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Preface

The aim of this work is to present a general framework for Mathematical fuzzy logic (MFL)
using methods of Abstract algebraic logic (AAL). Both MFL and AAL are subdisciplines of
Mathematical Logic; very roughly speaking MFL studies a certain family of formal logical
systems whose algebraic semantics involve some notion of truth degrees while AAL abstractly
studies the possible ways in which logical systems can be related to an algebraic counterpart
and consequences of such relation.

This work in based on a same-named chapter [7] which I coauthored three years ago for the
Handbook of Mathematical Fuzzy Logic, which in turn is tightly related to eight other papers
I have (co)authored in the last 10 years. Let me briefly describe the outline of this work (for a
detailed outline see Chapter 1) concentrating on its relation to the mentioned previous works
of mine (the relation to the works of others is described in details in Chapter 7):

Chapter 1 contains motivations for both AAL, MFL, and their combination.

Chapter 2 introduces the necessary notions from AAL refined to the class of weakly implica-
tive logic I have introduced in [2] and to some of its subclasses presented in [6]. It
follows closely the first four subsections of Section 2 of [7].

Chapter 3 presents substructural logics as a subfamily of weakly implicative logics. It is an
extensive elaboration of Subsection 2.5 of [7] based on new results from [4].

Chapter 4 contains an abstract study of the generalized disjunction connective. It is an exten-
sive elaboration of Subsection 2.6 of [7] based on new results from [8].

Chapter 5 studies a mathematical formalization of the notion of fuzzy logics. It is based on
[1, 2, 6] where this formalization was proposed and elaborated and partly (Subsection 4)
on [3]. This chapter follows closely Section 3 from [7]; the parts involving substructural
logics and disjunction were updated using the results from [4, 8].

Chapter 6 studies the first-order predicate systems built over logics introduced in the previous
chapters. It follows closely Section 3 of [7], it can be seen as generalization of [9], and
it was a base for a recent paper [5].

Chapter 7 provides bibliographical references for various notions/results introduced/proved
throughout this work and contains historical remarks explaining the genesis of the ideas
presented here.
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[9] Petr Hájek and Petr Cintula. On theories and models in fuzzy predicate logics. Journal of
Symbolic Logic, 71(3):863–880, 2006.

iv







Contents
Preface iii

1 Introduction 1
1.1 Mathematical Fuzzy Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The need for a general theory of MFL . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Proposed approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Weakly implicative logics 7
2.1 Basic notions: a first completeness theorem . . . . . . . . . . . . . . . . . . . 7
2.2 Weakly implicative logics and a second completeness theorem . . . . . . . . . 13
2.3 Advanced semantics and a third completeness theorem . . . . . . . . . . . . . 17
2.4 Algebraically implicative logics . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Substructural logics 29
3.1 Basic notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Deduction theorems and proof by cases property . . . . . . . . . . . . . . . . . 38
3.3 Almost (MP)-based axiomatizations of substructural logics . . . . . . . . . . . 45

4 Generalized disjunctions 53
4.1 A hierarchy of disjunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Characterizations of proof by cases properties . . . . . . . . . . . . . . . . . . 61
4.3 Some additional properties of (p-)disjunctional logics . . . . . . . . . . . . . . 67

5 Semilinear logics 73
5.1 Basic definitions, properties, and examples . . . . . . . . . . . . . . . . . . . . 73
5.2 Disjunction and semilinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3 Strengthening completeness: densely ordered chains . . . . . . . . . . . . . . 86
5.4 Strengthening completeness: arbitrary classes of chains . . . . . . . . . . . . . 90

6 First-order predicate semilinear logics 97
6.1 Basic syntactic and semantic notions . . . . . . . . . . . . . . . . . . . . . . . 98
6.2 Axiomatic systems and soundness . . . . . . . . . . . . . . . . . . . . . . . . 102
6.3 Predicate substructural logics . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.4 Completeness theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.5 ∃-Henkin theories, Skolemization, and witnessed semantics . . . . . . . . . . . 115

7 Historical remarks and further reading 121

Bibliography 128

Index 134

vii





Chapter 1

Introduction

1.1 Mathematical Fuzzy Logic

Mathematical Fuzzy Logic (MFL) is a subdiscipline of Mathematical Logic. It is a mathe-
matical study of a certain family of formal logical systems whose algebraic semantics involve
some notion of truth degree. The central rôle of truth degrees in MFL stems from three distinct
historical origins of the discipline:

Philosophical motivations Any scientific theory is, at least initially, driven by some kind of
external motivation, i.e. some independent reality one would like to understand and
model by means of the theory. MFL is motivated by the need to model correct rea-
soning in some particular contexts where more standard systems, such as classical logic,
might be considered inappropriate. Namely, these motivating contexts are those where
the involved propositions suffer from a lack of precision, typically because they contain
some vague predicate, i.e. a property lacking clear boundaries.

Vague predicates (such as ‘tall’, ‘intelligent’, ‘poor’, ‘young’, ‘beautiful’, or ‘simple’)
are omnipresent in natural language and reasoning and, thus, dealing with them is also
unavoidable in linguistics. They constitute an important logical problem as clearly seen
when confronting sorites paradoxes, where a sufficient number of applications of a legit-
imate deduction rule (modus ponens) leads from (apparently?) true premises, to a clearly
false conclusion: (1) one grain of wheat does not make a heap, (2) a group of grains of
wheat does not become a heap just by adding one more grain, therefore: (3) one million
grains of wheat does not make a heap.

One possible way to tackle this problem is the degree-based approach related to logical
systems studied by MFL (for other logical approaches see e.g. [73, 92, 98]). In this
proposal one assumes that truth comes in degrees which, in the case of the sorites series,
vary from the absolute truth of ‘one grain of wheat does not make a heap’ to the absolute
falsity of ‘one million grains of wheat does not make a heap’, through the intermediate
decreasing truth degrees of ‘n grains of wheat do not make a heap’.
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Fuzzy Set Theory In 1965 Lotfi Zadeh proposed fuzzy sets as a new mathematical paradigm
for dealing with imprecision and gradual change in engineering applications [101]. Their
conceptual simplicity (a fuzzy set is nothing more than a classical set endowed with a
[0, 1]-valued function which represents the degree to which an element belongs to the
fuzzy set) provided the basis for a substantial new research area and applications such as
a very popular engineering toolbox used successfully in many technological applications,
in particular, in so-called fuzzy control.

This field is referred to as fuzzy logic, although its mathematical machinery and the
concepts investigated are largely unrelated to those typically used and studied in (Math-
ematical) Logic. Nevertheless, there have been some attempts to present fuzzy logic in
the sense of Zadeh as a useful tool for dealing with vagueness paradoxes (see e.g. [55]).
These attempts have encountered strong opposition among proponents of other theories
of vagueness (see e.g. [73]).

Many-valued logics The 20th century witnessed a proliferation of logical systems whose in-
tended algebraic semantics, in contrast to classical logic, have more than two truth val-
ues (for a historical account see e.g. [47]). Prominent examples are 3-valued systems
like Kleene’s logic of indeterminacy and Priest’s logic of paradox, 4-valued systems like
Dunn–Belnap’s logic, n-valued systems of Łukasiewicz and Post, and even infinitely val-
ued logics of Łukasiewicz logic [76] or Gödel–Dummett logic [32]. These systems were
inspired by a variety of motivations, only occasionally related to the aforementioned
vagueness problems.

More recently, Algebraic Logic has developed a paradigm in which most systems of non-
classical logics can be seen as many-valued logics, because they are given a semantics
in terms of algebras with more than two truth values. From this point of view, many-
valued logics encompass wide well-studied families of logical systems such as relevance
logics, intuitionistic and superintuitionistic logics and substructural logics in general (see
e.g. [49]).

Mathematical Fuzzy Logic was born at the crossroads of these three areas. At the be-
ginning of the nineties of last century, a small group of researchers (including among others
Esteva, Godo, Gottwald, Hájek, Höhle, and Novák), persuaded that fuzzy set theory could be
a useful paradigm for dealing with logical problems related to vagueness, began investigations
dedicated to providing solid logical foundations for such a discipline.

In other words, they started developing logical systems in the tradition of Mathematical
Logic that would have the [0, 1]-valued operations used in fuzzy set theory as their intended
semantics. In the course of this development, they realised that some of these logical systems
were already known such as Łukasiewicz and Gödel–Dummett infinitely valued logics. Both
systems turned out to be strongly related to fuzzy sets because they are [0, 1]-valued and the
truth functions interpreting their logical connectives are, in fact, of the same kind (t-norms,
t-conorms, negations) as those used to compute the combination (resp. intersection, union,
complement) of fuzzy sets.

Several conferences and a huge funded research project (COST action 15) brought together
the aforementioned scholars with researchers working on many-valued systems and fuzzy sets
yielding a fertile collaborative environment. These pioneering efforts produced a number of
important papers and even some monographs (especially [61], but also [57, 83]).
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As a result of this work, fuzzy logics have become a respectable family in the broad land-
scape of non-classical logics studied by Mathematical Logic. It has been clearly shown that
fuzzy logics can be seen as a particular kind of many-valued system (or substructural logic)
whose intended semantics is typically based on algebras of linearly ordered truth values. In
order to distinguish it from the works on fuzzy set theory misleadingly labeled as fuzzy logic,
the study of these systems has been called Mathematical Fuzzy Logic.

Moreover, being a subdiscipline of Mathematical Logic it has acquired the typical core
agenda of this field and is studied by many mathematically-minded researchers regardless of
its original motivations. Therefore, in the last years we have seen the blossoming of MFL
with a plethora of works on propositional, modal, predicate (first and higher order) logics, their
semantics (algebraic, relational, game-theoretic), proof theory, model theory, complexity and
(un)decidability issues, etc.

These works colmunated in a two-volume Handbook of Mathematical Fuzzy Logic [21]
which provides an up-to-date systematic presentation of the best-developed areas of MFL. Its
first chapter [6] provides a comprehensive introduction to MFL.

1.2 The need for a general theory of MFL

As we have seen, Mathematical Fuzzy Logic was born in the last decade of the XXth century
as a systematical study of a particular kind of systems of non-classical many-valued logic
with the works of Baaz, Cignoli, Esteva, Godo, Gottwald, Hájek, Montagna, Mundici, Novák,
and others (see e.g. [2, 14, 56, 58–60, 65, 66, 79, 82]). Because of their motivation in the
theory of fuzzy sets, the first studied systems were those that admitted a semantics based on
particular well-known continuous t-norms: Łukasiewicz, product, and minimum t-norm, which
respectively corresponded to Łukasiewicz, Product, and Gödel–Dummett many-valued logics.

The first comprehensive attempt at systematization of the studies on these logics was
Hájek’s celebrated monograph [61] published in 1998. This book studied both propositional
and first-order formalisms for these logics and set the agenda for the area by considering all
the usual issues in Mathematical Logic for these specific systems, including their algebraic
semantics, proof theory, decidability and computational aspects, and applications. Moreover,
in order to provide a common ground for the three aforementioned systems, the monograph
presented Basic fuzzy Logic BL, which was conjectured (and later proved [15]) to be complete
with respect to the semantics of all continuous t-norms, and was hence a common base logic
that could be axiomatically extended to the three of them.

The main outcome of the monograph was that, by setting solid logical foundations, it gave
rise to a flourishing new field of study, as witnessed by the prolific literature since 1998, in
which an increasing number of researchers have contributed by proposing a growing collection
of systems of fuzzy logics obtained by modifying the defining conditions of BL and its three
main extensions.

For instance, the divisibility condition of BL was removed in the logic MTL [37] which
is complete with respect to the semantics of all left-continuous t-norms [72], many axiomatic
extensions of MTL were studied (see e.g. [35, 81]), negation was removed when considering
fuzzy logics based on hoops [38], commutativity of t-norms was disregarded in [62], and t-
norms were replaced by uninorms in [78].



4 CHAPTER 1. INTRODUCTION

On the other hand, logics with a higher expressive power were introduced by consider-
ing expanded real-valued algebras (with projection 4, involution ∼, truth-constants, etc., see
e.g. [17, 36, 39, 40, 42]). Coherently with their initial motivations, the proponents of all these
systems have always borne in mind an intended (so called standard) semantics based on real-
valued algebras, and tried to show soundness and completeness of the logics with respect to
them. However, in recent works fuzzy logics have started emancipating from the real-valued
algebras as the only intended semantics by considering systems complete with respect to ratio-
nal, finite or hyperreal linearly ordered algebras [19, 35, 41, 43, 80].

When dealing with this huge variety of fuzzy logics, and in order to avoid a useless repeti-
tion of analogous results and proofs, one may want to have some tools to prove general results
that apply not only to a particular logic, but to a whole class of logics. To some extent this
has been achieved by means of the notions of core and 4-core fuzzy logics from [64] that have
provided a useful framework for some papers such as [19, 80]. However, those classes contain
only axiomatic expansions of MTL and MTL4 logics, so they do not cover the aforementioned
weaker systems. Therefore, we need to look for a more general framework able to cope with
all known examples and with other new logics that may arise in the near future.

In doing so, one certainly needs some intuition about the class of objects one would like
to mathematically determine, namely some intuition of what are the minimal properties that
should be required for a logic to be fuzzy. The evolution outlined above shows that almost no
property of these systems is essential as they have been step-by-step disregarded.

Nevertheless, there is one that has remained untouched so far: completeness with respect
to a semantics based on linearly ordered algebras. It actually corresponds to the main thesis
of [5] that defends that fuzzy logics are the logics of chains. Such a claim must be read as a
methodological statement, pointing at a roughly defined class of logics, rather than a precise
mathematical description of what fuzzy logics are (or should be), for there could be many
different ways in which a logic might enjoy a complete semantics based on chains.

On the other hand, Algebraic Logic is the branch of Mathematical Logic that studies logi-
cal systems by giving them a semantics based on some particular kind of algebraic structures.
The development we have just outlined shows how Algebraic Logic has been fruitfully applied
to fuzzy logics, and it has also been very useful in many other families of non-classical logics.

Moreover, in the last decades, it has evolved to a more abstract discipline, Abstract Alge-
braic Logic, which aims at understanding the various ways in which a logical system can be
endowed with an algebraic semantics and developing methods and results to deal with broad
classes of those systems (see survey [45] or the comprehensive monographs [8, 29, 44, 100]).
Therefore, it is a reasonable candidate to provide the general framework we are looking for.

1.3 Proposed approach

The aim of this work is to present a marriage of Mathematical Fuzzy Logic and (Abstract)
Algebraic Logic. In other words, we want to use the notions and techniques from the latter to
create a new framework where we can develop in a natural way a particular technical notion
corresponding to the intuition of fuzzy logics as the logics of chains.
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Since the order relation in the algebraic counterparts of fuzzy logics is typically determined
by an implication connective, we will present our framework in the context of weakly implica-
tive logics (introduced in [18]) which generalize the well-known class of implicative logics
studied by Rasiowa in [87].

These logics enjoy an implication connective→ such that for any algebra A in the algebraic
semantics one can define an order relation by setting for any pair of elements a, b in A: a ≤ b
iff a→A b ∈ F, where F is the subset of designated elements of the algebra representing truth
(in typical examples F = {1

A
} or F = {a ∈ A | a ∧A 1

A
= 1

A
}).

This allows to characterize fuzzy logics, in the described context, as those which are com-
plete with respect to the class of algebras where implication defines a linear ordering or, equiv-
alently, as those logics whose finitely subdirectly irreducible algebraic models are linearly or-
dered by the implication.

We call them weakly implicative semilinear logics inspired by the tradition in Universal
Algebra of calling a class of algebras ‘semiX’ whenever their subdirectly irreducible members
are X. We choose the term ‘semilinear’ instead of ‘fuzzy’ in spite of the fact that a first step
towards the general definition we are offering here had been done by the first author in [18],
when he introduced the class under the name weakly implicative fuzzy logics, because the term
‘fuzzy’ is probably too heavily charged with many conflicting potential meanings.

It needs to be stressed that by this mathematical definition we do not expect to capture the
whole intuitive notion of arbitrary fuzzy logic. Even if we agree that the linear ordering in
the semantics is crucial for a formal logic to be fuzzy, there might still be several other ways in
which a logic might have a complete semantics somehow based on chains (see e.g. [9, 10]). But
still, the notion of weakly implicative semilinear logic will be able to include (and provide a
useful mathematical framework for) almost all the prominent examples of fuzzy logics known
so far and exclude non-classical logics which are usually not recognized as fuzzy logics in the
Logic community.

Outline This work is structured as follows. Chapter 2 introduces the necessary notions from
(Abstract) Algebraic Logic, the definition of weakly implicative logic and some refinements
thereof and provides three increasingly stronger completeness theorems for them. Chapter 3
presents a very general notion of substructural logics as a particular family of weakly implica-
tive logics, discusses their syntactical and semantical properties. Chapter 4 contains a rather
general study of disjunction connectives which play a crucial rule in subsequent chapters.

Chapter 5 presents and studies the main notion of this chapter: semilinearity. It character-
izes semilinear logics in terms of properties of filters and properties of disjunctions, and gives
methods to axiomatize semilinear logics. Chapter 6 studies first-order predicate systems built
over weakly implicative semilinear logics. It gives axiomatizations, completeness theorems,
and a general process of Skolemization.

We conclude with Chapter 7 providing historical remarks to understand the genesis of
the ideas and results presented in this chapter and many bibliographical references for further
studies in related topics.





Chapter 2

Weakly implicative logics

This chapter provides the general basis for the framework presented in this chapter. Section 2.1
gives the most elementary necessary syntactical and semantical notions and proves complete-
ness of all logics with respect to the class of their models. Section 2.2 introduces the notion of
weakly implicative logics and proves their completeness with respect to the class of their re-
duced models. Section 2.3 introduces other semantical notions, including relatively subdirectly
irreducible models (RSI), and proves completeness of weakly implicative logics with respect
to the class of their RSI reduced models. Section 2.4 studies the class of algebraically implica-
tive logics, i.e. those weakly implicative logics enjoying a stronger link with their algebraic
semantics.

2.1 Basic notions: a first completeness theorem

In this preliminary section we give the most basic syntactic and semantic notions we need for
a general framework to study propositional logics and we prove a first completeness theorem
for them.

DEFINITION 2.1.1 (Language). A propositional languageL is a countable type, i.e. a function
ar : CL → N, where CL is a countable set of symbols called connectives, giving for each one
its arity. Nullary connectives are also called truth-constants. We write 〈c, n〉 ∈ L whenever
c ∈ CL and ar(c) = n.

The restriction to countable languages is necessary for very few results and simplifies the
formulation of many others. The same holds for the following restriction of the cardinality of
the set of propositional variables. Note that, in particular, all the notions and results of this
section do not rely on these restrictions.

DEFINITION 2.1.2 (Formula). Let Var be a fixed infinite countable set of symbols called
(propositional) variables. The set FmL of (propositional) formulae in a propositional language
L is the least set containing Var and closed under connectives of L, i.e. for each 〈c, n〉 ∈ L and
every ϕ1, . . . , ϕn ∈ FmL, c(ϕ1, . . . , ϕn) is a formula.

7
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In what follows, beginning with the next definition, it will be convenient to identify FmL
with the domain of the absolutely free algebra FmL of type L and generators Var.1 The vari-
ables will be usually denoted by lower case Latin letters p, q, r, . . . The formulae will be
usually denoted by lower-case Greek letters ϕ, ψ, χ, . . . and their sets by upper-case ones Γ, ∆,
Σ, . . . The set of all sequences (including infinite sequences) of formulae is denoted by Fm≤ω

L
.

DEFINITION 2.1.3 (Substitution). Let L be a propositional language. An L-substitution is an
endomorphism on the algebra FmL, i.e. a mappingσ : FmL → FmL, such thatσ(c(ϕ1, . . . , ϕn))
= c(σ(ϕ1), . . . , σ(ϕn)) holds for each 〈c, n〉 ∈ L and every ϕ1, . . . , ϕn ∈ FmL.

Since an L-substitution is a mapping whose domain is a free L-algebra, it is fully deter-
mined by its values on the generators (propositional variables).

DEFINITION 2.1.4 (Consecution). A consecution2 in a propositional language L is a pair
〈Γ, ϕ〉, where Γ ∪ {ϕ} ⊆ FmL.

Instead of ‘〈Γ, ϕ〉’ we write ‘Γ B ϕ’. To simplify matters we will identify a formula ϕ with
the consecution of the form ∅ B ϕ. Clearly, each subset X of the set of all consecutions can be
understood as a relation between sets of formulae and formulae. We will use an infix notation
and write ‘Γ `X ϕ’ instead of ‘Γ B ϕ ∈ X’.

DEFINITION 2.1.5 (Logic). LetL be a propositional language. A set L of consecutions inL is
called a logic in the languageL when it satisfies the following conditions for each Γ∪∆∪{ϕ} ⊆

FmL:

• If ϕ ∈ Γ, then Γ `L ϕ. (Reflexivity)

• If ∆ `L ψ for each ψ ∈ Γ and Γ `L ϕ, then ∆ `L ϕ. (Cut)

• If Γ `L ϕ, then σ[Γ] `L σ(ϕ) for each L-substitution σ. (Structurality)

A logic L is called inconsistent if L is the set of all consecutions.

Observe that reflexivity implies that any logic is non-empty and together with cut it entails
the following monotonicity condition:

• If Γ `L ϕ and Γ ⊆ ∆, then ∆ `L ϕ. (Monotonicity)

Notice the difference between ‘Γ B ϕ’ (denoting an object) and ‘Γ `L ϕ’ (stating the fact
Γ B ϕ ∈ L). When the language or logic are known from the context we omit the parameters
L or L; the same convention will be followed in any other case indexed by L or L. Moreover,
instead of ‘Γ∪∆ ` ϕ’, ‘Γ∪{ψ} ` ϕ’, and ‘∅ ` ϕ’ we respectively write just ‘Γ,∆ ` ϕ’, ‘Γ, ψ ` ϕ’,
and ‘` ϕ’. Finally, we write ‘Γ ` Σ’ instead of ‘Γ ` χ for each χ ∈ Σ’ and ‘Γ a` Σ’ instead of
‘Γ ` Σ and Σ ` Γ’. The formulae ϕ such that ` ϕ are called theorems of the logic.

It is easy to observe that the intersection of an arbitrary class of logics in the same language
is a logic as well. Let us introduce the notion of theory. The importance of this notion will
become apparent later when we introduce Lindenbaum matrices.

1Recall that FmL has the domain FmL and operations: cFmL (ϕ1, . . . , ϕn) = c(ϕ1, . . . , ϕn).
2The term ‘consecution’ is taken from [1] (the term ‘sequent’ is sometimes used instead).
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DEFINITION 2.1.6 (Theory). A theory of a logic L is a set of formulae T such that if T `L ϕ
then ϕ ∈ T. By Th(L) we denote the set of all theories of L.

Theories are sometimes also called deductively closed sets of formulae and will be usually
denoted by upper case Latin letters T, S , R, . . . Notice that for each set Γ of formulae, the set
ThL(Γ) = {ϕ | Γ `L ϕ} belongs to Th(L). Observe that ThL(Γ) is the least theory containing Γ;
we call it the theory generated by Γ. Note that the set of theorems of L equals to ThL(∅) and
thus it is a subset of any theory T of the logic L.

Now we introduce the notion of axiomatic system as the same kind of objects as logics,
i.e. sets of consecutions closed under substitutions; this will simplify the formulation of some
upcoming results.

DEFINITION 2.1.7 (Axiomatic system). Let L be a propositional language. An axiomatic
systemAS in the languageL is a setAS of consecutions closed under arbitrary substitutions.
The elements ofAS of the form ΓBϕ are called axioms if Γ = ∅, finitary deduction rules if Γ is
a finite set, and infinitary deduction rules otherwise. An axiomatic system is said to be finitary
if all its deduction rules are finitary.

Notice that the convention we have made above identifying the consecution ∅ B ϕ with
the formula ϕ, allows to call ϕ an axiom of the axiomatic system. Of course, each axiomatic
system can also be seen as a collection of schemata (by a schema we understand a consecution
and all its substitution instances).

DEFINITION 2.1.8 (Proof). Let L be a propositional language and AS an axiomatic system
in L. A proof of a formula ϕ from a set of formulae Γ in AS is a well-founded tree (with no
infinitely-long branch) labeled by formulae such that

• its root is labeled by ϕ and leaves by axioms ofAS or elements of Γ and

• if a node is labeled by ψ and ∆ , ∅ is the set of labels of its preceding nodes, then
∆ B ψ ∈ AS.

We write Γ ÀS ϕ if there is a proof of ϕ from Γ inAS.

Observe that formal proofs can be seen as well-founded relations (with leaves as minimal
elements and the root as a maximum), thus we can prove facts about formulae by induction
over the complexity of their formal proofs. Notice that a deduction rule {ψ1, ψ2, . . . } B ϕ gives
a way to construct a proof of ϕ from Γ if we know the proofs of ψ1, ψ2, . . . from Γ: we just
glue them together in a single tree using the rule {ψ1, ψ2, . . . } B ϕ. In contrast, the meta-rule:
from Γ ` ψ1, ∆ ` ψ2, . . . obtain Σ ` ϕ only tells us that if there are proofs of ψ1, ψ2, . . . from Γ,
∆, . . . , then there is a proof of ϕ from Σ as well, though it gives no hint to its construction. We
could say that rules are inferences between formulae, whereas meta-rules are in fact inferences
between consecutions. We will see prominent examples of meta-rules later in this text.

LEMMA 2.1.9. Let L be a propositional language and AS an axiomatic system in L. Then
ÀS is the least logic containingAS.

Proof. Obviously ÀS is a logic and AS ⊆ ÀS. We prove that for each logic L, if AS ⊆ L,
then ÀS ⊆ L. Assume that Γ ÀS ϕ, i.e. there is a proof of ϕ from Γ. By induction over the
complexity of the proof we can show that for each formula ψ which labels some node in the
proof we have Γ `L ψ, and hence in particular Γ `L ϕ. �
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DEFINITION 2.1.10 (Presentation, finitary logic). Let L be a propositional language,AS an
axiomatic system in L, and L a logic in L. We say that AS is an axiomatic system for (or
a presentation of) the logic L if L = ÀS. A logic is said to be finitary if it has some finitary
presentation.

Observe that each logic has a presentation, for L understood as an axiomatic system is a
presentation of the logic L itself (due to Lemma 2.1.9). Next we show that our definition of
finitary logics is equivalent to the usual one:

LEMMA 2.1.11. Let L be a logic. Then L is finitary iff for each set of formulae Γ ∪ {ϕ} we
have: if Γ `L ϕ, then there is a finite Γ′ ⊆ Γ such that Γ′ `L ϕ.

Proof. Assume that L is finitary. Then, by definition, it has a finitary presentationAS. Observe
that proofs in a finitary axiomatic system are always finite (because by definition the tree has
no infinite branches and, because of finitarity, each node has finitely many preceding nodes,
thus by König’s Lemma the tree is finite). This gives the implication from left to right. The
reverse direction is straightforward. �

Observe that in the finitary case we can represent the tree as a linear sequence of formulae,
obtaining thus the usual notion of finite proof.

DEFINITION 2.1.12 (Finitary companion). The finitary companion of a logic L is the logic
FC(L) defined as: Γ `FC(L) ϕ iff there is a finite subset Γ0 ⊆ Γ such that Γ0 `L ϕ.

Note that the finitary companion of a logic L is the strongest finitary logic contained in L
and it is naturally axiomatized by the set of all finitary consecutions provable in L.

DEFINITION 2.1.13 (Expansion). Let L1 ⊆ L2 be propositional languages, Li a logic in Li,
and S a set of consecutions in L2.

• L2 is the expansion of L1 by S if it is the weakest logic in L2 containing L1 and S, i.e.
the logic axiomatized by all L2-substitutional instances of consecutions from S ∪ AS,
for any presentationAS of L1.

• L2 is an expansion of L1 if L1 ⊆ L2, i.e. it is the expansion of L1 by S, for some set of
consecutions S.

• L2 is an axiomatic expansion of L1 if it is an expansion obtained by adding a set of
formulae.

• L2 is a conservative expansion of L1 if it is an expansion and for each consecution ΓB ϕ
in L1 we have that Γ `L2 ϕ entails Γ `L1 ϕ.

If L1 = L2, we use ‘extension’ instead ‘expansion’.3

Next we introduce the necessary basic semantical notions. Let us fix a propositional lan-
guage L. The logics in this language are given a semantical interpretation by means of the
notion of logical matrix, which is a pair formed by anL-algebra (which interprets the formulae
capitalizing on the fact that L can also be seen as an algebraic language) and a filter (a subset
of designated elements in the domain of the algebra which gives a notion of truth for the logic):

3Observe that any conservative extension of any logic is just the logic itself.
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DEFINITION 2.1.14 (Logical matrix). An L-matrix is a pair A = 〈A, F〉 where A is an L-
algebra called the algebraic reduct of A, and F is a subset of A called the filter of A. The
elements of F are called designated elements of A.

A matrix is trivial if F = A. A matrix is finite if its underlying algebra has a finite domain.
The matrices where A = FmL are called Lindenbaum matrices.

DEFINITION 2.1.15 (Evaluation). Let A be an L-algebra. An A-evaluation is a homomor-
phism from FmL to A, i.e. a mapping e : FmL → A, such that for each 〈c, n〉 ∈ L and each
n-tuple of formulae ϕ1, . . . , ϕn we have: e(c(ϕ1, . . . , ϕn)) = cA(e(ϕ1), . . . , e(ϕn)).

As in the case of substitutions, since an A-evaluation is a mapping whose domain is a
free L-algebra, it is fully determined by its values on the generators (propositional variables).
By e[p→a] we denote the evaluation obtained from e by assigning the element a ∈ A to the
variable p and leaving the values of remaining variables unchanged. For a formula ϕ build
from variables p1, . . . , pn, an algebra A, elements a1, . . . , an ∈ A and an A-evaluation e such
that e(pi) = ai, we write ϕA(a1, . . . , an) instead of e(ϕ(p1, . . . , pn)). Given a matrix A = 〈A, F〉
and A-evaluation e, we will also call e an A-evaluation.

DEFINITION 2.1.16 (Semantical consequence). A formula ϕ is a semantical consequence of
a set Γ of formulae w.r.t. a class K of L-matrices if for each 〈A, F〉 ∈ K and each A-evaluation
e, we have e(ϕ) ∈ F whenever e[Γ] ⊆ F; we denote it by Γ |=K ϕ.

We write |=A instead of |={A}. Obviously, |=K is a set a of consecutions, but more can be
proved (the second claim will be generalized in Proposition 2.3.17):

LEMMA 2.1.17. Let K a class of L-matrices. Then |=K is a logic in L. Furthermore if K is a
finite class of finite matrices, then the logic |=K is finitary.

Proof. We need to check the three properties in the definition of logic. The first one is obvious.
To show the second one fix 〈A, F〉 ∈ K and an A-evaluation e such that e[∆] ⊆ F. Then clearly
e(ψ) ∈ F for each ψ ∈ Γ, i.e. e[Γ] ⊆ F, and so e(ϕ) ∈ F. The final condition: fix 〈A, F〉 and e
as before and assume that e(σ[Γ]) ⊆ F. Since e′ = e ◦ σ is an A-evaluation and e′[Γ] ⊆ F, we
obtain e(σ(ϕ)) = e′(ϕ) ∈ F.

The second claim: if we prove it for K = {〈A, F〉} the proof is done by observing that: (1)
|=K∪L = |=K∩|=L, and (2) the intersection of two finitary logics is finitary. Assume that Γ′ 6|=K ϕ

for each finite Γ′ ⊆ Γ and we want to show that Γ 6|=K ϕ.
Let us consider the finite set A endowed with discrete topology and its power AVar with

product (=weak) topology. Both spaces are compact (the first one trivially and the second one
due to Tychonoff theorem). Clearly each evaluation e can be identified with an element of AVar

and vice versa. For each formula ψ we define a mapping Hψ : AVar → A as Hψ(e) = e(ψ). It can
be easily shown that these mappings are continuous, thus (Hψ)−1[F] is a closed set and so is the
set (Hψ)−1[F]∩ (Hϕ)−1[A\F] (i.e. the set of evaluations which satisfy the formula ψ but not the
formula ϕ). Let us now consider the system of closed sets {(Hψ)−1 ∩ (Hϕ)−1[A \ F]) | ψ ∈ Γ}.
This is clearly a centered system (the intersection of any finite subsystem given by a set Γ′ is
non-empty, because it contains any evaluation which witnesses that Γ′ 6|=K ϕ). Thus, due to
the compactness of AVar, the intersection of the whole system is non-empty and the proof is
done (because any element of this intersection is an evaluation satisfying the set Γ but not the
formula ϕ). �
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DEFINITION 2.1.18 (L-matrix). Let L be a logic in L and A an L-matrix. We say that A is
an L-matrix if L ⊆ |=A. We denote the class of L-matrices by MOD(L).

Observe that for each presentation AS of a logic L we have: A ∈ MOD(L) iff AS ⊆ |=A
(one direction is obvious, the second one is Lemma 2.1.9).

LEMMA 2.1.19. Let L be a logic in L and a mapping g : A → B be a homomorphism of
L-algebras A, B. Then:

• 〈A, g−1[G]〉 ∈MOD(L), whenever 〈B,G〉 ∈MOD(L).

• 〈B, g[F]〉 ∈MOD(L), whenever 〈A, F〉 ∈MOD(L) and g is surjective and g(x) ∈ g[F]
implies x ∈ F.

Proof. The first claim is straightforward: assume that Γ `L ϕ and e[Γ] ⊆ g−1[G] for some
A-evaluation e. Thus, g[e[Γ]] ⊆ G which, since g ◦ e is a B-evaluation and 〈B,G〉 ∈MOD(L),
implies that g(e(ϕ)) ∈ G, i.e. e(ϕ) ∈ g−1[G].

The second claim: assume that Γ `L ψ and for a B-evaluation f it is the case that f [Γ] ⊆
g[F]. Let us define an A-evaluation e by setting e(v) = a for some a such that g(a) = f (v) (such
a has to exist because g is surjective). Next we show by induction that f (ϕ) = g(e(ϕ)). The
base is trivial. Let us assume that ϕ = c(ϕ1, . . . , ϕn). Then:

f (c(ϕ1, . . . , ϕn)) = cB( f (ϕ1), . . . , f (ϕn)) = cB(g(e(ϕ1)), . . . , g(e(ϕn)))
= g(cA(e(ϕ1), . . . , e(ϕn))) = g(e(c(ϕ1, . . . , ϕn))).

From g[e[Γ]] = f [Γ] ⊆ g[F] we get e[Γ] ⊆ F. Thus e(ψ) ∈ F and so f (ψ) = g(e(ψ)) ∈ g[F]. �

DEFINITION 2.1.20 (Logical filter). Given a logic L inL and anL-algebra A, a subset F ⊆ A
is an L-filter if 〈A, F〉 ∈MOD(L). By FiL(A) we denote the set of all L-filters over A.

Observe that A ∈ FiL(A) and FiL(A) is closed under arbitrary intersections, i.e. FiL(A)
is a closure system (we deal with closure systems in detail in Section 2.3) which allows us to
endow it with a (complete) lattice structure:

DEFINITION 2.1.21 (Generated filters and lattice of logical filters). Let L be a logic in L and
A an L-algebra. Given a set X ⊆ A, the logical filter generated by X is defined as FiA

L (X) =⋂
{F ∈ FiL(A) | X ⊆ F}. FiL(A) is given a lattice structure by defining for any F,G ∈ FiL(A),

F ∧G = F ∩G and F ∨G = FiA
L (F ∪G).

The elements of a filter generated by a set are characterized in the next proposition by
means of the notion of proof in algebra. It consists in generalizing to any algebra the notion of
proof introduced in Definition 2.1.8 for the algebra of formulae.

PROPOSITION 2.1.22 (Proof in algebra). Let L be a logic, AS one of its presentations, A
an L-algebra, and X ∪ {a} ⊆ A. Let us define a set VAS ⊆ P(A) × A as {〈e[Γ], e(ψ)〉 |
e is an A-evaluation and Γ B ψ ∈ AS}.4 Then a ∈ FiA(X) iff there is a well-founded tree
(called proof of a from X) labeled by elements of A such that

• its root is labeled by a, and leaves are labeled by elements x such that x ∈ X
or 〈∅, x〉 ∈ VAS and

4Note that if A = FmL, then VAS = AS.
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• if a node is labeled by x and Z , ∅ is the set of labels of its preceding nodes,
then 〈Z, x〉 ∈ VAS.

Proof. Let D(X) be the set of elements of A for which there exists a proof from X. We can
easily show that AS ⊆ |=〈A,D(X)〉. Indeed, assume that Γ B ϕ ∈ AS and h[Γ] ⊆ D(X) for some
evaluation h. Then for each x ∈ h[Γ] there is a proof from X and, since 〈h[Γ], h[ϕ]〉 ∈ VAS,
we can connect these proofs so that they will form a proof of h(ϕ). Thus D(X) ∈ FiL(A) and,
since X ⊆ D(X), we obtain Fi(X) ⊆ D(X). To prove the converse direction consider x ∈ D(X)
and notice that for each y appearing in its proof we can easily prove inductively that y ∈ Fi(X)
(because Fi(X) is closed under all the rules of L, in particular those inAS). �

Next we show that the filters of Lindenbaum matrices can be nicely characterized.

PROPOSITION 2.1.23. For any logic L in a language L, FiL(FmL) = Th(L).

Proof. Let Γ ∈ FiL(FmL), i.e. if ∆ `L ϕ then for each FmL-evaluation e we have e(ϕ) ∈ Γ

whenever e[∆] ⊆ Γ. Therefore, in the particular case where the evaluation e is the identity and
∆ = Γ, we obtain Γ ∈ Th(L).

Next assume that T ∈ Th(L), ∆ `L ϕ, and e is an FmL-evaluation such that e[∆] ⊆ T , thus
also T `L e[∆]. By structurality, also e[∆] `L e(ϕ), and thus also T `L e(ϕ). Since T is a theory,
we have e(ϕ) ∈ T . �

We close the section observing that the notions introduced so far are enough to obtain a
first completeness theorem for any logic.

THEOREM 2.1.24 (Completeness w.r.t. all models). Let L be a logic. Then for each set Γ of
formulae and each formula ϕ the following holds: Γ `L ϕ iff Γ |=MOD(L) ϕ.

Proof. Soundness is obvious. For the reverse direction assume that Γ 0L ϕ and define T =

ThL(Γ). We know that 〈FmL,T 〉 ∈ MOD(L) and then the identity mapping is the 〈FmL,T 〉-
evaluation we need to show that Γ 6|=MOD(L) ϕ. �

2.2 Weakly implicative logics and a second completeness theorem

In this section we first introduce the main defining notion for the framework of this chapter: the
class of weakly implicative logics. Then we use the notions of Leibniz congruence and reduced
model to prove a second completeness theorem. Although these notions can be introduced in
general for any propositional logic and completeness with respect to its reduced models can be
proved in general, we will restrict to weakly implicative logics for the sake of simplicity.

DEFINITION 2.2.1 (Weakly implicative logic). Let L be a logic in a language L. We say that
L is a weakly implicative logic if there is a binary connective → (primitive or definable by a
formula of two variables in language L) such that:

(R) `L ϕ→ ϕ

(MP) ϕ, ϕ→ ψ `L ψ

(T) ϕ→ ψ, ψ→ χ `L ϕ→ χ

(sCng) ϕ→ ψ, ψ→ ϕ `L c(χ1, . . . , χi, ϕ, . . . , χn)→ c(χ1, . . . , χi, ψ, . . . , χn)
for each 〈c, n〉 ∈ L and each 0 ≤ i < n.
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The acronyms respectively stand for ‘reflexivity’, ‘modus ponens’, ‘transitivity’ and ‘sym-
metrized congruence’. The connective→ is called a weak implication of L. There could be, in
principle, several different weak implications in a given logic. For the sake of simpler notation
we will avoid indexing many of the upcoming notions with a weak implication by assuming
from now on that each language comes with a fixed binary (primitive or derivable) connec-
tive →, such that if a logic in this language is weakly implicative, then → is one of its weak
implications and all notions are defined w.r.t. this particular implication. We will call → the
principal implication of the logic. In some rare cases, when we may need to speak at once
about notions corresponding to different weak implications, we will index these notions by
their corresponding weak implication to avoid any confusion.

EXAMPLE 2.2.2. In classical logic the usual connectives of implication and equivalence, →
and↔, are both actually weak implications in our sense, but observe they have a very different
logical behavior (for instance, only the former satisfies ϕ ` ψ → ϕ). More generally, all con-
nectives→ in the various logics mentioned in [6, Chapter I] are weak implications. Therefore,
all these logics are examples of weakly implicative logics.

Now we consider the properties of the symmetrization of a weak implication→ in a logic
L. Given a pair of formulae ϕ, ψ, we use the expression ‘ϕ ↔ ψ’ to denote the set of formulae
{ϕ → ψ, ψ → ϕ} (recall that, according to previous conventions, by Γ `L ϕ ↔ ψ we mean that
Γ `L ϕ→ ψ and Γ `L ψ→ ϕ). We can easily show that↔ behaves like a congruence.

THEOREM 2.2.3 (Congruence Property). Let L be a weakly implicative logic, ϕ, ψ, χ formu-
lae, and χ̂ a formula obtained from χ by replacing some occurrences of ϕ in χ by ψ. Then:

• `L ϕ↔ ϕ

• ϕ↔ ψ `L ψ↔ ϕ

• ϕ↔ δ, δ↔ ψ `L ϕ↔ ψ

• ϕ↔ ψ `L χ↔ χ̂.

By using the last part for χ = ϕ→′ ψ we obtain an important corollary:

COROLLARY 2.2.4. Let→ and→′ be two weak implications in a logic L. Then:

ϕ↔ ψ a`L ϕ↔
′ ψ.

Therefore, if we had two different weak implications in a logic, their symmetrizations
would behave exactly in the same way as far as provability is concerned. Now, aiming to
obtain a finer complete semantics for weakly implicative logics, we introduce some further
semantic notions.

DEFINITION 2.2.5 (Leibniz congruence). Let A = 〈A, F〉 be an L-matrix for a weakly im-
plicative logic L. The matrix preorder ≤A of A is defined as a ≤A b iff a →A b ∈ F. Further
we define the Leibniz congruence ΩA(F) of A as 〈a, b〉 ∈ ΩA(F) iff a ≤A b and b ≤A a.

DEFINITION 2.2.6 (Logical congruence). A logical congruence in a matrix 〈A, F〉 is a con-
gruence θ of A compatible with F, i.e. such that for each a, b ∈ A if a ∈ F and 〈a, b〉 ∈ θ, then
b ∈ F.
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THEOREM 2.2.7 (Characterization of Leibniz congruence). Let L be a weakly implicative
logic and A = 〈A, F〉 ∈MOD(L). Then:

• ≤A is a preorder.

• ΩA(F) is the largest logical congruence of A.

• 〈a, b〉 ∈ ΩA(F) if, and only if, for each formula χ and each A-evaluation e it is the case
that e[p→a](χ) ∈ F iff e[p→b](χ) ∈ F.

Proof. The fact that ≤A is a preorder follows from (R) and (T). ΩA(F) is a congruence because
of (sCng), and it is logical because of (MP). To see that it is the largest one, assume that θ is
a logical congruence of A and 〈a, b〉 ∈ θ. Since 〈a, a〉 ∈ θ, we have 〈a→A a, a→A b〉 ∈ θ
and a →A a ∈ F. Hence, by compatibility, a →A b ∈ F. Analogously b →A a ∈ F, and so
〈a, b〉 ∈ ΩA(F), i.e. θ ⊆ ΩA(F).

Final claim: one direction is a straightforward corollary of (sCng). The converse direction:
consider the formula p → q and the evaluation e(q) = b. Then we obtain that a →A b ∈ F iff
b →A b ∈ F. Thus a ≤A b and, since using the evaluation e(q) = a we can prove b ≤A a, the
proof is done. �

DEFINITION 2.2.8 (Reduced matrix, MOD∗(L), and ALG∗(L)). Let L be a weakly implicative
logic. An L-matrix A = 〈A, F〉 is said to be reduced if ΩA(F) is the identity relation IdA. The
class of all reduced models of L is denoted by MOD∗(L), and the class of algebraic reducts
of matrices of MOD∗(L) is denoted by ALG∗(L). The members of ALG∗(L) are called L-
algebras.

Observe that a reduced model of a logic is non-trivial if, and only if, its algebraic reduct has
more than one element. We could alternatively define reduced matrices as those whose matrix
preorder is an order. The next lemma shows us how to turn any model into a reduced one. Let
A = 〈A, F〉 be a matrix, we use the following notation: [a]F = {b ∈ A | 〈a, b〉 ∈ ΩA(F)},
[F] = {[a]F | a ∈ F}, and A∗ = 〈A/ΩA(F), [F]〉.

LEMMA 2.2.9. Let L be a weakly implicative logic and A = 〈A, F〉 ∈MOD(L). Then:

1. A∗ ∈MOD(L).

2. [a]F ≤A∗ [b]F iff a→A b ∈ F, for every a, b ∈ A.

3. A∗ ∈MOD∗(L).

Proof.

1. Clearly [·]F is a surjective homomorphism from A onto A/ΩA(F). By Lemma 2.1.19,
all we need to show is: [a]F ∈ [F] implies a ∈ F. The assumption gives us [a]F = [b]F

for some b ∈ F. Then 〈a, b〉 ∈ ΩA(F) and, since ΩA(F) is a logical congruence, we
obtain a ∈ F.

2. [a]F ≤A∗ [b]F iff [a]F→
A/ΩA(F) [b]F ∈ [F] iff [a→A b]F ∈ [F] iff a→A b ∈F.

3. [a]F ≤A∗ [b]F and [b]F ≤A∗ [a]F entail 〈a, b〉 ∈ ΩA(F) and so [a]F = [b]F . �
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DEFINITION 2.2.10 (Leibniz operator). Let L be a weakly implicative logic in a language L,
and A be an L-algebra. The Leibniz operator associated to A is the function giving for each
F ∈ FiL(A) the Leibniz congruence ΩA(F).

PROPOSITION 2.2.11. Let L be a weakly implicative logic L and A an L-algebra. Then

1. ΩA is monotone (i.e. if F ⊆ G then ΩA(F) ⊆ ΩA(G)).

2. ΩA commutes with inverse images by homomorphisms, that is, for every L-algebra B,
every homomorphism h : A→ B and every F ∈ FiL(B),
ΩA(h−1[F]) = h−1[ΩB(F)] = {〈a, b〉 | 〈h(a), h(b)〉 ∈ ΩB(F)}.

3. ΩA[FiL(A)] = ConALG∗(L)(A), where by ConALG∗(L)(A) we denote the set ordered by
inclusion5 of congruences of A giving a quotient in ALG∗(L).

Proof. The proofs of the first two claims are easy (by Lemma 2.1.19 h−1[F] is indeed a filter
on A). To prove the third first one observe that ΩA[FiL(A)] ⊆ ConALG∗(L)(A) (due to the
Lemma 2.2.9). To show the second direction assume Θ ∈ ConALG∗(L)(A). We know that A/Θ ∈
ALG∗(L), i.e. 〈A/Θ, F0〉 ∈ MOD∗(L) for some filter F0. Let k be the canonical mapping
from A onto A/Θ, we define F = k−1[F0] and, again by Lemma 2.1.19, we know that F ∈
FiL(A). To complete the proof just observe that ΩA(F) = ΩA(k−1[F0]) = k−1[ΩA/Θ(F0)] =

k−1[IdA/Θ] = Θ. �

Next we introduce the well-known notion of Lindenbaum–Tarski matrices, in the traditional
way as it is usually done in the literature, and show how they are related to reduced matrices.

DEFINITION 2.2.12 (Lindenbaum–Tarski matrix). Let L be a weakly implicative logic in L
and T ∈ Th(L). For every formula ϕ, we define the set

[ϕ]T = {ψ ∈ FmL | ϕ↔ ψ ⊆ T }.

The Lindenbaum–Tarski matrix with respect to L and T , LindTT , is the L-matrix whose des-
ignated set is {[ϕ]T | ϕ ∈ T }, and whose L-algebra has the domain {[ϕ]T | ϕ ∈ FmL} and
operations cLindTT ([ϕ1]T , . . . , [ϕn]T ) = [c(ϕ1, . . . , ϕn)]T .

Clearly, for every T ∈ Th(L), the matrix LindTT coincides with 〈FmL,T 〉∗. Now we are
ready to prove the main result of this section.

THEOREM 2.2.13 (Completeness w.r.t. reduced models). Let L be a weakly implicative logic.
Then for any set Γ of formulae and any formula ϕ the following holds: Γ `L ϕ iff Γ |=MOD∗(L) ϕ.

Proof. Soundness is obvious. For the reverse direction, let T be the theory generated by Γ;
clearly LindTT ∈ MOD∗(L) (Lemma 2.2.9). Consider a LindTT -evaluation e defined as
e(ψ) = [ψ]T and observe that e[Γ] ⊆ e[T ] ⊆ [T ]. Thus from Γ |=MOD∗(L) ϕ we obtain that
[ϕ]T = e(ϕ) ∈ [T ] and thus T `L ϕ and so finally Γ `L ϕ. �

The proof shows how the theorem can be strengthened: every weakly implicative logic is
complete w.r.t. the class of Lindenbaum–Tarski matrices.

5Later, after Proposition 2.3.17, we show that ConALG∗(L)(A) is actually a lattice.
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2.3 Advanced semantics and a third completeness theorem

In this section, after recalling some further knowledge about closure systems, closure operators
and logical matrices, we obtain a third completeness theorem for finitary weakly implicative
logics.

DEFINITION 2.3.1 (Closure system). A closure system over a set A is a collection of subsets
C ⊆ P(A) closed under arbitrary intersections and such that A ∈ C. The elements of C are
called closed sets.

For example, we have seen that given a logic L and 〈A, F〉 ∈MOD(L), FiL(A) is a closure
system over A; in particular Th(L) is a closure system over FmL.

DEFINITION 2.3.2 (Closure operator). Given a set A, a closure operator over A is a mapping
C : P(A)→ P(A) such that for every X,Y ⊆ A:

1. X ⊆ C(X),

2. C(X) = C(C(X)), and

3. if X ⊆ Y, then C(X) ⊆ C(Y).

Every closure operator C defines a closure system: {X ⊆ A | C(X) = X}. Conversely, given
a closure system C over A, one can define a closure operator as follows: C(X) =

⋂
{Y ∈ C |

X ⊆ Y}. This gives a one-to-one correspondence between closure operators and systems. The
closure operator associated to the closure system Th(L) will be denoted as ThL, analogously
the one associated to FiL(A) will be denoted as FiA

L ; as usual, we omit the parameters when
known from the context.

A closure operator C is finitary if for every X ⊆ A, C(X) =
⋃
{C(Y) | Y ⊆ X and Y is finite}.

A closure system C is called inductive if it is closed under unions of upwards directed families
(i.e. familiesD , ∅ such that for every A, B ∈ D, there is C ∈ D such that A ∪ B ⊆ C).

THEOREM 2.3.3 (Schmidt Theorem). A closure operator C is finitary if, and only if, its asso-
ciated closure system C is inductive.

Proof. Assume that C is finitary and take an upwards directed family D ⊆ C. It suffices to
show that C(

⋃
D) ⊆

⋃
D. Take any a ∈ C(

⋃
D). By finitarity, a ∈ C(a1, . . . , an) for some

a1, . . . , an ∈
⋃
D. SinceD is upwards directed, there exists a T0 ∈ D such that a1, . . . , an ∈ T0

and, hence, a ∈ C(T0) = T0 ∈ D, and so a ∈
⋃
D. Conversely, assume that C is inductive, take

any X ⊆ A and consider the family D = {C(F) | F ⊆ X finite}. Since D is clearly upwards
directed we have

⋃
D ∈ C, and therefore

⋃
D = C(X). �

Note that the finitarity of a logic L is equivalent to the finitarity of the corresponding closure
operator ThL. The next corollary is the first example we meet in this chapter of the so-called
transfer theorems: theorems which transfer a given property of a logic L (understood as the
closure operator/system over the set of formulae) to the analogous property of closure opera-
tor/system of all L-filters over any algebra.
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COROLLARY 2.3.4 (Transfer theorem for finitarity). Given a logic L in a language L, the
following conditions are equivalent:

1. L is finitary.

2. FiA
L is a finitary closure operator for any L-algebra A.

3. FiL(A) is an inductive closure system for any L-algebra A.

Proof. The equivalence of the last two claims is established by the previous theorem. It is clear
that 2 implies 1 by taking A = FmL. Let us see that 1 implies 3. Take an upwards directed
family F ⊆ FiL(A) and define F =

⋃
F . We need to show that F ∈ FiL(A). Assume that

Γ `L ϕ and e is an A-evaluation such that e[Γ] ⊆ F. Since L is finitary, there is a finite set
Γ0 ⊆ Γ such that Γ0 `L ϕ. Then, since the family is upwards directed, there has to be an F0 ∈ F

such that e[Γ0] ⊆ F0 and so e(ϕ) ∈ F0 ⊆ F. �

A useful notion in the theory of closure systems is that of base, which is a distinguished
family of closed sets allowing to describe all closed sets of the system.

DEFINITION 2.3.5 (Base). A base of a closure system C over A is any B ⊆ C satisfying one
of the following equivalent conditions:

1. C is the coarsest closure system containing B.

2. For every T ∈ C \ {A}, there is aD ⊆ B such that T =
⋂
D.

3. For every T ∈ C \ {A}, T =
⋂
{B ∈ B | T ⊆ B}.

4. For every Y ∈ C and a ∈ A \ Y there is Z ∈ B such that Y ⊆ Z and a < Z.

DEFINITION 2.3.6 (Maximal w.r.t. an element, saturated, and (finitely) ∩-irreducible closed
sets). An element X of a closure system C over A is called

• maximal w.r.t. an element a if it is a maximal element of the set {Y ∈ C | a < Y} w.r.t. the
order given by inclusion,

• saturated if it is maximal w.r.t. some element a,

• (finitely) ∩-irreducible if for each (finite non-empty) set Y ⊆ C such that X =
⋂

Y∈Y Y,
there is Y ∈ Y such that X = Y.

Note that the set A is intersection-prime but is not ∩-irreducible, because it is the intersec-
tion of the empty set. Also observe that finite-∩-irreducibility of X can be equivalently defined
by the following condition: for each Y1,Y2 ∈ C such that X = Y1 ∩ Y2 we have X = Y1 or
X = Y2. Finitely ∩-irreducible elements will be sometimes, especially in the logical context,
called intersection-prime.

PROPOSITION 2.3.7. Let C be a closure system over a set A and T ∈ C. Then, T is saturated
if, and only if, T is ∩-irreducible.
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Proof. Assume that T is not ∩-irreducible, i.e. there is a family {Ti | i ∈ I} ⊆ C such that
T =
⋂

i∈I Ti and T ( Ti for every i ∈ I. Therefore, for every i ∈ I we can choose bi ∈ Ti \ T ,
and thus T ( C(T, bi) ⊆ Ti; this gives: T =

⋂
{C(T, bi) | i ∈ I} and hence T =

⋂
{C(T, b) |

b < T }. Assume, in search of a contradiction, that T is maximal w.r.t. an element a ∈ A.
Then for every b < T , we have T ( C(T, b), and the maximality implies a ∈ C(T, b). Thus
a ∈
⋂
{C(T, b) | b < T } = T ; a contradiction.

Conversely, assume that T is ∩-irreducible. Clearly, T (
⋂
{C(T, b) | b < T } and thus there

is a ∈
⋂
{C(T, b) | b < T } \ T , which means that T is maximal w.r.t. a. Indeed: if T ′ ∈ C and

T ( T ′, then there is b ∈ T ′ \ T , and thus a ∈ C(T, b) ⊆ T ′. �

The next lemma allows to prove that in finitary closure systems, the ∩-irreducible sets
always form a base. This will be later used, as a particular consequence, to obtain a refined
completeness theorem for weakly implicative logics.

LEMMA 2.3.8 (Abstract Lindenbaum Lemma). Let C be a finitary closure operator and C its
corresponding closure system. If T ∈ C and a < T, then there is T ′ ∈ C such that T ⊆ T ′ and
T ′ is maximal with respect to a.

Proof. The proof is an easy application of Zorn’s Lemma. Observe that the set A = {S ∈ C |
T ⊆ S , a < S } is clearly non-empty because T ∈ A. Take any chain {S i | i ∈ I} ⊆ A. By
Schmidt Theorem

⋃
i∈I S i ∈ C and it is obvious that it contains T and it does not have a as an

element, hence
⋃

i∈I S i ∈ A and it is an upper bound of the chain. By Zorn’s Lemma A has
some maximal element T ′ which satisfies the desired property. �

COROLLARY 2.3.9. Let C be a finitary closure operator and C its associated closure system.
Then the class of ∩-irreducible (i.e. saturated) elements of C forms a base of C.

The abstract Lindenbaum lemma is crucial for many results, but we can prove it in general
for finitary logics only. Sometimes a weaker property, valid also in some infinitary logics will
be sufficient for our needs

DEFINITION 2.3.10. We say that a C closure system (or its its associated closure operator
C) has the intersection-prime extension property, IPEP for short, if the class of finitely ∩-
irreducible (i.e. intersection-prime) elements of C form a base of C.

Next we give an example of an infinitary logic with the IPEP; later, in Example 4.1.19, we
will present a logic which does not enjoy the IPEP (due to Theorem 4.2.16). Therefore, the
class of IPEP logics is a non-trivial proper extension of that of finitary logics.

EXAMPLE 2.3.11. The standard infinite-valued Łukasiewicz logic Ł∞ has the IPEP but is
not finitary.6 Recall (see [76]) that Ł∞ has connectives →, ¬ and is given by the matrix A =

〈〈[0, 1],→A,¬A〉, {1}〉, where x →A y = min{1 − x + y, 1} and ¬Ax = 1 − x. It is well known
that Ł∞ is not finitary (see e.g. [61]); we show that it enjoys the IPEP.

6Actually one can easily find many such examples. Indeed, from [24, Theorem 16] it follows that any (possibly
infinitary) weakly implicative semilinear logic (including Ł∞ and many other well-known fuzzy logics) has the
IPEP.
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If T 0Ł∞ χ, then there is an evaluation e such that e[T ] = {1} and e(χ) , 1. We define
T ′ = e−1[{1}]. Obviously T ′ is a theory, T ⊆ T ′ and T ′ 0Ł∞ χ. Assume that T ′ is not
intersection-prime; thus there are formulae ϕ, ψ < T ′ such that T ′ = ThŁ∞(T, ϕ) ∩ ThŁ∞(T, ψ).
Assume without loss of generality that e(ϕ) ≤ e(ψ), so e(ϕ→ ψ) = 1 and so ϕ→ ψ ∈ T ′. Thus
ψ ∈ ThŁ∞(T, ϕ) (because ϕ, ϕ→ ψ `Ł ψ) and thus ψ ∈ T ′—a contradiction.

LEMMA 2.3.12. Let L′ be an axiomatic extension of L. If L has the IPEP, then so has L′.

Proof. We fix an L′-theory T . There have to be intersection-prime L-theories Ti and T =
⋂

i Ti.
From [29, Proposition 0.8.3.] we know that all L-theories containing T (and so in particular Tis)
are L′-theories. To complete the proof we just observe that if an L′-theory is intersection-prime
in L′, then it is also intersection-prime in L. �

One could ask what is the relation of saturated and maximal closed sets in a closure system:

DEFINITION 2.3.13 (Maximal closed set). Let C be a closure system over A. A closed set
T ∈ C\ {A} is called maximal or maximally consistent if it is a maximal element in C\ {A} with
respect to the order given by inclusion.

The following characterization is straightforward:

PROPOSITION 2.3.14. Let C be a closure system over A and T ∈ C \ {A}. The following are
equivalent:

1. T is maximally consistent.

2. T is maximal w.r.t. every a ∈ A \ T.

As another consequence of the abstract Lindenbaum Lemma one can show that every closed
set can be extended to a maximally consistent one:

PROPOSITION 2.3.15. Let C be a finitary closure system over A with an inconsistent element
(i.e. an element a ∈ A such that C(a) = A). Then every T ∈ C \ {A} can be extended to a
maximally consistent T ′ ∈ C.

Proof. Since a does not belong to T (otherwise we would have T = A), by the Lindenbaum
Lemma, there is T ′ ⊇ T maximal w.r.t. a. Then T ′ is actually maximally consistent. Indeed, if
T ′ ( T ′′, then a ∈ T ′′ and thus T ′′ = A. �

However, this last result does not entail that maximally consistent sets form a base. Al-
though it is well-known that this is the case in classical logic, it is not generally true. For in-
stance, the basic fuzzy logic BL introduced in the previous chapter provides a counterexample.

Now we introduce some further necessary notions on matrix theory. Observe that an L-
matrix 〈A, F〉 can be regarded as a first-order structure in the equality-free predicate language
with function symbols from L and a unique unary predicate symbol, with domain A, func-
tion symbols interpreted as the operations of A, and the predicate interpreted by F. From this
perspective, one can define the usual notions of substructure (now called submatrix), homomor-
phism (if a ∈ F1, then h(a) ∈ F2), strict homomorphism (a ∈ F1 iff h(a) ∈ F2), isomorphism,
direct product, reduced product and ultraproduct for matrices. Given a class of matrices K,
we will denote by S(K), H(K), HS(K), I(K), P(K), PR(K) and PU(K) the closure of K under
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the mentioned operations. Another special operation on the classes of matrices we will need
later is the operator of reduced products over countably complete filters (i.e. filters closed under
countable intersections) which we will denote as Pσ- f . Note that obviously P(K) ⊆ Pσ- f (K). It
should also be noted that a bijective matrix homomorphism is not necessarily an isomorphism
(because its inverse need not be a matrix homomorphism). An embedding of matrices is an
injective strict homomorphism.

Given a a matrix 〈A, F〉 ∈ MOD(L), note that the set [F, A] = {G ∈ FiL(A) | F ⊆ G} can
be seen as an interval in the lattice of L-filters over A.

PROPOSITION 2.3.16. Take 〈A, F〉, 〈B,G〉 ∈ MOD(L) and let h : 〈A, F〉 → 〈B,G〉 be a strict
surjective homomorphism. Then the mapping h defined as h(H) = h[H] is an isomorphism
between [F, A] and [G, B].

Proof. First notice that since h is a strict homomorphism we have h−1[G] = F.
Consider also a mapping h−1(S ) = h−1[S ] for each S ∈ [G, B]. Clearly h−1(S ) ∈ [F, A]

for each S ∈ [G, B] (it is a filter due to Lemma 2.1.19 and F = h−1[G] ⊆ h−1[S ]). To prove
that h(T ) ∈ [G, B] for each T ∈ [F, A], taking into account Lemma 2.1.19, we need to show is
that h(x) ∈ h[T ] implies x ∈ T : the assumption gives us h(x) = h(y) for some y ∈ T , therefore
h(y →A x) = h(y) →B h(x) ∈ G, hence y →A x ∈ h−1[G] = F ⊆ T and as y ∈ T we obtain
x ∈ T .

Clearly both h and h−1 are order-preserving, thus all we need to show is h−1(h(T )) = T
and h(h−1(S )) = S for each T ∈ [F, A] and S ∈ [G, B]. The two non-trivial inclusions are
h−1(h(T )) ⊆ T (which follows from the already proved fact: h(x) ∈ h[T ] implies x ∈ T ) and
h(h−1(S )) ⊇ S (which follows from the surjectivity of h). �

From the results in [29] one can obtain the following properties about the behavior of these
operators on models and reduced models (note that the third claim generalizes Lemma 2.1.17):

PROPOSITION 2.3.17. Let L be a weakly implicative logic. Then:

1. SP(MOD(L)) ⊆MOD(L).

2. SPσ- f (MOD∗(L)) ⊆MOD∗(L).

3. If K ⊆MOD(L), PUI(K) ⊆ I(K), and L = |=K, then L is finitary.

4. PU(MOD∗(L)) ⊆MOD∗(L) iff L is finitary.

As a consequence we obtain that, for every weakly implicative logic L, ALG∗(L) is closed
under subalgebras and direct products; moreover for every L-algebra A the set of relative
congruences, ConALG∗(L)(A) is a complete lattice w.r.t. the inclusion order (indeed, given a
family X ⊆ ConALG∗(L)(A) the quotient of A by

⋂
X embeds into the direct product of the

quotients of A by the elements of X and hence, since ALG∗(A) is closed under S and P, we
are done).

The notion of subdirect product from Universal Algebra is also generalized to matrices. A
matrix A is said to be representable as a subdirect product of the family of matrices {Ai | i ∈ I}
if there is an embedding homomorphism α from A into the direct product

∏
i∈I Ai such that for

every i ∈ I, the composition of α with the i-th projection, πi ◦α, is a surjective homomorphism.
In this case, α is called a subdirect representation, and it is called finite if I is finite.
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Let L be a logic andK ⊆MOD∗(L). By PSD(K) we denote the closure ofK under subdirect
products. A non-trivial matrix A ∈ K is (finitely) subdirectly irreducible relative to K if for
every (finite non-empty) subdirect representation α of A with a family {Ai | i ∈ I} ⊆ K there
is i ∈ I such that πi ◦ α is an isomorphism. The class of all (finitely) subdirectly irreducible
matrices relative to K is denoted as KR(F)SI. Of course KRSI ⊆ KRFSI. When K = MOD∗(L)
these classes are characterized in the following way:

THEOREM 2.3.18 (Characterization of RSI and RFSI reduced models). Given a weakly im-
plicative logic L and A = 〈A, F〉 ∈MOD∗(L), we have:

1. A ∈MOD∗(L)RSI if, and only if, F is ∩-irreducible in FiL(A).

2. A ∈MOD∗(L)RFSI if, and only if, F is finitely ∩-irreducible in FiL(A).

Proof. Let us first solve the case when A is a trivial reduced matrix, i.e. F = A = {a}. Recall
that in this case, F is finitely ∩-irreducible but not ∩-irreducible in FiL(A). Obviously, A ∈
MOD∗(L)RFSI and A <MOD∗(L)RSI, because the product of the empty system of matrices is a
trivial matrix.

We write only the proof for the first claim (the second one is completely analogous). Sup-
pose that A ∈ MOD∗(L)RSI and, in search of a contradiction, that F is not ∩-irreducible in
FiL(A), i.e. F =

⋂
i∈I Fi where F ( Fi ∈ FiL(A) for every i ∈ I. We use these filters to

define reduced matrices Ai = 〈A, Fi〉
∗ ∈MOD∗(L) and show that α : A ↪→

∏
i∈I Ai, defined as

α(a) = 〈[a]Fi | i ∈ I〉, is a subdirect representation of A. The homomorphisms πi ◦ α are indeed
surjective, α is clearly is a strict homomorphism, so it remains to show the injectivity of α.
Assume that a , b. Then, since A is reduced, we can (without loss of generality) assume that
a →A b < F and so a →A b < Fi for some i ∈ I. Thus [a]Fi , [b]Fi and so α(a) , α(b). Since
A ∈ MOD∗(L)RSI, there must be j ∈ I such that π j ◦ α is an isomorphism. Assume now that
a ∈ F j, this implies π j(α(a)) = [a]F j ∈ [F j] and, since π j ◦ α is isomorphism it is a also a strict
homomorphism of A and A j and so a ∈ F, and hence F j = F—a contradiction.

We prove the converse direction contrapositively: assume that A <MOD∗(L)RSI, i.e. there
is a family of reduced models of the logic {Ai = 〈Ai, Fi〉 | i ∈ I} and a subdirect representation
α : A ↪→

∏
i∈I Ai where no projection gives an isomorphism. This will allow us to define a

collection of filters giving a decomposition of F. Indeed, take F̄i = (πi ◦ α)−1[Fi] and so by
Lemma 2.1.19 F̄i ∈ FiL(A). Due to the strictness of α we have F =

⋂
i∈I F̄i. If F = F̄ j for

some j ∈ I, then π j ◦α would be an isomorphism, contradicting the hypothesis. Therefore F is
not ∩-irreducible in FiL(A). �

Let us recall some notation from the previous section. Given a matrix A = 〈A, F〉, we write
[a]F = {b ∈ A | 〈a, b〉 ∈ ΩA(F)}, [F] = {[a]F | a ∈ F}, and A∗ = 〈A/ΩA(F), [F]〉.

COROLLARY 2.3.19. Given a weakly implicative logic L and A = 〈A, F〉 ∈ MOD(L), we
have:

1. A∗ ∈MOD∗(L)RSI if, and only if, F is ∩-irreducible in FiL(A).

2. A∗ ∈MOD∗(L)RFSI if, and only if, F is finitely ∩-irreducible in FiL(A).

Proof. All we need to prove is that F is (finitely) ∩-irreducible in FiL(A) iff [F] is finitely
∩-irreducible in FiL(A∗).
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We know that the mapping [·] is a strict surjective homomorphism from A to A∗, thus, due
to the Proposition 2.3.16, there is an isomorphism between the intervals {G ∈ FiL(A) | F ⊆ G}
and {G ∈ FiL(A∗) | [F] ⊆ G} and so the claim trivially follows. �

THEOREM 2.3.20 (Subdirect representation). If L is a finitary weakly implicative logic, then
MOD∗(L) = PSD(MOD∗(L)RSI), thus in particular every matrix in MOD∗(L) is representable
as a subdirect product of matrices in MOD∗(L)RSI.

Proof. One inclusion is relatively easy:

PSD(MOD∗(L)RSI) ⊆ SP(MOD∗(L)) ⊆ SPσ- f (MOD∗(L)) ⊆MOD∗(L),

(the last inclusion is due to claim 2 in Proposition 2.3.17, the others are trivial). To prove
the converse inclusion consider A = 〈A, F〉 ∈ MOD∗(L). By Corollary 2.3.4, FiA

L is finitary
and, by Corollary 2.3.9, there exists a family {Fi | i ∈ I} of ∩-irreducible filters such that
F =

⋂
i∈I Fi. Take Ai = 〈A, Fi〉

∗. So we have a subdirect representation α : A ↪→
∏

i∈I Ai

taking α(a) = 〈[a]i | i ∈ I〉 for every a ∈ A. Because Fi is ∩-irreducible, Theorem 2.3.18 tells
us that 〈A, Fi〉

∗ ∈MOD∗(L)RSI for every i ∈ I. �

We conclude this section by applying Corollary 2.3.19 to obtain two variants of a third
completeness theorem (this time restricted either to finitary logics or to logics with the IPEP).
Note that the first one can also be obtained as a consequence of Theorems 2.2.13 and 2.3.20.

THEOREM 2.3.21 (Completeness w.r.t. RSI reduced models). Let L be a finitary weakly im-
plicative logic. Then `L = |=MOD∗(L)RSI .

Proof. The soundness is trivial. To prove completeness assume that Γ 0L ϕ. Using the Abstract
Lindenbaum Lemma 2.3.8 and Proposition 2.3.7 we know that there is a ∩-irreducible theory
T ⊇ Γ such that ϕ < T . Using Lemma 2.2.9 and Corollary 2.3.19 we know that LindTT ∈

MOD∗(L)RSI and the rest of the proof is the same as in the proof of completeness w.r.t. reduced
models (Theorem 2.2.13). �

The proof of the second variant is completely analogous only instead of Abstract Linden-
baum Lemma (which we can prove for finitary logics only) we use the property IPEP.

THEOREM 2.3.22 (Completeness w.r.t. RFSI reduced models). Let L be a weakly implicative
logic satisfying the IPEP. Then `L = |=MOD∗(L)RFSI .

2.4 Algebraically implicative logics

In this section we consider the relation between weakly implicative logics and the equational
consequence on their corresponding classes of algebras. Let us fix a propositional language L.

DEFINITION 2.4.1 (Equation). An equation in the language L is a formal expression of the
form ϕ ≈ ψ, where ϕ, ψ ∈ FmL.

DEFINITION 2.4.2 (Equational consequence). We say that an equation ϕ ≈ ψ is a conse-
quence of a set of equations Π w.r.t. a class K of L-algebras if for each A ∈ K and each
A-evaluation e we have e(ϕ) = e(ψ) whenever e(α) = e(β) for each α ≈ β ∈ Π; when this is the
case, we denote it by Π |=K ϕ ≈ ψ.
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Given any weakly implicative logic L, the equational consequence given by the class of
L-algebras can be translated into the logic in the following way:

PROPOSITION 2.4.3. Let L be a weakly implicative logic and Π∪ {ϕ ≈ ψ} a set of equations.
Then Π |=ALG∗(L) ϕ ≈ ψ iff {α↔ β | α ≈ β ∈ Π} `L ϕ↔ ψ.

Proof. We show the proof of one implication, the proof of the converse one is similar. Assume
Π |=ALG∗(L) ϕ ≈ ψ. To check that {α ↔ β | α ≈ β ∈ Π} `L ϕ ↔ ψ it is enough (due to
the completeness theorem 2.2.13) to check the equivalent semantical statement {α ↔ β | α ≈

β ∈ Π} |=MOD∗(L) ϕ ↔ ψ. Take any 〈A, F〉 ∈ MOD∗(L) and an A-evaluation v satisfying the
premises, i.e. for every α ≈ β ∈ Π we have v(α) →A v(β), v(β) →A v(α) ∈ F, and hence (since
the matrix is reduced) v(α) = v(β). By the assumption (using that A ∈ ALG∗(L)) we know that
v(ϕ) = v(ψ) and thus v(ϕ)→A v(ψ), v(ψ)→A v(ϕ) ∈ F. �

However, if we want to obtain a better connection between the logic and the equational
consequence enjoying also a translation from the former to the latter, we need to restrict to a
special subclass of weakly implicative logics.

DEFINITION 2.4.4 (Algebraically implicative logic). We say that a logic L is algebraically
implicative if it is weakly implicative and there is a set of equations E in one variable such that
for each A = 〈A, F〉 ∈ MOD∗(L) and each a ∈ A holds: a ∈ F if, and only if, µA(a) = νA(a)
for every µ ≈ ν ∈ E. In this case, ALG∗(L) is called the equivalent algebraic semantics of L.

For a set Γ of formulae, by E[Γ] we denote the set
⋃
{E(γ) | γ ∈ Γ} of equations.

THEOREM 2.4.5 (Characterizations of algebraically implicative logics). Given any weakly
implicative logic L, the following are equivalent:

1. L is algebraically implicative.

2. There is a set of equations E in one variable such that

(Alg) p a`L {µ(p)↔ ν(p) | µ ≈ ν ∈ E}.

3. There is a set of equations E in one variable such that:

• for every Γ ∪ {ϕ} ⊆ FmL, Γ `L ϕ iff E[Γ] |=ALG∗(L) E(ϕ) and

• p ≈ q |=ALG∗(L) E[p↔ q] and E[p↔ q] |=ALG∗(L) p ≈ q.

4. For every L-algebra A, the Leibniz operator ΩA is a lattice isomorphism from FiL(A)
to ConALG∗(L)(A).

5. For every 〈A, F〉 ∈MOD∗(L), F is the least L-filter on A.

In the first three items the sets E can be taken the same.

Proof. First, we prove the equivalence of the first three claims, then the equivalence of the last
two claims, and finally we prove the implications 1→4 and 4→2.
2→1: It follows immediately from the completeness theorem and the definition of algebraically
implicative logic.
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1→3: The first condition again is easily checked by using the completeness theorem and the
definition of algebraically implicative logic. To prove p ≈ q |=ALG∗(L) E[p ↔ q] take 〈A, F〉 ∈
MOD∗(L) and an evaluation e on A such that e(p) = e(q). Then e(p)→A e(q) ∈ F (by (R)) and
so µA(e(p) →A e(q)) = νA(e(p) →A e(q)) for every µ ≈ ν ∈ E, and the same for the reverse
implication. To prove E[p ↔ q] |=ALG∗(L) p ≈ q take 〈A, F〉 ∈ MOD∗(L) and an evaluation
e on A satisfying the equations in the premises. Then e(p) →A e(q), e(q) →A e(p) ∈ F, i.e.
〈e(p), e(q)〉 ∈ ΩA(F) and since the matrix is reduced, e(p) = e(q).
3→2: We want to check p a`L {µ(p) ↔ ν(p) | µ ≈ ν ∈ E}. By the first condition in 3, this
is equivalent to a (double) equational consequence w.r.t. ALG∗(L) which, using the second
condition in 3 becomes a trivial statement.
4→5: Just observe that ΩA(F) = IdA and use the isomorphism of ΩA.
5→4: Recall that for every L-algebra A, ConALG∗(L)(A) is a complete lattice (see the com-
ments after Proposition 2.3.17). From Proposition 2.2.11 we know that ΩA is surjective and
it preserves meets. We show that it is one-to-one. Suppose ΩA(F) = ΩA(G) for some
F,G ∈ FiL(A). Then, by the assumption 5, F/ΩA(F) is the least L-filter on A/ΩA(F), and
G/ΩA(G) is the least L-filter on A/ΩA(G) = A/ΩA(F), thus: F/ΩA(F) = G/ΩA(G). Now
take any a ∈ F. [a]F ∈ F/ΩA(F) = G/ΩA(G), and, since ΩA(F) = ΩA(G), [a]F = [a]G, and
thus [a]G ∈ G/ΩA(G), which gives a ∈ G. By symmetry, we have F = G. We show now
that ΩA is order-reflecting: if ΩA(F) ⊆ ΩA(G) then ΩA(F ∩G) = ΩA(F) ∩ ΩA(G) = ΩA(F),
so F ∩ G = F, by injectivity, and thus F ⊆ G. Therefore, ΩA is an order-preserving and
order-reflecting bijection, and hence it is a lattice isomorphism.
1→4: We first show that ΩA is one-one. Suppose ΩA(F) = ΩA(G) for some F,G ∈ FiL(A).
Given any a ∈ A, we have the following chain of equivalencies: a ∈ F iff [a]F ∈ F/ΩA(F)
iff µ([a]F) = ν([a]F) for every µ ≈ ν ∈ E iff µ([a]G) = ν([a]G) for every µ ≈ ν ∈ E iff
[a]G ∈ G/ΩA(G) iff a ∈ G. In a very similar way we can check that it is order-reflecting. From
Proposition 2.2.11 we know that ΩA(F) is onto and order-preserving, and thus it is a lattice
isomorphism.
4→2: First we prove T = ThL({α ↔ β | 〈α, β〉 ∈ ΩFm(T )}) for every T ∈ Th(L). Define
T ′ = ThL({α ↔ β | 〈α, β〉 ∈ ΩFm(T )}). On the one hand, T ′ ⊆ T , so by monotonicity
ΩFm(T ′) ⊆ ΩFm(T ). On the other hand, if 〈α, β〉 ∈ ΩFm(T ), then α ↔ β ∈ T ′, so 〈α, β〉 ∈
ΩFm(T ′). Therefore, we have ΩFm(T ′) = ΩFm(T ) and, by injectivity, T = T ′. Thus, in
particular we have shown that

p a` {α↔ β | 〈α, β〉 ∈ ΩFm(ThL(p))}.

Let σ be the substitution mapping all variables to p. Then

p a` {σ(α)↔ σ(β) | 〈α, β〉 ∈ ΩFm(ThL(p))}.

Therefore the set E(p) = {σ(α) ≈ σ(β) | 〈α, β〉 ∈ ΩFm(ThL(p))} clearly satisfies the condition
(Alg). �

Observe that, due to Corollary 2.2.4, the definition of algebraically implicative logics is
intrinsic because it does not depend on the chosen implication.

EXAMPLE 2.4.6. In many cases of interest, one equation is enough to satisfy condition (Alg).
For instance, classical logic and, in general, all the expansions of MTL mentioned in the pre-
vious chapter are algebraically implicative by using the set {p ≈ 1}, and UL is algebraically
implicative by using {p ∧ 1 ≈ 1}.
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PROPOSITION 2.4.7. If L is a finitary algebraically implicative logic, then ALG∗(L) is a
quasivariety and the set E can be taken finite.

Proof. The fact that the set E can be taken finite is a straightforward corollary of claim 2 of
Theorem 2.4.5.

To prove that ALG∗(L) is a quasivariety (i.e. a quasiequational class of algebras) it is
enough to take an arbitrary L-algebra A such that all the quasiequations valid in ALG∗(L)
hold in A, and prove that then A ∈ ALG∗(L). Define the filter of A as the set F = {a ∈ A |
µA(a) = νA(a) for every µ ≈ ν ∈ E}. Let us see that 〈A, F〉 ∈ MOD∗(L). Suppose that Γ `L ϕ.
By finitarity, there is a finite Γ0 ⊆ Γ such that Γ0 `L ϕ. Assume that, for some evaluation e on A,
e[Γ] ⊆ F. By the first condition in part 3 of the previous theorem we have E[Γ0] |=ALG∗(L) E(ϕ),
which can be seen as a quasiequation and hence also valid in A. On the other hand we have
e[Γ0] ⊆ F, therefore e(ϕ) ∈ F. Finally, the second condition in part 3 of the previous theorem
implies that the matrix is reduced. �

Analogously to the convention for weakly implicative logics, which always come with a
fixed principal implication, for each algebraically implicative logic we fix the default set of
equations providing algebraicity and denote it as E (in fact, this set is unique up to interderiv-
ability in ALG∗(L)). Observe that these equations can be identified with their corresponding
pairs of formulae; then we call them algebraizing pairs. The fact that filters in reduced matrices
can be defined by equations has several interesting straightforward consequences.

PROPOSITION 2.4.8. Let L be an algebraically implicative logic, A, B ∈ ALG∗(L), and
〈A, F〉 ∈MOD∗(L). Then:

1. F ⊆ G for any G ∈ FiL(A).

2. If 〈A,G〉 ∈MOD∗(L) then F = G, i.e. A is the algebraic reduct of a unique reduced
matrix.

3. A mapping h : A→ B is a homomorphism of algebras from A to B iff it is a
homomorphism between the corresponding matrices.

4. A mapping h : A→ B is an embedding of algebras from A to B iff it is a one-to-one
strict homomorphism between the corresponding matrices.

5. A ∈ ALG∗(L)R(F)SI iff 〈A, F〉 ∈MOD∗(L)R(F)SI.

Finally, we close our excursion to Abstract Algebraic Logic by introducing two special
subclasses of algebraically implicative logics.

DEFINITION 2.4.9 (Rasiowa-implicative and regularly implicative logics). We say that a logic
L is Rasiowa-implicative if it is weakly implicative and

(W) ϕ `L ψ→ ϕ.

We use the term regularly implicative if L satisfies only this weaker condition:

(Reg) ϕ, ψ `L ψ→ ϕ.



2.4. ALGEBRAICALLY IMPLICATIVE LOGICS 27

PROPOSITION 2.4.10. A weakly implicative logic L is regularly implicative iff all the filters
of the matrices in MOD∗(L) are singletons.

Proof. Elementary check. �

PROPOSITION 2.4.11. Each Rasiowa-implicative logic is regularly implicative and each reg-
ularly implicative logic is algebraically implicative.

Proof. The first claim is obvious. For the second one it suffices to check that any regularly
implicative logic satisfies the condition (Alg) (see Theorem 2.4.5) for the set of equations
E(p) = {p ≈ p→ p}. �

The four classes of implicative logics that we have defined (weakly, algebraically, regularly,
Rasiowa-implicative) are mutually distinct. Indeed:

• The equivalence fragment of classical logic is a regularly implicative but not Rasiowa-
implicative logic (to be more precise it is easy to see that the equivalence connective↔
does not satisfy the condition (W); moreover, in [24] it is proved that no weak implication
satisfying this condition is definable in this logic).

• The uninorm logic UL is algebraically, but not regularly, implicative (because of Propo-
sition 2.4.10).

• The logic BCI is weakly, but not algebraically, implicative (see [8]).





Chapter 3

Substructural logics

In this chapter we introduce an important broad family of weakly implicative logics, the sub-
structural logics, starting from a very weak one which we call SL. We present this basic logic in
an implicit way as the least logic with a certain desired behavior of connectives. Then we define
substructural logics as expansions of the corresponding fragment of SL. We will study some
syntactical and semantical properties, and algebraization of these logics. Then we will be able
to identify them among the substructural logics studied under this label in the literature; indeed
we will show that SL actually coincides with the bounded non-associative full Lambek logic.

3.1 Basic notions

The language LSL consists of the connectives listed in Table 3.1, i.e. most of the usual con-
nectives in substructural logics (we will comment on the names and rôle played by these con-
nectives after the next definition). When writing formulae in this language (or its fragments)
we will assume that the increasing binding order is: first &, then {∧,∨}, and finally {→, }.
For the sake of consistency with the general convention in this chapter that every logic comes
with a fixed principal implication→, we keep on using this notation along with as the dual
implication (soon we will prove a duality theorem that shows that the choice between the prin-
cipal and the dual implication is in a way arbitrary). When identifying SL with the bounded
non-associative full Lambek logic we will also show how our notation relates to the standard
one for substructural logics in the literature which uses \ and / instead of→ and , graphically
denoting that these implications are respectively the right and left residua of the conjunction &.

DEFINITION 3.1.1 (The logic SL). SL is the weakest weakly implicative logic in the language
LSL satisfying the consecutions from Table 3.2.

Observe that SL is a weakly implicative logic and → is its principal implication. Even
though we do not explicitly postulate any additional properties of →, we will see in Proposi-
tion 3.1.5 that its interplay with other connectives entails some rather strong properties usually
possessed by implications in known (non-)classical logics. The connective & is a residuated
conjunction whose rôle can be described as ‘aggregation of premises in a chain of implications’

29
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Symbol Arity Name Alternative names

→ 2 principal implication right residuum
& 2 residuated conjunction fusion, multiplicative/strong conj.
 2 dual implication left residuum
∧ 2 lattice protoconjunction additive/weak/lattice conjunction
∨ 2 lattice protodisjunction additive/weak/lattice disjunction
1 0 verum multiplicative truth, unit
0 0 falsum multiplicative falsum
> 0 top additive/lattice truth
⊥ 0 bottom additive/lattice falsum

Table 3.1: The language of SL

Consecution Symbol Name

ϕ→ (ψ→ χ) a` ψ & ϕ→ χ (Res) residuation
ϕ→ (ψ→ χ) a` ψ→ (ϕ χ) (E )  -exchange

ϕ→ ψ a` ϕ ψ (symm) symmetry
` ϕ ∧ ψ→ ϕ (∧1) lower bound
` ϕ ∧ ψ→ ψ (∧2) lower bound

χ→ ϕ, χ→ ψ ` χ→ ϕ ∧ ψ (∧3) infimality
` ϕ→ ϕ ∨ ψ (∨1) upper bound
` ψ→ ϕ ∨ ψ (∨2) upper bound

ϕ→ χ, ψ→ χ ` ϕ ∨ ψ→ χ (∨3) supremality
ϕ ` 1→ ϕ (Push) push
1→ ϕ ` ϕ (Pop) pop
` ϕ→ > (Veq) verum ex quolibet
` ⊥ → ϕ (Efq) ex falso quodlibet

Table 3.2: Consecutions for SL

as shown by residuation rules (Res). In fact, it must be noted that the order of arguments in the
formulation of (Res) is arbitrary (for any connective & we could always define its transposition
&t as ϕ&tψ = ψ&ϕ); we have decided to formulate it in this way to have a more straightforward
connection with a stronger axiomatic formulation of (Res) which is equivalent to associativity
(see Theorem 3.1.7). While (Res) allows us to aggregate premises, (E ) allows us to swap
them but at the price of replacing the inner occurrence of the principal implication by its dual
version (the rule (symm) ensures that can be seen as another principal implication in SL
interderivable with →). However, we cannot replace (E ) by a simpler form involving only
one implication, because it would entail commutativity of & (which can be refuted by a sim-
ple semantic counterexample). On the other hand, the semantics of these connectives is quite
simple. Indeed, if we fix &A in any reduced SL-matrix A then→A has to be its right residuum
and A the left residuum (see part 8 of Proposition 3.1.10) and both→A and A define the
same matrix order ≤A. For more details on residuated structures and their logics see [49].

The remaining binary connectives are easily understood: the rules for ∧ and ∨ ensure that
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these connectives correspond to the operations of infimum and supremum in the lattice order
given by the principal implication. Note however that we do not call them ‘conjunction’ and
‘disjunction’ in Table 3.1 but add the prefix ‘proto’. The reason is that these rules are not
enough to enforce by themselves a proper behavior of these connectives:

1. in the case of ∧, the adjunction rule ϕ, ψ `SL ϕ ∧ ψ, essential in the intended behavior
of conjunctions, holds due to the presence of the truth constant 1 and fails in the least
weakly implicative logic satisfying all consecutions from Table 3.2 but (Push) and (Pop),

2. in the case of ∨, this protodisjunction does not enjoy the Proof by Cases Property in SL:
Γ, ϕ ` χ and Γ, ψ ` χ entail Γ, ϕ ∨ ψ ` χ (in Section 3.2 we will see how to recover
this property in some extensions of SL and Chapter 4 studies its characterizations and
consequences).

The meaning of > and ⊥ and their defining rules is self-explanatory as maximum and
minimum elements of the order induced by the implication. The rôle of 1 is to be the ‘least
designated truth value’. Finally, the rôle of 0, although its value is left unspecified (note that
there is no consecution involving 0 in Table 3.2), is to define negations by ϕ→ 0 and ϕ 0.

Of course we could immediately design one specific axiomatic system for SL (consisting
of reflexivity, transitivity, modus ponens, the congruence rules for all connectives and consecu-
tions from Table 3.2). Later (Theorem 3.1.13) we will present a more natural axiomatic system
for SL. The idea behind our definition of SL, and behind the convention for substructural log-
ics that we will introduce soon, is to pick a short list of rules that connectives must satisfy to
have the minimal usual behavior in substructural logics. Moreover, as we will soon see (Propo-
sition 3.1.4), the connectives are uniquely determined by these rules. The axiomatic system
mentioned above allows us to prove quite easily the following duality theorem:

DEFINITION 3.1.2 (Mirror image). Given a formula χ of LSL its mirror image χ′ is obtained
by replacing in χ all occurrences of→ by , and vice versa, and by replacing all subformulae
of the form α&β by β&α. The mirror image of a set T of formulae ofLSL is T ′ = {ψ′ | ψ ∈ T }.

THEOREM 3.1.3 (Duality Theorem). For each set of formulae T ∪ {ϕ} of LSL we have:

T `SL ϕ iff T ′ `SL ϕ
′.

Proof. We show only one direction (the second one immediately follows from the fact that
(ϕ′)′ = ϕ). We prove the claim for axioms and rules from the axiomatic system described in
the last paragraph above with formulae replaced by variables and then, by structurality and the
notion of proof, we are done.

The case of (symm) is trivial. From p↔ q `SL p& r → q& r and p↔ q `SL r & p→ r &q
we obtain p q, q p `SL p & r q & r and p q, q p `SL r & p r & q, and so we
have the mirror version of congruence for &. The mirror versions of congruence rules for both
implications are proved analogously.

Next observe: ϕ (ψ χ) a`SL ϕ → (ψ χ) a`SL ψ → (ϕ → χ) a`SL ψ (ϕ → χ)
and ϕ (ψ χ) a`SL ϕ → (ψ χ) a`SL ψ → (ϕ → χ) a`SL ϕ & ψ → χ a`SL ϕ & ψ χ,
thus also mirror versions of (E ) and (Res) are proved.

Let T B ϕ be any of the remaining rules. We know that neither & nor  appears in
any formula from T ∪ {ϕ} and all of these formulae are either variables or contain → exactly
once and as principal connective. Thus the rule (symm) gives us straightforwardly the mirror
versions of these rules. �
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The following proposition shows that connectives are uniquely determined by the rules we
have introduced.

PROPOSITION 3.1.4. Let L be a weakly implicative expansion of SL with the same principal
implication → and c a connective of LSL \ {0}. Suppose that ĉ is a connective (primitive
or definable) of L of the same arity as c obeying the rules for c in Table 3.2. Then the two
connectives are equivalent in L, i.e. `L ϕ c ψ↔ ϕ ĉ ψ, or `L c↔ ĉ, according to the arity of c.

Proof. The only non-trivial case is for . From `L (ϕ  ψ) → (ϕ  ψ) we use (E ) to
obtain `L ϕ→ ((ϕ ψ)→ ψ). Using (E ) this time for  ̂ gives us `L (ϕ ψ)→ (ϕ  ̂ψ).
The second implication is completely analogous. �

PROPOSITION 3.1.5. The following are derivable in SL:

(PSL1) ` ϕ→ ((ϕ→ ψ) ψ)
(PSL2) ` ϕ & (ϕ→ ψ)→ ψ

(PSL3) ` ϕ→ ((ϕ ψ)→ ψ)
(PSL4) ϕ ` (ϕ→ ψ)→ ψ

(PSL5) ϕ→ ψ ` (ψ→ χ)→ (ϕ→ χ) (Suffixing)

(PSL6) ψ→ χ ` (ϕ→ ψ)→ (ϕ→ χ) (Prefixing)

(PSL7) ` ϕ→ (ψ→ ψ & ϕ)
(PSL8) ϕ→ ψ ` χ & ϕ→ χ & ψ

(PSL9) ϕ→ ψ ` ϕ & χ→ ψ & χ

(PSL10) ϕ1 → ψ1, ϕ2 → ψ2 ` ϕ1 & ϕ2 → ψ1 & ψ2

(PSL11) ϕ, ψ ` ϕ ∧ ψ

(PSL12) ` (χ→ ϕ) ∧ (χ→ ψ)→ (χ→ ϕ ∧ ψ)
(PSL13) ` (ϕ→ χ) ∧ (ψ→ χ)→ (ϕ ∨ ψ→ χ)
(PSL14) ` 1
(PSL15) ` 1→ (ϕ→ ϕ)
(PSL16) ` ϕ↔ (1→ ϕ)
(PSL17) ` ϕ & 1↔ ϕ

(PSL18) ` 1 & ϕ↔ ϕ

(PSL19) ` > ↔ (⊥ → ⊥)
(PSL20) ` χ & (ϕ ∨ ψ)↔ χ & ϕ ∨ χ & ψ

(PSL21) ` (ϕ ∨ ψ) & χ↔ ϕ & χ ∨ ψ & χ

(PSL22) ` (ϕ ∧ 1) & (ψ ∧ 1)→ ϕ ∧ 1
(PSL23) ` (ϕ ∧ 1) & (ψ ∧ 1)→ ψ ∧ 1
(PSL24) ` (ϕ→ ψ) ∧ 1→ (ϕ ∧ 1→ ψ ∧ 1).
(PSL25) ` (ϕ→ ψ) ∧ 1→ (ϕ ∨ χ→ ψ ∨ χ)
(PSL26) ` (ϕ→ ψ) ∧ 1→ (ϕ ∨ ψ→ ψ)
(PSL27) ` (ψ→ ϕ) ∧ 1→ (ϕ ∨ ψ→ ϕ)
(PSL28) ` ϕ ∧ 1→ (ϕ ∧ 1) ∧ 1
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For ∗ ∈ {∧,∨}, SL also proves:

(C∗) ` ϕ ∗ ψ→ ψ ∗ ϕ

(I∗) ` ϕ ∗ ϕ↔ ϕ

(A∗) ` (ϕ ∗ ψ) ∗ χ↔ ϕ ∗ (ψ ∗ χ).

Proof. The proof of the second part is straightforward. We give hints of the proofs of the more
complicated statements in the first part:

(PSL1) From (ϕ→ ψ)→ (ϕ→ ψ) using (E ).

(PSL4) From (PSL1) using (MP) and (symm).

(PSL5) From ϕ→ ψ, ψ→ ((ψ→ χ) χ) ` ϕ→ ((ψ→ χ) χ) using (E ).

(PSL6) From (PSL2) we obtain ψ→ χ ` ϕ & (ϕ→ ψ)→ χ and (Res) completes the proof.

(PSL8) From ψ → (χ → χ & ψ) we obtain ϕ → ψ ` ϕ → (χ → χ & ψ) and (Res) completes
the proof.

(PSL9) Use the previous claim together with the duality theorem and (symm) twice.

(PSL11) ϕ ` 1→ ϕ and ψ ` 1→ ψ and thus ϕ, ψ ` 1→ ϕ ∧ ψ. The rest is trivial.

(PSL12) Using (∧1), (PSL2), and (PSL8) we prove χ & ((χ → ϕ) ∧ (χ → ψ) → ϕ) and
analogously also χ& ((χ→ ϕ) ∧ (χ→ ψ)→ ψ), (∧3) and (Res) complete the proof.

(PSL13) First, we obtain ((ϕ→ χ) χ)→ ((ϕ→ χ)∧(ψ→ χ) χ) from (∧1) and the dual
of (PSL5). Then from ϕ → ((ϕ → χ) χ) (PSL1) we obtain ϕ → ((ϕ → χ) ∧ (ψ →
χ) χ). Analogously we can prove that ψ → ((ϕ → χ) ∧ (ψ → χ) χ). Finally,
(∨3) and (E ) complete the proof.

(PSL16) From 1 → (ϕ ϕ) using (E ) we obtain ϕ → (1 → ϕ). The converse implication
follows from (PSL4) and (PSL14).

(PSL20) From (∨1) (or (∨2) respectively) and (PSL8) we obtain: χ & ϕ → χ & (ϕ ∨ ψ) and
χ&ψ→ χ&(ϕ∨ψ), and so (∨3) completes the proof of one implication. The converse
one: from (Res) and (∨1) (or (∨2) respectively) we obtain ϕ→ (χ→ χ& ϕ∨ χ&ψ)
and ψ→ (χ→ χ & ϕ ∨ χ & ψ). (∨3) and (Res) complete the proof.

(PSL21) Analogous (or using duality theorem and (symm)).

(PSL22) We apply (PSL8) to ψ∧1→ 1 and obtain (ϕ∧1) & (ψ∧1)→ (ϕ∧1) & 1 and (PSL17)
completes the proof. �

Next we study some notable extensions of SL.

DEFINITION 3.1.6. Let us consider the following consecutions:

a1 ϕ & (ψ & χ)→ (ϕ & ψ) & χ re-associate to the left

a2 (ϕ & ψ) & χ→ ϕ & (ψ & χ) re-associate to the right

e ϕ→ (ψ→ χ) ` ψ→ (ϕ→ χ) exchange

c ϕ→ (ϕ→ ψ) ` ϕ→ ψ contraction

i ` ψ→ (ϕ→ ψ) left weakening

o 0→ ϕ. right weakening
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Given any X ⊆ {a1, a2, e, c, i, o} and any weakly implicative logic L in a sufficiently expressive
language, by LX we denote the expansion of L by X. If both a1 and a2 are in X we replace them
by the symbol a. Analogously if both i and o are in X we replace them by the symbol w.

The next theorem shows how the axioms of exchange, contraction and weakening can be
described as properties of &. Moreover, it also shows under which conditions the conjunction
& is associative. It turns out that both halves of associativity are equivalent to other interesting
logical laws, usually resulting from strengthening rules of SL into an axiomatic form.

THEOREM 3.1.7. Each one of the following axiomatic extensions of SL is axiomatized by any
one of the corresponding indicated rules:

SLa1 1. ` (ϕ & ψ→ χ)→ (ψ→ (ϕ→ χ))

2. ` (ϕ→ ψ)→ ((χ→ ϕ)→ (χ→ ψ))

3. ` (ϕ→ (ψ χ))→ (ψ (ϕ→ χ)).

SLa2 1. ` (ψ→ (ϕ→ χ))→ (ϕ & ψ→ χ)

2. ` (ψ (ϕ→ χ))→ (ϕ→ (ψ χ)).

SLe 1. ` ϕ & ψ→ ψ & ϕ

2. ` (ϕ ψ)→ (ϕ→ χ)

3. ` (ϕ→ ψ)→ (ϕ χ).

SLc 1. ` ϕ→ ϕ & ϕ

2. ` ϕ ∧ ψ→ ϕ & ψ.

SLi 1. ` ϕ & ψ→ ψ

2. ψ ` ϕ→ ψ

3. ` ϕ→ 1

4. ` ϕ & ψ→ ϕ

5. ` ϕ & ψ→ ϕ ∧ ψ.

Proof. Recall that axioms are regarded as rules with empty set of hypotheses. The claims of
this theorem will be proved by showing (a chain of) implications of the form ‘the extension of
SL by the rule x derives the rule y’ ([x`y] in symbols), where x and y are either the names of
the rules or numbers denoting the formulae in question.

SLa1 [1`2] From χ& (χ→ ϕ)→ ϕ we obtain (ϕ→ ψ)→ (χ& (χ→ ϕ)→ ψ) (by Suffixing).
Thus 1 (in the form (χ & (χ → ϕ) → ψ) → ((χ → ϕ) → (χ → ψ))) and transitivity
complete the proof.

[2`3] From ψ → ((ψ  χ) → χ) (an instance of (PSL3)) and 2 we obtain ψ → ((ϕ →
(ψ χ))→ (ϕ→ χ)). (E ) finishes the proof.

[3`1] (ϕ&ψ→ χ)→ (ϕ&ψ→ χ) and so ϕ&ψ→ ((ϕ&ψ→ χ) χ) by (E ). Thus
ψ→ (ϕ→ ((ϕ & ψ→ χ) χ)), thus by 3 and transitivity ψ→ ((ϕ & ψ→ χ) (ϕ→
χ)). (E ) finishes the proof.
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[1`a1] From (ϕ&ψ) &χ→ (ϕ&ψ) &χ we get χ→ (ϕ&ψ→ (ϕ&ψ) &χ) by (Res); by
1 and transitivity we obtain χ→ (ψ→ (ϕ→ (ϕ & ψ) & χ)); (Res) used twice completes
the proof.

[a1`2] χ& (χ→ ϕ)→ ϕ thus by Suffixing (ϕ→ ψ)→ (χ& (χ→ ϕ)→ ψ); (Res) gives
us (χ&(χ→ ϕ))&(ϕ→ ψ)→ ψ and so using a1 we obtain χ&((χ→ ϕ)&(ϕ→ ψ))→ ψ;
(Res) completes the proof.

SLa2 [1`a2] From ϕ & (ψ & χ) → ϕ & (ψ & χ) by (Res) used twice we obtain χ → (ψ →
(ϕ→ ϕ & (ψ & χ))); by 1 and transitivity we obtain χ→ (ϕ & ψ→ ϕ & (ψ & χ)); (Res)
completes the proof.

[2`1] From (ψ → (ϕ → χ)) → (ψ → (ϕ → χ)) and (E ) we obtain ψ → ((ψ → (ϕ →
χ))  (ϕ → χ)). Thus also ψ → (ϕ → ((ψ → (ϕ → χ))  χ)) (by 2 and transitivity).
Using (Res) and (E ) complete the proof.

[a2`2] From (ψ (ϕ→ χ))→ (ψ (ϕ→ χ)) and (E ) we obtain ψ→ ((ψ (ϕ→
χ))→ (ϕ→ χ)) and so by the (Res) used twice we have ϕ& ((ψ (ϕ→ χ)) &ψ)→ χ.
Thus also (ϕ & (ψ  (ϕ → χ))) & ψ → χ by a2. Using (Res) and (E ) we obtain
ϕ & (ψ (ϕ→ χ))→ (ψ χ); (Res) completes the proof.

SLe [1`e] is obvious using (Res); [e`2] follows from Proposition 3.1.4. To prove [2`3] we
start with (PSL1): ϕ → ((ϕ → ψ) ψ), then 2 and (E ) complete the proof. To prove
[3`1] we start with (PSL7) and by 3 we obtain ϕ → (ψ ψ & ϕ), then (E ) and (Res)
complete the proof.

SLc [1`c] is obvious using (Res); for [c`2] observe that from (∧1) and (∧2) be obtain (ϕ ∧
ψ) & (ϕ∧ψ)→ ϕ&ψ by (PSL10) and so (Res) and c complete the proof. The final claim
[2`1] follows easily using (I∧).

SLi The proofs of [1`i], [i`2], [2`3], [3`1], [3`4], and [4`3] are almost straightforward. To
conclude the proof observe that from the fact that [i`4] we obtain [i`5] using (∧3); the
final implication [5`i] is trivial. �

Now we can easily obtain the duality theorem (cf. Theorem 3.1.3) for notable extensions
of SL. Recall that by χ′ we denote the mirror image of χ.

THEOREM 3.1.8 (Duality theorem for SLX). Let X ⊆ {a, e, c, i, o}. Then for each set of for-
mulae T ∪ {ϕ} we have:

T `SLX ϕ iff T ′ `SLX ϕ
′.

Based on the logic SL we introduce now a general notion of substructural logic. By doing
so we do not expect to encompass all logics that may have been labeled in this manner in the
literature, but we only intend to introduce a broad class of substructural logics in the framework
of weakly implicative logics to which our methods will usefully apply. We could achieve a
greater level of generality by means of a more complex, and probably less natural, definition,
however we think the following convention is broad enough for the purposes of the present
text.

CONVENTION 3.1.9 ((Associative) substructural logic). A weakly implicative logic in a lan-
guage L is substructural if it is an expansion of the L ∩ LSL-fragment of SL. A substructural
logic is associative if it expands the L ∩ LSL-fragment of SLa.
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Note that this convention clearly covers many well-known systems such as BCK and BCI,
all fuzzy logics introduced in [6, Chapter I], intuitionistic and classical logic. Later, in The-
orem 3.1.13, we identify SL with a well studied logical system: a bounded non-associative
variant of full Lambek logic FL [49]. Then it will become apparent that our convention also
covers most logics referred to as substructural logics in the literature. In particular it covers
all substructural logics over FL as deeply studied in [49] (axiomatic extensions of FL) or sub-
structural logics as logics of residuated structures as proposed in the final remarks (Section 6)
of [85] (fragments of axiomatic extensions of FL).

Our design choices make the definition of substructural logic a normative one in the sense
that, when using a traditional symbol for a connective of a given logic, we are postulating
that it must at least satisfy the logical rules derivable in SL. This may have some unexpected
consequences. For instance, the logic BCK∧ of BCK-semilattices [70] in the language {→,∧}
is not a substructural logic in the sense of our convention (it does not satisfy (PSL12) from
Proposition 3.1.5); however, if we formulated it in the language {→,∧}, then it would indeed
satisfy the convention (because then the only LSL connective present in its language, namely
→, behaves as it should). Other examples which illustrate this situation are Avron’s logics
RMImin and RMI, excluded from our notion because they do not satisfy (PSL11).

The previously proved syntactical properties of SL and its prominent extensions (Proposi-
tion 3.1.5 and Theorem 3.1.7) clearly hold for all substructural logics in a sufficiently expres-
sive language. Let us list several further observations on substructural logics (L stands for an
arbitrary weakly implicative substructural logic in a sufficiently expressive language):

• In Lo the truth constants 0 and ⊥ coincide (`SLo ⊥ ↔ 0) using Proposition 3.1.4.

• In Li the truth constants 1 and > coincide (`SLi > ↔ 1) using Proposition 3.1.4, and
furthermore `SLi 1↔ (ϕ→ ϕ).

• Lae is axiomatized (relative to L) by (ϕ→ (ψ→ χ))→ (ψ→ (ϕ→ χ)).

• Lac proves (ϕ → (ϕ → ψ)) → (ϕ → ψ) (but, in general, this axiom is not sufficient to
axiomatize Lac relative to L).

• L is Rasiowa-implicative iff it proves i (and thus all these logics are algebraically implica-
tive). Furthermore, in Rasiowa-implicative substructural logics we prove 1 ↔ (ϕ → ϕ)
and so 1 can be viewed as a defined connective.

The following are some basic semantic properties of the connectives in substructural logics,
which can be easily checked.

PROPOSITION 3.1.10. Let L be a substructural logic in a sufficiently expressive language and
A = 〈A, F〉 ∈MOD∗(L). Then:

1. 1
A

= min≤A F.

2. >A = max≤A A and >A ∈ F.

3. ⊥A = min≤A A and ⊥A < F if A is not trivial.

4. ≤A is a ∨-semilattice order.
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5. ≤A is a ∧-semilattice order.

6. →A is antitone in the first argument and monotone in the second one w.r.t. ≤A.

7. &A is monotone in both arguments w.r.t. ≤A and 1
A

is its unit.

8. For every x, y, z ∈ A, x &A y ≤A z iff y ≤A x→A z iff x ≤A y A z.

9. For every x, y, z ∈ A, x→A y = max{z | x &A z ≤A y}.

10. For every x, y, z ∈ A, x A y = max{z | z &A x ≤A y}.

11. For every x, y, z ∈ A, x &A y = min{z | y ≤A x→A z} = min{z | x ≤A y A z}.

Proof. All claims are easily checked. The eighth item follows from (Res) and the duality
theorem, and the last three items follow from this one. �

THEOREM 3.1.11. Any substructural logic with ∨ or ∧ in its language is algebraically im-
plicative.

Proof. The proof would be simpler if we further assumed that 1 is in the language of our logic,
because then the algebraizing pair would be simply 〈χ ∧ 1, 1〉 (or 〈χ ∨ 1, χ〉), which can be
proved in a straightforward way or using the previous proposition. Let us give a more general
proof not assuming the presence of 1.

Assume that our logic has ∧ in its language; we show that 〈(χ→ χ) ∧ χ, χ→ χ〉 is an alge-
braizing pair (in the second case we would analogously prove that claim for 〈(χ→ χ) ∨ χ, χ〉).
One direction is easy: trivially χ ` (χ→ χ)∧χ→ (χ→ χ) and χ ` (χ→ χ)→ (χ→ χ)∧χ (be-
cause χ ` (χ→ χ)→ χ). The second direction: clearly (χ→ χ)↔ (χ→ χ)∧χ ` (χ→ χ)∧χ
and so (χ→ χ)↔ (χ→ χ) ∧ χ ` χ (as obviously (χ→ χ) ∧ χ ` χ). �

Our next aim is to identify our basic logic SL and its extensions SLX among well-known
substructural logics. Since many substructural logics are introduced in the literature in their
unbounded form, we need the following convention:

CONVENTION 3.1.12. Let L be a weakly implicative logic. The logic called bounded L,
denoted as L⊥, is the expansion of L in the language with the additional truth constant ⊥
satisfying the axiom ⊥ → ϕ.

Reputably, the most prominent substructural logic is the full Lambek calculus [49], denoted
as FL. FL is formulated in a variant of our language LSL, which we will call here LFL, with
truth constants 0 and 1, two implication connectives \ and / (in the commutative extension of
FL, denoted as FLe, these two connectives coincide and then they are denoted by the symbol
→), residuated conjunction &,1 and lattice connectives ∧,∨. An axiomatic system for FL
(taken from [49, Figure 2.10]) is presented in Table 3.4.

Another important substructural logic is a non-associative variant of full Lambek calculus,
also in the language LFL, given by the axiomatic system in Table 3.3 (presented in [51, Fig-
ure 5]). The name and the symbol for this logic are not yet settled and thus we avoid any
explicit reference.

1There is a usual convention in the papers on this logic and its variants to omit the symbol & and write just ϕψ
instead of ϕ & ψ.



38 CHAPTER 3. SUBSTRUCTURAL LOGICS

ϕ \ ϕ ϕ, ϕ \ ψ ` ψ ϕ ` (ϕ \ ψ) \ ψ

ϕ \ ψ ` (ψ \ χ) \ (ϕ \ χ) ψ \ χ ` (ϕ \ ψ) \ (ϕ \ χ)

ϕ \ ((ψ / ϕ) \ ψ) ϕ \ (ψ \ χ) ` ψ \ (χ / ϕ) ψ / ϕ ` ϕ \ ψ

ϕ ∧ ψ \ ϕ ϕ ∧ ψ \ ψ (χ \ ϕ) ∧ (χ \ ψ) \ (χ \ ϕ ∧ ψ) ϕ, ψ ` ϕ ∧ ψ

ϕ \ ϕ ∨ ψ ψ \ ϕ ∨ ψ (ϕ \ χ) ∧ (ψ \ χ) \ (ϕ ∨ ψ \ χ) (χ / ϕ) ∧ (χ / ψ) \ (χ / ϕ ∨ ψ)

ψ \ (ϕ \ ϕψ) ψ \ (ϕ \ χ) ` ϕψ \ χ

1 1 \ (ϕ \ ϕ) ϕ \ (1 \ ϕ)

Table 3.3: The axiomatic system for the ‘non-associative’ full Lambek logic

Before we show how these two logics are related with SL we provide a translation between
their languages. We actually present two possible translations (the duality theorem ensures the
validity of the following theorem no matter which one we use).2

LFL notation direct translation indirect translation
ϕψ ϕ & ψ ψ & ϕ

ϕ \ ψ ϕ→ ψ ϕ ψ

ψ / ϕ ϕ ψ ϕ→ ϕ

THEOREM 3.1.13. The logic SLa is termwise equivalent to bounded full Lambek logic us-
ing any of the translations given above. Analogously, the logic SL is termwise equivalent to
bounded non-associative full Lambek logic.

Proof. All the axioms and rules of (non-associative) full Lambek logic are among the consecu-
tions in Table 3.2, those proved in Proposition 3.1.5 or are equivalent to associativity as shown
in Theorem 3.1.7. We leave the converse direction as an exercise. �

Therefore, all the prominent extensions of SLa that we have considered here are the bounded
versions of the well-known extensions of FL studied in the mainstream literature on substruc-
tural logics, namely for every X ⊆ {e, c, i, o} SLa,X coincides with the bounded version of FLX

(modulo language translation). The logics FLX are called basic substructural logics in [49].
Since in any substructural logic extending SLe only one implication is needed, we obtain a

simplified axiomatic system for FLe in Table 3.5 (taken from [49, Figure 2.9]). One can easily
observe that the axiomatic system for FLew can be simplified by taking the one for FLe and
replacing (&∧) with ϕ & ψ→ ϕ ∧ ψ and removing the axioms (1), (1→), and the rule (adju).

3.2 Deduction theorems and proof by cases property

In this section we deal with various forms of deduction theorems and use them to obtain proof
by cases properties for prominent substructural logics. Let us fix a substructural logic L in a
propositional language L.

2This independence from the choice of the translation also ensures that any fragment of (non-associative) full
Lambek logic containing at least / or \ is substructural in the sense of Convention 3.1.9.
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(idl) ϕ\ϕ (identity)
(pfl) (ϕ\ψ)\[(χ\ϕ)\(χ\ψ)] (prefixing)
(asll) ϕ\[(ψ/ϕ)\ψ] (assertion)

(a) [(ψ\χ)/ϕ]\[ψ\(χ/ϕ)] (associativity)
(&\/) [ψ(ψ\ϕ)/ψ]\(ϕ/ψ) (fusion divisions)
(&∧) [(ϕ ∧ 1)(ψ ∧ 1)]\(ϕ ∧ ψ) (fusion conjunction)
(∧\) (ϕ ∧ ψ)\ϕ (conjunction division)
(∧\) (ϕ ∧ ψ)\ψ (conjunction division)
(\∧) [(ϕ\ψ) ∧ (ϕ\χ)]\[ϕ\(ψ ∧ χ)] (division conjunction)
(\∨) ϕ\(ϕ ∨ ψ) (division disjunction)
(\∨) ψ\(ϕ ∨ ψ) (division disjunction)
(∨\) [(ϕ\χ) ∧ (ψ\χ)]\[(ϕ ∨ ψ)\χ] (disjunction division)
(\&) ψ\(ϕ\ϕψ) (division fusion)
(&\) [ψ\(ϕ\χ)]\(ϕψ\χ) (fusion division)

(1) 1 (unit)
(1\) 1\(ϕ\ϕ) (unit division)
(\1) ϕ\(1\ϕ) (division unit)

(mpl) ϕ, ϕ\ψ ` ψ (modus ponens)
(adju) ϕ ` ϕ ∧ 1 (adjunction unit)
(pnl) ϕ ` ψ\ϕψ (product normality)
(pnr) ϕ ` ψϕ/ψ (product normality)

Table 3.4: An axiomatic system for FL

Recall that we work with a fixed set of propositional variables Var. Let ? < Var be a new
symbol, which acts as placeholder for a special kind of substitutions. A ?-formula is built
using variables Var ∪ {?} and a ?-substitution is a substitution in the extended language. Let ϕ
be a ?-formula, δ be a ?-formula, and σ a ?-substitution defined as σ(?) = ϕ and σp = p for
p ∈ Var. By δ(ϕ) we denote the ?-formula σδ; note that if ϕ is a formula in the original set of
variables, so is δ(ϕ).

DEFINITION 3.2.1. Given a set Γ of ?-formulae, we define the set Γ∗ of ?-formulae as the
smallest set such that
• ? ∈ Γ∗ and
• δ(γ) ∈ Γ∗ for each δ ∈ Γ and each γ ∈ Γ∗.

DEFINITION 3.2.2. Assume that L has & and 1 in its language. Given a set Γ of ?-formulae,
an SL-algebra A, and X ⊆ A, we define
• Π(Γ) as the smallest set of ?-formulae containing Γ ∪ {1} and closed under &.
• ΓA as the set of unary polynomials built using terms from Γ with coefficients from A and

variable ?, i.e.,

ΓA = {δ(?, a1, . . . , an) | δ(?, p1, . . . , pn) ∈ Γ and a1, . . . , an ∈ A}.

• ΓA(X) as the set {δA(x) | δ(?) ∈ ΓA and x ∈ X}.
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(id) ϕ→ ϕ (identity)
(pf) (ϕ→ ψ)→ ((χ→ ϕ)→ (χ→ ψ)) (prefixing)

(per) (ϕ→ (ψ→ χ))→ (ψ→ (ϕ→ χ)) (permutation)
(&∧) [(ϕ ∧ 1)(ψ ∧ 1)]→ (ϕ ∧ ψ) (fusion conjunction)
(∧→) (ϕ ∧ ψ)→ ϕ (conjunction implication)
(∧→) (ϕ ∧ ψ)→ ψ (conjunction implication)
(→∧) [(ϕ→ ψ) ∧ (ϕ→ χ)]→ [ϕ→ (ψ ∧ χ)] (implication conjunction)
(→∨) ϕ→ (ϕ ∨ ψ) (implication disjunction)
(→∨) ψ→ (ϕ ∨ ψ) (implication disjunction)
(∨→) [(ϕ→ χ) ∧ (ψ→ χ)]→ [(ϕ ∨ ψ)→ χ] (disjunction implication)
(→&) ψ→ (ϕ→ ϕψ) (division fusion)
(&→) [ψ→ (ϕ→ χ)]→ (ϕψ→ χ) (fusion implication)

(1) 1 (unit)
(1→) 1→ (ϕ→ ϕ) (unit implication)

(mp) ϕ, ϕ→ ψ ` ψ (modus ponens)
(adju) ϕ ` ϕ ∧ 1 (adjunction unit)

Table 3.5: An axiomatic system for FLe

We omit the symbol A when known from the context. Note that the elements of Π(Γ) can
be uniquely described by finite trees labeled by elements of Γ ∪ {1}.3

DEFINITION 3.2.3 ((Almost) (MP)-based logic, basic deduction terms). Let bDT be a set of
?-formulae closed under all ?-substitutions σ such that σ(?) = ?. A substructural logic L is
almost (MP)-based w.r.t. the set of basic deduction terms bDT if:

• L has a presentation where the only deduction rules are modus ponens and those from
{ϕ B γ(ϕ) | ϕ ∈ FmL, γ ∈ bDT}, and

• for each β ∈ bDT and each formulae ϕ, ψ, there exist β1, β2 ∈ bDT∗ such that:

`L β1(ϕ→ ψ)→ (β2(ϕ)→ β(ψ)).

L is called (MP)-based if it admits the empty set as a set of basic deduction terms.

Note that the described axiomatic system is indeed closed under all substitutions. It is easy
to observe that FLe is almost (MP)-based with bDT = {? ∧ 1} (recall the axiomatic system in
Table 3.5 and (PSL24)), while FLew is (MP)-based; the question whether FL or even SL are
almost (MP)-based are much more complicated and we will deal with the problem in the next
section. Note that the axiomatic system of FL (Table 3.4) already contains the rules of the
proper form so all we have to do is to prove the last defining condition; on the other hand the
axiomatic system for SL (Table 3.3) is clearly not suitable and will need to be substituted by
an alternative one.

3A problem could arise here if Γ contains a conjunction of some of its elements; then there are (at least) two
trees ‘representing’ this formula as conjunction of elements of Γ. Clearly there has to be a tree containing all the
possible tree-representation as subtrees; we take this maximal one as the unique representation.
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Also notice that any axiomatic extension of an almost (MP)-based logic is almost (MP)-
based too. Finally observe that ϕ `L χ(ϕ) for each χ ∈ Π(bDT∗), and, if L is (MP)-based (i.e.
has bDT = ∅), then bDT∗ = {?}.

LEMMA 3.2.4. Let L be a substructural logic and assume that it is almost (MP)-based with a
set of basic deduction terms bDT. Then

1. for each γ ∈ bDT∗ and formulae ϕ, ψ there exists γ′ ∈ bDT∗ such that

ϕ→ ψ `L γ
′(ϕ)→ γ(ψ),

2. for each γ ∈ bDT∗ and formulae ϕ, ψ there exist γ1, γ2 ∈ bDT∗ such that

`L γ1(ϕ→ ψ)→ (γ2(ϕ)→ γ(ψ)),

3. for each γ ∈ bDT∗ and formulae ϕ, ψ there exist γ1, γ2 ∈ bDT∗ such that

`L γ1(ϕ) & γ2(ψ)→ γ(ϕ & ψ),

4. for each γ ∈ bDT∗, δ ∈ Π(bDT∗), and a formula ϕ there exists δ̂ ∈ Π(bDT∗) such that

`L δ̂(ϕ)→ γ(δ(ϕ)).

Proof. We prove the first two claims at once by induction. The base case γ = ? is trivial in
both claims. Assume that γ = β(δ) for some β ∈ bDT and δ ∈ bDT∗. The induction assumption
of the first claim gives us δ′ ∈ bDT∗ such that

ϕ→ ψ `L δ
′(ϕ)→ δ(ψ).

Now we use the definition of bDT for δ′(ϕ) and δ(ψ) and obtain β1, β2 ∈ bDT∗ such that:

`L β1(δ′(ϕ)→ δ(ψ))→ (β2(δ′(ϕ))→ β(δ(ψ))).

Thus if we set γ′ = β2(δ′) the proof of the first claim is done (just observe that ϕ → ψ `L
β1(δ′(ϕ)→ δ(ψ))).

In the second claim, assuming again that γ = β(δ) for some β ∈ bDT and δ ∈ bDT∗, the
induction assumption gives us δ1, δ2 ∈ bDT∗ such that

`L δ1(ϕ→ ψ)→ (δ2(ϕ)→ δ(ψ)),

Now we use the definition of bDT for δ2(ϕ) and δ(ψ) and obtain β1, β2 ∈ bDT∗ such that:

`L β1(δ2(ϕ)→ δ(ψ))→ (β2(δ2(ϕ))→ β(δ(ψ))).

Now we apply the first claim for γ = β1, ϕ = δ1(ϕ → ψ), ψ = δ2(ϕ) → δ(ψ) and obtain
β′1 ∈ bDT∗ such that

`L β
′
1(δ1(ϕ→ ψ))→ β1(δ2(ϕ)→ δ(ψ)).

Transitivity and setting γ1 = β′1(δ1) and γ2 = β2(δ2) completes the proof of the second claim.
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To prove the third claim we use the second one for ψ = ϕ & ψ and obtain γ1, γ2 ∈ bDT∗

`L γ1(ϕ→ ϕ & ψ)→ (γ2(ϕ)→ γ(ϕ & ψ)).

Since `L ψ → (ϕ → ϕ & ψ) (Adj&) we can use the first claim for γ = γ1 to obtain γ′1 ∈ bDT∗

such that
`L γ

′
1(ψ)→ γ1(ϕ→ ϕ & ψ).

Claim 3 then simply follows by (T) and (Res1).
To prove the last claim we proceed by induction via the depth of the tree representing δ. If

δ ∈ bDT∗ or δ = 1, the proof is done by setting δ̂ = γ(δ) or δ̂ = 1 respectively. Next assume
that δ = η1 & η2 for some η1, η2 ∈ Π(bDT∗). By the third claim we obtain γ1, γ2 ∈ bDT∗ such
that `L γ1(η1(ϕ)) & γ2(η2(ϕ)) → γ(η1(ϕ) & η2(ϕ)). Then, by the induction assumption, we
obtain δ̂1, δ̂2 ∈ Π(bDT∗) such that `L δ̂1(ϕ) → γ1(η1(ϕ)) and `L δ̂2(ϕ) → γ2(η2(ϕ)). Setting
δ̂ = δ̂1 & δ̂2 completes the proof using (PSL10). �

We are ready now to prove a semantical (or transferred) version of (parameterized) local
deduction theorem for almost (MP)-based substructural logics.

THEOREM 3.2.5. Let L be an almost (MP)-based substructural logic with a set of basic de-
duction terms bDT. Let A be an LSL-algebra and X ∪ {x} ⊆ A. Then y ∈ FiA

L (X, x) iff
γA(x)→A y ∈ FiA

L (X) for some γ ∈ (Π(bDT∗))A.

Proof. Right-to-left direction: clearly γ(x) ∈ Fi(X, x) (because ϕ ` γ0(ϕ) for each γ0 ∈ bDT∗,
ϕ, ψ ` ϕ & ψ and Fi(X, x) is closed under the rules of L). Since Fi(X, x) is closed under modus
ponens we obtain that y ∈ Fi(X, x).

To prove the other direction let us take y ∈ Fi(X, x), we show that for each a in a proof
of y from the assumptions X ∪ {x} (recall Proposition 2.1.22) there is γa ∈ Π(bDT∗) such that
γa(x) → a ∈ Fi(X). If a = x we set γa = ?; if a is in X or is the value of some axiom we set
γa = 1.

Assume that a is obtained by modus ponens from b ∈ Fi(X, x) and b → a ∈ Fi(X, x).
By induction hypothesis, we obtain γb, γb→a ∈ Π(bDT∗) such that γb→a(x) → (b → a),
γb(x) → b ∈ Fi(X). Therefore (using Sf) we have (b → a) → (γb(x) → a) ∈ Fi(X) and
by transitivity γb→a(x) → (γb(x) → a) ∈ Fi(X). The proof is done by setting γa = γb & γb→a

and using residuation.
Assume that a = β(b) from some β ∈ bDT and is obtained from b ∈ Fi(X, x) by the rule ϕ `

β(ϕ). By the induction hypothesis, we have γb ∈ Π(bDT∗) such that γb(x)→ b ∈ Fi(X). Using
the first claim of Lemma 3.2.4 we obtain γ ∈ bDT∗ such that γ(γb(x)) → β(b) ∈ Fi(X). Using
the fourth claim of Lemma 3.2.4 we obtain γ̂b ∈ Π(bDT∗) such that γ̂b(x) → γ(γb(x)) ∈ Fi(X)
and so transitivity completes the proof. �

This theorem has two important consequences; the first one is a straightforward corollary
in the particular case when A is the algebra of formulae and recalling that in this case ϕ ∈ Fi(Γ)
iff Γ `L ϕ.

COROLLARY 3.2.6 (Local Deduction Theorem for almost (MP)-based logics). Let L be an
associative substructural logic with & and 1 in the language. Let L be an almost (MP)-based
substructural logic with a set of basic deduction terms bDT. Then for each set Γ ∪ {ϕ, ψ} of
formulae the following holds:

Γ, ϕ `L ψ iff Γ `L γ(ϕ)→ ψ for some γ ∈ Π(bDT∗).
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Therefore, we obtain a (parameterized or non-parameterized, depending on the presence of
parameters in the set bDT) local deduction theorem for almost (MP)-based logics. In the next
section we show that this class includes SL and its axiomatic extensions (giving an explicit
description of their corresponding bDTs, see Table 3.8). On the other hand, Theorem 3.2.5 can
be used to obtain the following algebraic description of the filter generated by a set.

COROLLARY 3.2.7 (Filter generation). Let L be an almost (MP)-based substructural logic
with a set of basic deduction terms bDT. Let A be an L-algebra and X ⊆ A. Then FiA

L (X) =

{a ∈ A | a ≥ x for some x ∈ (Π(bDT∗))A(X)}.

Proof. Clearly bDT∗(X) ⊆ Fi(X) (because ϕ ` γ(ϕ) for each γ ∈ bDT∗ and Fi(X) is closed
under the rules of L). Furthermore we obtain (Π(bDT∗))A(X) ⊆ Fi(X) from ϕ, ψ ` ϕ & ψ.
Finally take x ∈ (Π(bDT∗))A(X). We know that a ≥ x implies that x → a ≥ 1 and so
x → a ∈ Fi(X). Thus the closedness of Fi(X) under modus ponens completes the proof of one
direction.

To prove the other inclusion assume that a ∈ Fi(X). There has to be a finite set {x1, . . . xn} =

X′ ⊆ X such that a ∈ Fi(X′) (due to Proposition 2.1.22). Repeated use of the previous theorem
gives us γ1, . . . , γn ∈ (Π(bDT∗))A such that

γn(xn) & (. . . & γ1(x1)) . . . )→ a = γ1(x1)→ (γ2(x2)→ . . . (γn(xn)→ a) . . . ) ∈ Fi(∅) =

= {x | x ≥ 1}.

Therefore a ≥ x for x = γn(xn) & (. . . & γ1(x1)) . . . ) ∈ (Π(bDT∗))A(X). �

DEFINITION 3.2.8 (Almost-Implicational Deduction Theorem, deduction terms). Let DT be
a set of ?-formulae. A logic L has the Almost-Implicational Deduction Theorem w.r.t. the set
of deduction terms DT, if for each set Γ ∪ {ϕ, ψ} of formulae:

Γ, ϕ `L ψ iff Γ `L δ(ϕ)→ ψ for some δ ∈ DT.

Corollary 3.2.6 says that all almost (MP)-based logics enjoy the Almost-Implicational De-
duction Theorem with DT = Π(bDT∗). We improve this result in two ways: first we notice
under which assumption we can simplify the set of deduction terms, and second we show that
the condition that L is almost (MP)-based is in fact necessary.

THEOREM 3.2.9. Let L be a substructural with & and 1 in the language satisfying the Almost-
Implicational Deduction Theorem w.r.t. a set DT.

• L has the Almost-Implicational Deduction Theorem w.r.t. a set DT′ ⊆ DT if, and only if,
for every χ ∈ DT and every formula ϕ there is δ ∈ DT′ such that `L δ(ϕ)→ χ(ϕ).

• If L is finitary, then L is almost (MP)-based with the set

bDT = {σδ | δ ∈ DT, σ a ? -substitution such that σ(?) = ?}.

Proof. The proof of the right-to-left direction of the first claim is straightforward. The converse
one is also easy: from `L χ(ϕ) → χ(ϕ) we obtain (using Almost-Implicational Deduction
Theorem w.r.t. DT) ϕ `L χ(ϕ) and so (using Almost-Implicational Deduction Theorem w.r.t.
DT′) we obtain `L δ(ϕ)→ χ(ϕ) for some δ ∈ DT′.
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For the proof of the second claim, let us define the logic L′ axiomatized by all the theorems
of L, modus ponens and the rules {ϕ B δ(ϕ) | ϕ ∈ FmL, δ ∈ bDT} (note that this set is closed
under substitutions). From `L δ(ϕ) → δ(ϕ) and the right-to-left direction of the Deduction
Theorem we obtain that ϕ `L δ(ϕ), as L is substructural, it has modus ponens and so L′ ⊆ L.
Assume that Γ `L ψ. Due to the finitarity we have ϕ1, . . . , ϕn `L ψ for ϕi ∈ Γ. By repeatedly
using the left-to-right direction of the Deduction Theorem we obtain `L δ1(ϕ1) → (δ2(ϕ2) →
(· · · → (δn(ϕn) → ψ) . . . ) for δi ∈ DT. Thus we obviously have ϕ1, . . . , ϕn `L′ ψ. The last
defining condition of a set of basic deduction terms is easily obtained by a double application
of the Deduction Theorem to ϕ→ ψ, ϕ `L σδ(ψ). �

Let us recall the standard notation ϕn = ϕn−1 & ϕ (where ϕ0 = 1). Note that in associative
substructural logics the bracketing in ϕn is irrelevant.

COROLLARY 3.2.10 (Local Deduction Theorem for associative (MP)-based logics). Let L be
an associative substructural logic with & and 1 in the language. Then L is (MP)-based iff L is
finitary and for each set Γ ∪ {ϕ, ψ} of formulae the following holds:

Γ, ϕ `L ψ iff Γ `L ϕ
n → ψ for some n ≥ 0.

Interestingly enough, the deductions theorems studied in this section yield a connection
with a variant of the classical proof by cases property. Recall that classical logic enjoys this
meta-rule:

Γ, ϕ ` χ Γ, ψ ` χ

Γ, ϕ ∨ ψ ` χ
.

We will see now how a similar property can be obtained for almost (MP)-based substructural
logics with a more complex form of disjunction built from their sets of basic deduction terms.

THEOREM 3.2.11 (Proof by Cases Property). Let L be a substructural logic with & and 1 in
its language and assume that it is almost (MP)-based with a set of basic deduction terms bDT.
Then the following meta-rule is valid in L:

Γ, ϕ ` χ Γ, ψ ` χ

Γ ∪ {α(ϕ) ∨ β(ψ) | α, β ∈ (bDT ∪ {? ∧ 1})∗} ` χ
.

Proof. Clearly the set bDT∪{?∧1} is a set of basic deduction terms (because already the logic
SL proves (Adju) and (PSL24)).

Assume that Γ, ϕ `L χ and Γ, ψ `L χ. From Corollary 3.2.6 we obtain δϕ, δψ ∈ Π((bDT ∪
{? ∧ 1})∗) such that Γ `L δϕ(ϕ) → χ and Γ `L δψ(ψ) → χ. Thus also Γ `L δϕ(ϕ) ∧ 1 → χ

and Γ `L δψ(ψ) ∧ 1 → χ (due to (∧1) and (T)) and so, without a loss of generality, we might
assume that the outmost term in δϕ and δψ is ? ∧ 1 and so we have `L δ(ϕ) & ψ → ψ and
`L ψ & δ(ϕ)→ ψ (due to (PSL22) and (PSL23)) for both δ = δϕ and δ = δψ.

We also know that Γ `L δϕ(ϕ) ∨ δψ(ψ) → χ by (∨3). The proof is done by showing by
induction over the sum of the depths of the trees representing δϕ, δψ that:

{α(ϕ) ∨ β(ψ) | α, β ∈ (bDT ∪ {? ∧ 1})∗} `L δϕ(ϕ) ∨ δψ(ψ).

The base of induction (when δϕ, δψ ∈ (bDT∪{?∧1})∗) is trivial. For the induction step assume
that δψ = δ1 & δ2. Using (PSL20), (PSL21), (∨1), (∨2), and (∨3) we obtain the following chain
of implications:
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(δϕ(ϕ) ∨ δ1(ψ)) & (δϕ(ϕ) ∨ δ2(ψ))→

→ [δϕ(ϕ) & δϕ(ϕ)] ∨ [δϕ(ϕ) & δ2(ψ)] ∨ [δ1(ψ) & δϕ(ϕ)] ∨ [δ1(ψ) & δ2(ψ)]→

→ δϕ(ϕ) ∨ δϕ(ϕ) ∨ δϕ(ϕ) ∨ [δ1(ψ) & δ2(ψ)]→ δϕ(ϕ) ∨ δψ(ψ).

The induction assumption used for δϕ(ϕ) ∨ δ1(ψ) and δϕ(ϕ) ∨ δ2(ψ) together with (Adj&) com-
pletes the proof. �

If bDT∗ contains a formula δ such that `L δ ↔ ? ∧ 1 (which is the case in all prominent
axiomatic extensions of SL we consider, see Table 3.8) we can omit the extra formula ? ∧ 1
from the formulation of the above theorem.

3.3 Almost (MP)-based axiomatizations of substructural logics

We have seen that FLew is an example of (MP)-based logic and FLe is an example of almost
(MP)-based logic which is not (MP)-based. The situation in FL is more complicated but the
axiomatic system of FL (Table 3.4) at least contains the rules of proper form, so we have a
clear ideas what a bDT for this logic could be. First we introduce the notion of conjugate.

DEFINITION 3.3.1 (Left, right and iterated conjugates). Given formula α, we define left and
right conjugates w.r.t. α as λα(?) = α→ ? & α and ρα(?) = α α & ?.

An iterated conjugate is a formula of the form γ(?) = γα1(γα2(. . . (γαn(?) ∧ 1) ∧ 1 . . . ) ∧ 1,
where each γαi is either λαi or ραi .

4

THEOREM 3.3.2. FL is almost (MP)-based with the set of basic deduction terms

bDTFL = {λα(?), ρα(?), ? ∧ 1 | α ∈ FmL}.

Proof. Let bDTFL be the set of all left and right conjugates. Note that this set is closed under
every substitution for which σ(?) = ? and To complete the proof that bDTFL is a set of basic
deductive terms of FL, it is enough to prove the following:

` (ϕ→ ψ) ∧ 1→ (ϕ ∧ 1→ ψ ∧ 1)

` ρα(ϕ→ ψ)→ (ρα(ϕ)→ ρα(ψ))

` λα(ϕ→ ψ)→ (λα(ϕ)→ λα(ψ)).

The first claim is just theorem (PSL24). The proof of the other two claims is heavily based
on associativity; we use its variant forms introduced in Theorem 3.1.7. First we prove (ϕ →
ψ) → (α & ϕ → α & ψ): from (PSL7) in the form (ψ → (α → α & ψ)) and prefixing get
(ϕ → ψ) → (ϕ → (α → α & ψ)) and so associativity finishes the proof. Now we prove the
second claim:

4In the literature on substructural logics, the names λε and ρε denote slightly more complicated terms, namely
λε = (ε → ? & ε) ∧ 1 and ρε = (ε  ε & ?) ∧ 1. In the theory of residuated lattices these terms are called
respectively left and right conjugate and are useful for obtaining a bijective correspondence between the lattices of
congruences and convex normal subalgebras; see e.g. [49, Theorem 3.47].
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(R) ` ϕ→ ϕ As ϕ ` (ϕ→ ψ)→ ψ

(MP) ϕ, ϕ→ ψ ` ψ (As``) ` ϕ→ ((ϕ ψ)→ ψ)

Sf ϕ→ ψ ` (ψ→ χ)→ (ϕ→ χ) (Symm1) ϕ ψ ` ϕ→ ψ

Pf ψ→ χ ` (ϕ→ ψ)→ (ϕ→ χ) (E 1) ϕ→ (ψ→ χ) ` ψ→ (ϕ χ)

(Res1) ψ→ (ϕ→ χ) ` ϕ & ψ→ χ (R′) ` 1→ (ϕ→ ϕ)

(Adj&) ` ϕ→ (ψ→ ψ & ϕ) (Push) ` ϕ→ (1→ ϕ)

(Bot) ` ⊥ → ϕ (1) ` 1

(∧1) ` ϕ ∧ ψ→ ϕ (∨1) ` ϕ→ ϕ ∨ ψ

(∧2) ` ϕ ∧ ψ→ ψ (∨2) ` ψ→ ϕ ∨ ψ

(∧3) ` (χ→ ϕ) ∧ (χ→ ψ)→ (χ→ ϕ ∧ ψ) (∨3) ` (ϕ→ χ) ∧ (ψ→ χ)→ (ϕ ∨ ψ→ χ)

(Adj) ϕ, ψ ` ϕ ∧ ψ (∨3 ) ` (ϕ χ) ∧ (ψ χ)→ (ϕ ∨ ψ χ)

Table 3.6: The original axiomatic system for SL

a (ϕ ψ)→ ((α ϕ) (α ψ)) mirror of associativity

b (ψ (ϕ α))→ (ψ & ϕ α) mirror of associativity

c (ϕ→ ψ)→ (α & ϕ→ α & ψ) proved above

d α & ϕ→ ((ϕ→ ψ) α & ψ) c and (E )

e (α α & ϕ)→ [α ((ϕ→ ψ) α & ψ)] d and mirror of (PSL6)

f (α α & ϕ)→ [α & (ϕ→ ψ) α & ψ] e and an instance of b

g (α α & ϕ)→ [(α α & (ϕ→ ψ)) (α α & ψ)] f and an instance of a

h (α α & (ϕ→ ψ))→ [(α α & ϕ)→ (α α & ψ)] g and (E )

Proof of the last claim:

a′ (ϕ ψ)→ (ϕ & α ψ & α) mirror of c

b′ ϕ→ ((ϕ→ ψ) ψ)) (PSL1)

c′ ϕ→ ((ϕ→ ψ) & α ψ & α) a′ and an instance of b′

d′ (ϕ→ ψ) & α→ (ϕ→ ψ & α) c′ and (E )

e′ (α→ (ϕ→ ψ) & α)→ [α→ (ϕ→ ψ & α)] d′ and (PSL6)

f′ (α→ (ϕ→ ψ) & α)→ (ϕ & α→ ψ & α) e′ and associativity

g′ (α→ (ϕ→ ψ) & α)→ [(α→ ϕ & α)→ (α→ ψ & α)] f′ and associativity

�

Next we deal with the much more complicated case of SL. First we recast its axiomatic
systems from Table 3.3 in Table 3.3 in our notation (LSL instead of LFL) including names so
we can easily refer to particular axioms.
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(Adj&) ϕ→ (ψ→ ψ & ϕ) (Bot) ⊥ → ϕ

(Adj& ) ϕ→ (ψ ϕ & ψ) (&∧) (ϕ ∧ 1) & (ψ ∧ 1)→ ϕ ∧ ψ

(∧1) ϕ ∧ ψ→ ϕ (∨1) ϕ→ ϕ ∨ ψ

(∧2) ϕ ∧ ψ→ ψ (∨2) ψ→ ϕ ∨ ψ

(∧3) (χ→ ϕ) ∧ (χ→ ψ)→ (χ→ ϕ ∧ ψ) (∨3) (ϕ→ χ) ∧ (ψ→ χ)→ (ϕ ∨ ψ→ χ)

(Res′) ψ & (ϕ & (ϕ→ (ψ→ χ)))→ χ (Push) ϕ→ (1→ ϕ)

(Res′ ) (ϕ & (ϕ→ (ψ χ))) & ψ→ χ (Pop) (1→ ϕ)→ ϕ

(T′) (ϕ→ (ϕ & (ϕ→ ψ)) & (ψ→ χ))→ (ϕ→ χ)
(T′ ) (ϕ ((ϕ ψ) & ϕ) & (ψ→ χ))→ (ϕ χ)

(MP) ϕ, ϕ→ ψ ` ψ (Adju) ϕ ` ϕ ∧ 1
(α) ϕ ` δ & ε→ δ & (ε & ϕ) (β) ϕ ` δ→ (ε→ (ε & δ) & ϕ)

(α′) ϕ ` δ & ε→ (δ & ϕ) & ε (β′) ϕ ` δ→ (ε (δ & ε) & ϕ)

Table 3.7: New axiomatic system for SL

THEOREM 3.3.3. The axiomatic system from Table 3.7 is a presentation of SL.

Proof. Let us denote the proposed axiomatic system as AS. To prove one direction we only
need to know the derivability of the new rules of AS in SL (all its axioms are either shown
to be theorems of SL in Section 3.1 or can be proved easily). Conversely, we show that AS
proves all axioms and rules of SL.

SL proves (α):

(a) ` χ→ (ψ→ ψ & χ) (Adj&)

(b) χ ` ψ→ ψ & χ (a) and (MP)

(c) χ ` ϕ & ψ→ ϕ & (ψ & χ) (PSL8), (b), and (MP)

SL proves (α′):

(a) ` χ→ (ϕ→ ϕ & χ) (Adj&)

(b) χ ` ϕ→ ϕ & χ (a) and (MP)

(c) χ ` ϕ & ψ→ (ϕ & χ) & ψ (PSL9), (b), and (MP)

SL proves (β):

(a) ` χ→ (ϕ & ψ→ (ϕ & ψ) & χ) (Adj&)

(b) χ ` ϕ & ψ→ (ϕ & ψ) & χ (a) and (MP)

(c) χ ` ψ→ (ϕ→ (ϕ & ψ) & χ) (b) and (Res)

SL proves (β′):

(a) χ ` ϕ→ (ψ→ (ψ & ϕ) & χ) (β)

(b) χ ` ψ→ (ϕ (ψ & ϕ) & χ) (a) and (E 1)

Next we prove the second direction step by step.
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AS proves χ→ ϕ, ϕ→ ψ ` χ→ ψ (T):

(a) ` (χ→ (χ & (χ→ ϕ)) & (ϕ→ ψ))→ (χ→ ψ) (T′)

(b) ϕ→ ψ ` (χ→ ϕ)→ (χ→ (χ & (χ→ ϕ)) & (ϕ→ ψ)) (β)

(c) χ→ ϕ, ϕ→ ψ ` (χ→ (χ & (χ→ ϕ)) & (ϕ→ ψ)) (b) and (MP)

(d) χ→ ϕ, ϕ→ ψ ` χ→ ψ (a), (c), and (MP)

AS proves ϕ→ ψ ` (χ→ ϕ)→ (χ→ ψ) Pf:

(a) ` (χ→ (χ & (χ→ ϕ)) & (ϕ→ ψ))→ (χ→ ψ) (T′)

(b) ϕ→ ψ ` (χ→ ϕ)→ (χ→ (χ & (χ→ ϕ)) & (ϕ→ ψ)) (β)

(c) ϕ→ ψ ` (χ→ ϕ)→ (χ→ ψ) (a), (b), and (T)

AS proves ϕ→ ψ ` (χ ϕ)→ (χ ψ) (Pf ):

(a) ` (χ ((χ ϕ) & χ) & (ϕ→ ψ))→ (χ ψ) (T′ )

(b) ϕ→ ψ ` (χ ϕ)→ (χ ((χ ϕ) & χ) & (ϕ→ ψ)) (β′)

(c) ϕ→ ψ ` (χ ϕ)→ (χ ψ) (a), (b), and (T)

AS proves ϕ→ (ψ→ χ) ` ψ & ϕ→ χ (Res1):

(a) ` ψ & (ϕ & (ϕ→ (ψ→ χ)))→ χ (Res′)

(b) ϕ→ (ψ→ χ) ` ψ & ϕ→ ψ & (ϕ & (ϕ→ (ψ→ χ))) (α)

(c) ϕ→ (ψ→ χ) ` ψ & ϕ→ χ (a), (b), and (T)

AS proves ϕ→ (ψ χ) ` ϕ & ψ→ χ (Res 1):

(a) ` (ϕ & (ϕ→ (ψ χ))) & ψ→ χ (Res′ )

(b) ϕ→ (ψ χ) ` ϕ & ψ→ (ϕ & (ϕ→ (ψ χ))) & ψ (α′)

(c) ϕ→ (ψ χ) ` ϕ & ψ→ χ (a), (b), and (T)

AS proves ψ & ϕ→ χ ` ϕ→ (ψ→ χ) (Res2):

(a) ψ & ϕ→ χ ` (ψ→ ψ & ϕ)→ (ψ→ χ) Pf

(b) ψ & ϕ→ χ ` (ϕ→ (ψ→ ψ & ϕ))→ (ϕ→ (ψ→ χ)) (a), Pf, and (MP)

(c) ` ϕ→ (ψ→ ψ & ϕ) (Adj&)

(d) ψ & ϕ→ χ ` ϕ→ (ψ→ χ) (b), (c), and (MP)

AS proves ψ & ϕ→ χ ` ψ→ (ϕ χ) (Res 2):

(a) ψ & ϕ→ χ ` (ϕ ψ & ϕ)→ (ϕ χ) (Pf )

(b) ψ & ϕ→ χ ` (ψ→ (ϕ ψ & ϕ))→ (ψ→ (ϕ χ)) (a), Pf, and (MP)

(c) ` ψ→ (ϕ ψ & ϕ) (Adj& )

(d) ψ & ϕ→ χ ` ψ→ (ϕ χ) (b), (c), and (MP)

AS proves ψ→ (ϕ→ χ) ` ϕ→ (ψ χ) (E 1):

(a) ψ→ (ϕ→ χ) ` ϕ & ψ→ χ (Res1)

(b) ψ→ (ϕ→ χ) ` ϕ→ (ψ χ) (a) and (Res 2)
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AS proves ϕ→ (ψ χ) ` ψ→ (ϕ→ χ) (E 2):

(a) ϕ→ (ψ χ) ` ϕ & ψ→ χ (Res 1)

(b) ϕ→ (ψ χ) ` ψ→ (ϕ→ χ) (b) and (Res2)

AS proves ϕ→ ϕ (R): (Push), (Pop), and (T).

AS proves 1→ (ϕ→ ϕ) (R′):

(a) ϕ→ ϕ ` 1→ (ϕ→ ϕ) (Push) and (MP)

(b) ` 1→ (ϕ→ ϕ) (R) and (a)

AS proves 1 (1):

(a) ` (1→ 1)→ 1 (Pop)

(b) ` 1 (R), (a), and (MP)

AS proves ϕ→ ((ϕ ψ)→ ψ) (As``):

(a) ` (ϕ ψ)→ (ϕ ψ) (R)

(b) ` ϕ→ ((ϕ ψ)→ ψ) (a) and (E 2)

AS proves ϕ→ ψ ` (ψ→ χ)→ (ϕ→ χ) Sf:

(a) ` (ψ→ χ)→ (ψ→ χ) (R)

(b) ` ψ→ ((ψ→ χ) χ) (a) and (E 1)

(c) ϕ→ ψ ` ϕ→ ((ψ→ χ) χ) Pf, (b), and (T)

(d) ϕ→ ψ ` (ψ→ χ)→ (ϕ→ χ) (c) and (E 2)

AS proves ϕ ` (ϕ→ ψ)→ ψ As:

(a) ϕ ` 1→ ϕ (Push) and (MP)

(b) ϕ ` (ϕ→ ψ)→ (1→ ψ) (a) and Sf

(c) ` (1→ ψ)→ ψ (Pop)

(d) ϕ ` (ϕ→ ψ)→ ψ (b), (c), and (T)

AS proves ϕ, ψ ` ϕ ∧ ψ (Adj):

(a) ϕ ` ϕ ∧ 1 (Adju)

(b) ψ ` ψ ∧ 1 (Adju)

(c) ` ψ ∧ 1→ (ϕ ∧ 1→ (ϕ ∧ 1) & (ψ ∧ 1)) (Adj&)

(d) ϕ, ψ ` (ϕ ∧ 1) & (ψ ∧ 1) (a), (b), (c), and (MP)

(e) ` (ϕ ∧ 1) & (ψ ∧ 1)→ ϕ ∧ ψ (&∧)

(f) ϕ, ψ ` ϕ ∧ ψ (d), (e), and (MP)

AS proves ϕ ψ ` ϕ→ ψ (Symm1):

(a) ϕ ψ ` 1→ (ϕ ψ) (Push) and (MP)

(b) ϕ ψ ` ϕ→ (1→ ψ) (a) and (E 2)

(c) ` (1→ ψ)→ ψ (Pop)

(d) ϕ ψ ` ϕ→ ψ (b), (c), and (T)
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AS proves (ϕ χ) ∧ (ψ χ)→ (ϕ ∨ ψ χ) (∨3 ):

(a) ` (ϕ χ) ∧ (ψ χ)→ (ϕ χ) (∧1)

(b) ` ϕ→ ((ϕ χ) ∧ (ψ χ)→ χ) (E 2)

(c) ` ψ→ ((ϕ χ) ∧ (ψ χ)→ χ) analogously

(d) ` ϕ ∨ ψ→ ((ϕ χ) ∧ (ψ χ)→ χ) (Adj), (∨3), (MP)

(e) ` (ϕ χ) ∧ (ψ χ)→ (ϕ ∨ ψ χ) (E 1)

�

Let us introduce a convenient notation for the terms appearing on the right-hand side of the
rules (α), (α′), (β), and (β′). Given arbitrary formulae δ, ε, we define the following ?-formulae:

αδ,ε = δ & ε→ δ & (ε & ?) βδ,ε = δ→ (ε→ (ε & δ) & ?)

α′δ,ε = δ & ε→ (δ & ?) & ε β′δ,ε = δ→ (ε (δ & ε) & ?)

Note that these terms (those in the second line) generalize the left and right conjugates
introduced above.

The next, not difficult to prove, proposition shows how these terms, and hence the axiomatic
systems in which they appear, can be simplified in stronger substructural logics (e.g. in presence
of exchange we can omit the prime version of the rules and associativity allows us to replace
α, α′, β, β′ by the usual product normality rules ϕ ` ρε(ϕ) and ϕ ` λε(ϕ)).

PROPOSITION 3.3.4. We have

1. `SL γ1,1(ϕ)↔ ϕ for each γ ∈ {α, α′, β, β′}

2. `SLe αδ,ε(ϕ)↔ α′ε,δ(ϕ) and `SLe βδ,ε(ϕ)↔ β′δ,ε(ϕ)

3. `SLa ϕ→ γδ,ε(ϕ) for each γ ∈ {α, β}

4. `SLa λε(ϕ)→ α′δ,ε(ϕ) and `SLa ρε(ϕ)→ β′δ,ε(ϕ)

5. `SLa λε(ϕ)↔ α′
1,ε

(ϕ) and `SLa ρε(ϕ)↔ β′
1,ε

(ϕ)

6. `SLae ϕ→ λε(ϕ) and `SLae ϕ→ ρε(ϕ)

In order to prove the main result of this section, almost (MP)-basedness of SL, we need the
following syntactical lemmata.

LEMMA 3.3.5. The following are provable in SL:

(Aux1) ` αχ,ϕ(ϕ→ ψ)→ (χ & ϕ→ χ & ψ)

(Aux2) ` α′ϕ,χ(ϕ→ ψ)→ (ϕ & χ→ ψ & χ)

(Aux3) ` βχ→ϕ,χ(ϕ→ ψ)→ ((χ→ ϕ)→ (χ→ ψ))

(Aux4) ` β′χ ϕ,χ(ϕ→ ψ)→ ((χ ϕ)→ (χ ψ))

Proof. SL proves (Aux1):

(a) ` ϕ & (ϕ→ ψ)→ ψ (PSL2)

(b) ` χ & (ϕ & (ϕ→ ψ))→ χ & ψ (a) and (PSL8)

(c) ` (χ & ϕ→ χ & (ϕ & (ϕ→ ψ)))→ (χ & ϕ→ χ & ψ) (b) and Pf
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SL proves (Aux2):

(a) ` ϕ & (ϕ→ ψ)→ ψ (PSL2)

(b) ` (ϕ & (ϕ→ ψ)) & χ→ ψ & χ (a) and (PSL9)

(c) ` (ϕ & χ→ (ϕ & (ϕ→ ψ)) & χ)→ (ϕ & χ→ ψ & χ) (b) and Pf

SL proves (Aux3):

(a) ` χ & (χ→ ϕ)→ ϕ (PSL2)

(b) ` (χ & (χ→ ϕ)) & (ϕ→ ψ)→ ϕ & (ϕ→ ψ) (a) and (PSL9)

(c) ` ϕ & (ϕ→ ψ)→ ψ (PSL2)

(d) ` (χ & (χ→ ϕ)) & (ϕ→ ψ)→ ψ (b), (c), and (T)

(e) ` (χ→ (χ & (χ→ ϕ)) & (ϕ→ ψ))→ (χ→ ψ) (d) and Pf

(f) ` [(χ→ ϕ)→ (χ→ (χ & (χ→ ϕ)) & (ϕ→ ψ))]→ [(χ→ ϕ)→ (χ→ ψ)] (e) and Pf

SL proves (Aux4):

(a) ` (χ ϕ) & χ→ ϕ (As``) and (Res1)

(b) ` ((χ ϕ) & χ) & (ϕ→ ψ)→ ϕ & (ϕ→ ψ) (a) and (PSL9)

(c) ` ϕ & (ϕ→ ψ)→ ψ (PSL2)

(d) ` ((χ ϕ) & χ) & (ϕ→ ψ)→ ψ (b), (c), and (T)

(e) ` (χ ((χ ϕ) & χ) & (ϕ→ ψ))→ (χ ψ) (d) and Pf 
(f) ` [(χ ϕ)→ (χ ((χ ϕ) & χ) & (ϕ→ ψ))]→ [(χ ϕ)→ (χ ψ)]

(e) and Pf �

LEMMA 3.3.6. For every ?-formula γ ∈ {αδ,ε, α′δ,ε, βδ,ε, β
′
δ,ε | δ, ε formulae} and every pair of

formulae ϕ, ψ, we have: ϕ→ ψ `SL γ(ϕ)→ γ(ψ).

Proof. All the cases are easily proved in a similar way. Let us show the case of αδ,ε as an
example.

(a) ϕ→ ψ ` δ & (ε & ϕ)→ δ & (ε & ψ) (PSL8) twice

(b) ϕ→ ψ ` (δ & ε→ δ & (ε & ϕ))→ (δ & ε→ δ & (ε & ψ)) (a) and Pf �

THEOREM 3.3.7. SL is almost (MP)-based with respect to the set

bDTSL = {αδ,ε, α
′
δ,ε, βδ,ε, β

′
δ,ε, ? ∧ 1 | δ, ε formulae}.

Proof. Theorem 3.3.3 shows that there is a presentation of SL with (MP) as the only binary
rule and unary rules ϕ ` γ(ϕ) for each γ ∈ bDTSL. We need to prove the final condition in
the definition of almost (MP)-based axiomatic systems, in particular we show that for each
γ ∈ bDTSL and each formulae ϕ, ψ there is γ′ ∈ bDT∗SL such that

` γ′(ϕ→ ψ)→ (γ(ϕ)→ γ(ψ)).

If γ is ?∧ 1 we can set γ′ = γ due to (PSL24). Next we prove the claim for α′δ,ε, the other cases
are proved analogously:
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Logic L bDTL

SL {αδ,ε, α
′
δ,ε, βδ,ε, β

′
δ,ε, ? ∧ 1 | δ, ε formulae}

SLw {αδ,ε, α
′
δ,ε, βδ,ε, β

′
δ,ε | δ, ε formulae}

SLe {αδ,ε, βδ,ε, ? ∧ 1 | δ, ε formulae}
SLew {αδ,ε, βδ,ε | δ, ε formulae}

FL {λε, ρε, ? ∧ 1 | ε a formula}

FLe {? ∧ 1}
FLew {?}

Table 3.8: bDTs of prominent substructural logics

(a) αδ,ϕ(ϕ→ ψ)→ [δ & ϕ→ δ & ψ] (Aux1)

(b) α′δ&ϕ,ε(δ & ϕ→ δ & ψ)→ [(δ & ϕ) & ε→ (δ & ψ) & ε] (Aux2)

(c) βδ&ε→(δ&ϕ)&ε,δ&ε((δ & ϕ) & ε→ (δ & ψ) & ε)→ [α′δ,ε(ϕ)→ α′δ,ε(ψ)] (Aux3)

(d) α′δ&ϕ,ε(αδ,ϕ(ϕ→ ψ))→ α′δ&ϕ,ε(δ & ϕ→ δ & ψ) (a) and Lemma 3.3.6

(e) α′δ&ϕ,ε(αδ,ϕ(ϕ→ ψ))→ [(δ & ϕ) & ε→ (δ & ψ) & ε] (b), (d), and (T)

(f) βδ&ε→(δ&ϕ)&ε,δ&ε(α′δ&ϕ,ε(αδ,ϕ(ϕ→ ψ)))→ [α′δ,ε(ϕ)→ α′δ,ε(ψ)] (e), Lemma 3.3.6, and (c)

�

Therefore, all axiomatics extension of SL are almost (MP)-based with the set of basic
deductive terms bDTSL. Of course we can obtain simpler sets of basic deductive terms for
particular logics: in the case of SLe we use the second claim of Proposition 3.3.4; in the case
of logics with weakening we use the fact that the rule (Adju) is redundant and the term ? ∧ 1
is not needed in the crucial step of the proof in Theorem 3.3.7; for associative logics it follows
from Theorem 3.3.2.5 The results are summarized in Table 3.8.

Let us recall that almost (MP)-based logics enjoy the Almost-Implicational Deduction The-
orem (Corollary 3.2.6) and the Proof By Cases Property (Theorem 3.2.11), therefore for any
logic listed in Table 3.8 we know that:

Γ, ϕ `L ψ iff Γ `L γ(ϕ)→ ψ for some γ ∈ Π(bDT∗L).

And the following meta-rule is valid (clearly in all our case we can omit the term ? ∧ 1):

Γ, ϕ ` χ Γ, ψ ` χ

Γ ∪ {α(ϕ) ∨ β(ψ) | α, β ∈ bDT∗L} ` χ
.

5We could also obtain it as a consequence of Theorem 3.3.7: From its the proof and claim 5 of Proposition 3.3.4
we know that for each γ ∈ bDTSLa and each formulae ϕ, ψ there is γ′ ∈ bDT∗SL such that

`SL γ
′(ϕ→ ψ)→ (γ(ϕ)→ γ(ψ)).

We complete the proof by showing that for each γ′ ∈ bDT∗SL there is γ0 ∈ bDT∗SLa
such that for each formula χ

holds:
`SLa γ0(χ)→ γ′(χ).

The base case follows from claims 1, 3, and 4 of Proposition 3.3.4 The induction step then easily follows using
Lemma 3.3.6 and claim 3 and 4 again.



Chapter 4

Generalized disjunctions

As we have seen in the previous chapter, substructural logics may retain a form of the classical
proof by cases property at the price of using a more complex disjunction. For instance, in
the case of FL or even SL we have used a rather complicated sets of infinitely many formulae
involving two variables and parameters. The proof by cases property will play an important
rôle in the following chapters where we study the interplay of disjunctions and implications
(in particular, disjunctions will be used to provide a powerful characterization of semilinear
implications and, moreover, as we will see in Chapter 6, they are crucial for first-order logics).
In order to prepare the ground for that, in this subsection we provide an abstract analysis of
disjunction connectives general enough to cover their possible complicated forms, as the one
we have seen in FL. Although a number of results we prove in this chapter hold in general, for
the sake of simplicity here we will mostly restrict ourselves to the case of weakly implicative
logics which will allow us to provide more powerful, though less general, results.

4.1 A hierarchy of disjunctions

We start with two useful conventions.

DEFINITION 4.1.1 (Notation for generalized disjunctions). Let ∇(p, q,~r) be a set of formulae
in two variables p, q and a sequence (possibly empty, finite or infinite) of further variables ~r
called parameters. We define:

ϕ∇ψ =
⋃
{∇(ϕ, ψ, ~α) | ~α ∈ Fm≤ω

L
}.

Given sets Φ,Ψ ⊆ FmL, Φ∇Ψ denotes the set
⋃
{ϕ∇ψ | ϕ ∈ Φ, ψ ∈ Ψ}. When there are no

parameters in the set ∇(p, q) and it is a singleton, we write ϕ ∨ ψ instead of ϕ∇ψ.

CONVENTION 4.1.2 (Protodisjunction and p-protodisjunction). A parameterized set of for-
mulae ∇(p, q,~r) will be called a p-protodisjunction in L whenever it satisfies:

(PD) ϕ `L ϕ∇ψ and ψ `L ϕ∇ψ.

If ∇ has no parameters we drop the prefix ‘p-’.

53
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This convention does not define an interesting notion on its own because, actually, any
theorem (or set of theorems) in two variables of a given logic would be a protodisjunction in
this logic; we only introduce it as a useful means to shorten the formulation of many upcoming
definitions and results. A more genuine property of disjunction is the so-called proof by cases
of classical disjunction, which has been considered for arbitrary logics in the literature in two
different versions:

DEFINITION 4.1.3. We say that ∇ enjoys the Proof by Cases Property1 in L if for any set
Γ, ϕ, ψ, χ of formulae we have:

PCP If Γ, ϕ `L χ and Γ, ψ `L χ, then Γ, ϕ ∇ ψ `L χ.

We say that ∇ enjoys the weak Proof by Cases Property in L if for any formulae ϕ, ψ, χ we
have:

wPCP If ϕ `L χ and ψ `L χ, then ϕ ∇ ψ `L χ.

Note that the (weak) Proof by Cases Property is defined as a property of a pair: the logic
L and the p-protodisjunction ∇. To simplify the formulation, we will write just that ‘∇ has the
PCP’ when the logic L is fixed or known from the context. Analogous conventions will be used
for all other upcoming properties defined for p-protodisjunctions in given logics.

The properties of proof by cases are intrinsic for the logic in the sense that all sets satisfying
the wPCP are interderivable:

LEMMA 4.1.4. Assume that ∇ has the wPCP and ∇′ is an arbitrary p-protodisjunction. Then:
∇′ enjoys the wPCP iff ϕ ∇ ψ a`L ϕ ∇′ ψ.

The weak proof by cases property entails other properties a disjunction is expected to sat-
isfy: commutativity, idempotency and associativity (which, however, are also typically satisfied
by conjunction connectives, whereas the PCP and the wPCP are typically satisfied only by dis-
junction connectives). The following lemma is straightforward:

LEMMA 4.1.5. If ∇ satisfies the wPCP, then it also satisfies:

(C∇) ϕ ∇ ψ `L ψ ∇ ϕ

(I∇) ϕ ∇ ϕ `L ϕ

(A∇) ϕ ∇ (ψ ∇ χ) a`L (ϕ ∇ ψ) ∇ χ

The properties (C∇), (I∇), (A∇) must be properly read: they respectively give commutativ-
ity, idempotency and associativity as regards to membership in the filter of matrix models, but
they do not imply that these properties hold for disjunctions of arbitrary elements in the matrix.
In symbols: if A = 〈A, F〉 is an L-matrix, (C∇) means that for every a, b ∈ A, a ∇A b ⊆ F
implies that b∇A a ⊆ F; but it does not necessarily mean that a∇A b = b∇A a, and analogously
for the other two properties.

1We could have introduced the wPCP and the PCP as double direction meta-rules (as it was done and studied
e.g. in [44] under the name (weak) Property of Disjunction). However reverse directions of these meta-rules could
obviously be equivalently replaced by (PD) (one direction is obvious, for the other one observe that from ϕ ∇ ψ `L

ϕ ∇ ψ, we would obtain ϕ `L ϕ ∇ ψ and ψ `L ϕ ∇ ψ). Thus, we prefer our definition because it keeps the interesting
implication separated from the trivial one that we can always assume.
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EXAMPLE 4.1.6. An (element-wise) non-commutative protodisjunction satisfying the PCP.
Consider the logic G4 (in the language {∧,∨,→, 0, 1,4} of type 〈2, 2, 2, 0, 0, 1〉) obtained as
the expansion of Gödel-Dummett logic (see [32]) with the unary operator 4 (see [2]). This
logic is complete with respect to the matrix given by the filter {1} and the algebra [0, 1]G4 =

〈[0, 1],min,max,→, 0, 1,4〉, where a→ b = b if a > b and a→ b = 1 otherwise, and 4(1) = 1
and 4(a) = 0 for every a < 1. Clearly {p ∨ q} defines a protodisjunction with PCP where
the (C∇), (I∇), (A∇) properties are true element-wise. However, we can also consider {4p ∨ q}
which is also a protodisjunction with PCP (observe that 4p ∨ q a`G4 p ∨ q), but provides
a counterexample for commutativity when taken element-wise: 4(0.5) ∨ 0.3 = 0.3 , 0.5 =

4(0.3) ∨ 0.5.

We can show that the converse direction of Lemma 4.1.5 is not valid and also that the wPCP
and the PCP are indeed different:

EXAMPLE 4.1.7. A finitary logic with a protodisjunction satisfying the conditions (C∇), (I∇),
(A∇) but not the wPCP. Clearly the lattice connective ∨ in the logic FLe satisfies all three
conditions.

Assume now that ∨ satisfies the wPCP. From ϕ ` ϕ ∧ 1 we easily get ϕ ` (ϕ ∧ 1) ∨ ψ. As
also ψ ` (ϕ ∧ 1) ∨ ψ, we could use the wPCP of ∨ to obtain ϕ ∨ ψ ` (ϕ ∧ 1) ∨ ψ. Consider the
FLe-matrix with the domain {⊥, a, b, 1,>}; designated set {1,>}; the lattice connectives defined
in the way that the elements form the non-distributive lattice diamond where ⊥ is the minimum
element and > is the maximum; residual conjunction: x & 1 = 1 & x = x and x & y = x ∧ y for
x, y , 1; and implication: x → y = max{z | z & x ≤ y}. Then, we reach a contradiction from
these simple observations: a ∨ b = > but (a ∧ 1) ∨ b = ⊥ ∨ b = b.

EXAMPLE 4.1.8. A finitary logic with a protodisjunction satisfying the wPCP but not the
PCP. Consider the non-distributive lattice diamond, with the domain {⊥, a, b, t,>} (where ⊥
is the minimum element and > is the maximum) and take now the finitary logic given by all
the (finitely many) matrices over this algebra with a lattice filter. Observe that for every set
Γ ∪ {ϕ} of formulae, Γ ` ϕ iff

∧
e[Γ] ≤ e(ϕ) for every evaluation e over the diamond. From

this it easily follows that ∨ is a protodisjunction with wPCP. Assume now, for a contradiction,
that it satisfies the PCP too. Then from ϕ, ψ ` (ϕ ∧ ψ) ∨ χ and χ, ψ ` (ϕ ∧ ψ) ∨ χ we obtain
ϕ∨χ, ψ ` (ϕ∧ψ)∨χ and thus also (applying the PCP again) ϕ∨χ, ψ∨χ ` (ϕ∧ψ)∨χ (a form
of distributivity). Then, we reach a contradiction by observing that a ∨ b = t ∨ b = > while
(a ∧ t) ∨ b = ⊥ ∨ b = b.

We could also show the independence of the conditions (C∇), (I∇), (A∇) of protodisjunc-
tions by several artificial examples, all of them finitary. We leave it as an exercise for the reader
and just mention a natural example: any substructural non-contractive involutive logic (e.g.
linear logic or Łukasiewicz infinite-valued logic) has the multiplicative disjunction ⊕ which
satisfies conditions (PD), (C∇), and (A∇) but not (I∇).

We define a natural intermediate property between the PCP and wPCP:

DEFINITION 4.1.9. We say that ∇ enjoys the finitary Proof by Cases Property in L if for any
finite set Γ of formulae and any formulae ϕ, ψ, χ we have:

fPCP If Γ, ϕ `L χ and Γ, ψ `L χ, then Γ, ϕ ∇ ψ `L χ.
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It is straightforward to check that for finitary logics the PCP and fPCP are equivalent.
Another natural way of obtaining properties related to the PCP consists in replacing ϕ and ψ
by sets of formulae. If we only allow finite sets, then we only obtain reformulations of the PCP
and fPCP respectively:

LEMMA 4.1.10. ∇ has the (f)PCP if, and only if, the following meta-rule holds for every
(finite) set Γ ∪ {χ} of formulae and every finite sets Φ,Ψ of formulae:

Γ,Φ `L χ Γ,Ψ `L χ

Γ,Φ∇ Ψ `L χ

Proof. We prove it for PCP (the proof for fPCP is analogous). One implication is trivial;
we prove the other by induction. Call a pair Γ,Φ `L χ and Γ,Ψ `L χ a situation; define
the complexity of a situation as a pair 〈n,m〉 where n and m are respectively the cardinals of
Φ \ Ψ and Ψ \ Φ. We show by the induction over k = n + m that in each situation we obtain
Γ,Φ∇ Ψ `L χ.

First assume k ≤ 2. If n = 0, i.e. Φ ⊆ Ψ, we obtain Φ∇Φ ⊆ Φ∇Ψ and since Γ,Φ∇Φ `L Γ∪Φ

the proof is done. The proof for m = 0 is the same. If n = m = 1 we use the PCP. The induction
step: consider a situation with complexity 〈n,m〉, where n + m > 2. We can assume without
loss of generality that n ≥ 2, take a formula ϕ ∈ Φ \ Ψ and define Φ′1 = Φ \ {ϕ}. We know that
Γ,Φ′1, ϕ `L χ and Γ,Ψ `L χ. Thus we also know that Γ,Φ′1, ϕ `L χ and Γ,Φ′1,Ψ `L χ; notice
that the complexity of this situation is 〈1,m〉 and so we can use the induction assumption to
obtain Γ,Φ′1, ϕ ∇ Ψ `L χ.

Thus we have the situation Γ, ϕ ∇ Ψ,Φ′1 `L χ and Γ, ϕ ∇ Ψ,Ψ `L χ (the second claim is
trivial); the complexity of this situation is 〈n′,m′〉, where n′ ≤ n − 1 and m′ ≤ m, and so by the
induction assumption we obtain Γ, ϕ ∇Ψ,Φ′1∇Ψ `L χ (which is exactly what we wanted). �

Observe that, if L is finitary, the lemma holds even without requiring that Φ and Ψ are
finite. However, for infinitary logics it makes sense to consider it as a stronger property:

DEFINITION 4.1.11. We say that ∇ enjoys strong Proof by Cases Property in L if for every
sets Γ,Φ,Ψ of formulae and every formula χ we have:

sPCP If Γ,Φ `L χ and Γ,Ψ `L χ, then Γ,Φ∇ Ψ `L χ.

Clearly the sPCP implies the PCP and in finitary logics these properties coincide (due to the
remark just before the definition). On the other hand, we can show that even though there are
natural infinitary logics with a connective satisfying the sPCP (Example 4.2.21), this property
is not in general implied by the PCP, as shown by the next example:

EXAMPLE 4.1.12. An infinitary weakly implicative logic with a protodisjunction satisfying
the PCP but not the sPCP. Let A be a complete Heyting algebra which is not a dual frame, i.e.
there are elements xi ∈ A for i ≥ 0 such that∧

i≥1

(x0 ∨ xi) � x0 ∨
∧
i≥1

xi.

We expand the language of A by constants {ci | i ≥ 0} ∪ {c} and define an algebra A′ in this
language by setting cA′

i = xi and c =
∧

i≥1 xi. Then we define the logic L in this language
given semantically by the class of matrices {〈A′, F〉 | F is a principal lattice filter in A}. Note
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that Γ `L ϕ iff for each A-evaluation e holds:
∧
ψ∈Γ e(ψ) ≤ e(ϕ) (one direction: as the principal

lattice filter generated by
∧
ψ∈Γ e(ψ) clearly contains e[Γ] it has to contain e(ϕ); the reverse

direction: just observe that any principal filter containing e[Γ] has to contain
∧
ψ∈Γ e(ψ) and so

it contains e(ϕ)).
First we show that ∨ enjoys the PCP: assume that for each e evaluation holds

(
∧
δ∈Γ

e(δ)) ∧ e(ϕ) ≤ e(χ) and (
∧
δ∈Γ

e(δ)) ∧ e(ψ) ≤ e(χ),

thus [(
∧
δ∈Γ e(δ)) ∧ e(ϕ)] ∨ [(

∧
δ∈Γ e(δ)) ∧ e(ψ)] ≤ e(χ), the distributivity of A completes the

proof. Finally, by the way of contradiction, assume that ∨ enjoys the sPCP. Observe that:
c0 `L c0 ∨ c and {ci | i ≥ 1} `L c0 ∨ c. Using the sPCP we obtain {c0 ∨ ci | i ≥ 1} `L c0 ∨ c—a
contradiction.

The strong and finitary proof by cases properties can be written in a more compact way (as
a formal generalization of the wPCP):

PROPOSITION 4.1.13. ∇ has the sPCP (resp. fPCP) if, and only if, the following meta-rule
holds for any set (resp. any finite set) of formulae Φ ∪ Ψ ∪ {χ}:

Φ `L χ Ψ `L χ

Φ ∇ Ψ `L χ
.

Proof. The left-to-right direction is easy (it is trivial in the case of sPCP and can be obtained
by Lemma 4.1.10 in the case of fPCP). The reverse direction simply follows using (PD). �

Summing up, by combining restrictions on the cardinality of the context set and on the
cardinality of the disjuncts, we have at most the following four properties of proof by cases
(in increasing order of strength): wPCP, fPCP, PCP and sPCP. With exception of the pair
fPCP and PCP we know that they are different (Example 4.1.8 provides in fact a finitary logic
separating wPCP from fPCP). In addition, we know that the last three are equivalent for finitary
logics. The next sections of the paper will be devoted to showing characterizations of these four
properties in a general context and to find broad classes of logics (containing the finitary ones)
where the properties still collapse.

Since, as we said, we are assuming that all sets ∇ satisfy (PD), we can use the consequence
operation to formulate the proof by cases properties in more compact forms as Tarski-style
conditions. Namely, ∇ satisfies:

wPCP iff ThL(ϕ) ∩ ThL(ψ) = ThL(ϕ ∇ ψ) for each ϕ, ψ.

fPCP iff ThL(Φ) ∩ ThL(Ψ) = ThL(Φ ∇ Ψ) for each finite Φ,Ψ

iff ThL(Γ,Φ) ∩ ThL(Γ,Ψ) = ThL(Γ,Φ∇ Ψ) for each finite Γ,Φ,Ψ

iff ThL(Γ, ϕ) ∩ ThL(Γ, ψ) = ThL(Γ, ϕ ∇ ψ) for each finite Γ ∪ {ϕ, ψ}.

PCP iff ThL(Γ,Φ) ∩ ThL(Γ,Ψ) = ThL(Γ,Φ∇ Ψ) for each Γ and finite Φ,Ψ

iff ThL(Γ, ϕ) ∩ ThL(Γ, ψ) = ThL(Γ, ϕ ∇ ψ) for each Γ ∪ {ϕ, ψ}.

sPCP iff ThL(Φ) ∩ ThL(Ψ) = ThL(Φ ∇ Ψ) for each Φ,Ψ

iff ThL(Γ,Φ) ∩ ThL(Γ,Ψ) = ThL(Γ,Φ∇ Ψ) for each Γ,Φ,Ψ.
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Since proof by cases is arguably the most characteristic property a disjunction is expected
to satisfy, these properties can be used to formally define what a disjunction connective is.
Having in general four different properties of proof by cases, we could define four different
corresponding notions of disjunction but, taking into account the modest rôle that the fPCP will
play in the upcoming characterization results, we decide to dismiss its corresponding definition
of disjunction. On the other hand, recalling the fact that (by Lemma 4.1.4) these properties are
intrinsic for a given logic in the sense that all possible sets ∇ satisfying the wPCP (or PCP, or
sPCP) are interderivable, it makes sense to define classes of logics according to the presence of
such p-protodisjunctions, also distinguishing them based on the structure of the ∇ sets, that is,
distinguishing traditional disjunctions defined by a single connective or formula, disjunctions
which come from a (possibly infinite) parameter-free ∇, and the most general case where ∇ is
allowed to be infinite and parameterized.

DEFINITION 4.1.14 (p-disjunction, disjunction). We say that ∇ is a strong p-disjunction (resp.
p-disjunction, resp. weak p-disjunction) if it satisfies the sPCP (resp. PCP, resp. wPCP). If ∇
has no parameters, we drop the prefix ‘p-’.

DEFINITION 4.1.15 (p-disjunctional logic, disjunctional logic, disjunctive logic). We say that
a logic L is strongly (p-)disjunctional (resp. (p-)disjunctional, resp. weakly (p-)disjunct- ional)
if it has a strong (p-)disjunction (resp. a (p-)disjunction, resp. a weak (p-)disjunction).

Furthermore, we say that L is strongly disjunctive (resp. disjunctive, resp. weakly disjunc-
tive) if it has a strong disjunction (resp. a disjunction, resp. a weak disjunction) given by a
single parameter-free formula.

REMARK 4.1.16. Thanks to Lemma 4.1.4, in a (strongly) p-disjunctional logic any weak p-
disjunction is actually a (strong) p-disjunction.

THEOREM 4.1.17. All classes of logics defined in the previous definition are mutually differ-
ent. Furthermore, the intersection of any two classes is their infimum w.r.t. the subsumption
order depicted in Figure 4.1.

The intersection property follows from the previous remark and the separation of all the
classes is established by an upcoming series of examples. They also show that in finitary logics,
taking into account the equivalence of the sPCP and the PCP, there are exactly six mutually
distinct classes.

EXAMPLE 4.1.18. A finitary weakly disjunctive but not p-disjunctional logic. The logic in
Example 4.1.8 based on lattice diamond has a connective ∨ satisfying the wPCP but not the
PCP. Therefore, it is weakly disjunctive. If it was p-disjunctional with some ∇, then, according
to Lemma 4.1.4, ∇ would be interderivable with ∨, so ∨ would satisfy the PCP as well—a
contradiction.

EXAMPLE 4.1.19. An infinitary disjunctive but not strongly p-disjunctional weakly implica-
tive logic. The logic in Example 4.1.12 based on a complete Heyting algebera which is not a
dual frame has a connective ∨ satisfying the PCP but not the sPCP. Therefore, it is disjunc-
tive, but following the same line of reasoning as in the previous example it cannot be strongly
p-disjunctional.
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Figure 4.1: The disjunctional hierarchy of logics.

EXAMPLE 4.1.20. A finitary (strongly) disjunctional but not weakly disjunctive logic. Con-
sider the implicational fragment of Gödel-Dummett logic; let us call it G→. First we show that
the set

ϕ ∇ ψ = {(ϕ→ ψ)→ ψ, (ψ→ ϕ)→ ϕ}

is a protodisjunction satisfying the PCP. Since G is an axiomatic extension of FLew it sat-
isfies: ϕ ` (ϕ → ψ) → ψ and ψ ` (ϕ → ψ) → ψ and so ∇ satisfies (PD). Now observe
that Γ, ϕ → ψ, (ϕ → ψ) → ψ, (ψ → ϕ) → ϕ ` ψ and as we assume that Γ, ψ ` χ thus
Γ, ϕ → ψ, ϕ ∇ ψ ` χ and so by the deduction theorem Γ, ϕ ∇ ψ ` (ϕ → ψ) → χ. Analo-
gously we can prove that Γ, ϕ ∇ ψ ` (ψ → ϕ) → χ and as the formula ((ϕ → ψ) → χ) →
(((ψ → ϕ) → χ) → χ) is a theorem of Gödel-Dummett logic we obtain Γ, ϕ ∇ ψ ` χ as
needed.

Assume that some parameter-free formula ϕ(p, q) has the wPCP. As a consequence of the
completeness theorem for G, we know that G→ is complete with respect to the matrix A whose
universe is the real unit interval [0, 1], the filter is {1} and the only operation is:

a→A b =

{
1 if a ≤ b,
b otherwise.

By Lemma 4.1.4, the formula ϕ(p, q) and the set ϕ ∇ ψ are mutually derivable in G→. We
know that ϕ ∨ ψ ↔ ((ϕ → ψ) → ψ) ∧ ((ψ → ϕ) → ϕ) holds in Gödel-Dummett logic and
so we can use the global deduction theorem we obtain that ϕ(p, q) is interpreted in A as the
function maximum. So, in particular, for every a, b ∈ [0, 1) we have ϕA(a, b) = max{a, b}.
We show by an infinite descent argument that this is impossible. Since → is the only con-
nective in the language, we must have ϕ(p, q) = α(p, q) → β(p, q). Take any a, b ∈ [0, 1).
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If a ≤ b, ϕA(a, b) = αA(a, b) →A βA(a, b) = b, which implies βA(a, b) = b. Analogously,
if a > b, we have βA(a, b) = a. Thus, β(p, q) would be a strictly shorter formula with the same
property. Following this line of reasoning we would derive that for each a, b ∈ [0, 1) holds
either a→A b = max{a, b} or b→A a = max{a, b}; a contradiction.2

Finally, we provide an example supporting the necessity of the level of generality of dis-
junction connectives, defined by possibly infinite sets of formulae with parameters (some
claims in the example need to be justified by results in subsequent sections of this paper).

EXAMPLE 4.1.21. A finitary (strongly) p-disjunctional logic but not weakly disjunctional.
Consider the purely implicational fragment of intuitionistic logic IPC→. We show that the for-
mula ∇(p, q, r) = (p→ q)→ ((q→ r)→ r) is a p-disjunction and so IPC→ is p-disjunctional.
Assume that Γ, ϕ ` χ and Γ, ψ ` χ and so by deduction theorem, Γ ` ϕ → χ and Γ, ϕ ` ϕ → χ.
As (ϕ→ χ)→ ((ψ→ χ)→ χ) ∈ ϕ ∇ ψ we easily obtain that Γ, ϕ ∇ ψ ` χ.

Next assume, for contradiction, that a set ∇ is a disjunction in IPC→. Thus (by Theo-
rem 4.3.1) it also a disjunction in the full intuitionistic logic IPC. Since, as it is well known,
the lattice connective ∨ satisfies the Proof by Cases in IPC too, by Lemma 4.1.4, we have
p ∇ q a`IPC p ∨ q. Using finitarity, the presence of the lattice conjunction ∧ in the language of
IPC and the deduction theorem we obtain a formula ∨′ of two variables p, q built using only
implication and lattice conjunction such that `IPC p ∨′ q ↔ p ∨ q—which is known to be
impossible (see e.g. [77]).

Another examples of finitary logics with a (this time explicit and natural) parameterized
infinite disjunction are logics SL and FL (see Chapter 3), although in these cases we have not
succeeded in showing that it is not weakly disjunctive.

At the end of this section we introduce the notion of lattice-disjunctive logic which com-
bines implications and disjunctions.

DEFINITION 4.1.22 (Lattice-disjunctive logic). Let L be weakly implicative disjunctive logic
L with principal implication→ and (weak/strong) disjunction ∨. Then L is (weakly/ strongly)
lattice-disjunctive if:

(∨1) `L ϕ→ ϕ ∨ ψ

(∨2) `L ψ→ ϕ ∨ ψ

(∨3) ϕ→ χ, ψ→ χ `L ϕ ∨ ψ→ χ.

The reason for the terminology is the fact that in such a logic L given any A ∈ MOD∗(L),
the algebra 〈A,∨A〉 is a join-semilattice with semi-lattice order ≤A.

Note that if a logic L satisfies the conditions (∨1)–(∨3) for two different (primitive or
derivable) connectives ∨ and ∨′, then we can easily prove a stronger version of Lemma 4.1.4:
`L ϕ ∨ ψ ↔ ϕ ∨′ ψ. Thus, Example 4.1.7 showed that the logic FLe is not weakly lattice-
disjunctive.

LEMMA 4.1.23. Any (MP)-based substructural Rasiowa-implicative logic with & and 1 in its
language (e.g. any axiomatic extension of FLew) is a lattice-disjunctive logic.

Proof. The PCP for these logics is shown in Chapter 3 by using the connective ∨ and hence
they are lattice-disjunctive. �

2For the reader’s convenience we have included this rather self-contained proof showing that G→ is not weakly
disjunctional. However, this fact would also follow from a reasoning analogous to that of the next example.
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4.2 Characterizations of proof by cases properties

Let us fix a logic L in the language L and p-protodisjunction ∇ in L. We start with a character-
ization of weakly (p-)disjunctional logics by means of substitutions.

THEOREM 4.2.1 (Characterization of weakly (p-)disjunctional logics). The following are
equivalent:

1. L is weakly (p-)disjunctional,

2. for each (surjective) substitution σ and a pair ϕ, ψ of formulae holds

ThL(σϕ) ∩ ThL(σψ) = ThL(σ[ThL(ϕ) ∩ ThL(ψ)]),

3. for each (surjective) substitution σ and a pair of distinct variables p, q holds

ThL(σp) ∩ ThL(σq) = ThL(σ[ThL(p) ∩ ThL(q)]).

Proof. We first prove that 1 implies 2. Take any weak (p-)disjunction ∇. Notice that if ∇ is
parameter-free or σ is surjective we obtain σϕ ∇ σψ = σ[ϕ ∇ ψ] (in the first case it is trivial,
in the second case we can write the chain of equations: σϕ ∇ σψ =

⋃
{∇(σϕ,σψ,−→α ) | −→α ∈

Fm≤ω
L
} =
⋃
{∇(σϕ,σψ,

−→
σβ) |

−→
β ∈ Fm≤ω

L
} = σ[ϕ ∇ ψ]). Thus in both cases we can prove that 1

implies 2 by this chain of equations: ThL(σϕ)∩ThL(σψ) = ThL(σϕ∇σψ) = ThL(σ[ϕ∇ψ]) =

ThL(σ[ThL(ϕ) ∩ ThL(ψ)]).
The implication from 2 to 3 is trivial; we prove that 3 implies 1. Let us assume first that

3 holds only for surjective substitutions. We define ∇(p, q,−→α ) = ThL(p) ∩ ThL(q). Clearly ∇
is a p-protodisjunction; we show that it satisfies the wPCP. Consider a surjective substitution
such that σp = ϕ and σq = ψ. Then we can write this chain of equations: ThL(ϕ) ∩ ThL(ψ) =

ThL(σp) ∩ ThL(σq) = ThL(σ[ThL(p) ∩ ThL(q)]) = ThL(σ[p ∇ q]) ⊆ ThL(ϕ ∇ ψ).
Assume now that 3 holds for all substitutions. Take a substitution σ such that σp = p

and σr = q for every r , p. We define ∇(p, q) = σ[ThL(p) ∩ ThL(q)]. Then ∇ is clearly a
protodisjunction and analogously as in the previous case we show that it enjoys the wPCP. �

REMARK 4.2.2. Note that from the proof of this theorem we can infer that if L is weakly
p-disjunctional logic, then ThL(p) ∩ ThL(q) is one of its weak p-disjunctions. In fact, it is the
largest weak p-disjunction (written in variables p and q) in the sense of inclusion.

Next we define the notion of ∇-form of a consecution, inspired by [28]. It will allow us to
obtain the upcoming Theorem 4.2.5 as an extension of Theorem 2.5.3 from [29].

DEFINITION 4.2.3 (∇-form). Let R = Γ B ϕ be an L-consecution. Then by R∇ we denote the
set {Γ ∇ χ B δ | χ ∈ FmL and δ ∈ ϕ ∇ χ} of consecutions.

LEMMA 4.2.4. Let R be a consecution such that R∇ ⊆ L.

1. If ∇ satisfies (I∇), then R ∈ L.

2. If ∇ satisfies (A∇), then (R∇)∇ ⊆ L.

Proof. The first claim: from the assumption we know Γ ∇ ϕ `L ϕ ∇ ϕ, (PD) and (I∇) complete
the proof. To prove the second claim we start with Γ∇ (ψ1 ∇ψ2) `L ϕ∇ (ψ1 ∇ψ2); repeated use
of (A∇) completes the proof. �
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The first part of this lemma tells us that in the next theorem we could write ‘R∇ ⊆ L iff
R ∈ L’, instead of ‘R∇ ⊆ L for each R ∈ L’. The second part will be useful later.

THEOREM 4.2.5 (Syntactical characterizations). ∇ enjoys the

1. sPCP iff ∇ satisfies (C∇), (I∇), and R∇ ⊆ L for each R ∈ L.

2. fPCP iff ∇ satisfies (C∇), (I∇), and R∇ ⊆ L for each finitary R ∈ L.

3. wPCP iff ∇ satisfies (C∇), (I∇), and (ϕ B ψ)∇ ⊆ L whenever ϕ `L ψ.

Proof. We prove all left-to-right directions at once. From Γ `L ϕ we obtain and Γ `L ϕ ∇ χ

using (PD). By (PD) we also obtain χ `L ϕ ∇ χ. Thus sPCP (for arbitrary Γ), fPCP (for finite
Γ), and wPCP (for Γ being a singleton) we get Γ ∇ χ `L ϕ ∇ χ.

Also the reverse directions will be proven at once: assume that Γ, ϕ `L χ and Γ, ψ `L χ.
Based on restrictions on the cardinality of Γ (arbitrary, finite or empty) we can use one of the
assumptions to get Γ ∇ ψ, ϕ ∇ ψ `L χ ∇ ψ and Γ ∇ χ, ψ ∇ χ `L χ ∇ χ. Using (C∇) and (I∇) we
obtain Γ∇ψ,Γ∇ χ, ϕ∇ψ `L χ. Since clearly Γ `L Γ∇ψ and Γ `L Γ∇ χ, the proof is done. �

In Example 4.1.7 we have seen a connective ∨ which clearly satisfies (PD), (C∇), (I∇), and
(A∇) but it is not a disjunction. Thus the condition R∇ ⊆ L for each R ∈ L is necessary (in fact
to prove this we have shown that the ∨-form of the rule (adju) is not valid in FLe).

The next proposition shows that to check the sPCP it is sufficient to show that L is closed
under ∇-forms of the elements of any of its presentations.

PROPOSITION 4.2.6. Assume AS is a presentation of L. Then ∇ enjoys the sPCP iff ∇
satisfies (C∇), (I∇), and R∇ ⊆ L for each R ∈ AS.

Proof. Assume that Γ `L ϕ and we show Γ ∇ χ `L δ ∇ χ for each formula χ and each δ

appearing in the proof of ϕ from Γ. If δ ∈ Γ or δ is an axiom, the proof is trivial. Now assume
that R = Γ′ B δ is the deduction rule we use to obtain δ (we can assume it because axiomatic
systems are closed under substitutions). From the induction assumption we have Γ∇χ `L Γ′∇χ.
Since R∇ ∈ L, the proof is done. �

Next we use the syntactic characterization theorem to prove a crucial theorem: the transfer
of sPCP. The property proved in this theorem will be called transferred sPCP and denoted as
τ-sPCP. We use the same denotation for the other three variants of the proof by cases property.

THEOREM 4.2.7 (Transfer of sPCP). If ∇ enjoys the sPCP, then for each L-algebra A and
each X,Y ⊆ A we have Fi(X) ∩ Fi(Y) = Fi(X ∇A Y).

Proof. The inclusion Fi(X ∇A Y) ⊆ Fi(X) ∩ Fi(Y) follows easily from (PD). To prove the
converse one, we start by showing that for each x ∈ Fi(X) we have x ∇A y ⊆ Fi(X ∇A y) for
each y. Using Proposition 2.1.22 we know that if x ∈ Fi(X) than there is a proof of x from X
in some presentationAS of L. We show that z ∇A y ⊆ Fi(X ∇A y) for each z labeling any node
of that proof, i.e. for each χ(p, q, r1, . . . , rn) ∈ ∇ and each sequence u1, . . . , un of elements of A
we have χA(z, y, u1, . . . , un) ∈ Fi(X ∇A y).

If z labels a leaf and z ∈ X, then it is trivial. Otherwise there is a set Z of labels of the
preceding nodes (possible empty), a consecution Γ B ϕ ∈ AS, and an evaluation h, such that
h[Γ] = Z and h(ϕ) = z. Without loss of generality we could assume that variables q, r1, . . . , rn
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do not occur3 in Γ∪ {ϕ} and so we can set h(q) = y and h(ri) = ui for every i ∈ {1, . . . , n}. Thus
h[Γ∇q] ⊆ Z∇Ay ⊆ Fi(X∇Ay) (the last inclusion follows from the induction assumption). From
the characterization of the sPCP in Theorem 4.2.5 we know that Γ∇ q `L χ(ϕ, q, r1, . . . , rn) and
so χA(z, y, u1, . . . , un) = h(χ(ϕ, q, r1, . . . , rn)) ∈ Fi(X ∇A y).

Now we can finally prove that Fi(X) ∩ Fi(Y) ⊆ Fi(X ∇A Y). If z ∈ Fi(X) then by the just
proved claim for each y ∈ Y holds: z ∇A y ⊆ Fi(X ∇A y) and so, by (C∇), y ∇A z ⊆ Fi(X ∇A y).
This can be more compactly written as: Y ∇A z ⊆ Fi(X ∇A Y). Analogously we obtain z∇A z ⊆
Fi(Y ∇A z) from z ∈ Fi(Y). Thus z ∈ Fi(Y ∇A z) (by (I∇)) and so z ∈ Fi(X ∇A Y). �

Before we are ready to obtain a semantical characterization theorem we need to introduce
some additional notions.

DEFINITION 4.2.8. A logic L is filter-distributive if for each L-algebra, the lattice FiL(A) is
distributive. A logic L is filter-framal if for each L-algebra, the lattice FiL(A) is a frame, i.e.,
for each F ∪ {G} ⊆ FiL(A) holds:

G ∩
∨
F∈F

F =
∨
F∈F

(G ∩ F).

We omit the prefix ‘filter-’ whenever the corresponding property holds for A = FmL.

LEMMA 4.2.9. Let L be a weakly implicative logic such that for any theory T and any pair
ϕ, ψ of formulae the following holds:

(T ∨ ThL(ϕ)) ∩ (T ∨ ThL(ψ)) = T ∨ (ThL(ϕ) ∩ ThL(ψ))

Then L is p-disjunctional.

Proof. We will use Theorem 4.2.1 to show that L has a weak p-disjunction ∇. Then the PCP
for ∇ will easily follow from our assumption:

ThL(T, ϕ) ∩ ThL(T, ψ) = (ThL(T ) ∨ ThL(ϕ)) ∩ (ThL(T ) ∨ ThL(ψ)) =

= ThL(T ) ∨ (ThL(ϕ) ∩ ThL(ψ)) =

= ThL(T ) ∨ ThL(ϕ ∇ ψ) =

= ThL(T, ϕ ∇ ψ)

Thus we have to show that for each surjective substitution σ and a pair of distinct variables
p, q we have: ThL(σp) ∩ ThL(σq) = ThL(σ[ThL(p) ∩ ThL(q)]). We start by defining a theory
Y = σ−1[ThL(∅)] and a mapping σ with domain [Y,FmL] defined as σ(T ) = σ[T ].

Claim 1: σ is an isomorphism between [Y,FmL] and Th(L). Clearly σ can be seen as a
strict surjective homomorphism from 〈FmL,Y〉 onto 〈FmL,ThL(∅)〉. Thus the claim follows
from Proposition 2.3.16.

Claim 2: ThL(σ[Σ]) = σ(Y ∨ ThL(Σ)) for each set of formulae Σ. The first inclusion
follows from: σ[Σ] ⊆ σ(Y ∨ ThL(Σ)) and σ(Y ∨ ThL(Σ)) ∈ Th(L). The second inclusion: if
χ ∈ σ(Y ∨ ThL(Σ)), then χ = σδ and Y,Σ `L δ. Thus σ[Y], σ[Σ] `L σ(δ), i.e. σ[Σ] `L χ.

3We could define a new suitable Γ B ϕ with the same properties using a Hilbert-hotel style argument: consider
any enumeration of the variables such that p0 = q, pi = ri, a substitution σ(pi) = pi+n+1, and an evaluation h′

such that h′(σp) = h(p). Then σ[Γ] B σϕ is the needed consecution: indeed σ[Γ] B σϕ ∈ AS, h′[σ[Γ]] = Z, and
h′(σϕ) = z. Note that we have used our assumption that axiomatic systems are closed under substitutions.
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Now we can finish the proof by a series of equations (we use Claim 2, Claim 1, distributivity
of Th(L), and Claim 2 again):

ThL(σp) ∩ ThL(σq) = σ(Y ∨ ThL(p)) ∩ σ(Y ∨ ThL(q)) =

= σ((Y ∨ ThL(p)) ∩ (Y ∨ ThL(q))) =

= σ(Y ∨ (ThL(p) ∩ ThL(q))) =

= ThL(σ[ThL(p) ∩ ThL(q)]). �

COROLLARY 4.2.10. Every weakly implicative distributive logic is p-disjunctional.

Interestingly enough, we do not know whether the converse direction of this lemma (that
every p-disjunctional weakly implicative logic is distributive) is valid in general. However we
are able to prove it for a very wide class of logics, namely those enjoying the Intersection Prime
Extension Property, IPEP (recall that this class includes all finitary logics). In order to prove
this claim we first prove an analogous one: the equivalence between strongly p-disjunctional
and framal logics.

Before we proceed we need to introduce two more technical notions, which however are
quite interesting on their own: first we introduce the ∇-prime filter by generalizing the clas-
sical notion of prime filter in Boolean algebras and second we consider the Prime Extension
Property, PEP, an analog of similar properties we have seen before.

DEFINITION 4.2.11 (Prime filter). Let L = 〈L, `L〉 be a logic, ∇ a (possibly parameterized)
set of formulae in two variables, A an L-algebra, and F ∈ FiL(A). Then, F is called ∇-prime
if for every a, b ∈ A, a∇Ab ⊆ F iff a ∈ F or b ∈ F.

Notice that when ∇ defines a disjunction connective ∨, the previous definition gives just
the usual notion of prime filter.

LEMMA 4.2.12. Let ∇ be a (p-)protodisjunction and 〈A, F〉 ∈ MOD(L) a matrix where F is
∇-prime. Then h−1[F] is ∇-prime for every strict (surjective) homomorphism h.

Proof. Let us assume that h : 〈B,G〉 → 〈A, F〉 is a strict (surjective) homomorphism and as-
sume that G = h−1[F] is not ∇-prime, i.e. there are a, b < h−1[F] and a ∇B b ⊆ h−1[F]. Thus
h(a), h(b) < F and h[a∇B b] ⊆ F. Using that h is surjective or that ∇ has no parameters, we get
h(a) ∇A h(b) = h[a ∇B b] and the proof is done. �

DEFINITION 4.2.13 (Prime Extension Property). A logic L has the prime extension property,
PEP for short, with respect to a set ∇ if ∇-prime theories form a base of the closure system
Th(L).

LEMMA 4.2.14. Any ∇-prime filter is intersection-prime. If ∇ has the PCP (resp. the τ-PCP),
then every intersection-prime theory (resp. every intersection-prime filter in every L-algebra)
is ∇-prime.

Proof. First assume that F is not intersection-prime; i.e. F = F1 ∩ F2 for some Fi ) F. Let us
consider ai ∈ Fi \ F. Thus, by (PD), we know that a1 ∇

A a2 ⊆ Fi and so a1 ∇
A a2 ⊆ F, i.e. F

is not ∇-prime.
We show the proof of the second claim for filters (for theories it is the same). Consider any

F ∈ FiL(A) and assume first that F is not ∇-prime, i.e. there are x < F and y < F such that
x ∇A y ⊆ F. By the τ-PCP we know that F = Fi(F, x ∇A y) = Fi(F, x) ∩ Fi(F, y), i.e. F is the
intersection of two strictly bigger filters. �
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PROPOSITION 4.2.15. Let ∇ by a p-protodisjunction in a logic L. If L has the IPEP, then the
following conditions are equivalent:

1. ∇ has the PEP.

2. ∇ has the sPCP.

3. ∇ has the PCP.

4. intersection-prime and ∇-prime theories coincide

5. in every L-algebra, intersection-prime and ∇-prime filters coincide

Furthermore if L has the PEP, then it has the IPEP and the conditions 2.–5. are satisfied.

Proof. 1. implies 2. Assume that Φ ∇ Ψ 0L χ, then using the PEP there has to be a ∇-prime
theory T ⊇ ThL(Φ ∇Ψ) such that T 0L χ. First assume that Φ ⊆ T . Then Φ 0L χ and the proof
is done. Assume otherwise that there is ϕ ∈ Φ \ T . Since ϕ ∇ ψ ⊆ T for each ψ ∈ Ψ and T is
∇-prime, we obtain that Ψ ⊆ T and so Ψ 0L χ.

The implication 2. implies 3. is trivial, 3. implies 4. is proved in Lemma 4.2.14, 4. implies
1. follows easily using the IPEP.

Thus the first four claims are equivalent. To join them with the last one it is sufficient to
observe that the implication 2. implies 5. easily follows from Theorem 4.2.7 and Lemma 4.2.14
and the implication 5. implies 4. is trivial.

Lemma 4.2.14 also entails that a logic with the PEP also enjoys the IPEP and so the rest of
the proof easily follows. �

THEOREM 4.2.16 (Semantical characterizations). Let L be a weakly implicative logic. Then
the following are equivalent:

1. L is strongly p-disjunctional

2. L is filter-framal

3. L is framal

4. for any theory T and any set Γ of formulae the following holds:

T ∩
∨
ϕ∈Γ

ThL(ϕ) =
∨
ϕ∈Γ

(T ∩ ThL(ϕ)).

If L has the IPEP we can add

5. L is p-disjunctional

6. L is filter-distributive

7. L is distributive

8. for any theory T and any pair ϕ, ψ of formulae the following holds:

(T ∨ ThL(ϕ)) ∩ (T ∨ ThL(ψ)) = T ∨ (ThL(ϕ) ∩ ThL(ψ)).
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Proof. To prove that 1 implies 2 we use Theorem 4.2.7 to justify the two non-trivial equations
of the following chain:

F ∩
∨
G∈F

G = Fi(F) ∩ Fi(
⋃
G∈F

G) = Fi(F ∇
⋃
G∈F

G) = Fi(
⋃
G∈F

(F ∇G)) =

= Fi(
⋃
G∈F

Fi(F ∇G)) = Fi(
⋃
G∈F

(F ∩G)) =
∨
G∈F

(F ∩G).

The proofs of the implication from 2 to 3 and the implication from 3 to 4 are trivial.
To prove that 4 implies 1 we first observe that from Lemma 4.2.9 we already know that

there is a p-disjunction ∇. We can write the following chain of equations (the first one is trivial,
the second one is due to our assumption):

ThL(Φ) ∩ ThL(Ψ) = ThL(Φ) ∩ (
∨
ψ∈Ψ

ThL(ψ)) =
∨
ψ∈Ψ

(ThL(Φ) ∩ ThL(ψ)) =

we continue by repeating the first step for Φ and PCP:

=
∨

ϕ∈Φ,ψ∈Ψ

(ThL(ϕ) ∩ ThL(ψ)) =
∨

ϕ∈Φ,ψ∈Ψ

ThL(ϕ ∇ ψ) =

the rest of the proof is simple:

= ThL(
⋃

ϕ∈Φ,ψ∈Ψ

ThL(ϕ ∇ ψ)) = ThL(
⋃

ϕ∈Φ,ψ∈Ψ

ϕ ∇ ψ) = ThL(Φ ∇ Ψ).

Thus we have established that the first four claims are equivalent.
The second part is more tricky as in general we do not have the transfer of PCP (unlike in

the case of sPCP). Observe that even without the assumption of the IPEP we can establish a
chain of implications: 2 implies 6. implies 7. implies 8. implies 5. (the last implication is due
to Lemma 4.2.9 and the others are trivial). The missing implication 5. implies 1. follows from
Proposition 4.2.15. �

COROLLARY 4.2.17 (Transfer of framality). Let L be a weakly implicative logic. If L is
framal, then it is filter-framal.

COROLLARY 4.2.18 (Distributivity implies framality). Let L be a weakly implicative logic
with the IPEP. If L is distributive, then it is filter-framal.

We conclude this section by exploring the relation of PEP (and therefore (strong) p-disjunc-
tionality) and completeness of the logic L w.r.t. the class MODp

∇
(L) of its reduced matrices

whose filter is ∇-prime.

PROPOSITION 4.2.19 (∇-prime completeness). Let ∇ be a p-protodisjunction with the PEP.
Then L = |=MODp

∇
(L).

Proof. From Proposition 4.2.15 we know that the PEP implies the PCP, so (by Lemma 4.2.14)
∇-prime and intersection-prime theories coincide and hence L enjoys the IPEP. This (by
Theorem 2.3.22) implies RFSI-completeness, which is exactly what we needed (because, by
Proposition 4.2.15 and Theorem 4.2.7, the PEP implies also the τ-PCP and so ∇-prime and
intersection-prime filters coincide as well). �
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The converse direction can be easily proved in the parameter-free case (whether it holds in
the parameterized case appears to be an open problem).

PROPOSITION 4.2.20. A protodisjunction ∇ enjoys the PEP if, and only if, L = |=MODp
∇

(L).

Proof. Assume that T 0L χ. Thus there is an 〈A, F〉 ∈MODp
∇

(L) and e such that e[T ] ⊆ F and
e(χ) < F. Define T ′ = e−1[F]. Clearly, T ′ is a theory, T ′ ⊇ T , and χ < T ′ and by Lemma 4.2.12
T ′ is ∇-prime. �

EXAMPLE 4.2.21. The standard infinite-valued Łukasiewicz logic is strongly disjunctive. Re-
call the logic Ł introduced in Example 2.3.11 via the matrix [0, 1]Ł. We define ϕ ∨ ψ as
(ϕ → ψ) → ψ and easily compute that x ∨[0,1]Ł y = max{x, y}. Then clearly {1} is a ∨-prime
filter and thus, by the previous proposition, ∨ enjoys the PEP and the sPCP.

4.3 Some additional properties of (p-)disjunctional logics

In the last section of we show some applications of the theory: we study the preservation of
proof by cases properties in expansions; identify and axiomatize the least logic where a given ∇
satisfies the sPCP; show how to use a p-disjunction to find an axiomatization of the extension of
L defined semantically by a positive universal class of models of L, and as a particular case we
show how to axiomatize the intersection of two axiomatic extensions of L; finally, we consider
the analogous problems in the more general case of non-negative universal classes at the price
of restricting to finitary logics.

THEOREM 4.3.1 (Preservation of sPCP). Let L1 be a logic in a language L1 with the sPCP,
and L2 an expansion of L1 in a language L2 ⊇ L1 by a set C of consecutions closed under
L2-substitutions. Then L2 enjoys the sPCP iff R∇ ⊆ L2 for each R ∈ C. In particular, the sPCP
is preserved in axiomatic expansions.

Proof. The left-to-right direction is a straightforward application of Theorem 4.2.5. For the
reverse direction take a presentation AS of L1. We know that L2 has a presentation AS′ =

{σ[Γ] B σϕ | σ is an L2-substitution, Γ B ϕ ∈ AS ∪ C}. Thus we need to prove that for each
Γ B ϕ ∈ AS ∪ C and for each L2-substitution σ we have (σ[Γ] B σϕ)∇ ⊆ L2, i.e. for each L2-
formula χ, each δ(p, q, r1, . . . , rn) ∈ ∇ and each sequence α1, . . . , αn of L2-formulae we have
σ[Γ] ∇ χ `L2 δ(σϕ, χ, α1, . . . , αn). If Γ B ϕ ∈ C, this is the assumption; we solve the remaining
case.

Consider any enumeration of the propositional variables such that p0 = q, pi = ri, and
L1-substitutions ρ, ρ−1 and L2-substitution σ̄ defined as:

• ρpi = pi+n+1,

• ρ−1 pi = pi−n−1 for i > n and pi otherwise,

• σ̄pi = σ(pi−n−1) for i > n, σ̄pi = αi for 1 ≤ i ≤ n and σ̄p0 = χ.

Observe that ρ−1ρψ = ψ and σ̄ρψ = σψ. From Γ B ϕ ∈ AS we know that ρ[Γ] B ρϕ ∈ AS
and because clearly (ρ[Γ] B ρϕ)∇ ⊆ L1 ⊆ L2 we obtain: ρ[Γ] ∇ q `L2 δ(ρϕ, q, r1, . . . , rn). Thus
σ̄[ρ[Γ] ∇ q] `L2 σ̄δ(ρϕ, q, r1, . . . , rn). Obviously, σ̄δ(ρϕ, q, r1, . . . , rn) = δ(σϕ, χ, α1, . . . , αn),
if we prove σ̄[ρ[Γ] ∇ q] ⊆ σ[Γ] ∇ χ the proof is done. To show this it is enough to observe
that the formulae in σ̄[ρ[Γ] ∇ q] are of the form δ′(σψ, χ, σ̄α1, . . . , σ̄αk) ∈ ∇ for some ψ ∈ Γ,
δ′(p, q, r1, . . . , rk) ∈ ∇ and a sequence of L2-formulae α1, . . . , αk. �
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Analogous results can be shown for the preservation of fPCP and wPCP in expansions
by restricting the condition to finitary consecutions or consecutions with only one premise,
respectively.

THEOREM 4.3.2 (Preservation of PEP). Let L′ be an axiomatic extension of L. If L has the
PEP then so has L′.

Proof. From Lemma 4.2.14 and Proposition 4.2.15 we can easily infer that L is strongly p-
disjunctional and has the IPEP. Due to Lemma 2.3.12 and by the previous theorem we also
know that L′ is strongly p-disjunctional and has the IPEP. Proposition 4.2.15 completes the
proof. �

Observe that if we take a system of logics where ∇ has the sPCP, ∇ will retain the sPCP
in the intersection of the system. Also observe that, trivially, any set ∇ has the sPCP in the
inconsistent logic. Thus, the following definition is sound.

DEFINITION 4.3.3 (Logic L∇). Let L be a logic and ∇ a p-protodisjunction. We denote by L∇

the least logic extending L where ∇ has the sPCP.

We sometimes refer to L∇ as the ∇-extension of L. The next proposition shows that the
∇-extension of a finitary logic is finitary, and then we characterize this logic both syntactically
and semantically. Unfortunately in both cases we need to restrict to parameter-free protodis-
junctions; the question whether this restriction can be omitted is left open.

PROPOSITION 4.3.4. Let L be a finitary logic. Then L∇ is finitary and L∇ is the intersection
of all finitary extensions of L where ∇ has the sPCP.

Proof. Recall the notion of finitary companion of a logic S, denoted as FC(S), which is the
largest finitary logic contained in S. Thus, since L is finitary, we know that L ⊆ FC(L∇) ⊆ L∇.
If we show that ∇ has the sPCP in FC(L∇), we obtain FC(L∇) = L∇ and hence L∇ is finitary.
Actually, one can easily show in general that if ∇ has the sPCP in S, then it has the sPCP in
FC(S) as well. �

PROPOSITION 4.3.5 (Semantics of L∇). Let L be a logic and ∇ a protodisjunction such that
L∇ has the IPEP.4 Then:

L∇ = |=MODp
∇

(L).

Proof. First observe that, since the notion of ∇-primality does not depend on the logic, we
have: MODp

∇
(L) = MODp

∇
(|=MODp

∇
(L)). Then, due to Propositions 4.2.20 and 4.2.15, ∇ has

the sPCP in |=MODp
∇

(L). From the assumption that L∇ has the IPEP and Propositions 4.2.15
and 4.2.20 we know that L∇ = |=MODp

∇
(L∇). Since clearly MODp

∇
(L∇) ⊆ MODp

∇
(L), we have

that |=MODp
∇

(L) ⊆ L∇ and the proof is done. �

In the parameterized case we could only prove a weaker statement:

L∇ = (|=MODp
∇

(L))
∇.

4Note that, thanks to the previous proposition, L∇ has the IPEP whenever L is finitary.
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THEOREM 4.3.6 (Axiomatization of L∇). Let L be a logic with a presentation AS and ∇ a
protodisjunction satisfying (C∇), (I∇), and (A∇). Then the logic L∇ is axiomatized by AS ∪⋃
{R∇ | R ∈ AS}.

Proof. Let L̂ denote the logic axiomatized by AS ∪
⋃
{R∇ | R ∈ AS} (this set is closed under

all substitutions because we assume ∇ to be parameter-free). Clearly, for each R from this ax-
iomatic system we have R∇ ⊆ L̂ (due to Lemma 4.2.4 part 2), hence we can use Theorem 4.2.6
to obtain that L̂ has the sPCP.

Let L′ be any logic with the sPCP extending L. Notice that for any R ∈ AS we have both
R ∈ L′ and R∇ ⊆ L′ (due to Theorem 4.2.5). Thus clearly L̂ ⊆ L′. �

Observe that we could relax some of the (C∇), (I∇), (A∇) conditions if we would add them
and their ∇-forms to obtain the axiomatization of L∇.

Let us recall that matrices can be regarded as first-order structures where the filter corre-
sponds to a unary predicate F, i.e. all atomic formulae in the corresponding classical first-order
language are of the form F(ϕ) where ϕ is a formula. Recall that a positive clause C is a dis-
junction

∨
ϕ∈ΣC F(ϕ) of finitely many atomic formulae. A set of positive clauses C is said to be

valid in a matrix M = 〈A, F〉, written as M |= C, if for each C ∈ C and each M-evaluation e
there is a ϕ ∈ ΣC such that e(ϕ) ∈ F. A positive universal class of matrices is the collection
of all models of a set of universal closures of positive clauses.5 The next theorem presents an
axiomatization, by means of a p-disjunction, of any logic given by a positive universal class of
(RFSI) matrices.

THEOREM 4.3.7. Let L be a logic with the IPEP, ∇ a p-disjunction, and C a set of positive
clauses. Then:

|={A∈MOD∗(L) | A|=C} = L +
⋃
{∇ψ∈ΣC ψ | C ∈ C}.

Proof. Let us first denote the set of formulae6 ∇ψ∈ΣC ψ as C∇ and observe that for each matrix
A = 〈A, F〉 we have: if A |= C, then |=A C∇. Moreover, if F is ∇-prime, the reverse implication
holds as well.

We denote the left-hand side logic as Lh and the right-hand side one as La. Clearly L ⊆ Lh

and due to the observation above also `Lh C∇ for each C ∈ C. Thus La ⊆ Lh.
The converse direction Lh ⊆ La will be proven counterpositively. First observe that from

Proposition 4.2.15 we know that ∇ has sPCP and PEP. Assume that there is a set Γ ∪ {ϕ} of
formulae such that: Γ 0La ϕ. Since ∇ is a p-disjunction in La (by Theorem 4.3.1), we know
that there is A = 〈A, F〉 ∈ MODp

∇
(La) (by Proposition 4.2.19) such that Γ 6|=A ϕ. If we show

that A |= C, the proof is done. Assume that A 6|= C for some C ∈ C. Then, by the observation
at the beginning of the proof, A as matrix would not satisfy the propositional formula C∇—a
contradiction. �

5Positive universal classes are usually defined as the collection of all models of a set of positive universal
formulae, i.e. the universal closure of formulae build from atoms using conjunction and disjunction. Clearly each
formula of this kind can be written as the universal closure of a conjunction of positive clauses and so its generated
positive universal class is just the positive universal class generated by the collection of these positive clauses.

6The extension of ∇ from a binary constructor to an operator applied to finite sets is well defined (as long as
provability concerns) thanks to its associativity.
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COROLLARY 4.3.8. Let L be a logic with the IPEP, ∇ a p-disjunction, and let L1, L2 be
axiomatic extensions of L by sets of axiomsA1 andA2, respectively. Without loss of generality
we can assume thatA1 andA2 are written in disjoint sets of variables.7 Then:

L1 ∩ L2 = L +
⋃
{ϕ ∇ ψ | ϕ ∈ A1, ψ ∈ A2}.

Proof. Recall that L1 ∩ L2 = |=MOD∗(L1)∪MOD∗(L2) and denote by A the set {F(ϕ) ∨ F(ψ) | ϕ ∈
A1, ψ ∈ A2}. If we show that MOD∗(L1) ∪MOD∗(L2) = {A ∈MOD∗(L) | A |= A}, the proof
is done by Theorem 4.3.7.

One inclusion is trivial. We prove the converse one counterpositively: consider A ∈

MOD∗(L) such that A < MOD∗(L1) ∪ MOD∗(L2), i.e. there is ϕi ∈ Ai such that 6|=A ϕi.
Consider evaluations ei witnessing these facts. Since ϕ1 and ϕ2 do not share any proposi-
tional variable, there is an evaluation e witnessing both facts. This evaluation also shows that
A 6|= F(ϕ1) ∨ F(ϕ2). �

As another consequence of Theorem 4.3.7 the following example shows that in some cases
one can easily axiomatize the logic defined by linearly ordered models of a given logic in terms
of disjunction. Logics complete with respect to linearly ordered matrices are the central topic
of the next section.

EXAMPLE 4.3.9. Since ∨ is a disjunction in FLew and any matrix M∈MOD(FLew) is linearly
ordered iff M |= F(ϕ→ ψ) ∨ F(ψ→ ϕ), we can apply Theorem 4.3.10 and obtain:

|={B∈MOD∗(FLew) |B is linearly ordered} = FLew + (ϕ→ ψ) ∨ (ψ→ ϕ).

Next we extend the previous results at the price of restricting to finitary logics. A non-
negative clause H is a formula (of classical predicate logic) of the form∧

ϕ∈ΓH

F(ϕ)→
∨
ψ∈ΣH

F(ψ)

where ΣH ,ΓH are finite sets of atomic formulae and ΣH is non-empty.
A set of non-negative clauses H is said to be valid in a matrix M = 〈A, F〉, written as

M |= H , if for H ∈ H and each M-evaluation e such that e[ΓH] ⊆ F there is some ϕ ∈ ΣH such
that e(ϕ) ∈ F.

THEOREM 4.3.10. Let L be a finitary logic, ∇ a p-protodisjunction, and H a set of non-
negative clauses. Then:

(|={B∈MOD∗(L) | B|=H})∇ = (L +
⋃
{ΓH B ∇ψ∈ΣH ψ | H ∈ H})

∇.

Proof. Let us first denote the consecution ΓH B∇ψ∈ΣH ψ as H∇ and observe that for each matrix
A = 〈A, F〉 we have: if A |= H, then ΓH |=A ∇ψ∈ΣH ψ. Moreover, if F is ∇-prime, the reverse
implication holds as well.

7To show this, let us fix an enumeration of propositional variables {pi | i ≤ |VAR|} and define substitutions
σ1 pi = p2i and σ2 pi = p2i+1. Clearly there are substitutions σ′i such that σ′iσiϕ = ϕ. Thus for each set of axiomsA
holds: {σ[A] | σ is a substitution} = {σ[σi[A]] | σ is a substitution} and so L +Ai = L +σi[Ai]. Clearly the set of
variables occurring in σ1[A1] and the set of those occurring in σ2[A2] are disjoint.
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The first part of this observation tells us that

|={A∈MOD∗(L) | A|=H} ⊇ L +
⋃
{ΓH B ∇ψ∈ΣH ψ | H ∈ H}.

Therefore, the same holds for their ∇-extensions. Next we use Proposition 4.3.4 to observe
that the logic on the right-hand side is finitary and so it has the PEP (Proposition 4.2.15). Thus
by Proposition 4.2.19, this logic is complete w.r.t. the class K of its reduced ∇-prime matrices.
Clearly K ⊆ MODp

∇
(L) and thus we can use the second part of the previous observation, to

show that K ⊆ {A ∈MOD∗(L) | A |= H} and so

|={B∈MOD∗(L) | B|=H} ⊆ |=K = (L +
⋃
{ΓH B ∇ψ∈ΣH ψ | H ∈ H})

∇.

The rest of the proof is trivial. �

Let R = Γ B ϕ and S = ∆ B ψ be consecutions. By R∇ S we denote the set of consecutions
{Γ,∆ B χ | χ ∈ ϕ ∇ ψ}.

THEOREM 4.3.11. Let L be a finitary logic, ∇ a p-protodisjunction, and let L1 and L2 be
finitary extensions of L respectively obtained by adding sets of finitary consecutions C1 and
C2. Without loss of generality we can again assume that C1 and C2 are written in disjoint sets
of variables. Then:

(L1 ∩ L2)∇ = (L +
⋃
{R ∇ S | R ∈ C1, S ∈ C2})∇.

Proof. Recall that L1 ∩ L2 = |=MOD∗(L1)∪MOD∗(L2). If R = Γ B ϕ ∈ C1 and S = ∆ B ψ ∈ C2, we
denote by R ∨ S denote the following non-negative universal clause:∧

χ∈Γ∪∆

F(χ)→ F(ϕ) ∨ F(ψ).

Finally, we defineH = {R ∨ S | R ∈ C1, S ∈ C2}. If we show that MOD∗(L1) ∪MOD∗(L2) =

{B ∈MOD∗(L) | B |= H}, the proof is done by Theorem 4.3.10.
One inclusion is trivial. We prove the converse one counterpositively: consider A ∈

MOD∗(L) such that A < MOD∗(L1) ∪MOD∗(L2), i.e. there is Ri = Γi B ϕi ∈ Ci such that
Γi 6|=A ϕi. Consider evaluations e1 and e2 witnessing these facts. Since R1 and R2 do not share
any propositional variable, there is an evaluation e witnessing both facts. This evaluation also
shows that A 6|= R1 ∨ R2. �

Of course, if the intersection L1∩L2 is p-disjunctional, what we obtain is an axiomatization
for this logic. If, in addition, L shares the p-disjunction ∇ with L1 ∩ L2, we obtain:

L1 ∩ L2 = L +
⋃
{(R ∇ S )∇ | R ∈ C1, S ∈ C2}.





Chapter 5

Semilinear logics

This chapter is devoted to the central topic of the chapter: logics complete with respect to lin-
early ordered matrices, which we call semilinear. We aim to encompass by this notion the vast
majority of fuzzy logics in the literature. Always in the context of weakly implicative logics,
in the first section we provide the technical definition of semilinear logic and some auxiliary
notions which allow for an approach to a large extent analogous to that we have followed for
disjunctions. In the second section, we study the strong interplay between semilinear impli-
cations and disjunctions and obtain several interesting consequences. In the last section we
focus on completeness properties with respect to finer semantics, i.e. distinguished subclasses
of linearly ordered matrices.

5.1 Basic definitions, properties, and examples

We want to study a general notion of logic complete with respect to a semantics of linearly
ordered matrices. A natural design choice is to restrict to the context of weakly implicative
logics because in these logics the implication connective induces a preorder in the matrices,
which is actually an order relation in reduced models.

DEFINITION 5.1.1 (Linear filter and linear model). Let L be a weakly implicative logic. Take
any non-trivial A = 〈A, F〉 ∈ MOD(L). The filter F is called linear if ≤A is a total preorder,
i.e. for every a, b ∈ A, a →A b ∈ F or b →A a ∈ F. Furthermore, we say that A is a linearly
ordered model (or just a linear model) if ≤A is a linear order (equivalently: F is linear and A
is reduced). We denote the class of all linear models as MOD`(L).

Now, based on linear models, we can introduce the central concept of this chapter:

DEFINITION 5.1.2 (Semilinear implication, semilinear logic). Let L be a weakly implicative
logic. We say that → is a semilinear implication if the linear models it defines are a com-
plete semantics for L, i.e. `L = |=MOD`(L). A weakly implicative logic is semilinear if it has a
semilinear implication.

73
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Observe that the class of linear models and the notion of semilinearity thereof are not
intrinsically defined for a given logic: they depend on which possible implication has been
chosen as principal. For instance, in classical logic both → and ≡ are weak implications, but
only → makes the logic semilinear (linear models w.r.t. to → are the trivial model and that
based on the two-element Boolean algebra, while the only linear model w.r.t. ≡ is the trivial
one).

The following simple lemma has an important corollary and will be used later to provide
some useful counterexamples.

LEMMA 5.1.3. Let L be a weakly implicative logic, A an L-algebra, and F a linear filter.
Then the set [F, A] = {G ∈ FiL(A) | F ⊆ G} is linearly ordered by inclusion.1

Proof. Assume that there are two incomparable filters G1,G2 ∈ [F, A] and take elements a1 ∈

G1 \G2 and a2 ∈ G2 \G1. Assume (without a loss of generality) that a1 ≤〈A,F〉 a2. Thus also
a1 →

A a2 ∈ F ⊆ G1 and so by (MP) also a2 ∈ G1—a contradiction. �

PROPOSITION 5.1.4. Let L be a weakly implicative logic. Then, all linear filters are inter-
section-prime, and thus MOD`(L) ⊆MOD∗(L)RFSI.

Proof. If A is an L-algebra and F ∈ FiL(A) is a linear filter, by the previous lemma we
know that [F, A] is linearly ordered by inclusion. Assume that F = G1 ∩G2, for some G1,G2 ∈

FiL(A). Then we must have G1 ⊆ G2, and hence F = G1, or G2 ⊆ G1, and so F = G2; therefore
F is intersection-prime. The second claim follows immediately from Theorem 2.3.18. �

In particular, linear theories are linear filters over the algebra FmL, and they are intersection-
prime. Recall (from Corollary 2.3.9) that in finitary logics the intersection-prime theories form
a base of the closure system Th(L), i.e. they satisfy the IPEP. Thus, an interesting question
is to determine under which conditions linear theories form a base of Th(L). We can charac-
terize (see [18]) it by means of a generalization of the so-called prelinearity property which
we rename to semilinearity property. This change of terminology follows the tradition from
Universal Algebra of calling a class of algebras ‘semiX’ whenever its subdirectly irreducible
members have the property X because, indeed, as will see in Theorem 5.1.8, finitary semilinear
logics are characterized as those where all subdirectly irreducible models are linearly ordered.

DEFINITION 5.1.5 (Linear Extension Property, Semilinearity Property). We say that a weakly
implicative logic L has the

• Linear Extension Property LEP if linear theories form a base of Th(L), i.e. for every
theory T ∈ Th(L) and every formula ϕ ∈ FmL \ T, there is a linear theory T ′ ⊇ T such
that ϕ < T ′.

• Semilinearity Property SLP if the following meta-rule is valid:

Γ, ϕ→ ψ `L χ Γ, ψ→ ϕ `L χ

Γ `L χ
.

1Observe that if L is algebraically implicative and 〈A, F〉 ∈MOD`(L), then FiL(A) = [F, A].
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Next we prove a transfer theorem for the SLP. Recall our standing assumption that the set
Var of propositional variables is denumerable.

THEOREM 5.1.6 (Transfer of SLP). Assume that a weakly implicative logic L satisfies the
SLP. Then for each L-algebra A and each set X ∪ {a, b} ⊆ A the following holds:

Fi(X, a→ b) ∩ Fi(X, b→ a) = Fi(X).

Proof. To prove the non-trivial direction we show that for each t < Fi(X) we have t < Fi(X, a→
b) or t < Fi(X, b→ a). We distinguish two cases:

1) Firstly assume that A is countable. We can assume that the set Var of propositional
variables contains (or is equal to) the set {vz | z ∈ A} (where vz , vw whenever z , w). Consider
the following set of formulae:

Γ = {vz | z ∈ Fi(X)} ∪
⋃
〈c,n〉∈L

{c(vz1 , . . . , vzn)↔ vcA(z1,...,zn) | zi ∈ A}.

Clearly, Γ 0L vt (because 〈A,Fi(X)〉 ∈ MOD(L) and for the A-evaluation e(vz) = z: e[Γ] ⊆
Fi(X) and e(vt) < Fi(X)). Thus by the SLP we have Γ, va → vb 0L vt or Γ, vb → va 0L vt.
Assume (without loss of generality) the former case and denote T ′ = ThL(Γ, va → vb). We
show that the mapping h : A → FmL/ΩT ′ defined as h(z) = [vz]T ′ is a homomorphism by a
simple chain of equalities:

h(cA(z1, . . . , zn)) = [vcA(z1,...,zn)]T ′ = [c(vz1 , . . . , vzn)]T ′

= cFmL/ΩT ′([vz1]T ′ , . . . , [vzn]T ′) = cFmL/ΩT ′(h(z1), . . . , h(zn)).

Thus F = h−1([T ′]) ∈ FiL(A) and, since clearly X ∪ {a → b} ⊆ F and t < F, we have
established that t < Fi(X, a→ b).

2) Secondly assume that A is uncountable. We introduce a new set of propositional vari-
ables2 Var′ = {vz | z ∈ A}; we can safely assume that it contains the original set Var. We define
a new logic L′ in the languageL′ which has the same connectives asL and variables from Var′.
If we show that this logic has the SLP we can repeat the constructions from the first part of this
proof. From our assumption we know that there is a presentationAS of L such that each of its
rules has countably many premises.

Let us defineAS′ = {σ[X]Bσ(ϕ) | XBϕ ∈ AS and σ is an L′-substitution} and L′ = `AS′ .
Observe that Γ `L′ ϕ iff there is a countable set Γ′ ⊆ Γ such that Γ′ `L′ ϕ (clearly any proof in
AS

′ has countably many leaves, because all of its rules have countably many premises).
Next observe that L′ is a conservative expansion of L (consider the substitution σ sending

all variables from Var to themselves and the rest to a fixed p ∈ Var, take any proof of ϕ from
Γ in AS′ and observe that the same tree with labels ψ replaced by σψ is a proof of ϕ from Γ

in L).

2Notice that this set of variables is not countable, so it does not satisfy the cardinality restriction that we have
assumed from the beginning of the chapter for the sake of simplicity. However, an inspection of the relevant parts
of the general theory of logical calculi that we have introduced so far shows that everything needed for this proof
would work as well without that restriction. Therefore, in this proof we can violate our general assumption without
problems.
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We show that L′ has the SLP: assume that Γ, ϕ → ψ `L′ χ and Γ, ψ → ϕ `L′ χ. There
is a countable subset Γ′ ⊆ Γ such that Γ′, ϕ → ψ `L′ χ and Γ′, ψ → ϕ `L′ χ. Consider the
set Var0 of variables occurring in Γ′ ∪ {ϕ, ψ, χ} and a bijection g on the set Var′ such that the
image Var0 is a subset of Var (such bijection clearly exists). Thus for the L′-substitution σ
induced by g exists an inverse substitution σ−1 and σ[Γ′] ∪ {σϕ,σψ, σχ} ⊆ FmL. Clearly
also σ[Γ′], σϕ → σψ `L′ σχ and σ[Γ′], σψ → σϕ `L′ σχ. Using the fact that L′ expands L
conservatively, we obtain σ[Γ′], σϕ → σψ `L σχ and σ[Γ′], σψ → σϕ `L σχ. From the SLP
of L we know that σ[Γ′] `L σχ and σ[Γ′] `L′ σχ so by structurality for the inverse substitution
σ−1 also Γ′ `L′ χ. �

THEOREM 5.1.7 (Properties of semilinear logics). Let L be a semilinear logic in language L.
Then:

1. L has the LEP.

2. L has the SLP.

3. L has the transferred SLP, i.e. Fi(X, a → b) ∩ Fi(X, b → a) = Fi(X) for each L-algebra
A and each set X ∪ {a, b} ⊆ A.

4. Linear filters coincide with intersection-prime ones in each L-algebra.

5. MOD∗(L)RFSI = MOD`(L).

6. MOD∗(L)RSI ⊆MOD`(L).

7. L has the IPEP.

Proof. If T 0L χ, then there is a B = 〈A, F〉 ∈ MOD`(L) and a B-evaluation e such that
e[T ] ⊆ F and e(χ) < F. We define T ′ = e−1[F]. Obviously T ′ is a theory, T ⊆ T ′ and
T ′ 0L χ. Since ≤B is a linear order, e(ϕ) ≤B e(ψ) or e(ψ) ≤B e(ϕ) for each ϕ and ψ. Thus either
e(ϕ→ ψ) ∈ F or e(ψ→ ϕ) ∈ F, i.e. ϕ→ ψ ∈ T ′ or ψ→ ϕ ∈ T ′.

The second claim: if T 0L χ, then (using the LEP) there is a linear theory T ′ ⊇ T , such that
T ′ 0L χ. Assume (without a loss of generality) that T ′ `L ϕ→ ψ, and so T, ϕ→ ψ 0L χ.

The third claim: follows from the SLP using the transfer theorem proved above.
The fourth claim: let A be an L-algebra. One direction is Proposition 5.1.4. The other one

obviously holds for F = A and otherwise follows from the previous claim counterpositively:
assume that there are a, b ∈ A such that a → b < F and b → a < F, i.e. F ( Fi(F, a → b) and
F ( Fi(F, b → a). Therefore we obtain F = Fi(F) = Fi(F, a → b) ∩ Fi(F, b → a) and so F is
finitely ∩-reducible.

The fifth claim: it is an easy corollary of the previous claim and Theorem 2.3.18.
The sixth claim is a trivial consequence of the previous one.
The final claim easy follows from LEP and Proposition 5.1.4. �

Observe that, in fact, in the proof of this theorem only the LEP has been proved directly
from semilinearity; all the remaining claims (but the last one) have been shown from their
direct predecessors. Now, an obvious question is when the claims 1.–6. are equivalent. First
notice that claim 5 tells us that semilinear logics are complete w.r.t. MOD∗(L)RFSI, a known
property of logics with IPEP established in Theorem 2.3.22, thus in these logics the claim
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5. implies semilinearity. Actually for finitary logics we proved even more in Theorem 2.3.22:
completeness w.r.t. MOD∗(L)RSI, which is exactly the property needed for the final implication
in the proof (namely, that claim 6 implies semilinearity). However, this property is rather
obscure, and hence we choose to formulate the following characterization theorem in terms for
finitary logics or the logics with the IPEP.

THEOREM 5.1.8 (Characterization of semilinear logics). Let L be a weakly implicative logic.
The following are equivalent:

1. L is semilinear.

2. L has the LEP.

Furthermore, if L has the IPEP the list of equivalences can be expanded with:

3. L has the SLP.

4. L has the transferred SLP.

5. Linear filters coincide with intersection-prime ones in each L-algebra.

6. MOD∗(L)RFSI = MOD`(L).

Furthermore, if L is finitary the list of equivalences can be expanded with:

7. MOD∗(L)RSI ⊆MOD`(L).

Proof. The explanation before this theorem shows that we need to prove only one implication,
namely that 2 implies 1. Assume that Γ 0L ϕ, let T be the theory generated by Γ and T ′ ⊇ T a
linear theory such that T ′ 0L ϕ. From part 3 of Lemma 2.2.9 we know LindTT ′ ∈ MOD∗(L)
and its second part trivially entails that [T ′] is a linear filter, i.e. LindTT ′ ∈ MOD`(L). The
rest of the proof is the same as the proof of the completeness theorem 2.2.13. �

The previous theorems have several interesting and important corollaries. The first one
uses the trivial observation that ϕ, ψ → ϕ ` ψ → ϕ and for regular implications also ϕ, ϕ →
ψ ` ψ→ ϕ. Thus, by the SLP, we derive ϕ ` ψ→ ϕ.

COROLLARY 5.1.9. Every regularly implicative semilinear logic is also Rasiowa-implicative.

Another interesting corollary is obtained by observing that the LEP of a logic is preserved
in all its axiomatic extensions (it is based on the fact that any theory of a logic L which contains
a set of axiomsA is a theory in L +A as well).

COROLLARY 5.1.10. All axiomatic extensions of a semilinear logic are semilinear too.

This corollary is particularly useful when presenting a large class of weakly implicative
logics which are not semilinear no matter which weak implication we might take as principal.

It is quite easy to show that a given logic is not semilinear for a fixed principal implica-
tion. Consider e.g. intuitionistic logic with its usual implication: the well-known fact that the
linear Heyting algebras do not generate the variety of Heyting algebras does the job. The next
example uses again our characterization theorem (together with Lemma 5.1.3) to show much
more:
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EXAMPLE 5.1.11. Intuitionistic logic is not semilinear w.r.t. any principal implication.

Proof. We provide two alternative proofs of this fact. First a very simple ad hoc one, and then
a more sophisticated proof using the machinery introduced in the present chapter which has the
advantage of providing a general method to show undefinability of semilinear implications in
many logics.
(1) Let IPC be the intuitionistic propositional logic. Assume that→′ is a semilinear implication
in IPC and we show that p →′ q a`IPC p → q (where→ is the usual implication of intuition-
istic logic), which entails that→ is a semilinear implication—a contradiction. One direction is
simple: from p, p→′ q `IPC q we obtain (using Deduction Theorem) p→′ q `IPC p→ q. The
reverse direction: using the first direction we obtain q →′ p, p → q `IPC q → p. Since, triv-
ially, q→′ p, p→ q `IPC p→ q and the symmetrizations of any pair of weak implications are
interderivable (Corollary 2.2.4), we obtain q→′ p, p→ q `IPC p→′ q. Now, using the follow-
ing trivial fact p→′ q, p→ q `IPC p→′ q and the SLP, we conclude that p→ q `IPC p→′ q.
(2) IPC can be presented as FLewc, and hence it is a substructural logic in the scope of Theo-
rem 3.1.11. In fact, it is a Rasiowa-implicative logic and MOD∗(IPC) = {〈A, {1

A
}〉 | A ∈ HA},

where HA is the variety of Heyting algebras. The isomorphism (see Theorem 2.4.5) between
filters and congruences in any Heyting algebra A tells us that {1

A
} is ∩-irreducible in FiIPC(A)

if, and only if, the identity relation is ∩-irreducible in Con(A), i.e. A is subdirectly irreducible.
Thus, MOD∗(IPC)RSI = {〈A, {1

A
}〉 | A ∈ HASI}. Assume now, in search of a contradiction, that

→′ is a weak implication in IPC, MOD`(IPC) is the class of its linear models and IPC is com-
plete w.r.t. MOD`(IPC). By Theorem 5.1.8, we have {〈A, {1

A
}〉 | A ∈ HASI} ⊆ MOD`(IPC).

Now, it is sufficient to consider a subdirectly irreducible Heyting algebra where the natural
lattice order is not linear (it is well-known that these algebras exist) and it will have two incom-
parable filters (IPC-filters are known to be the same as lattice filters over the Heyting algebra).
Then Lemma 5.1.3 gives the contradiction. �

Combining this example and the previous corollary we obtain:

PROPOSITION 5.1.12. If L is a substructural logic that can be axiomatically extended to IPC,
then it is not semilinear w.r.t. any principal implication.

Prominent logics falling under the scope of the previous proposition are the following: SLX

and FLX for any X ⊆ {e, c, i, o}. On the other hand, observe that the second proof in Example
5.1.11 can be used in many other weakly implicative finitary logics L: all one needs is to find a
member of MOD∗(L)RFSI whose algebra admits two incomparable logical filters. For instance,
consider now the variety V of pointed residuated lattices generated by the symmetric rotation
(see this construction e.g. in [52, 71]) of all Heyting algebras. Clearly, its corresponding logic
has an involutive negation, that is, it proves ¬¬ϕ → ϕ. Reasoning exactly in the same way as
before, we can show that this logic is not semilinear w.r.t. any principal implication and thus
the same holds for any substructural logic whose algebraic semantics contains V. A particular
case of that is Girard’s linear logic (without exponentials).

At the end of this section we present another corollary of Theorem 5.1.8 that shows that
semilinearity of implications is preserved under intersections of logics and discuss some of its
consequences.

COROLLARY 5.1.13. The intersection of a family of semilinear logics in the same language
is a semilinear logic.
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Proof. Let I be a family of semilinear logics and L̂ its intersection. We show that L̂ has the
LEP. Let T be a theory in L̂ and ϕ < T , i.e. T 0L̂ ϕ. Thus there has to be a logic L ∈ I such
that T 0L ϕ, i.e. ϕ < ThL(T ). Thus by the LEP of L there is a linear theory T ′ in L such that
T ′ ⊇ ThL(T ) ⊇ T and ϕ < T ′. Since T ′ is also a theory in L̂, the proof is done. �

On the other hand, the inconsistent logic is trivially semilinear. Thus, the following defini-
tion is sound:

DEFINITION 5.1.14 (Logic L`). Given a weakly implicative logic L, we denote by L` the least
semilinear logic extending L.

In the next section we will give a method to axiomatize L`. However, it is very simple to
determine a complete semantics for this logic:

PROPOSITION 5.1.15. Let L be a weakly implicative logic. Then

L` = |=MOD`(L) and MOD`(L`) = MOD`(L).

Moreover, finitarity is preserved when taking the least semilinear extension:

PROPOSITION 5.1.16. If L is a finitary weakly implicative logic, then so is L`.

Proof. Recall the notion of finitary companion of a logic S, denoted as FC(S), which is the
largest finitary logic contained in S. Thus, since L is finitary, we know that L ⊆ FC(L`) ⊆ L`. If
we show that FC(L`) is semilinear, we obtain FC(L`) = L` and hence L` is finitary. Actually,
one can easily show, by checking that the SLP is preserved, that semilinearity is preserved in
general when taking the finitary companion of a logic. �

Note that the proof of the previous theorem also says that if L is finitary, then L` is the
intersection of all its finitary semilinear extensions.

5.2 Disjunction and semilinearity

In this section we consider the relationships between p-disjunctions, semilinear implications,
and their related properties. In particular, provided that a couple of simple syntactic condi-
tions are satisfied, we will see that a logic is p-disjunctional iff it is semilinear, we will obtain
axiomatizations for L` logics, and new characterizations of p-disjunctions.

We start by demonstrating that for a p-disjunctional logic we can very easily axiomatize its
least semilinear extension (in particular, we show that it is an axiomatic extension).

THEOREM 5.2.1 (Axiomatization of L`). Let L be a p-disjunctional weakly implicative logic
with the IPEP. Then L` is the extension of L with the axiom(s):

(P∇) `L (ϕ→ ψ)∇(ψ→ ϕ).

Proof. Using Proposition 5.1.15 we know that L` = |=MOD`(L). The proof is completed by
Theorem 4.3.7; we only need to observe that a matrix A ∈MOD`(L) iff A |= P, where P is the
positive clause F(ϕ→ ψ) ∨ F(ψ→ ϕ). �
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L Axiom(s) needed to axiomatize L`

FLe ((ϕ→ ψ) ∧ 1) ∨ ((ψ→ ϕ) ∧ 1)
FLew (ϕ→ ψ) ∨ (ψ→ ϕ)
IPC→ {[(ϕ→ ψ)→ (ψ→ ϕ)]→ (ψ→ ϕ), [(ψ→ ϕ)→ (ϕ→ ψ)]→ (ϕ→ ψ)}

Table 5.1: Axiomatization of notable substructural semilinear logics

The axiom(s) (P∇) is (are) called the prelinearity axiom(s). Observe that these axioms
holds in a semilinear logic for an arbitrary p-protodisjunction ∇ (using SLP to ϕ → ψ `L
(ϕ → ψ)∇(ψ → ϕ) and ψ → ϕ `L (ϕ → ψ)∇(ψ → ϕ)). As we have seen in Chapter 4,
axiomatic expansions SL are typical examples of finitary weakly implicative p-disjunctional
logics (they all are almost (MP)-based and so the description of their (p-)disjunctions can be
obtained from Table 3.8 using Theorem 3.2.11). This allows us to achieve some well-known
axiomatization results (collected in Table 5.1) as corollaries of the theorem above.

Of course we could also obtain axiomatizations of FL` or even SL`, but it would involve
(iterated) conjugates and so be unnecessarily complex later in Theorem 5.2.8 we will offer
substantially simplified axiomatic system for these logics.

A natural question is how to axiomatize the least semilinear extensions of logics which are
not p-disjunctional or where the p-disjunction is unknown. Of course, a first idea is to choose
a suitable p-protodisjunction ∇ and extend this logic into L∇ and then proceed by the previous
theorem. But it is not so simple: how would we know that L∇ ⊆ L`? In order to overcome this
problem, we introduce a pair of consecutions which play a kind of dual rôle to (P∇):

(MP∇) ϕ→ ψ, ϕ∇ψ `L ψ and ϕ→ ψ, ψ∇ϕ `L ψ.

PROPOSITION 5.2.2. (MP∇) is satisfied in:

• any logic for any ∇ satisfying the PCP,

• any substructural (not necessarily lattice-disjunctive!) logic for ∇ = ∨.

Proof. The first claim is simple (from ϕ, ϕ → ψ ` ψ and ψ, ϕ → ψ ` ψ). To prove the second
one observe that any substructural logic proves: ϕ→ ψ ` ϕ ∨ ψ→ ψ. �

The introduced consecutions (P∇) and (MP∇) are indeed natural binding conditions for
implication and disjunction, as shown by the next lemma and theorem.

LEMMA 5.2.3. Let L be a weakly implicative logic in L, ∇ a p-protodisjunction, and A an
L-algebra.

• If L fulfils (MP∇), then each linear filter in A is ∇-prime.

• If L fulfils (P∇), then each ∇-prime filter in A is linear.

Proof. The first claim: assume that F is linear (a →A b ∈ F or b →A a ∈ F) and a∇Ab ⊆ F.
Thus from (MP∇) we obtain that b ∈ F or a ∈ F.

The second claim: assume that F is not linear, i.e. there are elements a, b such that x =

a →A b < F and y = b →A a < F. x∇Ay = (a →A b)∇A(b →A a) ⊆ F because L satisfies
(P∇), thus F is not ∇-prime. �
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THEOREM 5.2.4 (Interplay of p-disjunctions and semilinearity). Let L be a weakly implicative
logic with the IPEP. The following are equivalent:

• L is (strongly) p-disjunctional and satisfies (P∇).

• L is semilinear and satisfies (MP∇).

Thus in particular:

1. Let L be a weakly implicative logic satisfying (P∇) and (MP∇). Then, L is semilinear iff
L is (strongly) p-disjunctional.

2. Let L be a (storgly) p-disjunctional weakly implicative logic. Then, L is semilinear iff L
satisfies (P∇).

3. Let L be a semilinear logic and ∇ a p-protodisjunction. Then, L is (strongly) p-dis-
junctional iff L satisfies (MP∇).

Proof. First note that due to the IPEP it doesn’t matter whether we speak about disjunctions or
strong p-disjunction due to Theorem 4.2.16.

Top-to-bottom implication: we know that each p-disjunctional logic with IPEP satisfies
(MP∇) and has the PEP (Proposition 4.2.15) and, since from (P∇) we know that ∇-prime theo-
ries are linear, we obtain the LEP and the proof is done. The second direction is analogous. �

Notice that the first claim of this theorem provides many additional characterizations of
semilinearity by means of Theorems 4.2.16 in a broad class of logics with IPEP satisfying (P∇)
and (MP∇). Similarly, notice that the other two claims reduce, in huge classes of logics, the
validity of a meta-rule, SLP or PCP, to the validity of a simple rule, (P∇) or (MP∇).

This theorem has two interesting corollaries. The first one will, in particular, allow us to
extend Corollary 5.1.10 from axiomatic extensions to axiomatic expansions.

COROLLARY 5.2.5. Let L1 be a semilinear p-disjunctional logic and L2 an expansion of L1
by a set of consecutions C such that L2 is a weakly implicative logic with the IPEP. Then, L2 is
semilinear if, and only if, R∇ ⊆ L2 for each R ∈ C.

Thus in particular, any weakly implicative axiomatic expansion of a finitary semilinear
logic remains semilinear.

Proof. Observe that from the assumption we obtain that Li satisfies (MP∇) and (P∇) for i = 1, 2
and R∇ ⊆ L1 for each R ∈ L1 (note that we have tacitly used our convention that if both
logics are weakly implicative, they share the principal implication →). Thus we know that
L2 is semilinear iff ∇ has the sPCP (due to Theorem 5.2.4) and so the claim follows from
Theorem 4.3.1.

To to prove the second claim we use the fact that an axiomatic expansion of a finitary logic
remains finitary and so it has the IPEP. �

EXAMPLE 5.2.6. We show that the logic MTL4 (see [6, Chapter I]) is semilinear. Recall that
this logic is an expansion of MTL (i.e. the logic FL`ew) by a new unary connective 4, by adding
the deduction rule ϕ `MTL4 4ϕ and some additional axioms which ensure that it remains weakly
implicative with the same principal implication. Clearly the logics MTL and MTL4 satisfy the
conditions of the previous corollary, so if we show that ϕ ∨ p `MTL4 4ϕ ∨ p the proof is done.

Using the deduction rule we obtain ϕ ∨ p `MTL4 4(ϕ ∨ p) and then it is enough to recall
that 4(ϕ ∨ ψ)→ 4ϕ ∨ 4ψ and 4ψ→ ψ are among the axioms of MTL4.
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Second, we can return to our original goal of providing an axiomatization for L`. Recall that
by L∇ we denote the weakest logic extending L where ∇ is a p-disjunction (see Theorem 4.3.6
for an axiomatization of this logic).

COROLLARY 5.2.7. Let L be a weakly implicative logic with the IPEP and ∇ a p-proto-
disjunction satisfying (MP∇). Then L` is the extension of L∇ by (P∇).

Proof. Since L∇ + (P∇) is an axiomatic extension of L∇, ∇ remains a p-disjunction there (by
Theorem 4.3.1) and it still has the IPEP (due to Lemma 2.3.12). Thus, by Theorem 5.2.4, it is
a semilinear logic.

Let L′ be a semilinear extension of L. Clearly L′ has the IPEP (Theorem 5.1.7) satisfies
(MP∇) as well and thus by Theorem 5.2.4 it is a p-disjunctional logic . Thus L∇ ⊆ L′ and, since
Theorem 5.2.4 also tells that L′ satisfies (P∇), the proof is done. �

The restriction of this corollary to p-disjunctional logics (which, of course, satisfy (MP∇)
and L∇ = L) gives an alternative proof of Theorem 5.2.1.

As we have seen, substructural logics with ∨ in the language form a big class of logics
satisfying (MP∨). Let us summarize some consequences of the previous claims for these logics
and add some more interesting ones. In the beginning of this section we have seen one way
to axiomatize L`: identify a good p-disjunction and add the prelinearity axioms for this p-
disjunction. The previous corollary provides an alternative way for substructural logics with ∨
in the language which produces less elegant axiomatizations, but can be seen as more robust,
because it does not require to identify a p-disjunction in L. We simply extend L into L∨ (just
by adding the ∨-forms of all rules, see Theorem 4.3.10) and then we add prelinearity written
using ∨. So we have two alternative ways to axiomatize the logic L` for a given (substructural)
logic L (they appear in the next theorem as alternatives A and B.) Both these alternatives have
some advantages but are unnecessary complicated: the first one adds only axioms but needs
to use all iterated deductive terms, whereas the other one uses only basic terms but adds new
rules. We show that in the case of substructural logics we can obtain a third and a fourth
alternative combining the advantages of the first two (we present these two variants because
they generalize two different usual formulations appearing in the literature).

THEOREM 5.2.8. Let L be an almost (MP)-based substructural logic with a set bDT of basic
deductive terms. Then L` is axiomatized, relatively to L, by any of the following four sets of
axioms/rules:

A γ1(ϕ→ ψ) ∨ γ2(ψ→ ϕ), for every γ1, γ2 ∈ (bDT ∪ {? ∧ 1})∗

B (ϕ→ ψ) ∨ (ψ→ ϕ)
(ϕ→ ψ) ∨ χ, ϕ ∨ χ ` ψ ∨ χ
ϕ ∨ ψ ` γ(ϕ) ∨ ψ, for every γ ∈ bDT

C ((ϕ→ ψ) ∧ 1) ∨ γ((ψ→ ϕ) ∧ 1), for every γ ∈ bDT ∪ {?}

D (ϕ ∨ ψ→ ψ) ∨ γ(ϕ ∨ ψ→ ϕ), for every γ ∈ bDT ∪ {? ∧ 1}.

Proof. Let LX (for X ∈ {A, B,C,D}) denote the corresponding extension of L. Using Theorem
3.2.11 we know that {γ1(p)∨γ2(q) | γ1, γ2 ∈ (bDT∪{?∧1})∗} is a p-disjunction in L. Therefore
LA = L` due to 5.2.1. To show that LB = L` we just note that ∨ is a protodisjunction in L and
so we can use Corollary 5.2.7 together with Theorem 4.3.6.
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To complete the proof we will show the following chain of inclusions: L` ⊇ LC ⊇ LD ⊇ LB.
For the first one take γ ∈ bDT ∪ {?}; then we have:

(a) ϕ→ ψ `L` ((ϕ→ ψ) ∧ 1) ∨ γ((ψ→ ϕ) ∧ 1) (Adju), (∨1), and (MP)

(b) ψ→ ϕ `L` γ((ψ→ ϕ) ∧ 1) (Adju) and ϕ ` γ(ϕ)

(c) ψ→ ϕ `L` ((ϕ→ ψ) ∧ 1) ∨ γ((ψ→ ϕ) ∧ 1) (b), (∨2), and (MP)

(d) `L` ((ϕ→ ψ) ∧ 1) ∨ γ((ψ→ ϕ) ∧ 1) (a), (c), and SLP

Next we prove the second inclusion, let us first assume that γ ∈ bDT:

(a) `LC (ϕ→ ψ) ∧ 1→ (ϕ ∨ ψ→ ψ) ∨ γ(ϕ ∨ ψ→ ϕ) (PSL26), (∨1), and (T)

(b) `LC γ
′((ψ→ ϕ) ∧ 1)→ γ(ϕ ∨ ψ→ ϕ) (PSL27) and Lemma 3.2.4

(c) `LC γ
′((ψ→ ϕ) ∧ 1)→ (ϕ ∨ ψ→ ψ) ∨ γ(ϕ ∨ ψ→ ϕ) (b), (∨2), and (T)

(d) `LC ((ϕ→ ψ) ∧ 1) ∨ γ′((ψ→ ϕ) ∧ 1)→ (ϕ ∨ ψ→ ψ) ∨ γ(ϕ ∨ ψ→ ϕ) (a), (c), and (∨3)

(e) `LC (ϕ ∨ ψ→ ψ) ∨ γ(ϕ ∨ ψ→ ϕ) (d) and (MP)

The proof for γ = ? ∧ 1 is analogous: in step (b) we would set γ′ = ? and prove it using
(PSL27), (Adju), (PSL24), (MP), (PSL28), and (T). To prove the last inclusion we first show that
LD proves prelinearity:

(a) `LD (ϕ ∨ ψ→ ψ)→ (ϕ→ ψ) (∨1) and Sf

(b) `LD (ϕ ∨ ψ→ ψ)→ (ϕ→ ψ) ∨ (ψ→ ϕ) (a), (∨1), and (T)

(c) `LD (ϕ ∨ ψ→ ϕ)→ (ϕ→ ψ) ∨ (ψ→ ϕ) analogously

(d) `LD (ϕ ∨ ψ→ ϕ) ∧ 1→ (ϕ→ ψ) ∨ (ψ→ ϕ) (c), (∧1), and (T)

(e) `LD (ϕ ∨ ψ→ ψ) ∨ ((ϕ ∨ ψ→ ϕ) ∧ 1)→ (ϕ→ ψ) ∨ (ψ→ ϕ) (b), (d), and (∨3)

(f) `LD (ϕ→ ψ) ∨ (ψ→ ϕ) (e) and (MP)

Next we show ϕ ∨ ψ `LD γ(ϕ) ∨ ψ for each γ ∈ bDT:

(a) ϕ ∨ ψ `LD (ϕ ∨ ψ→ ψ)→ ψ As

(b) ϕ ∨ ψ `LD (ϕ ∨ ψ→ ψ)→ γ(ϕ) ∨ ψ (a), (∨2), and (T)

(c) ϕ ∨ ψ `LD (ϕ ∨ ψ→ ϕ)→ ϕ As

(d) ϕ ∨ ψ `LD γ
′(ϕ ∨ ψ→ ϕ)→ γ(ϕ) (c) and Lemma 3.2.4

(e) ϕ ∨ ψ `LD γ
′(ϕ ∨ ψ→ ϕ)→ γ(ϕ) ∨ ψ (d), (∨1), and (T)

(f) ϕ ∨ ψ `LD (ϕ ∨ ψ→ ψ) ∨ γ′(ϕ ∨ ψ→ ϕ)→ γ(ϕ) ∨ ψ (b), (e), and (∨3)

(g) ϕ ∨ ψ `LD γ(ϕ) ∨ ψ (f) and (MP)

Note that the same proof would work for γ = ? ∧ 1; only in step (d) we would set γ′ = ? ∧ 1
and prove it from (c) using (Adju), (PSL24), and (MP). Thus we know that ϕ∨ψ `LD (ϕ∧1)∨ψ
which we use to prove (ϕ→ ψ) ∨ χ, ϕ ∨ χ ` ψ ∨ χ:

(a) ϕ ∨ χ ` χ→ ψ ∨ χ (∨2)

(b) `LD (ϕ→ ψ) ∧ 1→ (ϕ ∨ χ→ ψ ∨ χ) (PSL25)

(c) `LD ϕ ∨ χ→ ((ϕ→ ψ) ∧ 1 ψ ∨ χ) (E 1)
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Logic L additional axioms needed to axiomatize L`

SL ((ϕ→ ψ) ∧ 1) ∨ γ((ψ→ ϕ) ∧ 1), for every γ ∈ {αδ,ε, α′δ,ε, βδ,ε, β
′
δ,ε}

SLw (ϕ→ ψ) ∨ γ(ψ→ ϕ), for every γ ∈ {αδ,ε, α′δ,ε, βδ,ε, β
′
δ,ε}

SLe αδ,ε((ϕ→ ψ) ∧ 1) ∨ βδ′,ε′((ψ→ ϕ) ∧ 1)
SLew αδ,ε(ϕ→ ψ) ∨ βδ′,ε′(ψ→ ϕ)

SLa (λε(ϕ→ ψ) ∧ 1) ∨ (ρε′(ψ→ ϕ) ∧ 1)

SLae ((ϕ→ ψ) ∧ 1) ∨ ((ψ→ ϕ) ∧ 1)
SLaew (ϕ→ ψ) ∨ (ψ→ ϕ)

Table 5.2: Axiomatization of L` for prominent substructural logics

(d) ϕ ∨ χ `LD (ϕ→ ψ) ∧ 1→ ψ ∨ χ (c), (MP), and (Symm1)

(e) ϕ ∨ χ `LD ((ϕ→ ψ) ∧ 1) ∨ χ→ ψ ∨ χ (a), (d), and (∨3)

(f) (ϕ→ ψ) ∨ χ `LD ((ϕ→ ψ) ∧ 1) ∨ χ see the previous paragraph

(g) (ϕ→ ψ) ∨ χ, ϕ ∨ χ `LD ψ ∨ χ (e), (f), and (MP) �

Table 5.2 collects axiomatizations of important semilinear substructural logics obtained as
axiomatization C. We present them in the form of axiom schemata, sometimes altered a little
for simplicity or to obtain some forms known from the literature. These simplifications follow
from the following few simple observations:

• In logics with weakening we use the fact that `SLw ϕ ↔ ϕ ∧ 1 to work with the axioma-
tization C′ (ϕ→ ψ) ∨ γ(ψ→ ϕ), for every γ ∈ bDT ∪ {?}.

• The axiom for γ = ?∧1 can be omitted from all axiomatizations because it follows from
the one for γ = ? using (PSL28).

• The axiom for γ = ? can be omitted from all but the last two axiomatizations because it
follows from the one for α1,1 (or λ1) using the first (or also the fifth) claim of Proposi-
tion 3.3.4

• In the case of SLe, we first note that the proposed single formula to axiomatize SL`e is
an instance of formulae from axiomatization A. On the other hand, setting δ = ε = 1
or respectively δ′ = ε′ = 1 and using the first claim of Proposition 3.3.4, we obtain the
remaining two axioms from axiomatization C.

• In SLa we proceed analogously to the previous case.

LEMMA 5.2.9. Let L be a lattice-disjunctive substructural logic. Then the following are equiv-
alent:

(P∨) `L (ϕ→ ψ) ∨ (ψ→ ϕ)
(lin∧) `L (ϕ ∧ ψ→ χ)→ (ϕ→ χ) ∨ (ψ→ χ)
(lin∨) `L (χ→ ϕ ∨ ψ)→ (χ→ ϕ) ∨ (χ→ ψ).
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Proof. We prove the equivalence of the first two claims; the equivalence of the first and the
third ones is prove analogously. First recall that ϕ → ψ `L ϕ → ϕ ∧ ψ and so ϕ → ψ `L
(ϕ ∧ ψ → χ) → (ϕ → χ). The proof is completed by (∨1) and the PCP. The other direction:
from ϕ ∧ ψ→ ϕ ∧ ψ we obtain (ϕ→ ϕ ∧ ψ) ∨ (ψ→ ϕ ∧ ψ). The rest is simple. �

Using Proposition 5.2.2 we know that (MP∨) is valid in all substructural logics and there-
fore we obtain the following variants of Theorem 5.2.4 and Corollary 5.2.7.

PROPOSITION 5.2.10. Let L be a substructural logic with IPEP and ∨ in its language. Then:

• L is semilinear iff it is lattice-disjunctive and satisfies (P∨).

• L` is the extension of L∨ by any of these axioms: (P∨), (lin∧), or (lin∨).

The next proposition is a generalization of Example 4.1.20.

PROPOSITION 5.2.11. Let L be a Rasiowa-implicative substructural semilinear logic. Then
the set ∇ = {(p→ q)→ q, (q→ p)→ p} is a strong disjunction.

Proof. We can easily show that ∇ is a protodisjunction because p `L (p → q) → q ((PSL4) of
Proposition 3.1.5) and q `L (p→ q)→ q (W).

Next we show that ∇ satisfies the PCP. Assume that Γ, ϕ `L χ and Γ, ψ ` χ. Thus clearly
Γ, ϕ → ψ, ϕ∇ψ `L ψ and so Γ, ϕ → ψ, ϕ∇ψ `L χ; analogously for ψ → ϕ. The SLP completes
the proof of the PCP and the sPCP then follows from Proposition 4.2.15 and Theorem 5.1.7. �

Notice that if the logic from the previous proposition would contain ∨ in the language, we
would obtain (p→ q)→ q, (q→ p)→ p a` p∨ q. A question is whether we could internalize
this equivalence. First observe that ∇′ = {(p q)→ q, (q p)→ p} would be a disjunction
as well. Then we can prove:

PROPOSITION 5.2.12. Let L be a Rasiowa-implicative substructural semilinear logic. Then:

`L ϕ ∨ ψ↔ [(ϕ ψ)→ ψ] ∧ [(ψ ϕ)→ ϕ]

`L ϕ ∧ ψ↔ [ϕ & (ϕ→ ψ)] ∨ [ψ & (ψ→ ϕ)].

Furthermore the logic L extends SLe iff

`L ϕ ∨ ψ↔ [(ϕ→ ψ)→ ψ] ∧ [(ψ→ ϕ)→ ϕ].

Proof. The first claim: Left-to-right direction is simple. The converse one is based on a simple
observation: ϕ → ψ `L [(ϕ  ψ) → ψ] → ψ, a consequence of (symm) and (PSL4) of
Proposition 3.1.5.

The second claim: clearly ϕ & (ϕ → ψ) → ψ and ψ & (ψ → ϕ) → ψ, thus [ϕ & (ϕ →
ψ)]∨ [ψ& (ψ→ ϕ)]→ ψ; the rest is simple. The converse direction: assume that ϕ→ ψ. Thus
ϕ → (ϕ & (ϕ → ψ)) and so ϕ ∧ ψ ↔ (ϕ & (ϕ → ψ)) ∨ (ψ & (ψ → ϕ)). The rest easily follows
from the SLP.

One direction of the third claim trivially follows from the first claim. To prove the converse
one, observe that the assumption χ ∨ ψ ↔ [(χ → ψ) → ψ] ∧ [(ψ → χ) → χ] entails:
ψ → ((ψ → χ) → χ). Then we obtain [((ψ → χ) → χ) → (ϕ → χ)] → [ψ → (ϕ → χ)] (using
(Sf)). The proof is completed by another instance of (Sf), namely: ϕ → (ψ → χ) ` ((ψ →
χ)→ χ)→ (ϕ→ χ). �
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The following proposition is a straightforward corollary of the fact that semilinear logics
are complete with respect to linearly ordered matrices, whose algebraic reducts are clearly
distributive lattices.

PROPOSITION 5.2.13. Let L be a substructural semilinear logic with ∧ and ∨ in its language
and A ∈ ALG∗(L). Then the {∧,∨}-reduct of A is a distributive lattice.

5.3 Strengthening completeness: densely ordered chains

We have proposed semilinear logics as a useful mathematical notion to encompass and study
most examples of fuzzy logics by characterizing them as the logics of linearly ordered matrices.
However, a genuine item in the agenda of fuzzy logics is that of looking for finer complete
semantics based on some particular kind of linearly ordered models such as standard models
based on the real unit interval, or models defined on the rational unit interval, or models over
finite chains. In this section we focus on the semantics of densely ordered linear matrices, a
common feature of both real- and rational-valued ones. We will characterize completeness with
respect to this semantics by means of a special kind of filter and some meta-rules, in a similar
fashion to what we have already done for disjunctions and semilinear implications.

DEFINITION 5.3.1 (Dense filter). Let L be a weakly implicative logic and A = 〈A, F〉 an
L-matrix. Then F is called a dense filter if F is linear and for every a, b ∈ A such that3 a <A b
there is z ∈ A such that a <A z and z <A b.

A matrix A is called a dense linear matrix if it is reduced and F is dense (equivalently: if
≤A is a dense order). The class of all dense linear L-models is denoted as MODδ(L).

The Dense Extension Property DEP will be defined analogously as the LEP and the PEP
but with some non-trivial changes. Like in the case of disjunctions, where we characterize
(in finitary logics) the defining meta-rule PCP by some suitable filter extension principle, we
start with the meta-rule DP which was already introduced in the literature. Thus, our goal is
to provide a corresponding filter extension principle. The problem is that DP is not structural
because it refers to an unused propositional variable. That is the reason why we will be forced
to formulate the DEP only in Lindenbaum matrices, and not for theories but for some particular
sets of formulae. These definitions will still allow us to obtain a nice interplay between a filter
extension principle, a completeness property, and a logical meta-rule, as in the previous cases.

DEFINITION 5.3.2 (Density Property). Let L be a weakly implicative logic and ∇ a p-proto-
disjunction. We say that L has the Density Property DP with respect to ∇ if for any set of
formulae Γ ∪ {ϕ, ψ, χ} and any variable p not occurring in Γ ∪ {ϕ, ψ, χ} the following holds: if
Γ `L (ϕ→ p)∇(p→ ψ)∇χ, then Γ `L (ϕ→ ψ)∇χ.

DEFINITION 5.3.3 (Dense Extension Property). Let L be a weakly implicative logic. We say
that L has the Dense Extension Property DEP if every set of formulae Γ such that Γ 0L ϕ

and there are infinitely many variables not occurring in Γ can be extended into a dense theory
T ⊇ Γ such that T 0L ϕ.

In order to prove the characterization of dense completeness in terms of the DEP, we need
the following technical lemma.

3By a <A b we understand a ≤A b and b �A a; note that we are not assuming that A is reduced, so this
convention is not trivial.
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LEMMA 5.3.4. Let L be a weakly implicative logic, A ∈ MODδ(L), T a theory, and ϕ a
formula. If T 6|=A ϕ, then there is a countable submatrix A′ of A such that A′ ∈MODδ(L) and
T 6|=A′ ϕ.

Proof. Clearly A is non-trivial and so it is infinite (because its matrix order ≤ is dense). Let
e be any evaluation witnessing T 6|=A ϕ; we define K as the subset of A containing valuations
assigned to all subformulae of formulae from T ∪ {ϕ} by e. Clearly K is countable. We define
two sequences Ki of countable subsets of A and Ai of submatrices of A as: K1 = K and for
i > 0:

• Ai is the submatrix generated by Ki. (Clearly each Ai is countable.)

• Ki+1 is any countable dense subset of A containing Ai.4

Clearly Ai is a directed family of reduced matrices and so their union A′ is in MOD∗(L)
(see [29, Theorem 0.7.2]). Obviously A′ is a countable submatrix of A such that A′ ∈MODδ(L)
(because of the construction) and T 6|=A′ ϕ (the evaluation e does the job because K ⊆ A′). �

THEOREM 5.3.5 (Characterization of dense completeness). Let L be a weakly implicative
logic. Then, `L = |=MODδ(L) if, and only if, L has the DEP.

Proof. Right-to-left: we repeat the usual completeness proof via constructing the appropriate
Lindenbaum–Tarski matrix with an interesting twist to overcome the restrictions of the DEP.

Let us consider a set of formulae Γ∪{ϕ} such that Γ 0L ϕ. Let us enumerate the propositional
variables and define substitutions σ and σ′ by setting: σ(vi) = v2i, σ′(v2i) = vi, and σ′(v2i+1) =

vi for each i ≥ 0. Observe that σ′σψ = ψ for any formula ψ. Thus also σ[Γ] 0L σϕ (otherwise,
by structurality, σ′σ[Γ] `L σ′σϕ, i.e. Γ `L ϕ—a contradiction). Notice that there are infinitely
many variables not occurring in σ[Γ] and so we can use the DEP to obtain a dense theory T
such that T ⊇ σ[Γ] and T 0L σϕ. Take the matrix A = LindTT = 〈FmL/ΩL(T ), [T ]〉, observe
that A ∈ MODδ(L), and consider the A-evaluation e(ψ) = [ψ]T . We know that e[T ] ⊆ [T ] and
e(σϕ) < [T ].

Let us now consider the A-evaluation e′(ψ) = e(σψ) and observe that e′(ϕ) = e(σϕ) < [T ].
As σ[Γ] ⊆ T , we obtain that e′[Γ] = e[σ[Γ]] ⊆ e[T ] ⊆ [T ]. Thus, we obtain T 6|=A ϕ.

Left-to-right: consider a set Γ of formulae with infinitely many unused variables and a
formula δ such that Γ 0L δ. We can use our assumption to obtain a dense linear L-matrix
A = 〈A, F〉 and an A-evaluation e such that e[Γ] ⊆ F and e(δ) < F. Without loss of generality
we can assume that A is countable (due to previous lemma). Let us consider, for any a ∈ A, a
variable va not occurring in Γ ∪ {δ} (such variables exist). Further consider an A-evaluation e′

such that e′(p) = e(p) for variables in Γ ∪ {δ} and e′(va) = a for a ∈ A.
Consider the set of formulae T = {ϕ | e′(ϕ) ∈ F}. Clearly T is a theory, T ⊇ Γ, and δ < T ;

it remains to be shown that T is dense in L. Linearity is simple (for each ϕ and ψ, clearly
e′(ϕ) →A e′(ψ) ∈ F or e′(ψ) →A e′(ϕ) ∈ F). Observe that ϕ <〈Fm,T 〉 ψ iff e′(ϕ) <A e′(ψ).
In this case, since A is dense, there is a ∈ A such that e′(ϕ) <A a = e′(va) <A e′(ψ). Thus
ϕ <〈Fm,T 〉 va and va <〈Fm,T 〉 ψ. �

4Consider any two elements a, b ∈ Ai such that a < b and there is no element of Ai between a and b. There has
to be a set Xa,b ⊆ A ∩ [a, b], Xa,b isomorphic to Q. Then we construct Ai+1 with the desired properties simply by
adding all such sets to Ai.
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Combining this result with the characterization of semilinearity in terms of LEP in Theo-
rem 5.1.8 we obtain:

COROLLARY 5.3.6. Let L be a weakly implicative logic. Then, if L has the DEP then it has
the LEP.

We consider now the relation of the DEP with the Density Property DP.

LEMMA 5.3.7. Let L be a weakly implicative logic with a p-protodisjunction ∇ satisfying the
(MP∇). Then, the DEP implies the DP.

Proof. Assume that Γ 0L (ϕ → ψ)∇χ and Γ `L (ϕ → p)∇(p → ψ)∇χ for some variable p not
occurring in Γ, ϕ, ψ, χ. From the first assumption we know that there is a formula δ ∈ ((ϕ →
ψ)∇χ) such that Γ 0L δ. Thus there is a dense linear L-matrix A = 〈A, F〉 and an A-evaluation
e such that e[Γ] ⊆ F and e(δ) < F. Clearly e(ϕ) � e(ψ) (otherwise e(ϕ → ψ) ∈ F and so
e(δ) ∈ F) and so e(ψ) < e(ϕ) (because A is linear). Since A is dense, there is an element
e(ψ) < a < e(ϕ). Take evaluation e′(v) = a for v = p and e(v) otherwise (clearly e′[Γ] ⊆ F).
Then for the elements ν1 = e′(ϕ→ p) and ν2 = e′(p→ ψ) we have e′(νi) < F. Notice that also
e′(χ) < F (otherwise e(δ) ∈ F). Using Lemma 5.2.3 we know that F is also a ∇-prime filter
and so e′(ν1)∇e′(ν2)∇e′(χ) * F. Therefore, Γ 0L (ϕ→ p)∇(p→ ψ)∇χ—a contradiction. �

For finitary logics, and in the absence of parameters in ∇, we can prove the equivalence of
the DEP and the DP, and thus give the main result of this section: the syntactical characteriza-
tion of completeness with respect to dense linear models by means of a meta-rule.

THEOREM 5.3.8 (Characterization of dense completeness). Let L be a finitary semilinear
disjunctional logic. Then the following are equivalent:

1. `L = |=MODδ(L).

2. L has the DEP.

3. L has the DP.

Proof. It is enough to prove that 3 implies 2. Consider a set of formulae Γ such that Γ 0L ϕ and
there are infinitely many variables not occurring in Γ. Let us enumerate all pairs of formulae.
We introduce two sequences of sets of formulae Γi and Ai such that Γi 0L Ai. We start with
Γ0 = Γ and A0 = {ϕ}. Given any i > 0 consider the following cases:

• If Γi, ϕi → ψi 0L Ai, then we define Γi+1 = Γi ∪ {ϕi → ψi} and Ai+1 = Ai.

• If Γi, ϕi → ψi `L Ai, then we define Γi+1 = Γi ∪ {ψi → ϕi} and Ai+1 = Ai∇(ϕi → p)∇
(p→ ψi) for some variable p not occurring in Γi ∪ Ai ∪ {ϕi, ψi} (since there are infinitely
many variables not occurring in Γ, we can find in each step some unused one; notice that
this would be no longer true if ∇ would be parameterized).

Now we prove by induction that Γi 0L Ai for every i. When i = 0 it is true by assumption.
For the induction step, if we have proceeded by the first case, clearly Γi+1 0L Ai+1. Otherwise,
assume, by the way of contradiction, that Γi+1 `L Ai+1, i.e. that Γi, ψi → ϕi `L Ai+1. As
clearly also Γi, ϕi → ψi `L Ai+1 (using the assumption of the second case and properties of



5.3. STRENGTHENING COMPLETENESS: DENSELY ORDERED CHAINS 89

protodisjunction) we can use the SLP to obtain Γi `L Ai+1. Thus we also have Γi `L Ai∇(ϕi →

ψi) using DP. Finally observe that from Γi, Ai `L Ai and Γi, ϕi → ψi `L Ai we can obtain
Γi, Ai∇(ϕi → ψi) `L Ai via the syntactical characterization of p-disjunctions in Theorem 4.2.5.
Putting this together we obtain Γi `L Ai—a contradiction with the induction hypotheses.

Define T as the L-theory generated by the union of all Γi’s. First observe that T 0L Ai

for each i (otherwise by finitarity there would be some j such that Γ j `L Ai and so clearly
Γmax{i, j} `L Amax{i, j}—a contradiction).

Thus T 0L ϕ and from the construction it follows that T is linear. Now assume that T 0L
ϕi → ψi, then we had to proceed via the second case in the construction (otherwise already
Γi+1 `L ϕi → ψi) thus also T 0L ϕi → p and T 0L p→ ψi (because otherwise T `L Ai+1). �

Note that the premises of the previous theorem are fulfilled by any substructural semilinear
logic with ∨ in its language. Analogously to the case of L` and L∇, we consider now the problem
of finding the weakest extension of a logic enjoying completeness with respect to dense linear
models.

LEMMA 5.3.9. Let I be a family of weakly implicative logics in the same language and L̂ its
intersection. If every logic of I has the DEP, then so has L̂.

Proof. Let Γ be a set of formulae with infinitely many variables not occurring in it and ϕ a
formula such that Γ 0L̂ ϕ. Thus there has to be a logic L ∈ I such that Γ 0L ϕ. Thus by the
DEP of L there is a dense L-theory T ⊇ Γ and ϕ < T . Since clearly T is also an L̂-theory, the
proof is done. �

This, together with the fact that any weakly implicative logic has at least one extension
which is complete with respect to its dense linear models (namely the inconsistent logic), gives
the following result:

THEOREM 5.3.10 (The logic Lδ and its semantics). Let L be a weakly implicative logic. Then
there is the weakest logic extending L which is complete w.r.t. its dense linear models. Let us
denote this logic as Lδ.

The proofs of the following two results run parallel to those of their analogues for L` and
L∇.

PROPOSITION 5.3.11. Let L be a weakly implicative logic. Then `Lδ = |=MODδ(L) and
MODδ(Lδ) = MODδ(L).

PROPOSITION 5.3.12. Let L be a finitary weakly implicative logic. Then Lδ is finitary.

THEOREM 5.3.13 (Lδ in finitary logics). Let L be a finitary semilinear disjunctional logic.
Then, Lδ is equal to the intersection of all its extensions satisfying the DP iff this intersection
is finitary and semilinear.

Proof. Let us denote that intersection as L̂. One direction is a simple consequence of Corol-
lary 5.3.6. The converse direction: clearly L̂ enjoys the DP and is disjunctional (due to Theo-
rem 5.2.4). Thus by Theorem 5.3.8 it has the DEP and so Lδ ⊆ L̂. Lemma 5.3.7 tells us that
each extension of L with the DEP has also the DP, thus L̂ ⊆ Lδ. �
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These results simplify and give a new insight into an approach used in the fuzzy logic liter-
ature to prove dense completeness. Indeed, this approach starts from a suitable proof-theoretic
description of a logic L, which then is extended into a proof-system for the intersection of all
extensions of L satisfying the DP just by adding DP as a rule (in the proof-theoretic terms, not
as we understand rules here). This rule is then shown to be eliminable (using analogs of the
well-known cut-elimination techniques). Thus we can conclude by the previous theorem that
L = Lδ (or equality of their finite derivations, or equality of their sets of theorems, depending
on how the elimination of DP was done), and hence the original logic is complete w.r.t. its
dense linear models (of course, our general theory is not helpful in this last step, because here
one needs to use specific properties of the logic in question).

5.4 Strengthening completeness: arbitrary classes of chains

We move now to arbitrary semantics of linearly ordered matrices. So far we have only consid-
ered completeness as the equality of two logics, i.e. two structural consequence relations, one
syntactically presented, the other semantically defined. However, it is usual in the literature to
study weaker notions of completeness: equality of the sets of theorems and equality of finite
sequents. We formalize this by introducing three types of completeness properties according to
the cardinality of the sets of premises in the derivations. Later we will obtain characterizations
for these properties and relations between them.

DEFINITION 5.4.1 (Completeness properties). Let L be a weakly implicative semilinear logic
and K ⊆MOD`(L). We say that L has the property of:

• Strong K-completeness, SKC for short, when for every set of formulae Γ ∪ {ϕ}: Γ `L ϕ

if, and only if, Γ |=K ϕ.

• Finite strong K-completeness, FSKC for short, when for every finite set of formulae
Γ ∪ {ϕ}: Γ `L ϕ if, and only if, Γ |=K ϕ.

• K-completeness, KC for short, when for every formula ϕ: `L ϕ if, and only if, |=K ϕ.

Of course, the SKC implies the FSKC, and the FSKC implies the KC. Our next aim is to
prove characterizations of these properties that will allow, for particular choices of semilinear
logics and classes of linearly ordered models, either to show or to falsify the corresponding
completeness properties. Although a more general approach is possible, here such characteri-
zations will be obtained by using the algebraizability condition of the logics.

In reduced matrices of algebraically implicative logics, as have seen, the filters are equa-
tionally definable, and so each reduced matrix is uniquely determined by its algebraic reduct.
Thus, by a slight abuse of language, we will use the symbol |=K (for a class of L-chains K)
not only for the equational consequence but also for the semantical consequence on the set of
formulae given by the corresponding class of matrices. The confusion cannot happen as it is
always clear from the context whether we speak about formulae or equations (see, e.g. the next
theorem).

CONVENTION 5.4.2. From now on, until the end of this section, we assume that L is an
algebraically implicative semilinear logic with a principal implication → and K a class of
L-chains.
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First, we can obtain the following equivalent algebraic properties for each type of comple-
teness:

THEOREM 5.4.3 (Algebraic characterization of completeness properties).

1. L has the KC if, and only if, V(ALG∗(L)) = V(K).

2. L has the FSKC if, and only if, Q(ALG∗(L)) = Q(K).

3. L has the SKC if, and only if, ALG∗(L) = ISPσ- f (K).

Proof. Let us prove the first claim. For the left-to-right direction take an arbitrary equation
ϕ ≈ ψ. Then: |=ALG∗(L) ϕ ≈ ψ iff `L ϕ ↔ ψ iff |=K ϕ ↔ ψ iff |=K ϕ ≈ ψ. Therefore ALG∗(L)
and K satisfy the same equations and hence they generate the same variety. The other direction
is straightforward.

The remaining points are proved analogously using that quasivarieties are characterized by
quasiequations, and the classes closed under the operator ISPσ- f are characterized by general-
ized quasiequations with countably many premises (we can omit this operator on the left side
of the equation because that ALG∗(L) is closed under ISPσ- f , see Proposition 2.3.17). �

Observe that in the first claim of the previous theorem we could have written using only
H(ALG∗(L)) instead of V(ALG∗(L)) and if ALG∗(L) is a quasivariety (e.g. if L is finitary) we
could write just ALG∗(L) instead of Q(ALG∗(L)) in the second claim.

Other useful characterizations of completeness properties are obtained in terms of embed-
dability. To present them, we need first one definition and one lemma.

DEFINITION 5.4.4 (Directed set of formulae). A set of formulae Ψ is directed if for each
ϕ, ψ ∈ Ψ there is χ ∈ Ψ such that both ϕ→ χ and ψ→ χ are provable in L (we call χ an upper
bound of ϕ and ψ).

LEMMA 5.4.5. Assume that L is finitary and has the SKC. Then for every set of formulae Γ

and every directed set of formulae Ψ the following are equivalent:

• Γ 0L ψ for each ψ ∈ Ψ.

• There is a matrix 〈A, F〉 ∈ MOD`(L) with A ∈ K and an A-evaluation e such that
e[Γ] ⊆ F and e[Ψ] ∩ F = ∅.

Proof. One direction is obvious. For the other one, first assume that there exists a propositional
variable v not appearing in Γ ∪ Ψ. Define the set Γ′ = Γ ∪ {ψ → v | ψ ∈ Ψ}. We show that
Γ′ 0L v by the way of contradiction. Assume that Γ′ `L v. Thus there are finite sets Γ̂ ⊆ Γ and
Ψ̂ ⊆ Ψ such that Γ̂ ∪ {ψ → v | ψ ∈ Ψ̂} `L v. Let δ ∈ Ψ denote an upper bound of the formulae
in Ψ̂. Since Γ 0L δ, we know that there is a matrix 〈A, F〉 ∈MOD(L) and an evaluation e such
that e[Γ] ⊆ F and e(δ) < F. We define the evaluation e′ as e′(p) = e(p) for each p , v and
e′(v) = e(δ). Clearly, e′[Γ̂ ∪ {ψ→ v | ψ ∈ Ψ̂}] ⊆ F and e′(v) < F—a contradiction.

Now, by the SKC, there are 〈B,G〉 ∈ MOD`(L) with B ∈ K and e such that e[Γ′] ⊆ G and
e(v) < G. Thus e[Ψ] ∩ G = ∅ (if e(ψ) ∈ G for some ψ ∈ Ψ then, since e[Γ′] ⊆ G, we would
obtain e(v) ∈ G—a contradiction).

Assume now that Γ ∪ Ψ uses all propositional variables. In this case we consider an enu-
meration of all propositional variables {vn | n ∈ N} and take the substitutions σ,σ′ defined by
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σ(vn) = vn+1 and σ′(vn+1) = vn (and σ′(v0) = v0); note that σ′ ◦ σ is the identity. Observe
that σ[Γ] 0L σ(ψ) for each ψ ∈ Ψ (indeed, if σ[Γ] `L σ(ψ), by structurality we would have
σ′[σ[Γ]] `L σ′σ(ψ), i.e. Γ `L ψ). The variable v0 does not appear in σ[Γ] ∪ σ[Ψ], so we
can apply the previous reasoning to these sets an obtain a model and an evaluation e ◦ σ as
desired. �

THEOREM 5.4.6 (Characterization of strong completeness). Assume that L is finitary and
lattice-disjunctive. Then the following are equivalent:

1. L has the SKC.

2. Every non-trivial countable member of ALG∗(L)RFSI is embeddable into some member
of K.

3. Every countable member of ALG∗(L)RSI is embeddable into some member of K.

Proof. 1→2: Take a countable A ∈ ALG∗(L)RFSI and let F be its filter. Consider a set of
pairwise different variables {va | a ∈ A} (we can do it because A is countable) and the following
sets of formulae:

Γ = {c(va1 , . . . , van)↔ vcA(a1,...,an) | 〈c, n〉 ∈ L and a1, . . . , an ∈ A},

Ψ = {va1 ∨ . . . ∨ van | n ∈ N and a1, . . . , an ∈ A \ F}.

Clearly Ψ is directed and Γ 0L ψ for each ψ ∈ Ψ. Indeed, take the A-evaluation e(va) = a;
we have e[Γ] ⊆ F but a1 ∨ . . . ∨ an < F (otherwise, since F is prime, ai ∈ F for some i—a
contradiction).

Now we use the SKC and Lemma 5.4.5 to obtain 〈B,G〉 ∈MOD`(L) with B ∈ K and a B-
evaluation e such that e[Γ] ⊆ G and e(ψ) < G for each ψ ∈ Ψ. Consider the mapping f : A→ B
defined as f (a) = e(va). It is clear that f is a homomorphism from A to B. We show that it is
one-one: take a, b ∈ A such that a , b and assume, without loss of generality, a →A b < F.
Therefore, f (a)→B f (b) = e(va)→B e(vb) = e(va→Ab) < G and thus f (a) , f (b).

2→3: Obvious.
3→1: Suppose that for some Γ and ϕ we have Γ 0L ϕ. Then, since L is finitary, by

Theorem 2.3.21, there are 〈A, F〉 ∈MOD∗(L)RSI and e such that e[Γ] ⊆ F and e(ϕ) < F. Let B
be the countable subalgebra of A generated by e[FmL]. Consider the submatrix 〈B, B ∩ F〉 ∈
MOD`(L). B is not necessarily subdirectly irreducible but it is representable as a subdirect
product of a family of {Ci | i ∈ I} ⊆ ALG∗(L)RSI; let Gi be their corresponding filters and let α
be the representation homomorphism. It is clear that e[Γ] ⊆ B ∩ F and e(ϕ) < B ∩ F. There is
some j ∈ I such that (π j ◦ α)(e(ϕ)) < G j. C j is a countable member of ALG∗(L)RSI, so by the
assumption there is a matrix 〈C,G〉 ∈ MOD`(L) with C ∈ K and an embedding f : C j ↪→ C,
and hence, using this model and the evaluation f ◦ π j ◦ α ◦ e, we obtain Γ 6|=K ϕ. �

DEFINITION 5.4.7 (Partial embeddability). Given two algebras A and B of the same language
L, we say a finite subset X of A is partially embeddable into B if there is a one-to-one mapping
f : X → B such that for each 〈c, n〉 ∈ L and each a1, . . . , an ∈ X satisfying cA(a1, . . . , an) ∈ X,
f (cA(a1, . . . , an)) = cB( f (a1), . . . , f (an)).

A class K of algebras is partially embeddable into a class K′ if every finite subset of every
member of K is partially embeddable into a member of K′.
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THEOREM 5.4.8 (Characterization of finite strong completeness). Let L be a finitary lattice-
disjunctive logic with a finite language L. Then the following are equivalent:

1. L has the FSKC.

2. Every countable non-trivial member of ALG∗(L)RFSI is partially embeddable into K.

3. Every non-trivial member of ALG∗(L)RFSI is partially embeddable into K.

4. Every member of ALG∗(L)RSI is partially embeddable into K.

5. Every countable member of ALG∗(L)RSI is partially embeddable into K.

Proof. The implications 3→4 and 4→5 are trivial; 5→1 is proved analogously to the implica-
tion 3→1 of Theorem 5.4.6.

1→2: Take a countable A ∈ ALG∗(L)RFSI, with filter F, and a finite set B ⊆ A. Define the
set B′ = B ∪ {a →A b | a, b ∈ B}. Consider a set of pairwise different variables {va | a ∈ A}, a
formula ϕ =

∨
a∈B′\F va, and the following set of formulae (notice a difference between this set

and the set Γ from the proof of Theorem 5.4.6):

Γ = {c(va1 , . . . , van)↔ vcA(a1,...,an) | 〈c, n〉 ∈ L and a1, . . . , an, cA(a1, . . . , an) ∈ B′}.

Observe that Γ is finite and Γ 0L ϕ (use the A-evaluation e(va) = a). Thus, by the FSKC,
there is C ∈ K, with filter G, and a C-evaluation e such that e[Γ] ⊆ G and e(ϕ) < G. Define a
mapping f : B → C as f (a) = e(va). Obviously f is a partial homomorphism. We show that f
is one-to-one. Take a, b ∈ B such that a , b. We know that a →A b ∈ B; also, without loss of
generality, we can assume a→A b < F. Thus, f (a)→C f (b) = e(va)→C e(vb) = e(va→Ab) < G
(because e(ϕ) < G) and so f (a) , f (b).

2→3: Take any A ∈ ALG∗(L)RFSI, a finite X ⊆ A and consider the countable subalgebra
B ⊆ A generated by X. It is enough to prove that B is finitely subdirectly irreducible relative to
ALG∗(L). Let F,G be the filters such that 〈A, F〉, 〈B,G〉 ∈MOD∗(L) (we know that G = B∩F
and, because the logic is algebraically implicative, FiA(G) = F). Suppose, by the way of
contradiction, that G = G1 ∩ G2 for some G1,G2 ∈ FiL(B) such that G ( G1,G2. Take
bi ∈ Gi \ G. Observe that b1, b2 < F and thus F ( FiA(Gi). By Theorem 4.2.16 we have:
G1∩G2 = FiB(G1∨G2) = G ⊆ F. Finally we obtain: FiA(G1)∩FiA(G2) = FiA(G1∨G2) ⊆ F,
which implies that F is not intersection-prime—a contradiction. �

REMARK 5.4.9. Notice that the implications from 2, 3, 4, or 5 to 1 hold also for infinite
languages, whereas the converse ones do not (as shown by the following example).

EXAMPLE 5.4.10. Consider the language L resulting from L0 = {&,→,∧,∨, 0, 1} by adding
a denumerable set C = {cn | n ∈ N} of new 0-ary connectives. Let GC be the conservative
expansion of Gödel–Dummett logic in this language with no additional axioms or rules. It is
a semilinear Rasiowa-implicative logic (in fact, it is a core fuzzy logic; see [6, Chapter I] ).
Let GC denote its equivalent algebraic semantics, which in fact is the variety of Gödel algebras
with infinitely many constants arbitrarily interpreted. Now consider the subclass R1 of algebras
from GC defined over [0, 1] in which all constants, except for a finite number, are interpreted
as 1.
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Consider any finite set Γ ∪ {ϕ} such that Γ 0GC ϕ. Then also Γ 0G ϕ, where we understand
the new constants just as propositional variables. Thus by the strong standard completeness of
Gödel–Dummett logic, there is a [0, 1]G-evaluation e such that e[Γ] ⊆ {1} and also e(ϕ) < 1.
We construct a GC-algebra A resulting from [0, 1]G by setting cA

n = e(cn) for every cn occurring
in Γ ∪ {ϕ} and cA

n = 1 otherwise. Notice that e can be viewed as an A-evaluation and, since
A ∈ R1 (because Γ ∪ {ϕ} contains only finitely many constants) we obtain, Γ 6|=R1 ϕ. Thus we
have shown that the FSR1C holds for GC .

On the other hand, let us by [0, 1]0 denote the Gödel algebra on [0, 1] with all new constants
interpreted as 0. Clearly, any partial subalgebra of [0, 1]0 containing 0 does not partially embed
into any algebra in R1.

Nevertheless, we can give the following characterization for the FSKC that holds even for
logics in infinite languages without disjunction.

THEOREM 5.4.11 (Characterization of finite strong completeness). If L is finitary, then the
following are equivalent:

1. L satisfies the FSKC.

2. Every L-chain belongs to ISPU(K).

Proof. 1→2: if L satisfies the FSKC then, by Theorem 5.4.3, ALG∗(L) = Q(K). It follows
from [30, Lemma 1.5] that every relative finitely subdirectly irreducible member of Q(K) (i.e.
each L-chain) belongs to ISPU(K).

2→1: if every L-chain belongs to ISPU(K), since every L-algebra is representable as sub-
direct product of L-chains we have that

ALG∗(L) ⊆ PSD(ISPU(K)) ⊆ Q(K) ⊆ ALG∗(L).

Therefore by Theorem 5.4.3, L has the FSKC. �

We know that the SKC means that L and |=K coincide; we can also formulate the FSKC in
a similar manner:

PROPOSITION 5.4.12. Assume that L is finitary. Then L has the FSKC if, and only if, L is the
finitary companion of |=K.

Proof. The direction from right to left is obvious. Assume that L has the FSKC and take
L′ = FC(|=K), the finitary companion of |=K. Then we have: Γ `L′ ϕ iff there is a finite Γ′ ⊆ Γ

such that Γ′ |=K ϕ iff there is a finite Γ′ ⊆ Γ such that Γ′ `L ϕ (by the FSKC) iff Γ `L ϕ (by
finitarity of L). �

COROLLARY 5.4.13. Assume that L is finitary and |=K is finitary too (e.g. whenever PUI(K) ⊆
I(K)). Then L has the SKC if, and only if, L has the FSKC.

COROLLARY 5.4.14. If L is finitary and enjoys the FSKC, then it has the SPU(K)C.

Now we show that the failure of completeness properties is inherited by conservative ex-
pansions.
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PROPOSITION 5.4.15. Let L′ be a conservative expansion of L, K′ a class of L′-chains and
K the class of their L-reducts.

• If L′ enjoys the K′C, then L enjoys the KC.

• If L′ enjoys the FSK′C, then L enjoys the FSKC.

• If L′ enjoys the SK′C, then L enjoys the SKC.

Proof. All the implications are proved in a similar way. Let us prove as an example the first
one. We want to show that L has the KC and we do it contrapositively: assume 0L ϕ. Since L′

is a conservative expansion of L, we also have 0L′ ϕ and so by the K′C we obtain 6|=A′ ϕ for
some A′ ∈ K′. Thus also 6|=A ϕ for the reduct A of A′. Because A ∈ K we obtain 6|=K ϕ. �

An interesting semantics for which we can apply the characterization of strong complete-
ness is that formed by finite chains:

PROPOSITION 5.4.16. Assume that L is finitary and lattice-disjunctive and let us by F denote
the class of all finite L-chains. Then the following are equivalent:

1. L enjoys the SFC.

2. All L-chains are finite.

3. There exists n ∈ N such each L-chain has at most n elements.

4. There exists n ∈ N such that `L
∨

i<n(xi → xi+1).

Proof. 1→2: From Theorem 5.4.6 we know that every countable L-chain is embeddable into
some member of F , thus there are not infinite countable L-chains and so by the downward
Löwenheim–Skolem Theorem there are no infinite chains.

2→3: If all the algebras in ALG∗(L) are finite then there must a bound for their length,
because otherwise by means of an ultraproduct we could build an infinite one.

3→1: Trivial.
3→4: Take an arbitrary L-chain A, with filter F, and elements a0, . . . , an ∈ A. Since A

has at most n elements it is impossible that a0 > a1 > · · · > an, thus there is some k such that
ak ≤ ak+1, i.e. ak →

A ak+1 ∈ F, and hence it satisfies the formula. Since the logic is complete
w.r.t. chains, the proof is done.

4→2: Suppose that there is an L-chain A, with filter F and elements a0, . . . , an ∈ A such
that a0 > a1 > · · · > an. Then ai →

A ai+1 < F, for every i < n, and as F is ∨-prime we know
that 6|=A

∨
i<n(xi → xi+1). �

COROLLARY 5.4.17. For a finitary lattice-disjunctive logic L and a natural number n, the
axiomatic extension L≤n obtained by adding the schema

∨
i<n(xi → xi+1), is a semilinear logic

which is strongly complete with respect the L-chains of length less than or equal to n.

Finally, as other examples of meaningful semantics based on some particular class of
chains, we consider chains defined over intervals of real or rational numbers. Completeness
with respect these kind of semantics has been a traditional item in the agenda of fuzzy logics
(giving rise to some of the so-called standard completeness theorems).
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DEFINITION 5.4.18 (Real and rational semantics). The class R ⊆ MOD`(L) is defined as:
A ∈ R if the domain of A is the closed, open, or semi-open real unit interval and ≤A is the
usual order on reals. The class Q ⊆ MOD`(L) is analogously defined requiring rational unit
intervals as domains.

THEOREM 5.4.19 (Relations between real and rational completeness properties). Let L be a
finitary logic.

1. L has the FSQC iff it has the SQC.

2. If L has the RC, then it has the QC.

3. If L has the FSRC, then it has the SQC.

Proof. The three claims are proved in a similar way by using the downward Löwenheim–
Skolem Theorem. Let us show the first one as an example. If L has the FSQC, then it also
has the SPU(Q)C by Corollary 5.4.14. Assume that Γ 0L ϕ. Then there is A ∈ PU(Q), with
filter F, and an evaluation e such that e[Γ] ⊆ F and e(ϕ) < F. It is clear that A is a densely
ordered chain. Consider the countable set S = {e(p) | p propositional variable in Γ ∪ {ϕ}}. By
the downward Löwenheim–Skolem Theorem (considering algebras as first-order structures),
there exists a countable elementary substructure B ⊆ A, such that S ⊆ B. Therefore, B is also
densely ordered and hence isomorphic to an element of Q,5 and so we have a counterexample
showing the SQC. �

Observe that, if we restrict ourselves to finitary logics, the completeness properties with
respect to Q are, in fact, equivalent to completeness properties with respect to the whole class
of densely ordered linear models. Indeed, when we have an evaluation over a densely or-
dered linear model providing a counterexample to some derivation, we can apply the down-
ward Löwenheim–Skolem Theorem to the (countable) subalgebra generated by the image of
all formulae by the evaluation and obtain a rational countermodel. In particular, the SQC turns
out to be the completeness property characterized in Theorem 5.3.8.

5We use the well-known fact that any two countable (bounded) dense orders are isomorphic.



Chapter 6

First-order predicate semilinear logics

In this chapter we introduce the basics of the theory of first-order predicate semilinear logics.
We will see that for each semilinear logic L one can define two natural predicate logics: L∀m,
the minimal one (because it is complete w.r.t. all matrices), and its strengthening L∀ (com-
plete w.r.t. linearly ordered matrices). Interestingly enough, and unlike what happens in the
propositional case, these two logics need not coincide (see Example 6.1.18).

Our goal is to find axiomatizations for both logics. We will show that L∀m can be nicely
axiomatized for nearly all weakly implicative logics (in fact we could axiomatize it for all of
them but at price of increased complexity). However, to axiomatize L∀ we need to restrict to
logics with a reasonable disjunction connective. Thus we make the following convention:

CONVENTION 6.0.1. In order to simplify the formulation of upcoming definitions and results,
let us assume from now on that each logic L has the following properties:

• L is a weakly implicative semilinear logic with principal implication→ .

• L has a finite protodisjunction ∇ satisfying (MP∇) (and thus all the properties from
Proposition 4.2.15, like the PCP and the PEP).

• The language of L contains a truth constant 1 satisfying the consecutions ϕ a` 1→ ϕ.

Typical (though not exhaustive) examples of logics satisfying the above conditions are sub-
structural semilinear logics which either have both 1 and ∨ in their language or are Rasiowa-
implicative.

Notice that for any L satisfying this convention and any L-matrix A = 〈A, F〉 it is the case
that 1

A
= min≤A F. It is important to add that all the results about the minimal predicate logic

L∀m proved in this chapter would also hold for logics satisfying only the third condition of the
above convention; however to minimize the complexity of this chapter, we prefer to keep all
the assumptions from the beginning.

In the first section we deal with basic syntactic and semantic notions. Notice that our
restriction to the class of logics above (in particular the third condition) is used for the first

97
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time in Example 6.1.15 to demonstrate the soundness of generalization rule. The other two
assumptions are used in Example 6.1.17 to show the soundness of the ∇-form of this rule in
the semantics based on chains. The second section presents axiomatizations of both predicate
logics and proves their soundness. The third section shows alternative simpler axiomatizations
in predicate substructural logics and other syntactical properties of these logics like the Local
Deduction Theorem. The fourth section contains the proof of completeness of both kinds of
predicate logics with respect to the presented axiomatizations by means of a generalization
of the Henkin-style proof used for classical and some non-classical first-order logics. Finally,
the fifth section studies a notion of Skolemization for our first-order logics and considers the
semantics of witnessed models.

6.1 Basic syntactic and semantic notions

The following definitions are absolutely standard; we present them for the reader’s conve-
nience. Let us fix a propositional language L and a logic L.

DEFINITION 6.1.1 (Predicate language). A predicate language P is a triple 〈P,F, ar〉, where
P is a non-empty set of predicate symbols, F is a set of function symbols, and ar is a function
assigning to each predicate and function symbol a natural number called the arity of the sym-
bol. The functions f for which ar( f ) = 0 are called object constants. The predicates P for
which ar(P) = 0 are called truth constants.

Let us further fix a predicate language P = 〈P, F, ar〉 and a denumerable set V whose
elements are called object variables.

DEFINITION 6.1.2 (Term). The set of P-terms is the minimum set X such that:

• V ⊆ X, and

• if t1, . . . , tn ∈ X and f is an n-ary function symbol, then f (t1, . . . , tn) ∈ X.

DEFINITION 6.1.3 (Formulae). An atomic P-formula in any expression P(t1, . . . , tn) where
P is an n-ary predicate symbol and t1, . . . , tn are P-terms. Atomic P-formulae and nullary
logical connectives of L are called atomic 〈L,P〉-formulae. The set of 〈L,P〉-formulae is the
minimum set X such that:

• X contains the atomic 〈L,P〉-formulae,

• X is closed under logical connectives of L, and

• if ϕ ∈ X and x is an object variable, then (∀x)ϕ, (∃x)ϕ ∈ X.

CONVENTION 6.1.4. We speak about P-formulae if the propositional language is clear from
the context and we speak about terms and formulae if both the propositional and the predicate
languages are clear from the context. The same convention will be used for any other notion
defined in this chapter parameterized by propositional or predicate languages.

Given a set of formulae Γ, we denote by PΓ the predicate language containing exactly the
predicate and function symbols that occur in formulae of Γ.
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DEFINITION 6.1.5 (Bound and free variables, closed terms and formulae). An occurrence of
a variable x in a formula ϕ is bound if it is in the scope of some quantifier over x; otherwise it
is called a free occurrence.

A variable is free in a formula ϕ if it has a free occurrence in ϕ. A term is closed if it
contains no variables. A formula is closed if it has no free variables; closed formulae are also
known as sentences.

CONVENTION 6.1.6. Instead of ξ1, . . . , ξn (where ξi’s are terms or formulae and n is arbitrary
or fixed by the context) we shall sometimes write just ~ξ.

Unless stated otherwise, by the notation ϕ(~z) we signify that all free variables of ϕ are
among those in the vector of pairwise different object variables ~z.

If ϕ(x1, . . . , xn,~z ) is a formula and we replace all free occurrences of xi’s in ϕ by terms ti,
we denote the resulting formula in the context simply by ϕ(t1, . . . , tn,~z ).

DEFINITION 6.1.7 (Substitutability). A term t is substitutable for the object variable x in a
formula ϕ(x,~z ) iff no occurrence of any variable occurring in t is bound in ϕ(t,~z ) unless it was
already bound in ϕ(x,~z ).

DEFINITION 6.1.8 (Theory). A theory T is a pair 〈P,Γ〉, where P is a predicate language
and Γ is a set of P-formulae. A theory is called closed if all its formulae are sentences.

For convenience we sometimes identify the theory T and its set of formulae Γ and say that
T is a P-theory to indicate that its language is P (see e.g. Definition 6.1.12).

DEFINITION 6.1.9 (Structure). A P-structure S is a pair 〈A,S〉 where A ∈ MOD∗(L) and
S has the form 〈S , 〈PS〉P∈P , 〈 fS〉 f∈F〉, where S is a non-empty domain; PS is an n-ary fuzzy
relation, i.e. a function S n → A, for each n-ary predicate symbol P ∈ P with n ≥ 1 and an
element of A if P is a truth constant; fS is a function S n → S for each n-ary function symbol
f ∈ F with n ≥ 1 and an element of S if f is an object constant.

Sometimes, S is called an A-structure for P and we write PS instead of PS.

DEFINITION 6.1.10 (Evaluation). Let S be a P-structure. An S-evaluation of the object vari-
ables is a mapping v which assigns to each variable an element from S .

Let v be an S-evaluation, x a variable, and a ∈ S . Then v[x→a] is an S-evaluation such
that v[x→a](x) = a and v[x→a](y) = v(y) for each object variable y , x.

DEFINITION 6.1.11 (Truth definition). Let S = 〈A,S〉 be aP-structure and v an S-evaluation.
We define values of the terms and truth values of the formulae in S for an evaluation v as:

‖x‖Sv = v(x),
‖ f (t1, . . . , tn)‖Sv = fS(‖t1‖Sv, . . . , ‖tn‖

S
v), for f ∈ F

‖P(t1, . . . , tn)‖Sv = PS(‖t1‖Sv, . . . , ‖tn‖
S
v), for P ∈ P

‖c(ϕ1, . . . , ϕn)‖Sv = cA(‖ϕ1‖
S
v, . . . , ‖ϕn‖

S
v), for c ∈ L

‖(∀x)ϕ‖Sv = inf≤A{‖ϕ‖Sv[x→a] | a ∈ S },
‖(∃x)ϕ‖Sv = sup≤A{‖ϕ‖Sv[x→a] | a ∈ S }.

If the infimum or supremum does not exist, we take its value as undefined. We say that S is safe
iff ‖ϕ‖Sv is defined for each P-formula ϕ and each S-evaluation v.
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We set the following useful denotations for a structure S = 〈〈A, F〉,S〉. We write

• ‖ϕ(a1, . . . , an)‖S instead of ‖ϕ(x1, . . . , xn)‖Sv for v(xi) = ai,

• S |= ϕ[v] if ‖ϕ‖Sv ∈ F,

• S |= ϕ if S |= ϕ[v] for each S-evaluation v,

• S |= Γ if S |= ϕ for each ϕ ∈ Γ.

To keep the traditional notation from the literature we could also write ‖ϕ‖AS,v instead of ‖ϕ‖Sv .

DEFINITION 6.1.12 (Model). Let T be a P-theory and K ⊆ MOD∗(L). A P-structure M =

〈A,M〉 is called a K-model of T if it is safe, A ∈ K, and M |= T.

We use just the term ‘A-model’ instead of ‘{A}-model’ and we also use this term for its safe
A-structure. When the logic L is known from the context, we just use the terms ‘model’ and
‘`-model’ instead of ‘MOD∗(L)-model’ and ‘MOD`(L)-model’. Notice that as each theory
comes with its fixed predicate language we do not need to specify the language of M when
we say that it is a model of the theory T . By a slight abuse of language we will use the term
‘model’ instead of ‘safe P-structure’, when the language is clear from the context.

DEFINITION 6.1.13 (Consequence relation). Let K ⊆ MOD∗(L). A P-formula ϕ is a seman-
tical (sentential) consequence of a P-theory T w.r.t. the class K, in symbols T |=K ϕ, if for each
K-model M of T we have M |= ϕ.

Note that both in the definition of model and semantical consequence, the language of the
theory T plays a minor rôle; basically they could be formulated just for sets of formulae. Indeed
we can prove the following:

PROPOSITION 6.1.14. LetK ⊆MOD∗(L) and Γ∪{ϕ} a set of P-formulae. Then the following
are equivalent:

1. 〈P′,Γ〉 |=K ϕ for all P′ ⊇ P.

2. 〈P′,Γ〉 |=K ϕ for some P′ ⊇ P.

3. 〈P,Γ〉 |=K ϕ.

Proof. If we show that for each P′ ⊇ P we have: 〈P,Γ〉 |=K ϕ iff 〈P′,Γ〉 |=K ϕ the proof is
done. One direction is simple as any P-reduct of a K-model of 〈P′,Γ〉 is clearly a K-model of
〈P,Γ〉.

To prove the second one we need to show that for any safe P-structure M = 〈A,M〉 we
can construct a safe P′-structure M′ = 〈A,M′〉 such that M is its P-reduct. The idea is clear:
take M, define the interpretations of additional function and predicate symbols in an arbitrary
way and check that the resulting structure is still safe. Let s be an arbitrary element from M,
ψ an arbitrary P-sentence and a = ‖ψ‖M. For any functional symbol f from P′ \ P we define
fM′(~x) = s and for any predicate symbol P from P′ \ P we set PM′(~x) = a. Clearly M is the
P-reduct of M′ and if we show that M′ is safe the proof is done.

Assume (without loss of generality) that there is a P′-formula χ(x, ~y) and a sequence of
elements ~r from M such that inf{‖χ(r,~r)‖M

′

| r ∈ M} does not exist. Let z be a variable different
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from x and ~y. Then for any P′-term t(x, ~y) we construct a P-term t̂(x, ~y, z) by replacing each
subterm of t(x, ~y) given by some f ∈ P′ \ P by z. Clearly for each u, ~u from M we have:
‖t(u, ~u)‖M

′

= ‖t̂(u, ~u, s)‖M. Let further χ̂(x, ~y, z) be the P-formula resulting from χ(x, ~y) by
replacing each:

• atomic subformula given by a predicate symbol P ∈ P′ \ P by the sentence ψ,

• term t by the term t̂.

Notice that ‖χ(r,~r)‖M
′

= ‖χ̂(r,~r, s)‖M for each r,~r ∈ S . Therefore, the infimum of the set
{‖χ̂(r,~r, s)‖M | r ∈ M} does not exist, i.e. M is not safe—a contradiction. �

Now we give a series of examples. The first two demonstrate that we need to have unit
in the language for the validity of the well-known generalization rule; the other two show
that in first-order semilinear logics, unlike in the propositional case, the consequence relations
|=MOD`(L) and |=MOD∗(L) need not coincide.

EXAMPLE 6.1.15. We show that for any L: ϕ |=MOD∗(L) (∀x)ϕ. Consider a model M =

〈〈A, F〉,M〉 of ϕ and an M-evaluation e. We know that ‖ϕ‖Me[x→a] ∈ F for each a ∈ M. Because
L satisfies Convention 6.0.1, we know from Proposition 3.1.10 that infA{‖ϕ‖Me[x→a] | a ∈ M} ≥

infA F = 1 ∈ F (the first infimum exists as M is safe).

EXAMPLE 6.1.16. Consider the logic L given by the three-valued reduced matrix with domain
{a, b,⊥}, filter {a, b} and→ defined as:

→ ⊥ a b
⊥ a a a
a ⊥ a ⊥

b ⊥ ⊥ b

Clearly, L is a weakly implicative logic, though not satisfying Convention 6.0.1, and it is not
difficult to build a model showing that ϕ 6|=MOD∗(L) (∀x)ϕ.

EXAMPLE 6.1.17. We show that for any lattice-disjunctive logic L: ϕ∨ψ |=MOD`(L) ((∀x)ϕ)∨ψ
whenever x is not free in ψ. Consider an `-model M of ϕ∨ψ and an M-evaluation e. If M |= ψ[e]
we are done. Assume that M 6|= ψ[e], then also M 6|= ψ[e[x→a]] for each a ∈ M (because x is
not free in ψ!). Since the filter in the matrix is ∨-prime, we know that M |= ϕ[e[x→a]]; the rest
of the proof is the same as in Example 6.1.15.

EXAMPLE 6.1.18. |=MOD∗(G) is different from |=MOD`(G) for the Gödel–Dummett logic G and
so they also differ for any logic weaker than G. Indeed, from the previous example we know
ϕ ∨ ψ |=MOD`(G) ((∀x)ϕ) ∨ ψ and we show that ϕ ∨ ψ 6|=MOD∗(G) ((∀x)ϕ) ∨ ψ.

For a counterexample see [69, Page 404].

At the end of this section we introduce two special kinds of models, exhaustive and fully-
named ones.

DEFINITION 6.1.19 (Exhaustive model). Let M = 〈A,M〉 be a model for P. We define the set

AexhM = {‖ϕ‖Mv | ϕ a P-formula and v an M-evaluation}

and say that M is exhaustive if A = AexhM.
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Intuitively, M is exhaustive if A only contains the necessary values to interpret first-order
formulae of the language. The following straightforward proposition shows that for any model
we can always restrict to its exhaustive submodel.

PROPOSITION 6.1.20. Let M = 〈〈A, F〉,M〉 be a model. Then:

• There is a subalgebra AexhM of A with domain AexhM.

• There is a submatrix AexhM = 〈AexhM, F ∩ AexhM〉 of 〈A, F〉.

• If we denote by Mexh the model 〈AexhM,M′〉, where PM′ = PM and FM′ = FM for
each predicate symbol P and functional symbol F, then Mexh is exhaustive and for each
formula ϕ and each M-evaluation v holds:

‖ϕ‖Mv = ‖ϕ‖M
exh

v .

DEFINITION 6.1.21 (Fully named model). Let M be a model. We say that M is fully named
if for each m ∈ M there is a closed term t, such that tM = m.

6.2 Axiomatic systems and soundness

As we have seen above, the two natural semantical consequence relations we have introduced
for first-order semilinear logics may be different in general. The goal of this section is to pro-
pose axiomatizations for both of them and show their basic properties including their sound-
ness, their completeness will be proved later, in Section 6.4.

DEFINITION 6.2.1 (Predicate logics L∀m and L∀). Let L be a logic in L. The minimal pred-
icate logic over L (in a predicate language P), denoted as L∀m, is the logic defined by the
following axiomatic system:

(P) the rules resulting from the consecutions of L by substituting
propositional variables by 〈L,P〉-formulae

(∀1) `L∀m (∀x)ϕ(x,~z)→ ϕ(t,~z), where t is substitutable for x in ϕ

(∃1) `L∀m ϕ(t,~z)→ (∃x)ϕ(x,~z), where t is substitutable for x in ϕ

(∀2) χ→ ϕ `L∀m χ→ (∀x)ϕ, where x is not free in χ

(∃2) ϕ→ χ `L∀m (∃x)ϕ→ χ, where x is not free in χ.

Further, we define the predicate logic over L (in a predicate language P), denoted as L∀,
as the extension of L∀m by the following two rules:

(∀2)∇ (χ→ ϕ)∇ψ `L∀ (χ→ (∀x)ϕ)∇ψ, where x is neither free in χ nor in ψ

(∃2)∇ (ϕ→ χ)∇ψ `L∀ ((∃x)ϕ→ χ)∇ψ, where x is neither free in χ nor in ψ.

CONVENTION 6.2.2. Many results and definitions in this chapter are valid for both logics
L∀m and L∀. To simplify matters, when a definition or a theorem does not specifically mention
a particular predicate logic we mean that it holds for both of them.
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Notice that we have omitted the propositional language L in the symbol for the predicate
logics over L for it is always that of L. Omitting the symbol for the predicate language could
be more confusing. In order to avoid possible problems, we first define the notion of proof
from a P-theory T in the (minimal) predicate logic over L in a predicate language P in the
same way we did it in the propositional case, denoting it by means of `. We can obtain the
analog of Proposition 6.1.14 either as a consequence of the completeness theorem or by a direct
syntactical proof (as in classical logic).1 Finally, observe that there is no need to mention the
used p-disjunction in the symbol for L∀, because we know that all p-disjunctions are mutually
derivable.

PROPOSITION 6.2.3. Let and Γ∪ {ϕ} a set of P-formulae. Then the following are equivalent:

1. 〈P′,Γ〉 ` ϕ for all P′ ⊇ P.

2. 〈P′,Γ〉 ` ϕ for some P′ ⊇ P.

3. 〈P,Γ〉 ` ϕ.

PROPOSITION 6.2.4. Let AS be a presentation of L, then the group of rules (P) in the
axiomatization of L∀m can be equivalently replaced by

(PAS) the rules resulting from the rules ofAS by the substitution of the
propositional variables by 〈L,P〉-formulae.

Furthermore, axioms (∀2) and (∃2) are redundant in the axiomatization of L∀.

Proof. The proof of the first claim is straightforward. We prove the second one: using (PD)
we know that χ → ϕ ` (χ → ϕ)∇(χ → (∀x)ϕ), thus from (∀2)∇ we obtain χ → ϕ ` (χ →
(∀x)ϕ)∇(χ→ (∀x)ϕ). The idempotency of ∇ completes the proof of (∀2). The proof of (∃2) is
analogous. �

Later we will see simpler axiomatizations of L∀m and L∀ for particular choices of a logic L.

PROPOSITION 6.2.5. The following consecutions are provable:

(∀0) ϕ ` (∀x)ϕ
(T1) ϕ→ ψ ` (∀x)ϕ→ (∀x)ψ
(T2) ϕ→ ψ ` (∃x)ϕ→ (∃x)ψ
(T3) ` ϕ↔ (∀x)ϕ if x is not free in ϕ
(T4) ` (∃x)ϕ↔ ϕ if x is not free in ϕ
(T5) ` (∀x)ϕ(x,~z)↔ (∀x′)ϕ(x′,~z) if x′ does not occur in ϕ(x,~z)
(T6) ` (∃x)ϕ(x,~z)↔ (∃x′)ϕ(x′,~z) if x′ does not occur in ϕ(x,~z)
(T7) ` (∀x)(∀y)ϕ↔ (∀y)(∀x)ϕ
(T8) ` (∃x)(∃y)ϕ↔ (∃y)(∃x)ϕ.

Proof. The proof of generalization (∀0) is a simple corollary of rule (∀2) used for χ = 1. We
show the proof of odd claims (for ∀); the proofs for ∃ are analogous.

1A hint of the proof in the finitary case: consider a proof of ϕ from 〈P′,Γ〉, i.e. a sequence of P′-formulae. We
can transform any element of this proof by the following process: replace any term f (~s), where f < P, by an unused
variable, and replace any atomic subformula Q(~s), where Q is an n-ary symbol not in P, by an arbitrary P-formula
χ(~x) with n free variables. It can be seen that the resulting sequence of formulae is a proof of ϕ from 〈P,Γ〉.
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(T1) Using (∀1) and (T) we obtain ϕ→ ψ ` (∀x)ϕ→ ψ. Rule (∀2) completes the proof.

(T3) One implication is axiom (∀1). To prove the second one starts from (R) in the form
` ϕ→ ϕ and the rule (∀2) completes the proof.

(T5) Clearly ` (∀x)ϕ(x,~z)→ ϕ(x′,~z) by (∀1) (x′ is clearly substitutable for x in ϕ). Rule (∀2)
completes the proof of one implication (x′ is clearly not free in (∀x)ϕ(x,~z)). The proof
of the second implication is symmetric.

(T7) From (∀1) and (T1) we obtain (∀x)(∀y)ϕ(x, y,~z) → (∀x)ϕ(x, y,~z). Rule (∀2) completes
the proof of one implication. The proof of the second one is symmetric. �

Observe that the condition “x′ does not occur in ϕ(x,~z)” is unnecessarily strong and could
be replaced by “x′ is both substitutable for x and not free in ϕ(x,~z) and x is both substitutable
for x′ and not free in ϕ(x′,~z)”.

From the group of the rules (P) and rules (T1), (T2) we obtain (by induction on the com-
plexity of the formula χ):

THEOREM 6.2.6 (Congruence Property). Let ϕ, ψ, δ be sentences. Then:

• ` ϕ↔ ϕ

• ϕ↔ ψ ` ψ↔ ϕ

• ϕ↔ δ, δ↔ ψ ` ϕ↔ ψ.

Further assume that χ is a formula and χ̂ is obtained from χ by replacing some occurrences ϕ
by ψ. Then

ϕ↔ ψ ` χ↔ χ̂.

The next straightforward proposition shows that we can restrict our attention to sentences,
as usual in first-order logics.

PROPOSITION 6.2.7. Let Γ∪{ϕ} be arbitrary formulae. We denote by ∀ϕ the universal closure
of ϕ (i.e. if x1, . . . , xn are the free variables in ϕ, then ∀ϕ = (∀x1) . . . (∀xn)ϕ), and by ∀Γ the
set of universal closures of all formulae in Γ. Then: Γ ` ϕ iff ∀Γ ` ∀ϕ.

The following theorem shows that free variables behave as constants naming arbitrary ele-
ments.

THEOREM 6.2.8 (Constants Theorem). Let Σ ∪ {ϕ(x,~z)} set of formulae and c a constant not
occurring in Σ ∪ {ϕ(x,~z)}. Then Σ ` ϕ(c,~z) iff Σ ` ϕ(x,~z).

Proof. The right-to-left direction follows easily from (∀0) and (∀1). Assume that Σ ` ϕ(c,~z).
Let the sequence 〈α1, . . . , αn〉 be a proof of ϕ(c,~z) from Σ (assuming for simplicity that the
logic is finitary; for the general case the proof is analogous). Let y be a variable different from
x and not occurring in the formulae α1, . . . , αn. We denote by S y

c(αi) the substitution in αi of
each occurrence of c by y. We will show that 〈S y

c(α0), . . . , S y
c(αn)〉 is a proof of S y

c(αn) = ϕ(y,~z)
from Σ0 = Σ ∩ {α1, . . . , αn}. This will end the proof because then Σ0 ` (∀y)ϕ(y,~z) (by (∀0)),
hence Σ0 ` ϕ(x,~z) (by (∀1)), so finally Σ ` ϕ(x,~z).

If αi ∈ Σ, then S y
c(αi) = αi ∈ Σ0, because y does not occur in Σ0. If αi results from a

rule in (P), then the same holds for S y
c(αi) because the substitution preserves the propositional
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structure of formulae. Assume that αi = (∀v)ψ(v,~z) → ψ(t,~z), where t is substitutable for v in
ψ. Then S y

c(αi) = (∀v)S y
c(ψ(v,~z)) → S y

c(ψ(t,~z)), where t is substitutable for v in S y
c(ψ), is still

an instance of (∀1). The case of (∃1) is analogous. Assume that αi results from an application
of the rule (∀2), i.e. α j = χ→ ψ, for some j < i, and αi = χ→ (∀v)ψ, where v is not free in χ.
Then S y

c(α j) = S y
c(χ) → S y

c(ψ) and S y
c(αi) = S y

c(χ) → (∀v)S y
c(ψ), where v is not free in S y

c(χ),
so the formula still results from an application of (∀2). The remaining rules are analogously
checked. �

The next lemma and its two corollaries show that the p-disjunction retains some good
properties in the first-order logic L∀, such as closure under ∇-forms and the PCP.

LEMMA 6.2.9. For each set Γ of formulae and formula ϕ such that Γ `L∀ ϕ we have Γ∇ψ `L∀
ϕ∇ψ for each sentence ψ.

Proof. We show Γ∇ψ `L∀ δ∇ψ for each δ appearing in the proof of ϕ from Γ. If δ ∈ Γ or
it is an axiom, the proof is trivial. Now assume that Γ′ `L∀ δ is the inference rule we use to
obtain δ. From the induction assumption we have Γ∇ψ `L∀ Γ′∇ψ. Since Γ′∇ψ `L∀ δ∇ψ (for
propositional rules due the PCP of L, for first-order rules due to our definition of the axiomatic
system for L∀), the proof of this claim is done. �

COROLLARY 6.2.10. The following consecution is provable in L∀:

(∀0)∇ ϕ∇ψ `L∀ (∀x)ϕ∇ψ, where x is not free in ψ.

Proof. Let ϕ(x, ~y), ψ(~y) be formulae, x a variable not among ~y, and ~c constants not occurring in
those formulae. By the previous lemma we obtain: ϕ(x, ~c)∇ψ(~c) `L∀ (∀x)(ϕ(x, ~c))∇ψ(~c). Since
ϕ(x, ~y)∇ψ(~y) `L∀ ϕ(x, ~c)∇ψ(~c) (using (∀0) and (∀1)), we obtain ϕ(x, ~y)∇ψ(~y) `L∀ (∀x)(ϕ(x, ~c))∇
ψ(~c). The Constants Theorem completes the proof. �

COROLLARY 6.2.11. L∀ enjoys the sPCP (and therefore also PCP) and the SLP, i.e. for each
P-theory T and P-sentences ϕ, ψ, and χ holds:

T `L∀ χ S `L∀ χ
T∇S `L∀ χ

T, ϕ→ ψ `L∀ χ T, ψ→ ϕ `L∀ χ

T `L∀ χ
.

Proof. Assume that T `L∀ χ and S `L∀ χ. Using the Lemma 6.2.9 we obtain that S∇χ `L∀ χ∇χ
and T∇ψ `L∀ χ∇ψ for each ψ ∈ S and so T∇S `L∀ χ∇S . Using (I∇) and (C∇) we obtain
T∇S `L∀ χ.

To prove the SLP we start from T, ϕ → ψ `L∀ χ and T, ψ → ϕ `L∀ χ and by the PCP we
obtain T, (ϕ→ ψ)∇(ψ→ ϕ) `L∀ χ. Knowing that L satisfies the (P∇) we obtain T `L∀ χ. �

We leave the proof of the soundness of both our logics with respect to their intended
semantics as an exercise for the reader. Recall that in Example 6.1.18 we have seen that
`L∀ ⊆ |=MOD∗(L) need not be true in general.

THEOREM 6.2.12 (Soundness of first-order logics). Let L be a logic. Then:

`L∀m ⊆ |=MOD∗(L) `L∀ ⊆ |=MOD`(L) .
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6.3 Predicate substructural logics

In this section we focus on the predicate logics over substructural logics. We will see that the
axiomatic systems corresponding to their predicate logics can be presented in a simpler way.

Recall that, according to Convention 3.1.9, a propositional weakly implicative logic L in a
languageL is a substructural logic if L is an expansion of theL∩LSL-fragment of SL. Thus in
particular all L-consecutions provable in SL are provable in L too. Unfortunately the situation
is more complicated in the predicate case. For instance, if L is the→-fragment of SL, we do not
know whether L∀m is the→-fragment of SL∀m. Therefore e.g. from the fact that the upcoming
formula (∀2′) is a theorem of SL∀m we cannot infer that it is a theorem of L∀m even though its
only propositional connective is→.

Therefore we are not going to prove our claims just for SL and assume that they will transfer
to the proper fragments, but we formulate the forthcoming theorems for the smallest fragments
in which we can express their proofs.2 For simplicity, we will however tacitly assume that
whenever we formulate some claim in relation with some logic, this logics has at least the
necessary connectives to express the claim. We start with the first-order version of the Duality
Theorem 3.1.8 (the definition of mirror image for predicate formulae is the natural extension
of Definition 3.1.2). Its proof is straightforward: all new predicate axioms and rules have a
principal implication→ which can be easily replaced by using the rule (symm).

THEOREM 6.3.1 (Duality Theorem). Let {→, } ⊆ L ⊆ LSL and L the L-fragment of SLX

for X ⊆ {a, e, c, i, o}. For any P-theory T and any P-formula ϕ:

T ` ϕ iff T ′ ` ϕ′.

PROPOSITION 6.3.2. Let L be a substructural logic. Let ϕ, ψ, χ be formulae and x a variable
not free in χ. The following hold:

(T9) `L∀m (χ→ (∀x)ϕ)→ (∀x)(χ→ ϕ)

(T10) `L∀m ((∃x)ϕ→ χ)→ (∀x)(ϕ→ χ)

(T11) `L∀m (∃x)(χ→ ϕ)→ (χ→ (∃x)ϕ)

(T12) `L∀m (∃x)(ϕ→ χ)→ ((∀x)ϕ→ χ)

(T13) `L∀m (∀x)ϕ ∧ (∀x)ψ↔ (∀x)(ϕ ∧ ψ)

(T14) `L∀m (∃x)(ϕ ∨ ψ)↔ (∃x)ϕ ∨ (∃x)ψ

(T15) `L∀m (∀x)ϕ ∨ χ→ (∀x)(ϕ ∨ χ)

(T16) `L∀m (∃x)(ϕ ∧ χ)→ (∃x)ϕ ∧ χ.

If & is in the language, then we also have:

(∀2′) `L∀m (∀x)(χ→ ϕ)→ (χ→ (∀x)ϕ)

(T1′) `L∀m (∀x)(ϕ→ ψ)→ ((∀x)ϕ→ (∀x)ψ).

If  is in the language, then we also have:

2Of course, the resulting language restriction can be seen only as an upper bound, because one might always
expect to find a proof in smaller language, ideally using only the language of the claim itself.
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(∃2′) `L∀m (∀x)(ϕ→ χ)→ ((∃x)ϕ→ χ)

(T2′) `L∀m (∀x)(ϕ→ ψ)→ ((∃x)ϕ→ (∃x)ψ)

(T17) `L∀m (∃x)(ϕ & χ)↔ (∃x)ϕ & χ.

If ∨ is in the language, then we also have:

(∀3) `L∀ (∀x)(ϕ ∨ χ)→ (∀x)ϕ ∨ χ
(∃3) `L∀ (∃x)ϕ ∧ χ→ (∃x)(ϕ ∧ χ).

Proof. The proofs of the first four statements are simple: use (∀1) or (∃1), then prefixing or
suffixing, and then (∀2) or (∃2). The proofs of the left-to-right directions in the second four
statements are also simple: use (∀1) or (∃1), monotonicity of ∨ or ∧, and then (∀2) or (∃2). Let
us show the proof of right-to-left direction of (T13) ((T14) is fully analogous): from ϕ∧ψ→ ϕ

we get (∀x)(ϕ ∧ ψ)→ ϕ using (∀1) and so by (∀2) also (∀x)(ϕ ∧ ψ)→ (∀x)ϕ, analogously for
ψ and then rule ∧3 completes the proof.

(∀2′) From (∀1) we get (∀x)(χ→ ϕ)→ (χ→ ϕ) and so χ& (∀x)(χ→ ϕ)→ ϕ. Using the rule
(∀2) and residuation again completes the proof.

(T1′) From (∀1), suffixing, and prefixing we get (∀x)(ϕ→ ψ)→ ((∀x)ϕ→ ψ), (∀2) and (∀2′)
complete the proof.

(∃2′) From (∀1) we get (∀x)(ϕ → χ) → (ϕ → χ) and so ϕ → ((∀x)(ϕ → χ) χ). Using the
rule (∃2) and (E) again completes the proof.

(T2′) The proof is analogous to the proof of (T1′).

(T17) From (∃1) we get ϕ & χ → (∃x)ϕ & χ. (∃2) completes the proof of one direction. The
reverse one: we start with χ → (ϕ → ϕ & χ) then apply (∀2), and then (T2′) completes
the proof.

(∀3) From (∀x)(ϕ ∨ χ) → ϕ ∨ χ we get ((∀x)(ϕ ∨ χ) → ϕ) ∨ ((∀x)(ϕ ∨ χ) → χ) (by (lin∨)).
Using (∀0)∨ we obtain (∀x)((∀x)(ϕ ∨ χ) → ϕ) ∨ ((∀x)(ϕ ∨ χ) → χ), and so by (∀2′) we
obtain ((∀x)(ϕ ∨ χ)→ (∀x)ϕ) ∨ ((∀x)(ϕ ∨ χ)→ χ). The rest is simple.

(∃3) From ϕ∧χ→ (∃x)(ϕ∧χ) we get [ϕ→ (∃x)(ϕ∧χ)]∨[χ→ (∃x)(ϕ∧χ)] (by (lin∧)). Using
(∀0)∨ we obtain (∀x)[ϕ→ (∃x)(ϕ ∧ χ)] ∨ [χ→ (∃x)(ϕ ∧ χ)], and so by (∃2′) we obtain
[(∃x)ϕ→ (∃x)(ϕ ∧ χ)] ∨ [χ→ (∃x)(ϕ ∧ χ)]. Therefore: (∃x)ϕ ∧ χ→ (∃x)(ϕ ∧ χ). �

Notice that, as corollaries of (T13) and (T14), we easily obtain the provability of (∀x)ϕ ∧
χ↔ (∀x)(ϕ ∧ χ) and (∃x)(ϕ ∨ χ)↔ (∃x)ϕ ∨ χ, for x not free in χ.

REMARK 6.3.3. Notice that the quantification theory in first-order substructural logics is
almost classical. In fact, it is much closer to the intuitionistic one as the only two unprovable
quantifier shifts for implication are those which are also unprovable in intuitionistic logic.
More formally, let L be any logic that can be expanded to intuitionistic logic; then due to the
soundness we know that:

(T11r) 0L∀m (χ→ (∃x)ϕ)→ (∃x)(χ→ ϕ)

(T12r) 0L∀m ((∀x)ϕ→ χ)→ (∃x)(ϕ→ χ).
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Next we show how to simplify the axiomatic systems of our predicate logics. The previ-
ous proposition showed us a wide class of logics satisfying the precondition of the following
theorem.

THEOREM 6.3.4 (Simpler axiomatization of L∀m). Let us assume that the logic L∀m proves
(∀2′) and (∃2′). Then L∀m can be alternatively axiomatized by (P) and the following:

(∀1) `L∀m (∀x)ϕ(x,~z)→ ϕ(t,~z), where t is substitutable for x in ϕ

(∃1) `L∀m ϕ(t,~z)→ (∃x)ϕ(x,~z), where t is substitutable for x in ϕ

(∀2′) `L∀m (∀x)(χ→ ϕ)→ (χ→ (∀x)ϕ), where x is not free in ψ

(∃2′) `L∀m (∀x)(ϕ→ χ)→ ((∃x)ϕ→ χ), where x is not free in ψ

(∀0) ϕ `L∀m (∀x)ϕ.

Furthermore, an alternative axiomatization of L∀ can be obtained extending this system
with:

(∀0)∇ ϕ∇ψ `L∀ ((∀x)ϕ)∇ψ, where x is not free in ψ.

Proof. The first part of the claim is trivial. One direction of the second claim follows from
Corollary 6.2.10. To prove the second direction observe that the logic just defined satisfies an
analog of Lemma 6.2.9 and Constants Theorem, and thus we can prove (∀2)∇ and (∃2)∇ in the
same way we have proved (∀0)∇ in Corollary 6.2.10. �

As a consequence we obtain the next theorem, for which we need a rather rich language.
We formulate it for expansions of SL but, in fact, the presence of ,&,∨, and 1 would suffice.
Recall that we are restricted to semilinear logics in this whole chapter.

THEOREM 6.3.5 (Axiomatization of first-order substructural logics). Let L be an expansion
of SL. Then L∀ can be alternatively axiomatized by (P) and the following:

(∀1) `L∀ (∀x)ϕ(x,~z)→ ϕ(t,~z), where t is substitutable for x in ϕ

(∃1) `L∀ ϕ(t,~z)→ (∃x)ϕ(x,~z), where t is substitutable for x in ϕ

(∀2′) `L∀ (∀x)(χ→ ϕ)→ (χ→ (∀x)ϕ), where x is not free in ψ

(∃2′) `L∀ (∀x)(ϕ→ χ)→ ((∃x)ϕ→ χ), where x is not free in ψ

(∀3) `L∀ (∀x)(ϕ ∨ ψ)→ (∀x)ϕ ∨ ψ, where x is not free in ψ

(∀0) ϕ `L∀ (∀x)ϕ.

Of course in both previous theorems in the propositional part of the axiomatic system of
L∀m and L∀ we can replace (P) by (PAS) where AS is an arbitrary axiomatic system for L
(see Proposition 6.2.4). Let us show that in the case of Łukasiewicz logic both predicate logics
coincide:

COROLLARY 6.3.6. Ł∀ = Ł∀m.

Proof. It is enough to show that Ł∀m proves (∀3). From (α ∨ β) ↔ ((α → β) → β) and (T1′)
we obtain (∀x)(ϕ ∨ ψ)→ (∀x)((ψ→ ϕ)→ ϕ). Now, again by (T1′), we have (∀x)((ψ→ ϕ)→
ϕ) → ((∀x)(ψ → ϕ) → (∀x)ϕ). By (T9) and suffixing, ((∀x)(ψ → ϕ) → (∀x)ϕ) → ((ψ →
(∀x)ϕ) → (∀x)ϕ), and so finally we obtain ((ψ → (∀x)ϕ) → (∀x)ϕ) → (∀x)ϕ ∨ ψ. Transitivity
ends the proof. �
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The next proposition, which can be seen as quantifier shift of ∃ over the defined unary
connectives n, is crucial in the proof of Corollary 6.3.10 which will play an important rôle in
Section 6.5.

PROPOSITION 6.3.7. Let L be an associative substructural logic with∨ in its language. Then:

(T18) `L∀m (∃x)(ϕn)↔ ((∃x)ϕ)n.

Proof. The left-to-right direction is simple: using (∃1) n-times and monotonicity of & we
obtain ϕn → ((∃x)ϕ)n; (∃2) completes the proof.3 We prove the converse direction for n = 2;
the proof for n > 2 is analogous. First observe the provability of the propositional formula

α & β→ α2 ∨ β2

(from α → β we obtain α & β → β & β and so α & β → α2 ∨ β2; we obtain the same from
β→ α and hence the SLP completes the proof). Assume that x is free in ϕ (otherwise the proof
is trivial) and no other variables are free in ϕ (this assumption only simplifies the notation, the
proof for a formula with more free variables would essentially be the same). Choose a variable
y which does not occur in ϕ, then clearly ϕ(x) & ϕ(y) → ϕ2(x) ∨ ϕ2(y) and so by (∃1), the
properties of ∨ and (T6) (in the form: (∃x)ϕ2 ↔ (∃y)ϕ2(y)) we get ϕ(x) & ϕ(y) → (∃x)ϕ2.
Thus by (∃2) we obtain (∃y)(ϕ(x) & ϕ(y)) → (∃x)ϕ2 and so by (T17) and (T6) we have
ϕ(x) & (∃x)ϕ→ (∃x)ϕ2. We just repeat the last three steps to complete the proof. �

Our next aim is to prove a form of local deduction theorem for predicate substructural
logics. LetP be a predicate language and DT be a set of?-formulae (i.e. propositional formulae
in languageL built from the normal set of variables enhanced with a new distinguished variable
?; see the beginning of Section 3.2). By DTP we denote the set of formulae resulting from any
?-formula from DT by replacing all its propositional variables other than ? by arbitrary P-
sentences. Note that elements of DTP are not P-formulae, but if we substitute all occurrences
of ? by a P-sentence we get another P-sentence.

THEOREM 6.3.8 (Local Deduction Theorem for L∀m). Let L be a substructural logic with
&, and 1 in its language. Let P be a predicate language. Assume that L is almost (MP)-
based with a set of basic deductive terms bDT. Then for each P-theory T , P-formula ψ and
P-sentence ϕ, we have:

T, ϕ `L∀m ψ iff T `L∀m δ(ϕ)→ ψ for some δ ∈ Π(bDT∗)P.

Proof. The observation that ϕ `L∀m δ(ϕ) for each δ ∈ Π(bDT∗)P completes the proof of the
right-to-left direction. To prove the converse one we first observe (using Theorem 6.3.4, Propo-
sition 6.3.2 and the comments after Theorem 6.3.5) that L∀m can be axiomatized using modus
ponens, rules of the form ϕ `L∀m δ(ϕ) for δ ∈ Π(bDT∗)P, and ϕ `L∀m (∀x)ϕ. The proof runs
along the lines of the proof of Theorem 3.2.5. The induction base and the induction steps for all
the rules except ϕ `L∀m (∀x)ϕ are done in the same way as in the propositional case. Let us deal
with the remaining one, i.e. assume that χ = (∀x)ψ. From the induction assumption there has to
be δψ ∈ Π(bDT∗)P such that T `L∀m δψ(ϕ) → ψ. Using (∀2) we obtain T `L∀m δψ(ϕ) → (∀x)ψ
and so setting δχ = δψ completes the proof. �

Using Theorem 6.3.5 we can easily prove the analog of the theorem above for L∀.
3Notice that the proof of the left-to-right direction does not use the associativity assumption.
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THEOREM 6.3.9 (Local Deduction Theorem for L∀). Let L be a substructural logic expanding
SL. Let P be a predicate language. Assume that L is almost (MP)-based with the set of basic
deductive terms bDT. Then for each P-theory T , P-formula ψ and P-sentence ϕ, we have:

T, ϕ `L∀ ψ iff T `L∀ δ(ϕ)→ ψ for some δ ∈ Π(bDT∗)P.

As a corollary we obtain the following claim for L∀ which will be useful in Section 6.5.

COROLLARY 6.3.10. Let L be an axiomatic expansion of FL`e. Then for each predicate lan-
guage P, each P-theory T , each P-formula ϕ(x), and any constant c < P holds that T ∪ {ϕ(c)}
is a conservative expansion (in the logic L∀) of T ∪ {(∃x)ϕ(x)}.

Proof. Assume that T ∪ {ϕ(c)} `L∀ ψ. Then, by the Local Deduction Theorem, there is n
such that T `L∀ (ϕ(c) ∧ 1)n → ψ. Thus by the Constants Theorem and (∃2) we obtain T `L∀
(∃x)(ϕ(x) ∧ 1)n → ψ. Using (T18) and (∃3) we obtain T `L∀ ((∃x)(ϕ(x) ∧ 1))n → ψ and
T `L∀ ((∃x)ϕ(x) ∧ 1)n → ψ. Local Deduction Theorem completes the proof. �

6.4 Completeness theorem

In this section we show that the axiomatic systems L∀m and L∀ are respectively presentations
of the semantically defined first-order logics |=MOD∗(L) and |=MOD`(L), i.e. we prove two com-
pleteness theorems by showing that the reverse inclusions in Theorem 6.2.12 hold as well. To
this end we need the notions of linear and ∀-Henkin theory. Again we proceed for both logics
at once.

DEFINITION 6.4.1 (Linear and ∀-Henkin theories). Let P be a predicate language. A P-
theory T is

• Linear if for each pair of P-sentences ϕ, ψ we have T ` ϕ→ ψ or T ` ψ→ ϕ.

• ∀-Henkin if for each P-formula ψ such that T 0 (∀x)ψ(x) there is an object constant c in
P such that T 0 ψ(c).

Note that the quantifier (∀x) could be omitted from the definition. Next we introduce the
notions of Lindenbaum–Tarski algebra and canonical model of a theory T .

DEFINITION 6.4.2 (Lindenbaum–Tarski algebra). Let ϕ be a P-sentence and T a P-theory.
We define

[ϕ]T = {ψ | ψ a P-sentence and T ` ϕ↔ ψ}.

The Lindenbaum–Tarski matrix of T , denoted by LindTT , has the domain LT = {[ϕ]T |

ϕ a P-sentence}, operations:

cLindTT ([ϕ1]T , . . . , [ϕn]T ) = [c(ϕ1, . . . , ϕn)]T

(for each n-ary connective c of L and each P-sentences ϕ1, . . . , ϕn), and the filter

[T ] = {[ϕ]T | ϕ a P-sentence and T ` ϕ}.
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The definition is sound due to the congruence property of ↔ proved in Theorem 6.2.6.
The Lindenbaum–Tarski matrix of a theory T will allow us to define a model of T , the so-
called canonical model, where the formulae not provable from T are not valid. The following
proposition shows that the matrix belongs to the corresponding classes with respect to which
we want to prove completeness. Next proposition (and to a large extent its proof) is analogous
to Lemma 2.2.9 for propositional logics.

PROPOSITION 6.4.3. Let T a P-theory. Then:

1. [ϕ]T ≤LindTT [ψ]T iff T ` ϕ→ ψ.

2. LindTT ∈MOD∗(L).

3. LindTT ∈MOD`(L) if, and only if, T is linear.

Proof. We show these three claims for the minimal logic; the proofs for L∀ are completely
analogous. Part 1 is proved by the following chain of simple equivalencies: [ϕ]T ≤LindTT [ψ]T

iff [ϕ]T→
LindTT [ψ]T ∈ [T ] iff [ϕ→ ψ]T ∈ [T ] iff T `L∀m ϕ→ ψ.

If we show that LindTT ∈ MOD(L), the proofs of parts 2 and 3 trivially follow. Assume
that Γ `L ψ and let us fix a LindTT -evaluation e such that e[Γ] ⊆ [T ] and we need to show
that e(ψ) ∈ [T ]. Let us define a mapping σ from propositional formulae to 〈L,P〉-sentences
by induction over the complexity of formulae: σ(v) ∈ e(v) (arbitrarily for each propositional
variable v) and σ(c(ϕ1, . . . , ϕn)) = c(σϕ1, . . . , σϕn) for each n-ary connective c and proposi-
tional formulae ϕ1, . . . , ϕn. Further we show that for each propositional formula ϕ we obtain
[σϕ]T = e(ϕ) by induction: for variables it is clear, now assume that ϕ = c(ϕ1, . . . , ϕn), we
obtain

[σc(ϕ1, . . . , ϕn)]T = [c(σϕ1, . . . , σϕn)]T = cLindTT([σϕ1]T , . . . , [σϕn]T)

= cLindTT(e(ϕ1), . . . , e(ϕn)) = e(c(ϕ1, . . . , ϕn))

Since e[Γ] ⊆ [T ], we have T ` σ[Γ]. From Γ `L ψ we obtain σ[Γ] `L∀m σψ (due to the
group (P) of rules in the axiomatization of L∀m). Taken together, we have T `L∀m σψ and so
e(ψ) = [σ(ψ)]T ∈ [T ]. �

LEMMA 6.4.4. Let T be a ∀-Henkin P-theory. Then for any P-formula ϕ with only one free
variable x holds:

• [(∀x)ϕ]T = inf≤LindTT
{[ϕ(c)]T | c ∈ C},

• [(∃x)ϕ]T = sup≤LindTT
{[ϕ(c)]T | c ∈ C},

where C is the set of all closed P-terms.

Proof. We prove only the first claim for the proof of the second one is completely analogous.
It is simple to see that [(∀x)ϕ]T is a lower bound: from axiom (∀1) and part 1 of the previous
proposition we obtain [(∀x)ϕ]T ≤LindTT [ϕ(c)]T for all terms c ∈ C.

Assume that [χ]T �LindTT [(∀x)ϕ]T . Without loss of generality we assume that x is not free
in χ (because by (T5) we know that [(∀x)ϕ]T = [(∀y)ϕ]T if y does not occur in ϕ(x)). Thus
T 0 χ→ (∀x)ϕ and so T 0 χ→ ϕ(x) (by rule (∀2)) and T 0 (∀x)(χ→ ϕ(x)) (by rule (∀0)). By
the ∀-Henkin property of T we obtain a constant d ∈ C such that T 0 χ → ϕ(d). Thus finally
[χ]T �LindTT [ϕ(d)]T , i.e. [χ]T is not a lower bound of {[ϕ(c)]T | c ∈ C}. �
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DEFINITION 6.4.5 (Canonical model). Let T a ∀-HenkinP-theory. The canonical model of T ,
denoted by CMT , is the P-structure 〈LindTT ,S〉 where the domain of S consists of the closed
P-terms,

• fS(t1, . . . , tn) = f (t1, . . . , tn) for each n-ary function symbol f ∈ P, and

• PS(t1, . . . , tn) = [P(t1, . . . , tn)]T for each n-ary predicate symbol P ∈ P.

Now we can easily prove the following proposition which shows that CMT is indeed a
P-model of T :

PROPOSITION 6.4.6. Let T be a ∀-Henkin P-theory. Then for each P-sentence ϕ:

1. ‖ϕ‖CMT = [ϕ]T .

2. CMT |= ϕ if, and only if, T ` ϕ.

Thus CMT is an exhaustive and fully-named model of T and furthermore T is linear if, and
only if, CMT is an `-model of T .

The following two theorems are crucial for the completeness proofs of our two logics. For
now, we give the proof of the first one only; the second one is more involved and we postpone
its proof right after the completeness theorem.

THEOREM 6.4.7. Let P be a predicate language and T ∪ {ϕ} a P-theory such that T 0L∀m ϕ.
Then there is a predicate language P′ ⊇ P and a ∀-Henkin P′-theory (in L∀m) T ′ ⊇ T such
that T ′ 0L∀m ϕ.

Proof. Let P′ be an expansion of P by countably many new object constants, and take T ′ =

〈P′,T 〉. Take any P′-formula ψ(x), such that T ′ 0L∀m (∀x)ψ(x). Thus T ′ 0L∀m ψ(x) and so
T ′ 0L∀m ψ(c) for any c not occurring in T ′ ∪ {ψ} (because T ′ contains just P-formulae and ψ is
a finite object there always is such c ∈ P′ and so we can use Constants Theorem). �

THEOREM 6.4.8. Let L be a finitary logic, P be a predicate language, and T ∪{ϕ} a P-theory
such that T 0L∀ ϕ. Then there is a predicate language P′ ⊇ P and a linear ∀-Henkin P′-theory
(in L∀) T ′ ⊇ T such that T ′ 0L∀ ϕ.

The proof of the next two theorems is straightforward: soundness was already established
and completeness is a corollary of Proposition 6.4.6 and Theorem 6.4.7 or Theorem 6.4.8
respectively.

THEOREM 6.4.9 (Completeness theorem for L∀m). Let L be a logic and T ∪ {ϕ} a P-theory.
Then the following are equivalent:

• T `L∀m ϕ.

• T |=MOD∗(L) ϕ.

• There is a predicate language P′ ⊇ P such that M |= ϕ for each exhaustive, fully
named, model M of 〈P′,T 〉.
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THEOREM 6.4.10 (Completeness theorem for L∀). Let L be a finitary logic and T ∪ {ϕ} a
P-theory. Then the following are equivalent:

• T `L∀ ϕ.

• T |=MOD`(L) ϕ.

• There is a predicate language P′ ⊇ P such that M |= ϕ for each exhaustive, fully
named, `-model M of 〈P′,T 〉.

The rest of this section is devoted to the promised proof of Theorem 6.4.8. To this end, we
first need to prepare some notions and prove a crucial lemma. From now on we work in the
logic L∀:

DEFINITION 6.4.11 (Restricted Henkin theory). Let P ⊆ P′ be predicate languages. A P′-
theory T is P-∀-Henkin if for each P-sentence ϕ(x) such that T 0 (∀x)ϕ(x) there is a constant
c ∈ P′ such that T 0 ϕ(c).

Notice that when P′ = P we obtain the already defined (without the prefix ‘P’) notion of
∀-Henkin theory. Recall that T ` S means that T ` ψ for each ψ ∈ S and so by T 0 S we mean
that there is ψ ∈ S such that T 0 ψ.

CONVENTION 6.4.12. Let Ψ be a set of P-theories and T a P-theory. We write T 1 Ψ

whenever T 0 S for each S ∈ Ψ.

DEFINITION 6.4.13 (Deductively directed set of theories). A set of P-theories Ψ is deduc-
tively directed if for each T, S ∈ Ψ there is R ∈ Ψ such that T ` R and S ` R; we call R an
upper bound of T and S .

We are now ready to prove the Fundamental Lemma which will have Theorem 6.4.8 as a
corollary. The level of generality of our result, dealing with logics with arbitrary p-disjunctions,
forces us to use the technical complication of dealing with deductively directed sets of theories
Ψ. Theorem 6.4.8 will be an application starting from the particular case when Ψ = {{ϕ}}.

LEMMA 6.4.14 (Fundamental Lemma). Let L be a finitary logic, T a P-theory and Ψ a de-
ductively directed set of closed P-theories such that T 1 Ψ. Then:

1. There is a predicate language P′ ⊇ P, a P′-theory T ′ ⊇ T, and a deductively directed
set of closed P′-theories Ψ′ ⊇ Ψ, such that

• T ′ 1 Ψ′ and

• each theory S ⊇ T ′ in arbitrary language is P-∀-Henkin whenever S 1 Ψ′.

2. There is a linear P-theory T ′ ⊇ T such that T ′ 1 Ψ.

Proof. 1. We construct the extensions by a transfinite recursion. The language P′ is the ex-
pansion of P by new constants {cν | ν < ||P||}. We also enumerate all P-formulae with one free
variable by ordinal numbers as χµ for µ < ||P||. We construct P′-theories Tµ and sets of closed
P′-theories Ψµ such that Tµ ⊆ Tν and Ψµ ⊆ Ψν for each µ ≤ ν, Tµ 1 Ψµ, and Ψµ is deductively
directed. Let T0 = T , Ψ0 = Ψ, and observe that they fulfil our conditions.

For each µ ≤ ||P|| we define: T<µ =
⋃
ν<µ Tν and Ψ<µ =

⋃
ν<µ Ψν. Notice that from the

induction assumption we obtain that T<µ 1 Ψ<µ (due to the finitarity) and Ψ<µ is deductively
directed. We distinguish two possibilities:
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(H1) If T<µ ` R∇(∀x)χµ(x) for some R ∈ Ψ<µ, then we define Tµ = T<µ ∪ {(∀x)χµ(x)} and
Ψµ = Ψ<µ.

(H2) Otherwise we define Tµ = T<µ and Ψµ = Ψ<µ ∪ {R∇χµ(cµ) | R ∈ Ψ<µ}.

We show that our conditions are met no matter which possibility occurred.

(H1) Ψµ is obviously deductively directed. Assume for contradiction that we have Tµ = T<µ∪
{(∀x)χµ(x)} ` R′ for some R′ ∈ Ψµ. We take an upper bound R̂ of R and R′ and notice
that T<µ ∪ {(∀x)χµ(x)} ` R̂ and T<µ ∪ R ` R̂. Thus using the sPCP (which can be proved
from the PCP as in the propositional case) we obtain T<µ ∪ R∇{(∀x)χµ(x)} ` R̂ and so
T<µ ` R̂. Since R̂ ∈ Ψ<µ we have a contradiction with T<µ 1 Ψ<µ.

(H2) Assume by the way of contradiction that Tµ = T<µ ` R for some R ∈ Ψµ. From the
induction assumption we know that T<µ 0 R for each R ∈ Ψ<µ and so R has to be of the
form R′∇χµ(cµ) for some R′ ∈ Ψ<µ. Since cµ does not appear in T<µ ∪ Ψ<µ, we can use
Constants Theorem to obtain Tµ ` R′∇χµ(x), and also Tµ ` R′∇(∀x)χµ(x) (by (∀0)∇), a
contradiction with the fact that we are in the case (H2). To show that Ψµ is deductively
directed we distinguish four cases: first if both R,R′ ∈ Ψ<µ then they have an upper
bound already in Ψ<µ. Second assume that R ∈ Ψ<µ and R′ = S∇χµ(cµ) for some
S ∈ Ψ<µ. Let R̂ ∈ Ψ<µ be the upper bound of R and S . Thus R̂∇χµ(cµ) ∈ Ψµ is an upper
bound of R (trivially) and R′ (by the sPCP and the trivial fact that χµ(cµ) ` S∇χµ(cµ)).
The final two cases are analogous.

Now take T ′ = T<||P|| and Ψ′ = Ψ<||P||. Thus by the induction assumption T ′ 1 Ψ′. Let now
S be any theory such that T ′ ⊆ S and S 1 Ψ′. We show that S is P-∀-Henkin. Clearly for each
µ < ||P|| if S 0 (∀x)χµ(x), then we must have used case (H2) (otherwise Tµ ` (∀x)χµ(x) and so
S ` (∀x)χµ(x)). If S ` χµ(cµ), then S ` R∇χµ(cµ) for any R ∈ Ψ<µ. Since we have used case
(H2), we know that R∇χµ(cµ) ∈ Ψµ—a contradiction with S 1 Ψ′.

2. We say that T is maximally consistent w.r.t. Ψ if T 1 Ψ and for each ϕ < T there is R ∈ Ψ

such that T, ϕ ` R. By Zorn’s Lemma be obtain a theory T ′ ⊇ T which is maximally consistent
w.r.t. Ψ. We only have to show that T ′ is linear. Assume that ϕ → ψ < T ′ and ψ → ϕ < T ′.
Thus there are R, S ∈ Ψ such that T ′, ϕ → ψ ` R and T ′, ψ → ϕ ` S ; consider an upper bound
R̂ of R and S and using the SLP we obtain that T ′ ` R̂—a contradiction. �

Proof of Theorem 6.4.8. We construct our extension by induction over N. Take T0 = T and
Ψ0 = {{ϕ}}, P0 = P. We construct predicate languages Pi, Pi-theories Ti, and deductively
directed sets Ψi of closed Pi-theories, such that Pi−1 ⊆ Pi, Ti−1 ⊆ Ti, Ψi−1 ⊆ Ψi, and Ti 1 Ψi.
Observe that the theory T0, set Ψ0, and language P0 satisfy T0 1 Ψ0. The induction step: we
use part 1 of Lemma 6.4.14 for Pi, Ti, Ψi, and define their successors as P′i , T ′i , and Ψ′i (the
lemma assures us that our required conditions are fulfilled). Then we defineP′ =

⋃
{Pi | i ∈ N},

theP′-theory T̂ =
⋃
{Ti | i ∈ N}, and Ψ′ =

⋃
{Ψi | i ∈ N}. Finally, we use part 2 of Lemma 6.4.14

for P′, T̂ , and Ψ′ and define T ′ as T̂ ′.
Obviously T ′ is linear, Ti ⊆ T ′, and T ′ 1 Ψi for each i (thus in particular T ′ 0 ϕ). From

part 1 of Lemma 6.4.14 and the definition of P′ we obtain that T ′ is a Pi-∀-Henkin P′-theory
for each i, and so it is a ∀-Henkin P′-theory. �

Notice that we have proved more: the maximal consistency of T with respect to ϕ.
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6.5 ∃-Henkin theories, Skolemization, and witnessed semantics

In this section we will deal with first-order logics L∀ only. Our goal is twofold. First, we
study a notion of Skolemization for these logics which, provided that the property in Corol-
lary 6.3.10 is satisfied, allows to erase existential quantifiers in a formula by conservatively
adding new functional symbols. Second, we deal with the particular stronger semantics of wit-
nessed models, i.e. models where the truth value of each quantified formula coincides with the
truth-value of some of its instances. We show that any logic L∀ admitting Skolemization can
be axiomatically extended to a logic enjoying completeness w.r.t. witnessed models.

We start by introducing the notion of ∃-Henkin theory, dual to the already introduced (and
classically equivalent) notion of ∀-Henkin theory. It will be convenient to restrict its validity to
a class Σ of formulae, which later will be determined by some particular syntactical property
(e.g. those starting with the connective 4, or formulae satisfying excluded middle, or just all
formulae). At the start, however, we need not assume anything. In the extreme case Σ could be
just a single formula. Thus, let us fix a class Σ of formulae of arbitrary languages.

DEFINITION 6.5.1 (∃-Henkin theory). Let P ⊆ P′ be predicate languages. We say that a
P′-theory T is:

• Σ-P-∃-Henkin if for each P-formula ϕ(x) ∈ Σ such that T ` (∃x)ϕ(x) there is a constant
c ∈ P′ and T ` ϕ(c).

• Σ-Henkin if it is ∀-Henkin and Σ-P′-∃-Henkin.

• Henkin if it is Σ-Henkin and Σ is the class of all formulae.

DEFINITION 6.5.2 (preSkolem logic). We say that L∀ is Σ-preSkolem if T ∪ {ϕ(c)} is a con-
servative expansion of T ∪ {(∃x)ϕ(x)} for each language P, each P-theory T , each P-formula
ϕ(x) ∈ Σ and any constant c < P.

Again, if Σ is the class of all formulae we drop the prefix ‘Σ-’.

EXAMPLE 6.5.3. In Corollary 6.3.10 we have seen that each predicate logic over an axiomatic
expansion of FL`e is preSkolem. This includes all core fuzzy logics (see [6, Chapter I]). We
show additional examples of preSkolem logics based on 4-core fuzzy logics.

Let L be a 4-core fuzzy logic, and Σ be a class of all formulae of the form 4ϕ. We show that
L∀ is Σ-preSkolem. Let us first recall that L∀ enjoys the Global Deduction Theorem: Γ, ϕ ` ψ

iff Γ ` 4ϕ → ψ. Next assume that T ∪ {4ϕ(c)} `L∀ ψ. Then by the Deduction Theorem
T `L∀ 44ϕ(c) → ψ and so T `L∀ 4ϕ(c) → ψ. Thus by the Constants Theorem and (∃2) we
obtain T `L∀ (∃x)(4ϕ(x))→ ψ and so by modus ponens, we have: T, (∃x)(4ϕ(x)) `L∀ ψ.

LEMMA 6.5.4 (Fundamental Lemma). Let L∀ a Σ-preSkolem predicate logic, T a P-theory,
and Ψ a deductively directed set of closed P-theories such that T 1 Ψ. Then there is P′ ⊇ P
and a P′-theory T ′ ⊇ T such that

• T ′ 1 Ψ and

• each theory S ⊇ T ′ in arbitrary language is Σ-P-∃-Henkin whenever S 1 Ψ.
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Proof. We construct our expansion by transfinite recursion as in the proof of the first part of
Lemma 6.4.14. Let Σ̄ be the set of all P-formulae of the form ϕ(x) ∈ Σ. We expand our
predicate language with new constants {cν | ν < ||Σ̄||} and enumerate all formulae from Σ̄ by
ordinal numbers as χµ.

We construct theories Tµ such that Tµ ⊆ Tν for µ ≤ ν and Tµ 1 Ψ. Let T0 = T and observe
that it fulfils our condition. For each µ we define the set T<µ =

⋃
ν<µ Tν. Notice that from the

induction assumption and finitarity we obtain that T<µ 1 Ψ. We distinguish two possibilities:

(W1) If T<µ ∪ {(∃x)χµ(x)} 1 Ψ, we define Tµ = T<µ ∪ {χµ(cµ)}.

(W2) Otherwise we define Tµ = T<µ.

In the case (W1) we use the fact that T<µ ∪ {χµ(cµ)} is a conservative expansion of T<µ ∪
{(∃x)χµ(x)} (because L∀ is Σ-preSkolem) to obtain Tµ 1 Ψ. In the case (W2) we obtain it
trivially.

Take T ′ = T<||Σ̄|| and observe that clearly T ′ 1 Ψ. Let S be a theory in an arbitrary language
such that T ′ ⊆ S and S 1 Ψ. We show that S is Σ-P-∃-Henkin. If S ` (∃x)χµ(x) then we used
case (W1) (from T<µ∪{(∃x)χµ(x)} ` R for some R ∈ Ψ we would obtain S ` R, a contradiction).
Thus Tµ ` χµ(cµ) and so S ` χµ(cµ). �

THEOREM 6.5.5. The following are equivalent:

1. L∀ is Σ-preSkolem.

2. For each P-theory T, ϕ such that T 0 ϕ there is P′ ⊇ P and a linear Σ-Henkin P′-theory
T ′ ⊇ T and T ′ 0 ϕ.

Proof. Assume that L∀ is Σ-preSkolem and T 0 ϕ, some P-formulae T ∪ {ϕ}. We construct
our extension by induction over N. Take T0 = T and Ψ0 = {{ϕ}}, P0 = P. We construct
theories Ψi and Ti, and predicate languages Pi such that Ti is a Pi-theory, Ψi is a directed set
of Pi-sentences, Ti 1 Ψi, and Pi ⊆ P j, Ti ⊆ T j and Ψi ⊆ Ψ j for i ≤ j. Observe that the theory
T0, the set Ψ0 and the language P0 fulfil these conditions. The induction step:

• If i is odd: use part 1 of Lemma 6.4.14 for Pi, Ti, and Ψi; define their successors as P′i ,
T ′i , and Ψ′i .

• If i is even: use Lemma 6.5.4 for Pi, Ti, and Ψi; define their successors as P′i , T ′i , and Ψi.

Now we define P′ =
⋃
{Pi | i ∈ N}, T̂ =

⋃
{Ti | i ∈ N}, and Ψ′ =

⋃
{Ψi | i ∈ N}. Finally, we

use part 2 of Lemma 6.4.14 for P′, T̂ , and Ψ′ and define T ′ as T̂ ′.
Obviously T ′ is linear, Ti ⊆ T ′, and T ′ 1P

′

Ψi for each i. Thus from part 1 of Lemma 6.4.14
and part 2 of Lemma 6.5.4 and the definition of P′ we obtain that T ′ is Σ-Henkin.

Let us now prove the converse direction. Take T1 = T ∪ {ϕ(c)} and T2 = T ∪ {(∃x)ϕ(x)}.
We show that T2 0 χ implies T1 0 χ for each formula χ (assuming that c does not appear in
T ∪ {ϕ, χ}). We know that there is P′ ⊇ P and a Σ-Henkin P′-theory T ′ ⊇ T2 such that T ′ 0 χ.
Since T ′ ` (∃x)ϕ(x), there is a P′-constant c such that T ′ ` ϕ(c). Thus in any model M of T ′

holds: M |= ϕ(c) and since CMT ′ 6|= χ the proof is done. �
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Now we are ready to prove that the preSkolem property allows (in fact, it is equivalent) to
perform the usual process of Skolemization, i.e. introducing functional symbols to take care of
existential quantifiers under the scope of universal quantifiers. To this end, we need a further
technical restriction on the classes Σ.

DEFINITION 6.5.6 (Term-closed classes). A class of formulae Σ is term-closed if for each for-
mula ϕ(x, ~y) ∈ Σ, each languageP, and each sequence of closedP-terms~t, we have ϕ(x,~t ) ∈ Σ.

Typical examples of term-closed classes are the class of all formulae, the class of all for-
mulae starting with 4 (see Example 6.5.3), or the class of all provably classical formulae (i.e.
formulae such that `L∀ ϕ ∨ ¬ϕ, assuming that L expands FLew).

THEOREM 6.5.7 (Skolemization). Let Σ be a term-closed class of formulae. Further assume
that the class MOD`(L) admits regular completions, i.e. every element of MOD`(L) be embed-
ded into a completely ordered element of MOD`(L) and the embedding preserves all existing
suprema and infima. Then the following are equivalent:

1. L∀ is Σ-preSkolem.

2. T ∪ {(∀~y)ϕ( fϕ(~y), ~y)} is a conservative expansion of T ∪ {(∀~y)(∃x)ϕ(x, ~y)} for each lan-
guageP, eachP-theory T , eachP-formula ϕ(x, ~y) ∈ Σ and any functional symbol fϕ < P
of a proper arity.

Proof. The proof that 2 implies 1 is trivial. The proof of the converse is analogous to the
proof of the second part in Theorem 6.5.5. There is however a problem (that requires closure
under regular completions): how would we know that an expanded model is still safe? When
expanding by a constant, as in the proof of Theorem 6.5.5, this was obvious, but the addition
of a proper function symbol could induce definable sets without suprema or infima.

We denote T ∪{(∀~y)ϕ( fϕ(~y), ~y)} as T1 and T ∪{(∀~y)(∃x)ϕ(x, ~y)} as T2. We show that T2 0 χ

implies T1 0 χ for each formula χ. By Theorem 6.5.5 we know that there is P′ ⊇ P and a
Σ-Henkin P′-theory T ′ ⊇ T2 such that T ′ 0 χ, and hence CMT ′ 6|= χ.

From our assumption we know the existence of a matrix A ∈MOD`(L) and an embedding
f : LindTT → A preserving all existing suprema and infima. Let us consider a model M
resulting from CMT ′ by replacing LindTT by A, keeping the domain and the interpretations of
functions and defining

PM(t1, . . . , tn) = f (PCMT ′ (t1, . . . , tn)).

Clearly for any formula ψ and any CMT ′-evaluation v (which of course we can also see as
M-evaluation) we have

‖ψ‖Mv = f (‖ψ‖CMT ′
v ).

Thus we still have M |= T ′ and M 6|= χ.
For each sequence ~t of closed P′-terms T ′ ` (∃x)ϕ(x,~t ) (by (∀1)) and hence there is a P′-

constant c~t such that T ′ ` ϕ(c~t,~t ) (we know that ϕ(x,~t ) ∈ Σ because Σ is term-closed). Since
c~t is an element of the domain of M (it has the same domain as CMT ′), we can define a model
M′ by expanding M with one functional symbol defined as: ( fϕ)M′(~t ) = c~t. Note here that due
to the completeness of A we know that M′ is a safe structure.

To conclude the proof note that for each P′-formula we have M′ |= ψ iff M |= ψ. Thus:
M′ |= T and M′ 6|= χ and as clearly M′ |= (∀y)ϕ( fϕ(~y), ~y), the proof is done. �
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Our next aims are to consider witnessed models as a meaningful semantics for first-order
semilinear logics and axiomatize the logic complete with respect to them. They are defined
as those models where, resembling structures for first-order classical logic, every quantifier is
realized by some particular element of the domain.

DEFINITION 6.5.8 (Witnessed model). Let Q be either ∀ or ∃. We call a P-formula ϕ(x, ~y)
Q-witnessed in an `-model M in language P if for each ~a ∈ M there in an element b ∈ M such
that

‖(Qx)ϕ(x, ~a)‖M = ‖ϕ(b, ~a)‖M.

Given a set Σ ofP-formulae, we call a `-model M in languageP Σ-Q-witnessed if each formula
from Σ is Q-witnessed in M. Finally, we omit the prefix ‘Q-’ if the formula (`-model) is both ∀-
and ∃-witnessed; we also omit the prefix ‘Σ-’ if Σ is the set of all P-formulae.

DEFINITION 6.5.9 (Witnessing axioms). Given a class Σ of formulae, we define the following
classes

W∃Σ = {(∃x)((∃y)ψ(y,~z)→ ψ(x,~z)) | ψ ∈ Σ}

W∀Σ = {(∃x)(ψ(x,~z)→ (∀y)ψ(y,~z)) | ψ ∈ Σ}.

Finally, we define WΣ = W∀
Σ
∪W∃

Σ
.

THEOREM 6.5.10 (Completeness w.r.t. witnessed models). Let Σ be a term-closed class of
formulae and Q be the symbol ∀, ∃, or the empty sequence. Let L∀ be WQ

Σ
-preSkolem. Then

for each T and ϕ the following are equivalent:

• WQ
Σ
,T ` ϕ.

• M |= ϕ for each Σ-Q-witnessed `-model M of T .

Proof. One direction is simple, just observe that the axioms from WQ
Σ

are obviously tautologies
in Σ-Q-witnessed models. To prove the converse one, assume that WΣ,T 0 ϕ. Consider a WQ

Σ
-

Henkin theory T ′ ⊇ T which T ′ 0 ϕ (such a theory exists due to Theorem 6.5.5). If we
show that the canonical model CMT ′ is Σ-Q-witnessed, the proof is done. Let us assume that
Q = ∃ and take ψ(x, ~y) ∈ σ and a sequence ~t of elements of the domain of the canonical
model, i.e. closed terms. We know that ψ(x,~t ) ∈ Σ (since Σ is term-closed) and thus T ′ `
(∃x)((∃y)ψ(y,~t ) → ψ(x,~t )), thus (because T ′ is WQ

Σ
-Henkin) there has to be a constant c such

that T ′ ` (∃y)ψ(y,~t )→ ψ(c,~t ) and so [(∃y)ψ(y,~t )]T ′ = [ψ(c,~t )]T ′ . �

DEFINITION 6.5.11 (Witnessed extension). Let L be a logic. We define the witnessed predi-
cate logic over L, denoted as, L∀w as the extension of L∀ by the following witnessing axioms:

(∃x)((∃y)ψ(y,~z)→ ψ(x,~z))

(∃x)(ψ(x,~z)→ (∀y)ψ(y,~z)).

COROLLARY 6.5.12. Let L∀ be a preSkolem logic. Then for each theory T and formula ϕ the
following are equivalent:

• T `L∀w ϕ.

• M |= ϕ for each witnessed `-model M of T .
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EXAMPLE 6.5.13. As prominent examples we check the validity of the witnessing axioms in
the first-order versions of the three main logics based on continuous t-norms:

1. Łukasiewicz logic proves both witnessing axioms, i.e. Ł∀w = Ł∀. Let us prove them.
For the first one it is enough to prove (α → (∃x)β) → (∃x)(α → β) (for x being free in
α); the axiom follows by taking α = (∃y)ψ(y,~z) and β = ψ(x,~z). We can easily show
that Ł∀ proves: ¬(∃x)(α → β) → (∀x)(α & ¬β), (∀x)(α & ¬β) → α & (∀x)¬β, α &
(∀x)¬β → ¬(α → ¬(∀x)¬β), and ¬(α → ¬(∀x)¬β) → ¬(α → (∃x)β). By transitivity
and contraposition we are done. Similarly, the other axiom follows from ((∀x)β→ α)→
(∃x)(β → α), where x is not free in α, using theorems ((∀x)β → α) → (¬α → ¬(∀x)β),
(¬α → ¬(∀x)β) → (¬α → (∃x)¬β), (¬α → (∃x)¬β) → (∃x)(¬α → ¬β), (∃x)(¬α →
¬β)→ (∃x)(β→ α).

2. Product logic proves only one of the witnessing axioms. Indeed, it can be semantically
shown that (α → (∃x)β) → (∃x)(α → β) is a tautology (an easy application of the fact
that the implication in Product logic is left-continuous). For the second one, we can build
a counterexample for (∃x)(P(x)→ (∀y)P(y)). Consider a model over the standard chain
[0, 1]Π such that N is its domain and {‖P(n)‖ | n ∈ N} is a strictly decreasing sequence
converging to 0.

3. In Gödel logic both witnessing axioms fail. Indeed, for the second one we can use the
same counterexample as above (over the standard Gödel chain, of course). For the first
one, we give a counterexample to the formula (∃x)((∃y)P(y) → P(x)). Again, consider
a model over the standard chain [0, 1]G, such that N is its domain and {‖P(n)‖ | n ∈ N} is
any strictly increasing sequence converging to r < 1. Then ‖(∃x)((∃y)P(y) → P(x))‖ =

supn∈N(supm∈N ‖P(m)‖ → ‖P(n)‖) = supn∈N(r → ‖P(n)‖) = supn∈N ‖P(n)‖ = r < 1.





Chapter 7

Historical remarks and further
reading

Most of the basic notions used in this chapter come from the field of Algebraic Logic. This
discipline was born in the XIXth century with the pioneering works of Boole, De Morgan,
Pierce and others on classical logic, and has evolved into the study (with a heavy use of tools
from Universal Algebra; see e.g. [11]) of classes of algebras providing semantics for non-
classical logics. Typically, the connection between a propositional logic and a class of algebras
is obtained by means of the Lindenbaum–Tarski method.

The attempts to generalize this method have given rise to Abstract Algebraic Logic (AAL)
as a natural evolution of the field aiming to understand the process by which a class of algebras
can be associated to an arbitrary logic. Our presentation has strongly capitalized on the notions
and methods from AAL too. Readers interested in this area and its history are referred to the
survey [45] and the comprehensive monographs [29, 44, 100].

Chapter 2

This chapter can be seen as a short introduction to AAL particularized, for didactic reasons, to
the framework of weakly implicative logics (WIL). It starts with the notion of structural con-
sequence operator. Consequence operators were introduced by Tarski in [94] and the condition
of structurality (invariance under substitutions) was added by Łoś and Suszko in [75]. Main-
stream AAL has been extensively developed by the Polish school in the paradigm defined by
this notion (see [29, 100]).

Wójcicki introduced reduced matrices and reduced matrix models in [99] and implicitly
obtained the corresponding completeness theorems. Schmidt Theorem (Theorem 2.3.3) is
from [90]. The Intersection-Prime Extension Property (IPEP) was introduced in [26], where
also Theorem 2.3.22 was proved.
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The third bullet item of Theorem 2.2.7 motivates the name ‘Leibniz congruence’ (resem-
bling Leibniz’s principle of identity of indiscernibles, since it shows that a pair of formulae are
congruent iff they are indistinguishable in the matrix model). The name appeared first in Blok
and Pigozzi’s paper [7]. The characterization in the third bullet item of Theorem 2.2.7 holds
for arbitrary logics and can be deduced e.g. from Maltsev’s Lemma (see [11, Lemma V.3.1]).

Most results in Subsection 2.3 follow from Section 3.7 in [100], in particular, the subdirect
decomposition theorem for reduced matrix models of a finitary logic and complete w.r.t. RSI
reduced matrix models. Subsection 2.4 owes much to Blok and Pigozzi’s 1989 memoir [8].

Weakly implicative logics were first introduced in [18] as a generalization of Rasiowa’s
notion of implicative logics (see [87]), which I have called here Rasiowa-implicative logics. In
the terminology of [33], matrices for WIL coincide with the class of the prestandard matrices
while ordered matrices coincide with standard matrices.

Weakly implicative logics have been generalized in [24] to weakly p-implicational logics,
in a pure AAL fashion, by considering a generalized notion of implication which, instead of
being a binary connective, can be defined by sets of (possibly parameterized) formulae. This
paper also studies the position of weakly implicative logics in the so-called Leibniz hierarchy:
weakly implicative logics are a proper subclass of finitely equivalential logics (and therefore of
protoalgebraic logics), our algebraically implicative logics are exactly those weakly implicative
logics which are algebraizable and, if furthermore they are finitary, they are algebraizable in
the sense of Blok and Pigozzi [8].

All the notions (except that of WIL) and results appearing in this chapter can either be
found in [29] or are particularizations of notions and results from this book to the context of
weakly implicative logics. With a few exceptions,1 all the results proved for (finitary) weakly
implicative logics hold for arbitrary (finitary) logics.

Chapter 3

This chapter is dedicated to the study substructural logics. These logics can be roughly defined
as those logical systems such that, when presented by means of Gentzen-style calculus, lack
some of the so-called structural rules: exchange, weakening, contraction (see e.g. [86, 89, 91]).

As such, this area covers a wide variety of systems independently developed since mid
XXth century, including relevant logics [1], linear logic [54], Lambek calculus [74], fuzzy
logics presented in the previous chapter, and other many-valued logics like monoidal logic [68].

In the last two decades, Algebraic Logic has developed a uniform approach to substructural
logics as the logics of residuated lattices, i.e. propositional logics algebraizable in the sense
of [8] whose equivalent algebraic semantics is a class of residuated lattices2 (most results are
collected in the monograph [49], where the weakest considered logic is FL).

The notion of substructural logic studied here extends this approach by considering the
weaker base logic SL from [51] and allowing for well-behaved expansions and fragments. The
definitions in Section 3.1 are from [25, Section 2.5], though most of the results (especially the

1The exceptions are: the first two claims in Proposition 2.2.11, the second claim of Proposition 2.3.17, and
Theorem 2.4.5.

2Then, classical and intuitionistic logics, although enjoying the structural rules, are included in the family of
substructural logics as extreme cases.
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algebraic variants of the proved rules) are folklore of the theory of residuated structures. The
axiomatic systems for prominent existing substructural logics SL, FL, and FLe have been taken
from [51] and [49].

Section 3.2 studies deduction theorems and the proof by cases property. It is based on [25,
Section 2.5] and [22]. Also the deduction theorems for FL and its main axiomatic extensions
were already known (see e.g. [49, 50]), but our proofs of these theorems (using the notion
of almost (MP)-based logic) and showing their relation with proof by cases properties are
novelties of [25].

Section 3.3 shows that our basic substuctural logic SL is almost (MP)-based, the result is
taken from [22].

Chapter 4

This chapter studies the notions of generalized disjunction defined using the proof by cases
property. The different variants of generalized disjunctions had already been considered in the
framework of Abstract Algebraic Logic in several works (see e.g. [27–29, 34, 44, 46, 95–97]).
Our approach is based on that of [29], where its wide generality is achieved by allowing a
parameterized set of formulae instead of a single formula p ∨ q, giving rise to the notion of
p-disjunction, in our terminology.

However the presentation of this chapter is based on the recent paper [26], which general-
ized the existing results for (p-)disjunctions in finitary logics to arbitrary logics. This allows,
in the first section, for a a more systematic account, introducing classes of logics based on the
properties of the disjunction they possess, including a new class of lattice-disjunctive logics
(logics where ∨ is interpreted as the supremum of the order given by implication) and showing
the separations os these classes.

The second section presents various syntactical and semantical characterizations obtain-
ing generalizations of known results for not-necessarily finitary logics. In particular Theo-
rems 4.2.16 and 4.2.5 generalize the corresponding theorems in [29, §2.5.1] to logics with the
IPEP.

Finally, in the last section, namely in Theorem 4.3.10, we show how to use (appropri-
ate) disjunction to axiomatize positive universal classes of reduced matrices. This result was
inspired by the paper [48] where the author proved (directly and without the notion of disjunc-
tion) a particular version of our result for the substructural logic FL.3

Chapter 5

The notions and results of the first subsection do not have many direct predecessors: the notion
of weakly implicative semilinear logic was introduced by Cintula in [18], under the name
‘weakly implicative fuzzy logic’. This notion have later been generalized to the context of
weakly p-implicational (protoalgebraic) logics in [24] (where most of the results of the first
section of this chapter can be found; the exceptions are Theorem 5.1.6, which is from [25] and
result involving the logics with IPEP which is new here).

3Inspecting his proof, one can notice that its main ingredient can be seen as the demonstration that a particular
set is a generalized disjunction in FL.
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The paper [24] introduced an important terminological change: the term ‘fuzzy’ (over-
loaded by other meanings) from [18] was replaced by (a more neutral) term ‘semilinear’. This
term was introduced by Olson and Raftery in [84] in the context of residuated lattices to de-
scribe the varieties whose subdirectly irreducible members are linear (following the tradition
from Universal Algebra of calling a class of algebras ‘semiX’ whenever its subdirectly irre-
ducible members have the property X). The spiritual predecessors of this work are far more
numerous: from the beginning of Mathematical Fuzzy Logic it was clear that there are numer-
ous logical systems deserving to be studied as fuzzy logics, thus already Hájek in his seminal
monograph [61] considered not one, or even a few logics, but all axiomatic extensions of his
Basic Fuzzy Logic BL. For a description of the evolution of MFL from extensions of BL to
semilinear logics see the introduction of this chapter.

The second section studies the interplay between semilinearity and p-disjunctions, it is
based on [25, Subsection 3.2], but was substantially revised to reflect the new more general
treatment of disjunction in the previous chapter. The importance of disjunction was well-known
to the community of mathematical fuzzy logicians since the inception of fuzzy logics (viz. the
axiom of prelinearity or its crucial rôle in first-order fuzzy logics). Several known important
results involving disjunction (e.g. axiomatizations of important fuzzy logics) are obtained as
corollaries of general theorems proved here. The first abstract study of this interplay was
carried out in [97, Section 6] (where a less general version of Theorem 5.2.4 and its corollaries
was proved) and will be generalized to weakly p-implicational logics in a forthcoming paper.

The final two sections study refined completeness properties (w.r.t. distinguished classes
of algebras), which has always been the central topic in fuzzy logic literature since the very
beginning, taking in account the original motivation of fuzzy logics as many-valued systems
taking truth values from the real unit interval; they both are presented along the lines of cor-
responding sections of [25]. At first (in Section 5.3) we have concentrated on semantics given
by dense chains. The crucial density rule originally appeared in [93] in a much more specific
context, then was generalized to a wide class of fuzzy logics in [78], and finally it has been
studied in [13] in a very general context of hypersequent calculi; however, the level of gen-
erality of this final study is clearly incomparable with ours (we subsume the first two). The
final section generalizes the results of [19] (for (4-)core fuzzy logics) to either algebraically
implicative logic or, more specifically, lattice-disjunctive logics.

Chapter 6

Our approach to predicate logics follows that of Rasiowa from [87], where she generalizes the
Rasiowa-Sikorski-style intuitionistic first-order predicate logic [88] to the class of logics we
call Rasiowa-implicative logics.

It starts from a propositional logic, which enjoys an equivalent algebraic semantics, and
an implication connective defining an order relation on the algebras that allows to interpret the
existential (resp. universal) quantification of a formula as the supremum (resp. infimum) of the
values of its instances. The main result is the completeness w.r.t. all algebras of truth values.
We can easily generalize this approach to weakly implicative logics, but in order to obtain
completeness w.r.t. linearly ordered algebras for semilinear logics (as in the propositional case)
some additional axioms are necessary.



125

Historically speaking the first such example is Gödel–Dummett first-order predicate logic
axiomatized in [69] (relative to the logic axiomatized in Rasiowa’s way) by adding the axiom
(∀3) : (∀x)(ϕ ∨ χ) → (∀x)ϕ ∨ χ (for x not free in χ).4 Using this axiom many other first-order
logics complete w.r.t. their linearly ordered algebras were axiomatized (see e.g. [16, 37, 61]).
The next step forward was [64], where the proof of completeness was not only generalized to
arbitrary languages (previous proofs were restricted to countable languages) but performed uni-
formly for all (4-)core fuzzy logics (identifying the crucial rôle of disjunction in the process).
Another noteworthy case is [20] where the first-order implicational fragment of MTL was ax-
iomatized, using (as was later observed) axiom (∀3) written for the generalized disjunction of
this fragment of MTL.

All sections of this chapter, except for the last one, are dedicated to formalizing these
ideas; the presentation of this chapter follows closely that of [25, Section 4]. The last section
studies the so-called Σ-preSkolem logics, where we can prove a general form of Skolemization
(already studied before in fuzzy logics, e.g. in [3]) and completeness w.r.t. witnessed models
(i.e. models where the truth value of each quantified formula coincides with the truth-value of
some of its instances). These models were first considered in [63] in the context of Łukasiewicz
logic (see also [12] for a weaker notion useful in product logics). Our completeness theorem
generalizes the one proved in [64] for core fuzzy logics to all preSkolem logics (which include
all semilinear axiomatic expansions of the uninorm logic UL).

Other current trends in the research on first-order fuzzy logics that have not been covered
here include the study of particular first-order Gödel logics (see e.g. [4]), the development
of a model theory for fuzzy logics (see [19, 31, 64]) and works on description fuzzy logics
(see [53, 63]).

4In fact the standard Łukasiewicz first-order logic was axiomatized earlier in [67], but this is a peculiar case for
two reasons: first in this logic the semantics given by all algebras and by chains coincide, and second the actually
axiomatized logic in this paper is the first-order infinitary logic of the standard MV-algebra.
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Petr Hájek, editor, Gödel’96: Logical Foundations of Mathematics, Computer Science,
and Physics, volume 6 of Lecture Notes in Logic, pages 23–33. Springer-Verlag, Brno,
1996.

[3] Matthias Baaz and George Metcalfe. Herbrand’s theorem, Skolemization, and proof
systems for first-order Łukasiewicz logic. Journal of Logic and Computation, 20(1):35–
54, 2010.

[4] Matthias Baaz, Norbert Preining, and Richard Zach. First-order Gödel logics. Annals of
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