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The thesis focuses on curve-shortening flows with high codimensions, which
have not received much attention so far. It covers a wide range of topics, in-
cluding basic mathematical analysis of the solutions and the curves themselves,
minimal surface generating flows, homotopy, framed curvature flows, and more.

Chapter 0 serves as an introduction to the topic. The author explains the
significance of various moving boundary problems in science, engineering, and
mathematics through the use of multiple examples. When discussing the geome-
try of curves and surfaces, it is crucial to determine which geometric structures
to include. The following section describes the mathematical formulation of
intrinsic and extrinsic flow, along with some important examples. The paper
then focuses on curve flows, which are extrinsic flows to curves, and details the
extensively used parametric methods. Finally, the paper derives time evolution
equations for both local and global quantities. Local quantities include length,
curvature, tortuosity, and Frenet’s frame, while global quantities are their inte-
grals. The chapter is well-organized.

Chapter 1 presents a mathematical analysis of curve-shortening flow in three-
dimensional space. Gage and Hamilton, as well as Grayson, have provided re-
sults for the mathematical analysis of curve-shortening flows in the plane. In
essence, their findings demonstrate that the time evolution of a curve-shortening
flow for an arbitrary Jordan curve leads to a convex solution in finite time, which
gradually rounds and degenerates to a single point in finite time. Similar re-
sults have been extended to mean curvature flows in high-dimensional spaces.
However, these results are only valid for problems with codimension one and
cannot be applied to high codimension problems. This chapter focuses on curve-
shortening flows in three-dimensional space, which are problems with codimen-
sion two, as the first step towards analyzing problems with high-codimensions.
The results of this chapter by the author are briefly summarized below. First,
the time evolution equations for the local length, curvature, torsion, and Frenet
frame are presented, followed by the derivation of the time evolution equations
for the important global quantities: the length, the integral of the curvature,
and the integral of the torsion. Using these, an evaluation from above of the
length is obtained, and consequently, an evaluation from above of the existence
time of the solution of the curve-shortening flow is obtained. Furthermore, an
evaluation of the curvature is produced and compared for the plane case and
the space case, and in particular, it is pointed out that the problem in space
is more mathematically challenging. Next, a new type of comparison principle
is proved by comparing curvilinear shortening flows with moving surfaces. In
particular, by choosing a special type of moving surface, the author succeeds in



giving various upper estimates of the maximum existence time of the solution.
The article introduces the notion of convexity for spatial curves and discusses
convexity under curve-shortening flows. It is demonstrated that, unlike pla-
nar curves, convexity is not generally preserved. However, if the orthogonal
projection of the initial curve is convex, then the orthogonal projection of the
solution of the curve-shortening flow preserves convexity. Additionally, it has
been demonstrated that sphericity is maintained for spherical curves (spatial
curves that travel along a particular sphere). The spherical avoidance principle
also applies to spherical curves, which states that if the initial state is simple,
then simplicity is maintained over time. The mathematical analysis of curve-
shortening flows in space presented in this chapter is original and interesting.
These results alone could suffice for a doctoral dissertation.

Chapter 2 introduces a novel concept of minimal surface generating flow and
provides a mathematical analysis. The chapter also discusses various mathe-
matical and numerical analysis methods that have been proposed in the past.
However, this new approach offers a unique perspective. When a spatial curve
evolves over time, its trajectory can be traced, and a surface can be considered
by taking two parameters: one in the spatial direction of the curve and the other
in the temporal direction. This surface is referred to as a trajectory surface. Af-
ter calculating the basic geometric quantities of the trajectory surface, such as
the first fundamental form, second fundamental form, Gauss curvature, and
mean curvature, they are used to define a minimal surface generating flow. The
flow is defined as the one that generates a minimal surface trajectory. The basic
properties of minimal surface generating flow are then investigated, including
conservation of 7/2 (where 7 is the torsion), monotonically decreasing length,
and inequality evaluation of the maximum principle. Utilizing these results, the
evaluation of length and curved area is derived, and the maximum existence
time of the solution of minimal surface generating flow is evaluated from above.
Numerical results for these new concepts are not given, and therefore, inter-
esting numerical studies, such as what minimal surfaces can be obtained when
minimal surface generating flow is computed numerically, remain untouched.
However, I believe that the concepts given in this chapter are quite original,
mathematically interesting, and very well described.

Chapters 1 and 2 focus on curve-shortening flow and minimal surface gen-
erating flow, respectively. Chapter 3 develops a topological discussion of most
curve flows in space. To prepare for this, the concept of Frenet frame dependent
flow is introduced, followed by the definition of nondegenerate homotopy, which
plays an important role in this chapter. Afterward, the concept of a tangent
turning signature is introduced to classify locally convex curves. It is shown
to be invariant with respect to nondegenerate homotopy and well-defined on
the appropriate equivalence class. It is also shown to be conserved under arbi-
trary Frenet frame dependent geometric flows as a system of arguments. The
discussion in this chapter differs significantly from the others as it is based on
topological concepts. The author’s ability to approach geometric flows from
both analytical and alternative perspectives demonstrates his advanced mathe-
matical knowledge.



Chapter 4 introduces the concept of framed curvature flow and provides a
mathematical analysis. In traditional geometric flow, motion is determined by
velocities in the tangent, normal, and binormal directions. However, in framed
curvature flow, a new Frenet frame is adopted by giving an angle function 6
and rotating the normal and binormal directions by 8. The flow is defined as a
framed flow. To prepare for the mathematical analysis of the framed flow, we
first derive the time evolution equations for the new Frenet frame, curvature,
and torsion. Based on these equations, we demonstrate the time-local existence
of the framed flow. It has been demonstrated that if the solution’s maximum
existence time is finite, then the maximum of the curvature or the second-order
derivative of the angle function diverges at that time. Framed flow generates sin-
gularities of a type that do not appear in ordinary flows. Therefore, the author
first defines various singularities and provide basic examples of each. For the
global analysis, the author derives an objective evaluation of the time evolution
of the length to obtain the maximum time of existence of the solution. Addi-
tionally, the author derives an evaluation of the total area. These evaluations,
along with the maximum existence time of the solution, lead to a global evalu-
ation of the total area. Various interesting trajectory surfaces can be obtained
by appropriately defining the angle function. It has been demonstrated that
constant mean curvature surfaces and constant Gauss curvature surfaces can be
constructed using framed flows. The concepts presented in this chapter, as well
as in the previous chapters, are highly original and commendable, providing a
new framework for the mathematical analysis of curvilinear flows.

Appendix A analyzes the time evolution of filament networks instead of
curves. A discrete method is used to compute energy gradients, enabling the
handling of branching topological changes. Appendix B provides a brief overview
of the numerical algorithms and presents numerical results for some of the new
flows discussed in this thesis.

This paper ventures into the field of time evolution of spatial curves, a classi-
cal subject that has been little studied. Starting from traditional mathematical
issues, such as the existence of solutions to curve-shortening flows and the elu-
cidation of their long-time behavior, the paper introduces new concepts, such
as minimal surface generating flow and framed flow. The dissertation is of an
extremely high level and makes truly essential advances in the mathematical
analysis of moving boundary problems.

In view of the foregoing, I have every reason to recommend the candidate to
the Committee for the Defense of the Doctor of Philosophy Degree.
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