
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Traveling Salesman Problem with Overlapping
Circle-polygonal Neighborhoods.

Bc. Lars Kahlert

Supervisor: Ing. Jan Mikula
Field of study: Cybernetics and robotics
May 2024

ii

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

478066 Personal ID number: Kahlert Lars Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Cybernetics

Cybernetics and Robotics Study program:

II. Master’s thesis details

Master’s thesis title in English:

Traveling Salesman Problem with Overlapping Circular-polygonal Neighborhoods

Master’s thesis title in Czech:

Problém obchodního cestujícího s překrývajícími se kruhovo-polygonálními sousedstvími

Guidelines:

1. Familiarize yourself with the traveling salesman problem with continuous neighborhoods (TSPN) and related problems,
such as the generalized traveling salesman problem (GTSP), close-enough traveling salesman problem (CETSP), touring
polygons problem (TPP), and watchman route problem (WRP). Explore the existing techniques employed to solve these
problems, focusing on their relevance in solving the TSPN. Motivate these problems in the context of possible robotic
applications. [1-7]
2. Design and implement a solver to find the shortest path between a given point-neighborhood-point (PNP) triple in a 2D
plane. The neighborhood should be a convex region with boundary edges consisting of either line segments or concentric
circular arcs.
3. Extend the PNP solver to handle a polygonal environment with obstacles and verify the correctness of the implementation.
4. Utilize the PNP solver to implement the rubberband algorithm [7] for the touring neighborhoods problem (TNP), which
is a TSPN variant with a fixed order of neighborhoods.
5. Employ the PNP/TNP solutions to design and implement a solution method for the TSPN while considering a limited
computational time budget.
6. Conduct experimental evaluations of the TSPN method on instances from [1] and compare it to the existing method [1].
Describe and discuss the results obtained.

Bibliography / sources:

[1] Mikula, J., & Kulich, M. (2022). Towards a Continuous Solution of the d-Visibility Watchman Route Problem in a Polygon
With Holes. IEEE Robotics and Automation Letters, 7(3), 5934–5941. https://doi.org/10.1109/LRA.2022.3159824
[2] Kulich, M., Vidašič, J., & Mikula, J. (2023). On the Travelling Salesman Problem with Neighborhoods in a Polygonal
World. In Robotics in Natural Settings. CLAWAR 2022. Lecture Notes in Networks and Systems, 530, 334–345.
https://doi.org/10.1007/978-3-031-15226-9_32
[3] Fanta, L. (2021). The Close Enough Travelling Salesman Problem in the polygonal domain. [Master's thesis, CTU FEE]
https://dspace.cvut.cz/handle/10467/96747
[4] Faigl, J., & Přeučil, L. (2011). Inspection planning in the polygonal domain by Self-Organizing Map. Applied Soft
Computing, 11(8), 5028–5041. https://doi.org/10.1016/j.asoc.2011.05.055
[5] Faigl, J. (2018). GSOA: Growing Self-Organizing Array - Unsupervised learning for the Close-Enough Traveling
Salesman Problem and other routing problems. Neurocomputing, 312, 120–134.
https://doi.org/10.1016/j.neucom.2018.05.079
[6] Smith, S. L., & Imeson, F. (2017). GLNS: An effective large neighborhood search heuristic for the Generalized Traveling
Salesman Problem. Computers & Operations Research, 87, 1–19. https://doi.org/10.1016/j.cor.2017.05.010
[7] Dror, M., Efrat, A., Lubiw, A., & Mitchell, J. S. B. (2003). Touring a sequence of polygons. Proceedings of the Thirty-Fifth
ACM Symposium on Theory of Computing - STOC ’03, 473–482. https://doi.org/10.1145/780611.780612

© ČVUT v Praze, Design: ČVUT v Praze, VIC Page 1 from 2 CVUT-CZ-ZDP-2015.1

Name and workplace of master’s thesis supervisor:

Ing. Jan Mikula Department of Cybernetics FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 24.05.2024 Date of master’s thesis assignment: 01.09.2023

Assignment valid until: 16.02.2025

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Ing. Jan Mikula

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC Page 2 from 2 CVUT-CZ-ZDP-2015.1

Acknowledgements

I am sincerely grateful to my supervisors,
Ing. Jan Mikula and RNDr. Miroslav
Kulich, Ph.D., for their valuable advice,
endless patience, and exceptional men-
torship during the creation of this thesis.
Furthermore, I extend my heartfelt ap-
preciation to my family and friends for
their understanding, encouragement, and
patience during this journey.

Declaration

I hereby declare that I have completed
this thesis on my own and that all the
used sources are included in the list of ref-
erences, in accordance with the Method-
ological instructions on ethical principles
in the preparation of university theses.

In Prague, 24.05.2024

Prohlašuji, že jsem předloženou prá-
ci vypracoval samostatně a že jsem
uvedl veškeré použité informační zdroje
v souladu s Metodickým pokynem o do-
držování etických principů při přípravě
vysokoškolských závěrečných prací.

V Praze dne 24.05.2024

Lars Kahlert

v

Abstract

This thesis builds upon a heuristic solu-
tion framework for solving the Watchman
Route Problem (WRP) in polygonal envi-
ronments. The goal is to find the short-
est route from which a robot with an
omnidirectional sensor with limited vis-
ibility range can fully inspect a known
2D environment. The original framework
generates a set of convex regions cover-
ing the full environment and obtains the
solution by solving the traveling sales-
man problem with neighborhoods (TSPN)
through discretization. This thesis pro-
poses a solution that solves the TSPN
without resorting to the time-consuming
discretization step. We introduce a Point-
Neighborhood-Point (PNP) optimization
algorithm within a rubber-band (RB) al-
gorithm for the local improvement of
paths over a fixed order of neighborhood
regions. The TSPN is solved by an It-
erative Local Search (ILS) metaheuristic.
Through experimental evaluation, a com-
parison with the original method is cre-
ated, and we show that our approach can
provide superior solutions within strict
computational constraints.

Keywords:

Routing Problems;
Traveling Salesman Problem with
Neighborhoods;
Metaheuristics;
Rubber-band algorithm;
Iterated Local Search

Supervisor:

Ing. Jan Mikula
IMR - Intelligent Mobile Robotics,

CIIRC, CTU in Prague,
Jugoslávských partyzánů 1580/3,
160 00 Praha 6, Dejvice,
Czech Republic

vi

Abstrakt

Tato práce vychází z heuristického řešení
hlídačova problém (WRP) v polygonál-
ních prostředích. Cílem je najít nejkratší
trasu, po které může robot s všesměr-
ným senzorem s omezeným rozsahem vidi-
telnosti plně prozkoumat známé 2D pro-
středí. Původní heuristika generuje mno-
žinu konvexních oblastí pokrývajících celé
prostředí a řešení získá vyřešením pro-
blému putujícího obchodníka s okolím
(TSPN) pomocí diskretizace. Tato práce
navrhuje způsob, který řeší TSPN, aniž
by se uchýlil k časově náročnému kroku
diskretizace. Zavádíme optimalizační al-
goritmus typu bod-sousedství-bod (PNP)
v rámci gumičkového algoritmu (RB) pro
lokální zlepšování cest s pevným pořadím
sousedství. TSPN je řešena metaheuris-
tikou iterativního lokálního prohledávání
(ILS). Prostřednictvím experimentálního
vyhodnocení je vytvořeno srovnání s pů-
vodní metodou a ukazujeme, že náš pří-
stup může poskytnout lepší řešení v rámci
přísných omezení výpočetního času.

Klíčová slova:

Směrovací problémy;
Problém obchodního cestujícího se
sousedstvími;
Metaheuristiky;
Gumičkový algoritmus;
Iterované lokální prohledávání

Překlad názvu:

Problém obchodního cestujícího s
překrývajícími se kruhovo-polygonálními
sousedstvími

vii

Contents

1 Preliminaries 1

1.1 Introduction 1

1.2 State of the Art 3

2 Problem Description 7

2.1 Problem Inputs 8

2.1.1 Neighborhood Regions 8

2.2 Objective . 9

2.3 Reference Method Description . . 11

3 Solution Approach 13

3.1 Point Neighborhood Point (PNP) 14

3.1.1 PNP Problem 14

3.1.2 PNP Algorithm 14

3.1.3 PNP with Obstacles 18

3.2 Constructive Heuristics 19

3.2.1 Nearest Neighbor (NN)-based
Methods . 19

3.2.2 Insertion-based Methods 21

3.3 Improving Heuristics 23

3.3.1 Rubber-band (RB) 23

3.3.2 Other Improvement Operators 24

3.3.3 Variable Neighborhood Descent
(VND) . 26

3.4 Metaheuristics 26

3.4.1 Iterative Local Search (ILS) . 27

4 Computational Evaluation 31

4.1 Evaluation Methodology 31

4.2 Reference Methods 33

4.3 Testing PNP 36

4.4 Testing Rubber-band 37

4.5 Evaluating the Metaheuristic . . . 38

4.5.1 Comparing Constructive
Heuristics . 38

4.5.2 Initial ILS Implementation . . 39

4.5.3 Expanding upon ILS 40

4.5.4 Gutin Neighborhood 42

4.6 Final Comparison 44

viii

5 Final remarks 49

5.1 Conclusions 49

5.2 Suggestions for Possible
Improvements 51

A Bibliography 53

B ZIP content 57

ix

Figures

2.1 Examples of problem inputs and
outputs. 8

2.2 Possible neighborhood region
shapes. 9

2.3 Description of neighborhood region
notation. 10

2.4 Visualization of cones for R. . . . 10

3.1 Showcase of the PNP problem. . 15

3.2 Showcase of different intersection
cases . 17

3.3 Tour shortened by replacing edge c
and d by new edges a and b. 25

3.4 Double bridge move
implementation 29

4.1 Maps used for experiments. 32

4.2 Example instances of the jf-jh
map. 33

4.3 Sum initialization time of reference
method per map. 34

4.4 Mean gap/trel graph of reference
method. 35

4.5 Initial solution time and quality
comparison. 38

4.6 Mean gap / trel graph of the
default ILS method 40

4.7 Mean gap / trel graph of the
expanded ILS methods 41

4.8 Varying effectiveness of the
expanded ILS methods depending on
visibility radius d. 43

4.9 Mean gap / trel graph comparing
the default and gutin neighborhood
results. 44

4.10 Comparison between our
implemented metaheuristic and the
reference for fast solutions. 45

4.11 Comparison between our
implemented metaheuristic and the
reference for a wider time scale. . . 46

4.12 Comparison between our
implemented metaheuristic and the
reference for d = 2. 47

x

Tables

4.1 Comparison of the schedules S for
the rubber-band algorithm 37

Algorithms

3.1 Segment-neighborhood intersec-
tion (SNI) 16

3.2 Closest point on edge algorithm
(CPE) 18

3.3 PNP with obstacles 19

3.4 Nearest Neighbor (NN) . . 20

3.5 NN with PNP 21

3.6 Farthest Insertion algorithm 22

3.7 Rubberband 23

3.8 Gutin neighborhood 26

3.9 Variable neighborhood descent
(VND) 27

3.10 Iterative local search (ILS) 28

3.11 Double Bridge 29

xi

Chapter 1

Preliminaries

1.1 Introduction

Imagine a mobile robot tasked to collect sensory data, such as images of the
environment or specific regions within it. Suppose the environment map is
available to the robot, which may be the case when the robot operates in the
environment regularly or is provided with some explicit information like a floor
plan. In that case, we talk about the mobile robot inspection (MRI) task, as
opposed to the exploration task, where the map is unknown. The established
approach for addressing the MRI task from a planning perspective is through the
hierarchical planning paradigm. This planning hierarchy comprises the controller,
motion planner, and task planner arranged from bottom to top [1, 2]. On the
lowest level is the controller, which controls the actuators to move the robot
toward its goal. Above that is the motion planner, sometimes further separated
into local and global components, which plan a collision-free route between two
points and set the goal for the controller. The local planner operates at a higher
resolution and refines the path generated by the global planner. Ultimately, the
task planner is responsible for achieving the task goal, monitoring its progression,
and ensuring overall efficiency. When efficiency is a primary concern, the task
planner may incorporate an optimization module that operates on a simplified
environment model to achieve global task efficiency.

In the context of the MRI, the optimization module typically takes the form of
a routing problem solver. In its simplest form, when the MRI’s goal is to inspect
a predefined set of locations, the routing problem aligns with the well-known
traveling salesman problem (TSP) [3] on the all-pairs shortest collision-free paths

1

1. Preliminaries ..
graph of the set of locations. In a more complicated scenario, continuous regions of
interest may be defined within the environment, or these regions may encompass
the entire environment itself. When the environment model is a polygon with
holes, and the sensory model is omnidirectional visibility with a limited range d,
we obtain the d-visibility watchman route problem (d-WRP) [4].

Both WRP and d-WRP have been shown to be NP-hard for polygons with
holes [5]. This leads to heuristic approaches being used in practice. Such as in Li et
al. (2008) [6], or Danner and Kavraki (2000) [7] where an approximate algorithm
is used to generate a solution in a viable time. In the recent work of Mikula
and Kulich (2022) [8], the environment is first entirely covered in regions such
that all points in a region are d-visible from one to another. Then, the proposed
approach finds a watchman route touching a point from each region to guarantee
that the whole environment is visible. Such a route is found on the discretized
(sampled) regions and then improved in the continuous domain. Finding the
shortest tour that touches at least one point from each of the given continuous
regions (neighborhoods) is the traveling salesman problem with neighborhoods
(TSPN) [9].

Mikula and Kulich (2022) [8] propose an approach where a solution to the
TSPN is found in a discretization of the neighborhoods. In their approach, all
neighborhoods of the TSPN are sampled, and then the shortest path touching at
least one sample from each neighborhood has to be found. The problem of finding
the shortest closed tour that visits at least one node from each predefined cluster
of nodes is called the generalized traveling salesman problem (GTSP) [10] (see
Sec. 1.2). Finding a solution on the discretized GTSP also solves the TSPN. In
their work, Mikula and Kulich show that this discretization step can take up to
80% of the solution’s computational time for instances with many regions. This
thesis aims to avoid the discretization scheme involving the construction and
solution of a GTSP instance and solve the TSPN directly, thus saving time in the
initialization and having more time to optimize the solution.

The contributions of this thesis are as follows: i) The implementation of an
algorithm to optimize the path length between a point-neighborhood-point (PNP)
triple for neighborhoods with edges as line segments or concentric circular arches
and the expansion of this algorithm to an environment with polygonal obstacles.
Such algorithms have been shown to be beneficial for local path improvement
algorithms and, before this thesis, were either for purely polygonal [11] or circular
neighborhoods [12]. ii) Utilizing the PNP algorithm in a rubber-band algorithm
(RB) [13] for the touring neighborhood problem (TNP) [14] which is a variant on
the TSPN with a fixed order of neighborhoods. The new implementation of the
RB algorithm is used to improve the solutions found by our proposed method and
the reference method from [8], which previously used a RB that approximated
neighborhoods with polygons. iii) Implementation of five parametrizations of

2

......................................1.2. State of the Art

the reference method from [8] and evaluation of their solution quality over an
extended time scale. iv) Implementation of the iterative local search (ILS) [15]
metaheuristic for finding a solution directly on the TSPN instance, thus avoiding
the discretization step from the conversion to GTSP. Comparing the solutions of
our ILS implementation to the results from the improved reference method shows
that we can generate better solutions in a limited time window. However, the
reference provides better solutions over a larger time scale.

In Chapt. 2 our version of the TSPN problem is introduced, and the method
from [8] upon which we want to improve is briefly described. Then, Chapt 3
describes our solution approach and the implemented algorithms. In Chapt. 4 we
evaluate the reference method and our implemented algorithms and compare the
results. The last Chapt. 5 contains the final remarks.

1.2 State of the Art

Close-Enough TSP (CETSP). The MRI task where specific positions are to
be inspected is described as the well-known TSPN problem; if instead, it would be
enough to get within a given distance of the inspection points, it can be described
as the CETSP [16]. Faigl (2018) [17] uses an unsupervised learning process where
positions in the environment are represented by artificial neural network nodes.

Watchman route problem (WRP). The watchman route problem first
studied by Chin and Ntafos (1988) [18], considers the problem of finding the
shortest route from which all points in a given space W are visible. The space
W is generally a polygon with holes; see the example in Fig. 2.1a. A point p
from W is considered visible from the path if a straight line from any point on q
the path can be fully within W i.e. pq ⊂ W. One approach to the WRP is the
decoupling approach presented by Packer (2008) [19] on the multiple watchman
routes problem (MWRP). In this approach, a set of static guards is computed,
and routes are built by splitting the minimum spanning tree. The resulting routes
are optimized by substituting, removing, and adding vertices.

d-watchman route problem (d-WRP. The d-WRP [4] considers the same
problem of "seeing" the entire environment as WRP with the added constraint
that the visibility range d is limited. This would be the MRI task of inspecting
the whole environment with a robot with an omnidirectional sensor with a limited
range. A point p from the environment W is considered d-visible from a point q of
the path if it is true that pq ⊂ W ∧ |pq| ≤ d. Danner and Kavraki (2000) [7] use
a decoupling approach, where first guards with limited visibility are positioned

3

1. Preliminaries ..
in a way that the full environment is visible. Then, the shortest path visiting all
guards is found.

d-WRP unsupervised learning. Faigl (2011) [20] deals with the d-WRP)
using an artificial neural network called self-organizing map(SOM). The watchman
route is represented as a ring of connected neuron weights evolving in W. The
approach starts with an initial tour from which only a part of the environment is
seen. Then, the tour is iteratively expanded until the whole W is seen by drawing
the neuron weights toward yet unseen parts of W.

d-WRP towards a continuous solution. Mikula and Kulich (2022) [8]
propose a novel heuristic framework, for the d-WRP, i.e., limited visibility is
considered. In the proposed framework, the environment W is entirely covered by
regions R1 with such properties that a watchman route only needs to visit any
point in each region to guarantee full visibility coverage of W. This is a heuristic
way of finding a solution to WRP using TSPN [9], where R are the neighborhoods
in TSPN. Note that as this is a heuristic, an optimal solution is not guaranteed.
In the next step, the neighborhood regions are discretized by sampling the free
(not shared with W) edges of each region, and together with the shortest path
distance between all samples, a weighted graph is constructed. Then, the goal is
to find a circuit (i.e., closed walk) that minimizes the distance while visiting a
sample from each region, also known as GTSP [10]. The GTSP solution is then
found using GLNS: an effective large neighborhood search heuristic by Smith and
Imeson (2017) [21].

It can be generally expected that a solution found only on discrete samples
would be worse than a solution found on continuous neighborhoods; therefore,
the resulting discrete sample tour is locally optimized by a modified version of
the Pan et al. [13] rubber-band algorithm (RB). The RB algorithm iterates over
the path and minimizes the path length by pulling the path closer together. This
"pulling together" is done by iterating through each sequential triplet of path
points and adjusting the position of the middle one such that the distance to
its neighboring points is minimized. The algorithm is limited to positioning the
point in its respective neighborhood. This is done to maintain the constraint from
TSPN that each neighborhood needs to be visited . Which is the touring polygon
problem (TPP) [14] of finding the shortest tour which visits a predefined sequence
polygons.

The proposed approach was experimentally evaluated and compared to state-
of-the-art SOM-based [22] and DS+LKH methods [7]. An improvement of at
least 10% for cases with d > 3 has been shown, although this came at the cost of

1The covering regions generated by the same algorithm are used in our proposed solution. A
more detailed explanation follows in Chapt. 2.

4

......................................1.2. State of the Art

computation time needed to find the solution.

As previously mentioned, the disadvantage of the method is the higher com-
putational time required compared to the SOM-based and DS+LKH methods.
The significant bottleneck is the shortest-paths computation by the Dijkstra’s
algorithm [23], which can take up to 88% A low visibility radius leads to a high
number of neighborhood regions and samples (graph nodes) to consider, which
results in poor scalability of the framework.

As an example, on the jf-pb2 map, for visibility radiuses 3,2,1, the proposed
best parametrization took up to 176.9 s, 475.0 s, and 4425.1 s, respectively. Even
the trade-off parametrization meant to improve the computational time needed
7.0 s, 29.6 s, 561.5 s, which is somewhat comparable to the 4.1 s, 22.3 s, and 889.3
s needed by the SOM [22] based method. The DS+LKH [7] method required only
0.5, 2.1, and 24.6 s, on the same instance, showcasing the possibility for good
computation speed despite a high neighborhood count.

Constructive heuristics, improving heuristics and metaheuristics.
Constructive and improving heuristics are used as part of our proposed solution
(see Chapt. 3). Constructive and improving heuristics are powerful tools employed
in optimization problems to navigate solution spaces efficiently while allowing
a viable solution to be returned after any step. In path planning problems,
constructive heuristics [24] serve to construct an initial path through the solution
space. These heuristics leverage problem-specific information to explore feasible
solutions efficiently. Improving heuristics [24] enhance solutions by iteratively
modifying and evaluating them to improve their quality.

In mathematical terms, the improvement heuristics (operators) are functions
which, based on their parameters p from the parameter space P , map from a valid
solution space S (improving operators) to a transformed solution space S:

op : S ×P 7→ S. (1.1)

The space of all solutions that can be reached by applying an operator on a given
solution s is described as:

neighop(s) = {s′ ∈ S | s′ = op(s, p) ∀p ∈ P}. (1.2)

A metaheristic is a combines local improvement heuristics, high level strategies
and a method for escaping local minima [24] to find an optimal solution by
intelligently exploring the solution space while balancing between exploration and
exploitation to find the best possible solution within a reasonable computational
time budget. The metaheuristic chosen for our approach is the iterated local

5

1. Preliminaries ..
search (ILS) [15]. The ILS algorithm works by iteratively applying a local search
algorithm to optimize a solution while applying a perturbation operator to allow
it to escape from local minima.

6

Chapter 2

Problem Description

This thesis builds upon Mikula and Kulich [8] where the d-WRP is heuristically
solved by a two-stage process wherein a set of regions R covering the entire
environment W is generated, and then the generated set serves as (input) neigh-
borhoods for a TSPN problem. The neighborhood regions R are generated with
the use of a dual sampling algorithm [25], computing the (d/2)-visibility regions
[26], and then finding the maximally-covering convex subsets of these regions.
These subsets are inspired by the maximum area convex subsets of star-shaped
polygons studied in [27]. With this approach, a reasonably small number of regions
covering a sufficient (specified by the user) portion of the environment (W) is
generated. The generated regions can overlap and have the property that visiting
any point from the region guarantees the whole region is seen. For further details,
see [8].

In contrast to [8], this thesis exclusively focuses on the second stage of the
solution process. As such, we solve a TSPN with the environment W and a set of
neighborhood regions R as inputs.

This chapter contains a description of the problem instance and introduces
notation used in later chapters. Section 2.1 describes what constitutes a TSPN
problem instance. Section 2.1.1 further describes the structure of the neighborhood
regions R. Section 2.2 describes the structure of the solution and the criterion
to be optimized. The last Section 2.3 briefly describes the approach used by [8]
upon which we aim to improve.

7

2. Problem Description.....................................
2.1 Problem Inputs

Each TSPN problem instance is described by a map and visibility radius d. We
consider the map a 2D environment, represented as a polygon with holes W,
delimiting the space that can be seen and traveled through. See Fig. 2.1a where
W is white and obstacles are black. The second input is a set of neighborhood
regions R = {R0,R1, ...,RM−1}, created based on the visibility radius (see Fig.
2.1b).

(a) : W (b) : Coverage by R (c) : Output path X

Figure 2.1: Examples of problem inputs and outputs. (Map = potholes, d = 15)

2.1.1 Neighborhood Regions

The union of the neighborhood region set R covers the whole environment i.e.⋃M−1
i=0 Ri =W . Individual neighborhood regions are created so that the whole R

is d-visible from any point within itself. Two points are d-visible if a straight line
of length≤ d from the point to point can be fully withinW . Due to this constraint,
the regions take the form of so-called polygon-circles. A polygon-circle is a polygon
with some of its edges replaced by concentric circular arches, depending on where it
was limited by the environment and where by the visibility radius. A pure polygon
or a circle can be created in some special cases. The possible shapes can be seen in
Fig. 2.2. This is in contrast to previous approaches, where either only polygonal
[11], or circular [12] neighborhood regions were considered. This polygon-circles
shape more closely matches the (convex) visible region that could be expected
from an omnidirectional sensor with limited visibility in an environment with
obstacles, thus reducing the level of abstraction for practical applications.

A neighborhood region R, as shown in Fig. 2.3, is created from a seed point
s(R), which is the center point for circle regions. The radius r(R) gives the
maximal distance any point from R can have from s(R). The radius is half
the visibility radius (r(R) = d/2) to satisfy the d-visibility requirement. In the

8

.. 2.2. Objective

(a) : Circle (b) : Polygon-circle (c) : Polygon

Figure 2.2: Possible neighborhood region shapes.

general case, R is described by a list of N vertices V (R) = ⟨v0, v1, ..., vN−1⟩
defining vertex positions and the connected edges E(R) = ⟨e0, e1, ..., eN−1⟩ in the
clockwise direction. Edges can be of different types:

. t(e) = o; obstacle edge: created directly by a neighboring obstacle.. t(e) = f ; free edge: line segment which does not neighbor an obstacle.. t(e) = a; arc edge: created due to visibility constraint.

Both obstacle and free edges are line segments defined by two consecutive vertices
ei(vi, vi+1). Arc edges are parts of the visibility circle given by s(R) and r(R). In
some later algorithms (PNP), the concept of a cone will be used. In the context of
R, a cone means a conic area whose vertex is s(R) and spans the region between
two consecutive neighborhood vertices. In total each R has N cones denoted as
C(R) = ⟨c0, c1, ..., cN−1⟩. Cones are indexed with the same i as the clockwise first
vertex defining the edge the area contains ei ∈ ci. In Fig. 2.4, points are colorized
based on the cone they fall within. As such, the vertex point, the edge it defines,
and the cone containing the edge are all indexed the same: vi ∈ ei ⊂ ci.

2.2 Objective

The solution to the TSPN is the shortest collision-free closed tour touching each
R in at least one point. Collision-free, meaning no point of the tour intersects an
obstacle (X ⊂ W). An example tour is shown in Fig. 4.1f drawn in red.

The tour X can also be described by a sequence of points, denoted as X =
⟨x0, x1, ..., xM−1⟩, with M being the number of points in the tour, which is the same

9

2. Problem Description.....................................

Figure 2.3: Description of neighborhood region notation.

Figure 2.4: Visualization of cones for R.

as the number of neighborhood regions in R. The indexation xM equals point x0
to keep the cyclical structure. The description by points means the tour combines
the shortest collision-free paths between points xi and xi+1 for 0 ≤ i ≤ M − 1.
Let li be the length of the shortest collision-free path between points xi and xi+1.
Then, we optimize the length of the whole tour LT = ∑M−1

i=0 li. The goal is then
to find a sequence of points X such that ∀R ∈ R, ∃xi ∈ X : xi ∈ R, and LX is
minimized. This is done in the implementation by creating an initial solution,
then iteratively improving the ordering of R and positioning of xi until a stopping
condition is met.

10

............................... 2.3. Reference Method Description

2.3 Reference Method Description

Our method aims to improve upon the step where the reference method from [8]
solves the TSPN problem on the neighborhood regions generated as described in
Chpt. 2. Therefore, we will take a moment to explain their approach; for a full
explanation see Alg 2. in [8].

The reference method works by sampling the input neighborhood regions and
finding a solution to the generalized traveling salesman problem GTSP [10], which
also solves the TSPN. The sampling is done on all neighborhood edges that do
not neighbor an environmental obstacle (see Fig. 2.3), according to the maximal
sample distance parameter dsamp. Free edges are sampled equidistantly so that
the distance (along the edge) between two points is dsamp at maximum. Then,
the samples (grouped by neighborhood region) serve as an instance of the GTSP
problem. The GTSP instance is represented as a distance matrix D storing the
shortest path length between all sample pairs. The distance matrix is filled by
constructing a visbility graph [28] over all samples and reflex environment points
and using Dijkstra’s algorithm [23] to find the shortest path between samples. For
solving the GTSP, an effective large neighborhood search heuristic GLNS [21] is
used. The GLNS algorithm is stochastic; therefore, multiple iterations are done
when we evaluate the method in Sec. 4.2 to create a statistic.

The use of Dijkstra’s algorithm for constructing the distance matrix constitutes
a substantial portion of the computational time required by the reference method.
Our approach aims to bypass the entire process of generating a GTSP instance
from the TSPN by attempting to solve the TSPN directly, thereby eliminating
the need for the time-consuming conversion step.

11

12

Chapter 3

Solution Approach

Our solution approach considers several constructive and improving heuristics,
which are then combined into metaheuristics. The first chapter concerns the
point neighborhood point (PNP) algorithm, which is used to find the point on a
neighborhood region, which minimizes the length to its neighboring points. While
PNP technically falls under the improvement heuristics category, it is explained in
the first Sec. 3.1 as it is used to enhance constructive heuristics. The constructive
heuristics are described in Sec. 3.2 and are separated into nearest neighbor and
insertion based methods. Improvement heuristics are covered by Sec. 3.3. As part
of the improving heuristics, the variable neighborhood descent1 (VND) [29] is also
introduced. Sec. 3.4 covers the combination of the constructive and improving
heuristics into the iterated local search (ILS) [15] metaheuristic. Furthermore,
it describes the double bridge (DB) perturbation operator used to enhance the
exploration of the solution space by escaping local optima.

1The neighborhood used in VND differs from the neighborhood region structure used in our
problem definition. The neighborhood in VND denotes the solution neighborhood, with regards
to the operator Nop (see Chpt. 1.2).

13

3. Solution Approach
3.1 Point Neighborhood Point (PNP)

3.1.1 PNP Problem

In order to find a high-quality TSPN path, a way to locally optimize path segments
is needed. For our particular case, this means finding the optimal position of any
point on a tour, with regard to the distance to its neighboring points a,b, and any
constraints placed upon it. The constraint is the need of each point of the tour to
belong to a neighborhood (xi ∈ Ri, 0 ≤ i ≤M − 1) established in section 2.2. As
such, PNP is the problem of finding a point pmin ∈ R such that the length of the
shortest paths l(a, pmin) + l(pmin, b) (further just l(a, pmin, b)) to two given points
a and b, is minimized (see Fig. 3.1). Then, it is possible to arrive at a high-quality
path by iteratively optimizing over path segments.

3.1.2 PNP Algorithm

The PNP algorithm must find point pmin given a, b and R. The positions a, b, and
R can be separated into the two cases shown in Fig. 3.1. In the first case (blue),
the line segment intersects the neighborhood between two points ab; therefore,
the closest point lies anywhere at the intersection segment ab of the line segment
and neighborhood. In the second case (red), the region and ab do not intersect;
therefore, the closest point lies on the boundary of the outer neighborhood region.
The respective cases are handled by the SNI and CPE algorithms we designed.
The PNP algorithm uses the segment neighborhood intersection (SNI) algorithm
to try to find an intersection segment; if no intersection is found, it returns the
closest point found by the closest point on edge (CPE) algorithm. The following
subsections are detailed descriptions of the SNI and CPE algorithms.

Line segment neighborhood intersection (SNI)

The proposed algorithm 3.1 returns the intersection between the neighborhood
R and a line segment defined by two points a and b or reports it does not exist.
Points a, b can be placed within or outside R. As R is convex, the intersection, if it
exists is a single line segment (a′b′) defined by two intersection points a′, b′ whose
set is denoted as P={a′, b′}. If it exists, the intersection segment is described as

14

.............................. 3.1. Point Neighborhood Point (PNP)

Figure 3.1: Showcase of the PNP problem. (Darker edges are obstructed)

a′b′ = R ∩ ab. In special cases, a single-point intersection with an arc edge or
vertex is possible.

In simple terms, the algorithm works by iteratively going through the cones of
R, checking if an intersection occurred within, and finding the specific points if
it did. This approach is made more efficient by using additional rules to dismiss
some instances quickly. For example, if the line segment a, b does not intersect the
visibility circle, no intersection with R can occur. Alternatively, if R is circular,
the line circle algorithm from [12] is used. When both points a, b ∈ R we know
that P = {a, b}.

The detailed description of Alg. 3.2 is as follows. In the beginning, the algorithm
checks if an intersection is possible (lines 1- 2) by checking if the point on the line
segment closest to s(R) is within r(R). Otherwise, an intersection is impossible,
and P = ∅. Following this, a line circle intersection algorithm is used to find
the intersection points Pc between the line segment and neighborhood visibility
circle (line 3); these are relevant for the arc edges of the neighborhood. If the
neighborhood consists solely of arc edges, the found points are equivalent to the
neighborhood intersection points (line 4) and P = Pc. The Orient (orientation
predicate) [30] 2 function returns the position of the third point relative to the
line segment defined by its first two arguments. On line 5 points a, b are swapped
such that s(R) always lies to the left of the oriented line segment ab; this is a
necessary assumption for finding intersections in the main cycle of the algorithm.
If the line segment points a, b lie in the neighborhood, they are also intersection
endpoints and, as such, are added to P (6). The line_inside variable is set based
on point a in preparation for the main algorithm loop. This variable is used to

2The orientation predicate is often used when numerical robustness is required. In our
algorithms, an adaptive robust implementation [30], optimized for speed and robustness, is used.

15

3. Solution Approach
Algorithm 3.1: Segment-neighborhood intersection (SNI)

Input: R . . . neighborhood, a, b . . . points defining line segment
Output: P . . . intersection points

1 dabs ← shortest distance of ab to neighborhood seed
2 if dabs > r(R) then return ∅
3 Pc ← intersection points between line a, b and circle(s(R), r(R))
4 if R is circle then return Pc

5 if Orient(a, b, s(R)) = right then Swap a and b

6 if a or b ∈ R then add them to P

7 line_inside← bool[a ∈ R]a
8 Find cone ci such that a ∈ ci

9 while b /∈ ci−1 do
10 if t(ei) = a and ∃pc ∈ Pc : pc ∈ ci then add pc to P

11 intersection ← false
12 switch Orient(a, b, vi) do
13 case Right do intersection ← not line_inside

14 case Left do intersection← line_inside

15 case Collinear do add vi to P ; line_inside← [(vi + ∆bdir) ∈ R]b

16 if intersection then
17 line_inside← not line_inside

18 if t(ei) ̸= a then
19 add intersection point between ab and ei to P

20 i← (i + 1)modN

21 return P

aIverson bracket
bSee fig. 3.2

track if the line is inside (true) or outside (false) R in the current cone ci (line
7); this is then used to find where the line intersects. Next, the current cone is
initialized as the one containing point a (line 8).

The lines from 9 to 20 constitute the main loop of the algorithm, which, starting
from the cone containing point a iterates through subsequent cones detecting
intersections until point b is found. At the start of each cycle (line 10), if the
edge in the current cone is an arc (t(ei) = a), any points from Pc lying within are
added, as on this edge the neighborhood equals the visibility circle (see points
pc1, pc2 in Fig. 3.2). Next, intersections on the current segment are detected by
checking the relative position of the current vertex to the ab segment. With the
direction of ab having been fixed beforehand, it is given that the line is inside if
the vertex is to the right and outside if to the left. This information, combined

16

.............................. 3.1. Point Neighborhood Point (PNP)

Figure 3.2: Showcase of different intersection cases

with the tracked current position of the line (line_inside), is used to detect when
an intersection occurred (lines 12-15). In the edge case, ab intersects directly on
the vertex, the vertex is added to P . As shown in Fig. 3.2 there are differing
ways a line segment can intersect in a vertex. In such a case, the line_inside
variable has to be determined based on a point offset in the direction of point
b (line 15). When an intersection has been found on the current segment, the
line_inside variable is inverted. As arc intersections have already been included,
only line edge intersections need to be added (lines 18, 19). A line-line intersection
algorithm is then used to find the intersection point.

Closest Point on Edge (CPE)

The second part of the PNP algorithm is Alg. 3.2, which is used when no
intersection segment was found. The algorithm takes the neighborhood structure
R and two points a, b and returns the point on the neighborhood edge, minimizing
the distance to a and b. The CPE algorithm works by finding the closest edge. If
the edge is an arc, the closest point is found using the point circle point (PCP)
algorithm from Fanta (2021) [12]. As the name suggests, the PCP algorithm
serves to find the point on a circular region, which minimizes the distance to two
chosen points; the solution is derived from geometry. The code implemented for
the thesis [12] is used here, with only minor modifications to fit our framework.
The complete solution will not be described here, as it is explained in the original

17

3. Solution Approach
Algorithm 3.2: Closest point on edge algorithm (CPE)

Input: R . . . neighborhood, a, b . . . points
Output: P . . . closest point on neighborhood edge

1 if R is circle then return closest point on circle
2 vc ← arg min

vi

(l(a, vi, b)); ∀vi ∈ V

3 po1 ← point slightly offset from vc in direction of vc−1
4 po2 ← point slightly offset from vc in direction of vc+1
5 dc ← l(a, vc, b), do1 ← l(a, vo1, b), do2 ← l(a, vo2, b)
6 if (dc ≤ do1 and dc ≤ do2) then return vc

7 else
8 if (do1 ≤ do2) then eclosest ← ec−1
9 else eclosest ← ec

10 if t(eclosest) ̸= a then return closest point on line
11 else return closest point on circle

work. If the edge is a line segment, the point segment point (PSP) is used. The
PSP algorithm is derived in closed form from geometry and implemented using
Shewchuck’s adaptive robust geometry predicates [31].

If the neighborhood is entirely circular, the PCP algorithm is used (line 1).
Otherwise, the vertex vc closest to points a and b is found (line 2), and two close
points on the neighboring edges are found. The goal is to approximate a derivative
and find the trend of each edge, so points slightly offset from vc are found on the
neighboring edges, and their distances to a, b are calculated (lines 3 - 5). If both
edge points are farther than vc, the vertex is returned as the closest point (line
6); otherwise, the edge with the closer point is selected as the closest edge. Next,
depending on the type of edge (arc or line), either the PNP algorithm is used, or
the closest point on a line is calculated (lines 10 - 11).

3.1.3 PNP with Obstacles

Until now, we assumed there was a direct line of sight from points a, b to R.
However, as shown previously, individual maps contain obstacles that need to be
considered when finding the shortest path. Adapting the PNP algorithm to an
environment with obstacles (see alg 3.3) is to find a path from the original points
to the closest vertex in the neighborhood. Then, the points from which a direct
line of sight to R exists are found, and the PNP algorithm is used with those.

18

...................................3.2. Constructive Heuristics

Algorithm 3.3: PNP with obstacles
Input: R . . . neighborhood, a, b . . . points
Output: P . . . closest point on R

1 vc ← arg min
vi

(l(a, vi, b)); ∀vi ∈ V

2 Pa ← shortest collision-free path from a to vc

3 Pb ← shortest collision-free path from b to vc

4 c← last point before vc on Pa

5 d← last point before vc on Pb

6 return PNP(c,R, d)

3.2 Constructive Heuristics

The first step for many optimization algorithms is to generate an initial solution
that can be further improved. In our case, this means finding an initial tour and
a corresponding sequence of neighborhood regions. The more important part is to
have the correct order of neighborhoods, as individual points have less influence
on the overall path length than the neighborhood sequence. Furthermore, the
positioning of points can easily be optimized using the rubber-band algorithm. The
following subsections cover the nearest neighbor and insertion based algorithms
which have been used for generating initial tours.

3.2.1 Nearest Neighbor (NN)-based Methods

Nearest Neighbor (NN). One of the tested algorithms is an implementation
of the nearest neighbor [32] algorithm (see Alg. 3.4). The algorithm input is
a list of neighborhood seeds s(R), which here function as an approximation of
R. The quality of the approximation is then dependent on the visibility radius
d. Starting from a randomly chosen seed, the algorithm repeatedly selects the
nearest unvisited seed. It then adds it to the tour, forming a solution by iteratively
connecting seeds until all have been visited. This resulting tour is often close to
but not guaranteed to be optimal. Another problem is that the space occupied by
R is not considered, leading to the resulting path quality decreasing with a rising
value of d.

Nearest Neighbor optimizing the second to last point (NN-SL). This
is a variation on the nearest neighbor algorithm, which aims to improve upon it
using PNP. The idea is to use PNP to find the point in each neighboring region,

19

3. Solution Approach
Algorithm 3.4: Nearest Neighbor (NN)

Input: Set of M neighborhood regions N . Initial region R1 ∈N .
Output: Sequence of neighborhood regions R = ⟨Ri | 1 ≤ i ≤M ⟩.
Tour as a sequence of points X = ⟨xi |xi ∈ Ri ⟩.

1 R← ⟨R1 ⟩; X ← ⟨ s(R1) ⟩; N ←N \ {R1}
2 for i← 2, . . . , n do
3 Ri ← arg min

R ∈ N
l(s(Ri−1), s(R))

4 Append Ri to R. Append s(Ri) to X . N ←N \ {Ri}

5 return R, X

which is closest to the current endpoint. Then, the closest point is added to the
tour. This way, the whole shape of R is considered.

The Alg. 3.5 takes a set of n neighborhood regions N as an input. The
parameter k sets the number of tested regions before adding a point. Ideally, all
regions not in the tour would be tested, but applying the PNP algorithm is not
computationally negligible. The variable k represents the compromise between
solution quality and the algorithm’s speed. The algorithm’s output is a path
represented by a sequence of points X and a corresponding sequence of R, such
that xi ∈ Ri. The loop at line 4 loops through the k closest regions based on the
distance of their seed s(N) to the last point on the tour. Then, the closest point
on that region is found (line 5). Following that (line 7), the second to last point is
optimized based on the position of qi. In the lines 8 and 9, the length between
the last points of the tour is measured. If the found length is smaller than the
current minimum, the current closest point xi is updated (lines 10 to 12). In the
end, the second to last point is updated (line 13), and the closest found point
and corresponding neighborhood are added to the tour (line 14). Throughout the
iterations, unvisited neighborhoods are tracked in N and are moved to R once
visited. Based on its optimization of the second to last point position, it is called
the PNP-SL algorithm.

Nearest Neighbor using PNP (NN-PN). A simplified version of the
previous algorithm that does not deal with optimizing points already in the tour.
In essence, the only difference to the NN algorithm is the use of PNP (on the k
closest regions) to find the closest point, which is then added to the tour. The
algorithm is the same as 3.5, except without lines 7,12 and 13. Then on line 8
only the length l(xi−1, qi) is measured.

20

...................................3.2. Constructive Heuristics

Algorithm 3.5: NN with PNP
Input: Set of M neighborhood regions N . Initial region R1 ∈N .
Parameters : How many nearest regions to check k.
Output: Sequence of neighborhood regions R = ⟨Ri | 1 ≤ i ≤M ⟩.
Tour as a sequence of points X = ⟨xi |xi ∈ Ri ⟩.

1 R← ⟨R1 ⟩; X ← ⟨ s(R1) ⟩; N ←N \ {R1}
2 for i← 2, . . . , n do
3 lmin ←∞
4 for k nearest N ∈N based on l(xi−1, s(N)) do
5 qi ← PNP(xi−1,N , xi−1)
6 if i > 2 then
7 qi−1 ← PNP(xi−2,Ri−1, qi)
8 l← l(xi−2, qi−1, qi)
9 else l← l(xi−1, qi)

10 if l < lmin then
11 xi ← qi; Ri ← N ; lmin ← l

12 if i > 2 then x⋆
i−1 ← qi−1

13 if i > 2 then xi−1 ← x⋆
i−1

14 Append Ri to R; Append xi to X ; N ←N \ {Ri}

15 return R, X

3.2.2 Insertion-based Methods

Another family of algorithms tested were insertion-based methods [32]. In [32],
multiple insertion methods are compared, including Farthest Insertion, Nearest
Insertion, Arbitrary Insertion. From these, the Farthest Insertion (FI) and Random
(Arbitrary) Insertion (RI) algorithms were chosen, as the FI algorithm was shown
to give generally better results than the nearest insertion algorithm, and the RI
algorithm gave results faster, allowing for more time for subsequent optimizations.

Farthest Insertion (FI). The FI algorithm works by maintaining a closed tour,
into which points are iteratively added, such that the insertion’s cost (increase
in length) is minimized. For the FI algorithm, the s(R) are added sequentially,
starting from the farthest ones from the s(R) already in the tour. The Alg. 3.6
has inputs and outputs equivalent to the other constructive heuristics. First (lines
1, 2), the tour is initialized as the two neighborhood region seeds farthest from
one another. Then, new points and regions are added until all regions are part of
the tour (N = ∅). This is done by selecting the region farthest from all regions in
the tour Rf (line 4) and finding the insertion position that minimizes the increase
in length (line 5).

21

3. Solution Approach
Algorithm 3.6: Farthest Insertion algorithm
Input: Set of M neighborhood regions N
Output: Sequence of neighborhood regions R = ⟨Ri | 1 ≤ i ≤M ⟩.
Tour as a sequence of points X = ⟨xi |xi ∈ Ri ⟩.

1 Rf1,Rf2 ← arg max
Ri,Rj∈N

l(s(Ri), s(Rj))

2 R← ⟨Rf1,Rf2⟩; X ← ⟨s(Rf1), s(Rf2)⟩; N ←N \ {Rf1,Rf2};
3 while N ̸= ∅ do
4 Rf ← arg max

Ri∈N
l(s(Ri), s(Rj)), for ∀Rj ∈R

5 xinsert ← arg min
xi∈X

l(xi, s(Rf), xi+1)− l(xi, xi+1)

6 R, X ← insert Rf , s(Rf) at position insert + 1; N ←N \ {Rf} ;
7 return R, X

Random (Arbitrary) Insertion (RI). The RI algorithm differs from the
FI algorithm only in how the insertion points are selected. The difference in Alg.
3.6 is only in line 4, where it is chosen randomly instead of selecting the farthest
R. As shown in [33], this generally leads to worse results, but the algorithm was
included to have a comparison to the FI algorithm.

FI-PNP. An implementation using the PNP algorithm was also tested because
the FI and RI algorithms only approximate the neighborhood regions by their
seeds, and this approximation declines in quality with the rising visibility radius.
The implementation has the same initialization and selection of neighborhoods as
FI (Alg. 3.6) but differs in the way insertion points are added. On line 5 instead
of comparing the length to s(R) it is compared to PNP(xi, s(Rf), xi+1), i.e. the
point from Rf closest to xi, xi+1. Then, the closest such point is added to X .
This way, the whole shape of R is considered instead of just the approximation in
the form of s(R).

While later experiments showed that, on average, the FI-PNP gave the best
results from the implemented constructive heuristics, they also showed that the
repeated PNP calls (∑M−3

i=1 i) significantly slowed down the algorithm. This could
possibly be alleviated by implementing the k parameter similarly to how it was
done in NN-PN. However, no such tests were made, as there was no time for
additional experiments in this part of the thesis.

22

....................................3.3. Improving Heuristics

Algorithm 3.7: Rubberband

Input: Sequence of neighborhood regions R = ⟨Ri | 1 ≤ i ≤ n ⟩.
Initial tour to be optimized as a sequence of points X = ⟨xi |xi ∈ Ri ⟩.
Parameters : Region ID schedule S. Max iterations limit kmax .
Improvement threshold ϵimp
Output: Optimized tour X .

1 lmin ← Length(X)
2 for kmax iterations do
3 for i ∈ S do xi ← PNP(xi−1,Ri, xi+1)
4 if lmin − Length(X) < ϵimp then break
5 lmin ← Length(X)
6 return X

3.3 Improving Heuristics

After an initial solution is obtained from the constructive heuristics, it is then
further refined via improving heuristics. This can be imagined as iterating towards
a local minimum in the solution space. The implemented algorithms are the
rubber-band algorithm (RB) [13], which iteratively applies PNP to shorten the
tour without changing the sequence of neighborhood regions. However, as the
initial neighborhood region sequence is not guaranteed to be optimal, further
algorithms, such as 2-OPT [24], OR-opt [24], and Gutin neighborhood [34], were
also implemented. Furthermore, the variable neighborhood descent (VND) [24]
heuristic was used to combine our improving heuristics to locally search the
solution space for an optimal tour that solves the TSPN problem.

3.3.1 Rubber-band (RB)

The rubber-band algorithm (RB) [13] works by dynamically adjusting a path
to navigate around obstacles in a way that mimics a rubber band’s flexibility,
minimizing its length. Alg. 3.7 takes a fixed sequence of neighborhood regions
R and the tour to be optimized X . The algorithm then uses PNP to iteratively
optimize the position of individual points while respecting the condition that
xi ∈ Ri. The optimization ends when the maximum number of iterations kmax has
been reached or if the length improvement falls below the improvement threshold
ϵimp. The algorithm brings differing degrees of improvement depending on the
schedule S in which individual points are optimized. Three schedules have been
implemented and tested:

23

3. Solution Approach
. Sequential: S = ⟨0, 1, ...,N-1⟩. Permutation: e.g. S = ⟨21, 3, ..., 12⟩.Odd-even: Sodd = ⟨1, 3, ...,N-3,N-1 ⟩, Seven = ⟨2, 4, ...,N-2,N ⟩, first iterate

over all odd points and then over all even points

3.3.2 Other Improvement Operators

This section contains various improvement operators, most of which work on
the principle of changing the order of points in the tour and seeing if the tour
was improved. As most of the algorithms tested required the length of the
shortest tour between point pairs, it was beneficial to precompute the length for
all point pairs and store it in a table. Given a sequence of neighborhood regions
R = ⟨Ri | 1 ≤ i ≤ M ⟩, and tour as a sequence of points X = ⟨xi |xi ∈ Ri ⟩. A
path lengths table is filled with the shortest lengths: l(xi, xj), 1 ≤ i, j ≤ M for
all possible point pairs. Where l(xi, xj) is the length of the shortest collision-free
path from point xi to xj .

The operators can be applied with two differing strategies. This being the first
strategy where the first operation which brings an improvement is applied. And
the best strategy, where first all possible operations are tested, and then the best
is applied.

Neighboring swap. The neighbor swap operator is a cheap operator that
iterates over all points in the tour and checks if the length can be reduced by
swapping the order of two consecutive points. In mathematical notation, points
xi and xi+1 are swapped if:

l(xi−1, xi+1) + l(xi+2, xi)− l(xi−1, xi)− l(xi+1, xi+2) ≤ 0

OR-opt. The OR-opt algorithm [35] tries to improve the tour by shifting a
segment of k consecutive points to another point in the tour. So if the index i
describes the start of the segment, k describes the length of the segment, and the
index j the insertion position, it is possible to represent the resulting change in
length as:

l(xi, xi+k−1)+ l(xi+k, xi−1)+ l(xi, xj−1)− l(xi, xi−1)− l(xi+k−1, xi+k)− l(xj , xj−1)

For 1 ≤ i, j ≤M ; j /∈ ⟨i, ..., i + k⟩.

24

....................................3.3. Improving Heuristics

Figure 3.3: Tour shortened by replacing edge c and d by new edges a and b.

2-OPT. The 2-OPT [36] algorithm checks if the tour can be improved (short-
ened) by swapping pairs of edges. Alternatively, in a sequential tour, this is
equivalent to reversing a segment from the tour. So the segment from point xi+1
to point xj is reversed, if it is true, that:

l(xi, xj) + l(xi+1, xj+1)− l(xi, xi+1)− l(xj , xj+1) ≤ 0

For 1 ≤ i, j ≤M ; i ̸= j.

Cross remove. As an optimal tour cannot cross with itself, the cross remove
operator serves to replace any crossing edge pair with its non-crossing equivalent.
This is based on triangle inequalities as shown in Fig. 3.3, where the crossing
of edges c and d (red) are replaced by new edges a and b (blue). We get the
equations a < c1 + d1 and b < c2 + d2 from the triangle inequality. The sum of
these equations is then a + b < (c1 + c2) + (d1 + d2), showing that the new edges
are shorter than the old crossing ones. In contrast to the 2-OPT operator, which
also removes crossings in its process, the cross remove algorithm directly targets
crossings, removing the need to calculate changes in tour length.

Gutin neighborhood. An adaptation of the Gutin neighborhood [34] for
GTSP as described in [37]. A subset of neighborhood regions is initially chosen
and removed from the sequence in a way that ensures no two adjacent points
are selected (see Alg. 3.8). This results in a set of unassigned neighborhood
regions and the creation of ’holes’ in the tour. The cost (length of the shortest
collision-free path) of inserting any unassigned neighborhood region into any ’hole’
is then calculated based on the formula l(xi−1, xi∗, xi+1). Where xi∗ is the optimal
point for insertion, found via the PNP algorithm as xi∗ = PNP(xi−1,Ri, xi+1).
Then, the problem of assigning neighborhood regions to holes is solved using
the Hungarian algorithm [38], minimizing the cost of the overall insertion. This
optimization process allows for the simultaneous optimization of the neighborhood
region sequence and point position.

25

3. Solution Approach
Algorithm 3.8: Gutin neighborhood

Input: Sequence of neighborhood regions R = ⟨Ri | 1 ≤ i ≤M ⟩.
Tour as a sequence of points X = ⟨xi |xi ∈ Ri ⟩.
Selection probability p

Output: Optimized NR sequence and tour R′, X ′

1 U , H← ∅
2 for Ri ∈R do
3 if Ri−1 /∈ U then with probability p add Ri to U and i to H

4 for all combination of holes h ∈H and regions U ∈ U do
5 Find the optimal insertion point xhU∗ ← PNP(xh−1,U , xh+1)
6 Calculate the insertion cost lhU (xh−1, xhU∗, xh+1)
7 Solve the assignment problem using the Hungarian algorithm
8 Assign optimal points and regions to holes in the tour X ′ and sequence R′.

return X ′, R′

3.3.3 Variable Neighborhood Descent (VND)

The Variable neighborhood descent (VND) [29] algorithm is an iterative optimiza-
tion method employed for solving combinatorial optimization problems. VND
differs from the other improvement operators in this section, as it is not a single
operation applied to the tour but instead a framework for combining other im-
provement operators. While VND combines multiple heuristics, it is not classified
as a metaheuristic because it does not have a way to leave local optima [24]. At
its core, VND (see Alg. 3.9) explores multiple neighborhood structures (improve-
ment operators) in search of an optimal solution. It iteratively evaluates optimal
solutions within different improvement operators, exploiting local improvements
until no further enhancements can be made. This is done by iterating over a given
sequence of improving operators (see line 2) and returning to the beginning of the
sequence if improvements were made. This process is repeated until no operator
can improve the tour anymore.

3.4 Metaheuristics

If individual constructive or improving heuristics are not satisfactory, they can be
combined into metaheuristics. As the improving heuristic only searches the local
solution neighborhood, we combined the VND with a perturbation operator in
the Iterated Local Search (ILS) [15] framework. ILS allows us to search a wider
solution space and avoid being stuck in a local minimum.

26

...................................... 3.4. Metaheuristics

Algorithm 3.9: Variable neighborhood descent (VND)

Input: NR sequence and tour R, X
Sequence of improvement operators S
Output: Optimized NR sequence and tour R, X

1 while tour_improved do
2 for S ∈ S do
3 R, X ′, tour_improved← S(R, X)
4 if tour_improved then break

5 return X , R

3.4.1 Iterative Local Search (ILS)

In order to consistently provide the most effective solution at any given time, we
have chosen to implement the iterated local search (ILS) as the framework for
our metaheuristic, as outlined in Algorithm 3.10 [15]. It operates by iteratively
refining candidate solutions through a cyclical process of local improvement and
perturbation. Initially, a solution is generated, followed by a local search to
enhance its quality. Subsequently, the solution undergoes perturbation to diversify
the search, and local search is applied again to explore the altered solution space.
This iterative refinement cycle continues until a termination criterion is met. In
our implementation the local improvement operator is the VND algorithm 3.9. A
new tour is accepted if the length of the collision free path over all tour points
(l(X)) is decreased. And the process terminates if the last k iteration did not
bring any improvement of the tour length.

A variation on the ILS algorithm, where the perturbation is applied multiple
times in sequence, has also been implemented. As the perturbation operator is
variable, this implementation is more akin to the generalized variable neighborhood
search (GVNS) algorithm [24] than ILS. However, as ILS and GVNS are quite
similar, we keep the name ILS for simplicity.

Perturbation operator / Double Bridge

Initially proposed for the Traveling Salesman Problem, the double bridge (DB)
[24] move aims to enhance the exploration of the solution space by perturbing
solutions through a series of edge replacement operations. The DB perturbation
move is a 4-opt [39] algorithm, where new edges are added in a way that preserves
their original orientation. This move randomly selects four edges, removes them,

27

3. Solution Approach
Algorithm 3.10: Iterative local search (ILS)

Input: Set of neighborhood regions N
Parameters : Constructive heuristic G
Sequence of improvement operators S
Number of successive not improving iterations to terminate k

Output: Optimized NR sequence and tour X ∗, R∗

1 R, X ← G(N)
2 R∗, X ∗ ← VND(S, R, X)
3 while Tour was improved in the last k iterations do
4 R′, X ′ ← Perturbation(R∗, X ∗)
5 R∗′, X ∗′ ← VND(S, R, X)
6 if l(X ∗′) < l(X ∗) then X ∗ ← X ∗′, R∗ ←R∗′

7 return X ∗, R∗

and constructs new bridges between previously unconnected points. This way,
an escape from local optima is facilitated, promoting the discovery of improved
solutions.

The implementation is done through a series of segment reversals. The algorithm
3.11 takes four position indices c1, d1, c3, d3 which indicate the edges, which will
be replaced. This way, the tour is split into four separate segments ABCD. The
DB move is achieved by changing the order of the segments to ADCB; this could
be done either by removing and creating links or by a series of reversals. In our
case, the series of reversals is preferable due to the tour representation we are
working with. The move is done via only three moves; a segment having its order
reversed is indicated via a lover case letter. First, the segment {BC} is reversed
(AcbD), then {cD} is reversed (AcdB), and lastly {cd} leading to the final order
ADCB. A visual representation of the moves can be seen in Fig. 3.4.

In the GVNS-like implementation of the perturbation, the DB move was applied
multiple times in a sequence. The number of applications starts at one and
increases every time the VND algorithm does not improve upon the tour, up to a
maximum of three. In the same way, if an improvement was found, the number
of iterations decreased to a minimum of one. As previously mentioned, this is
technically the GVNS algorithm, but the name ILS was kept within this thesis
due to their similarity.

28

...................................... 3.4. Metaheuristics

Figure 3.4: Double bridge move implementation through a sequence of segment
reversals. [40]

Algorithm 3.11: Double Bridge

Input: Sequence of neighborhood regions R = ⟨Ri | 1 ≤ i ≤M ⟩.
Tour as a sequence of points X = ⟨xi |xi ∈ Ri ⟩.
Bridge indexes c1, d1, c3, d3,
Output: Perturbed NR sequence and tour R′, X ′

1 c2 ← c1 + 1, d2 ← d1 + 1, c4 ← c3 + 1, d4 ← d3 + 1
2 for both R and X do
3 Reverse segment d2 to d3
4 Reverse segment c2 to c4
5 Reverse segment d3 to d4

6 return X ′, R′

29

30

Chapter 4

Computational Evaluation

This chapter evaluates the reference and our heuristics (described in Chapt. 3)
across varying instances. Furthermore, the best from our implementations are
compared to the reference.

4.1 Evaluation Methodology

While we build upon a solution to the d-WRP [4], this thesis exclusively focuses
on the TSPN [9] problem, which is solved as part of the d-WRP in the approach
used in [8]. The input of the d-WRP is an environment (map) W and visibility
radius d. The map is covered by overlapping neighborhood regions R so that
full coverage is achieved; these regions form the TSPN instance solved in this
thesis. The neighborhood regions R are generated with the use of a dual sampling
algorithm [25], computing the (d/2)-visibility regions [26], and then finding the
maximally-covering convex subsets of these regions. So a problem instance for
our TSPN problem is an environment W and a set of neighborhood regions R =
{R0,R1, ...,RM−1}. For a more in-depth description of the problem instances,
see Chapt. 2.

For our experiments, seven maps were available: complex2, jf-jh, jf-pb2, jf-ta2,
potholes, warehouse2, as shown in Fig. 4.1 and empty, which is an environment
without obstacles. Furthermore, a set of neighborhood regions based on the
visibility radii d ∈ {1, 1.5, 2, 3, 5, 10, 15, ∞} were generated using the approach
from [8] for each map. An example of the instances for different values of d is shown

31

4. Computational Evaluation
in Fig. 4.2; here, the increase in the number of neighborhood regions M = |R|
with decreasing values of d can easily be seen. With M being a significant factor
increasing the computation time needed to solve the instance, instances with low
visibility can take substantially longer. To make the timespan of our experiments
feasible, instances with a visibility radius of one (d = 1) were omitted in our
experiments. For some time-demanding experiments, other low-visibility instances
were omitted; in such a case, it will be mentioned in the experiment description.
However, even with these reductions, experiments were always done on a minimum
of 30 instances.

(a) : potholes (b) : warehouse2 (c) : complex2

(d) : jf-jh (e) : jf-pb2 (f) : jf-ta2

Figure 4.1: Maps used for experiments.

The resulting path length LX and computation time t vary significantly between
individual instances, as we require to compare results between all instances, LX

and t are relativized with regard to the instances. For this, they are converted to
relative values as: percentage best-known solution gap and the percentage relative
runtime trel respectively:

gap(L) = L− Lbest

Lbest
× 100%, (4.1)

trel(t) = t− tmin

tmax − tmin
× 100, % (4.2)

32

.................................... 4.2. Reference Methods

(a) : d = inf, M = 68 (b) : d = 10, M = 71 (c) : d = 2, M = 367

Figure 4.2: Example instances of the jf-jh map for changing visibility radius d and
the resulting quantity M of neighborhood regions.

where Lbest is the minimal recorded path length for a given instance, and
tmin, tmax are the minimal and maximal recorded times for that instance.

All experiments were run on a desktop computer with an Intel Core™ i7-7700
CPU (3.60GHz), 8 GB of RAM and running Ubuntu 22.04. The thesis code,
namely PNP, rubber-band and ILS was implemented in the C++17 standard.
We build upon the code base from [8] which implements the segmentation into
neighborhood regions and the reference method and uses the libraries Triangle
[41], Clipper [42]. The implementation of CPC (recall Subsec. 3.1.2) from [12] is
used as part of our implementation of the PNP algorithm.

In the rest of this chapter, multiple parametrizations of the reference method
are evaluated in Sec. 4.2. Then Sec. 4.3 describes how the robustness of the PNP
algorithm was tested. In Sec. 4.4, the implemented schedules for the RB method
are compared. Our implemented heuristics are evaluated in Sec. 4.5, and the best
solutions are compared to the reference solutions in Sec. 4.6.

4.2 Reference Methods

To evaluate the quality of our methods, we first opted to evaluate the solutions
of the reference method described in 2.3. As described in section 1.1, the goal
is to improve upon the time-consuming step of discretizing the TSPN to GTSP
which is part of the solution proposed in [8]. To be able to evaluate any im-
provement, a graph showing the change in solution quality relative to time is
plotted for the reference solution parametrized by maximal sampling distance
dsamp = {0.25, 0.5, 1, 2, 4, 8}. Here, dsamp is the maximal distance two neighboring

33

4. Computational Evaluation
sample points can have from each other when sampling neighborhood region
edges in the process of transforming the TSPN to GTSP. The minimal number
of samples per R was capped at three, i.e., the actual sampling distance used is
d′

samp = min(dsamp, dπ/3), where d is the visibility radius. The parametrizations
of the reference method will be referred to as REF-0.5, REF-1, REF-2, REF-4,
and REF-8, according to the parameter used.

The evaluation ran for four iterations with different random seeds, over all
instances d ∈ {∞, 15, 10, 5, 3, 2, 1.5}, W ∈ {complex2, jf-jh, jf-ta2, potholes, ware-
house2}, and parameters dsamp ∈ {8, 4, 2, 1, 0.5, 0.251}. As it turned out during
evaluation, due to the size of map jf-pb2, the computation took multiple times
longer than for other instances (see Fig. 4.3). Therefore, map jf-pb2 was cut from
the evaluation so as to be able to manage more iteration over other instances.

Figure 4.3: Sum initialization time of reference method per map.

The algorithm was evaluated without any time restriction to track the evolution
of the solution quality over time. The resulting average gap to trel graph is shown
in Fig. 4.4a. Here, the increase in time taken with the number of samples can
clearly be seen. Particularly, the reference method with dsamp = 0.25 parameter
takes exponentially more time when compared to the other versions. As the
difference in quality is minimal (≈ 0.15% between 0.5 and 0.25) when compared
to the time taken, we opted to omit the parameter dsamp = 0.25 from further
evaluation and only one iteration was done, and this parametrization was omitted
from further comparisons.

Fig. 4.4b is a zoomed-in version of Fig. 4.4a. It focuses on the time phase
1dsamp = 0.25 ran only for one iteration due to high computational time demands.

34

.................................... 4.2. Reference Methods

(a) : Full

(b) : Zoom

Figure 4.4: Mean gap/trel graph of reference method parametrized by sample distance
dsamp

where the parametrizations iterate toward their respective minima. The closer
look shows the result that one would generally expect; with decreasing dsamp

values (thus increasing the number of samples), the solution quality takes longer
to settle, but the final quality improves.

35

4. Computational Evaluation
4.3 Testing PNP

The implementation of the point neighborhood point PNP algorithm was non-
trivial due to its complex nature and the requirement for exact geometry while
working with floating-point arithmetic, making the implementation rather bug-
prone. Therefore, we implemented tests to make sure PNP workes correctly.
The correctness of the PNP algorithm implementation is tested by running the
algorithm on individual neighborhoods and randomly generated test points in the
environment. Recall that the PNP algorithm takes an input of two points a, b
and a neighborhood region R, and returns the point pmin ∈ R that minimizes
the path length l(a, pmin, b). Recall further that PNP is a combination of two
algorithms, SLI, which detects intersections between the line segment ab and R,
and CPE, which finds the closest point on the neighborhood region edge if no
intersection was found, see Sec. 3.1 for an in-depth description of PNP.

The closest point on edge (CPE) part of PNP was tested by selecting a neigh-
borhood region and equidistantly sampling (dsamp = 0.1) all of its edges. Then,
for 10,000 iterations, two random points were generated outside of R. Then, the
distance of the paths going through the closest sample point ps and the point pCP E

found by CPE is compared. As the PNP algorithm operates on the continuous
space, it is expected to always return a path of at least the same length as the
path over the sample. With this, cases where the algorithm fails could easily be
identified.

The neighborhod line intersection (NLI) part was tested by running 10 000
iterations with intersecting points and drawing their connection in black and the
detected intersection in blue. This makes cases where an intersection was not
found or was wrongfully found easily visible.

In the end, both CPE and NLI were tested for each map over 20 neighborhood
regions of varying sizes without any faults being found. The combined PNP
algorithm without obstacles also did not show any faults over 20 tested regions
and 10,000 iterations each. Though as was previously mentioned in Subsec. 3.1.3,
the algorithm 3.3 used for PNP with obstacles does not guarantee optimality;
therefore, testing for PNP with obstacles was primarily comprised of visually
evaluating the correctness of the found paths.

36

................................... 4.4. Testing Rubber-band

4.4 Testing Rubber-band

The following test aimed to determine the effect of the schedule S on the final
solution length and computational time of the rubber-band (RB) algorithm. As a
reminder, the schedule S is the order in which PNP is applied on the points in
the tour, with the options being: points are chosen in sequence; points are chosen
in random order; first all odd points are iterated over, then all even points (odd
even). See Subsec. 3.3.1 for more information on the rubber-band algorithm.

Evaluation is done over the full dataset of instances d ∈ {∞, 15, 10, 5, 3, 2, 1.5,
1}, W ∈ {complex2, jf-jh, jf-ta2, potholes, warehouse2, jf-pb2}, with the NN as
the constructor heuristic. The random schedule was run 20 times for each instance
to generate a performance statistic. The gap is calculated relative to the shortest
path found in each instance. Time is displayed as a percentage of the minimum
and maximum value of time taken for the instance.

sequence random odd even
d Gap trel Gap trel Gap trel

[m] [%] [%] [%] [%] [%] [%]
1.0 0.50 ± 0.19 36 ± 32 0.31 ± 0.28 49 ± 34 0.35 ± 0.26 37 ± 31
1.5 0.75 ± 0.36 72 ± 27 0.48 ± 0.36 79 ± 29 0.55 ± 0.39 80 ± 14
2.0 0.61 ± 0.42 66 ± 34 0.59 ± 0.43 78 ± 28 0.69 ± 0.37 77 ± 28
3.0 1.19 ± 1.05 59 ± 41 0.94 ± 0.94 75 ± 33 0.99 ± 1.28 86 ± 21
5.0 1.03 ± 1.23 65 ± 40 0.87 ± 0.98 72 ± 28 1.11 ± 1.31 65 ± 31

10.0 0.49 ± 0.90 45 ± 36 0.35 ± 0.58 47 ± 30 0.19 ± 0.17 39 ± 37
15.0 2.65 ± 5.35 44 ± 31 2.18 ± 5.24 57 ± 34 0.69 ± 0.92 60 ± 35

inf 0.48 ± 0.49 57 ± 36 0.38 ± 0.50 47 ± 33 0.40 ± 0.50 30 ± 26
Avg 0.97 ± 2.15 55 ± 37 0.77 ± 2.05 63 ± 34 0.62 ± 0.84 59 ± 35

Table 4.1: Comparison of the schedules S for the rubber-band algorithm

Table 4.1 shows the resulting values and standard deviation of the gap and trel,
averaged over all maps for individual values of the visibility radius d. As can be
noticed, the standard deviation over individual maps is relatively high, meaning
the result of the RB algorithm is highly dependent on the instance. Even though
the average results showed only minor differences, the odd even schedule was
chosen to be used in the RB algorithm, as it provides the best results on average.

37

4. Computational Evaluation
4.5 Evaluating the Metaheuristic

In this section, the heuristics that build the ILS metaheuristic are evaluated, and
variations of the ILS are tested.

4.5.1 Comparing Constructive Heuristics

To determine how to initialize our metaheuristic, six constructive heuristics NN,
NN-PNP, NN-SL, FI, FI-PNP, RI (recall Sec. 3.2) were compared to initial
solutions of the parametrized reference method, which is described in Sec 2.3. The
initial solutions are the solutions given by our implemented generator heuristics
and the first solution provided by GLNS for the reference method, with ten
iterations of the RB algorithm being applied to each solution. The evaluation was
done over instances W ∈ {complex2, jf-jh, jf-ta2, potholes, warehouse2} and d ∈
{1, 1.5, 2, 3, 5, 10, 15, ∞}.

Figure 4.5: Initial solution time and quality comparison.

Figure 4.5 shows the relation between the initial solution gap and computational
time, comparing our constructive heuristics to the parametrized reference method.
Among our implemented methods, the nearest neighbor (NN) based approaches
performed the worst, with the simple NN being the fastest yet yielding poor
solution quality. The addition of the PNP algorithm to the NN methods (NN-
PNP, NN-SL) improved the average gap by approximately 16%. However, this
improvement came at the expense of increased time, making it comparable to the

38

................................ 4.5. Evaluating the Metaheuristic

reference methods. This trade-off is undesirable, as the primary objective of this
thesis is to bypass the slow initialization step present in the reference method.
On the other hand, the insertion-based methods showed superior performance.
The farthest insertion (FI) method outperformed all reference methods in speed
while achieving an initial solution quality comparable to the reference at both
dsamp = 0.5 and dsamp = 1. The random insertion (RI) method yielded even
better results, albeit with a slightly longer execution time than FI.

The variant of the FI algorithm incorporating the PNP algorithm delivered the
best overall initial solution quality. Nonetheless, the repeated application of PNP
significantly increased the method’s execution time, making it impractical within
the desired time constraints. Future work might benefit from considering an FI
implementation with a selective application of the PNP algorithm to balance the
trade-off between solution quality and execution time.

Based on these results, we selected the farthest insertion (FI) and random
insertion (RI) methods for further evaluation, due to their superior solution
quality and efficient execution times. Additionally, the nearest neighbor (NN)
with PNP method was chosen to assess the performance of an NN-based approach
within the complete context of the Iterated Local Search (ILS) implementation,
see Subsec. 4.5.2.

4.5.2 Initial ILS Implementation

We evaluated our implementation of the iterated local search (ILS) metaheuristic
[15], as detailed in Section 3.4.1, and plotted the change in solution quality over
time analogous with the reference method. The entire ILS algorithm was assessed
without a time constraint for the three selected constructive heuristics: FI, RI,
and NN-PNP. The evaluation was conducted over four iterations of instances W ∈
complex2, jf-jh, jf-ta2, potholes, warehouse2} and d ∈ 1.5, 2, 3, 5, 10, 15, ∞}. The
sequence of improvement operators S was based on the expected time demand
of the operators as follows (from low to high): cross remove, neighboring swap,
2-OPT, OR-opt 1, OR-opt 2, OR-opt 3.

The average results are depicted in Figure 4.6. The initial algorithm evaluation
results are confirmed here, with FI being the fastest, NN-PNP intermediate, and
RI the slowest to provide initial results. In terms of post-initial solution, FI is also
the quickest to improve, although at around 7% of the relative time, RI begins
to provide better solutions. The NN-PNP method is the slowest overall in terms
of improvement. Once RI overtakes FI, the relative solution quality ordering
remains consistent, with final steady states of NN-PNP = 2.5%, FI = 2.2%, and

39

4. Computational Evaluation

Figure 4.6: Mean gap / trel graph of the default ILS method

RI = 2.0%.

While the RI method yields the best average result, the improvement over FI is
relatively small (approximately 1% at its peak). Thus, FI remains preferable due
to its rapid improvements. However, as optimization time increases, the choice of
constructive heuristic becomes less critical, as evidenced by all methods converging
within a 0.5% gap of each other.

4.5.3 Expanding upon ILS

The results from the evaluation of the default Iterated Local Search (ILS) demon-
strated a rapid initial improvement, particularly in the case of FI, but limited
enhancement was achieved after that. Therefore, variations on the ILS imple-
mentation were introduced and tested to achieve further solution improvement.
Given that the algorithm relies on beneficial perturbations to progress beyond
the first local optimum, the initial modification involved adopting a more aggres-
sive perturbation strategy. This concept, discussed in Subsection 3.4.1, involves
applying the double bridge (DB) perturbation multiple times in sequence. The
number of iterative applications ranged up to three, increasing if no improvement
in path length was found and decreasing otherwise. As this approach varies the
perturbation operation and, therefore, is more similar to the variable neighborhood
search (VNS) [24] algorithm, it is referred to as the vns variation.

The second modification entailed altering the order of improvement heuristics

40

................................ 4.5. Evaluating the Metaheuristic

if the current sequence failed to enhance the path. As the reordering was done by
randomly reordering the improvement heuristic sequence, this version was termed
shuffle. Finally, a combination of both previous variations was evaluated, simply
called both. Evaluation was done over four iterations of instances W ∈ {complex2,
jf-jh, jf-ta2, potholes, warehouse2} and d ∈ {2, 3, 5, 10, 15, ∞}.

(a) : Full

(b) : Zoomed

Figure 4.7: Mean gap / trel graph of the expanded ILS methods

Fig. 4.7a presents a comparison of the ILS variations with the default methods.
Due to the subtlety of the changes, Fig. 4.7b focuses on the early time results,
which are of primary interest.

The first observation is that after some initial time, the variation with both

41

4. Computational Evaluation
algorithms provides consistently worse results. With both vns and shuffle variations
providing similar results to their respective unmodified methods, until about
trel ≈ 16% from where on both variations outperform the unmodified methods.
For the FI-initiated methods, one approach does not outperform the other until
21 % trel, at which point the shuffle variation begins to give the best results. In
the case of the RI method, the best method varies between the vns and shuffle
variations until 39% trel where the shuffle variation starts giving better results.
However, since the variations to the default method generally do not surpass 0.5%
of the gap, the result does not appear overly significant.

Overall, the improvements introduced by the variations are relatively minor
and are more evident over a more extended period. At the final convergence point,
the overall best solution is provided by FI shuffle with a 2.3% gap, followed by RI
shuffle and FI vns, both at 2.4% gap. This can be compared to the default RI
method at 2.9% and FI at 2.7%. The combined (both) method under-performs
compared to the default methods, with both variations settling at approximately
a 3.8% gap.

Given that the combined methods (both) consistently underperformed compared
to both default methods, they can be disregarded as a viable avenue for further
improvement. Aside from this, the variations only yielded marginal improvements
over the long term. Therefore, we cannot definitively identify one method as
an overall improvement over the others. However, the effectiveness of a given
method also depends on the instance, as shown in Fig. 4.8, where the change
in solution quality is shown for instances with a high (Fig. 4.8a) or low (Fig.
4.8b) visibility radius d. The figures plainly show how the variation FI vns is
preferable in instances with low visibility. In contrast, instances with high visibility
are better served with a method such as RI vns. However, again, only minor
improvements were archived when compared to the default methods. Generally, it
is worth considering one of the variations to achieve a longer, gradual improvement,
potentially leading to a slightly enhanced final solution.

4.5.4 Gutin Neighborhood

Inspired by the method from [37], we tried adding the gutin neighborhood (GN)
[34] to the sequence of improvement operators S in the VND algorithm. As a
reminder, the GN removes a random subset of non-adjacent points in a tour and
then uses PNP to return the points into the sequence in a way that minimizes
the tour length (see Subsec. 3.3.2). The sequence of operators S in VND thus
being: cross remove, neighboring swap, 2-OPT, OR-opt 1, OR-opt 2, OR-opt 3,
gutin neighborhood. Evaluation was done over one iterations of instances W ∈
{complex2, jf-jh, jf-ta2, potholes, warehouse2} and d ∈ {2, 3, 5, 10, 15, ∞}.

42

................................ 4.5. Evaluating the Metaheuristic

(a) : d = ∞

(b) : d = 2

Figure 4.8: Varying effectiveness of the expanded ILS methods depending on visibility
radius d.

Fig. 4.9 shows the results compared to the default ILS implementation evaluated
in Subsec. 4.5.2. As shown in the figures, compared to the default implementation,
adding the GN does not bring faster improvement in our results. Quite the
opposite, the version with GN improves slower, as shown in Fig.4.9b on the
RI-initialized methods. The results are similar to the ILS variations evaluated in
Subsec. 4.5.3, in that its improvement over the default method is more evident
over a more extended period. Compared to the variations from Subsec. 4.5.3 the
improvement brought is minimal (within 1% gap of the default ILS); therefore,
the addition of GN will not be considered in the final comparison.

43

4. Computational Evaluation

(a) : Full

(b) : Zoomed

Figure 4.9: Mean gap / trel graph comparing the default and gutin neighborhood
results.

4.6 Final Comparison

This section compares the parametrized reference method presented in 4.2 to the
algorithms selected in 4.5. The evaluation was done over the set of overlapping
instances from all included evaluations. That being four iterations with changing
random seeds of instances W ∈{complex2, jf-jh, jf-ta2, potholes, warehouse2}
and d ∈{2, 3, 5, 10, 15, ∞}. The reference methods parametrized by sampling

44

..................................... 4.6. Final Comparison

distances dsmapl ∈{0.5, 1, 2, 4, 8} are compared. Our proposed methods included
the default ILS version for both FI and RI and variations vns and shuffle for both.

Figure 4.10: Comparison between our implemented metaheuristic and the reference
for fast solutions.

Fig. 4.10 shows the mean gap values for the reference and ILS methods in
the relative time for very early solutions. We can see that the metaheuristics
initialized with RI are outperformed by the REF-8 REF-4 and relatively soon even
by the REF-2 methods, even for such early solutions. On the other hand, the FI
initialized metaheuristics outperformed all reference methods at this time interval.
For example, at trel = 0.2%, the FI metaheuristic is at 12% gap, compared to
the 24% gap of REF-8, 22% gap of REF-4, and 73% gap of REF-2; the methods
REF-1 and REF-0.5 did not yet start generating solutions at this time point.
Regrettably, on a broader time scale, as illustrated in Figures 4.11a and 4.11b,
the reference methods quickly catch up to and surpass our methods after the
initial delay, continuing to improve further upon the solution. Although the initial
improvement speed of both our methods and the reference methods is similar,
once the reference methods are initialized, they achieve a higher degree of solution
improvement. This indicates that while our current improvement heuristics are
adequate, there is a need for a more effective strategy to escape local minima.

The improvement of our ILS methods begins to decelerate around a 10.7%
gap for FI, compared to 7%, 6.2%, 2.6%, 1.8%, and 0.5% gaps for the reference
methods in descending order of dsamp. Our proposed heuristics cannot currently
leverage the lead gained by eliminating the conversion step from TSPN to GTSP
present in the reference methods. At the final time, the solutions stabilized at a
0.25% gap for REF-0.5, 0.5% for REF-1, 1.3% for REF-2, 2.2% for REF-4, 3.1%
for REF-8, with the best result from our heuristics being FI shuffle at a 5.6% gap.

45

4. Computational Evaluation

(a) : Zoomed

(b) : Full

Figure 4.11: Comparison between our implemented metaheuristic and the reference
for a wider time scale.

Though it can be seen from Fig. 4.12 if compared on instances with visibility
radius d = 2 the FI method provides the best result until 2.2% trel. Showing that
computations speed of ILS is impacted less by the increase in neighborhood region
quantity, than the reference method.

46

..................................... 4.6. Final Comparison

Figure 4.12: Comparison between our implemented metaheuristic and the reference
for d = 2.

47

48

Chapter 5

Final remarks

5.1 Conclusions

This thesis proposed a new algorithm point neighborhood point (PNP) for finding
the shortest path between a point-neighborhood-point triple for polygon-circle
neighborhood regions R. Before this thesis, such algorithms were only for purely
circular [12] or polygonal [11] neighborhood regions. Tests showed that in an
environment without obstacles, the results provided by PNP were always of
the same or better quality than the results of a sample-based method, finely
discretizing the region’s boundary. The PNP implementation was extended to
work on polygonal environments with obstacles, and the correctness was affirmed.

The PNP algorithm was used as part of a rubber-band (RB) [13] algorithm for
the local improvement of tours over R, which is used both as part of our proposed
metaheuristic while also being used to improve the reference solution from [8]. In
Subsec. 4.4 three parametrizations (see Subsec. 3.3.1) of the RB algorithm were
compared across varying TSPN instances. The odd even parametrization provided
the best results and was therefore used to improve the solutions of our proposed
metaheuristic and the reference from [8], which previously used an algorithm that
approximates the neighborhood regions with polygons. Our implementation of
the RB algorithm works on the polygon circle directly, having reduced memory
and computational effort requirements compared to the approximation.

The original idea behind this thesis was to avoid the discretization scheme
involving the construction and solution of a GTSP instance and leverage the time

49

5. Final remarks..
gained to optimize the solutions. However, as we did a comprehensive evaluation
over five parametrizations of the reference (compared to two parametrizations
in [8]), the reference method was discovered to perform better than expected.
The results from Sec. 4.2 showing that solutions for higher sampling distances
dsamp ∈ {8, 4} are comparable to results from methods with denser sampling
without such large initial delay. This meant our proposed methods had less time
to optimize the solution than initially thought.

In Subsec. 4.5.1 the results from six proposed constructive heuristics were com-
pared to the initial solutions (first solution from GLSN + RB) of the parametrized
reference methods. The nearest neighbor (NN)-based methods showed the worst
results, but we showed they could be improved via the PNP algorithm at the cost
of increased computational time. The farthest insertion (FI) and random insertion
(RI) methods provided results of a similar or better quality than the reference
method, with FI also being faster than the reference. Also, the possibility of
improving the FI method using the PNP algorithm was explored. However, while
it provided the best overall results, the increase in required computational time
made the method undesirable for our use.

The RB and other improving and constructive heuristics, which are described
in Chapt. 3, were combined in a iterative local search (ILS) [15] metaheuristic.
Several ILS parametrizations were experimentally evaluated in Sec. 4.5.

In Subsec. 4.5.2 the ILS metaheuristic with differing constructive heuristics was
evaluated over a longer time scale. All versions of the ILS showed a fast rate of
initial improvement but a limited capability to improve over a longer time period,
indicating a lacking ability to escape from local minima. Overall, the ILS with
the RI constructive heuristic provided the best results. However, the choice of the
constructive heuristic became less critical with increasing computational time as
all versions converged within 0.5% gap1 of each other.

In Subsec. 4.5.3 we evaluate three variations to the ILS, which aim to make the
method better able to escape from local minima. These variations were vns, which
varied the strength of the perturbation operator, shuffle, which varied the order of
improvement operators, and both, which employed both of the previous approaches
simultaneously. The both variation provided consistently worse results than the
other methods. With both vns and shuffle variations providing similar results
to their respective unmodified methods, until about trel ≈ 16% from where on
both variations outperform the unmodified methods. Overall, the improvements
introduced by the variations are relatively minor and are more evident over a
more extended period. Therefore, we cannot definitively identify one method as
an overall improvement over the other.

1Best-known solution gap. See Sec. 4.1.

50

............................5.2. Suggestions for Possible Improvements

In Subsec. 4.5.4 the addition of the gutin neighborhood (GN) [34] to the im-
provement operators was evaluated. The results were similar to the ILS variations
previously evaluated in that its improvement over the default method was only
visible over a more extended period. Compared to the variations from Subsec.
4.5.3 the improvement made was even less noticeable.

Our method and the reference were compared in Sec. 4.6. We showed that our
FI-based ILS implementations can provide higher-quality solutions on a minimal
computational budget. Regrettably, on a broader time scale, the reference methods
quickly catch up to and surpass our methods after the initial delay, continuing to
improve further upon the solution. While the initial improvement speed of both
our methods and the reference methods is similar, once the reference methods are
initialized, they achieve a higher degree of solution improvement. This indicates
that while our current improvement heuristics are adequate, there is a need for
a more effective strategy to escape local minima. Unfortunately, in its current
state, our method cannot keep up with the reference over a longer time period.
However, it was shown that the increasing number of neighborhoods impacts the
speed of our methods slightly less than the reference.

While the final result did not prove as significant as initially hoped, various
advances were made throughout the course of the thesis. The point PNP algorithm
for polygon-circle neighborhoods was implemented and expanded to work in
environments with polygonal obstacles. The PNP was used as part of a RB
algorithm to improve tours with fixed neighborhood order. The RB was also used
to improve the reference solution from [8]. An evaluation of parametrizations for
both RB and the reference has been created. Moreover, a possible avenue for
generating solutions to the TSPN problem was explored.

5.2 Suggestions for Possible Improvements

Although the initial solutions constructed by the FI heuristics are satisfactory,
accelerating the FI-PNP heuristic warrants consideration, as it provided the best
initial solution overall, even when compared to the references with dense sampling.
It remains to be determined whether the superior initial solution would translate
into an improved final solution after the ILS process or if it would similarly
become trapped in a local minimum. Given that our initial constructive heuristics
demonstrated improved performance compared to the reference initialization,
evaluating the reference improvement algorithm on a tour constructed by our
constructive heuristics might also be worthwhile.

51

5. Final remarks..
The proposed ILS framework could benefit from further enhancements to escape

local minima more efficiently. To this end, it might be advisable to evaluate the
trade-off between the improvement achieved by the improvement heuristics, which
are part of the VND, and the computational time they require. Additionally,
exploring alternative perturbation heuristics may bring a better way to escape
from local minima, thus offering another potential avenue for improvement.

52

Appendix A

Bibliography

[1] E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey, and K. Konolige, “The
office marathon: Robust navigation in an indoor office environment,” in 2010
IEEE International Conference on Robotics and Automation, pp. 300–307,
2010.

[2] S. Macenski, F. Martín, R. White, and J. G. Clavero, “The marathon
2: A navigation system,” in 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 2718–2725, 2020.

[3] W. J. Cook, In Pursuit of the Traveling Salesman. Princeton: Princeton
University Press, 2012.

[4] S. Ntafos, “Watchman routes under limited visibility,” Computational Geom-
etry, vol. 1, no. 3, pp. 149–170, 1992.

[5] A. Dumitrescu and C. D. Tóth, “Watchman tours for polygons with holes,”
Computational Geometry, vol. 45, no. 7, pp. 326–333, 2012.

[6] F. Li and R. Klette, “An approximate algorithm for solving the watchman
route problem,” in Robot Vision (G. Sommer and R. Klette, eds.), (Berlin,
Heidelberg), pp. 189–206, Springer Berlin Heidelberg, 2008.

[7] T. Danner and L. Kavraki, “Randomized planning for short inspection
paths,” in Proceedings 2000 ICRA. Millennium Conference. IEEE Interna-
tional Conference on Robotics and Automation. Symposia Proceedings (Cat.
No.00CH37065), vol. 2, pp. 971–976 vol.2, 2000.

[8] J. Mikula and M. Kulich, “Towards a continuous solution of the d-visibility
watchman route problem in a polygon with holes,” IEEE Robotics and
Automation Letters, vol. 7, no. 3, pp. 5934–5941, 2022.

53

A. Bibliography..
[9] E. M. Arkin and R. Hassin, “Approximation algorithms for the geometric

covering salesman problem,” Discrete Applied Mathematics, vol. 55, no. 3,
pp. 197–218, 1994.

[10] S. Srivastava, S. Kumar, R. Garg, and P. Sen, “Generalized traveling salesman
problem through n sets of nodes,” CORS journal, vol. 7, no. 2, p. 97, 1969.

[11] M. Kulich, J. Vidašič, and J. Mikula, “On the travelling salesman problem
with neighborhoods in a polygonal world,” in Climbing and Walking Robots
Conference, pp. 334–345, Springer, 2022.

[12] L. Fanta, “The Close Enough Travelling Salesman Problem in the polygonal
domain,” master’s thesis, Czech Technical University, 2021.

[13] X. Pan, F. Li, and R. Klette, “Approximate shortest path algorithms for
sequences of pairwise disjoint simple polygons,” in Proceedings of the 22nd
Annual Canadian Conference on Computational Geometry, CCCG 2010,
pp. 175–178, 2010.

[14] M. Dror, A. Efrat, A. Lubiw, and J. S. Mitchell, “Touring a sequence of
polygons,” in Proceedings of the thirty-fifth annual ACM symposium on
Theory of computing, pp. 473–482, 2003.

[15] J. Baxter, “Local optima avoidance in depot location,” Journal of the Opera-
tional Research Society, vol. 32, no. 9, pp. 815–819, 1981.

[16] D. J. Gulczynski, J. W. Heath, and C. C. Price, “The close enough traveling
salesman problem: A discussion of several heuristics,” Perspectives in Opera-
tions Research: Papers in Honor of Saul Gass’ 80 th Birthday, pp. 271–283,
2006.

[17] J. Faigl, “Gsoa: growing self-organizing array-unsupervised learning for
the close-enough traveling salesman problem and other routing problems,”
Neurocomputing, vol. 312, pp. 120–134, 2018.

[18] W. pang Chin and S. Ntafos, “Optimum watchman routes,” Information
Processing Letters, vol. 28, no. 1, pp. 39–44, 1988.

[19] E. Packer, “Computing multiple watchman routes,” in Experimental Algo-
rithms: 7th International Workshop, WEA 2008 Provincetown, MA, USA,
May 30-June 1, 2008 Proceedings 7, pp. 114–128, Springer, 2008.

[20] J. Faigl and L. Přeučil, “Inspection planning in the polygonal domain by
self-organizing map,” Applied Soft Computing, vol. 11, no. 8, pp. 5028–5041,
2011.

[21] S. L. Smith and F. Imeson, “Glns: An effective large neighborhood search
heuristic for the generalized traveling salesman problem,” Computers &
Operations Research, vol. 87, pp. 1–19, 2017.

54

..A. Bibliography

[22] J. Faigl, “Approximate solution of the multiple watchman routes problem
with restricted visibility range,” IEEE Transactions on Neural Networks,
vol. 21, no. 10, pp. 1668–1679, 2010.

[23] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Nu-
merische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[24] M. Gendreau, J.-Y. Potvin, et al., Handbook of metaheuristics, vol. 2. Springer,
2010.

[25] H. González-Banos and J.-C. Latombe, “Planning robot motions for range-
image acquisition and automatic 3d model construction,” in AAAI Fall
symposium, 1998.

[26] J. Mikula and M. Kulich, “Triangular expansion revisited: Which triangula-
tion is the best?,” in ICINCO, pp. 313–319, 2022.

[27] D. Coeurjolly and J. Chassery, “Fast approximation of the maximum area
convex subset for star-shaped polygons,” CNRS, vol. 1, pp. 1–18, 2004.

[28] T. Lozano-Pérez and M. A. Wesley, “An algorithm for planning collision-free
paths among polyhedral obstacles,” Commun. ACM, vol. 22, p. 560–570, oct
1979.

[29] A. Duarte, N. Mladenovic, J. Sánchez-Oro, and R. Todosijević, “Variable
neighborhood descent,” Handbook of heuristics, pp. 341–367, 2018.

[30] J. Richard Shewchuk, “Adaptive precision floating-point arithmetic and fast
robust geometric predicates,” Discrete & Computational Geometry, vol. 18,
pp. 305–363, 1997.

[31] J. R. Shewchuk, “Adaptive Precision Floating-Point Arithmetic and Fast
Robust Geometric Predicates,” Discrete & Computational Geometry, vol. 18,
pp. 305–363, Oct. 1997.

[32] D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis, “Approximate algo-
rithms for the traveling salesperson problem,” in 15th Annual Symposium on
Switching and Automata Theory (swat 1974), pp. 33–42, IEEE, 1974.

[33] B. Golden, L. Bodin, T. Doyle, and W. Stewart Jr, “Approximate traveling
salesman algorithms,” Operations research, vol. 28, no. 3-part-ii, pp. 694–711,
1980.

[34] G. Gutin, A. Yeo, and A. Zverovitch, “Exponential neighborhoods and
domination analysis for the tsp,” in The traveling salesman problem and its
variations, pp. 223–256, Springer, 2002.

[35] I. Or, Traveling salesman type combinatorial problems and their relation to
the logistics of regional blood banking. Northwestern University, 1976.

[36] G. A. Croes, “A method for solving traveling-salesman problems,” Operations
research, vol. 6, no. 6, pp. 791–812, 1958.

55

A. Bibliography..
[37] J. Schmidt and S. Irnich, “New neighborhoods and an iterated local search

algorithm for the generalized traveling salesman problem,” EURO Journal
on Computational Optimization, vol. 10, p. 100029, 2022.

[38] J. Munkres, “Algorithms for the assignment and transportation problems,”
Journal of the society for industrial and applied mathematics, vol. 5, no. 1,
pp. 32–38, 1957.

[39] S. Lin and B. W. Kernighan, “An effective heuristic algorithm for the traveling-
salesman problem,” Operations research, vol. 21, no. 2, pp. 498–516, 1973.

[40] “TSP Basics non-sequential 4-opt moves - part 1 of 4.” http://tsp-basics.
blogspot.com/2017/09/non-sequential-4-opt-moves-part-1.html.
Accessed: 2024-05-07.

[41] J. R. Shewchuk, “Triangle: Engineering a 2d quality mesh generator and
delaunay triangulator,” in Workshop on applied computational geometry,
pp. 203–222, Springer, 1996.

[42] A. Johnson, “Clipper-an open source freeware library for clipping and offset-
ting lines and polygons,” Retrieved September, 2014.

56

http://tsp-basics.blogspot.com/2017/09/non-sequential-4-opt-moves-part-1.html
http://tsp-basics.blogspot.com/2017/09/non-sequential-4-opt-moves-part-1.html

Appendix B

ZIP content

.Thesis ... The tex files of this thesis..Thesis code ... Code base of the thesis.. Experiments code ... Code for running the evaluations and creating graphs.

57

	Preliminaries
	Introduction
	State of the Art

	Problem Description
	Problem Inputs
	Neighborhood Regions

	Objective
	Reference Method Description

	Solution Approach
	Point Neighborhood Point (PNP)
	PNP Problem
	PNP Algorithm
	PNP with Obstacles

	Constructive Heuristics
	Nearest Neighbor (NN)-based Methods
	Insertion-based Methods

	Improving Heuristics
	Rubber-band (RB)
	Other Improvement Operators
	Variable Neighborhood Descent (VND)

	Metaheuristics
	Iterative Local Search (ILS)

	Computational Evaluation
	Evaluation Methodology
	Reference Methods
	Testing PNP
	Testing Rubber-band
	Evaluating the Metaheuristic
	Comparing Constructive Heuristics
	Initial ILS Implementation
	Expanding upon ILS
	Gutin Neighborhood

	Final Comparison

	Final remarks
	Conclusions
	Suggestions for Possible Improvements

	Bibliography
	ZIP content

