
Czech Technical University in Prague

Faculty of Nuclear Sciences and Physical
Engineering

Department of Software Engineering

Study program: Applications of Informatics in Natural Sciences
Specialization: –

Odhad a sledování polohy člověka
pomocí jediné RGB kamery

Estimation and Tracking of the
Human Pose with a Single RGB

camera

MASTER’S THESIS

Author: Bc. Antonín Čech
Supervisor: Ing. Adam Novozámský, Ph.D.
Year: 2024

Acknowledgment

Thank you Ing. Adam Novozámský, Ph.D. for guiding my master’s thesis and for
stimulating suggestions that enriched it.

Bc. Antonín Čech

Název práce:
Odhad a sledování polohy člověka pomocí jediné RGB kamery

Autor: Bc. Antonín Čech

Studijní program: Applications of Informatics in Natural Sciences
Specializace: –
Druh práce: Master’s Thesis

Vedoucí práce: Ing. Adam Novozámský, Ph.D.
Institute of Information Theory and Automation of the CAS
Pod Vodárenskou věží 4, 182 00, Prague 8

Konzultant: –

Abstrakt: Odhad a sledování lidské pozice jsou základní úkoly v počítačovém vidění.
Cílem této práce je poskytnout srovnání některých dostupných metod pro odhad a
sledování pozic a vytvořit aplikaci pro jejich vizualizaci. Nejprve je popsán prob-
lém odhadu pozice spolu s vybranými metodami, vybranými datovými soubory a
jejich metrikami přesnosti. Dále je obdobně popsáno sledování pozice s metrikami
přesnosti, vybranými metodami a datovými soubory. Výsledky pro všechny metody
na všech souborech dat jsou poté prezentovány, diskutovány a porovnávány. Poté je
popsána implementace a použití aplikace. V závěru práce jsou konfrontovány cíle a je
uveden závěr, které metody jsou nejlepší z hlediska přesnosti a rychlosti. Aplikace
je volně dostupná na https://github.com/cechantonin/PoseEstimationApp.
Klíčová slova: odhad lidské pozice, sledování lidské pozice, počítačové vidění,

neuronové sítě

Title:
Estimation and Tracking of the Human Pose with a Single RGB camera

Author: Bc. Antonín Čech

Abstract: Human pose estimation and tracking are fundamental tasks in computer
vision. The goal of this thesis is to provide a comparison between some available
methods for pose estimation and tracking and create an application for their visu-
alization. First, the problem of pose estimation is described along with the selected
methods, selected datasets and their accuracy metrics. Next, pose tracking is sim-
ilarly described with the accuracy metrics and the selected methods and datasets.
The results for all methods on all datasets are then presented, discussed and com-
pared. After that, the implementation and the usage of the application are described.
At the end of the thesis, the goals are confronted and a conclusion is given which
methods are the best in terms of accuracy and speed. The application was made
publicly accessible at https://github.com/cechantonin/PoseEstimationApp.
Key words: human pose estimation, human pose tracking, computer vision,

neural networks

https://github.com/cechantonin/PoseEstimationApp
https://github.com/cechantonin/PoseEstimationApp

Contents

Introduction 9

1 Pose estimation 11
1.1 Datasets . 13
1.2 Methods . 13

1.2.1 Top-down approach . 15
1.2.2 Bottom-up approach . 16

1.3 Evaluation metrics . 18

2 Pose tracking 20
2.1 Datasets . 22

2.1.1 MOT17 . 22
2.1.2 MOT20 . 23
2.1.3 Created dataset . 23

2.2 Methods . 24
2.2.1 ByteTrack . 24
2.2.2 QDTrack . 25
2.2.3 Greedy approach . 25
2.2.4 OC-SORT . 26

2.3 Evaluation metrics . 27
2.3.1 MOTA . 27
2.3.2 HOTA . 29

3 Experiments 31
3.1 Pose estimation . 32

3.1.1 MS COCO . 32
3.1.2 CrowdPose . 33

3.2 Pose tracking . 34
3.2.1 MOT17 and MOT20 . 34
3.2.2 Created dataset . 36

4 Application 42
4.1 Implementation . 42
4.2 Usage . 44

Conclusion 46

References 48

7

Appendix 53

A Pose tracking dataset 53

B Application source code 54
B.1 Main event loop and user interface 54
B.2 Pose estimation and tracking functions 68

8

Introduction

Human pose estimation and tracking are fundamental tasks in computer vision. Pose
estimation provides spatial information about a person’s body joints from images or
videos, while pose tracking aims to provide spatial and temporal information about
a person’s body. The estimation of human pose provides useful information about
human gestures and posture. This information can be used in many applications like
motion capture, action recognition, human-computer interactions, etc. On the other
hand, human pose tracking builds upon pose estimation and, in addition to spatial
information, provides temporal data about the person. Pose tracking has similar
use cases as pose estimation, but the temporal information is useful for example in
surveillance, where it can be used to predict or prevent accidents from a security
camera feed.

This thesis was written up as a part of the AISEE project at the Institute of Infor-
mation Theory and Automation of the Czech Academy of Sciences. The AISEE or
Artificial Intelligence based Search Environment for video/photo project [7] aims to
provide a specialized object detection software platform for the use in AI forensic
data mining. This will enable the AI to be trained directly in the environment of the
Police of the Czech Republic using semi-automatic and weakly supervised learning.
The project will also address the ethics, legal framework and human rights issues of
AI usage in a research report.

The aim of pose estimation is to locate the positions of human keypoints, which
are key body joints or features such as the shoulders, wrists, knees, eyes, head
etc. The number of keypoints sought differs between methods and datasets. After
the keypoints are found, they are grouped together by the person they represent
as well as interconnected in correct pairs to form a human skeleton. Despite the
impressive progress made in human pose estimation, several challenges remain. One
major challenge is the accurate localization of keypoints in realistic scenarios such
as occlusion, partial visibility, and self-occlusion caused by body parts overlapping.
Additionally, all current state-of-the-art methods struggle with efficient real-time
pose estimation without the need for a powerful system, which would allow the use
of pose estimation in embedded systems or autonomous robots for example.

Human pose tracking aims to keep track of which skeleton or bounding box belongs
to each person across multiple frames in a video. This is done by correctly associ-
ating a unique identification number to each person in each frame. Similar to pose
estimation, several challenges remain to be solved such as occlusion between multi-
ple people or with the environment, rapid movement and high compute demand to

9

name a few.

In this thesis, an overview of pose estimation and pose tracking methods is presented
along with their associated evaluation metrics and popular datasets. The first chap-
ter is focused on the pose estimation task and presents the two paradigms according
to which all pose estimation methods are developed. Subsequently, two of the most
popular datasets for pose estimation are described along with their keypoint anno-
tations. Then, several methods from each paradigm are described and lastly, the
evaluation metrics for single image pose estimation are presented.

Second chapter contains an overview of the pose tracking task. The main objective
of pose tracking is described along with its challenges and usage, followed by the
explanation of the main approaches of pose tracking methods. Next, two commonly
used datasets and the dataset created in this thesis are described. The main methods
which were tested are then introduced with the specifics of how they operate. At
the end of the chapter, the most widely adopted metric MOTA is described along
with its problems, followed by the introduction of HOTA which aims to mitigate
problems with MOTA.

Third chapter is dedicated to the experiments with the methods, their results and
the discussion about the results. Firstly, all the preliminary information about the
tests is described. Then, the results for pose estimation methods on the chosen
datasets are presented along with the discussion about the results for each of the
dataset. Results of pose tracking are then presented and discussed for the standard
datasets followed by a discussion on the accuracy of the methods on the created
dataset.

The last chapter describes the implementation of the visualization application which
was the last objective of this thesis. Firstly, details of the implementation are pre-
sented, such as packages used, threading implementation, etc. Lastly, the usage of
the application is described.

In the conclusion of the thesis, the goal from the assignment are confronted.

10

Chapter 1

Pose estimation

The goal of pose estimation is to locate the positions of human keypoints and deter-
mine the correct interconnections between them to create a skeleton which represents
the given person. Definition and number of keypoints differ between dataset annota-
tions and most frequently represent key body joints or features such as the shoulders,
wrists, knees, eyes, head etc. After the keypoints are found, they are grouped to-
gether by the person they represent as well as interconnected in correct pairs to form
a human skeleton.

Despite the impressive progress made in human pose estimation, several challenges
remain. One major challenge is the accurate localization of keypoints in realistic
scenarios such as occlusion, partial visibility, and self-occlusion caused by body parts
overlapping. Additionally, environment lighting and person clothing can significantly
impact the accuracy of the estimated pose as shadows, reflections and different
clothing can alter the body features, thus generating false-positives. Another major
challenge is the high compute demand. Although many methods achieved fast and
accurate results on high-end hardware, all current state-of-the-art methods are not
viable for deployment on low power or embedded systems which could improve many
pose estimation use cases.

Pose estimation has uses in many different fields like human-computer interactions,
motion-capture, healthcare, security, virtual and augmented reality, etc. An exam-
ple of human-computer interaction is eye gaze tracking [26] where pose estimation,
specifically face estimation, is used to correctly detect the spot a person is looking
at. Another example is the usage of pose estimation in robots [31] to correctly detect
a human and react accordingly. Motion-capture is another use case where it can be
used to create animations [39] for video games and movies without the need for
an expensive motion tracking equipment. A use case can also be found in health-
care where it can be used to monitor a patients activity. [23] Security is another
field where pose estimation, more precisely action recognition [9], can be utilized to
recognize or predict illegal activity. This is especially useful when paired with pose
tracking which described in Chapter 2.

Multi-person pose estimation methods generally follow one of two paradigms: top-
down or bottom-up. However, there are some exceptions which deviate from these

11

approaches. For instance, Stacked hourglass network [5] repeatedly uses top-down
and bottom-up processing or Deeply Learned Compositional Model [44] that works
in two stages, one is top-down, second one is bottom-up.

Methods designed by the top-down approach work in two steps. First, an object
detector is used to detect all regions of the image where a person may be located with
a certain confidence value. When the confidence value is above a certain threshold, a
bounding box of the person is then extracted from the region. The second step is to
perform a single-person pose estimation on each of the bounding boxes to localize all
keypoints of the person. There are many single-person pose estimation methods, but
most of them fall into one of two categories: keypoint regression-based approaches
and heatmap-based approaches [37]. Keypoint regression-based approaches work by
regressing the position of keypoints directly from the image (e.g., AlphaPose [13],
DeepPose [6], Iterative Error Feedback [16]). On the other hand, heatmap-based
approaches generate a confidence heatmap of all keypoints first, see Figure 1.1,
and then according to the heatmap estimates the location of all keypoints (e.g.,
HRNet [24]).

Figure 1.1: Keypoint location estimation using heatmaps. Figure from [36].

There are several differences between keypoint regression-based and heatmap-based
pose estimation approaches. Keypoint-based approach is simpler to implement, less
computationally demanding but more challenging to train, whereas heatmap-based
approach is generally more accurate and robust [37]. Arguably the biggest difference
is the ability to use the heatmap-based approach in multi-person scenarios, which is
why heatmap keypoint estimation is used by almost all of the bottom-up methods.

Similarly to top-down methods, bottom-up methods have two steps, the order is re-
versed compared to top-down methods. First, keypoints of all persons on the image
are estimated via a heatmap-based algorithm. Afterwards, all detected keypoints
are grouped together by the person they belong to and the correct keypoint in-
terconnections are determined to create the skeleton. Many research papers, that
propose novel approaches on keypoint grouping, have been published. For instance,
DEKR [50] and DeeperCut [10] propose grouping by direct regression of keypoints,
OpenPose [49] introduces the concept of a vector field named Part Affinity Field
used to solve a bipartite graph, Associative embedding [4] and HigherHRNet [8]

12

predict tags for each of the keypoints and groups the keypoint so that keypoint with
the same tag belong to the same person.

Altogether, it is impossible to determine which of these two paradigms is better
since both of them have their strengths and weaknesses. For example, top-down
methods are heavily dependent on accurate human detection algorithms and are
able to provide better estimations for persons far away from the camera thanks to
detection cropping. In contrast, bottom-up methods are more accurate in crowded
scenarios with high occlusion but requires solving the keypoint grouping problem
which is an NP-hard problem. [43]

1.1 Datasets

Microsoft Common Objects in Context [40] dataset was first released in 2014 and
originally was intended for use in object detection, classification and segmentation
problems. Annotations for human pose estimation, which were added in 2016, con-
tain the positions of 17 keypoints in total. These keypoints include 12 body joints,
specifically ankles, knees, hips, shoulders, elbows and wrists. The last 5 keypoints
are facial features which include ears, eyes and nose. An example of a human pose
skeleton with the COCO keypoints annotation is shown in Figure 1.2. The valida-
tion set consists of a total of 5,000 annotated images, though not all of these images
contain humans.

Many datasets designed for pose estimation are dominated by uncrowded scenes with
only few persons in each image and little to no occlusion. The CrowdPose [17] dataset
was developed to provide a set of crowded images. A metric named Crowd index
was proposed [17] and the CrowdPose dataset achieves near uniform distribution of
Crowd index, in other words each level of occlusion is included in the dataset by
the same part. This can be also seen when comparing the average bounding box
intersection over union between CrowdPose and COCO which have 0.27 and 0.06
respectively [17]. The annotations provide the locations of 14 keypoints on more
than 80,000 people. These keypoints include the same 12 body joints as COCO, but
the head is only annotated by the neck and the top of the head. An example of
the CrowdPose keypoints annotation is shown in Figure 1.3. The testing subset of
CrowdPose consists of 8,000 images.

1.2 Methods

Due to the shear number of state-of-the-art methods that have been published in
the recent years, only a few were chosen for testing in this thesis. Methods were
chosen with high emphasis on implementation in Python and the usage of PyTorch
with CUDA support for the purpose of easier integration in the GUI application.
All top-down methods were tested with the YoloV3 object detector trained on MS
COCO for the initial human detection.

13

Figure 1.2: Example of the COCO human pose keypoints.

Figure 1.3: Example of the CrowdPose human pose keypoints.

14

1.2.1 Top-down approach

One of the most notable methods for pose estimation is HRNet [24]. It is a heatmap-
based deep-learning single-person pose estimation method which, given a bounding
box of a detected person, generates a heatmap of a probable keypoint locations.
Actual keypoint locations are calculated from the heatmap by finding the point with
the highest heat value and slightly shifting it towards the second highest value. The
network itself consists of several high-to-low resolution subnetworks which operate
in parallel and the image is repeatedly exchanged between them while also being
upscaled or downscaled depending on the receiving subnetwork [24]. The architecture
of HRNet is in Figure 1.4. Thanks to the heatmap-based approach, this method was
modified to estimate keypoints in multi-person scenarios and many state-of-the-
art bottom-up methods use the modified HRNet as the backbone for estimating
keypoints.

Figure 1.4: Illustration of the HRNet network architecture. Figure from [24].

The Stacked hourglass network [5] was proposed in 2016 and was amongst the first
methods for human pose estimation that used deep neural networks. Moreover, it is
one of a few methods that cannot be classified under the top-down or the bottom-up
approach since it repeatedly uses top-down and bottom-up inference. The network
consists of multiple ”hourglass” modules which are stacked in series, see Figure 1.5.
These modules are used to process the image down to a low resolution (bottom-
up processing) and after reaching the lowest resolution, the network begins the
upsampling and combination of features across the resolutions of the image (top-
down processing) [5].

Many top-down methods suffer from the early commitment problem, as stated
in [13]. This refers to the inability to rectify a falsely detected person which hap-
pens when a person is detected with a lower confidence score than the method’s
threshold. To combat this, a top-down method named AlphaPose [13] was pub-
lished. AlphaPose sets the threshold for correct person detections very low so that
only the worst detections are discarded at this stage. Then, pose estimation is done

15

on these bounding boxes and the redundant poses are discarded using parametric
pose non-maximum-suppression [13].

Figure 1.5: Illustration of a single ”hourglass” module. Figure from [5].

MediaPipe [29] is a Google project which provides solutions for common problems in
computer vision like object detection, object tracking, face detection, hand detection
and pose estimation. The pose estimator is designed around the model BlazePose [42]
which is a lightweight model optimized to run on mobile devices. BlazePose estimates
a total of 33 keypoints which can be seen in Figure 1.6. MediaPipe uses Google’s
own person detector and both the detector and estimator are trained on Google
proprietary data.

Figure 1.6: Illustration all 33 keypoints estimated by BlazePose. Figure from [29].

1.2.2 Bottom-up approach

One of the most recent advances in the field of bottom-up methods is the Pose
Estimation Via Disentangled Keypoint Regression (DEKR) [50] published in 2021.

16

It uses HRNet as it’s backbone to estimate all the keypoints in the image. Then, the
keypoints are grouped using disentangled representation learning. This essentially
means that every keypoint type, e.g. left knee, right knee, left hip, etc., is regressed
independently on the others which improves the quality of the regression. [50]

A major problem for bottom-up methods is correctly estimating smaller person,
i.e. person far from the camera. HigherHRNet [8], which is based on the HRNet
architecture, aims to mitigate this problem by pairing HRNet with several deconvo-
lution modules to generate multi-resolution heatmaps. Generally, HRNet heatmaps
are generated at 1

4
of the original image resolution but the modifications proposed

by HigherHRNet the generation of up to two times higher resolution heatmaps than
regular HRNet. An illustration of the HigherHRNet architecture can be seen in Fig-
ure 1.7. After the keypoints are estimated, the Associative embedding [4] method is
used for grouping the keypoints.

Figure 1.7: Illustration of the HigherHRNet network architecture. Figure from [8].

Another method from the HRNet-based family is LitePose [45] which proposes a
more efficient neural network model with better performance on low power de-
vices. The model is derived from HigherHRNet multi-branch architecture by gradual
shrinking and removing redundant branches, thus resulting in a single-branch archi-
tecture. The shrinking process can be seen in Figure 1.8. This architecture shows
better performance while retaining high precision and scale-awareness [45]. Same as
HigherHRNet, LitePose uses the Associative embedding [4] for keypoint grouping.

17

Figure 1.8: Illustration of the shrinking process from HigherHRNet architecture to
LitePose architecture, transparent blocks indicate removed blocks. Figure from [45].

1.3 Evaluation metrics

Many metrics for evaluating the precision of pose estimation have been proposed
over the years, but AP, short for average precision, is the most widely adopted
mainly thanks to MS COCO which uses AP as its default metric. Average precision
is presented in 5 standard variations: AP, AP.50, AP.75, APmedium and APlarge.

The average precision metric is based on Object Keypoint Similarity (OKS) which is
a value between 0 and 1 describing the accuracy of the prediction. OKS = 1 means
a perfectly estimated pose and OKS = 0 marks a very poor estimation. OKS is
defined as:

OKS =

∑
i exp (

−di
2s2k2i

) · δ(vi > 0)∑
i δ(vi > 0)

. (1.1)

Here, the sums are over all annotated keypoints of the person, di denotes the Eu-
clidean distance between a keypoint and its corresponding ground truth location, s
is the object’s scale defined as the square root of the object’s area, ki is a constant
that controls falloff [24] with a separate value for each keypoint type (shoulders,
knees, wirsts, etc.) and lastly, vi denotes a visibility flag of the ground truth key-
point. The visibility flag has a value vi = 0 for keypoints that are not annotated,
vi = 1 for keypoints that are annotated but not visible and vi = 2 for keypoints
which are annotated as well as visible.

Afterwards, the pose is correctly estimated if OKS is above a certain threshold. The
value of APOKSthr can be computed as:

APOKSthr = mean(Xi ≥ OKSthr) (1.2)

where the mean is over all images and Xi denotes OKS for the image i. This
means that AP.50 is AP.50 = mean(Xi ≥ 0.50) which is considered as a loose
metric and analogously, AP.75 is AP.75 = mean(Xi ≥ 0.75) which in turn is a
strict metric. The general AP metric is then calculated as a mean of APOKSthr at
OKSthr = 0.50, 0.55, ..., 0.90, 0.95. The last two metrics are APmedium and APlarge

18

which are defined as the AP metric but only for objects with 322 < s < 962 and
s > 962, respectfully.

Besides AP, other pose estimation metrics are used by different datasets. For exam-
ple, metric PCKh considers a keypoints estimated correctly, if its distance from the
ground truth is no more than 50% of the head segment. This metric is used in the
MPII dataset. [28]

19

Chapter 2

Pose tracking

Human pose tracking has gained significant attention in the recent years due to the
advancements in deep neural networks. The goal of pose tracking is to correctly
estimate all persons on the frame and assign a unique tag which marks the same
person across multiple frames. Given a frame from the input video, a pose estimation
method is used to detect all persons in the frame and estimate their poses. There are
some tracking methods which use only the bounding box of a person for tracking,
thus eliminating the need for pose estimation. The newly detected bounding boxes
or poses are then compared against the ones on the previous frame or multiple
frames and all persons are assigned an identification tracking number so that every
ID is consistently assigned to the same person in all frames. An example of the pose
tracking task is shown in Figure 2.1.

Similar to pose estimation, several challenges and problems in pose tracking remain
to be solved. For instance, one of the biggest challenges is handling occlusion between
multiple people or with the environment. This usually happens in very crowded
scenes where people are overlapped most of the time and can frequently disappear
completely from the camera’s vision. Another problem is motion blur or any sort
of distortion (e.g., from camera perspective, change of viewpoint or focal point,
etc.) where a person can appear correctly on one frame, blured or distorted on the
second and correctly again on the third one. Lastly, since pose tracking relies on
person detection and or pose estimation, the hardware needed for achieving real-
time performance is really high.

The utilization of pose tracking is very similar to pose estimation, but allows the use
in multi-person scenes and crowded scenes. For instance, pose tracking in motion-
capture could be used to film scenes with multiple actors whereas without it, the
results would need a lot of manual post-processing to ensure the poses correspond
with the actors. In security, pose tracking could enhance the ability to recognize and
predict an illegal activity by providing temporal data about all the individuals on
the camera feed.

Multi-person human pose tracking methods can be generalized into two categories:
bottom-up and top-down. Top-down methods works in sequence with person detec-
tion and pose estimation. First, all persons are detected using an object detector,

20

then a pose is estimated for all detected persons and lastly, the tracking algorithm
is used to correctly assign tracking IDs.

(a) Frame 1, no tracking (b) Frame 20, no tracking

(c) Frame 1, ByteTrack (d) Frame 20, ByteTrack

Figure 2.1: Example of the pose tracking task. Each color indicates a unique tracking
ID.

On the other hand, bottom-up methods first detect all the keypoints and then a pair
of graphs is constructed using these keypoints. One of the graphs is a spatial one
to ensure the keypoints get correctly grouped to each person and the other one is
temporal which handles the correct assignment of tracking IDs. The final grouping
is then acquired by solving an optimization problem on these graphs.

The current state-of-the-art methods use are designed by the top-down approach [35].
An example of a top-down method is PoseFlow [46] which uses a short sequence of
frames to associate poses that belong to the same person. Redundant associations
are then reduced by a non-maximum suppresion technique. LightTrack [12] is an-
other top-down method which proposes a way to re-ID a person when they disappear
from the frame and then reappear. If a person is lost from a frame, the method calls
the detection module which can associate the lost target to the poses from the pre-
vious frame via pose matching. Along with the pose estimation in AlphaPose [13],
which was described in Chapter 1, was proposed a method for pose tracking that
also adopts the re-ID feature and additionally implements a Pose-Guided Attention
Mechanism for more accurate person identity features. A novel approach named
Pose-Guided Pose Tracking [35] was introduced in 2021 uses pose information to
enhance both the human detection and the human association. One of the most

21

recent additions to pose tracking is ByteTrack [47] which was tested in this thesis
and is described in Chapter 2.2.

The bottom-up approach is less frequent due to its time complexity and memory
inefficiency [13], but some methods follow this approach. PoseTrack [41] is one of the
first methods which was designed for multi-person tracking. It uses integer linear
programming to find the solution of the optimization problem on the temporal and
spatial graphs. Another example is JointFlow [2] which uses some pose features from
pose estimation in frame i−1 to predict the location of a keypoint in frame i. Then,
the tracking is done by creating a bipartite graph from the estimated poses and
solving the bipartite matching problem with the predicted keypoints as a similarity
measure.

2.1 Datasets

2.1.1 MOT17

MOT17 is an updated version of the MOT16 challenge dataset [3] which designed as
a benchmark for tracking various classes of objects, for example pedestrians, cars,
motorcycles, etc. The dataset is composed of 7 videos in the training set and 7 in
the testing set but because the ground truth is available only for the testing set, the
results in the following chapter are achieved on the training set. Video sequences
in the MOT17 are all captured in different environments, from different viewpoints,
with different lighting and with different amounts of crowding. Examples of 4 frames
from the videos in the MOT17 training set are on Figure 2.2.

(a) (b)

(c) (d)

Figure 2.2: Examples of 4 frames from the different videos from the MOT17 dataset.

22

2.1.2 MOT20

MOT20 [33] is a dataset designed as a benchmark for multi-object tracking in
crowded scenes. The dataset includes 8 videos in total, 4 in the training set and
4 in the testing set. Similarly to MOT17, all objects are annotated as one of sev-
eral classes, such as pedestrians, cars, motorcycles, etc., and the ground truth is
only available for the testing set. MOT20 video sequences are all captured from a
high viewpoint with a very crowded scenario to evaluate state-of-the-art tracking
methods on extremely crowded scenes. Examples of the frames from the videos in
MOT20 training set are on Figure 2.3.

(a) (b)

(c) (d)

Figure 2.3: Examples of the 4 frames from the different videos from the MOT20
dataset.

2.1.3 Created dataset

As a part of this thesis, a custom dataset was created for the purpose of pose esti-
mation and pose tracking visualization. The dataset is composed of 18 unannotated
videos from YouTube [48] whose list can be found in Appendix A. These videos
range from a few seconds in length up to 5 or 6 minutes in some cases and contain
a few different environments, specifically an airport, mall, street and a playing field.
Videos were also chosen so that they were filmed from different viewpoints, e.g. sta-
tionary and moving camera, top-down and eye-level height, stationary and moving

23

drone shot, and in different lighting conditions, e.g. outdoors, indoors, night, sunset,
low light. Moreover, the dataset was constructed to include videos with different
levels of crowding and occlusion. The levels of crowding in each video cannot be ex-
actly determined thanks the absence of annotations, thus the crowding levels shown
in table A.1 are estimated by the eye. Examples of the videos in the created dataset
are on Figure 2.4.

(a) (b)

(c) (d)

(e) (f)

Figure 2.4: Examples of 6 frames from the videos in the created dataset.

2.2 Methods

2.2.1 ByteTrack

ByteTrack [47] was proposed in 2022 and introduced a simple yet effective method
for associating detections. First, the person detector is used to predict the bound-
ing boxes with confidence score for every person in the frame. ByteTrack uses the

24

YOLOX [51] person detector which is already integrated in the ByteTrack code.
The bounding boxes are then separated into low confidence and high confidence
bounding boxes. Secondly, new locations are predicted for all trackers from the pre-
vious frame, i.e. the persons that are tracked. Next, the Hungarian Algorithm [14]
is adopted to match the high confidence bounding boxes to the predicted locations
and the unmatched high confidence detections are used to initialize new trackers.
The same algorithm is then used to match the low confidence bounding boxes with
the unmatched trackers. Unmatched low confidence detections are discarded and
unmatched trackers are considered lost. These lost trackers are then merged with
the rest of the trackers while keeping track of how many times in a row was each
tracker considered lost. If a tracker was lost for a set number of frames, the tracker
is discarded. The pose estimation is done after the tracking since ByteTrack only
needs the bounding boxes for tracking.

2.2.2 QDTrack

QDTrack [19] proposes a novel learning approach named quasi-dense similarity
learning, which is used to train a neural network, that can acquire the feature embed-
dings for each image. These feature embeddings are then used in object association
to calculate the similarity between an object and it’s matching candidates using a
bi-directional softmax method. The object is associated to the candidate with the
highest similarity. If an object has been newly detected and has a high detection
confidence score, it is assigned to a new track. In contrary to other methods, QD-
Track does not drop the detected objects that do not match any track, but cannot
create a new track. These objects are kept during object matching, which reduces
the number of false positives. [19] In case of duplicate detections, the redundant
detections are discarded by non-maximum-suppression.

2.2.3 Greedy approach

A tracking method based on the greedy approach has been implemented in three
variants, which all differ by the similarity metric used. Greedy tracking first uses
the person detector to estimate the bounding boxes in the frame. Since this thesis is
on pose estimation and tracking, multiple person detector have been tested before-
hand with the Faster-RCNN [38] detector showing the best detection accuracy while
achieving reasonable speed. Then, the poses are estimated followed by the tracking.
For each of the results from pose estimation, a similarity metric is calculated be-
tween it and all the tracked people from the previous frame. If the metric is lower
or higher than a given threshold, the new pose and the tracked pose are considered
the same person and the tracked ID is assigned to the new pose.

In this thesis, three different metrics are used for the pose matching. First one is
Intersection over Union (IoU). For bounding boxes A and B, the metric is calculated
as follows:

IoU(A,B) =
S(A ∩B)

S(A ∪B)
, (2.1)

25

where S(A ∩B) and S(A ∪B) denotes the area of the intersection of A and B and
area the union of A and B, respectively. If the maximal IoU between a pose from
the current frame and all tracked poses from the previous is higher than the given
threshold, the new pose gets assigned the track ID of the pose which had the highest
IoU with. In case the IoU is lower than the threshold, the pose gets assigned a new
track ID if it consists of more than 3 keypoints.

The other two metrics are keypoint-based, meaning they are calculated directly
from the keypoints themselves unlike IoU. One of them is the OKS which has been
described in Chapter 1 and is calculated by Eq. 2.2.

OKS =

∑
i exp (

−di
2s2k2i

) · δ(vi > 0)∑
i δ(vi > 0)

(2.2)

The last used metric is the Euclidean distance which is calculated for all pairs of
keypoints between the new pose and the pose from the previous frame.

d(−→x ,−→y) =
√
(x1 − y1)2 + (x2 − y2)2 (2.3)

Here, −→x = (x1, x2) and
−→y = (y1, y2) denotes two keypoints with their corresponding

coordinates in the image. The distances between all pairs of the pose are then added
together and if the overall distance is lower than the given threshold, the new pose
gets assigned the track ID of the pose which has the lowest overall distance. Same
as with the other two metrics, if the overall distance is higher than the threshold,
the pose gets assigned a new track ID if it consists of more than 3 keypoints.

2.2.4 OC-SORT

In 2023, a tracking method named Observation-Centric SORT (OC-SORT) [15] was
introduced which builds upon the previously proposed Simple Online and Real-
time Tracking (SORT) [1] method. The original SORT algorithm was introduced in
2016 and works similarly to tracking by the greedy approach with the exception,
that SORT does not calculate IoU between the tested bounding box on the current
frame with the bounding box from the previous frame. Rather, it predicts where the
bounding box from the previous frame should be and calculates IoU between the
tested and the predicted bounding boxes. The prediction is based on the velocity of
the bounding box calculated from several previous frames. When new object is de-
tected, a new track is created with zero velocity and when an object is lost, the track
remains active for a number of frames before being discarded in case of the object
reappearing. With every frame that the track is not matched to an object, it devi-
ates from the correct position and when the track is matched again, it is likely to be
lost again due to the temporal error accumulated from these predictions. OC-SORT
aims to negate this problem by backtracking through the untracked period and up-
dating the prediction parameters, which then provides more accurate bounding box
predictions and lowers the probability of the track being lost again. OC-SORT fur-
ther improves the accuracy by implementing a second attempt on associating the
detections to the lost tracks after the initial association. This can handle an object
that is stopping or being occluded for a short amount of time [15].

26

2.3 Evaluation metrics

In the long history of multi-object tracking, many evaluation metrics for human
pose estimation have been introduced. Currently, the most widely adopted metric
the CLEAR MOT [21] which was proposed in 2008. CLEAR MOT uses multiple
object tracing accuracy (MOTA) as the main metric and a number of support met-
rics with multiple object tracking precision (MOTP) being the most important of
them. MOTA was also widely criticized as it has many flaws and problems which are
described below. In order to mitigate these problems, a metric called higher order
tracking accuracy (HOTA) [18] was introduced in 2020 and was quickly adopted by
many of the widely used benchmarks. There are other metrics which are currently
used by some benchmarks, but the majority now uses MOTA nad HOTA. For exam-
ple, IDF1 [11] was originally proposed for use in multi-camera multi-object tracking
and thanks to its emphasis on more accurate association over detection, it has been
used to evaluate a number of single-camera tracking methods. Another example is
Track mAP [27], but it differs from the other mentioned metrics by requiring the
confidence score of all trackers which most methods are not providing.

2.3.1 MOTA

The calculation of the MOTA metric is done by using only the detected bounding
boxes. Each detected bounding box is paired with its corresponding ground truth
bounding box. The pairing is determined by their spatial similarity S, e.g. IoU,
and two bounding boxes are allowed to be paired if S is higher than threshold α.
If a detected bounding boxes becomes paired with a ground truth bounding box,
then it is correctly detected and a true positive (TP). If a detected bounding box is
unpaired, it is a wrong detection and a false positive (FP). Similarly, if ground truth
bounding box is unpaired, then it is a missing detection and a false negative (FN).
The association part of MOTA is handled by the so-called identity switch (IDSW).
An IDSW is a TP which has a different prediction ID than in the previous frame, but
has the same ground truth ID on both frames. This means, that an IDSW happens
when the tracking method wrongly swaps person IDs or when a person is lost and
reappeared again but with different IDs. The final value of the MOTA metric is
calculated as follows:

MOTA =
|FN|+ |FP|+ |IDSW|

|grDet|
, (2.4)

where |FN|, |FP| and |IDSW| denotes the number of false negatives, false positives
and identity switches, respectively. |grDet| denotes the total number of ground truth
detections. The values appearing in Eq. 2.4 only have the information about correct
and incorrect detections which is why MOTA works in conjunction with a secondary
metric MOTP to provide a measure of the localization error. MOTP is aquired by:

MOTP =
1

|TP|
∑
TP

S. (2.5)

27

As previously mentioned, MOTA has been the main metric for evaluating multi-
object tracking methods since 2006, but it has several problems which can impact the
research going forward. The main drawback of MOTA is the bias towards detection.
This is because the detection errors are measured in false positives and false negatives
while association errors are measured only in identity switches. Therefore, the ratio
of the effect that detection and association has on the final score is:

|FN|+ |FP|
|IDSW|

.

According to [18], this ratio is 98.6 on average for the top 10 tracking methods on
the MOT17 benchmark. This means, that on average the accuracy of the detection
has a 1̃00 times larger impact on the final score than the accuracy of the association.

Another big issue is that MOTA ignores ID transfers. ID transfers occur when a TP
has a different ground truth ID than on the previous frame but the detection ID is the
same both frames. This is illustrated in Figure 2.5 on a two frame video. Figure 2.5a
shows one object on both frames, but on the second frame it is incorrectly tracked,
therefore an IDSW occurs and MOTA reports the value of 0.5. In Figure 2.5b, there
are two objects, each one visible on a different frame, and the tracking method
predicts that they are the same object. Since the predicted ID remains the same, an
IDSW did not occur and MOTA reports a perfect 1.0 despite the incorrectly tracked
object on the second frame.

1

Frame 1

2

Frame 2

Prediction

1

Frame 1

1

Frame 2

Ground truth

(a)

1

Frame 1

1

Frame 2

Prediction

1

Frame 1

2

Frame 2

Ground truth

(b)

Figure 2.5: Illustration of an ID transfer, circle represents an object, number inside
of the circle represents the object’s ID.

MOTA also does not reward mistake corrections which is another problem. This is
illustrated in Figure 2.6. In scenario A, the tracking method made a wrong change
in tracking but corrected it’s mistake. In B, the mistake is not corrected and in C,
the mistake is made worse by wrongly changing the ID again. The MOTA scores
for these scenarios should logically be A > B > C, yet MOTA shows very different
results.

28

Figure 2.6: Illustration of the mistake correction problem with MOTA, L denotes
the number of ground truth detections. Figure from [18].

Similarly to mistake correction, MOTA also does not reward greater alignment with
ground truth. An illustration of this problem is shown in Figure 2.7. Here, the
scenarios A, B and C are correctly tracked for 50%, 67% and 83% of the time,
respectively. However, MOTA reports the same value for all scenarios despite C
being the best one.

Figure 2.7: Illustration of the ground truth alignment problem with MOTA, L de-
notes the number of ground truth detections. Figure from [18].

Lastly, there are a few minor issues that could cause problem in some applications.
First one is that MOTA is highly dependent on the frame rate of the video. For
example, if one IDSW happens on a 2.5 second video running at 40 fps, then the
MOTA value would be 0.99. If the same video would be processed at 4 fps with one
IDSW, then MOTA would be only 0.9. Next is the need for an additional metric
MOTP to handle the localization error and not being able to measure detection,
association and localization in a single metric. Last one is the fact that the value of
MOTA can be negative which leads to the problem of negative MOTA interpretation.

2.3.2 HOTA

To combat all of these problems, the HOTA [18] metric was proposed and quickly
adopted by many of the popular benchmarks. The process of matching the predic-
tions with the ground truth is the same as with MOTA, but where HOTA differs
from MOTA is in the handling of the association. HOTA introduced the concept
of the true positive associations (TPA), false positive associations (FPA) and false
negative associations (FNA). These are defined for a given TP (denoted as c) as
follows:

29

• TPA(c) is a set of other TPs with the same prediction ID and ground truth
ID as c.

• FNA(c) is a set of ground truth bounding boxes with the same ID as c, but
with either different or missing prediction ID.

• FPA(c) is a set of predicted bounding boxes with the same ID as c, but with
either different or missing ground truth ID.

Next, the HOTAα value is calculated as follows:

HOTAα =

√ ∑
c∈{TP}A(c)

|TP|+ |FN|+ |FP|
, (2.6)

where α is the threshold used for prediction-ground truth matching and A(c) is
defined as:

A(c) =
|TPA(c)|

|TPA(c)|+ |FNA(c)|+ |FPA(c)|
. (2.7)

The final HOTA score is then defined as an integral of HOTAα over all valid values
of α:

HOTA =

∫ 1

0

HOTAα dα (2.8)

In real applications, this value is approximated by averaging HOTAα over α values
between 0.05 and 0.95 with 0.05 intervals.

HOTA provides a single metric that equally measures detection, association and
localization in one value, but it may be beneficial to have access to the individual
scores for detection, association and localization. Detection and association metrics
are first defined with the dependency on α and their final scores are calculated as
an average over α, same as HOTA.

DetAα =
|TP|

|TP|+ |FN|+ |FP|
. (2.9)

AssAα =
1

|TP|
∑

c∈{TP}

A(c). (2.10)

The localization metric can be measured separately as:

LocA =

∫ 1

0

1

|TP|α

∑
c∈{TPα}

S(c) dα, (2.11)

where S(c) is the spatial similarity between the predicted bounding box and the
ground truth box of the TP c.

30

Chapter 3

Experiments

In this chapter, results of the introduced methods are presented in the aforemen-
tioned metrics along with their comparison and the discussion about their perfor-
mance.

Pose estimation methods were evaluated on the MS COCO and CrowdPose datasets
which were described in Chapter 1.1. For comparison between methods, the evalua-
tion metrics described in Chapter 1.3, i.e., AP, AP.50, AP.75, APmedium and APlarge,
are used. The speed of pose estimation methods was measured in iterations per
second (its).

Pose tracking method evaluation was done on the MOT17 and MOT20 datasets.
These datasets were described in Chapter 2.1 along with the created dataset which
is unannotated and is used for visual evaluation only. For each method, the HOTA,
DetA, AssA, MOTA and MOTP tracking metrics, described in Chapter 2.3, are
calculated and frames per second (fps) are used for speed comparison.

In order to minimize the influence of external factors on the results, all methods were
tested on the same system and under the same conditions, e.g. other programs run-
ning in the background. Hardware used for all tests is shown in Table 3.1. Lastly, all
methods were used with the pretrained models that are freely available for download
by the authors of their corresponding method.

Processor AMD Ryzen 3600

Graphics card NVIDIA RTX 2080

System memory 16 GB at 3200 MHz

Storage Samsung 970 EVO

Table 3.1: Computer hardware used for the calculations.

31

3.1 Pose estimation

All top-down pose estimation methods were used with the YOLOv3 [20] person
detector implemented in the package MMDetection [22]. It should be noted, that
other detector were tested and some resulted in better pose estimation accuracy.
YOLOv3 was chosen to in order to offer a fair comparison between the methods as
AlphaPose has YOLOv3 integrated in itself. The only exception is MediaPipe that
uses their own proprietary person detector. For implementations of the methods, a
package MMPose [34] was used. This package contains the implementations of over
20 different pose estimation methods such as HRNet, Stacked hourglass, DEKR or
HigherHRNet which were all tested. AlphaPose and LitePose were downloaded and
installed from their respective official repostories.

3.1.1 MS COCO

Since the MS COCO dataset was originally intended for object detection, some of
the images do not contain people and the images that do mostly involve only a
few people with little to no occlusion. For this reason, MediaPipe was tested even
though it is a method designed only for single-person pose estimation. Moreover,
MediaPipe also differs from the other methods by running only on the CPU.

The results for each of the methods on the MS COCO dataset are shown in Table 3.2.

Method AP AP.50 AP.75 APmedium APlarge Speed [it
s
]

HRNet* 0.666 0.796 0.729 0.629 0.731 16.10

AlphaPose 0.722 0.886 0.799 0.682 0.785 16.28

Hourglass* 0.648 0.795 0.708 0.612 0.708 14.83

MediaPipe 0.452 0.777 0.482 0.386 0.476 14.98

DEKR* 0.709 0.876 0.773 0.666 0.783 4.14

HigherHRNet* 0.672 0.864 0.731 0.617 0.762 2.07

LitePose 0.624 0.825 0.679 0.548 0.737 10.58

Table 3.2: Human pose estimation results on COCO val2017 set. * denotes methods
implemented in MMPose [34].

AlphaPose shows the overall best performance across all measured metrics with
DEKR achieving slightly lower but still comparable results. The rest of the top-
down methods, HRNet and Stacked hourglass, perform marginally worse than their
tested bottom-up counterparts with only LitePose and MediaPipe bellow them.

However, this was to be expected as LitePose is designed to be less hardware de-
manding which in turn reduces the accuracy of the estimation. This compromise

32

has evidently paid off as LitePose achieves more than double the speed of DEKR
and more than five times the speed of HigherHRNet. The lower scores of MediaPipe
were also expected as it functions only as a single-person pose estimator. But when
only the loose metric AP.50 is considered, MediaPipe is performing notably better
and achieves scores just 0.02 AP.50 lower than HRNet or Stacked hourglass.

In terms of inference speed, the top-down methods achieve significantly better per-
formance than most tested bottom-up methods with the exception of LitePose as
mentioned above. The highest speed performance was achieved by AlphaPose fol-
lowed closely by HRNet which both perform 4-8 times faster than DEKR and High-
erHRNet. This massive speed difference is present in spite of the fact, that work in
sequence by detecting all persons and then estimating the poses one at a time. The
parallel approach of bottom-up methods, where the keypoints are detected all at
once and then grouped, should in theory be faster, yet the current state-of-the-art
bottom-up methods are not able to match the speed of top-down methods without
sacrificing too much accuracy.

Based on these results, the HRNet method was chosen to handle the pose estimation
in the pose tracking task, thanks to it’s speed to accuracy ratio and the implemen-
tation in MMPose which made the integration with MMTracking easier.

3.1.2 CrowdPose

As stated before, MediaPipe is designed for single-person estimation only. This is-
sue was not that severe on MS COCO, but since CrowdPose places high emphasis
on multi-person pose estimation and high occlusion scenarios, MediaPipe was not
tested. Because of the high amounts of occlusion in the images, many of the detected
people do not fall under the area restrictions for APmedium and APlarge metrics, which
is why the CrowdPose dataset does not measure the these metrics. The results for
the tested methods on the CrowdPose dataset are shown in Table 3.3.

Method AP AP.50 AP.75 Speed [it
s
]

HRNet* 0.651 0.795 0.701 6.24

AlphaPose 0.695 0.853 0.749 11.79

Hourglass* 0.464 0.671 0.492 7.52

DEKR* 0.682 0.869 0.736 4.24

HigherHRNet* 0.653 0.860 0.700 1.21

LitePose 0.605 0.831 0.645 8.93

Table 3.3: Human pose estimation results on CrowdPose test set. * denotes methods
implemented in MMPose [34].

Results on CrowdPose present a similar trend as on MS COCO with AlphaPose
achieving the highest accuracy of all tested methods, followed by the two bottom-up

33

methods DEKR and HigherHRNet. Important to note, that all methods suffered a
performance decrease compared to MS COCO, both in accuracy and speed. This
was expected as CrowdPose contains a higher number of people in general as well
as on average in a given image. The accuracy decrease with this transition to more
multi-person scenarios is relatively small at roughly 0.02 for all methods except
Stacked hourglass, which suffered the biggest performance decrease by far at ∼29%
lower than it’s AP on MS COCO.

The speed measurements also provide an interesting conclusion that the speed of
bottom-up methods is less dependent on the number of persons in the image. For ex-
ample, HigherHRNet suffered a ∼42% speed decrease, LitePose only ∼16% decrease
and DEKR even achieved marginally faster performance while top-down methods
HRNet, AlphaPose and Stacked hourglass suffered a speed decrease of ∼61%, ∼38%
and ∼50%, respectively.

These results confirmed the decision to use HRNet for pose tracking tests as it
had the smallest accuracy decrease compared to results on MS COCO while still
achieving reasonable speed.

3.2 Pose tracking

The implementations of ByteTrack, QDTrack and OC-SORT were used from a
Python package MMTracking [30] and they come already integrated with person
detectors. ByteTrack and OC-SORT use the YOLOX [51] person detector, while
QDTrack uses the Faster-RCNN [38] detector. The greedy tracking methods were
also used in conjunction with the Faster-RCNN person detector implemented in
MMDetection [22]. Implementation of the greedy tracking by IoU and keypoint dis-
tance was done by the author of this work while greedy tracking by OKS was used
from MMPose [34]. All methods were run with pose estimation enabled and the
HRNet [24] from MMPose was used.

3.2.1 MOT17 and MOT20

The results for each of the tracking methods on the MOT17 and MOT20 datasets
are shown in Table 3.4 and Table 3.5, respectively.

As can be seen for Tables 3.4 and 3.5, ByteTrack and OC-SORT achieve very sim-
ilar performance with OC-SORT having very minor accuracy lead. The greedy ap-
proaches showed the worst accuracy on both datasets, which can be explained by
the absence of a re-identification feature to recover people which momentarily dis-
appear from the camera’s vision due to occlusion or environment obstacles. This
problem becomes even more apparent on the MOT20 dataset where the videos con-
tain larger amounts of people with higher levels of occlusion than any video in the
MOT17 dataset. On the other hand, the achieved inference speed of greedy tracking
approaches was higher than ByteTrack and OC-SORT. QDTrack falls in the middle

34

of the tested methods, achieving comparable or higher inference speed than greedy
tracking while performing significantly more accurate.

Method HOTA DetA AssA MOTA MOTP Speed [fps]

ByteTrack 72.220 75.816 69.189 85.925 88.166 2.89

OC-SORT 72.609 75.615 70.116 85.247 88.210 2.81

QDTrack 63.912 67.230 61.145 78.500 84.799 3.84

Greedily by IoU 37.424 40.833 35.036 39.214 78.627 3.76

Greedily by distance 31.017 40.888 24.304 36.469 78.657 3.69

Greedily by OKS 33.976 40.928 28.879 37.803 78.635 3.87

Table 3.4: Results for pose tracking on the MOT17 dataset.

Method HOTA DetA AssA MOTA MOTP Speed [fps]

ByteTrack 53.374 56.784 50.317 68.722 80.187 1.15

OC-SORT 53.981 58.011 50.410 69.251 79.874 1.03

QDTrack 29.738 34.564 25.845 43.512 72.741 1.60

Greedily by IoU 17.167 22.870 13.405 26.377 72.105 2.00

Greedily by distance 12.800 22.892 7.627 24.241 72.169 1.78

Greedily by OKS 15.785 22.916 11.418 25.933 72.131 1.95

Table 3.5: Results for pose tracking on the MOT20 dataset.

Moreover, the person detector Faster-RCNN also attributes to the lower scores of
QDTrack and the greedy approach which can be seen by the DetA scores. These
scores for Faster-RCNN are much lower than the scores that YOLOX managed to
achieve. An effort was made to use the standalone version of YOLOX person detector
in MMDetection, but the implementation failed to work even after several attempts
to fix the errors. The official implementation of YOLOX was tried and was able to
produce results, however, the result for IoU greedy tracking was 37.6 DetA which is
worse than the 40.8 DetA achieved by Faster-RCNN. The reason for this anomaly
remains unknown.

Numerous attempts were also made to alter the code of ByteTrack and OC-SORT in
order to use a different person detector, like Faster-RCNN, for a fair comparison but
to no avail. Thus, the results were published in this state, with ByteTrack and OC-
SORT using YOLOX and the greedy tracking and QDTrack using Faster-RCNN. It
is not a fair comparison of the methods by any means, but even from these results it
can be concluded, that greedy approach is unusable for multi-person heavy scenarios,
like the ones in MOT20.

35

The results for MOT17 and MOT20 datasets also show one of the biggest problems
with MOTA which is the bias towards the detection score. For example, greedy track-
ing by IoU and by distance both have detection score of ∼22.88 DetA on MOT20
with the association scores being 13.405 AssA and 7.627 AssA, respectively. HOTA
penalized the tracking by distance for the worse association accuracy by roughly the
same value as was the difference between them while MOTA penalized the distance
tracking only by less than a half of the difference between the scores. This illustrates
that MOTA is biased towards detection which could lead to researchers unknowingly
optimizing their methods for better detection instead of association.

3.2.2 Created dataset

The tracking methods were also tested on the dataset which was created for this
thesis. Because the dataset is unannotated, only a handful of frames and notable
details will be included here as examples. All results on the created dataset are
reproducible using the application from Chapter 4. Figures 3.3, 3.4 and 3.5 show
some exemplary frame pairs for each of the methods in 3 of the 18 videos.

As previously discussed, ByteTrack, OC-SORT and QDTrack perform significantly
better than the greedy tracking methods with a large portion of the performance
uplift being the YOLOX person detector. For this reason, this section will more
focused on the comparison between the individual greedy approaches.

From the three metrics used for pose matching in the greedy approach, the tracking
by distance is performing the worst. This can be seen in Tables 3.4 and 3.5 where it
achieves the lowest HOTA and MOTA scores with the poor association performance
being highly noticeable on the AssA metric. The problem with this pose matching
metric is, that the sum of the distances between keypoints of the same type in the
current and previous frame is extremely dependent on the video. For instance, a
person in a video with a low frame rate will have their keypoints further between
frames when compared to a video with a higher frame rate, which leads to the need
for a higher threshold for pose matching. Another example of this problem can be
a video where one person is slowly walking and another is running. In this video,
the person running would need a higher pose matching threshold than the person
walking in order to be tracked. This would lead to the need for a pose matching
threshold specifically tuned for each video and in some cases for each person.

The greedy tracking with pose matching based on the Object Keypoint Similarity
(OKS) metric performed better than the distance based. The usage of this metric
negates the problem with the tracking threshold being highly dependent on the
properties of the video or the people in it. Reason for this is, that OKS is percent-
based with a value between 0 and 1 indicating how similar are the poses in the
current and previous frame. However, the usage of this metric also has a significant
flaw which applies to the tracking by distance as well. The fact that the tracking is
reliant on the actual keypoint locations can have a major impact on the association
accuracy, since the pose estimator may have problems estimating certain poses or
people in certain perspectives, see Figure 3.1. Here, a person is shown on two different

36

frames with a wrongly estimated pose due to the difficult perspective. The positions
of the keypoints are vastly different, meaning the OKS between the two poses is
lower than the threshold and the person on the newer frame is considered a new
person and assigned a new ID, denoted by the change in the color. On the other
hand, in Figure 3.2 the same frames are shown, but this time tracked by the IoU
which tracks the person correctly despite the wrongly estimated pose.

(a) Frame 61 (b) Frame 62

Figure 3.1: Example of an identity switch of the OKS tracking due to wrongly
estimated pose in a difficult perspective.

(a) Frame 61 (b) Frame 62

Figure 3.2: Same frames as in Fig. 3.1, but tracked by IoU tracking.

37

As mentioned above, the usage of the IoU metric for greedy tracking eliminates the
problem of inaccurate association with incorrectly estimated poses. This is because
the IoU metric is calculated directly from the bounding boxes of the detections. The
results in Tables 3.4 and 3.5 show, that using IoU as the similarity metric in greedy
tracking yields the best association accuracy of the tested similarity metrics. It has
also been observed, that on the videos with lower levels of crowding, the IoU greedy
tracking provides fairly stable person tracking with most of the wrong ID changes
being caused by the person detector or occlusion. With the integration of a better
person detector and the implementation of a re-ID feature, the IoU greedy tracking
could be used in scenarios where the crowding level remains low for the majority of
the time, like for example a warehouse security camera.

38

(a) Frame 90, ByteTrack (b) Frame 150, ByteTrack

(c) Frame 90, IoU tracking (d) Frame 150, IoU tracking

(e) Frame 90, OKS tracking (f) Frame 150, OKS tracking

(g) Frame 90, distance tracking (h) Frame 90, distance tracking

Figure 3.3: Exemplary frame pairs from a video in the created dataset with different
tracking methods used.

39

(a) Frame 90, ByteTrack (b) Frame 150, ByteTrack

(c) Frame 90, IoU tracking (d) Frame 150, IoU tracking

(e) Frame 90, OKS tracking (f) Frame 150, OKS tracking

(g) Frame 90, distance tracking (h) Frame 150, distance tracking

Figure 3.4: Exemplary frame pairs from a video in the created dataset with different
tracking methods used.

40

(a) Frame 90, ByteTrack (b) Frame 150, ByteTrack

(c) Frame 90, IoU tracking (d) Frame 150, IoU tracking

(e) Frame 90, OKS tracking (f) Frame 150, OKS tracking

(g) Frame 90, distance tracking (h) Frame 150, distance tracking

Figure 3.5: Exemplary frame pairs from a video in the created dataset with different
tracking methods used.

41

Chapter 4

Application

As a part of this work, an application with a graphical user interface was designed
with the aim to provide a more user friendly way to visualize some of the pose esti-
mation and tracking methods. This chapter is focused on the implementation details
and the usage of the application. The complete implementation is publicly available
at https://github.com/cechantonin/PoseEstimationApp along with the instructions
for installation.

Figure 4.1: The user interface of the application.

4.1 Implementation

The application is implemented in Python, specifically Python 3.10, and the user
interface is built upon the PyQT5 package. The opening of a video is handled by

42

https://github.com/cechantonin/PoseEstimationApp

the MMCV package which provides tools for image and video processing, image
and annotation visualization, data transformation and convolutional neural network
building. This package is also required and used by MMPose, MMDetection and
MMTracking.

When a video file is selected, it is opened by MMCV and then stored in an array
which is a property of the main window. This array has 4 dimensions in total. First
one holds all the loaded videos with the original video at index 0 and the inference
result at index 1. All other videos generated by the visualization of a result JSON file
are stored in the subsequent indexes. The second dimension stores the individual
frames of the selected video, next dimension stores all the columns of the frame
and the last dimension stores the individual RGB values for each of the pixels in
the column. This approach allows possibility to view the pose estimation in real
time in the video player along with the ability to scroll through the video while the
estimation is running. For result visualization, this allows the user to load multiple
results estimated with different settings, have them visualized on the video and
then freely switch between them without the need for any processing. However, the
storage of all visualized videos comes with a heavy performance hit when it comes
to memory usage. For this reason, it is highly recommended to use lower resolution
videos, e.g. 720p, and not visualizing too many results at one. The maximum number
of visualizations of course depends on the total amount of free memory in the system
the app is running at.

The video player itself is not using the QMediaPlayer widget included in PyQT5,
because it only takes the file URL as an input and it does not allow the usage
of an array to play the video from. Instead, the video player is implemented from
scratch with a QLabel being the main component where the frames are displayed.
As mentioned before, the videos are stored in an array as individual frames and
when the video is played, a timer running at the frame rate of the video is started.
On every tick of the timer, a frame is converted to from the array of pixels to a
QImage which then assigned to the QPixmap of the QLabel.

When the pose estimation is started, an instance of the Worker class is created and
then run inside a QThreadPool. This ensures, that the user interface stays responsive
during the estimation process and, as mentioned before, enables the ability to scroll
through the video while running the estimation. The option to stop the estimation
is implemented using a global variable defined in a separate python file which is
imported into the main script and the estimation script.

Lastly, pose tracking is disabled for the two bottom-up methods DEKR and High-
erHRNet due to the bottom-up methods not generating bounding boxes while Byte-
Track and IoU greedy tracking need them in order to perform the tracking. Ad-
ditionally, from the speed testing on CrowdPose and the achieved fps on the pose
tracking datasets, it can be assumed that DEKR or HigherHRNet would achieve less
than 1 fps when used for pose tracking. Thus, DEKR and HigherHRNet are imple-
mented in the application only for pose estimation visualization. Also, it is important
to mention that despite having the best results of all tested methods, AlphaPose
is not implemented in the application due to package version incompatibility with
MMPose.

43

4.2 Usage

The user interface layout can be seen in Figure 4.1. It is composed of the video
player and a QTabWidget which used for swapping between the ability to run pose
estimation on the video or visualize the results from previously generated JSON
files.

In the QTabWidget on the right of the window are the inference settings, Figure 4.2.
The pose estimation method of choice can be selected here as well as the tracking
method, if pose tracking is enabled. The bounding box threshold can be set using
the slider to prevent pose estimation on low confidence bounding boxes. Similarly,
the keypoint tracking threshold can be set to influence the similarity pose matching.
Note, that higher number means more strict tracking for ByteTrack, IoU and OKS,
whereas higher number means less strict tracking for distance-based tracking. Next,
the keypoint radius and line thickness can be changed in order to be more visible in
the video. This visualization setting is not retroactively applicable and must be set
before the start of the estimation to achieve the desired effect. Lastly, a checkbox
can be checked in order to view the processed frames in real time. The user can
pause the video or scroll through it while the estimation is running and the frames
will be dynamically updated as the video is playing. The real time showcase of the
processed frames can be enabled once again by the checkbox.

Figure 4.2: Detail of the pose estimation settings panel.

44

The second tab in the QTabWidget is used for the visualization of previously gen-
erated JSON result files, Figure 4.3. The main component of this tab is the QList-
Widget which holds all the visualized videos and is used to swap between them.
Two positions in this list are reserved for a specific purposes that are always the
same. First position is always reserved for the original video which remains loaded
in the memory all the time so that the estimation or visualization have the un-
processed video to work with. The second position is always occupied by the most
recent estimation result which can be a partially processed video if the estimation
was terminated by the user or a fully processed video if the estimation finished. The
displayed video is determined by the active item in this list widget. The information
about the selected video, such as the pose estimation method, tracking method and
their corresponding thresholds, is shown under the video list.

A result in a JSON file can be added to the list by the button at the bottom of
the tab. Upon selecting a JSON file with the results, the video is processed and the
bounding boxes and poses are visualized in the video. Similarly to the estimation, the
keypoint radius and line thickness can be adjusted and do not apply retroactively.
When a result is visualized, the video can be exported and saved. Additionally, when
the inference result is selected, the result can be exported to a JSON file.

Figure 4.3: Detail of the result visualization panel.

45

Conclusion

Several objectives were defined in the thesis assignment. First objective was to select
several methods for pose estimation based on the preliminary research of published
methods and then the selected methods were to be tested and compared with each
other. Next, a few methods for pose tracking were to be selected, tested and com-
pared. Additionally, a new unannotated video dataset was to be created and used
to test the methods. The last objective was to create an application in which pose
estimation and pose tracking can be visualized in a user friendly interface.

As per the first goal, seven pose estimation methods were selected. These include four
top-down methods and three bottom-up methods to provide a comparison between
the two paradigms. The methods were introduced along with the two most popular
datasets for pose estimation on which the methods were compared. The comparison
metric AP and it’s sub-metrics were also described. From these methods, AlphaPose
achieved the best accuracy for all measured metrics with DEKR performing fairly
similar. In terms of estimation speed, AlphaPose and HRNet achieved comparable
results thanks to their top-down approach. Important to note, that on CrowdPose
with a higher number of persons per frame, AlphaPose achieved significantly higher
inference speed than the rest with LitePose being the second fastest.

The second objective was to compare a few pose tracking methods and compare the
performance between them. Three methods were selected and tested on two differ-
ent datasets. ByteTrack and OC-SORT performed very similar accuracy on the less
crowded MOT17 dataset with QDTrack achieved slightly worse but still respectable
results. On the very highly crowded MOT20 dataset, OC-SORT outperformed Byte-
Track in all measured accuracy metrics and QDTrack achieved significantly worse re-
sults due to the FasterRCNN detector not handling highly occluded scenes very well.
For comparison, three greedy pose tracking methods were also tested and showed
poor performance, especially on the MOT20 dataset. Inference speed showed greedy
tracking to perform the fastest with QDTrack being only slightly slower while achiev-
ing much higher accuracy.

An application was developed as a part of the last objective. It can be used to run
pose estimation with pose tracking from a user friendly interface. The results can be
saved as a video or to a JSON file. The JSON files from this application can then
be re-opened in the application to be visualized on the video.

The conclusion from these results and comparisons is as follows. AlphaPose per-
formed the best of all the tested methods for pose estimation. For pose tracking the
overall best performing was OC-SORT in terms of accuracy and QDTrack in terms

46

of accuracy with decent inference speed. Important to note, that greedy tracking
did not perform well on these datasets, but could be adequate for pose tracking on
a security camera feed, where there’s little to no chance of occlusion, e.g., hallway
or warehouse cameras.

47

Bibliography

[1] A. Bewley, Z. Ge, L. Ott, F. Ramos, B. Upcroft, ”Simple online and realtime
tracking,” 2016 IEEE International Conference on Image Processing (ICIP),
2016, pp. 3464-3468. https://doi.org/10.1109/ICIP.2016.7533003

[2] A. Doering, U. Iqbal, J. Gall, ”Joint Flow: Temporal Flow Fields for Multi
Person Tracking,” 2018. https://doi.org/10.48550/arXiv.1805.04596

[3] A. Milan, L. Leal-Taixe, I. Reid, S. Roth, K. Schindler, ”MOT16: A Benchmark
for Multi-Object Tracking,” 2016. https://doi.org/10.48550/arXiv.1603.00831

[4] A. Newell, Z. Huang, J. Deng, ”Associative embedding: End-to-end learn-
ing for joint detection and grouping.” In NeurIPS, 2017, pp. 2274–2284.
https://doi.org/10.48550/arXiv.1611.05424

[5] A. Newell, K. Yang, J. Deng, ”Stacked Hourglass Networks for Human Pose
Estimation,” 2016 European Conference on Computer Vision (ECCV), 2016,
pp. 483–499. https://doi.org/10.1007/978-3-319-46484-8 29

[6] A. Toshev, C. Szegedy, ”DeepPose: Human Pose Estimation via Deep Neural
Networks,” 2014 IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2014, pp. 1653-1660. https://doi.org/10.1109/CVPR.2014.214

[7] Technology Agency of the Czech Republic, ”AISEE - Artifi-
cial Intelligence based Search Environment for video/photo.”
https://starfos.tacr.cz/en/projekty/VJ02010029

[8] B. Cheng, B. Xiao, J. Wang, H. Shi, T. S. Huang, L. Zhang, ”High-
erHRNet: Scale-Aware Representation Learning for Bottom-Up Hu-
man Pose Estimation,” 2020 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2020, pp. 5385-5394.
https://doi.org/10.1109/CVPR42600.2020.00543

[9] D. Ganesh, R. R. Teja, C. D. Reddy, D. Swathi, ”Human Action Recognition
based on Depth maps, Skeleton and Sensor Images using Deep Learning,” 2022
IEEE 3rd Global Conference for Advancement in Technology (GCAT), 2022,
pp. 1-8. https://doi.org/10.1109/GCAT55367.2022.9971982

[10] E. Insafutdinov, L. Pishchulin, B. Andres, M. Andriluka, B. Schiele, ”Deeper-
Cut: A Deeper, Stronger, and Faster Multi-person Pose Estimation Model,”
2016 European Conference on Computer Vision (ECCV), 2016, pp. 34–50.
https://doi.org/10.1007/978-3-319-46466-4 3

48

https://doi.org/10.1109/ICIP.2016.7533003
https://doi.org/10.48550/arXiv.1805.04596
https://doi.org/10.48550/arXiv.1603.00831
https://doi.org/10.48550/arXiv.1611.05424
https://doi.org/10.1007/978-3-319-46484-8_29
https://doi.org/10.1109/CVPR.2014.214
https://starfos.tacr.cz/en/projekty/VJ02010029
https://doi.org/10.1109/CVPR42600.2020.00543
https://doi.org/10.1109/GCAT55367.2022.9971982
https://doi.org/10.1007/978-3-319-46466-4_3

[11] E. Ristani, F. Solera, R. S. Zou, R. Cucchiara, C. Tomasi, ”Performance
Measures and a Data Set for Multi-Target, Multi-Camera Tracking,” 2018
ECCV Workshop on Benchmarking Multi-Target Tracking, 2018, pp. 17–35.
https://doi.org/10.48550/arXiv.1609.01775

[12] G. Ning, J. Pei, H. Huang, ”LightTrack: A Generic Framework for Online Top-
Down Human Pose Tracking,” 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), 2020, pp. 4456-4465.
https://doi.org/10.1109/CVPRW50498.2020.00525

[13] H. S. Fang et al., ”AlphaPose: Whole-Body Regional Multi-Person Pose Esti-
mation and Tracking in Real-Time,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2022. https://doi.org/10.1109/TPAMI.2022.3222784

[14] H. W. Kuhn, ”The hungarian method for the assignment problem.” In Naval
research logistics quarterly, vol. 52, 1955, pp. 83–97.

[15] J. Cao, J. Pang, X. Weng, R. Khirodkar, K. Kitani, ”Observation-
Centric SORT: Rethinking SORT for Robust Multi-Object Tracking,” 2023
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2023, pp. 9686-9696. https://doi.org/10.1109/CVPR52729.2023.00934

[16] J. Carreira, P. Agrawal, K. Fragkiadaki, J. Malik, ”Human Pose Es-
timation with Iterative Error Feedback,” 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016, pp. 4733-4742.
https://doi.org/10.1109/CVPR.2016.512

[17] J. Li, C. Wang, H. Zhu, Y. Mao, H. -S. Fang, C. Lu, ”CrowdPose: Efficient
Crowded Scenes Pose Estimation and a New Benchmark,” 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp.
10855-10864. https://doi.org/10.1109/CVPR.2019.01112

[18] J. Luiten, A. Ošep, P. Dendorfer et al., ”HOTA: A Higher Order Metric for
Evaluating Multi-object Tracking,” in International Journal of Computer Vi-
sion, vol. 129, 2021, pp. 548–578. https://doi.org/10.1007/s11263-020-01375-2

[19] J. Pang et al., ”Quasi-Dense Similarity Learning for Multiple Object Tracking,”
2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2021, pp. 164-173. https://doi.org/10.1109/CVPR46437.2021.00023

[20] J. Redmon, A. Farhadi, ”YOLOv3: An Incremental Improvement,” 2018.
https://doi.org/10.48550/arXiv.1804.02767

[21] K. Bernardin, R. Stiefelhagen, ”Evaluating Multiple Object Tracking Perfor-
mance: The CLEAR MOT Metrics,” EURASIP Journal on Image and Video
Processing, 2008, pp. 1-10. https://doi.org/10.1155/2008/246309

[22] K. Chen et al., ”MMDetection: Open MMLab Detection Toolbox and Bench-
mark,” 2019. https://doi.org/10.48550/arXiv.1906.07155

49

https://doi.org/10.48550/arXiv.1609.01775
https://doi.org/10.1109/CVPRW50498.2020.00525
https://doi.org/10.1109/TPAMI.2022.3222784
https://doi.org/10.1109/CVPR52729.2023.00934
https://doi.org/10.1109/CVPR.2016.512
https://doi.org/10.1109/CVPR.2019.01112
https://doi.org/10.1007/s11263-020-01375-2
https://doi.org/10.1109/CVPR46437.2021.00023
https://doi.org/10.48550/arXiv.1804.02767
https://doi.org/10.1155/2008/246309
https://doi.org/10.48550/arXiv.1906.07155

[23] K. Chen et al., ”Patient-Specific Pose Estimation in Clinical Environments,”
in IEEE Journal of Translational Engineering in Health and Medicine, vol. 6,
2018, pp. 1-11. https://doi.org/10.1109/JTEHM.2018.2875464

[24] K. Sun, B. Xiao, D. Liu, J. Wang, ”Deep High-Resolution Representation
Learning for Human Pose Estimation,” 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2019, pp. 5686-5696.
https://doi.org/10.1109/CVPR.2019.00584

[25] K. Wang, R. Zhao, Q. Ji, ”Human Computer Interaction with Head Pose,
Eye Gaze and Body Gestures,” 2018 13th IEEE International Conference
on Automatic Face & Gesture Recognition (FG 2018), 2018, pp. 789-789.
https://doi.org/10.1109/FG.2018.00126

[26] K. Wang, Q. Ji, ”Real Time Eye Gaze Tracking with 3D Deformable Eye-Face
Model,” 2017 IEEE International Conference on Computer Vision (ICCV),
2017, pp. 1003-1011. https://doi.org/10.1109/ICCV.2017.114

[27] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A.
Karpathy, A. Khosla, M. Bernstein, A. C. Berg, L. Fei-Fei, ”ImageNet Large
Scale Visual Recognition Challenge,” in International Journal of Computer
Vision, vol. 115, 2015, pp. 211–252. https://doi.org/10.1007/s11263-015-0816-
y

[28] M. Andriluka, L. Pishchulin, P. Gehler, B. Schiele, ”2D Human Pose Esti-
mation: New Benchmark and State of the Art Analysis,” 2014 IEEE Con-
ference on Computer Vision and Pattern Recognition, 2014, pp. 3686-3693.
https://doi.org/10.1109/CVPR.2014.471

[29] MediaPipe. https://developers.google.com/mediapipe

[30] MMTracking Contributors, ”MMTracking: OpenMMLab video perception tool-
box and benchmark.” https://github.com/open-mmlab/mmtracking

[31] M. J. Islam, J. Mo, J. Sattar , ”Robot-to-robot relative pose estimation us-
ing humans as markers,” in Autonomous Robots, vol. 45, 2021, pp. 579–593.
https://doi.org/10.1007/s10514-021-09985-6

[32] N. Wojke, A. Bewley, D. Paulus, ”Simple online and realtime
tracking with a deep association metric,” 2017 IEEE Interna-
tional Conference on Image Processing (ICIP), 2017, pp. 3645-3649.
https://doi.org/10.1109/ICIP.2017.8296962

[33] P. Dendorfer, H. Rezatofighi, A. Milan, J. Shi, D. Cremers, I. Reid, S. Roth,
K. Schindler, L. Leal-Taixé, ”MOT20: A benchmark for multi object tracking
in crowded scenes,” 2016. https://doi.org/10.48550/arXiv.2003.09003

[34] OpenMMLab Pose Estimation Toolbox and Benchmark.
https://github.com/open-mmlab/mmpose

50

https://doi.org/10.1109/JTEHM.2018.2875464
https://doi.org/10.1109/CVPR.2019.00584
https://doi.org/10.1109/FG.2018.00126
https://doi.org/10.1109/ICCV.2017.114
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1109/CVPR.2014.471
https://developers.google.com/mediapipe
https://github.com/open-mmlab/mmtracking
https://doi.org/10.1007/s10514-021-09985-6
https://doi.org/10.1109/ICIP.2017.8296962
https://doi.org/10.48550/arXiv.2003.09003
https://github.com/open-mmlab/mmpose

[35] Q. Bao, W. Liu, Y. Cheng, B. Zhou, T. Mei, ”Pose-Guided
Tracking-by-Detection: Robust Multi-Person Pose Tracking,” in
IEEE Transactions on Multimedia, vol. 23, 2021, pp. 161-175.
https://doi.org/10.1109/TMM.2020.2980194

[36] Q. Dang, J. Yin, B. Wang, W. Zheng, ”Deep learning based 2D human pose
estimation: A survey,” in Tsinghua Science and Technology, vol. 24, no. 6, 2019,
pp. 663-676. https://doi.org/10.26599/TST.2018.9010100

[37] S. Dubey, M. Dixit, ”A comprehensive survey on human pose estimation ap-
proaches,” in A comprehensive survey on human pose estimation approaches,
vol. 29, 2023, pp. 167–195. https://doi.org/10.1007/s00530-022-00980-0

[38] S. Ren, K. He, R. Girshick, J. Sun, ”Faster R-CNN: Towards Real-Time Ob-
ject Detection with Region Proposal Networks,” in IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 39, no. 6, 2017, pp. 1137-1149.
https://doi.org/10.1109/TPAMI.2016.2577031

[39] Y. Zhu, C. Detig, S. Kane, G. Lourie, ”Kinematic Motion Analysis with Volu-
metric Motion Capture,” 2022 26th International Conference Information Vi-
sualisation (IV), 2020, pp. 61-66. https://doi.org/10.1109/IV56949.2022.00019

[40] T. Lin, M. Maire, S.J. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollar, C.L.
Zitnick, ”Microsoft COCO: common objects in context”, European Conference
on Computer Vision, 2014, pp. 740–755. https://doi.org/10.1007/978-3-319-
10602-1 48

[41] U. Iqbal, A. Milan, J. Gall, ”PoseTrack: Joint Multi-person Pose Estimation
and Tracking,” 2017 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2017, pp. 4654-4663. https://doi.org/10.1109/CVPR.2017.495

[42] V. Bazarevsky, I. Grishchenko, K. Raveendran, T. Zhu, F. Zhang, M.
Grundmann, ”BlazePose: On-device Real-time Body Pose tracking,” CVPR
Workshop on Computer Vision for Augmented and Virtual Reality, 2020.
https://doi.org/10.48550/arXiv.2006.10204

[43] W. Liu, Q. Bao, Y. Sun, T. Mei, ”Recent Advances in Monocular 2D and 3D
Human Pose Estimation: A Deep Learning Perspective,” ACM Computing
Surveys, vol. 55, no. 4, 2022, pp. 1-41. https://doi.org/10.1145/3524497

[44] W. Tang, P. Yu, Y. Wu, ”Deeply Learned Compositional Models for Hu-
man Pose Estimation,” Computer Vision – ECCV 2018, 2018, pp. 197–214.
https://doi.org/10.1007/978-3-030-01219-9 12

[45] Y. Wang, M. Li, H. Cai, W. Chen, S. Han, ”Lite Pose: Efficient Architec-
ture Design for 2D Human Pose Estimation,” 2022 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2022, pp. 13116-13126.
https://doi.org/10.1109/CVPR52688.2022.01278

51

https://doi.org/10.1109/TMM.2020.2980194
https://doi.org/10.26599/TST.2018.9010100
https://doi.org/10.1007/s00530-022-00980-0
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/IV56949.2022.00019
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1109/CVPR.2017.495
https://doi.org/10.48550/arXiv.2006.10204
https://doi.org/10.1145/3524497
https://doi.org/10.1007/978-3-030-01219-9_12
https://doi.org/10.1109/CVPR52688.2022.01278

[46] Y. Xiu, J. Li, H. Wang, Y. Fang, C. Lu, ”Pose Flow: Efficient On-
line Pose Tracking,” British Machine Vision Conference (BMVC), 2018.
https://doi.org/10.48550/arXiv.1802.00977

[47] Y. Zhang, P. Sun, Y. Jiang, D. Yu, F. Weng, Z. Yuan, P. Luo, W. Liu, X.
Wang, ”ByteTrack: Multi-Object Tracking by Associating Every Detection
Box,” 2022 European Conference on Computer Vision (ECCV), 2022, pp.
1-21. https://doi.org/10.1007/978-3-031-20047-2 1

[48] MediaPipe. https://https://www.youtube.com/

[49] Z. Cao, T. Simon, S. -E. Wei, Y. Sheikh, ”Realtime Multi-person 2D
Pose Estimation Using Part Affinity Fields,” 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017, pp. 1302-1310.
https://doi.org/10.1109/CVPR.2017.143

[50] Z. Geng, K. Sun, B. Xiao, Z. Zhang, J. Wang, ”Bottom-Up Human Pose Esti-
mation Via Disentangled Keypoint Regression,” 2021 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2021, pp. 14671-14681.
https://doi.org/10.1109/CVPR46437.2021.01444

[51] Z. Ge, S. Liu, F. Wang, Z. Li, J. Sun, ”YOLOX: Exceeding YOLO Series in
2021,” 2021. https://doi.org/10.48550/arXiv.2107.08430

52

https://doi.org/10.48550/arXiv.1802.00977
https://doi.org/10.1007/978-3-031-20047-2_1
https://https://www.youtube.com/
https://doi.org/10.1109/CVPR.2017.143
https://doi.org/10.1109/CVPR46437.2021.01444
https://doi.org/10.48550/arXiv.2107.08430

Appendix A

Pose tracking dataset

Length Crowding Description YouTube source

0:50 1 Street with snow at night youtu.be/dQTwIQiGRTg

1:56 2 Intersection camera youtu.be/c-ofL3wVG-Y

0:13 2 Top-down view of a mall youtu.be/ABL1btlACYo

0:10 2 Airport, shot from an escalator youtu.be/9pyz3HsS0S8

6:29 3 Basketball, moving drone shot youtu.be/DVMeGqeMbHA

1:01 3 Escalator in a mall youtu.be/gnxK4xHG1\ 0
0:26 3 Basketball, stationary drone shot youtu.be/UlhR0C3ELog

1:29 4 Wide street youtu.be/XgAcTEjDHnA

0:13 4 Top-down view of a mall youtu.be/WvhYuDvH17I

0:21 4 People on a bridge, slow motion youtu.be/6AuFIA0YHgQ

0:29 5 Airport, mainly stationary people youtu.be/l64NZjETrps

0:08 6 Crowded street youtu.be/KCt-Qn37GTg

0:26 6 Crowded street in low light youtu.be/4j6BB6YEGAo

0:09 6 Crowded street during sunset youtu.be/XNgU\ Lk3VAw
5:26 6 Airport, stationary camera youtu.be/F7\ BwCS6r5M
2:19 7 Crowded street youtu.be/bwJ-TNu0hGM

1:56 8 Multiple crowded streets youtu.be/YzcawvDGe4Y

1:15 9 Very crowded street, high occlusion youtu.be/6NBwbKMyzEE

Table A.1: Videos in the created dataset with their length, crowding level, description
and the corresponding YouTube source link. Crowding level is estimated by the eye.

53

https://youtu.be/dQTwIQiGRTg
https://youtu.be/c-ofL3wVG-Y
https://youtu.be/ABL1btlACYo
https://youtu.be/9pyz3HsS0S8
https://youtu.be/DVMeGqeMbHA
https://youtu.be/gnxK4xHG1_0
https://youtu.be/UlhR0C3ELog
https://youtu.be/XgAcTEjDHnA
https://youtu.be/WvhYuDvH17I
https://youtu.be/6AuFIA0YHgQ
https://youtu.be/l64NZjETrps
https://youtu.be/KCt-Qn37GTg
https://youtu.be/4j6BB6YEGAo
https://youtu.be/XNgU_Lk3VAw
https://youtu.be/F7_BwCS6r5M
https://youtu.be/bwJ-TNu0hGM
https://youtu.be/YzcawvDGe4Y
https://youtu.be/6NBwbKMyzEE

Appendix B

Application source code

B.1 Main event loop and user interface

1 import sys
2 import os
3 import traceback
4 import mmcv
5 import cv2
6 import qimage2ndarray
7 import numpy as np
8 import json
9 import globals
10 from PyQt5.QtCore import Qt , pyqtSlot , QRunnable , QObject ,

QThreadPool , pyqtSignal , QDir , QTimer , QSize
11 from PyQt5.QtGui import QPixmap
12 from PyQt5.QtWidgets import (QApplication , QFileDialog , QMainWindow

, QSlider , QStyle , QVBoxLayout , QSpinBox ,
13 QHBoxLayout , QPushButton , QWidget ,

QLabel , QCheckBox , QComboBox , QProgressBar ,
14 QProgressDialog , QTabWidget ,

QListWidget , QMessageBox)
15 from MMPose import mmpose_inference
16 from mmpose.apis import init_pose_model , vis_pose_tracking_result
17 from mmpose.datasets import DatasetInfo
18

19

20 class WorkerSignals(QObject):
21 finished = pyqtSignal ()
22 error = pyqtSignal(tuple)
23 result = pyqtSignal(list)
24 progress = pyqtSignal(dict)
25

26

27 class Worker(QRunnable):
28 def __init__(self , in_file , tracking_type , pose , bbox_thr ,

tracking_thr , kpt_radius , line_thickness):
29 super(Worker , self).__init__ ()
30

31 # Store constructor arguments (re-used for processing)

54

32 self.in_file = in_file
33 self.tracking_type = tracking_type
34 self.pose = pose
35 self.bbox_thr = bbox_thr
36 self.tracking_thr = tracking_thr
37 self.kptradius = kpt_radius
38 self.linethickness = line_thickness
39 self.signals = WorkerSignals ()
40

41 # Add the callback to our kwargs
42 self.progress_callback = self.signals.progress
43

44 @pyqtSlot ()
45 def run(self):
46 ’’’
47 Initialise the runner function with passed args , kwargs.
48 ’’’
49

50 # Retrieve args/kwargs here; and fire processing using them
51 try:
52 result = mmpose_inference(self.progress_callback , self.

in_file , self.tracking_type , self.pose , self.bbox_thr ,
53 self.tracking_thr , self.

kptradius , self.linethickness)
54 except:
55 traceback.print_exc ()
56 exctype , value = sys.exc_info ()[:2]
57 self.signals.error.emit((exctype , value , traceback.

format_exc ()))
58 else:
59 self.signals.result.emit(result) # Return the result

of the processing
60 finally:
61 self.signals.finished.emit() # Done
62

63

64 class MainWindow(QMainWindow):
65

66 def __init__(self):
67 super().__init__ ()
68 self.setWindowTitle(’Human pose estimation and tracking ’)
69

70 widget = QWidget ()
71

72 self.video = [[], []]
73 self.temp_video = []
74 self.running = False
75 self.loaded_jsons = [{’pose’: ’--’,
76 ’track’: ’--’,
77 ’bbox_thr ’: 0,
78 ’kpt_thr ’: 0},
79 {’pose’: ’--’,
80 ’track’: ’--’,
81 ’bbox_thr ’: 0,
82 ’kpt_thr ’: 0}]
83 self.frame_label = QLabel ()

55

84 self.frame_timer = QTimer ()
85 self.frame_timer.timeout.connect(self.display_video_stream)
86 self.pause = True
87 self.fps = 0
88 self.length = 0
89 self.frameindex = -1
90 self.url = ""
91 self.originalsize = QSize()
92

93 self.inferenceresults = {"pose": "",
94 "track": "",
95 "video_path": "",
96 "bbox_thr": 0,
97 "kpt_thr": 0,
98 "results": []}
99

100 file_menu = self.menuBar ().addMenu("&File")
101 self.open_action = file_menu.addAction("Open video")
102 self.open_action.triggered.connect(self.open_file)
103 self.exit_action = file_menu.addAction("Exit")
104 self.exit_action.triggered.connect(self.exit_call)
105 self.about_action = self.menuBar ().addAction("About")
106 self.about_action.triggered.connect(self.about)
107

108 # INFERENCE WIDGET CREATION
109 inferencewidget = QWidget ()
110 inferencewidget.layout = QVBoxLayout(inferencewidget)
111 inferencewidget.setMaximumWidth (300)
112 inferencewidget.setMinimumWidth (300)
113 # Pose Method Combobox
114 posemethod = QWidget ()
115 posemethod.layout = QHBoxLayout(posemethod)
116 self._poselabel = QLabel("Pose estimation method:")
117 self._posecombo = QComboBox ()
118 self._posecombo.addItems (["Hourglass", "HRNet", "DEKR", "

HigherHRNet"])
119 self._posecombo.insertSeparator (2)
120 self._posecombo.setEnabled(False)
121 posemethod.layout.addWidget(self._poselabel)
122 posemethod.layout.addWidget(self._posecombo)
123 # Tracking Radio Button
124 self._track = QCheckBox ()
125 self._track.setText("Enable pose tracking")
126 self._track.stateChanged.connect(self.enable_tracking)
127 self._track.setEnabled(False)
128 # Tracking Method Combobox
129 trackingmethod = QWidget ()
130 trackingmethod.layout = QHBoxLayout(trackingmethod)
131 self._tracklabel = QLabel("Pose estimation method:")
132 self._trackcombo = QComboBox ()
133 self._trackcombo.addItems (["Greedily by IoU", "Greedily by

distance", "Greedily by OKS", "ByteTrack", "OC-SORT",
134 "QDTrack"])
135 self._trackcombo.insertSeparator (3)
136 self._trackcombo.setEnabled(False)
137 trackingmethod.layout.addWidget(self._tracklabel)

56

138 trackingmethod.layout.addWidget(self._trackcombo)
139 # bbox_thr Slider
140 bboxthrslider = QWidget ()
141 bboxthrslider.layout = QHBoxLayout(bboxthrslider)
142 self._bboxslider = QSlider ()
143 self._bboxslider.setMaximum (100)
144 self._bboxslider.setMinimum (0)
145 self._bboxslider.setTickPosition(QSlider.TicksBelow)
146 self._bboxslider.setValue (30)
147 self._bboxslider.setOrientation(Qt.Horizontal)
148 self._bboxslider.valueChanged.connect(self.

bboxsliderchanged)
149 self._bboxslider.setEnabled(False)
150 self._bboxline = QLabel ()
151 self._bboxline.setFixedWidth (50)
152 self._bboxline.setText(str(self._bboxslider.value() / 100)

+ "\n")
153 bboxthrslider.layout.addWidget(self._bboxslider)
154 bboxthrslider.layout.addSpacing (10)
155 bboxthrslider.layout.addWidget(self._bboxline)
156 self._bboxlabel = QLabel("Bounding box threshold for pose

estimation")
157 # kpt_thr Slider
158 kptthrslider = QWidget ()
159 kptthrslider.layout = QHBoxLayout(kptthrslider)
160 self._kptslider = QSlider ()
161 self._kptslider.setMaximum (100)
162 self._kptslider.setMinimum (0)
163 self._kptslider.setTickPosition(QSlider.TicksBelow)
164 self._kptslider.setValue (30)
165 self._kptslider.setOrientation(Qt.Horizontal)
166 self._kptslider.valueChanged.connect(self.kptsliderchanged)
167 self._kptslider.setEnabled(False)
168 self._kptline = QLabel ()
169 self._kptline.setFixedWidth (50)
170 self._kptline.setText(str(self._kptslider.value() / 100) +

"\n")
171 kptthrslider.layout.addWidget(self._kptslider)
172 kptthrslider.layout.addSpacing (10)
173 kptthrslider.layout.addWidget(self._kptline)
174 self._kptlabel = QLabel("Keypoint threshold for pose

tracking")
175 # Keypoint radius
176 kptradius = QWidget ()
177 kptradius.layout = QHBoxLayout(kptradius)
178 self._kptradius = QSpinBox ()
179 self._kptradius.setRange(1, 10)
180 self._kptradius.setValue (4)
181 self._kptradius.setMaximumWidth (50)
182 self._kptradius.setEnabled(False)
183 self._kptradiuslabel = QLabel("Keypoint visualization

radius:")
184 kptradius.layout.addWidget(self._kptradiuslabel)
185 kptradius.layout.addWidget(self._kptradius)
186 # Line thickness
187 linethickness = QWidget ()

57

188 linethickness.layout = QHBoxLayout(linethickness)
189 self._linethickness = QSpinBox ()
190 self._linethickness.setRange(1, 5)
191 self._linethickness.setValue (1)
192 self._linethickness.setMaximumWidth (50)
193 self._linethickness.setEnabled(False)
194 self._linethicknesslabel = QLabel("Pose visualization

thickness:")
195 linethickness.layout.addWidget(self._linethicknesslabel)
196 linethickness.layout.addWidget(self._linethickness)
197 # Show Radio Button
198 self._show = QCheckBox ()
199 self._show.setText("Show inference in real time")
200 self._show.setEnabled(False)
201 # Progress Bar
202 self._progressbar = QProgressBar ()
203 self._progressbar.setFormat("%v/%m (%p%)")
204 self._progressbar.setValue (0)
205 self._progressbar.setAlignment(Qt.AlignCenter)
206 self._progressbar.setTextVisible(False)
207 # Start Stop Buttons
208 startstop = QWidget ()
209 startstop.layout = QHBoxLayout(startstop)
210 self._buttonstart = QPushButton("Run Inference")
211 self._buttonstart.clicked.connect(self.start_inference)
212 self._buttonstart.setEnabled(False)
213 self._buttonstop = QPushButton("Stop Inference")
214 self._buttonstop.setEnabled(False)
215 self._buttonstop.clicked.connect(self.stop_inference)
216 startstop.layout.addWidget(self._buttonstart)
217 startstop.layout.addSpacing (10)
218 startstop.layout.addWidget(self._buttonstop)
219 # Put It All Together
220 inferencewidget.layout.addWidget(posemethod)
221 inferencewidget.layout.addWidget(self._track)
222 inferencewidget.layout.addWidget(trackingmethod)
223 inferencewidget.layout.addWidget(self._bboxlabel)
224 inferencewidget.layout.addWidget(bboxthrslider)
225 inferencewidget.layout.addWidget(self._kptlabel)
226 inferencewidget.layout.addWidget(kptthrslider)
227 inferencewidget.layout.addWidget(kptradius)
228 inferencewidget.layout.addWidget(linethickness)
229 inferencewidget.layout.addWidget(self._show)
230 inferencewidget.layout.addWidget(self._progressbar)
231 inferencewidget.layout.addWidget(startstop)
232

233 # Visualization widget
234 visualizationwidget = QWidget ()
235 visualizationwidget.layout = QVBoxLayout(

visualizationwidget)
236 self._resultlist = QListWidget ()
237 self._resultlist.itemClicked.connect(self.change_json)
238 visualizationwidget.layout.addWidget(self._resultlist)
239 self._infolabel1 = QLabel ()
240 self._infolabel1.setText(’Result information ’)
241 self._infolabel1.setAlignment(Qt.AlignCenter)

58

242 self._infolabel2 = QLabel ()
243 self._infolabel2.setText(’Pose method: --\n’
244 ’Tracking method: --\n’
245 ’Pose bounding box threshold: 0\n’
246 ’Tracking keypoint threshold: 0’)
247 visualizationwidget.layout.addWidget(self._infolabel1)
248 visualizationwidget.layout.addWidget(self._infolabel2)
249 # Keypoint radius
250 kptradius1 = QWidget ()
251 kptradius1.layout = QHBoxLayout(kptradius1)
252 self._kptradius1 = QSpinBox ()
253 self._kptradius1.setRange(1, 10)
254 self._kptradius1.setValue (4)
255 self._kptradius1.setMaximumWidth (50)
256 self._kptradius1.setEnabled(False)
257 self._kptradiuslabel1 = QLabel("Keypoint visualization

radius:")
258 kptradius1.layout.addWidget(self._kptradiuslabel1)
259 kptradius1.layout.addWidget(self._kptradius1)
260 # Line thickness
261 linethickness1 = QWidget ()
262 linethickness1.layout = QHBoxLayout(linethickness1)
263 self._linethickness1 = QSpinBox ()
264 self._linethickness1.setRange(1, 5)
265 self._linethickness1.setValue (1)
266 self._linethickness1.setMaximumWidth (50)
267 self._linethickness1.setEnabled(False)
268 self._linethicknesslabel1 = QLabel("Pose visualization

thickness:")
269 linethickness1.layout.addWidget(self._linethicknesslabel1)
270 linethickness1.layout.addWidget(self._linethickness1)
271 visualizationwidget.layout.addWidget(kptradius1)
272 visualizationwidget.layout.addWidget(linethickness1)
273 # JSON Load and Save Buttons
274 jsonbuttons = QWidget ()
275 jsonbuttons.layout = QHBoxLayout(jsonbuttons)
276 self._buttonopenjson = QPushButton("Add JSON file")
277 self._buttonopenjson.setEnabled(False)
278 self._buttonopenjson.clicked.connect(self.open_json)
279 self._buttonremovejson = QPushButton("Remove file")
280 self._buttonremovejson.setEnabled(False)
281 self._buttonremovejson.clicked.connect(self.remove_json)
282 jsonbuttons.layout.addWidget(self._buttonopenjson)
283 jsonbuttons.layout.addSpacing (10)
284 jsonbuttons.layout.addWidget(self._buttonremovejson)
285 visualizationwidget.layout.addWidget(jsonbuttons)
286 # Save Buttons
287 savebuttons = QWidget ()
288 savebuttons.layout = QHBoxLayout(savebuttons)
289 self._buttonsavejson = QPushButton("Save JSON result")
290 self._buttonsavejson.setEnabled(False)
291 self._buttonsavejson.clicked.connect(self.save_json)
292 self._buttonsavevideo = QPushButton("Save video")
293 self._buttonsavevideo.setEnabled(False)
294 self._buttonsavevideo.clicked.connect(self.save_video)
295 savebuttons.layout.addWidget(self._buttonsavejson)

59

296 savebuttons.layout.addSpacing (10)
297 savebuttons.layout.addWidget(self._buttonsavevideo)
298 visualizationwidget.layout.addWidget(savebuttons)
299

300 # Create tab widget
301 self.tabwidget = QTabWidget ()
302 self.tabwidget.addTab(inferencewidget , ’Run inference ’)
303 self.tabwidget.addTab(visualizationwidget , ’Visualize

results ’)
304

305 rightside = QWidget ()
306 rightside.layout = QHBoxLayout(rightside)
307 rightside.layout.addWidget(self.tabwidget)
308

309 videowidget = QWidget ()
310 self._playbutton = QPushButton ()
311 self._playbutton.setEnabled(False)
312 self._playbutton.setIcon(self.style().standardIcon(QStyle.

SP_MediaPlay))
313 self._playbutton.clicked.connect(self.play)
314 self._slider = QSlider(Qt.Horizontal)
315 self._slider.setRange(0, 0)
316 self._slider.sliderMoved.connect(self.set_position)
317 self._slider.setEnabled(False)
318 self._durationlabel = QLabel ()
319 self._durationlabel.setText("-- / --")
320 self._durationlabel.setFixedHeight (50)
321

322 controlwidget = QWidget ()
323 controlwidget.layout = QHBoxLayout ()
324 controlwidget.layout.addWidget(self._playbutton)
325 controlwidget.layout.addWidget(self._slider)
326 controlwidget.layout.addWidget(self._durationlabel)
327 controlwidget.setFixedHeight (50)
328

329 videowidget.layout = QVBoxLayout(videowidget)
330 videowidget.layout.addWidget(self.frame_label)
331 videowidget.layout.addLayout(controlwidget.layout)
332

333

334 # FINAL WIDGET CREATION
335 widget.layout = QHBoxLayout(widget)
336 widget.layout.addWidget(videowidget)
337 widget.layout.addWidget(rightside)
338 self.setCentralWidget(widget)
339

340 available_geometry = self.screen ().availableGeometry ()
341 self.setFixedSize(round(available_geometry.width() / 2),

round(available_geometry.height () / 2))
342 self.video_size = QSize(round(available_geometry.width() /

2) - 400,
343 round(available_geometry.height () /

2) - 60)
344 image = np.zeros((self.video_size.height (), self.video_size

.width(), 3), np.uint8)
345 self.frame_label.setPixmap(QPixmap.fromImage(qimage2ndarray

60

.array2qimage(image)))
346

347 self.threadpool = QThreadPool ()
348

349 def set_position(self , position):
350 if self._show.isChecked ():
351 self._show.setChecked(False)
352 if not position == 0:
353 self.frameindex = position - 1
354 else:
355 self.frameindex = -1
356 self.display_video_stream ()
357

358 def progress_fn(self , res):
359 frame_id = res["frame_id"]
360 image = res["image"]
361 self.video [1][frame_id] = image
362 self._progressbar.setValue(frame_id)
363 if self._show.isChecked ():
364 self.frameindex = frame_id - 1
365 self.display_video_stream ()
366

367 def handle_result(self , s):
368 self.inferenceresults["results"] = s
369

370 def thread_complete(self):
371 self._progressbar.setValue(self._progressbar.value() + 1)
372 self._buttonstop.setEnabled(False)
373 self._buttonstart.setEnabled(True)
374 self._resultlist.item (1).setHidden(False)
375 self.running = False
376 self._resultlist.setCurrentRow (1)
377 self.change_json ()
378

379 def about(self):
380 QMessageBox.about(self , ’About ’, "

Application made by Bc. Antonin Cech\n"
381 "as a part of a master ’s

thesis on human pose estimation and tracking \n"
382 " at FNSPE

CTU in Prague , Czech Republic")
383

384 def bboxsliderchanged(self):
385 self._bboxline.setText(str(self._bboxslider.value() / 100))
386

387 def kptsliderchanged(self):
388 self._kptline.setText(str(self._kptslider.value() / 100))
389

390 def enable_tracking(self):
391 if self._trackcombo.isEnabled ():
392 self._trackcombo.setEnabled(False)
393 self._kptslider.setEnabled(False)
394 else:
395 self._trackcombo.setEnabled(True)
396 self._kptslider.setEnabled(True)
397

61

398 def start_inference(self):
399 self._buttonstart.setEnabled(False)
400 globals.kill_thread = False
401 tracking = self._trackcombo.currentText () if self._track.

isChecked () else "Tracking disabled"
402 self.inferenceresults["pose"] = self._posecombo.currentText

()
403 self.inferenceresults["track"] = tracking
404 self.inferenceresults["video_path"] = self.url
405 self.inferenceresults["bbox_thr"] = self._bboxslider.value

() / 100
406 self.inferenceresults["kpt_thr"] = self._kptslider.value()

/ 100
407 self.loaded_jsons [1][’pose’] = self.inferenceresults["pose"

]
408 self.loaded_jsons [1][’track’] = self.inferenceresults["

track"]
409 self.loaded_jsons [1][’bbox_thr ’] = self.inferenceresults["

bbox_thr"]
410 self.loaded_jsons [1][’kpt_thr ’] = self.inferenceresults["

kpt_thr"]
411 self.video [1] = self.video [0]. copy()
412 self.worker = Worker(self.url , tracking , self._posecombo.

currentText (),
413 self._bboxslider.value() / 100, self.

_kptslider.value () / 100, self._kptradius.value (),
414 self._linethickness.value())
415 self.worker.signals.result.connect(self.handle_result)
416 self.worker.signals.finished.connect(self.thread_complete)
417 self.worker.signals.progress.connect(self.progress_fn)
418 self._buttonstop.setEnabled(True)
419 self.running = True
420

421 # Execute
422 self.threadpool.start(self.worker)
423

424 def stop_inference(self):
425 globals.kill_thread = True
426

427 def save_json(self):
428 videoname , _ = os.path.splitext(os.path.basename(self.url))
429 fileName , _ = QFileDialog.getSaveFileName(self , "Save JSON"

, os.path.dirname(self.url) + ’/’ + videoname
430 + "_result.json",
431 "JSON Files (*.

json);;All Files")
432

433 if fileName != ’’:
434 with open(fileName , "w") as outfile:
435 json.dump(self.inferenceresults , outfile)
436

437 def save_video(self):
438 videoname , _ = os.path.splitext(os.path.basename(self.url))
439 fileName , _ = QFileDialog.getSaveFileName(self , "Save video

", os.path.dirname(self.url) + ’/’ + videoname
440 + "_result.avi",

62

441 "Video Files (*.
avi);;All Files")

442 if fileName != ’’:
443 fourcc = cv2.VideoWriter_fourcc (*’mp4v’)
444 videoWriter = cv2.VideoWriter(
445 fileName , fourcc , self.fps , (self.originalsize.

width (), self.originalsize.height ()))
446 item = self._resultlist.currentRow ()
447 self.progress = QProgressDialog("Saving video ...", "

Cancel", 0, self.length , self)
448 self.progress.setWindowModality(Qt.WindowModal)
449 self.progress.show()
450 for i in range(self.length):
451 self.progress.setValue(i + 1)
452 if self.progress.wasCanceled ():
453 break
454 videoWriter.write(self.video[item][i])
455 videoWriter.release ()
456

457 def open_file(self):
458 self.ensure_stopped ()
459 self.video = [[], []]
460 self.fps = 0
461 self.length = 0
462 self.frameindex = -1
463 self._resultlist.clear()
464 fileName , _ = QFileDialog.getOpenFileName(self , "Open video

", QDir.homePath ())
465

466 if fileName != ’’:
467 video = mmcv.VideoReader(fileName)
468 self.progress = QProgressDialog("Loading video ...", "

Cancel", 0, video.frame_cnt , self)
469 self.progress.setWindowModality(Qt.WindowModal)
470 self.progress.show()
471 for i in range(video.frame_cnt):
472 self.progress.setValue(i + 1)
473 if self.progress.wasCanceled ():
474 break
475 self.video [0]. append(video[i])
476 self.fps = video.fps
477 self.length = len(self.video [0])
478 self.url = fileName
479 self.originalsize = QSize(video.width , video.height)
480 self._progressbar.setRange(0, self.length)
481 self._progressbar.setTextVisible(True)
482 self._playbutton.setEnabled(True)
483 self._posecombo.setEnabled(True)
484 self._track.setEnabled(True)
485 self._bboxslider.setEnabled(True)
486 self._kptradius.setEnabled(True)
487 self._linethickness.setEnabled(True)
488 self._kptradius1.setEnabled(True)
489 self._linethickness1.setEnabled(True)
490 self._show.setEnabled(True)
491 self._buttonstart.setEnabled(True)

63

492 self._buttonopenjson.setEnabled(True)
493 self._resultlist.addItem("Original video")
494 self._resultlist.addItem("Inference result")
495 self._resultlist.item (1).setHidden(True)
496 self._resultlist.setCurrentRow (0)
497 self._slider.setEnabled(True)
498 self._slider.setRange(0, self.length - 1)
499 self._progressbar.setValue (0)
500 self.frameindex = -1
501 self.display_video_stream ()
502

503 def open_json(self):
504 fileName , _ = QFileDialog.getOpenFileName(self , "Open JSON

result", QDir.homePath ())
505

506 if fileName != ’’:
507 with open(fileName , "r") as infile:
508 file_contents = json.loads(infile.read())
509 self.tabwidget.setCurrentIndex (1)
510 videoname , _ = os.path.splitext(os.path.basename(

file_contents["video_path"]))
511 self._resultlist.addItem(videoname)
512 num = self._resultlist.count()
513 file_contents["num"] = num
514 self.loaded_jsons.append(file_contents)
515 if file_contents["pose"] == "Hourglass":
516 pose_config = ’./ configs/hourglass.py’
517 pose_checkpoint = ’./ checkpoints/hourglass.pth’
518 elif file_contents["pose"] == ’HRNet’:
519 pose_config = ’./ configs/hrnet.py’
520 pose_checkpoint = ’./ checkpoints/hrnet.pth’
521 elif file_contents["pose"] == "DEKR":
522 pose_config = ’./ configs/dekr.py’
523 pose_checkpoint = ’./ checkpoints/dekr.pth’
524 elif file_contents["pose"] == "HigherHRNet":
525 pose_config = ’./ configs/higher_hrnet.py’
526 pose_checkpoint = ’./ checkpoints/higher_hrnet.pth’
527

528 self.progress = QProgressDialog("Visualizing results ...
", "Cancel", 0, len(file_contents["results"]), self)

529 self.progress.setWindowModality(Qt.WindowModal)
530 self.progress.show()
531

532 pose_model = init_pose_model(
533 pose_config , pose_checkpoint , device=’cuda:0’)
534

535 dataset = pose_model.cfg.data[’test’][’type’]
536 dataset_info = pose_model.cfg.data[’test’].get(’

dataset_info ’, None)
537 dataset_info = DatasetInfo(dataset_info)
538

539 vid = self.video [0]. copy()
540 self.video.append(vid)
541

542 for i in range(len(file_contents["results"])):
543 self.progress.setValue(i + 1)

64

544 if self.progress.wasCanceled ():
545 break
546 self.video[num - 1][i] = vis_pose_tracking_result(
547 pose_model ,
548 self.video [0][

i],
549 file_contents[

"results"][i],
550 radius=self.

_kptradius1.value (),
551 thickness=self

._linethickness1.value (),
552 dataset=

dataset ,
553 dataset_info=

dataset_info ,
554 kpt_score_thr

=0.3,
555 show=False)
556 self._resultlist.setCurrentRow(num - 1)
557 self._infolabel2.setText(f’Pose method: {file_contents

["pose "]}\n’
558 f’Tracking method: {

file_contents ["track "]}\n’
559 f’Pose bounding box threshold:

{file_contents [" bbox_thr "]}\n’
560 f’Tracking keypoint threshold:

{file_contents [" kpt_thr "]}’)
561 self.frameindex = self.frameindex - 1
562 self.display_video_stream ()
563

564 def remove_json(self):
565 item = self._resultlist.currentRow ()
566 self._resultlist.takeItem(item)
567 del self.loaded_jsons[item]
568 del self.video[item]
569 self._resultlist.setCurrentRow (0)
570 self._buttonremovejson.setEnabled(False)
571 self._infolabel2.setText(’Pose method: --\n’
572 ’Tracking method: --\n’
573 ’Pose bounding box threshold: --\n

’
574 ’Tracking keypoint threshold: --’)
575

576 def change_json(self):
577 item = self._resultlist.currentRow ()
578 self._infolabel2.setText(f’Pose method: {self.loaded_jsons[

item][" pose "]}\n’
579 f’Tracking method: {self.

loaded_jsons[item][" track "]}\n’
580 f’Pose bounding box threshold: {

self.loaded_jsons[item][" bbox_thr "]}\n’
581 f’Tracking keypoint threshold: {

self.loaded_jsons[item][" kpt_thr "]}’)
582 self.frameindex = self.frameindex - 1
583 self.display_video_stream ()

65

584 self._linethickness1.setValue(self._linethickness.value())
585 self._kptradius1.setValue(self._kptradius.value())
586 if item == 0:
587 self._buttonremovejson.setEnabled(False)
588 self._buttonsavejson.setEnabled(False)
589 self._buttonsavevideo.setEnabled(False)
590 elif item == 1:
591 self._buttonremovejson.setEnabled(False)
592 self._buttonsavejson.setEnabled(True)
593 self._buttonsavevideo.setEnabled(True)
594 else:
595 self._buttonremovejson.setEnabled(True)
596 self._buttonsavejson.setEnabled(False)
597 self._buttonsavevideo.setEnabled(True)
598

599 def exit_call(self):
600 self.ensure_stopped ()
601 self.close ()
602

603 def play(self):
604 if self._show.isChecked ():
605 self._show.setChecked(False)
606 if self.frameindex == self.length - 1:
607 self.frameindex = -1
608 self.display_video_stream ()
609

610 if not self.pause:
611 self.frame_timer.stop()
612 self._playbutton.setIcon(
613 self.style().standardIcon(QStyle.SP_MediaPlay))
614 else:
615 self.frame_timer.start(int (1000 // self.fps))
616 self._playbutton.setIcon(
617 self.style().standardIcon(QStyle.SP_MediaPause))
618

619 self.pause = not self.pause
620

621 def display_video_stream(self):
622 if self.frameindex == self.length - 1:
623 self.frame_timer.stop()
624 self._playbutton.setIcon(
625 self.style().standardIcon(QStyle.SP_MediaPlay))
626 self.pause = True
627 else:
628 self.frameindex += 1
629 self._slider.setValue(self.frameindex)
630 self._durationlabel.setText(str(self.frameindex + 1) +

" / " + str(self.length))
631

632 if self.running:
633 frame = cv2.cvtColor(self.video [1][self.frameindex

], cv2.COLOR_BGR2RGB)
634 else:
635 item = self._resultlist.currentRow ()
636 frame = cv2.cvtColor(self.video[item][self.

frameindex], cv2.COLOR_BGR2RGB)

66

637

638 h, w = frame.shape [:2]
639 sw , sh = self.video_size.width (), self.video_size.

height ()
640 padColor = 0
641

642 # interpolation method
643 if h > sh or w > sw: # shrinking image
644 interp = cv2.INTER_AREA
645 else: # stretching image
646 interp = cv2.INTER_CUBIC
647

648 # aspect ratio of image
649 aspect = w / h # if on Python 2, you might need to

cast as a float: float(w)/h
650

651 # compute scaling and pad sizing
652 if aspect > 1: # horizontal image
653 new_w = sw
654 new_h = np.round(new_w / aspect).astype(int)
655 pad_vert = (sh - new_h) / 2
656 pad_top , pad_bot = np.floor(pad_vert).astype(int),

np.ceil(pad_vert).astype(int)
657 pad_left , pad_right = 0, 0
658 elif aspect < 1: # vertical image
659 new_h = sh
660 new_w = np.round(new_h * aspect).astype(int)
661 pad_horz = (sw - new_w) / 2
662 pad_left , pad_right = np.floor(pad_horz).astype(int

), np.ceil(pad_horz).astype(int)
663 pad_top , pad_bot = 0, 0
664 else: # square image
665 new_h , new_w = sh , sw
666 pad_left , pad_right , pad_top , pad_bot = 0, 0, 0, 0
667

668 # set pad color
669 if len(frame.shape) == 3 and not isinstance(padColor , (
670 list , tuple , np.ndarray)): # color image but only one

color provided
671 padColor = [padColor] * 3
672

673 # scale and pad
674 scaled_img = cv2.resize(frame , (new_w , new_h),

interpolation=interp)
675 scaled_img = cv2.copyMakeBorder(scaled_img , pad_top ,

pad_bot , pad_left , pad_right ,
676 borderType=cv2.

BORDER_CONSTANT , value=padColor)
677

678 image = qimage2ndarray.array2qimage(scaled_img)
679 self.frame_label.setPixmap(QPixmap.fromImage(image))
680

681 def ensure_stopped(self):
682 if not self.pause:
683 self.frame_timer.stop()
684 self.play_pause_button.setText("Play")

67

685 self._playbutton.setIcon(
686 self.style().standardIcon(QStyle.SP_MediaPlay))
687

688

689 if __name__ == ’__main__ ’:
690 globals.initialize ()
691 app = QApplication(sys.argv)
692 main_win = MainWindow ()
693 main_win.show()
694 sys.exit(app.exec())

B.2 Pose estimation and tracking functions

1 import warnings
2 import numpy as np
3 import mmcv
4 import globals
5

6 from mmpose.apis import (get_track_id ,
7 inference_top_down_pose_model ,

init_pose_model ,
8 process_mmdet_results ,

vis_pose_tracking_result ,
9 inference_bottom_up_pose_model)
10 from mmpose.core import Smoother
11 from mmpose.datasets import DatasetInfo
12 from mmdet.apis import inference_detector , init_detector
13 from mmtrack.apis import inference_mot
14 from mmtrack.apis import init_model as init_tracking_model
15

16 def get_dist(pose , pose_last):
17 dist = 0
18 for i in range (17):
19 dist += np.sqrt((pose[i, 1] - pose_last[i, 1]) ** 2 + (pose

[i, 2] - pose_last[i, 2]) ** 2)
20 return dist
21

22

23 def get_iou(bbox , bbox_last):
24 x1 = max(bbox[0], bbox_last [0])
25 y1 = max(bbox[1], bbox_last [1])
26 x2 = min(bbox[2], bbox_last [2])
27 y2 = min(bbox[3], bbox_last [3])
28

29 area = (bbox [2] - bbox [0]) * (bbox [3] - bbox [1])
30 area_last = (bbox_last [2] - bbox_last [0]) * (bbox_last [3] -

bbox_last [1])
31

32 intersection = max(0, x2 - x1) * max(0, y2 - y1)
33 union = float(area + area_last - intersection)
34

35 if union == 0:
36 union = 1e-5
37 warnings.warn(’Union is 0, setting union to 1e-5.’)

68

38

39 iou = intersection / union
40

41 return iou
42

43

44 def track_iou(results , results_last , next_id , threshold ,
min_keypoints =3):

45 if results_last is None:
46 results_last = []
47

48 for result in results:
49 if len(results_last) == 0:
50 track_id = -1
51 else:
52 max_iou = -1
53 max_index = -1
54

55 for index , res_last in enumerate(results_last):
56 iou_score = get_iou(result[’bbox’], res_last[’bbox’

])
57 if iou_score > max_iou:
58 max_iou = iou_score
59 max_index = index
60

61 if max_iou > threshold:
62 track_id = results_last[max_index][’track_id ’]
63 del results_last[max_index]
64 else:
65 track_id = -1
66

67 if track_id == -1:
68 if np.count_nonzero(result[’keypoints ’][:, 1]) >=

min_keypoints:
69 result[’track_id ’] = next_id
70 next_id += 1
71 else:
72 # If the number of keypoints detected is small ,
73 # delete that person instance.
74 result[’keypoints ’][:, 1] = -10
75 result[’bbox’] *= 0
76 result[’track_id ’] = -1
77 else:
78 result[’track_id ’] = track_id
79

80 return results , next_id
81

82

83 def track_dist(results , results_last , next_id , threshold ,
min_keypoints =3):

84 if results_last is None:
85 results_last = []
86

87 for result in results:
88 if len(results_last) == 0:
89 track_id = -1

69

90 else:
91 min_dist = np.inf
92 min_index = -1
93

94 # CALCULATE MINIMUM DISTANCE BETWEEN POSES
95 for index , res_last in enumerate(results_last):
96 dist = get_dist(result[’keypoints ’], res_last[’

keypoints ’])
97 if dist < min_dist:
98 min_dist = dist
99 min_index = index
100

101 if min_dist < threshold:
102 track_id = results_last[min_index][’track_id ’]
103 del results_last[min_index]
104 else:
105 track_id = -1
106

107 if track_id == -1:
108 if np.count_nonzero(result[’keypoints ’][:, 1]) >=

min_keypoints:
109 result[’track_id ’] = next_id
110 next_id += 1
111 else:
112 # If the number of keypoints detected is small ,
113 # delete that person instance.
114 result[’keypoints ’][:, 1] = -10
115 result[’bbox’] *= 0
116 result[’track_id ’] = -1
117 else:
118 result[’track_id ’] = track_id
119

120 return results , next_id
121

122

123 def process_mmtracking_results(mmtracking_results):
124 person_results = []
125 if ’track_bboxes ’ in mmtracking_results:
126 tracking_results = mmtracking_results[’track_bboxes ’][0]
127 elif ’track_results ’ in mmtracking_results:
128 tracking_results = mmtracking_results[’track_results ’][0]
129

130 for track in tracking_results:
131 person = {}
132 person[’track_id ’] = int(track [0])
133 person[’bbox’] = track [1:]
134 person_results.append(person)
135 return person_results
136

137

138 def mmpose_inference(progress_callback , in_file , track=’iou’, pose=
’hrnet’, bbox_thr =0.3, tracking_thr =0.3,

139 kpt_radius =4, line_thickness =1):
140 # Detection
141 det_config = ’./ configs/faster_rcnn.py’
142 det_checkpoint = ’./ checkpoints/faster_rcnn.pth’

70

143

144 # Tracking "Greedily by IoU", "Greedily by distance", "Greedily
by OKS", "ByteTrack", "OC -SORT", "QDTrack"

145 tracking_type = ’’
146 if track == "Greedily by IoU":
147 tracking_type = ’iou’
148 elif track == "Greedily by distance":
149 tracking_type = ’dist’
150 elif track == "Greedily by OKS":
151 tracking_type = ’oks’
152 elif track == "ByteTrack":
153 tracking_type = ’bytetrack ’
154 track_config = ’./ configs/bytetrack.py’
155 track_checkpoint = ’./ checkpoints/bytetrack.pth’
156 elif track == "OC -SORT":
157 tracking_type = ’ocsort ’
158 track_config = ’./ configs/ocsort.py’
159 track_checkpoint = ’./ checkpoints/ocsort.pth’
160 elif track == "QDTrack":
161 tracking_type = ’qdtrack ’
162 track_config = ’./ configs/qdtrack.py’
163 track_checkpoint = ’./ checkpoints/qdtrack.pth’
164

165 # Pose "Hourglass", "HRNet", "DEKR", "HigherHRNet"
166 if pose == "Hourglass":
167 pose_config = ’./ configs/hourglass.py’
168 pose_checkpoint = ’./ checkpoints/hourglass.pth’
169 elif pose == ’HRNet’:
170 pose_config = ’./ configs/hrnet.py’
171 pose_checkpoint = ’./ checkpoints/hrnet.pth’
172 elif pose == "DEKR":
173 pose_config = ’./ configs/dekr.py’
174 pose_checkpoint = ’./ checkpoints/dekr.pth’
175 elif pose == "HigherHRNet":
176 pose_config = ’./ configs/higher_hrnet.py’
177 pose_checkpoint = ’./ checkpoints/higher_hrnet.pth’
178

179 print(’Initializing model ...’)
180 if tracking_type != ’bytetrack ’ and tracking_type != ’ocsort ’

and tracking_type != ’qdtrack ’:
181 det_model = init_detector(
182 det_config , det_checkpoint , device=’cuda:0’)
183 elif tracking_type != "Tracking disabled":
184 tracking_model = init_tracking_model(
185 track_config , track_checkpoint , device=’cuda:0’)
186

187 pose_model = init_pose_model(
188 pose_config , pose_checkpoint , device=’cuda:0’)
189

190 dataset = pose_model.cfg.data[’test’][’type’]
191 dataset_info = pose_model.cfg.data[’test’].get(’dataset_info ’,

None)
192 if dataset_info is not None:
193 dataset_info = DatasetInfo(dataset_info)
194

195 # read video

71

196 video = mmcv.VideoReader(in_file)
197 assert video.opened , f’Failed to load video file {in_file}’
198

199 smoother = Smoother(filter_cfg=’configs/_base_/filters/one_euro
.py’, keypoint_dim =2)

200

201 next_id = 1
202 pose_results = []
203 pose_json = []
204 print(’Running inference ...’)
205 for frame_id , cur_frame in enumerate(mmcv.track_iter_progress(

video)):
206 pose_results_last = pose_results
207

208 # get the detection results of current frame
209 # the resulting box is (x1, y1, x2, y2)
210 if tracking_type != ’bytetrack ’ and tracking_type != ’

ocsort ’ and tracking_type != ’qdtrack ’:
211 mmdet_results = inference_detector(det_model , cur_frame

)
212

213 # keep the person class bounding boxes.
214 person_results = process_mmdet_results(mmdet_results ,

1)
215 else:
216 mmtracking_results = inference_mot(
217 tracking_model , cur_frame , frame_id=frame_id)
218

219 # keep the person class bounding boxes.
220 person_results = process_mmtracking_results(

mmtracking_results)
221

222 # test a single image , with a list of bboxes.
223 if pose == ’DEKR’ or pose == ’HigherHRNet ’:
224 pose_results , _ = inference_bottom_up_pose_model(
225 pose_model ,
226 cur_frame ,
227 dataset=dataset ,
228 dataset_info=dataset_info ,
229 pose_nms_thr =0.9,
230 return_heatmap=False ,
231 outputs=None)
232 else:
233 pose_results , _ = inference_top_down_pose_model(
234 pose_model ,
235 cur_frame ,
236 person_results ,
237 bbox_thr=bbox_thr ,
238 format=’xyxy’,
239 dataset=dataset ,
240 dataset_info=dataset_info ,
241 return_heatmap=False ,
242 outputs=None)
243

244 if tracking_type != ’bytetrack ’ and tracking_type != ’
ocsort ’ and tracking_type != ’qdtrack ’:

72

245 if tracking_type == ’oks’:
246 pose_results , next_id = get_track_id(
247 pose_results ,
248 pose_results_last ,
249 next_id ,
250 use_oks=True ,
251 tracking_thr=tracking_thr)
252 elif tracking_type == ’dist’:
253 pose_results , next_id = track_dist(pose_results ,

pose_results_last , next_id ,
254 threshold=

tracking_thr * 100)
255 elif tracking_type == ’iou’:
256 pose_results , next_id = track_iou(pose_results ,

pose_results_last , next_id , threshold=tracking_thr)
257 else:
258 for i in range(len(pose_results)):
259 pose_results[i]["track_id"] = i
260

261 # post -process the pose results with smoother
262 pose_results = smoother.smooth(pose_results)
263

264 poselist = []
265 if pose == ’DEKR’ or pose == ’HigherHRNet ’:
266 for i in range(len(pose_results)):
267 keypoints = pose_results[i]["keypoints"]
268 kptlist = keypoints.tolist ()
269 poselist.append ({"keypoints": kptlist , "track_id":

pose_results[i]["track_id"]})
270 pose_json.append(poselist)
271 else:
272 for i in range(len(pose_results)):
273 bbox = pose_results[i]["bbox"]
274 bboxlist = bbox.tolist ()
275 keypoints = pose_results[i]["keypoints"]
276 kptlist = keypoints.tolist ()
277 poselist.append ({"bbox": bboxlist , "keypoints":

kptlist , "track_id": pose_results[i]["track_id"]})
278 pose_json.append(poselist)
279

280 # show the results
281 vis_frame = vis_pose_tracking_result(
282 pose_model ,
283 cur_frame ,
284 pose_results ,
285 radius=kpt_radius ,
286 thickness=line_thickness ,
287 dataset=dataset ,
288 dataset_info=dataset_info ,
289 kpt_score_thr =0.3,
290 show=False)
291

292 progress = {"frame_id": frame_id , "image": vis_frame}
293 progress_callback.emit(progress)
294

295 if globals.kill_thread:

73

296 return pose_json
297

298 return pose_json

74

	Introduction
	Pose estimation
	Datasets
	Methods
	Top-down approach
	Bottom-up approach

	Evaluation metrics

	Pose tracking
	Datasets
	MOT17
	MOT20
	Created dataset

	Methods
	ByteTrack
	QDTrack
	Greedy approach
	OC-SORT

	Evaluation metrics
	MOTA
	HOTA

	Experiments
	Pose estimation
	MS COCO
	CrowdPose

	Pose tracking
	MOT17 and MOT20
	Created dataset

	Application
	Implementation
	Usage

	Conclusion
	References
	Appendix
	Pose tracking dataset
	Application source code
	Main event loop and user interface
	Pose estimation and tracking functions

