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Abstract

The integration of 3D perception technologies, notably LiDAR (Light Detection and Ranging) point
clouds, has revolutionized various domains such as autonomous driving and robotics. Leveraging
deep learning architectures, these technologies enable machines to perceive and navigate complex
environments accurately and efficiently. However, supervising the deep architectures, is impeded by
the laborious and costly manual annotations required and therefore not scalable.

This thesis addresses these challenges by focusing on self-supervised and semi-supervised learning
paradigms. The proposed approaches capitalize on cheap unlabeled data or data synthesis, to achieve
reasonable performance without extensive annotations. The research emphasizes tasks crucial for
autonomous driving, including semantic segmentation, object detection, and scene flow estimation.

To enhance scalability, a self-supervised data-driven method for simulating LiDAR sensors in
game simulators for sim2real transfer is proposed, enabling the utilization of inexpensive synthetic
data during model training. Additionally, a novel data augmentation framework utilizing pre-
existing annotated data is introduced, significantly enhancing model performance, particularly for
rare classes. Further, the temporal information inherent in LiDAR data sequences is exploited
through a spatial-temporal aggregation module, enhancing semi-supervised learning. Together with
multiple ensemble teachers, the new aggregation module provides high-quality pseudo-labels for
student training, outperforming fully supervised methods with only small subset of manual labels.
Furthermore, a self-supervised 3D scene flow framework is developed, incorporating novel consistency
losses to improve flow estimation between sequential point clouds. This approach demonstrates
superior performance and generalization across diverse driving datasets. Lastly, a joint optimization
of flow with instance clustering is proposed, achieving state-of-the-art results, especially in dynamic
scenes with multiple independently moving objects.

Collectively, these contributions advance the state-of-the-art in 3D perception tasks for autonomous
driving, mitigating annotation costs, enhancing scalability, and improving generalization capabilities,
thereby paving the way for more efficient and adaptable real-world applications.
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Abstrakt

Integrace technologíı 3D poč́ıtačového viděńı, zejména bodových mrak̊u LiDARu (Light Detection
and Ranging), zásadńım zp̊usobem revolucionizovala oblasti jako je autonomńı ř́ızeńı a robotika.
Využit́ım hlubokých architektur učeńı tyto technologie umožňuj́ı stroj̊um vńımat a navigovat složitými
prostřed́ımi relativně přesně a efektivně. Nicméně, supervize hlubokých architektur je omezena
náročným a nákladným ručńım anotováńım, které neńı škálovatelné.

Tato disertačńı práce se zaměřuje na samo-supervizované a polo-supervizované uč́ıćı paradigma.
Navržené př́ıstupy využ́ıvaj́ı levných neanotovaných či syntetizovaných dat, aby jimi naučené algoritmy
dosáhly rozumného výkonu bez drahých a neškálovatelných anotaćı. Výzkum klade d̊uraz na úlohy
kritické pro autonomńı ř́ızeńı, jmenovitě sémantické segmentace, detekce objekt̊u a odhadu toku
scény.

Pro zvýšeńı škálovatelnosti je navržena samo-supervizovaná, daty ř́ızená metoda pro simulaci
senzor̊u LiDAR v herńım simulátoru pro sim2real přenos, což umožňuje využit́ı levných syntetických
dat během trénováńı modelu. Kromě toho je představen nový postup pro augmentaci dat využ́ıvaj́ıćı
předchoźı anotovaná data, což významně zvyšuje výkon modelu, zejména pro zř́ıdka objevuj́ıćı se
tř́ıdy. Dále je využita temporálńı složka obsažená v sekvenćıch dat LiDARu pomoćı prostorově-
temporálńıho agregačńıho modulu, který zlepšuje polo-supervizované učeńı. Spolu se skupinou
učitelských model̊u poskytuje nový agregačńı modul kvalitněǰśı pseudo-značky jako signál pro trénink
studenta. Postup překonává některé supervizované metody s minimálńım množstv́ım ručńıch anotaćı.
Teze dále navrhuje samo-supervizovanou metodu pro odhad 3D toku scény, která zahrnuje nové
ztrátové funkce využiváj́ıćı jak prostorovou, tak časovou konzistenci. Tento př́ıstup vykazuje lepš́ı
výkon a generalizaci přes r̊uzné sady dat než dosavadńı metody. Nakonec je navržena společná
optimalizace toku se shlukováńım instanćı, která dosahuje lepš́ıch výsledk̊u než stav poznáńı, zejména
v dynamických scénách s v́ıce nezávisle se pohybuj́ıćımi objekty.

Tyto př́ıspěvky dohromady posouvaj́ı současný stav poznáńı v oblasti 3D vńımáńı pro autonomńı
ř́ızeńı, snižuj́ı náklady na anotace a zlepšuj́ı schopnosti generalizace, č́ımž otev́ıraj́ı cestu k efektivněǰśım
a adaptabilněǰśım aplikaćım 3D vńımáńı.
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Chapter 1

Thesis Overview and Contributions

1.1 Motivation and Problem Statement

The integration of 3D perception technologies, particularly LiDAR (Light Detection and Ranging)
point clouds, has catalyzed groundbreaking advancements across various domains such as autonomous
driving and robotics [7, 11, 106, 36, 86, 105, 66]. These technologies leverage the rich spatial
information provided by 3D sensors to enable machines to perceive and navigate complex environments
with unprecedented accuracy and efficiency [66, 86, 49, 47, 4]. The deep learning architectures have
proven instrumental in extracting meaningful features from voluminous point cloud data, enabling
tasks such as object detection, segmentation, and scene understanding in large scale [4, 86, 63].

However, while supervised learning methods, particularly those based on deep learning, have
demonstrated exceptional performance in leveraging this data, they are hindered by the substantial
cost and labor associated with manual annotations [4, 42, 116, 86]. For instance, annotating a
single point cloud for semantic segmentation in large-scale autonomous driving scenarios can be
prohibitively expensive, making supervised learning approaches impractical for real-world applications.
Furthermore, supervised models often struggle with generalization when faced with scenarios beyond
their training data, highlighting the need for more scalable and adaptable solutions [63, 62, 116]. As
the complexity of robotic tasks continues to evolve, there remains a pressing need to overcome the
limitations imposed by the reliance on supervised learning paradigms.

To address these challenges, researchers are increasingly turning to alternative learning paradigms
such as self-supervised [114, 115, 105] and semi-supervised learning [35, 132, 19]. These approaches
leverage the abundance of unlabeled data, which is readily available from emerging 3D sensors such
as RGBD cameras and LiDAR systems. By harnessing incomplete learning signals from unlabeled
data, these methods offer a promising avenue for achieving reasonable performance without the need
for costly annotations.

In summary, the problems of real-world 3D LiDAR perception are three-fold:

1



CHAPTER 1. THESIS OVERVIEW AND CONTRIBUTIONS 2

• Scalability: Our research aims to develop unsupervised point cloud perception algorithms
that can scale effectively to large and diverse datasets without the need for manual annotation.

• Generalization: By leveraging unsupervised learning techniques, we seek to improve the
generalization capabilities of point cloud perception models, enabling robust performance
across different environments and sensor configurations.

• Annotation Cost: The proposed unsupervised approaches have the potential to significantly
reduce the annotation cost associated with training data preparation, thereby lowering the
barrier to entry for deploying point cloud perception systems in real-world applications.

1.2 Aims and Contributions

The main goal of the thesis is to progress the state-of-the-art in data-driven 3D perception tasks
for autonomous driving by minimizing the aforementioned problems. Although there are many
components and approaches to the goal, we focused on self-supervised and semi-supervised approaches
to utilize easily obtainable unlabeled data or existing pre-annotated datasets. The thesis focuses on
tasks of semantic segmentation [116, 149], object detection [35, 149] and scene flow estimation [114,
115] as it is a crucial part of autonomous driving perception.

Physical LiDAR Data Simulation. In order to increase scalability and decrease the annotation
cost of the labeled data, we have proposed a data-driven method for simulating LiDAR sensors
inside the game simulator for sim2real transfer, which is publicly available. The current simulators
lacked the ability to synthesize LiDAR intensity feature [139, 97, 24], which is the important part
of deep learning model input [139, 130, 7]. We have contributed by data-driven intensity simulation
for the synthetic data in order to use the cheap simulation data during the training of models with
intensity modality. We also experimentally show that enhancing the training set by such simulated
data improves the segmentation accuracy on the real dataset with limited access to real data. The
result was published in peer-reviewed journal [116]:

• Patrik Vacek, Otakar Jašek, Karel Zimmermann, and Tomáš Svoboda. Learning to predict
lidar intensities. IEEE Transactions on Intelligent Transportation Systems, 23(4):3556–3564,
2022.

Data Augmentation from Existing Labels. Despite the benefits of synthetic data, we have
encountered limits of the simulation as it poses a large domain gap [116]. Therefore, we proposed
a data augmentation method that takes advantage of real, already annotated data with the aim
of rendering augmentations as realistic as possible. The current methods usually randomly place
annotated instances or synthetic CAD models [30, 135]. We have contributed by proposing an
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augmentation framework that reuses real data, automatically finds suitable placements in the scene
to be augmented, and handles occlusions explicitly1. Due to the usage of real data, the scan points
of newly inserted objects in augmentation sustain the physical characteristics of the LiDAR, such
as intensity and raydrop.

The pipeline proves competitive in training top-performing models for 3D object detection and
semantic segmentation. The new augmentation provides a significant performance gain in rare and
essential classes over the state of the art. The result was published on workshop [149]:

• Petr Šebek, Šimon Pokorný, Patrik Vacek, and Tomáš Svoboda. Real3d-Aug: Point Cloud
Augmentation by Placing Real Objects with Occlusion Handling for 3D Detection and Segmentation.
In Computer Vision Winter Workshop (CVWW), 2023.

Semi-Supervised Temporality. Since the unlabeled data naturally comes in sequences, we
decided to exploit the temporal nature of LiDAR measurements. Compared to the standard methods
that pass multiple temporal frames on the input of architecture without specific temporal mechanism [58,
86], we contributed by proposing novel spatial-temporal aggregation module to group features from
multiple measurements2.

We leveraged sequences of point clouds to boost the semi-supervised pseudo-labeling technique in
a teacher-student setup via training multiple ensembles of teachers, each focused on a different view
of temporal information. This set of teachers, dubbed Concordance, provides higher quality pseudo-
labels for student training than standard methods. The output of multiple teachers was combined
via a novel pseudo-label confidence-guided criterion. Our approach, which uses only 20% manual
labels, outperforms some fully supervised methods. A notable performance boost was achieved for
classes rarely appearing in training data. The result was published in peer-reviewed journal [35]:

• Awet Haileslassie Gebrehiwot, Patrik Vacek, David Hurych, Karel Zimmermann, Patrick Pérez,
and Tomáš Svoboda. Teachers in Concordance for Pseudo-Labeling of 3D Sequential Data.
IEEE Robotics and Automation Letters (R-AL), 8(2):536–543, 2023.

Unsupervised 3D Motion Flow Features. After examining the benefits of learning from the
temporal domain, we decided to learn motion features explicitly in the form of a self-supervised
3D Scene flow task that research community used for boosting the performance of other tasks
such as semantic segmentation [2], instance segmentation [105], scene reconstruction [63] and object
detection [26]. The flow estimation between the sequential point clouds is usually optimized or
regressed with some form of spatial regularization such as local smoothness or object rigidity [59,
37, 62, 119]. Relying on the assumption that scene elements are mostly rigid, current smoothness

1I am an author of the idea of using the real object instances with occlusion handling, which was implemented by
supervised students as part of master thesis. I have also implemented the semantic segmentation experiments.

2I am an author of the idea of using the bigger span of temporal horizons, multiple teachers and the spatial-temporal
aggregation module. I have also prepared a revised version and presented the paper at the ICRA 2023 conference.
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losses are built on the definition of “rigid clusters” in the input point clouds. The definition of these
clusters is challenging and has a significant impact on the quality of predicted flows [115, 114].

We proposed a novel learning framework for this task, which improves the necessary regularization.
We introduced two new consistency losses that enlarge clusters while preventing them from spreading
over distinct objects. In particular, we enforce temporal consistency with a forward-backward cyclic
loss and spatial consistency by considering surface orientation similarity in addition to spatial
proximity. The proposed losses are model-independent and can thus be used in a plug-and-play
fashion to significantly improve the performance of existing models, as demonstrated on the two
most widely used architectures. We also showcase the effectiveness and generalization capability of
our framework on four standard sensor-unique driving datasets. The paper with the contribution
was submitted to peer-reviewed journal [114]:

• Patrik Vacek, David Hurych, Karel Zimmermann, Patrick Pérez, and Tomáš Svoboda. Regularizing
Self-supervised 3D Scene Flows with Surface Awareness and Cyclic Consistency. Submitted to
peer-reviewed Journal, 2024.

We made another contribution by jointly optimizing the flow with instance clustering. Usually,
the rigid objects are estimated by a variety of 3D spatial clustering methods. While state-of-the-art
methods successfully capture overall scene motion using the Neural Prior structure, they encounter
challenges in discerning multi-object motions [63, 20, 118, 119]. We identified the structural constraints
and the use of large and strict rigid clusters as the main pitfall of the current approaches and we
proposed a novel clustering approach that allows for combination of overlapping soft clusters with
outlier rejection as well as non-overlapping rigid clusters representation. We evaluated our method
on multiple datasets with LiDAR point clouds, demonstrating superior performance over the self-
supervised baselines and reaching new state-of-the-art results. Our method especially excels in
resolving flow in complicated dynamic scenes with multiple independently moving objects close to
each other, which includes pedestrians, cyclists, and other vulnerable road users. The novel method
for self-supervised flow estimation was submitted to peer-reviewed journal [115]:

• Patrik Vacek, David Hurych, Karel Zimmermann, and Tomas Svoboda. Let It Flow: Simultaneous
Optimization of 3D Flow and Object Clustering. Submitted to peer-reviewed Journal, 2024.

1.3 Summary of Academic Publications

Peer-reviewed Journal publications:

• Patrik Vacek, Otakar Jašek, Karel Zimmermann, and Tomáš Svoboda. Learning to predict
lidar intensities. IEEE Transactions on Intelligent Transportation Systems, 23(4):3556–3564,
2022
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• Awet Haileslassie Gebrehiwot, Patrik Vacek, David Hurych, Karel Zimmermann, Patrick Pérez,
and Tomáš Svoboda. Teachers in Concordance for Pseudo-Labeling of 3D Sequential Data.
IEEE Robotics and Automation Letters (R-AL), 8(2):536–543, 2023

Currently Submitted to peer-reviewed Journal:

• Patrik Vacek, David Hurych, Karel Zimmermann, Patrick Pérez, and Tomáš Svoboda. Regularizing
Self-supervised 3D Scene Flows with Surface Awareness and Cyclic Consistency. Submitted to
peer-reviewed Journal, 2024

• Patrik Vacek, David Hurych, Karel Zimmermann, and Tomas Svoboda. Let It Flow: Simultaneous
Optimization of 3D Flow and Object Clustering. Submitted to peer-reviewed Journal, 2024

Peer-reviewed Workshop proceedings:

• Petr Šebek, Šimon Pokorný, Patrik Vacek, and Tomáš Svoboda. Real3d-Aug: Point Cloud
Augmentation by Placing Real Objects with Occlusion Handling for 3D Detection and Segmentation.
In Computer Vision Winter Workshop (CVWW), 2023



Chapter 2

Supervision from Simulated Data.

2.1 Introduction

There have been over 1.2 billion vehicles in use over the world in 20151. When a novel autonomous
functionality, such as autonomous emergency braking, is to be put into operation, its reliability has
to be thoroughly tested, because the impact on the accident rate is enormous. For example, if the
new functionality exhibit 1 failure out of 1 million testing frames (9 hours of operating time of 30Hz
sensor), the expected number of failure cases over the world per single day is over 150 million2.
Consequently, testing on billions of frames in advance of real deployment is highly desired. It is
hardly feasible to create testing set with billions of annotated frames which would cover all possible
cases. In addition to that, many tasks comprise online control, which cannot be tested offline. A
trustworthy simulation is the only technically tractable option.

There are several open-source simulators such as CARLA [24] or AirSim from Microsoft [97],
which offer viable autonomous driving simulation with a realistic RGB camera model in a small
synthetic world with a limited variety of textures and structures. In contrast to these open-source
simulators, research community also reverse-engineered GTA V game engine. The mentioned game
has been recently shown [52] to have a world model realistic enough for generating annotated training
RGB images that improve performance on well known semantic segmentation challenges KITTI [36]
or VOC [28]. Nevertheless, the simulation of other sensors, which are also essential for autonomous-
driving such as LiDARs, is either missing (GTA V) or it is strictly geometry-based (CARLA).

Unfortunately, LiDAR point clouds consisting of geometry only lack information about the power
of a receiving signal (LiDAR intensity) and therefore are not fully descriptive for modeling and
evaluation of LiDAR sensor with full properties. Importance of including this LiDAR intensity as

1https://www.statista.com/statistics/281134/number-of-vehicles-in-use-worldwide
2This number is estimated as follows: Expected number of failures of a single car during one day is E [Bin(24, 1/9)] =

2.5. 95 % of vehicles are parked while the remaining 60 million cars are in motion [91], therefore the expected number
of failures is 2.5 × 60 · 106.

6
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Figure 2.1: Examples of simulated data: Simulated RGB image and close-up of corresponding
LiDAR scan with intensity encoded in grayscale. Strong responses appear consistently on reflective
surfaces such as traffic signs facing towards the LiDAR (b) and license plates (d) despite the shadows
in RGB images. Notice also correctly simulated systematic failures: (i) no or weak responses on the
hood (c+d), (ii) weak response on the frontal mask of the bottom car which does not have a license
plate (c), (iii) weak response on the traffic signs in the top image, which is facing from the LiDAR
(a).
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a feature has been demonstrated by [139] as it increases performance in semantic segmentation.
The naive approach to model intensity feature is to map it as a monotonically decreasing function
of depth. However, depth-based intensity undesirably underestimates behavior in the corner cases
with unusual dispersion of the active signal, such as polished hoods, windows, and shallow puddles,
registration plates, or traffic signs, see Figure 2.1 for a few examples. The material behavior is
described by another contributing factor of the received signal, the reflectivity of the scanned objects
[33]. However, the procedure of acquiring realistic material responses to the LiDAR beam in the
simulation world would require large-scale physical specifications of generated objects. We propose
to leverage other information about the object, such as its color and label description and study
benefits of these modalities in prediction of LiDAR response learned from driving scenarios of the
real world.

To close the gap between the real and synthetic data, we introduce and publicly release a GTA V
LiDAR simulator. The simulator is trained on the real data to estimate realistic responses on
unusual surfaces. The proposed method builds on top of the geometrical model, which re-projects the
existing world into the LiDAR sensor. We enhance the geometrical model by modeling the strength
of the LiDAR response. Modeling intensities allows injecting systematic failures and measurement
noise into the geometrically simulated measurements. We experimented with two deep learning
architectures [130] and [94] to learn the intensity estimation in a data-driven way. The intensity
model is further used for enhancing synthetic data. We show that such data, when combined with
the real training set, improves the segmentation accuracy on real testing data.

To sum up the contribution, we proposed a way of modeling intensity from the LiDAR geometry,
RGB images and class label and showed that the data-driven simulation of LiDAR measurements,
when combined with real training dataset, improves the segmentation accuracy on the real data.
We also provided a publicly available LiDAR interface for the GTA V game, which allows for the
automatic generation of synthetic annotated training and evaluation datasets and released a large
public GTA V dataset for object detection and semantic segmentation from RGB+LiDAR data,
which consists of approximately 40 000 frames [116]. Both source codes and dataset are available
for download at https://github.com/vras-group/lidar-intensity.

2.2 Related Work

Large-scale LiDAR datasets. Recent advancements in the field of autonomous driving were
influenced by large-scale datasets and benchmarks. This phenomenon is even more significant with
the thriving success of deep learning. Kitti benchmark has set standards among public automotive
datasets [36]. Besides regular RGB images of driving scenes, it also includes calibrated LiDAR
readings. However, the annotation is done only in the RGB camera and therefore limited to the
frontal view only. This limitation has been eliminated by the very recent SemanticKitti dataset [4],

https://github.com/vras-group/lidar-intensity
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where all points in LiDAR point clouds were annotated, excluding a few anomalies. nuScenes [7] is a
recently published dataset that contains thousand driving scenarios. It is composed of 360 thousand
LiDAR readings, which also include full annotations.

However, in order to build a fully autonomous vehicle, datasets of much larger magnitudes and
different scenarios are necessary. Manual annotation is costly and consumes a large amount of man-
hours [31], which makes it intractable for such a large scale. On top of that, datasets alone do not
provide options for validation of autonomous driving capabilities with respect to the interpreted
scene. These constraints point to the necessity of realistic and automatically annotated simulators.

Simulators with LiDAR point cloud properties. It was shown by numerous papers, that
many state of the art detectors use intensity channel as a useful feature in learning segmentation
from LiDAR [126, 128, 136] measurements. Intensity can provide a decisive distinction between
two objects of a similar geometry by providing peak values on specific object parts similar to
attention models [124], [98], [125] and therefore constitutes a valuable feature for classification tasks.
Unfortunately, most of the current LiDAR simulators capable of creating a variable driving scene
do not compute intensity values and offer geometry only [24, 29, 139]. Carla simulator [24] contains
information about surface material, however, as far as we can tell, it cannot be leveraged to acquire
LiDAR intensity. The simulator Blensor [38] offers information about material reflectivity. However,
it is not possible to simulate different weather conditions. The Blensor also suffers from the fact that
its base Blender was not developed for large scenes, but rather for smaller objects, and therefore,
it is difficult to model a large world at the needed scale. The Virtual KITTI dataset [34] provides
synthetically generated sequential images with depth information and pixel-wise annotation. The
depth information can also be used to generate point clouds. However, the point clouds do not show
the same characteristics as a real rotating lidar, including reflections. Also, the gap between real and
synthetic data remains a great challenge [116]. One of the approaches to deal with the difference
and portability to the real world is [95, 96], which can produce more realistic LiDAR data from
simulation by learning GAN models.

Another option is to use computer games with state-of-the-art graphics, such as GTA-V. Driving
in the Matrix [52] and Playing for Data [93] unlock the possibility of using a game engine for data
gathering. However, Driving in the Matrix lacks finer annotation as it only extracts the stencil layer
from the game, which does not differentiate between many object classes, and Playing for Data still
requires a semi-manual labeling procedure. Both of these works also lack the ability of the LiDAR
sensor, however, it can be circumvented by placing virtual cameras at the desired locations, as will
be shown in this work. GTA-V engine was also exploited by [139], where geometrical LiDAR has
been simulated in the frontal camera view. It comes, however, without intensity properties, and
class labels of objects’ 3D shape are approximated by bounding boxes only. GTA-V world has no
concept of reflectivity of the material, and therefore, the returned LiDAR reflections are missing.
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Simulation of intensity. LiDAR intensity is derived from three main components: geometric,
physical, and environmental model of LiDAR [33]. The Geometric part is usually solved by basic
computer vision algorithms such as ray-casting and projection of the points [147]. Physical and
environmental models consist of various sensors and surrounding constants and target properties,
which is usually not available in simulation [40]. These modalities are mainly reflectivity of material
and beam divergence of a laser.

Work of SqueezeSegv2 [130] tried to model intensity using data; however, it resorted to using
geometric information only. Another way of closing the domain differences is to substitute intensity
between real and synthetic data by modeling echo pulse width (EPW) of the laser via [94] [25].
However, despite the fact that EPW is part of the LiDAR resulting intensity, the work [44] shows
its lack of representativeness as a sole intensity indicator. Two objects can share the same EPW but
have different reflectivity, so they do not cause the same resulting intensity. This work also shows
that the implementation of EPW did not improve the model performance, as it is not descriptive
enough feature for classification algorithms.

To the best of our knowledge, there is no other previous work trying to model a LiDAR intensity
data-driven way. Also, none considered modeling intensity from RGB information or any other
modalities besides geometric.

2.3 Method

The proposed pipeline is summarized in Figure 2.6. The LiDAR simulation employs four virtual
roof-mounted cameras, which provides four temporally synchronized streams of RGBD images at a
user-defined framerate. Four-tuples of depth images are converted into 360◦ point clouds respecting
the geometry of the simulated LiDAR. This part is briefly summarized in Section 2.3.1. The resulting
point clouds are deprived by random drop noise to rays following the same procedure from [130].
Finally, the LiDAR intensity is predicted by a single deep convolutional network. The intensity
predicting network, as well as the learning procedure, are detailed in Section 2.3.2.

2.3.1 Geometrical simulation

The geometrical simulation of the LiDAR consists of two consecutive steps, which are briefly
illustrated in Figure 2.2. First, a dense point cloud is generated from four temporally synchronized
RGBD images and the known camera calibration matrices. For each pixel of the virtual RGBD
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camera, we generate a corresponding 3D point xego in the camera coordinate frame as follows

x̄ego =


xego

yego

zego

1

 = P−1


xcam

ycam

D

1

 . (2.1)

x̄ego are homogeneous coordinates of the 3D point in a car coordinate system, P ∈ R4×4 is a camera
projection matrix, {x, y}cam are coordinates of each pixel in an image (normalized to the range [-1,
1]) and D is the depth of each pixel. Resulting dense point cloud of 1920 × 1200 = 2304000 3D
points is transformed into world coordinate system using

x̄world = W−1x̄ego, (2.2)

where x̄world are homogenous coordinates of the 3D point in the world coordinate system and a
world matrix W ∈ R4×4 is a transformation matrix. Matrices W and P are obtained from the
RAGE engine of GTA V.

3D points from all four cameras in the world coordinates are then concatenated into one dense
point cloud, and points which are further than 130 m (operating range of commercial LiDARs) from
the cameras’ centers are then discarded. This results in a dense 3D point cloud with approximately
7 × 106 points. More technical details on extracting these dense point clouds can be found in [89].

Second, rays corresponding to the real LiDAR geometry (i.e., angular resolution and vertical field
of view) are cast on the dense point-cloud, and the closest corresponding 3D points are extracted.
Since horizontal FOV of the RGBD cameras is 91◦ and image width is 1920 pixels, the angular
resolution of the dense point cloud is approximately 0.047◦, which is approximately 3.65× finer
horizontal resolution than that of the commercial LiDAR (Velodyne HDL-64E has a horizontal
angular resolution of 0.1728◦). The output of this procedure is a geometrically consistent point
cloud.

We found that even though it is much more computationally demanding to generate this geometrically
precise LiDAR representation outside the RAGE engine, it is also much more precise since ray-casting
implemented within the RAGE engine approximates the 3D shape of the object by a bounding box
as in [139].

2.3.2 Data-driven intensity simulation

Since we do not know the exact parameters of the LiDAR sensor and the reflectivity of surfaces
in the simulated world, we cannot calculate intensity values directly during the simulation process.
We overcome this drawback by learning to predict intensity levels from the real measurements in
a data-driven way. The physical properties of ”beamed” laser and received signal energy can be
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Figure 2.2: Extracting of LiDAR point clouds - By placing four virtual cameras on top of the car,
we acquire images of a surrounding scene with depth, RGB, and label information. From these depth
images, we construct dense point clouds in car-ego coordinates using a camera projection matrix
(2.1). Then ray-casting procedure chooses the closest point in dense point cloud corresponding to
LiDAR’s angular resolution ϕ, θ and maximum range. As a result, newly created LiDAR point cloud
of specific sensor parameters is obtained with all game source information (e.g. coordinates xego,
yego, zego, RGB, Label) for every scan point.
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Figure 2.3: Example of point cloud extraction - we model Velodyne HDL LiDAR with 64 layers
in 360◦ FOV. The procedure consists of the following steps: (a) Place four virtual cameras, which
cover 360◦ FOV, to the position of the LiDAR. (b) Extract corresponding labels from the stencil
buffer. (c+d) Reconstruct dense point clouds from all four cameras. (e) Estimate final point cloud
by ray casting and dumping points exceeding maximal the range of the sensor.
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Figure 2.4: Modeling intensity from modalities - We use depth LiDAR measurements,
calibrated images from the camera with LiDAR reading and existing labels from the SemanticKitti
dataset as a source of input channels to the neural network. Inputs are sent into the neural
network in form of an image-like grid with channels corresponding to the modalities, where label
modality is embedded through the embedding layer resulting in a two-dimensional channel grid. We
then compare intensity from real data to prediction in L2 loss function and train the model with
backpropagation.

described as fixed sensor configuration and inconsistent environmental parameters using the LiDAR
equation [33]. This LiDAR equation models the power of received LiDAR signal Pr, which is directly
correlated to resulting intensity value I via normalization and calibration of the specific sensor. Since
we model intensity using real data, this conversion will be included when modeling the same sensor.
Lidar equation [33] models the power of the received signal as follows:

Pr = PtD
2
r

4πr4β2
t

ηsysηatmσ (2.3)

The received signal intensity Pr can be calculated from transmitted signal power Pt, receiver aperture
diameter Dr, traveled distance of laser to the target r, laser beam width βt, sensor-specific parameter
ηsys, atmospheric transmission factor ηatm, and back-scattering cross-section σ, which depends
entirely on the target characteristics. Except for σ, all other parameters are defined or directly
measured in constant LiDAR configuration. Signal power (Pt), laser beam width (βt), sensor
parameter ηsys and aperture diameter (Dr) are constants for specific LiDAR. Environment factor
(ηatm) does not diverse along measuring sequence in the same weather conditions and range from
the target is known from our geometric simulation. Then we need to consider target contribution
to the intensity, which is modeled by previously mentioned cross-section σ, denoted as follows:

σ = 4π

Ω ρsAs (2.4)

where Ω is the scattering solid angle (divergence) of a laser beam, As is the target area, and ρs is
the target’s material spectral reflectance. The parameters depend on the geometry and reflectivity
of the scanned object, i.e., the property of its material. We can leverage geometry information in
our simulator, but it does not offer any information about reflectivity. We assume that material can
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be estimated based on its color and possibly by information about the type of the object consisting
of that material, i. e. class label. Lidar does not contain any information about RGB color.
To compensate for the lack of RGB, we use a multi-sensor dataset [4], which has camera images
calibrated with respect to the LiDAR. From these camera images, we project RGB channel to LiDAR
scan points. This dataset also comes already annotated with class labels.

In contrast to others, we suggest exploiting all modalities available during the simulation – RGB
colors, depth, and semantic labels. We train a deep convolutional neural network to predict the
intensity from the multi-modal data.

2.3.3 Learning of the intensity-predicting network

The intensity-predicting network is trained on the real data obtained from the SemanticKitti dataset [4].
This dataset contains 360◦ LiDAR scans, pixel-level labels, and RGB images, which are however
available for the forward view only. We argue, that the training on the forward view generalizes well
on other views because the testing accuracy in other views is comparable.

The learning process is outlined in Figure 2.4. To simplify the learning process, all measured
modalities are projected to the cylindrical projection with a center placed at the position of the
LiDAR and mapped as channels in a grid consisting of single LiDAR beams. Since there is a natural
dropout in rays during LiDAR sweeps, we add a binary logic mask of successfully returned rays.
Similar binary mask is also added for RGB color, which is assigned to LiDAR rays that correspond
to RGB in camera projection. Consequently, the SemanticKitti dataset is converted to the set of
multi-channel 2D images containing depth (D), red (R), blue (B), green (G), label (L), intensity (I),
ray mask (M) and color mask (CM) values.

We work with the four following input combinations of the intensity-predicting network: D,
D+L, D+RGB, D+RGB+L, which are all trained to predict the intensity channel (I) from the
aforementioned inputs. The proposed network extends the existing architecture of Unet [94]. We
also experiment with SqueezesegV2 architecture for comparison with [130]. Contrary to [130], we
omitted XYZ channels, because these do not generalize when trained only on the forward view.
In particular, D network is identical to the SqueezeSegV2 without XYZ channels, and the other
networks extend the dimensionality of the input layer accordingly while keeping the other layers
the same. Especially 4-class label modality (L), where every class value is transformed through
embedding layer into a two-dimensional vector (i.e., it adds two additional input channels).

SemanticKitti dataset contains 19-class label descriptions. However, our GTA simulator is able to
produce 4-class unique labels, see the comparison in Fig 2.5. With a more diverse object categories,
label modality increase precision of intensity prediction, as can be seen in Table 2.2. That implies
the potential usefulness of label feature in intensity prediction, however due to lack of categories in
the current GTA simulator, we stick to the 4-class label (car, pedestrian, bicycle, background - all
others).
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(a) Kitti frame with all 19 labels (b) Kitti with GTA labels only

Figure 2.5: Label diversity in real and synthetic domain - Example of annotations in both
worlds. The Real dataset has a much richer description of present objects, but thanks to the nature
of the simulation world, it is feasible to introduce new categories in the engine in the future.

Predicting the intensity can be seen as a regression problem. Work [130] proposes the hybrid loss,
which classifies intensity values to bins and also regresses the deviation from the classified bin, as
it, according to [130], should yield better results of prediction compared to L2 loss. We experiment
with both types of losses. As done in [130], our classification in hybrid loss is split into 10 bins
distributed over the density of intensity value, and deviation from classified bin was predicted as
another output channel from the model. Therefore in the case of hybrid loss, our prediction model
has ten outputs channels for bin classification and one for regression of the deviation. The channels
are then summed to the resulting intensity value, which is compared to real intensity value by a
mean squared error (MSE). We trained and validated the model of intensity on the SemanticKitti
dataset, compared them with training using masked L2 loss (2.5). Mask in L2 loss corresponds to
the (M) input channel. Opposed to [130], masked L2 loss showed to be superior in our case, as can
be seen in Table 2.2.

L = 1
n

∑
i,j

(Ii,j − Îi,j)2 · mi,j , (2.5)

where i, j denotes pixel coordinates in grid-like image, I real intensity value, Î predicted intensity
value, m binary mask of returned scan points and n number of successfully returned rays in grid
frame (i.e. the sum of m) to get mean value of loss function.
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Figure 2.6: Pipeline overview: At first, we collect depth, RGB, and label images in 360◦ view by
placing four cameras to the desired sensor position and from depth information create dense point
cloud with RGB and label channels. With ray-casting, we choose points corresponding to LiDAR
parameters and estimate intensity by the deep convolutional network from depth, RGB and label
input grids. For intensity prediction we used Unet architecture[94].

2.4 Experiments

We evaluate the proposed intensity predictor in two ways: i) intensity prediction accuracy, see
Section 2.4.1 which shows how close are the predicted intensities to the real ones, and ii) improving
segmentation accuracy when using intensity prediction see Section 2.4.2 which demonstrates that
extending the real training set by simulated point clouds improves the segmentation accuracy. The
intensity prediction model was trained on 10000 LiDAR frames and tested on 2792 LiDAR frames
recorded in the spatially distinct environments from the SemanticKitti dataset. In the segmentation
experiment, we used a smaller portion of real dataset to study the impact of highly scalable simulated
data.

2.4.1 Intensity prediction accuracy

We evaluate intensity prediction accuracy on every pixel from the LiDAR grid in terms of the mean
squared error (MSE). As a prediction model, we use neural networks with encoder-decoder structure
that contains skip connections in order to preserve high as well as low-level features. As long as the
model is expressive enough and has a specific number of inputs (D, DL, D+RGB, D+RGB+L), it
is possible to adopt different model architectures such as [125], [124] and fine-tune them for high
performance.
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We compare four different input combinations D, D+L, D+RGB, D+RGB+L and two different
loss functions for SqueezeSegV2 - Hybrid loss from [130] and L2 loss. See Table 2.1 for details
on classification values distribution and architectures. We also experiment with the aformentioned
architectures of Unet neural network [94] with L2 loss and omit the hybrid loss, since we achieved
consistently better performance with L2 loss in all tested modalities with SqueezeSegV2.

Table 2.1: Distribution of hybrid loss classification bins

Bin 1 2 3 4 5
Min value 0.0 0.079 0.163 0.225 0.264

Bin 6 7 8 9 10
Min value 0.289 0.310 0.334 0.368 0.546

For the optimization task, we experimented with different setups and finally used Adam algorithm
[55] with a learning rate 0.003 and weight decay 0.001 with both models. Training set is divided to
7500 training and 2500 validation frames.

Table 2.2: MSE error on intensity prediction - Comparison of different variations of modalities
and loss functions for intensity prediction, all numbers in percentage.

Architecture and Loss function D D+L D+RGB D+RGB+L
SqueezeSegV2 + Hybrid loss 1.11 [130] 1.11 1.02 1.023

SqueezeSegV2 + L2 loss 0.745 0.744 0.692 0.693
Unet + L2 loss 0.644 0.671 0.623 0.621

Experiments reveal L2 - loss on the D+RGB+L input combination achieves the lowest MSE
error on the testing data, see Table 2.2 for details. Examples of predicted intensities are provided
in Figure 2.7. The intensities are projected into the camera frame for better readability. The
images demonstrate that using the RGB information allows predicting stronger responses on license
plates and traffic signs while using only the depth modality yields limited results. Both proposed
architectures significantly outperform a simple method, such as the intensity estimated as grayscale
values (see Figure 2.7(f)).

We are particularly interested in objects with high reflectivity, namely car license plates and traffic
signs as they consistently show high LiDAR intensity and are valuable for scene interpretation and
car detection. Intensity prediction on synthetic data can be seen in Figures 2.8, where adding RGB
modality to the learning and inference showed to be superior in distinguishing these objects. With
color information in model prediction, it is also possible to differentiate lane markings on the street.
This can be especially valuable in segmenting other instances, that can be used for navigation in
the scene. Predicting from D+RGB looks also qualitatively more realistic and closer to real LiDAR
intensity, see Figure 2.7.
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(a) learned from depth (b) learned from depth and label

(c) learned from depth and RGB (d) learned from depth, RGB and label

(e) Ground truth intensity (f) Grayscale as intensity channel

Figure 2.7: Comparison of LiDAR intensities on the cars in the SemanticKitti dataset
- These figures represent our intensity prediction according to used modalities in the same setting.
Without RGB modality (a), (b), there is no high response from the license plate, see the real intensity
in (e) for comparison. Whereas (c) and (d) successfully predict the high intensity of the received
beam. Substitution grayscale value for intensity failed entirely due to light conditions, as can be
seen in (f).

(a) Camera image

(b) Intensity predicted from the depth only

(c) Intensity predicted from depth and RGB

Figure 2.8: Example of GTA scene with simulated LiDAR intensity - on the camera RGB
image (a) is a car (green mark) and a traffic sign (red) mark. Predicted intensity from depth (b)
and depth + RGB (c) showed different values on objects of interest, car’s license plate, and traffic
sign, where we expect greater values of intensity. Adding RGB modality helps to recognize licence
plate (c) and more realistic values on the sign. RGB also differentiates lane marking.
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(a) SemanticKitti scene - camera image (b) SemanticKitti scene - real intensity

Figure 2.9: Comparison of real scene intensity - Generating intensity across different domains
keep systematic failures consistent, see Figure 2.8 for comparision. Traffic signs and license plates
generate high signal feedback, while rest of the scene remains uniform. Therefore we can assume
preservation of intensity characteristics.

2.4.2 Segmentation accuracy improvement

This experiment demonstrates that extending the costly real training data by easier accessible
simulated point clouds improves the segmentation accuracy. Input to the segmentation network
is a 2D image-like grid with channels containing depth, LiDAR intensity, and pixel mask, which
serves as an indicator of a valid return of the ray. Some rays do not return in real LiDAR, and some
exceed the maximum distance of sensor measurement in the GTA simulation.

The architecture of the segmentation network is SqueezeSeg with the CRF module. As a loss
function, we used Focal loss [67] which happened to bring better results in training as opposed to
the standard Cross entropy loss function. Focal loss is described in Equation (2.6). The value of
parameter γ is set to 2.

FL(pt) = −(1 − pt)γ log pt (2.6)

The output contains pixel-level semantic labels. We compare several segmentation networks trained
with different combinations of training datasets. First, we evaluate networks trained on synthetic
data: GTA without intensity, GTA(D) and GTA(D+RGB+L). Second, we train the prediction model
on 1k real frames from SemanticKitti (K). Last, we add 40k synthetic frames to the real ones, K +
GTA(D), K + GTA(D+RGB+L). We stick to the standard evaluation metric used in autonomous
driving research [143] – Intersection-over-Union (2.7) – and evaluate segmentation performance on
the car category.

IoU = TP
TP + FP + FN , (2.7)

where TP denotes true positive points of a certain class, FP denotes false positives points and FN
false negatives points of the class. The results are shown in Table 2.3.

Adding artificial GTA data with generated LiDAR intensity improved the performance of the
segmentor, especially for vehicles in a greater distance. Adding RGB and Label modality to intensity
prediction proved to be superior to the baseline – using only depth for the intensity prediction. It
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(a) Camera Image (b) Camera Image

(c) Ground truth (d) K Real only (e) Ground truth (f) K Real only

(g) K+(D) (h) K+(D,RGB,L) (i) K+(D) (j) K+(D,RGB,L)

Figure 2.10: Example of segmentation of distant and occluded car - Adding GTA data
increase segmentation performance mainly on cars in greater ranges, see the red markings on (a)
and (b). There is a cropped detail on ground truth in (c). As you can see on (d), training only on
the part of this dataset is not sufficient for greater range detection, there are probably not many
distant cars in the dataset. However, with more training examples gathered from synthetic data,
which may include similar scenes, we are able to segment it in (h),(i),(j).

yields better performance with both learning from synthetic data only and adding synthetic together
with real data.

Table 2.3: Evaluation of different modeled intensities on semantic segmentation
performance on our SemanticKitti split. All numbers in percentage.

Training set Real data Synthetic data IoU
GTA w/o intensity 0 40k 23.83

GTA(D) 0 40k 31.38
GTA(D+RGB+L) 0 40k 33.04

K 1k 0 75.16
K + GTA(D) 1k 40k 78.79

K + GTA(D+RGB+L) 1k 40k 79.76

An example of a boost in segmentation can be seen in Figure 2.10, where the RGB modality
improves the distinction between a vehicle that is covered by an object and the object itself. The
van in Figure 2.11 is not segmented if using depth only. Red marking means improved detection
with enhanced data, yellow means false detection and green shows positive detection.

There is a large disproportion in IoU performance between using GTA data only compared
to using real date which implies a significant domain gap between the two worlds. Our intensity
predictor improves the results, however the domain gap between simulated and real LiDAR scans
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still dominates.

(a) Camera Image

(b) Ground truth (c) Kitti Real only

(d) Kitti + GTA(D) (e) Kitti + GTA(D+RGB+L)

Figure 2.11: Segmentation of a occluded van - In this situation, we see a van, which is parked
behind electric panel and its wheels are covered by bush and carton (a). Detail of ground truth
is shown in (b). Segmentation trained solely on real data failed to detect van in this setup (c),
together with GTA intensity, learned from the depth only (d). On the other hand, the addition of
RGB modality benefits in segmentation of van and also correctly detect distant car.

2.5 Discussion

Conclusion. We proposed a new way of modeling lidar intensity from scene geometry, RGB images
and generated labels. It has been shown that adding proposed synthetic lidar point clouds with
enhanced intensity to learning improves segmentation results on the real lidar dataset. Predicted
intensity based on RGB and label had an increase in segmentation performance over depth-based
intensity. We have also shown that new modalities and masked L2-loss increase the accuracy of
intensity prediction. All results were evaluated on the real data only. Simulation interface and the
synthetic training set consisting of panoramic RGB images and lidar point clouds have been made
publicly available.

Limitations. There is still an insufficient domain adaptation between real-world and GTA simulation,
mainly in geometrical properties and ray dropout. There is also limited amount of object classes in
GTA simulator, limiting its effectiveness on open-set objects.
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Future Work. Future work can consist of showing the results in challenging weather and visibility
conditions such as fog, rain, and shallow puddles. One can also address problems of color and
geometry domain shift as it should improve our intensity prediction model.



Chapter 3

Data Augmentation from Existing
Labeled Data

3.1 Introduction

Data augmentation is a way to effectively decrease the need for more annotated data by enriching
the training set with computed variations of the data. This type of augmentation is usually achieved
with geometrical transformations, such as translation, rotation, and rescale applied to the already
labeled samples [41, 134, 137, 12].

In general, 3D point cloud augmentations [41, 30] have been much less researched than image
augmentation techniques [134, 12, 10, 73]. For example, the aforementioned 3D point cloud augmentations
only enrich the geometrical features of the training samples but do not create new scenarios with the
previously unseen layout of objects. The lack of modeling a realistic class population of the scenes is
still a bottleneck of augmentation techniques. This problem can be addressed by augmentation that
uses simulated virtual data and scene configurations. However, the effect of such data on training
is low due to nonrealistic physical and visual features compared to real data.

We focus on improving the learning of 3D perception networks by enhancing LiDAR data in
autonomous driving scenarios with data augmentation. Depth information allows for per-object
manipulation when augmenting the point clouds [30]. We take advantage of the spatial position
of annotated objects and place them in different scenes while handling occlusions and class-specific
inhabitancy, see Figure 3.1.

Our proposed method (dubbed Real3D-Aug [149]) augments the road and sidewalks for class-
specific insertion and exploits the bounding boxes of objects to avoid collisions. Compared to state-
of-the-art LiDAR-Aug [30], which is suitable only for object detection, our bounding box generation
allows augmenting the semantic segmentation datasets and simulates realistic occlusions throughout

24
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Figure 3.1: We show examples of our augmentation method in 3D object detection and
semantic segmentation. First, we insert objects one by one and then simulate their visibility
to model realistic occlusions. Note the details of the scene (circled) and the detection of occluded
orange points. After removal, we see the final augmented version of the point cloud in the last row
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the spherical projection. The inserted augmentations come from the same dataset and are placed at
the same distance, ensuring natural reflection values and point distribution, including ray dropouts.
We evaluate the proposed method on tasks of 3D object detection and semantic segmentation.

To sum up the contribution, we presented a new augmentation framework suitable for both 3D
object detection and semantic segmentation and we proposed a novel way to model occlusions and
physically consistent insertion of objects for augmentation. We demonstrated the usefulness of our
method on autonomous driving benchmarks and show improvement, especially in rarely represented
classes.

3.2 Related Work

Data Augmentation. One of the first approaches to augmenting LiDAR data was GT-Aug,
which was published within the 3D detection model SECOND [135]. GT-Aug adds samples from the
ground-truth database, which is precomputed before the training phase. The samples are randomly
selected and inserted into the scene as is. If a collision occurs, the added object is simply removed.
The visibility and occlusion handling of added scan points or the inserting strategy is not taken into
account. Global data augmentations (Gl-Aug) [41] such as rotation, flip, and scale are commonly
used in 3D point-cloud neural networks. These augmentations provide a different geometrical
perspective, which supports the neural network with more diversity of training samples. An attempt
to automate the augmentation strategy was proposed in [17], which narrows the search space based
on previous training iterations. The state-of-the-art LiDAR-Aug [30] enriches the training data to
improve the performance of the 3D detectors. Additional objects are rendered on the basis of CAD
models. Simulations of intensity and raydrops are not discussed in the article. LiDAR-Aug [30]
also simulates occlusion between additional objects and the rest of the scene, unlike GT-Aug [135].
Recent method [92], similar to our one, also focuses on inserting objects into point clouds. The main
difference between the methods is in the real visibility simulation. Approach [92] upsamples the
number of points in the sample, which are then projected into a range image, where visible points
are selected and then sparsed. From our point of view, this approach does not consider possible
raydrop on objects located between the ego and the inserted sample. It can cause parts of the
inserted sample to be falsely visible because some LiDAR beams could drop out from the obstacle
and create holes in the range image.

3D Perception Tasks. Learning in the LiDAR point cloud domain poses challenges, such as low
point density in regions at the far end of the FOV, the unordered structure of the data, and sparsity
due to the sensor resolution. Three common approaches to aggregation and learning the LiDAR
features are voxel-based models [144, 135], re-projection of data into 2D structure [133, 79], and
point cloud-based models [146, 107]. To show the ability to generalize, we evaluate our proposed
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Figure 3.2: Overview of the proposed Real3DAug. We process the data in order to estimate all
possible placements, all bounding boxes in the scene, and augmenting objects from different frames.
The possible placement of augmenting objects is a conjunction of the same depth as the cut-out
object (yellow circle) and a suitable area from the map of possible insertions (green). Occlusion
handling is performed in spherical projection. The result is re-projected to the scene to the 3D
augmented point cloud.

method based on different model feature extractors and on two tasks of 3D object detection and
semantic segmentation.

One of the key aspects of our approach is placing the object in a realistic position by estimating
the road for vehicle and cyclist insertions and the sidewalk for pedestrian insertion. Recent research
has shown, that a fast, fully convolutional neural network can predict the road from the bird’s eye
view projection of the scene [8]. However, this method does not handle occlusions, i.e. it does
not predict the road behind obstacles, e.g. vehicles. Non-learnable methods proposed in [22, 6]
can separate ground from non-ground points, which can be further improved by utilizing the Jump-
Convolution-Process [100]. All these methods (and other established types like RANSAC, PCA, and
height thresholding) filter out all ground points regardless of class road or sidewalk. In our setup,
we need to distinguish them, so we rely on the segmentation network learned from the dataset.

3.3 Method

Our augmentation method places additional objects into an already captured point cloud. The
objects must be placed in adequate locations; therefore, the road and pedestrian area must be
estimated (in Subsection 3.3.1). The method avoids collisions between additional objects and objects
that are in the original point cloud. We analyze overlapping bounding boxes. Therefore, we need to
create bounding boxes for semantic datasets that come without object boxes (in Subsection 3.3.2).
More details on placing additional objects are given in Subsection 3.3.3. Lastly, the method handles
realistic occlusions between objects (in Subsection 3.3.4). The overview of the proposed method is
visualized in Figure 3.2.
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3.3.1 Road Estimation

To place the new objects, we need to know where they realistically appear in the scene. This
information may be given by prior high definition scene description (called HD map [7, 11]) if
included in datasets; however, KITTI dataset [36] does not provide them. We estimate valid roads
and sidewalk areas for both tasks according to the pipeline described in Figure 3.3. First, we pseudo-
label 3D points by Cylinder3D [146], a state-of-the-art semantic segmentation neural network, which
was pre-trained on the SemanticKITTI dataset [4]. The resulting predictions are then projected onto
the 2D LiDAR (x, y) ground plane, discretized with a cell size resolution of 1 × 1 meter. Then we
divide the space in the scene for the road (cyclist placement) and the sidewalk (pedestrian placement)
as follows:

Road: To obtain a continuous road area, a morphological closing is used on the projection. We
use a disk seed with a dimension of three.

Pedestrian area: The estimate is based on the assumption that pedestrians are supposed to
walk along the road border. Cells closer than two pixels from the border of the road estimate are
processed and subsequently dilated. We use a disk seed with a dimension of two.

SemanticKITTI contains poses of each point cloud in sequence. Therefore, road and sidewalk
labels can be transformed into a global coordinate system and accumulated in space. The accumulated
sequence of road and sidewalk labels leads to a more accurate estimation of the placement areas in
the 2D LiDAR (x, y) ground plane projection. Accumulating multiple scans in one frame densifies
the LiDAR point cloud and naturally reduces the need for morphological operations.

3.3.2 Creating of Bounding Boxes

For a collision-free placement of objects, the bounding boxes are required. The bounding box is
parameterized by the center coordinates (x, y, z), size dimensions (l, w, h), and heading angle (yaw).
For object detection in the KITTI dataset, the bounding boxes are already provided as ground-truth
labels. However, the SemanticKITTI dataset contains only the semantic label of the class together
with the instance of the object (each object in one frame has a different instance). We mitigate
the absence of the bounding boxes by separating individual objects from the scene based on an
instance and estimate bounding boxes, see Figure 3.4. In case of the absence of instance labels, we
would cluster the semantic segmentation points to get the instances via density-based clustering. In
the case of close-by segmentation, more than one instance can be inserted without damaging the
consistency of our approach.

Modeling the bounding boxes is divided into three steps:
Wrapping: Object-labeled 3D Lidar points are projected to the ground plane. The 2D projected

points are wrapped in a convex hull.
Smallest area: Assume the convex hull consists of n points. We construct n − 1 rectangles so

that two neighboring points on the convex hull compose one side of the rectangle. The remaining
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Figure 3.3: Rich map generating. Road maps are created from points’ positions and labels. Semantic
datasets already contain labels for each road point, in the case of the detection dataset, labels are
pseudo-labeled by neural network [146]. We then project segmented points into a 2D bird’s eye
view and acquire road and sidewalk maps by morphological operations on the 2D projection, namely
closing for the road and dilation of road boundary for the sidewalk–pedestrian area.
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Figure 3.4: Creation of the bounding box in Bird’s Eye View around the car. First, a convex hull is
constructed around points; then we fit a bounding box to estimate position x, y, dimensions length,
width, height, and orientation yaw. The z is estimated as if the object touches the road without
intersecting it.

sides of the rectangle are added to achieve the smallest area.
Refinement: Too few points may represent some objects. They are scanned at a great distance

or are significantly occluded by closer objects. Bounding boxes may also be distorted by occlusions.
We analyze the heights, widths, and lengths of the bounding boxes in the KITTI dataset for classes
“Car”, “Pedestrian”, and “Cyclists”, which we use in Semantic KITTI. We obtain the distributions
for each class and parameter. For each random variable, we calculate the lowest decile. The lowest
decile values are the minimum threshold values of the bounding box. The maximal values of bounding
boxes are set as the maximal values for the corresponding dimension that occurred in the KITTI
data set.

For bicycle, motorcycle, motorcyclist, and truck objects in the SemanticKITTI dataset, we do
not have corresponding statistics for bounding box dimensions since they are not present in KITTI.
Therefore, the limits were hand-crafted from the first 100 generated samples from SemanticKitti.
We also used the first decile, but with a 10% margin of safety.

3.3.3 Placing of Objects

Placing one or multiple objects requires knowing the bounding box dimensions and yaw angles.
Only points within the bounding boxes are used to augment different frames of the dataset. For the
semantic segmentation datasets (task), these points are further filtered to have an appropriate label.
In the case of the object detection datasets, points that are pseudo-labeled as the road or sidewalk
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classes are removed to ensure that the cutout point cloud contains only the object points.
To maintain the most realistic augmentation, our method places the object at the same distance

with the same observation angle. It can be achieved by rotating its point cloud by the vertical z-axis
of the frame origin. This way, realistic object point density and LiDAR intensity are maintained
due to the preserved range between the sensor and the object. It also keeps the same observation
angle. Then, we consider the collision-free location of the insertion:

Location: Objects must be fully inserted on the appropriate surface. We place vehicles and
cyclists on the streets and pedestrians on sidewalks. Thought pedestrians can move on the streets
as well, we do not observe this occurance in the evaluation datasets and therefore do not consider it
during insertion. For each appropriate position, the z coordinate of the object is adjusted to ensure
that the object touches the surface according to the road prediction level.

Collision avoidance: At first, the sole bounding box belonging to the object is cut from the
scene and placed in the augmented frame on the road level. For the insertion of vehicles and
cyclists, the bounding box must not contain any point other than road; same for pedestrians and
the pedestrian area. Then, we check whether the inserted bounding box overlaps with each of the
original boxes from the augmented scene and skip insertion when it does.

3.3.4 Occlusion Handling

By inserting objects into the scene, we model consistent occlusions in the point cloud from newly
added points. We consider the occlusion of a newly inserted object by original points closer to the
LiDAR sensor, as well as the occlusions caused by the inserted object itself.

Data projection: The occlusion handling uses a spherical projection, similarly to [133], to solve
realistic visibility after the additional object is placed. The spherical projection stores the minimal
distance between the sensor and the points projected to the corresponding pixel. To correct the
holes in the object, the projection is morphologically closed by a rectangular seed of dimension 5 × 3
(5 rows and three columns). The pixels closed by the seed are assigned the depth computed from the
neighboring pixels as an average of the depths in that seed area. Morphological closing is computed
separately for the scene and object.
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Algorithm 1 Occlusion handling
Input: Scene point-cloud P, Scene projection, Object point-cloud, Object projection
Output: success, Scene point-cloud
1: point counter ← 0
2: success ← False
3: for each pixel in object’s spherical projection do
4: if distance of object is smaller then in scene then
5: Remove scene points in pixel (they are occluded)
6: Add points projected to object s. p. pixel to scene
7: point counter ← point counter + nbr of added points
8: if point counter > minimal point for class then
9: success ← True

10: return success, Scene

Removing occluded points: The algorithm goes through every pixel in the spherical projection.
Every pixel contains information about the distance of the point. All scene points more distant than
the inserted point are removed since they would be naturally occluded by the added object. as they
are occluded by the placed object. Consequently, all object points, which were projected in the
same pixel, are added to the scene point cloud. The algorithm also returns boolean values, which
represent if the number of added sample points exceeds the threshold for a given class. We used this
to prevent super hard cases, with only, e.g., three visible points from the object. A pseudocode of
the algorithm is shown in Algorithm 1.

3.4 Experiments

In this section, we show the experimental evaluation of our method on KITTI and SemanticKITTI
datasets with comparison to other types of data augmentation such as Global Augmentation [41],
Ground Truth insertion[135] and LiDAR-Aug [30]. We experiment with two neural networks for
each task.

3.4.1 Datasets and Perception Tasks

3D object detection. For Evaluation of object detection, we use the KITTI benchmark. The
data set consists of 7,481 training scenes and 7,518 testing scenes with three object classes: “car”,
“pedestrian”, and “cyclist”.

The test labels are not accessible, and access to the test server is limited. Therefore, we followed
the methodology proposed by [30] and divided the training data set into training and validation
parts, where the training set contains 3,712 and the validation 3,769 LiDAR samples [14]. To be
consistent with other methods [30, 36], the evaluation was carried out on a validation set for all
annotated object classes.

A metric is the standard average precision (AP) of 11 uniformly sampled recall values. We set
a prediction to be true positive, when the bounding box overlaps with ground-truth in at least
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50% for pedestrians and cyclists classes, and 70% for car class. We denote AP for “Pedestrian”
as APPed50(%), APCyc50(%) for “Cyclist” and APCar70(%) for “Cars”. The difficulties of the
predictions are divided based on the sizes of the bounding box, occlusion, and truncation into
“Easy”, “Moderate”, and “Hard”, as required by the [36] benchmark.

Semantic segmentation. We use the SemanticKITTI [4] benchmark. The dataset is an extension
of the original KITTI [36] benchmark with dense point-wise annotations provided for each 360◦ field-
of-view frame. The dataset generally offers 23,201 3D scans for training and 20,351 for testing. The
training data set was divided into training and validation parts with 19 annotated classes.

As for metric, we utilized standard intersection over union, IoU = TP/(TP + FP + FN). Performance
is evaluated for each class, as well as the average (mIoU) for all classes.

3.4.2 3D Perception Models

We tested the augmented data on two 3D object detection models, each based on a different type
of feature extractor backbone. PV-RCNN [103] is a 3D object detection model that combines a
3D voxel convolutional neural network with a pointnet-based set abstraction approach [87]. The
second is PointPillar [112], which encodes the point cloud in vertical pillars. The pillars are later
transformed into 3D pseudo-image features.

For segmentation task, we use Cylinder3D [146] and SPVNAS [107] multiclass detector. Cylinder3D [146]
is the top-performing architecture on the Semantic KITTI dataset with public codes. SPVNAS [107]
achieves significant computation reduction due to the sparse Point-Voxel convolution and holds the
fourth place on the competitive SemanticKITTI leaderboard right behind Cylinder3D [146].

Each neural network was set to the default parameters proposed by the authors of the architectures,
with its performance reported on KITTI 3D benchmark and SemanticKITTI. We trained each
neural network three times for object detection and five times for semantic segmentation. Average
performance was considered as the final score of the method.

3.4.3 Augmentations

All augmentations were trained with the same hyperparameters to ensure a fair comparison between
methods. The approach of GT-Aug was performed with information of the precomputed planes,
which is an approximation of the ground from the KITTI dataset. This step should ensure that the
inserted objects lie on the ground. For our proposed augmentation method, we add objects with a
zero-occlusion KITTI label only (Easy). Some cases are naturally transformed into other difficulties
(Moderate and Hard) by newly created occlusions.

For global augmentation of the scenes, we used uniformly distributed scaling of the scene in the
range [0.95, 1.05], rotation around the z-axis (vertical axis) in the range [−45◦, 45◦] and random
flipping over the x-axis from the point cloud as in [41, 30].
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Table 3.1: Semantic segmentation on SemanticKITTI. Comparison of our method with the
global augmentation baseline. Both methods are evaluated using SPVNAS [107] and Cylinder3D
[146] architectures. The reported results are averaged over five runs for SPVNAS, and only one
run was performed for Cylinder3D due to the large training time. The augmented categories are
denoted by *. We observe a performance gain in each of them except for one: trucks. Improvement
is especially notable in the motorcyclist class, which contains only a few training examples in the
dataset with only global augmentations.
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Cylinder3D 58.8 95.6 42.6 59.3 33.2 41.0 67.1 78.8 0.0 92.4 42.2 78.4 89.8 57.3 87.4 67.2 73.70 65.0 45.9
Cylinder3D(ours) 63.0 96.2 50.4 71.2 64.2 50.2 69.7 88.8 12.6 93.3 35.4 79.8 90.6 59.8 87.4 59.0 73.7 64.8 49.2

The maximum number of added objects in semantic segmentation was set to 10 per scene, and
the object class is selected randomly (uniform distribution) each time of the insertion.

3.4.4 Evaluation of object detection and semantic segmentation

We compare our method (Real3D-Aug) with copy-and-paste augmentation (GT-Aug) [135] and with
state-of-the-art LiDAR-Aug augmentation [30]. In the Real3D-Aug multiclass (mc), we added 4.7
pedestrians and 6.7 cyclists on average per scene. All methods were trained with global augmentations
[41] if not stated otherwise.

In Table 3.2 we show the results of LiDAR-Aug with PV-RCNN. The numbers are taken from
the original paper due to the unpublished codes and the lack of technical details about their CAD
model and ray-drop characteristic. In the original article, LiDAR-Aug was trained under unknown
hyperparameters and was not applied to the cyclist category. Real3D-Aug surpasses the LiDAR-Aug
in the pedestrian class by a large margin despite all the difficulties. Both GT-Aug and Real3D-Aug
achieve significant performance improvement. Real3D-Aug achieves a significant improvement with
PV-RCNN in the pedestrian class, where we achieve 15.4%, 10.96%, and 7.87% improvement in
Easy, Moderate, and Hard difficulty, and GT-Aug achieves 7.52%, 3.74%, and 0.48% improvement
compared to the model without (w/o) any object augmentation. Real3D-Aug also slightly improves
the performance on the car compared to no object augmentations, but Lidar-Aug and GT-Aug
surpass our method on car category.

In Table 3.1 we show the results for SPVNAS [107] and Cylinder3D [146] architecture. In the
semantic segmentation task, we increased the mean IoU for both networks.

We are not comparing with GT-Aug [135] and LiDAR-Aug [30] in the semantic segmentation task.
The methods above were not designed for segmentation, whereas our method allows for augmenting
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Table 3.2: Object detection results with PV-RCNN. Our method achieves the best results in
the categories “pedestrian” and “easy cyclists”. (mc) abbreviates multiclass

APCar 70(%) APPed 50(%) APCyc 50(%)
Method Easy Mod Hard Easy Mod Hard Easy Mod Hard

w/o Object-Aug 87.77 78.12 76.88 65.92 59.14 54.51 76.80 59.36 56.61
GT-Aug [135] 89.17 81.92 78.78 65.69 59.33 54.78 88.30 72.55 67.79
LiDAR-Aug [30] 90.18 84.23 78.95 65.05 58.90 55.52 N/A N/A N/A
Real3D-Aug (mc) 88.70 78.63 78.09 73.57 66.55 62.17 92.69 65.06 63.43

both tasks.
In the semantic segmentation task for SPVNAS, we achieve an increase of 2.14 in mean IoU

compared to the common augmentation technique [41], see Table 3.1. We observe an increased IoU
of all classes added, except for the truck category. With the Cylinder3D network, the increment
can be seen in the IoU of all added classes. Our method also increases the performance on not
augmented classes since we add more negative examples to other similar classes.

3.4.5 Ablation Study of Object Detection

In Tables 3.3 and 3.4 we show the influence of adding a single object to the scene in comparison
to GT-Aug. Each configuration is named after the added class, and the lower index indicates the
average number of objects added per scene. We can see that, in the case of PointPillar, adding only
one class decreases performance in the other classes. We suspect that it is caused by similarities
between classes. For example, pedestrians and bicycles are simultaneously present in the class
“cyclist”. Therefore, it is beneficial to add both classes simultaneously. In the case of PV-RCNN,
the addition of one class improves the performance of both.

Table 3.3: Real3D-Aug Object detection results with PointPillar architecture based on
number of inserted classes.

Augmentation APPed 50(%) APCyc 50(%)
Easy Mod Hard Easy Mod Hard

GT-Aug 54.52 49.04 45.49 77.64 61.30 58.15
Real3D-Aug (Ped1) 55.72 51.30 47.47 46.33 33.84 32.47
Real3D-Aug (Cyc1) 46.87 44.17 41.77 72.65 52.71 49.04
Real3D-Aug (mc) 55.50 52.00 49.03 76.82 52.74 50.18

3.5 Discussion

Conclussion. We propose an object-centered point cloud augmentation technique for 3D detection
and semantic segmentation tasks. Our method improves performance on important and rarely
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Table 3.4: Real3D-Aug object detection results with PV-RCNN based on the number
of inserted classes.

Augmentation APPed 50(%) APCyc 50(%)
Easy Mod Hard Easy Mod Hard

GT-Aug 65.69 59.33 54.78 88.30 72.55 67.79
Real3D-Aug (Ped1) 70.96 66.63 61.14 78.97 63.47 57.31
Real3D-Aug (Cyc1) 65.63 59.14 57.47 82.79 63.69 62.39
Real3D-Aug (mc) 73.57 66.55 62.17 92.69 65.06 63.43

occurring classes, e.g. pedestrian, cyclist, motorcyclist, and others. Our method is self-contained
and requires only 3D data. All augmentations can be preprocessed, so it does not increase the
training time.

Limitations. We still rely on road segmentation model to place the augmentations. When there
is a mistake in road estimation, the object can be placed into unrealistic location resulting in out-
of-distribution training sample bias.

Future work. One way to further improve the method is to incorporate a more informative
selection of placements based on the uncertainty of the detection model. Potential improvement can
also lies in plugging the proposed framework to active learning data engine to leave it up to the
detection model, where to place the augmentations.



Chapter 4

Supervision by Spatial-Temporal
Aggregation with unlabeled Data

4.1 Introduction

Pseudo-labeling [60] has emerged as a versatile and powerful tool for reducing the annotations needs.
A teacher model trained on a small amount of labeled data is used to annotate lots of unlabeled
data automatically. The student model trains on the combination of a small labeled set and a
large pseudo-labeled set. This work introduces ways to boost pseudo-labeling when dealing with
temporally ordered data streams. The proposed framework is instantiated and evaluated in the
context of 3D point-cloud analysis for driving applications. In contrast to unordered data, the
temporal ordering of the data grants the student and teacher access to a meaningful temporal context.
In particular, the teacher can also access future data in the form of privileged information [117] that
is available at the time of pseudo-labeling but not at the students’ inference time. Consequently, the
teacher can benefit from past and future frames, thus making the most of the temporal consistency
over an extended time window. We noticed that the range of this temporal window has a crucial
influence on teachers’ performance, as it captures different temporal contexts. The complexity of
spatio-temporal events in 3D driving scenes would require the teacher to operate simultaneously at
different temporal ranges. Learning a large enough teacher capable of modeling the aforementioned
complexity would require many labels, contradicting the motivation of easing the annotation. We
take a more practical approach where multiple complementary teachers are trained, each operating
in its own temporal range with the past and future frames unannotated. These teachers use the
Concordance to assess the confidence of the extracted pseudo-labels (PLs) and to select the most
confident ones for student training eventually.

We experimentally demonstrate that Concordance-based pseudo-labeling (i) achieves competitive

37
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Figure 4.1: Proposed “Concordance of teachers” for pseudo-labeling of sequences. A set
Dℓ of sequences with a central frame labeled and a larger set Du of unannotated ones are available
for training; 1⃝ Multiple offline teachers are trained with full supervision on Dℓ, each with a different
temporal range towards future and past frames; 2⃝ The teachers are run on Du to produce pseudo-
labels (PLs) for central frames; 3⃝ Sequences with the most confident PLs according to Concordance
of teachers are selected, forming the pseudo-labeled set Dp. The white box depicts the discarded
PLs; 4⃝ The student is trained on Dℓ ∪ Dp, to work online with past and current frames only.

performance with state-of-the-art fully supervised methods [133, 79, 140, 146] with only a fraction
of labeled data, (ii) outperforms pseudo-labeling methods that do not leverage multiple teachers
[50]. Our approach (Fig. 4.1) only assumes that two sets of sequences are available: The first with
the central frames annotated and the second larger and devoid of annotation. Several teachers
are trained on the first set to predict the label of the middle frame of an input sequence. Once
trained, all the offline models run on the second dataset to pseudo-label the central frames. The
most promising automatically annotated samples are weighted and added to the first set based on
time-aware Concordance sample selection. The resulting large labeled set, with the future frames
not available at the input, is used to train the final online model.

We put this framework to work for different spatial-temporal perception tasks on sequences
of outdoor point clouds. We take advantage of the temporal ordering to provide more accurate
pseudo-labels than an ordinary PL method would deliver. We demonstrate its superiority on the
tasks of 3D detection and 3D semantic segmentation in driving scenes on two architectures [102, 146]
and three datasets (see Fig. 4.2). Our contributions [35] to pseudo-labeling of temporal data are:
1) An effective way to aggregate time-ordered unannotated/annotated 3D scans; Leveraging such
privileged information improves teacher’s performance for 3D semantic segmentation and object
detection tasks. 2) A novel confidence-guided criterion for better pseudo-labels selection and loss
function guidance. 3) A novel weighting of pseudo-labels via the Concordance of teachers trained
on different temporal ranges.
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4.2 Related Work

Spatial and temporal consistency in point clouds. Unlike 2D image which stores the pixels
in the grid of regular size, LiDAR point clouds are unstructured data, where we can’t apply 2D
convolutions directly. PointNet architecture [88] directly consumes raw point clouds to extract
features with permutation invariance and global features for classification. PointNet++ [87] further
improves the extraction of local features. The architecture of MeteorNet [58] works with multiple
input point clouds to extract features from additionally available points with consistent temporal
properties. Choy et al. [21] use sparse 4D CNN for spatiotemporal perception to improve robustness
in detection tasks. Spatial synchronization to the reference scan and adding one additional channel of
encoded time lead to further performance gain [46]. Qi et al. [86] use temporal information for point
cloud densification based on tracking previously detected objects for automatic data annotation.
Conversely to us, they use a top-performance detection model pre-trained in a fully supervised way.
We focus on building a set of teacher models (Concordance) from a minimal amount of annotated
data and apply distillation through pseudo-labeling.

Knowledge distillation. Training the student model is usually done by distilling knowledge
in the feature or output space [43]. Liu et al. [69] distill an ensemble of teachers into a single
student and extend the idea using different architectures suitable for different tasks as teachers.
Cho and Hariharan [19] show that larger models are not necessarily better teachers, mainly due
to parameter complexity mismatch. Mirzadeh et al. [80] propose a multistep knowledge distillation
with an intermediate-sized network to bridge the gap between student and teacher complexity. The
benefit of using the teacher network can also come from exploiting privileged information [13]. In
our work, we adopt a teacher-student framework and distill future data in sequential frames when
training the teacher models.

Semi-supervised learning. Semi-supervised learning approaches have been heavily researched
for image recognition, less so for point clouds [50, 141]. Extending an image pseudo-labeling
approach [60] to 3D perception [13] has recently shown that automatic labeling of LiDAR data could
be leveraged to achieve considerable performance gain. An early approach [108] proposes to extract
useful training examples from unlabeled data by exploiting the temporal information in LiDAR scans
for classification. Enforcing consistency of model predictions across perturbed versions of unlabelled
data [141] proves to be beneficial in 3D object detection. For the task of 3D semantic segmentation,
learning with a point-guided contrastive loss [50] increases performance even with fewer ground-
truth labels. The authors show that using pseudo-labels and confidence thresholding can help to
improve feature learning. This method is compared to ours in Section 4.4. Our approach focuses on
semi-supervised learning using pseudo-labeling and knowledge distillation. It is worth mentioning
that a complementary line of work explores approaches such as self-supervised pre-training [132, 83]
and domain adaption [48, 51] to avoid labeling too many samples.
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Figure 4.2: Proposed architectures that aggregate sequence of 3D point clouds. We build
a modified version of Cylinder3D for semantic segmentation and PointRCNN for object detection
that can aggregate multiple frames inside its spatio-temporal encoder. The output of the spatio-
temporal encoder-decoder are extracted point features h(x). For object detection, Only features
from the reference frame, i.e., h(x0) for x0 ∈ X0, are used to train PointRCNN for object detection.
Here, we use the full set of features h(x) for semantic segmentation due to the setup of the state-
of-the-art Cylinder3D architecture.

4.3 Method

4.3.1 Point-cloud notations

A point cloud X = {xk}K
k=1 is a finite order-less collection of 3D points, where the number of points

K is assumed constant over time to keep the notation simple. We consider symmetric time-ordered
point cloud sequences of the form X- n:n = (X- n, . . . , X- 1, X0, X1, . . . , Xn) composed of a reference
scan X0, preceded by n past scans and followed by n future ones. For the symmetric sequences,
the reference scan (frame) is the same as the central one, see Fig. 4.1. All scans in the sequence are
transformed into the coordinate system of the reference one.

4.3.2 Time-aware feature extraction

We build on a modified architectures of the Cylinder3D [146] for semantic segmentation and PointRCNN
[102] for object detection. Both architectures consist of MLP modules responsible for attaching rich
spatial features to individual scan points, followed by task-dependent modules. In contrast to single-
frame perception, we must handle successive scans; therefore, we propose a time-aware extension of
their original MLPs.

Given a sequence X- n:n of point clouds, the backbone architecture estimates a feature vector
h(x0) for each point x0 in the reference scan X0. This feature vector encompasses all contextual
information from its spatio-temporal neighborhood N (x0) defined as an hourglass-like 3D shape
centered in x0:

N (x0)=
{

xt ∈Xt : ∥xt−x0∥ ≤ r(|t|), t ∈ J−n, nK
}

, (4.1)

where r is an increasing function as in [58] (Fig. 4.3). The feature of each x0 ∈ X0 is finally defined
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Figure 4.3: Time-aware neighborhood of a point in the reference scan. Points from different
times are presented in different colors, where circled green point x0 is from the (green) reference
frame X0. Its spatio-temporal neighborhood N (x0) is composed of all points in scan Xt in a spatial
radius r(|t|), for t = −n, · · · , n. Crossed points are excluded from this spatio-temporal neighborhood.

as:
h(x0) = max

xt∈N (x0)

{
ϕ(xt − x0, t)

}
, (4.2)

that is, by max-pooling of time-aware pairwise features over the spatio-temporal neighborhood,
where ϕ is an MLP with shared weights to be trained, and t ∈ J−n, nK.

The construction of the spatio-temporal neighborhoods obeys the intuition that the maximum
distance an object can travel between two scans increases with the object’s speed and the temporal
separation between the scans. Thus, the maximum spatial distance for grouping points should
increase with their temporal distance.

4.3.3 Task-dependent modules

The feature extraction method provides point-wise feature vectors and their corresponding 3D
positions for the points in the reference coordinate frame of X0. The feature vectors are then
fed into subsequent task-dependent modules.

3D Object Detection. We consider the 3D detection of vehicles with our multi-frame adaptation
of PointRCNN [102]. Here, the bounding box labels are not associated with specific input points
but with a specific 3D position. If we consider box labels from all frames, we would not know
which points on input are associated with each one. Therefore, we use the bounding box labels only
for the reference scan X0 and mask the box labels from other frames. This differs from semantic
segmentation, where each point has its own exclusive class probability in each frame.
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Figure 4.4: Impact of knowledge distillation. Performance of distilling privileged information
from a single teacher into a student in the 3D object detection task.

3D Semantic Segmentation. We adopt Cylinder3D [146] and extend it into a semi-supervised
approach. A trained Cylinder3D classifier semantically labels each point. Here, we use labels for all
temporal input instants.

4.3.4 Training data

We consider two types of teacher models for training: (i) T- n:n with access to future frames, and
(ii) T- n:0, which has access only to past frames.

To understand the effect of distilling a teacher model with access to privileged information T- n:n,
we have performed an experiment where we train a student model by the pseudo-labels provided by
one teacher with and without privileged information. As shown in Fig. 4.4 distilling a single teacher
with privileged information in a student model S- m:0 � T- n:n provides the best performance (red on
top) over the baseline supervised student (black pillars) and over distilling a single teacher without
privileged information into a student model S- m:0 � T- n:0 (blue pillars).

4.3.5 Concordance and selection of pseudo-labels

Inspired by our finding from Fig. 4.4, we want to fully exploit the information contained in the
available scan sequences of length (2n + 1). We propose Concordance of teachers, where we train a
set of n teachers with a varying span of the temporal context. It means that teacher T- 1:1 is trained
on the subsequences X- 1:1, teacher T- 2:2 on X- 2:2 and so on, for the sake of simplicity, we further
drop the distinction between these sequences and assume that given a sequence X ∈ Du any network
will crop the temporal range appropriately. Given the Concordance of teachers

T {1,...,n} = {T- 1,1, T- 2,2, . . . , T- n,n}. (4.3)
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We independently process every unlabeled sequence X ∈ Du by all trained teachers. Since the
nature of outputs is slightly different for the semantic segmentation (point-wise class probabilities)
and for the object detection (3D bounding boxes with class probabilities), we split the Concordance
description at this point to avoid any misinterpretation.
Concordance for semantic segmentation. We estimate the pseudo-label k∗ and its confidence
c for each output point. Given the point, each teacher T ∈ T {1,...,n} provides a vector of class
probabilities ŷT . We then estimate the teacher-wise pseudo-labels k∗(T )

k∗(T ) = argmax
k∈K

ŷT
k . (4.4)

We pay special attention to the teacher with the strongest opinion, the one with the highest output
value ŷT

k . In particular, we denote this teacher as T ∗, its pseudo-label k∗ and the score of this
pseudo-label as y∗ = ŷT ∗

k∗ .
We determine the pseudo-label of the given output point as k∗. The confidence of k∗ is defined

as the weighted sum of two criteria: (i) the score y∗ of the pseudo-label and (ii) the number of other
teachers T that predict the same class, i.e., for which k∗ = k∗(T ). The trade-off between these two
criteria is determined by a non-negative weight λ as follows:

ĉ = y∗ + λ
∑

T∈T \T ∗

1Jk∗ = k∗(T )K . (4.5)

To preserve compatibility with training loss Eq. (4.6), this confidence is clipped: c = min(1, ĉ) .

Concordance for object detection. Each teacher provides a different set of 3D bounding boxes
(bbs) and class probabilities. To calculate final pseudo-label confidence, we need to extract bbs
that correspond to a single physical object. We greedily search for clusters of bbs with mutual
intersection-over-union above a user-defined threshold. The algorithm starts by building the first
cluster from the strongest bb. Once there are no more bbs with a sufficient IoU with the strongest
bb, we stop building the cluster, suppress all associated bbs, and continue building a following
cluster from the remaining bbs. The class probabilities yT corresponding to every single cluster
are then used directly to compute the pseudo-label and its confidence by the same procedure as
for the semantic segmentation. Following the standard practice in pseudo-labeling (e.g., [72] in
object detection or [65] in semantic segmentation), the final selection of pseudo-labels is obtained by
thresholding the confidence. Individual pseudo-labels with confidence below the chosen threshold are
masked out of the loss function and treated as a Don’t Care class. The final selection of pseudo-labels
and associated data form the training set Dp.

Training the student. The student model only performs inference online and, therefore, is learned
only with past input sequences. Following pseudo-labeling through the teacher-student framework
[60, 104], we train the student model on both the human-labeled set and the pseudo-labeled one.
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Table 4.1: LiDAR semantic segmentation performance on SemanticKITTI single-scan
test set. Our method, S0:0 � T {1,2,3} (‘Ours (20%)’) utilizes only 20% of the labeled data, the
remaining 80% of training data being automatically annotated, to achieve a performance comparable
with state-of-the-art methods. ‘Cylinder3D (20%)’ denotes Cylinder3D [146] trained, like our
method, with only 20% of labeled data; all other results are obtained from the literature, where
full (100%) labeled data is used. Performance in IoU percentages, per class and averaged, the
higher, the better. Green and red indicate fully-supervised methods that have performance below
and above the performance of the proposed method, respectively. ‘*’ means that techniques such as
fine-tuning and test-time augmentation (TTA) with flip and rotation are applied.
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RangeNet++ [79] 52.2 91.4 25.7 34.4 25.7 23.0 38.3 38.8 4.8 91.8 65.0 75.2 27.8 87.4 58.6 80.5 55.1 64.6 47.9 55.9
PolarNet [140] 54.3 93.8 40.3 30.1 22.9 28.5 43.2 40.2 5.6 90.8 61.7 74.4 21.7 90.0 61.3 84.0 65.5 67.8 51.8 57.5

SqueezeSegV3 [133] 55.9 92.5 38.7 36.5 29.6 33.0 45.6 46.2 20.1 91.7 63.4 74.8 26.4 89.0 59.4 82.0 58.7 65.4 49.6 58.9
KPConv [109] 58.8 96.0 32.0 42.5 33.4 44.3 61.5 61.6 11.8 88.8 61.3 72.7 31.6 95.0 64.2 84.8 69.2 69.1 56.4 47.4

Cylinder3D [146] 61.8 96.1 54.2 47.6 38.6 45.0 65.1 63.5 13.6 91.2 62.2 75.2 18.7 89.6 61.6 85.4 69.7 69.3 62.6 64.7
(AF)2-S3Net [16]* 69.7 94.5 65.4 86.8 39.2 41.1 80.7 80.4 74.3 91.3 68.8 72.5 53.5 87.9 63.2 70.2 68.5 53.7 61.5 71.0

PVD [45]* 71.2 97.0 67.9 69.3 53.5 60.2 75.1 73.5 50.5 91.8 70.9 77.5 41.0 92.4 69.4 86.5 73.8 71.9 64.9 65.8
Cylinder3D (20%) 51.9 92.1 31.7 28.5 25.1 22.1 49.6 32.4 26.4 86.9 47.2 67.5 12.6 88.7 55.7 83.2 64.4 64.8 53.4 53.9

Ours (20%) 58.9 92.9 46.4 36.6 35.1 27.3 62.4 54.0 24.0 90.0 60.8 72.1 22.2 92.0 65.6 84.6 70.3 63.7 59.3 60.2

The loss function for training the student is summed as follows:

L = 1
M

∑
(y,c)∈Dp∪Dℓ

c Ltask(ŷ, y), (4.6)

where y is one hot label encoding vector, ŷ are model predictions, and c is the corresponding
confidence from our Concordance selection. Samples collected from the original human-labeled
dataset have c = 1. The original loss function of the task-dependent module is denoted Ltask. All
data are sampled from the combined datasets Dp and Dℓ, and M is the number of samples in the
union.

4.4 Experiments

4.4.1 Datasets

We evaluate our approach on the Argoverse dataset [11] for 3D vehicle object detection, and
SemanticKITTI [4] and nuScenes [7] for 3D semantic segmentation. Argoverse provides a large
collection of LiDAR sequences with 3D bounding-box labels, from which we utilize the first 10% of
human-labeled sequences (Dℓ) and 90% being gathered without annotation in Du for pseudo-labeling.
SemanticKITTI provides a large-scale set of driving-scene sequences for 3D semantic segmentation.
It consists of 22 sequences that split from 00 to 10 for training (08 reserved for validation) and 11
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Table 4.2: LiDAR semantic segmentation performance on nuScenes valid set. ‘Ours (20%)’
utilizes only 20% of the GT annotation, the remaining 80% of training data being automatically
annotated, to achieve a performance comparable with state-of-the-art methods. All other results
are obtained from the literature, where full (100%) GT annotation is used.
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(AF)2-S3Net [16] 62.2 60.3 12.6 82.3 80.0 20.1 62.0 59.0 49.0 42.2 67.4 94.2 68.0 64.1 68.6 82.9 82.4
RangeNet++ [79] 65.5 66.0 21.3 77.2 80.9 30.2 66.8 69.6 52.1 54.2 72.3 94.1 66.6 63.5 70.1 83.1 79.8

PolarNet [140] 71.0 74.7 28.2 85.3 90.9 35.1 77.5 71.3 58.8 57.4 76.1 96.5 71.1 74.7 74.0 87.3 85.7
PVD [45] 76.0 76.2 40.0 90.2 94.0 50.9 77.4 78.8 64.7 62.0 84.1 96.6 71.4 76.4 76.3 90.3 86.9

CylAsy3D [145] 76.1 76.4 40.3 91.2 93.8 51.3 78.0 78.9 64.9 62.1 84.4 96.8 71.6 76.4 75.4 90.5 87.4
Cylinder3D (20%) 62.0 66.4 13.8 74.7 82.8 16.1 52.1 63.3 48.4 39.3 71.8 95.0 61.6 68.1 71.1 85.0 82.6

Ours (20%) 71.8 73.8 29.3 85.0 90.4 41.6 73.6 74.1 61.1 54.9 78.0 96.1 70.8 73.3 73.9 87.1 85.4

Table 4.3: LiDAR semantic segmentation performance on SemanticKITTI multi-scan
test set. Moving object classes are prefixed with ‘mv’; N.B., our model fails to segment ‘moving-
truck’ and ‘moving-other’ objects as there are no examples of such categories in the 20% labeled
split. This is the limitation of the data split.
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DarkNet53 [4] 41.6 84.1 30.4 32.9 20.0 20.7 7.5 91.6 64.9 75.3 27.5 85.2 56.5 78.4 50.7 64.8 38.1 53.3 61.5 14.1 15.2 0.2 28.9 37.8
SqueezesSegv3 [101] 43.1 88.5 24.0 26.2 29.2 22.7 6.3 90.1 57.6 73.9 27.1 91.2 66.8 84.0 66.0 65.7 50.8 48.7 53.2 41.2 26.2 36.2 2.3 0.1

KPConv [109] 51.2 93.7 44.9 47.2 42.5 38.6 21.6 86.5 58.4 70.5 26.7 90.8 64.5 84.6 70.3 66.0 57.0 53.9 69.4 0.5 0.5 67.5 67.4 47.2
CylAsy3D [145] 51.5 93.8 67.6 63.3 41.2 37.6 12.9 90.4 66.3 74.9 32.1 92.4 65.8 85.4 72.8 68.1 62.6 61.3 68.1 0.0 0.1 63.1 60.0 0.4

Cylinder3D (20%) 42.1 89.4 35.2 22.9 16.3 15.9 11.6 88.1 53.9 69.2 12.6 88.6 56.8 83.2 65.7 61.3 53.2 59.2 65.8 0.0 0.0 43.3 47.9 12.8
Ours (20%) 47.2 93.0 45.3 35.7 27.4 19.4 14.4 90.5 61.4 75.0 15.6 91.3 62.1 83.3 69.3 64.0 59.7 63.6 77.4 0.0 0.0 64.0 57.5 9.5

to 21 for testing. The dataset has two challenges, i.e., single-scan with 19 class categories and
multi-scan with 25 class categories, including 19 from single-scan and six moving-object categories.
nuScenes contains 1000 scenes with a great diversity of urban traffic and weather conditions. It
officially divides the data into 700/150/150 scenes for train/val/test. For our experiment, we cut
each sequence into two parts, the first 20% for the human-labeled set Dℓ and the latter 80% for the
unlabeled set Du.

4.4.2 3D Multi-Class Semantic Segmentation

We train a student model on pseudo-labels generated by the concordance of teachers. Here, we
utilize Cylinder3D and the output class probabilities for all individual scan points are treated with
our confidence-guided criterion (Eqs. 4.4, 4.5). Training is done by optimizing the cross-entropy loss
and the Lovasz-softmax loss [5] weighted by our confidence-guided criterion, as in Eq. 4.6. The
standard mean Intersection over Union (mIoU) metric is used for evaluation.
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Table 4.4: Semi-supervised learning on SemanticKITTI validation set. Performance in
mIoU (%). ‘Guided-Point-SSL’ denotes [50] semi-supervised models; ‘S0:0 � T {1,2,3}’ denotes our
approach with distillation from the concordance of teachers.

Labeled data
method 20% 30% 40%

Guided Point SSL [50] 58.8 59.4 59.9
S0:0 �T {1,2,3} (Ours) 59.9 60.7 62.2

Single-scan semantic segmentation. In this experiment, we compare the results of our method
with fully-supervised state-of-the-art LiDAR segmentation on SemanticKITTI single-scan test set
and nuScenes validation set. Further, we present some qualitative results in Fig. 4.5, which show that
our model helps to improve the segmentation quality as compared to its supervised-only counterparts.
As shown in Table 4.1, our method S0:0 �T {1,2,3} trained with only 20% of ground truth (GT) and
80% of pseudo-labeled outperforms all methods based on 3D-to-2D projection with fully-annotated
training data [133, 79, 140]. Moreover, our method shows comparable results to voxel partition
and 3D convolution-based methods, including fully-supervised Cylinder3D. We made a similar
comparison with the fully-supervised state-of-the-art methods on nuScenes validation split. Our
method S0:0 � T {1,2,3} trained with only 20% of GT and 80% of pseudo-labels outperforms some of
the fully-supervised models, see Table 4.2.

Multi-scan semantic segmentation. Compared to the single-scan set-up, the multi-scan segmentation
in SemanticKITTI has six more categories accounting for moving objects (car, truck, other-vehicle,
person, bicyclist and motorcyclist). In this experiment, all methods utilize multiple input point
clouds. In Table 4.3, we show that our method, with only 20% of human-labeled training data,
outperforms methods that use full manual annotations, namely, DarkNet53 [4] and SqueezesSegv3 [101],
and is on par with KPConv [109] and CylAsy3D [145]. Our method outperforms all others on the
moving-car and traffic-sign categories.

Comparison to state-of-the-art semi-supervised method. To further assess the merit of
our approach, we compare it to the most recent semi-supervised segmentation work, Guided-Point-
SSL [50] on the SemanticKITTI validation set. As shown in Table 4.4, our method learned from
Concordance of teachers, S0:0 � T {1,2,3}, outperforms Guided-Point-SSL with 20%, 30% and 40%
labeled data by 1.1, 1.3 and 2.3 mIoU points respectively.

4.4.3 3D Object Detection

The models are trained in the same way as described in PointRCNN [102], except for the confidence-
guided criterion and the usage of multiple frames at the input. In Table 4.5, we compare the proposed
method to the baseline S- 5:0 [102] and to the Mean-Teacher framework (MT) S- 5:0 � T- 5:0 [141].
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Table 4.5: Results of 3D object detection. Detection performance (AP percentage) of proposed
students trained with 10% human-labeled training data and of oracle model trained with full
(100%) labeled data on Argoverse validation set. ‘*’ indicates reimplementation into our multi-
frame PointRCCN architecture.

S- 5:0 [102]* S- 5:0 � T- 5:0 [141]* S- 5:0 �T {3,4,5} (Ours) Oracle
51.1 56.9 58.3 62.6

Table 4.6: Effect of temporal diversity of teachers. The student trained using concordance of
teachers from different temporal ranges outperforms the one trained from the same temporal range
but with different initialization in both (a) 3D object detection (Argoverse validation set) and (b)
semantic segmentation (SemanticKITTI validation set).

Object Detection AP
S- 3:0 �E{3,3} 54.3
S- 3:0 �T {2,3} 55.6

S- 4:0 �E{4,4} 57.2
S- 4:0 �T {3,4} 57.7

S- 5:0 �E{5,5} 58.0
S- 5:0 �T {4,5} 58.2

Semantic Segmentation mIoU
S- 1:0 �E{1,1,1} 59.5
S- 1:0 �T {1,2,3} 60.6

S- 2:0 �E{2,2,2} 59.9
S- 2:0 �T {1,2,3} 60.6

S- 3:0 �E{3,3,3} 60.0
S- 3:0 �T {1,2,3} 60.9

To reach a fair comparison, we have re-implemented the MT [141] into our architecture and used
the classification and regression branches of the original PointRCNN loss function instead of the
MT [141] consistency loss. The proposed method S- 5:0 � T {3,4,5} learned from the concordance of
teachers achieves 58.3 AP when trained with 10% human-labeled training data, outperforming the
baseline [102] by 7.2 AP and the MT [141] by 1.4 AP. Moreover, it closes 62.6% of the gap between
the baseline [102] and the ‘Oracle’ (the model S- 5:0 trained with 100% GT labeled training data).

4.4.4 Implementation Details

We trained models with an ADAM optimizer with a learning rate of 0.001 for 40 epochs on semantic
segmentation and 200 and 50 epochs of the RPN and RCNN branches of the object detection model,
respectively, using 4 Nvidia A100 GPUs running for 3 days of training for each task. In the object
detection task, we subsample each point cloud to 16,384 points from each frame as inputs to the
model. We have used three set-abstraction layers ϕ with sizes 4096, 1024, and 128 for our multi-scale
time-aware grouping to subsample points into groups. We have used λ = 0.1 in our experiments.

4.5 Ablation Studies

Ablation on temporal diversity of teachers. We show that the temporal diversity among
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Figure 4.5: A scene from SemanticKITTI with its GT semantic segmentation (1st column) showing
that our method S- 0:0 � T {1,2,3} (3rd column) can segment person , side-walks , bicycle and
drivable areas better than the supervised baseline based on Cylinder3D (2nd column). Correct
and incorrect segmentations are indicated by green and red circles, respectively. Both methods
utilize 20% of human-labeled data.

Figure 4.6: A scene from Argoverse showing that student S- 5:0 � T {3,4,5} can be robust to severe
occlusions. Some of the correctly detected boxes do not contain GT vehicle points since they
correspond to vehicles occluded in the current frame and partially occluded in the past frames, as
can be observed in the ring of camera images.
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Figure 4.7: Ablation on PL’s selection strategy in Argoverse object detection. Performance
as a function of threshold θ. ‘Ours’ is the proposed confidence-guided criterion and ‘CT’ the standard
confidence-based threshold [72, 142, 122].

teachers over-performs teachers with the same temporal range but with various training initializations.
Following the Concordance notation, a set of teachers with the same temporal range is denoted
E{n,...,n} = {T 1- n,n, . . . , T K- n,n}, where each randomly initialized teacher T k- n,n is operating in the
same temporal range as others. As shown in Table 4.6, the student trained by teachers from different
temporal ranges outperforms one trained by teachers on the same temporal range, in both 3D object
detection and 3D semantic segmentation.

Selection of pseudo-labels. This ablation study demonstrates the benefits of the proposed confidence-
guided criterion. The standard baselines here are tuning a single confidence-based threshold (CT)
for all pseudo-labels [72, 142, 122]. Models with our proposed selection criterion outperform the CT
across multiple confidence thresholds, see Fig. 4.7.

Effect of labeled and pseudo-labeled dataset ratio. We performed an ablation study to
understand the effect of labeled vs. pseudo-labeled training data. We have used the same architecture
setup, only varying the amount of labeled and pseudo-labeled data, |Dℓ| = 10, 20, 30, 40, 60, and
100% of training data. As shown in Fig. 4.8, the gain increases significantly by ∼ 10 mIoU when
the model uses |Dℓ| = 20% of training data compared to |Dℓ| = 10%. However, the relative gain
decreases as the number of labeled data increases to 30 and 40%. This trend shows that the size
ratio between Dℓ and Dp should be carefully set to achieve adequate performance with the smallest
amount of labeled data possible. Moreover, the proposed method, when it uses |Dℓ| = 60% of
training data (and |Dp| = 40%), reaches the performance of the fully-supervised baseline model
S0:0 which is Cylinder3D [146] trained with 100% of labeled training data; it can be observed by
comparing the top-right ending points on the blue and green lines.
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Figure 4.8: Impact of labeling proporiton. Semantic segmentation performance on
SemanticKITTI validation set as a function of labeled data proportion size.

Table 4.7: Comparision to other teacher-student methods. All methods use S0:0, are trained
with 20% of labeled data and are evaluated on the SemanticKITTI validation set.

methods mIoU [%]
Cylinder3D + KD [113] 54.8
Cylinder3D + EN [9] 56.0
Cylinder3D + Ours 59.9

Comparision to other teacher-student frameworks. We compare in Table 4.7 our method
with other teacher-student approaches such as knowledge distillation (KD) [113], and Ensemble
(EN) [9]. We report a comparison using the Cylinder3D S0:0 model trained with the methods above
using the hyperparameters from Section 4.4.4. All methods are trained with 20% labeled data. As
shown in Table 4.7, the proposed method significantly outperforms KD [113] and EN [9] baseline
teacher-student methods.

Distant and close objects. We investigate how multi-scan segmentation is affected by the
distance of the points to the ego-vehicle and the number of labeled and pseudo-labeled points for
each object class. We compare our method to the baseline [146] on the SemanticKITTI validation
set to show the relative gain. Both models are trained with 20% labeled training data. As shown in
Fig. 4.9, a notable performance boost is observed for rarely-appearing classes, especially within 30
meters distance from the ego-vehicle.
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Figure 4.9: Distance-based improvement in class IoUs on SemanticKITTI. Classes are
sorted according to the number of associated labeled training points in Dℓ and visualized together
with pseudo-labeled points (Dp). We show relative IoU gain within a 30-meter distance from the
ego-vehicle ([0-30]m) and at a further distance ([30+]m). Moving objects are prefixed with ‘mv’;
N.B.: we have omitted classes that do not have points in the labeled split Dℓ.

4.6 Discussion

Conclusion. We propose a novel pseudo-labeling framework that leverages spatio-temporal information
from unlabeled sequences of point clouds. We demonstrate its merit in two 3D perception tasks on
publicly available datasets. The reported performance gains stem from (i) A better selection of
the final pseudo-labels via the concordance of multiple teachers operating at different temporal
ranges; (ii) A novel pseudo-label confidence-guided criterion. Thanks to the privileged information
available in the different temporal ranges, the Concordance of teachers delivers strong pseudo-labeled
samples. Using manual labeling of only 20% of training data, our method achieved state-of-the-art
performance in semi-supervised 3D semantic segmentation and competes even with methods that
use the full set of labels on this task. By the nature of our pseudo-labeling framework, the proposed
approach is complementary to other techniques that use sequential data, and can thus be combined
with them to further boost the performance.

Limitations. The SemanticKITTI dataset has a huge data imbalance, and we perform the Dℓ and
Du split without any relevance to the number of points per object class. We observe cases where no
points belong to a specific object category in the labeled set Dℓ resulting in teachers’ inability to
recognize a particular class, see ‘mv-truck’ and ‘mv-other’ in Table 4.3. One should ensure that all the
object categories are present in the labeled set Dℓ. Secondly, in object detection, since we estimate
only objects in the reference frame, we sometimes observe false false positives, i.e., detections that
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are correct but missing in the GT annotation due to no points in the reference frame. The model
learns point features from different times and estimate vehicle position in the reference frame. We
did not address this issue in evaluating the object detection task.

Future work. The proposed spatial-temporal aggregation effects only the input of the network and
only indirectly effect performance. One potential follow-up work is to better initialize architecture
with the help of Vision foundation models. We chose to follow-up by explicitly pairing the points over
temporal horizon and enforce consistent predictions scene flow, which is described in the following
sections.



Chapter 5

Motion Features From Scene Flow

5.1 Introduction

Scene flow is defined as a three-dimensional motion field of points in the physical world. As it is a key
input for many fundamental robotic and computer vision tasks, such as ego-motion estimation [2,
110], instance segmentation [105, 47], scene reconstruction [63] and object detection [26], its accurate
estimation is crucial. Learning-based approaches to scene flow estimation were first fully supervised
as in the seminal work [70]. However, ground-truth scene flows in [70] and follow-up works [57, 18,
127, 85] are usually synthetic, as annotations of real-world scene flows are very scarce. This makes
fully-supervised methods challenging to scale and adapt to real-world use cases. Consequently, the
research community shifted its attention to self-supervised methods that learn to estimate the scene
flow from un-annotated sequences of point clouds, which proved to be very efficient [59].

The first mechanism at work in self-supervised methods is point cloud alignment: for each
pair of consecutive point clouds in the training set, point-to-point correspondences are established
based on spatio-temporal or visual similarity, and the model tries to predict flows that approximate
these correspondences at best. If no additional constraints are considered, the predicted flows
can arbitrarily deform geometric structures in the scene, which often ends up in a degenerate
solution due to the high number of incorrect correspondences; see the top-left image in Figure 5.2
for an illustration. To avoid this, additional regularization terms are often introduced to enforce
desirable properties. The regularization term typically determines rigid clusters (subsets of points
corresponding ideally to a single rigid body) and enforces their flow to be a rigid motion via so-
called smoothness [59] or rigid loss [37]; see top-right image in Figure 5.2. However, state-of-the-art
models [57, 59] rely on clusters that are both over-fragmented (several clusters on the same object)
and inaccurate (clusters bleeding over object borders), which limits the benefits of the regularization:
one still observes unrealistic flows that deform rigid bodies substantially.

In this topic, we proposed to revisit how self-supervised scene flow learning is regularized, thus

53
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Figure 5.1: Proposed self-supervised scene flow framework. Self-supervised scene flow
prediction is usually trained with losses that enforce the alignment of source and target point clouds
and the smoothness of the flow (Ldist and Lsmooth respectively). We improve the latter by introducing
a surface-aware loss, Lsurf, and a cyclic temporal consistency one, Lcyc. The proposed framework
outperforms the state of the art on all tested datasets.
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Figure 5.2: Illustration of baseline (top) and proposed (bottom) losses to train self-
supervised scene flows. (Top-left) Classic approaches first enforce the alignment of the two point
clouds, irrespective of their structure. This results in wrong correspondences and incorrect flows.
(Top-right) To improve results, local smoothness enforces motion consistency within rigid clusters.
Defined only on the proximity of points, such clusters can typically be too small (R2) or connect
unrelated rigid bodies (R1), which limits the efficiency of the smoothness loss. (Bottom-left) By
taking into account surface orientation similarity in addition to spatial proximity in the definition
of clusters, we mitigate the latter issue. (Bottom-right) We also propose a new cyclic consistency
loss that enforces two-way time consistency between the source and target point clouds, based on
significantly larger and more accurate rigid clusters. In each figure, flow vectors are colored by rigid
clusters (‘r.c.’), e.g., there are all colored differently when using only Ldist.
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reaching novel state-of-the-art performance on several benchmarks. In more detail, we made several
contributions [114, 115]:

1. We proposed a novel way to form rigid clusters by explicitly considering the cyclic smoothness [114]
of the flow between source and target scans. This delivers significantly larger clusters into the
smoothness loss (Figure 5.2, bottom-right).

2. We are first to improve the search for point correspondences in the alignment loss with the
assumption of local surface regularity [114] (Figure 5.2, bottom-left).

3. We proposed a novel clustering method [115], where the rigid object segmentation is initialized
from spatial-temporal grouping and is jointly optimized with the flow.

4. We compared quantitatively our framework on four publicly-available sensor-unique datasets [11,
7, 78, 106], with several baselines, and we reach new state-of-the-art results in all setups.

5. We achieved significant improvements on long tail classes [115], such as independently moving
pedestrians and cyclists, where current solutions fail due to structural prior regularization.

5.2 Related Work

Supervised scene flow regression During the nascent phases of learning-based 3D scene flow
estimation, methodologies leaned upon synthetic datasets [76, 39, 123] for initial training. However,
owing to the sim-to-real distribution gap, these approaches yield sub-optimal performance when
confronted with real-world point clouds [63]. FlowNet3D [70] adeptly incorporates principles from
FlowNet [42] and underwent fully supervised training, employing L2 loss with ground-truth flow
annotations. Meteor-Net [71] further leverages temporally ordered frame inputs to enhance the
quality of flow inference. A continuous convolution, as introduced in [123], compensates for both
ego-motion and object-motion. HPLFlowNet [39] turns points into a permutohedral lattice and
applied bilateral convolution. FLOT [85] proposed a correspondence-based network, computing
an optimal transport as an initial flow, followed by flow refinement through trained convolutions.
BiPFN [18] bidirectionally propagates features from each point cloud, enriching the point feature
representation. A hierarchical network that directly obtains key points flow through a lightweight
Trans-flow layer employing local geometry priors was proposed in [23]. The recently unveiled IHNet
architecture [127] proposes an iterative hierarchical network, steered by high-resolution inferred
information and estimating flow in a coarse-to-fine manner. While all aforementioned methods rely
on ground-truth flows, our emphasis is on scalable ground-truth-free flow regression.
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Self-supervised scene flow Recent methodologies circumvented the necessity for ground-truth
flow by adopting self-supervised learning. The pioneering effort to escape full supervision emerged
in [81], employing a self-supervised nearest neighbor loss and ensuring cycle consistency between
forward and reverse scene flow. PointPWC-Net [131] proposes a wholly self-supervised methodology,
leveraging a combination of nearest-neighbors and Laplacian losses. Flowstep3D [57] estimates flow
with local and global feature matching using correlation matrices and iterative warping. The method
called SCOOP [59] utilizes a hybrid framework of correspondence-based feature matching, followed
by a flow refinement layer using self-supervised losses. Li et al. [61] address the common challenges of
neglecting surface normals and the potentiality of many-to-one correspondences in matching. They
reframe the matching task as an optimal transport problem. RigidFlow [62] posits a strategy for
generating pseudo scene flow within the realm of self-supervised learning. This approach hinges
on piecewise rigid motion estimation applied to sets of pseudo-rigid regions, discerned through
the supervoxels method [68]. Notably, the method emphasizes region-wise rigid alignments as
opposed to point-wise alignments. In a parallel vein, Najibi et al. [82] harness self-learned flow
in an automated pseudo-labeling pipeline. This method is directed towards training an open-set
object detector and trajectory predictor. Speeding up the Neural Scene Flow stands as the focal aim
in [64]. The authors pinpoint the Chamfer distance as a computational bottleneck and reintroduce
the Distance Transform as a correspondence-free loss function. Remarkably, they attain real-time
performance with precision on par with learning-based methods. The work of Agostinho et al. [1]
introduces a differentiable layer for rotation estimation refinement from an initial guess provided
by Kabsch [54] algorithm, which extends the optimization of the point cloud registration problem.
Integration of this layer into conventional learning-based methodologies yields an enhancement in
the overall quality of the estimated flow. In the pursuit of self-supervised scene flow estimation,
Shen et al. [99] incorporates superpoint generation directly into the model. They implemented an
iterative refinement process for both the flow and dynamically evolving superpoints. Our method
belongs to the self-supervised family, as we do not require human labels. We also regularize flow by
enforcing smoothness on the pre-computed smaller groups of points compared to rigid movement on
under-segmented clusters as in [62].

Direct flow optimization. The Graph Prior approach, as introduced by [84], is rooted in pure
optimization, enabling flow estimation without the need for training data. The Neural Prior[63]
illustrates that flows can be optimized by incorporating a structure-based prior within the network
architecture. The central objective in [64] revolves around expediting the Neural Scene Flow [64]. Li
et al. identify the Chamfer distance as a computational bottleneck and use the Distance Transform
as a surrogate correspondence-free loss function. The methodology outlined in Scene Flow via
Distillation by [118] embodies a direct distillation framework. This innovative approach utilizes
a label-free optimization method to generate pseudo-labels, which are subsequently employed to
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supervise a feed-forward model to achieve better speed/performance ratio. The two newest optimization-
based methods, the MBNSFP [119] and Chodosh [20] adopt Neural Prior architecture and enhanced
it with spatial consistency regularization [119] and post-process cluster rigidity [20], respectively. We
also use rigidity regularization, but we do not limit our method to fixed initial clusters as [119, 20].
Instead, we jointly optimize initial cluster and flow to progressively merge and enlarge clusters while
enforcing rigidity on them. Another difference to aforementioned methods, is the absence of Neural
Prior as structural regularization, which plays crucial role for populated dynamic scenes.

Registration and rigidity regularization Since the most standard self-supervised nearest-
neighbor loss has multiple local minima, one must introduce regularization mechanisms to reach
physically plausible flows, i.e., that follow well the motion of rigid structures and objects. Weak
supervision in the form of ego-motion and foreground segmentation was shown to provide an object-
level abstraction for the estimation of rigid flows [37]. Without the segmentation signals, the
FlowStep3D [57] enforces the source point cloud to preserve its Laplacian when warped according
to the predicted flow. The Laplacian was approximated by the point nearest neighborhood, forming
the smoothness loss. Similarly, SLIM [2] incorporates the smoothness loss in the process of learning
network weights. Meanwhile, SCOOP [59] integrates the smoothness loss within the optimization-
based flow refinement layer. Implicit rigidity regularization was successfully imposed via strong
model prior in [63, 3, 138]. In [15], a novel global similarity measure takes the form of a second-
order spatial compatibility measure on consensus seeds, that serve as input to a weighted SVD
algorithm, ultimately producing global rigid transformation.

We focus on meaningful regularization of self-supervised methods. To enhance the flow rigidity,
we introduce novel losses that leverage the correspondence neighborhood in the target point cloud,
matched to the source through the flow vectors, and introduce temporal cyclic smoothness. We also
introduce surface-aware smoothness based on normals to separate close rigid clusters. Contrary to
[15], we use spatial consistency mechanism for rigidity regularization, but for multiple objects.

5.3 Methodology of Surface Regularity and Cyclic Smoothness

Given two successive point clouds X ∈ R3 and Y ∈ R3 captured from the same dynamic scene at
instants t and t + δt, the scene flow F = {fx, x ∈ X} at time t is the set of the 3D displacements of
points in source point cloud X over time interval δt, the 3D motion field in other words. The target
point cloud Y is leveraged to predict this flow.

Learning how to predict scene flows from unlabeled training pairs of point clouds is classically
done using an unsupervised loss that promotes point cloud alignment along with flow smoothness
under the assumption that the scene is mainly composed of rigid objects or object parts. We propose
to improve such self-supervised approaches with the introduction of two novel consistency losses, as
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Figure 5.3: Cyclic Smoothness loss. The new loss Lcyc enforces the same flow (dashed green
arrow) over the rigid cluster Rcyc(x) (light blue set) defined as follows: Given the source point x and
its best match y⋆

x in target point cloud according to flow F , we construct its k-nearest neighborhood
Nk

Y (y⋆
x) (light red set). Any source point r whose flow r + fr sends it there is included in the rigid

cluster Rcyc(x). While the proposed Lcyc (left) explicitly detects the rigid object as a compact
cluster via normals similarity in the target point cloud and then propagates the knowledge directly
to the source point cloud by enforcing rigid flow, the baseline Cycle Consistency [81] Lcycle (right)
implicitly detects the rigid object by running the flow prediction in green point cloud (x + fx) in the
backward direction and then enforces the flow (blue arrows) to get back into its source.

illustrated in the bottom part of Figure 5.2.

5.3.1 Baseline losses of self-supervised scene flow

If no correspondence annotations are available, a typical self-supervised loss favors a flow that aligns
as much as possible the source point cloud to the target one, e.g, using the nearest-neighbor distance
[81]:

Ldist(F ) = 1
|X|

∑
x∈X

min
y∈Y

∥x + fx − y∥2
2. (5.1)

Since this loss enforces no spatial consistency whatsoever, each point is allowed to flow independently,
and rigid objects can get substantially deformed or fragmented. To prevent this in scenes with rigid
objects, one can define for each point x ∈ X a rigid cluster R(x) ⊂ X, i.e, a set of other points likely
to lie on the same rigid fragment. A typical choice [57, 59] is to simply consider the set Nk

X(x) of
k-nearest neighbors of x in X. Once rigid clusters R(x) are defined, the smoothness of the flow F

is classically enforced through a robust L1 loss:

Lsmooth(F, R) = 1
|X|

∑
x∈X

1
|R(x)|

∑
r∈R(x)

∥fx − fr∥1. (5.2)

It is desirable to have rigid clusters as large as possible to maximize the benefit of the loss,
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preventing rigid objects from getting deformed or fragmented. However, in the case of simply using
k nearest neighbors, a too-large value of k incurs the risk of wrongly grouping multiple independent
rigid parts into a common rigid cluster. Striking the right balance is challenging.

Towards this end, we propose to refine the definition of the clusters so as to respect the spatio-
temporal consistency of objects. In particular, we extend the definition by explicitly reconstructing
the surface of objects, and by enforcing cyclic consistency of rigid clusters between source and target
point clouds.

5.3.2 Surface smoothness

We improve first the definition of rigid clusters by taking into account the orientation of the object’s
surface at each point besides its mere position. This is significant information in scenes with a
prevalence of nearly planar surfaces; it will help separate two close rigid objects that have different
motions. Denoting nx the normal of the surface captured by X at position x, we define a novel
surface-aware descriptor ϕx = (x, nx) ∈ R6 at this location. It allows us to compute a surface-aware
cluster

Rsurf(x) = Nk
Φ(ϕx), (5.3)

where Φ = {ϕx, x ∈ X}. In practice, we find kn nearest neighbors of the point x, followed by
obtaining principal vectors of covariance matrices of each of the points in the neighborhood. The
main principal vector normalized to one corresponds to the normal vectors nx, which is used to
construct surface-aware descriptor ϕ. Grouping similar surfaces like this improves local rigidity.
Then, we follow the method described in [111] for sign disambiguation. The implementation is
available in the open-source PyTorch3D library [90]. The new surface-aware smoothness loss then
reads:

Lsurf(F ) = Lsmooth(F, Rsurf). (5.4)

By using this loss instead of the regular one, flow consistency is enforced among pairs of scene
elements that are close and similarly oriented.

5.3.3 Cyclic smoothness

We now introduce a second smoothing loss that enforces cyclic (forward-backward) consistency
between times t and t + δt. It aims at propagating the information about object rigidity from the
target point cloud back to the source one via forward correspondences, see Figure 5.3.

Following matching loss (5.1), a given scene flow F effectively matches each source point x with
a point y⋆ ∈ Y :

y⋆ = arg min
y∈Y

∥x + fx − y∥2
2. (5.5)

Based on this correspondence, we define the cyclic rigid cluster of point x as a set of points r ∈ X
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whose displaced position according to F falls within the neighborhood of y⋆
x. More formally:

Rcyc(x) = {r | r + fr ∈ Nk
Y (y⋆

x)}. (5.6)

The corresponding cycle-consistent loss reads:

Lcyc(F ) = Lsmooth(F, Rcyc). (5.7)

Note that the definition of this new loss does not introduce any extra parameters.

5.3.4 Training objective and Architecture

Given an architecture that can be trained to predict a scene flow F from a pair (X, Y ) of point
clouds, we can make use of the novel proposed losses. In that case, the training objective minimizes
the loss:

L = Ldist + αsurfLsurf + αcycLcyc, (5.8)

where αsurf and αcyc are hyperparameters balancing the contribution of individual loss terms. This
approach is architecture-independent and can thus be combined with existing models. In practice,
we put it at work with two existing scene flow models, namely SCOOP [59] stereo-based datasets
and Neural Prior [63] for real LiDARs.

5.4 Experiments

In this section, we demonstrate quantitatively and qualitatively the performance gains stemming
from our proposed losses on two state-of-the-art architectures and four benchmarks. We also analyze
these gains, as well as our design and parameter choices, in ablation studies.

Datasets and metrics. We performed experiments on four scene flow datasets. The first one is
stereoKITTI [78], which contains real-world self-driving scenes. We used the commonly benchmarked
subset released by [70] consisting of point clouds created from stereo images. The dataset, dubbed
KITTIo, was split by [81] into train and test parts denoted KITTIv and KITTIt respectively.
Additionally, the authors introduced an unlabelled dataset, KITTIr, consisting of actual LiDAR
sensor data from the same driving sequences. Next, we used three large-scale LiDAR autonomous
driving datasets, namely Argoverse [11] (and also Argoverse2 [129]), nuScenes [7], and Waymo [106],
with challenging dynamic scenes captured by different LiDAR sensors. The LiDAR datasets were
sampled and processed according to [63] for the fair comparison.

As there are no official scene flow annotations, we adopted the data processing approach from [53]
to derive pseudo-ground-truth scene flow information based on object detection annotations, akin to
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Table 5.1: Comparative results of scene flow estimation methods on stereo-based
datasets. We evaluate scene flow based on standard metrics EPE, AS, AR and Out, for different
settings of supervision, train data and test data. Combined with two architectures (SCOOP and
Neural Prior), our approach beats all fully-supervised baselines trained on FT3D as well as all
self-supervised methods. There are differences between the reported performance (‘*’) of SCOOP
and the one recomputed from original codebase (‘†’), which surpasses the former. To be fair in
evaluation, we report both performances while optimizing the flow until convergence to achieve the
models’ upper-bound performance. Our proposed loss terms improve the performance even further.
For our method, metrics are averaged over 6 runs.

Method Supervision Train data Test data EPE [m] ↓ AS [%] ↑ AR [%] ↑ Out. [%] ↓
FlowNet3D[42] Full FT3D KITTIo 0.173 27.6 60.9 64.9
FLOT[85] Full FT3D KITTIo 0.107 45.1 74.0 46.3
BiPFN[18] Full FT3D KITTIo 0.065 76.9 90.6 26.4
R3DSF[37] Full FT3D KITTIo 0.042 84.9 95.9 20.8
FlowStep3D[57] Self FT3D KITTIo 0.102 70.8 83.9 24.6
SCOOP*[59] Self FT3D KITTIo 0.047 91.3 95.0 18.6
SCOOP†[59] Self FT3D KITTIo 0.037 89.4 94.9 18.0
SCOOP + Ours Self FT3D KITTIo 0.024 (-35%) 97.1 98.6 13.9

Graph Prior[84] Self N/A KITTIt 0.082 84.0 88.5 -
Neural Prior[63] Self N/A KITTIt 0.036 92.3 96.2 13.2
Neural Prior + Ours Self N/A KITTIt 0.034 (-5%) 92.5 97.5 12.9
JGWTF[81] Self nuScenes + KITTIv KITTIt 0.105 46.5 79.4 -
SPF[99] Self KITTIr + KITTIv KITTIt 0.089 41.7 75.0 -
SCOOP*[59] Self KITTIv KITTIt 0.039 93.6 96.5 15.2
SCOOP†[59] Self KITTIv KITTIt 0.029 95.9 98.0 12.2
SCOOP + Ours Self KITTIv KITTIt 0.021 (-28%) 98.9 99.5 11.3

the methodology employed in [63]. Finally, we removed ground points in the height of 0.3 meters or
lower for Waymo dataset, following the procedure outlined in previous works [70, 63, 59, 64, 37, 119].
For Argoverse1 and Argoverse2, we used the accompanying ground maps to remove ground points
and constrain the range of input points to 35 meters as done in [20, 37, 131, 59] if not stated
otherwise.

Evaluation metrics. For proper evaluation of results we need to define point error ei and relative
point error er

i . We define these errors in meters as follows:

ei = ∥fi − fgt
i ∥2, er

i =
∥fi − fgt

i ∥2
∥fgt

i ∥2
,

where fi and fgt
i are the predicted and ground-truth flow for point pi, respectively. From ei, er

we calculate Average Point Error in meters (EPE), Strict Accuracy (AS), Relaxed Accuracy (AR),
Angle Error (θ) and Outliers (Out.), which are standard metrics used in the literature, e.g., [63, 59].
AS is a percentage of points that reached errors ei < 0.05 or er

i < 5%. The AR is the percentage
of points for which the error satisfies either ei < 0.1 or er

i < 10%. Metric Out. is the percentage of
points with error either ei > 0.3 or er

i > 10%, and finally θ denotes the mean angle error between fi
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Figure 5.4: Example of improvements brought by proposed framework on real LiDAR
data. In this scene from the Argoverse dataset, we show the per-point flow estimation error encoded
by color on a logarithmic scale. While the Neural Prior [63] baseline on the left fails to produce
consistent flows along the majority of the vehicle body (orange ellipse), the addition of our proposed
losses corrects the full body rigidity. The same applies to the pole (green ellipse) and the wall in the
back (red ellipse).
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Table 5.2: Performance on LiDAR datasets. We show performance on standard LiDAR
benchmarks with commonly reported metrics. Fully-supervised methods are trained on FT3Do
dataset. When adding the proposed losses, we consistently improve the performance of the state-of-
the-art Neural Prior method across all datasets. Our method results are averages over 6 runs.

Method D EPE [m]↓ AS [%]↑ AR [%]↑ θ [rad]↓
FlowNet3D[42]

A
rg

ov
er

se

0.455 1.34 6.12 0.736
JGWTF[81] 0.542 8.80 20.28 0.715
PointPWC-Net[131] 0.409 9.79 29.31 0.643
Neural Prior[63] 0.065 77.89 90.68 0.230
Neural Prior + Ours 0.054 (-17%) 81.11 92.51 0.223
FlowNet3D[42]

N
us

ce
ne

s 0.505 2.12 10.81 0.620
JGWTF[81] 0.625 6.09 13.90 0.432
PointPWC-Net[131] 0.431 6.87 22.42 0.406
Neural Prior[63] 0.203 49.64 76.03 0.244
Neural Prior + Ours 0.139 (-32%) 55.56 80.43 0.220
R3DSF[37]

W
ay

m
o 0.414 35.47 44.96 0.527

Neural Prior[63] 0.087 78.96 89.96 0.300
Neural Prior + Ours 0.074 (-15%) 81.65 91.45 0.290

and fgt
i .

In automotive scenes, the majority of the points come from a static background. When the
metrics (EPE, AS, AR) are calculated and averaged for the full point cloud, the results show
mostly performance on static points, lowering the importance of dynamic objects [20, 118]. If we
dig even further, the dynamic points are heavily dominated by large vehicles and the performance
on smaller, yet equally important classes, like Pedestrians and Cyclists are not observable from the
dynamic EPE metrics. Therefore, we also report the metrics per-class on the main benchmarks like
Argoverse2. We compare the metrics based on previous state-of-the-art for fair comparisons, i.e. on
StereoKITTI, we do not use the threeway EPE but overall EPE.

Baselines, settings, implementation details. We benchmark our method with other 3D scene
flow frameworks such as fully-supervised methods trained on synthetic FT3D dataset [77] with
ground-truth flows [70, 57, 85], weakly-supervised models with access to the foreground segmentation
labels [37], self-supervised models [59, 81, 131], and optimization-based approaches [63, 84].

Point clouds in both FT3D and stereoKITTI are obtained similarly by lifting stereo images
to 3D through ground-truth 2D optical flow. Hence, their domain gap is relatively small, and
they offer cross-dataset evaluation, enabling models to be trained on synthetic FT3D in a fully-
supervised fashion. On the other hand, in LiDAR-based autonomous driving scenarios, point clouds
are much sparser and provide different sampling patterns with no direct one-to-one correspondences,
resulting in a much more challenging setting for scene flow estimation. To be consistent with the
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Table 5.3: Influence of proposed losses. The performance reached with various loss combinations
is evaluated on nuScenes dataset with Neural Prior architecture. We observe that, by gradually
adding the proposed losses, we improve the performance in all metrics.

Lsmooth Lcyc Lsurf EPE [m] ↓ AS [%] ↑ AR [%] ↑
0.203 49.70 76.03
0.175 53.22 79.11
0.163 50.04 76.47
0.166 55.18 80.39
0.145 53.59 79.27
0.139 55.56 80.43

evaluation of top-performing scene flow models, we test our method on all points present in the
scene and not partial chunks and optimize until the convergence of the loss or until reaching the
maximum predefined number of iterations. We incorporate in our framework the two top-performing
architectures SCOOP [59] and Neural Prior [63], which are the current state-of-the-art respectively
on stereoKITTI and on LiDAR scene flow datasets.

Our method is implemented in PyTorch and trained on one NVIDIA Tesla A100 GPU. We use
the default parameters for both architectures, as reported in the original papers. We use αsurf = 10
as SCOOP does for the regular weight of smoothness on the stereoKITTI dataset, and we similarly
set αcyc = 10. For Neural Prior, we use αsurf = 1 since there is already a regularization included in
the network structure, and we keep αcyc = 10 for consistency in all experiments.

For the stereoKITTI dataset, we use k = 32 for k-nn computations as in the original SCOOP
configuration and k = 4 for LiDAR datasets since LiDAR point clouds are much more sparse. Lastly,
we compute normals for surface smoothness based on kn = 5 nearest neighbors for all datasets.

5.4.1 Evaluation on StereoKITTI

In Table 5.1, we show the results of our method with tested architectures on the stereoKITTI dataset
in comparison to baselines. Coupled with existing self-supervised architectures, our losses outperform
the fully-supervised models trained on large synthetic FT3D datasets and the self-supervised and
optimization-based methods. Mainly, our self-supervised loss terms improve the state-of-the-art
architectures on both KITTIo and KITTIt splits. On these two splits, our proposed loss terms deliver
relative EPE gains of 35.1% and 27.5%, respectively, on top of state-of-the-art SCOOP architecture.
Performance is boosted in all other metrics as well. These results demonstrate the merit of the
proposed losses: they bring current state-of-the-art scene flow models to new performance levels.

5.4.2 Generalization over various LiDAR datasets

In Table 5.2, we demonstrate the benefit of our loss terms applied in combination with Neural Prior
architecture on different LiDAR datasets. While we keep the proposed parameters unchanged for
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Regularization EPE [m] AS [%] AR[%]
Lcycle 0.168 49.36 76.56
Lcyc 0.163 50.04 76.47

Lcycle + Lsm 0.149 53.08 79.30
Lcyc + Lsm 0.145 53.59 79.57

Lcycle + Lcyc + Lsm 0.132 55.41 80.76

Table 5.4: Result of cycle losses on nuScenes, without Lsurf to isolate the effect of Lcyc. Standard
losses in blue and our proposed component in red.

all the datasets in the paper, we achieve consistent improvement in all cases with various sensor
configurations, even on much sparser nuScenes LiDAR. We improved the performance of Neural
Prior architecture in all of the evaluation metrics. Such consistent gains demonstrate that the
assumptions of surface rigidity and regularity that underpin our losses are agnostic to the sensor
domain and sampling pattern. See Figure 5.4 for a qualitative sample.

5.4.3 Ablations studies

Influence of loss terms. We examine the performance of various combinations for proposed
losses with Neural Prior architecture on the nuScenes dataset; see Table 5.3. We observe the benefit
of adding the smoothness loss to the existing prior regularization. Our proposed terms Lcyc and
Lsurf increase the performance even further when adding components separately, where Lcyc has a
large impact on EPE and Lsurf greatly increases AS. Note that Lsurf substitutes the Lsmooth, and
therefore combination of both at the same time is omitted.

Cyclic Smoothness vs. Cycle Consistency The name of our proposed Cyclic Smoothness
implies similarities with Cycle Consistency loss introduced in JGWTF [81]. We demonstrate differences
in Figure 5.3 and experimentally verify gains in Table 5.4. Both losses regularize the flow predicted
in the blue source point cloud by transferring the knowledge about the object rigidity observable in
the target point cloud, see Figure 5.3. The main difference between proposed cyclic smoothness Lcyc

and standard cycle consistency Lcycle stems from the way the rigid object in the red point cloud is
discovered. Both approaches can prevent trivial failure cases in which the flow of two distinct blue
points ends up in a single red point; however, in more complicated cases, the behavior is different.
The implicit rigidity propagation is extremely dependent on the presence of a high-density point
cloud and the small noise of the predicted (green) point cloud in order to discover the actual rigid
object successfully. We experimentally demonstrate that both proposed losses are complementary;
see Table 5.4. The best results are achieved with the combination of both, while the second best
results are achieved with the proposed explicit propagation.

Influence of Surface Smoothness on stereoKITTI We ablate the number kn of nearest
neighbor points needed to construct normals for Lsurf on KITTIt dataset in Figure 5.5. We observe
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Figure 5.5: Ablation of normal estimation on KITTIt. Influence on the performance of
the number of neighboring points used to compute surface normals. The best performance for
the SCOOP model is obtained with kn = 4, and further increase of neighborhood diminishes the
performance.

that the best performance is reached on the stereo-based dataset when four neighbors are used
to compute normals. Adding more points diminishes the performance yet still surpasses SCOOP;
see Figure 5.6 for an example of separating flows of vehicle and falsely segmented ground. The
performance is exceptionally worse when we utilize the minimum number of points for normal
estimation, i.e. three. We attribute this to the sampling bias of stereo camera data, where the three
points most likely lie on a line that comes from adjacent pixels, making normal estimation ill-posed.

5.5 Discussion to Cyclic and Surface Smoothness

Conclusion. Self-supervised learning of scene flow without ground-truth signals is prone to degenerative
solutions. We have introduced surface awareness and cyclic smoothness into the self-supervised
learning framework, which proved essential for scene flow regularization and improved the performance
of state-of-the-art models. The experiments demonstrated that the method works in real-world
LiDAR settings, with point clouds from a standard stereo-based dataset, and with multiple network
architectures, proving its generalization ability. Since our method aims for an improved selection
of the object-centric rigid clusters, the proposed loss terms could also be adapted to instance
segmentation in the future. We also plan to extend the cycle smoothness to work across multiple
frames while seeking a broader temporal consistency.
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Figure 5.6: Qualitative example on KITTIt. Top-left viewpoint shows a point cloud with flow
after ground filtering with some ground falsely segmented. As a result, the ground with flow induced
by ego movement shares the same neighborhood in smoothness loss. Our surface loss, however,
groups points, taking into account the associated normals, thus separating the planar ground from
the vehicle for a much more consistent flow.
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Limitations. The cycle smoothness loss works best when there are multiple corresponding points
found in the target point cloud neighborhood NY (y⋆

x). When there are no due to the sudden
occlusion in the target frame or the points become out-of-range, the proposed cyclic smoothness
converges into the regular smoothness loss. By increasing the number of points in rigid clusters
in Lcyc, we implicitly enforce the flow to be a purely translational movement rather than a more
realistic rotation and translation. However, due to the high framerate of the sensor, the translation
movement is a sufficient approximation for most of the applications. Note also that this issue is not
specific to our approach as it is already a weak point of the standard smoothness loss.

If the point cloud is very sparse, Lsurf would only introduce noise to the features for neighborhood
calculation in final smoothness. Flow estimation also would not benefit from Lsurf on planar objects.

Future work. We show improvement of surface-aware component even on nuScenes dataset, which
has much sparser point clouds compared to other LiDAR datasets and, especially, the stereo dataset.
However, the surface-aware component of our method is more precise when measurements are dense.
The additional improvement may consist of adding future temporal horizon and shape reconstruction
to densify the measurements or instance segmentation as a input to loss terms. We chose to follow-up
with explicitly model the point grouping as object instance assignment rather than neighborhoods,
which is described in following sections.
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5.6 Joint Flow and Object Instance Optimization

Figure 5.7: Comparison of the proposed method with self-supervised competitors on Argoverse2
Dataset [11]. Our method is able to distinguish the different motion patterns and separate objects,
while other methods tend to under-segment objects and fit incorrect rigid motion.

Self-supervision in 3D flow estimation always stems from strong prior assumptions about the scene
structure. State-of-the-art methods [37, 62, 105, 20, 119] typically construct spatially compact
clusters [27], that are assumed to correspond to rigidly moving objects as a first step and then
apply rigid flow regularization for these clusters. Such premature clustering inevitably suffers from
under-segmentation (i.e. merging several rigid objects into a single cluster) and over-segmentation
(i.e. disintegration of a single rigid object to multiple clusters). To partially suppress the under-
segmentation issue, the outlier rejection technique has recently been proposed [119]. Nevertheless,
the quality of the initial clustering remains the main bottleneck, which prevents estimating the
accurate flow, especially in situations where multiple small objects are moving independently close
to each other. In contrast to existing approaches, we generate many small overlapping spatio-temporal
rigid-cluster hypotheses and then jointly optimize the flow with the rigid-body segmentation. We
quantitatively and qualitatively demonstrate that such an approach mitigates the over and under-
segmentation issues and consequently yields superior results, especially on dynamic objects; see
Figure 5.7 for the comparison.

In the following self-supervised framework, we propose to employ two losses that are visualized
using the analogy of a mechanical machine1 with springs, see Figure 5.8. The equilibrium of
this machine corresponds to the globally optimal flow. The machine consists of two consecutive
pointclouds in time (black and red crosses) which are not allowed to move, flow arrows attached to
blue points by swivel telescopic joints, and two losses (rigid and distance) represented by springs. The
scene depicts two rigid vertical objects that are moving in different directions. We employ standard
distance loss (red springs), which attracts the flow of black points toward the corresponding red
points from the consecutive pointcloud. Since objects in black pointcloud are close to each other,

1Since both losses minimize the L2-norm of some quantities, we can visualize their influence on the estimated flow
by ideal springs. In the ideal spring, the total conserved energy is proportional to the square of its deformation;
therefore, the value of L2-loss corresponds to its energy.
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Figure 5.8: Outline of the proposed losses: The left image shows pointcloud represented by
black crosses that contains two vertical rigid objects. There is no spatial clustering that would
segment them correctly; therefore any independent flow estimation will be strongly biased by the
incorrect clustering. In contrast, we cover the pointcloud by (i) non-overlapping hard rigid clusters
and (ii) overlapping soft rigid clusters. The right image demonstrates losses, visualized by springs,
that are used for the flow estimation. The resulting flow is used for merging the hard clusters on
spatio-temporal domain. The procedure is repeated until convergence. The resulting hard rigid
clusters delivers rigid object segmentation.

there is no spatial clustering that would separate them correctly. In contrast to existing methods,
we instead introduce overlapping clusters (blue/green/magenta regions), within which the rigidity
is encouraged through rigidity loss (blue/green/magenta springs). This rigid loss constructs springs
among the arrow end-points in each source rigid-clusters, which prevents the flow from deforming
the rigid cluster. The color of the springs matches the color of the cluster.

We also enable outlier rejection through spectral clustering as proposed in [119]. In terms of
the mechanical machine analogy, the intuition of outlier rejection is that it adjusts the stiffness of
springs in order to weaken the springs that connect outlier points (i.e. the points, the motion of
which is non-rigid with respect to the rest of the cluster). To further regularize the flow, a structural
regularization through Neural prior [63, 119, 64, 20] has also been proposed in recent works. We
identified that the Neural prior regularizer helps mostly with static scenes flow estimation with a
small number of dynamic objects; however, it over-regularizes the flow in highly dynamic scenes due
to the limited capacity of the Neural-prior network. Therefore, we decided to drop this regularization
in our proposed approach.

The main novelty of our approach stems from replacing the large spatially compact non-overlapping
clusters delivered by an independent clustering algorithm, such as DBSCAN [27], with two different
types of clusters: (i) soft mutually overlapping clusters, which are assumed to spread over multiple
rigid objects and (ii) hard non-overlapping rigid clusters, which are expected to cover only the points
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from a single rigid object or its part. The soft clusters are optimized by the rigidity loss with outlier
rejection, and the hard clusters are optimized by the rigidity loss without the outlier rejection. While
soft clusters remain fixed, the hard clusters are progressively growing towards consistently moving
points in the spatial and temporal domain.

We argue that while the flow estimated from large non-overlapping clusters [119] heavily suffers
from over and under-segmentation, usage of the proposed overlapping growing clusters significantly
suppresses this issue, see Figure 5.7. In particular, it mitigates the over-segmentation by spatially
propagating the rigidity through the overlap; see Figure 5.8, for example, that the blue and magenta
clusters deliver strong rigidity springs between the points of the left object, which consequently
grows the hard rigid cluster over the whole rigid object. Mitigation of the under-segmentation is
achieved by using only small rigid clusters combined with outlier rejection techniques; for example,
even though all three soft clusters contain an outlier, the resulting rigidity springs between left
and right rigid objects are weakened, and the hard rigid cluster grows only within the rigid object.
Consequently, the only assumption required in order to correctly segment inconsistently moving
rigid objects is that each point of the rigid object appears as an inlier in at least one soft cluster
hypothesis.

5.6.1 Method Overview

Point clouds consist of 3D points xi ∈ X ⊂ R3 and yi ∈ Y ⊂ R3. Since real-world scenes consist
mostly of a static background, we follow a good practice of compensating the ego-motion [20] first
before running our overlapping cluster hypotheses. We calculate the ICP [121] as an estimate of
ego-motion and use it to transform the source point cloud X. In the rest of this section, we focus on
the estimation of the remaining flow, which corresponds to the motion between transformed source
point cloud X and target point cloud Y . Consequently, the flow of point xi ∈ X is a 3D vector
fi ∈ F ⊂ R3 that is non-zero only on dynamic objects if the ego-motion is correctly estimated.

The method is summarized by pseudo-code in Algorithm 2. The proposed method first initialize
two sets of clusters: hard and soft. Hard rigid clusters are non-overlapping small clusters that are
assumed to cover only a single rigid object or its part. Each rigid cluster H ∈ H is a small compact
cluster delivered through spatial-temporal segmentation on X including the adjacent temporal point
clouds. In contrast, the soft rigid clusters are small overlapping clusters that are expected to overflow
into neighboring objects. Each point x ∈ Y is associated with the one soft cluster S ∈ S, which
is defined as the set of its k nearest neighbors Nk(x, X) from the point cloud X. Given these two
sets of clusters, we optimize the flow to minimize (i) hard rigidity loss on hard clusters, (ii) soft
rigidity loss on soft clusters and (iii) distance loss on all points. Both rigidity losses enforce rigid
flow on points within the cluster. The main difference is that the soft rigidity loss allows for outlier
rejection. All losses are detailed in the following paragraphs. Once the optimized flow is available,
we merge rigid clusters in X, whose flow goes into the same rigid cluster in Y . Since the algorithm
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is iteratively called on all consecutive pairs of point clouds, the rigidity is propagated throughout
the temporal domain.

Algorithm 2 Joint flow estimation and rigid object segmentation
Require: pointcloud X, Y
Ensure: flow F

1. Initialize set of hard rigid clusters H.
2. Initialize set of soft rigid clusters S.
3. Optimize

L(F ) = α
∑
f∈F

Ldist(f) + β
∑

H∈H

∑
f∈H

Lhard(f) + γ
∑
S∈S

∑
f∈S

Lsoft(f),

where α, β and γ are hyper-parameters of the proposed method.
4. If the flow of two different rigid clusters Hi, Hj ∈ H goes into the same rigid cluster in point

cloud Y , then merge Hi, Hj into the same cluster.
5. Repeat from 3 until convergence or reaching maximum number of iterations.

5.6.2 Distance loss

Similarly to existing approaches, we assume that the motion of objects is sufficiently small with
respect to the spatio-temporal resolution of the sensor. This assumption transforms into so-called
distance loss, which attracts the flow of points from the point cloud X toward the consecutive point
cloud Y .

Ldist(f) =
∑
i∈P

∥xi + fi − N1(xi + fi, Y )∥ (5.9)

where N1(x, Y ) is the nearest neighbor of point x from point cloud Y . In practice, we use it
bidirectionally for both point sets X, Y , which is equivalent to Chamfer distance.

5.6.3 Hard rigidity loss

Since the distance loss is typically insufficient for a reliable flow estimation, the additional prior
assumption that takes into account the rigidity of objects is considered. In contrast to existing
approaches [27, 37, 105, 119], we do not explicitly model a fixed number of independently moving
rigid objects, but we simultaneously optimize flow with the rigid clusters as describe in Algorithm 2.
Given a cluster C consisting of k points from point cloud X, we construct the complete undirected
graph G = (V, E) with k vertices V = C and k(k−1)/2 edges E corresponding to all possible pair-wise
connections among points (without self-loops). Each edge is associated with a reward function that
encourages the flow in incident vertices to preserve the mutual distance between the corresponding
points, i.e., encourage the rigid motion. The reward for preserving rigidity is defined as follows:
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rij = 1 −
∑

u

(du
ij − d̂u

ij)2

θ
, (5.10)

where du
ij = |xu

i − xu
j | is the distance between the u-th dimension of points xi, xj ∈ C and similarly

d̂u
ij = |(xu

i + fu
i ) − (xu

j + fu
j )| is the distance after applying the estimated flow on these points, and θ

is a hyper-parameter of the proposed method. If the motion is rigid, the distance difference is zero,
and the reward equals one; if the distance is non-zero the reward is proportionally smaller. Given
this notation, we introduce hard rigidity loss

Lhard(f) =
∑

(xi,xj)∈V

− log(rij). (5.11)

5.6.4 Soft rigidity loss

Intuitively, when the cluster C is incorrect (e.g. it overflows into neighboring objects), the optimization
of the flow through the hard rigid loss delivers inaccurate flow. In order to enable outlier rejection,
we introduce k-dimensional soft clustering vector v ∈ [0, 1](k+1), ∥v∥ = 1 that is supposed to softly
selects high-reward edges. This vector models how much the points are likely to be in the rigid
object that is dominant within the cluster. Given this notation, we define the soft rigidity score
induced by the point xm as

sm(v) =
∑

(xi,xj)∈V

rijvivj = v⊤Amv, (5.12)

where matrix Am consists of elements [Am]i,j = rij . Product vivj corresponds to the spring stiffness
between point xi and xj in the mechanical analogy from Figure 5.7.

Given the score matrix Am, the optimal soft clustering is, by Raleigh’s ratio theorem, the
principal eigenvector of matrix Am

eig(Am) = arg max
∥v∥=1

v⊤Amv. (5.13)

The score (5.12) for the optimal soft clustering (which is equal to the principal eigenvalue of Am)
describes how much the flow is consistent with the rigid motion. In order to make the estimated
flow more rigid under the optimal soft clustering, we introduce the soft rigidity loss

Lsoft(f) =
∑
m

− log
(

sm

(
eig(Am(f))

))
, (5.14)

which pushes the principal eigenvalue up and consequently makes the flow on spatially compact
clusters more rigid.
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Table 5.5: Performance on Argoverse2 dataset in foreground aware metrics, i.e. Threeway EPE
metric.

Dynamic Foreground Static Foreground Static Background
Methods Avg. EPE [m]↓ EPE [m]↓ AS [%]↑ AR [%]↑ EPE [m]↓ AS [%]↑ AR [%]↑ EPE [m]↓ AS [%]↑ AR [%]↑

MBNSFP [119] 0.159 0.393 9.325 25.72 0.034 88.54 96.98 0.051 84.96 92.59
NSFP [63] 0.083 0.141 39.85 71.69 0.059 75.15 91.14 0.048 81.96 93.56

Chodosh [20] 0.070 0.132 41.80 75.49 0.049 77.29 93.74 0.028 87.97 95.30
Ours 0.047 0.079 67.90 85.35 0.035 86.26 95.78 0.026 93.02 96.30

Table 5.6: Performance on Argoverse2 dataset in object class aware EPE.

Pedestrian Cyclist Vehicles
Methods Avg.↓ Dyn.↓ Stat.↓ Avg.↓ Dyn.↓ Stat.↓ Avg.↓ Dyn.↓ Stat.↓

MBNSFP [119] 0.071 0.115 0.026 0.302 0.570 0.034 0.245 0.457 0.034
NSFP [63] 0.062 0.080 0.044 0.058 0.099 0.017 0.111 0.156 0.065

Chodosh [20] 0.068 0.083 0.052 0.047 0.083 0.011 0.100 0.145 0.054
Ours 0.031 0.039 0.023 0.012 0.016 0.009 0.068 0.097 0.039

5.7 Experiments

Implementation Details. We use k = 16 and set α and β loss weights to 1. We use the learning
rate of 0.004. The θ distance threshold for outlier rejection is set to 0.03 as in [15, 119]. We
perform hard clustering by spatio-temporal DBSCAN over horizon of 5 point clouds and set epsilon
parameter to 0.3 and minimal samples to 1, resulting in clustering the points to the same cluster if
the Euclidian distance is lower than 0.3. The flows are optimized until a fixed number of iterations
(1500) or until reaching the convergence of the loss function. For other comparative methods, we
use the same optimized parameters as reported in their original papers and official implementations.

5.7.1 Comparison with State-of-the-Art Methods

We benchmark our method against the top-performing methods, such as NSFP [63], MBNSFP [119]
and Chodosh [49], which all share the same structural optimization-based regularization, i.e Neural
Prior [63, 64]. For all methods, we use the official implementation provided in papers. For Chodosh [20],
we used the codebase published in [118]. For each method, we compensate the ego-motion with
KISS-ICP [121] first, then estimate the flow by methods.

In Table 5.5, we show results on Argoverse2, the main benchmark for 3D scene flow estimation.
Our method dominates the dynamic foreground metrics, while the MBNSFP [119] has better static
foreground. We suggest, that their reliance on Neural prior architecture coupled with under-
segmented rigidity tends to overfit on the static classes, since they share a single movement, caused
by ego-motion, and the MLP layers in Neural Prior do not have expressive capacity to catch multiple
motion patterns. Chodosh [20] do not optimize rigidity and Neural prior jointly, but fine-tune the
rigidity as a post-processing step, resulting in more separable object motion. Our method without
Neural Prior and merging clusters achieves the best average EPE over the dynamic and static
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metrics.
When zooming in to per-class scene flows, we observe a trend of overfitting to larger dynamic

objects, i.e. vehicles. We suggest, that fitting one structural neural prior to multiple objects in
the scene leads to the local minima of solving the objects with the most of points, and sacrificing
the smaller ones. In Table 5.6, we show the performance on Pedestrians, Cyclists and Vehicles
separately. For example, we can see, that the performance of the other methods on Pedestrian class
is halved, compared to ours, where the over-segmentation of the scene usually safely cluster the
whole Pedestrian as one hard cluster and estimate rigid flow without structural neural constraints.
We see that in Cyclist category, the performance of ours is even higher. We do not lose the ability
estimate flows on Vehicles, as we can separate them in our merging clustering as well. We have
worse static vehicles compared to MBNSFP[119], which we explain by overfitting into static flow.

5.7.2 DBSCAN Clustering in Scene Flow

In order to achieve the best possible clustering in competing methods, the authors of [119, 20] tune
The DBSCAN algorithm to catch the bigger objects, which is visible in parameter epsilon (distance
grouping threshold) set to 0.8 and minimal number of point samples in one density-based cluster
set to 30 in MBNSFP [119]. Such parametrization allows for successful grouping of points in whole
bodies of large objects such as vehicles, but simultaneously group multiple smaller objects together.
Another issue stems of points, that falls below such threshold and therefore do not form the cluster
and are treated without rigidity regularization in the methods. See example of such DBSCAN
clustering in Figure 5.9, where the multiple pedestrians are grouped together with a tree or a vehicle
in the middle of point cloud has blue points (points not assigned to any cluster).

We conclude that such clustering parametrization leads to over-fiting on large objects a therefore
we designed our hard clustering approach to assign all points to clusters in a ”over-segmentation”
manner and gradually merge the over-segmented clusters based on flow optimization.

5.7.3 Neural Prior with Hard and Soft Clusters.

In order to compare our proposed rigidity via hard and soft clusters to the most similar methods
(MBNSFP [119] as it also use spatial consistency with outlier rejection), we change the direct
optimization of flows for neural prior architecture as in other methods [63, 119, 20]. We also perform
experiments under the metrics proposed in MBNSFP [119], i.e. overall end point error without
foreground/background split.

In Table 5.7, we see the results on Waymo [106] and Argoverse1 [11] datasets on splits used in
[119]. We can see, that the better performance is reached with our rigidity regularization. The
MBNSFP [119] is the second top-performing methods with regular Neural prior [63] with cycle
consistency and structural regularization behind.
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Figure 5.9: Qualitative example on Waymo Dataset. We show, that by DBSCAN under-
segmentation (left part of the image, where color denotes cluster id), it is impossible to separate
motions of multiple objects in one cluster. When the MBNSFP [119] method converges, the flow
vectors on a single cluster looks uniform, resembling similar motion patterns on separate objects,
while with our gradual clustering, we are able to separate motions and assign correct headings of
flows. In the last row, we applied DBSCAN clustering to only flow vectors to show, that we can
separate the objects based on our method output flows. We could not find parameters to separate
objects with MBNSFP [119] flows, as they are too close to each other.
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Table 5.7: Performance on LiDAR datasets. We show performance on standard LiDAR benchmarks
with overall metrics (without dynamic/class split). Results are averages over 3 runs.

Dataset Method EPE [m]↓ AS [%]↑ AR [%]↑ θ [rad]↓
JGF [81] 0.542 8.80 20.28 0.715

PointPWC-Net [131] 0.409 9.79 29.31 0.643
Argoverse1 NSFP 0.065 77.89 90.68 0.230

MBNSFP [119] 0.057 86.76 92.46 0.273
NSFP + Ours 0.050 87.06 94.26 0.269

R3DSF[37] 0.414 35.47 44.96 0.527
NSFP[63] 0.087 78.96 89.96 0.300

Waymo MBNSFP[119] 0.066 82.29 92.44 0.277
NSFP + Ours 0.039 88.96 95.65 0.297

Runtime Benefit of Implementing Soft Clusters as Neighborhoods. We analyze the
performance-time trade-off in Figure 5.10 by acquiring the EPE based on inference time for our
method on Argoverse1 dataset while using Neural Prior architecture with proposed Soft Clusters.
The speed was measured on NVIDIA Tesla V100 GPU on complete point clouds. We compare with
optimization-based methods FastNSF [64] and MBNSF [119] with distance transform acceleration
proposed by [64] and DBSCAN clustering, and Neural prior [63] without distance transform acceleration [64].
Compared to the MBNSFP [119], our method is approximately 10× faster while stopping at the
same prediction error. Even though their spatial consistency regularization uses the same algorithm
of computing the point-to-point displacements with outlier rejection, our method is significantly
faster because we design the clusters on the same-sized neighborhoods, which can be efficiently
parallelized on GPUs. In contrast to our method, MBNSFP computes eigen vectors of matrix with
variable-sized clusters [27]. Thus, MBNSFP is looping over c clusters {N0, N1, ..., Nc} one-by-one,
whereas our method allows GPU to parallel the RN×k×k tensor computation for N points in point
cloud and k neighbors simultaneously.

5.7.4 Results on StereoKITTI benchmark.

We also evaluate our method on both the full StereoKITTI and its testing subset KITTIt following
the experimental setting in [59, 81, 57]. We compare our method to the top-performing methods
in self-supervised 3D scene flow and also to recent fully-supervised methods trained on FT3D [32]
dataset. Our self-supervised method without any training data is on par with the most recent and
top performing fully-supervised method, the IHNet [127] in terms of AS (Ours 98.0% and fully-
supervised IHNet 97.8%), see Figure 5.11.

Our main baselines for performance comparison are state of the art self-supervised methods
such as SCOOP [59], SLIM [2], FastNSF [64], Rigid Flow [62]. Our method achieves the new self-
supervised state-of-the-art performance on stereoKITTI benchmark with the relative improvement
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Figure 5.10: Flow estimation error vs. run time on Argoverse1 dataset. Our method in green offers
speed-accuracy trade-off that outperforms the converged baselines on overall EPE metric.

of 38% of EPE compared to top-performing SCOOP [59] on StereoKITTI and also achieves the
improvement of 42% of EPE compared to the top-performing NSFP [64] on KITTIt.

5.7.5 Ablation Study

Method components In Table 5.9, we show metrics when adding one enhancement per time.
We observe the benefits of components on final performance on the Argoverse2 dataset. Without
rigidity regularization and clusters a), the methods resembles flow only to the nearest neighbors
in target point cloud and therefore fails to produce meaningful motions. By including the hard
cluster rigidity b), we observe physically consistent motions. However, since we enforce rigidity on
over-segmented clusters, the objects still deforms. With addition of soft clusters c), we are able to
connect nearby points from different hard segments to rigidity term and reject outliers, expanding
the object rigidity. By guiding the hard clusterization with flows d), we acquire small boost by
connecting lonely clusters divided by occlusions or separate by LiDAR sampling rate back to the
major rigid body.

What really matters for rigidity regularization In Table 5.10, we list the configuration of
hard clustering and soft neighborhoods (kNN) with researched rigidity regularizations on KITTIt

data. KNN rigid neighborhoods provide the best results with both regularizations. When SCOOPs
regularization is applied to the hard DB instances, the performance diminishes compared to our
kNNs.

In this matter, our soft rigidity clusters constructed from neighborhoods are generalizing to the
out-of-distribution datasets and does not require careful parameter manipulation as density-based
clustering.
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Figure 5.11: Comparison of the proposed method with self-supervised [59, 62, 61, 63, 84] and fully-
supervised [70, 85, 127] competitors on StereoKITTI benchmark.

Table 5.8: Comparison with State-of-the-Art on KITTI dataset. We evaluate scene flow
based on standard metrics EPE, AS, AR and Out. for StereoKITTI dataset. Previous state of the
art performance is underlined and current best is in bold. Our results averaged over 5 runs.

Test data Method EPE(m) ↓ AS(%) ↑ AR(%) ↑ Out.(%) ↓

KITTIo

FlowStep3D [57] 0.102 70.8 83.9 24.6
RigidFlow [62] 0.102 48.4 75.6 44.2

SLIM [2] 0.067 77.0 93.4 24.9
MBNSFP [119] 0.112 80.7 86.3 14.5

NSFP [64] 0.051 89.8 95.1 14.3
SCOOP [59] 0.047 91.3 95.0 18.6

Ours 0.029 98.0 98.7 11.7

KITTIt

JGF [81] 0.105 46.5 79.4 -
RigidFlow [62] 0.117 38.8 69.7 -
MBNSFP [119] 0.112 81.6 87.3 15.0

SCOOP [59] 0.039 93.6 96.5 15.2
NSFP [64] 0.036 92.3 96.2 13.2

Ours 0.021 98.7 99.1 11.0
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Figure 5.12: Visual comparison of scene flow estimation of our method (left) with the SCOOP [59]
(right). The data sample is taken from the StereoKITTI data set. The blue points denote the clouds
X, while the red points are clouds Y . The green points correspond to warped cloud X +F , where F
is the estimated flow from prediction models. SCOOP exhibits a deviation from the target, whereas
our method maintains the structural integrity of the source point cloud and rigidity of objects.
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Table 5.9: Ablation study for individual method components on Argoverse2.

Module Avg. EPE(m) ↓ Dyn. Fore. EPE(m) ↓ Stat. Fore. EPE(m) ↓ Stat. Back. EPE(m) ↓
a) w/o Rigidity 0.244 0.504 0.103 0.124

b) w/ Hard Clusters Rigidity 0.052 0.089 0.040 0.028
c) w/ Hard Clusters and Soft Clusters Rigidity 0.047 0.079 0.035 0.026
d) w/ Rigidity and Flow Guided Hard Clusters 0.046 0.077 0.035 0.025

Table 5.10: Rigidity regularization with different clusters tested on KITTIt.

Clusters Regularization EPE(m) ↓ AS(%) ↑
N/A N/A 0.036 92.3

DB[37, 120] MBNSF[120] 0.112 81.6
DB[37, 120] SCOOP[59] 0.035 96.3

kNN SCOOP[59] 0.024 96.7
kNN Ours 0.021 98.7

5.8 Discussion

Conclusion. We presented a novel self-supervised method for 3D scene flow prediction inspired
by rigid motion of multiple objects in the scene. The method introduced overlapping cluster rigidity
regularization, that achieve state-of-the-art on standard benchmarks and is tuned towards the
complex dynamic objects rather then static backgrounds. The framework is part of the optimization-
based models family a therefore does not require any training data. Extensive experiments showed,
that our method surpass self-supervised state-of-the-art models on scene flow benchmarks with
unique sensor configurations, and also is on par with fully-supervised counterparts. The proposed
solution cleverly adapts rigidity mechanism to discover long tail object flows showing that it is
important, how are the points paired into the regularization mechanism.

Limitations. Even though our method is reasonably fast, it still does not, as the other methods,
achieve real-time performance while keeping high accuracy. Potential direction for improvement
is shown in [118]. Secondly, our method does not deal with the local minima of the distance loss,
resulting in sub-optimal flows even when the object is correctly clustered. These two issues are worth
of the future research to improve scene flow further. One way to achieve real-time performance for
our method, while maintaining accuracy, is via distillation to neural network [118]. Secondly, our
method pairs the rigid points by geometrical neighborhoods, which can transfer rigidity properties
to larger area on sparse point clouds. Thus, enforcing flows on multiple paired dynamic objects to
be the same. In other words, the sparse measurements might limit the performance gain of higher
values of parameter k.

Future Work. One way how to compensate in sparse measurement scenarios is to include the
points from other frames along the temporal domain. An other potential improvement is the
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introduction of structural prior for rigid cluster detection, i.e. the instance segmentation neural
network.



Chapter 6

Conclusion

6.1 Conclusion

Data-driven 3D perception solutions require scalability and generalization to keeping the low cost
during the development [116, 47, 86]. The field of 3D computer vision is evolving rapidly with better
and more efficient algorithms, but the aforementioned problems still exists as the fully-supervised
methods are practically intractable and the unsupervised methods did not yet surpass the fully-
supervised in terms of performance [26, 105, 86].

We have contributed to the issues by proposing more realistic simulator [116] and data augmentation
framework [149] as it brings models closer to the desired performance and ease the annotation costs.
The thesis further focused on leveraging motion and temporal domain to improve the scalability of
semi-supervised [35] and self-supervised [114, 115] models as a general source of supervision signals.
The contributions in scene flow methods raised the bar in self-supervised state-of-the-art models,
that can support other tasks in 3D perception and robotics [114, 115].

This work has built upon general paradigms, that are used even in the recent state-of-the-art
methods [74, 47, 106, 7, 11] and forecast the importance of temporal and motion domain in future
models for 3D perception. As the field rapidly evolves, some methods become deprecated, but
the simulated and augmented environments, pseudo-labeling, temporal consistency, propagation
along the time is observable even in the most recent research advancements and foundational
vision models [56, 74]. With the emerging transformer-based architectures [56, 74, 75] and vision
foundational models [148, 56], we still need to scale the supervision. The researched paradigms in
the thesis contribute to making the 3D perception models adapt and run on practical application.

84
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6.2 Future Work

Despite the contributions in related tasks, the thesis did not establish the unified framework of each
individual novelties to build upon each other. On Figure 6.1, we propose a direction of combining
the proposed self-supervision losses from scene flow to improve the tasks of object detection and
semantic segmentation on sequences of point clouds. Based on our findings, the motion vectors can
discover objects (as shown in Figure 5.9 and accumulated points together with trajectory and shape
of the object provides additional features to supervision signal. By accumulating such instances,
one can apply contrastive framework [132, 12] to learn discriminative features in shared backbone of
multi-task architecture [75]. Such approach will lead to more scalable models, which would require
less annotation of dynamic objects, their semantics and geometrical properties. As a result, the
general concept of motion can improve the 3D perception pipelines using unlabeled data.

Figure 6.1: Possible future direction of leveraging motion for 3D perception tasks
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Additional Contributions

A.1 Successfully supervised student theses:

• Improving Detection by Exploiting Dynamics in the Lidar Data; Vojtech Bartek

• Convolutional Neural Networks for Object Classification from LiDAR Data; Jiri Zacha
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A.2 Lab tutor of bachelor courses:
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• Robot Learning

A.3 Collaboration with Industry

• Research with Valeo.ai

• Application of proposed methods with Valeo production team
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