsoid whose shape
is given by the covariance matrix Sk and scaling parameter γ. The validation
region would be then defined as

L = {z : (zi
k − ẑk|k−1)S−1

k (zi
k − ẑk|k−1) < γ}. (2.41)

However, finding the optimal value of γ can be cumbersome. Let us, there-
fore define ζi = zi

k− ẑk|k−1 and n = dimR. Since measurements are corrupted
by a zero-mean noise with covariance matrix S, the ζi can be viewed as noise
realization

ζi,k|k−1 ∼ N (0, S). (2.42)
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We aim to find a value of γ such that

(zi
k − ẑk|k−1)⊺S−1(zi

k − ẑk|k−1) = ζ⊺i S−1ζi (2.43)
= ζ⊺i U−⊺︸ ︷︷ ︸

u⊺

U−1ζi︸ ︷︷ ︸
u

= u⊺u

≤ γ.

Looking closer at the expression U−1(zi− ẑ), we can see that it corresponds
to a standardization of a random variable.

X − µ

σ
=
√

σ2(x− µ)︸ ︷︷ ︸
↓

∼ N (0, 1), (2.44)

U−1(zi − ẑ) = U−1ζi = u ∼ N (0, I), (2.45)

This means that elements of u are i.i.d. and N (0, 1) and u⊺u is sum of
squares of the elements u. The sum of squared N (0, 1) variables has, by def-
inition, χ2

n distribution with degrees of freedom corresponding to the number
of summands:

u⊺u =
n∑

i=1
u2

i ∼ χ2
n. (2.46)

This allows us to define the distance threshold γ using the gating proba-
bility PG ∈ (0, 1] using the inverse of the χ2 distribution function F,

γ = u⊺u = F −1(PG). (2.47)

2.5.5 Data association
Assuming linear, Gaussian model and clutter density given by Poisson process,
the association probability follows Equation [16]:

βak
i = P{ak|Z0:k} ∝

λ(1− PDPG) if ak = 0,

PDN (zak
k ; ẑk|k−1, Sk) if ak > 0,

(2.48)

where ẑk|k−1 and Sk are predicted measurement and its covariance at timestep
k given by
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ẑk|k−1 = Hx̂k|k−1, (2.49)
Sk = HPk|k−1H⊺ +R. (2.50)

2.5.6 Mixture reduction
In the last step of the PDAF cycle, we need to reduce the Gaussian mixture
into a single posterior distribution. The PDAF uses the moment matching
method to determine the first and second moments of the final Gaussian dis-
tribution.[16]

First, let us define event-conditional innovation as

νak
k = zak

k −Hx̂k|k−1, (2.51)

and the event-conditional state estimate of x̂ak
k and its covariance P ak

k as

x̂ak
k =

x̂k|k−1 if ak = 0,

x̂k + Wkνak
k if ak > 0,

(2.52)

P ak
k =

Pk|k−1 if ak = 0,

(I −WkH)Pk|k−1 if ak > 0.
(2.53)

The expectation of the mixture is

x̂k = β0
kx̂k|k−1 + Wkνk, (2.54)

where νk = ∑
ak>0 βak

k νak
k and Wk is the Kalman gain. Matching covariances

of the mixture leads to

Pk = Pk|k−1 − (1− βk
0 )WkSkWk + P̃k, (2.55)

where

P̃k = Wk

∑
ak>0

βak
k νak

k (νak
k )⊺ − νkν⊺

k

W⊺
k, (2.56)

as the spread of innovations must be accounted for when merging multiple
distributions. The final posterior density becomes

p(xk|z0:k) ≈ N (xk; x̂k, Pk). (2.57)
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2.6 Track management and IPDA

The PDA filter tells us how to proceed with the filter update if multiple mea-
surements fall inside the validation region. However, it relies on the assumption
that the track has already been initialized and does not offer a solution to the
initialization problem.

Since all target tracks are generally considered a priory uninitialized, we
require that the tracking system itself should determine if a series of measure-
ments originate from a target or not and prospectively initialize a new track,
as well as determine when a target is no longer visible and terminate its track
accordingly.

2.6.1 Heuristic approach
One of the most common and straightforward heuristic approaches is the so-
called 2/2 & M/N rule. [31] Having received two consecutive measurements
in proximity, determined, for example, by the maximal velocity of a target,
we create a candidate track, which the PDAF handles. After N additional
timesteps, if a measurement has fallen in the validation region in M steps, the
track is declared as confirmed or terminated otherwise.

Confirmed tracks are no longer held subject to the same test; however,
a confirmed track may disappear due to the target leaving the surveillance
region, remaining hidden behind an obstacle, or the tracks failing to follow
the correct measurement, etc. In this case, the same rule is also applicable to
termination logic.

The simplicity of the M/N rule approach comes at the cost of the potentially
significant delay in the track initialization and termination. For this reason,
several different approaches have been developed to achieve faster decision-
making than the M/N rule. One of the representatives of the existence-based
approach is the integrated probability data association (IPDA), which is de-
scribed in the following section.

2.6.2 IPDA
In contrast with the former approach, the IPDA filter does not necessarily seek
to make a binary decision on whether the target exists. Instead, it aims to
quantify and estimate the probability of the existence of the target. This gives
us the freedom to either use the estimated existence probability to make the
decision or to use the probability as it is and potentially display it with the
target to the system user.

The existence-based approach has dominated target-tracking research since
the 90s, mainly due to advances in the modern paradigm of multiple tar-
get tracking with existence probability expressed in random finite sets. The
IPDA, proposed in 1994, was the first step in introducing the concept of track
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existence probability into track-oriented filters (e.g., Kalman Filter, PDAF,
JPDAF, etc.).

2.6.2.1 Existence probability

In the previous chapter, we built the PDA filter with several assumptions.
Assumption 8 states that one and only one target exists in the surveillance
region. This is, however, not the case with IPDA. Therefore, let us modify the
assumption to conform to the new scenario:

Let the probability of the target existing at timestep k − 1 be rk−1, and
1− rk−1 be the probability that the target does not exist. If the target exists
at timestep k − 1, it continues to exist at timestep k with the probability Ps

or ceases to exist with the probability 1 − Ps. If the target did not exist at
timestep k − 1, it also does not exist at timestep k [16].

The existence probability of the target can be modeled as the Markov
process [32]. In the standard formulation, the Markov process allows targets
to die but does not allow them to reemerge again.

2.6.2.2 Existence prediction

The prediction of target existence is again done using the Chapman-Kolmogorov
equation. Since we are working with the Markov process, we can describe its
behavior with the Markov chain transition matrix[

rk|k−1
1− rk|k−1

]
=
[

Ps 0
1− Ps 1

] [
rk−1

1− rk−1

]
=
[

Psrk−1
1− Psrk−1

]
, (2.58)

where rk|k−1 is the predicted existence probability.

2.6.2.3 Existence probability update

Let us now focus on the primary distinction of IPDA, the posterior existence
probability. Even though IPDA uses the same association events as PDAF,
we have to be more careful when defining the IPDA association probabilities
conditionals as the existence of the tracked object is not guaranteed. Therefore,
let us define two additional events: E (target exists) and D (target is detected).
We define the IPDA association probabilities as

βak
k = Pr{ak|E, Z0:k} = Pr{ak, E|Z0:k}

Pr{E|Z0:k}
. (2.59)

Later in this chapter, we will show that the association probabilities of
IPDA are the same as those of the PDA filter.

▶ Theorem 2.3. Let rk|k−1 be the predicted existence probability. Assuming
that clutter behaves according to the Poisson point process and the model is
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linear-Gaussian, we can express the posterior existence probability as

rk =
Lkrk|k−1

1− (1− Lk)rk|k−1
, (2.60)

where Lk corresponds to

Lk = 1− PDPG + PDPG

λ

mk∑
ak

N (zak
k ; ẑk|k−1, Sk). (2.61)

Proof. Let us first focus on the different realizations of variable ak. For IPDA,
we can adapt Equation (2.48). For PDAF, the probability of detection was
P{D} = PD and the probability of a measurement appearing in the validation
region P{G} = PG. For IPDA, we have to account for the probability of
existence. Therefore, we get the following:

Pr{D ∩G} = Pr{D ∩G|E}Pr{E} = rk|k−1PDPG, (2.62)

when model pdfs, and clutter descriptions stay the same as in PDAF, we come
to the conclusion that

Pr{ak|Z0:k} ∝

(1− PDPGrk|k−1)λ if ak = 0,

rk|k−1PDN (zak
k ; ẑk|k−1, Sk) if ak > 0.

(2.63)

From Equation (2.59), we know that association probabilities are proportional
to the joint probabilities Pr{ak|E, Z0:k}. For the case where ak > 0, i.e., the
target is detected, the existence probability conditioned on ak becomes unity,
thus yielding

Pr{ak = i, E, Z0:k} = Pr{ak = i|Z0:k}. (2.64)

In the case of ak = 0, we have to make several manipulations have to be
made to relate Pr{ak = i, E, Z0:k} and Pr{ak = i|Z0:k}. First, we will need
to express the existence probability if no measurement from the target was
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detected

Pr{E|ak = 0} = Pr{E|¬D, Z0:k} (2.65)
= Pr{E|¬D, Z0:k−1} (2.66)

= Pr{¬|E}Pr{E|Z0:k−1}
Pr{¬D|E}Pr{E|Z0:k−1}+ Pr{¬D|¬E}Pr{¬E|Z0:k−1}

(2.67)

=
(1− PDPG)rk|k−1

(1− PDPG)rk|k−1 + (1− rk|k−1) (2.68)

=
rk|k−1(1− PDPG)
1− PDPGrk|k−1

. (2.69)

We are now able to relate the joint probabilities as

Pr{ak = 0, E|Z0:k} = Pr{E|ak = 0, Z0:k}Pr{ak = 0|Z0:k}
= Pr{E|ak = 0, Z0:k−1}Pr{ak = 0|Z0:k}

= Pr{E|ak = 0, Z0:k−1}
Pr{ak = 0|Z0:k}

Pr{ak = 0|Z0:k}

=
rk|k−1(1− PDPG)
1− PDPGrk|k−1

Pr{ak = |Z0:k}. (2.70)

To get the first equation, we utilized the definition of conditional prob-
ability. The second equation utilizes the fact that in the current case, all
measurements are considered to be clutter; thus, the new measurement does
not carry any new information about the existence of the target. In the third
equation, we again used the definition of conditional probability. Finally, in
the fourth equation, we can only express the fraction with rk|k−1, PD, and PG.
From this the association probabilities βak

k are given by

βak
k ∝ Pr{ak, E|Z0:k}

∝


rk|k−1(1−PDPG)
1−PDPGrk|k−1

Pr{ak|Z0:k} if ak = 0,

P r{ak|Z0:k} if ak > 0,

∝


rk|k−1(1−PDPG)
1−PDPGrk|k−1

(1− PDPGrk|k−1)λ ifak = 0,

PDrk|k−1lak if ak > 0,

∝

(1− PDPG)λ if ak = 0,

PDlak if ak > 0,
(2.71)

where lak = N (zak
k ; ẑk|k−1, Sk).

Since the expression is identical, we have shown that IPDA and PDAF
use the same probability associations. Lastly, we will derive the formula pro
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posterior existence probability. From the total probability theorem, we can
express the posterior probability as

Pr{E|Z0:k} = Pr{E|ak = 0, Z0:k}Pr{ak = 0|Z0:k}

+
mk∑
i=1

Pr{E|ak = i, Z0:k}Pr{ak = i|Z0:k}

= Pr{E|ak = 0, Z0:k}Pr{ak = 0|Z0:k}

+
mk∑
i=1

Pr{ak = i|Z0:k}. (2.72)

Now using by incorporating Equations (2.63) and (2.70) into (2.72) we get

Pr{E|Z0:k} =
rk|k−1(1−PDPG)
1−PDPGrk|k−1

(1− PDPGrk|k−1)λ + PDrk|k−1
∑mk

ak=1 lak

1− PDPGrk|k−1 + rk|k−1
PD
λ

∑mk
i=1 lak

=
(1− PDPG) + PD

λ

∑mk
i=1 la

ak

1− PDPGrk|k−1 + rk|k−1
PD
λ

∑mk
ak=1 la

ak
rk|k−1, (2.73)

. The Lk is recognizable from the numerator. The denominator we have to
modify further

1− PDPGrk|k−1 + rk|k−1
PD

λ

mk∑
ak=1

la
ak rk|k−1

= 1− (PDPG + PDPG

λ

mk∑
ak=1

la
ak )rk|k−1

= 1− (1− 1 + PDPG + PDPG

λ

mk∑
ak=1

la
ak )rk|k−1

= 1− (1− (1− PDPG) + PDPG

λ

mk∑
ak=1

la
ak )rk|k−1

= 1− (1− Lk)rk|k−1.

(2.74)

We can now see that the equation corresponds to the preposition in Theorem
2.3.



Chapter 3

Multiple target tracking

So far, we have concerned ourselves with a single target, born at an arbitrary
point in time, being detected by our sensor with a certain probability at each
timestep and can be declared non-existent at a later time if, at enough con-
secutive timesteps a measurement will be missed. We are now also able to
track a target inside the clutter of false measurements and handle situations
of multiple measurements falling into the vicinity i.e., validation region of the
given target.

Advancing further in this chapter, we will concern ourselves with a sce-
nario with nk targets and mk measurements. When targets are well separated,
a simple PDA filter or other single target tracking filter is usually sufficient.
However, in the case of targets that appear close to one another, i.e., a mea-
surement falls into an intersection of their validation regions, and a simple PDA
filter approach begins to give sub-optimal results. Thus arises the necessity to
calculate all possible combinations of associations between up to nk targets and
up to mk measurements. Such a scenario may not be frequent, but it can lead
to a significant computational complexity increase compared to simple PDA
filter. Compared to other multiple target tracking filters, e.g., MHT, PHD,
PMBM, the JPDA filter is still considered a reasonable compromise between
computational complexity and robustness. [16]

3.1 PDA based filters

The most straightforward approach to tracking multiple targets would be to
run multiple PDA filters (one for each target) independently. As mentioned
earlier, this approach yields sub-optimal results if two targets cross paths or
even start to follow a similar path. Since both PDA filters of each target
work independently, they would gradually begin to ”merge” by incorporating
measurements of both targets into their update step. Not only would the state
estimate appear between the two targets, but by later possible splitting of the

27
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targets, we would lose the track history of one of the two targets, since a new
PDA filter would have to be initialized to track it again. The JPDA extension
of the filter does offer greater robustness in this scenario by computing the
β-coefficients jointly.

3.1.1 JPDA
Before we can start to derive the JPDA itself, several assumptions about the
scenario and multi-target tracking model have to be made:

1. The number of targets in the surveillance region is constant and known.

2. Surviving targets motion is given by f(xk|xk−1).

3. A target with state xk generates a measurement zk with probability PD.

4. The target motion and measurement model are Gaussian-linear.

5. The posterior densities of targets are independent and Gaussian

pt
k|k(xt

k) = N (xt
k; x̂t

k−1, P t
k−1). (3.1)

6. The clutter Poisson process has constant intensity λ.

7. The measurement of the detected target is related to its state by f(zk|xk).

3.1.2 Prediction and update
Since the JPDA filter is built on the PDA filter, its prediction and update
steps for every target state in the surveillance region are essentially the same
as those for the PDA filter. The prediction step uses the Chapman-Kolmogorov
Equation (2.39), and the update is given by Equation (2.55).

3.1.3 Joint probability data association coefficients
The main difference from the PDA filter is how β coefficients are defined and
calculated.

First, let us introduce the association hypothesis as a vector

ak = [a1
k, a2

k, . . . , an
k ], (3.2)

where

at
k =

j if measurement j is assigned to target t,
0 if no measurement is assigned to target t,

(3.3)
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and if as
k = al

k ̸= 0, then s = l, i.e. associations in a single hypothesis
are mutually exclusive. Given this assumption, the total probability theorem
yields

p(x1
k, x2

k, . . . , xn
k |Z1:k) =

∑
ak

p(x1
k, x1

k, . . . , xn
k |ak, Z1:k)Pr{ak|Z1:k}, (3.4)

The first term p(x1
k, x2

k, . . . , xn
k |ak, Z1:k) is easily obtainable. If no measure-

ment has been assigned to a target, then the predicted density pt
k|k−1(xt

k) is

used. Otherwise, if measurement zat
k

k has been assigned to the target t, we
update the predicted density using the Kalman Filter update step, giving us
joint event-conditional posterior

p(x1
k, x2

k, . . . , xn
k |ak, Z1:k) ∝

∏
t:d′

k
=0

pt
k|k−1(xt

k)
∏

t:′
k

>0
fz(za′

k
k |x

t
k)pt

k|k−1(xt
k). (3.5)

Since we are assuming a linear Gaussian model, we can also express the pos-
terior as

p(x1
k, x2

k, . . . , xn
k |ak, Z1:k) =

n∏
t=1
N (xt

k; x̂t,at
k

k , Pt,at
k

k ). (3.6)

In the next step, we need to obtain the probability Pr{ak|Z1:k}. Let us define
track likelihood under hypothesis ak as

lt,a
t
k =

∫
fz(zat

k
k | x

t
k)pt

k|k−1(xt
k)dxt

k = N (zat
k

k ; ẑat
k

k , S
at

k
k ). (3.7)

By separating the current measurements from historical ones, we get

Pr{ak|Z1:k} = Pr{ak|Z1:k−1, Zk, mk} (3.8)
∝ p(Zk|mk, ak, Z1:k−1) Pr{ak|mk, Z1:k−1}, (3.9)
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where, according to [16], the first term can be expressed as

p(Zk|mk, ak, Z1:k−1) =
∫

p(Zk|mk, ak, x1
k, . . . , xn

k )

× p(x1
k, . . . , xn

k |ak, Z1:k−1)dx1
k · · · dxn

k

= 1
V φk

∫
. . .

∫ ∏
t:at

k
>0

[
fz(zat

k
k | x

t
k)pk|k−1(xt

k | Z1:k−1)
]

×
∏

t:at
k

=0

[
pk|k−1(xt

k|Z1:k−1)
]

dx1
k · · ·dxn

k

= 1
V φk

∏
t:at

k
>0

lt,a
t
k , (3.10)

where φk is number of clutter measurements under the k-th hypothesis.
To express the second term in 3.8 we will first need to track-wise detection

event τ (t) as a vector

τ = [τ (1), ..., τ (n)], (3.11)

τ (t) =

1 if at
k > 0,

0 otherwise.
(3.12)

For any track, the probability of a single detection is given by constant
parameter PD; therefore

P{τ (t)} =

PDPG if target is detected,

1− PDPG if target is not detected.
(3.13)

Therefore the probability of event τ can be written as product of individual
detection event τ (t) ∈ τ probabilities:

Pr{τ} =
∏

t:at
k

=0
(1− PDPG)

∏
t:akt>0

PDPG. (3.14)

Further probabilities conditional on τ are given as:

Pr{mk|τ} = e−V λ (V λ)ϕk

φk! , (3.15)

Pr{ak|τ, mk} = φk!
mk! . (3.16)

The first equation holds because not included in τ are Poisson distributed
with the rate of V λ, and the total number of measurements mk are uniquely
given by τ and varphik!. The second equation holds because for given τ ,
we have mk!/(mk −

∑1
t τ t)! = mk!/φk! of equally probable permutations of
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detections, with each permutation constituting distinct association hypothesis
[16].

By rewriting the Pr{ak|mk} into a more suitable form using all three equa-
tions above, we get

Pr{ak|mk} = Pr{ak, τ |mk}
∝ Pr{ak|τ, mk}Pr{mk|τ}Pr{τ}
∝ (V λ)φk

∏
t:at

k
=0

(1− P t
DP t

G)
∏

t:at
k

>0
P t

DP t
G. (3.17)

If we now substitute Equations 3.10 and 3.17 into 3.8 we get the final form of
probability of association hypothesis

Pr{ak|Z1:k} ∝ p(Zk|mk, ak, Z1:k−1) Pr{ak|mk, Z1:k−1}

∝ 1
V φk

∏
t:at

k
>0

lt,a
t
k(V λ)φk

∏
t:at

k
=0

(1− P t
DP t

G)
∏

t:at
k

>0
P t

DP t
G

∝ λφk
∏

t:at
k

>0
lt,a

t
kP t

DP t
G

∏
t:at

k
=0

(1− P t
DP t

G). (3.18)

As in the PDA filter, our goal is to merge all hypotheses into a single one,
so we leave only a single Gaussian posterior distribution for each track. Having
derived the probability of a whole assignment vector ak, rather than it, we are
interested in the marginal association probability βt,i

k = Pr{at
k = i|Z1:k} for

each measurement. Thus, we arrive at

βt,i
k = Pr{at

k = i|Z1:k} =
∑

ak:at
k

=i

Pr{ak|Z1:k}. (3.19)

Once we have these joint associations probabilities, we update each track
t in the manner of PDA filter.

pt
k(xt

k) =
mk∑
j=0

βt,j
k N (xt

k; x̂t,j
k , Pt,j

k ) ≈ N (xt
k; x̂t

k, Pt
k). (3.20)

3.1.4 JIPDA filter
Having derived IPDA and JPDA filters, combining these two approaches is
relatively straightforward. As in transition from PDA to IPDA filter, we as-
sume that each target exists with the probability rt

k−1 at timestep k − 1 and
it continues to exist at timestep k with the probability Ps or ceases to exists
with probability 1− Ps. If it does not exist at timestep k − 1, it will also not
exist at timestep k.

The workflow loop in JIPDA filter is identical to the JPDA filter. The
only difference is that the target’s existence is not guaranteed; thus, we must
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incorporate such a possibility into the JPDA detection event 3.14. Having the
existence probability rt

k of target t, we incorporate the probability into the
equation:

Pr{τ} =
∏

t:at
k

=0
(1− PDPGrt

k|k−1)
∏

t:akt>0
PDPGrt

k|k−1. (3.21)

Reflecting this adjustment into equation 3.18, we get the final form of
association hypothesis probability for JIPDA

Pr{ak|mk} ∝ (V λ)φk
∏

t:at
k

=0
(1− P t

DP t
Grk|k−1)

∏
t:at

k
>0

P t
DP t

Grk|k−1. (3.22)

3.1.5 Strengths and weaknesses of PDA, JPDA, and
JIPDA filters

Even though we have managed, through gradual modification, to solve the
problem of tracking a single target, single target in clutter, tracking multiple
targets in clutter, and detection and termination of tracking for appearing and
disappearing targets the JPDA and JIPDA filter suffer from several weaknesses
that may drastically impact their performance.

Since the central idea of PDA and JPDA filters is to merge all possible
posteriors into a single Gaussian posterior, also called single-scan method,
does not allow to correct possible incorrect assignment in a previous step and
inevitably causes information loss, resulting in lower robustness and precision
compared to other approaches to target tracking.

Another problem of the JPDA filter is called track coalescence. Let us
imagine a scenario where two targets are situated close to each other and
moving in the same direction. Since the PDA and JPDA filters are based
on averaging, the estimated target positions will, in time, merge and appear
between the two real targets as in Figure 3.1.

Last but not least, the number of JIPDA hypotheses is subject to expo-
nential growth, and despite the introduction of gating and track clustering (by
overlapping validation regions), computing all possible association hypotheses
can become unfeasible without additional optimization. For example, one pos-
sibility is to use Murthy’s algorithm to find M best association hypothesis to
compute β-coefficients. This, however, hinders the filter’s performance further
as we introduce another approximation to the model.

Nevertheless, compared to other filters, such as MHT or RFS-based fil-
ters, the JIPDA approach offers a computationally cheap and relatively robust
solution to the target tracking problem.
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Figure 3.1 An example of track coalescence: Tracks slowly converge to each other
and swap.

3.2 MHT filter and RFS based filters

As stated in the previous chapter, the JPDA filter belongs to the single-scan
group of tracking filters. It reduces all possible posterior distributions into a
single one for every target. This keeps the computational complexity relatively
low at the expense of lower robustness and precision compared to the multi-
scan group of filters.

One of the most basic representatives of the multi-scan group is the mul-
tiple hypothesis tracker (MHT) [15], [33], which creates multiple children as-
signment hypotheses from the parent – one for every measurement inside the
validation region – and updates the underlying Kalman filter accordingly. This,
however, leads to exponential growth of the number of hypotheses. Therefore,
it is necessary to prune the least probable hypotheses [16].

The most modern approach to target tracking has been developed using
random finite set (RFS) statistics, where the multi-object PDF is described
as a function of RFS. The probability hypothesis density (PHD) filter [18],
multi-Bernoulli mixture (MBM) filter [34], and Poission multi-Bernoulli mix-
ture (PMBM) filter [35] are examples of such approaches. These filters offer
greater robustness and accuracy in more complex scenarios [36]. However, this
comes at the cost of far higher computational complexity than the JPDA ap-
proach. For this reason, they are out of the scope of this thesis and won’t be
discussed into more detail.



Chapter 4

Distributed modeling

Tracking objects using an array of different sensors is an important field of
work in areas such as robotics and autonomous driving or the military [37],
[38]. Combining data from multiple sensors can improve the model’s accu-
racy, introduce redundancy in case of a sensor failure, or achieve the same
performance using cheaper or smaller sensors.

The problem of cooperation between multiple agents or sensors can be
approached using a centralized or fully distributed approach. In the former
approach, every sensor node is processed by an agent, e.g., Kalman, PDA,
JPDA filter, etc. Information from each node is then sent to a central node
called fusion center, where it is merged to gain a final state estimate. The
latter approach does not introduce a fusion node. Instead, each node commu-
nicates directly with every neighbor and incorporates their measurements into
its estimate. This approach gives rise to multiple different approaches which
can impose restrictions on the node network and put forth various ways to
merge the additional information into each node’s estimate.

In this chapter, we will introduce some of the approaches to distributed
modeling and data fusion, focusing mainly on the diffusion approach.

34



Centralized approach 35

4.1 Centralized approach

Centralized architecture is one of the most straightforward solutions to the data
fusion problem. Data from each sensor is processed by an agent, e.g., Kalman
filter, PHD filter, JIPDA filter The state estimate from each agent is then
sent into a single fusion node. The fusion node is then responsible for track-
to-track association and fusion of the incoming estimates. Even though the
main advantages of the centralized approach are its simplicity and accuracy,
it does introduce a single point of failure: the fusion center itself [22]. In
addition, the fusion node requires more resources for processing information
and high bandwidth for data transmission. Figure 4.1 shows examples of
centralized architectures.

FC

OUT

1

2 3

OUT

FC

FC

1 2

FC

3 4
Figure 4.1 Fully centralized and hierarchical examples of centralized architectures

with fusion centers

4.2 Distributed approach

The distributed approach aims to mitigate some of the problems of the central-
ized approach by delegating information fusion to agents themselves. While
every agent the result of information fusion in every agent usually yields sub-
optimal results – since not all agent nodes may be directly connected – it offers
higher resilience to a failure.

4.2.1 Incremental strategy
The incremental strategy requires nodes to form a cyclic path (Hamiltonian
cycle). Every timestep propagates the information to the next node on the
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path until every node has been visited. While this strategy is relatively simple,
it does suffer from several drawbacks. First, it introduces additional iterative
steps to every scan cycle, increasing processing time at every timestep. Second,
it limits the node-to-node connectivity to a single processing node on the path.
Third, it is sensitive to link failures, requiring redesign of the network, which
is generally an NP-hard problem [22].

4.2.2 Consensus strategy
The consensus strategy does not impose such strict limitations on the network
structure. We expect the network to be a directed or undirected connected
graph, with nodes of varying degrees – usually higher than one. In its basic
form, the strategy consists of two steps: data acquisition for every node and
collaborative data processing. Every node tries to iteratively find a convex
combination of its and its neighbor’s estimates and reach a consensus in the
computation among them. One of the drawbacks of the consensus approach is
its ability to perform real-time estimation. The iterative nature of the consen-
sus computation mainly causes this. Even though implementations operating
in a single step were proposed [26], [39] shows that these implementations
may underperform compared to diffusion strategies and can become unstable
in their estimation. Therefore, the focus will primarily be on the diffusion
approach.

4.2.3 Diffusion strategy
In the diffusion approach, the exchange of information happens between neigh-
boring nodes. Each node receives information from its neighbors and incorpo-
rates this additional data into its estimate. This way, the information slowly
diffuses throughout the network. Since there is no need to reach a consensus
with neighboring nodes, the computational complexity remains lower than that
of consensus-based alternatives. The algorithm consists of two independent
phases: adaptation and combination. This independece gives rise to four diffu-
sion schemes Adaptation-only, Combination-only, Adapt-then-Combine, Com-
bine-then-Adapt [22].

Before we describe the diffusion approach for the JIPDA filter itself. Let
us now describe concepts of adaptation and combination in a general man-
ner by returning to the concepts of conjugate priors, exponential family of
distributions with a stochastic model determined by a fixed parameter θ.

For the following sections, let us represent the sensor network as an undi-
rected connected graph G = (U ,V), where U represents set of nodes i.e. sensors
and V represents connections between them. As every node communicates only
with its direct neighbors, i.e., neighbors within jump distance of one, let us
also denote a node as u and its neighborhood Uu = {1, 2, 3, . . . , u}. Note that
by definition u ∈ Uu.
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4.2.3.1 Adaptation phase

The goal of the adaptation phase is to increase the amount of information
the filter receives. This is achieved by acquiring relevant measurements from
neighboring nodes and updating their prior estimates with them. In Bayesian
terms, this equals to performing a batch update

pu
k|k(θ|∆u

k) = pu
k|k−1(θ|∆u

k−1, z̄u
k ) (4.1)

= pu
k|k−1(θ|∆u

k−1)
∏

u′∈U
[f(zu

k |θ)]c
u,u′
k , (4.2)

where ∆u
k is all the information available to node u at time k, including its

past observations and all of its neighbor’s past observations. The bar notation
refers to all new observations available to node u at time k. cu,u′

k ∈ {0, 1} are
the adaptation weights assigned by the node u to node u′. cu,u′

k = 1 if the
observation zu

k is not an outlier; cu,u′

k = 0 otherwise.
According to [26], under the conjugacy, the Bayesian update translates into

the update of hyperparameters in the following way:

ξu
k = ξu

k−1 +
∑

u′∈U
cu,u′

k T (zu′
k ), (4.3)

νu
k = νu

k−1 +
∑

u′∈U
cu,u′

k . (4.4)

4.2.3.2 Combination phase

The goal of the combination phase is to share and improve the estimates of
nodes. Every node receives current estimates from its neighbors, and optimally
merges with its estimate. The posterior distributions used in this phase differ
depending on whether we choose the ATC or CTA scheme. In case of the
former the distributions are represented as pu

k|k(θ|∆u
k) received from Equation

(4.1), or pu
k|k−1(θ|∆u

k−1) in the latter case.
To merge these estimates, we need some ”measure” of optimality. In the

Bayesian theory, the most often used measure is the Kullback-Leilbler di-
vergence [26], even though it does not satisfy the mathematical definition
of a measure. We are trying to the final density p̃u

k|k(θ|∆u
k) (alternatively

p̃u
k|k−1(θ|∆u

k−1)), whose divergence from densities pu′

k|k(θ|∆u′
k ) (pu′

k|k−1(θ|∆u′
k−1))

is minimal. In mathematical terms, we are trying to minimize the cumulative
loss ∑

u′∈Uu

au,u′D(p̃u
k|k(θ|∆u

k)||pu′

k|k(θ|∆u′
k ). (4.5)
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∑
u′∈Uu

au,u′

k D
(
p̃u

k|k(θ)
∥∥∥ pu′

k|k(θ)
)

=
∑

u′∈Uu

au,u′

k Ep̃u
k|k

log
p̃u

k|k(θ)
pu′

k|k(θ)

 (4.6)

= Ep̃u
k|k

 log
p̃u

k|k(θ)

c
∏

u′∈Uu

[
pu′

k|k(θ)
]au,u′

k

 (4.7)

= D

p̃u
k|k(θ)

∥∥∥∥∥∥
∏

u′∈Uu

[
pu′

k|k(θ)
]au,u′

k

 (4.8)

= Ep̃u
k|k

log
p̃u

k|k(θ)

c
∏

u′∈Uu

[
pu′

k|k(θ)
]au,u′

k

 (4.9)

According to [26], using the definition of Kullback-Leilbler divergence, the
convexity of − log(·), and Jensen’s inequality, we follow as:

= Ep̃u
k|k

− log
c
∏

u′∈Uu

[
pu′

k|k(θ)
]au,u′

k

p̃u
k|k(θ)

 (4.10)

≥ − logEp̃u
k|k

c
∏

u′∈Uu

[
pu′

k|k(θ)
]au,u′

k

p̃u
k|k(θ)

 (4.11)

= −log1 = 0 (4.12)

We can see that the Kullback-Leilbler divergence is non-negative and zero if

p̃u
k|k(θ) =

∏
u′∈Uu

[
pu′

k|k(θ)
]au,u′

k
. (4.13)

If we look at the solution at Equation (4.13), we can see that it is only
a simple combination of conjugate priors. This allows us to translate this
solution into the update of the hyperparameters as

ξ̃u
k =

∑
u′∈Uu

au,u′

k ξu′
k , (4.14)

ν̃u
k =

∑
u′∈Uu

au,u′

k νu′
k , (4.15)
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for the ATC scheme and alternatively for the CTA scheme:

ξ̃u
k−1 =

∑
u′∈Uu

au,u′

k ξu′
k−1, (4.16)

ν̃u
k−1 =

∑
u′∈Uu

au,u′

k νu′
k−1, (4.17)

The ATC scheme can be finally described by the algorithm below.

Algorithm 2 ATC diffusion estimation
Require: Initilize nodes u = 1, . . . , |U | with prior densities pu

0(θ)
1: for k ← 1, 2, 3, . . . do

Adaptation phase:
2: Get observations Zu′

k from neighbors u′ ∈ Uu.
3: Acquire adaptation weights cu,u′

k .
4: Update prior distribution of θ as in 4.1.

Combination Phase:
5: Acquire combination weights au,u′

k .
6: Get posterior densities from neighboring nodes u′ ∈ Uu.
7: Update hyperparameters of prior distribution of θ as in 4.14.
8: end for

▶ Note 4.1. We have not described a way to acquire adaptation and combi-
nation weights. This topic is outside of the scope of this thesis. Therefore, we
further expect the weights to be uniform.



Chapter 5

Diffusion JIPDA filter

In the first chapter, we introduce and derive the Kalman filter. Later, we
expanded on the foundation of the Kalman filter and extended it to work
in a cluttered environment (PDA filter) and track multiple targets (JPDA).
Collaterally, we have also described and derived a way to handle appearing
and disappearing targets. Lastly, we have laid the foundation for collaborative
filtering in a more general manner. In this chapter, we will combine the results
from the previous chapter and propose a novel collaborative method based on
the diffusion framework and JIDPA filter.

5.1 Review of the JIPDA filter

First, let us review the concepts we used in the previous chapters. We have
a connected undirected graph G = (U ,V), where U = 1, 2, . . . , |U|. Each node
u observes an environment with nu

k targets present. At discrete timesteps
k = 0, 1, 2, . . . , the node receives a set of mu

k ≥ 0 measurements denoted
Zu

k = {zu,1
k , zu,2

k , . . . , zu,mu
k

k }, who may or may not originate from a target.
Each target t ∈ N does generate at most one measurement per timestep. To
track these targets, each node is also running an independent JIPDA filter,
which estimates each target’s hidden Markov model xu,t

k . We also expect
that every target behaves independently according to an observation model
f(zu,t

k |x
u,t
k ) with a probability density p(xu,t

k |x
u,t
k−1). We model the clutter in the

environment with volume V as a Poisson point process with intensity λ > 0.
Targets themselves may not be detected at various times with probability
1− PD and may appear and disappear during the whole process at any time.
For this reason, we also track their probability of existence ru,t

k ∈ [0, 1], which
behaves according to Markov-type model P (ru,t

k |r
u,t
k−1) = ru,t

k−1PS . PS ∈ [0, 1] is
the survival probability of a target. It is modeled as invariant in time and is
the same for all targets. Additionally, we do not expect to detect the target at
every step. Therefore, we denote the probability of detection as PD ∈ (0, 1]. If

40
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the target is detected, we also expect the measurement itself to appear within
a reasonable vicinity of the target. For this reason we also define PG ∈ (0, 1]
as the gating probability, which was described in Section 2.5.4.

The Bayesian approach takes advantage of past knowledge, i.e., past ob-
servations Zu

0:k−1. The prior distribution representing this knowledge can be
expressed as

pu
k−1|k−1(xu,1

k−1, . . . , xu,n
k−1|Z

u
0:k−1)

=
nu

k∏
t=1

pu
k−1|k−1(xu,t

k−1|Z
u
0:k−1). (5.1)

The feedback loop at a time k consists of three steps: prediction, update,
and merging.

First, we predict the state of the process model. This prediction follows
the Chapman-Kolmogorov equation

pu
k|k−1(xu,1

k , . . . , x
u,nu

k
k |Zu

0:k−1) (5.2)

=
nu

k∏
t=1

∫
p(xu

k |xu
k−1) pu

k−1|k−1(xu,t
k−1|Z

u
0:k−1)dxu,t

k−1. (5.3)

Next, we update the existence probability of each target

ru,t
k|k−1 = PS · ru,t

k−1|k−1. (5.4)

Once we receive measurements, we perform the Bayesian update. Symbol-
ically, that means

pu
k|k(xu,1

k , . . . , x
u,nu

k
k |Zu

0:k) ∝ pu
k|k−1(xu,1

k , . . . , x
u,nu

k
k |Zu

0:k−1)

× f(Zu
k |x

u,1
k , . . . , x

u,nu
k

k ). (5.5)

This, however, is only the conceptual form of the update. We must address
the uncertainty of the associations between measurements and target states.
To do so, we introduce the single association hypotheses

au,t,h
k =

j if target t is associated with zu,j
k ,

0 if target t is misdetected.

Note that, in these hypotheses, we already only consider measurements that
do appear in in a reasonable distance from the predicted position, given by the
parameter PG. By grouping all association hypotheses for nk targets, we can
form association hypotheses vector

au,h
k = [au,1,h

k , . . . , a
u,nu

k ,h

k ], h = 1, . . . , H. (5.6)
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For each of these vector we assign a probability P (au,h
k |Zu

0:k−1). It is then pos-
sible to construct a joint posterior distribution pu

k|k(xu,1
k , . . . , x

u,nu
k

k |au,h
k , Zu

0:k)
for each au,h

k . By marginalizing over all of the association hypotheses, we arrive
at

pu
k|k(x1

k, . . . , xnk
k |Z

u
0:k) =

∑
h

pu
k|k(x1

k, . . . , xnk
k |a

h
k , Z0:k)

× P (ah
k |Zu

0:k), (5.7)

where P (ah
k |Zu

0:k) are posterior probabilities of hypothesis weights

P (au,h
k |Z

u
0:k) ∝

∏
t:au,t,h

k
=0

(1− PDPG)

×
∏

t:au,t,h
k

̸=0

PDPG
∫

f(zj
k|x

u,t
k )pu

k|k−1(xu,t
k |Zu

0:k−1)dxu,t
k

λ
. (5.8)

Note that posterior hypothesis probability is a product of misdetection prob-
abilities, i.e., au,t,h

k = 0 and associations au,t,h
k ̸= 0 scaled by their likelihood.

The first factor in (5.7) is a sum of the posterior distribution of target states
given the hypothesis h

pu
k|k−1(x1

k, . . . , xu,nk
k |ah

k , Zu
0:k)

∝
∏

t:au,t,h
k

=0

pu
k|k−1(xu,t

k |Z
u
0:k−1)

×
∏

t:au,t,h
k

̸=0

f(zj
k|x

u,t
k )pu

k|k−1(xu,t
k |Z

u
0:k−1). (5.9)

Now that we have a form of the posterior distribution, we have to address
one last common problem of multi-target tracking filters. That is, the num-
ber of factors in (5.7) can grow exponentially with time. To solve this issue,
we marginalize over all of the possible association hypotheses of each target,
resulting in

pu
k|k(xu,t

k |Z
u
0:t) =

mu
k∑

j=0
βt,j

k pu
k|k(xu,t

k |Z
u
0:k, zu,j

k ), (5.10)

where
βu,t,j

k =
∑

h:au,t,h
k

=j

P (au,t,h
k |Zu

0:k). (5.11)
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At last, we update the existence probabilities as

ru,t
k|k =

ru,t
k|k−1L

u,t
k

(1− ru,t
k|k−1) + ru,t

k|k−1L
u,t
k

, (5.12)

where

Lu,t
k = (1− PD)

+
PD

∑mu
k

au,t
k

=1
∫

f(zj
k|x

u,t
k )pu

k|k−1(xu,t
k |Zu

0:k−1)dxu,t
k

λ
. (5.13)

Having now multiple densities for a single target – each for every measurement
in the validation region – We need to merge them

p̂k|k(xu,t
k |Z

u
0:t) = arg min

q(xu,t
k

)
D[pu

k|k(xu,t
k |Z0:t)||q(xu,t

k )], (5.14)

5.2 Collaborative filtering

Let us now describe the collaboration part itself.

5.2.1 Adaptation phase
In this phase, every node u receives a set of measurements from every neighbor-
ing node u′. It could seem handy to combine them into a single set. Recalling
model assumptions introduced in Section 2.5.1, we can see that this approach
would violate the assumption 1. We must ensure that the Bayesian update
contains, at most, one measurement of every target. Fortunately, the Bayesian
theorem does allow us to update our knowledge about model parameters repet-
itively:

pu
k|k(xu,1

k , . . . , x
u,nu

k
k |Zu

0:k) ∝ pu
k|k−1(x1

u,k, . . . , xu,n
k |Z

u
0:k−1)

×
∏

u′∈U
f(Zu′

k |x
u,1
k , . . . , x

u,nu
k

k ). (5.15)

In practice, the (5.15) turns into a series of sequential updates, one for every
neighbor, where the resulting distribution serves as a prior distribution for the
following update.

pu
k|k−1(◦|Zu

0:k−1)︸ ︷︷ ︸
predicted

update−−−−→
Z

u1
k

. . .
update−−−−→
Z

u|Uu|
k

pu
k|k(◦|Zu

0:k)︸ ︷︷ ︸
posterior

.
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5.2.2 Combination phase
In the combination phase, every neighbor u′ sends their approximate posterior
densities p̂u′

k|k(xu′,1
k , . . . , x

u′,nu′
k

k |Zu′
0:k) to node u, which then forms a mixture

p̃u
k|k(xu,1

k , . . . , x
u,nu

k
k |{Zu′

0:k; u′ ∈ Uu})

= 1
|Uu|

∑
u′∈Uu

pu′

k|k(xu′,1
k , . . . , x

u′,nu′
k

k |Zu′
0:k), (5.16)

where all components have uniform weights.
The newly formed mixture may now contain multiple marginal posterior

densities belonging to a single target. Therefore, to not only reduce the num-
ber of components in the mixture but mainly to increase the accuracy of our
predictions; we must merge similar components in the mixture. To do so, first,
we have to determine which components are sufficiently similar to each other
to be considered originating from a single target. For this purpose, we use a
convenient measure of similarity, the Bhattacharyya distance

B [p, q] = − log
√

p(x) · q(x), (5.17)

where p(x) and q(x) are marginal distributions of the mixture.
The Bhattacharyya distance fully reflects the properties of compared distri-

butions, not only their moments. Additionally, it is symmetric, which further
supports its use in this application. We declare that two marginal distributions
are identical if their Bhattacharyya distance is less than an arbitrarily defined
tolerance α > 0.

Finally, we merge all marginal densities declared identical in a Kullback-
Leilbler sense. The existence probabilities are combined by averaging existence
probabilities of relevant marginal densities. Two optimal – in Kullback-Leilbler
sense – methods to fuse marginal densities that will be investigated in the next
chapter are the moment matching method, which is also used in the PDA filter,
and the covariance intersection as proposed in [26].
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Algorithm 3 Diffusion JIPDA Algorithm
Require: The nodes u = 1, . . . , |U| are initialized with the prior densities

pu
0|0(xu,t|Zt

0). The tolerance α > 0 is set. For k = 1, 2, . . . and each node i
do:
Prediction step:

1: Perform prediction – Equations (5.3), (5.4).
Adaptation phase:

1: for u′ ∈ U do
2: Get observations Zu

k and zu′
k of neighbors u ∈ Uu.

3: Construct H association vectors, Eq. (5.6).
4: Compute hypotheses probabilities, Eq. (5.8).
5: Update states, Eq. (5.9).
6: Calculate marginal probabilities, Eq. (5.11).
7: Calculate marginal state densities, Eq. (5.10).
8: Update existence probabilities, Eq. (5.12).
9: For all targets, merge marginals, Eq. (5.14).

10: end for
Combination phase:

1: Get the posterior densities of neighbors u ∈ Uu.
2: Detect common targets using Bhattacharrya distance (5.17).
3: Fuse common targets’ posteriors.
4: Fuse existence probabilities.



Chapter 6

Numerical experiments

In this Chapter, we present the results of multiple simulation scenarios, which
compare multiple schemes of node cooperation against a variant where no com-
munication and cooperation between nodes takes place. Cooperation schemes,
including the combine phase, also include the name of a method used to fuse
marginal densities of the mixture described by Equation (5.16).

The cooperation schemes, fusion method used, and their respective abbre-
viations used in graphs in this chapter are following:

1. Adaptation-only (A)

2. Combination-only, moment matching (C MM)

3. Combination-only, covariance intersection (C CI)

4. Adapt-then-Combine, moment matching (ATC MM)

5. Combine-then-Adapt, covariance intersection (CTA CI)

6. No cooperation (NO COOP)

All presented experiments are based on the CVM model in a 2D plane
described in Example 2.1. We also assume that measurements arrive in con-
stant intervals of 1 second, i.e., ∆k = 1. The transition matrix F , process
noise covariance matrix Q, measurement matrix H, and measurement noise
covariance matrix R have the following form

F =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 , Q = 0.001 · I4×4,

H =
[
1 0 0 0
0 1 0 0

]
, R =

[
15 0
0 15

]
.
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The clutter follows the Poisson point process with intensity λ = 10−5.
The validation gate is set to 98% highest probability density region, and the
probability of a target being detected PD = 0.8. The JIPDA algorithm is ini-
tialized with the initial existence probablity ru,t

0 = 0.9, probability of survival
PS = 0.95 and survival threshold PT = (ru,t

0 )4. Finally, the Bhattacharyya
distance threshold is set to β = 10.

The performance of the proposed algorithm is measured using the gener-
alized optimal sub-pattern assignment (GOSPA) metric [40].

▶ Definiton 6.1. Let c > 0, 0 < α and 1 ≤ p < ∞. Let d(x, y) denote a
metric for any x, y ∈ RN and let d(c)(x, y) = min(d(x, y), c), be its cut-off
metric. Let Πn be the set of all permutations of {1, . . . , n} for any n ∈ N and
any element pi ∈ Πn be a sequence (π(1), . . . , π(n)). Let X = {x1, . . . , x|X|}
and Y = {y1, . . . , y|Y |} be a finite subsets of RN . For |X| ≤ |Y |, the GOSPA
metric is defined as

d(c,α)
p (X, Y )

≜

 min
π∈Π|Y |

|X|∑
i=1

d(c)(xi, yπ(i))p + cp

α
(|Y | − |X|)


1
p

. (6.1)

If |X| > |Y |, d(c,α)
p (X, Y ) ≜ d(c,α)

p (Y, X)

However, to use GOSPA, we still have to choose the four parameters of the
metric, namely, the distance metric d(x, y) and parameters c, α, and p. Since
the targets are moving through Euclidean space, a natural choice can be the
Euclidean distance. Although, a different metric, e.g., root mean square error
(RMSE), is also a viable option [40]. The parameter c, which determines the
maximum allowable localization error, was set as c = 10. The parameter α,
which is used to tune penalization due to cardinality mismatch, i.e., penaliza-
tion for mismatch between real targets and detected targets, has been set to
α = 2 as [40] argues that this is the most appropriate choice for MTT algo-
rithms. Lastly, the parameter p, used to tune outliers’ penalization, has been
set to p = 2. Higher value penalizes outliers more. In the following scenar-
ios with multiple JPDA instances and radar, GOSPA is calculated for every
JPDA instance separately with its own estimates. The final value of GOSPA
for the whole network of agents is calculated as an average of these individual
GOSPA values.
▶ Note 6.2. Since we are interested in the accuracy of the proposed algorithm,
we will be using mainly the localization error part of the GOSPA metric. The
metric’s missed target and false detection parts have no meaning when we use
IPDA.
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6.1 Single target, two radars with unlimited FOV

We start with the simplest example. This scenario contains only a single
target and two radars with unlimited FOV, shown in Figure 6.1. The lifespan
of the target is 140 seconds. This test aims to test the effectiveness of the
collaboration for a more extended period of time. After the initial period of a
few timesteps, we should see the lower GOSPA value of cooperation variants
compared to the no cooperation variant.

Figure 6.1 Trajector of a target in a simple scenario, two radars, the black line
between them represents a communication link, clutter has been omited for clarity
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Figure 6.2 Averaged localization error of GOSPA in simple scenario

Figure 6.3 Comparison of averaged localization error of 30 simulation runs, one
dot represents one simulation run.

As shown in Figure 6.2, the NO COOP variant is quickly surpassed by all
other variants after a few initial timesteps. At the k = 57 mark, the GOSPA
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of all cooperation variants increases, most notably for covariance intersection
variants. This could be caused by multiple clutter measurements appearing in
the validation region. From Figure 6.3, we can see that the GOSPA averaged
over the whole simulation are mostly lower than values of NO COOP, even
though the C CI variant outliers have the highest values of all variants. For
the Adaptation-only and both schemes with the moment matching method
used, we can see the improved performance of the tracking algorithm.

6.2 Single target, two radars with limited FOV

The scenario in this example contains the same target and radars as the pre-
vious one. Now, however, the FOV of those radars was reduced. At the start
and the end, the target is located outside the FOV of both radars; we should,
therefore, see the localization error equal to zero. Once the target enters the
FOV of the first radar (Figure 6.5), we should see similar results for both co-
operation and no cooperation variants, as only a single radar sees the target.
Then, we should see an improvement in the accuracy of cooperation variants
once the target enters the intersection of FOVs of both radars (Figures 6.6,
6.7). This experiment aims to test information sharing between neighboring
radars as a tracked target enters FOV the neighbor.

Figure 6.4 Trajectory of a target in a simple scenario with limited radar FOV
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Figure 6.5 Target entering FOV of the first radar (border of the FOV is visible in
right upper corner)

Figure 6.6 Target entered FOV of the second radar, simulation with ATC MM
scheme
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Figure 6.7 Target entering FOV of the second radar, simulation with NO COOP
scheme
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Figure 6.8 Comparison of averaged localization error of 30 simulation runs, one
dot represents one simulation run.

As we can see in Figure 6.4, the value of GOSPA spikes sharply at k =
39 in all variants, most notably in the NO COOP variant. All cooperation
variants are able to quickly recover and track the target with significantly
higher precision than the NO COOP variant, while the target stays in the
FOV intersection. Once the target leaves the intersection at k = 67, the value
of GOSPA for all variants stays at similar values. This is expected as after the
k = 67 mark; the target is again visible only to a single radar. Even though
the target spent only a fifth of the time in the FOV intersection, we can see
from Figure 6.8 that average values of all cooperation variants are still, on
average, lower, although differences in accuracy are lower than in the previous
example.

6.3 Two targets crossing path, two radars with lim-
ited FOV

In this scenario, we have the same radar and FOV layout as in the previous
example. This time, two targets cross paths at the FOV intersection. Both
targets fly in slightly similar directions to increase the time they spend close
to each other. In this experiment, we aim to test the ability of the proposed
filter to deal with the track coalescence problem and its performance in such
a situation.
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Figure 6.9 Scenario of two targets approaching each other in the FOV intesection

Figure 6.10 Zoomed view on the crossing region



Two targets crossing path, two radars with limited FOV 55

Figure 6.11 Averaged GOSPA for the target crossing scenario

Figure 6.12 Comparison of averaged localization error of 30 simulation runs, one
dot represents one simulation run.

In this scenario, we can see in both Figures 6.11 and 6.12 that the pro-
posed algorithm fails in such a scenario. The NO COOP variant performs, on
average, better than all other methods. This can be caused by several factors.
This can be caused by the validation gate to be set too low, increasing the pos-
sibility of measurement of the second target to be included in the adaptation
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phase update of the first target and vice versa.

6.4 complex scenario

In this scenario, we have a network of 8 radars and multiple targets leaving and
entering their FOVs. Targets do not cross cross paths and travel in straight
lines. This experiment aims to test the overall performance of the proposed
filter with a more extensive network.

Figure 6.13 Complex scenario

Notable events affecting the performance of this scenario depicted in Figure
6.13 are the following:

t = 16: Target 1 enters the FOV of node 7.

t = 25: Target 2 enters the FOV of node 3. Target 1 enters the FOV of
node 2.

t = 42: Target 4 leaves the FOV of node 1.

t = 47: Target 2 leaves the FOV of node 4.

t = 78: Target 1 leaves the FOV of node 7. Target 3 leaves the FOV of
node 0.

t = 86: Target 2 enters the FOV of node 0.
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t = 101: Target 1 enters the FOV of node 1.

t = 130: Target 2 leaves the FOV of node 3. Target 1 leaves FOV of nodes
6 and 2.

Figure 6.14 Averaged GOSPA for the complex scenario

Figure 6.15 Comparison of average localization error over a whole simulation run.
One dot represents one simulation run.
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In Figures 6.14 and 6.15 we can see that that all methods of cooperation
outperform the NO COOP version.



Conclusion

Main goals of this thesis were:

Get familiar with the (J)PDA and/or IPDA filters. Study the initialization
and deletion of tracks.

Study the possibilities of collaboration of several filters in a network.

Propose a method for collaboration among multiple MTT filters.

Perform an experimental validation of the resulting solution using simu-
lated data.

In Chapter 1 we explained and define necessary mathematical prerequi-
sites. In chapter 2 we introduced the concepts of Hidden markovian model
and measurement model. We then followed with derivation of the Kalman
filter. We allowed the target to stay undetected sometimes and introduced the
concept of false measurements, i.e., clutter, with which the Kalman filter can-
not perform satisfyingly well. We then introduced and derived the probablity
data association filter as an evolution of the Kalman filter. We also described a
performance optimalization known as validation gating, which limits the num-
ber of data association, that are needed to be computed. Naturally, targets
can appear and disappear at any moment, for this reason we described two
possible methods of initializing and deinitializing tracks, the M&N method and
IPDA method. Main focus was laid on the latter, which was also described
and derived. Next in Chapter 3 we moved from the problem of single target
onto the multiple target problem. Even-though, the PDA filter can be used for
tracking multiple targets, we introduced another evolution of the filter, namely,
the joint probablity data assocation filter. We derived a joint way to compute
data assocation coefficients that improves JPDA’s performance compared to
the PDA filter. Having finished studying concepts of PDA, JPDA and IPDA
filters, in Chapter 4 we introduced different general methods of collaboration
between filters and focused mostly on the diffusion method. Once we described
basic concepts of the diffusion collaboration, in Chapter 5 we propose diffusion
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JIPDA filter itself. In the last Chapter 6 we demonstrated performance of the
proposed filter.

While the proposed method performs better than its non-collaborative ver-
sion. It performed poorly in case of two targets moving in similar direction in
close proximity.

Besides mitigating the issue mentioned above, the filter could also be fur-
ther improved by introducing a collaborative way to initialize new target and,
potentially, by finding a better method of combining survival probabilities of
targets.
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[21] Á. F. Garćıa-Fernández and L. Svensson, “Trajectory phd and cphd fil-
ters,” IEEE Transactions on Signal Processing, vol. 67, no. 22, pp. 5702–
5714, 2019. doi: 10.1109/TSP.2019.2943234.

[22] A. H. Sayed, “Adaptive networks,” Proceedings of the IEEE, vol. 102,
no. 4, pp. 460–497, 2014. doi: 10.1109/JPROC.2014.2306253.

https://doi.org/10.1016/j.jpowsour.2007.04.011
https://doi.org/10.1016/j.enconman.2007.05.017
https://doi.org/10.1109/MCS.2009.934469
https://doi.org/10.1109/TAES.2007.4441756
https://doi.org/10.1109/TSP.2019.2943234
https://doi.org/10.1109/JPROC.2014.2306253


Bibliography 63

[23] B. Chen, L. Yu, W.-A. Zhang, and H. Song, “Distributed fusion kalman
filtering with communication constraints,” in 2013 American Control
Conference, 2013, pp. 3852–3857. doi: 10.1109/ACC.2013.6580427.

[24] Ø. K. Helgesen, E. F. Brekke, H. H. Helgesen, and Ø. Engelhardtsen,
“Sensor combinations in heterogeneous multi-sensor fusion for maritime
target tracking,” in 2019 22th International Conference on Information
Fusion (FUSION), 2019, pp. 1–9. doi: 10.23919/FUSION43075.2019.
9011297.

[25] B. Johansson, T. Keviczky, M. Johansson, and K. Johansson, “Thta12.5
subgradient methods and consensus algorithms for solving convex opti-
mization problems,” Jan. 2009, pp. 4185–4190. doi: 10.1109/CDC.2008.
4739339.
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[35] Á. F. Garćıa-Fernández, L. Svensson, J. L. Williams, Y. Xia, and K.
Granström, “Trajectory Poisson multi-Bernoulli filters,” IEEE Transac-
tions on Signal Processing, vol. 68, pp. 4933–4945, 2020, issn: 1053-587X,
1941-0476.

[36] M. Beard and S. Arulampalam, “Performance of phd and cphd filter-
ing versus jipda for bearings-only multi-target tracking,” in 2012 15th
International Conference on Information Fusion, 2012, pp. 542–549.

[37] D. Smith and S. Singh, “Approaches to multisensor data fusion in target
tracking: A survey,” IEEE Transactions on Knowledge and Data Engi-
neering, vol. 18, no. 12, pp. 1696–1710, 2006. doi: 10.1109/TKDE.2006.
183.

[38] H. Cho, Y.-W. Seo, B. V. Kumar, and R. R. Rajkumar, “A multi-sensor
fusion system for moving object detection and tracking in urban driving
environments,” in 2014 IEEE International Conference on Robotics and
Automation (ICRA), 2014, pp. 1836–1843. doi: 10.1109/ICRA.2014.
6907100.

[39] S.-Y. Tu and A. H. Sayed, “Diffusion strategies outperform consen-
sus strategies for distributed estimation over adaptive networks,” IEEE
Transactions on Signal Processing, vol. 60, no. 12, pp. 6217–6234, 2012.
doi: 10.1109/TSP.2012.2217338.
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