
Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Computer Graphics and Interaction

Towards Interactive, Robust, and Stereoscopic Style
Transfer

Ing. Michal Kučera
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Abstract

Since its inception in the early 2000s, the research field of style-transfer and automatic
stylization has seen a steady rise in popularity up to a point where its algorithms are
being employed by professional digital artists in their creation process, allowing them
to quickly and conveniently stylize images or video sequences based on either a hand-
made or a generated example. Even though this research field has seen major strides
in recent years, there are still substential issues and limitations preventing larger-scale
utilization of such algorithms: limitations such as real-time or interactive stylization of
either static images or video sequences, significant quality degradation in cases where
example and target keyframes differ too much, temporal coherency of stylized video
sequences, infeasible requirements for learning an image-to-image network, as well as
stereoscopic applications of style-transfer algorithms remaining uncertain.

In this dissertation thesis we describe the current state-of-the-art in the field of
example-based style transfer. Along with that, we propose a set of algorithms that al-
low interactive production of high quality real-time stylizations of video sequences, both
based on semantically meaningful automatic style transfer and keyframe-based learning
approaches, on which we introduce new methods to solve the difficult requirement of
large paired datasets or domain-specific datasets. We also propose a new method that
enables style transfer to still be possible when applied to a stereoscopic scenario.

In particular, we propose: (1) a neural method approximating results of a patch-based
style transfer method in real time, (2) an interactive method for real-time style transfer
of video sequences, (3) a computationally inexpensive method for real-time stylization of
facial videos even on low-end devices, (4) a video style-transfer method greatly improving
the output quality and long-term coherence, and finally (5) a method able to achieve
stereo-consistent style transfer of video sequences.

Combined together, this thesis makes important steps forward to high-quality, real-
time, interactive, temporally and stereoscopically consistent style transfer.

Keywords

computer graphics, machine learning, artistic style transfer, stylization, example-based
synthesis, neural style transfer, virtual reality, augmented reality, stereoscopic rendering,
nonphotorealistic rendering, digital art, video style transfer
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beyond to create a safe and supportive surroundings for our research and my personal
life. Special thanks also belong to my internship supervisors, Menglei Chai and Dominik
Kaeser, who have done the same during my stays in the USA and helped me thrive in an
environment I would have considered foreign before. Dominik has also greatly helped in
repatriating me from the USA during the outbreak of the global COVID-19 pandemic.
And last, but certainly not least, my friends and family, who have been there to sup-
port me during hard times. For that, a very special thanks goes to my partner, Jana
Kyllerová, with whom I have built a life together during this time, and who has been
there for me whenever she knew I needed it.

The research presented in this thesis was conducted in collaboration with, and sup-
ported by, Adobe Research, Snap Inc. and has further been supported by the Tech-
nology Agency of the Czech Republic under research program TE01020415 (V3C –
Visual Computing Competence Center), by the Grant Agency of the Czech Technical
University in Prague, grants No. SGS13/214/OHK3/3T/13 (Research of Progressive
Computer Graphics Methods) and No. SGS16/237/OHK3/3T/13 (Research of Mod-
ern Computer Graphics Methods), and by Research Center for Informatics (RCI) No.
CZ.02.1.01/0.0/0.0/16 019/0000765.



v
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Abstrakt

Výzkum v oblast́ı automatické přenosu výtvarného stylu se těš́ı rostoućı popularitě od
svého zrodu na počátku 21. stolet́ı. Oceňuj́ı jej zejména výtvarńıci a animátoři, kterým
významným zp̊usobem pomáhá sńıžit objem repetitivńı ručńı práce. Na základě jedné
ručně kreslené či generované předlohy dokáž́ı efektivně stylizovat řadu daľśıch obraz̊u či
celé videosekvence. I přes velký pokrok v této oblasti, existuje stále řada problémů, jež
bráńı větš́ımu rozš́ı̌reńı metod pro přenosu výtvarného stylu. Hlavńı pot́ıž́ı jsou poměrně
vysoké nároky na výpočetńı výkon, jež omezuj́ı možnost interaktivńı práce v reálném
čase. Často nav́ıc docháźı k významnému úbytku kvality v př́ıpadech, kdy se předloha a
ćılové sńımky významně lǐśı. Je také obt́ıžné dosáhnout časové koherence a v neposledńı
řadě neńı zřejmé, jakým zp̊usobem provádět přenos stylu v př́ıpadě, kdy se očekává
stereoskopické zobrazeńı.

V této disertačńı práci nejprve nast́ıńıme současný stav poznáńı na poli přenosu
výtvarného stylu a na jeho základě navrhneme sadu několika nových postup̊u, které se
pokuśı překonat výše zmı́něná omezeńı. Konkrétně představ́ıme: (1) metodu založenou
na použit́ı neuronové śıtě, která umožńı stylizovat vstupńı video lidské tváře v reálném
čase s využit́ım trénovaćı sady dat generované pomoćı výpočetně náročněǰśıho postupu,
(2) tuto metodu dále zobecńıme pro př́ıpad libovolné videosekvence, pro kterou exis-
tuje jen velmi omezená sada trénovaćıch dat. Představ́ıme také (3) efektivńı aproximaci
výpočetně náročněǰśıho algoritmu pro stylizaci lidských tvář́ı, která umožńı provést styli-
zaci v reálném čase i na méně výkonných zař́ızeńıch a (4) metodu pro přenos výtvarného
stylu na videosekvence, která významným zp̊usobem zvýš́ı kvalitu výstupu v př́ıpadech,
kdy se sńımek na vstupu výrazně lǐśı od kĺıčového sńımku. V závěru poṕı̌seme (5) metodu
pro konzistentńı přenos výtvarného stylu do stereoskopické videosekvence.

Na základě předložených výsledk̊u srovnáńı s předchoźımi př́ıstupy lze konstatovat, že
tato práce posunuje současný stav poznáńı v několika aspektech zkoumané problematiky,
at’ už se jedná o zvýšeńım kvality stylizované sekvence, dosažeńı interaktivńı odezvy při
stylizaci v reálném čase nebo zajǐstěńı konzistence ve stereoskopickém scénáři.

Kĺıčová slova

poč́ıtačová grafika, strojové učeńı, přenos výtvarného stylu, stylizace, styl podle předlohy,
neuronové śıtě, nefotorealistické vykreslováńı, digitálńı tvorba, přenos stylu na video,
virtuálńı realita, rozš́ı̌rená realita, stereoskopické vykreslováńı
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vided with the Source style (a), Source guidance (c-f) and Target guidance
(g-j), the algorithm is able to generate the stylized output (b), retaining
the content of (g-j) and reproducing the style of (a). The guidance data
used in this case is based on the light propagation throughout the scene,
which is one of the key contributions of Fǐser et al. [2016]. . . . . . . . . 10
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put from FaceStyle [Fǐser et al. 2017]. The corresponding style exemplars
are visible in Figure 3.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.7 Face stylization results (continued). In each group of three images, from
left to right, we show the input image, our stylization result, and the out-
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1 ) and the other is painted only partially (Sk
70).

MaskMk
1 denotes that the entire keyframe is used; maskMk
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exemplars (S) courtesy of © Zuzana Studená. . . . . . . . . . . . . . . . 50



xiv LIST OF FIGURES
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This is thanks to the fact that our patch-based scheme better encour-
ages the network to generalize to unseen video frames. Video frames (I)
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agated through the network in a single batch to produce their stylized
counterparts (b). We then compute the loss of these stylized counter-
parts (b) with respect to the co-located patches sampled from the stylized
keyframe (c) and back-propagate the error. Such a training scheme is not
limited to any particular loss function; in our method, we use a combi-
nation of L1 loss, adversarial loss, and VGG loss. Video frame (left) and
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domly distributed and colored Gaussians (b). The translation network
is trained on patches of which input pixels contain those additional color
components. The aim is to reproduce the stylized counterpart (c). Once
the network is trained a different frame from the sequence can be styl-
ized (d) using adopted version of the auxiliary input layer (e). The result-
ing sequence of stylized frames (f) has notably better temporal stability
(cf. our supplementary video at 2:40). Video frames (a, d) courtesy of
© Zuzana Studená and style exemplar (b) courtesy of © Pavla Sýkorová. 55
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step. (b) The loss curve for the patch size Wp. The optimal size of a patch
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provide sufficient context while larger ones could make the network less ro-
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all cases shown in this figure, we trained the network on the first frame;
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parts of the image were occluded; (g) dropout of entire 2D feature maps;
(h) dropout of individual pixels before each convolution layer. . . . . . . 57
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(our approach) are compared with the output of concurrent techniques:
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2020b; Gatys et al. 2016; Kolkin et al. 2019]) our approach better preserves
important high-frequency details of the original style exemplar while being
able to adapt to a new pose in a semantically meaningful way. Source
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set of shots taken around the same location by rotating a camera (target
panorama) and stylized using different artistic media (source style). The
network is then trained using the stylized pair and a subset of photos
of the panoramic image (target panorama). Finally, the network is used
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Chapter 1

Introduction

Similarly to any other form of art, digital art, such as movies and video games, has a lot of
subtle yet very important nuances that is important to properly understand the evolution
that got it into the present day state, and to understand the direction it might be heading
in future. Directors never put something in their creation just for the sake of it being
there, it always has to fulfill a purpose that is in line with their vision. The chosen camera
and lens properties, color schemes, light intensity and direction, composition of a shot
and level of detail on objects are all important aspects that help skilled creators convey a
specific feeling to the viewer, without it being explicitly said, which is a compelling tool
if used properly. Focal length of a lense can make a shot feel either more open and safe,
or claustrophobic and tense. Unusual Z-axis angle of a camera can convey a feeling of
something being wrong (commonly referred to as the Dutch angle). Level of detail and
saturation of an object can attract the viewers attention to it, helping guide the viewer
to the true experience intended by the creator. And this is exactly what these kinds of
media are: an experience.

The world of cinematography has evolved massively since its inception in late 1800s.
What first started as a series of moving pictures, which could be somewhat considered
a proof-of-concept in today’s terms, has evolved into a medium able to convey a story,
providing an alternative to books, but allowing the authors to leave less to the reader’s
imagination and leaving more of the experience in the hands of the author. This led
to creation of many movies: comedies, dramas, crime stories, romances, many of them
rooted in reality and only capturing a raw, acted scene happening in front of the camera,
but a branching genre of movies sought to provide a look into something unnatural,
something that may or may not have happened, using special effect. An example of these
would be the movies such as The Execution of Mary, Queen of Scots, or A Trip to the
Moon, which used methods such as stop motion, or miniatures with forced perspective,
to create something “fake”, yet believable. Movies such as Star Wars Episode IV: A
New Hope, the original Jurassic Park, or the Flight of the Navigator all sought to tell a
fantastic story in the most photorealistic way possible, making it easier for the viewer to
connect with the story being told. They achieved that by using many in-camera tricks,
scaled miniatures of objects, or realistic life-sized suits, which made scenes look very
photorealistic because the object were in fact real.

Photorealism is a crucial aspect in many of today’s media, both movies and videogames.
As mentioned before, it makes it easier for the viewer to connect with the events happen-
ing in front of them, because the environment in which the story is happening is similar
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Figure 1.1: Examples of recent stylized movies. (a) Loving Vincent unstylized captured frame,
(b) final stylized frame. (c) Love, Death and Robots. (d) Spider-Man: Across the Spider-Verse.
(e) Arcane.

to the environment they know and everything seems plausible, and while the early 1900’s
special effect were not particularly convincing for today’s standards, the techniques have
been significantly refined over time. However, while the common early techniques, such
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as prop and model making for movies, are definitely a good way to achieve photoreal-
ism, they are not perfect; otherwise we would have no reason to not use them anymore.
Making realistic, scaled or life-sized, props and models is an expensive, time-consuming
process, allowing very little in terms of flexibility once a prop or a model is done. This
forces the artists to make compromises, even though their vision is not perfectly compat-
ible with the assets they have available, they need to make it work somehow, sacrificing
bits from the final presented experience and trying to stray as little as possible from the
original ideas, either due to props not being up to the quality standard, or simple because
the artist changed their mind about certain aspects, which is certainly not uncommon. It
is important to understand that artists are often constrained by time and, more impor-
tantly, budget: very few artists release their works just from the altruistic desire to share
an experience, instead it is considered a product with the goal of generating revenue.

This is where computer generated imagery (CGI) and our work comes in: it provides
an alternative approach to practical effects, and gives the artist another tool which they
can use. We can insert objects in the scene that were not really there during filming, or
composit entire shots that never really happened. This gives the artists a lot of flexibility,
allowing to change certain aspects of a shot almost until the last moment, making the
resulting work much more faithful to their vision. The last couple of decades in both
cinematography and video game industry has been thus defined by the chase of computer
generated photorealism. At the beginning, CGI effects could be recognized very easily,
but nowadays its hard to recognize what is real and what is CGI, allowing artist to make
a true mirror of reality and express their visions freely, and while some visual effects in
recent movies or games do not look as convincing as they could, it is often an issue of the
production scheduling rather than the limits of the technology. The progress has been
so great in fact, you can now recreate some of the CGI scenes from many older movies
in a matter of minutes on your own home PC, rather than needing months of time and
millions of dollars to do so.

However, pure photorealism can only offer you so much in terms of conveying a feeling
and we have been investing so much time in it that it is hard to create a new, exciting
experience that is just purely photorealistic. And the same way the original filmmakers
in the early days of cinematography sought to create something new that the viewers
have not seen before in real life, rather than just a video of a train going by, there is an
increasing number of artists trying to not limit themselves by the mainstream photoreal-
ism, and instead use a more of an artistic spin. An example would be the Loving Vincent,
a movie that is entirely painted by hand in the style of Vincent van Gogh. This movie has
been quite a visual achievement, providing something fresh and new, but also has shown
the infeasibility of hand-paiting of an entire movie, being dreadfully expensive and also
extremely time-consuming to make. It became obvious that artistic tools, allowing the
creation of such stylized content, were needed, to revolutionize the production process,
similar to what CGI did to movie production, as mentioned previously. The demand for
a stylized content has, fortunately, not stopped after the release of Loving Vincent, and
continued with more movies and TV series, such as Love, Death and Robots, Spider-Man:
Into the Spider-Verse or Apollo 10 1/2: A Space Age Childhood, which further fueled the
work done in the research domain specializing on this exact sort of task: style-transfer.
This domain aims to tackle problems and provide solutions to automatic stylization of
some graphical content, often based on a hand-made or generated example based on
which the target content, an image or a video sequence, should be “reimagined” to look
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as if it was created using the particular style of the example. This research subdomain is
called example-based style-transfer and it will be the field that we will be focusing on in
this thesis. And while example-based style-transfer is not the only subdomain available,
with text or description-based style-transfer also being quite prominent in recent years,
it is a very popular subdomain since it provides a lot of control over the final look of the
output that is difficult to precisely describe otherwise.

Another area relevant to our research is the that of video games, which have been
following a similar trend to movies, chasing uncompromising realism for maximal im-
mersion. There are some aspects and priorites with the video-game industry that are
different to the movie industry, all stemming from the fact that video games are inter-
active experiences, they react to the user’s actions and decisions. The priority is that
the experience is smooth, performance-wise, on most consumer-grade hardware, and less
on the raw visual quality. Video games give users a different way to experience a story
that is very unique compared to movies, including a fairly modern way: through virtual
reality. VR allows for an absolutely different level of immersion in the experience, if
used properly. Examples of such an experience would be the games Half-Life: Alyx, Beat
Saber or A Fisherman’s Tale. While VR and games made for it were successful, it is
hardly a success that would rival that of the traditional video games. There are many
reasons for this, starting with the price and availability of such VR devices, but also due
to other factors such as the VR sickness, which is a variation of motion sickness. Even
with that, the potential of VR can be observed by the sheer amount of media created
for it even now, and the amount of supporting modifications that make the usage easier.
And similarly to how movies and traditional video games can benefit from an artistic
tool for stylization - giving creators more freedom - the same can be applied to VR. In
there, however, the parameters defining a good stylization become a little more difficult
due to the binocular disparity and depth perception, when stylizing anything that is not
a trivial geometrical plane. While, for example, the details of used strokes, the difference
between consecutive frames (temporal coherency), or the amount of identity presevation
vs. style reproduction, is up to the artist’s choice, the stereoscopic consistency is not,
since the lack of it creates very unpleasant artifacts. Whatever the future of VR devices
might be, it is worth it investing time into the research of stereoscopic tools for styliza-
tions, because it will remain relevant for as long as we use two eyes for depth perception,
regardless of the shape or form of the VR devices which we will end up using.

While the field of non-photorealistic rendering (NPR) and style transfer has been
around for some time, it is still an exciting and relatively fresh area for research, with
many possibilities still being largely unexplored and many severe issues unaddressed,
which is where we hope to contribute with this thesis. For example, with VR, the strong
emphasis on interactivity, performance, freedom of artistic expression and strict stereo
consistency requirement make it fairly niche. Current real world professional uses work
offline, which means that it is not too much of an issue if the algorithm takes its time
to produce a result, which is almost entirely incompatible with VR usage and is also
a deterring factor preventing wider applications outside of VR. Our goal is to propose
algorithms and solution to these individual tasks: real-time performance, interactivity,
stereo consistency and output quality with emphasis on freedom of artistic expression,
which in itself can serve as a good platform for further research.

In this chapter, we first introduce the field of example-based style-transfer, both using
traditional optimization schemes as well as neural networks, and describe the algorithms
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used for solving these tasks. Following that, we define the scope of the contributions of
our thesis, which will then be properly described in more detail in the following chapters.

1.1 Introduction to Example-based Style Transfer

(a) Input content (b) Input style (c) Output

Figure 1.2: Style transfer example, where (a) is the source content, (b) the source style and
(c) the final output. Algorithm used is Gatys et al. [2016].

The field of style transfer has been a hot topic in research circles for a couple of
decades now with many significant advances made in this area. Along with the rapid
increase of performance of many widely available devices, both computers and mobile
devices, algorithms performing some kind of style transfer are steadily finding their way
into commercial applications, giving artists, for example, the ability to quickly prototype
artwork sketches and allowing them to sift through many conceptual ideas in a much
shorter timeframe than before.

(a) Source style (b) Source content (c) Target content (d) Output

Figure 1.3: In guided style transfer, we are trying the synthesize the output (d) based on the
input source style (a), description of source content (b) and description of target content (c).

The underlying problem of style transfer, specifically example-based, unfortunately
lacks an unambiguous definition. What we are generally trying to achieve is given two
input images, called input content and input style, to find an image which has the content
of the first image, but is drawn in the artistic style of the second image. What is artistic
style, however, can be left to interpretation. While we generally understand the style to
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be a set of used colors, strokes and other artifacts left by the used medium, the artistic
style could in reality also relate to geometric deformations of the captured content, or by
the composition itself. While there exists research regarding these particular aspects of
style transfer, such as Yaniv et al. [2019], in our research we will limit ourselves only to a
subset of aforementioned aspects: color, strokes and artifacts left by the artistic medium.
An example of this sort of example-based style transfer can be seen in Figure 1.2.

(a) Frame 99 (b) Frame 44 (c) Frame 0

(d) Input stylized frame 99 (e) Synthesized styled frame 44 (f) Synthesized styled frame 0

Figure 1.4: An example of video stylization using the EbSynth algorithm of Jamrǐska et
al. [2019]. Given a target sequence (a-c), we provide a stylized version of one or more of these
frames (in this case frame 99 (d)) and the algorithm synthesizes the rest of the sequence using
this style (f).

Based on the nature of the input data we can divide the problems of style transfer into
several categories, which can be placed on a spectrum between two extremes. One of
these extremes would be arbitrary style transfer, where we do not place any requirements
or limitations on the input data. An example of this approach would be the algorithm
from Figure 1.2, which is the algorithm of Gatys et al. [2016]. In this approach any
arbitrary style can be used to stylize any input content and some kind of output will
always be generated. Another examples of the same category would be the approaches
of Johnson et al. [2016], Frigo et al. [2016; 2019], and Kolkin et al. [2019]. A very similar
approach can be seen in the work by Sanakoyeu et al. [2018] and the follow-up research
by Kotovenko et al. [2019b], which allow multiple input style images from which the style
is reproduced.

On the other side of the spectrum would be guided style transfer, where we place
strict requirements on the input data to extract important guidance information. This
allows users to steer the stylization and have greater control over many details of the
final product, which is often required in professional commercial usage. In the guided
workflow, we provide explicit guidance information by adding a source content input
as well, which describes the structure of the input style. The stylization solution then
attempts to synthesize a result based on the correlations between the content images. An
example of this workflow can be seen in Figure 1.3, showing the output of the method
of Jamrǐska et al. [2019], which can also be used for keyframe-based stylization of video
sequences, where we draw over one of the frames of the sequence, making it a paired
input with content and style and making other frames in the sequence target contents
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(a) Input content (b) Input style (c) Output

Figure 1.5: An example of style transfer using the Liao et al. [2017] hybrid approach. Note
that the semantical content of both input matches, in this case both contain sailing ships.

(Figure 1.4). Important approach from the category of guided style transfer would also
be the method of Hertzmann et al. [2001], creating a framework that was further utilized
in many other guided approaches, such as the work of Jamrǐska et al. [2015], the work
by Fǐser et al. [2016] (Figure 1.6) or the work of Fǐser et al. [2017] (Figure 1.7).

As a sort of a middle ground between the two extremes, there are methods that impose
relaxed requirements on the input data, making them not strictly guided, but also not
completely arbitrary. This requirements generally takes the shape of limiting the target
domain. Common limitation is to stylize only human faces, where the correspondences
are easier to generate implicitly. An example of such an approach would be the algorithm
of Selim et al. [2016]. Another common limitation is to require that both the source and
target content contain similar semantical information, allowing visual attribute transfer
between corresponding areas, as was done by the method of Liao et al. [2017] (Figure
1.5).

1.1.1 Algorithms for Style Transfer

There are many solutions to the aforementioned problems of style transfer, which we can
categorize into two groups: patch-based approaches and neural approaches.

One of the first patch-based approaches was introduced in the work of Hertzmann et
al. [2001], who proposed the framework named Image Analogies where small patches of
the source style were transferred to the output following the provided guides. This ap-
proach has since been expanded with optimization-based techniques [Kwatra et al. 2005;
Wexler et al. 2007; Jamrǐska et al. 2015; Kaspar et al. 2015] to stylize 3D renders [Bénard
et al. 2013; Fǐser et al. 2016] (shown in Figure 1.6), facial photos [Fǐser et al. 2017] (shown
in Figure 1.7), or video frames [Jamrǐska et al. 2019] (shown in Figure 1.4). However,
these approaches require explicit guidance in order to work, which heavily limits their
range of uses, and are often based on expensive optimization schemes, which makes usage
in real-time scenarios very difficult. Further worth noting, the mentioned video styliza-
tion focused paper of Jamrǐska et al. [2019] is sequential in nature, making random access
to stylized frames of the sequence expensive since all the frames from the last keyframe
need to be processed and stylized first. This issue is partially addressed in the research
done by Sýkora et al. [2019] that allows for real-time generation of outputs approximating
those of Fǐser et al. [2016] by leveraging specific structures of the input guidance, which
however only works for stylization of 3D models.
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(a) Source style (b) Output

(c) Direct diffuse (d) Direct specular (e) Full render (f) Diffuse interreflection

(g) Direct diffuse (h) Direct specular (i) Full render (j) Diffuse interreflection

Figure 1.6: Example of the guided StyLit algorithm of Fǐser et al. [2016]. When provided
with the Source style (a), Source guidance (c-f) and Target guidance (g-j), the algorithm is able
to generate the stylized output (b), retaining the content of (g-j) and reproducing the style of
(a). The guidance data used in this case is based on the light propagation throughout the scene,
which is one of the key contributions of Fǐser et al. [2016].

In the neural domain, the general approach is to synthesize an image matching statis-
tics or features extracted from a neural network. This approach has been popularized
by the seminal work of Gatys et al. [2016], who used a pre-trained VGG network of
Simonyan et al. [2014] to optimize the output image until its VGG responses match
the target content and style representations. A feed-forward adaptations of Gatys’ al-
gorithm has been introduced by [Johnson et al. 2016; Ulyanov et al. 2016b; Wang et al.
2017; Wilmot et al. 2017], allowing fast and inexpensive style transfer even on mobile
devices, albeit for the cost of lengthy precomputation. Another possibility for neural
style transfer would be image-to-image translation networks [Isola et al. 2017; Zhu et al.
2017c] which preserve textural details notably better and therefore produce higher qual-
ity stylizations, although these approaches require large datasets in order to be trained
properly. Common network architecture used for these methods is U-net of Ronneberger
et al. [2015]. While the mentioned algorithms work well to mitigate certain limitations
of the patch-based approaches, they also suffer from limitations of their own. One of the
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most prominent ones is the requirement for a large dataset from which the network can
be trained, which can often be very hard to obtain, if not downright impossible, since
artists often change and evolve their style and technique between their works.

There are also methods which combine the patch-based and neural approaches to
create the output stylization. An example of this approach would be the work of Texler
et al. [2020a], running a patch-based synthesis on top of the output of a neural style
transfer algorithm, allowing high-fidelity arbitrary stylization even on extremely large
images. Work of Liao et al. [2017] would also fall in this category. In this approach,
the authors propose a framework called Deep Image Analogies, in which they adapt the
concept of Hertzmann et al. [2001], but instead of using explicit guides this approach tries
to find correspondences in feature representation of both the style and content images,
generated using an object-recognition network of Simonyan et al. [2014], which however
requires both of the input images to contain semantically similar information for to the
output to be semantically meaningful (Figure 1.5).

1.1.2 Our Contribution

While the state-of-the-art methods of example-based style transfer has moved far in the
last couple of years, there are still issues that remain to be solved. With patch-based
approaches, the most common problem is the performance. As already mentioned, these
approaches rely on expensive optimization schemes and take a significant amount of time
to render the output, making a real-time application difficult to achieve. Approximative
algorithms of these approaches can achieve better performance, but focus themselves
only on a small subdomain of the problem. Neural algorithms can also solve the problem
of performance but have their own downsides, mostly pertaining to the learning process
where they require either a large paired training dataset, which can be difficult to obtain,
or a large domain-specific dataset, which only allows stylization to work within that
specific domain. Another issue common in both of these categories is the output quality
and consistency when applied to a video sequence, where important fine details may
degrade over time. To help solve these issues, we present new approaches, which are
further described in their respective chapters.

In Chapter 3 we propose FaceStyleGAN [Futschik et al. 2019], a neural algorithm re-
producing the output quality of the work of Fǐser et al. [2017], even in cases where the
original algorithm fails. Moreover, since our proposed network can be evaluated quickly
it allows for real-time stylization, whereas the original algorithm took a long time to gen-
erate a single output due to its costly texture optimization process. In this approach, we
utilize a U-net-based network architecture of Ronneberger et al. [2015], using a combina-
tion of L1, adversarial [Mao et al. 2017] and perceptual losses [Simonyan and Zisserman
2014] to train a translation network, creating paired data using the approach of Fǐser et
al. [2017].

In the same Chapter, we also introduce FaceBlit [Texler et al. 2021], a guided patch-
based approach to face stylization similar to that of Fǐser et al. [2017]. We employ
StyleBlit of Sýkora et al. [2019], allowing real-time response even on low-end devices
without any lengthy pre-calculation.

In Chapter 4, we propose an approach to interactive video stylization based on few-
shot patch-based training strategy [Texler et al. 2020b], where we introduce the usage of
deliberately small batches of cropped patches as a means of overfitting prevention as one
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of our key contributions, somewhat similar to the limited receptive field training seen
in the works of Li et al. [2016a] or Ulyanov et al. [2016b]. Doing that, we can achieve
real-time interactive style transfer that does not require restrictive sequential stylization
within the sequence to propagate the style such as state-of-the-art method of Jamrǐska et
al. [2019]. This upgrade allows parallel processing and random access to stylized frames,
and also omits the need for large paired datasets or a domain-specific dataset.

In Chapter 4 we also propose STALP [Futschik et al. 2021], that explores a different
way to prevent training overfitting with a small training dataset. Instead of restricting
the learning to only a handful of patches at a time, we give the network the entire image
at once and also measure style loss between individual stylized frames in a sequence using
a VGG network of Simonyan et al. [2014]. This allows for higher fidelity stylization and
prevents many artifacts where hand-drawn details get lost over time.

And finally, in Chapter 5, we present our contribution to the domain of stereoscopic
style-transfer called StyleBin [Kučera et al. 2022]. In this work we propose a patch-based
optimization method able to synthesize stylized sterescopically-consistent video sequences
from an input video, one or more stylized keyframes, and one or more input disparity
keyframes. This allows style-transfer scenarios and workflows to also be applicable when
targeting a stereoscopic device, such as a VR headset or a 3D monitor, since the method
explicitly eliminates stereoscopic inconsistencies, which prevented existing style-transfer
methods to be applied in such a way, while also achieving higher output quality compared
to neural solutions.
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(a) Input content (b) Input style (c) Output

(d) Target gSeg (e) Target gPos (f) Target gApp (g) Target gTemp

(h) Source gSeg (i) Source gPos (j) Source gApp (k) Source gTemp

Figure 1.7: Example of the guided FaceStyle algorithm of Fǐser et al. [2017]. Given the Input
content (a) and Input style (b), the algorithm recreates the identity of the person in image
(a) in the style of (b). To guide the transfer, guides are created for both the target (d-g) and
source (h-k) images. These are: gSeg, segmentation guide; gPos, positional guide from warped
facial landmarks; gApp, grayscale image with histogram matching applied; and gTemp, blurred
previous frame shifted with optical flow for temporal coherence.
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Chapter 2

Related Work and State-of-the-Art

The first attempts to perform non-photorealistic rendering [Kyprianidis et al. 2013], i.e.,
recreating an input image or a video with a specific artistic style, use hand-crafted algo-
rithmic solutions. Some methods compose the final result using a library of predefined
assets, e.g., pen and ink strokes [Salisbury et al. 1997; Praun et al. 2001; Snavely et al.
2006], hatching [Breslav et al. 2007], or brush strokes [Litwinowicz 1997; Hays and Essa
2004; Schmid et al. 2011; Zhao and Zhu 2011]. Others try to mimic the given artistic
medium by employing physical simulation [Curtis et al. 1997; Haevre et al. 2007; Lu et al.
2012], or using hand-crafted shaders on the GPU [Bousseau et al. 2006; 2007; Bénard
et al. 2010; Montesdeoca et al. 2018]. While these techniques are able to produce faithful
stylization to some extent, their use is limited to a certain look given by the predefined
visual style.

In Chapter 1 we have already outlined the main approaches providing solutions to
the challenges of style-transfer. In this chapter we will reiterate some of the key work
that we base our research off of and describe in more depth the already existing research
pertaining to style-transfer and texture synthesis, starting with the more traditional
patch-based approaches which laid the foundation for the field of style-transfer as we
know it now, and then following with neural-based approaches which have gained massive
popularity in recent years. We also include a description of the related work specifically
in the stereoscopic domain, which is pertinent to our own research.

(a) A (b) A‘ (c) B (d) B‘

Figure 2.1: Image analogy as defined by Hertzmann et al.: A‘ relates to A the same way B‘
relates to B. In this case, A‘ is a blurred version of A. When these 2 are provided, along with
the image B, image B‘ can be computed by using these defined analogies without the need to use
the same filter applied to A‘, or even needing to know what filter it is.
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2.1 Patch-based Approaches

A cornerstone of guided texture synthesis was the work of Hertzmann et al. [2001], which
presented a framework that is further expanded in many solutions to the style transfer
problem. In this work, Hertzmann et al. defined the problem of Image Analogies, where
given a set if input images A, A‘ and B, we’re trying to find an output image B‘ that
relates to B the same way A‘ relates to A. This is further described in Figure 2.1. The
authors then proposed a greedy guided patch-based algorithm, which could reproduce
many filters as well as do some level of style transfer with paired input data. Wexler et
al. [2007] and Kwatra et al. [2005] formulated optimization-based approach to texture
synthesis which replaced greedy approach of Hertzmann et al. [2001] and was further
embraced by research that followed. Benard et al. [2013] have proposed a keyframe-
based stylization of video sequences, using a set of auxiliary guiding channels generated
by a 3D renderer using a patch-based guided synthesis similar to the work of Hertzmann
et al. [2001]. In 2015, works of Kaspar et al. [2015] and Jamriska et al. [2015] presented
solutions to the problem formulated by Kwatra et al. [2005], trying to mitigate the effects
of the wash-out effect, that was common in style transfer algorithms, by enforcing uniform
patch usage. While this was a definite improvement, it only worked best on inputs where
the same semantical content covered roughly the same area in both the source and the
target. Disparity between these two would cause patches from one semantical area being
forced to an area with entirely different semantical information, creating various artifacts.

(a) (b) (c)

(d) (e) (f)

Figure 2.2: Comparison of used guiding channels for the style transfer. (a) shows the source
content and (b) the source style. (c) is the algorithm of Sloan et al. [2001], which uses the
normals as guidance. (d) is the algorithm of Hertzmann et al. [2001] which uses RGB as the
guiding channel. (e) is the same algorithm, but this time using LPEs as guiding channels. (f)
is the optimized algorithm by Fǐser et al., which also uses LPEs. All these images were taken
from the StyLit paper Fǐser et al. [2016]
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This issue was addressed by the work of Fǐser et al. [2016], which introduced a mecha-
nism where the uniform patch enforcement would reset if the assignment would produce
too high of an error, allowing for some patches to be used multiple times, solving the
issue of previous research. This work also proposed a new set a guiding channels for
guided style transfer, based on light propagation throughout the scene rather than plain
color as done in Hertzmann et al. [2001] or geometrical normals, as presented by Sloan et
al. [2001]. The newly proposed guiding channels allowed to correctly guide the styliza-
tion in places where others struggled before, such as geometrical normals being unable to
correctly place shadows and plain color guidance mistaking background with highlights
(shown more closely in Figure 2.2). Since this set of guiding channels only worked on 3D
renders, it was further extended in the follow-up research by Fǐser et al. [2017] to work
with human faces by introducing a new set of guiding channels. This time, the guidance
would not need to be supplied by the user, but instead it was generated automatically us-
ing information from facial landmarks, which required both the target content and input
style to contain a human face which a landmark detector could recognize. This research
also extended its scope to videos and tackled the issue of temporal consistency, which
is an important factor when dealing with a video, especially then, when reproducing an
artistic style. As shown by Fǐser et al. [2014], the temporal instability can be desired
effect as it natural for traditional hand-painted animations. However, in certain cases or
when stylizing long sequences, it can cause dizziness and be disturbing. To explicitly en-
force temporal consistency, various patch-based methods [Bénard et al. 2013; Fǐser et al.
2017; Dvorožňák et al. 2018; Jamrǐska et al. 2019; Frigo et al. 2019] were developed; they
consider relations between individual frames od the video sequence.

The work of Jamriska et al. [2019] further expanded the research in style transfer video
domain by using the video frames themselves as guidance by having the user provide a
stylized exemplar of one or more of the video frames, making a paired input. This has
improved the output quality significantly compared to other video stylization approaches,
such as the work of Chen et al. [2013] using optical flow between consecutive frames or
Li et al. [2019] and Wang et al. [2019c] using dense correspondences. Sýkora et al. [2019]
has shown that the outputs of costly texture optimization using local guidance can be
approximated inexpensively, so that it can be run in real-time even on single-core CPUs.
However, in a face stylization scenario, this method requires a specific type of guidance
that is costly to compute and thus the entire stylization cannot run in real-time.

2.2 Neural-based Approaches

The neural approaches to this problem gained significant popularity after the work of
Gatys et al. [2016], that allowed unguided artistic style transfer from unpaired input con-
tent and style by reproducing responses from a VGG network of Simonyan et al. [2014].
They optimize the target image until its VGG responses match the style image as well
as the target content. Such optimization is, however, computationally demanding and
thus others [Johnson et al. 2016; Ulyanov et al. 2016c;a; Wang et al. 2017; Ulyanov et al.
2017; Wilmot et al. 2017] later propose to pre-calculate a larger dataset in a particu-
lar style, and then train a feed-forward network that is able to reproduce the stylized
output notably faster. Although those approaches can perform stylization in real-time
they still require lengthy pre-processing. Moreover, neural techniques also tend to omit
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Figure 2.3: The U-Net architecture proposed by Ronneberger et al. [2015]. The input image is
first converted into feature space through a series of progressively smaller convolutional layers,
and the converted back into an image following a similar process. Each blue box corresponds to
a multi-channel feature map and arrows denote the different operations.

important textural details presented in the original style exemplar and the transfer is
not semantically meaningful, and because of that their ability to generalize and increase
the robustness was not as apparent. The tendency to generalize and improve upon the
original training dataset has been recently reported also in the case where corrupted
datasets are used for training [Bora et al. 2018; Lehtinen et al. 2018]. In these works
authors observed the ability of a generative network to recover from failures and produce
comparable or sometimes even better visual quality as compared to a scenario when a
clean dataset is used for training. The approach of Gatys et al. has been later extended
into video domain by the papers of Kotovenko et al. [2019b] and Ruder et al. [2018].

There are also various successful attempts to combine patch-based synthesis and neural
style transfer. Li et al. [2016b] search for neural patches in a style image while following
the structure of a content image. Liao et al. [2017] and Gu et al. [2018] later extended
this approach to perform patch-based synthesis directly in the domain of latent neural
feature spaces, and then reconstruct the final image using deconvolution. Recently,
Cao et al. [2018] proposed to perform geometric exaggeration on top of appearance
transfer. Despite the impressive results, these techniques still suffer from common pixel-
level artifacts which lead to lower quality of the synthesized imagery as compared to
patch-based methods which can work directly image domain and preserve important
pixel-level details. Texler et al. [2020a] propose to use patch-based synthesis method on
top of the neural-based style transfer approach. In this setting, they are able to generate
high-resolution stylized imagery which would be difficult for the original neural network.
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Their method is able to convincingly preserve important texture details of the style
exemplar. But semantically meaningful results are still not guaranteed as the method
relies on the output from the underlying neural network.

Ronneberger et al. [2015] propose an image-to-image translation network architecture
called U-Net (Figure 2.3), and while originally targeted for segmentation of biomedical
data, it is well-suited for applications in the stylization domain. With arise of generative
adversarial networks, such as the work of Goodfellow et al. [2014], research proposing the
usage of image-to-image translation network has been introduced by Isola et al. [2017]
and Zhu et al. [2017a][2017b], which offers real-time semantically meaningful style trans-
fer, but unfortunately also requires a large learning dataset to be able to reproduce a
style compellingly, which can be hardly accessible in a generic video stylization scenario,
where only a few hand-drawn exemplars exist, let alone in the context of video-to-video
translation [Chan et al. 2019; Tulyakov et al. 2018; Wang et al. 2018c] which is com-
pletely intractable. Research by Liu et al. [2019] and Wang et al. [2019b; 2019a] have
tried to alleviate this issue by introducing few-shot learning techniques, which still un-
fortunately require a large domain-specific dataset for pre-training. Approaches based
on deformation transfer [Siarohin et al. 2019a;b] are proposed to animate target photo
in real-time using only a single exemplar. A key limitation of these approaches is that
they transfer only coarse deformation characteristics while the identity of the subject in
the driving video is often omitted. A similar drawback also holds for approaches based
on generative adversarial networks such as Style- GAN v2 of Karras et al. [2020]. In this
approach, a massive collection of artworks is used to train a network that can generate
an artistic image for a given input latent vector. Those vectors can then be predicted and
fine-tuned to align the generated image with the target image features. However, this
process is inaccurate, leading to imprecise alignment that hinders ability of the network
to preserve the structure or identity of the target subject.

A path to relax the requirements for domain-specific pre-training or a large dataset
can be found in the works of Li et al. [2016a] or Ulyanov et al. [2016a], which train a
network with limited receptive field on a single exemplar image and then use it to infer
larger textures that retain essential low-level characteristics of the exemplary image. This
potential venue is explored by our proposed method described in Section 4.1. Recently,
the idea of patch-based training was further explored to accelerate training by Shocher
et al. [2018] or to maintain high-level context [Shaham et al. 2019; Shocher et al. 2019;
Zhou et al. 2018]; however, all those techniques deal only with a single image scenario,
and video domain extension remains an open problem.

Similarly to the patch-based techniques, temporal consistency poses an important
problem which needs to be addressed, which has been done in the neural domain pa-
pers of Chen et al. [2017], Gupta et al. [2017], Sanakoyeu et al. [2018] or Ruder et
al. [2018]. To deal with temporal consistency in the post-process step, a blind temporal
coherency method of Lai et al. [2018] stabilizes arbitrary input video sequence. Mulla-
pudi et al. [2019] propose an approach where labelling is provided for a subset of frames
by a more accurate predictor and then propagated the the rest of the sequence using
a quickly trained lightweight network. To deliver sufficient quality, a relatively large
number of keyframes is necessary. Also, full-frame training is employed which could
suffer from strong overfitting artifacts and thus is not applicable in scenarios where a
detailed texture needs to be propagated. Another successful approximation to patch-
based synthesis is recently introduced by Hauptfleisch et al. [2020]. They pre-calculate
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the latent representation of the stylized image in a sparse set of samples and then merge
nearby pre-calculated representations to reconstruct the final stylized image during the
interactive session. Although such an approach can deliver similar quality as full-fledged
optimization, it requires costly pre-processing and works only on 3D models.

One of the most common scope limitation in style-transfer in general is a limitation
to just human faces, which is a long-standing challenge for non-photorealistic render-
ing research community. In this domain, traditional filtering-based stylization tech-
niques [Gooch et al. 2004; Tresset and Leymarie 2005; DiPaola 2007; Yang et al. 2010]
have been extensively used to deliver compelling results for simple styles. However, they
do not allow for greater appearance variations. Example-based techniques can be used
to alleviate this limitation. One possible solution is to compose the final image using
a set of stylized facial components prepared by an artist [Chen et al. 2003; 2002; 2004;
Meng et al. 2010; Zhang et al. 2014]. Although this approach provides greater freedom
for local regions, it is still challenging to preserve the identity of the target person due
to the inability to adapt the templates to the unique geometry of target facial features.
To overcome this drawback, researchers further propose to prepare a larger dataset of
photo-style exemplary pairs (e.g., CUHK Face Sketch Database of Wang et al. [2009]),
and then use multi-scale Markov Random Fields [Wang and Tang 2009; Li et al. 2011;
Zhou et al. 2012; Wang et al. 2013; 2014] to estimate the stylization for a given target
face. Although these techniques can deliver better identity adaption, they are highly im-
practical since many photo-style exemplars need to be prepared manually for each new
artistic style. The success of the method of Gatys et al. [2016] motivated others [Selim
et al. 2016; Lu et al. 2017] to develop custom neural-based stylization techniques for
human portraits. Although those example-based methods can achieve generally com-
pelling results, they usually fail on more complex structured exemplars where preserving
high-frequency details is critical.

To achieve an arbitrary style transfer using a network trained on unpaired examples,
encoder-decoder schemes are proposed [Huang and Belongie 2017; Li et al. 2017; Lu et al.
2017]. In this setup, an encoder, usually a subset of convolutional layers of the VGG
network, is used to extract feature representation from both style and content image.
These features are then combined and fed through the decoder, which is pre-trained
to convert features into the image space. In a similar spirit, more complex encoder-
decoder schemes are proposed by Kotovenko et al. [2019b; 2019a]. They are able to
convincingly transfer even finer textural details. Nevertheless, as they measure only
statistical correlations between the stylized image and the original image, semantically
meaningful transfer is not guaranteed.

2.3 Stereoscopic Style Transfer

The research described in previous sections, however, little considers stereo images, which
is a specialized topic with its own literature. Stavrakis et al. [2004] were the first to
consider computer-generated stylized stereo images and identified many of the challenges
in stylized stereo, including the need for planarity of style elements in the output. They
used a stroke-based rendering system, ensuring consistency by enforcing similar stroke
placement across right and left views. Northam et al. [2012] propose a more general
framework for stylized stereo images which uses multiple discrete disparity layers and a
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Figure 2.4: Comparison of input style (left) to the right view of the output of Chen et al. [2018]
(right). While the color scheme and some low-level characteristics of the style have been trans-
ferred, much of the fine detail is lost or muddled in the transfer, creating an output that some-
what resembles the output style, but does not faithfully reproduce it.

separate stylization for each layer. While this approach was effective for still images, the
discretization of layers is problematic for application to video. Considerable effort has
also been directed towards synthesizing stereo line drawings. Kim et al. [2013] laid the
groundwork for this area, working with 3D geometry as an input. They note that the
simple approach of detecting and rendering silhouettes separately from each eye creates
incoherent collections of lines. By rendering only matched pairs of lines and excluding
lines that cannot be fused in stereo, they are able to create a high-quality experience
of 3D stereo line drawings from geometry. Later work [Bukenberger et al. 2018; Istead
and Kaplan 2018; Istead et al. 2021] produced stylized line drawings from stereo depth
images. Other researchers have considered also specialized systems for particular effects
and scenarios, such as film grain in stereo by Templin et al. [2014] or stylization of
lightfields by Egan et al. [2021]. Application of neural style transfer to stereo images or
to generation of novel views has enjoyed some success recently [Chen et al. 2018; Gong
et al. 2018; Huang et al. 2021]. Such systems incorporate estimates of stereo or multi-view
consistency into the loss function. However, the resulting stylization does not guarantee
semantically meaningful transfer and also distorts visually important features seen in
the original exemplar such as individual brush strokes or a canvas structure (Figure 2.4).
Luo et al. [2015] use a patch-based approach for coherence-preserving modification of
stereo images. However, they do not consider stereoconsistent example-based stylization
of videos, which remains an open problem.
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Chapter 3

Real-Time Stylization of Portraits

The stylization of human portraits becomes highly attractive thanks to the massive
popularity of selfie photography and invention of mobile applications such as MSQRD
or Snapchat which use facial landmarks together with CG rendering pipeline to deliver
stylized look. This approach, however, requires professional artists to carefully design
textured 3D models along with custom shaders to achieve the desired look.

This limitation can be alleviated using example-based approaches pioneered by Hertz-
mann et al. [2001]. This technique allows transferring style from a given artistic ex-
emplary image to a target photo. State-of-the-art in this domain uses neural-based
techniques [Selim et al. 2016], patch-based synthesis [Fǐser et al. 2017], and their combi-
nations [Liao et al. 2017] to deliver impressive stylization results. However, a key limi-
tation of those techniques is that they consist of several algoritmic steps each of which
may be a source of potential failure (see Figures 3.5, 3.6, and 3.7, two right columns)
and introduces algoritmic complexity which leads to huge computational overhead, as
well as difficult real-time applications.

In this Chapter, we propose two methods able to achieve real-time style transfer on
facial video sequences. In Section 3.1 we propose a neural approach, able to learn an
artistic style from a premade paired dataset and then perform the stylization inexpen-
sively on GPU. In Section 3.2 we instead focus on a patch-based approach based on
the paper done by Sýkora et al. [2019], where we precompute a lookup table based on
facial landmarks, which we can then use to perform the facial stylization quickly even on
low-end hardware.

style exemplar target our approach Fǐser et al. Liao et al. Selim et al. Gatys et al.

Figure 3.1: Given an input exemplar and a target portrait photo, we can generate stylized
output with comparable or superior visual quality as compared to several state-of-the-art face
stylization methods (Fǐser et al. [2017], Liao et al. [2017], Selim et al. [2016], and Gatys
et al. [2016]) while being able to run at interactive frame rates on a consumer GPU. Style
exemplar: © Scary Zara Mary.
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3.1 Neural-based Approach

Generative adversarial networks [Goodfellow et al. 2014] have become a favorite technique
for image-to-image translation tasks [Isola et al. 2017; Wang et al. 2018b;c] recently.
Their principal drawback over classical style transfer techniques which require only a
single style exemplar image [Gatys et al. 2016] is the necessity of training the network
on a large dataset of paired appearance exemplars. This requirement is prohibitive in
the case of artistic style transfer as tedious manual work is necessary to prepare the
training dataset. Although unpaired alternatives exist [Zhu et al. 2017a;b] they still
require many drawings of a particular style as an input. Another issue is related to the
fact that current image-to-image network architectures have difficulties in reproducing
delicate high-frequency details that are important to retain fidelity of used artistic media.

To address this, we present FaceStyleGAN [Futschik et al. 2019] which combines bene-
fits of state-of-the-art high-quality patch-based synthesis with the power of image trans-
lation networks. Thanks to the ability of patch-based method of Fǐser et al. [2017] to
produce high-quality results we can generate a dataset which preserves the original artis-
tic style precisely. We then use this dataset to train a variant of image-to-image trans-
lation network with improved structure that better preserves important high-frequency
details. Although the method of Fǐser et al. is prone to failure in more complex cases,
we leverage the fact that the network can generalize even when the training dataset con-
tains many failure exemplars. This behavior was recently demonstrated in a different
context of generative models trained from partially observed samples [Bora et al. 2018]
or without ground truth counterparts [Lehtinen et al. 2018]. Thanks to this ability to
generalize while still being able to preserve high-frequency details, we can produce results
which are comparable or sometimes more visually pleasing than the output of the origi-
nal patch-based method. Moreover, since the trained network can be evaluated quickly
on the GPU our approach enables real-time style transfer which was unattainable for
previous high-quality techniques.

3.1.1 Our Approach

Our goal is to learn a mapping function F between color images of human faces X, and
their stylized counterparts Y. Since in our case paired data can be produced easily using
the algorithm of Fǐser et al. [2017], we can model the mapping as a direct transformation
F : X→ Y.

Given pairs of training samples: (xi, yi)
N
i=1 where xi ∈ X and yi ∈ Y, our objec-

tive to learn F contains three different terms: adversarial loss LGAN for matching the
distribution of generated images to the distribution of the stylized images [Goodfellow
et al. 2014], a color loss calculated directly on the stylized output L1, and finally a per-
ceptual loss LV GG calculated on features extracted by a VGG network pre-trained on
ImageNet [Simonyan and Zisserman 2014]. In the following section we focus on each
loss in more detail and state the final objective function. Then we describe our network
architecture and discuss implementations details.
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Adversarial Loss We apply adversarial loss to the output of the mapping function F
and its discriminator DY using the following objective function:

LGAN(F,DY ,X,Y) = Ey∼pdata(y)

[(
DY (y)− 1

)2]
+ Ex∼pdata(x)

[
(DY (F (x))2)

] (3.1)

where instead of traditional binary cross entropy L2 norm is used as the adversarial
criterion. This leads to a more stable training [Mao et al. 2017].

Color Loss While adversarial loss alone could be enough to learn mapping F , we
observed that when an additional L1 loss [Isola et al. 2017] is computed between the
output of the network and the original stylized image we can encourage the generator to
better preserve identity as well as stabilize and speed up the training:

L1(F ) = EX,Y∼p(X,Y )||Y − F (X)||1 (3.2)

Perceptual Loss Additional improvement can be achieved using perceptual loss that
is calculated on feature maps of the VGG-19 model pre-trained on ImageNet at different
depths:

LV GG(F ) =
∑
d∈D

||V GGd(Y )− V GGd(F (X))||2 (3.3)

where D is the set of depths of VGG-19 which are considered, in our case D = 0, 3, 5, 10.
Similar approach was used also in Wang et al. [2018b], however, Wang et al. used L1

norm which we found has notably lower impact on the final visual quality as compared
to our L2 norm (see Figures 3.2a and 3.2c).

Objective Using all mentioned losses our final objective function is as follows:

L(F,DY , X, Y ) = λ1LGAN + λ2L1 + λ3LV GG (3.4)

where λ1, λ2, λ3 influence the relative importance of the different loss functions.

3.1.2 Network Architecture

For our generator model we use the initial architecture from the work of Johnson et
al. [2016], three convolution blocks (two of them with stride = 2) which are followed
by several residual blocks [He et al. 2016], two upsampling blocks and finally a tanh
activation. Compared with Johnson et al.’s solution, we make the following modifications
(see Fig. 3.3) which we observed had a significant impact on the final perceptual quality:
we changed the size of convolutional filters in the very first layer from 9 × 9 to 7 × 7
and in the very last layer of the original architecture from 9× 9 to 5× 5. We increased
the number of residual blocks used from five to nine. Next, we added skip connections
using concatenation of feature maps [Ronneberger et al. 2015] to the upsampling layers,
which has been shown to improve gradient propagation, and we replace convolutions
with fractional strides with nearest neighbor upsampling followed by an additional 3 ×
3 convolution. Lastly, we attached two more convolutional layers before the output,
which we observed have positive effect when the skip connections are added. All these
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(a) (b) (c) (d) (e)

Figure 3.2: Ablation study. A demonstration of visual quality improvement achieved
using modified VGG loss and our improved network architecture: (a) result of our net-
work trained without using VGG loss, (b) result generated using all losses, however,
without our improved network architecture, i.e., using the original architecture of John-
son et al. [2016], (c) our result, (d) result generated using FaceStyle algorithm of Fǐser
et al. [2017], (e) style exemplar. Note how our full-fledged approach better reproduces
the original style exemplar (see the avoidance of artificial repetitive patterns on fore-
head as well as sharper details around eyes) and also slightly improve upon the output
of FaceStyle algorithm (c.f. better preservation of important facial features like ears or
nose). Style exemplar: © Matthew Cherry via http://matthewivancherry.com/home.html and
https://www.instagram.com/matthewivancherry.artist (HAT, oil on canvas, 48” x 48”, 2011).

modifications helped to preserve important high-frequency details in the generated image
(see visual quality improvement over the initial generator’s structure in Figures 3.2b
and 3.2c).

For our discriminator model we use PatchGAN model [Isola et al. 2017] using progres-
sively higher number of feature maps with instance normalization proposed by Ulyanov
et al. [2016b] and leaky ReLUs as activation. This helped us to lower the number of
parameters and achieve a more stable gradient propagation.

3.1.3 Implementation Details

We implemented our approach using C++ and the Python framework PyTorch.

For FaceStyle algorithm we used settings recommended in the original paper of Fǐser
et al. [2017]. For each artistic style we produced a training set of 5124 stylized facial
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Figure 3.3: The original generator network architecture of Johnson et al. [2016] (left) followed
by our improved architecture (right). Modifications are denoted with black color: added skip
connections, increased the number of residual blocks, two upsampling layers are followed by
additional transposed convolution layer.

images in a resolution of 512× 512 which is supported by our network architecture. We
used automatic portrait segmentation [Shen et al. 2016] to assure the training algorithm
focus more on important facial parts of the input image. Since we did not pre-filter the
dataset the resulting set of samples contains both successful as well as failure exemplars
(c.f. two right columns in Figures 3.5, 3.6, and 3.7 to see examples of such failures).

For training of our models we used the Adam solver [Kingma and Ba 2014] with a
batch size of 2. In total, our generator model has 14.7 million parameters, and our
discriminator has total number of parameters of 694 thousand. We set λ1 = 0.3, λ2 = 5,
and λ3 = 0.7, which were chosen experimentally via grid search and manual tuning.
Both generator and discriminator networks were trained from scratch with β1 = 0.9,
β2 = 0.999, and lr = 0.0002. During the training phase we found that we could use as
few as 2000 samples without significant loss of quality. Sufficiency of lower number of
training samples can be explained by limited complexity of the appearance changes in
the stylized output. We train our models in 50 epochs. Some styles proved to be more
challenging to learn, and thus we allowed training in 100 epochs. In general, training for
one epoch took around 83 minutes on a single NVIDIA Tesla P100 GPU, making the
total training time for one style slightly shorter than 3 days.

3.1.4 Results

We trained our network on seven different style exemplars (see Figures 3.1, 3.2, 3.4
and 3.9) and applied it to 24 portraits not included in the training dataset. In Figures 3.1,
3.2, 3.5, 3.6, 3.7, and 3.9 results of our trained network are compared with the original
FaceStyle algorithm [Fǐser et al. 2017].

In the following sections, we discuss potential of our method to perform real-time high-
quality style transfer, we also mention its ability to generalize and increase robustness
over the original FaceStyle algorithm [Fǐser et al. 2017] and describe a perceptual study
we conducted to evaluate visual quality of our approach with respect to the output
generated by FaceStyle algorithm. Finally, we compare our results with current state-of-
the-art.
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(a) (b) (c) (d)

Figure 3.4: Exemplars of styles used in Figures 3.6, 3.7, and 3.8. See Figures 3.1, 3.2, and 3.9
for the remaining style exemplars. Style exemplars: (a–b) © Adrian Morgan, (c) Viktor
Ivanovich Govorkov, (d) © Will Murray.

Figure 3.5: Face stylization results. In each group of three images, from left to right, we show
the input image, our stylization result, and the output from FaceStyle [Fǐser et al. 2017]. The
corresponding style exemplars are visible in Figures 3.1 and 3.2.

3.1.5 Interactive Scenario

Thanks to the compactness of our network (47MB) we can perform feed-forward propaga-
tion in real-time (15 frames per second) on currently available consumer graphics cards
(we use GeForce RTX 2080 Ti). This benefit enables us to implement the first high-
quality style transfer on live video streams (please refer to our supplementary video).
We can downsize our network architecture to 256 × 256 resolution (along with reduc-
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Figure 3.6: Face stylization results (continued). In each group of three images, from left to
right, we show the input image, our stylization result, and the output from FaceStyle [Fǐser
et al. 2017]. The corresponding style exemplars are visible in Figure 3.4.

ing the number of filters in each layer) and also achieve interactive response on mobile
devices without significant loss of visual quality.

3.1.6 Generalization

During the training experiments we found that when we deliberately filter out failure
exemplars from the training dataset the overall visual quality does not increase signifi-
cantly, however, the robustness of the resulting trained network decreases. This behavior
bears resemblance to findings reported by Lehtinen et al. [2018] although in our case the
nature of corruption cannot be modelled by zero-mean noise, we can characterize this
tendency as a convergence to an equilibrium which expresses a “mean” of stylized ap-
pearance. Thanks to this behavior the trained network can in practice repair failures of
the original FaceStyle algorithm. In cases when the FaceStyle algorithm produces correct
result our network can deliver stylization which is comparable or sometimes even more
visually pleasing and better preserving the identity of a stylized person (see Figures 3.1,
3.5, 3.6, 3.7, 3.2, and 3.9).

Another important aspect of the equilibrium mentioned above is that it helps to pre-
serve coherent stylization when the target image does not change considerably. This
tendency is essential for achieving temporal coherency. In contrast to FaceStyle algo-
rithm or other video stylization techniques [Chen et al. 2017; Ruder et al. 2018] that
would require explicit treatment of consistency between adjacent frames our technique
handles temporal coherency implicitly (see accompanying video demo).
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Figure 3.7: Face stylization results (continued). In each group of three images, from left to
right, we show the input image, our stylization result, and the output from FaceStyle [Fǐser
et al. 2017]. The corresponding style exemplars are visible in Figures 3.4 and 3.9.

3.1.7 Perceptual Study

To confirm the quality of results produced by our approach are comparable to those
produced by the original FaceStyle algorithm [Fǐser et al. 2017] we conducted a perceptual
study. The study had the form of an online questionnaire, where we showed each user
the input face, input style, and the output. We asked the user to rate the output in two
categories: how well does the stylization preserve the identity of the stylized person, and
how well does the stylization reproduce the input style. The ratings were from 1 to 10, 1
being the worst and 10 being the best. The questionnaire featured 6 sets of input images
and their outputs for both of the tested methods, making a total of 12 image sets showed
to users, which were all being rated in the 2 categories. We deliberately selected results
which are comparable with no obvious failures. During the time the questionnaire was
open, we have collected 194 responses.
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ours pix2pixHD pix2pix starGANours pix2pixHD pix2pix starGAN

Figure 3.8: Comparisons of our approach with current state-of-the-art in image-to-image tran-
sation: pix2pixHD [Wang et al. 2018b], pix2pix [Isola et al. 2017], and starGAN [Choi et al.
2018]. Note, how our combination of losses and a specific network architecture better preserve
the original style exemplar. The corresponding style exemplars are visible in Figures 3.1, 3.2,
3.4, and 3.9.

style exemplar our approach Fǐser et al. Liao et al. Selim et al. Gatys et al.

Figure 3.9: Comparisons of our approach with current state-of-the-art face stylization meth-
ods. Note how our technique can deliver comparable visual quality to the original FaceStyle
algorithm of Fǐser et al. [2017] while significantly outperforms other concurrent neural-based
techniques (Liao et al. [Liao et al. 2017], Selim et al. [Selim et al. 2016], and Gatys et al. [Gatys
et al. 2016]). Style exemplar: © Graciela Bombalova-Bogra.

We started with the null hypothesis that there is no statistically significant difference
between the quality of the outputs of both tested methods, which we tried to reject based
on the collected data using the Student’s t-test. In the question of identity preservation,
we can reject the null hypothesis with a probability of only 49%, which means there is
no statistically significant difference between the scores in this category. Our approach
scored an average of 6.76 points and FaceStyle scored an average of 6.87 points, which
totals to approximately 1% difference on the 1 to 10 scale, supporting the conclusion of
both methods being on par with each other. In regard to the style reproduction category,
using the same procedure we can reject the null hypothesis with a probability of 63%,
which once again does not represent a significant statistical difference. Our approach
scored an average of 8.28 points and FaceStyle scored an average of 8.55 points, making
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only 3% difference. From these results, we can conclude that the outputs of our approach
are on par with the outputs of FaceStyle with only minor differences in the overall quality.

3.1.8 Comparisons

We compared the visual quality of our approach with current state-of-the-art in image-
to-image translation (see Fig. 3.8). For training, we used the same dataset as for our
method and tweak the parameters to get as close as possible to the appearance of the
original style exemplar. Results produced by pix2pix method [Isola et al. 2017] bear a
resemblance to our output concerning the ability to preserve the target person’s identity.
Nevertheless, the network produces several high-frequency artifacts which affect texture
details of the original style exemplar. A part of the problem is caused by the fact that the
pix2pix network supports only lower resolution (256× 256), however, more importantly,
the structure of pix2pix generator tends to introduce various uncanny high-frequency
patterns. This issue becomes even more apparent in the case of pix2pixHD [Wang et al.
2018b] which can support 512× 512 resolution, nevertheless, at high frequencies, it still
contains disturbing repetitive patterns which are not present in the original style exem-
plar. The StarGAN method [Choi et al. 2018] roughly preserves basic facial structure,
but it also introduces disturbing high-frequency patterns on top of various low-frequency
anomalies which give rise to soft color transitions that are not visible in the original style
exemplar.

We also compared our approach with concurrent neural-based techniques that do not
require training (see Figures 3.1 and 3.9). From the comparison it is apparent that
the generic neural-based technique of Gatys et al. [2016] has difficulty in preserving
semantically meaningful transfer. Selim et al. [2016] provide an improvement over Gatys
et al., nevertheless, they still suffer from a loss of critical visual details. Deep image
analogies [Liao et al. 2017] produce compelling results concerning visual details, but
they often fail to keep the consistency of high-level features which affect the identity of
the target subject.

3.2 Patch-based Approach

While we have shown the strength of neural-based approaches to portrait stylization
in the previous section, they tend to omit textural details in the style exemplar that
are critical to the preservation of the visual characteristics in the artistic media. Those
techniques also do not guarantee a semantically meaningful transfer, i.e., the use of
specific local stylization decisions made by an artist in the exemplar image (e.g., use of
a certain type of strokes around the mouth area).

On the other hand, although style transfer techniques powered by patch-based meth-
ods [Fǐser et al. 2016; 2017] can preserve the textural richness and deliver high-quality
semantically meaningful results, they are computationally expensive due to their op-
timization nature. This issue is partially addressed by a faster synthesis algorithm of
Sýkora et al. [2019] that provides a real-time approximation to the fully-fledged opti-
mization by leveraging the specific structure of the guiding channels used in the context
of face stylization [Fǐser et al. 2017]. Despite this great improvement, the time needed
to compute the appearance guidance still hinders the real-time performance, which is
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the reason that Sýkora et al. are not able to demonstrate real-time style transfer that
preserves the identity of the target subject.

In this section, we present a method that allows for real-time stylization of an arbitrary
facial video using a single stylized exemplar instantly without lengthy pre-calculation.
To achieve this, we modify the existing example-based stylization method of Fǐser et
al. [2017] to compute guidance that is compatible with the fast synthesis method of
Sýkora et al. [2019] yet still enables identity preservation of the target subject. To
verify the practical utility of the proposed method we implemented the entire stylization
pipeline which runs on a moderate mobile device in real-time, and achieves comparable
stylization quality with previous techniques.

3.2.1 Our Approach

The input to our method is a style exemplar image S of a human portrait and a target
face video sequence T . The assumption is that the face changes its expression, moves but
is mostly looking towards the camera, and is not occluded by other objects. The output
of our method is a stylized sequence O that retains important artistic features of S while
preserving the identity of the target subject. Although such an output can already be
produced using, e.g., a method of Fǐser et al. [2017] a key drawback here is that their
approach is suitable only for offline processing. To achieve real-time performance we
need to change the way how guiding channels are computed and also replace the slow
patch-based synthesis algorithm of Fǐser et al. [2016] with its faster variant proposed by
Sýkora et al. [2019].

In the paper of Fǐser et al. [2017] four guiding channels are used to drive the synthesis.
A segmentation guide Gseg that delineates important facial features by subdividing the
face into a set of regions (hair, eyebrows, nose, lips, oral cavity, eyes, and skin) and
a positional guide Gpos that encodes spatial correspondences between the source and
target face. Those two channels ensure semantically meaningful transfer (i.e., strokes
used to depict, e.g., eyes in S are used to stylize eyes in T as well). To preserve the
identity of the target subject Fǐser et al. employs an appearance guide Gapp which reduces
domain gap between the source and target image by equalizing their appearance using the
photographic style transfer method of Shih et al. [2014]. Finally, a temporal guide Gtemp

represented by a motion-compensated version of the previously stylized frame is used to
enforce temporal consistency.

Since the computation of guiding channels mentioned above takes tens of seconds on
a desktop, their use is not tractable for our real-time scenario. Instead, we reduce those
four channels into two essential Gpos & Gapp (see Fig. 3.10), and change their underlying
generation algorithms to reduce the preparation time to tens of milliseconds. Finally, we
demonstrate how to plug those two new guiding channels into a fast synthesis algorithm
of Sýkora et al. [2019].

3.2.2 Positional Guide

A key role of the positional guide Gpos is to ensure style consistency, i.e., encourage
the synthesis to transfer patches from the source exemplar to a semantically meaningful
location in the target image. The existence of the positional guide in the set of guid-
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 3.10: Overview of the guiding channels used in our technique. The positional
guide Gpos (a, b) secures the local consistency of the transfer from the style exemplar (e) to
the target image (inset in blue). The target positional guide (b) is created by deforming the
positional guide of the style image (a) according to the correspondence of facial landmarks,
shown as white circles. Note that landmarks and the white grid is shown only for visualization
purposes. The appearance guide Gapp (c, d) encourages the synthesis to preserve subject’s iden-
tity. See the text and Fig. 3.12 for detailed explanation of how Gpos & Gapp is computed. Style
exemplar (e) © Boris Groh, target photo (f) © Wilson Pumpernickel.
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(a) (b)

Figure 3.11: Given a face (a), we compute a fast approximation of a segmentation mask (b)
as follows. We take advantage of detected landmarks visualized as blue circles in (a). We first
connect the chin landmarks, red line in (a). Then, we connect left and right uppermost chin
landmark using an ellipse, green curve in (b). This gives us the segmentation of a lower and
inner face. To include segmentation of forehead, we sample color components along the green
curve and use a fast color thresholding operation and connected component analysis to determine
the boundary between skin and hair, see the text for details. Target photo (a) © Patrick
Subotkiewiez.
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ing channels is also an essential component for the fast synthesis method of Sýkora et
al. [2019] which requires one of the guides to provide good localization.

Obtaining positional guide GS
pos (Fig. 3.10a) for the style exemplar S is straightfor-

ward. All pixels are simply set to a color determined by their coordinates: x-coordinate
corresponds to the red channel, y to the green channel. For GTi

pos we need to generate an
image that encodes a warping field between S and Ti where each target pixel is storing
color-coded coordinates of its corresponding pixel in the source image (Fig. 3.10b). To
create GTi

pos we detect facial landmarks in the style exemplar S as well as in the target
frame Ti using the method of Kazemi et al. [2014]. They provide a set of point correspon-
dence from which a warping field between the source and target face can be computed
using the moving least-squares method of Schaefer et al. [2006].

Since the style image S is static, facial landmarks can be detected in advance to save
computational time. Sometimes landmark detector of Kazemi et al. may fail on artistic
images due to the fact that it is trained on real photographs. In such a case, the method
of Yaniv et al. [2019] tailored to artistic images could be used instead. In the target
frames Ti the detection of landmarks needs to be performed on the fly. Therefore, to
increase the detection speed, we subsample the target portrait to half resolution before
passing it to the detector. It affects the accuracy negligibly while makes the detection
significantly faster.

In contrast to the method of Fǐser et al. [2017] we do not explicitly compute Gseg

to reduce the computational overhead. Instead, we encode a simplified version of the
facial mask directly into Gpos. In addition to color-coded pixel coordinates, we use
the remaining blue channel to store a mask of the facial segment which for the style
image S is computed offline using the method of Lee et al. [2020]. For Ti we need a
faster algorithm as the target mask is computed on the fly. We use a subset of chin
landmarks to define the lower part of the mask boundary. The upper part is constructed
by sampling color components of pixels along the upper part of an ellipse going through
the left and right uppermost chin landmark. Those samples are then used to perform
fast color threshold operation followed by a connected component analysis that extracts
the largest region of which upper contour defines the remaining upper boundary of the
facial mask (see Fig. 3.11).

3.2.3 Appearance Guide

A primary role of appearance guide Gapp is to preserve the identity of the target subject.
In Fǐser et al. [2017] a method of Shih et al. [2014] is employed to equalize the target image
to have a similar appearance as the source style. However, this approach requires several
seconds to compute. The entire Laplacian pyramid for both source and target image
needs to be constructed. Then a robust gain mask is computed, applied at each pyramid
level. And finally, a pyramid collapsing operation is performed. In our experiments,
we found that such a costly operation can be approximated by a computation of only a
single pyramid level on which histogram equalization is applied (see Fig. 3.12).

3.2.4 Style Transfer

Once the guiding channels for the source image S and the target video frame Ti are
computed, the style transfer can be performed using the method of Sýkora et al. [2019].
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 3.12: The process of generating appearance guides Gapp for the style exemplar S and
the target frame Ti. The original images are converted into a grayscale domain (a, b), and
filtered using Gaussian blur (c, d). To simulate the result of Laplacian of Gaussian filter (e, f)
we subtract the blurred images (c, d) from their originals (a, b). Image (e) is the source part
of appearance guide GS

app and to produce its target counterpart GTi
app (g) we modify (f) to match

its histogram to that of (e). Style exemplar (a) © Boris Groh, target photo (b) © Wilson
Pumpernickel.
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Figure 3.13: The utilization of a 3D lookup table to obtain the corresponding source pixel for
each target pixel. The cube stores coordinates of the best matching style exemplar pixel for a
given red and green channel value in Gpos and the gray intensity in Gapp. It allows to find the
corresponding source pixel with complexity O(1) during the synthesis using method of Sýkora et
al. [2019]. Style exemplar (right) © Boris Groh.

Since in our case we have more than two values indirectly specifying the corresponding
pixel location in the source exemplar (three dimensions for Gpos and one dimension
for Gapp), we need to leverage a kind of data structure which for each target pixel q
quickly retrieves the closest source pixel p given by the following error metric:

E(p, q) = ∥GS
pos(p)−GTi

pos(q)∥2 + λ|GS
app(p)−GTi

app(q)|2 (3.5)

where λ is weighting the contribution of Gpos & Gapp terms. We first reduce the original
4D mapping into 3D by encoding the blue channel of Gpos using zeros in red and green
channels (see Fig. 3.10) and then we pre-calculate a 3D lookup table (see Fig. 3.13) that
will require some additional memory but enables constant retrieval time. Such a 3D
lookup table is then plugged into the parallel StyleBlit algorith described in the paper
by Sýkora et al. [2019] (Algorithm 1).

3.2.5 Results

We implemented our approach using Java and C++. For all results presented in the
method we use the following setting of parameters in the StyleBlit algorithm of Sýkora
et al. [2019]: λ = 0.2 and t = 50. For each new style exemplar it takes several seconds to
pre-calculate necessary data (3D lookup table, landmarks, and guiding channels) before
the real-time stylization starts. The most critical is the computation of the 3D lookup
table, the structure that stores coordinates pointing to the closest pixels in the source
image (see Fig. 3.13). To obtain the coordinates, entire source image has to be searched.
This process is computationally expensive as the search needs to be done for every
position of the 3D lookup cube, i.e., 2563 times. However, we reduce the processing time
significantly by restricting the radius for searching the best matching pixel candidate to
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20 pixels from the location estimated only by Gpos. We empirically verified that for all
styles used in our experiments larger radius do not significantly increase the stylization
quality. When a multicore CPU or a GPU is available lookup table pre-calculation can
easily be accelerated by subdividing the entire 3D space into a set of smaller cubes that
can be evaluated in parallel.

On a half megapixel image our implementation runs at 15 frames per second on Sam-
sung Galaxy Note8 with CPU Samsung Exynos 8895, 2.3 GHz, GPU Mali G71 MP20
and 6 GB of RAM. The framerate scales roughly linearly with the increasing number of
pixels. On the fly detection of landmarks in the target video frame takes 10 ms, gener-
ation of guidance channels 12 ms, style transfer 20 ms, and other miscellaneous steps,
(camera handling, frame flipping and rotating, conversions between color spaces, copying
data between Java and C++) take 28 ms.

We tested our method with various style exemplars applied on several target faces
from FFHQ dataset [Karras et al. 2019] (see Fig. 3.14) and videos captured on a mobile
device (see our supplementary video). Those experiments verified that our method can
carry the exemplar’s textural details while still being able to respect the target subject’s
identity. The quality of stylization results is comparable to those produced by the pre-
vious offline method of Fǐser et al. [2017] as well as real-time method of Futschik et
al. [2019] that requires lengthy pre-processing phase (see Fig. 3.15 and Fig. 3.20). A
detailed banchmark measuring pre-processing and synthesis time for a half megapixel
image on 3 GHz Quad-core CPU with Nvidia RTX 2080 GPU is available in Table 3.1.
Note that as compared to Fǐser et al. and Futschik et al. our method uses only CPU.

Method Pre-calculation Synthesis

Our approach (CPU only) 10 s 0.05 s
[Fǐser et al. 2017] (CPU + GPU) 5 s 10 s
[Futschik et al. 2019] (CPU + GPU) 2 days 0.06 s

Table 3.1: Comparison of processing times w.r.t. state-of-the-art.

In addition to method comparison, we also performed various ablation experiments.

In Fig. 3.16, we demonstrate the importance of using both the Gpos & Gapp guidance
channels. The absence of Gpos may cause that coherent chunks from style exemplar are
transferred to wrong locations in the target portrait, (see Fig. 3.16c, d). Without Gapp,
the subject’s identity is not preserved well (see, e.g., wrong eyebrows or the absence of
wrinkles in Fig. 3.16e, f). When using both guides, stylized results faithfully represent
artistic medium, the transfer is semantically meaningful, and the identity of the target
subject is well-preserved (see Fig. 3.16g, h).

In Fig. 3.17 we show the necessity of the histogram matching operation during the
generating of the target appearance guide GT

app. Without matching the appearance
guides’ histograms, the error E overcomes the threshold t too soon which leads to notably
smaller chunks and the result may seem blurry (see Fig. 3.17).

We also tried to execute our algorithm with the same GT
app as described in the original

approach of Fǐser et al. [2017] (see Fig. 3.18). It is visible that their more sophisti-
cated GT

app preserves the subject’s identity a bit better, nevertheless, it is notably slower
to compute.
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(a) (b) (c) (d) (e) (f)

(g)

(h)

(i)

(j)

Figure 3.14: FaceBlit applied on several target subjects (leftmost column), using various
style exemplars (topmost row). Style exemplars: (a) © Boris Groh, (b) Viktor Ivanovich
Govorkov, (c)© Matthew Ivan Cherry (HAT, oil on canvas, 48” x 48”, 2011), (d, e)© Adrian
Morgan, (f) Peter Zelizňák (sculpture by Stanislav Mikuš), target photos: (g) PFA SEAL,
(h) © Ajuntament de Sabadell, (i) © Raziel Janeway, (j) lam anh2005.
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(a) style exemplar (b) Fǐser et al. (c) Futschik et al.(d) our approach (e) target photo

Figure 3.15: FaceBlit vs. state-of-the-art—the task at hand is to transfer a style from an
exemplar image (a) to a face in the target image (e) while preserving important visual charac-
teristics of the used artistic media in (a) and the identity of the subject in (e). In contrast to
current state-of-the-art [Fǐser et al. 2017] (b) and [Futschik et al. 2019] (c), our approach (d)
is able to deliver comparable stylization quality and identity preservation without the need to
perform costly computation during the synthesis (tens of seconds for Fǐser et al.) or lengthy
data set generation and training (days for Futschik et al.). Thanks to this advantage our ap-
proach can perform instant style transfer to facial videos in real-time even on mobile device.
Source style (a) Viktor Ivanovich Govorkov, target photo (f) © Wilson Pumpernickel.

(a)

(b) (d) (f) (h)

(g)(e)(c) (i)

(j)

Figure 3.16: Importance of individual guidance channels. The positional guide Gpos is essen-
tial. Its absence (c, d) causes that the chunks from the style are not transferred in a semantically
meaningful way. Without the appearance guide Gapp, the identity of target subjects (a, b) is
not preserved well (e, f). The full guidance (g, h) secures the local consistency of style transfer
while retaining the target subject’s identity. Style exemplars: (i) © Boris Groh, (j) © Adrian
Morgan, target photos: (a) © LEMON Studio, (b) © Mark Peers.
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(a) (b)

Figure 3.17: Importance of the histogram matching phase during the generation of the target
appearance guide GT

app. Without the histogram matching, the subject’s identity is not preserved
well, and the result may seem blurry. See (a) and its respective appearance guide in green inset.
After equalizing histograms, the gain in quality is significant. See (b) and the green inset.

(a) (b) (c) (e)(d)

Figure 3.18: Comparison of using our appearance guide with the one proposed in the method
of Fǐser et al. [2017]—style from the exemplar (a) is transferred to the target image (e). A styl-
ization result without appearance guide (b), with appearance guide generated by our method (c),
and with appearance guide generated by Fǐser et al. (d). Note, how the identity of the target
subject is bit less pronounced as compared to the solution of Fǐser et al., which however is or-
ders of magnitude slower than ours. Style exemplar (a) © Boris Groh, target photo (e) SKV
Florbal.
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3.2.6 Extensions

A visible limitation of our approach when compared to state-of-the-art is the absence of
hair stylization (c.f. Fig. 3.20). Although the face parsing network of Lee et al. [2020] can
be used to estimate hair mask its computational overhead is too demanding to preserve
real-time response. Also the computation of positional guide could be complicated when
the shapes of source and target hair segments differ significantly. The resulting warping
field may violate good localization property of the positional guide which is crucial for
the method of Sýkora et al. [2019] to produce reasonable stylization results.

(a) (b) (c)

(d) (e) (f)

Figure 3.19: An example of a hybrid approach where the aim is to stylize a person in the
video (a) to look like the statue in the inset reassembling her identity. To do that we subdivide
the statue into a set of separate layers: torso (b), face (c), beard (d), and hair (e). The facial
layer (c) is animated using our approach while for the torso (b), beard (d), and hair (e) layer
we use moving least-squares deformation [Schaefer et al. 2006] driven by a set of control points
(yellow dots) of which position is derived from detected landmarks. Such a set of deformed and
stylized layers is then blended in a predefined depth order to produce the final composition (f).
See our supplementary video for this example in montion. Style exemplar (a) © Country
French Interiors, target photo (a) Šárka Sochorová.
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To alleviate this drawback, we implemented a hybrid method that uses our new face
stylization approach to bring an existing portrait painting to life while adapting the
identity of the portrayed person to the one seen in the target video (see Fig. 3.19 and our
supplementary video). In this extension we separate the style image into a set of segments
(face, hair, beard, torso, and background). These segments are processed independently
and then stiched together to form the final output frame. The facial segment is stylized
using the algorithm described in this Chapter. For hair, beard (if applicable), and torso
segments, we use moving least-squares deformation [Schaefer et al. 2006] driven by a set
of facial landmarks (c.f. Fig. 3.19).

3.3 Conclusion and Future Work

In this Chapter, we have presented two methods to address common issues and limita-
tions of algorithms performing facial stylization. In Section 3.1, we proposed an image-
to-image translation network, being able to reproduce the outputs of the method of
Fǐser et al. [2017] in real-time, which was previously not possible due to the expensive
optimization scheme the approach of Fǐser et al. utilized. In Section 3.2, we explored
a different option to achieve real-time face stylization performance without the use of
neural networks, by precomputing required positional and appearance data and using
them with the algorithm of Sýkora et al. [2019], which allowed real-time performance
even on low-end devices, such as smartphones.

One of the critical challenges in the method described in Section 3.1 is the accuracy
and smoothness of head and hair segmentation masks. Although our method often
outperforms FaceStyle algorithm [Fǐser et al. 2017] concerning the quality of separation
of head and hair segments, in general (especially) the outer hair boundary has some issues
with smoothness and shape details (see Figures 3.5, 3.6, and 3.7). One can mitigate this
inaccuracy by preparing a broader set of training exemplars containing a greater variety of
input photos under different illumination conditions with more accurately specified head
and face masks. For some styles our method tends to produce repetition artifacts visible
principally on hair segments depending on the overall spatial extent (see Figures 3.5,
3.6, and 3.7). Although a similar effect is apparent also on the original output from the
FaceStyle algorithm, our solution tends to exaggerate it. Techniques to reduce visible
repetition on the level of patch-based synthesis as well as during the training phase (e.g.,
using a specific penalizing loss) would be a promising avenue for future work. When
inspecting results closely on a pixel level our approach has still a difficulty in preserving
the original sharpness of the texture visible in the original from the FaceStyle algorithm.
Such a visual smoothing effect is caused by the fact that the network has parametric
nature while the output from FaceStyle represents a non-parametric mosaic of patches
that represent exact copies of the original style exemplar. As a future work, we plan
to investigate more the possibility to train pixel mapping instead of color information
which can enable the formation of the final image using an explicit pixel copy-and-paste
operation as in patch-based techniques. Although our approach delivers stable results
when the target does not change considerably and enables rough temporal coherency for
video sequences it still suffers from subtle temporal flicker which can be disturbing in some
applications. To gain control over the temporal dynamics an addition of specific temporal
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smoothness terms similar to those used in video-to-video transfer approaches [Wang et al.
2018d] need to be considered.

While we show that our method in Section 3.2 can deliver comparable visual quality
with significantly lower computational overhead than the state-of-the-art, some limita-
tions stem from this performance gain. A compromise we accepted in our real-time
solution is the omission of explicit guidance that allows to control the level of temporal
coherence. Although the flickering our approach is producing resembles temporal dynam-
ics of hand-colored animations and can be perceived as an important feature (c.f. Fǐser et
al. [2014]), some sort of control over its behavior would be valuable since it may become
disturbing after a while. To control the strength of temporal flickering [Sýkora et al. 2019]
proposes to lower the threshold t of their fast stylization algorithm which in fact leads
to smaller copied exemplar chunks and thus become close to texture mapping scenario
which breaks the planarity of brush strokes present in the original style exemplar. This
problem opens an interesting direction for future work. Also, the addition of appearance
guide causes the overall guidance to become a bit more discontinuous when compared
to the case of clean positional guide which better suits fast stylization method of Sýkora
et al. [2019]. Due to this reason the size of transferred chunks can be notably smaller
and thus cause suppression of artistic features that have larger scale in the original style
exemplar (see, e.g., Fig. 3.16f vs. 3.16h). Lastly, this approach shares similar limitations
as other techniques that use guided patch-based synthesis, such as the methods of Fǐser
et al. [2017] and Sýkora et al. [2019]. The style exemplar needs to have a compatible
scale with the target image otherwise artifacts may appear (see, e.g., Fig. 13 in [Sýkora
et al. 2019]). Patch-based synthesis also encounters difficulties when adapting to different
lighting conditions or an absence of important features (e.g., wrinkles or moustach) that
are present in the target image, however, are missing in the style exemplar or vice versa.
A viable avenue for future work could be to alter between a set of exemplars drawn in
a similar style that would better suit the target image (e.g., various lighting directions,
man/woman, old/young, etc.).
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(g) Fǐser et al. (h) Futschik et al. (i) our approach

(a)

(b)

(c)

(d)

(e)

(f)

Figure 3.20: Comparison of our method with state-of-the-art: style from an exemplar (a, c, e)
is transferred to the target photo (b, d, f) using the method of Fǐser et al. [2017] (g), Futschik
et al. [2019] (h), and our approach (i). Note, how our approach produces comparable stylization
quality while is notably faster than the method of Fǐser et al. and does not require lengthy pre-
calculation contrary to Futschik et al. A limitation of our method is that it does not support
hair stylization. Style exemplars: (a)© Matthew Ivan Cherry (HAT, oil on canvas, 48” x 48”,
2011), (c, e) © Adrian Morgan, target photos: (b) © MPCA Photos, (d) © LEMON Studio,
(f) © Patrick Subotkiewiez.
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Chapter 4

Stylization of Video Sequences

Example-based stylization of videos became recently popular thanks to significant ad-
vances made in neural techniques [Ruder et al. 2018; Sanakoyeu et al. 2018; Kotovenko
et al. 2019a]. Those extend the seminal approach of Gatys et al. [2016] into the video
domain and improve the quality by adding specific style-aware content losses. Although
these techniques can deliver impressive stylization results on various exemplars, they
still suffer from the key limitation of being difficult to control. This is due to the fact
that they only measure statistical correlations and thus do not guarantee that specific
parts of the video will be stylized according to the artist’s intention, which is an essential
requirement for use in a real production pipeline.

This important aspect is addressed by a concurrent approach—the keyframe-based
video stylization [Bénard et al. 2013; Jamrǐska et al. 2019]. Those techniques employ
guided patch-based synthesis [Hertzmann et al. 2001; Fǐser et al. 2016] to perform a
semantically meaningful transfer from a set of stylized keyframes to the rest of the target
video sequence. The great advantage of a guided scenario is that the user has a full control
over the final appearance, as she can always refine the result by providing additional
keyframes. Despite the clear benefits of this approach, there are still some challenges
that need to be resolved to make the method suitable for a production environment.

One of the key limitations of keyframe-based stylization techniques is that they operate
in a sequential fashion, i.e., their outputs are not seekable. When the user seeks to any
given frame, all the preceding frames have to be processed first, before the desired result
can be displayed. This sequential processing does not fit the mechanism of how frames
are handled in professional video production tools, where random access and parallel
processing are inevitable.

Another important aspect that needs to be addressed is merging, or blending, the
stylized content from two or more (possibly inconsistent) keyframes to form the final
sequence. Although various solutions exist to this problem (e.g., [Shechtman et al. 2010;
Jamrǐska et al. 2019]), the resulting sequences usually suffer from visible clutter or ghost-
ing artifacts. To prevent the issues with merging, the user has to resort to a tedious
incremental workflow, where she starts by processing the whole sequence using only a
single keyframe first. Next, she prepares a corrective keyframe by painting over the re-
sult of the previous synthesis run. This requires re-running the synthesis after each new
correction, which leads to additional computational load and slows the overall process
down.
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keyframe style other frame after 16s after 16s after 8s after 2s

(a) (b) (c) (d) (e) (f) (g)

Figure 4.1: An example of a sequence stylized using our approach. One frame from the
original sequence is selected as a keyframe (a) and an artist stylizes it with acrylic paint (b).
We use this single style exemplar as the only data to train a network. After 16 seconds of
training, the network can stylize the entire sequence in real-time (c-d) while maintaining the
state-of-the-art visual quality and temporal coherence. See the zoom-in views (e-g); even after
2 seconds of training, important structures already start to show up. Video frames (a, c) and
style exemplar (b) courtesy of © Zuzana Studená.

To summarize, it would be highly beneficial to develop a guided style transfer algo-
rithm that would act as a fast image filter. Such a filter would perform a semantically
meaningful transfer on individual frames without the need to access past results, while
still maintaining temporal coherence. In addition, it should also react adaptively to in-
coming user edits and seamlessly integrate them on the fly without having to perform
an explicit merging.

Such a setting resembles the functionality of appearance translation networks [Isola
et al. 2017; Wang et al. 2018a], which can give the desired look to a variety of images
and videos. In these approaches, generalization is achieved by a large training dataset
of aligned appearance exemplars. In our scenario, however, we only have one or a few
stylized examples aligned with the input video frames, and we propagate the style to other
frames with similar content. Although this may seem like a simpler task, we demonstrate
that when existing appearance translation frameworks are applied to it naively, they lead
to disturbing visual artifacts. Those are caused by their tendency to overfit the model
when only a small set of appearance exemplars is available.

Our scenario is also similar to few-shot learning techniques [Liu et al. 2019; Wang et al.
2019b] where an initial model is trained first on a large generic dataset, and then in the
inference time, additional appearance exemplars are provided to modify the target look.
Although those methods deliver convincing results for a great variety of styles, they are
limited only to specific target domains for which large generic training datasets exist
(e.g., human bodies, faces, or street-view videos). Few-shot appearance translation to
generic videos remains an open problem.

In the following sections, we focus on the key aspects of video sequence stylization.
First of those is interactivity, being able to provide fast stylization of videos and provide
random access to any stylized frame in a given sequence, providing real-time feedback to
the artist, allowing them to make changes as necessary. Second is robustness, avoiding the
loss of fine textural details over time and preserving the integrity of the style througout
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the entire video sequence. In the following sections, we address each of these issues
individually and propose methods and solutions to tackle them.

4.1 Real-Time Interactive Video Stylization

To address the demanding time requirements of state-of-the-art video sequence stylization
methods, in this section we present a new appearance translation framework for arbitrary
video sequences that can deliver semantically meaningful style transfer with temporal
coherence without the need to perform any lengthy domain-specific pre-training. We
introduce a patch-based training mechanism that significantly improves the ability of
the image-to-image translation network to generalize in a setting where larger dataset of
exemplars is not available. Using our approach, even after a couple of seconds of training,
the network can stylize the entire sequence in parallel or a live video stream in real-time.

Our method unlocks a productive workflow, where the artist provides a stylized
keyframe, and after a couple of seconds of training, she can watch the entire video
stylized. Such rapid feedback allows the user to quickly provide localized changes and
instantly see the impact on the stylized video. The artist can even participate in an
interactive session and watch how the progress of her painting affects the target video in
real-time. By replacing the target video with a live camera feed, our method enables an
unprecedented scenario where the artist can stylize an actual live scene. When we point
the camera at the artist’s face, for instance, she can simultaneously paint the keyframe
and watch a stylized video-portrait of herself. Those scenarios would be impossible to
achieve with previous keyframe-based video stylization methods, and our framework thus
opens the potential for new unconventional applications.

4.1.1 Our Approach

The input to our method is a video sequence I, which consists of N frames. Optionally,
every frame Ii can be accompanied by a mask Mi to delineate the region of interest;
otherwise, the entire video frame is stylized. Additionally, the user also specifies a set
of keyframes Ik ⊂ I, and for each of them, the user provides stylized keyframes Sk, in
which the original video content is stylized. The user can stylize the entire keyframe or
only a selected subset of pixels. In the latter case, additional keyframe masks Mk are
provided to determine the location of stylized regions (see Fig. 4.2 for details).

Our task is to stylize I in a way that the style from Sk is transferred to the whole of
I in a semantically meaningful way, i.e., the stylization of particular objects in the scene
remains consistent. We denote the output sequence by O. The aim is to achieve visual
quality and temporal consistency comparable to the state-of-the-art in the keyframe-
based video stylization [Jamrǐska et al. 2019]. However, in contrast to this previous
work, we would like to stylize the video frames in random order, possibly in-parallel,
or on-demand in real-time, without the need to wait for previous frames to be stylized
or to perform explicit merging of stylized content from different keyframes. In other
words, we aim to design a translation filter that can quickly learn the style from a
few heterogeneously hand-drawn exemplars Sk and then stylize the entire sequence I in
parallel, or any single frame on demand. It would also be beneficial if the learning phase
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Ik1 Ik70I25 I51

Mk
70Mk

1

O1 O70O25 O51
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Figure 4.2: The setting of video stylization with keyframes. The first row shows an input video
sequence I. There are two keyframes painted by the user, one keyframe is painted fully (Sk

1 )
and the other is painted only partially (Sk

70). Mask Mk
1 denotes that the entire keyframe is used;

mask Mk
70 specifies only the head region. Our task is to stylize all frames of the input sequence

I while preserving the artistic style of the keyframes. The sequence O in the bottom row shows
the result of our method. Video frames (I) and style exemplars (S) courtesy of © Zuzana
Studená.

was fast and incremental so that the stylization of individual video frames could start
immediately, and the stylization quality would progressively improve over time.

To design such a filter, we adopt the U-net-based image-to-image translation frame-
work of Futschik et al. [2019], which was originally designed for the stylization of faces.
It uses a custom network architecture that can retain important high-frequency details
of the original style exemplar. Although their network can be applied in our scenario
directly, the quality of results it produces is notably inferior as compared to state-of-the-
art (see Fig. 4.3c and our supplementary video at 2:20). One of the reasons why this
happens is that the original Futschik et al.’s network is trained on a large dataset of style
exemplars produced by FaceStyle algorithm [Fǐser et al. 2017]. Such many exemplars are
not available in our scenario, and thus the network suffers from strong overfitting. Due
to this reason, keyframes can be perfectly reconstructed; however, the rest of the frames
are stylized poorly, even after applying well-known data augmentation methods. See the
detailed comparison in Figures 4.3 and 4.9. Furthermore, the resulting sequence also
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(b) patch-based training, Ik1 (d) patch-based training, I5(c) full-frame training, I5

Ik1 I5Ik1 I5

(a) full-frame training, Ik1
O5O1 O5O1

Figure 4.3: Comparison of full-frame training vs. our patch-based approach: the original
frames from the input sequence I are marked in blue and details of their stylized counterparts
O are marked in red. The full-frame training scheme of Futschik et al. [2019] (a) as well as
our patch-based approach (b) closely reproduce the frame on which the training was performed
(see the frame Sk

1 in Fig. 4.6). Both stylized frames (a, b) look nearly identical, although the
training loss is lower for the full-frame scheme. Nevertheless, the situation changes dramatically
when the two networks are used to stylize another frame from the same sequence (here frame
I5). The network which was trained using the full-frame scheme produces images that are very
noisy and have fuzzy structure (c). This is due to the fact that the full-frame training causes the
network to overfit the keyframe. The network is then unable to generalize to other frames in the
sequence even though they structurally resemble the original keyframe. The network which was
trained using our patch-based scheme retains the fidelity and preserves the important artistic
details of the original style exemplar (d). This is thanks to the fact that our patch-based scheme
better encourages the network to generalize to unseen video frames. Video frames (I) courtesy
of © Zuzana Studená.

original keyframe

ENCODER DECODER

stylized keyframeLOSS

(a) (b) (c)

Figure 4.4: Training strategy: we randomly sample a set of small patches from the masked
area of the original keyframe (a). These patches are then propagated through the network in a
single batch to produce their stylized counterparts (b). We then compute the loss of these stylized
counterparts (b) with respect to the co-located patches sampled from the stylized keyframe (c)
and back-propagate the error. Such a training scheme is not limited to any particular loss
function; in our method, we use a combination of L1 loss, adversarial loss, and VGG loss.
Video frame (left) and style exemplar (right) courtesy of © Zuzana Studená.

contains a disturbing amount of temporal flickering because the original method does
not take into account temporal coherence explicitly.

To address the drawbacks mentioned above, we alter how the network is trained and
formulate an optimization problem that allows fine-tuning the network’s architecture and
its hyperparameters to get the stylization quality comparable to the state-of-the-art, even
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with only a few training exemplars available and within short training time. Also, we
propose a solution to suppress temporal flicker without the need to measure consistency
between individual video frames explicitly. In the following sections, those improvements
are discussed in further detail.

4.1.2 Patch-based Training Strategy

To avoid network overfitting to the few available keyframes, we adopt a patch-based
training strategy. Instead of feeding the entire exemplar to the network as done in the
paper of Futschik et al. [2019], we randomly sample smaller rectangular patches from all
stylized keyframes Sk (see Fig. 4.4) and train the network to predict a stylized rectangular
area of same size as input. The sampling is performed only within the area of masked
pixels Mk. Note that thanks to the fully convolutional nature of the network, once
trained, it can be directly used to stylize the entire video frame even though the training
was performed on smaller patches (see Fig. 4.5). The key benefit of this explicit cropping
and randomization step is that it simulates the scenario when a large and diverse dataset
is used for training. It prevents the network from overfitting and generalizes to stylize
the other video frames better. This training strategy is similar to one previously used
for texture synthesis [Zhou et al. 2018].

Parallel
Inference

(a) Input Batch (b) Output Batch

Figure 4.5: Inference: thanks to the fully con-
volutional nature of the network, we can per-
form the inference on entire video frames, even
though the training is done on small patches
only. Since the inference does not depend on
other stylized frames, all video frames can be
stylized in parallel or in random order. This
allows us to pass many or even all of the input
frames (a) through the network in a single batch
and get all output frames (b) at once. Video
frames (left) courtesy of © Zuzana Studená.

Although the reconstruction loss mea-
sured on keyframes Sk is higher when
compared to full-frame training after com-
parable amount of time, on the remain-
ing frames of I the reconstruction loss
is considerably lower when comparing to
the frames stylized using state-of-the-art
keyframe-based video stylization method
of Jamrǐska et al. which we purposefully
consider as a ground truth (cf. supplemen-
tary video at 0:08 and 1:08). This lower
loss w.r.t. Jamrǐska et al. translates to
much better visual quality.

4.1.3 Hyper-parameter
Optimization

Although the patch-based training strat-
egy considerably helps to resolve the over-
fitting problem, we find that it is still es-
sential to have a proper setting of critical
network hyperparameters, as their naive
values could lead to poor inference quality,
especially when the training performance
is of great importance in our applications
(see Fig. 4.8). Besides that, we also need

to balance the model size to capture the essential characteristics of the style yet being
able to perform the inference in real-time using off-the-shelf graphics card.
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We formulate an optimization problem in which we search for an optimal setting of
the following hyperparameters: Wp—size of a training patch, Nb—number of patches
used in one training batch, α—learning rate, and Nr—number of ResNet blocks used in
our network architecture. The aim is to minimize the loss function used in the method
of Futschik et al. [2019] computed over the frames inferred by our network and their
counterparts stylized using the method of Jamrǐska et al. [2019]. The minimization is
performed subject to the following hard constraints: Tt—the time for which we allow
the network to be trained for and Ti—the inference time for a single video frame. Since
Tt as well as Ti are relatively short (in our setting Tt = 30 and Ti = 0.06 seconds) full
optimization of hyperparameters becomes tractable. We used the grid search method
on a GPU cluster, to find the optimal values (see detailed scheme Fig. 4.6). In-depth
elaboration can be found in Section 4.1.5.

In our experiments, we found that hyperparameter optimization is relatively consistent
when different validation sequences are used. We thus believe the setting we found is
useful for a greater variety of styles and sequences. Note also that the result of Jamrǐska
et al. is used only for fine-tuning of hyperparameters. Once this step is finished, our
framework does not require any guided patch-based synthesis algorithm and can act
fully independently.

Sk
1

Nb

Wp

Nr

LOSS

αI1

LOSS

arg min

(1)

(2) (3)

I4 O4 GT4

Figure 4.6: To fine-tune critical hyperparameters of our network, we propose the following
optimization scheme. We tune batch size Nb, patch size Wp, number of ResNet blocks Nr, and
learning rate α. Using the grid search method we sample 4-dimensional space given by these
hyperparameters and for every hyperparameter setting we (1) perform a training for a given
amount of time, (2) do inference on unseen frames, and (3) compute the loss between inferred
frames (O4) and result of Jamrǐska et al. [2019] (GT4) - which we consider to be ground truth.
The objective is to minimize this loss. Note that the loss in step (1) and the loss in step (3)
are both the same. Video frames (I) and style exemplar (S) courtesy of © Zuzana Studená.
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4.1.4 Temporal Coherency

Once the translation network with optimized hyperparameters is trained using the pro-
posed patch-based scheme, style transfer to I can be performed in real-time or in parallel
on the off-the-shelf graphics card. Even though such a frame-independent process yields
relatively good temporal coherence on its own (as noted by Futschik et al.), in many
cases, temporal flicker is still apparent. We aim to suppress it while keeping the ability
of the network to perform frame-independent inference. We analyzed the source of the
temporal instability and found two main reasons: (1) temporal noise in the original video
and (2) visual ambiguity of the stylized content. We discuss our solution to those issues
in the following paragraphs.

We observed that the appearance translation network tends to amplify temporal
noise in the input video, i.e., even a small amount of temporal instability in the input
video causes visible flicker in the output sequence. To suppress it, we use the motion-
compensated variant of bilateral filter operating in the temporal domain [Bennett and
McMillan 2005]. See our supplementary video (at 2:40) for the flicker reduction that can
be achieved using this pre-filtering. Although bilateral filter requires nearby frames to
be fetched into the memory, it does not violate our requirement for frame-independent
processing.

Another observation we made is that filtering the input video reduces temporal flicker
only on objects that have distinct and variable texture. Those that lack sufficient discrim-
inatory information (e.g., homogeneous regions) flicker due to the fact that the visual
ambiguity correlates with the network’s ability to recall the desired appearance. To
suppress this phenomenon, one possibility is to prepare the scene to contain only well
distinctive regions. However, such an adjustment may not always be feasible in practice.

Instead, we provide an additional input layer to the network that will improve its
discriminative power explicitly. This layer consists of a sparse set of randomly distributed
2D Gaussians, each of which has a distinct randomly generated color. Their mixture
represents a unique color variation that helps the network to identify local context and
suppress the ambiguity (see Fig. 4.7). To compensate for the motion in the input video,
Gaussians are treated as points attached to a grid, which is deformed using as-rigid-as-
possible (ARAP) image registration technique [Sýkora et al. 2009]. In this approach,
two steps are iterated: (1) block-matching estimates optimal translation of each point
on the grid, and (2) rigidity is locally enforced using the ARAP deformation model to
regularize the grid structure. As this registration scheme can be applied independently
for each video frame, the condition on frame independence is still satisfied.

The reason why the mixture of Gaussians is used instead of directly encoding pixel
coordinates as done, e.g., in Liu et al. [2018] or Jamrǐska et al. [2019], is the fact that ran-
dom colorization provides better localization and their sparsity, together with rotational
symmetry, reduces the effect of local distortion, which may confuse the network. In our
supplementary video (at 3:20) we, demonstrate the benefit of using the mixture of Gaus-
sians over the layer with color-coded pixel coordinates. In case of extreme non-planar
deformation (e.g., head rotation) or strong occlusion (multiple scene planes), additional
keyframes need to be provided or the scene separated into multiple layers. Each keyframe
or a scene layer has then its own dedicated deformation grid. We demonstrate this sce-
nario in our supplementary video (at 2:56).
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(a) (b) (c) (d) (e) (f)

Figure 4.7: To suppress visual ambiguity of the dark mostly homogeneous T-shirt in (a) an
auxiliary input layer is provided that contains a mixture of randomly distributed and colored
Gaussians (b). The translation network is trained on patches of which input pixels contain
those additional color components. The aim is to reproduce the stylized counterpart (c). Once
the network is trained a different frame from the sequence can be stylized (d) using adopted
version of the auxiliary input layer (e). The resulting sequence of stylized frames (f) has notably
better temporal stability (cf. our supplementary video at 2:40). Video frames (a, d) courtesy of
© Zuzana Studená and style exemplar (b) courtesy of © Pavla Sýkorová.

4.1.5 Results

We implemented our approach in C++ and Python with PyTorch, adopting the struc-
ture of the appearance translation network of Futschik et al. [2019] and used their rec-
ommended settings including training loss. Ground truth stylized sequences for hyper-
parameter tuning and comparison were produced using the video stylization method of
Jamrǐska et al. [2019].

40 500 1000 16 36 100

(a) Batch Size (b) Patch Size (c) ResNet Blocks

1 7 14

Figure 4.8: Influence of important hyperparameters on visual quality of results. The loss,
y-axes, is computed w.r.t. the output of Jamrǐska et al. [2019]. The best setting for each
hyperparameter is highlighted in red: (a) The loss curve for the batch size Nb—the number of
patches in one training batch (other hyperparameters are fixed). As can be seen, increasing
Nb deteriorates visual quality significantly; it indicates that there exists an ideal amount of
data to pass through the network during the back-propagation step. (b) The loss curve for the
patch size Wp. The optimal size of a patch is around 36x36 pixels. This fact indicates that
smaller patches may not provide sufficient context while larger ones could make the network
less robust to deformation changes. (c) The loss curve for the number of ResNet blocks Nr

that corresponds to the capacity of the network. As can be seen, settings with 7 ResNet blocks
is slightly better than other results; however, this hyperparameter does have major impact on
the quality of results. For additional experiments with hyperparameter setting, refer to our
supplementary text.

We performed fine-tuning of hyperparameters on a selection of frames from our evalu-
ation sequences. We computed their stylized counterparts using the method of Jamrǐska



56 CHAPTER 4. VIDEO SEQUENCE STYLIZATION

et al. [2019] and performed optimization using grid search on a cluster with 48 Nvidia
Tesla V100 GPUs in 3 days. We searched over the following intervals: Wp ∈ (12, 188),
Nb ∈ (5, 1000), Nr ∈ (1, 40), α ∈ (0.0002, 0.0032). In total we sampled around
200,000 different settings of those hyperparameters. We found the optimal patch size to
beWp = 36 pixels, the number of patches in one batch Nb = 40, learning rate α = 0.0004,
and the number of ResNet blocks Nr = 7.

See Fig. 4.8 to compare visual quality for different hyperparameter settings. Note
the substantial improvement in visual quality over different settings, which confirms the
necessity of this optimization. An interesting outcome of the proposed hyperparameter
optimization is a relatively small number of patches in one batch Nb = 40 (Fig. 4.8a).
This value interplays with our choice of patch-based training scheme. Although a com-
mon strategy would be to enlarge Nb as much as possible to utilize GPU capability, in
our case, increasing Nb is actually counterproductive as it turns training scheme into a
full-frame scenario that tends to overfit the network on the keyframe and produce poor
results on unseen video frames. A smaller number of randomly selected patches in ev-
ery batch increases the variety of back-propagation gradients and thus encourages the
network to generalize better. From the optimal patch size Wp = 36 (Fig. 4.8b) it is
apparent that smaller patches may not provide sufficient context, while larger patches
may make the network less resistant to appearance changes caused by deformation of the
target object and less sensitive to details. Surprisingly, the number of ResNet blocks Nr

(see Fig. 4.8c) does not have a significant impact on the quality, although there is a subtle
saddle point visible. Similar behavior also holds true for the learning rate parameter α.
In addition, we also examined the influence of the number of network filters on the final
visual quality (see our supplementary material). The measurements confirmed that the
number of filters needs to be balanced as well to capture the stylized content while still
avoid overfitting.

With all optimized hyperparameters, a video sequence of resolution 640 × 640 with
10% of active pixels (inside the mask Mk) can be stylized in good quality at 17 frames
per second after 16 seconds of training (see Fig. 4.1).

We evaluated our approach on a set of video sequences with different resolutions rang-
ing from 350×350 to 960×540, containing different visual content (faces, human bodies,
animals), and various artistic styles (oil paint, acrylic paint, chalk, color pencil, markers,
and digital image). Simpler sequences were stylized using only one keyframe (see Fig-
ures 4.1, 4.3, 4.7, 4.11, and 4.12) while the more complex ones have multiple (ranging
from two to seven, see Figures 4.14, 4.13, 4.15, and 4.16). Before training, the target
sequence was pre-filtered using the bilateral temporal filter. In case that the sequence
contains regions having ambiguous appearances, we compute an auxiliary input layer
with the mixture of randomly colored Gaussians that follows the motion in the target
sequence. During the training phase, we randomly sample patches inside the mask Mk

from all keyframes k and feed them in batches to the network to compute the loss and
backpropagate the error. Training, as well as inference, were performed on Nvidia RTX
2080 GPU. The training time was set to be proportional to the number of input patches
(number of pixels inside the mask Mk), e.g., 5 minutes for a 512× 512 keyframe with all
pixels inside the mask. After training, the entire sequence can be stylized at the speed
of roughly 17 frames per second. See our supplementary video (at 0:08 and 1:08) for the
resulting stylized sequences.
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4.1.6 Comparison

To confirm the importance of our patch-based training strategy, we conducted compar-
isons with other commonly used methods for data-augmentation that can help avoid
overfitting such as adding Gaussian noise to the input, randomly erasing selected pixels,
occluding larger parts of the input image, or performing dropout before each convolution
layer. We found that none of these techniques can achieve comparable visual quality to
our patch-based training strategy (see Fig. 4.9).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.9: To deal with the overfitting caused by a minimal amount of training data, we tried
several commonly used techniques to enforce regularization. In all cases shown in this figure,
we trained the network on the first frame; the shown results are zoomed details of the fifth
frame. (a) is a result of the original full-frame training. (b-h) are results of full-frame training
with some data augmentation. (i) is a result of our patch-based training strategy—see how our
technique can deliver much sharper and significantly better visual quality results, please, zoom
into the figure to better appreciate the difference. In case of (b-c), Gaussian noise was used to
augment the data; (d) some pixels were randomly set to black; (e-f) some parts of the image
were occluded; (g) dropout of entire 2D feature maps; (h) dropout of individual pixels before
each convolution layer.

We compared our approach with the state-of-the-art in keyframe-based video styliza-
tion [Jamrǐska et al. 2019]. For the results see Figures 4.10, 4.12, 4.14, 4.15, and our
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supplementary video (at 0:08 and 1:08). Note how the overall visual quality, as well as
the temporal coherence, is comparable. In most cases, our approach is better at pre-
serving important structural details in the target video, whereas the method of Jamrǐska
et al. often more faithfully preserves the texture of the original style exemplar. This is
caused by the fact that the method of Jamrǐska et al. is non-parametric, i.e., it can copy
larger chunks of the style bitmap to the target frame. Our method is parametric, and
thus it can adapt to fine structural details in the target frame, which would otherwise
be difficult to reproduce using bitmap chunks from the original style exemplar.

Regarding the temporal consistency, when our full-fledged flicker compensation based
on the mixture of Gaussians is used our approach achieves comparable coherency in time
to the method of Jamrǐska et al. It is also apparent that when multiple keyframes are
used for stylization, ghosting artifacts mostly vanish in our method, unlike in Jamrǐska
et al. When the original noisy sequence is used, or only the bilateral filtering is ap-
plied, the resulting sequence may flicker a little more when compared to the output of
Jamrǐska et al. However, we argue that the benefits gained from random access and
parallel processing greatly outweigh the slight increase of temporal flicker. Moreover, the
order-independent processing brings also a qualitative improvement over the method of
Jamrǐska et al. that tends to accumulate small errors during the course of the sequence,
and visibly deteriorates after a certain number of frames.

(a) (b) (c)

Figure 4.10: When the target subject undergoes a substantial appearance change, the results
of both [Jamrǐska et al. 2019] (b) and our method (c) exhibit noticeable artifacts. The parts
that were not present in the keyframe are reconstructed poorly—see the face and hair regions
where [Jamrǐska et al. 2019] produces large flat areas, while our approach does not reproduce
the color of the face well. Video frames (insets of a–c) and style exemplars (a) courtesy of
© Zuzana Studená.

Performance-wise a key benefit of our approach is that once the network is trained,
one can perform stylization of a live video stream in real-time. Even in the offline
setting, when the training phase is taken into account, the overall end-to-end computation
overhead is still competitive. On a 3 GHz quad-core CPU with Nvidia RTX 2080 GPU,
a 512× 512 sequence with 100 frames takes around 5 minutes to train until convergence
and stylize using our approach, whereas the method of Jamrǐska et al. requires around
15 minutes.
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(a) (b)

Figure 4.11: Given one keyframe (a) and a video sequence (in blue), our method produces
the stylized result (b). Video frames (insets of a, b) courtesy of © Adam Finkelstein and style
exemplars (a) courtesy of © Pavla Sýkorová.

(a) (b) (c)

Figure 4.12: For the state-of-the-art algorithm of Jamrǐska et al. [2019], contour based
styles (a) present a particular challenge (b). Using our approach (c), the contours are trans-
ferred with finer detail and remain sharp even as the sequence undergoes transformations. Video
frames (insets of a–c) and style exemplar (a) courtesy of © Štěpánka Sýkorová.

4.1.7 Interactive Applications

To evaluate the ideas we presented in practice, we invited artists to work with our
framework. We implement and experiment with three different setups in which the
artists created physical as well as digital drawings. The goal of these sessions was to
stylize one or more video keyframes artistically. Using a workstation PC, we provided the
artists with a version of our framework that implements real-time interactive stylization
of pre-prepared video sequences and stylization of live camera feeds.
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(a) (b) (c) (d)

Figure 4.13: The Lynx sequence stylized using two keyframes (a, d). Notice how our method
produces seamless transition between the keyframes while preserving fine texture of the style (b,
c). Watch our supplementary video (at 1:22) to see the sequence in motion. Style exemplars (a,
d) courtesy of © Jakub Javora.

(a) (b) (e)(c) (d) (f)

Figure 4.14: Keyframes (a, f) were used to stylize the sequence of 154 frames. See the
qualitative difference between [Jamrǐska et al. 2019] (b) and our result (c). Focusing mainly on
zoom-in views, our approach better preserves contour lines around the nose and chin; moreover,
the method of Jamrǐska et al. suffers from blending artifacts—the face is blended into the hair
region. On the other hand, comparison on a different frame from the same sequence shows that
the result of Jamrǐska et al. (d) is qualitatively superior to our result (e) on this particular frame.
See the corresponding zoom-in views where the approach of Jamrǐska et al. produces cleaner
results. Video frames (insets of a–f) and style exemplars (a, f) courtesy of © Muchalogy.

These applications, all of which rely on and strongly benefit from the near real-time
nature of patch-based training as well as the real-time performance of full-frame inference,
naturally lend themselves to fast iteration. The artist is provided with real-time feedback
that approximates what the final result of video stylization might look like, thus reducing
the possibility of running into issues with artifacts that would be difficult to alleviate
later on.

During the sessions, artists especially appreciated seeing video results very quickly, as
it helps steer creative flow and offers the possibility of perceiving the effect of individual
changes in the style exemplar at a glance. The overall experience was described as
incredibly fun and paradigm-changing, with little to no negative feedback. Using this
system is intuitive and even suitable for children. These different scenarios are described
in detail in the supplementary material.

4.2 Robust Neural Video Stylization

An important yet still missing contribution to the subfield of video sequence stylization
is the ability to allow artists to stylize a set of images with arbitrary yet similar content
in a semantically meaningful way, while preserving the target subjects’ critical structural
features. In this section, we propose a solution to this task. In contrast to previous
neural techniques, in our proposed framework, the user explicitly encodes the semantic
intent by specifying a stylized counterpart for a selected image from the set that needs to
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Figure 4.15: A complex input sequence (the first row) with seven keyframes, three of them are
shown in (a, d, g). Here we compare our approach to the approach of Jamrǐska et al. [2019].
See our result (b) and theirs (h) along with the close-ups (b’, h’); due to their explicit handling
of temporal coherence, the texture of the fur leaks into the box (h’). Next, compare our result (c)
to theirs (i); our approach better reconstructs the bag (c’, i’). Their issue with texture leakage
manifests itself again on the shoulder in (j, j’), notice how our approach (e, e’) produces a
clean result. Lastly, see how our result (f, f ’) is sharper and the face is better pronounced
compared to the result of Jamrǐska et al. [2019] (k, k’), which suffers from artifacts caused
by their explicit merging of keyframes. Video frames (top row) and style exemplars (a, d, g)
courtesy of © MAUR film.

(a) (b) (c) (d)

Figure 4.16: An example sequence of 228 video frames (in blue) as stylized from two
keyframes (a, d). Results of our method (b, c) stay true to style exemplars over the course
of the sequence. Video frames (insets of a–d) and style exemplars (a, d) courtesy of© Muchal-
ogy.

be stylized. Using this single style exemplar, we then train an image-to-image translation
network that stylizes the remaining images. While this approach bears a resemblance
to the method presented in previous section, where a similar workflow is used, a key
difference in this technique is that we consider other frames from the input sequence
during the training phase. This enables us to ensure temporal stability without explicit
guidance and better preserve style when the remaining video frames deviate from the
original keyframe. Moreover, thanks to this increased robustness, our framework goes
beyond video stylization. One can use it also in more challenging scenarios, including



62 CHAPTER 4. VIDEO SEQUENCE STYLIZATION

source frame

source style
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Figure 4.17: An example of style transfer with limited auxiliary pairing—an artist prepares
a stylized version (source style) of a selected video frame (source frame). Then an image-
to-image translation network is trained to transfer artist’s style to other video frames (target
frames). During the training phase a subset of target frames as well as the source frame and its
stylized counterpart are taken into account. Once the network is trained, the entire sequence can
be stylized in real-time (our approach). In contrast to state-of-the-art in example-based video
stylization [Jamrǐska et al. 2019] our approach better preserves important visual characteristics
of the style exemplar even though the scene structure changed considerably (head rotation). The
advantage of having an auxiliary stylized pair is also visible in comparison with the output of
Deep Image Analogies of Liao et al. [2017]. Although the style’s texture is preserved reasonably
well, the transfer is not semantically meaningful.

auto-completion of a panorama painting, stylization of 3D renders, or different portraits
captured under similar illumination conditions.

4.2.1 Our Approach

As input to our method, we take pairs of images K = (X, Y ) called keyframes. They
represent a visual translation from a source visual domain of X into a target domain
of Y . For instance X can be a photo and Y its stylized counterpart prepared by an artist
(see Fig. 4.18). Note that our key assumption about K is that it should be as small as
possible, in practice even a single keyframe is usually sufficient. This is in line with our
central motivation to reduce the amount of manual work since the creation of keyframes
is time-consuming and thus prohibitive. In addition to K, the user also provides a set of
unpaired images Z, which they would like to stylize. The images in Z can be arbitrary,
but our method works best if their domain is similar or same as X. For instance Z and X
can be frames from the same video sequence or photos from the same location, etc. If
there is a larger number of images in Z, it is beneficial to prune it as smaller number of
images in Z usually has a positive effect on the resulting quality (see Fig. 4.24). Both
keyframes K as well as unpaired images Z are used during an optimization process
that produces a neural translation model F . Using F one can stylize Z in a semantically
meaningful way, i.e., produce a set of output images O in which important visual features
of artistic style Y are reproduced at appropriate locations.

As F , we use the network architecture design of Futschik et al. [2019] (see Fig. 4.19),
a U-Net-type network, which is particularly suitable for style transfer tasks as it allows
to reproduce important high-frequency details that are crucial for generating believable
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Figure 4.18: An overview of our approach—we optimize weights θ of a translation network F
which accepts images from a source domain X or Z and produces output images O with a
similar appearance as those in the target domain Y . The high-frequency details are preserved
well, thanks to the L1 loss computed on the artist-created style images Y which have the same
structure as the input images X, while the style consistency on other images Z is enforced due
to the VGG loss. Source style © Graciela Bombalova-Bogra, used with permission.

artistic styles. In the original method of Futschik et al. F was trained on a large dataset
of K which is intractable in our scenario. Our previous patch-based approach uses
the network architecture of F as well in a similar setting as ours, i.e., small number
of keyframes K, however, that method struggles with larger structural changes in the
target images Z.

To address this issue, we leverage the fact that the set of target images Z is known
beforehand and thus we can incorporate this additional knowledge into the optimization
process. To do that, we introduce a different training strategy. The process is a combi-
nation of two complementary objectives, illustrated in Fig. 4.18, which we minimize as
we train F :

� L1 loss on the original translation pairs K, ensuring that keyframes are represented
as closely as possible.

� VGG loss between the images from set Z and set Y , which acts as a regularizer
for the stylized images O.

Combining these two, we obtain the objective function we would like to minimize:∑
i

|F(Xi; θ)− Yi|+ λ
∑
j,k

∑
l

∥Gl(F(Zj; θ))− Gl(Yk)∥2 (4.1)

where θ is a set of weights of F which we would like to optimize, Gl stands for Gram
correlation matrix calculated at layer l ∈ L after extracting VGG network responses [Si-
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Figure 4.19: A network architecture used for our model F : input layer (green), one 7×7 and
two 3 × 3 convolution blocks (blue), nine 3 × 3 residual blocks (yellow), two 3 × 3 upsampling
blocks (red), and one additional block with 7× 7 convolutions (blue). Skip connections (black)
are used to connect downsampling and upsampling layers.

monyan and Zisserman 2014] of the given image, and λ is a weighting coefficient which
we set to 100/(|Z||L|) for all conducted experiments.

Contrary to previous techniques [Gatys et al. 2016; Johnson et al. 2016] which compute
Gram matrix from a subset of layers we found that evaluating the loss at every layer l ∈ L
of VGG is beneficial in terms of measuring the overall style quality. However, this is
computationally more expensive and thus our method generally requires an order of
magnitude more time to produce the final results. These previous methods use the term
purely as a proxy for style transfer. In our case we use it as regularizer to prevent the
model from overfitting to the keyframes. This effect is visible in Fig. 4.20, where if we
take away the VGG loss, the resulting F is unable to generalize beyond K whereas using
VGG loss only will negatively affect the content.

By minimizing the objective (4.1) we produce a trained model F , which in turn is able
to stylize the images from Z via a feed-forward pass. An important aspect to notice is
that unlike most previous style transfer techniques, our approach does not enforce any
content loss explicitly. We find that content losses found in literature [Gatys et al. 2016;
Kolkin et al. 2019] tend to be detrimental to the quality of style transfer, especially
when higher frequencies are concerned. It causes a particular washed-out look where
important style details are missing (see Fig. 4.21). An objection to our argument could
be that without explicit penalty on the content preservation, the model can resort to
memorizing the keyframes and return Y regardless the content in target images Z. This
would eventually minimize both the L1 error as well as the VGG loss. The reason why
the optimization process does not end up using this trivial solution is twofold. We argue
that due to the limited receptive field of F , it has to learn an effective encoding of the
input; in addition, since the VGG loss is relatively weak and serves only as a non-linear
regularizer, it makes the trivial solution difficult to find during the optimization process.
Moreover, by optimizing a one-to-one mapping between images of perceptually similar
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target photo only VGG loss only L1 loss VGG + L1 losssource photo source style

Figure 4.20: An ablation study demonstrating the importance of individual terms in our
objective function (4.1)—a stylized pair (X1, Y1) (source photo, source style) is used together
with Z1 (target photo) to optimize weights of model F . When only VGG loss is used, the identity
of a person in the target photo deteriorates. On the other hand when only L1 loss is used during
optimization source, style is not preserved well. By combining L1 loss and VGG loss in (4.1)
we get the result which produces a good balance between identity and style preservation. Source
style © Graciela Bombalova-Bogra, used with permission.

semantic structure (X to Y ), we posit that this acts as an implicit content preservation
technique.

4.2.2 Results

We implemented our approach using PyTorch [Paszke et al. 2019]. For all experiments,
we use Adam optimizer with learning rate 10−4, β1 = 0.9, β2 = 0.999. We found that
higher rate does not work well when performing many Gram matrix operations that are
prone to producing exploding gradients. For the network model F , we use 9 residual
blocks, which is in line with previous approaches [Futschik et al. 2019; Texler et al.
2020b]. However, since in our optimization batch size is equal to 1 we use instance
normalization [Ulyanov et al. 2016c] instead of batch normalization. All layers used
for Gram matrix computation are post-activated with ReLU to better incorporate non-
linearity. In each experiment, we let the optimization process run for approximately
100k iterations, which translates into roughly 3–6 hours of wall time on a single NVIDIA
V100 GPU, depending on the target resolution. The resolutions we produce range from
512px to 768px as longer side of the image, with the shorter side scaled appropriately to
preserve correct aspect ratio given by the input images.

We evaluated our approach in five different use cases to demonstrate its wider range
of applicability: (1) keyframe-based video stylization, (2) style transfer to 3D mod-
els, (3) autopainting panorama images, (4) example-based stylization of portraits, and
(5) real-time stylization of video calls.

Video stylization results together with a side-by-side comparison of the output from
previous techniques [Jamrǐska et al. 2019; Texler et al. 2020b] is presented in Figures 4.17
and 4.22 as well as in our supplementary video. In each experiment, we selected a
keyframe X from the input video sequence V which was stylized by an artist to pro-
duce Y . Then a 10% of video frames from V were sampled uniformly to get the set Z.
Using this input, the weights θ of the network F were optimized and used to stylize the
entire sequence V . In Fig. 4.23 we compare the scenario where multiple keyframes K are
used to stylize V . We also considered an option that all frames from V are used as Z,
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target render low medium high

Figure 4.21: An illustration of a wash-out effect caused by adding an explicit content loss
term [Kolkin et al. 2019] into our objective function (4.1). Target render stylized using model F
optimized on a stylized pair from Fig. 4.25 with low, medium, and high content loss weight. Note
how style details deteriorate gradually with the increasing content loss. Source style© Štěpánka
Sýkorová, used with permission.

or instead of using uniform sampling we selected 10% of frames that represent the most
significant changes in the scene. We found that sparse uniform sampling has usually the
best performance (see Fig. 4.24).

As visible from the results and comparisons, our approach can better preserve style
details during a longer time frame even if the scene structure changes considerably with
respect to X. Also, note how the resulting stylized sequence has better temporal stability
implicitly without performing any additional treatment, which contrasts with previous
techniques [Jamrǐska et al. 2019; Texler et al. 2020b] that need to handle temporal
consistency explicitly.

Style transfer to 3D models resembles video stylization use case, however, there are
specific features worth separate discussion. In this scenario we let the user select a
camera viewpoint from which a 3D model is rendered to get image X. As the network F
is sensitive to local variations in X, it is important to avoid larger flat regions which
can make the translation ambiguous. Due to this reason we add a noisy texture to the
3D model to alleviate the ambiguity (see source render in Fig. 4.25). An artist then
prepares the stylized counterpart Y and the model is rendered again from a few different
viewpoints to produce Z. Using those inputs, weights θ of the network F are optimized
and the translation network can then be used in an interactive scenario where the user
changes the camera viewpoint, the 3D model is rendered on the fly, and immediately
stylized using F . See Figures 4.25 and 4.26 and our supplementary video for results in
this scenario. As in the video stylization case when compared to other techniques [Gatys
et al. 2016; Kolkin et al. 2019; Jamrǐska et al. 2019; Texler et al. 2020b] our approach
better preserves the style exemplar (c.f. Fig. 4.25) and implicitly maintains temporal
consistency.
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Figure 4.22: Video stylization results—in each video sequence (rows) a selected frame (source
frame) is stylized using different artistic media (source style). The network is then trained
using this stylized pair and a subset of frames from the entire video sequence (target frame).
The results of our method (our approach) are compared with the output of concurrent techniques:
[Jamrǐska et al. 2019] and [Texler et al. 2020b]. Note how our method better preserves important
style details and visual features of the target frames. Previous style transfer techniques tend to
produce wash out artifacts due to significant structural changes with respect to the source frame.
Video frames and style (top row) © Zuzana Studená, and (bottom row) © Štěpánka Sýkorová,
used with permission.

In the panorama auto-painting scenario we consider a set of photos P taken from the
same location by rotating the camera around its center of projection. We compute a set
of homographies H between photos in P using the method of Brown et al. [2007]. Then
we let the artist pick one photo from P as X and produce its stylized counterpart Y .
Remaining photos in P are used as Z. After the optimization one can use F to stylize
all photos in P , stitch them together using H, and either produce a cylindrical unwrap
or alternatively use an interactive scenario where the user changes the relative camera
rotation from which a pinhole projection can be computed and stylized in real-time
using F . As visible in Fig. 4.27 and 4.28 from the comparisons with method of Liao et
al. [2017] and Kolkin et al. [2019] our approach better preserves the original style details
as well as semantic context.

In the example-based portrait stylization use case a set of portraits U is assumed
to be taken under similar lighting conditions. One portrait from U is used as X and
stylized to get Y . The rest of portraits in U is used in Z. Resulting model F can then
be used to stylize all portraits in U . In Fig. 4.29 stylization results for two different
style exemplars are presented. It is apparent that our approach produces a reasonable
compromise between identity and style preservation whereas previous neural methods
such as the methods of Gatys et al. [2016] or Kolkin et al. [2019] tend to preserve identity
better, but lose style details. On the other hand, the patch-based technique of Fǐser et
al. [2017] reproduces style better, nevertheless, has difficulties retaining identity.

In real-time stylization of video calls we let the user record a short video sequence V
which captures her face during a regular video meet. A most representative frame is
selected from V and used as X. An artist then produces its stylized counterpart Y
and 10% of other frames in V are used as Z. A model F is optimized using those inputs.
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K1 = (X1, ·) K1 = (·, Y1) Z1 O1 (with K1) O1 (with K1 & K2)

K2 = (X2, ·) K2 = (·, Y2) Z2 O2 (with K1) O2 (with K1 & K2)

Figure 4.23: Example of video stylization with multiple keyframes—two keyframes K1 =
(X1, Y1) and K2 = (X2, Y2) were created by painting over the input video frames X1 & X2 to
get their stylized counterparts Y1 & Y2. First, our network F was trained using only single
keyframe K1 and applied to stylize input video frames Z1 & Z2 to produce O1 & O2 (with K1).
Note, how closed mouth in Z2 was not stylized properly in O2 (with K1). By adding K2 to the
list of keyframes used during training phase, open and closed mouth is stylized better, see O1

& O2 (with K1 & K2). Frames X1, X2, Y1, Y2, Z1 & Z2 © Muchalogy, used with permission.

Then, during the next video call F is used to stylize captured video frames in real-time.
See Fig. 4.30 and our supplementary video for an example of such interactive stylized
video call. From the comparison with the method of Texler et al. [2020b] it is visible that
our approach not only better preserves the overall style quality but also retains temporal
stability which is difficult to accomplish by the method of Texler et al. in this kind of
interactive scenario.

4.2.3 Perceptual study

In order to qualitatively evaluate our approach, we performed a perception study com-
paring the outputs of our method with the outputs of three state-of-the-art techniques
(Jamrǐska et al. [2019], Kolkin et al. [2019], and Texler et al. [2020a] (green points)). In
our experiment we wanted to evaluate how well our method reproduces the given artistic
style and how well it preserves the content of the target image. To perform the evalu-
ation, we collected data via an online survey, where we presented 170 participants with
a randomized set of comparisons (2AFC) asking to choose which anonymized stylization
reproduces style or preserves content better. In total each participant responded to 28
questions. In each question, an output from a different method was paired with the
output from our technique using the same input data.

We set out a null hypothesis that ”there is no statistically significant difference in the
content preservation or style reproduction between the results of our method and the
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Figure 4.24: A different sampling strategy for a selection of frames in Z—a source frame
from a sequence V (a) and its stylized counterpart (b) are used as K. Then weights of F are
optimized with K and Z, where Z contains all frames from V (d), 10% of uniformly sampled
frames from V (e), and 10% of adaptivelly sampled frames from V (f). Note how dense sampling
tends to produce distortion artifacts on a rare hand pose (c) due to overfitting on a different
pose that is more frequent in the sequence V (a) whereas sparse sampling generalizes better.
Source video frames (a, c) and style (b) © Štěpánka Sýkorová, used with permission.

other methods.” Then we discussed the probability of rejection of the null hypothesis
using the data we collected via Student’s t-test. In the style reproduction category, we
were able to reject the null hypothesis with more than 99% probability in comparison
to all tested methods in favor of our method. In the content preservation category, we
were able to reject the null hypothesis with more than 99% probability, but only the
comparison with the method of Jamrǐska et al. was in favor of our method while the
other two were not.

4.3 Conclusion and Future Work

In this Chapter we proposed two new approaches for example-based stylization of video
sequences. In Section 4.1, we have employed the core architecture of our approach
described in Section 3.1 together with a patch-based learning approach to present an
interactive framework, allowing real-time video sequence stylization as well as real-time
feedback to changes being made in the given style example. On top of that, the patch-
based learning approach allows learning target artistic styles without a large dataset,
which would previously be infeasible. In Section 4.2, we have presented an image trans-
lation network for video sequences, that addresses the common quality deterioration,
once the frames being stylized becomes too different from a keyframe, by employing
an alternative loss function which allows better detail retention and style reproduction,
consistent over the entire sequence.

Although our framework described on Section 4.1 brings substantial improvements
over the state-of-the-art and makes keyframe video stylization more flexible and in-
teractive, there are still some limitations that could represent a potential for further
research. Despite the fact our technique uses different computational machinery than
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Figure 4.25: Stylization of 3D renders—a colored 3D model enhanced with an artificial noisy
texture to avoid large flat regions (source render) is stylized at a selected viewpoint by an
artist (source style). The network is then trained using the stylized pair and a set of additional
renders of the same model viewed from a different direction (target render). The trained network
can then be used to stylize the rendered 3D model from a different user-specified position in real-
time (our approach). When compared to other concurrent style transfer techniques ([Jamrǐska
et al. 2019; Texler et al. 2020b; Gatys et al. 2016; Kolkin et al. 2019]) our approach better pre-
serves important high-frequency details of the original style exemplar while being able to adapt
to a new pose in a semantically meaningful way. Source style © Štěpánka Sýkorová, used with
permission.

source render source renderstyle #1 style #2 style #3 style #4 style #5

target render target renderoutput #1 output #2 output #3 output #4 output #5

Figure 4.26: Stylization of 3D renders (cont.)—a colored 3D model enhanced by a noisy
texture (source render) is stylized by hand using various artistic media (style #1–#5). The
resulting image translation network F is then used to stylize the same 3D model (output #1–
#5) rendered from a different viewpoint (target render) in real-time. Source styles (#1–#5)
© Štěpánka Sýkorová, used with permission.

current state-of-the-art [Jamrǐska et al. 2019] (deep convolutional network vs. guided
patch-based synthesis), both approaches share similar difficulties when stylized objects
change their appearance substantially over time, e.g., when the object rotates and thus
reveals some unseen content. Although our approach often resists slightly longer than
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source style our approach Kolkin et al.
Figure 4.27: Panorama stylization results—a photo (source photo) is selected from a set of
shots taken around the same location by rotating a camera (target panorama) and stylized using
different artistic media (source style). The network is then trained using the stylized pair and
a subset of photos of the panoramic image (target panorama). Finally, the network is used to
stylize each shot, and the entire panorama is stitched together (our approach). In contrast to
previous techniques [Liao et al. 2017; Kolkin et al. 2019] our approach better preserves essential
artistic features and transfers them into appropriate semantically meaningful locations. See
also results with additional styles in Fig. 4.28. Source style © Štěpánka Sýkorová, used with
permission.

source style stylized panorama

Figure 4.28: Panorama stylization results (cont.)—two additional artistic styles (source style)
used to stylize the panorama shown in Fig. 4.27. Note how our approach (stylized panorama)
handles also a higher level of abstraction (first row). Source style (top row)© Jolana Sýkorová,
used with permission.

patch-based synthesis due to the ability to generalize better, it usually cannot invent
consistent stylization for new features that were not stylized in the original keyframe,
see Fig. 4.10. In this case, the user needs to provide additional keyframes to make the
stylization consistent. As compared to the method of Jamrǐska et al. our approach may
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Figure 4.29: Stylization of portraits—a portrait photo (source photo) taken from a set of
portraits captured under similar lighting conditions is stylized by an artist (source style). The
network is then trained on the stylized pair and other portraits from the original set (target
photo). Once trained the network can be used to stylize the other portraits (our approach).
Even in this more challenging scenario our method produces a reasonable compromise between
style and identity preservation whereas concurrent techniques suffer either from loosing im-
portant high-frequency details ([Gatys et al. 2016; Kolkin et al. 2019]) or have difficulties to
retain identity ([Fǐser et al. 2017]). Source style (top row) © Graciela Bombalova-Bogra and
style (bottom row) © Adrian Morgan, used with permission.

source frame

stylized frame

target frame our approach Texler et al.

Figure 4.30: Real-time stylization of video calls—a frame from a training sequence (source
frame) is stylized by an artist (source style). The network weights are then optimized using
this stylized pair and remaining frames from the training sequence. The final image translation
model can be used for real-time stylization of a new video conference call that contains the same
person and have similar lightihg conditions (target frames). Note that in contrast to the method
of Texler et al. [2020b] our approach better preserves style details and keeps the stylization more
consistent in time (see also our supplementary video). Video frames and source style© Zuzana
Studená, used with permission.
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encounter difficulties when processing keyframes at a higher resolution (e.g., 4K) to styl-
ize high-definition videos. Although the size of patches, as well as the network capacity,
can be increased accordingly, the training may take notably longer time, as a different
multi-scale approach [Wang et al. 2018c] could be necessary. However, the problem of
training of larger models is an active research topic in machine learning, so we believe
that soon, more efficient methods will be developed so that our technique would be ap-
plicable also at higher resolutions. Although our approach does not require the presence
of previous stylized frames to preserve temporal coherency, the motion-compensated bi-
lateral filter, as well as the creation of layer with a random mixture of colored Gaussians,
requires fetching multiple video frames. Even though those auxiliary calculations can
still be performed in parallel, they need additional computation resources. Those may
cause difficulties when considering real-time inference from live video streams. In our
prototype, during the live capture sessions, treatment for improving temporal coherence
was not taken into account. A fruitful avenue for future work would be to implement real-
time variants of the motion-compensated bilateral filter as well as a mixture of colored
Gaussians. Also, different methods could be developed that would enable the network to
keep stylized video temporally coherent without the need to look into other video frames.

target photo target photostylized output stylized output

(i) Limitation on greater appearance change in the
target photo—a key assumption of our method is
that the domain of source and target photos is sim-
ilar, e.g., photos have same content and are taken
under comparable illumination conditions. When
this requirement is not satisfied, the resulting styl-
ization may start to show artifacts as is visible in
those examples of photos taken from the FFHQ
dataset [Karras et al. 2019] where the illumination
conditions are different to those used for the cap-
ture of source photo in Fig. 4.29.

(a) (b) (c) (d)

(e) (f) (g) (h)

(ii) Limitation on generalization—although our ap-
proach usually generalizes better than concurrent
stylization techniques [Jamrǐska et al. 2019; Texler
et al. 2020b], some specific features like eyes (a,
c) that tend to generate strong activation in se-
lected layers of VGG network may bias the VGG
loss and make the network F reproduce their mostly
unchanged copies (f, h) instead of adapting to their
actual geometric distortion (b, d).

Figure 4.31: Illustration of common limitations of our method.

The most important limitation of the method presented in Section 4.2 as compared
to related approaches is notably longer time frame required to finish the optimization,
which might be prohibitive for artist’s exploration. To alleviate this drawback we envi-
sion a combination of fast patch-based training strategy presented in Section 4.1 with
the computation of VGG loss which needs to be performed in a full-frame setting. In our
proposed workflow an artist is responsible for keyframe selection. While some rules of
thumb can be applied, such as selecting a frame that contains all features that are descrip-
tive for most other frames, a mechanism which would select the keyframe automatically
would improve ease of use. Most significantly, the method does not seem to generalize
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Figure 4.32: The advantage of using style transfer with auxiliary pairing in visual attribute
transfer scenario of Deep Image Analogy [Liao et al. 2017]. Although the style’s texture and
semantics (see source style in Fig. 4.17) are preserved well in both techniques, Deep Image
Analogy (Liao et al.) has difficulties in adapting to certain structural changes. Target video
frame © Zuzana Studená, used with permission.

very well for completely generic use cases, for example in Fig. 4.31i, where input images
are sampled from different underlying distributions. Thus, the set of potential applica-
tions is limited to groups of images of visually similar settings created under comparable
conditions. A key advantage of this approach over existing methods in example-based
video stylization such as the one described in Section 4.1 or state-of-the-art method
of Jamrǐska et al. [2019] is greater robustness to structural discrepancies in the target
frames. Even a relatively significant change such as head rotation is handled relatively
well (see Fig. 4.17). In this case the network can successfully reproduce newly appearing
content while still being able to preserve the notion of important planar structures of the
original artistic media. On the other hand, some specific localized features such as eyes,
may remain unchanged (see Fig. 4.31ii). A similar issue is known from visual attribute
transfer approaches such as Deep Image Analogy [Liao et al. 2017]. As compared to
them our method is able to adapt to structural changes better (see Fig. 4.32).
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Figure 4.33: Results of perceptual study—each point represents aggregated votes over a group
of 10 participants. On the x axis we depict the percentage of answers in favor of content
preservation of our method while on the y axis we show the style reproduction percentage.
Comparisons were performed with the method of Jamrǐska et al. [2019] (red points), Kolkin et
al. [2019] (blue points), and Texler et al. [2020a] (green points). From the graph it is visible that
our method is observed to reproduce style notably better than previous works. It also outperforms
the method of Jamrǐska et al. w.r.t. the content preservation, however, Kolkin et al. as well as
Texler et al. are better in content preservation.
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Chapter 5

Stereoscopic Style Transfer

Example-based style transfer gained significant interest recently thanks to advances made
in neural approaches [Gatys et al. 2016; Liao et al. 2017; Kolkin et al. 2019] as well as
techniques based on guided texture synthesis [Jamrǐska et al. 2015; Fǐser et al. 2016;
Sýkora et al. 2019]. Great effort has also been devoted to example-based stylization of
videos [Fǐser et al. 2017; Ruder et al. 2018; Jamrǐska et al. 2019; Texler et al. 2020b;
Futschik et al. 2021], where temporal consistency needs to be taken into account. Sur-
prisingly, despite current trends in development of stereoscopic displays for virtual re-
ality, cinemas, or metaverse, only a few researchers have tried to address the problem
of example-based stylization in a binocular setting [Gong et al. 2018; Chen et al. 2018].
This lack of exploration can partly be explained by the fact that paintings are a priori
assumed to be 2D projections of a 3D world where instead of binocular parallax, different
depth cues are used. From this limited perspective, it may seem unnatural to transfer
an inherently planar style to an image that will be depicted using a stereoscopic display.
However, as recently demonstrated by Gong et al. [2018] and Chen et al. [2018], there is
some interesting potential to better explore ways in which the human visual system can
interpret artistic images under binocular vision. Both Gong et al. and Chen et al. ap-
proach this problem by improving neural style transfer [Gatys et al. 2016] to produce
images that are consistent under binocular parallax. Their setting is, however, only an
approximation to the more strict scenario we would like to consider. Since neural style
transfer does not preserve the planarity of the style exemplar, structures such as strokes
or canvas patterns can be distorted arbitrarily. This fact may lead to noticeable geomet-
ric distortion [Sýkora et al. 2019] where the stylized image looks as if the style exemplar
is mapped onto the target 3D object which is then projected to 2D in each viewpoint.

To explore this research gap and address the new technical challenges, we propose
a method we have published under the name StyleBin: Stylizing Video by Example
in Stereo. The aim of our solution is to preserve the planarity of the original style
exemplar while still being able to synthesize images that are consistent under binocular
parallax. Given an input video and one or more stylized keyframes accompanied by
information about depth in the scene, we synthesize a stylized output sequence for each
eye. Our approach is a patch-based synthesis process where patch selection is informed
by a family of guidance channels seeking to match aspects of the images, including color,
position, and edges; the method is similar to that of Jamrǐska et al. [2019], though we
must contend with the added difficulty of adapting the guidance channels to right and
left eye views and then synthesizing both views consistently in time and space. Our
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use of patches guarantees accurate reproduction of important planar structures in the
style exemplar and the disparity-adapted guidance channels ensure their semantically
meaningful transfer.

Our main contribution is a versatile framework for producing stylized stereoscopic
sequences from an input monocular video with a semantically-meaningful style/depth
transfer using a set of sparse style/depth keyframes. It extends the works of Jamrǐska
et al. [2019] and Luo et al. [2015] to the stereo stylization setting. Its key technical
contribution is the joint synthesis of stereo and temporal consistency. We demonstrate
the effectiveness of the approach with several examples and a qualitative user study.

5.1 Our Approach

The input to our method is a target sequence T and a selection of one or more
keyframes K ⊂ T for which the user will provide (i) a stylized counterpart Sk and
(ii) a disparity map Dk (see Fig. 5.1) that can be obtained manually or automatically. In
our experiments we employ boosted monocular depth estimation [Miangoleh et al. 2021],
and when applicable, also use Attention Mesh [Grishchenko et al. 2020] with Poisson im-
age editing [Pérez et al. 2003] to improve disparity in facial regions. The precise choice of
method is unimportant; any other depth estimation technique or additional depth sensor
can be used to obtain Dk. The user may also decide to refine Dk manually to achieve
the desired disparity.

The goal of our method is to produce two temporally coherent output sequences, a
left sequence OL and a right sequence OR (see Fig. 5.1), in which the target sequence T
will be stylized according to the style exemplar Sk such that when the frames from OL

and OR are displayed to the corresponding eyes, the viewer will see a stereo effect driven
by the disparity map Dk. This also means that OL and OR need to be consistent both
in space and time to avoid ghosting and flickering artifacts.

We first describe the general approach to produce OL and OR from T using Sk and Dk.
Further in this Section we demonstrate that the individual building blocks of our method
can be applied in different scenarios: for example, we may have a target sequence T that
is already fully stylized, or we may know D for each frame beforehand, perhaps because T
was generated by 3D rendering or captured using a depth sensor.

To obtain OL and OR we use a guided patch-based synthesis framework similar to that
described by Jamrǐska et al. [2019]. Like Jamrǐska et al., we want to transfer the style to
the video in a semantically meaningful way. Unlike Jamrǐska et al., who create a single
view, we need to jointly synthesize two views such that both stylized views are consistent
in time and space according to the motion in the scene and the disparity given by Dk.

5.1.1 Disparity Propagation

As an initial step, we need to propagate the disparity stored inDk from each keyframe Tk ∈
K to the rest of the target sequence T (see Fig. 5.2). To do that, we employ the guided
patch-based synthesis of Jamrǐska et al. [2019], providing the disparity map Dk as the
style exemplar. In the case of multiple keyframes K, we propagate disparity to T from
each keyframe separately and then blend the resulting frames using a weight proportional
to the distance in time between the currently blended frame and the keyframe.
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Figure 5.1: An overview of the inputs and outputs of our method. The user provides a target
sequence T in which one or more keyframes Tk ∈ K are stylized Sk and contain information
about disparity Dk. We propagate the disparity from Dk to the entire sequence T and transfer
the style from Sk to T such that two stylized sequences OL and OR are produced, each of which
can then be viewed by the corresponding eye to achieve a stereoscopic effect. Video frames T
and style exemplar Sk © Jana Kyllerová.

5.1.2 Disparity Shifting

As a byproduct of the previous disparity propagation step, a set of auxiliary channels C =
{F,Gcolor, Gedge, Gpos} is produced for each frame in T (see Fig. 5.3 and c.f. [Jamrǐska
et al. 2019]). Here F is the optical flow computed between the consecutive frames in T
using the method of Kroeger et al. [2016]. During the synthesis, F is used to help enforce
temporal consistency. The channel Gcolor is a color guide that stores copies of individual
frames of T . It helps to ensure that the style from Sk is transferred to locations where Ti

has similar colors to those in Tk. Gedge denotes an edge guide that encourages salient
features in Ti to be stylized consistently with those stored in Tk. Gedge is computed as
follows: Gedge(Ti) = Ti−Nσ ◦Ti, where Nσ is a Gaussian filter with standard deviation σ
and ◦ denotes convolution. Finally, Gpos is a positional guide that encourages transfer
of style pixels from keyframe Tk to the corresponding positions in the current frame Ti.
Gpos is computed by accumulating a series of consecutive optical flows Fi−k ∈ F between
frames Ti and Tk.

The sequence of optical flows F plus the above-mentioned guiding channels G are
sufficient to perform style transfer using the original method of Jamrǐska et al. In our
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Ti Tj Tk Tl Tm

Di Dj Dk Dl Dm

Figure 5.2: An example of disparity map Dk propagation from a keyframe Tk to the rest of
the sequence T . An output of this process is a sequence of disparity maps D aligned with every
frame in T . Video frames T © Jana Kyllerová.

setting, however, we need to produce a binocular sequence, for which we need a left CL

and right CR view for each channel in C. Those new views can be obtained by shifting
the content in C using the disparities stored in D; see Fig. 5.3.

Note that motion vectors stored in F are relative to the position of the underlying
pixels, and therefore there is no need to modify their values during the shifting phase
(we only need to shift their origins). Conversely, color-coded correspondences stored
in Gpos are absolute; however, since they point to the original pixels in the monocular
version of the keyframe Tk ∈ K, there is no need to modify them, as shifting their
locations is sufficient.

5.1.3 Handling Disocclusion

After the shifting phase, a subset of the pixels in channels
←−
C and

−→
C may remain un-

touched due to disocclusion (see blue areas in Fig. 5.3). To fill those gaps, we first apply
the disparity completion approach of Wang et al. [2008] to obtain consistent left DL

and right DR disparity maps. Once DL and DR are available, we can employ disparity-
guided patch-based synthesis, similar to that used by Luo et al. [2015]. Here the goal is
to minimize the following:

ED(C
S, CV ) =

∑
t̂∈CV

min
ŝ∈CS

Q(ŝ, t̂), (5.1)

where CS is the source monocular channel and CV is one of the shifted auxiliary channels
(substituting for either CL or CR). For each disoccluded patch t̂ in CV , we search for a
source patch ŝ in CS such that the following dissimilarity metric is minimized:

Q(ŝ, t̂) =
∑

s∈ŝ,t∈t̂

wdis|DS(s)−DV (t)|2+

wval(s, t)|CS(s)− CV (t)|2 + wuniΩ(s).

(5.2)

Here s and t are individual pixels from patches ŝ and t̂, and wdis is the weight of a disparity
term that compares the disparity of the source pixel s stored in DS with the disparity of
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Figure 5.3: An example of shifting and completion of auxiliary channels C =
{F,Gcolor, Gedge, Gpos}: optical flow F as well as guiding channels G are first shifted to the

left
←−
C and to the right

−→
C using disparities stored in D, and then disoccluded areas are filled

using disparity-guided patch-based synthesis to obtain complete properly aligned auxiliary chan-
nels CL and CR for the left and right views. Video frame Gcolor © Jana Kyllerová.

the target pixel t stored in DV (substituting here either for DR or DL). Note that DS

was obtained in the disparity propagation phase (Section 5.1.1) while DV originates from
the preceding disparity completion step. The following disparity-dependent dissimilarity
term helps to control the smoothness of the synthesized channel CV (here C is one of F ,
Gcolor, Gedge, or Gpos, and V stands for L or R). By setting

wval(s, t) = exp(−|DS(s)−DV (t)|2/σ2) (5.3)

as per the paper of Luo et al. [2015], we can encourage smooth transitions of synthesized
channel values at the areas where the original disparity is continuous, while at disconti-
nuities it enables abrupt changes. Finally, wuni is the weight for the occurrence term Ω
that prevents excessive repetition of source patches by counting frequency of their usage.
More frequently used source patches have higher values of Ω and thus are less preferred
during the search phase; see [Kaspar et al. 2015] for further details.
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5.1.4 Final Synthesis

Once auxiliary channels for both views CL and CR are available in each target frame,
we can begin to synthesize the stylized output sequences OL and OR. We start from a
selected keyframe Tk ∈ K and continue frame by frame forward/backward in time (or
in both directions when k is neither the starting or final frame of T ). For each input
frame Ti ∈ T , we compute output frames that minimize the following energy:

ES(Sk, O
L
i , O

R
i ) =

∑
t̂L∈OL

i

min
ŝL∈Sk

ML(ŝL, t̂L) +
∑

t̂R∈OR
i

min
ŝR∈Sk

MR(ŝR, t̂R), (5.4)

which is a sum of two partial energies computed over the left OL
i and right OR

i stylized
views. The aim is to find a source patch ŝL ∈ Sk for each target patch t̂L ∈ OL

i in the
left view and a source patch ŝR ∈ Sk for each target patch t̂R ∈ OR

i in the right view
that minimizes the following patch dissimilarity metric (see Fig. 5.4):

MV (ŝ, t̂) =
∑

s∈ŝ,t∈t̂

wtexM
V
tex(s, t) + wcolorM

V
color(s, t)+

wposM
V
pos(s, t) + wedgeM

V
edge(s, t)+

wtempM
V
temp(s, t) + wuniΩ(s).

(5.5)

Here s denotes a pixel within the source patch ŝ and t is a pixel within the target patch t̂.
The overall energy is a sum of dissimilarity terms, each with its own weight. The first
texture dissimilarity term MV

tex (V stands for left L or right R) with its weight wtex

measures the similarity between pixels in the style exemplar Sk and the corresponding
pixels in the synthesized views (OL

i and OR
i ). At the same time, it also evaluates the

stereo consistency in the other view using the disparity maps DL
i and DR

i of the current
frame i:

MV
tex(s, t) = |Sk(s)−OV

i (t)|2 + wstereo|Sk(s)−O¬V
i (t±DV

i (t))|2, (5.6)

Again V denotes L or R, ¬V denotes the complement (R or L respectively), and ±
refers to adding the disparity going left, and subtracting it going right. The stereo
weight wstereo balances the influence of texture and stereo consistency. The following
terms in the energy formulation represent additional weighted guidance (wcolor, wedge,
and wpos) using channels Gcolor, Gedge, and Gpos:

MV
guide(s, t) = |GS

k (s)−GV
i (t)|2 + wstereo|GS

k (s)−G¬V
i (t±DV

i (t))|2. (5.7)

Here MV
guide substitutes for M

V
color, M

V
edge or M

V
pos, while G

V stands for GV
color, G

V
edge or G

V
pos.

GS
k are monocular guiding channels that correspond to a keyframe Tk. Each dissimilarity

measure is accompanied by a corresponding dissimilarity for the disparity-adjusted pixel,
promoting stereo consistency across the two views. In addition, temporal coherence is
taken into account with a weight wtemp in both views:

MV
temp(s, t) = |Sk(s)− F V

i [OV
i−1](t)|2. (5.8)

Here F V
i [. . .] denotes a warp driven by the shifted optical flow F V

i of the previously
synthesized output frame OV

i−1. Again, V refers to either the left L or the right R view.
Finally, Ω is the patch occurrence term with a weight wuni, used to prevent overuse of
particular exemplar patches as described by Kaspar et al. [2015].
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5.1.5 Optimization

To minimize ED and ES, we use the EM-like optimization scheme proposed by Wexler
et al. [2007] and later refined by Kaspat et al. [2015] to update the patch occurrence
term. During the optimization of ED, only patches whose central pixel lies within the
disoccluded area are modified. All others remain unchanged and serve as boundary
conditions to encourage the synthesis to produce seamless transitions between the original
shifted pixels and those being synthesized to fill in dissocluded areas. In the case of ES,
the optimization runs over all target pixels since the style S needs to be consistently
propagated to the entire frames. In the case of multiple keyframes, we transfer the style
from each exemplar S separately and then perform linear blending to obtain the final
merged sequence. Alternatively, a more advanced merging based on a screened Poisson
equation can be used as described in the paper of Jamrǐska et al. [2019].

5.2 Results

We implemented our approach using C++. A table providing settings of all tunable
parameters can be found in our supplementary material. To reduce computational over-
head during the optimization of ED and ES, we employed PatchMatch [Barnes et al.
2009] to accelerate nearest-neighbour retrieval. On average, it takes 2.5 minutes on a
ten-core CPU to synthesize one stereo pair for a single half-megapixel video frame.

To demonstrate the versatility of our framework, we prepared a selection of testing
sequences with a variety of input data. These include one or more stylized keyframes
in different styles with depth information obtained via boosted monocular depth es-
timation [Miangoleh et al. 2021] or rendered from a 3D model aligned with the target
scene [Grishchenko et al. 2020]. We also demonstrate a use case when the target sequence
is partly or entirely stylized and where keyframes are produced using a different style
transfer method or contain only information about the depth in the scene. All results
are presented in Figures 5.5 and 5.6 where the stereo effect can be seen using red-cyan
anaglyph glasses. The full stylized sequences are also presented in the supplementary
video, rendered both in red-cyan anaglyph and side-by-side mode. The latter is suitable
for a cardboard or a VR headset, where the resulting stereo effect is most apparent.

The Lili sequence (see Fig. 5.5.1) contains subtle head motions. We prepared a single
keyframe with an oil painting as a style exemplar and obtained depth information by
combining boosted monocular depth estimation [Miangoleh et al. 2021] and a rendering of
a 3D face model aligned with the head pose in the keyframe [Grishchenko et al. 2020]. We
merged those two sources using Poisson image editing [Pérez et al. 2003]. The rest of the
sequence was stylized using our approach, i.e., depth was propagated to the remaining
frames, left and right auxiliary channels were produced, and finally the synthesis was
executed to obtain the final stylized views.

In the Jana sequence (see Fig. 5.5.2) with its more dramatic head motion, a single
keyframe was digitally painted by hand and then three other keyframes were generated
using STALP [Futschik et al. 2021]—a neural style transfer method that handles more
dramatic changes in the scene. For those additional keyframes, depth information was
estimated using the same approach as for the Lili sequence, i.e., we combined estimated
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and rendered depth maps. We used our approach to propagate depth and stylize the
sequence from each keyframe and then we blended them to produce the final output.

The Selfie sequence (see Fig. 5.6.1) shows a human head with moving body and
the Lynx sequence (see Fig. 5.6.2) depicts an animal in motion. For each of these se-
quences, two keyframes were digitally painted and depth was estimated using [Miangoleh
et al. 2021]. Our approach was used to propagate depth and stylize the sequence using
both keyframes. The final output was produced by blending.

Finally, sequences Knights and Alchemist (see Figures 5.5.3 and 5.6.3) were created
in monocular view by an artist using a combination of hand-painted layers that undergo
parallax motion and the video style transfer method of Jamrǐska et al. [2019]. Depth for
those two sequences was obtained by generating eight keyframes using [Miangoleh et al.
2021]. Our method was then used to propagate the depth from the keyframes, construct
auxiliary channels, and perform the synthesis to produce the resulting stereo pairs.

To evaluate our method, we conducted an informal user study. We presented each
participant with the sequences produced using our approach, and interviewed them to
gain some qualitative feedback about the outputs. The interviews took place in a VR
environment, with both the interviewer and the interviewee being in the same virtual
room with a screen. The interviewer controlled the sequences being shown and asked
questions about them. There were in total eight participants, selected specifically to
include a range of experience with VR, 3D movies, and hand-drawn art, from complete
novices to professional artists. Participants were asked about their overall feeling from
the sequence and whether they saw any artifacts; they were also given the opportunity
to comment generally on the sequences.

Participants in general enjoyed watching our sequences. Without prompting, they
immediately noticed clear stereo effect, which was more vivid in sequences with dy-
namic camera (Knights, Alchemist, and Lynx ). They expressed no objections about
understanding the depth layout in the scene, nor did they report any discomfort with
respect to the stereo consistency. Participants were more interested in aspects that were
not directly related to our method, such as expressing a preference for some particular
artistic style or the selection of colors in the background plane. After several repeated
viewings, two participants spotted subtle artifacts produced by our method, relating to
the temporal coherency of newly uncovered regions in each view, comparing them to a
shimmer caused by heat. Some participants commented on aspects of the sequences that
were already present in the input, such as the lack of movement in the candle flames in
the Alchemist sequence. Overall, the participants were enthusiastic about the potential
for stereo stylization.

To further highlight the benefits of our approach, we performed quantitative and quali-
tative evaluation with two baseline stereo stylization techniques: (1) stylize-and-warp—a
method where we use known disparity to warp the input stylized monocular video to left
and right view; and (2) warp-and-stylize—an approach in which an input monocular
video is warped to left and right views and then each view is stylized separately. Re-
sults of these two evaluations are presented in the supplementary material. They clearly
demonstrate that our approach reproduces the style more faithfully and achieves better
stereo consistency.



5.3. CONCLUSION AND FUTURE WORK 85

5.3 Conclusion and Future Work

In this Chapter, we have presented a method allowing the creation of stereo-consistent
example-based stylizations from monocular video sequences, utilizing the state-of-the-
art methods in depth estimation to fill in all the required information and relax the
requirements on input data format, which would otherwise be too restrictive to reach its
full potential.

The method presented in this Chapter shares some limitations with the selected base-
line approach [2019]. Both techniques are sensitive to significant changes in the input
video (e.g., viewpoint, pose or illumination) and can find it difficult to propagate high-
frequency details from the style exemplar through the full video sequence. This drawback
can be mitigated by providing additional corrective keyframes, either manually or using
a more advanced style transfer technique, such as the algorithms described in Chapter 4,
as we demonstrated in the Jana example. There is also some dependence on the quality
of input depth. While monocular depth estimation is outside the scope of our contri-
bution, inaccurate depth maps may impose problems on us, sometimes manifesting as
inconsistent halo effects or a lack of depth perception. We demonstrated how to partially
mitigate this by fitting a 3D mesh [Grishchenko et al. 2020] into the input sequence to ob-
tain higher-quality depth values in facial regions, but a more general solution remains an
open problem. This method may encounter difficulties in scenarios where more accurate
reconstruction of disocclusions is necessary. Our expectation is that holes are relatively
small and thus there is no need to handle continuation of semantically meaningful struc-
tures in the scene. For larger holes or a complex configuration of occluders (e.g., a dense
forest with leaves and branches blowing in the wind), more elaborate methods would be
required.

Overall, while we have certainly made definite progress towards out ultimate goal
of being able to create real-time, interactive and stereoscopic experiences using style-
transfer methods, there is still much that could be done to further this goal. The work
we have done so far serves more as a platform for out future research, we have one-by-one
addressed the individual requirements of our goal in a divide and conquer strategy, with
the plan to continue or work by combining the individual solutions into a complete, robust
one, solving larger and larger portions of the task until the task is completed entirely. The
work attempting to solve multiple subtasks at once, however, remains open for now, as
we have thought about some of these needed subtasks and believed the solution would be
a relatively simple combination of our previous work without much room for additional
orthogonal contributions, making it difficult to publish on conferences or publications
on par with our previous research. Our work in this Chapter has made it possible to
generate stereo-consistent content, but optimization-based techniques are known to be
computationally expensive and not feasible for real-time applications. For applications
such as 3D cinemas, where the point of view and perspective are fixed, our algorithm can
be used to generate the stylized sequences offline, where performance does not matter
as much. For use with VR headsets, however, where the display content must react in
real-time to movement of the user’s head, our algorithm is not feasible, and a real-time
alternative must be found instead. Taking inspiration from our neural real-time work in
Chapters 3 and 4, we believe that training a network for stereoscopic content following
our previously done research is possible, and would most likely lead to a feasible solution
that would be both interactive and would perform well in a real-time setting. In this
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thesis, however, we have instead opted to commit our time to the optimization-based
technique instead for two reasons: first, simply training a network following our previous
frameworks would probably present little opportunity for contribution, and would most
likely be reduced to a simple extension, and second, we believe that commiting time to
researching a traditional technique is preferable to commiting time to a neural technique
approximating the desired results, as traditional techniques lead to better understanding
of the underlying problem, allowing us to identify and address issues and phenomena
found during the research process, whereas training a network leads to a solution that
works without proper understanding why.



5.3. CONCLUSION AND FUTURE WORK 87

left view right viewkeyframe

ML
tex MR

tex

ML
color MR

color

ML
pos MR

pos

ML
edge MR

edge

ML
temp MR

temp

OL
i Sk OR

i

GL
color GS

color GR
color

GL
pos GS

pos GR
pos

GL
edge GS

edge GR
edge

FL
i [O

L
i−1] Sk FR

i [OR
i−1]

DR
i DL

i

DR
i DL

i

DR
i DL

i

DR
i DL

i

Figure 5.4: An overview of terms consisting of patch dissimilarity metrics ML and MR
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Figure 5.5: A collection of three different sequences stylized using our approach—
Lili Fig. 5.5.1, Jana Fig. 5.5.2, and Knights Fig. 5.5.3. From Lili’s and Jana’s input se-
quences (1d & 2d) a single keyframe was selected (1a & 2a) for which a stylized counterpart
was prepared by an artist (1b & 2b) and also a depth map specified (1c & 2c). Our method
then produced the final binocular sequences (1e & 2e) of which anaglyph examples are shown
in (1f & 2f). In the case of Knights. the input sequence (3d) was already stylized by an
artist, and the aim here is to add a stereoscopic effect (3e). To do that, our method propagates
depth information (3b) from a set of keyframes (3a) to the entire sequence and synthesizes
the stylized stereo view (3f). See also our supplementary video for a side-by-side version of
this result. Video frames (1a) & (1d) © Michal Dvořák, video frames (2a) & (2d) and style
exemplar (2b) © Jana Kyllerová, stylized video frames (3a) & (3d) © Jakub Javora.
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Figure 5.6: Our approach applied to three different sequences—Selfie Fig. 5.6.1,
Lynx Fig. 5.6.2, and Alchemist Fig. 5.6.3. From Selfie’s and Lynx’s input sequences (1g & 2g)
the user will pick two keyframes (1a, 1d, 2a, 2d), prepare their stylized variants (1b, 1e, 2b,
2e), and provide an estimate of depth in the scene (1c, 1f, 2c, 2f). Our method then transfers
the style from those keyframes onto the rest of the video (1g & 2g) producing a consistent stereo
sequence (1h & 2h) of which one frame is displayed here as a red-cyan anaglyph (1i & 2i). In
the case of Alchemist, the input video (3c) was already stylized by an artist. A set of depth
maps (3b) is provided for a selection of keyframes (3a). Our algorithm then propagates the
information about depth to the entire stylized video and synthesizes a stereo sequence (3d). An
anaglyph close-up of one frame from our stereoscopic output is shown in (3e). See also our
supplementary video for a side-by-side version of this result. Video frames (1a), (1d) & (1g)
and style exemplars (1b) & (1e) © Jana Kyllerová, style exemplars (2b) & (2e) and stylized
video frames (3a), (3c) & (3d) © Jakub Javora.
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Chapter 6

Conclusion

In this thesis, we have presented five contributions to the field of example-based style-
transfer, specifically in the domain of video stylization. Each of these helps push the
state-of-the-art further towards feasible real-time applications in the field od virtual and
augmented reality, and further beyond.

We have shown that neural approaches are able to provide real-time and high quality
interactive experiences, making them usable for artists in their creative process. Our
proposed methods for overfitting prevention, either by limiting the receptive field or by
adding style preservation term to the training, allows to train such networks without
requiring large sets of paired training inputs or large domain-specific datasets. We also
show that a learning-based method can be used to solve the sequential nature of many
video stylization approaches, allowing for easy and quick random access to any stylized
frame within the sequence, as well as parallel processing. In our non-neural stylization
methods, we have presented a framework for inexpensive approximation of existing opti-
mization based techniques that achieves similar results on facial videos, enabling their use
on mobile devices in real-time or in places where minimal impact on overall performance
is required. We have also proposed an optimization based technique for stereo-consistent
video stylizations, allowing the generation of stylized video content targeting stereoscopic
devices without the artifacts and inconsistencies that previously prevented such content
form being created. In our studies we have also compared the outputs of our newly
proposed algorithms to other state-of-the-art style transfer methods and reported defi-
nite improvements in image quality. In this chapter we summarize the contributions and
conclusions made throughout our research.

6.1 Summary

In Chapter 3 we presented a neural approach for real-time stylization of facial videos. By
utilizing the state-of-the-art work of Fǐser et al. [2017], we were able to create a suffient
dataset of image pairs of unstylized original subjects and their stylized counterparts, to
be then used with a state-of-the-art neural framework to learn a particular artistic style.
Since the network is inexpensive to evaluate, we presented an interactive application
to stylize subjects captured on a camera feed in real-time while achieving comparable
output quality, running on consumer-grade GPUs. We have presented this method as a
technical paper at the Expressive 2019 conference [Futschik et al. 2019].
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In Chapter 3, we also presented our work allowing real-time example-based stylization
of facial videos even on low-end devices. By taking inspiration from [Sýkora et al. 2019]
and limiting our scope only to the domain of facial videos, we were able to utilize detected
facial landmarks to precompute majority of information required during the stylization
process, reducing the expensive optimization step to a simple lookup, which is also easily
parallelizable in implementations, e.g. in shaders. We developed a real-time application
to present the benefits of our method, which ran without issues even on phones. We com-
pared the outputs of our method to those of already existing state-of-the-art approaches,
and also presented an extension to our approach, which allows higher quality stylization
of hair and facial hair, not normally possible using style-transfer methods, by deforming
masked segments from the style exemplar using the extracted facial landmarks. We have
presented this paper at the I3D 2021 conference and published in Proceedings of the
ACM in Computer Graphics and Interactive Techniques journal [Texler et al. 2021].

In Chapter 4 we introduced a novel learning-based method for keyframe-based video
sequence stylization. We addressed the common issue of neural networks often requiring
massive amounts of training data, especially for style transfer, by purposely limiting the
training receptive field to randomly selected batches of pairs of corresponding patches.
This approach allows an image-to-image network to be trained even on a single keyframe
in very short amount of time even on a consumer-grade GPU. Combined with the real-
time inference, already demonstrated in our previous work in Chapter 4, we developed
and presented a framework allowing real-time, interactive stylization of video sequences,
not previously achievable, which we have successfully applied in several scenarios; having
an artist stylize a video sequence by painting one of the frames and seeing the intermedi-
ate results in real-time, or stylizing a real-time video of the artist coming from a camera
feed by painting a previously captured photo. The nature of the network’s inference also
allows frames of a video sequence to be stylized in parallel by preserving the tempo-
ral coherence implicitly, offering a fast alternative to many state-of-the-art patch-based
stylization algorithms, which are sequential in nature. We have presented this paper
at SIGGRAPH 2020 conference and published in ACM Transactions on Graphics jour-
nal [Texler et al. 2020b]. We have also won the Best in Show award in the Real-time
Live! showcase on SIGGRAPH 2020.

Also in Chapter 4 we presented another of our contributions to the domain of neural
keyframe-based style-transfer methods targeting video sequences. In this method, we
aim to alleviate the common artifacts and qualitative issues from which neural meth-
ods are still suffering, mainly the temporal coherence and loss of small precise details
occuring during changes in the video to be stylized. For that, we present an alternative
loss function to our previous method, which allows us to train the network properly
while still only requiring a single keyframe, while giving more emphasis on style detail
retention and the quality of style reproduction. To verify our claims of better quality,
we performed a user study comparing our method with a set of other state-of-the-art
methods in the same domain, showing that our method perform substantially better
in terms of style preservation than the competing methods. We have presented this
method at Eurographics 2021 conference and published it in Computer Graphics Forum
journal [Futschik et al. 2021].

Finally, in Chapter 5, we have presented a patch-based style-transfer method able to
produce consistent stereoscopic stylization from monocular video sequences. By utilizing
a combination of state-of-the-art methods for depth estimation and hole-filling, we are
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able to generate a set of stereoscopic guiding channels, which can then be used with
our EM-like optimization scheme. The core of our contribution is an augmented error
function used during the optimization process, which takes into account the inconsis-
tencies between corresponding patches in both views, eliminating unpleasant artifacts
which prevented previous patch-based methods to be used in stereoscopic applications.
We demonstrate the potential of this method on a variety of settings; stylizing video
sequences with a single keyframe, stylizing video sequences with multiple keyframes, or
stylizing an already stylized sequence without having the original unstylized counter-
part. The method was also tested in several experiments and users studies, confirming
the added benefit of our contribution. We have presented this method as a technical
paper at the SIGGRAPH Asia 2022 conference [Kučera et al. 2022].
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Michal Kučera, David Mould, and Daniel Sýkora. StyleBin: Stylizing video by example
in stereo. SIGGRAPH Asia 2022 Conference Papers, art. no. 15, 2022.

Vivek Kwatra, Irfan A. Essa, Aaron F. Bobick, and Nipun Kwatra. Texture optimization
for example-based synthesis. ACM Transactions on Graphics, 24(3):795–802, 2005.

Jan Eric Kyprianidis, John Collomosse, Tinghuai Wang, and Tobias Isenberg. State of
the “art”: A taxonomy of artistic stylization techniques for images and video. IEEE
Transactions on Visualization and Computer Graphics, 19(5):866–885, 2013.



REFERENCES 101

Wei-Sheng Lai, Jia-Bin Huang, Oliver Wang, Eli Shechtman, Ersin Yumer, and Ming-
Hsuan Yang. Learning blind video temporal consistency. In Proceedings of European
Conference on Computer Vision, pages 179–195, 2018.

Cheng-Han Lee, Ziwei Liu, Lingyun Wu, and Ping Luo. Maskgan: Towards diverse and
interactive facial image manipulation. In Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition, pages 5549–5558, 2020.

Jaakko Lehtinen, Jacob Munkberg, Jon Hasselgren, Samuli Laine, Tero Karras, Miika
Aittala, and Timo Aila. Noise2Noise: Learning image restoration without clean data.
In Proceedings of the International Conference on Machine Learning, pages 2971–2980,
2018.

Chuan Li and Michael Wand. Precomputed real-time texture synthesis with markovian
generative adversarial networks. In Proceedings of European Conference on Computer
Vision, pages 702–716, 2016a.

Chuan Li and Michael Wand. Combining markov random fields and convolutional neural
networks for image synthesis. In Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition, pages 2479–2486, 2016b.

Hongliang Li, Guanghui Liu, and King Ngi Ngan. Guided face cartoon synthesis. IEEE
Transactions on Multimedia, 13(6):1230–1239, 2011.

Xueting Li, Sifei Liu, Shalini De Mello, Xiaolong Wang, Jan Kautz, and Ming-Hsuan
Yang. Joint-task self-supervised learning for temporal correspondence. In Proceedings
of Conference on Neural Information Processing Systems, pages 317–327, 2019.

Yijun Li, Chen Fang, Jimei Yang, Zhaowen Wang, Xin Lu, and Ming-Hsuan Yang.
Universal style transfer via feature transforms. In Proceedings of Conference on Neural
Information Processing Systems, pages 385–395, 2017.

Jing Liao, Yuan Yao, Lu Yuan, Gang Hua, and Sing Bing Kang. Visual attribute transfer
through deep image analogy. ACM Transactions on Graphics, 36(4):120, 2017.

Peter Litwinowicz. Processing images and video for an impressionist effect. In ACM
SIGGRAPH Conference Proceedings, pages 407–414, 1997.

Feng-Lin Liu, Shu-Yu Chen, Yukun Lai, Chunpeng Li, Yue-Ren Jiang, Hongbo Fu,
and Lin Gao. Deepfacevideoediting: Sketch-based deep editing of face videos. ACM
Transactions on Graphics, 41(4):167, 2022.

Ming-Yu Liu, Xun Huang, Arun Mallya, Tero Karras, Timo Aila, Jaakko Lehtinen, and
Jan Kautz. Few-shot unsupervised image-to-image translation. In Proceedings of IEEE
International Conference on Computer Vision, pages 10551–10560, 2019.

Rosanne Liu, Joel Lehman, Piero Molino, Felipe Petroski Such, Eric Frank, Alex Sergeev,
and Jason Yosinski. An intriguing failing of convolutional neural networks and the
coordconv solution. In Proceedings of Conference on Neural Information Processing
Systems, pages 9628–9639, 2018.



102 REFERENCES

Cewu Lu, Li Xu, and Jiaya Jia. Combining sketch and tone for pencil drawing produc-
tion. In Proceedings of International Symposium on Non-Photorealistic Animation and
Rendering, pages 65–73, 2012.

Ming Lu, Hao Zhao, Anbang Yao, Feng Xu, Yurong Chen, and Xiang Lin. Decoder net-
work over lightweight reconstructed feature for fast semantic style transfer. Proceedings
of IEEE International Conference on Computer Vision, pages 2488–2496, 2017.

Wanglong Lu, Xianta Jiang, Xiaogang Jin, Yong-Liang Yang, Minglun Gong, Tao Wang,
Kaijie Shi, and Hanli Zhao. Grig: Few-shot generative residual image inpainting, 2023.

Sheng-Jie Luo, Ying-Tse Sun, I-Chao Shen, Bing-Yu Chen, and Yung-Yu Chuang. Ge-
ometrically consistent stereoscopic image editing using patch-based synthesis. IEEE
Transactions on Visualization and Computer Graphics, 21(1):56–67, 2015.

Lei Ma, Yuhui Zheng, Zhao Zhang, Yazhou Yao, Xijian Fan, and Qiaolin Ye. Motion
stimulation for compositional action recognition. IEEE Transactions on Circuits and
Systems for Video Technology, 33(5):2061–2074, 2023.

Akinobu Maejima, Hiroyuki Kubo, Seitaro Shinagawa, Takuya Funatomi, Tatsuo Yot-
sukura, Satoshi Nakamura, and Yasuhiro Mukaigawa. Anime character colorization
using few-shot learning. SIGGRAPH Asia 2021 Technical Communications, art. no. 8,
2021.

Xudong Mao, Qing Li, Haoran Xie, Raymond Y. K. Lau, Zhen Wang, and Stephen Paul
Smolley. Least squares generative adversarial networks. In Proceedings of IEEE Inter-
national Conference on Computer Vision, pages 2813–2821, 2017.

Meng Meng, Mingtian Zhao, and Song Chun Zhu. Artistic paper-cut of human portraits.
In Proceedings of ACM Multimedia, pages 931–934, 2010.

S. Mahdi H. Miangoleh, Sebastian Dille, Long Mai, Sylvain Paris, and Yağız Aksoy.
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Matthias Trapp. Interactive control over temporal consistency while stylizing video
streams. Computer Graphics Forum, 42(4):e14891, 2023.

Xiaoyong Shen, Aaron Hertzmann, Jiaya Jia, Sylvain Paris, Brian L. Price, Eli Shecht-
man, and Ian Sachs. Automatic portrait segmentation for image stylization. Computer
Graphics Forum, 35(2):93–102, 2016.

Yi-Chang Shih, Sylvain Paris, Connelly Barnes, William T. Freeman, and Frédo Durand.
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Aliaksandr Siarohin, Stéphane Lathuilière, Sergey Tulyakov, Elisa Ricci, and Nicu Sebe.
Animating arbitrary objects via deep motion transfer. In Proceedings of IEEE Con-
ference on Computer Vision and Pattern Recognition, pages 2377–2386, 2019b.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition, 2014. arXiv:1409.1556.

Akhil Singh, Vaibhav Jaiswal, Gaurav Joshi, Adith Sanjeeve, Shilpa Gite, and Ketan
Kotecha. Neural style transfer: A critical review. IEEE Access, 9:131583–131613,
2021.



REFERENCES 105

Peter-Pike J. Sloan, William Martin, Amy Gooch, and Bruce Gooch. The Lit Sphere:
A model for capturing NPR shading from art. In Proceedings of Graphics Interface,
pages 143–150, 2001.

Noah Snavely, C. Lawrence Zitnick, Sing Bing Kang, and Michael F. Cohen. Stylizing 2.5-
D video. In Proceedings of International Symposium on Non-Photorealistic Animation
and Rendering, pages 63–69, 2006.

Efstathios Stavrakis and Margrit Gelautz. Image-based stereoscopic painterly rendering.
In Proceedings of the Eurographics Conference on Rendering Techniques, pages 53–60,
2004.
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Appendix B

Authorship Contribution Statement

This statement describes the specific contributions of the author of this thesis to the
publications presented therein.

Real-Time Patch-Based Stylization of Portraits Using Generative
Adversarial Network (15%)

I have performed the user study and evaluated the results and feedback gained. Following
that, I have written a part of the paper discussing the insight gained from the study.

Interactive Video Stylization Using Few-Shot Patch-Based Training (25%)

In this paper, I have contributed to the research done regarding the training of the neural
network, performed experiments on the loss function as well as introduced optimizations
to it. I have created the input video processing component of the implementation and
contributed to both its front-end and back-end. I have also assisted during the user
study in the later part of the research process and with the demo for the Real-Time Live!
show.

FaceBlit: Instant Real-time Example-based Style Transfer to Facial
Videos (25%)

I have contributed significantly to the implementation and research of the algorithm,
as well as introducing a method for hair and facial hair stylization and deformation. I
generated outputs of our method to use in the paper itself and assisted during the writing
of the paper.

STALP: Style Transfer with Auxiliary Limited Pairing (25%)

I have designed and performed the user study, as well as the system used. I have evaluated
both the results obtained through the study and the method itself. I also co-wrote the
section discussing the created algorithm and its future.



StyleBin: Stylizing Video by Example in Stereo (85%)

This method and the details of its implementation has been mostly my contribution. I
have performed the experiments that guided the research to its final form and heavily
contributed to related research. I have also performed the quantitative and qualitative
evaluations, including the user study. Concurrently, I have helped with the creation
of the paper itself, writing parts of the text and producing appropriate visualizations,
followed by the in-person presentation on the SIGGRAPH ASIA 2022 conference where
the paper has been published.
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