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Abstrakt: Ciel’om tejto diplomovej práce je preskúmat’ použitie techník počítačového videnia pre detek-
ciu stavu povrchu vozovky v reálnom čase. Porovnávané boli dve architektúry konvolučných neuróno-
vých sietí, MobileNet a EfficientNet, z hl’adiska ich výkonnosti a rýchlosti pri klasifikácii stavov povrchu
na mokré, suché a snehom pokryté cesty. Modely boli trénované a porovnávané na verejne dostupnom
datasete (RoadSaW) obsahujúcom presné anotácie z monitorovacieho senzoru výšky vodnej hladiny na
vozovke, upraveného na klasifikáciu požadovaných stavov a na datasete vytvorenom z reálnych scén
zachytených kamerou testovacieho vozidla, ktorý obsahuje takmer 55 000 obrázkov. V práci boli presk-
úmané rôzne trénovacie hyperparametre a techniky regularizácie na trénovanie modelov a následne boli
vyhodnotené ich schopnosti generalizácie na predošle nepozorovaných dátach. Oba modely sa ukázali
ako efektívne pre túto úlohu, pričom výsledky ukazujú, že MobileNet prekonal EfficientNet z hl’adiska
presnosti a rýchlosti spracovania, čo naznačuje potenciál pre jeho reálne aplikácie.
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Abstract: This thesis aims to investigate the application of computer vision techniques for real-time road
surface condition (RSC) detection. Two convolutional neural network architectures, MobileNet and Ef-
ficientNet, were evaluated for their performance and inference speed in classifying surface conditions
into wet, dry and snow covered roads. The models were trained and evaluated on a public dataset (Road-
SaW) containing precise annotations from a sensor monitoring the water film height, with modifications
to fit the specific RSC classification task defined in this thesis and a created dataset of real-world driv-
ing scenarios recorded from the test vehicle camera consisting of almost 55 000 images. This work
explored several training parameters and regularization techniques to optimize model performance and
evaluated generalization capabilities on unseen data. Both models were shown to be effective in this task,
with the results indicating that MobileNet outperformed EfficientNet in accuracy and processing speed,
demonstrating potential for real-world applications.
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Introduction

Harsh weather, especially heavy rain or snow, adversely affects driver capabilities, vehicle handling,
and the condition of road infrastructure. Several studies have shown that these conditions negatively in-
fluence the roadway capacity, speed, and density of the traffic and increase the risk of traffic accidents [1].
Monitoring surface conditions offers valuable information that could be used as a reference to understand
vehicle braking behavior, potentially decreasing the risk of dangerous accidents. Of critical importance
in this regard is the road friction coefficient, which impacts vehicular braking control. Low-friction road
surfaces pose significant risks of high-side slip accidents, where the brakes become less effective, in-
creasing the possibility of traffic accidents. Various factors influence this coefficient, including vehicle
characteristics, road surface, and environmental variables. Among these, weather conditions such as
rainfall, snow, and ice have the most substantial impact, causing road surfaces to become slippery, lead-
ing to sudden reductions in friction coefficients. Table 1 shows the change in the estimate of the road
friction coefficient based on the different road conditions.

Table 1: Friction coefficient for different road surface conditions according to [2].

Road Surface Condition Dry Damp Wet Black Ice Snow
Friction coefficient estimate 1 ∼ 0.80 ∼ 0.75 ∼ 0.65 ∼ 0.50 ∼ 0.40

Road surface condition (RSC) sensing is an important tool for detecting states that affect the estima-
tion of friction coefficients and provides key information on vehicle braking dynamics [2]. Therefore,
both active safety systems and self-driving cars could greatly benefit from the ability to predict these
conditions in real-time [3].

Several sensors already exist for this purpose that are able to determine RSC in both contact and
non-contact forms. Although precise, contact sensors face limitations due to their short service life, high
installation and maintenance requirements, and the inability to provide real-time measurements. Non-
contact methods such as infrared spectroscopy, optical polarization, radar detection, and computer vision
meet the portability and real-time data support demands. Despite the fact that many sensors for RSC
detection are already available, utilizing a front-facing in-vehicle camera remains the most cost-effective
and readily accessible option, since it often comes as part of basic vehicle hardware [2].

The aim of this thesis is to train a fast and accurate computer vision model to detect road surface
conditions suitable for use in a test vehicle which is a Porsche Cayenne equipped with the ZED 2 camera
system installed behind the rear-view mirror. The first Chapter gives a brief overview of the different non-
contact RSC detection methods and further focuses on the previous work in the computer vision approach
to this task. Chapter 2 provides an introduction to the concept of machine learning with an emphasis on
classification task metrics and common regularization techniques, while Chapter 3 delves deeper into the
specifics of artificial neural networks, mainly the convolutional neural network architectures, which are
widely used in computer vision. Chapter 4 presents the approach to RSC detection taken in this thesis,
providing information about the dataset created from the test vehicle’s recordings used to examine the
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model performance in real-world conditions. The final Chapter describes the experiments and evaluation
of computer vision models trained for the purpose of RSC detection. These were trained and tested on
public recordings and custom data created for the objective of this thesis using recordings from the test
car camera. The classification metrics showed strong performance for both trained models, while the
assessment of prediction speed demonstrated their ability to operate in real-world scenarios.
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Chapter 1

Road Surface Condition Detection

As already mentioned in the Introduction, the condition of the road surface strongly influences the
friction coefficient. These conditions can be examined through contact or non-contact measurements.
According to [2] the precision of contact sensors for measuring RSC in addition to their high maintenance
and installation requirements cannot offer real-time measurements, which is critical for autonomous
driving and active safety systems.

Given the focus of this thesis on computer vision, a short description of the main non-contact RSC
detection methods will be presented in this Chapter mainly emphasizing the computer vision approach
and the previous researches in this field. Some of the common non-contact road surface condition detec-
tion approaches are represented in Figure 1.1 and include:

Figure 1.1: Diagram of common non-contact RSC detection methods [2].

• Infrared Spectroscopy: This technique measures the absorption of infrared (IR) frequencies by
the sample placed in the path of the IR beam. The main idea is that different chemical func-
tional groups in the sample absorb different characteristic wavelengths of IR radiation. Based on
this knowledge, the presence or absence of these groups can be identified [4]. The various re-
flectancies of water, snow and ice make this approach suitable for RSC detection, where several
characteristic wavelengths sensitive to these different water states are used as the basis for discrim-
ination. Several IR spectroscopy-based sensors developed for this purpose are described in [2],
both vehicle-mounted and stationary. Vehicle-mounted sensors can be suspended on either side
of the car as well as on the roof and provide real-time RSC information. Stationary sensors can
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CHAPTER 1. ROAD SURFACE CONDITION DETECTION 9

be installed at different heights and angles above the road. These tend to have better performance
but come at higher cost. Although IR spectroscopy is a fast and highly accurate RSC detection
approach, capable of providing detailed information on road conditions, its accuracy is strongly
impacted by different light sources and backgrounds. In addition to this shortcoming, the sophis-
ticated technology involved leads to higher costs of these systems.

• Optical Polarization: This approach relies on the use of a photodetector that measures the in-
tensity of scattered and reflected light. The polarization parameters are then used to distinguish
between dry and waterlogged, as well as wet and dry surface conditions. While this principle is
easy to implement, due to the difference in refractive indices of ice and water being very small, a
high degree of precision in the installation angle of the detector is required. Among its main draw-
backs is also the fact that environmental changes have a large impact on RSC detection results [2].

• Radar Detection: Some of the commonly used radar-like technologies for autonomous driving
capable of RSC detection are millimeter wave radar and LiDAR (Light Detection and Ranging) [2].
LiDARs use one or more laser beams to scan the field of view of the vehicle, resulting in a three-
dimensional point cloud of the scanned environments and the intensities corresponding to the
reflected laser energies. This output is commonly used in autonomous driving for tasks such as
object detection, classification, tracking, and intention prediction. Although LiDARs have proven
to be effective in various tasks, their functionality is limited in adverse weather conditions [5],
which makes them less suitable for RSC detection. Millimeter wave radar utilizes radio waves in
the millimeter wave spectrum to identify different conditions based on changes in intensity after
scattering and reflection through the layer of water, ice, or snow. This radar technology outper-
forms LiDAR in challenging weather conditions; however, it falls short in terms of resolution [2].

• Computer Vision: Deep learning algorithms have been successfully applied in various classifi-
cation tasks. Many vehicles come equipped with a monocular front camera as part of their basic
hardware. Using the information from these cameras, computer vision methods have the ability
to explore the texture and other characteristics of the surface to determine road conditions. Exist-
ing approaches for RSC detection using convolutional neural networks were able to differentiate
between wet, dry, and snowy conditions, in addition to providing a distinction between different
types of road surface [6]. Computer vision methods utilize existing sensors to predict road surface
conditions, offering a cost-effective solution. However, this approach is dependent on the quality
of the data set, which impacts the accuracy of the predictions [2]. Nevertheless, the extraction
of information about the surroundings of the vehicles from the front-facing camera is a common
computer vision task in autonomous driving applications [7].

1.1 Computer Vision Datasets

As already mentioned, computer vision methods depend on the datasets used for training, this section
is going to present various public computer vision datasets employed in automotive tasks, which have
been or have the potential to be used for training machine learning models for RSC detection.

BDD100K

This dataset consists of 100 000 driving videos (40 seconds each) recorded during more than 50 000
rides using a camera, collected in various regions of the United States, including New York and the San
Francisco Bay area. Provided are also annotations for different computer vision tasks including image
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classification, object detection, semantic segmentation, instance segmentation, lane detection, drivable
area segmentation, and more (see examples in Figure 1.2). These recordings were taken under various
conditions, such as different times of the day (including nighttime recordings) but also in diverse weather
conditions (rain, snow, clear, partly cloudy or overcast) [8].

Figure 1.2: BDD100K dataset sample images with annotations [8].

KITTI

This dataset was recorded in Karlsruhe, Germany, using various sensors, including color and grayscale
stereo cameras mounted on the roof of a vehicle. The images contain 6 hours of real-world traffic sce-
narios, including highways, inner cities, or rural areas. It provides evaluation benchmarks for computer
vision tasks such as optical flow, semantic and instance segmentation, and 3D object detection visual-
ized in Figure 1.3, as well as many more [9]. However, KITTI does not provide any information on the
weather conditions during recording or any indication that there was any diversity in the conditions on
the road surface during the recorded scenarios, making it less ideal for RSC detection task.

Figure 1.3: Examples of images with annotations from KITTI dataset [9].

RobotCar

RobotCar consist of over 100 drives of the same route in Oxford, UK. Data were collected from May
through December, capturing different weather conditions, such as light and heavy rain, direct sunlight,
and snow, using 6 cameras along with LiDAR and GPS. The dataset contains raw data with tags provided
for different weather, road, or GPS conditions [10]. Despite its considerable size and the wide variety
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in lighting and weather conditions, a drawback of RobotCar with respect to RSC detection could be the
limited number of different types of roads. Since the information is captured on one particular route that
is traversed many times, training a computer vision model on these data might result in the model being
only reliable on the same road.

Figure 1.4: Example of image data from RobotCar dataset corresponding to one particular spot in differ-
ent lighting and weather conditions [10].

CityScapes

This collection of driving videos was recorded over a period of several months in around 50 cities in
Germany. With various annotations of over 30 classes, it primarily focuses on the semantic understanding
of urban street driving scenes. CityScapes provides a benchmark for tasks such as semantic labeling or
3D vehicle detection (see Figure 1.5). However, all drives in CityScapes were recorded under good or
medium weather conditions [11], making these data less suitable for RSC detection when used alone.

Figure 1.5: CityScapes examples of annotated data [11].

Ithaca365

Ithaca365 consists of 40 traversals of the same 15km route (in Ithaca, USA), with the objective of
capturing diverse driving scenes, weather conditions (visualized in Figure 1.6), and traffic scenarios. In
addition to images from four cameras, it provides LiDAR point clouds and GPS data. With 7000 anno-
tated frames, it is intended for purposes such as amodal road and object segmentation, depth estimation,
and 3D object detection [12]. Similarly to previously mentioned RobotCar, using this data alone could
result in a model that is unable to generalize well on unseen roads.
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Figure 1.6: Example of images from Ithaca365 taken in the same location in varying weather condi-
tions [12].

ACDC

ACDC or Adverse Conditions Dataset with Correspondences (shown in Figure 1.7) provides bench-
marks for semantic, panoptic segmentation, and object detection. It consists of 4006 manually selected
images split into classes such as fog, snow, rain, or nighttime, each paired with corresponding "normal
conditions" images based on GPS information. Data were collected mainly by driving in urban settings,
with occasional highways and rural areas in Switzerland, and captured on a camera mounted in front of
the windshield in normal conditions and behind it during rain, fog or snow [13].

Figure 1.7: ACDC visualization [13].

RoadSaW

This dataset was created with the objective of developing apporaches for road condition estimation.
It provides detailed annotations for road surface types (classes: asphalt, concrete and cobblestone) and
conditions (classes: dry, damp, wet, and very wet). The ground truth provided for the wetness estimation
is determined by the so-called Mobile Advanced Road Weather Information Sensor or MARWIS which
is one of the previously mentioned sensors based on infrared spectroscopy. Accurate measurements of
this sensor allow for fine segregation of wetness classes on the basis of the water film height.

The recordings for this dataset were taken over a span of 10 days using cameras mounted on vehicles
(truck or car) along with the reference sensor. Wet conditions were simulated using sprinklers, and the
final wetness classes are based on water film height thresholds that were established for each of the
surface types. This controlled setting allowed the authors to create a balanced dataset with images split
nearly equally into each of the classes. In addition to the four levels of RSC, a set of only two levels (wet,
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dry) is provided. The final resulting data is available in the form of region of interest cut-outs mapped
to the bird’s eye view of the captured images (see Figure 1.8) placed at four different distances from the
vehicle that can be chosen as desired (7.5 m, 15 m, 22.5 m, 30 m) as well as 3 different cut-out sizes
ranging in from 12.96 m2 to 2.56 m2 (labeled as small to large). The RoadSaW data set can also be
merged with a compatible balanced snow coverage dataset RoadSC, which provides three types of snow:
fresh fallen, fully packed and paritally covered. The authors in [6] state that the dataset is the first to
provide accurate water film height measurements combined with road surface types.

Figure 1.8: Example of the final road patch (rights) extracted from the image (left) which is contained in
the RoadSaW dataset [6].

RSCD

RSCD offers manually created annotations for road surface friction (dry, wet,water, fresh snow,melted
snow, ice), unevenness (smooth, slight uneven, severe uneven), and material (asphalt, concrete, mud,
gravel) across 1 million image samples, gathered in Beijing between January and July 2022, spanning
approximately 700 kilometers of roads, captured by a camera mounted on the vehicle’s bonnet. These
are provided in a form of 360 × 240 pixel road patches cut from the original images covering the road
area through which the tires would pass (see Figure 1.9).

Figure 1.9: RSCD sample cut-out patches for (a)-(l) showing different classes (right) with the placement
of the patch in terms of the original image (left) [14].
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The above mentioned datasets vary in multiple aspects, such as the equipment utilized, the locations
explored, or the recording conditions, making them valuable for a diverse range of tasks. Table 1.1
outlines the aspects that could be considered when selecting the most suitable ones for RSC detection.
Also included for comparison is the dataset created for the purposes of this thesis used later in the
experiment section.

Table 1.1: Comparison of public computer vision datasets employed in automotive tasks with regards to
the RSC detection task.

Dataset BDD100K KITTI RobotCar CityScapes Ithaca365 ACDC RoadSaW RSCD Created Dataset
Images 12 000 000 14 999 N/A 5 000 (+2 000) >680 000 8 012 20 244 1 000 000 54 952

Sequences 100 000 22 >100 50 40 N/A >250 N/A 1 854
Diverse RSC ✓ N/A ✓ × ✓ ✓ ✓ ✓ ✓

Diverse Locations ✓ ✓ × ✓ × ✓ × ✓ ✓

1.2 Computer Vision Methods for RSC detection

The aim of this section is to explore the different computer vision strategies that have previously been
used for the detection of RSC as documented in the literature. This analysis focuses on the models and
various datasets constructed for this task, as well as on the variety of road condition classes targeted for
recognition.

In [3] a two-step approach was developed to estimate road surface friction consisting of a convolu-
tional neural network that classifies RSC (into classes dry asphalt, wet/water, slush, snow/ice) followed
by patch segmentation and quantization with classification into three levels of road friction (low, medium,
and high). For the first stage concerning RSC detection, four convolutional neural networks (three of
which were custom and a SqueezeNet architecture) were tested along with a feature-based model. The
data used in this article were collected from YouTube videos and manually annotated, resulting in 3 750
training and 1 550 test samples. As Figure 1.10 shows, the training and testing images were of the whole
road scenes not just the road surface. From the models compared in [3], the best test accuracy was
achieved with SqueezeNet (97.36%). Considering that the classification is based on entire road scenes,
it suggests that it could introduce bias toward surrounding conditions, potentially misrepresenting the
RSC. These could be instances, for example, with a clear sky after recent heavy rain or salted roads
amidst snowy surroundings, failing to accurately reflect current road conditions.

Figure 1.10: Example of training images in [3].

The best performing architecture in [3] was also employed in [15], where training data were extracted
from previously described datasets (KITTI, Robotcar, Cityscapes, BDD100K) and some self-recorded
data, resulting in 26 109 images. For the model to focus on the road ahead rather than the surroundings,
trapezoidal regions of interest in front of the vehicle (shown in Figure 1.11) were used for training and
evaluation. In addition to the detection of RSC, the type of road surface was also included, resulting
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in five classes (cobblestone wet, cobblestone dry, asphalt wet, asphalt dry and snow). This article also
presents the results of pruning the network architecture to reduce its complexity. The best performance
in terms of the F1 score for the pruned network is reported to be 95.3% on the test data.

Figure 1.11: Preprocessing of images used in [15].

The evaluation of MobileNetV2 on RoadSaW data is presented in [6]. The test results are provided
for each distance from the vehicle at medium patch size, as well as for all patch sizes at the 7.5 metre
distance. From these, it is evident that the accuracy increases with the patch size and with the decreasing
distance from the vehicle. The reported F1 score on the set with six classes is approximately between
80.32% and 92.65% and for twelve classes it ranges from 57.43% to 64.44%.

For RSCD data, multiple convolutional neural network architectures were examined in [14]. The
highest accuracy was achieved by the EfficieneNet-B0 model, reaching around 92% for accuracy, preci-
sion, and recall. These metrics were further improved by a fusion model that combines predictions from
multiple partially overlapping regions for the final classification, resulting in an accuracy of 97.5% on
the test set.

Figure 1.12: Example of data used in [16] for RSC detection in all lanes.

In [16] the RSC is detected not only in the ego-lane but also in the adjacent lanes (see Figure 1.12).
Each of the three lanes gets assigned one class (dry, wet, snow, snow tracks) resulting in three predic-
tions for each image. The dataset created for this purpose consisted of public benchmarks, as well as
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some self-recorded data with 25 714 images in total. The proposed network consisted of a backbone ar-
chitecture (among the tested ones were EfficientNet, MobileNet, ResNet, Vision Transformer and Swin
Transformer), three classification heads (used for RSC classification in each lane) and two regression
heads (used for adjacent lane availability estimation). The results showed that in RSC detection, Effi-
cientNet achieved the best performance metrics in all lanes except for the ego-lane with an F1 score on
the test data of average 90.7% in the left and 90.8% in the right lane. In the ego-lane the best performing
model was the Swin Transformer with an average F1 score of 90.9%.

A dataset constructed without error-prone manual annotations was created for the purposes of [17].
The images in this experiment were cropped to cover 1.5 m × 1.5 m region in front of the vehicle and
transformed into a bird’s eye view. Annotations for these samples in terms of road surface friction
estimates were created using vehicle responses during driving. Around 3 000 images labeled in this
manner were used to train a convolutional neural network predictor (with ResNet as the backbone) for
friction estimation. The results of this trained predictor, provided on a test set of 800 images, showed a
correlation coefficient between the predictions and the ground truth of 0.9824.

Other studies such as [18], [19], or [20], have taken an alternative approach to estimating RSC,
focusing particularly on detection from the road-side cameras.



Chapter 2

Introduction to Machine Learning

Machine learning is used in many computer vision tasks and from the previous Chapter it is evident,
that RSC estimation is not an exception. This Chapter provides a brief review of this field and its basic
principles with a focus on evaluation metrics and regularization techniques applicable to computer vision
for classification tasks. This discipline combines various diverse fields of research that are visualized in

Figure 2.1: Various fields of research which are incorporated into machine learning [21].

Figure 2.1. It models algorithms based on empirical data, from which it pursues to extract rules and
patterns. The main idea behind these algorithms is that they learn to perform given tasks based on
acquired experience. A formal definition of learning by Tom M. Mitchell (1997) states: "A computer
program is said to learn from experience E with respect to some class of tasks T and a performance
measure P if its performance at tasks in T, as measured by P, improves with experience E." [22]. Some
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of the most common machine learning tasks are classification, regression, feature reduction, anomaly
detection or denoising.

Figure 2.2: Main categories of machine learning algorithms based on experience.

The experience represents what kind of data we present the algorithm with and what it experi-
ences [22]. Based on different learning techniques (experiences), machine learning can be divided into
three main subcategories [23] (see Figure 2.2):

• Supervised learning: In this type of learning, examples of labels for input data are given to
the computer. It is expected to associate features based on given knowledge and make decisions
accordingly. Algorithms that experience this kind of data are, for example: linear or logistic
regression, decision trees, naive Bayes classifier.

• Unsupervised learning: These techniques experience data given by features. Since no labels
are provided, the training is done by finding similar patterns and grouping the data according to
those patterns. Examples of this category include k-means clustering, probabilistic clustering, or
hierarchical clustering.

• Reinforcement learning: Algorithms that use reinforcement learning maximize their performance
by receiving feedback (called reinforcement signal or reward). Therefore, they do not experience
a fixed dataset as the previously mentioned approaches. A reinforcement learning algorithm (also
known as an agent) makes decisions, observes outcomes, and adjusts its strategy to improve fu-
ture results. The agent interacts with the environment, taking actions based on its current state,
which result in rewards that guide its behavior. The resulting behavior of the agent should aim to
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maximize the long-term sum of the rewards. These reinforcement signals can also be delayed in
time, meaning that they are not awarded immediately after taking the action which was crucial in
gaining them [24].

2.1 Performance Evaluation

To evaluate the ability of the machine learning algorithm, a quantitative measure (P) is required to
determine its performance. Since optimizing the performance measure is sometimes difficult, many of
these algorithms act indirectly and optimize performance during training by minimizing a different cost
function J(θ) [22]. Since RSC detection is a classification problem, only classification performance
metrics are presented in this section.

In the case of binary classification, the evaluation consists of computing:

• true positives or TP - the count of observations classified as positive that are truly positive,

• true negatives or TN - the number of the count of observations classified as negative that truly
belong to the negative class,

• false positives or FP - the count of observations classified as positive that are actually negative
(misclassification of a negative instance as positive),

• false negatives or FN - the number of samples classified as negative that are actually positive
(misclassification of a positive instance as negative)

In multi-class classification tasks, these counts are computed separately for each group Ci and constitute
the so-called confusion matrix (see Figure 2.3). From these calculations, the actual performance metrics
are computed.

Negative Positive

Predicted label

Negative

Positive

Tr
ue

 la
be

l

30
True Negative

5
False Positive

10
False Negative

55
True Positive

Figure 2.3: Example of a confusion matrix for binary classification.
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Accuracy

Is one of the most common measures for classification. It reflects the overall effectiveness of a
classifier. Given a problem with l classes, the accuracy Equation can be expressed as:

Average Accuracy =
1
l

l∑
i=1

TPi + TNi

TPi + FNi + FPi + TNi
. (2.1)

Precision

Precision is a measure of agreement between the number of samples correctly classified as members
of a given class and the total number of samples identified by the classifier as belonging to this group.
For multi-class classification, it can be given as an average of the precisions in all classes:

Precision =
1
l

l∑
i=1

TPi

TPi + FPi
. (2.2)

Recall

Recall quantifies the effectiveness of the model in identifying the class label for a given class. The
formula for the average recall of the model is given by Equation:

Recall =
1
l

l∑
i=1

TPi

TPi + FNi
.

F-score

F-score calculates the harmonic mean between precision and recall and can be expressed as [25]:

F-score =
(β2 + 1) · Precision · Recall
β2 · Precision + Recall

, (2.3)

where β is a positive real factor used to adjust the weight of the importance of recall.

2.2 Regularization

One of the most challenging factors in machine learning is the algorithm’s ability to perform well on
previously unobserved input. To better understand its performance, a test set (which is independent of
training data) is used to provide an unbiased evaluation of a final model fit. Another separate set, called
validation set extracted as a subset of training data, is used to examine how the model handles previously
unobserved input during the training before evaluating on test data. The main use of this dataset is to
tune the so-called hyperparameters - model settings that are not adjusted during the learning process.

A term that describes the ability to give satisfactory results on previously unseen data is called gen-
eralization. While training a machine learning algorithm, a training error is calculated from the training
data as well as a generalization (test) error - an error expected on new data. From these values, we can
study the adequacy of the given algorithm by observing its ability to minimize:

• Training errors: The inability to adequately minimize the training error results in underfitting.
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• The gap between test and training errors: If the gap becomes too large, overfitting occurs.

Examples of these unwanted behaviors of the models are depicted in Figure 2.4. The likelihood of over-
fitting or under-fitting the model can be controlled by its capacity. This property represents the model’s
ability to fit different functions and can be controlled by adjusting the algorithm’s hypothesis space.
Although models with higher capacity are capable of solving more complex tasks, they are more prone
to overfitting on simpler ones. One of the principles typically used in machine learning to help establish
optimal model complexity is the Occam’s razor, suggesting that among all competing hypotheses that
fit the data equally well, the simplest should be preferred [22].

x

y

Underfitting
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Samples

x

y
Appropriate capacity

Model
Samples

x
y
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Model
Samples

Figure 2.4: Visualisation of model behaviors if insufficient minimization of training errors (underfitting)
or gap between training and test error (overfitting) occurs and a model with appropriate capacity.

Apart from this principle, several techniques have been developed to improve the machine learn-
ing model’s performance on unseen data. They are collectively called regularization and some of the
examples commonly used in deep learning are presented in the remainder of this chapter.

L2 Parameter Regularization

This method, also known as ridge regression, is based on limiting the model’s capacity to improve
generalization. It penalizes the model’s coefficient sizes by introducing a weight decay term into the
objective function. Given the data X, targets y, coefficients (weights in neural networks) w, and the
objective function J(w; X, y) that will be optimized, the L2 regularized objective function J̃(w; X, y) can
be expressed as [22]:

J̃(w; X, y) = J(w; X, y) + αΩ(w) = J(w; X, y) +
α

2
||w||22.

This makes the smaller weights more preferable and helps mitigate overfitting [26]. Another similar
but slightly less common regularization technique is L1 regularization with a weight decay factor of
Ω(w) = ||w||1 =

∑
i |wi|, which results in a more sparse solution.

Dataset Augmentation

Generalization of machine learning models can also be improved by using a larger training set.
However, that is not always possible, so expanding the training set with artificially modified data may
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be a viable solution. This method has proven to be especially effective for classification tasks. The main
goal of a classifier is to take a high-dimensional input and label it with a particular class. One of its
main challenges is that it needs to become invariant to various transformations. Thus, creating new data
for this task means using the applicable transformations on the existing data. For example, in the object
classification task, the classifier needs to be robust to translation or rotation, which can be applied to
the training set to create new samples. Another data augmentation technique that can also be used in
some regression tasks is noise injection. Machine learning algorithms should be robust to a little noise,
therefore including the original data with added noise should not make the problem unsolvable.

Early Stopping
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Figure 2.5: Example of the shape of training and val-
idation error with the vertical line suggesting where
early stopping would interrupt the training loop.

Early stopping is typically used for the reg-
ularization of deep learning models. During the
training process, the error calculated on training
data should gradually decrease. In contrast, the
validation error tends to start to rise at some point
(see the example in Figure 2.5). This means that
the model would be able to generalize better if the
training did not continue beyond the point where
the minimum validation error was reached. The
early stopping algorithm terminates the training if
the validation error has not decreased in a given
number of training steps. The parameter that con-
trols the maximum number of learning steps in
which the validation error is allowed to increase
is called patience. After reaching this point, the
training is stopped and the model parameters are restored to the point where the validation error began
to rise [22].

Dropout

Figure 2.6: Illustration of dropout regularization
technique [26].

Dropout is one of the regularization tech-
niques used in deep learning. This method is rel-
atively easy to implement and has many different
variations, each better suited for different tasks.
They are proven to be effective in reducing the
model’s sensitivity to input variations and noise.
Primarily used in larger models with vast num-
ber of trainable parameters, the standard dropout
method turns off randomly chosen neurons and
their relevant connections in a given layer dur-
ing training [26] which is illustrated in Figure 2.6.
This simulates averaging the results of multiple
reduced versions of the original network. As such,
it enhances the network’s robustness against over-
fitting by combining multiple predictions from

substantial networks during the inference. In addition to that, by training the reduced versions of the
network, the amount of computations is lower making the training faster [27].
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Label Smoothing

This regularization technique is used to prevent both overfitting and overconfidence in neural net-
works. The output of classification tasks in neural network models is given in form of probability for
each label:

∀k ∈ {1, . . . ,K} : p(x) =
exp(zk)∑K

i=1 exp(zk)
,

where x is the input sample and zk are the unnormalized log-probabilities (logits). Label smoothing
involves adjusting the label distribution for a given training example with the ground-truth label y by
combining the original ground-truth distribution q(k|x) = δk,y (where δk,y is Dirac delta) with a fixed dis-
tribution over labels, based on a smoothing parameter ϵ. This leads to a mixed ground-truth distribution
in the form of:

q′(k) = (1 − ϵ)δk,y +
ϵ

K
,

which prevents the largest logit from overshadowing all others. This technique has been shown to stabi-
lize model performance by preventing overfitting and making it more adaptable through a more balanced
confidence in predictions [28].



Chapter 3

Artificial Neural Networks

Most of the computer vision approaches to RSC detection mentioned in Chapter 1 rely on deep learn-
ing. This chapter aims to explain the basic concept of artificial neural networks, which are the foundation
for these models. Next, convolutional neural networks and some of the state of the art architectures which
were previously mentioned will be explored in more detail.

These machine learning algorithms are inspired by human biology. The main idea behind this ap-
proach is to construct a network of so-called neurons, which operate in parallel [29]. Unlike other ma-
chine learning techniques, artificial neural networks (ANNs) have the ability to learn the representation
of given data, which becomes increasingly abstract in each layer. However, human input in the form of
specifying the hyperparameters is still needed even for these learning algorithms.

Figure 3.1: The composition of artificial neuron called perceptron.

24
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3.1 Perceptron

One of the first artificial neuron models was the perceptron (see Figure 3.1). It is equipped to solve
two-class classification problems where the data are linearly separable. The Equation for the separating
hyperplane of the classes yields:

f (w) = wT x = 0, (3.1)

where x = (x1, x2 . . . , xn, 1)T is a vector of inputs, w = (w1, w2, . . . , wn+1)T is a vector of the correspond-
ing weights, and f is called input function. When performing classification on linearly separable data
with two classes C1 and C2, the aim is to find weights that satisfy the following condition:

wT x

> 0 if x ∈ C1

< 0 if x ∈ C2.
(3.2)

Let w(1) be the weight vector of arbitrary values, x(k) the pattern vector corresponding to step k and
α > 0 the learning rate. Then the training algorithm for step k of the perceptron is following [30]:

1. if x(k) ∈ C1 and wT x(k) ≤ 0, let w(k + 1) = w(k) + αx(k)

2. if x(k) ∈ C2 and wT x(k) ≥ 0, let w(k + 1) = w(k) − αx(k)

3. else, let w(k + 1) = w(k).

Afterwards, activation function g is used to determine the class membership of given data. In this
case, the activation function is a thresholding function, which assigns the pattern to class C1 if the thresh-
olded output is 1 and to class C2 for this value equal to −1.

Artificial neurons in multilayer networks work in the same way as perceptron, differing mainly in
activation functions. Some of the most frequently used activations in artificial neurons are: sigmoid,
rectifier linear unit (ReLU), hyperbolic tangent (see Figure 3.2) or in some instances softmax [30].
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Figure 3.2: Activation functions used in artificial neuron structures.

There are many different architectures of neural networks based on the way the network is connected.
Some of the most well-known are, for example, feedforward networks, convolution, radial basis function
networks, and many more [30].

3.2 Feedforward Neural Network

This network usually consists of several layers of neurons. The first one (input layer) is comprised
of the same number of neurons as the dimensionality of the input vector. Data processed in the input
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layer are subsequently sent to the first hidden layer. Each layer receives the data, performs (previously
described) operations, and sends the output to the next one [29]. The number of neurons can differ in
each layer, but every neuron has only one output, which is connected to all neurons in the next layer to
create a fully connected network. If there is only one hidden layer in the network, it is called shallow,
while those with two or more are labeled deep. The number of layers of ANN is called its depth [30].
The last hidden layer is connected to the output layer, which provides the values used to determine the
final decision [29]. Examples of deep and shallow feedforward neural networks are shown in Figure 3.3.

The training algorithm for these types of networks consists of four basic steps [30]:

1. input of the training data (also called forward pass),

2. classification of the data by network and the determination of the cost J(θ),

3. computation of required changes, that minimize its error, is carried out by passing it through the
network (using the backpropagation algorithm),

4. the model weights are updated, and the process is repeated until the error reaches an acceptable
level

(a) (b)

Figure 3.3: Examples of feedforward (a) deep and (b) shallow neural network structures.

This neural network training process utilizes optimization algorithms to reduce the cost function J(θ)
which can be expressed as an average of per-example loss functions L over training set samples [22]:

J(θ) = E(x,y)∼ p̂data L( f (x; θ), y),

where f (x; θ) is the predicted output given input x, p̂data is the empirical distribution and y is the target
output. Among some of the common optimization algorithms used for this purpose are:

• Stochastic gradient descent (SGD): This optimizer is an extension of the basic gradient descent
algorithm. The gradient of the loss in this case is computed from minibatches of m samples
drawn i.i.d. from data generating distribution. Along with the values of the initial parameters
θ, it requires a learning rate ϵ. First, a minibatch of inputs {x(1), . . . , x(m)} and corresponding
targets {y(1), . . . , y(m)} is sampled from the training set. A gradient is computed as follows: g =
1
m
∑

i ∇θL( f (x(i), θ), y(i)) and based on this calculation, the weights and biases are updated θ ←
θ − ϵg. The learning rate ϵ can be chosen by trial and error or by monitoring the leaning objective
function curves during training.
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• SGD with momentum: To accelerate the learning process of SGD, an algorithm using momentum
is utilized. The momentum algorithm introduces a velocity v to the update rule, which acts as
momentum of a particle in physics. The update rule changes from the previous SGD algorithm in
the following manner:

v← αv − ϵg
θ ← θ + v.

The hyperparameter of α ∈ [0, 1) determines the speed with which the effect of the past gradients
decays.

• Root mean square propagation (RMSProp): RMSProp belongs to the class of optimization algo-
rithms with an adaptive learning rate. The gradient computations of the previous algorithms are
followed by the update of variable r which accumulates the sum of squared gradients, is used
during the parameter update in the following manner:

r← ρr + (1 − ρ)g ⊙ g

∆θ = −
ϵ

√
δ + r

⊙ g

θ ← θ + ∆θ,

where δ is a small constant that prevents division by zero, ρ is a decay rate and · stands for element-
wise multiplication.

• Adam: Deriving its name from the phrase "adaptive moments", this form of optimization not only
utilizes the momentum algorithm but also involves an adaptive learning rate. In this case, the
update of weights in step t includes updating the first order moment s (momentum) and the second
order moment r in the form of [22]:

s← ρ1s + (1 − ρ1)g
r← ρ2r + (1 − ρ2)g ⊙ g.

This is followed by applying corrections to these moments to account for their initialization at the
origin yielding:

ŝ←
s

1 − ρt
1

r̂←
r

1 − ρt
2

and finally the parameters are updated using these calculations as:

∆θ = −ϵ
ŝ

√
r̂ + δ

θ ← θ + ∆θ.
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3.3 Convolutional Neural Network

The main difference between convolutional neural networks (CNN) and feedforward networks is that
they use convolution as an input function in certain layers. This allows the input of these networks to have
an image format or similar grid-like form. Instead of previously extracted features, these ANNs learn
the patterns directly from given images. Therefore, these types of networks are well suited for image
processing applications [30]. Aside from the input and output layer, a CNN is commonly comprised of

Figure 3.4: An example of CNN structure.

three types of layers - convolutional, pooling and fully connected. This structure is shown in Figure 3.4
which depicts:

• Convolutional layers use kernels, which are convolved with the input. The kernel is the same
depth as the input, has low spatial dimensionality, and is applied to the whole image. Same as in
previously described ANNs, an activation function is applied to the outcome of convolution. An
example of how this layer performs the operation on an image is shown in Figure 3.5 [31]. The
commonly used definition of convolution in many neural network libraries for two-dimensional
image F with kernel K̂ can be represented by the following Equation:

Ĝi, j = (F ∗ K̂)i, j =
∑
m,n

Fi+m, j+nK̂m,n,

which is also called cross-correlation. In computer vision tasks, the input to CNN architecture is
generally an image which can also be thought of as a three-dimensional tensor with two indices in
the spatial coordinates and one into the different color channels. Thus, the convolution Equation
for convolving the input data Fi, j,k (i being the channel, j row and k column index) with a four-
dimensional kernel tensor K̂i, j,k,l (where i represents the output channel index, j the input channel
index and k, l spatial dimensions) is defined as:

Ĝi, j,k =
∑
l,m,n

Fl, j+m−1,k+n−1K̂i,l,m,n.
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Figure 3.5: The convolution of input image with 3 × 3 × 3 kernel [32].

To reduce computational costs, convolution can be computed in a way that skips over some of the
kernel positions, yielding the following representation of this operation:

Ĝi, j,k =
∑
l,m,n

Fl,( j−1)s+m,(k−1)s+nK̂i,l,m,n,

where the scalar value s is called a stride [22].

• Pooling layers are used to reduce the spatial dimensionality of the input feature map. The most
common are max-pooling layers [31]. This method of pooling is done by moving the kernel along
the input by the given stride and returning the maximum value of the covered portion of the data.

• The fully connected layer functions in the same way as a typical ANN. The output of the previous
layer is flattened and a feedforward neural network with a soft-max activation function is used for
classification [32].

Having described the basic principles of CNNs, the remainder of this chapter will focus on some of
the CNNs structures mentioned in Chapter 1. For the task of RSC detection, along with numerous other
computer vision applications, it is essential that the model works in real time and on computationally
limited platforms. Therefore, the models that tend to be used for this task prioritize these requirements.

MobileNet

This architecture was created with the aim of minimizing the size and computational requirements
making it well suited for mobile devices and embedded systems (such as cameras in autonomous vehicles
or drones).

The main building blocks of this network architecture are depthwise separable convolutions. These
layers consist of depthwise and pointwise convolutions (see example of both in Figure 3.6). The output
feature map Ĝ of the convolution of the depthwise convolutional kernel K̂ with the i-th channel of the
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feature map F is defined as:
Ĝi, j,k =

∑
l,m

Fi, j+l−1,k+m−1K̂i,l,m.

However, this operation does not combine the input channels to create new features. For this reason, the
output has to be combined with the 1 × 1 (pointwise) convolution creating a linear combination of the
output of the depthwise layer. This operation is efficient compared to standard convolution, which has a
computational cost of DKh ·DKw ·M ·N ·DFh ·DFw , with DKh ×DKw representing the kernel size, DFh ×DFw
the size of the feature map, M the number of input channels and N output channels. For this operation,
the cost is reduced to DKh ·DKw ·M ·DFh ·DFW+M ·N ·DFh ·DFw which corresponds to the sum of depthwise
and pointwise convolutions, resulting in a computational reduction of

DKh ·DKw ·M·DFh ·DFW+M·N·DFh ·DFw
DKh ·DKw ·M·N·DFh ·DFw

=

1/N + 1/D2
K [33].

(a) (b)

Figure 3.6: Example of depthwise (a) and pointwise (b) convolution [34].

The idea of depthwise separable convolutions was further explored by other versions of the first
MobileNetV1 architecture. MobileNetV2 introduces a linear bottleneck and inverted residual structure
(see Figure 3.7) to decrease the number of operations and memory required. The bottleneck residual
block consists of 1 × 1 convolution with the activation function ReLU6 (ReLU with an upper limit of
six) that takes as an input feature map of size DFh × DFw × M, depthwise convolution with stride s again
followed by ReLU6 which transforms the output of the previous layer with size DFh × DFw × (tM) (t is
an expansion factor), finally a linear 1×1 convolution layer is utilized transforming the

DFh
s ×

DFw
s × (tM)

sized output of depthwise convolution to
DFh

s ×
DFw

s × (N). It also includes residual (or skip) connections
that connect the input and the output of this block by addition but only if they match in the number of
channels. The computational cost of this block is DFh · DFw · M · t · (M + D2

K + N) which, in comparison
to the cost of depthwise separable convolution alone, seems higher; however, this structure allows for
significantly smaller input and output dimensions [35].

This idea was also expanded in [36] into an even faster architecture named MobileNetV3. In contrast
to the second version, the building block is modified using squeeze and excitation layers. The squeeze
operation uses global average pooling to shrink the input. Subsequently, excitation is applied, which
consists of a fully connected layer followed by ReLU and another fully connected layer with sigmoid
activation. The final output of the squeeze and excite module is obtained by rescaling the original feature
maps with the activation values generated by the excitation operation [37]. MobileNetV3 uses this inside
the MobilenetV2 module, as can be seen in Figure 3.8. Another change from the previous version is the
replacement of sigmoid activations with piecewise linear hard analog in the form of: hard-σ = ReLU6(x+3)

6 ,
which also changes another activation used primarily in the deeper layers of the model, called swish
(swish(x) = xσ(x)) to h-swish(x) = x ReLU6(x+3)

6 . Modifications to the structure were also made in terms
of redesigning the computationally expensive layers at the beginning and end of the network [36].
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Figure 3.7: Inverted residual block used in MobilenetV2 [35].

Figure 3.8: Modifications made to inverted residual block in MobieleNetV3 [36].

EfficientNet

A new network scaling method that uses the so-called compound coefficient ϕ to uniformly scale
width, depth, and resolution (see Figure 3.9) established in [38] aims to improve the accuracy and effi-
ciency of these architectures. The intuition behind this is that for higher resolution images, increasing
network depth allows larger receptive fields to capture similar features, and widening the network be-
comes essential for discerning finer patterns across more pixels, and so the scaling dimensions of the
network should be balanced.

Figure 3.9: The comparison of compound scaling (e) with conventional scaling (b)-(d) that increases one
dimension of network width, depth, or resolution on baseline model (a) [38].
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The compound coefficient is user defined and controls the availability of resources for model scaling
which are assigned to width, depth or resolution based on constants α, β and γ in the following manner:

depth: d = αϕ

width: w = βϕ

resolution: r = γϕ,

such that αβ2γ2 ≈ 2 and α,β,γ ≥ 1. A mobile-sized architecture created in [38] called EfficientNet-B0
uses an inverted bottleneck with squeeze and excitation as its basic building block. Other architectures
are derived from this using the compound scaling method (EfficientNet-B1 to EfficientNet-B7). These
models have been shown to improve both accuracy and efficiency over previously established CNN
models while also proving to be computationally cheaper and faster [38].



Chapter 4

Experimental Setup and Dataset Creation

This Chapter aims to describe in detail the setup of the experiments while giving a reasoning behind
the choices made in terms of models, as well as the chosen datasets and the processing of images from the
captured recordings. As already mentioned in Chapter 1 computer vision approaches to RSC detection
are highly cost-effective and precise, yet somewhat dependent on the choice of dataset. Therefore, com-
paring previous research on this topic is not as straightforward. Contributing to this uncertainty is also
the fact that there is a lot of variability in the conditions that each of the approaches aims to recognize.
The choice made for the experiments with RSC sensing in this regard is driven mainly by the fact that the
goal of this thesis is to recognize the conditions in terms of the surface state rather than the surface type.
This, in combination with the provided data used for creating the dataset, led to the decision to split the
target RSC into three classes wet, dry and snow disregarding the surface type, which should allow the
models to focus on the main task the aim is to explore.

The choice of CNN model was driven by the fact that for this use case the inference speed is of
essence along with the size of the model. Both chosen network structures, MobileNetV3 Large and
EfficientNetB0 (described in Chapter 3), are created for mobile devices making them a suitable choice
for the target task. In addition to this, both CNN models have proven to be very effective in various
classification tasks, with EfficientNet generally offering better accuracy in classification tasks, however,
at the cost of a slightly slower inference speed. Another favorable feature of using EfficientNetB0 is
the straightforward way to scale the baseline model if necessary. Both of these CNN architectures are
implemented and available for training in the Pytorch library, which was utilized in this work.

From the existing public datasets described in Chapter 1, RoadSaW was chosen for initial experi-
ments with training these networks. The main motivation behind it was its balanced nature along with
the very precise labeling provided. In addition to this, RSCD (which is to the best of our knowledge the
only other dataset created exclusively for this task) only provides the images in form of small patches cut
from the position in front of the vehicle, where the tires would pass, which in our opinion would provide
less information about the road condition in front of the vehicle than the trapezoidal region of interest
patch used in RoadSaW covering the whole area that the vehicle will pass through. Furthermore, another
advantage of RoadSaW is the fact that the cut-out images are transformed into the bird’s-eye view, which
should make the model more robust to changes in camera angles and positions. For this thesis, the large
size of the road patch was used at a distance of 15 meters from the vehicle, which was the version of
the data compatible with the snow coverage images that the authors also provide. The snow coverage set
provides three snow class labels fresh fallen, fully packed and partially covered which were all merged
into one snow class. In addition to this, the snow data had to be subsampled from existing images to
maintain the balance of the dataset. This was done so that images from the train, test and validation
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subsets were also placed in the same subset in the final RoadSaW set, and each of the original snow
classes remained balanced within the merged class of the dataset.

4.1 Dataset Creation and Preprocessing

Figure 4.1: Example of preprocessing of the recorded data.

The created dataset consists of 66 recordings captured by the ZED 2 stereo camera mounted behind
the rear-view mirror inside the test vehicle (see Figure 4.5) with a resolution of 1920 × 1080 pixels.
These were acquired during multiple seasons of the year, providing variability in lighting and weather
conditions. Figure 4.3 shows the recording dates and the number of images captured throughout the
various drives within them, while the color of the bars indicates the class to which they belong in terms of
RSC. The featured locations span across multiple smaller towns in Czechia, including some connecting
roads, as well as various locations within the city of Prague and its suburban areas. This introduces
a lot of variability in the vehicle speed, the type of road surface, and the conditions of the road in
terms of damage or other imperfections. Since this dataset was created in real driving conditions (unlike
RoadSaW), it also contains scenarios such as obstacles on the road, parts of vehicles, or people blocking
a section of the image, shade, or traces of the sidewalk (see these examples in Figure 4.2).

Figure 4.2: Examples of real-world driving conditions included in the created dataset.

From the recordings, which were provided at a rate of 15 FPS, the individual frames were extracted
and hand-labeled according to the RSC, disregarding the instances where the condition could not be
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Figure 4.3: Count of images extracted from the drives on the recorded dates on the x-axis, labeled with
the assigned RSC classes.
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Figure 4.4: Count of images belonging to the different classes in each of the subsets of the dataset.

determined with high confidence. Since some of the locations were within cities and towns, frames
where the car was still or barely moving were also eliminated, preventing the final dataset from containing
multiple images from one spot. After this process, a trapezoidal region of interest was extracted on the
labeled images of the road scenes. The trapezoid dimensions and location were determined by visual
inspection of the images. It was positioned to approximately match the width of the vehicle’s ego-lane,
with its height covering a significant portion of the road ahead, while keeping in mind that too large of a
size might often include unwanted noise such as vehicles ahead, people passing through, or, based on the
direction of driving, the roadside. In addition to cropping the images, homography mapping was used to
obtain a bird’s eye view of the road surface (see Figure 4.1).

After preprocessing the recordings, the resulting images were split into train, test and validation set
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CAMERA

Figure 4.5: Test vehicle with location of the camera.

where the training set accounted for 70%, test 20% and validation 10% of the data. However, this task
was not as straightforward since the recordings were of different lengths and the different classes were
not evenly distributed within them, making stratified splitting impossible. Therefore, all recordings were
further split into shorter sequences of approximately 30 frames with a 20-image gap (corresponding to
almost 20 meters when driving at 50 km/h) between each pair. Since the images show only the region
of the road surface in front of the vehicle disregarding the surroundings, this gap is assumed to be wide
enough for the road to display different characteristics in terms of water and snow distribution on the
surface, as well as different properties of the road surface itself and slightly changed lighting conditions.
This allowed us to divide the data into a train set of 38 655, validation with 5 358 and a test set consisting
of 10 939 images. The class counts in these subsets are visualized in Figure 4.4.



Chapter 5

Evaluation

This Chapter presents the results of experiments with the created dataset as well as the RoadSaW
dataset described in Chapter 1. During the research for this thesis there were no models that would
have trained weights available for this purpose found. Therefore, a decision was made to initialize the
weights as the default pre-trained classification weights for both models in Pytorch which are trained
on the ImageNet-1K dataset. Subsequently, both architectures have the classifier adjusted for the three-
class classification task, and the output features of the CNN backbone to the classifier were set to use
dropout with probability of p = 0.2. In addition to this regularization technique, data augmentation is
also utilized with random rotation in the range of [−5◦,+5◦], horizontal flipping, brightness alterations,
and also a subtle added Gaussian blur. Different combinations of these alterations and their magnitudes
were also examined, providing less satisfactory results. Both networks were trained using SGD with
momentum of 0.9 and a decrease in the learning rate was implemented to be triggered on the validation
loss plateau. The loss function utilized for both of these networks was the corss-entropy loss defined as:

L = −
∑
m∈B

C∑
i=1

y(m)
i log(ŷ(m)

i ),

where y is the target, ŷ output of classifier, C the number of classes and B the input batch. Monitoring
the validation loss, early stopping was also used to prevent the architectures from overfitting. This
combination of regularization techniques showed the best results not only on the training but also on the
validation set based on multiple trainings and evaluations.

5.1 Experiments with RoadSaW

First, the training of both architectures was carried out on the RoadSaW dataset. The reasoning
behind the choice to use this data was presented in Chapter 4. To determine the initial leaning rates and
batch sizes for both of these models, a grid search was performed, and based on the trend of the train and
the validation curves, both of these hyperparameters were selected.

MobileNet
The initial learning rate for this network was set to 10−4 with a batch size of 128 images. After

further testing of regularization techniques, label smoothing allowed for longer training of the model
without overfitting and provided better validation accuracy over previous tests. Training and validation
accuracy throughout the training process is shown in Figure 5.1. This plot suggests that both training and
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validation accuracy seem to have less significant improvements after around 30 epochs. The gap between
this metric for train and the validation sets also appears quite small, which implies that the model is able
to generalize well. The resulting architecture has 98.86% train and 95.88% validation accuracy (see
Table 5.1) with the corresponding confusion matrices visualized in Figures 5.3b and 5.3c.

Table 5.1: Metrics of the final trained MobileNet on the train, and validation sets of RoadSaW.

Subset Accuracy [%] Precision [%] Recall [%] F1 Score [%]
Validation 95.88 95.89 95.88 95.88

Train 98.08 98.08 98.08 98.08
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Figure 5.1: Train and validation accuracy with epochs for
MobileNet training on RoadSaW dataset.

The results on the test dataset are shown
in Table 5.2 and provide the accuracy, pre-
cision, recall, and F1 score for each class
as well as the mean of these metrics for the
overall evaluation of performance. As can
be seen from these, the model is highly ef-
fective in identifying the snow class, which
it is capable of predicting correctly in almost
every instance. In the dry class, it also shows
high accuracy and recall metrics; however,
lower precision suggests that the model is
over-predicting this class. The lower recall
of identifying wet conditions implies that the
model has a tendency to miss some of the

wet images. The corresponding confusion matrix in Figure 5.3a further demonstrates that the majority
of misclassified samples are between the wet and dry classes, which would be expected. What seems
more unusual is the fact that a snow sample was mislabeled as dry. Upon closer inspection of these
inaccuracies (see the examples in Figure 5.2), the incorrectly predicted instances between wet and dry
classes were mainly due to what appeared to be the higher speed of the vehicle during the capturing of
the mentioned images, which possibly distorted some of the important texture in the image. The sample
misclassified as dry by the model, despite belonging to the snow class, also depicted in the Figure, show
some resemblance to certain instances of dry images.

Table 5.2: Metrics of the final trained MobileNet for prediction on RoadSaW.

Class Accuracy Precision Recall F1 Score
Overall 96.92 97.10 96.92 97.00

dry 99.32 92.16 99.32 95.60
snow 99.77 100.00 99.77 99.89
wet 91.67 99.14 91.67 95.26

Moving Window Prediction Smoothing

During video data analysis, it was observed that class transitions tend to be less abrupt and more con-
tinuous. Thus, moving-window aggregation of predictions in time seems like a straightforward method
of improving the model’s performance. This approach involves synthesizing the classification results
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Figure 5.2: Examples of misclassified images from test set of RoadSaW by trained MobileNet architec-
ture.
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Figure 5.3: Confusion matrices for MobileNet on the RoadSaW dataset. Matrix (a) shows the classifica-
tion results for test dataset, (b) for validation and (c) for the train set

from a set of neighboring frames and smoothing the final results. For this experiment, every new predic-
tion is given as a majority class in the current window, which in this case was used of size five. This size
of window would examine a segment of video that spans approximately one sixth of a second, assuming
that the camera is providing videos at 30 frames per second (which the test car camera is capable of
producing). It was set small enough to preserve some temporal resolution of the data and to ensure that
any rapid transitions in weather conditions can be detected without significant delay. Given that each
class in this dataset contains the same number of images, the batch size of the said size was used to avoid
overlapping the predictions in subsequent classes. This choice was made in order to make the results
more general and not create errors that would depend on the order in which the classes were input into
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the classifier, thus the results do not include the misclassifications that would have been caused by the
delay due to window aggregation.

Table 5.3: Metrics of the final trained MobileNet on the test, train, and validation sets of RoadSaW
dataset for prediction using the aggregation technique.

Subset Accuracy [%] Precision [%] Recall [%] F1 Score [%]
Test 97.72 97.85 97.72 97.78

Validation 96.41 96.41 96.41 96.41
Train 98.43 98.43 98.43 98.43

Table 5.3 presents the results of the aggregation on all subsets of RoadSaW. These indicate a nearly
1% improvement in the overall metrics on the test and validation set, and some minor improvements on
the training set. Thus, the aggregation process was shown to be effective in improving the performance
of the model even with a window of size as small as five frames.

EfficientNet
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Figure 5.4: Train and validation accuracy with epochs for
EfficientNet training on RoadSaW dataset.

This model showed the best characteris-
tics when training with a batch size of 256
and the initial learning rate 10−4. In case
of this architecture, label smoothing has not
proven to be as effective, and thus it was
left out. The training curves were plotted in
terms of accuracy the same as for the pre-
vious architecture and are displayed in Fig-
ure 5.4. These curves again exhibit no signs
of overfitting with a minimal gap between
them. Also visible from the plot is that this
model was able to train for a longer period
than the previous one without showing signs
of overfitting and triggering the early stop-

ping mechanism. The final trained EfficientNet model achieves almost 98% in all metrics on the training
set and 95% on the validation set (see Table 5.4). The confusion matrices in Figure 5.5 again imply
that while the model is still very accurate, it may occasionally mistake wet conditions for specifically
dry ones. However, this occurs a bit more frequently for EfficientNet than with the trained MobileNet
architecture. Upon examination of the misclassified frames, high car speed seems to be again the major
cause of the wrong classifications.

Table 5.4: Metrics of the final trained EfficientNet on the train and validation sets of RoadSaW.

Subset Accuracy [%] Precision [%] Recall [%] F1 Score [%]
Validation 94.86 94.88 94.86 94.87

Train 97.64 97.64 97.64 97.64

Table 5.5 presents the results for this model on the RoadSaW test set. The overall accuracy of
96.42% and F1 score of 96% indicate that the model is highly effective at classifying RSCs in most
conditions. It was able to learn the patterns in the snow class perfectly, not even once producing a wrong
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prediction. The lower precision for the dry class and the reduced recall for the wet class indicate that
further improvements could be made in distinguishing between the two. However, the overall test metrics
demonstrate good performance in RSC detection.

Table 5.5: Metrics of the final EfficientNet for prediction on the test set of RoadSaW.

Class Accuracy Precision Recall F1 Score
Overall 96.42 96.54 96.42 96.48

Dry 97.72 92.04 97.72 94.80
Snow 100.00 100.00 100.00 100.00
Wet 91.55 97.57 91.55 94.46
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Figure 5.5: Confusion matrices for EfficientNet on the RoadSaW dataset. Matrix (a) shows the classifi-
cation results for test dataset, (b) for validation and (c) for the train set.

Moving Window Prediction Smoothing

Incorporating a moving window in time aggregation of predictions increases all of the performance
metrics of the network (see Table 5.6) on the different subsets of RoadSaW, indicating better generaliza-
tion and consistency in model predictions. Although there is a clear improvement of the overall metrics,
it is not very substantial suggesting that the predictions were already quite smooth and the temporal
aggregation is less valuable for this model.

Table 5.6: Metrics of the final trained EfficientNet for prediction on RoadSaW using window aggregation
approach.

Subset Accuracy [%] Precision [%] Recall [%] F1 Score [%]
Test 97.49 97.65 97.49 97.57

Validation 95.21 95.23 95.21 95.22
Train 98.27 98.27 98.27 98.26
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5.2 Experiments with Created Dataset

Even though the models performed well on the RoadSaW test set, the performance of the trained
architectures on the created dataset was quite low. This could presumably have been caused by changes
in the size, shape, and location of the extracted region, by the different hardware and calibration used
for data collection or even the different location with varying roads. Furthermore, the created dataset
consists of real-world driving scenarios, unlike RoadSaW, which was captured in a controlled environ-
ment. Therefore, the contrast in recording conditions might have caused challenges in translating the
knowledge of the trained models on RoadSaW to real-world driving situations. Due to this poor perfor-
mance, the weights had to be trained again, initializing with the default Pytorch classification weights
from ImageNet-1K, on the train set of the collected data. The hyperparameters and regularization tech-
niques used were initially kept in line with the previous experiment, as they had proven to be effective in
the RSC classification task. One difference from previous training was that both networks were trained
using weighted cross entropy loss, where weights are calculated as follows:

weightclass =
total number of samples

number of classes · number of samples in class
,

to account for the imbalance in the classes.
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Figure 5.6: Train and validation accuracy with epochs for
MobileNet training on the created dataset.

The initial training with the unchanged
hyperparameters and regularization tech-
niques displayed signs of overfitting early in
the training. Tuning some of the hyperpa-
rameters showed that the architecture could
benefit from larger batch size of 256 and re-
straining from using the blurring augmenta-
tion. The final training curves in Figure 5.6
again demonstrate good generalization abil-
ities and the effectiveness of the regulariza-
tion techniques used. The final training and
validation metrics are provided in Table 5.7
and show quite high accuracy on the valida-
tion set of almost 97% and on training data

over 98%. This again implies good generalization abilities of the trained network on unseen data. The
results on the test set displayed in Table 5.8 provide the classification metrics for individual classes.
Here, misclassifications tend to become more frequent in the snow class than on the previous dataset,
while the dry class provides the best results of almost 99% in all metrics. More insight into mislabeled
instances is provided by the confusion matrices in Figure 5.7. The model seems to be less successful in
distinguishing the wet and the snowy conditions, which is possibly caused by the snow classes contain-
ing more instances of melting snow. The overall test results show quite good performace on unseen data
with F1 score over 95% and the accuracy a little more than 96%.
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Table 5.7: Metrics of the final trained MobileNet on the train and validation sets of the created dataset.

Subset Accuracy [%] Precision [%] Recall [%] F1 Score [%]
Validation 96.60 96.06 96.02 96.04

Train 98.24 98.20 98.19 98.19

Table 5.8: Metrics of the final trained MobileNet for prediction on the created dataset.

Class Accuracy Precision Recall F1 Score
Overall 96.15 95.65 95.02 95.32

Dry 99.01 98.61 99.01 98.81
Snow 90.57 94.35 90.57 92.42
Wet 95.48 94.00 95.48 94.73
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Figure 5.7: Confusion matrices for MobileNet on the created dataset. Matrix (a) shows the classification
results for test dataset, (b) for validation and (c) for the train set.

Moving Window Prediction Smoothing

Aggregation of predictions with the moving window is evaluated including errors caused by delay.
Even with these errors, the metrics improved, although not very significantly (see Table 5.6). The highest
test accuracy achieved with this network on the real-world data is 96.5% and the F1 score of 95.6%.

Table 5.9: Metrics of the final trained MobileNet on the test, train, and validation sets of the created
dataset for prediction using the aggregation technique.

Subset Accuracy [%] Precision [%] Recall [%] F1 Score [%]
Test 96.54 95.98 95.29 95.62

Validation 97.31 96.84 96.60 96.70
Train 98.81 98.81 98.75 98.78
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Figure 5.8: Train and validation accuracy with epochs for
EfficientNet training on the created dataset.

The EfficientNet architecture, when
trained on the created dataset, again showed
good generalization abilities, as can be seen
from the training and validation curves in
Figure 5.8. However, the performance on
this dataset seems to be slightly lower com-
pared to RoadSaW, with the final valida-
tion and training metrics provided in Ta-
ble 5.10. Although these are not as high,
they still provide quite good performance in
the more complex situations, both exceeding
96%. Further examination of the confusion
matrices in Figure 5.9 shows that most mis-
classifications occur between the wet and dry

classes or between the snow and wet classes. The reason the latter is occurring with these data in contrast
to RoadSaW is that the created dataset contains samples in the snow class that are melting unplough snow
which might often resemble wet roads. Another observation made is that misclassifications between wet
and dry classes are in majority due to damage and imperfections in the road surface which could cause
the model to mistakenly interpret these as water. Figure 5.10 shows a few of the misclassified samples,

Table 5.10: Metrics of the final trained Efficientnet on the train, and validation sets of creted dataset.

Subset Accuracy [%] Precision [%] Recall [%] F1 Score [%]
Validation 95.88 95.61 95.48 95.54

Train 97.41 97.51 97.33 97.42

where the most notable last one shows a case with traces of visible slushy snow on the road surface.
Under the said conditions, it was difficult even for the human eye to determine whether the surface con-
ditions are wet or snowy. There are additional samples featuring unploughed melting snow, which tend
to result in higher error rates from the model.

dry snow wet
Predicted

dr
y

sn
ow

we
t

Ac
tu

al

4738 1 197

0 1858 189

49 123 3784

dry snow wet
Predicted

dr
y

sn
ow

we
t

Ac
tu

al

2439 1 48

0 964 52

72 48 1734

dry snow wet
Predicted

dr
y

sn
ow

we
t

Ac
tu

al

17077 3 169

1 7344 171

503 155 13232

Figure 5.9: Confusion matrices for MobileNet on the RoadSaW dataset. Matrix (a) shows the classifica-
tion results for test dataset, (b) for validation and (c) for the train set.

The results on the test set are presented in Table 5.11 and also indicate that the model is having
difficulty identifying the snow class with the recall of almost 91% suggesting it has tendency to miss
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some of the snow predictions, which, as can be seen in Figure 5.9, are most frequently mislabeled as
wet. Despite this imperfection the accuracy of almost 95% proves that the model is well suited for the
RSC detection task.

Table 5.11: Metrics of the final trained EfficientNet for prediction on the created dataset.

Class Accuracy Precision Recall F1 Score
Overall 94.89 94.49 94.14 94.31

Dry 95.99 98.98 95.99 97.46
Snow 90.77 93.74 90.77 92.23
Wet 95.65 90.74 95.65 93.13

Figure 5.10: Misclassified road patches by EfficientNet architecture on the test set of created dataset
along with the original road scene to which the cutout corresponds to.
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Moving Window Prediction Smoothing

Window aggregation of results was again performed in a manner that there are two expected delayed
predictions in the test and train set and three in the validation set, lowering the metrics. However, as can
be seen from Table 5.12 even with these expected errors, the performance of this model improved by
around 1% on the test set and less rapidly on the training and validation set, providing the highest test
results of almost 96%.

Table 5.12: Metrics of the final trained EfficientNet on the train and validation sets of created dataset for
prediction using the aggregation technique.

Subset Accuracy [%] Precision [%] Recall [%] F1 Score [%]
Test 95.93 95.44 94.92 95.18

Validation 96.55 96.28 96.28 96.28
Train 98.05 98.08 98.10 98.09

5.3 Prediction Speed Evaluation

As previously mentioned, the prediction speed of the chosen models is of essence in real-world
scenarios. The two previous sections compared these networks in terms of classification performance
on the two datasets. However, for the model to be able to perform in real-time, these networks need to
be able to produce predictions at very high speed to keep up with the incoming samples. To evaluate
how these models perform in this regard, the timeit library in Python is utilized. The inference speeds
reported in Table 5.13 are given as a mean of 200 predictions on Laptop GPU NVIDIA GeForce RTX
3050 Ti and a CPU AMD Ryzen 7 5800U. MobileNet shows a faster inference time, with the ability to
process one image in 23 ms on GPU, which suggests that in this setting, it has potential to provide results
even with videos of a 30 frames per second (fps) rate. With slower inference even on GPU EfficientNet
is still very effective and has the capacity to provide results in real-time on both CPU and GPU with 15
fps.

Table 5.13: Inference speed on GPU and CPU for both networks given as a mean of 200 prediction times.

Network Inference Time GPU [ms] Inference Time CPU [ms]
EfficientNet 35.53 55.54
MobileNet 23.20 40.00

Although both architectures provide very fast inference, only MobileNet has the potential to be used
at a 30 fps rate, which could also possibly allow for bigger window for prediction aggregation and
possibly smoother, more precise results.

5.4 Discussion

This Chapter presented the results of chosen CNN architectures, MobileNet and EfficientNet, for the
RSC detection task. These were evaluated on two datasets: a public computer vision dataset for road
surface condition classification (RoadSaW) and a dataset created for the purposes of this thesis from
test vehicle recordings. Both of the architectures showed good performance on RoadSaW that exceeded
the accuracy of 96% on all subsets, with MobileNet resulting in slightly better classification metrics.
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The models with trained weights were further tested on the collected data, showing poor performance
under real-world conditions. Both architectures required further training to adapt to the different driving
scenarios and preprocessing techniques introduced in the new dataset.

This dataset was created from the recordings of 66 drives during 8 recording dates in different sea-
sons and weather conditions. The images were labeled, split into short 30-frame drives, and reduced to
only road surface cut-outs located in front of the vehicle transformed into a top view. The splitting of
drives was necessary for the dataset creation because of uneven class distribution within the class which
would have prevented us from creating a stratified split into training, test and validation sets. One short-
coming of this dataset is what appears to be a slightly uneven distribution of images with different snow
conditions within the snow class, where images with various levels of melted snow seem to be not as
evenly distributed, causing the models to have worse performance in this category.

Training both architectures on the training set showed promising results, which are presented together
with the results on RoadSaW in Table 5.14. As this Table suggests, the MobileNet architectures was able
to outperform EfficientNet on both of the datasets, proving to be very efficient in the RSC detection task.
Additional evaluation was provided for both networks, employing window aggregation of predictions to
smooth out the final results. This approach is in line with the gradual nature of changes in road surface
conditions in real-world driving scenatios and results in a slight delay of predictions. A small window of
5 predictions was used and the improved accuracies of both networks are presented in Table 5.15. The
improvement of said metric was more visible on the validation set of both models. Even in this setting,
trained MobileNet architecture has proven to have better performance in training and validation set. The
final test metrics of both models on the created dataset presented showed good generalization abilities,
with lower performance metrics for the less optimally balanced snow class presumably caused mainly
by this shortcoming.

Table 5.14: Results of both models on the train and validation sets of the two datasets.

Trained Architecture Dataset Subset Accuracy [%]

MobileNet
RoadSaW

Train 98.08
Validation 95.88

Recorded
Train 98.24

Validation 96.60

EfficientNet
RoadSaW

Train 97.64
Validation 94.86

Recorded
Train 97.41

Validation 95.88

Finally, the architectures were evaluated in terms of inference speed and their ability to produce
predictions at different frame rates of the recording device. Both models provided a fast prediction
speed capable of processing data in time for a 15-fps recording rate. However, MobileNet outperforms
EfficientNet while proving to be capable of processing images even at 30 fps rate on the GPU.

Numerous computer vision approaches to RSC detection were presented in Chapter 1. These vary
in the conditions they aim to recognize, the datasets used, and the extraction of the region of interest for
prediction. Therefore, the comparison with the approach taken in this thesis is not as straightforward.
The evaluation of trained MobileNetV2 provided in [6] classified three types of road surface and two
road surface conditions, resulting in an F1 score of almost 93% on the test set with the same region
of interest size and shorter distance to the vehicle than the one used in this thesis. In comparison, the
better performing trained MobileNetV3 architecture was able to produce the mean F1 score for dry and
wet conditions of 95.43% without and 96.56% with window aggregation on the test set of road patches
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Table 5.15: Results of both models on the train and validation sets of the two datasets with prediction
aggregation.

Trained Architecture Dataset Subset Accuracy [%]

MobileNet
RoadSaW

Train 98.43
Validation 96.41

Recorded
Train 98.81

Validation 97.31

EfficientNet
RoadSaW

Train 98.27
Validation 95.21

Recorded
Train 98.05

Validation 96.55

placed further in the distance (creating more challenging conditions). With a similar goal in terms of
RSC estimation classes, the authors in [16] trained multiple models for the detection of dry, wet and
snow conditions, as well as for snow tracks in all driving lanes, using multiple autonomous driving
datasets. They were able to achieve an F1 score maximum of 90.9% for the ego-lane RSC classification,
compared to this result, both models in this thesis achieved an F1 score of more than 94% on the test set
with more resource efficient architectures.

Based on the comparisons with the previous approaches, both of the models used for RSC detection in
combination with the chosen data preprocessing techniques and surface condition classes seem to provide
comparable results. Although EfficientNet has proven to be effective in RSC estimation, MobileNet was
able to outperform this architecture on both datasets and inference speed abilities, making it the better
suited approach for this task.



Conclusion

The aim of this thesis was to find suitable computer vision methods applicable to real-time RSC
detection. Two architectures were chosen on the basis of their high inference speed and promising
performance in various classification tasks. Also explored was the option of using architectures with pre-
trained weights for RSC classification, which to the best of our knowledge were not available. Therefore,
we resorted to training the models from scratch on the chosen data.

First, a public dataset called RoadSaW was used to train chosen models mainly for its very precise
class labeling (using Mobile Advanced Road Weather Information Sensor) and the preprocessing in form
of a transformed cutout of the road surface that was also used in the created dataset. This set was further
altered to fit the classification task that this work was aiming to explore, by disregarding the surface type
labels and merging the dataset with the compatible snow coverage data.

For training of these convolutional networks, different batch sizes, learning rates, and regularization
techniques were tested. The performance of both trained networks showed good generalization abilities
on unseen data and high classification measures on the train and the validation set. A limitation of both
models was the occasional misclassification between dry and wet classes, which upon closer inspection
appeared to be primarily caused by the higher speeds at which the images were captured. Overall,
the trained MobileNet architecture performed better on train and test set, providing higher accuracy by
almost 1% on both of these sets.

In sensing RSC, it generally appears that class transitions are more gradual and abrupt changes are
less common. Therefore, smoothing model predictions over even a small moving window could enhance
overall results. How this aggregation of classification outputs contributes to better results of the model
was tested. Even with a window as short as five frames, the classification metrics of the MobileNet
architecture increased around 1%, while for EfficientNet it was slightly lower. The highest classification
metrics achieved by the better-performing MobileNet all reached almost 98% on the RoadSaW test set.

For the purposes of testing the trained models on real-world data, a dataset using recordings from
the test vehicle was created. Provided data include various driving scenarios recorded within cities,
smaller towns and even some connecting roads between them all located within Czechia. The collection
of images was recorded at a rate of 15 fps and the recording dates span between March and January
capturing variety of seasons and weather conditions. The uneven distirbution of classes between the
individual drives did not allow for stratify splitting of the data into train, test, and validation subsets.
Therefore, these had to be further split into shorter segments of 30 images while discarding 20 sample
segments (corresponding to almost 20 meters when driving at 50 km/h) between each of them. For the
model to focus only on the road in front of it and not the surrounding weather conditions, a trapezoidal
cutout of the road surface was extracted from each of the frames and transformed into a bird’s-eye view
using homography. The shape of these was chosen to be wide enough to fit into the vehicle ego lane
and capture a wide range of the surface, while keeping in mind that too large of a height of the trapezoid
will capture a lot of redundant information as well. The final dataset created in this thesis consists of
almost 55 000 images from 1 854 short 30-frame drives. One limitation of our dataset was the uneven

49



CHAPTER 5. EVALUATION 50

distribution of images of the road surface with melting snow slush across the snow classes in the split
dataset.

Although both trained models were very effective at identifying RSC on RoadSaW, their abilities
did not translate very well into real world conditions. After examining the performance of the trained
networks on the created dataset, it was observed that the models had to be trained again in order to adapt
to the new recording conditions. Since the previous training setup was shown to be very effective for
the RSC detection task, all regularization techniques and hyperparameters were initially kept unchanged.
While EfficientNet showed acceptable performance and good regularization abilities in this set-up, Mo-
bileNet required small adjustments to be able to trian well for this task. The results from this model
again showed to be more favorable with the MobileNet architecture achieving test accuracy of a little
over 96%.

Finally, the networks were compared in terms of inference speed. Both models demonstrated high
processing speed with the potential to be used at the 15 fps recording rate. However, MobileNet has
demonstrated greater effectiveness in this regard, indicating capability of generating predictions at a 30
fps rate on the GPU. While both networks demonstrated high processing speeds suitable for real-time
RSC detection, MobileNet consistently outperformed EfficientNet not only in terms of inference speed
but also in classification performance metrics on both of the datasets in training and validation subsets.
Thus, proving its potential for deployment in practical applications at a frame rate of 30 fps on a GPU
and very good RSC detection abilities, MobileNet has shown to be the more effective approach to this
task.

One of the challenges encountered in this thesis was the difficulty in comparing the classification
results directly with previous studies due to differences in datasets and RSC classes. Despite these
challenges, the proposed models, especially MobileNet, gave satisfactory results, even outperforming
some of the previous similar researches in this field with more extensive data and more computationally
efficient models but with fewer classes. Nevertheless, limitations such as the uneven distribution of
different snow types within the snow class in the created dataset or the occasional misclassification of
wet and dry images at higher vehicle speeds on RoadSaW indicate areas for improvement. To solve
this issue, future studies might also investigate the integration of additional vehicle speed information in
the data to improve the accuracy and robustness of the classification. Achieving generalization across
different cameras or locations has also shown to pose a significant challenge, and it is not guaranteed that
a model trained on this dataset would be as effective in other vehicles with different settings. However,
the focus of this thesis was to develop a model that could be effectively deployed on the test vehicle, and
in this context, the results have been proven to be both robust and applicable.
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