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Abstract

This habilitation thesis combines two fields of mathematics – the main one is Combinatorics on
Words and combinatorial results are applied in Random Number Generation. It is written in
the form of a collection of papers – all of them besides the last one have been already published
in scientific journals, the last one has been submitted. The collection is accompanied with a text
presenting in a nutshell and at the same time in a way comprehensive also for non-specialists
the content of the papers. The following six papers have been chosen

1. Sturmian Jungle (or Garden?) on Multiliteral Alphabets [8];

2. Infinite Words with Finite Defect [9];

3. On the Brlek–Reutenauer Conjecture [10];

4. Proof of the Brlek–Reutenauer Conjecture [11];

5. Infinite Words with Well Distributed Occurrences [5];

6. Pseudorandom Number Generators Based on Infinite Words [6]

in order to draw a picture that is self-consistent and illustrates very well the steps done by
the author in the last five years in her research. The first paper is purely combinatorial, it is
devoted to the study of a famous class of infinite words – Sturmian words – and in particular
to their generalization to multiliteral alphabets. Combinatorics on Words is treated here from
many perspectives and the topic of richness in palindromes is opened already in this study. The
following three papers study palindromes in infinite words, in particular, they deal with richness
and defect of infinite words. Recently, this subject has been very popular in Combinatorics on
Words and several research groups have contributed to its deeper exploration. One of our main
contribution is the proof of a conjecture stated by Brlek and Reutenauer. In the papers 2., 3.,
and 4. our thorny, but successful path to its complete proof is described. The last two papers
contain applications of Combinatorics on Words in Random Number Generation. We study
there a new property of infinite words – baptized well distributed occurrences – that was born
in connection with random number generation. It is a sufficient condition for absence of the
lattice structure when pseudorandom number generators are mixed according to an infinite word.
We succeeded to prove aperiodicity and absence of the lattice structure for arising generators,
however, their statistical testing shows – to our pleasure – that such generators are almost as fast
as the original generators and their other statistical properties resemble much more to a random
sequence in comparison to the original generators. This means that such generators are suitable
for use in practice.

Results of all above six papers were presented by the habilitation candidate in the form of
lectures at international conferences: Combinatorial generalizations of Sturmian words from the
first paper were introduced at NORCOM 2010 (the 10th Nordic Combinatorial Conference) in
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Reykjav́ık, Island, in May 2010, and at Joint Mathematical Conference CSASC 2010, session
Discrete Dynamical Systems, in Prague, in January 2010. The results on richness, defect, and the
Brlek–Reutenauer conjecture (items 2., 3., 4. of the above list) were presented at Česko-slovenská
MELA (Meeting on Languages) in Telč as an invited lecture in September 2012, at RuFiDim
(Russian Finnish Symposium on Discrete Mathematics) in Turku, Finland, in September 2012,
and at Workshop on Challenges in Combinatorics on Words in Toronto, Canada, in April 2013.
The talks on pseudorandom number generators based on infinite words with well distributed
occurrences were given at WORDS 2013 in Turku, Finland, in September 2013, and at Česko-
slovenská MELA in Telč in September 2013. Moreover, a lecture on application of Combinatorics
on Words in Random Number Generation was held in April 2014 within a research stay at the
University of Oulu, Finland. Last but not least, in 2013 the candidate was laureate of the award
L’Oréal UNESCO For Women in Science for the project Application of Combinatorics on Words
in Cryptology that was closely related to the results summarized in the last two papers.
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Chapter 1

Combinatorics on Words

Let us start our look inside the subject of Combinatorics on Words in a gentle manner. After
this gentle introduction, we will have at hand the necessary background to start presentation of
our own results from Section 1.2.2 on. For Czech readers we provided such an easy introduction
in [4].

There are two moments considered as the birth of Combinatorics on Words. According to
the one we choose this discipline is almost 110 or almost 75 years old.

1.1 Axel Thue

The Norwegian number theorist and logician Thue known in particular for his results in Dio-
phantine approximations published in 1906 in an obscure Norwegian journal [36] answers to the
following questions:
Question 1: “Does there exist an infinite binary word that does not contain cubes?” Let
us illustrate on a concrete example the notions from his question. An infinite binary word is
an infinite sequence consisting of only two symbols, say a, b. Take for simplicity a periodic
sequence:

abbabbabbabbabbabbabbabbabb . . . . (1.1.1)

It is thus an infinite repetition of the chain abb, which we usually denote (abb)ω. Such a word
contains a cube because for instance the chain abb occurs three times in a row in this word:

abbabbabbabbabbabbabbabbabb . . . .

Question 2: “Does there exist an infinite ternary word (consisting of three symbols) that does
not contain squares?” A square is a double repetition of a chain.

Both of these questions were answered by Thue confirmatively. Moreover he explained that
he had no specific application in his mind, but he studied these questions since he found them
interesting.

1.1.1 The Thue–Morse word

The Thue–Morse word provided by Thue as an example of an infinite word without cubes
consisting of two symbols 0 and 1 – that answers thus positively Question 1 – can be constructed
by several equivalent ways. Let us provide three of them.

1. The Thue–Morse word uTM = u0u1u2 . . . is an infinite word given by a recurrence relation:

u0 = 0, u2n = un and u2n+1 = 1− un for n ≥ 0.
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2. Let us denote s2(n) the sum of digits in the binary expansion of n ∈ N. 1 Then the
Thue–Morse word uTM = u0u1u2 . . . satisfies un = s2(n) mod 2 for all n ∈ N.

3. Let us define a morphism ϕTM: {0, 1}∗ → {0, 1}∗ by

ϕTM(0) = 01 and ϕTM(1) = 10,

where {0, 1}∗ denotes the set of all finite sequences consisting of symbols 0 and 1. Then
the Thue–Morse word uTM is the so-called fixed point of ϕTM starting in 0. In order to
get the fixed point, we apply the morphism repeatedly

ϕ0
TM(0) = 0

ϕ1
TM(0) = 01

ϕ2
TM(0) = 0110

ϕ3
TM(0) = 0110100110010110

ϕ4
TM(0) = 01101001100101101001011001101001.

(1.1.2)

Since every iteration is the prefix of the next iteration and their lengths are strictly growing,
it is possible to find an infinite word such that for all n the word ϕn

TM(0) is its prefix.
This infinite word is the unique fixed point uTM. We use the symbolic notation uTM =
limn→+∞ ϕn

TM(0).

Thue further constructed an infinite word v over {0, 1, 2} that does not contain squares and
responded hence positively also to Question 2. For n ≥ 1 he denoted by vn the number of ones
between the n-th and (n+ 1)-th occurrence of zero in the Thue–Morse word. The desired word
was then v = v1v2v3 . . ., i.e.,

uTM︸︷︷︸
v

= 0 11︸︷︷︸
2

0 1︸︷︷︸
1

0 ︸︷︷︸
0

0 11︸︷︷︸
2

0 ︸︷︷︸
0

0 1︸︷︷︸
1

0 11︸︷︷︸
2

0 . . .

Since the result of Thue did not become known, Marston Morse rediscovered the Thue–Morse
word in 1921 when he was studying differential geometry [33].

1.1.2 Dictionary of Combinatorics on Words

In order to describe the second moment considered as the birth of Combinatorics on Words and in
order to present our results in the sequel, we have to introduce basic notions from Combinatorics
on Words. By A we denote a finite set of symbols, usually called letters. The set A is therefore
called an alphabet. A finite string w = w0w1 . . . wn−1 of letters of A is said to be a finite
word, its length is denoted by |w| = n. Finite words over A together with the operation of
concatenation and the empty word ε as the neutral element form a monoid A∗. The map

w = w0w1 . . . wn−1 7→ w = wn−1wn−2 . . . w0

is a bijection on A∗ and the word w is called the reversal or the mirror image of w. A word
w which coincides with its mirror image is a palindrome.

Under an infinite word we understand an infinite string u = u0u1u2 . . . of letters from A.
A finite word w is a factor of a word v (finite or infinite) if there exist words p and s such that
v = pws. If p = ε, then w is said to be a prefix of v. If s = ε, then w is a suffix of v.

1N stands everywhere for the set {0, 1, 2, . . .}.
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The language L(u) of an infinite word u is the set of all its factors. Factors of u of length
n form the set denoted by Ln(u). Clearly, L(u) = ∪n∈NLn(u). We say that the language L(u)
is closed under reversal if L(u) contains with every factor w also its reversal w.

For any factor w ∈ L(u), there exists an index i such that w is a prefix of the infinite word
uiui+1ui+2 . . .. Such an index i is called an occurrence of w in u. If each factor of u occurs
infinitely many times in u, the infinite word u is said to be recurrent. If the language of u
is closed under reversal, then u is recurrent (a proof can be found in [24]). The infinite word
u is said to be uniformly recurrent if u is recurrent and for any factor w of u the distances
between successive occurrences of w form a bounded sequence.

The (factor) complexity of an infinite word u is the map C : N 7→ N defined by C(n) =
#Ln(u). To determine the increment of complexity of an infinite word u, one has to count the
possible extensions of factors of length n. A left extension of w ∈ L(u) is any letter a ∈ A
such that aw ∈ L(u). The set of all left extensions of a factor w will be denoted by Lext(w).
We will mostly deal with recurrent infinite words u. In this case, any factor of u has at least
one left extension. A factor w is called left special (or LS for short) if w has at least two left
extensions. Clearly, any prefix of a LS factor is LS as well. Similarly, one can define a right
extension, a right special (or RS) factor, Rext(w). We say that a factor w of u is a bispecial
(or BS) factor if it is both RS and LS. Using the introduced terminology, the increment or the
first difference of complexity ∆C(n) = C(n+ 1)− C(n) is given by

∆C(n) =
∑

w∈Ln(u)

(
#Rext(w)− 1

)
=

∑

w∈Ln(u)

(
#Lext(w)− 1

)
. (1.1.3)

A non-zero contribution to ∆C(n) in the left-hand sum is given only by RS factors w ∈ Ln(u),
and for recurrent words, a non-zero contribution to ∆C(n) in the right-hand sum is provided
only by LS factors w ∈ Ln(u). If we denote Bext(w) = {awb ∈ L(u)

∣∣ a, b ∈ A}, then the
second difference of complexity ∆2C(n) = ∆C(n+1)−∆C(n) = C(n+2)−2C(n+1)+C(n)
is given by

∆2C(n) =
∑

w∈Ln(u)

(
#Bext(w)−#Rext(w)−#Lext(w) + 1

)
. (1.1.4)

Denote by b(w) the quantity

b(w) = #Bext(w)−#Rext(w)−#Lext(w) + 1.

The number b(w) is called the bilateral order of the factor w and was introduced in [18]. It
is readily seen that if w is not a BS factor, then b(w) = 0. Bispecial factors are distinguished
according to their bilateral order in the following way:

• if b(w) > 0, then w is a strong BS factor;

• if b(w) < 0, then w is a weak BS factor;

• if b(w) = 0, then w is an ordinary BS factor.

We will moreover need the notion of palindromic extension. The set of palindromic
extensions of a palindrome w ∈ L(u) is defined by Pext(w) = {awa ∈ L(u) | a ∈ A}. The
number of palindromes of a fixed length occurring in an infinite word is measured by the so
called palindromic complexity P, a map which assigns to any non-negative integer n the
number

P(n) = #{w ∈ Ln(u) | w is a palindrome} .
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Let j, k, j < k, be two successive occurrences of a factor w in u. Then ujuj+1 . . . uk−1 is
called a return word of w. If v is a return word of w, then the word vw is called a complete
return word of w. It is obvious that an infinite recurrent word is uniformly recurrent if and
only if the set of return words of any of its factors is finite.

We will often work with morphisms, i.e., mappings ϕ: A∗ → A∗ satisfying for any v, w ∈ A∗
that ϕ(vw) = ϕ(v)ϕ(w). A morphism is thus uniquely given if we define images of letters ϕ(a)
for all a ∈ A. A morphism can be naturally extended to infinite words:

ϕ(u0u1u2 . . .) = ϕ(u0)ϕ(u1)ϕ(u2) . . .

If an infinite word u satisfies ϕ(u) = u, we call u a fixed point of the morphism ϕ.

Example 1. Let us illustrate the introduced notions on the infinite word u = (abb)ω. Its
alphabet is A = {a, b}. The infinite word u is uniformly recurrent and its language is closed
under reversal. The word babb is a factor of length 4 of u. The word abbabba is a prefix of length
7 of u. The only LS factors are ε and b. Consequently ∆C(n) = 0 for all n ≥ 2. It is readily seen
that the set of all factors of length 2 of u equals L2(u) = {ab, bb, ba}. Therefore C(n) = 3 for all
n ≥ 2. The only BS factors are ε and b with b(ε) = 0 and b(b) = −1. It is not difficult to see
that there is one palindrome of any even length, i.e., P(2n) = 1 for every n ∈ N, and there are
two palindromes of length one – the letters a, b – and one palindrome of every odd length larger
than one, i.e., P(2n+ 3) = 1 for every n ∈ N. Since u0u1u2u3u4u5u6u7u8u9 . . . = abbabbabba . . .,
the index i = 2 is an occurrence of the factor babba and bab is a return word of babba and
babbabba is a complete return word of babba. If we define a morphism ϕ on {a, b}∗ by ϕ(a) = abb
and ϕ(b) = abb, then u is evidently a fixed point of ϕ.

1.2 Gustav A. Hedlund and Marston Morse

Even more often one considers for the birth of Combinatorics on Words the famous paper [34]
by Hedlund and already mentioned Morse from 1940. When studying differential equations of
Sturm–Liouville type, they discovered a certain class of infinite words and named them in honour
of the French mathematician J. C. F. Sturm. Hedlund and Morse noticed that not every map
f : N→ N is the factor complexity of an infinite word. Infinite words are eventually periodic,
i.e., they are of the form wvω (where v, w are finite words over the corresponding alphabet and
ω denotes an infinite repetition) if and only if their factor complexity is eventually constant, i.e.,
there exists a constant K such that C(n) = K for sufficiently large n. The words that are not
eventually periodic are called aperiodic. For aperiodic words Hedlund and Morse showed that
for all n ∈ N their factor complexity satisfies

C(n) ≥ n+ 1.

1.2.1 Sturmian words

Sturmian words are aperiodic words with the lowest possible complexity.

Definition 1. An infinite word u is called Sturmian if for all n ∈ N it holds

C(n) = n+ 1.

They have been intensively studied from the very beginning. Besides their low factor com-
plexity the reason of their popularity is the fact that the famous Fibonacci word belongs to this
class.
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Example 2. The fixed point of the morphism ϕF : {0, 1}∗ → {0, 1}∗ defined by ϕF(0) =
01, ϕF(1) = 0 is called the Fibonacci word uF. Let us write down a prefix of the Fibonacci
word uF = limn→+∞ ϕn

F(0) = 0100101001001010010100100101001001 . . .
The Fibonacci word is closely connected to the Fibonacci numbers. Let us recall that the

Fibonacci numbers were introduced by Leonardo of Pisa, known as Fibonacci, in a mathematical
game dealing with rabbits: An adult couple (denote it 0) has always after one month a pair of
young (denote it 1) and that pair of young grows up after one month. Fibonacci was interested in
how large the population of rabbits would be after n months provided the rabbits are immortal.

It is easy to see that the response is provided by the Fibonacci word. If we denote the length
of the n-iteration Fn = |ϕn

F(0)|, it follows that the number of rabbits after n months is equal to
Fn. It is not difficult to verify that F0 = 1, F1 = 2 and Fn+1 = Fn + Fn−1.

Thanks to a long and fruitful study of Sturmian words, a lot of properties and equivalent
definitions of these words are known nowadays.

If u is a Sturmian word, then u has the following properties:

• u is binary;

• u is aperiodic;

• L(u) is closed under reversal;

• L(u) contains infinitely many palindromes;

• u is uniformly recurrent;

• L(u) contains no weak bispecial factors.

The following theorem summarizes several well-known combinatorial characterizations of
Sturmian words.

Theorem 1. Let u be an infinite word. The properties listed below are equivalent:

(i) u is Sturmian, i.e., C(n) = n+ 1 for all n ∈ N;

(ii) u is binary and contains a unique left special factor of every length;

(iii) u is binary, aperiodic and every bispecial factor is ordinary;

(iv) any factor of u has exactly two return words;

(v) u contains one palindrome of every even length and two palindromes of every odd length;

(vi) u is binary and every palindrome has a unique palindromic extension.

Equivalence of the first three statements is evident using (1.1.3), resp. (1.1.4). The cha-
racterization by return words is due to Vuillon [37]. The two equivalent properties concerning
palindromes have been proved by Droubay and Pirillo [21]. Notice that the fifth property can
be equivalently rewritten as

P(n) + P(n+ 1) = 3 for all n ∈ N,

and also as
P(n+ 2) = P(n) for all n ∈ N.

Let us recall that P(0) = 1 since the empty word is considered to be a palindrome.
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1.2.2 Combinatorial Generalizations of Sturmian Words

In the paper Sturmian Jungle (or Garden?) on Multiliteral Alphabets [8] (see page 28
for the whole text), we were interested in the generalization of equivalent combinatorial chara-
cterizations of Sturmian words to multiliteral alphabets. Let us describe here briefly results of
this paper that is a part of the habilitation. We will write down and baptize the generalizations
of properties from Theorem 1. Let u be an infinite word over the alphabet A. Denote k = #A.

(i) Property C:
the factor complexity of u satisfies C(n) = (k − 1)n+ 1 for all n ∈ N.

(ii) Property LR:

u contains one left special and one right special factor of every length.

(iii) Property BO:

all bispecial factors of u are ordinary.

(iv) Property R:

any factor of u has exactly k return words.

(v) Property P:

the palindromic complexity of u satisfies P(n) + P(n+ 1) = k + 1 for all n ∈ N.

(vi) Property PE :

every palindrome has a unique palindromic extension in u.

The most studied generalizations of Sturmian words are Arnoux–Rauzy words (AR words) and
words coding k-interval exchange transformation (k-iet words). Arnoux–Rauzy words are
defined as words with the language closed under reversal and having for every length n exactly
one left special factor of length n, and moreover, this factor has all possible left extensions. We
will not recall the definition of k-iet words here because they will not be treated anywhere else
in the text. We will only recall that AR words fulfill all Properties: C,LR,BO,R,P,PE and
k-iet words satisfy Properties: C,BO,R. If moreover the permutation defining the k-iet word is
symmetric, then these words have Properties P and PE . Property LR does not hold for k-iet
words.

No two of the above properties are equivalent on the set of infinite words over a multiliteral
alphabet. We have shown the non-equivalence by counterexamples. However some properties
imply others, or it can be shown that a couple of properties are equivalent on a certain class of
infinite words. Before listing them, let us point out that there are three types of contributions
of the paper [8]:

• a detailed summary of known relations between Properties (i) – (vi);

• discovery of new relations between Properties (i) – (vi);

• a rich summary of new and known examples of concrete infinite words illustrating relations
between Properties (i) – (vi).

1. LR implies none of Properties C,BO,R,P,PE (easy to find an example).

2. none of Properties C,BO,R,P,PE imply LR (known example – k-iet words).
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3. R 6⇒ P (example taken from our paper [13]).

4. C 6⇒ R (known example).

5. Let u be a uniformly recurrent word. Then BO ⇒ R (consequence of our results from [13]).

6. Let u be a uniformly recurrent ternary word. Then BO ⇔ R (consequence of the previous
statement and of our results from [13]).

7. Let u be a uniformly recurrent, but not ternary word. Then R 6⇒ BO (example taken
from our paper [13]).

8. PE 6⇒ C (known example).

9. Let u be a ternary word with the language closed under reversal. Then C ⇒ P (consequence
of our results from [12]).

10. Let u be a ternary word with the language closed under reversal. Then BO ⇒ PE
(consequence of our results from [12]).

11. Let u be a ternary word with the language closed under reversal. Then PE 6⇒ C (example
taken from our paper [12]).

12. PE ⇒ P (by definition).

13. P 6⇒ PE (example taken from our paper [12]).

14. Let u be a ternary word with the language closed under reversal. Then R ⇒ PE (conse-
quence of our results from [12] and [13]).

15. Let u be a ternary word with the language closed under reversal. Then PE 6⇒ R (example
taken from our paper [12]).

16. Let u be an infinite word with the language closed under reversal. Assume C. Then
BO ⇔ PE (original result).

17. Let u be a uniformly recurrent word. Assume C. Then PE ⇒ R (consequence of previous
statements).

18. Let u be a uniformly recurrent word. Assume C. Then R 6⇒ P (example taken from our
paper [13]).

19. Let u be an infinite word with the language closed under reversal. Then R 6⇒ P (example
taken from our paper [13]).

20. Let u be an infinite word with the language closed under reversal. Assume C. Then P ⇔
every non-palindromic BS factor w of u satisfies b(w) = 0 and every palindromic BS factor
w of u satisfies b(w) = #Pext(w)− 1 (original result).
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1.3 Palindromes in Nature

We know already that a palindrome is a word that stays the same when read backwards. Nobody
can be surprised that in natural languages there are no especially long palindromes. The longest
palindromic words in Czech are those ones of the type “nepochopen” (not understood), “nepo-
topen” (not sunk), “nezasazen” (not planted), “nezařazen” (not filed). In English the longest
palindromic word is “tattarrattat”. Its victory is however doubtful because it is not a common
word but an invention by James Joyce who used in his novel Ulysses [29] this neologism to
denote strong knocking on the door:

“I was just beginning to yawn with nerves thinking he was trying to make a fool of me when
I knew his tattarrattat at the door.”

The sentences might be more interesting from the palindromic point of view. They give rise
to palindromes if we release gaps between words and eventually diacritics. In Czech the best
known palindromic sentences are the following ones:

“Bažantu padá za záda putna žab.” (A bucket of frogs is falling behind the pheasant’s back.)
“Jelenovi pivo nelej.” (Do not pour beer to deer.)
“Kobyla má malý bok.” (Mares have small sides.)

Of course, palindromic numbers might be of interest, too. In particular when there is at least
a partial explanation for their reason. For instance there is a palindrome consisting of odd
ciphers related to the foundation of the Charles Bridge 135797531. The Museum of the Charles
Bridge in Prague uses it as a part of its logo. According to the historian of astronomy Zdeněk
Horský the foundation stone might have been laid on July, 9, 1357 at 5:31. There was a favorable
constellation of Sun and Saturn at that moment. The palindrome thus consists of the following
items: year – day – month – hour – minutes.

1.4 Palindromes in Infinite Words

A much more interesting situation comes to light in the world of infinite words. Palindromes of
any length can occur here. However, any anarchy is not reigning here neither.

The palindromic complexity is bounded by the first difference of factor complexity.

Proposition 1 ([3]). Let u be an infinite word with the language closed under reversal. Then

P(n) + P(n+ 1) ≤ ∆C(n) + 2 for all n ∈ N. (1.4.1)

Moreover, an infinite word can contain in any of its factors w at most |w| + 1 distinct
palindromes (including the empty word). This upper bound on the number of palindromes
occurring in a finite word given by Droubay, Justin, and Pirillo [20] initiated many interesting
investigations on palindromes in infinite words. A finite word w containing the utmost number
|w| + 1 of palindromes is called rich. An infinite word is said to be rich if all its factors are
rich. (We keep here the terminology introduced by Glen et al. [24] in 2007, which seems to us
to be prevalent nowadays. However, Brlek et al. [15] baptized such words full already in 2004.)

There exist several equivalent characterization of rich words. The most recent one using
bilateral orders of factors was stated in the paper Sturmian Jungle (or Garden?) on
Multiliteral Alphabets [8] that is a part of this habilitation.
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1.5 Defect and Richness

Brlek et al. [15] suggested to study the defect D(w) of a finite word w defined as the difference
between the upper bound |w| + 1 and the actual number of palindromes contained in w. The
defect of an infinite word is then defined as the maximal defect of a factor of the infinite word.
In this convention, rich words are precisely the words with zero defect.

Since we focus on palindromes in infinite words, richness, and defect, we will introduce several
notions and known results related to this topic. Let us remark that not only all prefixes of rich
words are rich, but also all factors are rich. A result from [20] provides us with a handful tool
which helps to evaluate the defect of a factor.

Proposition 2 ([20]). A finite or infinite word u is rich if and only if the longest palindromic
suffix of w occurs exactly once in w for any prefix w of u.

The longest palindromic suffix of a factor w will occur often in our considerations, therefore
we will denote it by lps(w). In accordance with the terminology introduced in [20], the factor
with a unique occurrence in another factor is called unioccurrent. The proof of the above
proposition is based on the fact that there exists a bijection between the set of palindromes
contained in w and the first prefixes of w ending in the corresponding palindromes. It follows
that the other prefixes cause the increment of the defect.

Corollary 1. The defect D(w) of a finite word w is equal to the number of prefixes w′ of w, for
which the lps(w′) is not unioccurrent in w′.

This corollary implies that D(v) ≥ D(w) whenever w is a factor of v. It enables to give
a reasonable definition of the defect of an infinite word (see [15]).

Definition 2. The defect of an infinite word u is the number (finite or infinite)

D(u) = sup{D(w)
∣∣ w is a prefix of u} .

Let us point out several facts concerning defects that are easy to prove:

1. If we consider all factors of a finite or an infinite word u, we obtain the same defect, i.e.,

D(u) = sup{D(w)
∣∣ w ∈ L(u)} .

2. Any infinite word with finite defect contains infinitely many palindromes.

3. Infinite words with zero defect correspond exactly to rich words.

The authors of [20] who were the first ones to tackle the problem of richness showed that
Sturmian and episturmian words are rich. (Let us recall that episturmian words are defined
as infinite words with the language closed under reversal and having at most one left special
factor of every length.) In [15], an insight into the richness of periodic words can be found.
Further on, let us summarize equivalent characterizations of rich words.

Theorem 2. Let u be an infinite word with the language closed under reversal. Then the
following statements are equivalent:

1. The word u is rich.

2. For any prefix w of u the lps(w) is unioccurrent in w.

11



3. All complete return words of any palindrome in u are palindromes.

4. The equality
P(n) + P(n+ 1) = ∆C(n) + 2

holds for all n ∈ N.

5. Any bispecial factor w of u satisfies:

• if w is non-palindromic, then b(w) = 0,

• if w is a palindrome, then b(w) = #Pext(w)− 1.

Glen et al. [24] have proved the characterization based on the notion of complete return
words, Bucci et al. [17] have characterized richness using the palindromic and factor complexity,
and most recently, we have found a new characterization of rich words considering bilateral
orders of factors [8].

Our aim in the sequel is to introduce the papers [9, 10, 11] devoted to the study of defect. All
of them are embodied in this habilitation. Periodic words with finite defect have been studied
in [15] and in [24]. It holds that the defect of an infinite periodic word with the minimal period
w is finite if and only if w = pq, where both p and q are palindromes. In [24] words with finite
defect have been baptized almost rich.

1.5.1 Almost Rich Words

The following characterization of infinite words with finite defect – called as well almost rich
words – follows from observations made in [24].

Theorem 3. Let u be a uniformly recurrent word containing infinitely many palindromes. Then
the following statements are equivalent:

1. The word u is almost rich.

2. There exists an integer H such that for any prefix w of u with |w| ≥ H, the lps(w) is
unioccurrent in w.

3. There exists an integer K such that all complete return words of any palindrome in u of
length at least K are palindromes.

It is easy to see that the second statement of Theorem 3 can be equivalently rewritten as:
There exists an integer H such that for any factor w of u with |w| ≥ H, the lps(w) is unioccurrent
in w. Let us stress that if we put in the previous theorem D(u) = K = H = 0, all statements
become known results for rich words, see Theorem 2.

Example 3. Let us provide an example of a uniformly recurrent word u with finite defect and
let us find for u the lowest values of constants K and H from Theorem 3. Take the Fibonacci
word uF, i.e., the fixed point of ϕF: 0→ 01, 1→ 0. Define u as its morphic image σ(uF), where
σ: 0→ cabcbac, 1→ d, i.e.,

u = cabcbacdcabcbaccabcbacdcabcbacdcabcbaccabcbacdcabcbaccabcbacdcabcbacdcabcbac . . .

It is easy to show that all palindromes of length greater than one and the palindromes a,
b, and d have only palindromic complete return words. Hint: long palindromes in u contain in
their center images of non-empty palindromes from uF that have palindromic complete return
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words by the richness of uF. The only non-palindromic complete return word of c is cabc. In
order to show that D(u) = 1, it suffices to verify that no prefixes longer than cabc have c as
their longest palindromic suffix. This follows directly from the form of σ. The lowest values of
the constants K and H are: K = 2, H = 5.

In the paper Infinite Words with Finite Defect [9] (the complete text starts on the
page 57), we have proved a new characterization of infinite words with finite defect based on
a relation between the palindromic and factor complexity.

Theorem 4 ([9]). Let u be a uniformly recurrent word. Then u is almost rich if and only if
there exists an integer N such that

P(n) + P(n+ 1) = ∆C(n) + 2

holds for all n ≥ N .

Notice that if we set N = 0 in the previous theorem, then we obtain the known characte-
rization of rich words from Theorem 2 (which holds even under a weaker assumption that L(u)
is closed under reversal).

We will present here only the main ingredient of the proof of Theorem 4. Let u be an infinite
word with the language closed under reversal. Using the proof of Proposition 1, those n ∈ N for
which the equality

P(n) + P(n+ 1) = ∆C(n) + 2

holds can be characterized in the graph language.
An n-simple path e is a factor of u of length at least n+ 1 such that the only special (right

or left) factors of length n occurring in e are its prefix and suffix of length n. If w is the prefix
of e of length n and v is the suffix of e of length n, we say that the n-simple path e starts in
w and ends in v. We will denote by Gn(u) an undirected graph whose set of vertices is formed
by unordered pairs {w,w} such that w ∈ Ln(u) is right or left special. We connect two vertices
{w,w} and {v, v} by an unordered pair {e, e} if e or e is an n-simple path starting in w or w
and ending in v or v. Note that the graph Gn(u) may have multiple edges and loops.

Lemma 1 ([9]). Let u be an infinite word with the language closed under reversal. Let n ∈ N.
Then P(n) + P(n+ 1) = ∆C(n) + 2 if and only if both of the following conditions are met:

1. The graph obtained from Gn(u) by removing loops is a tree.

2. Any n-simple path forming a loop in the graph Gn(u) is a palindrome.

1.5.2 The Brlek–Reutenauer Conjecture

Despite the fact that numerous researchers study palindromes, only recently Brlek and Reutenauer
[16] have noticed that the value of defect is closely tied with the expression in (1.4.1) – let us
denote for an infinite word u by Tu(n) = ∆C(n)+2−P(n)−P(n+1). They have shown that for
a periodic infinite word u with the language closed under reversal, it holds 2D(u) =

∑+∞
n=0 Tu(n).

Their conjecture says that the same equality holds for all infinite words with the language closed
under reversal.

Conjecture 1 (The Brlek–Reutenauer conjecture). Let u be an infinite word with the language
closed under reversal. Then

2D(u) =

+∞∑

n=0

Tu(n) . (1.5.1)
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It is known from the paper [17] that Conjecture 1 holds for rich words (both sides equal zero
for them). As we have already mentioned, Brlek and Reutenauer provided a result for periodic
words.

Theorem 5 ([16]). Let u be a periodic infinite word. Then (1.5.1) holds.

Partial Proof of the Brlek–Reutenauer Conjecture

In the paper On the Brlek–Reutenauer Conjecture [10] (see the complete version on the
page 71), we have proved their conjecture for uniformly recurrent words.

Theorem 6 ([10]). If u is a uniformly recurrent infinite word with the language closed under
reversal, then (1.5.1) holds.

In the proof of Theorem 6 we used our result from [9] (recalled here as Theorem 4) to
show that either both sides of (1.5.1) are finite, or both of them are infinite. Further on, the
main idea was to construct for any almost rich uniformly recurrent word u a periodic word v
satisfying D(u) = D(v) and Tu(n) = Tv(n) for all n ∈ N. The proof was then finished because
by Theorem 5 the conjecture holds for periodic words. However, in the construction we had to
prove one more quite interesting statement on increasing squares in uniformly recurrent words
with finite defect.

Lemma 2 ([10]). Let u be an almost rich uniformly recurrent infinite word. Then the set

{w ∈ A∗ |ww ∈ L(u)}

is infinite.

The proof relied essentially on the uniform recurrence of the infinite word in question.

Proof of the Brlek–Reutenauer Conjecture

In the paper Proof of the Brlek–Reutenauer Conjecture [11] (consult the paper on the
page 79), we managed to find completely different arguments than in the previous paper [10]
that enabled us to prove Conjecture 1 in full generality without exploiting the result for periodic
words.

Theorem 7 ([11]). Let u be an infinite word with the language closed under reversal. Then

2D(u) =

+∞∑

n=0

Tu(n) . (1.5.2)

Let us provide the main ideas of the proof. We divided the proof into two steps:

1. Let u be an infinite word with the language closed under reversal. Assume D(u) < +∞
and

∑+∞
n=0 Tu(n) < +∞. Then 2D(u) =

∑+∞
n=0 Tu(n) .

Since the defect is finite, there exists H1 such that D(q) = D(u) for every prefix q of u
of length greater than or equal to H1 − 1. By the finiteness of

∑+∞
n=0 Tu(n), there exists

H2 such that Tu(n) = 0 for all n ≥ H2. Set H = max{H1, H2} and find a prefix p of u
containing all factors of length H. Clearly, D(p) = D(u) and

∑+∞
n=0 Tu(n) =

∑H−1
n=0 Tu(n).

In the sequel, we will use a theorem by Brlek and Reutenauer for finite words [16].
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Theorem 8 ([16]). For every finite word w we have

2D(w) =

|w|∑

n=0

Tw(n),

where Tw(n) = ∆Cw(n) + 2−Pw(n+ 1)−Pw(n) and the index w means that we consider
only factors of w.

We deduce the following equalities:

2D(u) = 2D(p) =

|p|∑

n=0

Tp(n) =
H−1∑

n=0

Tp(n) +

|p|∑

n=H

Tp(n) =
H−1∑

n=0

Tu(n) =
+∞∑

n=0

Tu(n),

where everything follows from the previous arguments; only the equality
∑|p|

n=H Tp(n) = 0
remains to be explained. Let us rewrite it in the following form:

∑|p|
n=H Tp(n) =

∑|p|
n=H

(
Cp(n+ 1)− Cp(n) + 2− Pp(n+ 1)− Pp(n)

)

= −Cp(H) + 2(|p| −H + 1)− 2
∑|p|

n=H Pp(n) + Pp(H).

We have to explain why the last expression equals zero: The factors of length H are either
palindromes of length H – their number is equal to Pp(H) – or they are non-palindromic
factors whose longest palindromic suffix is of course of length less than H. Such non-
palindromic factors are certainly not contained in the prefix q of length H − 1, therefore
their longest palindromic suffix is unioccurrent. Consequently, to any palindrome of length
less than H that does not occur in q, there are exactly two non-palindromic factors w and
w having it as its longest palindromic suffix. The number of such factors is therefore given
by twice the number of palindromes of length less than H that are not contained in q,

which is equal to 2(|p| − |q| −∑|p|n=H Pp(n)). This concludes the proof.

2. Let u be an infinite word with the language closed under reversal. Then D(u) is finite if
and only if

∑+∞
n=0 Tu(n) is finite.

This second part was proved using the graph theory, more precisely, using mainly Lemma 1.
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Chapter 2

Applications of Combinatorics on
Words in Random Number
Generation

We have seen that Combinatorics on Words may be considered as a more than 100 years old dis-
cipline founded by Axel Thue. When studying square-free and cube-free words, Thue explained
that he had no concrete application in mind, but he studied the questions because he found
them interesting. Unlike Thue we will show in this chapter that Combinatorics on Words may
be applied in such a practical domain as pseudorandom number generation.

Pseudorandom number generators aim to produce random numbers using a deterministic
process. No wonder they suffer from many defects. The most usual ones in the past – linear
congruential generators – are known to produce periodic sequences having a defect called the
lattice structure. Guimond et al. [27] proved that when two linear congruential generators are
combined using infinite words coding certain classes of quasicrystals or, equivalently, of cut-and-
project sets, the resulting sequence is aperiodic and has no lattice structure. For some other
related results concerning aperiodic pseudorandom generators we refer to [25, 26].

In the papers Pseudorandom Number Generators Based on Infinite Words [6] and
in its preliminary version Infinite Words with Well Distributed Occurrences [5], we have
substantially generalized the results of Guimond et al. [25, 26, 27]. For Czech readers, we have
in an accessible way presented the topic in [7]. The papers [5] and [6] (for their full version see
pages 86, resp. 99) make part of this habilitation.

We have found a combinatorial condition – well distributed occurrences, or WELLDOC
for short (the acronym WDO instead of WELLDOC was used in the preliminary paper [5]) –
that also guarantees absence of the lattice structure. The WELLDOC property for an infinite
word u over an alphabet A means that for any integer m and any factor w of u, the set of

Parikh vectors modulo m of prefixes of u preceding the occurrences of w coincides with Z|A|m .
In other words, among Parikh vectors modulo m of such prefixes one has all possible vectors,
where the Parikh vector of a finite word v over an alphabet A has its i-th component equal to
the number of occurrences of the i-th letter of A in v. Besides giving generators without lattice
structure, the WELLDOC property is an interesting combinatorial property of infinite words
itself. We have proved that the WELLDOC property holds for the family of Sturmian words,
and more generally for Arnoux–Rauzy words.

An infinite word with the WELLDOC property is then used to combine two linear congru-
ential generators (or other periodic generators) and form an infinite aperiodic sequence with
good statistical behavior. Using the TestU01 [23] and PractRand [19] statistical tests, we have
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moreover shown that not only the lattice structure is absent, but also other important pro-
perties of pseudorandom number generators are improved when linear congruential generators
are combined using infinite words having the WELLDOC property. Let us emphasize that the
theoretical results on aperiodicity and absence of the lattice structure hold when combining
any two periodic generators with the same output, not only linear congruential generators. In
practice, we recommend of course to use better generators than linear congruential generators
as the underlying ones.

2.1 Lattice Structure of Pseudorandom Number Generators

In the sequel, for the seek of simplicity, we understand under the notion of pseudorandom
number generator (PRNG) any sequence of nonnegative integers. The most illustrative example
of generators having the weakness called lattice structure are linear congruential generators
(already from dimension two, as shown by Marsaglia [32]). Let Z = (Zn)n∈N be a PRNG whose
output is a finite set M ⊂ N. We say that Z has the lattice structure if there exists a positive
integer t such that the set

{(Zi, Zi+1, . . . , Zi+t−1)
∣∣ i ∈ N}

is covered by a family of equidistant parallel hyperplanes in the Euclidean space Rt and at the
same time, these hyperplanes do not cover all points of the lattice

M t = {(A1, A2, . . . , At)
∣∣ Ai ∈M for all i ∈ {1, . . . , t}}.

Let us recall that a linear congruential generator (LCG for short) (Zn)n∈N is given by
parameters a,m, c ∈ N and defined by the recurrence relation Zn+1 = aZn + c mod m. An
example of an LCG with striking lattice structure is the generator RANDU, widely used in the
sixties of the 20th century. For t = 3 the consecutive triples of the generator RANDU, i.e.,
{(Zi, Zi+1, Zi+2)

∣∣ i ∈ N}, are covered by as few as 15 equidistant parallel hyperplanes that do
not cover by far the whole lattice {1, 2, . . . ,m− 1}3, see Figure 2.1.

Fig. 2.1: Triples of the RANDU generator, LCG with parameters a = (216 + 3),m = 231, c = 0,
are covered by as few as 15 equidistant parallel hyperplanes.

17



Guimond et al. [27] provided a sufficient condition for absence of the lattice structure – even
if they formulated it in a less general form (Lemma 2.3).

Theorem 9 ([27]). Let Z be a PRNG whose output is a finite set M ⊂ N containing at least
two elements. Assume that for every A,B ∈ M and for every ` ∈ N there exists an `-tuple
(A1, A2, . . . , A`) such that both (A1, A2, . . . , A`, A) and (A1, A2, . . . , A`, B) are (` + 1)-tuples of
the generator Z. Then Z has no lattice structure.

In words of Combinatorics on Words, the statement of the previous theorem may be refor-
mulated in the following form: Let Z be a PRNG whose output is a finite set M ⊂ N containing
at least two elements. If Z contains for any two letters A,B ∈ M and for any length ` ∈ N
a right special factor of length ` with right extensions A and B, then Z has no lattice structure.

2.2 Combination of Pseudorandom Number Generators

If we want to eliminate the lattice structure, it helps to combine generators in a smart way.
One of such methods has been introduced by Guimond et al. [25]. Let X = (Xn)n∈N and
Y = (Yn)n∈N be two not necessarily distinct PRNGs with the same output M ⊂ N and the same
period m ∈ N. Let u be an infinite binary word over the alphabet {a, b}. Then the generator

Z = (Zn)n∈N (2.2.1)

based on the word u is obtained by the following algorithm:

1. Read step by step the letters of u.

2. If you read a for the ith time, copy the ith symbol of X to the end of the constructed
sequence Z.

3. If you read b for the ith time, copy the ith symbol of Y to the end of the constructed
sequence Z.

It is easy to generalize this construction for infinite words over larger alphabets and to
combine thus more generators.

Example 4. Let X = (X1X2X3X4)
ω, Y = (Y1Y2Y3Y4)

ω and u = (abb)ω. Then

Z = X1Y1Y2X2Y3Y4X3Y1Y2X4Y3Y4X1Y1Y2 . . .

2.3 Words with Well Distributed Occurrences

Guimond et al. [27] proved that PRNGs based on a certain class of infinite words coding cut-
and-project sequences are aperiodic and have no lattice structure. We have generalized their
result and have found larger classes of words that guarantee aperiodicity and absence of the
lattice structure for generators based on such words [5, 6].

Definition 3 (WELLDOC property for binary words). We say that an aperiodic infinite word
u over {a, b} has well distributed occurrences (or has the WELLDOC property) if u =
u0u1u2 . . . satisfies for every positive integerm and for every factor w of u the following condition:
If we denote i0, i1, i2, . . . the occurrences of w in the word u, then

{(
|u0u1 . . . uij−1|a, |u0u1 . . . uij−1|b

)
mod m | j ∈ N

}
= Z2

m ,

where mod m is applied component-wise and |w|a denotes the number of occurrences of a in
the word w and Zm = {0, 1, . . . ,m− 1}.
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The WELLDOC property is defined for aperiodic words since it is evident that it never holds
for eventually periodic words. For words with well distributed occurrences we have proved the
following theorem.

Theorem 10 ([5]). Let Z be a PRNG from (2.2.1) based on a binary infinite word u with the
WELLDOC property. Then Z is aperiodic and has no lattice structure.

If we are given two concrete generators with period m and we want to guarantee absence of
the lattice structure only for them, it is sufficient to check whether the WELLDOC property
holds for the modulus equal to m.

Example 5. Let us show at first that there exist infinite words which do not have the WELL-
DOC property. Consider the Thue–Morse word defined in Section 1.1.1

uTM = abbabaabbaababbabaababbaabbabaab . . . ,

being the fixed point of the morphism ϕTM(a) = ab, ϕTM(b) = ba.
Indeed, if we take m = 2 and w = aa, then it follows from the form of the morphism ϕTM

that w has only odd occurrences ij . For example

i0 = 5, u0 . . . u4 = abbab, (|u0 . . . u4|a, |u0 . . . u4|b) = (2, 3),
i1 = 9, u0 . . . u8 = abbabaabb, (|u0 . . . u8|a, |u0 . . . u8|b) = (4, 5),
i2 = 17, u0 . . . u16 = abbabaabbaababbab, (|u0 . . . u16|a, |u0 . . . u16|b) = (8, 9).

Therefore |u0u1 . . . uij−1|a + |u0u1 . . . uij−1|b = ij is an odd number. Consequently, for in-
stance

(|u0u1 . . . uij−1|a, |u0u1 . . . uij−1|b) mod 2 6= (0, 0).

We introduced a combinatorial condition – well distributed occurrences – guaranteeing ab-
sence of the lattice structure. Then it was important to find words having such a property. We
have proved [5, 6] that among binary words, Sturmian words have the WELLDOC property.

Besides the generalization of the results from [27] for binary infinite words, we have found
a combinatorial condition for words over multiliteral alphabets; the generators based on such
words combine then more input generators and have again no lattice structure. It turned out that
it suffices to generalize the WELLDOC property in the most natural way to larger alphabets.

Definition 4 (WELLDOC property for multiliteral words). We say that an aperiodic infi-
nite word u over the alphabet {a1, a2, . . . , ad} has well distributed occurrences (or has the
WELLDOC property) if u satisfies for every positive integer m and for every factor w of the
word u the following condition: If we denote i0, i1, i2, . . . the occurrences of w in the word u,
then

{(
|u0u1 . . . uij−1|a1 , |u0u1 . . . uij−1|a2 , . . . , |u0u1 . . . uij−1|ad

)
mod m | j ∈ N

}
= Zd

m ,

where mod m is applied component-wise.

Remark 1. The WELLDOC property is sufficient, however it is not necessary for absence of
the lattice structure. It is not difficult to show that the modified Fibonacci word that is obtained
from the Fibonacci word over the alphabet {a, b} when replacing step by step a with ac and b
with bc, i.e.,

u = acbcacacbcacbcac . . . ,

does not have the WELLDOC property, but it does not produce generators with the lattice
structure neither. Nevertheless, we have seen in statistical tests that the WELLDOC property
is important not only for absence of the lattice structure, but it probably guarantees other good
properties of the combined generators, too.
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Example 6. Let us provide at first a trivial example of a word with well distributed occurrences.
We say that an infinite word over the alphabet A is universal if it contains all finite words
over A as its factors. A universal word over {0, 1, . . . , d − 1} may be obtained for instance by
concatenation of representations of consecutive natural numbers in base d. It is readily seen
that universal words have the WELLDOC property.

Similarly as over the binary alphabet, we had to show over multiliteral alphabets that there
exists a large class of infinite words with the WELLDOC property. We have shown that Arnoux–
Rauzy words (AR words) have well distributed occurrences. The best known example of such
words over the ternary alphabet is the Tribonacci word uT being the fixed point of the substi-
tution ϕT(a) = ab, ϕT(b) = ac, ϕT(c) = a, i.e.,

uT = abacabaabacab . . .

Remark 2. There exists a simple method of how to produce from words with well distributed
occurrences again words with well distributed occurrences over smaller alphabets. If the alphabet
equals A = {a1, a2, . . . , ad}, where d ≥ 3, and the word u over A has the WELLDOC property,
then if we replace in u the letter ad with another arbitrary, but fixed letter ai, then the arising
word will have again well distributed occurrences. In such a way we obtain words different from
AR words.

Remark 3. A further transformation of words that preserves the WELLDOC property and
this time it preserves the alphabet as well uses a morphism whose matrix is unimodular, i.e.,
has the determinant equal to ±1. Under the matrix of a morphism ϕ over the alphabet
{a1, a2, . . . , ad} is understood the matrix Φ whose ijth element is defined as Φij = |ϕ(ai)|aj .

Example 7. Consider the morphism ϕ : a → aab, b → ab. Then its matrix is of the form
Φ = ( 2 1

1 1 ). If we apply this morphism to the Fibonacci word uF = abaababaabaab . . ., then we get
the word ϕ(uF) = aababaabaababaababaabaababaabaabab . . . with well distributed occurrences.

2.4 Statistical Tests of Pseudorandom Number Generators

In the previous part we have seen that PRNGs based on infinite words with the WELLDOC
property are aperiodic and have no lattice structure. In the sequel, we will show that such gene-
rators have as well much better results in empirical statistical tests than the original generators
that are combined. This programming part is due to Jǐŕı Hladký, one of the authors of [6].

It is necessary to generate efficiently long prefixes of infinite words with the WELLDOC
property for both practical use and for statistical tests of PRNGs based on such infinite words.
Fortunately, a lot of Sturmian and Arnoux–Rauzy words, i.e., infinite words with well distributed
occurrences as we have learned in the previous section, are fixed points of morphisms. Such fixed
points may be generated in a fast way [35]: the prefix of length n is obtained in time O(n) and
with memory consumption O(log n). Hladký suggested an improvement: in order to speed
up the generation of prefixes, it is better to remember instead of letter images ϕ(a) a suitable
higher iteration ϕk(a) for all a ∈ A. Thanks to that simple improvement, the speed of generation
became higher than the speed of generation of the output of the combined LCGs. For instance
1010 32-bit values of the output of an LCG with modulus 264 were obtained in 14.3 seconds,
while using the same hardware, 1010 letters of a fixed point were generated in 0.5 seconds. To
sum up, use of PRNGs based on infinite words that are fixed points of a morphism means only
a negligible time penalization in comparison to use of the original generators.

Let us show here results of statistical tests of PRNGs based on:
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• the Fibonacci word (as an example of Sturmian words): the fixed point of the morphism
a 7→ ab and b 7→ a;

• the Tribonacci word (as an example of ternary AR words): the fixed point of the morphism
a 7→ ab, b 7→ ac, c 7→ a.

PRNGs based on fixed points of morphisms were implemented for more Sturmian and AR
words. Since the results are similar, we will present here only the two above cases. A pro-
gram generating PRNGs based on fixed points of morphisms is available online together with
a description [28].

When combining LCGs, we do not use all output bits. We combine LCGs having the period
between 247 − 115 and 264, however we consider only 32 upper bits as their output. The reason
is that 32-bit sequences are needed as the input of the batteries of statistical tests we have
chosen.1 We apply two batteries of statistical tests – TestU01 BigCrush and PractRand. They
work differently. The first one contains 160 statistical tests – many of them are tailored to
specific types of generators. It is a battery of tests with a good reputation, nevertheless its
disadvantage is that it works with a fixed number of bits and it always throws away the two
lowest bits. The second battery is composed of three types of tests: the first one focuses on short
range correlations, the second one reveals long range violations, and the last one is a variation
on the classical gap test. The PractRand tests are able to treat very long input sequences, up to
a few exabytes. To control the runtime we have limited the length of input sequences to 16TB.

The first column of Table 2.1 shows the list of tested LCGs. The BigCrush column shows
how many tests of the TestU01 BigCrush battery failed. The PractRand column gives the log2
of sample datasize in bytes for which the results of the PractRand tests started to be “very
suspicious” (p-values smaller than 10−5). One LCG did not show any failures in the PractRand
tests which is denoted as > 44 – the meaning is that the PractRand test has passed successfully
16TB

.
= 244B of input data and the test was stopped there. The last column provides time in

seconds to generate the first 1010 32-bit sequences of output on Intel i7-3520M CPU running at
2.90GHz.

Generator Symbol BigCrush PractRand Time 1010

LCG(247 − 115, 71971110957370, 0) L47-115 14 40 281 s

LCG(263 − 25, 2307085864, 0) L63-25 2 >44 277 s

LCG(259, 1313, 0) L59 19 27 14.1 s

LCG(263, 519, 1) L63 19 33 14.4 s

LCG(264, 2862933555777941757, 1) L64 28 18 35 14.0 s

LCG(264, 3202034522624059733, 1) L64 32 14 34 14.1 s

LCG(264, 3935559000370003845, 1) L64 39 13 33 14.0 s

Tab. 2.1: The list of used LCG(m, a, c) and their results in tests BigCrush and PractRand.

From Table 2.1 we can observe that LCGs with m ∈ {247 − 115, 263 − 25} give the best
statistical results. At the same time, they are much slower than the other generators. The

1We do not use LCGs with modulo 232 because for such generators it is known that their k-th bit has the
period of length at most 2k.
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reason is that we have to really compute the operation modulo, while for m = 2` we only shift
the binary point.

In Tables 2.2 and 2.3 we summarize results for PRNGs based on the Fibonacci and the
Tribonacci word and combining various LCGs from Table 2.1. (We combine in such a way that
reading of the letter a in the infinite word corresponds to taking the output of the generators
in the column a and analogously for the other letters b, c and columns b, c.) It includes also the
situations where instances of the same LCG are used. In such a case, the LCGs were seeded
with the value 1. The PRNGs were warmed up by generating 109 values before statistical tests
started. Since the relative frequency of letters in the aperiodic words differ a lot (for example

for the Fibonacci word the ratio of zeroes to ones is given by τ = 1+
√
5

2 ), the warming procedure
will guarantee that the state of instances of LCGs will differ even when the same LCGs are used.

The BigCrush column is using the following notation: the first number indicates how many
tests from the BigCrush battery have clearly failed and the optional second number in parenthesis
denotes how many tests have suspiciously low p-value in the range from 10−6 to 10−4. The rest
of the notation has been explained above, it stays the same as in Table 2.1.

Word Group a b BigCrush PractRand Time 1010

Fib A L64 28 L64 28 0 41 30.2 s

A L64 32 L64 28 0(1) 41 29.3 s

A L64 39 L64 28 0 (2) 41 31 s

A L64 28 L64 32 0 41 30.2 s

A L64 32 L64 32 0 41 30.1 s

B L47-115 L47-115 1(1) >44 302 s

B L63-25 L63-25 0(1) >44 299 s

B L59 L59 0(1) 34 28.7 s

C L63-25 L59 0 38 198 s

C L59 L63-25 0(1) 35 134 s

C L63-25 L64 39 0 >44 199 s

C L64 39 L63-25 0 41 135 s

C L59 L64 39 0 35 30.4 s

C L64 39 L59 0 37 31.3 s

Tab. 2.2: Summary of results of statistical tests for generators based on the Fibonaci word and
various combinations of LCGs from Table 2.1.

The following observations are based on the results in statistical tests:

1. The quality of LCGs has increased substantially when they were combined using words
with well distributed occurrences. This is visible in the BigCrush test. While for the
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Word Group a b c BigCrush PractRand Time 1010

Trib A L64 28 L64 28 L64 28 0(2) 42 27.2

A L64 39 L64 28 L64 28 0 43 27.1

A L64 39 L64 32 L64 28 0(1) 42 28.0

A L64 28 L64 39 L64 28 0(1) 42 28.1

A L64 32 L64 39 L64 28 0 42 27.1

B L47-115 L47-115 L47-115 1 >44 299.0

B L63-25 L63-25 L63-25 0(1) >44 298.0

B L59 L59 L59 0 35 27.2

B L63 L63 L63 0(1) 41 27.2

C L63-25 L59 L64 39 0(1) 39 172.0

C L63-25 L64 39 L59 0(1) 41 173.0

C L59 L63-25 L64 39 0 35 106.0

C L59 L64 39 L63-25 0 34 70.5

C L64 39 L63-25 L59 0 41 107.0

C L64 39 L59 L63-25 0(1) 40 74.3

Tab. 2.3: Summary of results of statistical tests for generators based on the Tribonacci word
and various combinations of LCGs from Table 2.1.

original LCGs 13 to 19 tests failed (see Table 2.1), after the combination almost all of
them have passed. The worst result was one failed test for the combination based on
the Tribonacci word, resp. on the Fibonacci word for LCG L47-115. The likely reason
is however the shortest period of this generator among all tested ones. The results of
the PractRand battery confirms an improvement, too. For instance, in the case of the
LCGs with modulus 264 (see the group A in Tables 2.2 and 2.3), the test begins to find
irregularities in the distribution of the last bit only for the output of 2TB in the case of
the Fibonacci word and 4TB to 8TB in the case of the Tribonacci word. The reader may
compare this with 8GB to 32GB, where the original LCGs showed up weaknesses in this
test.

2. The quality of the arising generators is closely related to the quality of the input generators,
see for instance some generators of the group B in Tables 2.2 and 2.3 that had good results
already themselves.

3. Another interesting observation is the fact that using LCGs with the same parameters
and different initial values does not spoil anything. It is only important to check that the
initial values are distinct enough. See the groups A and B in Tables 2.2 and 2.3.

4. On one hand, if we combine LCGs of different quality, then the weakest LCG determines
the quality of the arising generator. See the group C in Tables 2.2 and 2.3. If we cannot
avoid combining LCGs of different quality, we should at least use the best one so that it
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correspond to the most frequent letter in the word with well distributed occurrences. On
the other hand, if we combine generators of similar quality, then their order does not play
any role. See the group A in Tables 2.2 and 2.3.

5. The Tribonacci word shows better results than the Fibonacci word. This observation holds
for all tested AR words in comparison to Sturmian words.

2.5 Open Problems

There are a lot of open problems left. Concerning the combinatorial part, it would be good to find
other large classes of infinite words with well distributed occurrences and to detect among fixed
points of morphisms those ones with the WELLDOC property. It seems as well meaningful to
study the WELLDOC property for some particular modulae, where we consider in the definition
of the WELLDOC property one specific m instead of all m ∈ N. Concerning the statistical
tests, the field of open questions is even larger – besides aperiodicity and absence of the lattice
structure no other success of PRNGs based on infinite words with well distributed occurrences
in empirical tests has been explained theoretically. We continue of course in statistical tests of
PRNGs combining other than LCGs, too, and our aim is to provide a useful, practical, well
documented open source library of “our” PRNGs in the future.
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[9] L’. Balková, E. Pelantová, Š. Starosta, Infinite words with finite defect, Adv. Appl. Math.
47 (2011), 562–574.

[10] L’. Balková, E. Pelantová, Š. Starosta, On the Brlek–Reutenauer conjecture, Theoret. Com-
put. Sci. 412 (2011), 5649–5655.
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[36] A. Thue, Über unendliche Zeichenreihen, Norske vid. Selsk. Skr. Mat. Nat. Kl. 7 (1906),
1–22.

[37] L. Vuillon, A characterization of Sturmian words by return words, European J. Combin.
22 (2001), 263–275.

27



Sturmian Jungle (or Garden?) on
Multiliteral Alphabets
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Abstract. The properties characterizing Sturmian words are consid-
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1. Introduction

Sturmian words, i.e., aperiodic words with the lowest factor complexity, ap-
peared first in the paper of Hedlund and Morse in 1940. Since then Sturmian
words have been in the center of interest of many mathematicians and the number
of discoveries of new properties and connections keeps growing. The charm of
Sturmian words consists in their natural appearance while studying diverse prob-
lems. Many equivalent definitions have been found that way. Sturmian words are
binary and every property characterizing Sturmian words asks for a fruitful exten-
sion to an analogy on a larger alphabet. Well-known examples of such efforts are
Arnoux-Rauzy words, words coding interval exchange transformations, or billiard
words. All these words belong to well established classes and their descriptions
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444 L’. BALKOVÁ, E. PELANTOVÁ AND Š. STAROSTA

and properties can be found in many works [5,6,11,27,35,40,46]. An overview of
some generalizations of Sturmian words is provided in [12,50].

The aim of this paper is to attract attention to other generalizations of Sturmian
words. Our motivation stems from recent results on palindromes in infinite words
that have ended in the definition of words rich in palindromes, the definition of
defect, the description of a relation between factor and palindromic complexity,
etc. [3,7,15]. Impulses for such an intensive research of palindromes come con-
cededly from the article [22] which characterizes Sturmian words by palindromes,
the article [23] which investigates the number of palindromes in prefixes of infinite
words and last, but not least, the discovery of the role of palindromes in descrip-
tion of the spectrum of Schrödinger operators with aperiodic potentials [31]. While
generalizing Sturmian words we have taken into consideration the characterization
of Sturmian words by return words from [49] and a recent definition of Abelian
complexity [42,43], which is closely connected with balance properties.

We consider the following properties (k denotes the cardinality of alphabet A):

(1) Property C:
the factor complexity of u satisfies C(n) = (k − 1)n+ 1 for all n ∈ N.

(2) Property LR:
u contains one left special and one right special factor of every length.

(3) Property BO:
all bispecial factors of u are ordinary.

(4) Property R:
any factor of u has exactly k return words.

(5) Property P :
the palindromic complexity of u satisfies P(n) + P(n + 1) = k + 1 for

all n ∈ N.
(6) Property PE :

every palindrome has a unique palindromic extension in u.
(7) Balance properties:

(a) Property B∀:
u is aperiodic and for all a ∈ A and for all factors w, v ∈ L(u) with
|w| = |v| it holds

||w|a − |v|a| ≤ k − 1.

(b) Property B∃:
u is aperiodic and there exists a ∈ A such that for all factors w, v ∈
L(u) with |w| = |v| it holds

||w|a − |v|a| ≤ k − 1.

(c) Property AC:
u is aperiodic and the abelian complexity of u satisfies AC(n) = k for
all n ∈ N, n ≥ 1.
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All properties are equivalent on a binary alphabet and they characterize
Sturmian words. No two of them are equivalent on the set of infinite words over
a multiliteral alphabet. The non-equivalence is shown by counterexamples. How-
ever some properties imply others, or it can be shown that a couple of properties
are equivalent on a certain class of infinite words. For instance, on the class of
uniformly recurrent ternary words properties R and BO are equivalent.

There exist more equivalent definitions of Sturmian words, for instance the
definition based on balance properties of subfactors of factors [25], on the index of
an infinite word [37], or Richomme’s characteristics of Sturmian words [41]. We
do not pay attention to these definitions in our survey.

The paper is organized as follows. In Section 2 we recall the notions playing
an important role in the definitions of properties (1) through (7). We recall the
notion of substitution which is irrelevant for the generalizations of Sturmian words
but is used to construct most of examples of infinite words. Section 3 is focused
on the study of palindromes in infinite words: we summarize older and new results
concerning palindromes, we define palindromic branches. A new result in this sec-
tion is Theorem 3.10 providing a new characterization of rich words by means of
bilateral orders. Section 4 shortly summarizes essential results on Sturmian words.
Section 5 is devoted to an overview of known relations among different generaliza-
tions of Sturmian words, mostly from articles [7,9,16,30,42,43]. New results are in
Theorems 5.9 and 5.13, and Corollaries 5.11 and 5.12. The last section is a brief
summary of selected relations and examples illustrating the studied properties.

2. Notation and definitions

By A we denote a finite set of symbols, usually called letters; the set A is
therefore called an alphabet. A finite string w = w0w1 . . . wn−1 of letters of A is
said to be a finite word, its length is denoted by |w| = n. Finite words over A
together with the operation of concatenation and the empty word ε as the neutral
element form a free monoid A∗. The map

w = w0w1 . . . wn−1 �→ w̃ = wn−1wn−2 . . . w0

is a bijection on A∗, the word w̃ is called the reversal or the mirror image of w.
A word w which coincides with its mirror image is a palindrome.

Under an infinite word u over the alphabet A we understand an infinite string
u = u0u1u2 . . . of letters from A such that every letter of A occurs in u. We
call an infinite word u eventually periodic if there exist finite words w, v such that
u = wvω , where ω means ‘repeated infinitely many times’. If w = ε, then u is said
to be (purely) periodic. If u is not eventually periodic, then we call u aperiodic.

A finite word w is a factor of a word v (finite or infinite) if there exist words p
and s such that v = pws. If p = ε, then w is said to be a prefix of v, if s = ε, then
w is a suffix of v. We say that a prefix or a suffix is proper if it is not equal to the
word itself.
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The language L(u) of an infinite word u is the set of all its factors. The factors
of u of length n form the set denoted by Ln(u). Using this notation, we may write
L(u) = ∪n∈NLn(u).

We say that the language L(u) is closed under reversal if L(u) contains with
every factor w also its reversal w̃.

An infinite word u over A is called c-balanced if for every a ∈ A and for every
pair of factors w, v of u of the same length |w| = |v|, we have ||w|a − |v|a| ≤ c,
where |w|a means the number of letters a contained in w. Note that in the case
of a binary alphabet, say A = {0, 1}, this condition may be rewritten in a simpler
way: an infinite word u is c-balanced, if for every pair of factors w, v of u with
|w| = |v|, we have ||w|0 − |v|0| ≤ c. We call 1-balanced words simply balanced.

We say that two words w, v ∈ A∗ are abelian equivalent if for each letter a ∈ A,
it holds |w|a = |v|a. It is easy to see that the abelian equivalence defines indeed
an equivalence relation on A∗. If A = {a1, a2, . . . , ak}, then the Parikh vector
associated with the word w ∈ A∗ is defined as

Ψ(w) = (|w|a1 , |w|a2 , . . . , |w|ak
).

We call abelian complexity (as defined in [42]) of an infinite word u the function
AC : N → N given by

AC(n) = #{Ψ(w)
∣∣ w ∈ Ln(u)}.

For any factor w ∈ L(u), there exists an index i such that w is a prefix of the
infinite word uiui+1ui+2 . . . Such an index i is called an occurrence of w in u. If
each factor of u has at least two occurrences in u, the infinite word u is said to
be recurrent. It can be easily shown that each factor of a recurrent word occurs
infinitely many times. It is readily seen that if the language of u is closed under
reversal, then u is recurrent. The infinite word u is said to be uniformly recurrent
if for any factor w of u the distances between successive occurrences of w form
a bounded sequence.

Let j, k, j < k, be two successive occurrences of a factor w in u. Then
ujuj+1 . . . uk−1 is called a return word of w. Return words were first studied
in [24,32]. The set of all return words of w is denoted by R(w),

R(w) = {ujuj+1 . . . uk−1 | j, k being successive occurrences of w in u}.

If v is a return word of w, then the word vw is called a complete return word of w.
It is obvious that an infinite recurrent word is uniformly recurrent if and only if
the set of return words of any of its factors is finite.

The (factor) complexity of an infinite word u is the map C : N �→ N, defined
by C(n) = #Ln(u). To determine the increment of complexity, one has to count
the possible extensions of factors of length n. A left extension of w ∈ L(u) is any
letter a ∈ A such that aw ∈ L(u). The set of all left extensions of a factor w will
be denoted by Lext(w). We will mostly deal with recurrent infinite words u. In
this case, any factor of u has at least one left extension. A factor w is called left
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� ��
w = w0w1 · · ·wn−1 v = w1 · · ·wn−1wn

e = w0w1 · · ·wn−1wn

Figure 1. Incidence relation between an edge and vertices in a
Rauzy graph.

special (or LS for short) if w has at least two left extensions. Clearly, any prefix of
a LS factor is LS as well. It makes therefore sense to define an infinite LS branch
which is an infinite word whose all prefixes are LS factors of u. Similarly, one can
define a right extension, a right special (or RS) factor, Rext(w), and an infinite RS
branch which is a left-sided infinite word whose all suffixes are RS factors of u.

We say that a factor w of u is a bispecial (or BS) factor if it is both RS and LS.
The role of BS factors for the computation of complexity can be nicely illustrated
on Rauzy graphs (introduced in [6]).

Let u be an infinite word and n ∈ N. TheRauzy graph Γn of u is a directed graph
whose set of vertices is Ln(u) and set of edges is Ln+1(u). An edge e ∈ Ln+1(u)
starts in the vertex w and ends in the vertex v if w is a prefix and v is a suffix
of e, see Figure 1. If the word u is recurrent, the graph Γn is strongly connected
for every n ∈ N, i.e., there exists a directed path from every vertex w to every
vertex v of the graph.

If the language L(u) of the infinite word u is closed under reversal, then the
operation that to every vertex w of the graph associates its mirror image, the
vertex w̃, and to every edge e associates ẽ maps the Rauzy graph Γn onto itself.

The outdegree (indegree) of a vertex w ∈ Ln(u) is the number of edges which
start (end) in w. Obviously the outdegree of w is equal to #Rext(w) and the
indegree of w is #Lext(w). The sum of outdegrees over all vertices is equal to
the number of edges in every directed graph. Similarly, it holds for indegrees. In
particular, for the Rauzy graph Γn we have

∑

w∈Ln(u)

#Rext(w) = C(n+ 1) =
∑

w∈Ln(u)

#Lext(w).

The first difference of complexity ΔC(n) = C(n+ 1)− C(n) is thus given by

ΔC(n) =
∑

w∈Ln(u)

(
#Rext(w)− 1

)
=

∑

w∈Ln(u)

(
#Lext(w) − 1

)
.

A non-zero contribution to ΔC(n) in the left-hand sum is given only by those
factors w ∈ Ln(u) for which #Rext(w) ≥ 2, and for recurrent words, a non-zero
contribution to ΔC(n) in the right-hand sum is provided only by those factors
w ∈ Ln(u) for which #Lext(w) ≥ 2. The last relation can be thus rewritten for
recurrent words u as

ΔC(n) =
∑

w∈Ln(u), w RS

(
#Rext(w) − 1

)
=

∑

w∈Ln(u), w LS

(
#Lext(w)− 1

)
.
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If we denote Bext(w) = {awb ∈ L(u)
∣∣ a, b ∈ A}, then the second difference of

complexity Δ2C(n) = ΔC(n+ 1)−ΔC(n) = C(n+ 2)− 2C(n+ 1) + C(n) is given
by

Δ2C(n) =
∑

w∈Ln(u)

(
#Bext(w) −#Rext(w) −#Lext(w) + 1

)
. (2.1)

Denote by b(w) the quantity

b(w) := #Bext(w)−#Rext(w)−#Lext(w) + 1.

The number b(w) is called the bilateral order of the factor w and was introduced
in [18]. It is readily seen that if w is not a BS factor, then b(w) = 0. Bispecial
factors are distinguished according to their bilateral order in the following way

• if b(w) > 0, then w is a strong BS factor;
• if b(w) < 0, then w is a weak BS factor;
• if b(w) = 0 then w is an ordinary BS factor.

A substitution on A is a morphism ϕ : A∗ → A∗ such that there exists a letter
a ∈ A and a non-empty word w ∈ A∗ satisfying ϕ(a) = aw and ϕ(b) �= ε for
all b ∈ A. Since a morphism satisfies ϕ(vw) = ϕ(v)ϕ(w) for all v, w ∈ A∗, any
substitution is uniquely determined by the images of letters. Instead of classical
ϕ(a) = w, we sometimes write a → w. A substitution can be naturally extended to
an infinite word u = u0u1u2 . . . by the prescription ϕ(u) = ϕ(u0)ϕ(u1)ϕ(u2) . . .
An infinite word u is said to be a fixed point of the substitution ϕ if it fulfills
u = ϕ(u). It is obvious that every substitution ϕ has at least one fixed point,
namely limn→∞ ϕn(a) (to be understood in the sense of product topology).

3. Words opulent in palindromes

In resemblance to the factor complexity C(n) of an infinite word u, let us define
the palindromic complexity of u as the map P : N → N given by

P(n) = #{w ∈ Ln(u)| w = w̃}.

If a ∈ A and w is a palindrome and awa ∈ L(u), then awa is said to be
a palindromic extension of w. The set of all palindromic extensions of w is denoted
by Pext(w).

Similarly as in the case of left special and right special branches, one can define
a palindromic branch of u.

Definition 3.1. Let u be an infinite word. A two-sided infinite word v = . . . v3v2v1
v1v2v3 . . . is a palindromic branch with center ε of the word u if for every n ∈ N the
word vnvn−1 . . . v2v1v1v2 . . . vn−1vn is a factor of u. Let a be a letter. A two-sided
infinite word v = . . . v3v2v1av1v2v3 . . . is a palindromic branch with center a of the
word u if for every n ∈ N the word vnvn−1 . . . v2v1av1v2 . . . vn−1vn is a factor of u.
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It follows from the König’s theorem that if u has infinitely many palindromes,
then u has at least one palindromic branch. In any Sturmian word on {0, 1}
there exist exactly three palindromic branches with centers ε, 0 and 1. See also
Section 5.1.

Uniformly recurrent words containing infinitely many distinct palindromes sat-
isfy that for any factor w, every sufficiently large palindrome in u contains w, thus
such a palindrome contains w̃ as well. As a consequence, we have the following
theorem.

Theorem 3.2. If u is a uniformly recurrent word that contains infinitely many
distinct palindromes, then its language L(u) is closed under reversal.

The opposite implication is not true as illustrated by the following example.

Example 3.1 (uniform recurrence + language closed under reversal �⇒ infinitely
many palindromes). The infinite word u on {a, b} (constructed in [13]) whose
prefixes un are given by the following recurrent formula

u0 = ab, un+1 = unabũn,

is uniformly recurrent and its language is closed under reversal. However, u con-
tains only a finite number of palindromes.

When we relax the condition of uniform recurrence, the statement of Theo-
rem 3.2 is not true any more.

Example 3.2 (infinitely many palindromes �⇒ language closed under reversal).
The infinite word u on {a, b, c} whose prefixes un are given by the following recur-
rent formula

u0 = ε, un+1 = unabc
n+1un

is clearly recurrent. Infinitely many palindromes are represented by the factors cn

for every n. As the factor ba does not occur, the set of factors is not closed under
reversal. A similar example can be found in [16].

The word umay be recoded to a binary alphabet while preserving the mentioned
properties. We may for instance recode u using the following mapping:

a → 0110, b → 1001, c → 1.

An interesting relation between the palindromic and factor complexity has been
revealed in [7].

Theorem 3.3. Let u be an infinite word with the language closed under reversal.
Then

P(n+ 1) + P(n) ≤ ΔC(n) + 2 for all n ∈ N. (3.1)

In fact, the above relation is stated in [7] for uniformly recurrent words, how-
ever the proof requires only recurrent words. Theorem 3.3 implies that infinite
words reaching the equality in (3.1) are in a certain sense opulent in palindromes.
Another measure of opulence in palindromes has been provided in [23].
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Theorem 3.4. Every finite word w contains at most |w|+1 palindromes (including
the empty word).

Definition 3.5. An infinite word u satisfying that every factor w of u contains
|w|+ 1 palindromes is called rich in palindromes.

The following equivalent definitions of richness have been proved in [30], [16],
[17], respectively.

Theorem 3.6. For any infinite word u the following conditions are equivalent:

(1) u is rich;
(2) any complete return word of a palindromic factor of u is a palindrome;
(3) for any factor w of u, every factor of u that contains w only as its prefix

and w̃ only as its suffix is a palindrome;
(4) each factor of u is uniquely determined by its longest palindromic prefix

and its longest palindromic suffix.

We will need for our further purposes an implication that holds only for lan-
guages closed under reversal.

Corollary 3.7 [16]. Let u be a rich infinite word with the language closed under
reversal. Then for any factor w of u, the occurrences of w and w̃ alternate.

A natural question is whether infinite words reaching the equality in (3.1) co-
incide with rich words. The following theorem proved in [16] provides an answer.

Theorem 3.8. Let u be an infinite word with the language closed under reversal.
Then u is rich if and only if P(n+ 1) + P(n) = ΔC(n) + 2 for all n ∈ N.

Let us mention as an open problem the following question. “Does the equiva-
lence of richness and the equality in (3.1) hold for a larger class than words with
the language closed under reversal? For instance for all recurrent words?”

The following observations may serve as hints:

• It does not hold for non-recurrent infinite words in general. The infinite
word abω is given in [16] as an example of a rich non-recurrent infinite
word (with the language of course not closed under reversal), which does
not reach the equality in (3.1) for all n ∈ N.

• Notice that both rich infinite words and infinite words reaching the equality
in (3.1) contain infinitely many palindromes.

• If u is rich and recurrent, then L(u) is closed under reversal (proved in [30],
Prop. 2.11).

The rest of this section is devoted to the relation between richness and bilateral
orders of factors. The following proposition reveals some information on bilateral
orders of palindromic bispecial factors in an infinite word with the language closed
under reversal.

Proposition 3.9. Let u be an infinite word whose language is closed under re-
versal. Then the bilateral order b(w) of a palindromic bispecial factor w ∈ L(u)
has a different parity than the number of palindromic extensions of w.
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Proof. Let w be a palindromic BS factor of u. On one hand, as the language is
closed under reversal, we have #Lext(w) = #Rext(w). Consequently, from the
definition of bilateral order one can see that the parity of #Bext(w) is different
from the parity of b(w). On the other hand, the parity of the number of palin-
dromic extensions of w equals the parity of #Bext(w) since for any a, b ∈ A, if
awb ∈ L(u), then bwa ∈ L(u). �

In the sequel, we will state and prove a new equivalent definition of rich words
by means of bilateral orders.

Theorem 3.10. Let u be an infinite word with the language closed under reversal.
Then u is rich if and only if any bispecial factor w of u satisfies:

• if w is non-palindromic, then

b(w) = 0;

• if w is a palindrome, then

b(w) = #Pext(w) − 1.

The following lemma will provide the most important tool for the proof of
Theorem 3.10.

Lemma 3.11. Let u be a rich infinite word whose language is closed under rever-
sal. Then it holds for any bispecial factor w:

• if w is non-palindromic, then

b(w) ≥ 0;

• if w is a palindrome, then

b(w) ≥ #Pext(w) − 1.

Proof. Let w be a non-palindromic BS factor. By the definition of b(w), we want
to prove

#Bext(w) ≥ #Rext(w) + #Lext(w) − 1.

We will construct a bipartite oriented graph G having its set of vertices V defined
as

V = {wa|a ∈ Rext(w)} ∪ {w̃a|a ∈ Rext(w̃)} .
There is an oriented edge from wa to w̃b if there exists a factor vb ∈ L(u) such
that wa is its prefix, w̃b is its suffix and factors w and w̃ occur each exactly once
in vb. Furthermore, there is an oriented edge from w̃x to wy if there exists a factor
vy ∈ L(u) such that w̃x is its prefix, wy is its suffix and factors w and w̃ occur
each exactly once in v.

Due to Theorem 3.6, such a factor v is a palindrome. Therefore the existence of
an edge from wa to w̃b implies aw̃b ∈ L(u), and so bwa ∈ L(u), too. Analogously,
if there is an edge from w̃x to wy, we have xwy ∈ L(u).
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� ��
w̃a wb

. . . | w̃ | a w︸ ︷︷ ︸
v

| b | . . .

� ��
wa w̃b

. . . | w | a w̃︸ ︷︷ ︸
v

| b | . . .

Figure 2. Incidence relation in the graph G.

By Corollary 3.7, the occurrences of w and w̃ alternate. Thus, to any factor of
u corresponds a path in G. As u is recurrent, the graph G is strongly connected.

As a consequence, the number of pairs of its vertices which are connected by
an edge is greater than or equal to the number of its vertices minus 1. We have

#Bext(w) ≥ #Rext(w) + #Rext(w̃)− 1.

Since Rext(w̃) = Lext(w) the proof of the first part is finished.

Let w be a palindromic BS factor. Let us consider this time a graph G whose
set of factors V is defined as

V = {wa|a ∈ Rext(w)} .

There is an edge from wa to wb if there exists a factor vb ∈ L(u) such that v is a
complete return word to w that has wa as a prefix. As u is rich, v is a palindrome.
Due to the recurrence of u, for every awb ∈ L(u), a �= b, there exists an edge in
G going from wa to wb. As the language is closed under reversal, the edge going
from wb to wa is in G, too. Therefore

# {awb ∈ L(u)|a �= b} = 2× the number of pairs of distinct vertices

connected by an edge.

Owing to the recurrence of u, the graph G is strongly connected, thus the number
of pairs of distinct vertices connected by an edge is greater than or equal to the
number of vertices of G minus 1, which equals #Rext(w)− 1. We find

#Bext(w) = # {awb ∈ L(u)|a �= b}+#Pext(w) ≥ 2 (#Rext(w) − 1)+#Pext(w).

As Rext(w) = Lext(w), the statement is proved. �
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Proof of Theorem 3.10. (⇐): Let us show by mathematical induction that

ΔC(n) + 2 = P(n+ 1) + P(n) for all n ∈ N.

Since L(u) is closed under reversal, this means by Theorem 3.8 that u is rich.
The assumption on bilateral orders and the fact that non-bispecial palindromic

factors have a unique palindromic extension guarantee the following equality for
all n ∈ N:

Δ2C(n) =
∑

w∈Ln(u)

b(w) =
∑

w∈Ln(u)
w=w̃

(#Pext(w)− 1) = P(n+ 2)− P(n). (3.2)

For n = 0, we can write ΔC(0) + 2 = C(1) − C(0) + 2 = #A + 1. On the other
hand we have P(1) + P(0) = #A+ 1.
Take N ∈ N. Assume ΔC(n) + 2 = P(n + 1) + P(n) holds for all n < N . Using
the induction assumption and (3.2), we obtain

ΔC(N) + 2 = (ΔC(N)−ΔC(N − 1)) + (ΔC(N − 1) + 2)
= Δ2C(N − 1) + (P(N − 1) + P(N))
= (P(N + 1)− P(N − 1)) + (P(N − 1) + P(N))
= P(N + 1) + P(N).

(⇒): Take n ∈ N arbitrary. We will prove the statement of the theorem for all BS
factors of length n.

As u is rich and the language L(u) is closed under reversal, we have by Theo-
rem 3.8

ΔC(k) + 2 = P(k + 1) + P(k) for all k ∈ N.

Applying this equality, we will deduce the form of Δ2C(n).

Δ2C(n) = (ΔC(n+ 1) + 2)− (ΔC(n) + 2)

= (P(n+ 2) + P(n+ 1))− (P(n+ 1) + P(n))

= P(n+ 2)− P(n).

Consequently, we obtain

∑

w∈Ln(u)

b(w) = Δ2C(n) = P(n+ 2)− P(n) =
∑

w∈Ln(u)
w=w̃

(#Pext(w) − 1) .

Palindromic factors that are not BS have obviously exactly one palindromic ex-
tension. Thus, we can rewrite the previous equality

∑

w∈Ln(u)

b(w) =
∑

w∈Ln(u)
w=w̃,w BS

(#Pext(w) − 1) . (3.3)
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Let us split the sum of bilateral orders into two parts and use Lemma 3.11

∑

w∈Ln(u)

b(w) =
∑

w∈Ln(u)
w �=w̃, w BS

b(w) +
∑

w∈Ln(u)
w=w̃, w BS

b(w)

≥
∑

w∈Ln(u)
w �=w̃, w BS

b(w) +
∑

w∈Ln(u)
w=w̃, w BS

(#Pext(w) − 1). (3.4)

This in combination with (3.3) gives
∑

w∈Ln(u)
w �=w̃, w BS

b(w) = 0. By Lemma 3.11, bi-

lateral orders of such factors are non-negative, which implies b(w) = 0 for all
non-palindromic BS factors. Since the equality is reached in (3.4), we obtain∑

w∈Ln(u)
w=w̃, w BS

b(w) =
∑

w∈Ln(u)
w=w̃, w BS

(#Pext(w) − 1) . Together with Lemma 3.11, this re-

sults in b(w) = #Pext(w) − 1 for all palindromic BS factors. �

4. Equivalent definitions of Sturmian words

Let us stress a close link between periodicity and complexity (revealed by Morse
and Hedlund [38]). On one hand, the complexity of eventually periodic words is
bounded. On the other hand, if there exists n ∈ N such that C(n) ≤ n, then
the complexity is bounded and the infinite word u is eventually periodic. In
consequence, the complexity of aperiodic words satisfies C(n) ≥ n+1 for all n ∈ N.
Sturmian words are defined as infinite words with the complexity C(n) = n+1 for
all n ∈ N. This condition on complexity implies many properties. Let us list some
of them. If u is a Sturmian word, then u has the following properties:

• u is a binary word;
• u is aperiodic;
• the language L(u) is closed under reversal;
• the language L(u) contains infinitely many palindromes;
• the word u is uniformly recurrent;
• the language L(u) contains no weak bispecial factors;
• u is rich.

There exist many equivalent definitions of Sturmian words. The following the-
orem summarizes several of their well-known combinatorial characterizations.

Theorem 4.1. Let u be an infinite word over the alphabet A. The properties
listed below are equivalent:

(i) u is Sturmian, i.e., C(n) = n+ 1 for all n;
(ii) u is binary and contains a unique left special factor of every length;
(iii) u is binary, aperiodic and every bispecial factor is ordinary;
(iv) any factor of u has exactly two return words;
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(v) u contains one palindrome of every even length and two palindromes of every
odd length;

(vi) u is binary and every palindrome has a unique palindromic extension;
(vii) u is aperiodic and balanced;
(viii) u is aperiodic and AC(n) = 2 for all n ∈ N, n ≥ 1.

The characterization by return words is due to Vuillon [49] and the one by the
abelian complexity is a consequence of the works by Coven and Hedlund [20]. The
equivalent definition based on the balance property comes already from Morse
and Hedlund [39]. The two equivalent properties concerning palindromes have
been proved by Droubay and Pirillo [22]. Notice that the sixth property can be
equivalently rewritten as

P(n) + P(n+ 1) = 3 for all n ∈ N,

and also as

P(n+ 2) = P(n) for all n ∈ N.

Let us recall that P(0) = 1 since the empty word is considered to be a palindrome.

5. Generalizations of Sturmian words

We have seen that Sturmian words can be defined in many equivalent ways.
As a matter of course, various generalizations to multiliteral alphabets have been
suggested and studied.

5.1. Two well-known generalizations

The most studied generalizations are Arnoux-Rauzy words and words coding
k-interval exchange transformation.

Arnoux-Rauzy words (or AR words for simplicity) are infinite words with the
language closed under reversal and containing exactly one LS factor w of every
length, and such that every LS factor has the same number k of left extensions, i.e.,
#Lext(w) = k. Their alphabet A has k letters since the empty word has exactly k
left extensions. AR words are aperiodic and satisfy C(n) = (k−1)n+1 for all n ∈ N.
They have been defined and studied in [23], the following properties have been
proved ibidem. The language of AR words contains infinitely many palindromes,
they are uniformly recurrent, rich, and have only ordinary BS factors. AR words
form a subclass of extensively studied episturmian words (see for instance [29]),
defined as infinite words that have the language closed under reversal and contain
at most one LS factor of every length.

Another well-known generalization of Sturmian words is provided by words
coding k-interval exchange transformation. Let us state their definition and then
explain why such words generalize Sturmian words to k-letter alphabets. Take pos-

itive numbers α1, . . . , αk such that
∑k

i=1 αi = 1. They define a partition of the
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interval I = [0, 1) into k subintervals

Ij =

[
j−1∑

i=1

αi,

j∑

i=1

αi

)
, j ∈ {1, 2, . . . , k}.

The interval exchange transformation is a bijection T : I → I given by the pre-
scription

T (x) = x+ cj for all x ∈ Ij , j ∈ {1, 2, . . . , k},
where cj are suitably chosen constants. Since T is a bijection, the intervals
T (I1), T (I2), . . . , T (Ik) form a partition of I. The orders of T (Ij) in the parti-
tion define a permutation π : {1, 2, . . . , k} → {1, 2, . . . , k} and this permutation π
determines uniquely the constants cj . For instance, if the permutation π is sym-

metric, i.e., π =
(
1 2 ... k−1 k
k k−1 ... 2 1

)
, then the transformation T is of the following

form
T (x) = x+

∑

i>j

αi −
∑

i<j

αi for x ∈ Ij .

The infinite word u = u0u1u2 . . . over A = {a1, . . . , ak} associated with T is
defined as

un := aj if T n(x) ∈ Ij

and is called a word coding k-interval exchange transformation (k-iet word for
short).

From the point of view of combinatorics on words, an important role is played
by those transformations whose orbit for an arbitrary x ∈ I is dense in I, i.e.,
the closure of {T n(x)

∣∣ n ∈ N} is the whole interval I. A sufficient condition for
this property represents the so-called i.d.o.c. (consult [35]) and the irreducibility
of the permutation π. In the sequel, let us assume that T satisfies both of these
properties. The k-iet word is then uniformly recurrent, its language does not
depend on the position of the starting point x, but only on the transformation T ,
its complexity satisfies C(n) = (k− 1)n+1 for all n ∈ N and no BS factor is weak.

The language of the k-iet word u is closed under reversal if and only if the
permutation π is symmetric. In such a case, the language L(u) contains infinitely
many palindromes and, as shown in [7], the equality in (3.1) is attained. Hence,
according to Theorem 3.8, the k-iet words are rich. It is easy to describe the
infinite palindromic branches for such k-iet words. The one with the empty word
as its center is obtained as the coding of the orbit {T n(x)|n ∈ Z} with the starting
point x = 1/2 and the branch with the center aj ∈ A as the coding of the orbit
with the starting point x =

∑
i<j αi + αj/2.

The k-iet words provide a generalization of Sturmian words due to the well-
known connection between Sturmian and mechanical words [36].

Theorem 5.1. Let u be an infinite word. Then u is Sturmian if and only if u is
a 2-iet word with an irrational partition of the unit interval.

Recently, in [45], a different generalization of Sturmian sequences is consid-
ered. It in fact corresponds to a special subclass of k-iet words given by coding a
trajectory in a regular 2n-gon.
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5.2. Combinatorial generalizations

Let us write down and baptize the generalizations of properties from Theo-
rem 4.1. We will then refer to them and study their relations. Let u be an infinite
word over the alphabet A. Denote k = #A.

(1) Property C:
the factor complexity of u satisfies C(n) = (k − 1)n+ 1 for all n ∈ N.

(2) Property LR:
u contains one left special and one right special factor of every length.

(3) Property BO:
all bispecial factors of u are ordinary.

(4) Property R:
any factor of u has exactly k return words.

(5) Property P :
the palindromic complexity of u satisfies P(n) + P(n + 1) = k + 1 for

all n ∈ N.
(6) Property PE :

every palindrome has a unique palindromic extension in u.
(7) Balance properties:

(a) Property B∀:
u is aperiodic and for all a ∈ A and for all factors w, v ∈ L(u) with
|w| = |v| it holds

||w|a − |v|a| ≤ k − 1.

(b) Property B∃:
u is aperiodic and there exists a ∈ A such that for all factors w, v ∈
L(u) with |w| = |v| it holds

||w|a − |v|a| ≤ k − 1.

(c) Property AC:
u is aperiodic and the abelian complexity of u satisfies AC(n) = k for
all n ∈ N, n ≥ 1.

At first, let us mention which properties are satisfied by the two generalizations
of Sturmian words from Section 5.1. AR words fulfill Properties: C,LR,BO,R,P ,
PE and k-iet words satisfy Properties: C,BO,R. If moreover the permutation
defining the k-iet word is symmetric, then these words have Properties P and PE .
Property LR does not hold for k-iet words.

It follows directly from the definition that some Properties imply others. For
instance, by (2.1) BO implies C. They are not equivalent as shown by the following
example taken from [26].

Example 5.1 (C �⇒ BO). The infinite ternary word limn→∞ ϕn(a), where ϕ(a) =
ab, ϕ(b) = cab, ϕ(c) = ccab – a recoding of the Chacon substitution – has the
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complexity 2n+ 1 for every n ∈ N, but contains infinitely many strong and weak
BS factors.

In the sequel, we will show that no two of these properties are equivalent on
a multiliteral alphabet.

Concerning Properties B∀,B∃ and AC, we will not treat them but in the last
section since they are very restrictive, and consequently, satisfied only by a small
class of infinite words.

5.3. Property LR

Property LR does not characterize AR words since it is satisfied by a larger
class of words. Infinite words with the language closed under reversal and satisfy-
ing Property LR coincide with extensively studied aperiodic episturmian words.
Nevertheless, Property LR may be satisfied by words whose language is not closed
under reversal, as illustrated in [23] by the following example. It shows also that
Property LR does not guarantee Properties C,BO,R,P ,PE.

Example 5.2 (LR �⇒ language closed under reversal, C,BO,R,P ,PE). If we
construct an infinite word u so that we replace b with bc in the Fibonacci word
abaababaabaabab . . . , the fixed point of ϕ : a → ab, b → a, then bc is a factor of
L(u), however cb not. It is easy to see that such a word has still a unique infinite
RS and a unique LS branch (the infinite word u itself). Consequently, Property
LR is preserved. However, both of these infinite special branches have only two
extensions, hence Property C (and BO as well) fails. The factor c has only two
return words caab and cab, hence Property R does not hold. Moreover, as u is
uniformly recurrent and its language is not closed under reversal, it contains by
Theorem 3.2 only a finite number of palindromes. Therefore, Properties P and
PE are not satisfied.

On the other hand, observing k-iet words, we learn that none of Properties
C,BO,R,P ,PE imply LR. The problem to describe the class of infinite words
with Property LR whose language is not closed under reversal requires a further
study.

5.4. Property R

Let us recall that infinite words with Property R are necessarily uniformly
recurrent. If their language is not closed under reversal, then it cannot contain
infinitely many palindromes by Theorem 3.2. Such words exist, as illustrated by
the following example, therefore, Property R does not imply P .

Example 5.3 (R �⇒ P). The fixed point u of ϕ, where ϕ(a) = aab, ϕ(b) =
ac, ϕ(c) = a, contains bac, but cab is not its factor. The fact that every factor
of u has three return words is explained in [9] for a whole class of infinite words
coding β-integers.
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We have seen that AR words and k-iet words have both Property R and C,
however, as shown in [26] by the following example, Property C does not imply
Property R on multiliteral alphabets.

Example 5.4 (C �⇒ R). The fixed point of ϕ : a → ab, b → cab, c → ccab – the
above mentioned recoding of the Chacon substitution – has the complexity 2n+1
for every n ∈ N, but contains more than three return words of certain factors (for
example the factor bc has 4 return words: bca, bcca, bcaba and bccaba.

The following theorems come from the paper [9] that is devoted to the study
of Property R for infinite words on multiliteral alphabets. Let us observe once
more AR words and k-iet words, these classes satisfy not only Property C, but also
Property BO. It is thus natural to ask whether Property BO guarantees R. The
corollary of the following theorem will provide an answer.

Theorem 5.2. If u is an infinite word with no weak BS factors, then u has
Property R if and only if u is uniformly recurrent and satisfies C.

Let us underline, an infinite word u has Property BO if and only if it has
Property C and contains no weak BS factors. It results in the advertised corollary.

Corollary 5.3. Let u be a uniformly recurrent infinite word. Then

BO ⇒ R.

If we restrict our consideration to the ternary alphabet, the implication can be
reversed.

Theorem 5.4. Let u be a ternary uniformly recurrent infinite word. Then

BO ⇔ R.

As soon as the alphabet has more than three letters, Property R does not imply
Property BO any more.

Example 5.5 (R �⇒ BO). The uniformly recurrent infinite word u =
limn→∞ ϕn(a), where

ϕ(a) = acbca, ϕ(b) = acbcadbdaca, ϕ(c) = dbcbdacadbd, ϕ(d) = dbcbd,

satisfies R, but not C (since C(n) is even for all n ∈ N) and u contains, of course,
weak BS factors. For details consult [9].

The question whether there exists a nice characterization of words with Prop-
erty R on alphabets with more than three letters remains open.

5.5. Property P and PE

The paper [8] is focused on the study of Properties P and PE . As soon as
an infinite word u has Property PE , then u has exactly one infinite palindromic
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branch with center a for every letter a ∈ A and one infinite palindromic branch
with center ε. Therefore, u contains exactly #A palindromes for every odd length
(central factors of palindromic branches with centers a ∈ A) and one palindrome
for every even length (central factor of the infinite palindromic branch with center
ε). Consequently, Property P is also satisfied by u.

Let us recall that Property P may be reformulated in the following way

P(n+ 2) = P(n) for all n ∈ N, (5.1)

where P(0) = 1. We will equally use both of the forms of Property P .
Let u be an infinite word satisfying PE . The language L(u) contains infinitely

many palindromes, but it need not be closed under reversal, neither recurrent nor
rich as illustrated by the following example.

Example 5.6 (PE �⇒ language closed under reversal, PE �⇒ richness). The infinite
word u on the alphabet {a, b, c} defined in the following way:

u = caccb ccc︸︷︷︸
3×

a cccc︸︷︷︸
4×

b ccccc︸ ︷︷ ︸
5×

a cccccc︸ ︷︷ ︸
6×

b ccccccc︸ ︷︷ ︸
7×

a . . .

has three infinite palindromic branches with centers a, b and c

. . . cccaccc . . . , . . . cccbccc . . . , . . . ccccccc . . .

and one infinite palindromic branch with central factors of even length of the form
. . . cccccccc . . . The factor accb occurs only once in u, thus u is not recurrent and
hence L(u) is not closed under reversal. Moreover, u is not rich since the prefix
caccbccca of length 9 contains only 9 palindromes:
ε, a, b, c, cc, cac, cbc, ccc and ccbcc.

However, if the language L(u) is closed under reversal, then it is possible to say
more about the relation of Properties P and C and the richness of u. When both
P and C are satisfied, the equality in (3.1) is reached. Application of Theorem 3.8
provides us with the following corollary.

Corollary 5.5. Let u be an infinite word whose language is closed under reversal.
Then

P + C ⇒ richness of u.

The first example shows that Property P itself does not guarantee richness
even if the language is closed under reversal. The second one illustrates that the
implication in Corollary 5.5 cannot be reversed.

Example 5.7 (PE �⇒ richness, PE �⇒ C). A known example of an infinite word
with the language closed under reversal and with a higher factor complexity is the
billiard sequence on three letters, for which C(n) = n2 + n+ 1. As shown in [14],
such words satisfy Property PE, hence P as well. Consequently, billiard sequences
do not reach the upper bound in (3.1) and by Theorem 3.8 cannot be rich.
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Example 5.8 (richness �⇒ P , richness �⇒ C). Let ϕ be defined on an m-letter
alphabet as follows:

ϕ(0) = 0t1, ϕ(1) = 0t2, . . . , ϕ(m− 2) = 0t(m− 1), ϕ(m− 1) = 0s,

where s, t ∈ N and t ≥ s ≥ 2. The fixed point u of ϕ satisfies the equality
P(n+ 1) + P(n) = ΔC(n) + 2 for all n. As the language is closed under reversal,
by Theorem 3.8 u is rich. Property P is not satisfied since the sum P(n+1)+P(n)
is not constant. Further properties of palindromes in u can be found in [4].

Let us examine in the sequel the connection between Properties C and P , resp.
C and PE .

5.5.1. Ternary alphabet

Let us limit our considerations to the ternary alphabet. The following theorem
and examples come from [8].

Theorem 5.6. Let u be an infinite ternary word with the language closed under
reversal. Then

(1) C ⇒ P;
(2) BO ⇒ PE .
The implication in Theorem 5.6 cannot be reversed. We have already illustrated

in Example 5.7 that even the stronger property PE does not ensure C. Let us
provide one more counterexample – a fixed point of a substitution.

Example 5.9 (PE �⇒ C). Denote by u the infinite ternary word being the fixed
point of the substitution Φ defined by

Φ(a) = aba, Φ(b) = cac, Φ(c) = aca. (5.2)

Then the language of u is closed under reversal. On one hand, u has Property
PE , consequently, u has Property P , too. On the other hand, Property C fails and
L(u) contains infinitely many weak BS factors.

Properties P and PE are equivalent for binary words. However already for
ternary words, the implication P ⇒ PE does not hold any more.

Example 5.10 (P �⇒ PE). Let v be the ternary infinite word defined by v =
Ψ(u), where Ψ : {A,B}∗ → {a, b, c}∗ is the morphism given by

Ψ(A) = bc and Ψ(B) = baa,

and u is the fixed point of the substitution ϕ defined by

ϕ(A) = ABBABBA, ϕ(B) = ABA.

Then v satisfies P , but does not satisfy PE.
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The relation between R and P follows from Theorems 5.6 and 5.4.

Corollary 5.7. Let u be an infinite ternary word with the language closed under
reversal. Then

R ⇒ PE .
The implication cannot be reversed.

Example 5.11 (PE �⇒ R). Consider the fixed point u of the substitution in (5.2).
As mentioned above, u contains weak BS factors. Then by Theorem 5.4, u does
not satisfy R.

Putting together Theorems 5.6 and Corollary 5.5, we obtain one more corollary.

Corollary 5.8. Let u be an infinite ternary word with the language closed under
reversal. Then

C ⇒ richness of u.

In contrast with Corollary 5.5, we see that on a ternary alphabet already Prop-
erty C itself ensures richness.

Neither in this case, the reversed implication holds. Consult Example 5.8 or
the following example with a periodic word.

Example 5.12 (richness �⇒ C). The periodic infinite word (abcba)ω is rich (since
complete return words of palindromic factors are palindromes) and has a bounded
complexity.

5.5.2. Multiliteral alphabet

In this section, two new theorems concerning Properties P and PE for multi-
literal infinite words will be proved.

Theorem 5.9. Let u be an infinite word with the language closed under reversal.

Assume C: PE ⇔ BO.

Proof. (⇐): Let us prove the statement by contradiction. Assume that Prop-
erty BO holds and Property PE does not. It is clear that the property PE can
only be violated on a palindromic BS factor. By Property BO, all palindromic
factors have their bilateral order equal to zero. By Proposition 3.9, they have an
odd number of palindromic extensions, particularly at least one.

Since the language is closed under reversal, Theorem 3.3 implies the inequal-
ity (3.1) for all n ∈ N

P(n) + P(n+ 1) ≤ 2 + ΔC(n).

Let w denote the shortest palindromic BS factor that does not have exactly one
palindromic extension. Denote N = |w|. Then we have for all n ≤ N ,

P(n) + P(n+ 1) = #A+ 1.
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Since Property BO implies Property C, we have 2+ΔC(n) = 2+ (#A− 1), hence
the equality in (3.1) is attained for all n ≤ N .

Since w has to have at least 3 palindromic extensions, one can see that P(N +
2) ≥ P(N) + 2. Thus, we obtain P(N +1)+P(N +2) ≥ P(N +1)+P(N) + 2 =
#A + 3 = ΔC(N + 1) + 4, which is a contradiction with (3.1). We conclude that
Property PE holds.

(⇒): Assume Property PE holds. Then Property P holds as well. By Corollary 5.5
u is rich. Consequently, we can apply Theorem 3.10 and we obtain b(w) = 0 for
all non-palindromic BS factors and b(w) = #Pext(w) − 1 for all palindromic BS
factors. By Property PE every palindromic BS factor has a unique palindromic
extension, thus b(w) = 0 for palindromic BS factors, too. �

Let us deduce several corollaries of Theorem 5.9. The most straightforward
concerns richness and Property BO. It follows combining Theorems 5.9 and 3.8.

Corollary 5.10. Let u be an infinite word with the language closed under reversal.
Then

BO ⇒ richness of u.

Putting together Theorems 3.2, 5.2 and 5.9, we obtain the following corollaries.

Corollary 5.11. Let u be a uniformly recurrent infinite word.

Assume C: PE ⇒ R.

The reversed implication does not hold. Property R does not even guarantee
the weaker property P .

Example 5.13 (R+ C �⇒ P). Consider again the infinite word from the previous
section: the fixed point u of ϕ, where ϕ(a) = aab, ϕ(b) = ac, ϕ(c) = a. Properties
C and R are satisfied (as explained in [9]), u is uniformly recurrent and the lan-
guage L(u) is not closed under reversal. By Theorem 3.2, u contains only a finite
number of palindromes.

Notice that the assumptions in Corollary 5.11 imply that the language L(u) is
closed under reversal. It is natural to ask whether the implication R ⇒ PE holds
for infinite words with the language closed under reversal. The answer is however
negative. Property R does not imply even the weaker property P .

Example 5.14 (R + language closed under reversal �⇒ P). Consider again the
uniformly recurrent infinite word from [9] given by u = limn→∞ ϕn(a), where

ϕ(a) = acbca, ϕ(b) = acbcadbdaca, ϕ(c) = dbcbdacadbd, ϕ(d) = dbcbd.

It satisfies R, but C and BO are violated. It is not difficult to find infinitely many
palindromes among weak BS factors. Thus, the language L(u) is closed under
reversal. However PE is not satisfied because cbc, dbd ∈ L(u). Nor P holds since
P(1) + P(2) = 4 �= 5.
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We notice in the previous examples that to demand either only the language
closed under reversal or only Property C in order to reverse the implication in
Corollary 5.11 is not sufficient. It is however not solved whether any infinite word
with the language closed under reversal and having Properties C and R satisfies
Property PE or at least P as well.

Corollary 5.12. Let u be a uniformly recurrent infinite word.

Assume PE: richness of u ⇔ R.

Proof. Recall that by Theorem 3.2, the language is closed under reversal.
(⇒): Suppose u is rich. Then Property PE guarantees that Property P holds as
well. Since the language is closed under reversal, Property P together with Theo-
rem 3.8 implies C is also satisfied. The statement follows then by Corollary 5.11.
(⇐): Let us prove the second implication by contradiction. Assume R is satisfied
and u is not rich. Theorem 3.6 claims that there exists a palindrome w which
has a complete return word that is not a palindrome itself. As PE holds, the
language has #A + 1 biinfinite palindromic branches. As w is a palindrome, we
can find it in the middle of one branch. Since u is uniformly recurrent, we can
find w in a bounded distance from the center (on both sides) of the remaining
#A branches. Thus we have #A distinct palindromic complete return words of
w. As w was supposed to have a non-palindromic complete return word, we have
a contradiction with R. �

In Theorem 5.9 for infinite words having Property C, we have proved that Prop-
erty PE coincides with Property BO. Under the same assumption on the com-
plexity, we are again able to characterize Property P imposing this time a weaker
condition on bilateral orders of BS factors.

Theorem 5.13. Let u be an infinite word with the language closed under reversal
and satisfying Property C. Then Property P holds if and only if any bispecial
factor w of u satisfies:

• if w is non-palindromic, then

b(w) = 0;

• if w is a palindrome, then

b(w) = #Pext(w) − 1.

Proof. (⇐): Theorem 3.10 implies that u is rich. Since the language is closed under
reversal, we can use Theorem 3.8. By Property C, we have P(n + 1) + P(n) =
ΔC(n) + 2 = #A+ 1, thus Property P holds.

(⇒): Corollary 5.5 states that u is rich. The statement about bilateral orders
follows then by Theorem 3.10. �

This theorem may be immediately reformulated using Theorem 3.10.
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Corollary 5.14. Let u be an infinite word with the language closed under reversal.

Assume C: P ⇔ richness of u.

Non-palindromic bispecial factors can really occur in infinite words with the
language closed under reversal and satisfying Properties C and PE , thus P as well.
This means that there exist rich words with non-palindromic BS factors.

Example 5.15. A ternary word with such properties is v = π(u), where u =
ϕ2(u) and

ϕ : A → CAC, B → CACBD, C → BDBCA, D → BDB,

π : A → ba, B → b, C → a, D → abc.

The substitution ϕ satisfies for any letter x ∈ {A,B,C,D}, if we cut off the last
two letters of ϕ2n(x), we get a palindrome. Together with the uniform recurrence
of u, Theorem 3.2 implies that the language L(u) is closed under reversal. Every
LS factor of u is a prefix of ϕ2n(B) or ϕ2n(C) for some n ∈ N, consequently,
ΔC(n) = 2 for all n ∈ N, n ≥ 1.

For every non-empty palindrome w ∈ L(u) (except for B and C), its morphic
image π(w) without first two letters is a palindrome. As v contains infinitely many
distinct palindromes and is a morphic image of a uniformly recurrent word, thus
uniformly recurrent, too, the language L(v) is closed under reversal. The word v
has two infinite LS branches: every LS factor of v is either a prefix of π(ϕ2n(B))
or of π(ϕ2n(C)). Therefore, v satisfies Property C. Moreover, v contains only
ordinary BS factors. Applying Theorem 5.9, Property PE holds as well. Remark
that the factor ba is a non-palindromic BS factor of v.

5.6. Balance properties

It is a direct consequence of the definition that

AC ⇒ B∀ ⇒ B∃. (5.3)

The first implication follows from the fact that if there are two factors v, w of the
same length that contain a distinct number of letters a, say l and r, then there
exist factors containing any number of letters a between l and r (they may be
found in any factor having v as its prefix and w as its suffix, or vice versa).

Let us point out that our favorite generalizations of Sturmian words, namely
AR words and k-iet words, violate the property B∀. The paper [19] provides
a construction of an AR word u that is not c-balanced for any c. The same
property have also all 3-iet words given by the transformation T associated with
the symmetric permutation and verifying the property i.d.o.c., which can be shown
using methods from [1].

It is natural to ask whether infinite words on multiliteral alphabets with Prop-
erty AC exist. A recent answer has been provided in [21]: there are no infinite
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words satisfying AC on alphabets containing more than 3 letters. On the other
hand, there exist ternary infinite words with PropertyAC as shown by the example
taken from [42].

Example 5.16. Let v be any aperiodic infinite word on {A,B} and put u = π(v),
where π is the morphism defined by π(A) = abc, π(B) = acb. Then AC(n) = 3
for all n ∈ N, n ≥ 1.

A more general theorem has been proved ibidem.

Theorem 5.15. If an aperiodic uniformly recurrent infinite word u on a ternary
alphabet is 1-balanced, then u has Property AC.

Let us underline in the following examples that none of the implications in (5.3)
can be reversed. The first example comes from [43] and the second one is taken
from [47].

Example 5.17 (B∀ �⇒ AC). The ternary Tribonacci word – the fixed point of
the substitution ϕ : a → ab, b → ac, c → a – is 2-balanced, however its abelian
complexity reaches five values: 3, 4, 5, 6, 7. Notice that the Tribonacci word belongs
to AR words, which satisfy Properties C,LR,BO,R,P ,PE .

Example 5.18 (B∃ �⇒ B∀). The fixed point u of the substitution ϕ : a → aab, b →
c, c → ab has the following properties (shown in [47]):

• for any factors v, w ∈ L(u) with |v| = |w|, it holds

||v|x − |w|x| ≤ 2 if x ∈ {b, c};

• there exist v, w ∈ L(u) with |v| = |w| such that

||v|a − |w|a| = 3.

Thus, u has Property B∃. The word u is a coding of distances between neighboring
β-integers, where β is the largest root of the polynomial x3−2x2−x+1. The word
u is moreover known (see [28]) to verify Property BO, but not LR. Theorem 5.2
implies that u has Property R as well. Its language is not closed under reversal,
consequently, neither PE nor P holds.

Generally, it is difficult to decide whether an infinite word has Property B∃
or B∀. A slightly simpler problem is to study infinite words that are c-balanced
for some c. The criterion for existence of such a constant c for fixed points of
a primitive substitution has been provided in [2], observing the spectra of adjacence
matrices of substitutions. In general, it is however impossible to determine the
minimal value of c from the spectrum. To our knowledge, besides the ternary
words considered in Examples 5.17 and 5.18, the only non-sturmian fixed points
of primitive substitutions, for which the minimal value of c is known, have been
examined in [10] and [48].
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#Pext(w)− 1 if w is bispecial palindromic
0 otherwise

Figure 3. Diagram of known relations (assumptions are marked
as labels of arrows).

6. Overview of relations and examples

In this section we provide a brief overview of relations and examples presented
in the paper. Most of the relations are depicted in Figure 3. Examples are listed
in Table 1. The word is either a fixed point of the given substitution, the image
by the morphism π of a fixed point of the substitution ϕ, the limit of the sequence
(un) or otherwise specified.
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Table 1. Example overview.

word properties reference

u0 = ab, un+1 = unabũn uniformly recurrent, closed
under reversal, finite number
of palindromes

ex. 3.1 on
p. 449, [13]

u0 = ε, un+1 = unabc
n+1un recurrent, ∞-many palin-

dromes, not closed under re-
versal

ex. 3.2 on
p. 449, [16]

a → ab, b → cab, c → ccab C, not BO, not R ex. 5.1 on
p. 457,
ex. 5.4 on
p. 459, [26]

ϕ: A → AB, B → A; π: A → a,
B → bc

LR, not closed under rever-
sal, finite number of palin-
dromes, not C, not R

ex. 5.2 on
p. 458

a → aab, b → ac, c → a R, not closed under reversal ex. 5.3 on
p. 458, [9]

a → acbca, b → acbcadbdaca,
c → dbcbdacadbd, d → dbcbd

R, closed under reversal, not
C, not P

ex. 5.5 on
p. 459,
ex. 5.14 on
p. 463, [9]

u = ca cc︸︷︷︸
2×

b ccc︸︷︷︸
3×

a cccc︸︷︷︸
4×

b ccccc︸ ︷︷ ︸
5×

a . . . ∞-many palindromes, not
closed under reversal, not
rich

ex. 5.6 on
p. 460

billiard sequence on three letters closed under reversal, PE,
not C, not rich

ex. 5.7 on
p. 460, [14]

a → aab, b → aac, c → aa rich, not C, not P ex. 5.8 on
p. 461, [4]

a → aba, b → cac, c → aca closed under reversal, PE,
not C, not R

ex. 5.9 on
p. 461,
ex. 5.11 on
p. 462, [8]

ϕ: A → ABBABBA, B → ABA;
π: A → bc, B → baa

closed under reversal, C,P ,
not PE

ex. 5.10 on
p. 461, [8]

(abcba)ω rich, not C ex. 5.12 on
p. 462

a → aab, b → ac, c → a C, R, not closed under rever-
sal

ex. 5.13 on
p. 463, [9]

ϕ: A → CAC, B → CACBD,
C → BDBCA, D → BDB; π:
A → ba, B → b, C → a, D → abc

PE , C, closed under re-
versal, rich, contains non-
palindromic BS factors

ex. 5.15 on
p. 465

u = π(v), π: A → abc, B → acb,
v is an aperiodic word over {A,B}

AC ex. 5.16 on
p. 466, [42]

a → ab, b → ac, c → a LR,BO,R,PE , B∀, not AC ex. 5.17 on
p. 466, [43]

a → aab, b → c, c → ab B∃, not B∀, not closed under
reversal, BO, not LR, R

ex. 5.18 on
p. 466, [47]
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[8] L’. Balková, E. Pelantová and Å . Starosta, Palindromes in infinite ternary words. RAIRO-
Theor. Inf. Appl. 43 (2009) 687–702.
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[47] O. Turek, Balances and Abelian complexity of a certain class of infinite ternary words.

RAIRO-Theor. Inf. Appl. 44 (2010) 317–341.
[48] O. Turek, Balance properties of the fixed point of the substitution associated to quadratic

simple Pisot numbers. RAIRO-Theor. Inf. Appl. 41 (2007) 123–135.
[49] L. Vuillon, A characterization of Sturmian words by return words. Eur. J. Comb. 22 (2001)

263–275.
[50] L. Vuillon, Balanced words. Bull. Belg. Math. Soc. Simon Stevin 10 (2003) 787–805.
[51] L. Vuillon, On the number of return words in infinite words with complexity 2n+1. LIAFA

Research Report (2000).

Communicated by J. Berstel.
Received March 14, 2010. Accepted September 28, 2010.

56



Infinite Words with Finite Defect

Authors: L’ubomı́ra Balková, Edita Pelantová, Štěpán Starosta
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1. Introduction

The upper bound |w| + 1 on the number of palindromes occurring in a finite word w given by
X. Droubay, J. Justin, and G. Pirillo in [9] initiated many interesting investigations on palindromes in
infinite words as well. An infinite word for which the upper bound is attained for any of its factors is
called rich or full. There exist several characterizations of rich words based on the notion of complete
return words [11], on the longest palindromic suffix and prefix of a factor [9,7], on the palindromic
and factor complexity [6] and most recently on the bilateral orders of factors [3]. Brlek et al. suggested
in [5] to study the defect of a finite word w defined as the difference between the upper bound
|w| + 1 and the actual number of palindromes contained in w . The defect of an infinite word is then
defined as the maximal defect of a factor of the infinite word. In this convention, rich words are
precisely the words with zero defect. In this paper we focus on uniformly recurrent words with finite

* Corresponding author.
E-mail addresses: lubomira.balkova@fjfi.cvut.cz (L. Balková), edita.pelantova@fjfi.cvut.cz (E. Pelantová), staroste@fjfi.cvut.cz

(Š. Starosta).

0196-8858/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.aam.2010.11.006

58



L. Balková et al. / Advances in Applied Mathematics 47 (2011) 562–574 563

defect. Let us point out that periodic words with finite defect have been already described in [5] and
in [11]. In Section 2 we introduce notation and summarize known results on rich words and words
with finite defect. In Section 3 the notion of oddities and the characterization of uniformly recurrent
words with finite defect based on oddities from [11] is recalled and, as an immediate consequence,
two more useful characterizations are deduced. The main result is a new characterization of uniformly
recurrent words with finite defect based on a relation between the palindromic and factor complexity,
see Theorem 4.1 in Section 4. Furthermore, we introduce a class of morphisms P ret closed under
composition of morphisms and we show that a uniformly recurrent word with finite defect is an
image of a rich word under a morphism of class P ret, see Theorem 5.5 in Section 5. This class is
closely related to the well-known class P defined by Hof, Knill, and Simon in [12]; every morphism
from P ret is conjugate to a morphism of class P .

2. Preliminaries

By A we denote a finite set of symbols, usually called letters; the set A is therefore called an
alphabet. A finite string w = w0 w1 . . . wn−1 of letters of A is said to be a finite word, its length is
denoted by |w| = n. Finite words over A together with the operation of concatenation and the empty
word ε as the neutral element form a free monoid A∗ . The map

w = w0 w1 . . . wn−1 �→ w = wn−1 wn−2 . . . w0

is a bijection on A∗ , the word w is called the reversal or the mirror image of w . A word w which
coincides with its mirror image is a palindrome.

Under an infinite word we understand an infinite string u = u0u1u2 . . . of letters from A. A finite
word w is a factor of a word v (finite or infinite) if there exist words p and s such that v = pws. If
p = ε , then w is said to be a prefix of v , if s = ε , then w is a suffix of v .

The language L(u) of an infinite word u is the set of all its factors. Factors of u of length n form
the set denoted by Ln(u). Clearly, L(u) = ⋃

n∈N Ln(u). We say that the language L(u) is closed under
reversal if L(u) contains with every factor w also its reversal w .

For any factor w ∈ L(u), there exists an index i such that w is a prefix of the infinite word
uiui+1ui+2 . . . . Such an index is called an occurrence of w in u. If each factor of u has infinitely many
occurrences in u, the infinite word u is said to be recurrent. It is easy to see that if the language of
u is closed under reversal, then u is recurrent (a proof can be found in [11]). For a recurrent infinite
word u, we may define the notion of a complete return word of any w ∈ L(u). It is a factor v ∈ L(u)

such that w is a prefix and a suffix of v and w occurs in v exactly twice. Under a return word of a
factor w is usually meant a word q ∈L(u) such that qw is a complete return word of w . If any factor
w ∈ L(u) has only finitely many return words, then the infinite word u is called uniformly recurrent.
If u is a uniformly recurrent word, we can assign to any n ∈ N the minimal number Ru(n) ∈ N such
that we have for any v ∈L(u) with |v| � Ru(n)

{
w

∣∣ |w| = n, w is a factor of v
} = Ln(u),

or equivalently, any piece of u which is longer than or equal to Ru(n) contains already all factors of u
of length n. The map n → Ru(n) is usually called the recurrence function of u. In particular, any fixed
point of a primitive morphism is uniformly recurrent, where a morphism ϕ over an alphabet A is
primitive if there exists an integer k such that for every a ∈ A the k-th iteration ϕk(a) contains all
letters of A.

The factor complexity of an infinite word u is a map C : N �→ N defined by the prescription C(n) :=
#Ln(u). To determine the first difference of the factor complexity, one has to count the possible
extensions of factors of length n. A right extension of w ∈L(u) is any letter a ∈A such that wa ∈L(u).
Of course, any factor of u has at least one right extension. A factor w is called right special if w has
at least two right extensions. Similarly, one can define a left extension and a left special factor. We will
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deal only with recurrent infinite words u. In this case, any factor of u has at least one left extension.
We say that w is a bispecial factor if it is right and left special.

In our article we focus on words in some sense opulent in palindromes, therefore we will introduce
several notions connected with palindromic factors.

The defect D(w) of a finite word w is the difference between the utmost number of palindromes
|w|+1 and the actual number of palindromes contained in w . Finite words with zero defects – called
rich words – can be viewed as the most saturated by palindromes. This definition may be extended
to infinite words as follows.

Definition 2.1. An infinite word u = u0u1u2 . . . is called rich, if for any index n ∈ N the prefix
u0u1u2 . . . un−1 of length n contains exactly n + 1 different palindromes.

We keep here the terminology introduced by Glen et al. in [11] in 2007, which seems to us to be
prevalent nowadays. However, Brlek et al. in [5] baptized such words full already in 2004.

Let us remark that not only all prefixes of rich words are rich, but also all factors are rich. A result
from [9] will provide us with a handful tool which helps to evaluate the defect of a factor.

Proposition 2.2. (See [9].) A finite or infinite word u is rich if and only if the longest palindromic suffix of w
occurs exactly once in w for any prefix w of u.

The longest palindromic suffix of a factor w will occur often in our considerations, therefore
we will denote it by lps(w). In accordance with the terminology introduced in [9], the factor with
a unique occurrence in another factor is called unioccurrent. From the proof of the previous proposi-
tion directly follows the next corollary.

Corollary 2.3. The defect D(w) of a finite word w is equal to the number of prefixes w ′ of w, for which the
longest palindromic suffix of w ′ is not unioccurrent in w ′ .

This corollary implies that D(v) � D(w) whenever w is a factor of v . It enables to give a reason-
able definition of the defect of an infinite word (see [5]).

Definition 2.4. The defect of an infinite word u is the number (finite or infinite)

D(u) = sup
{

D(w)
∣∣ w is a prefix of u

}
.

Let us point out several facts concerning defects that are easy to prove:

(1) If we consider all factors of a finite or an infinite word u, we obtain the same defect, i.e.,

D(u) = sup
{

D(w)
∣∣ w ∈ L(u)

}
.

(2) Any infinite word with finite defect contains infinitely many palindromes.
(3) Infinite words with zero defect correspond exactly to rich words.

Periodic words with finite defect have been studied in [5] and in [11]. It holds that the defect of an
infinite periodic word with the minimal period w is finite if and only if w = pq, where both p and q
are palindromes. In [11] words with finite defect have been baptized almost rich and the richness of
a word was described using complete return words.

Proposition 2.5. (See [11].) An infinite word u is rich if and only if all complete return words of any palindrome
are palindromes.
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The authors of [9] who were the first ones to tackle this problem showed that Sturmian and
episturmian words are rich. In [5], an insight into the richness of periodic words can be found.

The number of palindromes of a fixed length occurring in an infinite word is measured by the
so-called palindromic complexity P , a map which assigns to any non-negative integer n the number

P(n) := #
{

w ∈ Ln(u)
∣∣ w is a palindrome

}
.

The palindromic complexity is bounded by the first difference of factor complexity. The following
proposition is proven in [2] for uniformly recurrent words, however the uniform recurrence is not
needed in the proofs, thus it holds for any infinite words with language closed under reversal.

Proposition 2.6. (See [2].) Let u be an infinite word with language closed under reversal. Then

P(n) +P(n + 1) � C(n + 1) − C(n) + 2, (1)

for all n ∈ N.

It is shown in [6] that this bound can be used for a characterization of rich words as well. The
following proposition states this fact.

Proposition 2.7. (See [6].) An infinite word u with language closed under reversal is rich if and only if the
equality in (1) holds for all n ∈ N.

The most recent characterization of rich words given in [3] exploits the notion of the bilateral order
b(w) of a factor and the palindromic extension of a factor. The bilateral order was introduced in [8]
as b(w) = #{awb | awb ∈ L(u),a,b ∈ A} − #{aw | aw ∈ L(u),a ∈ A} − #{wb | wb ∈ L(u),b ∈ A} + 1.
The set of palindromic extensions of a palindrome w ∈ L(u) is defined by Pext(w) = {awa | awa ∈
L(u),a ∈A}.

Proposition 2.8. (See [3].) An infinite word u with language closed under reversal is rich if and only if any
bispecial factor w satisfies:

• if w is non-palindromic, then b(w) = 0,
• if w is a palindrome, then b(w) = # Pext(w) − 1.

3. Characterizations of words with finite defect

Uniformly recurrent words with finite defect are characterized using the notion of oddities in
Proposition 4.8 from [11]. It is based on the following lower bound.

Proposition 3.1. (See [11, Proposition 4.6].) For any infinite word u it holds

D(u) � #
{{v, v} ∣∣ v �= v and v or v is a complete return word in u of a palindrome w

}
.

The set {v, v} is called an oddity. It is clear that for uniformly recurrent words with a finite number
of distinct palindromes, the defect is infinite, however the number of oddities is finite. Moreover, even
for uniformly recurrent words with infinitely many palindromes, it can hold

D(u) > #
{{v, v} ∣∣ v �= v and v or v is a complete return word in u of a palindrome w

}
.

We take an example for this situation from [11]. Let u = (abcabcacbacb)ω , where ω denotes an in-
finite repetition, then D(u) = 4, but the number of oddities is equal to 3. However, the defect of an
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aperiodic word can also exceed the number of oddities. For instance, if we replace in Example 3.4 the
substitution σ with 0 → cabcabcbacbac, 1 → d, then it is easy to show that D(u) = 4, but the number
of oddities is 3.

We can now recall the characterization of words with finite defect based on oddities.

Proposition 3.2. (See [11, Proposition 4.8].) A uniformly recurrent word u has infinitely many oddities if and
only if u contains infinitely many palindromes and D(u) = ∞.

As an immediate consequence of Proposition 3.2, we obtain the following characterizations of
infinite words with finite defect.

Theorem 3.3. Let u be a uniformly recurrent word containing infinitely many palindromes. Then the following
statements are equivalent:

1. D(u) < ∞,
2. u has a finite number of oddities,
3. there exists an integer K such that all complete return words of any palindrome from L(u) of length at

least K are palindromes,
4. there exists an integer H such that for any prefix f of u with | f | � H the longest palindromic suffix of f

is unioccurrent in f .

Proof. 1. and 2. are equivalent by Proposition 3.2. It follows directly from the definition of oddities
that 2. and 3. are equivalent. Corollary 2.3 implies that 1. and 4. are equivalent. �

It is easy to see that the last statement of Theorem 3.3 can be equivalently rewritten as: There
exists an integer H such that for any factor f of u with | f | � H the longest palindromic suffix of f
is unioccurrent in f .

Let us stress that if we put in the previous theorem D(u) = K = H = 0, the points 1., 3., and 4.
become known results on rich words, see Propositions 2.5 and 2.2.

Example 3.4. Let us provide an example of a uniformly recurrent word u with finite defect and let
us find for u the lowest values of constants K and H from Theorem 3.3. Take the Fibonacci word v,
i.e., the fixed point of ϕ : 0 → 01, 1 → 0. Define u as its morphic image σ(v), where σ : 0 → cabcbac,
1 → d.

It is easy to show that all palindromes of length greater than 1 and the palindromes a, b, and d
have only palindromic complete return words. Hint: long palindromes in u contains in their center
images of non-empty palindromes from v that have palindromic complete return words by the rich-
ness of v. The only non-palindromic complete return of c is cabc, thus there is exactly one oddity
{cabc, cbac}. In order to show that D(u) = 1, it suffices to verify that no prefixes longer than cabc
have c as their longest palindromic suffix. This follows directly from the form of σ . The lowest values
of the constants K and H are: K = 2, H = 5.

4. Palindromic complexity of words with finite defect

The aim of this section is to prove the following new characterization of infinite words with finite
defect based on a relation between the palindromic and factor complexity.

Theorem 4.1. Let u be a uniformly recurrent word. Then D(u) < ∞ if and only if there exists an integer N
such that

P(n) +P(n + 1) = C(n + 1) − C(n) + 2

holds for all n � N.
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Notice that if we set N = 0 in the previous theorem, then we obtain the known characterization
of rich words from Proposition 2.7 (which holds even under a weaker assumption that L(u) is closed
under reversal).

In the sequel, we will prove two propositions that together with the equivalent characterizations
of words with finite defect from Theorem 3.3 imply Theorem 4.1. As we have already mentioned,
all words with language closed under reversal satisfy the inequality in Proposition 2.6. A direct con-
sequence of its proof given in [2] is a necessary and sufficient condition for the equality in (1). To
formulate this condition in Lemma 4.2, we introduce two auxiliary notions.

Let u be an infinite word with language closed under reversal and let n be a given positive integer.
An n-simple path e is a factor of u of length at least n + 1 such that the only special (right or left)

factors of length n occurring in e are its prefix and suffix of length n. If w is the prefix of e of length
n and v is the suffix of e of length n, we say that the n-simple path e starts in w and ends in v .

We will denote by Gn an undirected graph whose set of vertices is formed by unordered pairs
(w, w) such that w ∈ Ln(u) is right or left special. We connect two vertices (w, w) and (v, v) by an
unordered pair (e, e) if e or e is an n-simple path starting in w or w and ending in v or v .

Note that the graph Gn may have multiple edges and loops.

Lemma 4.2. Let u be an infinite word with language closed under reversal. The equality in (1) holds for an
integer n ∈ N if and only if both of the following conditions are met:

1. The graph Gn after removing loops is a tree.
2. Any n-simple path forming a loop in the graph Gn is a palindrome.

Proposition 4.3. Let u be an infinite word with language closed under reversal. Suppose that there exists an
integer N such that for all n � N the equality P(n)+P(n+1) = C(n+1)−C(n)+2 holds. Then the complete
return words of any palindromic factor of length n � N are palindromes.

Proof. Assume the contrary: Let p = p1 p2 . . . pk be a palindrome with k � N and let v be its complete
return word which is not a palindrome. Clearly |v| > 2|p|. Then there exist a factor f (possibly empty)
and two different letters x and y such that v = pf xv ′ y f p.

Let us consider the graph Gn , where n is the length of the factor w := pf , i.e., n � N . Since the
language of u is closed under reversal, the factor w is right special – the letters x and y belong to its
right extensions.

If the complete return word v contains no other right or left special factors, then the non-
palindromic v is an n-simple path which starts in w = pf and ends in w = f p – a contradiction
with the condition 2. in Lemma 4.2.

Let v contain other left or right special factors of length n. We find the prefix of v which is an
n-simple path. This simple path starts in w , its ending point is a special factor, we denote it by A.
Since v is a complete return word of p, we have A �= w, w . So in the graph Gn , the vertices (w, w)

and (A, A) are connected with an edge. Similarly, we find the suffix of v which is an n-simple path
and we denote its starting point by B , its ending point is w . Again, B �= w, w and the vertices (w, w)

and (B, B) are connected with an edge. So in Gn we have a path with two edges which connects
(A, A) and (B, B) and the vertex (w, w) is its intermediate vertex.

The special factors A and B are factors of p2 . . . pk f xv ′ y f pk . . . p2, it means that in the graph Gn

there exists a walk, and therefore a path1 as well, between the vertices (A, A) and (B, B) which does
not use the vertex (w, w).

Finally, if (A, A) and (B, B) coincide, then we have in Gn a multiple edge between (A, A) and
(w, w). If (A, A) �= (B, B), then in Gn we have two different paths connecting (A, A) and (B, B). To-
gether, Gn is not a tree after removing loops – a contradiction with the condition 1. in Lemma 4.2. �

1 Along a walk vertices may occur with repetition, in a path any vertex appears at most once.
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Lemma 4.4. Let u be an infinite word whose language is closed under reversal. Let u have the following prop-
erty: there exists an integer H such that for any factor f ∈ L(u) with | f | � H the longest palindromic suffix
of f is unioccurrent in f . Let w be a non-palindromic factor of u with |w| � H and v be a palindromic factor
of u with |v| � H. Then

• occurrences of w and w in u alternate, i.e., any complete return word of w contains the factor w,
• any factor e of u with a prefix w and a suffix w, which has no other occurrences of w and w, is a palin-

drome,
• any complete return word of v is a palindrome.

Proof. Consider a non-palindromic factor w such that |w| � H . Let f be a complete return word of w .
Since |w| � H , its complete return word satisfies | f | � H . According to the assumption, lps( f ), the
longest palindromic suffix of f , is unioccurrent in f . Its length satisfies necessarily |lps( f )| > |w| –
otherwise a contradiction with the unioccurrence of lps( f ). Clearly, the palindrome lps( f ) has a suffix
w and thus a prefix w , i.e., the complete return word f of w contains w as well. Moreover, we have
proven that any factor e, which has a prefix w and a suffix w and which has no other occurrences of
w and w , is the longest palindromic suffix of a complete return word of w , therefore e = lps( f ), i.e.,
the factor e is a palindrome.

Consider a palindromic factor v , its complete return word f and the longest palindromic suffix
of f . Since v is a palindromic suffix of f , necessarily |lps( f )| � |v|. As |v| � H , lps( f ) is unioccurrent
in f . Hence, |lps( f )| > |v|. If lps( f ) is shorter than the whole f , then the complete return word f
contains at least three occurrences of w – a contradiction. Thus, lps( f ) = f , i.e., f is a palindrome. �
Proposition 4.5. Let u be an infinite word whose language is closed under reversal. Let u have the following
property: there exists an integer H such that for any factor f ∈ L(u) with | f | � H the longest palindromic
suffix of f is unioccurrent in f . Then

2 + C(n + 1) − C(n) = P(n + 1) +P(n) for any n � H .

Proof. We have to show that both conditions of Lemma 4.2 are satisfied for any n � H .
The condition 1.: Let (w, w) and (v, v) be two distinct vertices in the graph Gn , where n � H . We

say that an unordered couple ( f , f ) is a realization of a path between these two vertices if

• either the factor f or the factor f has the property: w or w is its prefix and v or v is its suffix,
• there exist indices i, � ∈ N, i < � such that either the factor f or the factor f coincides with the

factor uiui+1 . . . u� and factors w , w , v , and v do not occur in ui+1 . . . u�−1.

The number i is called an index of the realization ( f , f ).
Since u is recurrent, there exists at least one realization for any pair of vertices (w, w) and (v, v)

and any realization has infinitely many indices. Consider a realization ( f , f ) and its index i. WLOG
f = uiui+1 . . . u� and w is a prefix of f and v a suffix of f . Since u is recurrent, we can find the
smallest index m > � such that u′ = uiui+1 . . . u� . . . um has a suffix w . According to Lemma 4.4, u′ is a
palindrome. Therefore its suffix of length | f | is exactly f . This means that the index m − | f | + 1 is an
index of the same realization of a path between (w, w) and (v, v). As the factor ui+1 . . . um−1 does
not contain neither the factor w nor w , no index j strictly between i and m − | f | + 1 is an index of
any realization of a path between (w, w) and (v, v).

We have shown that between any pair of two consecutive indices of one specific realization ( f , f )
of a path between (w, w) and (v, v) there does not exist any index of any other realization (g, g) of a
path between (w, w) and (v, v). This means that there exists a unique realization of a path between
(w, w) and (v, v), which implies that in the graph Gn there exists a unique path between vertices
(w, w) and (v, v). Since this is true for all pairs of vertices of Gn , the graph Gn after removing loops
is a tree.
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The condition 2.: Let w ∈ L(u) be a special factor (palindromic or non-palindromic) with |w| =
n � H . An n-simple path f starting in w and ending in w contains according to its definition no
other special vertex inside the path, in particular w and w do not occur inside the path. According to
Lemma 4.4, the path f is a palindrome. �
Proof of Theorem 4.1. It is a direct consequence of Propositions 4.3 and 4.5 and of Theorem 3.3,
where the last statement is replaced with an equivalent one: There exists an integer H such that for
any factor f of u with | f | � H the longest palindromic suffix of f is unioccurrent in f . �
5. Morphisms of class Pret

In this section, we will define a new class of morphisms and we will reveal their relation with
well-known morphisms of class P (defined in [12]). We will show an important role these morphisms
play in the description of words with finite defect.

Definition 5.1. We say that a morphism ϕ : B∗ �→ A∗ is of class P ret if there exists a palindrome
p ∈A∗ such that

• ϕ(b)p is a palindrome for any b ∈ B,
• ϕ(b)p contains exactly 2 occurrences of p, one as a prefix and one as a suffix, for any b ∈ B,
• ϕ(b) �= ϕ(c) for all b, c ∈ B, b �= c.

Lemma 5.2. The following properties of the morphisms of class P ret are easy to prove.

(1) ϕ(w) = ϕ(v), where w, v ∈ B∗ , implies w = v, i.e., ϕ is injective,
(2) ϕ(x)p = ϕ(x)p for any x ∈ B∗ ,
(3) ϕ(s)p is a palindrome if and only if s ∈ B∗ is a palindrome.

Proof. We will give a hint for the proof of the injectivity. The other statements are immediate con-
sequences of Definition 5.1. If ϕ(w) = ϕ(v), then ϕ(w)p = ϕ(v)p. This implies w = v by induction
on max{|w|, |v|}: the assertion is true for max{|w|, |v|} = 1 (i.e., |w| = |v| = 1, since the morphism
ϕ is not erasing from the second point of Definition 5.1) from the third point of Definition 5.1; the
induction is then proven using the second point of Definition 5.1. �

Another class of morphisms closely related to defects is standard (special) morphisms of class P
defined in [11]. We will reveal their connection with P ret in Section 6.

Proposition 5.3. The class P ret is closed under the composition of morphisms, i.e., for any ϕ,σ ∈ P ret we have
ϕσ ∈ P ret (if the composition is well defined).

Proof. Let pϕ and pσ be the corresponding palindromes from the definition of P ret of the morphisms
ϕ and σ , respectively. Then pϕσ := ϕ(pσ )pϕ is a palindrome by point (3) of Lemma 5.2 for ϕ . It
suffices to verify that pϕσ plays the role of the palindrome p for the morphism ϕσ .

• Take b a letter. We have (ϕσ )(b)pϕσ = ϕ(σ (b)pσ )pϕ. We obtain the following equalities using
firstly point (2) of Lemma 5.2 for ϕ and then for σ :

ϕ
(
σ(b)pσ

)
pϕ = ϕ

(
σ(b)pσ

)
pϕ = ϕ

(
σ(b)pσ

)
pϕ = ϕ

(
σ(b)pσ

)
pϕ = (ϕσ )(b)pϕσ ,

i.e., (ϕσ )(b)pϕσ is a palindrome for all b.
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• Since ϕ ∈ P ret, there is a one-to-one correspondence between the occurrences of pϕσ = ϕ(pσ )pϕ

in (ϕσ )(b)pϕσ = ϕ(σ (b)pσ )pϕ and the occurrences of pσ in σ(b)pσ . As σ ∈ P ret, the word
σ(b)pσ contains pσ only as a prefix and as a suffix. Therefore ϕ(σ (b)pσ )pϕ has only two occur-
rences of ϕ(pσ )pϕ – as a prefix and as a suffix.

• The injectivity of ϕ and σ clearly guarantees that (ϕσ )(b) �= (ϕσ )(c) for all b �= c. �
In [12] another class of morphisms is defined. We say that a morphism ϕ is of class P if there

exist a palindrome p and for every letter a a palindrome qa such that ϕ(a) = pqa . The interest of
the class P has been awoken by the following question stated ibidem (however formulated in terms
of dynamical systems): “Given a fixed point of a primitive morphism ϕ containing infinitely many
palindromes, can we find a primitive morphism σ of class P such that the factors of a fixed point of
σ are the same?” Let us recall that for any primitive morphism, the languages of all its fixed points
are the same. The previous question has been answered affirmatively in [13] for morphisms defined
on binary alphabets and in [1] for periodic fixed points.

In order to reveal the relation between the classes P and P ret, we have to define the conjugation
of a morphism. A morphism σ is said to be conjugate to a morphism ϕ defined on an alphabet A if
there exists a word w ∈A∗ such that

• either for every letter a ∈ A, the image ϕ(a) has w as its prefix and the image σ(a) is
obtained from ϕ(a) by erasing w from the beginning and adding w to the end; we write
σ(a) = w−1ϕ(a)w ,

• or for every letter a ∈A, the image ϕ(a) has w as its suffix and the image σ(a) is obtained from
ϕ(a) by erasing w from the end and adding w to the beginning; we write σ(a) = wϕ(a)w−1.

Proposition 5.4. If ϕ is a morphism of class P ret , then ϕ is conjugate to a morphism of class P .

Proof. Let ϕ ∈ P ret and let p have the same meaning as in the definition of P ret. We will write
p = qxq, where q ∈ A∗ and x is either the empty word or a letter. Denote by σ a morphism defined
for all letters a as σ(a) = q−1ϕ(a)q. Thus, ϕ is conjugate to σ .

The word q−1ϕ(a)q can be written as xya since qx is a prefix of ϕ(a)q. Since ϕ(a)qxq is a
palindrome, q−1ϕ(a)qxq q−1 = xyax is a palindrome too. Therefore ya is a palindrome and σ is of
class P . �

The implication cannot be reversed. Consider the alphabet {a,b} and let ϕ(a) = aa and ϕ(b) = ab.
It is clear that ϕ ∈ P (for p = a), but ϕ is not conjugate to any morphism of class P ret (aaa is not
a complete return word of a).

The following theorem shows the importance of morphisms of class P ret for uniformly recurrent
words with finite defect.

Theorem 5.5. Let u ∈AN be a uniformly recurrent word with finite defect. Then there exist a rich word v ∈ BN

and a morphism ϕ : B∗ �→A∗ of class P ret such that

u = ϕ(v).

The word v is uniformly recurrent.

Proof. Consider a prefix z of u of length |z| > max{2Ru(K ), H}, where K is the constant from The-
orem 3.3 and H is an integer such that any factor of u of length � H has its longest palindromic
suffix unioccurrent. (Let us recall that the existence of H is also guaranteed by Theorem 3.3.) Since
the language of u is closed under reversal (this follows from the fact that u is uniformly recurrent
and contains infinitely many palindromes), z is a factor of u as well and its lps(z) has a unique occur-
rence in z. As |z| > 2Ru(K ) any factor shorter than or equal to K occurs in z at least twice. Therefore,
|lps(z)| > K . Hence, lps(z) is a palindromic prefix of u of length greater than K .
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Denote p := lps(z). Since u is uniformly recurrent, the set of return words of p is finite, say
q0,q1, . . . ,qm−1 is the list of all different return words. Let us define a morphism ϕ on the alpha-
bet B = {0,1, . . . ,m − 1} by ϕ(b) = qb for all b ∈ B. It is obvious that the morphism belongs to the
class P ret. Then we can write u = qi0 qi1 qi2 . . . for some sequence (in)n∈N ∈ BN . Let us put v = (in)n∈N .

We will show that any complete return word of any palindrome in the word v is a palindrome as
well. According to Lemma 2.5 this implies the richness of v.

Let s be a palindrome in v and x its complete return word. Then ϕ(x)p has precisely two
occurrences of the factor ϕ(s)p. As s is a palindrome, ϕ(s)p is a palindrome as well of length
|ϕ(s)p| � |p| > K . Therefore ϕ(x)p is a complete return word of a long enough palindrome and ac-
cording to our assumption ϕ(x)p is a palindrome as well. This together with point (3) in Lemma 5.2
implies

ϕ(x)p = ϕ(x)p = ϕ(x)p.

The point (2) then gives x = x as we claimed.
The uniform recurrence of v is obvious. �
The reverse implication does not hold, i.e., the set of uniformly recurrent words with finite defect

is not closed under morphisms of class P ret. Let us provide a construction of such a word.
Let v0 = ε . For i > 0 set

vi = (vi−10vi−11vi−11vi−10vi−12vi−12)(+), (2)

where w(+) denotes the shortest palindrome having w as a prefix.
Note that vi−1 is a prefix of vi for all i. Thus we can set v = limi→∞ vi and v is uniformly recurrent

by construction.
Denote by ϕ a morphism from P ret defined by

ϕ :
⎧⎨
⎩

0 �→ 0100,

1 �→ 01011,

2 �→ 010111.

(3)

As we will show in the sequel, the word v is rich and the defect D(ϕ(v)) = ∞.

Lemma 5.6. For all i the palindrome vi from (2) is rich.

Proof. We will show for all i that vi is rich and

vi = vi−10vi−11vi−11vi−10vi−12vi−12vi−10vi−11vi−11vi−10vi−1.

Furthermore, we will show that for all letters x, the word vi xvi contains exactly 2 occurrences of vi
and 1 occurrence of 0vi−1xvi−10.

We will proceed by induction on i. For i = 1 and 2 it is left up to the reader to verify the propo-
sition.

Suppose the fact holds for i, i � 2. We will show the claim for i + 1. Denote by w the factor

w := vi0vi1vi1vi0vi2vi2.

Note that since vi xvi contains exactly 2 occurrences of vi for all letters x, the factor w contains
exactly 6 occurrences of vi . In other words, if we find 1 occurrence of vi , we know all the other
occurrences.
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Table 1
Enumeration of palindromic factors of w .

# Palindromic factors of w Count

1 Palindromic factors of vi |vi | + 1
2 0vi−10, . . . , vi−10vi−10vi−1 |vi−1| + 1
3 1vi−10vi−11, . . . , vi−11vi−10vi−11vi−1 |vi−1| + 1
4 2vi−10vi−11vi−11vi−10vi−12, . . . , vi−12vi−10vi−11vi−11vi−10vi−12vi−1 |vi−1| + 1
5 0vi−10vi−10, . . . , vi 0vi |vi | − |vi−1|
6 0vi−11vi−10, . . . , vi 1vi |vi | − |vi−1|
7 0vi−12vi−10, . . . , vi 2vi |vi | − |vi−1|
8 1vi 1, . . . , vi 0vi 1vi 1vi 0vi 2|vi | + 2
9 2vi 2 1

Total 6|vi | + 7

In Table 1 we can see the total number of palindromic factors of w . Let us give a brief explanation
for rows which may not be clear at first sight. Let us recall that by the induction assumption

vi = vi−10vi−11vi−11vi−10vi−12vi−12vi−10vi−11vi−11vi−10vi−1.

Since there are exactly 11 occurrences of vi−1 in vi , one can easily see that factors in rows 2, 3,
and 4 have not been counted in row 1. Rows 5, 6, and 7 exploit the fact that for all letters x vi xvi
contains 1 occurrence of 0vi−1xvi−10. One can see that the total number of palindromic factors is
6|vi | + 7 = |w| + 1, therefore w is rich from the definition.

As the right palindromic closure preserves the richness, we can see that vi+1 is rich. Moreover,
since there are exactly 2 occurrences of vi in vi xvi for all letters x, one can see that the closure will
produce the following palindrome

vi+1 = vi0vi1vi1vi0vi2vi2vi0vi1vi1vi0vi .

Take a letter x. We can now rewrite vi+1xvi+1 in terms of vi and see the factor 0vi xvi0 occurs once
and vi+1 occurs twice again arguing by the known count of factors vi . �
Proposition 5.7. The infinite word v defined in (2) is rich and D(ϕ(v)) = ∞, where ϕ is defined in (3).

Proof. Directly from the definition of v, one can see using the previous lemma that all its prefixes vi
are rich and therefore v is rich.

Denote by p the palindrome from the definition of P ret for the substitution ϕ . One can see that
p = 010. Take 1vi1, a factor of v. We have ϕ(1vi1) = 01011ϕ(vi)p11, a factor of ϕ(v). Using point
(3) of Lemma 5.2, we can see that oi := 1ϕ(vi)p1 is a palindrome. Now take 2vi2. One can see that
ϕ(2vi2) = 010111ϕ(vi)p111. Note again the palindromic factor oi .

We will now look for complete return words of oi in ϕ(ri), where

ri = 1vi1vi0vi2vi2.

The word ri is clearly a factor of vi+1, therefore a factor of v. The first occurrence of oi is produced
by the factor 1vi1 in ri . Since ϕ is injective, we need to look only at occurrences of vi in ri . The next
two occurrences are in the factors 1vi0 and 0vi2. One can see that ϕ(1vi0) = 01011ϕ(vi)p0 and
ϕ(0vi1) = 0100ϕ(vi)p11, i.e., the factor oi does not occur in ϕ(ri) until the factor ϕ(2vi2) occurs.
The complete return word of oi is then O i := 1ϕ(vi1vi0vi2vi)p1. By point (3) of Lemma 5.2, as
vi1vi0vi2vi is not a palindrome, neither is the complete return word O i . Therefore for each i we
have an oddity {O i, O i}. According to Lemma 3.2, it implies the defect of ϕ(v) is infinite. �
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The last proposition shows that the set of uniformly recurrent words with finite defect is not
closed under morphisms of class P ret.

It is clear that the defect of an image by a morphism of class P ret of a word with finite defect
depends on the morphism. As the previous example shows, it depends also on the original word. To
underline this fact we can take the morphism ϕ from (3) and u the Tribonacci word, i.e., the fixed
point of the Tribonacci morphism 0 �→ 01, 1 �→ 02 and 2 �→ 0 – a well-known rich word [9]. It is easy
to see that D(ϕ(u)) = 0.

6. Comments

At the end of the article [4], the authors state several open questions, among them the following
one: “Let u be a fixed point of a primitive morphism. If the defect is finite and non-zero, is the word
u necessarily periodic?”

We are not able to answer this question. The following observation is just a small comment to it.

Observation 6.1. Let u be a fixed point of a primitive morphism and let its defect D(u) be finite. Then there
exists a rich word v and a morphism ϕ ∈ P ret such that u = ϕ(v) and v itself is a fixed point of a primitive
morphism as well.

Proof. The rich word v, which we have constructed in the proof of Theorem 5.5, is a derived word,
as introduced by Durand in [10]. Lemma 19 of [10] says that any derived word of a fixed point of a
primitive morphism is a fixed point of a primitive morphism as well. �

Theorem 5.5 has the form of implication, which cannot be reversed, since Proposition 5.7 demon-
strates that a morphism from P ret does not always preserve the set of words with finite defect. It is
thus natural to ask the following questions:

1. Can the class P ret be replaced with a smaller one in such a way that Theorem 5.5 can be stated
in the form of equivalence?

2. Characterize those morphisms from P ret that preserve the set of rich words.
3. Find an algorithm to compute D(ϕ(u)) for a rich word u and a morphism from ϕ ∈ P ret.
4. Characterize morphisms ϕ on B∗ with the property that ϕ(u) has finite defect for any infinite

word u ∈ BN with finite defect.

We end with some remarks on Question 1. The authors of [11] define another class of morphisms
that play an important role in the study of finite defect. They call a morphism ϕ on A∗ a standard
morphism of class P (or a standard P -morphism) if there exists a palindrome r (possibly empty) such
that, for all x ∈ A, ϕ(x) = rqx , where the qx are palindromes. If r is non-empty, then some (or all) of
the palindromes qx may be empty or may even take the form qx = π−1

x with πx a proper palindromic
suffix of r. They say that a standard P -morphism is special if:

1. all ϕ(x) = rqx end with different letters, and
2. whenever ϕ(x)r = rqxr, with x ∈ A, occurs in some ϕ(y1 y2 . . . yn)r, then this occurrence is

ϕ(ym)r for some m with 1 � m � n.

They prove the following theorem.

Theorem 6.2. (See [11, Theorem 6.28].) If ϕ is a standard special P -morphism on A∗ and u ∈ A∗ , then D(u)

is finite if and only if D(ϕ(u)) is finite.

However, as shown in the following proposition, standard special P -morphisms are not the
only ones that preserve the set of uniformly recurrent words with finite defect, thus the class
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of standard special morphisms is too small as an answer to Question 1. Let us add that stan-
dard special morphisms of class P do not form a subset of morphisms of class P ret. For instance,
ϕ : a → aabbaabba, b → ab is a standard special P -morphism with r = a, but does not belong to P ret.

Proposition 6.3. Let u be a binary uniformly recurrent word such that D(u) is finite. Let ϕ be a morphism of
class P ret . Then D(ϕ(u)) is finite.

Lemma 6.4. Let ϕ be a morphism of class P ret on {0,1}∗ . Then ϕ is conjugate to a standard special P -
morphism.

Proof. Let p be the palindrome corresponding to ϕ in the definition of P ret. Denote by p1 the longest
common suffix of ϕ(0) and ϕ(1). Denote by p2 a word such that pp2 is the longest common prefix
of ϕ(0)p and ϕ(1)p. Using properties of P ret we have p1 = p2. Define σ(0) = p1ϕ(0)p−1

1 and σ(1) =
p1ϕ(1)p−1

1 . Then ϕ is conjugate to σ and σ is a standard special P -morphism with the corresponding
palindrome r = p1 pp1. �
Proof of Proposition 6.3. By Lemma 6.4 the morphism ϕ is conjugate to a standard special P -
morphism σ . Clearly, the languages of ϕ(u) and σ(u) are the same, hence D(ϕ(u)) = D(σ (u)).
Theorem 6.2 implies that D(σ (u)) < ∞. �
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a b s t r a c t

Brlek and Reutenauer conjectured that any infinite word u with language closed under
reversal satisfies the equality 2D(u) =

∑
+∞

n=0 Tu(n) in which D(u) denotes the defect of
u and Tu(n) denotes Cu(n + 1) − Cu(n) + 2 − Pu(n + 1) − Pu(n), where Cu and Pu
are the factor and palindromic complexity of u, respectively. Brlek and Reutenauer verified
their conjecture for periodic infinite words. Using their result, we prove the conjecture
for uniformly recurrent words. Moreover, we summarize results and some open problems
related to defects, whichmay be useful for the proof of the Brlek–Reutenauer conjecture in
full generality.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

There have recently been quite a lot of papers devoted to palindromes in infinite words. Droubay, Justin, and Pirillo
determined in [6] the upper bound on the number of distinct palindromes occurring in a finite word — a finite word w
contains at most |w| + 1 different palindromes, where |w| denotes the length of w. The difference between the utmost
number |w| + 1 and the actual number of palindromes in w is called the defect of w and it is usually denoted by D(w). An
infinite word uwhose factors all have zero defect was baptized rich or full. In [1], Baláži, et al. proved for infinite words with
language closed under reversal an inequality relating the palindromic and factor complexity of an infinite word u denoted
Pu and Cu, respectively. For such infinite words, it holds

Cu(n + 1) − Cu(n) + 2 − Pu(n) − Pu(n + 1) ≥ 0 for all n ∈ N. (1)

In [5], Bucci, et al. showed that rich words with language closed under reversal can be characterized by the equality in (1).
Brlek, et al. in [3] defined the defect D(u) of an infinite word u as the maximum defects of all its factors and they studied its
value for periodic words.

Recently, in [2], the authors of this paper have proved that for a uniformly recurrent word u, its defect D(u) is finite if
and only if the equality in (1) is attained for all but a finite number of indices n.

Despite the fact that numerous researchers study palindromes, only recently Brlek and Reutenauer have noticed that the
value of defect is closely tied with the expression on the left-hand side of (1) — let us denote it by Tu(n). They have shown
that for periodic infinite words with language closed under reversal, it holds 2D(u) =

∑
+∞

n=0 Tu(n). Their conjecture says
that the same equation holds for all infinite words with language closed under reversal.

In this paper, using the result of Brlek and Reutenauer for periodic words, we will prove that the Brlek–Reutenauer
conjecture is true for uniformly recurrent words and in the last chapter we will discuss some aspects concerning the
conjecture for infinite words that are not uniformly recurrent.
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2. Preliminaries

By A we denote a finite set of symbols called letters; the set A is therefore called an alphabet. A finite string w =

w0w1 . . . wn−1 of letters from A is said to be a finite word, its length is denoted by |w| = n. Finite words over A together
with the operation of concatenation and the empty word ϵ as the neutral element form a free monoid A∗. The map

w = w0w1 . . . wn−1 → w = wn−1wn−2 . . . w0

is a bijection on A∗, the word w is called the reversal or the mirror image of w. A word w which coincides with its mirror
image is a palindrome.

Under an infinite word we understand an infinite string u = u0u1u2 . . . of letters from A. A finite word w is a factor of
a word v (finite or infinite) if there exist words p and s such that v = pws. If p = ϵ, then w is said to be a prefix of v, if s = ϵ,
then w is a suffix of v.

The language L(u) of an infinite word u is the set of all its factors. Factors of u of length n form the set denoted by Ln(u).
We say that the language L(u) is closed under reversal if L(u) contains with every factor w, also its reversal w.

For any factor w ∈ L(u), there exists an index i such that w is a prefix of the infinite word uiui+1ui+2 . . .. Such an index
is called an occurrence of w in u. If each factor of u has infinitely many occurrences in u, the infinite word u is said to be
recurrent. It is easy to see that if the language ofu is closed under reversal, thenu is recurrent (a proof can be found in [7]). For
a recurrent infinite word u, wemay define the notion of a complete return word of anyw ∈ L(u). It is a factor v ∈ L(u) such
that w is a prefix and a suffix of v and w occurs in v exactly twice. Under a return word of a factor w is usually understood
a word q ∈ L(u) such that qw is a complete return word of w. If any factor w ∈ L(u) has only finitely many return words,
then the infinite word u is called uniformly recurrent. If u is a uniformly recurrent word, we can find for any n ∈ N a number
R such that any factor of u which is longer than R already contains all factors of u of length n.

The factor complexity of an infinite word u is the mapping Cu : N → N defined by the prescription Cu(n) := #Ln(u).
To determine the first difference of the factor complexity, one has to count the possible extensions of factors of length n.
A right extension of w ∈ L(u) is any letter a ∈ A such that wa ∈ L(u). Of course, any factor of u has at least one right
extension. A factorw is called right special ifw has at least two right extensions. Similarly, one can define a left extension and
a left special factor. We will deal mainly with recurrent infinite words u. In such a case, any factor of u has at least one left
extension.

The defect D(w) of a finite word w is the difference between the utmost number of distinct palindromes |w| + 1 and the
actual number of distinct palindromes contained in w. Finite words with zero defects – called rich or full words – can be
viewed as the most saturated by palindromes. This definition may be extended to infinite words as follows.

Definition 2.1. An infinite word u = u0u1u2 . . . is called rich or full, if for any index n ∈ N, the prefix u0u1u2 . . . un−1 of length
n contains exactly n + 1 different palindromes.

Let us remark that not only all prefixes of rich words are rich, but also all factors are rich. A result from [6] provides us
with a handful tool which helps to evaluate the defect of a factor.

Proposition 2.2 ([6]). A finite or infinite word u is rich if and only if the longest palindromic suffix of w occurs exactly once in
w for any prefix w of u.

In accordance with the terminology introduced in [6], the factor with a unique occurrence in another factor is called
unioccurrent. From the proof of the previous proposition directly follows the next corollary.

Corollary 2.3. The defect D(w) of a finite word w is equal to the number of prefixes w′ of w, for which the longest palindromic
suffix of w′ is not unioccurrent in w′. In other words, if b is a letter and w a finite word, then D(wb) = D(w) + δ, where δ = 0 if
the longest palindromic suffix of wb occurs exactly once in wb and δ = 1 otherwise.

This corollary implies that D(v) ≥ D(w) whenever w is a factor of v. It enables to give a reasonable definition of the defect
of an infinite word (see [3]).

Definition 2.4. The defect of an infinite word u is the number (finite or infinite)

D(u) = sup{D(w)
 w is a prefix of u} .

Let us point out several facts concerning defects that are easy to prove:

(1) If we consider all factors of a finite or an infinite word u, we obtain the same defect, i.e.,

D(u) = sup{D(w)
 w ∈ L(u)} .

(2) Any infinite word with finite defect contains infinitely many palindromes.
(3) Infinite words with zero defect correspond exactly to rich words.
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Periodic words with finite defect have been studied in [3] and in [7]. It holds that the defect of an infinite periodic word with
the minimal period w is finite if and only if w = pq, where both p and q are palindromes. Words with finite defect have
been studied in [2] and [7].

The number of palindromes of a fixed length occurring in an infinite word is measured by the so called palindromic
complexity Pu, the mapping which assigns to any non-negative integer n the number

Pu(n) := #{w ∈ Ln(u) | w is a palindrome} .

Denote by
Tu(n) = Cu(n + 1) − Cu(n) + 2 − Pu(n + 1) − Pu(n).

The following proposition is proved in [1] for uniformly recurrent words, however the uniform recurrence is not needed in
the proof, thus it holds for any infinite word with language closed under reversal.

Proposition 2.5 ([1]). Let u be an infinite word with language closed under reversal. Then

Tu(n) ≥ 0, (2)

for all n ∈ N.

It is shown in [5] that this bound can be used for a characterization of rich words as well. The following proposition states
this fact.

Proposition 2.6 ([5]). An infinite word uwith language closed under reversal is rich if and only if the equality in (2) holds for all
n ∈ N.

Let u be an infinite word with language closed under reversal. Using the proof of Proposition 2.5, those n ∈ N for which
Tu(n) = 0 can be characterized in the graph language.

An n-simple path e is a factor of u of length at least n + 1 such that the only special (right or left) factors of length n
occurring in e are its prefix and suffix of length n. If w is the prefix of e of length n and v is the suffix of e of length n, we
say that the n-simple path e starts in w and ends in v. We will denote by Gn(u) an undirected graph whose set of vertices is
formed by unordered pairs (w, w) such that w ∈ Ln(u) is right or left special. We connect two vertices (w, w) and (v, v)
by an unordered pair (e, e) if e or e is an n-simple path starting in w or w and ending in v or v. Note that the graph Gn(u)
may have multiple edges and loops.

Remark 2.7. Let us point out that if Ln(u) contains no special factor, then Gn(u) is an empty graph. In this case the word u is
periodic, i.e., there exists a primitive word w such that u = wω and |w| ≤ n. As proved in [3], since the language of u is closed
under reversal, the wordw is a product of two palindromes. It is easy to see thatCu(n+1) = Cu(n) and 2 = Pu(n+1)+Pu(n).
Therefore Tu(n) = 0.

Lemma 2.8. Let u be an infinite word with language closed under reversal, n ∈ N. Then Tu(n) = 0 if and only if both of the
following conditions are met:

(1) The graph obtained from Gn(u) by removing loops is a tree;
(2) Any n-simple path forming a loop in the graph Gn(u) is a palindrome.

Proof. It is a direct consequence of the proof of Theorem 1.2 in [1] (recalled in this paper as Proposition 2.5). �

Corollary 2.9. Let u and v be infinite words with language closed under reversal and n ∈ N.

Ln+1(v) ⊂ Ln+1(u) and Tu(n) = 0 =⇒ Tv(n) = 0.

Proof. Our assumptions imply that Gn(v) is a subgraph of Gn(u) and Gn(u) meets both conditions in the previous lemma.
These conditions are hereditary, i.e., any connected subgraph inherits these conditions as well. �

3. Brlek–Reutenauer conjecture

Brlek and Reutenauer gave in [4] a conjecture relating the defect and the factor and palindromic complexity of infinite
words with language closed under reversal.

Conjecture 3.1 (Brlek–Reutenauer Conjecture). Let u be an infinite word with language closed under reversal. Then

2D(u) =

+∞−
n=0

Tu(n) . (3)

It is known from [5] that Conjecture 3.1 holds for rich words.

Theorem 3.2. Let u be a rich infinite word with the language closed under reversal. Then (3) holds.

Brlek and Reutenauer provided in [4] a result for periodic words.
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Theorem 3.3. Let u be a periodic infinite word. Then (3) holds.

In the sequel, we will prove the following theorem.

Theorem 3.4. Let u be an infinite word with the language closed under reversal. If u satisfies two assumptions:

(1) Both D(u) and
∑

+∞

n=0 Tu(n) are finite.
(2) For any M ∈ N there exists a factor w ∈ L(u) such that

• w contains all factors of u of length M,
• ww is a factor of u.

Then (3) holds.

In order to prove Theorem 3.4, we need to put together several claims. Let us first describe the main ideas of the proof. The
assumptions of Theorem 3.4 enable us to construct a periodic word vwith language closed under reversal such that

• D(u) = D(v) and
• Tv(n) = Tu(n) for all n ∈ N.

Theorem 3.3 applied to the periodic word v then concludes the proof.
Let us construct a suitable periodic word. As D(u) is finite, there exists a factor f ∈ L(u) such that D(u) = D(f ). Let

us denote its length by H = |f |. According to the inequality (2), the finiteness of
∑

+∞

n=0 Tu(n) implies that there exists an
integer N ∈ N such that Tu(n) = 0 for all n ≥ N . Let us put

M = max{N,H}. (4)

By Assumption (2), there exists a factor w containing all elements of LM(u). Let us define

v = wω.

Claim 3.5. The word w is a concatenation of two palindromes, in particular, the periodic word wω has the language closed under
reversal.

Proof. Since the factorw contains the factor f and the squareww belongs toL(u), we haveD(f ) ≤ D(w) ≤ D(ww) ≤ D(u).
As the factor f was chosen to satisfy D(u) = D(f ), we may conclude that

D(f ) = D(w) = D(ww) = D(u). (5)

The factor ww is longer than the factor f and has the same defect as f . Let us denote by p the longest palindromic suffix
of ww ∈ L(u). According to Corollary 2.3, the palindrome p occurs in ww exactly once and therefore |p| > |w|. There
exists a proper prefix w′ of w such that ww = w′p. Let us denote by w′′ the suffix of w for which w = w′w′′. It means
that p = w′′w′w′′. As p is a palindrome, we have w′′ = w′′ and w′ = w′. Hence the word w is a concatenation of two
palindromes. �

Claim 3.6. D(v) = D(u).

Proof. We will use Theorem 6 from [3]. It implies that if w is a product of two palindromes, then D(wω) = D(ww). This
together with (5) concludes the proof. �

Claim 3.7. Tv(n) = Tu(n) for all n ∈ N.

Proof. Let us first consider n ≤ M − 1, where M is the constant given by (4). Since w contains all elements of LM(u), we
haveM ≤ |w|. Since ww ∈ L(u), we also have LM(v) = LM(u). It implies

Cu(n) = Cv(n) and Pu(n) = Pv(n) for all n ≤ M.

It gives the statement of the claim for all n ≤ M − 1.
Now we will consider |w| > n ≥ M . According to the definition of N ≤ M , it holds that Tu(n) = 0. Since

Ln+1(v) ⊂ Ln+1(u), Corollary 2.9 gives Tv(n) = 0 as well.
Finally, we consider n ≥ |w| ≥ M . Since n is longer than or equal to the period of v and since w is a product of two

palindromes, we have Cv(n + 1) = Cv(n) and Pv(n + 1) + Pv(n) = 2. It implies Tv(n) = 0. The value Tu(n) is zero as well,
according to the fact that N ≤ M . �

Proof of Theorem 3.4. It suffices to put together Claims 3.5–3.7 and to realize that Conjecture 3.1 was already proved for
periodic words, here stated as Theorem 3.3. �
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4. The Brlek–Reutenauer conjecture holds for uniformly recurrent words

In this section we will show that either both sides in the Brlek–Reutenauer equality (3) are infinite or both assumptions
of Theorem 3.4 are satisfied for uniformly recurrent words, which results in the main theorem of this paper.
Theorem 4.1. If u is a uniformly recurrent infinite word with the language closed under reversal, then (3) holds.

In order to prove Theorem 4.1, we will make use of several equivalent characterizations of infinite words with finite
defect.
Theorem 4.2. Let u be a uniformly recurrent infinite word with language closed under reversal. Then the following statements
are equivalent.
(1) The defect of u is finite.
(2) There exists an integer K such that any complete return word of a palindrome of length at least K is a palindrome as well.
(3) There exists an integer H such that the longest palindromic suffix of any factor w of length |w| ≥ H occurs in w exactly once.
(4) There exists an integer N such that

Tu(n) = 0 for all n ≥ N.

Proof. (1) and (2) are equivalent by Theorem 4.8 from [7]. It follows from the definition of D(u) that (1) and (3) are
equivalent. The equivalence of (1) and (4) was stated as Theorem 4.1 in [2]. �
Corollary 4.3. Let u be a uniformly recurrent infinite word with language closed under reversal. Then

D(u) is finite ⇐⇒

+∞−
n=0

Tu(n) is finite.

Thanks to Corollary 4.3, we can focus on uniformly recurrent words u with finite defect. An important role in the proof
of Theorem 4.1 is the presence of squares in u.
Lemma 4.4. Let u be a uniformly recurrent infinite word with finite defect and with language closed under reversal. Then the set

{w ∈ A∗
| ww ∈ L(u)}

is infinite.
Proof. Weshall prove that for any L ∈ N there exists a factorw such thatww ∈ L(u) and |w| > L.Without loss of generality
take L > K , where K is the constant from the statement (3) of Theorem 4.2. Then any complete return word of a palindrome
which is longer than L is a palindrome as well. This implies that u has infinitely many palindromes. Thus there exists an
infinite palindromic branch, i.e., a both-sided infinite word . . . v3v2v1v0v1v2v3 . . ., where vi ∈ A for i = 1, 2, 3, . . . and
v0 ∈ A ∪ {ϵ} such that vkvk−1 . . . v0 . . . vk−1vk ∈ L(u) for any k ∈ N. Consider a palindrome q = vkvk−1 . . . v0 . . . vk−1vk
where |q| > 3L. Since u is uniformly recurrent, there exists an index i > k such that the factor f = vivi−1 . . . vk+2vk+1 is
a return word of q. The factor fq is a complete return word of the palindrome q and therefore fq is a palindrome.

At first suppose that the returnword f is longer then |q|. In this case, f = qp for somepalindrome p. Hence the palindromic
branch has as its central factor the word qpqpq. We can put w = qp.

Now suppose that the return word f satisfies |f | ≤ |q|. In this case there exists an integer j ≥ 2 and a factor y such that
fq = f jy and |y| < |f |. If we put w = f i, with i = ⌊

j
2⌋, then ww ∈ L(u) and |w| > 1

3 |q| ≥ L. �

Proof of Theorem 4.1. By Corollary 4.3, the equality 2D(u) =
∑

+∞

n=0 Tu(n) holds as soon as one of the sides is infinite.
Assume that D(u) < +∞ and

∑
+∞

n=0 Tu(n) < +∞. Let M ∈ N be an arbitrary integer. As u is uniformly recurrent, there
exists an integer R such that any factor longer than R contains all factors of u of length at most M . According to Lemma 4.4,
the set of squares occurring in u is infinite, thus there exists a factor w longer than R such that ww belongs to the language
of u. Its length guarantees that w contains all elements of LM(u).

Consequently, Assumptions (1) and (2) of Theorem 3.4 are met and the equality 2D(u) =
∑

+∞

n=0 Tu(n) follows. �

5. Open problems

In this section, we summarize which statements concerning defects are known for infinite words which are not
necessarily uniformly recurrent.

Let us transform the Brlek–Reutenauer conjecture into a more general question: ‘‘For which infinite words u does the
equality

2D(u) =

+∞−
n=0

Tu(n) (6)

hold?’’
In our summary of properties related to the above question, let us first recall Proposition 4.6 from [7] which applies in

full generality.
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Proposition 5.1. Let u be an infinite word.
D(u) ≥ #


{v, v}

 v ≠ v and v or v is a complete return word in u of a palindrome w

.

In [7], the set {v, v} is called an oddity.

Observation 5.2. If an infinite word u contains finitely many distinct palindromes, then the equality (6) holds.

Proof. It follows from the definition that D(u) = +∞. Since Pu(n) = 0 for n large enough and Cu is non-decreasing, we
have Tu(n) ≥ 2 for such indices n. Consequently,

∑
+∞

n=0 Tu(n) = +∞. �
Observation 5.3. Let u be a periodic word. Then the equality (6) holds.

Proof. Theorem 3.3 states this fact for infinite words with language closed under reversal. In [3] it is shown that periodic
words whose language is not closed under reversal contain only finitely many palindromes. Thus, the previous observation
implies that the equality is reached for such words, too. �
Observation 5.4. Let u be a uniformly recurrent word. Then the equality (6) holds.

Proof. Theorem 4.1 states this fact for infinite words with language closed under reversal. It is well known for uniformly
recurrent words whose language is not closed under reversal that it contains only a finite number of palindromes. In such
a case, both sides of (6) are infinite. �

From now on, let us limit our considerations to infinite words containing infinitely many palindromes in their language.

Observation 5.5. The equality (6) does not hold in general for infinite words which are not recurrent.

Proof. The word u = abω is rich, i.e., D(u) = 0, however
∑

+∞

n=0 Tu(n) = −1. �
Problem 1. It is an open problem whether the equality (6) holds for recurrent words whose language is not closed under
reversal and contains infinitely many palindromes. We have examples for which the equality holds and we have so far no
example refuting the equality (6).

Example 5.6. Let u be an infinite ternary word satisfying u = limn→+∞ un, where u0 = a and un+1 = unbn+1cn+1un. The word
u is recurrent, however not closed under reversal (it does not contain the factor cb). On one hand, D(u) = +∞ because bk has
non-palindromic complete return words for any k ≥ 1, thus the number of oddities is infinite. On the other hand, since the only
left extension of a is c and the only right extension of a is b, it is readily seen that the only palindromes of length greater than 1 are
of the form bn and cn, thus Pu(n) = 2 for all n ≥ 2. It is also easy to show that cn, bn, and bn−1c are distinct left special factors
of length n ≥ 2, therefore Cu(n + 1) − Cu(n) ≥ 3 for all n ≥ 2. This implies that

∑
+∞

n=0 Tu(n) = +∞.

In the sequel, let us consider infinite words whose language is closed under reversal and contains infinitely many
palindromes. In this case, the sum from the left-hand side of (3) exists by Proposition 2.5, i.e., it is either a nonnegative
number or +∞.

Any rich word with language closed under reversal satisfies (6) by Theorem 3.2. For instance, the Rote word u - the fixed
point of the morphism ϕ defined by ϕ(0) = 001 and ϕ(1) = 111, i.e., u = ϕ(u) - is rich because it satisfies Tu(n) = 0 for
all n ∈ N, which is not difficult to show. Therefore, the Rote word is an example of an infinite word which is not uniformly
recurrent (it contains blocks of ones of any length) satisfying the equality (6). We have, of course, no counterexample which
would refute the Brlek–Reutenauer conjecture.

There exist several equivalent characterizations of words with finite defect.

Theorem 5.7. Let u be an infinite word with language closed under reversal and containing infinitely many palindromes. Then
the following statements are equivalent.
(1) The defect of u is finite.
(2) u has only finitely many oddities.
(3) There exists an integer H such that the longest palindromic suffix of any factor w of length |w| ≥ H occurs in w exactly once.

Proof. (1) and (3) are equivalent by the definition of defect. (1) implies (2) by Proposition 5.1. The implication (2) ⇒ (1)
was proved as Proposition 4.8 in [7] for uniformly recurrent words. However, we will show that the proof works for words
with language closed under reversal and containing infinitely many palindromes too.

Assume that D(u) = +∞ and the number of oddities is finite.
A finite number of odditiesmeans that only finitelymany palindromes can have non-palindromic complete returnwords.

Let the longest such palindrome be of length K .
Since the number of palindromes is infinite, there exist infinitely many non-defective positions. Denote by u(n) the prefix

of u of length n. Then n is a non-defective position if D(u(n−1)) = D(u(n)) (such positions correspond to the first occurrences
of palindromes).

There exists an integerH such that the prefix of u of lengthH contains all palindromes of length lower than K +3. Hence,
if n > H is a non-defective position, then the longest palindromic suffix of u(n) is of length greater than K + 2.

Since both the number of defective and non-defective positions is infinite, we can find an index k > H such that k is
a defective and k + 1 a non-defective position. The longest palindromic suffix p of u(k) occurs at least twice in u(k), thus u(k)

ends in a non-palindromic complete return word of p. Since k + 1 is a non-defective position, it can be easily shown by
contradiction that the longest palindromic suffix of u(k+1) is of length equal to or lower than |p| + 2 ≤ K + 2.
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This is a contradiction with the fact that non-defective positions greater than H have their longest palindromic suffix
longer than K + 2. �

For words with language closed under reversal, some implications remain valid. The first one is Proposition 4.3 and the
second one is Proposition 4.5 from [2].

Proposition 5.8. Let u be an infinite word with language closed under reversal. Suppose that there exists an integer N such that
for all n ≥ N the equality Tu(n) = 0 holds. Then the complete return words of any palindromic factor of length n ≥ N are
palindromes.

Proposition 5.9. Let u be an infinite wordwith language closed under reversal. If there exists an integer H such that for any factor
f ∈ L(u) of length |f | ≥ H, the longest palindromic suffix of f is unioccurrent in f . Then Tu(n) = 0 for any n ≥ H.

The last proposition together with Theorem 5.7 results in the following corollary.

Corollary 5.10. Let u be an infinite word with language closed under reversal. Then we have

D(u) < +∞ ⇒

+∞−
n=0

Tu(n) < +∞.

It is an open question whether the implications in the previous propositions can be reversed.

Problem 2. Let u be an infinite word with language closed under reversal and containing infinitely many palindromes.
Assume that there exists an integer K such that all palindromes of length equal to or greater than K have palindromic
complete return words. Does there exist an integer N such that Tu(n) = 0 for any n ≥ N?

Problem 3. Let u be an infinite word with language closed under reversal and containing infinitely many palindromes.
Suppose that there exists an integer N such that for all n ≥ N the equality Tu(n) = 0 holds. Does there exist also an integer
H such that for any factor f ∈ L(u) of length |f | ≥ H the longest palindromic suffix of f is unioccurrent in f ?

We have seen that in the proof of the validity of the Brlek–Reutenauer conjecture for uniformly recurrent words, an
important role was played by the presence of long squares in such words. This leads to the last open problem.

Problem 4. Find other classes of infinite words containing for any L a factor w such that |w| > L and ww belongs to the
language.
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a b s t r a c t

Brlek and Reutenauer conjectured that any infinite word u with language closed under
reversal satisfies the equality 2D(u) =


+∞

n=0 Tu(n) in which D(u) denotes the defect of u
and Tu(n) denotesCu(n+1)−Cu(n)+2−Pu(n+1)−Pu(n), whereCu andPu are the factor
and palindromic complexity of u, respectively. This conjecture was verified for periodic
words by Brlek and Reutenauer themselves. Using their results for periodic words, we have
recently proved the conjecture for uniformly recurrent words. In the present article we
prove the conjecture in its general version by a new method without exploiting the result
for periodic words.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Brlek and Reutenauer conjectured in [6] a nice equality which combines together the factor complexity Cu, the
palindromic complexity Pu, and the palindromic defect D(u) of an infinite word u. It sounds as follows.

Brlek–Reutenauer Conjecture. If u is an infinite word with language closed under reversal, then

2D(u) =

+∞
n=0

Tu(n),

where Tu(n) = Cu(n + 1) − Cu(n) + 2 − Pu(n + 1) − Pu(n).

Brlek and Reutenauer proved ibidem that their conjecture holds for periodic infinite words. It is known from [7] that
the Brlek–Reutenauer conjecture holds for words with zero defect. In [3], we proved the conjecture for uniformly recurrent
words. In our proof, we constructed for any uniformly recurrent word uwhose language is closed under reversal a periodic
word v with language closed under reversal such that D(u) = D(v) and Tu(n) = Tv(n) for any n. Then we used validity of
the conjecture for periodic words.

In this paper, we will prove that the Brlek–Reutenauer conjecture holds in full generality without exploiting the result
for periodic words. Since both sides of the equality in the Brlek–Reutenauer conjecture are non-negative, validity of the
conjecture will be shown if we prove the following two theorems.

Theorem 1. If u is an infinite word with language closed under reversal such that both D(u) and


+∞

n=0 Tu(n) are finite, then

2D(u) =

+∞
n=0

Tu(n). (1)
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Theorem 2. If u is an infinite word with language closed under reversal, then

D(u) < +∞ if and only if
+∞
n=0

Tu(n) < +∞.

In [3], which is devoted mainly to the uniformly recurrent words, we already stated in the section Open problems one part
of Theorem 2, namely that D(u) < +∞ implies


+∞

n=0 Tu(n) < +∞ . As pointed out in [4], there is a gap in our proof, and
its corrected version can be found in [2]. In order to make the present paper self-sustained so that the reader understands
and checks all steps of the proof without having all previous papers at hand, we recall necessary notations and statements
together with the proofs of the essential ones.

2. Preliminaries

By A we denote a finite set of symbols called letters; the set A is therefore called an alphabet. A finite string w =

w0w1 . . . wn−1 of letters from A is said to be a finite word, its length is denoted by |w| = n. Finite words over A together
with the operation of concatenation and the empty word ϵ as the neutral element form a free monoid A∗. The map

w = w0w1 . . . wn−1 → w = wn−1wn−2 . . . w0

is a bijection on A∗, the word w is called the reversal or the mirror image of w. A word w which coincides with its mirror
image is a palindrome.

Under an infinite word we understand an infinite string u = u0u1u2 . . . of letters from A. A finite word w is a factor of
a word v (finite or infinite) if there exist words p and s such that v = pws. If p = ϵ, then w is said to be a prefix of v, if s = ϵ,
then w is a suffix of v.

The language L(v) of a finite or an infinite word v is the set of all its factors. Factors of v of length n form the set denoted
by Ln(v). We say that the language of an infinite word u is closed under reversal if L(u) contains with every factor w also
its reversal w.

For any factor w ∈ L(u), there exists an index i such that w is a prefix of the infinite word uiui+1ui+2 . . . . Such an index
is called an occurrence of w in u. If each factor of u has infinitely many occurrences in u, the infinite word u is said to be
recurrent. It is easy to see that if the language of u is closed under reversal, then u is recurrent (a proof can be found in [9]).
For a recurrent infinite word u, we may define the notion of a complete return word of any w ∈ L(u). It is a factor v ∈ L(u)
such that w is a prefix and a suffix of v and w occurs in v exactly twice.

If any factorw ∈ L(u)has only finitelymany complete returnwords, then the infinitewordu is calleduniformly recurrent.
The factor complexity of an infinite word u is the map Cu : N → N defined by the prescription Cu(n) := #Ln(u). To

determine the first difference of the factor complexity, one has to count the possible extensions of factors of length n. A right
extension of w ∈ L(u) is a letter a ∈ A such that wa ∈ L(u). Of course, any factor of u has at least one right extension.
A factorw is called right special ifw has at least two right extensions. Similarly, one can define a left extension and a left special
factor. We will deal mainly with recurrent infinite words u. In such a case, any factor of u has at least one left extension.

In [8] it is shown that any finite word w contains at most |w| + 1 distinct palindromes (including the empty word). The
defect D(w) of a finite word w is the difference between the utmost number of palindromes |w| + 1 and the actual number
of palindromes contained in w.

In accordance with the terminology introduced in [8], the factor with a unique occurrence in another factor is called
unioccurrent.

The following corollary gives an insight into the birth of defects.

Corollary 3 ([8]). The defect D(w) of a finite wordw is equal to the number of prefixesw′ ofw for which the longest palindromic
suffix of w′ is not unioccurrent in w′. In other words, if b is a letter and w a finite word, then D(wb) = D(w) + δ, where δ = 0 if
the longest palindromic suffix of wb occurs exactly once in wb and δ = 1 otherwise.

Corollary 3 implies that D(v) ≥ D(w) whenever w is a factor of v. It enables to give a reasonable definition of the defect
of an infinite word (see [5]).

Definition 4. The defect of an infinite word u is the number (finite or infinite)

D(u) = sup{D(w):w is a prefix of u}.

Let us point out two facts.

(1) If we consider all factors of a finite or an infinite word u, we obtain the same defect, i.e.,

D(u) = sup{D(w):w ∈ L(u)}.

(2) Any infinite word with finite defect contains infinitely many palindromes.

Using Corollary 3 and Definition 4, we obtain immediately the following corollary.
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Corollary 5. Let u be an infinite word with language closed under reversal. The following statements are equivalent.

(1) The defect of u is finite.
(2) There exists an integer H such that the longest palindromic suffix of any prefix w of length |w| ≥ H occurs in w exactly once.

For the longest palindromic suffix of a word w we will sometimes use the notation lps(w).
The number of palindromes of a fixed length occurring in an infinite word is measured by the so called palindromic

complexity Pu, the map which assigns to any non-negative integer n the number

Pu(n) := #{w ∈ Ln(u):w is a palindrome}.

Denote

Tu(n) = Cu(n + 1) − Cu(n) + 2 − Pu(n + 1) − Pu(n).

The following proposition is proven in [1] for uniformly recurrent words; however, as also noted in [6], the uniform
recurrence is not needed in the proof and it holds for any infinite word with language closed under reversal.

Proposition 6 ([1]). If u is an infinite word with language closed under reversal, then

Tu(n) ≥ 0 for all n ∈ N. (2)

Let u be an infinite word with language closed under reversal. Using the proof of Proposition 6, those n ∈ N for which
Tu(n) = 0 can be characterized in the graph language. Before doing that we need to introduce some more notions.

An n-simple path e is a factor of u of length at least n + 1 such that the only special (right or left) factors of length n
occurring in e are its prefix and suffix of length n. If w is the prefix of e of length n and v is the suffix of e of length n, we
say that the n-simple path e starts in w and ends in v. We will denote by Gn(u) an undirected graph whose set of vertices is
formed by unordered pairs (w, w) such that w ∈ Ln(u) is right or left special. We connect two vertices (w, w) and (v, v)
by an unordered pair (e, e) if e or e is an n-simple path starting in w or w and ending in v or v. Note that the graph Gn(u)
may have multiple edges and loops.

Lemma 7. If u is an infinite word with language closed under reversal and n ∈ N, then Tu(n) = 0 if and only if both of the
following conditions are met.

(1) The graph obtained from Gn(u) by removing loops is a tree.
(2) Any n-simple path forming a loop in the graph Gn(u) is a palindrome.

Proof. It is a direct consequence of the proof of Theorem 1.2 in [1] (recalled in this paper as Proposition 6). �

3. Proof of Theorem 1

The aim of this section is to prove Theorem 1, i.e., to prove the Brlek–Reutenauer conjecture under the additional
assumption that the defect D(u) of an infinite word u and the sum


∞

n=0 Tu(n) are finite. As observed in [6], it is easy to
prove the ‘‘finite analogy’’ of the conjecture, which deals only with finite words. We will also make use of this result.

Theorem 8 ([6]). For every finite word w we have

2D(w) =

|w|
n=0

Tw(n),

where Tw(n) = Cw(n + 1) − Cw(n) + 2 − Pw(n + 1) − Pw(n) and the index w means that we consider only factors of w.

It may seem that the Brlek–Reutenauer conjecture for an infinite word u can be obtained from Theorem 8 by a
‘‘limit transition’’. However, this transition would be far from being kosher. The following lemmas enable us to avoid the
incorrectness.

Lemma 9. Let u be an infinite word with language closed under reversal and finite defect. If q is its prefix satisfying D(u) = D(q),
then for H = |q| + 1 one has

Cu(H) − Pu(H) = 2#{x ∈ L(u): x is a palindrome shorter than H which is not contained in q}.

Proof. Let us define a mapping f : S → T , where

S = {x ∈ L(u): x /∈ L(q), |x| < H, x = x}

and

T =

{w, w}:w ∈ LH(u), w ≠ w


.

Let x be a palindrome from S and i be the first occurrence of x in u. Put w = ui+|x|−H · · · ui+|x|−1. It means that w is a factor
of u of length H and x is a suffix of w. Since H > |x|, the factor w is not a palindrome — otherwise it contradicts the fact that
i is the first occurrence of the palindrome x. We put f (x) = {w, w}.
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To show that f is surjective, we consider w ∈ LH(u) such that w ≠ w. Let p be the prefix of u which ends in the first
occurrence of w or w in u. Since |p| ≥ H = |w| > |q|, we have according to Corollary 3 that D(q) = D(p) and consequently,
lps(p) is unioccurrent in p, which implies that lps(p) is not a factor of q. Moreover, lps(p) is shorter than H — otherwise it
contradicts the choice of the prefix p. We found x = lps(p) ∈ S such that f (x) = {w, w}, i.e., f is surjective.

To show that f is injective, we consider two palindromes y, z ∈ S and we denote f (y) = {wy, wy} and f (z) = {wz, wz}.
From the definition of wx we know that the palindrome x occurs as a factor of wx exactly once, namely as its suffix. It means
that x equals lps(wx). Let us suppose that f (y) = f (z). We have to discuss two cases.

(1) Case wy = wz . It gives lps(wy) = lps(wz) and thus y = z.
(2) Case wy = wz . It implies that y is a prefix of wz and z is a prefix of wy. The fact that y is a prefix of wz forces the first

occurrence of wy to be strictly smaller than the first occurrence of wz . Simultaneously, since z is a prefix of wy, the first
occurrence of wz is strictly smaller than the first occurrence of wy - a contradiction.

Consequently, the assumption f (y) = f (z) implies z = y and the mapping f is injective as well.
Existence of the bijection f between the finite sets T and S means #T = #S. Since from the definition of T it follows that

Cu(H) − Pu(H) = 2#T , the equality stated in the lemma is proven. �

Remark 10. As it was pointed out by Bojan Bašić, Lemma 9 may be stated in a more general form for H > |q|, then the
equality changes to

Cu(H) − Pu(H) = 2#{x ∈ L(u): x /∈ L(q), |x| < H, x = x} − 2(H − |q| − 1).

Thanks to him, we added the assumption H = |q| + 1 in Lemma 9 necessary for the validity of the statement.

Lemma 11. Letu be an infinite wordwith language closed under reversal and finite defect. If q is its prefix satisfying D(u) = D(q),
then for any prefix p of u such that |p| > |q| the number

#{x ∈ L(p): x is a palindrome of length at most |q| which is not contained in q} +

|p|
n=|q|+1

Pp(n)

equals |p| − |q|.

Proof. At first we will show the equality

|p| − |q| = #{x ∈ L(p) \ L(q): x = x}. (3)

Let us denote by u(i) the prefix of u of length i. For any palindrome x ∈ L(p) \ L(q) we find the minimal index i such that
x occurs in u(i). Since x ∈ L(p) \ L(q), we have |q| < i ≤ |p|. Thus we map any element of {x ∈ L(p) \ L(q): x = x} to an
index i ∈ {|q| + 1, |q| + 2, . . . , |p|}.

Let us look at the details of this mapping. The minimality of i guarantees that x is unioccurrent in u(i). Palindromicity of
x gives that x = lps(u(i)). It implies that no two different palindromes are mapped to the same index i, i.e., the mapping is
injective.

Since D(q) = D(u), according to Corollary 3, lps(u(i)) is unioccurrent in u(i) and thus lps(u(i)) /∈ L(q). Thus any index i
such that |q| < i ≤ |p| has its preimage x = lps(u(i)). Therefore the mapping is a bijection and its domain and range have
the same cardinality as stated in (3).

To finish the proof, we split elements of {x ∈ L(p) \ L(q) : x = x} into two disjoint parts: elements of length smaller
than or equal to |q| and elements of length greater than |q|. Since

#{x ∈ L(p) \ L(q) : x = x, |x| > |q|} = #{x ∈ L(p) : x = x, |x| > |q|} =

|p|
n=|q|+1

Pp(n) ,

the statement of Lemma 11 is proven. �

Now we can complete the proof of Theorem 1.

Proof of Theorem 1. Finiteness of defect means that there exists a constant L ∈ N such that D(u) = D(q) for any prefix q
of uwhich is longer than or of length equal to L. On the other hand, finiteness of the sum


+∞

n=0 Tu(n) together with the fact
0 ≤ Tu(n) ∈ Z for any n ∈ N implies that there exists a constant M ∈ N such that Tu(n) = 0 for any n > M . Let us fix an
integer H > max{L,M} and denote by q the prefix of u of length |q| = H − 1. Consequently,

Tu(n) = 0 for any n ≥ H and D(u) = D(q).

In order to show the equality (1), it thus remains to show 2D(q) =
H−1

n=0 Tu(n).
Let us consider a prefix p of u containing all factors of length H . In this case p is longer than q, thus it holds by Corollary 3

that D(q) = D(p). Using Theorem 8, we have

2D(p) =

|p|
n=0

Tp(n) =

H−1
n=0

Tp(n) +

|p|
n=H

Tp(n) =

H−1
n=0

Tu(n) +

|p|
n=H

Tp(n),
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where the last equality is due to the fact that p contains all factors of length H . It remains to prove that
|p|

n=H Tp(n) = 0. Let
us rewrite the sum by definition.

|p|
n=H

Tp(n) =

|p|
n=H


Cp(n + 1) − Cp(n) + 2 − Pp(n + 1) − Pp(n)


= −Cp(H) + 2(|p| − H + 1) − 2

|p|
n=H

Pp(n) + Pp(H)

= −Cu(H) + 2(|p| − H + 1) − 2
|p|

n=H

Pp(n) + Pu(H), (4)

where in the last equality we again used the fact that p contains all factors of length H . This fact also allows us to rewrite
the set {x ∈ L(p) : x /∈ L(q), x = x, |x| ≤ |q|} from Lemma 11 as {x ∈ L(u) : x /∈ L(q), x = x, |x| < H}. Denote the
cardinality of this set by B.

In this notation, Lemmas 9 and 11 say

Cu(H) − Pu(H) = 2B and B +

|p|
n=H

Pp(n) = |p| − H + 1.

This implies that the last expression in (4) is zero as desired. �

4. Proof of Theorem 2

If an infiniteword u is periodicwith language closed under reversal, thenD(u) < +∞ and


+∞

n=0 Tu(n) < +∞, as shown
in [6]. Consequently, we will limit our considerations in the sequel to aperiodic words.
Proposition 12. If u is an aperiodic infinite word with language closed under reversal and N is an integer, then Tu(n) = 0 for
all n ≥ N if and only if for any factor w such that |w| ≥ N, any factor longer than w beginning in w or w and ending in w or w,
with no other occurrences of w or w, is a palindrome.
Proof. (⇐): Let us show for any n ≥ N that the assumptions of Lemma 7 are satisfied. We have to show two properties of
Gn(u) for any n ≥ N .
(1) Any loop in Gn(u) is a palindrome.

Since any loop e in Gn(u) at a vertex (w, w) is a word longer than w beginning in a special factor w or w and ending in
w or w, with no other occurrences of w or w, the loop e is a palindrome by the assumption.

(2) The graph obtained from Gn(u) by removing loops is a tree.
Or equivalently, we have to show that in Gn(u) there exists a unique path between any two different vertices (w′, w′)
and (w′′, w′′). Let p be a factor of u such that w′ or w′ is its prefix, w′′ or w′′ is its suffix and p has no other occurrences
of w′, w′, w′′, w′′. Let v be a factor starting in p, ending in w′ or w′ and containing no other occurrences of w′ or w′. By
the assumption the factor v is a palindrome, thus p is a suffix of v. It is then a direct consequence of the construction of
v that the next factor with the same properties as p, i.e., representing a path in the undirected graph Gn(u) between w′

and w′′, which occurs in u after p, is p. This shows that there is only one such path.

Consequently, Lemma 7 implies that Tn(u) = 0 for any n ≥ N .
(⇒): First we prove an auxiliary claim.
Claim. If u is an aperiodic infinite word with language closed under reversal and N is an integer such that Tu(n) = 0 for all
n ≥ N, then for any w such that |w| ≥ N and any factor v longer than w beginning in w and ending in w or w, with no other
occurrences of w or w, there exists a letter a ∈ A such that v has prefix wa and suffix aw.

It is clear that repeated application of the previous claim to factorsw of length gradually increased by one gives the proof
of implication (⇒) of Proposition 12.

We split the proof of the auxiliary claim into two cases.

• Case 1: Assume that w is a special factor.
If v does not contain any other special factor of length n = |w| except for w and w, then v is a loop in the graph Gn(u)

and according to Lemma 7, the factor v is a palindrome. Necessarily, v begins in wa for some letter a and ends in aw.
Suppose now that v = v0v1 · · · vm contains a special factor z ≠ w, w of length n at the position i, i.e., z = vivi+1 · · ·

vn+i−1. Without loss of generality, we consider the smallest index i with this property. The pair (z, z) is a vertex in the
graph Gn(u) and a prefix of v, say e, corresponds to an edge in Gn(u) starting in (w, w) and ending in (z, z). Since the
graph Gn(u) is a tree, the word v which corresponds to a walk from (w, w) to the same vertex (w, w) has a suffix f
representing an edge in Gn(u) connecting again vertices (z, z) and (w, w). It means that the suffix f starts in z or z and
ends in w or w. Since Gn(u) has no multiple edges connecting distinct vertices, necessarily f = e, which already gives
the claim.
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• Case 2: Assume w is not a special factor.
It means that there exists a unique letter a such that wa belongs to the language of u. As the language is closed under

reversal, the factor w has a unique left extension, namely a. If v starts in w and ends in w, then the claim is proven.
It remains to exclude that v begins and ends in a non-palindromic factor w. Suppose this situation happens. In this

case, there exists a unique q such that wq is a right special factor and it is the shortest right special factor having the
prefix w. The factor wq has only one occurrence of the factor w — otherwise we can find a shorter prolongation of w
which is right special. Since w is a suffix of v, we deduce that |wq| < |v|. Because wq is the shortest right special factor
with prefix w, the factor vq belongs to the language and its prefix and suffix wq is a special factor. According to already
proven Case 1, we have wq = wq = qw. It means together with the inequality |wq| < |v| that w is contained in v as
well — a contradiction. �

The proof of the implication (⇒) of Proposition 12 is taken from [10], where we showed a more general statement for
an infinite word whose language is closed under a larger group of symmetries.
Corollary 13. Let u be an aperiodic infinite word with language closed under reversal and let N be an integer. If Tu(n) = 0 for
all n ≥ N, then the occurrences of w and w in u alternate for any factor w of u of length at least N.

The following lemma builds a bridge between Corollary 5 and Proposition 12.
Lemma 14. Let u be an aperiodic infinite word with language closed under reversal. There exists H ∈ N such that the longest
palindromic suffix of any prefix w of u of length |w| ≥ H occurs in w exactly once if and only if there exists N ∈ N such that for
any factor w with |w| ≥ N, any factor longer than w beginning in w or w and ending in w or w, with no other occurrences of w
or w, is a palindrome.
Proof. (⇒): We will show that N may be set equal to H . Let us proceed by contradiction. Suppose there exists a factor
w ∈ L(u) such that |w| ≥ H and there exists a non-palindromic factor of u longer than w beginning in w or w and ending
in w or w, with no other occurrences of w or w. Let us find the first non-palindromic factor of the above form in u and let us
denote it as r . Let p be the prefix of u ending in the first occurrence of r in u, i.e., p = tr for someword t and r is unioccurrent
in p. Denote by s the longest palindromic suffix of p. By the assumption, s is unioccurrent in p. No matter how long the suffix
s is, we will obtain a contradiction.
(1) If |s| ≤ |w|, then we have a contradiction to the unioccurrence of s.
(2) If |r| > |s| > |w|, then we can find at least 3 occurrences of w or w in r which is a contradiction to the form of r .
(3) The equality |r| = |s| contradicts the fact that we supposed r to be non-palindromic.
(4) Finally, if |r| < |s|, then there is an occurrence of the mirror image of r which is a non-palindromic factor having the

same properties as r which occurs before r and contradicts the choice of p.

(⇐): Take a prefix containing all factors of length N . Set H equal to its length. Let us show that any prefix p of length
greater than or equal to H has lps(p) of length greater than or equal to N . Consider a suffix of p of length N , sayw. Eitherw is
a palindrome, then lps(p) is of length greater than or equal toN . Orw is not a palindrome, thenwe find a suffix of p beginning
in w and containing exactly two occurrences of w or w. Such a suffix exists since all factors of length N are contained in p.
By assumptions, such a suffix is a palindrome, hence lps(p) is longer than N .

Any prefix p of u of length greater than or equal to H has lps(p) unioccurrent. Assume there are more occurrences of
lps(p) in p and consider its suffix v starting in the last-but-one occurrence of lps(p). Since the length of lps(p) is greater than
or equal to N , the factor v is a palindrome by assumptions, which contradicts the choice of lps(p). �
Proof of Theorem 2. For periodic words, the statement was shown in [6]. If u is aperiodic, then the statement is a direct
consequence of Lemma 14, Corollary 5, and Proposition 12. �
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Abstract. In this paper we introduce the well distributed occurrences
(WDO) combinatorial property for infinite words, which guarantees good
behavior (no lattice structure) in some related pseudorandom number
generators. An infinite word u on a d-ary alphabet has the WDO prop-
erty if, for each factor w of u, positive integer m, and vector v ∈ Zd

m,
there is an occurrence of w such that the Parikh vector of the prefix
of u preceding such occurrence is congruent to v modulo m. We prove
that Sturmian words, and more generally Arnoux-Rauzy words and some
morphic images of them, have the WDO property.

Introduction

The combinatorial problem studied in this paper comes from random number
generation. Pseudorandom number generators aim to produce random numbers
using a deterministic process. No wonder they suffer from many defects. The
most usual ones – linear congruential generators – are known to produce periodic
sequences having a defect called lattice structure. Guimond et al. [2] proved
that when two linear congruential generators are combined using infinite words
coding certain classes of quasicrystals or, equivalently, of cut-and-project sets,
the resulting sequence is aperiodic and has no lattice structure.

We have found a combinatorial condition – well distributed occurrences, or
WDO for short – that guarantees absence of lattice structure if two arbitrary
generators having the same output alphabet are combined using an infinite word
having the WDO property. The WDO property for an infinite word u over an
alphabet A means that for any integer m and any factor w of u, the set of Parikh
vectors modulo m of prefixes of u preceeding the occurrences of w coincides with
{0, 1, . . . ,m − 1}|A| (see Definition 2.1). In other words, among Parikh vectors
modulo m of such prefixes one has all possible vectors. Besides giving generators
without lattice structure, the WDO property is an interesting combinatorial
property of infinite words itself.
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We have proved first that Sturmian words have well distributed occurrences,
and then we have shown this property for Arnoux-Rauzy words. The proof for
Sturmian words is based on different ideas than the one for Arnoux-Rauzy words,
therefore we will provide in the sequel both of them.

In the next section, we deal with pseudorandom number generation, thus
establishing the motivation for our work. Next, in Section 2, we give the ba-
sic combinatorial definitions needed for our main results, including the WDO
property. Finally, in the last two sections, we prove that the property holds for
Sturmian and Arnoux-Rauzy words, respectively.

1 Motivation in Pseudorandom Number Generation

For the sake of our discussion, any infinite sequence of integers can be understood
as a pseudorandom number generator (PRNG); see also [2].

Let X = (xn)n∈N and Y = (yn)n∈N be two PRNGs with the same output
M ⊂ N and the same period m ∈ N, and let u = u0u1u2 . . . be a binary infinite
word, i.e., an infinite sequence over {0, 1}.

The PRNG
Z = (zn)n∈N (1)

based on u is obtained by the following algorithm:

1. Read step by step the letters of u.
2. When you read 0 for the i-th time, copy the i-th symbol from X to the end

of the constructed sequence Z.
3. When you read 1 for the i-th time, copy the i-th symbol from Y to the end

of the constructed sequence Z.

Of course, it is possible to generalize this construction – using infinite words over
a multiliteral alphabet, one can combine more than two PRNGs.

1.1 Lattice Structure

Let X = (xn)n∈N be a PRNG whose output is a finite set M ⊂ N. We say that
X has the lattice structure if there exists t ∈ N such that

{(xi, xi+1, . . . , xi+t−1)
∣∣ i ∈ N}

is covered by a family of parallel equidistant hyperplanes and at the same time,
this family does not cover the whole lattice

M t = {(a1, a2, . . . , at)
∣∣ ai ∈M for all i ∈ {1, . . . , t}}.

It is known that all linear congruential generators have the lattice structure.
Recall that a linear congruential generator (xn)n∈N is given by a,m, c ∈ N and
defined by the recurrence relation xn+1 = axn + c mod m. Let us mention
a famous example of a PRNG with a striking lattice structure. For t = 3, the
set of triples of RANDU, i.e., {(xi, xi+1, xi+2)

∣∣ i ∈ N} is covered by only 15
equidistant hyperplanes, see Figure 1.
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Fig. 1. The triples of RANDU – the linear congruential generator with a = (216 +
3),m = 231, c = 0 – are covered by as few as 15 parallel equidistant planes.

1.2 Combinatorial Condition on Absence of the Lattice Structure

Guimond et al. in [2] have shown that PRNGs based on infinite words coding
a certain class of cut-and-project sets have no lattice structure. A crucial part
of their proof is the following lemma.

Lemma 1.1. Let Z be the PRNG from (1) based on an aperiodic infinite word.
If there exist for any a, b ∈ M and for any ` ∈ N an `-tuple z such that both
za and zb are (`+ 1)-tuples of the sequence Z, then Z does not have the lattice
structure.

We have found the following combinatorial condition on binary infinite words
guaranteeing that the assumptions of the previous lemma are met: we say that
a binary aperiodic infinite word u over the alphabet {0, 1} has well distributed
occurrences (or has the WDO property) if u satisfies for any m ∈ N and any
factor w of u the following condition. If we denote i0, i1, . . . the occurrences of
w in u, then

{(
|u0u1 · · ·uij−1|0, |u0u1 · · ·uij−1|1

)
mod m | j ∈ N

}
= Z2

m ,

where modm is applied elementwise.
See the next section for the definition of aperiodicity, factor occurrences, and

the WDO property for general alphabets.
The WDO property for binary words thus ensures no lattice structure for

PRNGs defined in (1).

Theorem 1.2. Let Z be the PRNG from (1) based on a binary aperiodic infinite
word having the WDO property. Then Z has no lattice structure.
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We omit the proof of this theorem for the sake of brevity.
Moreover, we have shown that the class of infinite words satisfying the WDO

property for binary words is larger than the class described in [2] (see Section 3).

2 Combinatorics on Words and the WDO Property

By A we denote a finite set of symbols called letters; the set A is therefore
called an alphabet. A finite string w = w1w2 . . . wn of letters from A is said to
be a finite word, its length is denoted by |w| = n and |w|a denotes the number
of occurrences of a ∈ A contained in w. The empty word, a neutral element for
concatenation of finite words, is denoted ε and it is of zero length.

Under an infinite word we understand an infinite sequence u = u0u1u2 . . . of
letters from A. A finite word w is a factor of a word v (finite or infinite) if there
exist words p and s such that v = pws. If p = ε, then w is said to be a prefix
of v; if s = ε, then w is a suffix of v. The set of factors and prefixes of v are
denoted by Fact(v) and Pref(v), respectively. If v = ps for finite words v, p, s,
then we write p = vs−1 and s = p−1v.

An infinite word u over the alphabet A is called eventually periodic if it is of
the form u = vwω, where v, w are finite words over A and ω denotes an infinite
repetition. An infinite word is called aperiodic if it is not eventually periodic.

For any factor w of an infinite word u, every index i such that w is a prefix
of the infinite word uiui+1ui+2 . . . is called an occurrence of w in u.

The factor complexity of an infinite word u is a map Cu : N 7→ N defined
by Cu(n) := the number of factors of length n contained in u. The factor com-
plexity of eventually periodic words is bounded, while the factor complexity of
an aperiodic word u satisfies Cu(n) ≥ n + 1 for all n ∈ N. A right extension of
a factor w of u over the alphabet A is any letter a ∈ A such that wa is a factor
u. Of course, any factor of u has at least one right extension. A factor w is called
right special if w has at least two right extensions. Similarly, one can define a left
extension and a left special factor. A factor is bispecial if it is both right and left
special. An aperiodic word contains right special factors of any length.

The Parikh vector of a finite word w over an alphabet {0, 1, . . . , d − 1} is
defined as (|w|0, |w|1, . . . , |w|d−1). For a finite or infinite word u = u0u1u2 . . . ,
we denote by Prefn u the prefix of length n of u, i.e., Prefn u = u0u1 . . . un−1.

Let us generalize the combinatorial condition on infinite words that guaran-
tees no lattice structure for pseudorandom number generators from binary to
multiliteral alphabets.

Definition 2.1 (The WDO property). We say that an aperiodic infinite
word u over the alphabet {0, 1, . . . , d − 1} has well distributed occurrences (or
has the WDO property) if u satisfies for any m ∈ N and any factor w of u the
following condition. If we denote i0, i1, . . . the occurrences of w in u, then

{(
|u0u1 · · ·uij−1|0, . . . , |u0u1 · · ·uij−1|d−1

)
mod m | j ∈ N

}
= Zdm ;

that is, the Parikh vectors of Prefij (u) for j ∈ N, when reduced modulo m, give
the whole Zdm.
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We define the WDO property for aperiodic words since it clearly never holds
for periodic ones.

With the above notation, it is easy to see that if a recurrent infinite word u
has the WDO property, then for every vector v ∈ Zdm there are infinitely many
values of j such that the Parikh vector of Prefij (u) is congruent to v modulo m.

Example 2.2. The Thue-Morse word t = 0110100110010110 · · · , which is a fixed
point of the morphism 0 7→ 01, 1 7→ 10, does not satisfy the WDO property.
Indeed, take m = 2 and w = 00, then w occurs only in odd positions ij so that
(|t0 · · · tij−1|0+|t0 · · · tij−1|1) = ij is odd. Thus, e.g., (|t0 · · · tij−1|0, |t0 · · · tij−1|1)
mod 2 6= (0, 0), and hence {(|t0 · · · tij−1|0, |t0 · · · tij−1|1) mod 2 | j ∈ N} 6= Z2

2.

Example 2.3. We say that an infinite word u over an alphabet A, |A| = d, is
universal if it contains all finite words over A as its factors. It is easy to see that
any universal word satisfies the WDO property. Indeed, for any word w ∈ A∗
and any m there exists a finite word v such that if we denote i0, i1, . . . , ik the
occurrences of w in v, then

{(
|Prefijv|0, . . . , |Prefijv|d−1

)
mod m | j ∈ {0, 1, . . . , k}

}
= Zdm .

Since u is universal, v is a factor of u. Denoting by i an occurrence of v in u,
one gets that the positions i+ ij are occurrences of w in u. Hence

{(
|Prefi+iju|0, . . . , |Prefi+iju|d−1

)
mod m | j ∈ {0, 1, . . . , k}

}
=

= (|Prefiu|0, . . . , |Prefiu|d−1) +

+
{(
|Prefijv|0, . . . , |Prefijv|d−1

)
mod m | j ∈ {0, 1, . . . , k}

}
= Zdm .

Therefore, u satisfies the WDO property.

3 Sturmian Words

In this section, we show that Sturmian words have well distributed occurrences.

Definition 3.1. An aperiodic infinite word u is called Sturmian if its factor
complexity satisfies Cu(n) = n+ 1 for all n ∈ N.

So, Sturmian words are by definition binary and they have the lowest possible
factor complexity among aperiodic infinite words. Sturmian words admit various
types of characterizations of geometric and combinatorial nature. One of such
characterizations is via irrational rotations on the unit circle. In [4] Hedlund and
Morse showed that each Sturmian word may be realized measure-theoretically
by an irrational rotation on the circle. That is, every Sturmian word is obtained
by coding the symbolic orbit of a point on the circle of circumference one under a
rotation Rα by an irrational angle5 α, 0 < α < 1, where the circle is partitioned
into two complementary intervals, one of length α and the other of length 1−α.
And conversely each such coding gives rise to a Sturmian word.
5 Measured by arc length (thus equivalent to 2πα radians).
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Definition 3.2. The rotation by angle α is the mapping Rα from [0, 1) (identi-
fied with the unit circle) to itself defined by Rα(x) = {x+α}, where {x} = x−bxc
is the fractional part of x. Considering a partition of [0, 1) into I0 = [0, 1− α),
I1 = [1− α, 1), define a word

sα,ρ(n) =

{
0, if Rnα(ρ) = {ρ+ nα} ∈ I0,
1, if Rnα(ρ) = {ρ+ nα} ∈ I1.

One can also define I ′0 = (0, 1 − α], I ′1 = (1 − α, 1], the corresponding word is
denoted by s′α,ρ.

For more information on Sturmian words we refer to [3, Chapter 2].

Theorem 3.3. Let u be a Sturmian word on {0, 1}. Then u has Property WDO.

Proof. In the proof we use the definition of Sturmian word via rotation. The
main idea is controlling the number of 1’s modulo m by taking circle of length
m, and controlling the length taking the rotation by mα.

For the proof we will use an equivalent reformulation of the theorem:

Let u be a Sturmian word on {0, 1}, for any natural numberm and any factor
w of u let us denote i0, i1, . . . the occurrences of w in u. Then

{(
ij , |u0u1 · · ·uij−1|1

)
mod m | j ∈ N

}
= {0, 1, ...,m− 1}2.

That is, we will control the number of 1’s and the length instead the number
of 0’s.

Since a Sturmian word can be defined via rotations by an irrational angle
on a unit circle, without loss of generality we may assume that u = sα,ρ for
some 0 < α < 1, 0 ≤ ρ < 1, α irrational (see Definition 3.2). Equivalently, we
can consider m copies of the circle connected into one circle of length m with
m intervals Ii1 = [i−α, i) of length α corresponding to 1. The Sturmian word is
obtained by rotation by α on this circle of length m (see Fig. 2).

Namely, we define the rotation Rα,m as the mapping from [0,m) (identified
with the circle of length m) to itself defined by Rα,m(x) = {x + α}m, where
{x}m = x − bx/mcm and for m = 1 coincides with the fractional part of x. A
partition of [0,m) into 2m intervals Ii0 = [i, i + 1 − α), Ii1 = [i + 1 − α, i + 1),
i = 0, . . . ,m− 1 defines the Sturmian word u = sα,ρ:

sα,ρ(n) =

{
0, if Rnα,m(ρ) = {ρ+ nα} ∈ Ii0 for some i = 0, . . . ,m− 1,

1, if Rnα,m(ρ) = {ρ+ nα} ∈ Ii1 for some i = 0, . . . ,m− 1.

It is well known that any factor w = w0 · · ·wk−1 of u corresponds to an
interval Iw in [0, 1), so that whenever you start rotating from the interval Iw, you
obtain w. Namely, x ∈ Iw if and only if x ∈ Iw0

, Rα(x) ∈ Iw1
, . . . , R

|w|−1
α (x) ∈

Iw|w|−1
.
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Fig. 2. Illustration to the proof of Theorem 3.3: the example for m = 5.

Similarly, we can define m intervals corresponding to w in [0,m) (circle of
length m), so that if Iw = [x1, x2), then Iiw = [x1 + i, x2 + i), i = 0, . . . ,m− 1.

Fix a factor w of u, take arbitrary (j, i) ∈ {0, 1, . . . ,m − 1}2. Now we will
organize (j, i) among the occurrences of w, i.e., find l such that ul . . . ul+|w|−1 =
w, l mod m = j and |Pref lu|1 mod m = i.

Consider rotation Rmα,m(x) by mα instead of rotation by α, and start m-
rotating from jα + ρ. Formally, Rmα,m(x) = {x + mα}m, where, as above,
{x}m = x − [x/m]m. This rotation will put us to positions mk + j, k ∈ N in
the Sturmian word: for a ∈ {0, 1} one has sα,ρ(mk+ j) = a if Rkmα,m(jα+ ρ) =

{jα+ ρ+ kmα}m ∈ Iia for some i = 0, . . . ,m− 1.
Remark that the points in the orbit of an m-rotation of a point on the m-

circle are dense, and hence the rotation comes infinitely often to each interval.
So pick k when jα+mkα+ρ ∈ Iiw ⊂ [i, i+ 1) (and actually there exist infinitely
many such k). Then the length l of the corresponding prefix is equal to km+ j,
and the number of 1’s in it is i+mp, where p is the number of complete circles
you made, i.e., p = [(jα+mkα+ ρ)/m]. ut

Remark 3.4. In the next section we will show that Arnoux-Rauzy words [1],
which are natural extensions of Sturmian words to larger alphabets, also satisfy
the WDO property. Note that the proof above cannot be generalized to Arnoux-
Rauzy words, because it is based on the geometric interpretation of Sturmian
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words via rotations, while this interpretation does not extend to Arnoux-Rauzy
words.

4 Arnoux-Rauzy Words

4.1 Basic Definitions

Definition 4.1. Let A be a finite alphabet. The reversal operator is the operator
∼: A∗ 7→ A∗ defined by recurrence in the following way:

ε̃ = ε, ṽa = aṽ

for all v ∈ A∗ and a ∈ A. The fixed points of the reversal operator are called
palindromes.

Definition 4.2. Let u ∈ A∗ be a finite word over the alphabet A. We define
the right palindromic closure of u, and we denote it by u(+) as the shortest
palindrome that has u as a prefix. It is readily verified that if p is the longest
palindromic suffix of u = vp, then u(+) = vpṽ.

Definition 4.3. We call the iterated (right) palindromic closure operator the
operator ψ recurrently defined by the following rules:

ψ(ε) = ε, ψ(va) = (ψ(v)a)(+)

for all v ∈ A∗ and a ∈ A. The definition of ψ may be extended to infinite
words u over A as ψ(u) = limn ψ(Prefn u), i.e., ψ(u) is the infinite word having
ψ(Prefn u) as its prefix for every n ∈ N.

Definition 4.4. Let ∆ be an infinite word on the alphabet A such that every
letter occurs infinitely often in ∆. The word c = ψ(∆) is then called a charac-
teristic (or standard) Arnoux-Rauzy word and ∆ is called the directive sequence
of c. An infinite word u is called an Arnoux-Rauzy word if it has the same set
of factors as a (unique) characteristic Arnoux-Rauzy word, which is called the
characteristic word of u. The directive sequence of an Arnoux-Rauzy word is the
directive sequence of its characteristic word.

Let us also recall the following well-known characterization:

Theorem 4.5. Let u be an aperiodic infinite word over the alphabet A. Then u
is a standard Arnoux-Rauzy word if and only if the following hold:

1. Fact(u) is closed under reversal (that is, if v is a factor of u so is ṽ).
2. Every left special factor of u is also a prefix.
3. If v is a right special factor of u then va is a factor of u for every a ∈ A.
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From the preceding theorem, it can be easily verified that the bispecial factors
of a standard Arnoux-Rauzy correspond to its palindromic prefixes (including
the empty word), and hence to the iterated palindromic closure of the prefixes
of its directive sequence. That is, if

ε = b0, b1, b2, . . .

is the sequence, ordered by length, of bispecial factors of the standard Arnoux-
Rauzy word u, ∆ = ∆0∆1 · · · its directive sequence (with ∆i ∈ A for every i),
we have bi+1 = (bi∆i)

(+).
A direct consequence of this, together with the preceding definitions, is the

following statement, which will be used in the sequel.

Lemma 4.6. Let u be a characteristic Arnoux-Rauzy word and let ∆ and (bi)i≥0
be defined as above. If ∆i does not occur in bi, then bi+1 = bi∆ibi. Otherwise let
j < i be the largest integer such that ∆j = ∆i. Then bi+1 = bib

−1
j bi.

4.2 Parikh Vectors and Arnoux-Rauzy Factors

Where no confusion arises, given an Arnoux-Rauzy word u, we will denote by

ε = b0, b1, . . . , bn, . . .

the sequence of bispecial factors of u ordered by length and we will set for any
i ∈ N, Bi as the Parikh vector of bi.

Remark 4.7. By the pigeonhole principle, it is clear that for every m ∈ N there
exists an integer N ∈ N such that, for every i ≥ N , the set {j > i | Bj ≡m Bi}
is infinite. Where no confusion arises and with a slight abuse of notation, fixed
m, we will always denote by N the smallest of such integers.

Lemma 4.8. Let u be a characteristic Arnoux-Rauzy word and let m ∈ N. Let

α1Bj1 + · · ·+ αkBjk ≡m v̄ ∈ Zdm

be a linear combination of Parikh vectors such that
∑k
i=1 αi = 0, with ji ≥ N

and αi ∈ Z for all i ∈ {1, . . . k}. Then, for any ` ∈ N, there exists a prefix v of
u such that the Parikh vector of v is congruent to v̄ modulo m and vb` is also a
prefix of u.

Proof. Without loss of generality, we can assume α1 ≥ α2 ≥ · · · ≥ αk, hence
there exists k′ such that

α1 ≥ αk′ ≥ 0 ≥ αk′+1 ≥ αk.

We will prove the result by induction on β =
∑k′

j=1 αj . If β = 0, trivially, we can
take v = ε and the statement is clearly verified. Let us assume the statement
true for all 0 ≤ β < M and let us prove it for β = M . By the remark preceding
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this lemma, for every ` we can choose i′ > j′ > ` such that Bj1 ≡m Bi′ and
Bjk ≡m Bj′ . Since every bispecial factor is a prefix and suffix of all the bigger
ones, in particular we have that bj′ is a suffix of bi′ , and b` is a prefix of bj′ ;
this implies that bi′b−1j′ b` is actually a prefix of bi′ . By assumption, the Parikh
vector of bi′b−1j′ is clearly Bi′−Bj′ ≡m Bj1−Bjk . Since α1 ≥ 1 implies αk ≤ −1,
we have, by induction hypothesis, that there exists a prefix v of u such that the
Parikh vector of v is congruent modulo m to

(α1 − 1)Bj1 + · · ·+ (αk + 1)Bjk

and vbi′ is a prefix of u. Hence vbi′b−1j′ b` is also a prefix of u and, by simple
computation, the Parikh vector of vbi′b−1j′ is congruent modulo m to v̄. ut

Definition 4.9. Let n ∈ Z. We will say that an integer linear combination of
integer vectors is a n-combination if the sum of all the coefficients equals n.

Lemma 4.10. Let u be a characteristic Arnoux-Rauzy word and let n ∈ N.
Every n-combination of Parikh vectors of bispecial factors can be expressed as a
n-combination of Parikh vectors of arbitrarily large bispecials. In particular, for
every K,M ∈ N, it is possible to find a finite number of integers α1, . . . , αk such
that BK = α1Bj1 + · · ·+ αkBjk with ji > M for every i and α1 + · · ·+ αk = 1.

Proof. A direct consequence of Lemma 4.6 is that for every i such that ∆i

appears in bi, we have Bi+1 = 2Bi − Bj , where j < i is the largest such that
∆j = ∆i. This in turn (since every letter in ∆ appears infinitely many times
from the definition of Arnoux-Rauzy word) implies that for every non-negative
integer j, there exists a positive k such that Bj = 2Bj+k − Bj+k+1, that is, we
can substitute each Parikh vector of a bispecial with a 1-combination of Parikh
vectors of strictly larger bispecials. Simply iterating the process, we obtain the
statement. ut

In the following we will assume the set A to be a finite alphabet of cardinality
d. For every set X ⊆ A∗ of finite words, we will denote by PV(X) ⊆ Zd the set
of Parikh vectors of elements of X and for every m ∈ N we will denote by
PVm(X) ⊆ Zdm the set of elements of PV(X) reduced modulo m.

Let u be an infinite word over A and let v be a factor of u. We denote by
Sv(u) the set of all prefixes of u followed by an occurrence of v. In other words,

Sv(u) = {p ∈ Pref(u) | pv ∈ Pref(u)}.

Definition 4.11. For any set of finite words X ⊆ A∗, we will say that u has
the property PX (or, for short, that u has PX) if, for every m ∈ N and for every
v ∈ X we have that

PVm(Sv(u)) = Zdm.

That is to say, for every vector v ∈ Zdm there exists a word w ∈ Sv(u) such that
the Parikh vector of w is congruent to v modulo m.
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With this notation, an infinite word u has the WDO property if and only if it
has property PFact(u).

Proposition 4.12. Let u be a characteristic Arnoux-Rauzy word over the d-
letter alphabet A. Then u has the property PPref(u).

Proof. Let us fix an arbitrary m ∈ N. We want to show that, for every v ∈
Pref(u), PVm(Sv(u)) = Zdm. Let then v̄ ∈ Zd and ` be the smallest number
such that v is a prefix of b`. Let i1 < i2 < · · · < id be such that ∆ij does not
appear in bij , where ∆ is the directive word of u. Without loss of generality,
we can rearrange the letters so that each ∆ij is lexicographically smaller than
∆ij+1 . With this assumption if, for every j, we set v̄j as the Parikh vector
of bij+1, which, by the first part of Lemma 4.6, equals bij∆ij bij , we can find
j − 1 positive integers µ1, . . . , µj−1 such that v̄j = (µ1, µ2, . . . , µj−1, 1, 0, . . . , 0).
It is easy to show, then, that the set V = {v̄1, . . . , v̄d} generates Zd, hence
there exists an integer n such that v̄ can be expressed as an n-combination of
elements of V (which are Parikh vectors of bispecial factors of u). Trivially, then,
v̄ = v̄ − n0̄ = v̄ − nB0; thus, it is possible to express v̄ as a 0-combination of
Parikh vectors of (by the previous Lemma 4.10) arbitrarily large bispecial factors
of u. By Lemma 4.8, then there exists a prefix p of u with Parikh vector p̄ such
that p̄ ≡m v̄ and pb` is a prefix of u. Since we picked ` such that v is a prefix of
b`, we have that p ∈ Sv(u). From the arbitrariness of v, v̄ and m, we obtain the
statement. ut

As a corollary of Proposition 4.12, we obtain the main result of this section.

Theorem 4.13. Let u be an Arnoux-Rauzy word over the d-letter alphabet A.
Then u has the property PFact(u).

Proof. Let m be a positive integer and let c be the characteristic word of u. Let
v be a factor of u and xvy be the smallest bispecial containing v. By Proposition
4.12, we have that PVm(Sxv(c)) = Zdm and, since the set is finite, we can find a
prefix p of c such that PVm(Sxv(p)) = Zdm. Let w be a prefix of u such that wp
is a prefix of u. If x̄ and w̄ are the Parikh vectors of, respectively, x and w, it is
easy to see that

w̄ + x̄ + PV(Sxv(p)) ⊆ w̄ + PV(Sv(p)) ⊆ PV(Sv(u))

Since we have chosen p such that PVm(Sxv(p)) = Zdm, we clearly obtain that
PVm(Sv(u)) = Zdm and hence, by the arbitrariness of v and m, the statement.

ut
Remark 4.14. Actually, Theorem 4.13 implies Theorem 3.3.

Remark 4.15. Note the following simple method of obtaining words satisfying
the WDO property. Take a word u with the WDO property over an alphabet
{0, 1, . . . , d−1}, d > 2, apply a morphism ϕ : d−1 7→ 0, i 7→ i for i = 0, . . . , d−2, i.
e., ϕ joins two letters into one. It is straightforward that ϕ(u) has WDO property.
So, taking Arnoux-Rauzy words and joining some letters, we obtain other words
than Sturmian and Arnoux-Rauzy satisfying the WDO property.
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Abstract. In this paper we study how certain families of aperiodic infinite
words can be used to produce aperiodic pseudorandom number generators

(PRNGs) with good statistical behavior. We introduce the well distributed
occurrences (WELLDOC) combinatorial property for infinite words, which

guarantees absence of the lattice structure defect in related pseudorandom

number generators. An infinite word u on a d-ary alphabet has the WELLDOC
property if, for each factor w of u, positive integer m, and vector v ∈ Zd

m, there

is an occurrence of w such that the Parikh vector of the prefix of u preceding

such occurrence is congruent to v modulo m. (The Parikh vector of a finite
word v over an alphabet A has its i-th component equal to the number of

occurrences of the i-th letter of A in v.) We prove that Sturmian words, and

more generally Arnoux-Rauzy words and some morphic images of them, have
the WELLDOC property. Using the TestU01 [12] and PractRand [6] statistical

tests, we moreover show that not only the lattice structure is absent, but also

other important properties of PRNGs are improved when linear congruential
generators are combined using infinite words having the WELLDOC property.

Introduction

Pseudorandom number generators aim to produce random numbers using a de-
terministic process. No wonder they suffer from many defects. The most usual ones
– linear congruential generators – are known to produce periodic sequences with a
defect called the lattice structure. Guimond et al. [15] proved that when two linear
congruential generators are combined using infinite words coding certain classes
of quasicrystals or, equivalently, of cut-and-project sets, the resulting sequence is
aperiodic and has no lattice structure. For some other related results concerning
aperiodic pseudorandom generators we refer to [13, 14]. We mention that although
the lattice structure is considered as a defect of a random number generator, it can
be useful in some applications for approximation of the uniform distribution [10].

We have found a combinatorial condition – well distributed occurrences, or WELL-
DOC for short – that also guarantees absence of the lattice structure in related
pseudorandom generators. The WELLDOC property for an infinite word u over
an alphabet A means that for any integer m and any factor w of u, the set of
Parikh vectors modulo m of prefixes of u preceding the occurrences of w coincides

with Z|A|m (see Definition 2.1). In other words, among Parikh vectors modulo m of
such prefixes one has all possible vectors. Besides giving generators without lattice
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structure, the WELLDOC property is an interesting combinatorial property of in-
finite words itself. We prove that the WELLDOC property holds for the family of
Sturmian words, and more generally for Arnoux-Rauzy words.

Sturmian words constitute a well studied family of infinite aperiodic words. Let u
be an infinite word, i. e., an infinite sequence of elements from a finite set called an
alphabet. The (factor) complexity function counts the number of distinct factors
of u of length n. A fundamental result of Morse and Hedlund [18] states that a
word u is eventually periodic if and only if for some n its complexity is less than or
equal to n. Infinite words of complexity n+ 1 for all n are called Sturmian words,
and hence they are aperiodic words of the smallest complexity. The most studied
Sturmian word is the so-called Fibonacci word

01001010010010100101001001010010 . . .

fixed by the morphism 0 7→ 01 and 1 7→ 0. (See Section 2 for formal definitions.)
The first systematic study of Sturmian words was given by Morse and Hedlund
in [19]. Such sequences arise naturally in many contexts, and admit various types
of characterizations of geometric and combinatorial nature (see, e.g., [16]).

Arnoux-Rauzy words were introduced in [1] as natural extensions of Sturmian
words to multiliteral alphabets (see Definition 4.4). Despite the fact that they were
introduced as generalizations of Sturmian words, Arnoux-Rauzy words display a
much more complex behavior. In particular, we have two different proofs of the
WELLDOC property for Sturmian words, and only one of them can be generalized
to Arnoux-Rauzy words. In the sequel we provide both of them.

An infinite word with the WELLDOC property is then used to combine two
linear congruential generators and form an infinite aperiodic sequence with good
statistical behavior. Using the TestU01 [12] and PractRand [6] statistical tests, we
have moreover shown that not only the lattice structure is absent, but also other
important properties of PRNGs are improved when linear congruential generators
are combined using infinite words having the WELLDOC property.

The paper is organized as follows. In the next section, we give some background
on pseudorandom number generation. Next, in Section 2, we give the basic combi-
natorial definitions needed for our main results, including the WELLDOC property,
and we prove that the WELLDOC property of u guarantees absence of the lattice
structure of the PRNG based on u. In Sections 3 and 4, we prove that the property
holds for Sturmian and Arnoux-Rauzy words. Finally, in Section 5, we present re-
sults of empirical tests of PRNGs based on words having the WELLDOC property.

A preliminary version of this paper [2], using the acronym WDO instead of
WELLDOC, was presented at the WORDS 2013 conference.

1. Pseudorandom Number Generators and Lattice Structure

For the sake of our discussion, any infinite sequence of integers can be understood
as a pseudorandom number generator (PRNG); see also [15]. The generators the
most widely used in the past – linear congruential generators – are known to suffer
from a defect called the lattice structure (they possess it already from dimension 2
as shown in [17]).

Let Z = (Zn)n∈N be a PRNG whose output is a finite set M ⊂ N. We say that
Z has the lattice structure if there exists t ∈ N such that the set

{(Zi, Zi+1, . . . , Zi+t−1)
∣∣ i ∈ N}
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is covered by a family of parallel equidistant hyperplanes and at the same time,
this family does not cover the whole lattice

M t = {(A1, A2, . . . , At)
∣∣ Ai ∈M for all i ∈ {1, . . . , t}}.

Recall that a linear congruential generator (LCG) (Zn)n∈N is given by param-
eters a,m, c ∈ N and defined by the recurrence relation Zn+1 = aZn + c mod m.
Let us mention a famous example of a LCG whose lattice structure is striking. For
t = 3, the set of triples of RANDU, i.e., {(Zi, Zi+1, Zi+2)

∣∣ i ∈ N} is covered by
only 15 parallel equidistant hyperplanes, see Figure 1.

Figure 1. The triples of RANDU – the LCG with a = (216 + 3),m =
231, c = 0 – are covered by as few as 15 parallel equidistant planes.

In the paper of Guimond et al. [15], a restricted version of the following sufficient
condition for the absence of the lattice structure is formulated.

Proposition 1.1. Let Z be a PRNG whose output is a finite set M ⊂ N containing
at least two elements. Assume there exists for any A,B ∈M and for any ` ∈ N an
`-tuple (A1, A2, . . . , A`) such that both (A1, A2, . . . , A`, A) and (A1, A2, . . . , A`, B)
are (`+ 1)-tuples of the generator Z. Then Z does not have the lattice structure.

Remark 1.2. Proposition 1.1 can be reformulated in terms of combinatorics on
words (see Section 2) as follows: Let Z be a PRNG whose output is a finite set
M ⊂ N containing at least two elements. If for any A,B ∈ M and any length ` Z
has a right special factor of length ` with right extensions A and B, then Z does
not have the lattice structure.

Since Proposition 1.1 is formulated for a restricted class of generators in [15] (see
Lemma 2.3 ibidem), we will provide its proof. However, we point out that all ideas
of the proof are taken from [15]. We start with an auxiliary lemma.

Let us denote λ = gcd{A−B | A,B ∈M}.
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Lemma 1.3. Let Z be a PRNG satisfying all assumptions of Proposition 1.1. Let
n̄ be the unit normal vector of a family of parallel equidistant hyperplanes covering
all t-tuples of Z. Assume ēi (the i-th vector of the canonical basis of the Euclidean
space Rt) is not orthogonal to n̄. Then the distance di of adjacent hyperplanes in
the family along ēi is of the form λ/k for some k ∈ N.

Remark 1.4. The distance di of adjacent hyperplanesW0,W1 along ēi means |xi−yi|
for any x̄ ∈W0 and ȳ ∈W1, where the j-th components of x̄ and ȳ satisfy xj = yj
for all j ∈ {1, . . . , t}, j 6= i. This is a well defined term because the hyperplanes in
the family are of the form Wj ≡ x̄ · n̄ = α + jd, j ∈ Z, where d is the distance
of adjacent hyperplanes in the family and · denotes the standard scalar product.
Thus, without loss of generality, consider the adjacent hyperplanes

W0 ≡ x̄ · n̄ = α and W1 ≡ x̄ · n̄ = α+ d.

Then for any x̄ ∈W0 and ȳ = x̄ + sēi from W1, we have

ȳ · n̄ = α+ d = x̄ · n̄ + d,
ȳ · n̄ = x̄ · n̄ + sēi · n̄ = x̄ · n̄ + sni,

where ni is the i-th component of n̄. Consequently, di = |s| =
∣∣∣ dni

∣∣∣ and is the same

for any choice of x̄ and ȳ which differ only in their i-th component and belong to
adjacent hyperplanes.

Proof of Lemma 1.3. Let us start with a useful observation. Let z̄ belong to a hy-
perplane W of the family in question.

(1) If ēj is orthogonal to n̄, then we may change the j-th component of z̄ in an
arbitrary way and the resulting vector will belong to the same hyperplane,
i.e., if W ≡ x̄ · n̄ = α, then clearly (z̄ + βēj) · n̄ = z̄ · n̄ = α for any β ∈ R,
thus z̄ + βēj belongs to W .

(2) If ēj is not orthogonal to n̄ and the distance dj of adjacent hyperplanes
along ēi in the family is of the form λ/k for some k ∈ N, then z̄ + rλēj be-
longs to the family for any r ∈ Z. This follows from a repeated application
of the fact that if z̄ belongs to a hyperplane W , then z̄ + λ

k ēj belongs to an
adjacent hyperplane of W .

Let us proceed by contradiction, i.e., we assume that there exists i ∈ {1, . . . , t} such
that ēi is not orthogonal to n̄ and the distance along ēi of adjacent hyperplanes
of the family in question is not of the form λ/k, k ∈ N. Take the largest of such
indices and denote it by `. Choose A,B ∈M arbitrarily. According to assumptions,
there exists an (`−1)-tuple (A1, A2, . . . , A`−1) such that both (A1, A2, . . . , A`−1, A)
and (A1, A2, . . . , A`−1, B) are `-tuples of Z. It is therefore possible to find two t-
tuples of Z such that the first one is of the form (A1, A2, . . . , A`−1, A,A`+1, . . . , At)

and the second one of the form (A1, A2, . . . , A`−1, B, Â`+1, . . . , Ât). These two t-
tuples – considered as vectors in Rt – belong by the assumption of Lemma 1.3 to
some hyperplanes in the family. Since all vectors ēj , j ∈ {` + 1, . . . , t} are either
orthogonal to n̄ or the distance of adjacent hyperplanes along ēj is of the form λ/k

for some k ∈ N, we can change the last t− ` coordinates Â`+1, . . . , Ât of the second
vector to arbitrary values from M (we transform them into A`+1, . . . , At) and it will
still belong to a hyperplane in the family. This is a consequence of the observation at
the beginning of this proof. Hence, both vectors (A1, A2, . . . , A`−1, A,A`+1, . . . , At)
and (A1, A2, . . . , A`−1, B,A`+1, . . . , At) belong to some hyperplanes of the family.
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Their distance along ē` equals |A−B|, i.e., d` divides A−B. Since A,B have been
chosen arbitrarily, it follows that d` divides λ, i.e., λ = kd` for some k ∈ N, which
is a contradiction with the choice of ē`. �

Proof of Proposition 1.1. Let n̄ be the unit normal vector of a family of parallel
equidistant hyperplanes covering all t-tuples of Z. Suppose without loss of gener-
ality that ē1, . . . , ē` are not orthogonal to n̄ and ē`+1, . . . , ēt are orthogonal to n̄.
Let z̄ = (Zn, Zn+1, . . . , Zn+t−1) be a t-tuple of Z, thus z̄ belongs to one of the hy-
perplanes. Take any vector ȳ ∈M t and let us show that it belongs to a hyperplane
in the family.

(1) Any vector from M t which differs from z̄ only in the first ` components
belongs to a hyperplane of the family. This comes from Lemma 1.3 because
when we change for i ∈ {1, . . . , `} the i-th component of z̄ by di = λ

k , then
we jump on the adjacent parallel hyperplane. So, any transformation of
the i-th component of z̄ into another value from M means a finite number
of jumps from one hyperplane onto another. Hence, we may transform z̄
so that it has the first ` components equal to ȳ and the obtained vector x̄
belongs to a hyperplane in the family.

(2) Any vector from M t which differs from x̄ only in the last t− ` components
belongs to the same hyperplane as x̄. This comes from the orthogonality
ēi ⊥ n̄ for i > ` (the argument is the same as in the proof of Lemma 1.3).
Since ȳ differs from x̄ only in the last t − ` components, ȳ belongs to
a hyperplane in the family.

�

2. Combinatorics on Words and the WELLDOC Property

2.1. Backgrounds on Combinatorics on Words. In the following, A denotes
a finite set of symbols called letters; the setA is therefore called an alphabet. A finite
word is a finite string w = w1w2 . . . wn of letters from A; its length is denoted by
|w| = n and |w|a denotes the number of occurrences of a ∈ A in w. The empty
word, a neutral element for concatenation of finite words, is denoted ε and it is of
zero length. The set of all finite words over the alphabet A is denoted by A∗.

Under an infinite word we understand an infinite sequence u = u0u1u2 . . . of
letters from A. A finite word w is a factor of a word v (finite or infinite) if there
exist words p and s such that v = pws. If p = ε, then w is said to be a prefix of v;
if s = ε, then w is a suffix of v. The set of factors and prefixes of v are denoted by
Fact(v) and Pref(v), respectively. If v = ps for finite words v, p, s, then we write
p = vs−1 and s = p−1v.

An infinite word u over the alphabet A is called eventually periodic if it is of
the form u = vwω, where v, w are finite words over A and ω denotes an infinite
repetition. An infinite word is called aperiodic if it is not eventually periodic.

For any factor w of an infinite word u, every index i such that w is a prefix of
the infinite word uiui+1ui+2 . . . is called an occurrence of w in u. An infinite word
u is recurrent if each of its factors has infinitely many occurrences in u.

The factor complexity of an infinite word u is a map Cu : N 7→ N defined by
Cu(n) := the number of factors of length n contained in u. The factor complexity
of eventually periodic words is bounded, while the factor complexity of an aperiodic
word u satisfies Cu(n) ≥ n + 1 for all n ∈ N. A right extension of a factor w of u
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over the alphabet A is any letter a ∈ A such that wa is a factor of u. Of course,
any factor of u has at least one right extension. A factor w is called right special if
w has at least two right extensions. Similarly, one can define a left extension and
a left special factor. A factor is bispecial if it is both right and left special. An
aperiodic word contains right special factors of any length.

The Parikh vector of a finite word w over an alphabet {0, 1, . . . , d−1} is defined
as (|w|0, |w|1, . . . , |w|d−1). For a finite or infinite word u = u0u1u2 . . . , Prefn u will
denote the prefix of length n of u, i.e., Prefn u = u0u1 . . . un−1.

In some of the examples we consider are morphic words. A morphism is a
function ϕ : A∗ → B∗ such that ϕ(ε) = ε and ϕ(wv) = ϕ(w)ϕ(v), for all w, v ∈ A∗.
Clearly, a morphism is completely defined by the images of the letters in the domain.
A morphism is prolongable on a ∈ A, if |ϕ(a)| ≥ 2 and a is a prefix of ϕ(a). If ϕ is
prolongable on a, then ϕn(a) is a proper prefix of ϕn+1(a), for all n ∈ N. Therefore,
the sequence (ϕn(a))n≥0 of words defines an infinite word u that is a fixed point of
ϕ. Such a word u is a (pure) morphic word.

Let us introduce a combinatorial condition on infinite words that – as we will
see later – guarantees no lattice structure for the associated PRNGs.

Definition 2.1 (The WELLDOC property). We say that an aperiodic infinite
word u over the alphabet {0, 1, . . . , d − 1} has well distributed occurrences (or has
the WELLDOC property) if for any m ∈ N and any factor w of u the word u satisfies
the following condition. If i0, i1, . . . denote the occurrences of w in u, then

{(
|Prefij u|0, . . . , |Prefij u|d−1

)
mod m | j ∈ N

}
= Zdm ;

that is, the Parikh vectors of Prefij u for j ∈ N, when reduced modulo m, give the

whole set Zdm.

We define the WELLDOC property for aperiodic words since it clearly never
holds for periodic ones. It is easy to see that if a recurrent infinite word u has the
WELLDOC property, then for every vector v ∈ Zdm there are infinitely many values
of j such that the Parikh vector of Prefij u is congruent to v modulo m.

Example 2.2. The Thue-Morse word

u = 01101001100101101001011001101001 · · · ,
which is a fixed point of the morphism 0 7→ 01, 1 7→ 10, does not satisfy the
WELLDOC property. Indeed, take m = 2 and w = 00, then w occurs only in odd
positions ij so that (|Prefij u|0 + |Prefij u|1) = ij is odd. Thus, e.g.,

(|Prefij u|0, |Prefij u|1) mod 2 6= (0, 0),

and hence

{(|Prefij u|0, |Prefij u|1) mod 2 | j ∈ N} 6= Z2
2.

Example 2.3. We say that an infinite word u over an alphabet A, |A| = d, is
universal if it contains all finite words over A as its factors. It is easy to see
that any universal word satisfies the WELLDOC property. Indeed, for any word
w ∈ A∗ and any m there exists a finite word v such that if i0, i1, . . . , ik denote the
occurrences of w in v, then

{(
|Prefijv|0, . . . , |Prefijv|d−1

)
mod m | j ∈ {0, 1, . . . , k}

}
= Zdm .
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Since u is universal, v is a factor of u. Denoting by i an occurrence of v in u, one
gets that the positions i+ ij are occurrences of w in u. Hence

{(
|Prefi+iju|0, . . . , |Prefi+iju|d−1

)
mod m | j ∈ {0, 1, . . . , k}

}
=

= (|Prefiu|0, . . . , |Prefiu|d−1) +

+
{(
|Prefijv|0, . . . , |Prefijv|d−1

)
mod m | j ∈ {0, 1, . . . , k}

}
= Zdm .

Therefore, u satisfies the WELLDOC property.

2.2. Combination of PRNGs. In order to eliminate the lattice structure, it helps
to combine PRNGs in a smart way. Such a method was introduced in [14]. Let
X = (Xn)n∈N and Y = (Yn)n∈N be two PRNGs with the same output M ⊂ N and
the same period m ∈ N, and let u = u0u1u2 . . . be a binary infinite word over the
alphabet {0, 1}.

The PRNG Z = (Zn)n∈N based on u is obtained by the following algorithm:

(1) Read step by step the letters of u.
(2) When you read 0 for the i-th time, copy the i-th symbol from X to the end

of the constructed sequence Z.
(3) When you read 1 for the i-th time, copy the i-th symbol from Y to the end

of the constructed sequence Z.

This construction can be generalized for non-binary alphabets: Using infinite words
over a multiliteral alphabet, one can combine more than two PRNGs. Remark
that following terminology from [3], the sequence Z is obtained as a shuffle of the
sequences X and Y with the steering word u.

In order to distinguish between generators and infinite words used for their com-
bination, we always denote generators with capital letters X,Y, Z, . . . and words
with lower-case letters u, v, w (the same convention is applied for their outputs:
A,B, . . . for output values of generators (elements of M), a, b, . . . for letters of
words). Finite sequences of successive elements x̄ = (Xi, Xi+1, . . . , Xi+t−1) of
a PRNG X are called t-tuples, or vectors, while in the case of an infinite word
u, we call uiui+1 . . . ui+t−1 a factor of length t.

2.3. The WELLDOC Property and Absence of the Lattice Structure.
Guimond et al. in [15] have shown that PRNGs based on infinite words coding
a certain class of cut-and-project sets have no lattice structure. In the sequel, we
will generalize their result and find larger classes of words guaranteeing no lattice
structure for associated generators. We focus on the binary alphabet, although
everything works for multiliteral words as well (and for combination of more gen-
erators therefore), since the proofs become more technical in non-binary case.

Theorem 2.4. Let Z be the PRNG based on a binary infinite word u with the
WELLDOC property. Then Z has no lattice structure.

Proof. According to Proposition 1.1, it suffices to check that its assumptions are
met. Let A,B ∈ M and ` ∈ N. Assume A = Xi and B = Yj , where X = (Xn)n∈N
and Y = (Yn)n∈N are the two combined PRNGs with the same output M ⊂ N and
the same period m ∈ N. Consider a right special factor w of u of length `, i.e., both
words w0 and w1 are factors of u (such a factor w exists since u is an aperiodic
word because of the WELLDOC property). By Definition 2.1, it is possible to find
an occurrence ik of w0 in u such that

|Prefik u|0 = i− |w|0 − 1 mod m, |Prefik u|1 = j − |w|1 − 1 mod m.
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Reading the word w0 at the occurrence ik, the corresponding `-tuple (A1, A2, . . . , A`)
of the generator Z consists of symbols

X(i−|w|0) mod m, . . . , X(i−1) mod m and Y(j−|w|1) mod m, . . . , Y(j−1) mod m.

When reading 0 after w, the symbol Xi = A from the first generator follows
(A1, A2, . . . , A`).

Again, by Definition 2.1, there exists an occurrence is of w1 in u such that

|Prefis u|0 = i− |w|0 − 1 mod m, |Prefis u|1 = j − |w|1 − 1 mod m.

When reading the word w at the occurrence is, the same `-tuple (A1, A2, . . . , A`)
of Z as previously occurs. This time, however, (A1, A2, . . . , A`) is followed by B
because we read w1 and Yj = B. Thus, we have found an `-tuple (A1, A2, . . . , A`)
of Z followed in Z by both A and B. �

Remark 2.5. The WELLDOC property is sufficient, but not necessary for absence
of the lattice structure. For example, consider a modified Fibonacci word û where
the letter 2 is inserted after each letter, i.e., û = 0212020212021202 . . . . It is easy
to verify that û does not have well distributed occurrences. However, we will show
the following: Let Z be the PRNG combining three generators X = (Xn)n∈N, Y =
(Yn)n∈N and V = (Vn)n∈N with the same output M ⊂ N and the same period m ∈ N
according to the modified Fibonacci word û. Then Z has no lattice structure.

It suffices to verify assumptions of Proposition 1.1. Let A,B ∈ M and ` ∈ N, `
an even number (the proof is analogous for odd `). Assume A = Xi and B = Yj .
Consider a right special factor w of the Fibonacci word u of length `/2. Since u
has the WELLDOC property, there exists an occurrence ik of w0 in u such that

|Prefik u|0 = i− |w|0 − 1 mod m, |Prefik u|1 = j − |w|1 − 1 mod m.

Then if we insert the letter 2 after each letter of w, we obtain a right special factor
ŵ of the modified Fibonacci word û of length `. It holds then that

|Pref2ik û|0 = i− |w|0 − 1 mod m = i− |ŵ|0 − 1 mod m,
|Pref2ik û|1 = j − |w|1 − 1 mod m = j − |ŵ|1 − 1 mod m,
|Pref2ik û|2 = i− |w|0 − 1 + j − |w|1 − 1 mod m = i+ j − |ŵ|2 − 2 mod m.

When reading the word ŵ0 at the occurrence 2ik, the corresponding `-tuple
(A1, A2, . . . , A`) of the generator Z is followed by the symbol Xi = A from the first
generator.

Again, by the WELLDOC property of u, there exists an occurrence is of w1 in
u such that

|Prefis u|0 = i− |w|0 − 1 mod m, |Prefis u|1 = j − |w|1 − 1 mod m.

It holds then that

|Pref2is û|0 = i− |w|0 − 1 mod m = i− |ŵ|0 − 1 mod m,
|Pref2is û|1 = j − |w|1 − 1 mod m = j − |ŵ|1 − 1 mod m,
|Pref2is û|2 = i− |w|0 − 1 + j − |w|1 − 1 mod m = i+ j − |ŵ|2 − 2 mod m.

When reading the word ŵ at the occurrence 2is, the same `-tuple (A1, A2, . . . , A`)
of Z as previously occurs. This time, however, (A1, A2, . . . , A`) is followed by B
because we read ŵ1 and Yj = B. Thus, we have found an `-tuple (A1, A2, . . . , A`)
of Z followed in Z by both A and B. Therefore Z has no lattice structure.
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Remark 2.6. In the proof of Theorem 2.4, the modulus m from the WELLDOC
property is set to be equal to the period of the combined generators. Therefore, if
we require absence of the lattice structure for a PRNG obtained when combining
PRNGs with a fixed period m̂, then it is sufficient to use an infinite word u that
satisfies the WELLDOC property for the modulus m = m̂. This means for instance
that the Thue-Morse word is not completely out of the game, but it cannot be used
to combine periodic PRNGs with the period being a power of 2.

We have formulated a combinatorial condition – well distributed occurrences –
guaranteeing no lattice structure of the associated generator. It is now important
to find classes of words satisfying such a condition.

3. Sturmian Words

In this section we show that Sturmian words have well distributed occurrences.

Definition 3.1. An aperiodic infinite word u is called Sturmian if its factor com-
plexity satisfies Cu(n) = n+ 1 for all n ∈ N.

So, Sturmian words are by definition binary and they have the lowest possible
factor complexity among aperiodic infinite words. Sturmian words admit various
types of characterizations of geometric and combinatorial nature. One of such
characterizations is via irrational rotations on the unit circle. In [19] Hedlund and
Morse showed that each Sturmian word may be realized measure-theoretically by
an irrational rotation on the circle. That is, every Sturmian word is obtained by
coding the symbolic orbit of a point on the circle of circumference one under a
rotation Rα by an irrational angle1 α, 0 < α < 1, where the circle is partitioned
into two complementary intervals, one of length α and the other of length 1 − α.
Conversely, each such coding gives rise to a Sturmian word.

Definition 3.2. The rotation by angle α is the mapping Rα from [0, 1) (identified
with the unit circle) to itself defined by Rα(x) = {x + α}, where {x} = x − bxc
is the fractional part of x. Considering a partition of [0, 1) into I0 = [0, 1 − α),
I1 = [1− α, 1), define a word

sα,ρ(n) =

{
0 if Rnα(ρ) = {ρ+ nα} ∈ I0,
1 if Rnα(ρ) = {ρ+ nα} ∈ I1.

One can also define I ′0 = (0, 1 − α], I ′1 = (1 − α, 1], the corresponding word is
denoted by s′α,ρ.

Remark that some but not all Sturmian words are morphic. In fact, it is known
that a characteristic Sturmian word (i.e., ρ = α) is morphic if and only if the
continuous fraction expansion of α is periodic. For more information on Sturmian
words we refer to [16, Chapter 2].

Theorem 3.3. Let u be a Sturmian word. Then u has the WELLDOC property.

Proof. In the proof we use the definition of Sturmian word via rotation. The main
idea is controlling the number of 1’s modulo m by taking circle of length m, and
controlling the length taking the rotation by mα.

For the proof we will use an equivalent reformulation of the theorem:

1Measured by arc length (thus equivalent to 2πα radians).
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Let u be a Sturmian word on {0, 1}, for any natural number m and any factor
w of u let us denote i0, i1, . . . the occurrences of w in u. Then

{(
ij , |Prefij u|1

)
mod m | j ∈ N

}
= Z2

m.

That is, we control the number of 1’s and the length instead of the number of
0’s.

Since a Sturmian word can be defined via rotations by an irrational angle on
a unit circle, without loss of generality we may assume that u = sα,ρ for some
0 < α < 1, 0 ≤ ρ < 1, α irrational (see Definition 3.2). Equivalently, we can
consider m copies of the circle connected into one circle of length m with m intervals
Ii1 of length α corresponding to 1. The Sturmian word is obtained by rotation by
α on this circle of length m (see Fig. 2).

0

41

32

5− α

4− α

1− α

3− α

2− α

I2
w

Figure 2. Illustration to the proof of Theorem 3.3: the example for m = 5.

Namely, we define the rotation Rα,m as the mapping from [0,m) (identified with
the circle of length m) to itself defined by Rα,m(x) = {x + α}m, where {x}m =
x− bx/mcm and for m = 1 coincides with the fractional part of x. A partition of
[0,m) into 2m intervals Ii0 = [i, i+ 1− α), Ii1 = [i+ 1− α, i+ 1), i = 0, . . . ,m− 1
defines the Sturmian word u = sα,ρ:

sα,ρ(n) =

{
0 if Rnα,m(ρ) = {ρ+ nα}m ∈ Ii0 for some i = 0, . . . ,m− 1,

1 if Rnα,m(ρ) = {ρ+ nα}m ∈ Ii1 for some i = 0, . . . ,m− 1.

It is well known that any factor w = w0 · · ·wk−1 of u corresponds to an interval
Iw in [0, 1), so that whenever you start rotating from the interval Iw, you obtain

w. Namely, x ∈ Iw if and only if x ∈ Iw0 , Rα(x) ∈ Iw1 , . . . , R
|w|−1
α (x) ∈ Iw|w|−1

.

Similarly, we can define m intervals corresponding to w in [0,m) (circle of length
m), so that if Iw = [x1, x2), then Iiw = [x1 + i, x2 + i), i = 0, . . . ,m− 1.

Fix a factor w of u, take arbitrary (j, i) ∈ Z2
m. Now let us organize (j, i) among

the occurrences of w, i.e., find l such that ul . . . ul+|w|−1 = w, l mod m = j and
|Pref lu|1 mod m = i:
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Consider rotationRmα,m(x) bymα instead of rotation by α, and startm-rotating
from jα + ρ. Formally, Rmα,m(x) = {x + mα}m, where, as above, {x}m = x −
[x/m]m. This rotation will put us to positions mk+j, k ∈ N, in the Sturmian word:
for a ∈ {0, 1} one has sα,ρ(mk+ j) = a if Rkmα,m(jα+ ρ) = {jα+ ρ+ kmα}m ∈ Iia
for some i = 0, . . . ,m− 1.

Remark that the points in the orbit of an m-rotation of a point on the m-circle
are dense, and hence the rotation comes infinitely often to each interval. So pick
k when jα + mkα + ρ ∈ Iiw ⊂ [i, i + 1) (and actually there exist infinitely many
such k). Then the length l of the corresponding prefix is equal to km+ j, and the
number of 1’s in it is i+mp, where p is the number of complete circles you made,
i.e., p = [(jα+mkα+ ρ)/m].

�

4. Arnoux-Rauzy Words

In this section we show that Arnoux-Rauzy words [1], which are natural exten-
sions of Sturmian words to larger alphabets, also satisfy the WELLDOC property.
Note that the proof for Sturmian words cannot be generalized to Arnoux-Rauzy
words, because it is based on the geometric interpretation of Sturmian words via
rotations, while this interpretation does not extend to Arnoux-Rauzy words.

4.1. Basic Definitions. The definitions and results we remind in this subsection
are well-known and mostly taken from [1, 9] and generalize the ones given for binary
words in [5].

Definition 4.1. Let A be a finite alphabet. The reversal operator is the operator
∼: A∗ 7→ A∗ defined by recurrence in the following way:

ε̃ = ε, ṽa = aṽ

for all v ∈ A∗ and a ∈ A. The fixed points of the reversal operator are called
palindromes.

Definition 4.2. Let v ∈ A∗ be a finite word over the alphabet A. The right
palindromic closure of v, denoted by v(+), is the shortest palindrome that has v as
a prefix. It is readily verified that if p is the longest palindromic suffix of v = wp,
then v(+) = wpw̃.

Definition 4.3. We call the iterated (right) palindromic closure operator the op-
erator ψ recurrently defined by the following rules:

ψ(ε) = ε, ψ(va) = (ψ(v)a)(+)

for all v ∈ A∗ and a ∈ A. The definition of ψ may be extended to infinite words u
over A as ψ(u) = limn ψ(Prefn u), i.e., ψ(u) is the infinite word having ψ(Prefn u)
as its prefix for every n ∈ N.

Definition 4.4. Let ∆ be an infinite word on the alphabet A such that every letter
occurs infinitely often in ∆. The word c = ψ(∆) is then called a characteristic (or
standard) Arnoux-Rauzy word and ∆ is called the directive sequence of c. An
infinite word u is called an Arnoux-Rauzy word if it has the same set of factors as a
(unique) characteristic Arnoux-Rauzy word, which is called the characteristic word
of u. The directive sequence of an Arnoux-Rauzy word is the directive sequence of
its characteristic word.
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Let us also recall the following well-known characterization (see e.g. [9]):

Theorem 4.5. Let u be an aperiodic infinite word over the alphabet A. Then u is
a standard Arnoux-Rauzy word if and only if the following hold:

(1) Fact(u) is closed under reversal (that is, if v is a factor of u so is ṽ).
(2) Every left special factor of u is also a prefix.
(3) If v is a right special factor of u then va is a factor of u for every a ∈ A.

From the preceding theorem, it can be easily verified that the bispecial factors
of a standard Arnoux-Rauzy correspond to its palindromic prefixes (including the
empty word), and hence to the iterated palindromic closure of the prefixes of its
directive sequence. That is, if

ε = b0, b1, b2, . . .

is the sequence, ordered by length, of bispecial factors of the standard Arnoux-
Rauzy word u, ∆ = ∆0∆1 · · · its directive sequence (with ∆i ∈ A for every i), we
have bi+1 = (bi∆i)

(+).
A direct consequence of this, together with the preceding definitions, is the

following statement, which will be used in the sequel.

Lemma 4.6. Let u be a characteristic Arnoux-Rauzy word and let ∆ and (bi)i≥0

be defined as above. If ∆i does not occur in bi, then bi+1 = bi∆ibi. Otherwise let
j < i be the largest integer such that ∆j = ∆i. Then bi+1 = bib

−1
j bi.

4.2. Parikh Vectors and Arnoux-Rauzy Factors. Where no confusion arises,
given an Arnoux-Rauzy word u, we will denote by

ε = b0, b1, . . . , bn, . . .

the sequence of bispecial factors of u ordered by length and we will denote for any
i ∈ N, b̄i the Parikh vector of bi.

Remark 4.7. By the pigeonhole principle, it is clear that for every m ∈ N there
exists an integer N ∈ N such that, for every i ≥ N , the set {j > i | b̄j ≡m b̄i} is
infinite. Where no confusion arises and with a slight abuse of notation, fixed m, we
will always denote by N the smallest of such integers.

Lemma 4.8. Let u be a characteristic Arnoux-Rauzy word and let m ∈ N. Let

α1b̄j1 + · · ·+ αkb̄jk ≡m v̄ ∈ Zdm
be a linear combination of Parikh vectors such that

∑k
i=1 αi = 0, with ji ≥ N and

αi ∈ Z for all i ∈ {1, . . . k}. Then, for any ` ∈ N, there exists a prefix v of u such
that the Parikh vector of v is congruent to v̄ modulo m and vb` is also a prefix of
u.

Proof. Without loss of generality, we can assume α1 ≥ α2 ≥ · · · ≥ αk, hence there
exists k′ such that

α1 ≥ αk′ ≥ 0 ≥ αk′+1 ≥ αk.
We will prove the result by induction on β =

∑k′

j=1 αj . If β = 0, trivially, we can
take v = ε and the statement is clearly verified. Let us assume the statement true
for all 0 ≤ β < n and let us prove it for β = n. By the remark preceding this
lemma, for every ` we can choose i′ > j′ > ` such that b̄j1 ≡m b̄i′ and b̄jk ≡m b̄j′ .
Since every bispecial factor is a prefix and suffix of all the bigger ones, in particular
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we have that bj′ is a suffix of bi′ , and b` is a prefix of bj′ ; this implies that bi′b
−1
j′ b`

is actually a prefix of bi′ . By assumption, the Parikh vector of bi′b
−1
j′ is clearly

b̄i′ − b̄j′ ≡m b̄j1 − b̄jk . Since α1 ≥ 1 implies αk ≤ −1, we have, by induction
hypothesis, that there exists a prefix w of u such that the Parikh vector of w is
congruent modulo m to

(α1 − 1)b̄j1 + · · ·+ (αk + 1)b̄jk

and wbi′ is a prefix of u. Hence wbi′b
−1
j′ b` is also a prefix of u and, by simple

computation, the Parikh vector of v = wbi′b
−1
j′ is congruent modulo m to v̄ =

α1b̄j1 + · · ·+ αkb̄jk . �
Definition 4.9. Let n ∈ Z. We will say that an integer linear combination of
integer vectors is a n-combination if the sum of all the coefficients equals n.

Lemma 4.10. Let u be a characteristic Arnoux-Rauzy word and let n ∈ N. Ev-
ery n-combination of Parikh vectors of bispecial factors can be expressed as an
n-combination of Parikh vectors of arbitrarily large bispecials. In particular, for
every K,L ∈ N, it is possible to find a finite number of integers α1, . . . , αk such
that b̄K = α1b̄j1 + · · ·+ αkb̄jk with ji > L for every i and α1 + · · ·+ αk = 1.

Proof. A direct consequence of Lemma 4.6 is that for every i such that ∆i appears
in bi, we have b̄i+1 = 2b̄i − b̄j , where j < i is the largest such that ∆j = ∆i.
This in turn (since every letter in ∆ appears infinitely many times from the defi-
nition of Arnoux-Rauzy word) implies that for every non-negative integer j, there
exists a positive k such that b̄j = 2b̄j+k − b̄j+k+1, that is, we can substitute each
Parikh vector of a bispecial with a 1-combination of Parikh vectors of strictly larger
bispecials. Simply iterating the process, we obtain the statement. �

In the following we will assume the set A to be a finite alphabet of cardinality
d. For every set X ⊆ A∗ of finite words, we will denote by PV(X) ⊆ Zd the
set of Parikh vectors of elements of X and for every m ∈ N we will denote by
PVm(X) ⊆ Zdm the set of elements of PV(X) reduced modulo m.

For an infinite word u over A, and a factor v of u, let Sv(u) denote the set of all
prefixes of u followed by an occurrence of v. In other words,

Sv(u) = {p ∈ Pref(u) | pv ∈ Pref(u)}.
Definition 4.11. For any set of finite words X ⊆ A∗, we will say that u has the
property PX (or, for short, that u has PX) if, for every m ∈ N and for every v ∈ X
we have that

PVm(Sv(u)) = Zdm.
That is to say, for every vector w̄ ∈ Zdm there exists a word w ∈ Sv(u) such that
the Parikh vector of w is congruent to w̄ modulo m.

With this notation, an infinite word u has the WELLDOC property if and only
if it has the property PFact(u).

Proposition 4.12. Let u be a characteristic Arnoux-Rauzy word over the d-letter
alphabet A. Then u has the property PPref(u).

Proof. Let us fix an arbitrary m ∈ N. We want to show that, for every v ∈ Pref(u),
PVm(Sv(u)) = Zdm. Let then v̄ ∈ Zd and ` be the smallest number such that v is a
prefix of b`. Let i1 < i2 < · · · < id be such that ∆ij does not appear in bij , where ∆
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is the directive word of u. Without loss of generality, we can rearrange the letters
so that each ∆ij is lexicographically smaller than ∆ij+1 . With this assumption if,

for every j, we set v̄j = b̄ij+1, i.e., equal to the Parikh vector of bij+1, which, by
the first part of Lemma 4.6, equals bij∆ij bij , we can find j − 1 positive integers
µ1, . . . , µj−1 such that v̄j = (µ1, µ2, . . . , µj−1, 1, 0, . . . , 0). It is easy to show, then,
that the set V = {v̄1, . . . , v̄d} generates Zd, hence there exists an integer n such
that v̄ can be expressed as an n-combination of elements of V (which are Parikh
vectors of bispecial factors of u). Trivially, then, v̄ = v̄ − n0̄ = v̄ − nb̄0; thus, it
is possible to express v̄ as a 0-combination of Parikh vectors of (by the previous
Lemma 4.10) arbitrarily large bispecial factors of u. By Lemma 4.8, then there
exists a prefix p of u whose Parikh vector p̄ satisfies p̄ ≡m v̄ and pb` is a prefix of
u. Since we picked ` such that v is a prefix of b`, we have that p ∈ Sv(u). From
the arbitrariness of v, v̄ and m, we obtain the statement. �

As a corollary of Proposition 4.12, we obtain the main result of this section.

Theorem 4.13. Let u be an Arnoux-Rauzy word over the d-letter alphabet A. Then
u has the property PFact(u), or equivalently, u has the WELLDOC property.

Proof. Let m be a positive integer and let c be the characteristic word of u. Let
v be a factor of u and xvy be the shortest bispecial containing v. By Proposition
4.12, we have that PVm(Sxv(c)) = Zdm and, since the set is finite, we can find a
prefix p of c such that PVm(Sxv(p)) = Zdm. Let w be a prefix of u such that wp is
a prefix of u. If x̄ and w̄ are the Parikh vectors of, respectively, x and w, it is easy
to see that

w̄ + x̄ + PV(Sxv(p)) ⊆ w̄ + PV(Sv(p)) ⊆ PV(Sv(u))

Since we have chosen p such that PVm(Sxv(p)) = Zdm, we clearly obtain that
PVm(Sv(u)) = Zdm and hence, by the arbitrariness of v and m, the statement. �

Remark 4.14. Now we introduce a simple method of obtaining words satisfying
the WELLDOC property. Take a word u with the WELLDOC property over an
alphabet {0, 1, . . . , d − 1}, d > 2, apply a morphism ϕ : d − 1 7→ 0, i 7→ i for
i = 0, . . . , d − 2, i.e., ϕ joins two letters into one. It is straightforward that ϕ(u)
has the WELLDOC property. So, taking Arnoux-Rauzy words and joining some
letters, we obtain other words than Sturmian and Arnoux-Rauzy satisfying the
WELLDOC property.

Remark 4.15. Now we introduce another class of morphisms preserving the WELL-
DOC property. Recall that the adjacency matrix Φ of a morphism ϕ : A → A,
with A = {0, 1, . . . , d − 1}, is defined by Φi,j = |ϕ(j − 1)|i−1 for 1 ≤ i, j ≤ d. By
definition, it follows that if v̄ is the Parikh vector of v ∈ A∗, then Φv̄ is the Parikh
vector of ϕ(v).

Let us show that if det Φ = ±1 and u has the WELLDOC property, then so
does ϕ(u). Indeed, let w be any factor of ϕ(u), and suppose xwy = ϕ(v) for some
v ∈ Fact(u) and x, y ∈ A∗. We then have Sw(ϕ(u)) ⊇ ϕ(Sv(u))x, so that, writing
x̄ for the Parikh vector of x, we have for any m > 0

PVm(Sw(ϕ(u))) ⊇ Φ · PVm(Sv(u)) + x̄ mod m.

Since u has the WELLDOC property, PVm(Sv(u)) = Zdm. As det Φ = ±1, Φ is in-
vertible (even modulom), so that Φ·Zdm+x̄ mod m = Zdm. Hence PVm(Sw(ϕ(u))) =
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Zdm, showing that ϕ(u) has the WELLDOC property by the arbitrariness of w and
m.

5. Statistical Tests of PRNGs

In the previous part, we have explained that PRNGs based on infinite words with
well distributed occurrences have no lattice structure. In this sequel we demonstrate
this by empirical statistical tests. We have chosen to use LCGs as underlying
generators explicitly for their known weaknesses. We will show how mixing based
on aperiodic infinite words will cope with these weaknesses and whether statistical
tests will show any significant improvements.

5.1. Computer Generation of Morphic Words. Any real computer is a finite
state machine and hence it can generate only finite prefixes of infinite words. From
practical point of view it is important to find algorithms that are efficient both in
memory footprint and CPU time. In [20] an efficient algorithm for generating the
Fibonacci word was introduced: The prefix of length n is generated in O(log(n))
space and O(n) time. We generalize this method for any Sturmian and Arnoux-
Rauzy word being a fixed point of a morphism ϕ. The main ingredient is that we
consider ϕn instead of ϕ; we precompute and store in the memory ϕn(a) for any
a ∈ A. The runtime to generate 1010 letters of the Fibonacci and the Tribonacci
word is summarized in Table 1. There are the following observations we would like
to point out:

(1) There is no need to store the first n letters in memory to generate the
(n + 1)-th letter. Letters are generated on the fly and only nodes of the
traversal tree are kept in the memory. Memory consumption needed to
generate the first 1010 letters is shown in Table 1. The algorithm also
supports leap frogging, generation can be started at any position in the
word. The consequence is that the algorithm can be easily parallelized to
produce multiple streams [11].

(2) Using the method from [20] together with our improvement for generation of
Sturmian and Arnoux-Rauzy words, the speed of generation of their prefixes
is much higher than the speed of generation of LCGs output values. For
example, generation of 1010 32-bit values using a LCG modulo 264 takes 14.3
seconds on our machine. Compare it to 0.5 seconds for generation of 1010

letters of a fixed point of a morphism with the same hardware. Thus, using
a fixed point to combine LCGs causes only a negligible runtime penalty.

(3) The speed of generation can be further improved by using a higher initial
memory footprint and CPU that can effectively copy such larger chunks of
memory (size of L1 data cache is a limiting factor). Thus the new method
scales nicely and can benefit form the future CPUs with higher L1 caches.
The only requirement is to precompute ϕn(a), a ∈ A, for larger n. Our
program does this automatically based on the limit on the initial memory
consumption provided by the user.

5.2. Testing PRNGs Based on Sturmian and Arnoux-Rauzy words. We
will present results for PRNGs based on:

• the Fibonacci word (as an example of a Sturmian word), i.e., the fixed point
of the morphism 0 7→ 01, 1 7→ 0,
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Word Fibonacci Tribonacci
ϕ morphism rule 115s / 336 Bytes 107s / 256 Bytes
ϕn morphism rule 0.41s / 32 Bytes 0.36s / 32 Bytes

Table 1. The comparison of time in seconds and memory consumption
to hold the traversal tree state needed to generate the first 1010 letters
of the Fibonacci and the Tribonacci word using the original [20] (1st
line) and the new algorithm (2nd line). The iteration n in the ϕn rule
was chosen so that the length of ϕn(a) does not exceed 4096 bytes for
any a ∈ A. The measurement was done on Intel Core i7-3520M CPU
running at 2.90GHz.

• the modified Fibonacci word – Fibonacci2 – with the letter 2 inserted after
each letter (see Remark 2.5),
• the Tribonacci word (as the simplest example of a ternary Arnoux-Rauzy

word), i.e., the fixed point of 0 7→ 01, 1 7→ 02, 2 7→ 0.

We have implemented PRNGs for more morphic Sturmian words and ternary
Arnoux-Rauzy words. Since the results are similar, we present in the sequel only
the above three representatives. Our program generating PRNGs based on morphic
words is available online, together with a description [4].

Remark that we included the modified Fibonacci word that does not have the
WELLDOC property, but at the same time it guarantees no lattice structure for
the arising generator. The reason for including it is that we would like to illustrate
that such a word leads to worse results in testing than the Fibonacci word.

5.2.1. Combining LCGs. Instead of combining plain LCGs, we will execute some
modifications before their combination. Those modifications turn out to be useful
according to the known weaknesses of LCGs.

We have chosen LCGs with the period m in range from 247− 115 to 264, but we
use only their upper 32 bits as the output since the statistical tests require 32-bit
sequences as the input. Their output is thus in all cases M = {0, 1, . . . , 232 − 1}.

We use two batteries of random tests – TestU01 BigCrush and PractRand. They
operate differently. The first one includes 160 statistical tests, many of them tailored
to the specific classes of PRNGs. It is a reputable test, however its drawback is
that it works with a fixed amount of data and discards the least significant bit (for
some tests even two bits) of the 32-bit numbers being tested. The second battery
consists of three different tests where one is adapted on short range correlations,
one reveals long range violations, and the last one is a variation on the classical
Gap test. Details can be found in [7, 8]. Moreover, the PractRand battery applies
automatically various filters on the input data. For our purpose the lowbit filter is
interesting – it is passing various number of the least significant bits to the statistical
tests. As we have already mentioned, the LCGs with m = 2` have a much shorter
period than the LCG itself. Therefore the lowbit filter is useful to check whether this
weakness disappears when LCGs are combined according to an infinite word. The
PractRand tests are able to treat very long input sequences, up to a few exabytes.
To control the runtime we have limited the length of input sequences to 16TB.

The first column of Table 2 shows the list of tested LCGs. The BigCrush column
shows how many tests of the TestU01 BigCrush battery failed. The PractRand
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column gives the log2 of sample datasize in Bytes for which the results of the
PractRand tests started to be “very suspicious” (p-values smaller than 10−5). One
LCG did not show any failures in the PractRand tests which is denoted as > 44
– the meaning is that the PractRand test has passed successfully 16TB of input
data and the test was stopped there. The last column provides time in seconds to
generate the first 1010 32-bit sequences of output on Intel i7-3520M CPU running
at 2.90GHz.

Generator Legend BigCrush PractRand Time 1010

LCG(247 − 115, 71971110957370, 0) L47-115 14 40 281

LCG(263 − 25, 2307085864, 0) L63-25 2 >44 277

LCG(259, 1313, 0) L59 19 27 14.1

LCG(263, 519, 1) L63 19 33 14.4

LCG(264, 2862933555777941757, 1) L64 28 18 35 14.0

LCG(264, 3202034522624059733, 1) L64 32 14 34 14.1

LCG(264, 3935559000370003845, 1) L64 39 13 33 14.0

Table 2. List of the used LCGs with parameters LCG(m,a, c). Results
in the BigCrush (number of failed tests) and in the PractRand (log2 of
sample size for which the test started to fail) battery of statistical tests.
Time in seconds to generate the first 1010 32-bit words of output on
Intel i7-3520M CPU running at 2.90GHz.

From Table 2 it can be seen that the LCGs with m ∈ {247 − 115, 263 − 25}
have the best statistical properties from the chosen LCGs. At the same time, these
LCGs are 20 times slower than the other LCGs used. This is because we have
used 128-bit integer arithmetic to compute their internal state and because explicit
modulo operation cannot be avoided. As the CPU used does not have the 128-bit
integer arithmetic, it has to be implemented in software (in this case via GCC’s
int128 type) which is much slower than the 64-bit arithmetic wired on CPU.

5.2.2. Results in Statistical Tests. We will present results for the PRNGs based on
the Fibonacci, Fibonacci2 and Tribonacci word using the different combinations of
LCGs from Table 2. It includes also the situations where the instances of the same
LCG are used. Each instance has its own state. The LCGs were seeded with the
value 1. The PRNGs were warmed up by generating 109 values before statistical
tests started. Since the relative frequency of the letters in the aperiodic words differ
a lot (for example for the Fibonacci word the ratio of zeroes to ones is given by

τ = 1+
√

5
2 ), the warming procedure will guarantee that the state of instances of

LCGs will differ even when the same LCGs are used. Even more importantly, the
distance between the LCGs is growing as the new output of PRNGs is generated.

Summary of results is in Table 3. The BigCrush column is using the following
notation: the first number indicates how many tests from the BigCrush battery
have clearly failed and the optional second number in parenthesis denotes how
many tests have suspiciously low p-value in the range from 10−6 to 10−4. The
PractRand column gives the log2 of sample datasize in Bytes for which the results
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of the PractRand tests started to be “very suspicious” (p-values smaller than 10−5).
The maximum sample data size used was 16TB

.
= 244B. The Time column gives

runtime in seconds to generate the first 1010 32-bit words of output on Intel i7-
3520M CPU running at 2.90GHz. The source code of the testing programs is in [4].

Word Group 0 1 2 BigCrush PractRand Time 1010

Fib A L64 28 L64 28 0 41 30.2
L64 32 L64 28 0(1) 41 29.3
L64 39 L64 28 0 (2) 41 31
L64 28 L64 32 0 41 30.2
L64 32 L64 32 0 41 30.1
L64 39 L64 32 0 41 30.1
L64 28 L64 39 0 42 30.2
L64 32 L64 39 0 40 30.5
L64 39 L64 39 0 42 30.1

B L47-115 L47-115 1(1) >44 302
L63-25 L63-25 0(1) >44 299
L59 L59 0(1) 34 28.7
L63 L63 0 40 29.8

C L63-25 L59 0 38 198
L59 L63-25 0(1) 35 134
L63-25 L64 39 0 >44 199
L64 39 L63-25 0 41 135
L59 L64 39 0 35 30.4
L64 39 L59 0 37 31.3

Fib2 A L64 28 L64 28 L64 28 0 40 28.4
L64 39 L64 28 L64 28 0(2) 40 27.9
L64 39 L64 32 L64 28 0 39 27.5
L64 28 L64 39 L64 28 0 40 27.3
L64 32 L64 39 L64 28 0 40 27.5
L64 39 L64 39 L64 28 0 40 27.4
L64 39 L64 28 L64 32 0 40 27.3
L64 28 L64 39 L64 32 0 40 27.9
L64 28 L64 28 L64 39 0(1) 40 27.4
L64 32 L64 28 L64 39 0 39 27.7
L64 39 L64 28 L64 39 0 40 27.3
L64 28 L64 32 L64 39 0 40 27.3
L64 28 L64 39 L64 39 0 40 27.3
L64 39 L64 39 L64 39 0 40 27.4

B L47-115 L47-115 L47-115 0(2) >44 297.0
L63-25 L63-25 L63-25 0(2) >44 293.0
L59 L59 L59 0(1) 32 27.4
L63 L63 L63 0 38 27.3

C L63-25 L59 L64 39 0(1) 39 113.0
L63-25 L64 39 L59 0 32 113.0
L59 L63-25 L64 39 0 38 81.1
L59 L64 39 L63-25 0 39 158.3
L64 39 L63-25 L59 0 31 81.0

Continued on the next page
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Table 3 – Continued from the previous page
Word Group 0 1 2 BigCrush PractRand Time 1010

L64 39 L59 L63-25 0 42 159.0
Trib A L64 28 L64 28 L64 28 0(2) 42 27.2

L64 39 L64 28 L64 28 0 43 27.1
L64 39 L64 32 L64 28 0(1) 42 28.0
L64 28 L64 39 L64 28 0(1) 42 28.1
L64 32 L64 39 L64 28 0 42 27.1
L64 39 L64 39 L64 28 0(1) 42 27.2
L64 39 L64 28 L64 32 0 43 27.1
L64 28 L64 39 L64 32 0(1) 42 27.1
L64 28 L64 28 L64 39 0 42 28.0
L64 32 L64 28 L64 39 0 42 27.2
L64 39 L64 28 L64 39 0(1) 43 27.1
L64 28 L64 32 L64 39 0 43 27.1
L64 28 L64 39 L64 39 0(2) 42 27.3
L64 39 L64 39 L64 39 0 43 27.1

B L47-115 L47-115 L47-115 1 >44 299.0
L63-25 L63-25 L63-25 0(1) >44 298.0
L59 L59 L59 0 35 27.2
L63 L63 L63 0(1) 41 27.2

C L63-25 L59 L64 39 0(1) 39 172.0
L63-25 L64 39 L59 0(1) 41 173.0
L59 L63-25 L64 39 0 35 106.0
L59 L64 39 L63-25 0 34 70.5
L64 39 L63-25 L59 0 41 107.0
L64 39 L59 L63-25 0(1) 40 74.3

Table 3. Summary of results of statistical tests for PRNGs based on the Fibonacci,
Fibonacci2 and Tribonacci word and different combinations of LCGs from Table 2.

We can make the following observations based on the results in statistical tests:

(1) The quality of LCGs has improved substantially when we combined them
according to infinite words with the WELLDOC property. This can be
seen in the TestU01 BigCrush results. While for LCGs 13 to 19 tests have
clearly failed (the only exception is the generator L63-25 with two failures
– see Table 2), almost all of the BigCrush tests passed. The worst result
was to have one BigCrush test failed for the Tribonacci combination and
one for the Fibonacci combination of L47-115 generators. The likely reason
is that the generator L47-115 has the shortest period of all tested LCGs.

(2) The results of the PractRand battery confirm the above findings. For in-
stance, in the case of LCGs with modulo 264, the test started to find ir-
regularities in the distribution of the least significant bit of tested PRNGs
output at around 2TB sample size. Compare it with the sample size of 8GB
to 32GB when fast plain LCGs started to fail the test. The PractRand bat-
tery applies different filters on the input stream and all failures appeared
for Low1/32 filter where only the least significant bit of the PRNG output
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is used. It corresponds to a known weakness of power-of-2 modulo LCGs:
lower bits of the output have significantly smaller period than the LCG
itself. The quality of the PRNGs can be therefore further improved by
combining LCGs that do not show flaws for the least significant bits or by
using for example just 16 upper bits of the LCGs output.

(3) The quality of the PRNG is linked to the quality of the underlying LCG.
When looking at the group B in Table 3, we observe that the PractRand
results of the arising PRNGs are closely related to the succes of LCGs from
Table 2 in the PractRand tests.

(4) Another interesting observation is that using the instances of the same
LCG (with only sufficiently distinct seeds) produces as good results as
combination of different LCGs (multipliers and shifts are different, but the
modulus is the same). It is just important to make sure that starting states
of the LCGs are far apart enough. Refer to the group A in Table 3.

(5) The lower quality LCG dictates the quality of resulting PRNG. When mix-
ing LCGs with different quality, use better ones as replacement for more
frequent letters in the aperiodic word.

Please refer to the group C in Table 3. For example for the Fibonacci
word compare first two rows in the group C - the order of LCGs is merely
swapped but the difference in the sample size for which PractRand starts to
fail is 8×. This is even more significant for the Tribonacci based generators
where the difference between the worst and best PractRand results when
reordering the underlying LCGs is given by factor 128×.

(6) On the other hand, results from the group A in Table 3 demonstrate that
when using generators of similar quality (same modulus, similar deficien-
cies), the order in which generators are used to substitute the letters of the
infinite word does not influence the quality of the resulting generator.

(7) We can also see that the modified Fibonacci word (see Remark 2.5) does
not produce better results than the Fibonacci word. Clearly, a regular
structure of 2’s on every other position does not help to produce a better
random sequence even if we mix now three LCGs instead of two as in the
case of the Fibonacci word.

(8) Results for the Tribonacci word are better than for the Fibonacci word.
(We have observed this fact for all ternary Arnoux-Rauzy words in com-
parison to Sturmian words.) It seems therefore that mixing three LCGs
is better than using just two LCGs, assuming that an infinite word with
the WELLDOC property is used for mixing. We expect naturally that the
better chosen LCGs (or even some other modern fast linear PRNGs, e.g.
mt19937 or nonlinear PRNGs based on the AES cipher) we combine ac-
cording to an infinite word with the WELLDOC property, the better their
results in statistical tests will be.

(9) We have also tested LCGs with m = 231 − 1. It has revealed that if the
underlying generators have poor statistical properties, then the PRNG will
not be able to mask it. In particular, you cannot expect that PRNGs –
despite their infinite aperiodic nature – will fix the short period problem.
Once the period of the underlying LCG is exhausted, statistical tests will
find irregularities in the output of the PRNG.

In conclusion, we summarize the main results from the user point of view:
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• Using different instances of the same LCG to form a new generator based
on the infinite word with the WELLDOC property gives a generator with
improved statistical properties.
• The introduced method of generation of morphic words is very fast and

supports parallel processing.
• The period of underlying generators has to be large enough – much larger

than the number of needed values.
• When using different types of the underlying LCGs to form a PRNG, close

attention has to be paid to the right order of the combined LCGs. The
generator with the worst properties should be used to replace the least
frequent letter of the aperiodic word. Moreover, statistical properties of the
resulting PRNG are ruled by the deficiencies of the worst used generator.
• We have used the LCGs only for study reasons. Instead of LCGs, the mod-

ern generators (of user choice) could be used as underlying PRNG to obtain
better results. We have done testing with two instances (respectively three
for the Tribonacci and other Arnoux-Rauzy words) of Mersenne twister
19937 as the underlying generator. The newly constructed generator has
passed all the empirical tests on randomness we have executed (in contrary
to Mersenne twister 19937 itself which is failing two tests from TestU01’s
BigCrush battery). For the practical usage Arnoux-Rauzy (AR) words are
very appealing since there is an infinite number of AR words and we have
implementation in place to create the AR words based on user input (it
can be sought of as the seed). Thus, we recommend to create new PRNGs
based on one’s favorite modern PRNGs and the custom AR word.

6. Open problems and future research

Concerning the combinatorial part of our paper, one of the interesting open
questions there is finding large families of infinite words satisfying the WELLDOC
property. For example, which morphic words have the WELLDOC property? Also,
it seems to be meaningful to study a weaker WELLDOC property where in Defini-
tion 2.1 instead of every m ∈ N we consider only a particular m. For instance, one
can search for words satisfying such a modified WELLDOC condition for m = 2,
m = 2` etc. Another question to be asked is how to construct words with the
WELLDOC property over larger alphabets using words with such a property over
smaller alphabets. Regarding statistical tests, it remains to explain why PRNGs
based on infinite words with the WELLDOC property succeed in tests and to com-
pare their results with other comparably fast generators.
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15. L.-S. Guimond, Jan Patera, Jǐŕı Patera, Statistical properties and implementation of aperiodic
pseudorandom number generators, Applied Numerical Mathematics 46(3-4) (2003), 295–318.

16. M. Lothaire, Algebraic combinatorics on words, Encyclopedia of Mathematics and its Appli-

cations 90, Cambridge University Press, 2002.
17. G. Marsaglia, Random numbers fall mainly in the planes,Proc. Natl. Acad. Sci. 61 (1) (1968),

25–28.
18. M. Morse, G. A. Hedlund, Symbolic dynamics, Amer. J. Math. 60 (1938), 815–866.

19. M. Morse, G. A. Hedlund, Symbolic dynamics II: Sturmian trajectories, Amer. J. Math. 62

(1) (1940), 1–42.
20. J. Patera, Generating the Fibonacci chain in O(logn) space and O(n) time, Phys. Part. Nuclei

33 (2002), 118–122.

121



APERIODIC PSEUDORANDOM NUMBER GENERATORS 23

Department of Mathematics, FNSPE, Czech Technical University in Prague, Tro-

janova 13, 120 00 Praha 2, Czech Republic

E-mail address: lubomira.balkova@gmail.com

Department of Mathematics, University of Turku, FI-20014 Turku, Finland

E-mail address: michelangelo.bucci@utu.fi
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