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Republic   

A R T I C L E  I N F O   

Handling editor: S Ludwick  

Keywords: 
Machine tool 
Thermal error 
Updating 
Repetitive production 

A B S T R A C T   

Machine tool (MT) thermal errors induced by external and internal heat sources (e.g. changing environment, 
friction and power losses in MT components) are an important element in machined workpiece inaccuracies. In 
the past few decades, indirect software compensation techniques have been used to address thermal errors on 
account of their economic and ecological aspects. Many slightly different approaches are described in the 
literature. If thermal error models are properly identified based on experiments with sufficiently varying input 
parameters, they usually work within similar calibration and verification conditions. As the sensory equipment of 
machines increases, models can be adapted to regions with higher thermo-mechanical system nonlinearity and 
inhomogeneity through the introduction of deformation feedback from direct measurements into model struc-
tures. However, adaptive functionalities require discrete interruptions of the MT’s work cycle, which threaten the 
integrity of the machined surface and complicate the model structure and thus also implementation and in-
dustrial deployment possibilities. In this research, a novel approach of automatic post-process adaptation suitable 
for repetitive manufacturing, which takes advantage of transfer functions (TF), is proposed for thermal error 
reduction. The method respects basic heat transfer mechanisms in the MT structure by combining linear para-
metric models, requires a minimum of additional gauges, and feedback from direct measurements is obtained 
only during technological pauses in the production process. Post-process adaptation is solved retrospectively by 
updating model parameters using the heuristic method of genetic algorithms (GA). First, the approach was tuned 
on a case study of a heavy-duty milling machine with a horizontal headstock for a configuration with an 
exchangeable spindle head and a configuration with a change in the position of the headstock in the workspace, 
both of which were different from the initial model’s calibration range. Subsequently, the developed approach 
was applied to repeated production on a medium-sized milling centre. Another goal of the paper is to emphasize 
the need for quality input information for modelling efforts and the industrial applicability of scientific results.   

1. Introduction 

A machine tool (MT) can be considered a rigid system. However, 
various dynamic phenomena resulting in structural deformations load 
the machine during working processes. In addition to errors caused by 
manufacturing and assembly inaccuracies, the machine is exposed to 
three categories of deformations [1].  

• Static errors related to the static rigidity of the machine and its 
structure including errors that form between the tool and the 
workpiece, e.g. from component wear, workpiece displacement, etc.  

• Dynamic errors arising with the machining process. The magnitude 
of these errors depends on the dynamic stiffness of the machine, 
drive adjustment and setting of cutting conditions.  

• Thermal errors induced by conduction, convection and radiation 
heat transfer mechanisms in the MT structure due to the action of 
external and internal heat sources. 

Geometrical and dimensional errors resulting from the activity of 
non-stationary heat phenomena can be described as deviations from the 
planned path of the tool and the workpiece. Thermal errors accompa-
nying machine operation account for 40–70% of the total MT inaccuracy 
detected on the workpiece [2]. Given the significant role that thermal 
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errors play, one of MT designers’ main goals is to minimise these errors. 
Generally, solutions to this issue fall into one of the following main 

groups [3].  

• Machine structure optimisation leading to lower sensitivity to heat 
flow, e.g. Ref. [4].  

• Temperature gradient control of the MT and its environment, e.g. 
Refs. [5,6].  

• Compensation of thermal errors, e.g. Ref. [7]. 

Design modifications include topological optimisation of the ma-
chine structure, choice of a suitable material or placement of individual 
elements such as electric motors, switchboards, power transformers, 
aggregates, etc. to achieve thermal symmetry. This approach can only be 
implemented in the prototype stage of a machine. The design and sub-
sequent control of the cooling system play an important role. Using 
internally cooled frames or individual components such as a spindle or 
ball screw are common current alternatives to significantly increase 
product accuracy. However, greater financial and environmental de-
mands are associated with innovating machines with new components 
and subsequently operating innovated machines. Unlike the previously 
described approaches, compensations are an economically and ecolog-
ically promising way of minimising thermal errors. Two methods of 
compensating thermal errors at the tool centre point (TCP) can be 
classified as follows [8].  

• Direct compensation.  
• Indirect software compensation. 

Direct compensations are based on in-process measurement of de-
formations, e.g. using a touch probe, during production and the subse-
quent correction of machine axes’ programmed positions in real time. 
Gao et al. presented state-of-the-art on-machine and in-process mea-
surement systems and sensor technologies [9]. The disadvantage is the 
need to interrupt the process, which prolongs production time and has a 
negative impact on the integrity of the machined surface. 

In contrast, numerous mathematical approaches can be applied in 
indirect software compensation. The latest research on approaches to 
thermal error modelling can be found in Mayr [10] and an update 
covering the last decade is available in Li [11]. A review focused on 
compensation of spindle thermal errors, which are ordinarily a domi-
nant heat source influencing MT accuracy, can be found in Li [12]. In-
direct compensation thermal error models can be based either on 
numerical simulation results or empirical modelling. 

In the case of numerical simulations, partial differential equation 
(PDE) [13], finite difference method (FDM), finite element method 
(FEM) or a combination (FDEM) can be applied to investigate the 
thermal deformation at the TCP [14]. Although they are promising, 
numerical simulations can be a time-consuming process. An auspicious 
contemporary approach is to couple FEM with model order reduction 
(MOR) techniques to reduce the computing time [15]. Cyber physical 
systems (CPS) of thermal digital twins are the latest vision in the use of 
numerical methods [16]. Nevertheless, the creation of a complex and 
nonstationary predictive numerical model of MT thermal errors is still a 
complicated process, due to many factors, e.g., heat transfer through the 
joint, establishing the boundary conditions for ambient influence, etc. 
Therefore, most indirect software compensation strategies are based on 
empirical models using measured auxiliary variables. 

Many strategies have been investigated to establish indirect models 
in the form of white, black, or grey boxes [17], e.g. multiple regression 
analysis (MRA) [18], whose simplicity renders it one of the most widely 
used methods by MT control system producers, transfer functions (TF) 
[19], phenomenological models employed in the current research, 
artificial neural networks (ANN) [20], algorithms applied in machine 
learning principles, etc. The majority of the compensation models 
introduced in the literature have the potential to significantly reduce MT 

thermal errors. The methods differ in the amount and type of input 
variables and time required for model training and architecture. How-
ever, the robustness of indirect models can be affected over time by e.g. 
wear, replacement of components, changes in technological conditions 
or the operating environment. These inaccuracies can be compensated 
by implementing deformation feedback from the thermo-mechanical 
system through direct measurements [21]. 

With the expansion of machine sensory equipment in the context of 
Industry 4.0, the combination of both approaches becomes a logical way 
of increasing the long-term reliability and robustness of compensation 
models toward intelligent manufacturing. Mayr et al. [22] proposed 
TF-based thermal error compensation of a 5-axis MT that is extended by 
on-machine measurements. The information gained by periodic process 
intermittent probing with a sampling time of 5 min is used to adaptively 
update the model parameters in real time. Zimmermann et al. [23] 
replaced the periodicity with a trigger based on temperature measure-
ments when unknown thermal conditions occur. An adaptive input se-
lection method, also developed in Ref. [23], enables automated and 
adaptive selection of the optimal model inputs even after the initial 
model training. The TF-based model has a black-box structure that 
changes with each run of the recalibration cycle independently of the 
previous model architecture. However short, recalibration still relies on 
the history of frequent positionally-independent on-machine probing. 

At the interface of indirect compensations and models with online 
adaptive functionalities, there is post-process parameter updating, 
which depends directly on the specific production process. Post-process 
updating is commonly used to correct geometric inaccuracies in the 
toolpath when machining long workpieces. Neumann et al. [24] used 
load case dependent updates to improve the FEM model structure of a 
5-axis machining centre through the creation of an additional unique 
MRA model for measured residual deformations. The training data for 
the update were obtained from a dry run of the NC file and periodic 
measurements of artefacts,e.g. a datum ball in the workspace. 

The research presented in this article uses TF-based granular model 
structures adopted from Ref. [25] to create an indirect compensation 
model approximating thermal errors caused by spindle rotation of a 
heavy-duty milling machine with a horizontal headstock. The model is 
applied to verification testing throughout the spindle speed range in the 
calibration configuration and in a configuration with the spindle head 
and a change of spatial position in the machine workspace. Insufficient 
correlation of the temperature excitation with the deformation response 
and differences from the calibration measurement are reflected in the 
reduced model efficiency. The effectiveness of the initial model for re-
petitive production is increased by post-process adaptation of the model 
parameters to new situations using gain scheduling [26]. Post-process 
adaptation is automated using the heuristic method of genetic algo-
rithms (GA), minimising residual deformations in time instants of 
measurements during technological parameter changes. This reduces 
intermittent probing that disrupts the continuity of the first production 
cycle with an active initial model. Updates are easily embedded into the 
model’s preserved structure without increasing modelling requirements. 

The introductory section of the paper is followed by an explanation 
of the target machine suitable for transparent demonstration of the 
development of the method and experimental set-up for thermo- 
mechanical measurements. Section 3 deals with the mathematical 
approach and modelling procedures adopted from Ref. [25], including a 
thermo-mechanical system analysis and initial TF-based model appli-
cation to areas outside the calibration range. The development of the 
post-process update method is elucidated in section 4 along with the 
improvement that was achieved. In section 5, the advantages of a 
post-process updated model are illustrated on a case study of repeated 
production performed on a different MT. A brief summary and future 
scope of work related to this approach are presented in the final section 
6. 
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2. Experimental set-up and conditions 

Two target machines are the subject of this research. The first is a 
heavy-duty milling machine with a horizontal spindle. The machine’s 
workspace dimensions are 3000x2000 × 2500 mm, it has a maximum 
spindle speed of 6000 rpm and a maximum of 4000 rpm with an 
exchangeable spindle head increasing headstock assembly rigidity dur-
ing drilling operations. The machine bodies are made of cast iron. The 
schematic machine kinematics and experimental set-up are depicted in 
Fig. 1. 

The first case study focuses on a transparent demonstration of the 
post-process updated model’s capabilities. In this case the model up-
dates were only identified, and three experiments were performed on 
the first target machine for that purpose.  

1) Calibration of the indirect compensation model according to the 
conditions specified by the international standard ISO 230–3:2020 
[27]. The calibration took place in the basic configuration of the 
spindle loaded with a constant speed of 4000 rpm and consisted of 
the transient behaviour between two thermodynamic equilibria: first 
the MT in approximate balance with its surroundings and second the 
MT steady state during heat source activity, followed by a cooling 
phase. Both phases were considered in the modelling effort. The 
machine was set in the first testing position [X0, Y0, Z0, W0]. The 
impact of ambient temperature changes was also considered in the 
indirect model structure.  

2) Verification experiment of the MT in the basic configuration set in 
the first testing position [X0, Y0, Z0, W0]. The experimental set-up 
consisted of variable spindle speed spectra with a speed change 
every 1 h through the whole range up to 6000 rpm. The aim of the 
test was to verify the linearity between the inputs and outputs of the 
thermo-mechanical system within the calibration conditions.  

3) Verification experiment of the MT set in the second testing position 
[X0, Y+1049, Z0, W0] and equipped with an exchangeable spindle 
head. The experimental set-up consisted also of variable spindle 
speed spectra with speed changes every 1 h through the whole range 
up to 4000 rpm. The aim of the test was to observe the change in the 
thermo-mechanical system homogeneity due to the differences in the 
axial configurations and machine modularity compared to the pre-
vious tests. 

An angle for mounting the measuring device in the two testing po-
sitions was placed on the table. The measuring device consists of a 
measuring fixture containing 5 PR6423 Eddy-current sensors used for 

noncontact sensing of displacements in the X, Y and Z directions be-
tween the angle and the TCP of the test mandrel clamped in the spindle, 
as shown in Fig. 1. The angle represents the clamped workpiece and 
emphasises the need to obtain the correct measured values of system 
feedback for effective adaptation of the thermal error model. 

The second case study concerns a medium-sized 5-axis milling centre 
similar to the target machine in Ref. [28] with workspace dimensions of 
700x820 × 550 mm, 24000 rpm maximum spindle speed and CAFYXZ 
machine axial arrangement. The goal here was to apply the developed 
post-process adaptation strategy to a drill-like test with a repeated NC 
program while considering, in comparison to the calibration set-up, 
start-stop spindle activity at maximum speed and the presence of a 
process liquid. 

All experiments were performed under idle load conditions, i.e. no 
cutting process involved. The results focused on thermal errors in the 
most affected machine axis, Z (W), corresponding to the tool axis elon-
gation. Deformations were expressed in relative values due to data 
confidentiality. 

3. Indirect compensation model structure 

3.1. Mathematical approach 

The concept behind the modelling approach is based on usage of a 
minimum of additional gauges which means only signals from the MT 
control system [19], an open structure that is easy to extend, modify and 
advantageous for machine-learning principles [29], real time applica-
tion and ease of implementation into MT control systems. 

A compensation strategy based on the theory of TFs, widely used in 
electrical and mechanical systems [30], is a dynamic method capable of 
approximating the analytical solution to the fundamental generalised 
problem (FGP) of the heat transfer in the MT structure with sufficient 
accuracy [31]. A discrete TF is used to describe the link between the 
excitation, here a temperature difference, and its response, a deforma-
tion in this case: 

y(t)= ε • u(t) + e(t). (1) 

The vector u(t) in equation (1) is the TF input and y(t) is the output 
vector in the time domain, ε represents the general TF in the time 
domain, and e(t) is the disturbance value, which is further neglected. 
The TF form of the polynomials’ quotient is expressed by equation (2). 

Z{y(t)}
Z{u(t)}

=
an • z− n + ⋯ + a1 • z− 1 + a0 • z0

bm • z− m + ⋯ + b2 • z− 2 + b1 • z− 1 + b0 • z0 , (2)  

where Z is the Z-transform of the time discretised function, z is the 
complex variable, n is the order of the TF numerator, m is the order of the 
TF denominator, and it holds that m > n. Further, a0:n are the calibration 
coefficient of the TF input, and b0:m are the calibration coefficient of the 
TF output. The difference form of the discrete TF in the time domain is 
introduced in equation (3). This form is generally suitable for modern 
MT control systems using their programming languages. 

y(k) =
u(k − n) • an + ⋯ + u(k − 1) • a1 + u(k) • a0

b0

−

(
y(k − m) • bm + ⋯ + y(k − 1) • b1

b0

)

, (3)  

where k represents the examined time instant and k-n (k-m) is the n- 
multiple (m-multiple) delay in the sampling frequency of the measured 
input vector (simulated output vector). The sampling frequency is equal 
to 1 s− 1 in the article. A linear parametric model with an autoregressive 
with extra input (ARX) identifying structure is used with the help of 
Matlab Identification Toolbox [32]. The ARX as an optimal model struc-
ture with the best fit in quality and robustness is also discussed in 
Ref. [22]. 

The approximation quality of the simulated behaviour is expressed 
Fig. 1. Schema of a heavy-duty milling machine with a horizontal headstock in 
various axis configurations for spatial thermal error measurements. 
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by a global approach based on a normalised root mean squared error 
(NRMSE) method fit [32] as expressed in equation (4). The fit is a per-
centage value of model efficiency where 100% would equal a perfect 
match of the measured and simulated behaviours: 

fit =
(

1 −
‖ymea − ysim‖

‖ymea − ymea‖

)

• 100. (4) 

The ymea value in equation (4) is the measured output - displacements 
in the machine direction Z in this case, ysim is the simulated model 
output, and ymea expresses the arithmetic mean of the measured output 
over time. 

3.2. Initial indirect compensation model for thermal errors 

An indirect compensation model approximating thermal errors 
induced by spindle rotation without an exchangeable spindle head dis-
tinguishes, in addition to a separate compensation component for the 
ambient temperature influence, between the heating and cooling phases 
in a form derived from Ref. [25]. The differences between phases are due 
to the presence of the forced convection in the heating phase caused by 
the rotating parts of the MT. The indirect model structure is given in 
equation (5).   

Fig. 2. Procedure of developing an indirect compensation model of the machine’s thermo-mechanical behaviour in the Z-axis caused by spindle rotation: a) 
identification of the deformation component from the surrounding environment, b) input quantities during the calibration measurement, c) identification of the 
deformation component of the cooling phase, d) difference between the heating and cooling phases, e) identification of the deformation component of the phase 
difference, f) resulting description. 

ΣδZ sim = ΔTref • εZ amb
⏟̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅ ⏟

δZ sim amb

+
(
ΔTsp − ΔTref

)
• εZ cool

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
δZ sim cool

+ gn •
(
ΔTsp − ΔTref

)
• εZΔ

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
ΔδZ sim

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
δZ sim sp

,where

gn = 1 ⇔ n > 0 ∨ gn = 0 ⇔ n = 0.

(5)   
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The quantities ΔTref reflecting changes in ambient and ΔTsp 
measured close to the spindle front bearings are inputs to equation (5) 
model in the form of temperature changes. The approximate positions of 
the temperature probes on the target machine are shown in Fig. 1; both 
are embedded in the control system by the MT builder. Designations 
εZ amb, εZ cool and εZΔ correspond to identified discrete TFs in the time 
domain. The principle of the indirect compensation model calibration is 
presented in Fig. 2. 

First, the deformation component δZ sim amb in equation (5) caused by 
the change in ambient temperature during the ETVE test [27] was 
identified (Fig. 2 a)). This component was further subtracted from the 
measured deformations δZ TCP during the calibration of the spindle 
rotation influence. The calibration measurement was taken in the first 
testing position [X0, Y0, Z0, W0] at a constant spindle speed of 4000 
rpm, followed by the cooling phase (Fig. 2 b)). The TF εZ cool of the 
separate cooling phase was identified from part of the calibration 
measurement (Fig. 2 c)). The cooling phase sub-model δZ sim cool was then 
applied to the heating phase behaviour (Fig. 2 d)). The difference be-
tween the measured and simulated deformations in the heating phase 
ΔδZ is the response of the second identified TF εZΔ to approximate the 
effect of the spindle rotation δZ sim sp (Fig. 2 e)). The resulting description 
ΣδZ sim from equation (5) is the sum of all three components (Fig. 2 f)). 
The component ΔδZ sim is inactive during the cooling phase. Therefore, 
the coefficient gn is present in equation (5) as a function of the spindle 
speed n. The graphs in Fig. 2 contain the orders of the identified TFs and 

the global approximation quality indicator fit achieved during the 
identification process. 

The indirect model input and spindle speed behaviour during the 
verification experiment of the MT in the basic configuration set in the 
first testing position [X0, Y0, Z0, W0] and the measured, simulated and 
residual deformations are depicted in Fig. 3. The area of the residual 
error is given by the difference between the measured deformation at the 
TCP in the MT uncompensated state and the output simulated by the 
model. The residue is expressed as an absolute value for greater com-
parison possibilities. 

Fig. 3 shows that the indirect model’s efficiency is fit = 35%. The 
inaccuracy of the model even in conditions similar to the calibration is 
caused by insufficient correlation between the temperature input of the 
indirect model and the measured deformation at the TCP. 

4. Post-process update of model parameters 

Equation (5) can be modified into a post-process adaptive form by 
applying a pair of gain coefficients g1 and g2 as expressed in equation (6). 
The advantage of the model structure from equation (6) is the possibility 
of modifying the magnitude of the approximation value and also of 
adapting the time constant of the simulation to the approximated phe-
nomenon (within the limits of the difference between the heating and 
cooling phases). 

ΣδZ sim
(
g1,2

)
=ΔTref • εZ amb +

[(
ΔTsp − ΔTref

)
• εZ cool

]
• g1 +

[
gn •

(
ΔTsp

− ΔTref
)
• εZΔ

]
• g2,

(6)  

where the gain coefficients g1 of cooling phase sub-model δZ sim cool and g2 
of sub-model ΔδZ sim of heating and cooling phase difference are, for this 

Fig. 3. Input quantities of the indirect compensation model (left) and 
measured, simulated and residual deformations (right) during the verification 
test of the machine in the basic configuration. 

Fig. 4. Flow chart of GA optimisation for automatic post-process parameter 
updating of the indirect compensation model. 
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case study, functions of the spindle position in the machine’s Y axis, the 
time duration of one operation under certain technological conditions, 
spindle speed including the history of previous changes and the current 
equipment of the machine. A Flow chart of post-process adaptation is 
depicted in Fig. 4. 

The pair of gain coefficients is not consistent over time even for the 
same changes in technological parameters occurring in different sections 
of the adapted production process, due to inhomogeneous heat propa-
gation through the MT structure and component. Genetic algorithms 
inspired by evolutionary biology [33] are used to optimise g1 and g2 gain 
coefficients. Successive solutions are formed in each generation and the 
solutions are improved through gradual evolution to meet a termination 
criteria of a fitness function within specified boundaries. The criteria of 
the fitness function is to minimise residues between the measured δZ and 
simulated ΣδZ sim(g1,2) values as shown in right part of Fig. 5 on the in-
terval ti-1 to ti defined in Fig. 3. To find characteristic boundaries of the 
gain coefficients, the test of the machine in the basic configuration is 
subjected to optimisation using a fitness function from equation (7) 
maximizing the fit value in all time intervals ti-1 to ti between changes in 
technological conditions represented by spindle speed variations in this 
case as shown in left part of Fig. 5 by the black dots. The default 
boundaries of both gain coefficients are set to g1,2 ∈ 〈0,2〉. The result of 
GA optimisation according to fitness function from equation (7) of the 
gain coefficient values for the test of the machine in the basic 

configuration is shown in the left part of Fig. 5 with thick dotted lines of 
purple and pink colours. The resultant characteristic boundaries of the 
gain coefficients are marked in the figure by the values of g1,2 min and 
g1,2 max, namely g1 ∈ 〈0,2〉 and g2 ∈ 〈0.5,1.1〉. It is further assumed that 
optimal solutions lie exactly within these boundaries, otherwise it would 
be necessary to identify new sub-models with more appropriate inputs 
for a specific MT configuration. 

arg max
g1,2∈〈0,2〉

[(

1 −

⃦
⃦δZ − ΣδZ sim

(
g1,2

)⃦
⃦

‖δZ − δZ‖

)

• 100
]ti

ti− 1

. (7) 

However, the fitness function from equation (7) considers the 
continuous acquisition of the measured deformation. This condition 
limits the use of equation (7) in practical applications. The purpose of 
GA is to simultaneously minimise the residuals between the measured 
and simulated values only at the time instants ti− 1 and ti according to the 
fitness function in equation (8) within the previously determined char-
acteristic boundaries, where i indicates the moments of changes in 
technological conditions. This approach enables post-process adaptation 
of model parameters with minimal intervention in production. 

arg min
g1∈〈0,2〉, g2∈〈0.5,1.1〉

[⃒
⃒δZ(ti− 1) − ΣδZ sim

(
g1,2, ti− 1

)⃒
⃒+

⃒
⃒δZ(ti) − ΣδZ sim

(
g1,2, ti

)⃒
⃒
]
.

(8) 

Fig. 5. Procedure of post-process adaptation to the verification test of the 
machine in the basic configuration: course of the optimised gain coefficients 
with marking of in-process measurement moments, mean, upper and lower 
optimisation boundaries (left) and detail of measured and simulated de-
formations before and after post-process adaptation (right). 

Fig. 6. Measured uncompensated deformations and approximations by the 
indirect and the post-process updated models with analysis of sub-model be-
haviours (left) and residuals (right) during the verification test of the machine 
in the basic configuration. 

D. Diví̌sek et al.                                                                                                                                                                                                                                 



Precision Engineering 88 (2024) 241–250

247

Optima are found in no more than 30 generations of 500 individuals. 
The gain coefficients found in the described manner of setting the 
technological conditions from the verification test introduced in Fig. 3 
are shown in left part of Fig. 5 by purple and pink curves. Both courses 
lie within characteristic boundaries. 

The enhanced efficiency of the compensation model from equation 
(6) with post-process update parameters applied to the same test of 
Fig. 3 where the gain coefficients g1 and g2 were identified is shown in 
Fig. 6. The left part of Fig. 6 contains analysis of sub-models from 
equations (5) and (6) resulting in approximations by indirect model with 
and without post-process updated parameters. The right part of Fig. 6 
depicts residuals after applications of models from equation (5) and 
equation (6) with post-process updated parameters using equation (8) as 
the fitness function. For comparison, the hypothetical residual resulting 
from the application of the model optimised by equation (7) fitness 
function is depicted in red dotted curve. 

The model efficiency increases from the initial fit = 35% to fit = 79% 
owing to the post-process update. The efficiency of the optimised model 
by equation (7) considering continuous deformation behaviour is equal 
to 86%. From the comparison of the results of both optimisation criteria, 
it can be concluded that the post-process updated model is sufficiently 
effective. The achievement of the high efficiency will be evident in 
repeated production. The issue will be discussed in chapter 5. 

The same post-process update procedure is applied to the compen-
sation model for effective approximation of thermal errors induced 
during another verification test containing significant differences from 

the model calibration range. The difference consists of machine modu-
larity and the change in the MT axis configuration. The experimental set- 
up related to this part of the research is depicted in Fig. 7. The MT’s 
headstock equipped with exchangeable spindle head is shown on the left 
along with the second MT testing position [X0, Y+1049, Z0, W0]. The 
right part of the figure shows the progress of technological conditions 
and temperature inputs to the models from equations (5) and (6). 

Fitness function from equation (8) with default boundaries of both 
gain coefficients g1,2 ∈ 〈0,2〉 is given in equation (9). Comparing the 
result with the optimisation from equation (8) will allow to qualify the 
benefit of the set characteristic boundaries to gain coefficient g2 ∈ 〈0.5,
1.1〉. 

arg min
g1,2∈〈0,2〉

[⃒
⃒δZ(ti− 1) − ΣδZ sim

(
g1,2, ti− 1

)⃒
⃒+

⃒
⃒δZ(ti) − ΣδZ sim

(
g1,2, ti

)⃒
⃒
]

(9) 

The results for the experimental set-up under the conditions shown 
in Fig. 7 are depicted in Fig. 8. The courses of post-process optimised 
gain coefficients g1 and g2 by equations (8) and (9) are presented in the 
left part of Fig. 8 above the spindle speed with denoted time instants of 
changes in technological conditions. The measured thermal errors in the 
Z direction, simulated deformation models from equations (5) and (6) 
and the residues that would remain after applying the initial model and 
models optimised according to both boundaries from equations (8) and 
(9) are shown in the right part of the same figure. 

The model efficiency increases from the initial fit = 41% to fit = 77% 

Fig. 7. Input quantities of the compensation models during verification test of 
the machine equipped with an exchangeable spindle head in the second 
testing position. 

Fig. 8. The course of the optimised gain coefficients (left) and measured un-
compensated deformations, approximations and residuals after the indirect and 
the post-process updated model applications (right) during the verification test 
of the machine with an exchangeable head in the second testing position. 

D. Diví̌sek et al.                                                                                                                                                                                                                                 



Precision Engineering 88 (2024) 241–250

248

as a result of the post-process update with characteristic boundaries of 
gain coefficients to the specified machine configuration and set-up. The 
benefit of parameter optimisation with characteristic boundaries from 
equation (8) can be seen from the detail between the beginning and the 
first hour of the test in the right part of Fig. 8. The characteristic 
boundaries of the optimised gain coefficients reduce the number of the 
local extrema of equation (6) solutions and the result tends more to-
wards the optimal solution of the fitness function from equation (7). A 
similar benefit should be seen between the fourth and fifth hours of the 
test. In this interval, however, the optimisation worsens the situation 
after compensation by the initial model. Considering the initial bound-
aries of the gain coefficients in equation (9) decreases the model effi-
ciency by 4% compared to the characteristic boundaries in equation (8). 
The deterioration of efficiency is particularly noticeable in the two 
critical intervals of the test. Calibration of new sub-models describing 
the spindle speed activity in different machine axis configurations and 
modularity would be necessary to further increase the compensation 
model efficiency. 

5. Application of the post-process update approach in repetitive 
production 

Post-process adaptation is useful in repetitive production. The sec-
ond case study on a 5-axis milling centre equipped with an efficiently 

cooled high-speed spindle (Step-Tec HP 190) presents the entire process 
from the calibration of the indirect compensation model of thermal er-
rors in the dominant machine direction Z, through the model post- 
process adaptation to the repeated 8-h long NC code. The initial indi-
rect compensation model of the second target machine has the structure 
from equation (5). Calibration of the model follows the procedure given 
in Section 3.2 and the results are shown in Fig. 9. 

The repetitive code for model verification consists of a spindle warm- 
up procedure, start-stop drill-like changes in spindle speed, and the 
presence of process liquid at half the six repetitions that is not part of the 
calibration setting. A balanced mandrel clamped in the spindle was 
sensed at a frequency of 5 min− 1 by a tool touch probe (Heidenhain TT 
140) clamped on the table top. The sensing procedure by the tool touch 
probe took less than 1 min. The principle of TCP measurement, the test 
set-up and the course of the first drill-like verification test is shown in 
Fig. 10. The settings follow the MT manufacturer’s requirements for a 
real production case. 

The initial indirect compensation model was applied to the first 
repetition of the drill-like verification test and subjected to the post- 
process adaptation mechanism described in Fig. 4 with fitness func-
tion from equation (9). Both the initial indirect compensation model and 
the post-process updated model were further applied to two repetitions 
of the same NC code used for adaptation and three repetitions of the 
same NC code in addition with the presence of process liquid. The results 

Fig. 9. Development of an indirect compensation model of the 5-axis milling 
centre’s thermo-mechanical behaviour in the Z-axis caused by spindle rotation: 
input quantities during the calibration measurement (left) and resulting 
description (right). 

Fig. 10. Input quantities of the compensation model during first repetition of 
drill-like verification test performed on a 5-axis milling centre (left) and mea-
surement set-up using a tool touch probe and machine under the impact of the 
process liquid (right). 
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are depicted in Fig. 11 with the first test used for post-process adaptation 
highlighted. 

Average efficiency of initial indirect compensation model reached fit 
= 40% over six repetition of drill-like verification test. Post-process 
updated model using fitness function form equation (9) increase the 
theoretical efficiency during the adaptive procedure, where gain co-
efficients g1 and g2 were optimised, by 28% to a value of fit = 90%. The 
decrease in the average efficiency of the post-process updated model 
application for the rest five repetitions of the drill-like test is on average 
12% to fit = 78%. The average efficiency achieved by the post-process 
updated model is therefore 38% higher compared to the initial indi-
rect compensation model. From the results of the experimental setup, it 
can be observed the presence of the process liquid has a negligible 
impact on the thermal error of the spindle itself. Its importance will be 
more significant during the removal of cut-off material, cooling of the 
cutting process and the workpiece. 

Data for post-process adaptation can be obtained during machining 
of the first workpiece with active indirect compensation in the MT 
control system, i.e. the first workpiece is machined with lower, but still 
increased, accuracy. The application of the adapted model is carried out 
on similar workpieces in repeated production. 

A different way to obtain the necessary data for updating the model 
parameters is to machine the workpiece with additional material, 
measure the functional surfaces, identify and optimise the gain co-
efficients, enter the coefficients into the model and finish the workpiece. 
In practice, the cylindricity of the turned/ground workpiece is solved in 
a similar way. 

6. Conclusions 

The presented research provides an approach to post-process 
updating of an indirect compensation model of MT thermal errors. 
Post-process updating lies on the boundary between indirect compen-
sation method and adaptive compensation combining an indirect model 
with real time in-process measurements. The approach uses a granular 
structure of TF-based models and a gain scheduling strategy to update 
model parameters to areas outside of the calibration range characterised 
by a nonlinearity and inhomogeneity of the MT thermo-mechanical 
system. A heuristic method of GA is used to automatically optimise 
the gain coefficients added to the compensation model. Direct mea-
surements of residual thermal errors at moments of change in techno-
logical conditions are the only feedback of the system, minimising 
disruption to the production process and preserving the integrity of the 
workpiece surface. This approach is particularly useful in repetitive 
production, as it significantly increases the efficiency of compensations. 

The capabilities of post-process adaptation of thermal error 
compensation models were demonstrated on two case studies. First, the 
identification process of an initial indirect compensation model was 
realised on a heavy-duty milling machine with a horizontal headstock. 
The initial model approximates the influences of ambient temperature 
changes and spindle rotation with respect to the differences between 
heating and cooling phases. The model was calibrated within idle load 
conditions for the MT in the basic configuration and in one position of 
the machine axes. The parameters of the initial model were subsequently 
updated post-process to effectively approximate thermal errors induced 
by the machine operating in a configuration with an exchangeable 
spindle head, variable spindle speeds and in different positions of the 
workspace. The approach’s high potential is indicated by an 40% 

Fig. 11. Measured deformations and residuals after indirect and post-process updated model applications during five separate repetitions of a drill-like verification 
test on a 5-axis milling centre. The test used to post-process model parameter adaptation is boxed in red. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.) 
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increase in the average efficiency of the updated model compared to the 
initial model. The importance of quality input values from system 
feedback was emphasized. Second, the advantages of the post-process 
updated model were presented on a repeatedly executed NC program 
specified by the manufacturer of a 5-axis milling centre equipped with a 
high-speed spindle and initial indirect compensation model patterned 
after the previous target machine. The post-process adapted model 
showed high efficiency of compensation values during application to six 
repetitions of drill-like experiment with start-stop variation of spindle 
speed and presence of process liquid. The average efficiency increase of 
the updated model was 38% compared to the initial model. 

The values of the gain coefficients are unique for each setting of the 
technological parameters. The development of the gain coefficients 
cannot be generalised, partially because of the different conditions of the 
processes to which they are optimised. However, in follow-up research, 
linking the updating gain coefficients with the conditions of a known 
production process to which they are optimised could enable future 
application to similar production settings. Within the context of soundly 
anchored Industry 4.0 principles, the development of smart production 
systems and horizontal machine monitoring, these visions are real. 
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