
Czech Technical University in Prague

Faculty of Electrical Engineering

Doctoral Thesis

March 2024 Ing. Jaromír Janisch

Czech Technical University in Prague

Faculty of Electrical Engineering
Department of Computer Science

A P P L I C AT I O N S O F D E E P R E I N F O R C E M E N T L E A R N I N G I N
P R A C T I C A L S E Q U E N T I A L I N F O R M AT I O N A C Q U I S I T I O N P R O B L E M S

Doctoral Thesis

ing . jaromír janisch

Prague, March 2024

Ph.D. Programme: Electrical Engineering and Information Technology (P2612)
Branch of study: Information Science and Computer Engineering (2612V025)

Supervisor: doc . ing . tomáš pevný, ph .d.
Supervisor-specialist: doc . mgr . viliam lisý, msc . , ph .d.

Dedicated to all my close ones, whom I love.

A C K N O W L E D G M E N T S

This research was supported by the European Office of Aerospace Research and De-
velopment (grant no. FA9550-18-1-7008) and by The Czech Science Foundation (grants
no. 18-21409S, 18-27483Y, 22-32620S and 22-26655S) and by OP VVV funded project
CZ.02.1.01/0.0/0.0/16_019/0000765 “Research Center for Informatics”. Some presented
experiments used GPUs donated by the NVIDIA Corporation. Some computational re-
sources were provided by the e-INFRA CZ project (ID:90254), supported by the Ministry
of Education, Youth and Sports of the Czech Republic.

P E R S O N A L A P P R E C I AT I O N S

I am extremely grateful to my wife Assel and daughter Ágnes for their patience. Addi-
tionally, I thank both my supervisors, Tomáš Pevný and Viliam Lisý, for their objective
criticism and guidance over the years.

vii

A B S T R A C T

This thesis focuses on practical sequential information acquisition problems, i.e., problems
where agents take actions sequentially, based on their current knowledge, and each step
reveals a new piece of information. Many real-world problems can be framed this way,
e.g., malware analysis, where an agent performs a test, and based on the result, it
decides which other tests it needs, which tools to use, or whether it already has enough
information to make a decision. We consecutively present four increasingly complex
topics inspired by real-world problems, along with domain-independent solutions based
on state-of-the-art deep reinforcement learning (RL) techniques. One of the advantages of
using deep RL is that the proposed solutions can benefit from independent progress in
this dynamically developing field. Within each topic, the thesis advances state-of-the-art
methods, improves performance or generality, or presents novel settings.

First, we explore a classification problem where samples are described by vectors of
fixed dimensions, and the features are acquired sequentially, and only for a cost. The goal
is to optimize the trade-off between the expected classification error and the cumulative
feature cost. We frame the problem as a multi-criteria sequential decision-making problem,
present a flexible deep RL-based solution, and experimentally demonstrate that it robustly
outperforms competing methods.

The previous approach assumes the algorithm knows which features are present in
data samples, and that their number is fixed. However, this is not true for some real-world
problems where features can be nested, or contained in sets of arbitrary cardinality. In
the second topic, we propose changes to the formerly introduced framework, so that it
can work with such data naturally and select features within these complex structures.
We demonstrate its use in the practical problem of malicious web domain identification,
where it leads to substantial savings, compared to cost-agnostic methods.

While the method can process tree-structured data, it is not completely general, since
some real-world problems cannot be represented in this way. Hence, in the third topic,
we design an even more general system that works with problems that are naturally
defined in terms of objects and relations, and object-centric actions. Since the previous
approach is not applicable, and finding a fixed-length representation required by most
existing RL methods is difficult, if not impossible, we present a novel deep RL framework
based on graph neural networks and autoregressive policy decomposition that naturally
works with these problems and is completely domain independent. We demonstrate that
our method allows training agents that display impressive zero-shot generalization over
different problem sizes.

Fourth, we present a case study in automated penetration testing. Based on the
knowledge gained in the previous parts, we propose several agent architectures that
can generalize to unseen scenarios. Additionally, we demonstrate that agents trained in
simulation can be deployed in emulated environments featuring real network connectivity,
operating systems and vulnerable software.

ix

A B S T R A K T

Tato práce se zaměřuje na praktické problémy se sekvenčním získáváním informací,
tedy problémy, kde agenti konají akce postupně s ohledem na jejich současnou znalost,
a v každém kroku se objeví nová informace. Mnoho problémů z reálného světa lze
pojmout tímto způsobem, například analýzu malwaru, ve které agent provede nějaký
test, a na základě výsledku se rozhodne, jaké další testy potřebuje, které nástroje použít,
nebo zda má již dostatek informací k rozhodnutí. Postupně prezentujeme čtyři stále
komplexnější témata inspirované reálnými problémy, a současně uvádíme doménově
nezávislá řešení založená na nejmodernějších technikách hlubokého zpětnovazebního
učení (tzv. „deep RL”). Jednou z předností použití deep RL je, že navržená řešení mohou
profitovat z nezávislého vývoje v tomto dynamicky rozvíjejícím se odvětví. V každém
tématu posouvá tato práce nejmodernější metody, zlepšuje výkon nebo obecnost nebo
pohlíží na problémy novým způsobem.

Nejprve prozkoumáváme klasifikační problém, v němž jsou vzorky popsány vektory
s fixní dimenzí a jednotlivé prvky jsou získávány postupně, a pouze za nějakou cenu.
Cílem je optimalizovat kompromis mezi očekávanou klasifikační chybou a celkovou
cenou prvků. Pojímáme problém jako vícekriteriální sekvenční rozhodovací problém,
představujeme flexibilní řešení založené na deep RL a experimentálně ukazujeme, že
robustně překonává konkurenční metody.

Výše uvedený přístup předpokládá, že daný algoritmus zná, jaké prvky jsou v dato-
vých vzorcích obsaženy a také, že jejich počet je fixní. To nicméně není pravda pro některé
problémy z reálného světa, kde mohou být prvky vnořené, popř. obsaženy v množi-
nách libovolné mohutnosti. V druhém tématu navrhujeme změny v dříve představené
metodě tak, aby mohla přirozeně pracovat s uvedenými daty a vybírat prvky v těchto
složitých strukturách. Její použití demonstrujeme na praktickém problému identifikace
škodlivých webových domén, kde vede ke značným úsporám v porovnání s metodami,
které nezohledňují ceny.

Ačkoli lze touto metodou zpracovat data strukturovaná jako stromy, není zcela obecná,
protože některé reálné problémy nelze vyjádřit tímto způsobem. Ve třetím tématu tedy
navrhujeme ještě obecnější systém, který pracuje s problémy přirozeně definovanými
pomocí objektů a jejich vztahů a akcí orientovaných na tyto objekty. Protože předchozí
přístup nelze použít a nalezení reprezentace s fixní délkou, požadované většinou existují-
cích RL metod, je těžké, ne-li nemožné, představujeme novou deep RL metodu založenou
na grafových neuronových sítích a autoregresivní dekompozici strategie, jež s těmito
problémy přirozeně pracuje a je úplně doménově nezávislá. Ukazujeme, že naše me-
toda umožňuje trénovat agenty, kteří vykazují impozantní schopnost generalizace přes
problémy různých velikostí, a to bez dalšího trénování.

Začtvrté uvádíme případovou studii v automatizovaném penetračním testování. Na
základě znalostí získaných v předchozích částech navrhujeme několik agentních architek-
tur, které generalizují do neznámých scénářů. Navíc ukazujeme, že agenti trénovaní v
simulaci mohou být nasazeni v emulovaných prostředích obsahujících reálnou sít’ovou
konektivitu, operační systémy a zranitelný software.

xi

C O N T E N T S

1 Introduction 1

2 Technical Background 5

2.1 Deep reinforcement learning . 5

2.1.1 Value based methods . 5

2.1.2 Policy gradient methods . 6

2.2 Graph neural networks . 9

2.3 Hierarchical multiple-instance learning . 10

3 Classification with Costly Features 11

3.1 Related work . 13

3.2 Problem variations . 14

3.2.1 Overview . 15

3.2.2 Common notation . 15

3.2.3 Average budget with trade-off parameter λ 16

3.2.4 Average budget with specific target b 17

3.2.5 Hard budget . 18

3.2.6 Missing features . 18

3.2.7 High-performance classifier . 19

3.3 Method . 19

3.4 Experiment setup . 21

3.4.1 Evaluation metric . 21

3.4.2 Baseline method . 22

3.4.3 Used datasets . 23

3.4.4 Compared Algorithms . 23

3.4.5 Methodology . 24

3.5 Experiment results . 24

3.5.1 Time and memory requirements . 25

3.5.2 Average budget with trade-off λ . 26

3.5.3 Average budget with target b . 28

3.5.4 Hard budget . 30

3.5.5 Missing features . 31

3.5.6 High-performance classifier . 33

3.5.7 Effect of the RL algorithm . 34

3.6 Chapter conclusion . 35

4 CwCF and Hierarchical Multiple-Instance Data 37

4.1 Related work . 39

4.2 Problem . 39

4.2.1 Structured data . 39

4.2.2 CwCF with structured data . 40

4.3 Method . 41

4.3.1 Input pre-processing . 43

xiii

xiv contents

4.3.2 Input embedding . 44

4.3.3 Classifier . 45

4.3.4 Value function and terminal action 45

4.3.5 Action selection . 45

4.3.6 Training . 47

4.3.7 Pretraining classifier . 47

4.4 Experiment setup . 48

4.4.1 Tested algorithms . 48

4.4.2 Used datasets . 49

4.4.3 Implementation and hyperparameters 50

4.4.4 Methodology . 51

4.5 Experiment results . 51

4.5.1 Behaviour analysis: Synthetic dataset 51

4.5.2 Real-world domain: Threatcrowd 54

4.5.3 Quantitative experiments: Other datasets 57

4.5.4 Remarks . 59

4.6 Discussion . 60

4.7 Chapter conclusion . 62

5 Symbolic and Relational Approach 63

5.1 Related work . 65

5.2 Problem . 67

5.2.1 State and goal . 67

5.2.2 Actions . 68

5.3 Method . 69

5.3.1 Graph Neural Network . 69

5.3.2 Policy decomposition . 71

5.3.3 Model training . 73

5.4 Experiment setup . 74

5.4.1 Time-limits . 74

5.4.2 Reference machine . 74

5.4.3 Implementation details . 74

5.5 Experiments . 74

5.5.1 BlockWorld . 75

5.5.2 Sokoban . 78

5.5.3 SysAdmin . 81

5.6 Discussion . 83

5.7 Chapter conclusion . 85

6 Case Study: Automated Penetration Testing 87

6.1 Related work . 88

6.2 NASimEmu framework . 89

6.2.1 Simulator . 90

6.2.2 Emulator . 92

6.2.3 Known limitations . 94

6.3 Deep RL agents . 95

6.3.1 Architectures . 95

contents xv

6.3.2 Last action encoding . 97

6.3.3 Optimal stopping problem . 97

6.4 Experiment setup . 99

6.4.1 Scenarios . 99

6.4.2 Implementation details . 100

6.4.3 Baseline algorithm . 100

6.4.4 Metrics and setup . 100

6.5 Experiment results . 101

6.5.1 Generalization to novel scenarios . 101

6.5.2 Training to terminate . 104

6.5.3 History matters . 104

6.5.4 Other architectures . 105

6.5.5 Scaling to large networks . 106

6.5.6 Transfer to emulation . 107

6.6 Chapter conclusion . 111

7 Conclusion 113

7.1 Thesis contributions . 113

7.2 Future work . 114

a Publications 115

Bibliography 117

A C R O N Y M S

API Application Programming Interface

AUTC Area Under Trade-off Curve

CwCF Classification with Costly Features

DMZ Demilitarized Zone

GNN Graph Neural Network

GRU Gated Recurrent Unit

HMIL Hierarchical Multiple-Instance Learning

HPC High-Performance Classifier

IP Internet Protocol

LLM Large Language Model

MDP Markov Decision Process

MIL Multiple-Instance Learning

MLP Multi-Layer Perceptron

NASim Network Attack Simulator

NN Neural Network

OS Operating System

RF Random Forest

RL Reinforcement Learning

RRL Relational Reinforcement Learning

SLA Service-Level Agreement

xvi

N O TAT I O N

Symbols related to Chapters 3 and 4:

λ accuracy vs. cost trade-off factor

yθ , kθ outputs of the model – class and cost of acquired features

c cost function

x , y sample and class

S , A , r , t state and action space, reward and transition function

Af , Ac feature selecting and classifying actions

T terminal state

F , F̄ sets of all and acquired features

x̄ = o(x , F̄) observation (masked sample)

ℓ , ℓcls classification loss for RL (binary); classifier loss (cross-entropy)

π , V action selection policy and value function

ρ classification probabilities

at , µat terminal action and its pre-softmax value

D , ΣD dataset D and its schema

κ , pre(κ) feature and its prefix

zv , zx̄ embeddings of an object v and observation x̄

fϑB
HMIL embedding function for the bag B

fφB
pre-softmax embedding function for action selection for the bag B

xvii

1
I N T R O D U C T I O N

Many practical problems are sequential in their nature. Let us take two examples from
computer security: malware analysis and penetration testing, which we use as running
examples throughout this thesis. Malware analysis deals with identifying potential threats
in a binary file by analysing the code, observing its behaviour or by using other heuristic
methods and tools. In penetration testing, on the other hand, one tries to find and exploit
vulnerabilities in a computer network that a potential attacker can use to extract sensitive
information. Both of these domains involve sequential information acquisition, where
the decision of what to do next is based on the information gathered so far. Traditionally,
highly trained human specialists control the process, gather and identify key pieces
of information from numerous sources and in multiple formats, learn, transfer their
knowledge to unknown problems and improvise. They think strategically (e.g., where to
focus their attention in planning an attack on a computer network), and tactically (e.g.,
how and where to apply a specific exploit) and are general and versatile. We argue that
similar skills are required in many other domains.

However, humans are also notoriously inefficient and expensive. Therefore, our grand
challenge is to design autonomous systems that behave as the specialists and can perform
malware analysis for unknown binaries, do penetration testing in unseen computer
networks or solve other challenging problems. Such systems would be much cheaper to
operate, faster to run and could be parallelized to process a multitude of problems at
once. In this thesis, we strive to design such systems for real-world sequential information
acquisition problems. Chapters are inspired by practical problems, and each presents a
general method applicable to a whole problem domain. Subsequent chapters build on
top of previous ones, solving challenges that appeared. Our methods are based on deep
reinforcement learning (RL) [140], algorithms that optimize sequential decision-making
processes. Deep RL has gained popularity in playing games [57, 107, 149], but its real-
world applications can be challenging [30]. Therefore, this thesis provides a dual benefit:
We do not only provide solutions for our problems using deep RL, but we can see it
from the other point of view – we present concrete real-life problems that can be solved
using deep RL-based techniques, showing their utilities. Let us introduce the researched
problems below.

Let us use the malware analysis as an example to demonstrate the first problem,
explored in Chapter 3. An algorithm has to decide whether the analysed binary file is
malicious or not and has a set of tools at its disposal (e.g., static code analysis, analysing
the behaviour in a sandbox, or using external services). However, running each of the
tools also uses some resources, and hence the algorithm has to balance the accuracy vs.
cost trade-off. The problem is sequential, since, at each step, the algorithm uses all the
knowledge gathered so far to decide whether to acquire more information, and which,
or whether to classify with what it knows at that point. Building on an existing work
of Dulac-Arnold et al. [29], we abstracted the problem as a multi-criteria optimization
problem, transformed it into a Markov Decision Process (MDP) and used state-of-the-art
deep RL algorithms to search for optimal solutions. Although we were inspired by

1

2 introduction

a concrete problem, we created a general framework called Classification with Costly
Features (CwCF), that is applicable in many classification problems with limited resources
(e.g., time, money or computational power). For example, Lee et al. [78] use our method
to select a personalized subset of salient features to be displayed to a therapist during
stroke rehabilitation assessment. We demonstrate that the presented method outperforms
alternative approaches and propose several variations, such as applications with a hard
budget, missing features, or an automatic hyperparameter search for users’ convenience.

However, we were also presented with new challenges, which we investigate in Chap-
ter 4. In the previous chapter, we assumed that the features our algorithm acquires could
be encoded as real numbers, or at least real vectors. However, it quickly became apparent
that the real world is not flat, but is better described with structured data. For instance,
during the malware analysis, the algorithm can resolve a specific web domain to multiple
IP addresses and then further analyse each of these addresses, e.g., with a reverse DNS
lookup. Such information is much better encoded hierarchically in formats such as JSON
or XML, which incrementally grow with every new piece of information. To process such
data, we augmented the original method with Hierarchical Multiple-Instance Learning
(HMIL) [122], an algorithm that processes structured, variable-sized inputs, and designed
a hierarchical policy decomposition that selects features inside the hierarchy. Again, we
approached the problem generally and demonstrated its versatility with diverse datasets
from domains such as medicine or social networks. Finally, we applied the proposed
method to a real problem of malicious web domains analysis, where it offers up to 7.5×
cost savings, compared to cost-agnostic methods.

Now, let us imagine a situation, where two different web domains are resolved to the
same IP address. In the previously described data format, the situation results in two
distinct records in the hierarchy, whereas, ideally, there should be only one. Therefore, in
Chapter 5, we explore ways to design a system without this issue, and one that is able to
work with an even larger subset of real problems. We found that the state-of-the-art deep
RL techniques are commonly designed to work with flat inputs and outputs. However,
humans often regard the world through concepts of objects, their relations and object-
centric actions. As an example, the mentioned penetration testing scenario perfectly fits
this vision – the nodes are connected in a network, and the agent can perform various
actions targeting one of the nodes. Hence, we took a fresh look at the deep RL itself,
and combined it with Graph Neural Networks (GNNs) [168] and autoregressive policy
decomposition. This approach is very powerful, since many existing problems can be
described in the form of a graph, can process problem instances of variable size, and
the graph can even dynamically change, allowing for the inclusion of newly learned
information. We demonstrated that agents trained with our approach generalize beyond
their training scenarios, allowing them to be deployed in much larger problems than they
were trained in. Additionally, we showed that this property allows our technique to be
used in specific problems that were traditionally dominated by heuristic search-based
planning algorithms, specifically in problem sizes that were formerly intractable.

Last Chapter 6 is a case study that investigates whether the formerly gained insight
allows us to design a system applicable in a practical real-world problem. Specifically,
we focused on the automated penetration testing, which is an incredibly challenging
domain if we want to create autonomous agents that behave intelligently and work
in unseen scenarios. Because of that, most current approaches [e.g., 17, 161] focus on
creating narrow-scoped agents that work well in some scenarios, but cannot generalize

introduction 3

beyond them. In our approach, we had to first adapt an existing framework to support
training general agents, and then, with all the knowledge from previous chapters, we
designed several deep RL-based agent architectures that can transfer to unseen scenarios.
Additionally, we proposed a novel method that allows the agents themselves to terminate
their execution. Finally, we showed that the trained agents not only work in simulated
networks, but can be transferred to emulated environments running real nodes with real
services and operating systems.

This thesis is sectioned into individual chapters, each focusing on one specific problem.
Each chapter contains its own overview of the related work, a description of the proposed
methods and experiments. The common theoretical background is discussed in Chapter 2.
Chapter 3 introduces the Classification with Costly Features problem and Chapter 4

augments the approach to work with hierarchical data. Chapter 5 presents a generic
relational deep RL method and Chapter 6 is a case study, where the previously proposed
approaches are demonstrated in the automated penetration testing. The thesis concludes
in Chapter 7 by discussing its contributions and possible future work.

2
T E C H N I C A L B A C K G R O U N D

This chapter introduces the key concepts of deep reinforcement learning, graph neural
networks and hierarchical multiple-instance learning, which will be used in later chapters.

2.1 deep reinforcement learning

Deep RL [140] is a set of techniques to find the optimal policy for a specified problem
using sampling from the environment and a function approximation. Its main advantage
is that it does not require the knowledge of transition dynamics and can optimize
non-differentiable objectives. On the other hand, it is rather sample inefficient. These
properties predetermines it for applications into problems where the objective is complex
and non-differentiable, and where a fast simulator providing sampled transitions exists.
In the following chapters, we use multiple deep RL methods, which can be divided into
two groups – value-based and policy-gradient.

2.1.1 Value based methods

Let us start with some definitions. The Markov Decision Process (MDP) is a tuple
(S,A, t, r,γ), where S represents its state space, A a set of actions, t(s,a) is a transition
function returning a distribution of states after taking an action a in a state s, r(s,a, s ′) is
a reward function and γ is a discount factor. Value based methods seek to find the optimal
function Q∗, representing the expected total discounted reward for taking an action a in
a state s and then following the optimal policy. It satisfies the Bellman equation:

Q∗(s,a) = E
s ′∼t(s,a)

[
r(s,a, s ′) + γmax

a ′
Q∗(s ′,a ′)

]
(2.1)

A neural network with parameters θ takes a state s and outputs an estimate Qθ(s,a),
jointly for all actions a. It is optimized by minimizing MSE between the both sides of
eq. (2.1) for transitions (st,at, rt, st+1) empirically experienced by an agent following a
greedy policy πθ(s) = argmaxaQθ(s,a). Formally, we are looking for parameters θ by
iteratively minimizing the loss function ℓθ, for a batch of transitions B:

ℓθ(B) = E
(st,at,rt,st+1)∈B

[
qt −Qθ(st,at)

]2
(2.2)

where qt is regarded as a constant when differentiated, and is computed as:

qt =

{
rt if st+1 = T

rt + max
a

γQθ(st+1,a) otherwise
(2.3)

As the error decreases, the approximated function Qθ converges to Q∗. However, this
method proved to be unstable in practice [107]. Now, we briefly describe the techniques
that stabilize and speed-up the learning.

5

6 technical background

Deep Q-learning [107] includes a separate target network with parameters ϕ, which
follow parameters θ with a delay. A popular method is based on Lillicrap et al. [90],
where the weights are regularly updated with expression ϕ := (1− ρ)ϕ+ ρθ, with some
parameter ρ. The slowly changing estimate Qϕ is then used in qt, when st+1 ̸= T:

qt = rt + max
a

γQϕ(st+1,a) (2.4)

Double Q-learning [146] is a technique to reduce bias induced by the max in eq. (2.3),
by combining the two estimates Qθ and Qϕ into a new formula for qt, when st+1 ̸= T:

qt = rt + γQϕ(st+1, argmax
a

Qθ(st+1,a)) (2.5)

In the expression, the maximizing action is taken from Qθ, but its value is estimated with
the target network Qϕ.

Dueling Architecture [154] uses a decomposition of the Q-function into two separate
value and advantage functions. The architecture of the network is altered so that it
outputs two estimates Vθ(s) and Aθ(s,a) for all actions a, which are then combined to a
final output Qθ(s,a) = Vθ(s) +Aθ(s,a) − 1

|A|

∑
a ′ Aθ(s,a ′). When training, the gradient

is taken w.r.t. the final estimate Qθ. By incorporating baseline Vθ across different states,
this technique accelerates and stabilizes training.

Retrace [112] is a method to efficiently utilize long traces of experience with truncated
importance sampling. The generated trajectories are stored into an experience replay
buffer [92] and whole episode returns are utilized by recursively expanding eq. (2.1).
The stored trajectories are off the current policy and a correction is needed. For a
sequence (s0,a0, r0, . . . , sn,an, rn,T), Retrace can be implemented together with Double
Q-learning by replacing qt with

qt = rt + γ E
a∼πθ(st)

[
Qϕ(st+1,a)

]
+ γρ̄t+1

[
qt+1 −Qϕ(st+1,at+1)

]
(2.6)

where we define Qϕ(T, ·) = 0 and ρ̄t = min(π(at|st)
µ(at|st)

, 1) is a truncated importance
sampling between exploration policy µ that was used when the trajectory was sampled
and the current policy π. The truncation is used to bind the variance of product of
multiple important sampling ratios for long traces.

The policy πθ can be stochastic – at the beginning, it starts close to the sampling policy
µ but becomes increasingly greedy as the training progresses. It prevents premature
truncation in the eq. (2.6) and can result in faster convergence. Note that all qt values
for a whole episode can be calculated in O(n) time. Further, it can be easily parallelized
across all episodes.

2.1.2 Policy gradient methods

Instead of approximating the Q-function, policy gradient methods approximate and
optimize the policy itself. In the following, we describe two main algorithms used in this
thesis. For their pseudo-codes, follow Algorithm 2.1.

A2C [105] is an algorithm that iteratively optimizes a policy πθ and a value estimate
Vθ generated by a model with parameters θ. In this case, let the state-action function
Q(s,a) be:

Q(s,a) = E
s ′∼t(s,a)

[
q(s,a, s ′)

]
; q(s,a, s ′) =

{
r(s,a, s ′) if s ′ is terminal

r(s,a, s ′) + γVθ ′(s ′) else

2.1 deep reinforcement learning 7

Algorithm 2.1 Policy gradient methods
1: Version with target network, sampled entropy and target clipping
2: function A2C(batch B, qmin = −∞, qmax = ∞) ▷ B contains transitions s,a, r, s ′

3: J = EB

[
(r+ γVθ′(s ′) − Vθ(s)) · ∇θ logπθ(a | s)

]
▷ eq. (2.7)

4: LV = EB

[
clip

(
r+ γVθ′(s ′),qmin,qmax

)
− Vθ(s)

]2
▷ eq. (2.8); V ′

θ(s) = 0 if s ′ = T

5: ∇θLH = EB

[
logπθ(a | s) · ∇θ logπθ(a | s)

]
▷ eqs. (2.9), (2.10)

6: return Lpg = −J+αvLV −αhLH ▷ using auto-differentiation
7: end function

8: ϵ - maximal deviation
9: T - horizon in the batch

10: K - number of optimization steps
11: function PPO(batch B)
12: Store a copy of πold = πθ
13: For each trace s0,a0, r0, ..., sT in B, recursively compute targets qt = rt + γqt+1; qT = Vθ′(sT)

14: for i=1..K do
15: Let ρθ(a | s) =

πθ(a|s)
πold(a|s)

; ρ̄θ(a | s) = clip
(
ρθ(a | s), 1− ϵ, 1+ ϵ

)
16: J = EB

[
min

(
(q− Vθ̄(s)) · ρθ(a | s); (q− Vθ̄(s)) · ρ̄θ(a | s)

)]
▷ s,a,q from B, eq. (2.11)

▷ θ̄ is a copy of parameters θ, not updated during backpropagation

17: LV = EB

[
q− Vθ(s)

]2
18: ∇θLH = EB

[
logπθ(a | s) · ∇θ logπθ(a | s)

]
19: Take a gradient step wrt. ∇θ(−J+αvLV −αhLH)

20: end for
21: end function

Note the θ ′ in Vθ ′ . Either θ ′ is the same as θ, or, to stabilize training, the technique from
Deep Q-learning can be used. In that case, Vθ ′(s ′) is estimated using the target network
with a copy of parameters θ ′ that are regularly updated with θ ′ := (1− ρ)θ ′ + ρθ.

Let us describe the rest of the algorithm. Let A(s,a) = Q(s,a) −Vθ(s) be an advantage
function. Then, the policy gradient ∇θJ, the value function loss LV and the entropy
regularization term LH are:

∇θJ = E
s,a∼πθ,t

[
A(s,a) · ∇θ logπθ(a | s)

]
(2.7)

LV = E
s,a∼πθ,t

[
Q(s,a) − Vθ(s)

]2
(2.8)

LH = E
s∼πθ,t

[
Hπθ

(s)
]

; Hπ(s) = − E
a∼π(s)

[
logπ(a | s)

]
(2.9)

Optionally, the Q(s,a) term in eq. (2.8) can be clipped to known bounds, which can
reduce a maximization bias that occurs when learning a value function with neural
networks [146]. The final gradient is ∇θ(−J+αvLV −αhLH), with αv,αh being learning
rate coefficients. In practice, a batch of parallel environments is used to gather a better
gradient estimate and a single update per each step of the environment is performed.
Note that the correct computation of the gradient is no issue for current machine learning
libraries that use automatic differentiation. The A2C method is based on A3C [105],
which used asynchronous gradient updates, A2C performs the updates synchronously.

8 technical background

Entropy gradient sampling [166] can be used in cases where we do not know whole
πθ(s), but only πθ(a | s) for the actually performed action a. This is the method used
in Chapters 4 and 5. Here, the entropy gradient can be estimated with a collection of
sampled actions in a batch:

∇θHπθ
(s) = − E

a∼πθ(s)

[
logπθ(a | s) · ∇θ logπθ(a | s)

]
(2.10)

For completeness, we show the derivation of the equation below. For readability, we omit
θ in ∇θ and πθ:

Derivation of eq. (2.10).

∇Hπ(s) = −∇
∑
a

π(a | s) · logπ(a | s)

= −
∑
a

∇π(a | s) · logπ(a | s) −
∑
a

π(a | s) · ∇ logπ(a | s)

Using the fact x · ∇ log x = ∇x, we show that the second term is zero:∑
a

π(a | s) · ∇ logπ(a | s) =
∑
a

∇π(a | s) = ∇
∑
a

π(a | s) = ∇1 = 0

Let’s continue with the remaining term and use the fact ∇x = x · ∇ log x again:

∇Hπ(s) = −
∑
a

∇π(a | s) · logπ(a | s)

= −
∑
a

π(a | s) · ∇ logπ(a | s) · logπ(a | s)

= − E
a∼π(s)

[
∇ logπ(a | s) · logπ(a | s)

]

PPO [132] algorithm aims to improve sample efficiency by performing multiple updates
using the same data. However, performing multiple steps using the eq. (2.7) can result in
destructively large updates. PPO introduces a clipped surrogate objective that prohibits
too large deviation from the original policy.

Let πold be the policy fixed before the update, ρθ a ratio between the current and old
policy, ρ̄θ its clipped version and ϵ the maximal deviation:

ρθ(a | s) =
πθ(a | s)

πold(a | s)

ρ̄θ(a | s) = clip
(
ρθ(a | s), 1− ϵ, 1+ ϵ

)
Then, PPO changes the policy objective into:

J = E
s,a∼πθ,t

[
min

(
A(s,a) · ρθ(a | s); A(s,a) · ρ̄θ(a | s)

)]
(2.11)

When computing the gradient of J, this new objective allows change when πθ is close to
πold, but forbids it when A(s,a) > 0∧ ρθ(a | s) > 1+ ϵ or A(s,a) < 0∧ ρθ(a | s) < 1− ϵ.
Note that A and πold are fixed for the purpose of gradient computation. Because we are

2.2 graph neural networks 9

trying to maximize the objective J, the minimum in the eq. (2.11) can be seen as its lower
(pessimistic) bound. To get better insight about the connection between the new objective
and eq. (2.7), see that ∇θ logπθ(a | s) =

∇θπθ(a|s)
πθ(a|s)

. This means that the first gradient step
is the same as with eq. (2.7).

Crucially, PPO enables us to perform multiple gradient steps using the same batch.
As in A2C, multiple environments are processed in parallel. Additionally, we usually
gather longer traces s0,a0, r0, ..., sT−1,aT−1, rT−1, sT and compute an empirical value of
Q(s,a), denoted qt, using these whole traces:

qt = rt + γqt+1; qT = Vθ ′(sT)

This value is then used to compute A(s,a) and LV . Finally, we perform K steps of gradient
descent wrt. ∇θ(−J+αvLV −αhLH).

2.2 graph neural networks

Graph neural networks (GNNs) [168] are special architectures that process input in form
of a graph consisting of nodes and edges connecting them. The basic operation is a graph
convolution [165], which is similar to 2D convolution [76] but in the graph space. The
approaches are generally divided in spectral [136], which uses the spectral representation
of the graphs, or spatial [e.g., 44] that define operations directly on the graph using its
topology. Graphs can be homogenous (i.e., all nodes and edges are of the same type),
or heterogeneous, where the nodes and edges are differentiated by their features, or by
different convolution parameters. In this thesis, we mainly focus on spatial methods with
heterogeneous, oriented graphs.

Let v ∈ V be the graph nodes and e ∈ E its edges, where e.s, e.r denote the sending
and receiving nodes of this edge. For simplicity, let v and e also denote the feature vector
of the respective node or edge. The core of the algorithm is a single message-passing
step. First, the incoming messages are aggregated:

∀v : vmsg = agg
e∈E:e.r=v

ϕmsg(e, e.s) (2.12)

Here, ϕmsg is a message embedding function that transforms an incoming message from
node e.s over an edge e. The results are aggregated with an element-wise agg function,
which is commonly max or mean operators [8]. Second, all node features are updated
with newly computed values:

∀v : v ′ = ϕagg(v, vmsg) (2.13)

The messages vmsg are processed with the function ϕagg, which also takes the current
embedding of v.

The steps in eqs. (2.13) and (2.12) constitute a single message passing step, which
is commonly repeated multiple times, each time with step specific ϕmsg and ϕagg

parameters. At the end of this process, the graph is pooled [e.g., 77, 87], which results in
a fixed-length embedding that can be processed further with standard neural network
layers for the designated purpose (e.g., graph classification). In Chapter 5, we introduce a
method without pooling that outputs node-specific embeddings that are then used to
define object-centric actions and their probabilities.

10 technical background

v1
v2
v3
. . .

bag B
fϑB (v1)
fϑB (v2)
fϑB (v3)

parent item features

zv1
zv2
zv3

mean

Figure 2.1: Illustration of the bag embedding in HMIL. Objects in the bag B are processed with
fϑB

and aggregated. The result is used as the feature value for the parent object. The
process recursively embeds the whole sample.

GNNs have several advantages – they are permutation invariant (the node order does
not matter), size agnostic (they can process graphs of variable size) and possess useful
inductive biases that emerge due to the weight sharing [8].

2.3 hierarchical multiple-instance learning

The algorithm described in Chapter 4 requires a way to process data samples in form of
trees of features that can contain nested lists of objects, similar to XML and JSON formats.
To process this data on input, we use an extension of Deep Sets [162] for hierarchical data,
called Hierarchical Multiple-Instance Learning (HMIL) [100, 122]. For an illustration of
how HMIL works, see Figure 2.1.

Let us start with Multiple-Instance Learning (MIL) [123], which presents a neural net-
work architecture to learn an embedding of an unordered set (called a bag) B, composed
of m items v{1..m} ∈ Rn. The items are simultaneously processed into their embeddings
zvi

= fϑB
(vi), where fϑB

is a non-linear function with parameters ϑB, shared for the bag
B. All embeddings are processed by an aggregation function g, commonly defined as
an element-wise mean or max operator. The whole process creates a bag’s embedding
zB = gi=1..m(zvi

), and is differentiable.
HMIL extends the framework so that it works with nested bags. In MIL, a feature could

be only a value represented as a fixed-length vector. In HMIL, a feature can also be a bag
of items with the restriction that all the items share the same feature types. Different bags
B have different parameters ϑB and are recursively processed as in MIL, starting from
the hierarchy’s leaves and proceeding to the root. The resulting intermediary embeddings
zB are used as feature values (see Figure 2.1). The soundness of the hierarchical approach
is theoretically studied by Pevný and Kovařík [121].

3
C L A S S I F I C AT I O N W I T H C O S T LY F E AT U R E S

Classification with Costly Features (CwCF) is a family of classification problems
with a cost of acquiring information. This cost can appear in many forms. Usually, it
is about money or time, but it is present in any domain with limited resources. We
view the problem as a sequential decision-making problem. At each step, based on the
information acquired so far, the algorithm has to decide whether to acquire another piece
of information (a feature) or to classify.

Think about a doctor who is about to make a diagnosis for their patient. There are
a number of examinations, tests or analysis which can be made, but each of them has
a cost. As much as the doctor wants to make a reliable prediction, they are bound by
their average budget they should not exceed. Naturally, patients with complicated diseases
require more complicated and expensive tests, while trivial problems can be diagnosed
with much fewer resources. Here, we use the medical domain only as an example, but
there are several publications analysing the use of CwCF in medicine, e.g., Peng et al.
[119], Bayer-Zubek and Dietterich [9] or Lee et al. [78].

As another motivating example, imagine an online service that analyses computer files
potentially infected with malware. The service is bound by a service-level agreement and
has to provide a decision in a specified time, and this time cannot be exceeded. This is an
example of a hard budget. The process can analyse the files in multiple ways and compute
their features, and each computation takes a different, but known amount of time. The
goal is to provide accurate predictions, while not violating the time constraint.

In other domains, different requirements arise. One domain contains a lot of missing
data, other has imbalanced datasets. There can be a need to incorporate an existing
classifier into the process. Misclassification errors can have outcomes with different
impact, measured in the amount of lost resources. As we see, there are many variants
of the CwCF problem. Techniques adapted for specific problems exist and it is difficult
to modify these methods. In this chapter, we present a flexible reinforcement-learning
based framework that can work with all the mentioned problem variations. Should other
needs arise, the method is easily modified to suit the problem. We mainly demonstrate
our method in cases of average and hard budgets and also with missing features.

The power and generality of our method arises from the decoupling of the problem
and the method itself. By using a general reinforcement learning algorithm, we are able
to modify the problem specification, and the method will still provide a good result.
The core of our algorithm is built on optimal methods, but we lose the guarantees by
using function approximation (specifically, neural networks). Our method is also robust
to hyperparameter selection, where the same set of hyperparameters usually works well
across different domains and settings.

Formerly, CwCF with the average budget was approached with linear programming
[151], tree-based algorithms [115], gradient-based methods [24] and recently reinforce-

This chapter is based on two papers [58, 59] and the code of the presented algorithm is available at
https://github.com/jaromiru/cwcf.

11

https://github.com/jaromiru/cwcf

12 classification with costly features

ment learning [135]. There are also several publications focusing on the hard budget
problem – guided selection using a heuristic [67], and theoretical analyses [16, 170]. We
present a thorough overview of the related work in Section 3.1.

For the average budget setting, the objective is to solve the problem of minimizing
expected classification loss, along with λ-scaled total cost:

min
θ

E
(x,y)∈D

[
ℓ(yθ(x),y) + λkθ(x)

]
(3.1)

where (x,y) are samples taken from the dataset D, ℓ is a classification loss, λ is a trade-
off parameter, yθ is the classifier and kθ returns the total cost of used features in the
classification.

In the case the problem is well-specified, all the feature and classification costs are
precisely known and in the same units, solving the eq. (3.1) with λ = 1 will yield the
optimal solution. However, in many cases, the user knows only the feature costs and
desires a model that will achieve some trade-off between the accuracy and the cost or
have a specified budget. In the case of eq. (3.1), the user has no option but to try different
values of λ and see whether the learned model corresponds to a targeted budget or not.
This may require several runs of the algorithm and is inefficient. Therefore, let us take a
step back and propose the definition of the problem in its natural form. Given an explicit
budget b, the problem for the average case is:

min
θ

E
[
ℓ(yθ,y)

]
, s.t. E

[
kθ(x)

]
⩽ b (3.2)

where the expectations are w.r.t. the distribution of the samples in the dataset. As we show
in Section 3.2.4, definition (3.1) follows from (3.2) when using a Lagrangian framework
and it allows us to derive an algorithm in which we remove the λ parameter from the
user’s control. In this case, the user directly sets a desired budget and the algorithm
internally searches for a suitable λ. The method is based on an alternating optimization
of the model’s parameter θ and λ, similarly to Generative Adversarial Networks [36];
however, it is novel in the context of CwCF.

Next, we focus on the hard budget problem, which is defined as:

min
θ

E
[
ℓ(yθ,y)

]
, s.t. kθ(x) ⩽ b, ∀x (3.3)

Dulac-Arnold et al. [29] showed that the minimization problem (3.1) could be transformed
into an MDP formulation and solved through standard reinforcement learning techniques.
We improve the approach with deep learning, and modify the algorithm for both (3.2) and
(3.3). In the case of the average budget, we use the mentioned alternating optimization.
In the case of a hard budget, we show that simple modification to the MDP definition
enforces the hard constraints. In exact settings, the method would yield an optimal
solution and it only lacks guarantees due to the used function approximation.

Next, we focus on the problem of missing features. We demonstrate that a simple
modification of the algorithm performs comparably to a widely used MICE imputation
method [4]. Finally, we show that the algorithm can benefit from an external high-
performance, cost-agnostic classifier.

For each setting, we provide an experimental evaluation on several distinct datasets
and show that the method achieves a state-of-the-art performance. Also, it is flexible,
robust, easy to use and can be improved with any domain independent advance in RL
itself.

3.1 related work 13

This chapter is structured as follows. First, Section 3.1 summarizes the related work.
Next, in Section 3.2, we present the main ideas for solving various definitions of the
problem, along with the problem of missing features and high-performance classifier. We
explain the implementation details in Section 3.3. In Sections 3.4 and 3.5, we describe the
performed experiments and their results.

3.1 related work

Classification with Costly Features problem has been approached from many directions,
with many different types of algorithms. But to our knowledge, there is no single
framework that can work with both average and hard budgets, is flexible and perform
robustly as our method. In the case of the average budget, usually some variation of the
trade-off parameter λ is present. We are not aware of any work that would allow to set a
target in the average budget setting.

The closest works to this chapter are [29], which used Q-learning with limited linear
regression, resulting in inferior performance. Recent work [135] replace the linear approx-
imation with neural networks and report superior performance. However, this method
focuses only on the average budget problem and introduces an unintuitive trade-off
parameter λ.

A related problem is feature selection [42] which pre-selects a fixed set of features
for all samples. However, in CwCF and similar approaches, the features are selected
dynamically and sequentially. That is, for any particular sample, features are acquired
one by one, and each decision is guided by the information gathered so far. This way,
a different set of features is acquired for any particular sample. This approach requires
more resources to train and execute but can provide higher performance (i.e., higher
accuracy with the same average cost). Several approaches extend the feature selection
to include costs of the features [13, 97]. Still, they are designed to find a set of features
common for the whole dataset.

The following references focus only on the average budget problem. Contardo, Denoyer,
and Artieres [24] use a recurrent neural network that uses attention to select blocks of
features and classifies after a fixed number of steps. Mnih, Heess, Graves, et al. [106]
presents an algorithm sequentially chooses image locations to observe; however, the
presented algorithm is applicable only to image domains and is cost-agnostic. There is
also a plethora of tree-based algorithms [75, 113–115, 157–159].

A different set of algorithms employed Linear Programming (LP) to this domain [151,
152]. Wang et al. [151] use LP to select a model with the best accuracy and lowest cost,
from a set of pre-trained models, all of which use a different set of features. The algorithm
also chooses a model based on the complexity of the sample.

Wang, Trapeznikov, and Saligrama [153] propose to reduce the problem by finding
different disjoint subsets of features, that are used together as macro-features. These
macro-features form a graph, which is solved with dynamic programming. In large
problems, the algorithm can be used to find efficient groupings of features which would
then be used in our method.

Trapeznikov and Saligrama [145] use a fixed order of features to reveal, with increas-
ingly complex models that can use them. However, the order of features is not computed,
and it is assumed that it is set manually. Our algorithm is not restricted to a fixed order

14 classification with costly features

of features (for each sample it can choose a completely different subset), and it can also
find their significance automatically.

Maliah and Shani [98] focus on CwCF with misclassification costs, construct decision
trees over feature subsets and use their leaves to form states of an MDP. They directly
solve the MDP with value-iteration for small datasets with the number of features ranging
from 4-17. On the other hand, our method can be used to find an approximate solution
to much larger datasets. In this work, we do not account for misclassification costs, but
they could be easily incorporated into the rewards for classification actions.

Benbouzid, Busa-Fekete, and Kégl [10] presents a method to select a subset of available
classifiers such that it maximizes the accuracy of the ensemble while it minimizes their
count. The problem is formulated as an MDP, in which the model sequentially chooses
either to use or skip a classifier in their fixed order, or to stop with a classification. The
model only uses the outputs of the classifiers to choose actions and because of this, it
can be much simpler and the problem can be solved with tabular methods. In a sense,
our algorithm is a generalization of the principles – we do not restrict our model to a
fixed order of features and we use their raw values to guide the process. Moreover, our
model is able to work with hundreds of features with different costs and can be applied
in broad range of domains. However, if the specific use-case fits the work of Benbouzid,
Busa-Fekete, and Kégl [10], their algorithm may be simpler and faster.

Peng et al. [119] adapt the CwCF setting for a medical domain. They represent the
problem as an MDP, which they solve with a policy gradient method. They augment the
search with reward shaping and the training with auxiliary targets.

Bayer-Zubek and Dietterich [9] also view the problem as an MDP with a similar
structure. With discretized feature values, they present several methods based on the
AO* algorithm to search the policy space (represented with a complete decision tree) for
an optimal policy. Their approach is applicable in domains where the discretization of
feature values is possible.

Li and Oliva [86] uses RL with a generative surrogate model that provides intermediary
rewards by assessing the information gain of newly acquired features and other side
information. Ji and Carin [65] formulates the problem as a partially observable (PO) MDP.
Tan [141] analyses a problem similar to our definition, but algorithms introduced there
require memorization of all training examples, which is not scalable in many domains.

The hard budget case was explored in [67], who studied random and heuristic based
methods. Deng et al. [27] used techniques from the multi-armed bandit problem. There
are also theoretical works [16, 170]. Kachuee et al. [66] crafted a heuristic reward and
used RL to maximize it.

Since publishing our work [58, 59], CwCF has found applications in medicine [64, 78,
79, 109, 119], general classification and information gathering algorithms [19, 35, 63, 66,
91, 101], human activity recognition [74], face recognition [93], surveillance [156], and
cybersecurity [127].

3.2 problem variations

Before we delve into technical details, we present an overview of what CwCF is and
how we view it. We continue with the common notation and present algorithms for
the different cases. We start with the definition (3.1), an average budget case where the
budget is specified indirectly through a parameter λ. Next, still working with the average

3.2 problem variations 15

af5
· · ·

af3 ay2 y2
y1

y3

f1

f2

f3

f4

f5

f6

Figure 3.1: Illustration of the sequential process with a sample with 6 features (f1, ..., f6) and
three classes (y1,y2,y3). Feature values are acquired sequentially (actions af3 , af5 , ...)
before making a classification (ay2

). The particular decisions are influenced by the
observed values – the model chooses different actions for different samples.

budget, we present a reformulation of the problem with a directly specified budget b
and solving it with the Lagrangian framework. Then we modify the framework to work
with hard budgets. Lastly, we focus on a problem of missing features, which appear in
many real-world situations.

3.2.1 Overview

First, we would like to stress the sequential nature of the problem. Each sample is treated
separately and the model sequentially selects features, one by one (see Figure 3.1).
Eventually, a decision to classify is made, and the model outputs a class prediction.
Each decision is based on the knowledge acquired so far, hence different samples will
result in completely different sequences of features and predictions. This important fact
differentiates CwCF from feature selection methods, where the same subset of features is
selected for each sample.

In real-world scenarios, there are many small modifications to the problem formu-
lations. However, the presented method is very flexible and can be easily modified.
For example, the prior knowledge can be included in the sample before starting the
process (e.g., when a patient comes with known medical history). Multiple features can
be grouped together and represented as one macro-feature. Different misclassifications
can be treated with different weights through a particular choice of the loss function ℓ.
The method can also make use of an external and independently pretrained classifier
and automatically redirect samples if it is advantageous.

3.2.2 Common notation

We assume that a sample can be represented as a real-valued vector, where its members
are called features. Here we assume a feature is one real number, but presented algorithms
can be trivially modified in the case of multi-dimensional features.

Let’s start with common notation, which will be used for the rest of the chapter. Let
(x,y) ∈ D be a sample drawn from a data distribution D. Vector x ∈ X ⊆ Rn contains
feature values, where xi is a value of feature fi ∈ F = {f1, ..., fn}, n is the number of
features, and y ∈ Y is a class. Let c : F → R+ be a function mapping a feature f into its
real-valued cost c(f). For convenience, let’s overload c to also accept a set of features and
return the summation of their individual costs: c(F ′) =

∑
f∈F ′ c(f). Let b ∈ R+ be the

allocated budget per sample.

16 classification with costly features

x̄

af4 r = −λc(f4)

ay1 r = −`(y1, y)

class

af2 r = −λc(f2)

ay2 r = −`(y2, y)
· · ·

· · ·

Figure 3.2: The MDP. The agent sees a masked sample x̄. At each step it chooses from feature-
selecting actions (af) or classification actions (ay) and receives a corresponding reward
(either the cost of the selected feature or the classification loss).

Our method selects features sequentially, and is composed of a neural network with
parameters θ. However, for convenience, we define a pair of functions (yθ,kθ) to represent
the whole process of classifying one sample. In this notation, yθ : X→ Y represents the
classification output at the end of the process and kθ : X→ R represents the total cost of
all features acquired during the process. The T symbol denotes the terminal state. Note
that important symbols are listed in Notation at the beginning of this manuscript.

3.2.3 Average budget with trade-off parameter λ

As we have seen in the medical example in the beginning of this chapter, in some domains
the user wants to target an average budget per sample. Let’s start by writing the problem
definition one more time:

min
θ

E
[
ℓ(yθ(x),y) + λkθ(x)

]
(3.1 revisited)

Here, the user has to specify a trade-off parameter λ which will result in an a priori
unknown average budget. The approach is to create an MDP, where samples are classified
in separate episodes and the expected reward R per episode is:

R = −E
[
ℓ(yθ(x),y) + λkθ(x)

]
(3.4)

Standard reinforcement learning techniques are then used to optimize this reward, thus
solving (3.1). Illustration of the MDP is in Figure 3.2.

We model the environment as a deterministic MDP with full information, which is
easily implemented. The agent, however, solves a stochastic MDP which is created when
you remove some of the information (namely, the unobserved feature values). Formally,
the MDP consists of states S, actions A, transition function t and reward function r.
State s = (x,y, F̄) ∈ S represents a sample (x,y) and currently selected set of features
F̄ ⊆ F. The agent only sees an observation o(x, F̄), which denotes only the parts of x
corresponding to features F̄, and it does not know the label y. Each episode starts with
an initial state s0 = (x,y, ∅). Action a ∈ A = Af ∪Ac is either a classification action
from Ac = Y that terminate the episode and the agent receives a reward of −ℓ(a,y), or a
feature selecting action from Af = F that reveals the corresponding value of x and the
agent receives a reward of −λc(a). The set of available feature selecting actions is limited

3.2 problem variations 17

to features not yet selected, Af(s) = F \ F̄. Reward and transition functions are specified
as:

r(s,a) =

{
−λc(a) if a ∈ Af

−ℓ(a,y) if a ∈ Ac

; t(s,a) =

{
(x,y, F̄ ∪ a) if a ∈ Af

T if a ∈ Ac

When the episode terminates, the final action is a class prediction, and it is used as the
model output yθ. Finally, cost of the set of all acquired features is used as kθ = c(F̄).

For real datasets, there may be a specific cost for misclassification, expressed in the
amount of lost resources. If such information is not available, we propose to use a binary
classification loss ℓ:

ℓ(ŷ,y) =

{
0 if ŷ = y

1 if ŷ ̸= y

3.2.4 Average budget with specific target b

As we already mentioned, a manual specification of an unintuitive parameter λ, as used
in the previous section, is not convenient. In real-world applications, the user wants to
directly specify a budget b. Let’s review the definition of the problem:

min
θ

E
[
ℓ(yθ,y)

]
, s.t. E

[
kθ(x)

]
⩽ b (3.2 revisited)

This constrained optimization problem can be transformed into an alternative Lagrangian
form and solved with maxmin optimization. First, let’s derive the Lagrangian, where
λ ∈ R denotes a Lagrange multiplier:

L(θ, λ) = E
[
ℓ(yθ(x),y) + λ(kθ(x) − b)

]
(3.5)

The multiplier λ plays a similar role as in the previous approach. However, here it is a
variable of our algorithm and is not specified by the user. The saddle point theorem in
Bertsekas [12, prop. 5.1.6] says that there exist parameters θ, λ which are optimal in (3.2)
and are a solution of the following problem:

max
λ⩾0

min
θ

L(θ, λ) (3.6)

Inspired by an approach of Chow et al. [22], we propose to iteratively perform gradient
ascent in λ and descend in θ. For fixed θ, optimizing λ is easy, since the gradient is
∇λL = E

[
kθ(x) − b

]
. However, optimizing θ is not straightforward, since the model

(yθ,kθ) is neither differentiable nor continuous (it is a sequential process). Let’s look at
the problem when λ is fixed, that is, minimizing Lagrangian L w.r.t. parameters θ:

min
θ

L(θ, λ) = min
θ

E
[
ℓ(yθ(x),y) + λkθ(x)

]
− λb (3.7)

In the search for optimal parameters θ, we can omit the term λb since it does not
influence the solution. Note that the problem is then equal to (3.1) and thus we can
directly apply RL through the method with fixed λ. However, we will only take small
steps in θ, effectively estimating and following the gradient ∇θL. The summary can be
seen in Algorithm 3.2.

A similar approach was evaluated in the work of Chow et al. [22], where the authors
used the Lagrangian framework together with policy gradients to solve a constrained

18 classification with costly features

Algorithm 3.2 Training with target budget b
λ← 0, randomly initialize θ

loop
Update λ by taking a gradient step with ∇λL = E

[
kθ(x) − b

]
(maximize L)

Update θ using RL (minimize L; Algorithms 3.3 and 3.4)
end loop

problem and proved convergence. Note that for an optimal solution, a stochastic policy
may be needed. Our method is based on Q-learning, which produces deterministic
policies and this can result in oscillations around the stable point. However, it is possible
to detect when this happens, use it as a terminating condition and simply select the
best-performing model satisfying the constraints.

3.2.5 Hard budget

In some domains, the resources are strictly restricted by a budget b per sample. The
problem definition changes to:

min
θ

E
[
ℓ(yθ,y)

]
, s.t. kθ(x) ⩽ b, ∀x (3.3 revisited)

Similarly to the previous case, we can construct an MDP where the expected reward per
sample is R = −E

[
ℓ(yθ(x),y)

]
and the episodes are restricted to end when the budget is

depleted. Again, by solving this MDP with standard reinforcement learning techniques,
we retrieve the solution to (3.3).

First, we change the reward function such that the costs of different features are
ignored:

r(s,a) =

{
0 if a ∈ Af

−ℓ(a,y) if a ∈ Ac

Second, we restrict the set of available feature-selecting actions at each step to those,
which do not exceed the specified budget. That is, a ∈ F is available only if c(F̄ ∪ a) ⩽ b.
This way, the environment itself enforces the constraint.

3.2.6 Missing features

In a lot of domains, there is a large amount of data that can be used to train our method.
However, the data is often not complete. For example, in the medical domain, patients
are typically sent only to a few examinations before the diagnosis is made. When using
past data, only this limited information will be present in the training set.

Here we present a principled method to deal with the issue, again by modifying our
original algorithm. During training, a feature-selecting action is available only if the
corresponding feature is present and the updates (see eq. 2.3) are made only with the
estimates of available actions. We experimented with another variation, where estimates
of all actions (even for unavailable features) were used. Intuitively, it corresponds to a case
where we train with sparse data, but at test time, we have a full set. In our experiments,
this approach underperformed the first one, hence we do not report it.

3.3 method 19

neural network

features x̄
mask m

Q values

Figure 3.3: The architecture of the model. The input layer consists of the feature vector x̄ concate-
nated with the binary mask m, followed by a feed-forward neural network (FFNN).
Final fully connected layer jointly outputs Q-values for both classification and feature-
selecting actions.

3.2.7 High-performance classifier

In some cases, a High-Performance Classifier (HPC) may be available. This can coincide
with an expensive and (not-always) accurate oracle, that appears in real-world problems
(e.g., the human operator in computer security), or a legacy cost-agnostic system already
in place. We model these cases with a separately trained classifier, typically of a different
type than neural networks (e.g., random forests or SVM). The extension is implemented
by an addition of a separate action aHPC, that corresponds to forwarding the current
sample to the HPC. The cost for this action is the summed cost of all remaining features,
i.e. r(s,aHPC) = −λ

∑
f∈F\F̄ c(f). The action is terminal, t(s,aHPC) = T. The model learns

to use this additional action, which has two main effects: (1) It improves performance
for samples needing a large amount of features. (2) It offloads the complex samples
to HPC, so the model can focus its capacity more effectively for the rest, improving
overall performance. Note that HPC is an optional extension, but is likely to improve
performance if the chosen classifier outperforms neural networks on the particular
dataset.

3.3 method

In this section, we describe mainly the implementation of the reinforcement learning
algorithm. Because we operate with large datasets with continuous features, the tabular
approach is not feasible. Therefore, we employ neural networks as function approximators
and use recent RL techniques. We experimented with a variety of different methods
and found that incorporating recent insights from deep RL community is essential for
the method to be stable, robust and perform well. After evaluating the implementation
complexity and reported performance, we implemented Double Dueling DQN with
Retrace as the RL solver, described in Section 2.1.1.

At every step, the agent receives only an observation o = {(xi, fi) | ∀fi ∈ F̄}, that is, the
selected parts of x without the label. The observation o is mapped into a tuple (x̄,m):

x̄i =

{
xi if fi ∈ F̄

0 otherwise
; mi =

{
1 if fi ∈ F̄

0 otherwise

20 classification with costly features

Algorithm 3.3 RL training
Randomly initialize parameters θ

Pretrain the classifier part Qθ(s,a ∈ Y) with random states
Initialize target network ϕ← θ

Initialize environments E with (x,y, ∅) ∈ (X,Y,℘(F))
Initialize replay buffer M with a random agent
loop

for all e ∈ E do
Simulate one step with ϵ-greedy policy πθ:

a = πθ(s); s ′, r = step(e,a)

if s ′ = T (the episode terminated) then
Store trajectory (s0,a0, r0, s1,a1, r1, . . . ,T) of e into circular buffer M

end if
end for

Initialize batch B← ∅
Sample random trajectories T from M

(so that the transition count matches the batch size)
for trajectories (si,0,ai,0, ri,0, . . . , si,n,ai,n, ri,n,T) ∈ T do

for steps t ∈ {n . . . 0} do
Compute targets qi,t according to eq. (2.6)
Clip qi,t with maximum of 0
Compute single-step MSE ei,t = [qi,t −Qθ(si,t,ai,t)]

2

B← B∪ ei,t
end for

end for
Perform one step of gradient descent on ℓθ w.r.t. θ, ℓθ(B) = 1

|B|

∑
ei,t∈B ei,t

Update target network parameters ϕ := (1− ρ)ϕ+ ρθ

end loop

Vector x̄ ∈ Rn is a masked vector of the original x. It contains values of x which have
been acquired and zeros for unknown values. Mask m ∈ {0, 1}n is a vector denoting
whether a specific feature has been acquired, and it contains 1 at a position of acquired
features, or 0. The combination of x̄ and m is required so that the model can differentiate
between a feature not present and observed value of zero. Each dataset is normalized
with its mean and standard deviation and because we replace unobserved values with
zero, this corresponds to the mean-imputation of missing values.

In our experiments, we use a feed-forward neural network that accepts concatenated
vectors x̄, m and outputs Q-values jointly for all actions. There are three fully connected
hidden layers, each followed by the ReLU non-linearity, where the number of neurons in
individual layers change depending on the used dataset. The overview is in Figure 3.3.

A set of environments with samples randomly drawn from the dataset are simulated
and the experienced trajectories are recorded into the experience replay buffer. After
each action, a batch of trajectories B is taken from the buffer, so that the total number of
individual transitions matches the defined batch size. The transitions are then optimized
upon with Adam [71], with eqs. (2.2, 2.6). The gradient is normalized before back-
propagation if its norm exceeds 1.0. The target network is updated after each step.
Overview of the algorithm and the environment simulation are in Algs. 3.3 and 3.4.

Because all rewards are non-positive, the whole Q-function is also non-positive. We
use this knowledge and clip the qt value so that it is at most 0. Without this bound,

3.4 experiment setup 21

Algorithm 3.4 Environment simulation
Operator ⊙ marks the element-wise multiplication.
function Step(e ∈ E, a ∈ A)

if a ∈ Ac then

r =

{
0 if a = e.y

−1 if a ̸= e.y
Reset e with a new sample (x,y, ∅) from a dataset
Return (T, r)

else if a ∈ Af then
Add a to set of selected features: e.F̄ = e.F̄ ∪ a
Create mask mi = 1 if fi ∈ F̄ and 0 otherwise
Return ((e.x⊙m,m),−λc(a))

end if
end function

the predicted values sometimes rose to infinity, due to the max used in Q-learning. The
definition of the reward function also results in optimistic initialization. A neural network
with initial weights tends to output small values around zero. Effectively, the model
tends to overestimate the real Q-values, which has a positive effect on exploration.

We do not use a discount factor (γ = 1), because we want to recover the original
objectives. We use ϵ-greedy policy that behaves greedily most of the time, but picks a
random action with a probability ϵ. The unavailable actions are ignored; in the greedy
selection, the algorithm chooses an action with the highest Q-value among the available
actions. Exploration rate ϵ starts at a defined initial value and it is linearly decreased
over time to its minimum value.

Classification actions Ac are terminal and their Q-values do not depend on any
following states. Prior to the main method, we pretrain the part of the network Qθ(s,a),
for classification actions a ∈ Ac with batches of randomly sampled states. We randomly
pick samples x from the dataset and generate masks m. The values mi follow the Bernoulli
distribution with probability p. As we want to generate states with a different amount
of observed features, we randomly select 3

√
p ∼ U(0, 1) for different states. The resulting

distribution of states is shifted towards the initial state with no observed features. The
main algorithm starts with accurate classification predictions and this technique has a
positive effect on the speed of the training process.

In the case of the specified budget b, we also optimize the multiplier λ. In our experi-
ments, we found that a simple gradient ascent with momentum works best. The learning
rate schedule for both parameters θ and λ is exponential, in fixed steps, up to some
minimal value.

3.4 experiment setup

Here we describe the methodology, datasets, hyperparameters and methods we compare
to in our experiments.

3.4.1 Evaluation metric

It is difficult to compare algorithms when we essentially optimize for two objectives -
cost and accuracy. Thus, we adopt the following procedure. We train multiple instances

22 classification with costly features

0 10 20 30
Cost

0.86

0.88

0.90

0.92

0.94

A
cc

ur
ac

y
final performance

individual runs

Figure 3.4: Illustrative performance of different trained models and their trade-offs, measured
on the cost-accuracy plane. Validation set is used to select the best performing models,
hence the individual runs can sometimes exceed the final performance, which is
reported on the test set.

of a particular algorithm, with varying parameters (this involves different settings of λ,
budget b and seeds). The exact number of instances differs across datasets, settings and
algorithms, but is comparable, with median of 20. In the cost-accuracy plane, we use the
validation set to select the best performing model instances, which form a convex hull over
all trained models. As an example, see Figure 3.4, where we show several trained models
and the selected ones. Note that because we select the best points on the validation set,
occasionally some points can be higher that the final curve.

For the final metric, we use the normalized area under this trade-off curve (AUTC). By
normalization we mean division by the area of the whole cost-accuracy plane with the
area below the prior of the most populous class subtracted*. In this metric, the value of 0

would correspond to choosing the most populous class regardless of the budget and the
best value is 1.0. We assume that, for each dataset, all models can achieve prior accuracy
with no features and also the maximal accuracy of a particular model with all features.

3.4.2 Baseline method

We design a simple baseline method to compare with. First, we use a feature selection
technique to select a fixed order of features, sorted from most important to least. Then, we
iteratively add features, according to the list, and train separate neural network-based
classifiers. The resulting performance is visualized at the cost-accuracy graph as usual.
Note that this baseline can be compared both to average and hard budget methods since
for every budget, the set of used features is fixed. More specifically, we use Recursive
Feature Elimination [43] together with Ridge classifier [55] to select the feature order. The
size of the neural network is comparable to the neural network used in the main method
for a particular dataset.

* Note that this metric is updated to align with Chapter 4 and differs slightly from the one used in [59].

3.4 experiment setup 23

Dataset # features # classes train size val. size test size costs

Miniboone 50 2 45k 19k 65k U

Forest 54 7 200k 81k 300k U

Forest-2 54 2 200k 81k 300k U

Cifar 400 10 40k 10k 10k U

Cifar-2 400 2 40k 10k 10k U

Mnist 784 10 50k 10k 10k U

Diabetes 45 3 64k 14k 14k V

Table 3.1: Used datasets. The cost is either uniform (U) or variable (V) across features.

3.4.3 Used datasets

In the following sections, we use several datasets, information about which is summarized
in Table 3.1. They were obtained from public sources [73, 89] and the Diabetes dataset
was obtained from the authors of prior work [66]. For datasets where there are no explicit
costs, we use uniform costs for all features. The Miniboone dataset is small and easy, from
the classification perspective, and it is suitable for fast experimenting and evaluation. The
Forest dataset contains categorical features (several features are one-hot encoded into
multiple others) and many samples, making it hard to achieve good performance. The
Cifar and Mnist datasets are challenging multi-class image recognition datasets, where
we treat all pixels as separate features. We could leverage convolutions for the image
datasets, but to make a fair comparison with other algorithms, we treat all datasets the
same – as with features with no clear structure. The Forest-2 and Cifar-2 datasets are
binarized version of the original datasets, where the classes were merged into two. The
Diabetes dataset contains real-world medical data with expert-valued feature costs and
we use its balanced and mean imputed version.

3.4.4 Compared Algorithms

Let’s review the algorithms we compare to in our experiments. We choose the following
algorithms because they are recent, report impressive results and have their source code
published on-line.

The first method we use is Adapt-Gbrt (agbrt) [113], which is a random forest (RF)
based algorithm that uses an external pretrained model (HPC). It jointly learns a gating
function and Low-Prediction Cost model (LPC) that adaptively approximates HPC in
regions where it suffices for making accurate predictions. The gating function then
redirects the samples to either use HPC or LPC. The published implementation is
able to work only in datasets with two classes. The hyperparameters were inspired
by the original paper: Trade-off parameter γ ∈ {0.01, 0.1, 1.0, 10, 100, 1000}, learning-rate
in {0.5, 1.0}, Pfull ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, trees depth 4 and number of trees 100 in the
Miniboone dataset and 500 in the Forest dataset. We use RBF-SVM as the HPC model
and initialize LPC model with GreedyMiser [159]. For each combination of the described
parameters, we perform one run. We aggregate all results and proceed according to the
described metric.

24 classification with costly features

The second method we use is Budget-Prune (bprune) [115], which is an algorithm that
prunes an existing RF using linear programming to optimize for the cost vs. accuracy
trade-off. First, we create a RF with BudgetRF algorithm [114] with 40 trees in Miniboone,
Forest and Diabetes and 80 trees (we did not observe better performance with more trees)
in Cifar and Mnist. Then we prune the resulting RF with Budget-Prune, with at least 12

different trade-off settings (more where necessary). The results are processed according
to the evaluation metric.

In hard budget setting, we compare to recent heuristic-driven approach by Kachuee
et al. [66], called Opportunistic Learning (oplearn). In this algorithm, an auxiliary reward
is defined as a change in prediction uncertainty, when some feature is added. Two
separate networks are trained – one estimating class probabilities, the other predicting
the auxiliary reward. During test-time, the features are greedily acquired according to
the predicted reward, and classification is made when the target budget is reached. The
method uses a heuristic that lacks the theoretical ground (in contrast with our method
where we directly optimize the eq. 3.1), but the experimental results indicate that it
performs well. In Opportunistic Learning, an immediate reward is predicted (γ = 0),
because of which the model loses the capacity to predict into the future. Nevertheless, the
reported performance was impressive, hence we selected the method for comparison. We
use a neural network with a comparable amount of parameters to our method. Because of
the way this algorithm works, we train a single model for each dataset. It is then queried
with different budgets to assess its accuracy. We then construct the convex hull above
these points.

3.4.5 Methodology

All evaluated algorithms include a λ-like trade-off parameter or a defined budget, which
we sweep across different values and run the algorithms several times, with different
seeds. We use the evaluation method described in Section 3.4.1 to present the results.

As for our method, we let it run for a pre-defined number of steps, according to the
Algorithm 3.3. In one step, all the parallel environments advance for one step, a batch is
sampled from the memory and a gradient step in θ is taken. For each dataset, we define
a number of steps that constitute an epoch (ep_len; 100, 1000 or 10k steps). Several other
parameters are dependent on the epoch length; namely the length of the exploration
phase, the learning rate schedule and the frequency of λ updates (in the case of specific
average budget). Also, for each dataset, we heuristically estimate the size of the neural
network (NN) by training NN based classifiers with number of neurons selected from
{64, 128, 256, 512} in three layers with ReLu activation. We choose the lowest size that
performs well on the task, without excess complexity. The hyperparameters stay the same
across all versions of our algorithm, clearly featuring its robustness. Tables 3.2 and 3.3
presents all used parameters.

3.5 experiment results

In this section, we describe the performed evaluation of the methods described in
Section 3.2. The code used in this evaluation can be obtained at https://github.com/
jaromiru/cwcf.

https://github.com/jaromiru/cwcf
https://github.com/jaromiru/cwcf

3.5 experiment results 25

Symbol description value

|E| number of parallel environments 1000

maximum number of steps 100× ep_len

γ discount-factor 1.0

Retrace-λ Retrace parameter λ 1.0

ρ target network update factor 0.1

|B| number of steps in batch 50k

|M| number of episodes in memory 40k

ϵ-start starting exploration 1.0

ϵ-end final exploration 0.1

η-start starting η-greediness of target policy π 0.5

η-end final η-greediness of target policy π 0.0

ϵsteps length of exploration phase 2× ep_len

LR-pretrain pre-training learning-rate 1× 10−3

LR-start initial learning-rate 5× 10−4

LR-min minimal learning-rate 5× 10−7

LR-update number of steps between learning-rate updates 10× ep_len

LR-scale learning-rate multiplier 0.5

for the specific average budget

λ-LR-start initial λ learning-rate 1× 10−1

λ-LR-min minimal λ learning-rate 1× 10−4

λ-LR-update number of steps between λ learning-rate updates 10× ep_len

λ-LR-scale λ learning-rate multiplier 0.5

λ-update number of steps between updates of λ 0.1× ep_len

Table 3.2: Algorithm-level parameters.

3.5.1 Time and memory requirements

Let us first discuss the time required for the algorithm to converge and the maximum
memory required during the computation. We performed a test for each dataset for two
variations of the algorithm, average budget with λ and specific budget b, set to possibly
acquire all features (λ close to 0 or budget b set to the number of features). The reported
memory consumption is an upper limit estimate – during our tests, a lower amount of
memory occasionally resulted in an out-of-memory error. Evaluation of a trained model
is fast and takes a negligible amount of time.

Each test was for performed on the following configuration: one core of Xeon E5-2650v2

2.60GHz CPU with nVidia Tesla K20 5GB GPU. The amount of used memory varied
across the datasets. The results are summarized in Table 3.4.

The results indicate that the variation with the directly specified budget b is roughly
2-times slower (depending on the dataset), as measured in the wall-clock time, than in
the case with trade-off λ. In the former variation, the algorithm solves a non-stationary
environment (λ update is part of the algorithm), hence the longer run-time is expected.

26 classification with costly features

Dataset NN size ep_len specific

Mnist† 3× 512 10k |M| = 10k, LR-pretrain = 2× 10−5, LR-start = 10−5

Cifar† 3× 512 10k |M| = 10k, LR-pretrain = 2× 10−5, LR-start = 10−5

Forest 3× 256 10k

Miniboone 3× 128 1k

Diabetes 3× 128 100

† The replay size is reduced due to memory constraints.

Table 3.3: Dataset-specific parameters.

Dataset steps/sec total steps total time memory required

Miniboone-λ 8.0 6k 13 mins 6 GB

Miniboone-b 6.0 30k 83 mins 6 GB

Diabetes-λ 3.0 3k 17 mins 6 GB

Diabetes-b 1.3 4k 51 mins 6 GB

Forest-λ 4.5 780k 48 hrs 6 GB

Forest-b 4.0 1500k 104 hrs 6 GB

Cifar-λ 1.2 600k 136 hrs 32 GB

Cifar-b 0.9 520k 159 hrs 32 GB

Mnist-λ 0.4 300k 208 hrs 32 GB

Mnist-b 0.4 500k 347 hrs 32 GB

Table 3.4: Time and memory requirements until convergence in different datasets of two variations
of the algorithm – average budget with trade-off λ and specified average budget b.

However, if the user seeks a model that will achieve a particular budget, the former
method is much more convenient. With the trade-off λ variation, the user would need to
execute several runs to find a suitable λ, which may be slower at the end. However, the
simpler trade-off λ method has its uses, i.e., in case the user has precisely quantified all
the feature and misclassification costs in the same units. In such case, the user seeks a
model that minimizes the eq. (3.1) with λ = 1.

The run-time seems to be correlated with the number of features in the dataset, with
one exception. In the Forest dataset, we attribute the long run-time to the one-hot
encoding of the categorical features and the high number of samples – learning to select
of meaningful features seems complex in this setting.

3.5.2 Average budget with trade-off λ

In this section, we select several representative datasets and compare the RL method
(rl-λ) in average budget settings with Adapt-Gbrt (agbrt) and Budget-Prune (bprune),
where applicable. The results are shown in Figure 3.5. The RL based algorithm performs
robustly on all tested datasets, comparable or better to prior-art.

The Figure 3.5b show a strange result in the case of the Budget-Prune in the Diabetes
dataset. After a careful inspection, we found that the algorithm heavily overfits the

3.5 experiment results 27

0 20 40
Cost

0.8

0.9
A

cc
ur

ac
y

baseline

rl-λ

bprune

agbrt

0 10 20
Cost

0.4

0.5

0.6

0.7

0.8

A
cc

ur
ac

y

0 20 40
Cost

0.6

0.8

A
cc

ur
ac

y

0 20 40
Cost

0.92

0.94

0.96

0.98

A
cc

ur
ac

y

(a) Miniboone (b) Diabetes (c) Forest (d) Forest-2

0 200
Cost

0.1

0.2

0.3

0.4

A
cc

ur
ac

y

0 200 400
Cost

0.50

0.55

0.60

0.65

A
cc

ur
ac

y

0 500
Cost

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y
(e) Cifar (f) Cifar-2 (g) Mnist

Dataset baseline rl-λ agbrt bprune

Miniboone 0.73
† 0.77 0.73 0.70

Diabetes 0.62 0.75 N/A 0.44

Forest 0.62 0.85 N/A 0.82

Forest-2 0.39 0.81 0.75 0.63

Cifar 0.36 0.28 N/A 0.18

Cifar-2 0.28 0.26 0.29 0.20

Mnist 0.87 0.95 N/A 0.91

† Note that values differ from those reported in [59] due to modified metric.

Figure 3.5: Comparison of the rl-λ algorithm trained through λ-specified budget, AdaptGbrt
(agbrt) and BudgetPrune (bprune). The table shows the normalized area under the
trade-off curve as the overall metric. Adapt-Gbrt algorithm cannot be evaluated in
multi-class datasets. Seemingly malformed results of BudgetPrune in b) are caused by
overfitting of the algorithm.

training data and performs poorly on the test set. This behaviour results in the strange
cost-accuracy curve (which is reported on the test set). In Miniboone, it is noteworthy
that the Adapt-Gbrt and Budget-Prune algorithms do not exceed the performance of the
baseline classifier. In the Cifar dataset, the baseline method provides well and consistent
performance across all budgets, exceeding other methods by a large margin. It is only
surpassed by RL when small budgets (up to 20 features) are targeted. We assume that
the model capacity is the restricting factor here, as Cifar is a very hard dataset, especially
when pixel relations are disregarded. Note that the baseline classifier solves much easier
task – at each budget, there is a static set of pixels that are present in every sample. On
the other hand, the RL algorithm gathers a different set of pixels for each sample, which
is a much harder task. Note that we do not use convolutions, which are common in
image recognition tasks (to regard all datasets the same), but they could be incorporated
into the algorithm, if needed.

28 classification with costly features

0 20 40
Cost

0.70

0.75

0.80

0.85

0.90

0.95

A
cc

ur
ac

y

rl-budget

rl-λ

0 5 10
Cost

0.78

0.80

0.82

0.84

A
cc

ur
ac

y

0 10 20 30
Cost

0.80

0.85

0.90

0.95

A
cc

ur
ac

y

(a) Miniboone (b) Diabetes (c) Forest

0 100 200 300
Cost

0.30

0.32

0.34

0.36

0.38

0.40

A
cc

ur
ac

y

0 200 400
Cost

0.93

0.94

0.95

0.96

0.97

0.98

A
cc

ur
ac

y

(d) Cifar (e) Mnist

Figure 3.6: Average budget setting with directly specified budget b in five different datasets. In
each dataset, multiple runs were made with specific budgets (indicated with vertical
lines). The runs with the same budget settings are plotted with the same color. For
reference, the results of the λ-specified budget are included (dashed line).

It is noteworthy that in case of the Diabetes, Forest and Forest-2 datasets, the rl-
λ algorithm’s best performance outperforms the baseline classifier with all features,
although both algorithms use neural networks of comparable sizes. This indicates that
the RL algorithm generalizes much better, possibly because solving harder tasks may
have a regularizing effect.

3.5.3 Average budget with target b

In this section, we discuss the results of the method trained with a user-specified budget
b, while the λ is automatically learned as explained in the Section 3.2.4. The previous
method with the λ defined budget is useful if the exact costs of features and classification
are known – in this case, we simply set λ = 1 and let the algorithm find the best policy.
Also, it can be used if we simply want to sweep across all spectrum of budgets, e.g., for
comparison reasons. In the case we want to target a specific budget, the variant evaluated
here is preferred, as it removes the additional parameter and directly returns a model
with a specified budget in one run (which saves computational resources).

For each evaluated dataset, we manually selected several distinct budget targets and
ran the algorithm several times with different seeds for each budget. We plotted the
results (see Figure 3.6) on the cost-accuracy plane with different colors, to highlight the
variance between different runs.

3.5 experiment results 29

0 20 40 60 80 100
Steps

0.88

0.90

0.92

0.94

A
cc

ur
ac

y

λ = 0 training

λ = 0 validation

b = 50 training

b = 50 validation

Figure 3.7: Comparison of λ-set budget and specific target b. Theoretically equal settings, λ = 0

(meaning free features) and a specific budget target b = 50 (all features in the dataset),
result into different behaviour. All other settings are the same. Averaged over five
runs, one step on the x axis corresponds to 100 training steps.

Comparing the raw results to the previous method with the λ defined budget, the
results are similar and in some cases better. The learned models aligned to the specified
budgets in most cases. However, there is some variance in both costs and accuracies,
suggesting that in practice, the method should be run several times and only the best
performing model should be chosen (based on the validation set).

We attribute the better performance to the normalization effect of the simultaneous
optimization of λ – because the environment is effectively non-stationary, the task is
slightly harder and the learned model generalizes better. In Figure 3.7 we further explore
this hypothesis. We analyse a training progress of the two methods, when a budget is
specified directly and indirectly with λ. With the Miniboone dataset, we selected two, in
theory, equal settings: λ = 0 and b = 50. With fixed λ, setting it to zero effectively means
that all features are free and budget is infinite. In the other case, setting b = 50 means
that all features can be acquired (there are 50 of them and the cost is uniformly 1.0). All
other settings were equal and we conducted 5 runs of each algorithm and averaged their
results. Figure 3.7 shows that the specific b-budget method is more resilient to over-fitting
– while its performance increases slower than in λ-set budget, the validation performance
monotonically raises as well. Also, the asymptotic average accuracy is better in the case
of b-budget, about 0.943 in 20000 steps while λ-budget reaches its top accuracy of 0.940

in about 3500 steps (in Figure 3.7, the x-axis scale is different, it corresponds to 200 and
35 steps on the x axis respectively).

Another interesting fact is that with most budget settings, the learned models always
use the whole available budget. However, at some point, where it cannot strengthen its
accuracy anymore, it stops acquiring more features. For example, the Miniboone dataset
has 50 features, and as it can be seen in the Figure 3.6a, the model retrieved 35 at most.
Similar effect can be seen in the Forest and Diabetes datasets (Figures 3.6b and 3.6c).
The observation is consistent with previous experiments with λ-targeted budget, where
further lowering λ did not improve accuracy nor depleted more budget.

In Figure 3.8, we analyse the training progress. At first, the λ multiplier oscillates, until
it converges to its optimal value. Similar oscillations can also be seen in the budgets
spent by partially trained models, where the budget approaches the target value by the
end of the training. We assume that a small deviation from the average target budget is
acceptable. If not, we can simply select the last model that strictly meets the constraint.

30 classification with costly features

0.005

0.010

0.015

λ

7.5

10.0

12.5

C
os

t

0 25 50 75 100 125 150 175 200
Steps

0.90

0.95

A
cc

ur
ac

y

Figure 3.8: The learning progress in the Miniboone dataset, with an average target budget b = 10.
The plot shows changes in λ, spent budget and accuracy during learning (one run, not
averaged). One step on the x axis corresponds to 100 training steps.

In conclusion, using the specific budget b method has several advantages. It achieves
slightly higher accuracy, displays better over-fitting resiliency and avoids a superfluous
hyperparameter.

3.5.4 Hard budget

In the hard budget setting, we compare to Opportunistic Learning (oplearn). We do not
compare to the work of Kapoor and Greiner [67], since it solves a slightly different
problem. In their case, they do not use a per-sample budget, but rather a budget for the
whole training process.

The results can be seen in Figure 3.9, where the RL algorithm with hard budget setting
is named rl-hard. For comparison reasons, we also plot the performance on the average
budget task (rl-λ). This is to compare the tasks themselves, not the algorithms (that is, it
cannot be said that one algorithm is better than other).

Generally, compared to average budget setting, the hard budget algorithm should
achieve lower performance. In contrast to the hard budget setting, the average budget
method can exceed the target budget for selected samples. The experimental results
indicate that the performance of both algorithms is similar, except for the Cifar dataset,
where the hard budget algorithm is better for a range of costs. A similar result on the
Cifar dataset was observed also in the average setting, with a specified budget. We
noticed that with the rl-λ algorithm, all the resulting models fell either into the low-cost
or high-cost region, but nowhere between. In other words, in Cifar, it is hard to select a λ

so that the resulting model falls in the middle-cost region. However, with specific budget
(both hard and average), we can force the algorithm to find such a model, which may
work better. In Diabetes, the performance of the hard budget method is better for a range
of costs, which we attribute to overfitting of the average budget method.

3.5 experiment results 31

0 20 40
Cost

0.8

0.9
A

cc
ur

ac
y

baseline

rl-λ

rl-hard

oplearn

0 10 20
Cost

0.60

0.65

0.70

0.75

0.80

0.85

A
cc

ur
ac

y

0 20 40
Cost

0.6

0.8

A
cc

ur
ac

y

(a) Miniboone (b) Diabetes (c) Forest

0 200 400
Cost

0.1

0.2

0.3

0.4

A
cc

ur
ac

y

0 500
Cost

0.2

0.4

0.6

0.8

1.0
A

cc
ur

ac
y

(d) Cifar (e) Mnist

Dataset baseline rl-hard oplearn

Miniboone 0.73 0.75 0.62

Diabetes 0.62 0.74 0.73

Forest 0.62 0.84 0.38

Cifar 0.36 0.29 0.20

Mnist 0.87 0.92 0.85

Figure 3.9: Comparison of RL (rl-hard) and Opportunistic Learning (oplearn) algorithms in the
hard-budget setting. For reference, we also plot the performance in the average budget
setting (rl-λ). The table shows the normalized area under the trade-off curve metric.

Compared to the Opportunistic Learning algorithm, our method achieves substantially
better performance in all datasets. We attribute the result to the fact that RL method
optimizes for the actual objective, while Opportunistic Learning method optimizes a
heuristic objective, which is not exactly aligned with the actual goal.

We see a similar effect as in the average budget settings – if the increased budged does
not result in increased accuracy, the model learns to stop acquiring features prematurely,
to save resources. Note that in the hard setting, RL never exceeds the specified budget.

3.5.5 Missing features

In these experiments, we assume that there is a sparse training set, while during the
test time, the models can select any feature. That corresponds to the mentioned medical
domain, where past data can be elevated for training. However, it is difficult to obtain a

32 classification with costly features

0 20 40
Cost

0.80

0.85

0.90

0.95

A
cc

ur
ac

y

full set

mdp

mice

mean

0 20 40
Cost

0.80

0.85

0.90

0.95

A
cc

ur
ac

y

0 20 40
Cost

0.80

0.85

0.90

0.95

A
cc

ur
ac

y

0 20 40
Cost

0.80

0.85

0.90

0.95

A
cc

ur
ac

y

(a) 25% (b) 50% (c) 75% (d) 90%

Dataset mean mice mdp

Miniboone-25 0.71 0.75 0.74

Miniboone-50 0.66 0.72 0.72

Miniboone-75 0.54 0.59 0.66

Miniboone-90 0.52 0.49 0.56

Figure 3.10: The tested methods were trained with the sparse Miniboone dataset, where the stated
percentage of features is missing. We compare performance with training on the full
set without missing features, the altered mdp method and mice and mean imputation
algorithms. Trained models were evaluated on the complete dataset with all features.
The table shows the normalized area under the trade-off curve. Numbers after the
dataset name identifies the percentage of missing features during training.

real dataset with these attributes and therefore we decided to create a custom synthetic
dataset. We artificially drop some percentage of features from the Miniboone dataset. We
created four versions, with 25%, 50%, 75% and 90% of features missing. The synthetic
datasets were created with an assumption that the features are missing completely at
random (MCAR) and the fact that a feature is missing has no predictive power.

We implement the method described in Section 3.2.6 (mdp). We use two baseline
methods – first, we simply impute the missing features with their mean and train the
usual way. Second, we use MICE algorithm [4], which assumes linear dependencies
between features. It works by iteratively predicting missing values with a linear regression
over known or already predicted features and repeating this process several times. The
imputed dataset is then regarded as complete and we train our method in a standard
way. For comparison reasons, we also plot the performance on the full set without any
missing features.

In Figure 3.10 we present the results. We see incremental degradation of performance
when an increasingly larger percentage of features is missing. The results show that the
version with altered MDP performs robustly well. It performs comparably when less
than 50% of the features are missing, and performs substantially better with sparser
datasets. The mdp method does not involve any preparation and can be directly used
in any sparse dataset. It also highlights the flexibility of the RL method. In the case of
the MICE imputation method, it has to be noted that the preparation process takes a
non-negligible amount of time (about 15 minutes in the Miniboone dataset).

Note that our method can be conveniently used in the case when there are also
missing values in the test set, i.e., when some tests are unavailable. In this case, the
algorithm simply cannot select the corresponding action and chooses the next best. We

3.5 experiment results 33

0 20 40
Used features

0.00

0.01

0.02

0.03

0.04

0.05

P
er

ce
nt

ag
e

HPC used

0 10 20 30
Cost

0.90

0.91

0.92

0.93

0.94

0.95

A
cc

ur
ac

y

rl-λ

rl-λ-hpc

rl-λ-fakehpc

SVM

0 10 20
Used features

0.95

0.96

0.97

0.98

A
cc

ur
ac

y

rl-λ

rl-λ-hpc

rl-λ-fakehpc

SVM

(a) features histogram (b) Miniboone (c) Forest-2

Figure 3.11: Experiments with HPC. (a) Histogram of number of used features across the whole
Miniboone dataset, black indicates that the HPC was queried at that point. (b)
Comparison of the normal agent, an agent with access to HPC and to fake, non-
predictive HPC in Miniboone. The HPC improves performance in the high-cost
region and the agent is able to ignore the fake HPC to some extent. (c) In the Forest-2
dataset, the used SVM has very low training error, causing the RL agent to overfit.

also experimented with two different training regimes connected to how we treat the
Q-values for the actions corresponding to the missing features. First, we treat them
the usual way – if the corresponding feature is missing, its value is unavailable in the
computation of the Q-function update target. We hypothesized that this approach fits a
setting in which we optimize for the fact, that the features may be missing also in the test
set. On the other hand, if we knew that all the features will be available in the test set,
it may make sense to include the values of the missing features in the computation of
the Q-target (either the maximum in eq. (2.4) or the expectation in eq. (2.6)). However, in
several experiments we made, the described approach did not seem to bring any benefit.
On the contrary, in many experiments, it resulted in worse performance.

3.5.6 High-performance classifier

In this section, we evaluate the case when a High-Performance Classifier (HPC) is
available*. For the purposes of these experiments, we use the SVM trained for the
AdaptGbrt method as the HPC.

First, we were interested whether the agent learns to use the HPC and how. Figure 3.11a
summarizes how many features a trained agent requested for different samples in
Miniboone. It includes the HPC queries to get intuition about in which cases the external
classifier is used. The agent classifies 40% of all samples with under 15 features and with
almost no HPC usage. For the rest of samples, the agent queries the HPC in about 19%
cases. The histogram confirms that the agent is classifies adaptively, requesting a different
amount of features across samples, and triggering the external classifier on demand.

Next, we used the Miniboone and Forest-2 datasets to compare three agent variants
– the original agent (rl-λ), the agent with the HPC (rl-λ-hpc) and also an agent that
has access to non-predictive HPC (rl-λ-fakehpc). The results are in Figure 3.11bc. In the
Miniboone dataset, the HPC is beneficial in the high-cost region, and the agent is able to
ignore the fake HPC to some extent. However, in the Forest-2 dataset, the version without

* Some of these HPC experiments originally appeared in [58].

34 classification with costly features

0 20
Cost

0.86

0.88

0.90

0.92

0.94

A
cc

ur
ac

y

rl-λ

rl-dqn

5 10 15
Cost

0.7

0.8

0.9

A
cc

ur
ac

y

0 200 400
Cost

0.20

0.25

0.30

0.35

A
cc

ur
ac

y

0 200
Cost

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

(a) Miniboone (b) Forest (c) Cifar (d) Mnist

0 500 1000 1500 2000
Training steps

−0.50

−0.25

R
ew

ar
d

rl-λ

rl-λ-nopretrain

rl-dqn

(e) training progression (Miniboone, λ = 0.01, 10 runs average)

Figure 3.12: Comparison of the plain DQN (rl-dqn) to a full method used in this work (rl-λ).
Generally, the improved algorithm achieves a better score, especially in the datasets
with a large amount of features (Cifar and Mnist). The subfigure (e) shows the
training progression. Here, we include an ablation of the full algorithm without
pretraining (rl-λ-nopretrain).

the external classifier performs better. We investigated the issue and found that the SVM
has 0.995 accuracy on the Forest-2 training set. Because of this, the RL agent overfits
to rely on its HPC, capping its performance. The non-predictive HPC introduced some
instability into the training, but the performance was still higher for a range of costs.
The results show that including HPC should be done with caution – the agent is able to
ignore a non-predictive classifier to some extent, but an overfit classifier can be harmful.

3.5.7 Effect of the RL algorithm

In this section, we demonstrate that the quality of the underlying RL algorithm plays a
large role in the quality of the resulting model. Our framework can be easily modified to
work with other RL algorithms, such as policy gradients [105] or many different forms of
Q-learning [53]. However, as we show below, the modifications should be done with care,
as it influences the overall quality of the algorithm.

For this comparison, we selected the simple version of the technique we use in this
work – plain DQN (see Section 2.1.1), without pretraining of the classification actions.
We compare the resulting models to the complete algorithm used in this work (Double
Dueling DQN architecture with Retrace, with pretraining). In Figure 3.12, we show the
results in four selected datasets. As it can be seen, the algorithms perform comparably
when the amount of features is small (about 50). However, when applied to larger
datasets (Mnist and Cifar), the simple algorithm is outperformed by a large margin. In
Figure 3.12e, we further study the effectivity of the algorithms and show that the plain
DQN also learns much slower (even when we account for the pretraining).

3.6 chapter conclusion 35

3.6 chapter conclusion

In this chapter, we presented a flexible reinforcement learning (RL) framework for solving
the Classification with Costly Features (CwCF) problem. We introduced a base method
using state-of-the-art deep RL algorithms, and then we presented a modification allowing
the method to work with a directly specified budget in average and hard budget cases.
For the average case, we introduced the Lagrangian theory to automatically find suitable
parameters. We also modified the framework in a principled way, to be able to work
with datasets with missing features, and showed how to incorporate an existing legacy
classifier. All settings were evaluated on several diverse datasets, and we report that our
method robustly outperforms other competing algorithms in most settings.

The flexibility of the RL framework was successfully demonstrated by all mentioned
versions of the algorithm. We showcased its robustness (it performs well across all
datasets) and the ease of use (almost all hyperparameters stay the same across all datasets
and algorithm variations). Moreover, the method is based on the standard RL algorithm,
and it can benefit from any improvement in the RL area itself.

4
C W C F A N D H I E R A R C H I C A L M U LT I P L E - I N S TA N C E D ATA

In the previous chapter, we worked with data that can be easily represented in the form
of fixed-size vectors. However, the world around us, especially the online world, is rarely
flat. More often, it is composed of structured relational data. For example, users of a social
network can be described by a set of their friends, posts they published or commented
on, likes they received and from whom. Further, the data is often not available as a whole,
but rather provided on request by a paid service. Application Programming Interfaces
(APIs) are specific examples. Google search, maps, YouTube, social networks such as
Facebook or Twitter, and more provide rich information that may be free in low volumes
but is charged as soon as you consider using it commercially. Even if the complete data
is available, one can still save substantial resources by using only its fraction, e.g., when
analysing a large number of users. Moreover, we see that sustainability and ecology have
recently started to play an increasingly larger role and the interest could lie in lowering
electricity consumption or CO2 production.

As another example, let us consider the field of computer security. One may be
interested in whether a particular web domain is legitimate or malicious. Specialized
services provide rich sets of features about the requested domain, such as known
malware binaries communicating with the domain, WHOIS information, DNS resolutions,
subdomains, associated email addresses, and, in some cases, a flag that the domain is
known to be malicious. The user can further probe any detail, e.g., after acquiring a list
of subdomains, the user can focus on one of them and request more information about it.
Again, access to the service may be charged, therefore there is a natural pressure to limit
the number of requests.

As shown in these examples, a data sample is often provided in a complex structure,
not a fixed-length vector. Formats such as XML or JSON, to which newly acquired
information is sequentially added, are better suited. These formats commonly contain
lists of elements with a priori undefined lengths and nested objects. For example, imagine
a list of a user’s posts (see Figure 4.1). However, the common requirement of the available
algorithms, including the CwCF algorithm from Chapter 3, is a flat structure of the
samples. In other words, it is assumed that the samples can be described as fixed-size
vectors, with their slices allocated to predefined features.

If we want to apply CwCF to this structured data, we need to process the samples so
they can be described as fixed-size vectors. However, using CwCF with such flattened
data leads to sub-optimal results (as we show in Section 4.5). It is much better to
provide a means for the algorithm to select individual features anywhere in the structure.
Eventually, this is what we expect – the algorithm that can request a few relevant features
for one of the user’s posts can be much more efficient than an algorithm that uses an
aggregated version of all posts with pre-selected features. Note that a pre-selected feature
ordering based on their importance is difficult because the number of features differs in

This chapter is based on [61] and the code of the presented algorithm is available at https://github.com/
jaromiru/rcwcf.

37

https://github.com/jaromiru/rcwcf
https://github.com/jaromiru/rcwcf

38 cwcf and hierarchical multiple-instance data

Figure 4.1: A pruned data sample from our stats dataset, which is extracted from Stats Stack-
Exchange online service. The variable number of badges, posts, and their tags and
comments means that each sample contains a different number of features. Application
of existing techniques (e.g., original CwCF) would require alteration of the data. As
a better alternative, we present a modified method that naturally works with the
structured data and can select individual features in the hierarchy.

every sample. E.g., in the social network example, it is difficult to statically determine the
importance of a post’s title, because each sample has a different number of posts.

In this chapter, we extend the original CwCF framework to naturally work with the
structured data, which presents two main challenges. First, we need a way to process
the data at the input. Deep Sets Zaheer et al. [162] is a technique to process variable-
sized input and Hierarchical Multiple-Instance Learning (HMIL) is its extension for
hierarchically nested data [122]. It defines a special neural network architecture that
accommodates to the specified data and creates its embedding. The second challenge lies
in the fact that the original CwCF framework assumes a fixed number of features to select
from and that the action space is static. However, this assumption does not hold in our
case – the data contains lists of (possibly nested) objects, and only a part of the complete
sample is visible at any moment. Since we map visible features with unknown values to
actions, there is a different number of actions available to the algorithm at any moment.
Moreover, there is no a priori known upper bound for the number of actions. Inspired by
a technique from natural language processing [110], we take advantage of the hierarchical
composition of the features and propose to decompose the policy analogically to their
structure.

Finally, we demonstrate the extended CwCF framework with a set of experiments.
First, we design a synthetic dataset which we use to analyse the algorithm’s behaviour.
Second, we demonstrate the detection of malicious web domains with a real-world
service. For this purpose, we created an offline dataset by collecting information about
around 1 200 domains using the service’s API. This dataset enables us to perform the
experiments efficiently and credibly imitates real communication with the service. Third,
we quantitatively test the methods in five more datasets adapted from public sources.

This chapter is organized as follows. An overview of the related work is presented
in Section 4.1. We define the structured data and make formal changes to CwCF in
Section 4.2. Section 4.3 focuses on the algorithm and which practical changes are required.
Experiments are presented in Sections 4.4 and 4.5. Finally, Section 4.6 provides answers
to a few common questions and 4.7 concludes the chapter.

4.1 related work 39

4.1 related work

This section overviews only work specific to this chapter. For work related to CwCF in
general, see Section 3.1. In this chapter, we use Hierarchical Multiple-Instance Learning
(HMIL) to process the structured data [100, 121–123], which is an extension of Deep Sets
[162]. In some deep RL problems, the action space is composed of orthogonal dimensions
and existing techniques can be used to factorize it [18, 102, 142]. In our case, the features
are arranged in a tree-like structure and we factorize the corresponding action space with
hierarchical softmax, a technique similar to the one used in natural language processing
[37, 110].

The problem is distantly related to graph classification algorithms [e.g., 44, 72, 120,
169]. These algorithms either aim to classify graph nodes or the graph itself as a whole.
In our case, we assume that the data is structured in a tree, constructed around a point
of interest (e.g., a particular web domain). For this kind of data, the HMIL algorithm is
better suited and less expensive than the general message-passing. Moreover, the graph
classification algorithms do not involve sequential feature acquisition, nor account for
the costs of features.

4.2 problem

In this section, we describe what structured data means and how the CwCF problem
formulation changes.

4.2.1 Structured data

Compared to the data usually processed in machine learning, structured data, as we
define it, cannot be described by fixed-length vectors. The main difference is that the
samples can contain nested sets with a priori unknown cardinality. However, the structure
of the samples is strictly defined. Below, we define the structured data with terms schema
and sample.

Dataset schema recursively describes the structure, features, their types, and costs.
Formally, let an object schema be a collection of tuples (name, type, cost, children_schema),
where each tuple describes a single feature with its name, data-type, and non-negative
real-valued cost. For features with type=set, the children_schema is an object schema
describing the objects in this set. For other features, children_schema=∅. A dataset schema
ΣD is an object schema describing the whole sample.

Data sample is a collection of feature values, composed in a tree, and its structure
strictly follows the schema ΣD. Formally, let an object be a collection of feature values
with types described by the corresponding object schema. We call each feature with
type=set a set feature, and it is a collection of objects whose features are typed by the
corresponding children_schema. Other features are called value features.

Both the schema and sample can be visualized as a tree. Figure 4.2a shows an example
of a schema threatcrowd dataset. The schema specifies that each sample contains a free
feature domain with type string and sets of ips, emails, and hashes. Objects in these sets
have their own features (e.g., each IP address has a set of reversely translated domains).
Figure 4.2b shows an incomplete sample as it would be seen by the augmented CwCF

40 cwcf and hierarchical multiple-instance data

web
domain:string(0)
ips[]:set(1.0)

ip:ip_address(0)
domains[]:set(1.0)

domain:string(0)
emails[]:set(1.0)

email:string(0)
domains[]:set(1.0)

domain:string(0)
hashes[]:set(1.0)

scans[]:set(1.0)
scan:string(0)

domains[]:set(1.0)
domain:string(0)

ips[]:set(1.0)
ip:ip_address(0)

(a) schema of the threatcrowd dataset

domain='enson...'domain='enson...'

domain='www.enson...'domain='www.enson...'

domain='kralspor.enson...'domain='kralspor.enson...'

domainsdomains
ip='46...55'ip='46...55'

domainsdomains
ip='37...125'ip='37...125'

domainsdomains
ip='37...121'ip='37...121'

hasheshashes
emailsemails

ipsips
domain='enson...'domain='enson...'

(b) a partial sample

Figure 4.2: The schema and a partial sample for the threatcrowd dataset. (a) The schema shows the
feature names, their types, and their cost in parentheses. A set type denotes that this
feature contains a set of objects, whose features are described in the level below. (b) A
partial sample. The full circles and lines denote features with known feature values.
Among other information, the example shows that a list of domains was acquired for
one of the IP addresses (46..55) with a reverse lookup.

algorithm (only some of the features were acquired). Objects and their features are
composed into a tree, according to the schema.

Note that our definition assumes that the cost of a particular feature across all samples
is constant. While this assumption decreases the framework’s flexibility, we argue that
it is reasonable for real-world data where the cost of features can be usually precisely
quantified upfront (e.g., the cost of an API request).

Last, it is useful to define a path and prefix of a feature in a particular sample. Let a path
of a feature denote feature names and object positions in sets as a sequence from the root
of the sample to the corresponding feature. We use the common programming syntax
to denote the path. For example, we can write the path of features from the example
in Figure 4.2b as ips[0].ip (the value of the first IP address), or ips[1].domains[0].domain
(the first domain of the second IP address). Let a prefix pre(κ) of a feature κ be its path
without the last item. For example, pre(ips[0].ip) = ips[0]).

Note that while we address individual objects in a set by their index, we do this solely
for the purposes of definitions and implementation. We assume that the order of objects
does not have any predictive value.

4.2.2 CwCF with structured data

The original CwCF (refer to Sections 3.2.2 and 3.2.3) assumed that every sample contains
exactly the same features and that they can be converted to a fixed-length vector, i.e.,

4.3 method 41

x ∈ Rn. However, the data discussed in this chapter cannot be easily converted to this
Euclidean space. For example, if the sample contains “a list of user’s posts”, the original
CwCF does not provide a way to process it. To accommodate for the issue, we present
the following changes.

First, X is no longer a subset of Rn. Instead, we allow a wider interpretation of what a
feature value is. Also, with structured data, the number of features is no longer constant
across samples, as each sample can contain multiple objects in its sets. Therefore, let F(x)
be a sample-dependent set of all features for a particular sample.

Second, a feature can be acquired only if its prefix has been obtained. For example,
ips[0].ip cannot be acquired before the set ips or the object ips[0] is obtained. Formally,
we modify the available feature-selecting actions to Af(s) = {κ ∈ (F(x) \ F̄) | pre(κ) ∈
F̄}. These actions correspond to features whose values are unknown, hence we call
these features unobserved. As a minor optimization that facilitates training, we propose
recursively processing the corresponding subtree and acquiring all features with zero
cost, whenever a set feature is acquired.

Third, we decouple the classifier yθ from the policy πθ. This change is not related to
the structured data but results in improved performance and sample complexity. This is
because the classifier can now be trained independently in every state and the policy is
not burdened by the classification. Formally, we modify the set of classification actions to
include only a single terminal action at, Ac = {at}. The classifier yθ is now separately
trained on observations o(x, F̄) (remember that the observation discloses the parts of x
corresponding to features F̄). To simplify notation, let x̄ = o(x, F̄). The final prediction
yθ(x̄) is used when the episode terminates. The reward function needs to reflect this
change:

r(s,a) =

{
−λc(a) if a ∈ Af

−ℓ(yθ(x̄),y) if a ∈ Ac

Note that we use parameters θ for both πθ and yθ. Commonly, both of these functions
are implemented as a neural network with shared layers and as such, their parameters
overlap.

The original CwCF method solved a finite horizon MDP, since, for any dataset, there
was a fixed number of features to acquire. To preserve this property in the modified
framework, we need to add two assumptions. First, we assume that the dataset schema
is finite, i.e., the feature hierarchy is limited in depth. The second assumption is that the
number of objects in any set of any data sample is finite. These two assumptions together
limit the number of features of any sample, therefore the modified method still operates
within a finite horizon MDP.

Given these simple changes, the CwCF framework is formally ready to work with
structured data. However, the situation is more difficult implementation-wise, which is
discussed in the following section.

4.3 method

This section systematically introduces key details of our method to solve CwCF with
structured data. The result is a model that is trained to solve eq. (3.1). We focus only on the
average setting with trade-off parameter λ, but the other settings (see Sections 3.2.4 and

42 cwcf and hierarchical multiple-instance data

Algorithm 4.5 HMIL-CwCF training

1: E - list of parallel environments, initialized as (x,y, F̄ = ∅), (x,y) ∈ D

2: Θ - model and its parameters (neural network)

3: function Train

4: while not converged do
5: batch B = []

6: for all env ∈ E do ▷ separate trace per environment
7: s = (x,y, F̄), x̄ = o(x, F̄); from env.s ▷ state and observation
8: a,π(a | x̄),π(at | x̄),V , ρ = Θ(x̄) ▷ process with the model

▷ a,at denote the selected and terminal actions
9: r, s ′ = Step(env,a, argmax ρ) ▷ argmax ρ needed only when a = at

10: append s,a, r, s ′,π(a | x̄),π(at | x̄),V , ρ to batch B

11: end for
12: Lpg = A2C(B,qmax = 1.0) ▷ policy gradient loss, Alg. 2.1
13: Lcls = EB [π(at | x̄) · ℓcls(ρ(x̄),y)] ▷ classifier loss (cross-entropy), eq. (4.1)
14: update Θ with ∇(Lpg + Lcls)

15: end while
16: end function

17: function Step(environment env, action a, prediction ŷ)
18: (x,y, F̄) = env.s
19: if a = at then
20: r = −ℓ(ŷ,y) ▷ RL loss (binary)
21: sample new (x ′,y ′) from D, F̄ = ∅; env.s = (x ′,y ′, F̄) ▷ reset env
22: s ′ = T

23: else ▷ a ∈ Af ⊆ F

24: r = −λc(a) ▷ cost of the feature
25: F̄ = F̄ ∪ a∪GetFreeFeatures(a)

26: env.s = (x,y, F̄), s ′ = env.s
27: end if
28: return r, s ′

29: end function

30: function GetFreeFeatures(κ0) ▷ recursively find free features
31: F̄ = {}

32: for all κ | pre(κ) = κ0 ∧ c(κ) = 0 do
33: F̄ = F̄ ∪ κ∪GetFreeFeatures(κ)

34: end for
35: return F̄

36: end function

3.2.5) are also possible. The model is composed of several parts, as displayed in Figure 4.3
and described by Algorithms 4.5 and 4.6. First, the input is processed with HMIL to
create item-level and sample-level embeddings. Second, the sample-level embedding is
used to create a class prediction, a value function estimate, and a terminal action value.
Third, the action space is semantically factored with hierarchical softmax that creates a
complete probability distribution over all actions. Our model is a specialized end-to-end
differentiable neural network, and we denote it with Θ and its parameters with θ (this
includes parameters ϑ in HMIL, φ in action selection and ρ,V ,π output heads). To keep
down the overall complexity of the final model, we minimize the number of layers used
in each component. For example, we define the classifier ρ as a single neural network
layer. However, this is not a limitation, since it uses the embeddings computed previously
in the HMIL phase, and the whole network is updated end-to-end. When using our

4.3 method 43

Algorithm 4.6 HMIL-CwCF model
1: function Θ(observation x̄)
2: zx̄ = HMIL(x̄) ▷ embed the observation
3: compute V(zx̄);µat(zx̄); ρ(zx̄) ▷ separate heads in neural network
4: a,π(a | x̄),π(at | x̄) = SelectAction(x̄, zx̄,µat) ▷ differentiable hierarchical softmax
5: return a,π(a | x̄),π(at | x̄),V , ρ
6: end function

7: function HMIL(bag B)
8: for all objects v ∈ B do
9: for all features κ ∈ v | type(κ) = set do

10: vκ.value = HMIL(vκ.items) ▷ recursively process set features
11: vκ.mask = meanvi∈vκ.items(vi.mask) ▷ % of acquired features in sub-tree
12: end for
13: v.value =

[
∀κ ∈ v : vκ.value if κ ∈ F̄ else 0

]
▷ concat the features’ values

14: v.mask =
[
∀κ ∈ v : (1 or vκ.mask) if κ ∈ F̄ else 0

]
▷ use vκ.mask if type(κ) = set

15: zv = fϑB
(v.value, v.mask) ▷ embed the object v

16: end for
17: return meanv∈B(zv) ▷ average the vectors
18: end function

19: function SelectAction(bag B, zx̄, µat)
20: for i = 1..n do
21: if i = 1 then ▷ at first level, append µat to softmax
22: P(v, κ or at | x̄) = softmaxat,v,κ

(
µat , fφB

(zx̄, zv) : v ∈ B
)†

▷ zv from HMIL
23: sample a1 = (v, κ) or at from P;ϖ1 = P(v, κ or at | x̄)

24: store π(at | x̄) = P(at | x̄)

25: if a1 = at then break
26: else
27: P(v, κ | x̄) = softmaxv,κ

(
fφB

(zx̄, zv) : v ∈ B
)†

28: sample ai = (v, κ) from P;ϖi = P(v, κ | x̄)

29: end if
30: if type(κ) = set then
31: B = vκ.items ▷ continue down the tree
32: else
33: break ▷ vκ is a leaf unobserved feature
34: end if
35: end for
36: a = [a1, ...,an];π(a | x̄) =

∏n
i=1 ϖi ▷ final action and its probability

37: return a,π(a | x̄),π(at | x̄)

38: † to avoid choosing observed features, f(κ)φB
(zx̄, zv) = −∞ if (v, κ) ∈ F̄

39: end function

method, one may try to experiment with the number of layers to tune its performance
for a concrete application. To declutter notation in the following text, we avoid using θ

when describing gradients in ∇θ, ρθ,Vθ, and πθ.

4.3.1 Input pre-processing

The features in an observation x̄ can be of different data types. Before processing with a
neural network, they have to be converted into real vectors (only the features holding a
value, not set features). For strings, we observed good performance with character tri-
gram histograms [25]. This hashing mechanism is simple, fast, and conserves similarities

44 cwcf and hierarchical multiple-instance data

a) b)

input
embedding

ac�on
selec�on

c)

Figure 4.3: (a) The input x̄ is recursively processed to create embeddings zv for each object v in
the tree and the sample-level embedding zx̄. (c) The embedding zx̄ is used to compute
class probabilities ρ, value estimate V , and the terminal action potential at. (b) An
unobserved leaf feature is chosen with a sequence of stochastic decisions. Probabilities
are determined by fφB

(zx̄, zv). The whole architecture is end-to-end differentiable.

between strings. We used it for its simplicity and acknowledge that any other string
processing mechanism is possible. One-hot encoding is used with categorical features.

For effectivity, the pre-processing step can take place before the training for the whole
dataset. When the complete dataset is unavailable and the features are directly streamed
upon request (e.g., during real-world inference), the values are converted on the fly.

During inference, the feature values can be unknown. In this case, a zero vector of
the appropriate size is used. To help the model differentiate between observed and
unobserved features, each feature in x is augmented with a mask. It is a single real value,
either 1 if the feature is observed or 0 if not. In sets, the mask is the fraction of the
corresponding branch that is observed, computed recursively.

4.3.2 Input embedding

(Figure 4.3a, Algorithm 4.6 HMIL) To process and embed the input, the first part of our
fully differentiable model is HMIL (see Section 2.3). Its structure is determined by the
dataset schema ΣD. Each set feature corresponds to a bag and the set of all such bags is
{Bκ : ∀κ ∈ ΣD | type(κ) = set}. Before training, parameters ϑBκ

are initialized for each
bag Bκ, which are later used for embedding items with the function fϑBκ

. We implement
this function as one fully connected layer with LeakyReLU activation.

Let us clarify how HMIL is applied in our particular case to process an observation
x̄. The process starts with the leaves of the feature hierarchy and recursively proceeds
toward the root. Each feature κ with type=set consists of a set of unordered objects v,
collected in the bag Bκ. All of these objects share the same type (enforced by the schema),
i.e., they have the same features (however, not their values). The feature values of each
object can be concatenated to Rn, where n is the size of the vector for the particular set
κ. This is possible because the feature values are pre-processed, unknown features are

4.3 method 45

replaced with zero vectors of the appropriate size, and the value of the set features is
taken from the HMIL embedding of their contents. Each object v ∈ Bκ is processed by
the embedding function fϑBκ

(v) = zv, and the embeddings are saved to be used later.
All items in the bag are mean-aggregated, and this value is used as the feature value of
the parent object. Finally, when the whole tree is processed, the result is the root-level
embedding zx̄.

4.3.3 Classifier

(Figure 4.3c, Algorithm 4.5 lines 8, 9, 13, 20) The sample-level embedding zx̄ encodes
the necessary information about the whole observation x̄, and it is enough to compute
the class probability distribution ρ(zx̄) and the final decision yθ(x̄) = argmax ρ(zx̄). We
implement ρ as a single linear layer followed by softmax that converts the output to
probabilities, and the classifier is trained parallelly to the policy π.

However, if we simply used every encountered state during training with the same
weight, it would result in a biased classifier. This is because the classification is required
only in terminal states and their reach probabilities need to be respected. Let Pπ(x̄)

denote a probability that the agent reaches x̄ and terminates under policy π. The unbiased
classification loss is then:

Lcls = E
x̄∼Pπ

[ℓcls(ρ(x̄),y)] (4.1)

To estimate the expectation in eq. (4.1), we can either train the classifier only when the
agent terminates, or we can use every encountered state weighted by the terminal action
probability π(at | x̄). We use the latter because it provides an estimate with a lower
variance. For ℓcls, we use cross-entropy loss.

4.3.4 Value function and terminal action

(Figure 4.3c, Algorithm 4.6 line 3) The embedding zx̄ is also used to compute the value
function estimate V(zx̄) (required by the A2C algorithm) and pre-softmax value of the
terminal action µat(zx̄). Both functions are implemented as a single linear layer without
any activation. The activation is not used in the value function, because its output should
be unbounded, and it is commonly implemented in deep RL algorithms this way [107].
The output of νat(zx̄) is converted to probability during the action selection.

4.3.5 Action selection

(Figure 4.3b and 4.4, Algorithm 4.6 SelectAction) Let us describe the process of selecting
an action. Remember that the observation x̄ can be viewed as a tree, where value features
are leaves and set features branch further. Note that this hierarchy is semantical, i.e., each
set feature groups similar objects related to their parent. Therefore, it makes sense to use
the hierarchy for feature selection. We call the method below hierarchical softmax and note
that a similar technique was used in natural language processing [37, 110].

For visualization, see Figures 4.3b and 4.4. Oppositely to the input embedding proce-
dure, the action selection starts at the root of x̄ and a series of stochastic decisions are
made at each node, continuing down the tree. The root node is regarded as a set with a

46 cwcf and hierarchical multiple-instance data

texttext
scorescore

text
scorescore

commentscomments
tagstags

favoritesfavorites
answersanswers
views=0views=0
score=0.06score=0.06
bodybody
titletitle

badgesbadges

websitewebsite
down_votesdown_votes
up_votesup_votes
profile_imgprofile_img
reputation=0.6792reputation=0.6792
views=11.45views=11.45
about_meabout_me

...postsposts

terminate (at)×

Figure 4.4: Visualization of how an action is selected. Sequentially, a path is created from the root
to a leaf unobserved feature (or the terminal action) by a series of stochastic decisions.
In set features, all items and their features are resolved at once. The probability
of the performed action is a product of the partial probabilities on the path. In
this example, the chosen action a selects the posts[0].comments[0].text feature with
probability π(a | x̄) =

∏3
i=1ϖi.

single object. For each bag B ∈ B, let the probability of selecting a feature κ of an object
v be:

P(v, κ | x̄) = softmax
v,κ

(
fφB

(zx̄, zv) : v ∈ B
)

(4.2)

Here, fφB
: Rn → Rm is a function that transforms the embeddings zx̄ and zv into a

vector Rm, where n = |zx̄|+ |zv| and m is the number of features for the object v. The
bag-specific parameters φB are initialized prior training with the knowledge of the
dataset schema for every possible bag B ∈ B. In plain words, eq. (4.2) means that all
items in the bag B are processed with fφB

, the outputs are concatenated are passed
through the softmax function. This results in a single probability value for each feature
in every object of B, which are resolved at once.

Note that the function fφB
is a different function from fϑB

. Its parameters are bag-
specific, and it is implemented as a single fully connected layer with no activation
function, since the output is later passed through softmax. Observed features and parts
of the tree that are fully expanded (the mask of the corresponding features is 1) are
excluded from the softmax. We enforce this by setting the corresponding outputs of fφB

to −∞, so the softmax returns 0. At the root level, the terminal action potential µat(x̄) is
added to the softmax.

Now, remember that the action selection starts at the root of x̄, iteratively samples
from P(v, κ | x̄) and proceeds down the tree, until it reaches a leaf feature (also, see
Algorithm 4.6 SelectAction). Let us define an action a = [a1, ...,an] as a list of the
specific choices, a1 = (v1, κ1) or at,a2 = (v2, κ2), ...,an = (vn, κn), where n is the length
of the path. We can write the probability of selecting the action a, given the observation
x̄, as a product of choice probabilities made on its path:

π(a | x̄) =

n∏
i=1

P(ai | x̄) (4.3)

Hence, any action a ∈ Af ∪at (i.e., any currently unobserved leaf feature, or the terminal
action) can be sequentially sampled from eq. (4.3).

The π is a probability distribution of actions, hence it is a policy. The decomposition
according to eq. (4.3) has several benefits. First, it was shown that a sensible policy

4.3 method 47

decomposition introduces inductive biases to the model and speeds up the learning [142].
Our decomposition is logical because the decision on each level is made for objects that
are semantically related. Second, it is interpretable, because it reveals which objects and
features contributed to the decision. Third, it saves computational resources as only the
probabilities on the selected path need to be computed. A drawback of the hierarchical
softmax is that the decisions are made sequentially for each sample, which limits the
parallel computation capabilities of modern GPUs. In our implementation, most of the
time is spent on simulating the environment, and hence this drawback is negligible.

4.3.6 Training

(Algorithm 4.5 Train and Algorithm 2.1 A2C) We use the A2C algorithm (see Sec-
tion 2.1.2) with target clipping and entropy gradient sampling to optimize the policy π

with its parameters θ. Note that we cannot train the model with value-based methods as
in Chapter 3, because they cannot optimize the policy itself.

First, we use the fact that the maximal Q value is 1.0 (the reward for correct prediction
is 1.0 and every other step has a negative reward) and clip the target Q(s,a) in eq. (2.8)
into (−∞, 1.0).

Second, the computation of the policy entropy LH in eq. (2.9) requires knowledge of all
action probabilities. However, the sequential nature of the hierarchical softmax means that
only the π(a | x̄) for the actually performed action a is computed. As the computation and
gathering of probabilities for all actions are troublesome and unnecessary, we estimate
the entropy gradient using the sampling method with eq. (2.10). Here, we use only the
performed action to sample the expectation with zero bias, and the variance is decreased
through large batches.

The A2C algorithm returns the loss Lpg at each step. Simultaneously, the classification
loss Lcls is computed. Multiple parallel samples are processed at once to create a larger
batch (see Section 4.4.3 for further details). After each step, the model’s parameters
are updated in the direction of −∇(Lpg + Lcls). We believe that the A2C algorithm
sufficiently demonstrates the method but note that any recent or future RL enhancement
is likely to improve its performance.

4.3.7 Pretraining classifier

The RL part of the algorithm optimizes eq. (3.1), which assumes a trained classifier.
However, the classifier is trained simultaneously by minimizing eq. (4.1). As the classifier
output appears in (3.1) and eq. (4.1) is based on the probability Pπ, this introduces
nonstationarity in both problems. To mitigate the issue and speed up convergence, we
pretrain the classifier ρ with random observations (pruned samples). We cannot target a
specific budget, since it is unknown before the training (only a trade-off parameter λ is
specified). Hence, we cover the whole state space by generating observations x̄ ranging
from almost empty to complete. The exact details are in Section 4.4.3.

48 cwcf and hierarchical multiple-instance data

4.4 experiment setup

In this section, we describe the tested algorithms, used datasets and the experiment
setup. The complete code for all described algorithms and all datasets is shared publicly
at https://github.com/jaromiru/rcwcf. For reproducibility, we include our datasets, a
library to load them and scripts to run the experiments and produce plots.

4.4.1 Tested algorithms

To our knowledge, there is no other method dealing specifically with costly hierarchical
data. We constructed the following algorithms for comparison. Each of them represents
a certain class of algorithms, and they can also be perceived as ablations of the main
algorithm presented in this manuscript.

HMIL represents algorithms that disregard the costs and always use all available
features. Alternatively, it can be seen as an ablation of the main algorithm, where we
leave only the input embedding and classification parts. This method uses the complete
information available, processes it directly with the HMIL algorithm and is trained in a
supervised manner. This approach provides an estimate of achieveable accuracy, but also
with the highest cost. In practice, using all features at once makes the algorithm prone to
overfitting, which we mitigated by using aggressive weight decay regularization [95].

RandFeats represents a naive approach to the hierarchical composition of features,
which are now selected randomly. With this, we can estimate the influence of the informed
feature selection. It is an ablation of the full algorithm, implemented by replacing the
policy with a random sampling. The algorithm acquires features randomly until a
specified budget is exceeded. All other parts of the algorithm are kept the same. Since
this algorithm is uninformed, we expect it to underperform the complete algorithm and
give a lower bound estimate for accuracy.

Flat-CwCF: In this case, we demonstrate the original CwCF algorithm, which requires
a fixed number of features. We achieve this by flattening the data – only the root-level
features are selectable, and the algorithm observes the complete sub-tree (embedded
with HMIL) whenever such a feature is selected. This algorithm behaves the same as
the full algorithm on the root level but lacks fine control over which features it requests
deeper in the structure. Because of that, we expect the method to underperform the full
algorithm with lower budgets, but to reach the performance of HMIL gradually.

One could argue that we could also engineer a fixed set of features for each dataset and
apply the original CwCF or a similar algorithm. For example, the engineered features
for the threatcrowd dataset (see Figure 4.5a for its schema) could include its domain and
aggregated hashes of five random IP addresses, emails, and malware hashes. However,
there can be more or fewer of these objects in the actual data sample. Given the variability
of individual samples, the automatic selection of a static set of features is difficult, and
the standard approaches to feature selection do not work with structured data.

Note that the baseline proposed in Chapter 3 that acquired features in a precomputed
order sorted by their importance cannot be used. With hierarchical data, it is unclear how
to apply this baseline when each sample has a different number of objects in its sets and
a different number of features overall.

Finally, we refer to the full method described in this chapter as HMIL-CwCF.

https://github.com/jaromiru/rcwcf

4.4 experiment setup 49

Table 4.1: Statistics of the used datasets. The features column shows the number of features (tree
leaves) across all completely observed samples in the corresponding dataset.

dataset # train # val. # test class distribution features depth

(min/mean/max)

synthetic 4 - - 0.5 / 0.5 43 / 43.0 / 43 2

threatcrowd 771 200 200 0.27 / 0.73 4 / 701.7 / 3706 3

hepatitis 300 100 100 0.41 / 0.59 7 / 121.7 / 1065 2

mutagenesis 100 44 44 0.34 / 0.66 173 / 332.2 / 517 3

ingredients 29774 5000 5000 0.01∼0.20 2 / 11.8 / 66 2

sap 15602 10000 10000 0.5 / 0.5 16 / 31.8 / 52 2

stats 4318 2000 2000 0.49 / 0.38 / 0.13 9 / 52.5 / 21979 3

4.4.2 Used datasets

In this section, we provide brief descriptions of the used datasets, with more details in
corresponding experiment sections. The statistics are summarized in Table 4.1 and the
schemas, including the feature costs, are in Figure 4.5.

Synthetic dataset is used to demonstrate behaviour of our algorithm in a controlled
environment and compare it a known optimal behaviour. This is the only dataset, where
the algorithm is evaluated on the training data.

Threatcrowd is a real-world dataset sourced from an existing malware classification
online service. It contains information about web domains, their DNS resolutions, email
and IP addresses and known malware communicating with the domains.

Hepatitis is a relatively small medical dataset containing patients infected with hepati-
tis, types B or C. Each patient has various features (e.g., sex, age, etc.) and three sets of
indications. The task is to determine the type of disease.

Mutagenesis is an extremely small dataset (188 samples) consisting of molecules that
were tested on a particular bacteria for mutagenicity. The molecules themselves have
several features and consist of atoms with features and bonds.

Ingredients is a large dataset containing recipes with a single list of ingredients. The
task is to determine the type of cuisine of the recipe. The main challenge is to decide
when to stop analysing the ingredients optimally.

SAP: In this large artificial dataset, the task is to determine whether a particular
customer will buy a new product based on a list of past sales. A customer is defined by
various features and a list of sales.

Stats is an anonymized content dump from a real website Stats StackExchange. We
extracted a list of users to become samples and set an artificial goal of predicting their
age category. Each user has several features, a list of posts, and a list of achievements.
The posts also contain their own features and a list of tags and comments.

The hepatitis, mutagenesis, sap and stats datasets were retrieved from Motl and Schulte
[111] and processed into trees by fixing the root and unfolding the graph into a defined
depth, if required. The threatcrowd dataset was sourced from the Threatcrowd service,
with permission to share. The ingredients dataset was retrieved from Kaggle*. Float

* https://kaggle.com/alisapugacheva/recipes-data

https://kaggle.com/alisapugacheva/recipes-data

50 cwcf and hierarchical multiple-instance data

web
domain:string(0)
ips[]:set(1.0)

ip:ip_address(0)
domains[]:set(1.0)

domain:string(0)
emails[]:set(1.0)

email:string(0)
domains[]:set(1.0)

domain:string(0)
hashes[]:set(1.0)

scans[]:set(1.0)
scan:string(0)

domains[]:set(1.0)
domain:string(0)

ips[]:set(1.0)
ip:ip_address(0)

(a) threatcrowd

user
views:real(0.5)
reputation:real(0.5)
profile_img:real(0.5)
up_votes:real(0.5)
down_votes:real(0.5)
website:real(0.5)
about_me:string(1.0)
badges[]:set(1.0)

badge:string(0.1)
posts[]:set(1.0)

title:string(0.2)
body:string(0.5)
score:real(0.1)
views:real(0.1)
answers:real(0.1)
favorites:real(0.1)
tags[]:set(0.5)

tag:string(0.1)
comments[]:set(0.5)

score:real(0.1)
text:string(0.2)

(b) stats

patient
sex:binary(0)
age:category(0)
bio[]:set(0.0)

fibros:category(1.0)
activity:category(1.0)

indis[]:set(0.0)
got:category(1.0)
gpt:category(1.0)
alb:binary(1.0)
tbil:binary(1.0)
dbil:binary(1.0)
che:category(1.0)
ttt:category(1.0)
ztt:category(1.0)
tcho:category(1.0)
tp:category(1.0)

inf[]:set(0.0)
dur:category(1.0)

(c) hepatitis

molecule
ind1:binary(1.0)
inda:binary(1.0)
logp:real(1.0)
lumo:real(1.0)
atoms[]:set(0.0)

element:category(0.5)
atom_type:category(0.5)
charge:real(0.5)
bonds[]:set(0.5)

bond_type:category(0.1)
element:category(0.1)
atom_type:category(0.1)
charge:real(0.1)

(g) mutagenesis

customer
sex:real(1.0)
marital_status:category(1.0)
educationnum:category(1.0)
occupation:category(1.0)
data1:real(1.0)
data2:real(1.0)
data3:real(1.0)
nom1:category(1.0)
nom2:category(1.0)
nom3:category(1.0)
age:real(1.0)
geo_inhabitants:real(1.0)
geo_income:real(1.0)
sales[]:set(1.0)

date:real(0.1)
amount:real(0.1)

(f) sap
object

which_set:category(1.0)
set_a[]:set(5.0)

item_key:category(0.0)
item_value:category(1.0)

set_b[]:set(5.0)
item_key:category(0.0)
item_value:category(1.0)

(e) synthetic

recipe
f0[]:set(0)

igd:string(1.0)

(d) ingredients

Figure 4.5: Datasets schemas show the feature names, their types, and their cost in parentheses.
Features with a set type contain an arbitrary number of same-typed items.

values in all datasets are normalized. Strings were processed with the tri-gram histogram
method [25], with modulo 13 index hashing. The datasets were randomly split into
training, validation, and testing sets.

4.4.3 Implementation and hyperparameters

We searched for the optimal set of hyperparameters for each algorithm and dataset
using validation data, and the optimal values are summarized in Table 4.2. The values
searched are: batch size in {128, 256}, learning rate in [3× 10−4, 1× 10−3, 3× 10−3, 1×
10−2], embedding size in {64, 128}, weight decay in range [1 × 10−4, 3.0] and αh in
{0.0025, 0.025, 0.5, 0.1}. We report that properly tuned weight decay and αh is crucial for
good performance.

4.5 experiment results 51

The model’s architecture and parameters are initialized according to the provided
dataset schema, and parameters ϑB,φB are created for each bag B. LeakyReLU is used
as the activation function. The aggregation function is mean with layer normalization [5].
The policy entropy controlling weight (αh) decays with 1

T schedule every 10 epochs. We
use AdamW optimizer [95] with weight decay regularization. The learning rate of the
main training in annealed exponentially by a factor of 0.5 every 10 epochs. The gradients
are clipped to a norm of 1.0. For each dataset, we select the best performing iteration
based on its validation reward.

Pretraining is used before the main training, to initialize the classifier ρ and the value
output V . The classifier is pretrained with randomly generated partial samples from the
dataset, with cross-entropy loss and the initial learning rate. To cover the whole state
space, the partial samples are constructed as follows: A probability p ∼ U[0,1] is chosen
and, starting from the root of the sample, features are included with probability p. All
objects in sets are recursively processed in the same manner and the same probability
p. The pretraining proceeds for a whole epoch (with the same batch size as in the main
training) and subsequently the validation loss is estimated using the complete samples
every 1

10 of an epoch. Early stopping is used to terminate the pretraining.

4.4.4 Methodology

For each dataset, we ran HMIL with ten different seeds, RandFeats with 30 different
budgets linearly covering either [0, 10], [0, 20] or [0, 40] range (depending on the dataset)
and Flat-CwCF and HMIL-CwCF with 30 different values of λ, logarithmically spaced in
[10−4, 1.0] range. For each run, we selected the best epoch based on the validation data.

To visualize the results, we select the best runs that are on the Pareto front of the
validation dataset, using the cost and accuracy criteria. We plot the best runs as a scatter
plot with the average cost on the x-axis and accuracy on the y-axis and also visualize
their Pareto front with the testing set. To estimate variance, all other runs are visualized
with faint color. For better comparison, we show the mean performance (± one standard
deviation) of HMIL across the whole x-axis. Finally, we use the normalized AUTC metric
from Section 3.4.1 to describe the overall performance across the whole range of budgets.

4.5 experiment results

In this section, we report the experiment results. We start with a synthetic dataset
designed to demonstrate the differences in algorithms’ behaviours. Next, we apply the
algorithm to a real-world problem of identifying malicious web domains. Finally, we
gathered five more datasets for a quantitative evaluation.

4.5.1 Behaviour analysis: Synthetic dataset

This experiment is aimed to demonstrate the behaviour of our and other tested algorithms
on purposefully crafted data. Note that this synthetic dataset is designed to demonstrate
the differences between the algorithms and therefore our method (HMIL-CwCF) performs
the best.

52 cwcf and hierarchical multiple-instance data

Table 4.2: Hyper-parameters. Missing rows are the same as in HMIL-CWCF.

parameter default synth hepa muta ingr sap stats threat

HMIL-CwCF
steps in epoch 1000 100

train time (epochs) 200 300

batch size 256

embedding size (fθB
) 128

learning rate (initial) 1.0e-3
learning rate (final) 1.0e-3 / 30

l.r. decay factor 0.5 (every 10 epochs)
gradient max norm 1.0
γ - discount factor 0.99

αv 0.5
αh (initial) 0.025 0.1 0.025 0.05 0.1 0.05 0.05

αh (final) 2.5e-4 5e-3 2.5e-4 2.5e-3 5e-3 2.5e-3 2.5e-3
weight decay 1e-4 1e-4 1e-4 0.3 1e-4 1e-4 3.0

HMIL
steps in epoch 100

train time (epochs) 50 200

learning rate (initial) 3.0e-3
learning rate (final) 3.0e-3 / 30

weight decay 1.0 1.0 1.0 1.0 0.1 3.0 3.0

Flat-CwCF
steps in epoch 1000 200

train time (epochs) 200

αh (initial) 0.05 0.1
αh (final) 0.0025 0.005

weight decay 1e-4 1.0 1.0 1.0 0.1 1.0 3.0

Random
steps in epoch 1000 100

train time (epochs) 20 20 20 100 40 40 20

learning rate (initial) 3.0e-3
learning rate (final) 3.0e-3 / 30

weight decay 1e-4 1e-4 1.0 1.0 0.1 3.0 3.0

Let us first explain the dataset’s structure (follow its schema in Figure 4.5e). A sample
contains two sets (set_a and set_b), each with ten items. Each item has two features – free
feature item_key with a value 0 and item_value containing a random label. Randomly, a
single item in one of the sets is chosen, and its item_key is changed to 1 and its item_value
to the correct sample label. Further, the feature which_set contains the information about
which set contains the indicative item. The idea is that the algorithm can learn a correct
label by retrieving the which_set feature, opening the correct set, and retrieving the value
for the item with item_key=1. Uniquely for this dataset, we test the algorithms directly on
the training data.

Figure 4.6-right shows the performance of the tested algorithms in this dataset and
Table 4.3 shows the AUTC metric. HMIL (the ablation with complete data) reaches 100%
accuracy with a total cost of 31 (cost of all features). The Flat-HMIL is able to reduce the
cost by acquiring only the correct set, but it has to retrieve all of its objects. Hence, it also
reaches 100% accuracy, but with a cost of 16 (1 for which_set feature, 5 for one of the sets,
and 10 for all values inside). Contrarily, the complete HMIL-CwCF method reaches 100%
accuracy with only the cost of 7, since it can retrieve only the single indicative value

4.5 experiment results 53

1:

2:

3:

4:

0 20
cost

0.4

0.6

0.8

1.0

ac
cu

ra
cy

HMIL-CwCF

RandFeats

Flat-CwCF

HMIL

Figure 4.6: Results in the synthetic dataset. (left) The process of feature selection. In this example,
the algorithm optimally requests the which_set feature, opens set_a, and learns the label
in the indicative item. (right) Performance of all algorithms across different budget
settings (x-axis). We show our method (HMIL-CwCF), its ablation with a random policy
(RandFeats), ablation with flattened data (Flat-CwCF), and the HMIL algorithm trained
with complete information. We train 30 instances per each algorithm (HMIL-CwCF,
RandFeats, and Flat-CwCF), each targeting a different budget. We plot the best runs and
their Pareto front. We also show the results of all runs as faint points for information
about variance. Uniquely for this dataset, the train, validation and test sets are the
same.

from the correct set. Moreover, it is able to reduce the cost even further by sacrificing
accuracy, as seen in the clustering around the cost of 6 and 0.75 accuracy, something that
Flat-HMIL cannot do. This is one of the strengths of the proposed method – because it
has greater control over which features it acquires, the user can choose to sacrifice the
accuracy for a lower cost. Lastly, the RandFeats method selects the features randomly, and
hence, its accuracy is well below HMIL-CwCF for corresponding budgets. The accuracy
is influenced by the probability of getting the indicative item, which raises with the
allocated budget and would reach 100% with the cost of 31 (we run the method with
budgets from [0, 20]).

We selected one of the HMIL-CwCF models that was trained to reach 100% accuracy
and examined how it behaves (see Figure 4.6-left). We see that it indeed learned to acquire
which_set feature, open the corresponding set_a or set_b and select the item_value of the
item with item_key=1 to learn the right label.

This experiment validates the correct behaviour of our method and demonstrates
the need for all its parts. Compared to HMIL and Flat-CwCF, the complete method
reaches comparable accuracy with lower cost. Moreover, compared to Flat-CwCF, it has
better control over which features it requests, achieving better accuracy even in the
low-cost region. Finally, the order in which the features are acquired matters, as shown
in comparison with RandFeats.

54 cwcf and hierarchical multiple-instance data

Figure 4.7: Threatcrowd interface. The left side shows a part of the information graph, unfolded
to a limited depth. Various information is available for each node, and the right side
displays the information about the currently focused node.

4.5.2 Real-world domain: Threatcrowd

Let us focus on a real-world case. Threatcrowd is a service providing rich security-
oriented information about domains, such as known malware binaries communicating
with the domain (identified by their hashes), WHOIS information, DNS resolutions,
subdomains, associated email addresses, and, in some cases, a flag that the domain is
known to be malicious (see an example of its interface in Figure 4.7). This information
is stored in a graph structure, but only a part around the current query is visible to the
user. However, the user can easily request more information about the connected objects.
For example, after probing the main domain google.com, the user can focus on one of its
multiple IP addresses to analyse its reverse DNS lookups, or which other domains are
involved with a particular malware. To make the queries, Threatcrowd provides an API
with a limited number of requests per unit of time, which makes it a scarce resource. We
are interested in the following task: Classify a specified domain using the information provided
through the API, minimizing the number of requests.

To make the experimentation easier and reproducible, we sourced an offline dataset
directly from the Threatcrowd service through their API, with their permission. Program-
matically, we gathered information about 1 171 domains within a depth of three API
requests (including one request for the domain itself) around the original domain and
split them into training, validation, and test sets. We chose three API requests because
we assume that most of the indicative information is located in the close neighborhood
of the root object. Each domain contains its URL as a free feature and a list of associated
IP addresses, emails, and malware hashes. These objects can be further reverse-looked
up for other domains. This offline dataset perfectly simulates real-life communication
with the original service but in a swift and error-free manner. The dataset’s schema can
be viewed in Figure 4.5a.

4.5 experiment results 55

0 10
cost

0.6

0.7

0.8

0.9

1.0
ac

cu
ra

cy

HMIL-CwCF

RandFeats

Flat-CwCF

HMIL

0 1 2 3 4 5 6 7 8 9 10 11
API requests

0.0

0.1

0.2

0.3

P
er

ce
nt

ag
e

(a) results (b) histogram of used API requests

Figure 4.8: (a) Results in threatcrowd dataset. The shaded area shows ± one standard deviation
around the mean performance of HMIL (10 runs), across the whole x-axis for compari-
son. (b) Histogram of used API requests for a trained model that uses two requests on
average.

We ran all of the algorithms with the sourced data, and the results of the experiment
are shown in Figure 4.8a and Table 4.3. The HMIL reaches the mean accuracy of 0.83
with a cost of 15 (on average, one needs to make 15 requests to gather all information
within the depth of three). Other algorithms reach the same accuracy with a lower cost –
Flat-CwCF with 11, RandFeats with 5, and HMIL-CwCF with only 2 (results are rounded).
That means that our method needs only two API requests on average to reach the same
accuracy as HMIL (which uses complete information), resulting in 7.5× savings. To better
understand what these two requests on average mean, we analysed a single trained
model and plotted a histogram of API requests across the whole test set in Figure 4.8b.
For example, with a single request, the algorithm can learn a list of all IP addresses
(without further details) or a list of associated malware hashes. The histogram shows
that in about 36% of samples, a single request is enough for classification, 29% requires
two, 23% three, and 12% four requests or more.

Surprisingly, RandFeats performs better than Flat-CwCF, indicating that only a fraction
of information is required, even if randomly sampled. The Flat-CwCF algorithm always
acquires a complete sub-tree for a specific feature (e.g., a complete list of IP addresses
with their reverse lookups, up to the defined depth), resulting in unnecessarily high cost.

To get better insight into our algorithm’s behaviour and to showcase its explainability,
we visualize how a trained model works with a single sample in Figure 4.9. Initially, only
the domain name itself is known, without any additional details and the classification
would be malware if the model decided to terminate at this point. However, the terminal
action probability is low, and the model requests a list of malware hashes (there are not
any) and a list of IP addresses instead (steps 0 and 1). The prediction changes to benign,
likely because no malware communicates with the domain nor any malicious IP address
is in the list. Still, the model performs a reverse DNS lookup for two IP addresses, which

56 cwcf and hierarchical multiple-instance data

Figure 4.9: Classification of a potentially malicious domain (threatcrowd dataset). At each step,
acquired features (full circles) and possible actions (empty circles; unobserved features
and terminal action) are shown. The policy is visualized as line thickness and the
selection with a green line. The method sequentially requests features: First, it retrieves
(step 0) a list of known malware hashes communicating with the domain, then (step 1)
a list of associated IP addresses, and finally (steps 2 and 3) performs reverse IP lookups.
The correct class is highlighted with a dot. Note that the number of actions differs at
each step and the size of sets (IPs, hashes, and emails) differs between samples.

does not change the prediction (steps 2 and 3). Finally, the algorithm finishes with a
correct classification benign. With four requests, the method was able to probe and classify
an unknown domain.

To conclude, this experiment shows that the complete method leads to substantial
savings while achieving the same accuracy. When deployed to production, this could
mean that the method can classify much more samples with the same budget, or that
the budget can be lowered, leading to monetary savings. To apply the model in a real-
life scenario, the only thing required is an interface connecting the model’s input and
decisions with the Threatcrowd API. After that, the model would be able to perform
the classification online. The experiment also verifies that all parts of the algorithm are
required. Specifically, the comparison with the Flat-CwCF and RandFeats baselines showed
that flattening the features results in degraded performance and that selecting features
based on the knowledge gathered so far is crucial.

4.5 experiment results 57

0 50 100
cost

0.6

0.7

0.8

0.9

1.0

ac
cu

ra
cy

HMIL-CwCF

RandFeats

Flat-CwCF

HMIL

0 5 10
cost

0.2

0.4

0.6

0.8

0 10
cost

0.4

0.5

0.6

0.7

0.8

(a) hepatitis (b) ingredients (c) sap

0 10
cost

0.40

0.45

0.50

0.55

0.60

ac
cu

ra
cy

(d) stats (e) mutagenesis

Figure 4.10: The performance of the algorithms in five datasets, shown in the cost vs. accuracy
plane. We show our method (HMIL-CwCF), its ablation with a random policy (Rand-
Feats), ablation with flattened data (Flat-CwCF) and the HMIL algorithm trained
with complete information. We train 30 instances per each algorithm (HMIL-CwCF,
RandFeats and Flat-CwCF), each targeting a different budget. We plot the best runs,
selected using validation sets and their Pareto front. For information about variance,
we also show the results of all runs as faint points. The HMIL is run 10 times, and
we plot the mean ± one standard deviation (the bar visualizes the metrics across the
whole range of budgets for comparison).

4.5.3 Quantitative experiments: Other datasets

To further evaluate our method, how it scales with small and large datasets and how it
performs in binary and multi-class settings, we performed quantitative experiments with
other five datasets. Because our method targets a novel problem, we did not find datasets
in appropriate format – i.e., datasets with hierarchical structure and cost information.
Therefore, we transformed existing public relational datasets into hierarchical forms
by fixing the root object (different for each sample) and expanding its neighborhood
into a defined depth. We also manually added costs to the features in a non-uniform
way, respecting that in reality, some features are more costly than others (e.g., getting a
patient’s age is easier than doing a blood test). In practice, the costs would be assigned to
the real value of the required resources. The depth of the datasets was chosen so that
they completely fit into the memory.

58 cwcf and hierarchical multiple-instance data

Table 4.3: Results under the AUTC metric.

dataset HMIL-CwCF Flat-CwCF RandFeats HMIL

synthetic 0.88 0.75 0.32 0.50

hepatitis 0.74 0.70 0.69 0.38

mutagenesis 0.71 0.68 0.60 0.36

ingredients 0.47 0.19 0.44 0.31

sap 0.24 0.23 0.11 0.11

stats 0.03 0.02 0.03 0.02

threatcrowd 0.36 0.25 0.36 0.18

The results are shown in Figure 4.10 and in Table 4.3. Let us select interesting facts and
describe them below. The HMIL algorithm shows what accuracy is possible to achieve
when using all features at once. The variance of its results indicates what should be
considered normal in the corresponding dataset. Especially in hepatitis and mutagenesis
(Fig. 4.10ae), the variance of the results is high, which is given by the datasets’ small
sizes.

The results in sap (Fig. 4.10c) are noteworthy. Here, the top accuracy of HMIL is
exceeded by HMIL-CwCF and Flat-CwCF. We investigated what is happening and con-
cluded that HMIL overfits the training data, despite aggressive regularization – we tuned
the weight decay to maximize the validation accuracy. Surprisingly, HMIL-CwCF and
Flat-CwCF do not suffer from this issue, with fewer features. We hypothesize that the sap
dataset contains some features deep in the hierarchy that are very informative on the
training set, but do not translate well to the test set. The well-performing methods are
able to circumvent the issue by selecting fewer features, which results in less overfitting.

Generally, the HMIL-CwCF is among the best-performing algorithms in all datasets,
i.e., it reaches the same accuracy with lower cost (in sap and mutagenesis, it performs
comparatively to Flat-CwCF). Compared to HMIL, the cost is reduced about 26× in
hepatitis, 1.2× in ingredients, 8× in sap, 6× in stats and 15× in mutagenesis, which are
significant savings. Flat-CwCF generally exhibits low performance in the low-cost region,
due to its limited control over which features it gathers.

Lastly, let us point out the result of HMIL-CwCF compared to RandFeats in ingredients
(Fig. 4.10b). This dataset contains a single set of ingredients, which are objects with a
single feature. The best any algorithm can do is to randomly sample the ingredients and
stop optimally. While RandFeats always uses the given budget, HMIL-CwCF can acquire
more features in some cases and compensate for that with other samples. Hence, it can
reach higher accuracy with the same average cost as RandFeats.

The Flat-CwCF algorithm can either acquire the whole set of ingredients, or nothing.
It achieves different points in Fig. 4.10b by randomization, i.e., it discloses the list of
ingredients for some samples, or not for others. Note that the number of ingredients in
each recipe varies and ranges from 1 to 65. One could argue that we could use a different
encoding of the ingredients – e.g., one-hot encoding of the ingredients that are in a recipe.
However, there are 6707 unique ingredients, while the mean number of ingredients in a
recipe is around 11. Flattening the data this way would result in a very sparse and long
binary feature vector. Applying the original CwCF method with such data would not

4.5 experiment results 59

0.55

0.60
re

wa
rd

with pretraining (training)
with pretraining (validation)
without pretraining (training)
without pretraining (validation)

3

4

5

6

co
st

0 25 50 75 100 125 150 175 200
epochs

0.55

0.60

ac
cu

ra
cy

Figure 4.11: Training of a model, with and without the classifier pretraining. Performed on the
sap dataset with λ = 0.00108264; an average of 10 runs.

work very well, since most of the features would encode a missing ingredient. This was
already exemplified in Chapter 3, where training in a dataset with categorical values
encoded to multiple one-hot encoded features (with a length of 40, compared to the
required 6707 in case of ingredient) took an order of magnitude longer time to train,
compared to similarly-sized dataset without such features.

To conclude, the results in Figure 4.10 show that our method consistently performs
better or comparatively to other methods – i.e., achieves a similar accuracy with much
fewer features. The AUTC metric in Table 4.3 aggregates the performance for the whole
range of costs and confirms the conclusion.

4.5.4 Remarks

Explainability. Unlike the standard classification algorithms (e.g., HMIL), the sequential
nature of HMIL-CwCF enables easier analysis of its behaviour. Figures 4.9 and 4.6 present
two examples of the feature acquisition process and give insight into the agent’s decisions.
The weights the model assigns to different features in different samples and steps can be
used to assess the agent’s rationality or learn more about the dataset.

Classifier pretraining. The positive role of pretraining was already established in
Chapter 3. However, as we separate the classifier from the RL algorithm, it is worth to
assess how the situation changes. We performed an ablation experiment with the sap
dataset and a fixed λ, where we ran the experiment 10 times with and without pretraining.
The results in Figure 4.11 show that the pretraining improves the speed of convergence
and the performance on validation data.

60 cwcf and hierarchical multiple-instance data

Table 4.4: Training times for a single instance (i.e., single setting of λ in HMIL-CwCF). Note that
most of the time is spent on simulating the environment.

dataset HMIL-CwCF RandFeats Flat-CwCF HMIL

synthetic 1 hour 30 minutes 1 hour 1 minute

other (average) 19 hours 14 hours 9 hours 1 hour

Computational requirements. We measured the training times using a single core of
Intel Xeon Gold 6146 3.2GHz and 4GB of memory. We used only CPU because the most
time-consuming part of the training was the environment’s simulation and it cannot
benefit from the use of GPU. The measured times are displayed in Table 4.4. We show the
synthetic dataset separately because it was much faster to learn. Note that the training
times are for a single run (i.e., a single point in Figure 4.10), but the runs are independent
and are easily parallelized. After training, the inference time is negligible for all methods.
Also note that while the training time of HMIL-CwCF is much longer than in the case
of HMIL, it is easily compensated by the fact that our method can save a large amount
of resources if correctly deployed. Moreover, computational power rises exponentially
every year (resulting in faster training), while resources like CO2 production, patients’
discomfort, or response time of an antivirus software only gain importance.

4.6 discussion

Comparison with Graph Neural Networks (GNNs). Instead of HMIL, we could use a
GNN to perform the input embedding. However, note that the data we work with are
hierarchical and constructed around a central root. Hence it makes sense to model the
data as trees, not as general graphs, and use a method tailored to work with trees. In
our case, generic message passing is unnecessary, and a single pass from leaves to the
tree’s root is sufficient to embed all information correctly. Mandlík [99] provides a deeper
discussion about using HMIL and GNNs in sample-centric applications.

In some special cases, the same object could be located in multiple places (e.g., the
same IP address accessible by multiple paths). In our method, we still handle the sample
as a tree. If such a situation occurs, the data have to be unrolled, i.e., different places of
the same object are considered to be different objects.

Is the depth of the tested datasets sufficient? We argue that most of the relevant
information is within the near neighborhood of the central object of interest. Increasing
the depth exponentially increases the available feature space and space requirements and
slows down training. As the experiments showed that there are substantial differences
between the methods, we conclude that the used depth is sufficient.

How to obtain credible cost assignment? In a real-life application, it should be possible
to measure the costs of features up front. For example, the time required to perform an
experiment, electricity consumed to retrieve a piece of data, or, as in the Threatcrowd
experiment, every feature can represent a single API request.

Advantages and disadvantages of the proposed method. Our solution provides the
following advantages, some of which are inherited from the original CwCF framework:

• It directly optimizes the objective in eq. (3.1) and although the deep RL has not
the same theoretical guarantees as tabular RL, it searches for the optimal solution.

4.6 discussion 61

In contrast, some related work used heuristics (e.g., proxy rewards [66] in the flat
CwCF case) – such algorithms are not guaranteed to aim for the optimal solution.

• The used HMIL algorithm used to process the hierarchical input is theoretically
sound – Pevný and Kovařík [121] generalizes the universal approximation theorem
[56, 81] to HMIL networks.

• As our method is based on a standard deep RL technique, its performance is likely
to be improved with advancements in the RL field itself, since it is an actively
developed area.

• The novel method can directly utilize many of the extensions developed for CwCF.
This includes (1) problems with hard budget, (2) specifying the budget directly
and automatic search for an optimal λ, (3) missing features (e.g., features of some
objects may be inaccessible, possibly because the training data is incomplete), and
(4) using an external high-performance classifier as one of the features. Points (1-3)
are discussed in [59], (4) is explored in [58].

• The original CwCF presented in Chapter 3 has already established the competitive
performance of the method in the flat data case. Therefore, we believe that the novel
algorithm serves as a highly competitive baseline as well.

Below, we state the drawbacks of our algorithm we are aware of:

• Being RL-based, the algorithm is sample inefficient, i.e., it requires a long training.
As mentioned, training in the more complicated datasets took about 19 hours on
average.

• Data must be hierarchical, e.g., it must not contain references to the same object in
different places in the hierarchy, nor cycles. As mentioned in the discussion about
GNNs, if such structures appear in the data, it must be unrolled (e.g., the same
object would have to be copied to different places) so that the result is hierarchical.

• With some datasets, there could be non-negligible variance in the performance of
trained models. The user is advised to repeat training several times and select the
best-performing model, based on validation data.

Alternative approaches. Generally, there are two ways to make the existing algorithms
work with the hierarchical data: a) modifying the data, b) modifying the algorithm. Below,
we suggest several different approaches to these options. Keep in mind that each of these
suggestions would require substantial research to implement, and might not be possible
at all.

a) Modifying the data can be done in the way we did in the case of Flat-CwCF, but
there could be other ways, for example:

• It may be possible to decrease the granularity of choice to the set level by considering
each path in the schema as a separate feature. While this approach would result in
a fixed number of features for all samples, it brings several issues. For example,
since sets can contain multiple objects, it is unclear how to choose one of them.
An algorithm selecting the objects randomly would have inherently lesser control
over which objects to select, and would not be able to utilize possible conditional

62 cwcf and hierarchical multiple-instance data

dependencies between objects’ features. In the RandFeats baseline, we have already
shown that such loss of control results in degraded performance. Second, if it is
allowed to get the same feature multiple times (to cover different objects in a set), it
is unclear how to aggregate and process these multiple values.

• Another way could be to treat all features in the tree as a set of tuples (path, type,
value), each encoded into a Rn space, and use algorithms designed to process sets
[135]. While this approach would preserve all information, it is unclear how to
efficiently encode paths of various lengths that can branch in sets, or values of
different types.

• Also, one could manually engineer features based on the known data structure.
However, this step is laborious, suboptimal, and may be difficult to apply, because
the individual samples vary in size of their sets. Note that the standard approaches
to feature selection do not work with hierarchical data.

b) Let us also discuss the possible modification of the existing algorithms, where the
problem is twofold. First, the algorithm needs to be modified to accept hierarchical data
with varying size. In some cases, it could be solved by embedding the data sample into
a smaller, fixed space, e.g., with the HMIL algorithm, as we did in our case. However,
many algorithms for the CwCF problem depend on access to the actual feature values,
such as decision trees [98], random forests [113–115] or cascade classifiers [158] and may
not work with such transformations. Second, the modified algorithm needs to be able
to select features within the hierarchy. This could be done through direct selection of
the corresponding output (as we do in our method, or as the [135] would do with the
formerly proposed modification), or through some other way of identifying the specific
feature (possibly by returning its encoded path).

Again, while believe that many of these problems are solvable, they would require
non-trivial further research.

4.7 chapter conclusion

This chapter presented an augmented Classification with Costly Features framework
that can process hierarchically structured data. Contrarily to existing algorithms, our
method can process this kind of data in its natural form and select features directly in
the hierarchy. In several experiments, we demonstrated that our method substantially
outperforms an algorithm that uses complete information, in terms of the cost of used
features. We also showed how the original CwCF would work if the data was flattened
so the method could process it. As the augmented HMIL-CwCF model has the ability to
choose features with greater precision, it leads to superior performance. In a separate
experiment, we applied our method to a real-life problem of classification of malicious
web domains, where it also outperformed the other algorithms. The sequential nature
of the new algorithm and its hierarchical action selection contribute to its explainability,
as the features are semantically grouped, and the user can view which of them are
considered important at different time steps.

5
S Y M B O L I C A N D R E L AT I O N A L A P P R O A C H

The previous chapter enhanced CwCF to work with hierarchically structured data, but
the proposed method is still not completely general. The discussion (Section 4.6) revealed
that the same object can appear in multiple places. For example, in the malicious domain
detection problem, two different domains could share the same IP addresses, or, in the
social network example, the same user can comment on several different posts. Instead of
trees, we could encode the same data as graphs, which would solve the issue. However,
we found that the current deep RL focuses mostly on visual-control domains [e.g., 57,
80, 107] with fixed state and action space dimensions, and the augmentation presented
in the previous chapter cannot work with this relational representation. Hence, in this
chapter, we take a step back from costly features and focus on deep RL itself, and its
applicability to real-world problems, in which it is natural to represent the domain in
terms of objects, their relations, and actions that directly manipulate them.

Let us motivate this chapter with an internet bot that browses the web, uses different
APIs and gathers pieces of information. It is natural to represent the data it is working
with in the form of an ontology, which is a graph of entities where the connections
represent relations. On the other hand, the same data would be difficult to translate into
any fixed form, e.g., into a visual representation or general tensors. Similarly, the action
space is also better represented using the objects (e.g., to make an API call to a newly
discovered service), rather than a pre-described set of actions.

Relational Reinforcement Learning (RRL) [31] studies tasks described in a relational
language, in which states are described with predicates, such as on(x,y), and actions
that manipulate the objects, e.g., move(x,y). As an illustration, look at the BlockWorld
problem [138] in Figure 5.1a. Initially, several labeled blocks are stacked on top of each
other in an arbitrary configuration. The task is to reconfigure them into a goal position,
using a move(x,y) action that picks a block x and puts it on top of y, which could also be
the ground.

In this chapter, we present a generic framework to solve a large class of relational
problems using deep RL. We call it SR-DRL (Symbolic Relational Deep RL), and it is
designed to work with an enriched symbolic input (i.e., objects, their relations and their
features) in the form of a graph and multi-parameter actions that target the objects. Being
a deep RL-based framework, it does not require the knowledge of transition dynamics
and hence, it can be applied in domains where these are not available – unlike planning,
where a precise domain description is needed.

We use a Graph Neural Network (GNN) [168] to process the input state, and decompose
the policy into a sequence of parameter selections. This decomposition allows us to select
an action in a linear time, wrt. the number of action parameters, where each of these
parameters represents a specific node in the graph. A similar decomposition was studied
by Vinyals et al. [150] who assumed that the parameters can be selected independently.

This chapter is based on [62] and the code of the presented algorithm is available at https://github.com/
jaromiru/sr-drl.

63

https://github.com/jaromiru/sr-drl
https://github.com/jaromiru/sr-drl

64 symbolic and relational approach

C

B

A C

B

A

start goal

move(x,y) reset(x) or reset(X) push-left(x), and

-right, -down, -up

(a) BlockWorld (b) SysAdmin (c) Sokoban

Figure 5.1: Visualizations and actions of three domains where we demonstrate our method. In the
BlockWorld game, the task is to reconfigure blocks into a goal position. In SysAdmin,
computers in a network where nodes need to be selectively restarted to keep them
running. In a variation of this environment, multiple nodes can be selected at once.
Sokoban is a classic planning domain, where we include a twist – actions are applied
directly on the boxes. In all three domains, the key challenge is to zero-shot generalize
to different problem sizes.

However, not all probability distributions can be represented in this manner. Unlike [150],
we respect the parameters’ conditional dependency. For example, in action move(x,y),
the choice of y should be dependent on the chosen x.

Additionally, we allow set parameters, where any combination of objects can be
independently selected. For example, a hypothetical action select(X) with a set parameter
X could select any set of input objects, with any cardinality. We train the policy using the
A2C algorithm, but any algorithm from the policy gradient family [88] could be used
(e.g., PPO). The important property of the SR-DRL framework is that the trained models
are not constrained to the specific problem sizes, but can be used with a different
number of objects and actions (e.g., in the Sokoban environment, a model can be trained
on 10×10 instances, but deployed to larger problems).

We demonstrate different aspects of our framework in three distinct domains. a)
BlockWorld is a well-known planning domain with NP-hard complexity for optimal
planning. We use its formulation with a two-parameter move(x,y) action to demonstrate
how to use multiple parameters with a conditional dependency. Moreover, we show that
agents trained with only five blocks can be seamlessly deployed in a problem with 20

blocks and solve it with a 78% success rate. b) Sokoban is a game requiring extensive
planning and we use it to show how to manipulate the game’s objects on the macro
level, while a low-level planner translates the macro actions to a number of environment
steps. Agents trained in 10×10 problems with four boxes solve 89% of random 15×15

problems with five boxes. c) SysAdmin is a graph-based planning domain. In its variation
SysAdmin-M, we demonstrate our framework’s capability to independently select a set of
nodes at once. Agents trained with ten nodes generalize almost perfectly to 160 nodes
and performs comparably to PROST planner [69], using only a fraction of decision time.

The chapter is organized as follows. Section 5.1 overviews the related work. Section 5.2
describes the class of studied problems and their state and action spaces. The key
elements of our method are described in Section 5.3, i.e., the input processing through a
GNN, policy decomposition and training. Sections 5.4 and 5.5 discuss the experiments in

5.1 related work 65

three different domains (BlockWorld, Sokoban and SysAdmin), along with their domain
definitions and results. Section 5.6 discusses the architectural choices, the principles of
domain modeling and the source of generalization. The chapter concludes in Section 5.7.

5.1 related work

Džeroski, De Raedt, and Driessens [31] introduced RRL in 2001, and approached it with
inductive logic programming. As a representative problem, they focused on a more
restrictive BlockWorld variant, with only three specific goals: stacking into a single tower,
unstacking everything to the ground, or moving a specific box a on top of b. For each of
these goals, a specialized policy was created, and the authors also reported some degree
of generalization to a different number of blocks (3 to 10). However, the used specific
goals are trivial compared to the setting we use (any block configuration as a goal). Also,
due to a different evaluation procedure, the exact comparison is impossible without
carefully reimplementing and evaluating their method.

Payani and Fekri [118] replace the hard logic of Džeroski, De Raedt, and Driessens [31]
with a differentiable inductive logic programming. In their approach, the logic predicates
are fuzzy, and the parameters are learned with gradient descent. BlockWorld environment
is also used for experiments, with an input represented as an image. However, the scope
is very limited to only 4 and 5 blocks, without goal generalization (the goal is to always
stack into a single tower), and the authors do not report any generalization.

Li et al. [84] studies a 3-dimensional instantiation of the BlockWorld problem with
a robotic hand and physics simulation. Interestingly, the features of the blocks (their
position and color) and the hand are encoded as a graph and processed by a GNN,
making it invariant to the number of objects. Still, all interaction with the world is done
by controlling the robotic hand and its elementary actions (relative change of position
and grasping controls). Moreover, the blocks are not symbolic, but are identified by their
features (color).

Oracle-SAGE [20] investigates how to incorporate planning into the SR-DRL framework.
It builds upon the method presented in this chapter and explores the idea outlined in
the Sokoban experiment – combining the SR-DRL framework with a planner. It uses
our GNN-based models to suggest several macro goals for a planner, uses it to find
a sequence of actions to achieve this macro goal and recalculates the next steps. The
combined technique performs well in domains that require reasoning over long time or
spatial distances. In this chapter, we present the fundamental principles of the SR-DRL
framework without which the Oracle-SAGE would not be able to work.

Hamrick et al. [47] study the stability of a tower of blocks in a physical simulation,
with some blocks glued together. The blocks and their physical features are encoded as
nodes in a graph, and the actions are performed on the graph’s edges, which connect two
adjoining blocks. This approach generalizes well to different combinations and numbers
of blocks. Similarly, Bapst et al. [7] focus on the task of creating block structures under
physical simulation. They follow a similar approach to ours; their architecture is based
on GNN and allows object-centric actions. However, these works focus on their specific
domain and do not provide a general framework. Comparatively, we describe a domain-
independent framework that works with heterogeneous relations, and multi-parameter
actions, possibly with set parameters.

66 symbolic and relational approach

Zambaldi et al. [163] and Santoro et al. [130] provide specialized neural network
architectures with relational inductive biases that internally segment a visual input into
objects and process them relationally. Compared to our work, these architectures cannot
process symbolic input.

In planning, Relational Dynamic Influence Diagram Language (RDDL) [129] is often
used to describe the mechanics of a relational domain. Garg, Bajpai, and Mausam [33]
introduced SymNet, a method that automatically extracts objects, interactions, and action
templates from any RDDL. The interacting objects are joined to tuples and represented
as a node in a graph; the interactions are represented as edges. A GNN is used to create
nodes’ embeddings. Action templates, each represented as a single non-linear function,
are applied over the object tuples to create a probability distribution. Finally, actions
and their parameters (the object tuples) are selected, and the model is updated with
a policy gradient method [88]. There are several drawbacks to the SymNet algorithm.
Although the actions share their representation, the final step is to apply the softmax
function over all grounded actions. For a problem with n objects and an action with p

parameters, this results in O(np) time and space complexity. For an action with one set
parameter, it is O(2n). In both cases, the complexity restricts Symnet to problems where
actions have only a few parameters. On the other hand, the complexity of SR-DRL is
O(pkn), where k is the maximal degree of the graph, which is usually much smaller
than n. In our case, an action with one set parameter can be computed in O(n), as all
nodes are treated independently. The SymNet method is applicable only when the RDDL
domain definition is available because it uses the defined transition dynamics to create
the graph. In deep RL, it is common that the transition dynamics are unknown, and only
a simulator is available. For example, imagine a visual control domain (e.g., controlling a
robotic hand) with automatic object detection [e.g., 125], defined actions manipulating
these objects (possibly with a low-level planner in place), and unknown dynamics.

Adjodah, Klinger, and Joseph [1] studies a control problem of fixed-size maze navi-
gation. The relations are represented as exhaustive binary combinations of all places in
the grid and a shared projection is applied to all of them. The output is concatenated
and processed with a standard MLP-based Q-learning algorithm. No message passing is
involved, allowing the model to reason only with the limited binary relations. Moreover,
the learned model is restricted to its specific grid size.

Groshev et al. [38] trains a deep neural network to imitate and generalize behaviour
generated by a planner. Their neural network architecture is based on image / graph
convolutions where the last layer is not fully connected, but it is a fixed-size window
centered around the player. This allows generalization to different problem sizes. They
apply their method in Sokoban and the traveling salesperson problem.

In visual domains where a relational description is not available, work of Garnelo,
Arulkumaran, and Shanahan [34] or Zelinka et al. [164] could be used for automatic
object discovery.

The following papers focus on the automatic generation of features from domain
descriptions or problem examples to learn generalized policies that transfer to related
problems with a different number of objects. Karia and Srivastava [68] uses a method
from description logic [6] to generate features and learn a generalized Q-function. Ng and
Petrick [116] also learns a generalized Q-function using a mix of ground and first-order
approximations in Relational MDPs [147].

5.2 problem 67

Toyer et al. [143, 144] introduce ASNet, a general neural network architecture that is
constructed according to a probabilistic PDDL domain definition and is reusable to all
problem instances. This architecture includes interleaved action and proposition layers,
which are connected according to the actions’ preconditions and effects. Their models
output a general reactive policy and are trained through supervised learning based on
optimal trajectories determined by an external planner. The authors also tried to train
their models with RL, but dismissed this direction due to its inefficiency. Compared to
our work, the architecture of our models is semantical (i.e., the graph reflects the objects
and their relations) and we use deep RL for training, which can be applied in domains
without known transition dynamics. Moreover, ASNets use a single output for each
grounded action, which leads to an exponential number of actions wrt. the number of
parameters. We work around this issue with our policy decomposition. In a similar work
to ASNet, Shen, Trevizan, and Thiébaux [134] takes this a step further and develops a
GNN-based method that learns a domain-independent heuristic.

The work [128] introduces a method to tackle domains described in the PDDL language
[2]. They too use GNNs and deep RL to learn a generalized policy; additionally, they
combine the approach with planning. Unlike our work, their approach does not work with
multi-parameter actions nor set parameters. [49] uses deep RL to learn a set of general
logic rules for a particular domain. [32] learns rule-based policies using combinatorial
optimization.

5.2 problem

Our problems naturally consist of objects described with features, heterogeneous binary
relations, a feature vector describing the global context*, and a goal definition. The problems
are sequential and we assume existing transition dynamics. We use the standard MDP
formalism, i.e., a tuple (S,A, r, t,γ), where S, A represent the state and action spaces,
r, t are reward and transition functions, and γ is the discount factor. All of the MDP
components are problem-dependent, hence we provide only their general descriptions.
The reward function r can directly specify the goal or be more subtle. For example, in
the BlockWorld, the reward can be defined as a small negative value per step and a
non-negative value when the goal is reached. The parameter γ and the transition function
t are directly defined by the particular environment. Because we use a model-free method,
the transition function can also be unknown (only a simulator is needed). State and action
spaces are described below.

5.2.1 State and goal

The state contains objects with their features, relations, global context, and optionally the
goal. The objects and relations naturally form an oriented graph where nodes represent
the objects and contain their features in the form of fixed-length vectors. More complicated
feature structures can be embedded using the existing techniques (e.g., using HMIL [122]
or Deep Sets [162]). Heterogeneous objects can be recognized by a type-specifying feature.
Oriented edges represent the relations, optionally also containing features and their type.
Symmetric relations can be transformed into two opposite edges. The global context is a

* The global context, objects and their relations can be viewed as nullary, unary and binary relations.

68 symbolic and relational approach

ground

A

B

C

ground

A

B

C

ground

A

B

C

(a) current state (b) goal (c) combined

Figure 5.2: Example state encoding of the BlockWorld game state from Figure 5.1a. The objects
and relations form the graph, with a special node representing the ground. The
representation of the current state and the goal is combined with different edge types.
Nodes include a single feature differentiating the blocks and ground; no other features
(e.g., labels) are present. Likewise, no global information is needed in this example.

vector specifying properties of the environment, unrelated to any single object (e.g., time
or the environment state).

The goal can be encoded in several ways. First, the reward function definition can
encode the goal in domains where it is static. In domains where the goal changes across
problem instances, it needs to be included in the state. Depending on the particular
domain, it can be encoded either in the global context, in the object features, or as part of
the graph itself. In the last case, the goal can represent the desired final configuration,
encoded as a separate graph and then be joined with the original state.

Let us take the BlockWorld domain as an example of the state encoding (see Figure 5.2).
Objects and relations are encoded as a graph, with a special node representing the
ground (see Sec. 5.5.1 for the domain definition). Nodes contain only a single feature,
differentiating between a regular node and the ground. The actual state and the goal are
encoded with different edge types, and their representation is combined.

5.2.2 Actions

The actions are object-centric, i.e., they manipulate the problem’s objects. It follows that in
problems where the number of objects changes, the action space also changes. However,
as we show later in Section 5.3.2, this variable and unbound action space can be tackled
efficiently with a fixed-size model.

Let us describe what actions are. They consist of an action identifier (e.g., move) and their
parameters (target objects) and preconditions. Actions without any parameters are called
elementary (e.g., turn-left). We assume that the parameters are conditionally dependent and
need to be selected in a specific order. For example, in the action move(x,y), the choice of
y depends on the chosen x. Moreover, we introduce set parameters which are created
with any subset of objects (e.g., select(X), where X is an arbitrary set of nodes). The set
parameters assume that the nodes can be chosen simultaneously and independently. An
action is available only if all its preconditions in a particular state are met. For instance,
the move action in BlockWorld has two preconditions – that there is no block on top of x,
and neither on y (unless y is the ground).

5.3 method 69

Algorithm 5.7 SR-DRL: Model
1: function Model(state s) ▷ State s includes nodes V, edges E, and the initial global context g.
2: (V,E,g) = s ▷ V,E,g represent both the graph elements and their feature vectors.
3: optional: ∀v ∈ V : v = ϕemb_v(v);∀e ∈ E : e = ϕemb_e(e);g = ϕemb_g(g) ▷ Embed features.
4: for l = 1..mp_steps do
5: V,g = GNN_MessagePass(V,E,g, l)
6: end for
7: a,ap = SelectAction(V,g)
8: return a,ap,Vθ(g) ▷ Return the action, its probability and state value.
9: end function

10: function GNN_MessagePass(nodes V, edges E, global embedding g, level l)
11: for all v ∈ V do
12: vmsg = max

e∈E:e.r=v
ϕl
msg(e, e.s) ▷ Aggregate incoming messages; eq. (5.1).

▷ (e.r, e.s are the receiving and sending nodes of the edge e)
13: v = v+ϕl

agg(v, vmsg,g) ▷ Update node features; eq. (5.2).
14: end for
15: g = g+ϕl

glb

(
g,
∑

v∈V ϕl
att(v) ·ϕl

feat(v))
)

▷ Update the global node; eq. (5.3).
16: return V,g
17: end function

18: function SelectAction(V,g)
19: Select a0 from π0(g) = softmaxϕπ0

(g) ▷ Select the action id, e.g. move or stop.
20: a = [a0]; ap = [π0(a0 | g)] ▷ Store the action and its probability.
21: for l = 1..L(a0) do ▷ Select parameters.
22: if al should be a normal parameter then
23: Select al from πa0,l(V,g,a1, ...,al−1) = softmaxϕπa0 ,l(V,g,a1, ...,al−1) ▷ eq. (5.5)
24: else if al should be a set parameter then
25: Probability of choosing a node v: P(v) = sigmoid(v)ϕπa0 ,l(V,g,a1, ...,al−1)

26: Create al = {v1, v2, ...} as a set of independently selected nodes acc. to P(v)

27: Let πa0,l(al | V,g,a1, ...,al−1) =
∏

v∈al
P(v) ·∏v∈V\al

(1− P(v)). ▷ eq. (5.6)
28: end if
29: If no al is available, disable the al−1 action, go back to the level l− 1 and re-select.
30: Append al to a and its probability πa0,l(al | V,g,a1, ...,al−1) to ap
31: end for
32: return a,

∏
ap ▷ Return the action with its parameters and the product of the probabilities; eq. (5.4).

33: end function

5.3 method

This section describes the key elements of our method. When reading the following parts,
refer to Algorithms 5.7 and 5.8 with a pseudo-code. Our method uses a GNN [168] to
process the complex state. To tackle the multi-parameter actions, we use autoregressive
policy decomposition [150]. Our model is fully differentiable and can be trained by any
policy gradient algorithm [88].

5.3.1 Graph Neural Network

This section describes the processing of the input state. The pseudo-code is given in
Alg. 5.7, methods Model and GNN_MessagePass. Because the state is represented as a
graph, the natural choice is to use GNNs, which have strong relational inductive biases
[8] and their operations are local and invariant to node permutations. Also, the same

70 symbolic and relational approach

Algorithm 5.8 SR-DRL: Training and function ϕπa0 ,l

1: Let ϕfin
πa0 ,l

: R|v|+|g| → R be a linear pre-softmax function.

2: Let ϕemb
πa0 ,l

: R|v|+l−1 → R|v| be a linear embedding function transforming the augmented vector back

to the R|v| size.
3: function ϕπa0 ,l (V,g,a1, ...,al−1)
4: if l = 1 then
5: V ′,g ′ = V,g
6: else
7: ∀v ∈ V : zv ∈ {0, 1}l−1, where z

(i)
v = 1 if ai = v, otherwise 0 ▷ Create one-hot vectors of past

parameters.
8: V ′ = {∀v ∈ V : v ′ = LeakyReLU(ϕemb

πa0 ,l
(v, zv))} ▷ Concat v and z and transform to |v|.

9: V ′,g ′ = GNN_MessagePass(V ′,E,g,mp_steps+ 2l− 1) ▷ Spread the information
10: V ′,g ′ = GNN_MessagePass(V ′,E,g ′,mp_steps+ 2l) ▷ for two steps.
11: end if
12: Check preconditions given a0, ...,al−1 and mark possible V̄ ⊆ V ′ ▷ a0 is known from πa0,l

13: return
[
∀v ∈ V ′ : ϕfin

πa0 ,l
(v,g) if v ∈ V̄ else −∞]

▷ Return an array of real values.
14: end function

15: function Train(environments Σ, model θ)
16: batch B = []

17: θ ′ = θ ▷ Initialize the target network.
18: while not converged do
19: for all env ∈ Σ do ▷ Prepare the batch.
20: s = env.s ▷ The environment provides the state in V,E,g format.
21: a,ap,V = Model(s)

22: r, s ′ = env.Step(a) ▷ Terminal state is returned on episode finish and env resets.
23: append s,a,ap, r, s ′,V to batch B

24: end for
25: Lpg = A2C(B) ▷ Alg. 2.1
26: Update θ with ∇θLpg
27: Update the target network: θ ′ := (1− ρ)θ ′ + ρθ

28: end while
29: end function

model can be used to process states with a different number of objects. Several GNN
variations exist, with a unifying framework made by Battaglia et al. [8]. We use a custom
implementation that includes node and edge features, skip connections, a global node
with an attention mechanism, and separate parameters for each message-passing step.

The GNN accepts the state graph (V,g,E), where V are nodes, E are oriented edges,
and g is a special global node, not included in V. If available, g can initially contain
the global context. Additionally, let e.s, e.r denote the sending and receiving nodes the
edge e and let v,g and e also denote the feature vector of the respective node or edge.
Optionally, before processing with the GNN, the node, edge and global features can
be passed through embedding functions, implemented as a non-linear layer. Several
message-passing steps are performed, and the final embeddings are saved in V and g.

A general message-passing step is described in Sec. 2.2. However, our method slightly
deviates from it, hence we rewrite the equations here as well. Given a message embedding
function ϕmsg, the incoming messages are aggregated with element-wise max:

∀v : vmsg = max
e∈E:e.r=v

ϕmsg(e, e.s) (5.1)

5.3 method 71

We chose max early in our experiments, where it worked best. Second, all node features
are updated with newly computed values:

∀v : v ′ = v+ϕagg(v, vmsg,g) (5.2)

The function ϕagg aggregates the messages vmsg, the current embedding of v and the
global node features g. In practice, we implement the ϕmsg and ϕagg functions as
single non-linear neural network layers. The addition of the original v represents a skip
connection [50, 72], which we found to facilitate learning, if the number of message-
passing steps is large. After all node representations are updated, a global node g

aggregates information from all other nodes through an attention mechanism:

g ′ = g+ϕglb

(
g,

∑
v∈V

ϕatt(v) ·ϕfeat(v))
)

(5.3)

The ϕatt denotes a softmax distribution over all nodes in V, ϕfeat a node embedding
function and ϕglb is a final embedding function. In the implementation, ϕatt is a single
linear layer followed by softmax and ϕfeat and ϕglb are single non-linear layers. Again,
adding the original g serves as a skip connection to facilitate learning.

Eqs. (5.1), (5.2) and (5.3) form a single message-passing step, which is repeated
mp_steps times, resulting in final embeddings v ∈ V and g. We use independent param-
eters for the ϕ functions for each step, which lets the model compute progressively more
complex representations [8].

5.3.2 Policy decomposition

This section describes the process of selecting an action. Follow Algorithms 5.7 and
5.8, methods SelectAction and ϕπa0 ,l , and Figure 5.3. The policy π(s) is a probability
distribution over all possible actions in a state s. Although the action space grows
exponentially with the number of actions’ parameters, the selection of a particular action
can be done in a linear time by decomposing the policy into a sequence of choices. Let
A0 be the set of action identifiers, e.g., {stop, move, ...}. L(a) is the arity of action a with
its parameters, a = (a0,a1, ...,aL(a)). Here, a0 ∈ A0 denotes the action identifier and
a1,a2, ... are the action’s parameters selecting graph nodes, a1..|L(a)| ∈ V. The policy can
then be represented in an autoregressive manner:

π(a | s) = π0(a0 | g)

L(a)∏
l=1

πa0,l(al | V,g,a1, ...,al−1) (5.4)

where π0 is the policy selecting the action identifier, and πa0,l is the policy selecting a the
action’s l-th parameter. In practice, an action can be selected by sequentially sampling
the policies in eq. 5.4.

A similar policy decomposition was studied by Vinyals et al. [150], who chose to
disregard the conditional dependency on the previously chosen parameters. However,
this variant cannot represent every possible probability distribution, and for some actions,
the previously selected parameters are crucial for further selection. For example, in
move(x,y), the selection of y only makes sense with a known x. Therefore, we propose the
following method to preserve the conditional dependency (see Figure 5.3).

72 symbolic and relational approach

input state

GNN

embeddings

a) input state embedding

1.

0.

3.

GNN

GNN

1

0 0

1 0

100 0

(b) action selection

Figure 5.3: (a) The input state, including its features, is processed through the GNN, resulting in
embeddings of nodes V and g. (b) The action is selected in a sequence of steps. First, the
action identifier a0 (e.g., move) is sampled using the embedding of g. Simultaneously,
the state value V(g) is computed, which is necessary for the RL algorithm. Next, action
parameters a1,a2, ... are sequentially chosen (e.g., x = B,y = C in the BlockWorld),
conditioned on previous selections. The πa0,l denotes a policy selecting l-th parameter
for the action identifier a0.

First, the action identifier a0 is selected from π0(g) = softmaxϕπ0
(g). We suggest to

implement the projection ϕπ0
: R|g| → R|A0| as a linear layer. For elementary actions

without parameters, the decision ends here. Otherwise, the action parameters (graph
nodes) are selected sequentially and conditioned on previous selections. Specifically, the
l-th parameter al is chosen as:

al ∼ πa0,l(V,g,a1, ...,al−1) = softmaxϕπa0 ,l(V,g,a1, ...,al−1) (5.5)

Here, the function ϕπa0 ,l : R|V|×(|v|+l−1)+|g| → R|V| transforms the nodes’ embeddings,
the global embedding and a one-hot encoding of previously selected parameters into
one real value per node, used for the softmax (see Alg. 5.7, method ϕπa0 ,l). For the first
parameter, ϕπa0 ,1 is simply a linear projection applied uniformly to all nodes.

For further parameters (l ⩾ 2), the computation of ϕπa0 ,l need to take the previous
selection a1, ...,al−1 into account. To this purpose, each node is augmented with a one-
hot encoding of [a1, ...,al−1], i.e., every node is augmented with a binary vector of size
l− 1, where i-th element is 1 if the node was selected as an i-th parameter, else 0. To

5.3 method 73

preserve the original embedding size, the augmented vector is projected to its original
size and at least two message-passing steps are performed to allow the information
to spread. We found that two passes worked well for BlockWorld, but some domains
may require more. The result of the operation are alternative v ′,g ′, which are used to
determine the final real value for each node.

Preconditions

Preconditions determine whether an action is available in a particular situation. The
availability is resolved for the currently processed level (e.g., for a0, a1, ...), and the
unavailable actions are removed from the softmax computation. In the most general case,
no selection may be possible for a particular level l. In that case, the algorithm has to
backtrack, disable the selection at level l− 1 that led to the situation and select a new
parameter.

Set parameters

The set parameters consist of an arbitrary subset of nodes. To perform such selection,
we use concurrent actions [48] (follow Algorithm 5.7, lines 24-27). A shared function
with sigmoid activation is used to compute per-node probabilities P(v). Then, nodes
are selected with independent Bernoulli trials. Let al be the parameter with the set of
selected nodes. Its total probability is then:

πa0,l(al | V,g,a1, ...,al−1) =
∏
v∈al

P(v) ·
∏

v∈V\al

(1− P(v)) (5.6)

Complexity analysis

In a graph with n nodes and a maximal degree k, the time complexity of one message
passing step is O(kn). Parameters of an action with p parameters are selected sequentially,
and two message passes are performed for each. The time complexity of selecting the
action is then O(pkn), while k is usually very small. Information can be sequentially
accumulated in nodes, hence space complexity is O(n).

5.3.3 Model training

Here, we describe how the model is trained. See Alg. 5.8, method Train and Alg. 2.1,
method A2C. Let θ be the model parameters – a union for all ϕ functions and layers
used in the action selection. Apart from the parametrized policy πθ, the model includes
a separate output head for a state value estimate. It is implemented as a single linear
neural network layer Vθ(g), taking the final embedding of the global node g. Although
the action selection involves deterministic choices of their parameters, the final product
πθ(a|s) is fully differentiable. We propose to use A2C algorithm with a target network
and entropy gradient sampling (see Section 2.1.2). We note the method could be modified
for other policy gradient methods (e.g., PPO).

74 symbolic and relational approach

5.4 experiment setup

We use three different domains for our experiments – BlockWorld, Sokoban and SysAd-
min. Detailed descriptions are in their corresponding sections. In this section, let us
introduce details regarding implementation and used hardware.

5.4.1 Time-limits

The used environments are not restricted by any time horizon, hence we use a discount
factor γ = 0.99 in all domains. To enhance the training experience diversity and avoid
possible deadlocks (e.g., in Sokoban), we employ an artificial step limit (100 in BlockWorld
and SysAdmin, 200 in Sokoban). This limit is regarded as auxiliary and not part of the
environment, in the spirit of Pardo et al. [117].

5.4.2 Reference machine

When reporting our algorithm’s running times in the following text, we are using a
reference machine equipped with AMD Ryzen 1900X CPU, 8 GB of RAM, and nVidia
Titan X GPU.

5.4.3 Implementation details

For all non-linear layers, we use the LeakyReLU activation function [96], unless specified
otherwise. Before processing the state in the GNN, objects’ features are embedded
into a fixed-length vector of size emb_size, with a shared single non-linear layer. The
same parameter emb_size then defines the dimension of all subsequent intermediary
embeddings of nodes and the global context. Edge types are one-hot-encoded and used
directly. Message-passing steps (eqs. 5.1, 5.2, 5.3) are repeated mp_steps times to get the
final embeddings V,g. The AdamW optimizer [94] with a weight decay of 1× 10−4 is
used. Gradient norm is clipped to grad_max_norm. The learning rate and the entropy
regularization coefficient are annealed from their respective starting values LR and αh

until their minimum 1
30LR, 1

2αh. The learning rate annealing schedule is step-based,
with a factor 0.5 used every 20× epoch steps. The coefficient αh is annealed using a 1

t

schedule, where t is increased per each epoch steps. For each environment, we define
a q_range interval, that is used to clip the target Q(s,a) in eq. 2.8. A batch of p_envs
environments is simulated in parallel. Many of the parameters were found using a
grid-search in their respective domains. Used resources and other hyper-parameters are
available in Table 5.1.

5.5 experiments

To demonstrate our method’s generality and performance, we provide an implementation
and experimental results in three distinct domains, each of which represents a different
class of problems:

• In BlockWorld, we showcase a multi-parameter action and preconditions. Addi-
tionally, the graph structure changes during an episode.

5.5 experiments 75

Table 5.1: Hyper-parameters and other settings used in the experiments

parameter BlockWorld Sokoban SysAdmin-S/-M

p_envs, batch size 256 256 256

ρ, target-network update coefficient 0.005 0.005 0.005

γ, discount factor 0.99 0.99 0.99

epoch, number of steps per epoch 1000 1000 100

episode step-limit 100 200 100

mp_steps number of message-passes 3 10 5

emb_size, embedding size 32 64 32

LR, initial learning rate 3× 10−4 3× 10−3 3× 10−3

grad_max_norm, maximal gradient 3.0 5.0 3.0

q_range, range of Q(s,a) (eq. 2.8) [−15, 15] [−15, 15] [−100, 200 ·N]

αv, coefficient of LV 0.1 0.1 0.1

αh, coefficient of LH 2.5× 10−5
0.04 0.15 ∼ 0.5 (-S)1

0.1 ∼ 0.2 (-M)

resources used in training 4 CPU cores 2 CPU cores, 1 GPU 1 CPU core

1 0.15/0.15/0.3/0.3/0.5/0.5 in -S, 0.1/0.1/0.2/0.2/0.2/0.2 in -M for N = 5/10/20/40/80/160

• Sokoban is a domain with multiple single-parameter actions where long-term
planning is required. We design our agent to operate on the object level (boxes),
while a low-level planner breaks them into micro-actions (movement of the player).
Note that translating the object-level actions to micro-actions is a polynomial
problem.

• SysAdmin is a graph domain where only short-distance information is usually
required to perform well. It includes stochastic transitions and an infinite time
horizon, without any specific goal to reach. We include a separate variation of this
domain, SysAdmin-M, which represents problems where multiple objects can be
independently selected.

In all three domains, we study how a trained model translates to problem instances with
different sizes. In the following sections, we study each of the domains separately from
different points of view. In each part, we introduce one domain, provide its detailed
definition and perform a set of unique experiments.

5.5.1 BlockWorld

BlockWorld is a well-known domain with tractable satisficing planning and NP-hard
optimal planning [138]. This environment consists of N blocks and a special ground
object. The blocks can be placed on top of each other or on the ground. A single move(x,y)
action with two parameters is available, which picks a block x and puts it on top of y. Its
preconditions are that x and y are free, unless y is the ground. Note that we use the move
action with two parameters deliberately to demonstrate that our framework works with
multi-parameter actions. In planning, the BlockWorld domain is usually defined with

76 symbolic and relational approach

10 11 12 13 14 15 16 17 18 192 20 21 22 23 24 25 26 27 28 293 304 5 6 7 8 9
number of blocks (N)

0.0

0.2

0.4

0.6

0.8

1.0 0.98 0.95 0.93 0.91 0.90 0.89
0.83 0.83 0.79 0.78 0.78

0.73 0.72 0.70
0.64 0.63 0.63

0.57 0.55 0.54 0.54

0.99 0.98
0.870.89

0.96 0.95 0.93 0.91

% solved
optimality

Figure 5.4: The agent trained in BlockWorld with 5 blocks (N = 5) and evaluated in problems with
N ∈ {2..30}. For each N, the agent is evaluated in 1000 problems, and the percentage of
solved problems and its optimality (optimal / performed steps) for N ⩽ 10 is reported.

single-parameter actions pickup(x) and putdown-to(y), which makes the problem easier.
The goal is to reconfigure the blocks from a starting position to a given goal position. The
agent receives a small penalty per step and a reward for solving the problem.

Detailed domain definition

Definition. The objects in the BlockWorld problem consist of a set of N blocks B =

{b1,b2, ...,bN} and a special object G, representing the ground. Let’s define a relation
x ⊣ y; x ∈ B,y ∈ B∪G, meaning that a block x is positioned on top of y. For each x, the
relation is unique, as well as for each y, unless y = G. Let R be a set of all relations in
the problem. The action move(x,y) removes all relations x ⊣ z;∀z from R and creates a
new one x ⊣ y. The preconditions for the action are x ̸= y, free(x) and free(y)∨ y = G,
where free(x)⇔ ∄z : z ⊣ x.

The goal is to use the action move to reconfigure the block positions Rstart into Rgoal.
To incentivize the agent to find the optimal solution, it receives a reward −0.1 for each
action. After reaching the goal, the episode ends with a reward 10.

State and actions. The state consists of the objects B,G, the current set of relations R,
and the goal Rgoal (see Figure 5.2 for illustration). In the graph, each relation is modeled
symmetrically (both above-of and below-of are included). The different types of relations
are marked by their edge parameters. The objects contain a single-bit feature that signifies
whether they belong to B or G. Note that no block labels are present in the state in any
way.

There is a single action move with two parameters. The preconditions are used accord-
ing to their definition. If a particular block is allowed to be the first parameter of the
action move, there always exists a valid second parameter (e.g., G).

Generation. A problem instance is generated as follows. From a set of N available
blocks B ′ = b1, ...,bN a random subset of 1 to |B ′| blocks is chosen and stacked in
random order. This stack is then removed from B ′, and the procedure repeats until B ′ is
empty. The goal is generated in the same way.

Primary results

We trained eight models with different seeds in the BlockWorld environment with N = 5

and randomly generated initial states and goals. The agent is evaluated on 1000 random
problems with N = 5, and we report the percentage of solved problems and optimality –
the average ratio of the number of optimal steps and performed steps for each problem. In

5.5 experiments 77

0 25 50 75 100 125 150 175 200
epoch

0.0

0.2

0.4

0.6

0.8

1.0

%
 so

lv
ed

% solved
optimality
% solved (w/o preconditions)
optimality (w/o preconditions)

Figure 5.5: Training in the BlockWorld environment, N = 5, with and without preconditions.
The graph shows the percentage of solved problems and optimality; each epoch
equals 256k environment steps. The mean ± one standard deviation of eight randomly
initialized runs is displayed.

case the agent does not solve the environment in the 100 step limit, we consider the ratio
to be 0. Figure 5.5 shows the first 200 epochs, where a single epoch is 256k environment
steps (1000 gradient updates with a batch size of 256). On our reference machine, a
single epoch takes about 3.3 minutes; 100 epochs take about 5.5 hours. We measured
the number of optimal steps using Fast Downward planner [51] with A* algorithm and
LM-cut heuristic [52].

At about epoch 75, the agent learns to solve the problems with 100% accuracy and 83%
optimality. Subsequently, the optimality increases; in epoch 200 it’s 96%, and it reaches
99% in epoch 400. Hence, it can be said that the agent is able to learn near-optimal policy
in this setting.

Next, we investigated a variant without preconditions. In this experiment, we enabled
all actions and let the agent learn to ignore the nonsensical ones. The results show
the training time is almost doubled (see Fig. 5.5). In this case, the agent solves 100%
of problems at about epoch 130 and reaches 99% optimality at about epoch 730. We
conclude that the preconditions are not necessary, but greatly help the training.

Additional experiments

Next, we focused on the agent’s generalization to a different number of blocks. From the
eight runs with N = 5, we picked the one that performed best after 800 epochs. Next,
we evaluated it in environments with a different number of blocks, N ∈ {2..30}. Again,
we measured the percentage of solved environments (within the 100 step limit) and the
agent’s optimality. Because in BlockWorld, the optimal planning is NP-hard, we report
the optimality only for N ⩽ 10; it becomes too expensive to compute with higher N. The
results, reported in Figure 5.4, show impressive generalization capabilities. The agent
zero-shot generalizes with great success to other problem sizes. It solves all problems for
N ⩽ 5 with near-100% optimality, with the exception of N = 3. With N ⩾ 6, the fraction
of solved problems gradually decreases to 78% for N = 20 and 54% for N = 30. The
optimality decreases to 87% for N = 10.

We tried to train an agent directly with N = 10, but the agent did not learn any useful
policy. The reason is that it is hard to find a solution in a large state space. With ten
blocks, there are about 107 box combinations and the only positive reward is received
when the problem is solved. Yet, the agent trained with N = 5 is able to solve 98% of

78 symbolic and relational approach

8×8 10×10 13×13 15×15

3 boxes 4 boxes 5 boxes 5 boxes

solved 95.7% 95% 84.6% 83.9%

Figure 5.6: We evaluated an agent trained solely on the 10×10 levels with 4 boxes on randomly
generated levels in other game variations and measured the percentage of solved
levels. The agent generalizes well to different game sizes and the box count. The
results show the performance of a single agent evaluated in about 2000 problems per
variation. The top row shows example levels.

problems with N = 10, with 87% optimality. Moreover, it gracefully generalizes up to
N ⩽ 30, possibly even more. This indicates a strong potential for curriculum learning
[11]. To understand how impressive these results are, we note that the number of all
possible block configurations rises very quickly with N. Exactly, it is

∑N
i=0

(
N
i

) (N−1)!
(i−1)!

[138]; i.e., 501 for N = 5, 5.8× 107 for N = 10 and 2.7× 1020 for N = 20. The number of
actions is |A| ⩽ N2.

5.5.2 Sokoban

Sokoban (see Figure 5.6) is a classic planning domain, where an agent moves inside a
grid maze with the goal of pushing boxes onto their destination. Solving levels requires
careful planning because some actions are irreversible and can lead to an unsolvable
situation. Usually, the actions control the player avatar and are elementary – left, up, right,
and down. However, our framework’s strength lies in its ability to directly manipulate
objects. Hence, we define new actions that operate directly on the boxes, with a low-level
planner that trivially translates them into the elementary actions while preserving all the
environment’s mechanics. These new actions are push-left(x), push-right(x), push-up(x),
and push-down(x), all of which operate on a box x, moving the player such that the box is
pushed to the desired direction, if possible. Finding the low-level plan with elementary
actions corresponding to the push- macro actions is trivial, because it can be found in
polynomial time.

Note that this abstraction is natural in our framework, which treats all boxes the same
and does not need their identifiers, nor absolute positions. The benefit of our method
is that the macro actions generalize over the boxes by using the same parameters for
each box. Also, it naturally scales to any number of boxes. If we wanted to use the same
abstraction with traditional deep RL with a fixed number of actions, it is possible for a
fixed number of boxes (e.g., an agent trained for 4 boxes would use 4× 4 = 16 actions).
The traditional deep RL would learn separate parameters for each action and it would
not work with other number of boxes than what it was trained with.

5.5 experiments 79

0 2 4 6
Environment steps 1e8

0.0

0.2

0.4

0.6

0.8

1.0
%

 o
f s

ol
ve

d
pr

ob
le

m
s

SR-DRL
I2A
DRC

0 1 2 3 4 5
Environment steps 1e8

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 so

lv
ed

 p
ro

bl
em

s

msg. passes
10
5
3
1

Figure 5.7: Left: Test-set performance during training on 10×10 levels with 4 boxes. SR-DRL shows
a mean ± one standard deviation of three models. I2A and DRC are different deep
RL-based algorithms, without the ability to transfer to larger problem instances. Right:
Number of message-passes greatly influences the model’s performance. With more
than 10 message passes, the model failed to train.

Detailed domain definition

Definition. We use the Sokoban environment as defined in Racanière et al. [124].
For our purposes, a Sokoban problem is determined by four matrices W,G,B,P with
sizes corresponding to the problem size. Here, Wxy = 1 if there is a wall at position
x,y, else 0. Similarly, G determines the position of goals, B boxes, and P the player. The
agent can perform five actions left, right, up, down, and no-op (note that these are the
low-level actions defined by the environment, but the SR-DRL agent actually works with
different, high-level actions specified below). These low-level actions move the player in
the specified direction, possibly pushing a box, and modify the matrices B,P accordingly.
The no-op action does nothing. The problem is solved when all boxes are on the goal
positions, i.e., B = G.

For each action, the agent receives a penalty −0.1, plus a reward 1 if it pushes a box on
a goal, −1 if it pushes a box off a goal, and 10 when the level is solved.

State and actions. A state is defined as a graph with a node nxy for every Wxy = 0,
i.e., only the playable spaces without walls. Compared to convolutional neural networks
(CNN) that end with a fully connected layer, our architecture is scale-invariant, accom-
modates to the particular problem and can save computational resources. The features of
every nxy node are defined as a concatenation of Gxy,Bxy and Pxy. We tried including
positional x,y features, but found no difference in performance. Every two neighboring
nodes (in the four directions in the grid) are connected with two opposite edges. Each
edge contains a single feature determining its original direction (up, down, left, right).

Rather than using the elementary actions of the environment, we take advantage of the
unique ability of our framework to define actions that operate directly on the available
objects. We define the following macro actions: push-left(x), push-right(x), push-up(x), push-
down(x). These actions operate directly on the boxes at the place of node x – the player
walks to a proper spot and pushes a box in the corresponding direction (if possible).
Preconditions force the actions to select a node with a box. All actions use a simple
A*-based planner that maps them onto the elementary actions of the environment. It may
happen that an action is not executable because a path to the right location does not exist.

80 symbolic and relational approach

In these cases, the no-op action is performed instead. The reward is defined as a sum of
rewards resulting from the execution of the related low-level actions.

Generation. We used an implementation of Sokoban provided by Schrader [131] and
the unfiltered dataset from Guez et al. [40], which contains 900k pre-generated levels of
size 10×10 with 4 boxes. For randomly generated levels, we use a method described by
Racanière et al. [124].

Primary results

We trained three models with a dataset of 10×10 problems with four boxes over the course
of 17 days. Figure 5.7-left shows the test set performance measured during the training
(elementary steps are used). We also show the performance of two other deep RL-based
architectures: I2A [124] and DRC [41], as reported in the original papers (both were
trained with the same dataset). I2A is based on convolutional neural networks (CNN)
and learns an environment model used to simulate trajectories; I2A with 15 unrolls is
reported. DRC is a recurrent CNN-based architecture; the DRC(3,3) version is reported.

After 109 elementary environment steps, SR-DRL solves 96% of test levels. In the same
amount of steps, I2A reaches 90% solved levels, and DRC 99%. We hypothesize that the
main advantage of DRC architecture is in its recurrence, allowing it to store intermediary
calculations between steps and thus be much more effective. Recurrent architecture
can also be used with our method and is a promising future direction. Although DRC
outperforms our method in this case, it cannot generalize to different problem sizes. Its
CNN architecture ends with a fully connected layer, fixing it to the particular problem
size.

On the other hand, our method is not fixed to any problem size. In Figure 5.6, we
report results obtained by evaluating a model trained in 10×10 problems with 4 boxes
on several different problem sizes. The results are impressive – the model generalizes
well to both smaller and larger environments, e.g. in 8×8 with 3 boxes it solves 96.7% of
problems, in 15×15 with 5 boxes it is 89%.

Additional experiments

In a separate experiment, we tested the influence of the number of message-passing steps.
Figure 5.7-right shows the training progress with 1, 3, 5 and 10 message passes. More
message passes always result in faster learning and better final performance. However,
when we further increased the number of message passes to 15 or 20, the model did not
train at all and the final performance was zero.

Finally, we performed a similar experiment as in the BlockWorld environment – we
compared the learning process with and without the preconditions. In Sokoban, the
preconditions mask out the nodes without any boxes, hence forcing the push- actions
to select a place with a box. However, in this environment, we found that disabling
preconditions did not result in any degradation of the performance. Apparently, the
model trained without preconditions learns to ignore the meaningless actions early in
the training.

5.5 experiments 81

5.5.3 SysAdmin

SysAdmin [39] (see Figure 5.9) is a probabilistic planning domain adapted from the
International Probabilistic Planning Competition (IPPC) 2011. It includes stochastic
transitions and an infinite time horizon, without any specific goal to reach. In this
domain, the problem is defined as a graph of dependencies between N computer nodes.
At each step, any computer can be either online or offline. Online computers have a certain
probability of becoming offline, based on the state of their dependencies, and offline
computers have a chance to spontaneously reset and become online. We investigate two
variants of the problem: In SysAdmin-S (S for Single), the agent can perform a reset(x)
action, that resets a single computer. In SysAdmin-M (M for Multi), the action reset(X)
contains a set parameter X and it reboots an arbitrary set of computers at once. At each
step, the agent is rewarded for each computer that is online at that moment and penalized
for any computer it reboots.

Detailed domain definition

Definition. In the SysAdmin domain, an oriented graph represents a computer network.
The nodes represent the computers C = {c1, c2, ..., cN} and each edge (ci, cj) ∈ E repre-
sents a dependency of cj on ci. At each timestep t, each computer can be either online or
offline. Let ont(c) = 1 if c is online at step t, else it is 0. Let D(cj) = {ci : (ci, cj) ∈ E} be
a set of all computers that cj depends on and let Dont(cj) = {ci : (ci, cj) ∈ E∧ ont(ci)}

be a set of computers that cj depends on and which are online at step t. At each step,
computers that are online have a chance to shut down and offline computers have a
chance to reboot and become online. Without any intervention, the network evolves as
follows:

P
(
ont+1(c) = 1

)
=

0.9 · 1+ |Dont(c)|

1+ |D(c)|
if ont(c) = 1

0.04 if ont(c) = 0

At each step t, an action reset(Xt) can be performed. It resets the targeted computers
Xt, such that ont+1(c) = 1 : ∀c ∈ Xt. Note that it may be reasonable to reset online nodes
to make sure they do not go offline at the next step. At each timestep, the agent receives
a reward:

rt =
∑
c∈C

ont(c) − 0.75 · |Xt|

We investigate two variants of the problem: In SysAdmin-S, only a single computer can
be selected, |Xt| ⩽ 1. In SysAdmin-M, an arbitrary set of computers can be reset.

State and actions. The graph of computers C and static dependencies E constitute
the state. Each computer c has a single bit feature ont(c), determining whether it is
online. The edge orientations represent the dependencies. In SysAdmin-S, two actions
are available: noop and reset(c). The first action does not select any computer to restart,
the second action selects one. In SysAdmin-M, there is only one action reset(X) with a set
parameter X, which allows to select an arbitrary set of computers.

Generation. For each node of a graph with N nodes, from 1 to 3 (uniformly chosen)
other nodes become its dependees.

82 symbolic and relational approach

Figure 5.8: The figure shows normalized results in SysAdmin-S (a single node can be reset)
or SysAdmin-M (multiple nodes can be reset at once). SR-DRL(N) is trained for
the specific N, SR-DRL(10) is a model trained with N = 10 and evaluated in the
particular setting. PROST is a probabilistic planner with either 0.1s or 10s time limit
per step. In SysAdmin-M, PROST cannot determine an action in 0.1s, hence we evaluate
it only with 10s. Note that SR-DRL takes only about 1ms to decide in both -S and -M
variants. Rewards were normalized using baseline algorithms (i.e., to reset a random
offline node in SysAdmin-S or all offline nodes in SysAdmin-M at each step).

Primary results

For each N ∈ {5, 10, 20, 40, 80, 160}, we trained eight SR-DRL agents for 50 epochs (each
epoch being 25 600 environment steps). To see how the model generalizes to scenarios
with a different number of objects, we picked an agent trained with N = 10 and evaluated
it in different problem variations. In each setting, we also measured the performance
of PROST, an MCTS-based probabilistic planner [69, 70], with a time allowance of
0.1 or 10 seconds per step. The planner is evaluated with the preset of International
Probabilistic Planning Competition 2014. We designed two baseline algorithms that we
use to normalize the results: In SysAdmin-S, a random offline node is selected at every
step (or none, if there is not any). In SysAdmin-M, all offline nodes are selected for a
reset at each step. On our reference machine, the training time of the SR-DRL algorithm
is 15/20/30/50/90/150 minutes for N = 5/10/20/40/80/160, respectively. During testing,
the model needs about 1 ms per step.

For both SysAdmin-S/-M, all models are evaluated in 100 problem instances with a 100

step limit. The mean results with a 95% confidence interval are reported in Figure 5.8. The
first observation is that in all instances and both SysAdmin-S/-M, the agent trained with
N = 10 and evaluated for different N performs almost the same as an agent specifically

5.6 discussion 83

offline node
online node

reset
probability

Figure 5.9: In SysAdmin-M, SR-DRL learns to preventively reset nodes that have a high probability
of failure. The graph shows the dependency network and the reset probabilities the
algorithm assigns to the nodes. Read any edge (a,b) as b depends on a.

trained in the respective setting. This result indicates that the policy learned for N = 10

is directly applicable even for N = 160.
When compared to PROST, the SR-DRL algorithm performs similarly in the SysAdmin-

S variation. It performs slightly worse for N ∈ {5, 10, 20}. For N = 80 and 160, SR-DRL
performs slightly better than PROST with 10s per step, while the gap widens when
compared to PROST with a 0.1s step limit. We emphasize that our algorithm needs only
1ms per step to decide, after it is trained. That is, for N ⩾ 80 and 100 step limit, PROST-10s
needs over 16 minutes to solve the problem, while SR-DRL needs only 0.1 seconds and
achieves better performance. This quickly amortizes the training cost, especially since we
have shown that a trained model generalizes almost perfectly to different settings.

In SysAdmin-M, the first observation is that the baseline algorithm is very strong,
and only PROST-10s with N = 5 significantly exceeds its performance. Note that with
N = 10, PROST-10s reaches only 73% of the baseline’s performance. However strange,
this result was confirmed with several repeated experiments. In this setting, PROST
needs to enumerate all action combinations, resulting in O(2N) space complexity, which
becomes infeasible for N > 20. Also, even for lower N, PROST cannot run with less than
5 seconds per step. Comparatively, the SR-DRL algorithm works well even for N = 160.

Additional experiments

In Figure 5.9, we analysed the behaviour of an agent trained in SysAdmin-M to see
whether it simply implements the baseline algorithm (i.e., to always reset all offline
nodes). We found that the algorithm learns to selectively restart even the online nodes if
their failure chance is high (based on the state of their dependencies). However, it seems
that the advantage over the baseline algorithm is not significant.

5.6 discussion

Source of generalization. The presented experiments demonstrated impressive general-
ization to problems with a different number of objects and actions. We hypothesize that
the source of this generalization lies in the biases induced by the model’s architecture –

84 symbolic and relational approach

the GNN and actions operating on the object level. With these, the network can learn
general transformations that are transferable between objects. Moreover, as demonstrated
in SysAdmin, the close neighborhood of any node may be enough to decide the optimal
action for this node. The policy decomposition also helps, because learning several condi-
tional probabilities should be easier than learning a single compound probability. For
example, it may be easier to decide what to do next if a particular node is selected (i.e.,
learning P(a | b) and P(b) independently), as opposed to learning the compound proba-
bility at once (i.e., P(a,b)). Moreover, the learned transformation resulting in P(a | b) is
general and can be immediately applied to all a ∈ V nodes, whereas the transferability
of P(a,b) is not clear.

The global node facilitates information transfer over long distances, since it aggregates
and then spreads information from all nodes at once. This should help in domains that
require non-local, long-distance reasoning. The study of this topic was included in [20],
who found that this approach is limited and may not work in some domains.

Architectural choices. Here we discuss the decisions made regarding the model
architecture and training, and their possible modifications.

Our method is designed for policy gradient algorithms, and any algorithm from this
family can substitute the used A2C. However, value-based algorithms (e.g., DQN [107])
cannot be used, because they do not output probabilistic policy that can be decomposed
in the way we described.

The number of message passes in the GNN has to be tuned for a particular problem.
While in BlockWorld, the method requires five (three passes in the GNN phase, and
additional two for selecting the second parameter), in Sokoban, it behaves best with ten
message passes (see the experiment in Fig. 5.7). This is mainly because Sokoban requires
careful planning and the information has to spread over longer distances.

We tried to keep the model simplistic, keeping the different blocks of the neural
network model as single linear layers with LeakyReLU non-linearities when applicable.
However, it is possible to use multiple non-linear layers as a replacement for different ϕ
functions. The possible result could be improved performance with a longer training.

The used aggregation function in eq. (5.1) is max, but it can be replaced with mean,
sum, or, e.g., a concatenation of both max and mean. In our experiments, max worked
well, but the user may want to try other options.

We used a simple form of attention in the global node to aggregate the information
from the whole graph. However, it can attend only for limited information at a time, and
hence multi-head attention [148] could lead to better results in some domains.

Domain modeling principles. The prevalent description of problems is through
matrices and elementary actions. However, our world is naturally created of objects and
their relations and our framework takes vantage of this fact. Also, low-level planning
is a solved problem in a lot of domains (e.g., how to move a robotic hand to a specific
position), hence we can focus only on the macro level.

Hence, to use our method to its full potential, we believe that the process of domain
modeling should start with identifying its objects, their features and their relations. Let
us borrow the cooking example from the introduction. The objects can consist of various
ingredients (e.g., a tomato or a piece of meat), tools (a knife, a spoon) and other objects
(a cupboard, a frying pan). The relations can code their positions (e.g., the tomato is in
the cupboard, the knife lies on a table and the meat is in the pan).

5.7 chapter conclusion 85

Second, the user has to define the object-centric actions (e.g., open a cupboard, pick
the meat or cut the tomato with a knife).

Finally, the goal encoding can be done in a few ways. If it is static, it can be part of the
reward function, and, in other cases, it can be a part of the input state. In some problems,
it can be encoded in the initial global context. When a specific configuration of the world
is desired and the model should generalize over different goals, it can be encoded as a
separate graph of objects and their relations (marked as goal relations). Then, this graph
can be then joined with the original input graph, as we do in BlockWorld. In our cooking
example, the goal can be a specific configuration in which the meat is cooked and it lies
with the tomato on a plate. After the goal is achieved, the agent receives its reward.

The results of our experiments show that the agent generally learns better in smaller
problems, but generalizes to larger problems. Hence, it is advisable to take advantage of
the fact that the agents can process a variable number of objects and to start small and
teach it increasingly complex concepts with curriculum learning [11].

This object representation is human-friendly and can be easily encoded in our frame-
work. Compared to trying to learn this environment through visual input and elementary
actions (e.g., moving a hand to a position), it is compact, easier to learn and a lot of the
knowledge is transferable between objects, hence the model should generalize better.

5.7 chapter conclusion

This chapter presented a generic framework based on deep reinforcement learning, graph
neural networks and autoregressive policy decomposition for solving relational domains.
The method operates with a symbolic object representation, their relations, and actions
manipulating them. We described a way to implement multi-parameter actions with
mutually dependent parameters, and optionally set parameters that select an arbitrary
objects subset. The action selection operates in linear time and space, w.r.t. the number of
objects. The great advantage of the framework is that the trained models are not fixed to
a specific problem size and can be immediately applied to differently-sized problems.

We demonstrated the framework in three distinct domains, and in all, it showed im-
pressive zero-shot generalization to different problem variations and sizes. In BlockWorld,
the model trained solely with five objects solves 78% of problems with 20 objects, even
though the state space grows exponentially with the number of objects. In Sokoban, we
show that the method can be joined with a low-level planner and control the environment
on its macro-level. When trained solely on 10×10 problems with four boxes, it solves
89% of 15×15 problems with five boxes. In SysAdmin, once trained model transfers
almost perfectly to any other problem size. Moreover, we demonstrated the framework’s
capability to select multiple objects at once with a single action. Comparatively, a widely
used PROST planner cannot work in this setting with a reasonable number of objects
due to its exponential complexity.

Future work may explore how to leverage temporal consistency of the graph represen-
tations with recurrent neural networks, try to apply curriculum learning [11], fine-tuning
to larger domains, or apply the framework to particular problems. For example, when
applied to information retrieval, the graph can represent the currently gathered knowl-
edge with actions upon these objects. Similarly, in automated penetration testing, the
network objects can be represented as nodes, their network connectivity as relations and
actions can define various exploits and scans.

6
C A S E S T U D Y: AU T O M AT E D P E N E T R AT I O N T E S T I N G

In this chapter, we wonder whether the insights gained in previous chapters brought
us nearer to solving the grand challenge introduced at the beginning of this manuscript.
To this purpose, we chose the automated penetration testing domain as a case study and
applied formerly proposed methods to it. Still, this domain presents several challenges on
its own, which require their own solutions, and we discuss them in the following sections.
Specifically, we focus on offensive penetration testing, where a pen-tester (a person or an
autonomous agent) is trying to find and leverage vulnerabilities in a computer network to
extract sensitive information located on some of the running hosts. Artificial intelligence
and machine learning techniques have become increasingly important in this field, and
model-free deep reinforcement learning is an especially promising tool, since deep RL
agents approach the problem in a sequential manner – they gather intelligence, exploit
vulnerable services and move laterally, while trying to avoid detection. While many
approaches using deep RL have been recently proposed in this domain [e.g., 17, 23, 133,
161], they generally have serious shortcomings related to their deployment in real-world
scenarios. To succeed in real-life use, we identify the following properties that the agent
and the training framework must possess and which are often neglected in prior work.

• Generalization: The agent must perform well in unseen scenarios. It is a common
practice to train and test the agents in the same, static network and measure
the number of training steps it takes to learn the optimal path to penetrate this
particular network, which results in agents with zero ability to generalize into novel
situations. However, in the real world, agents would be deployed into a network
with little information about its segmentation, hosts’ configuration and the location
of sensitive information.

• Autonomous termination: The agent must terminate the penetration testing sce-
nario itself. Real-world scenarios, contrary to the commonly used simulations, do
not provide a termination signal when the goal is reached. It is even possible that
the goal cannot be reached or that the agent reaches a partial goal (e.g., it extracts
some of the sensitive information from the network), but this fact is unknown to
the agent (there may be some sensitive nodes left).

• Validation: The framework must provide a way to prove that the trained agents
are capable to operate in the real world. Available simulators [e.g., 103, 133] often
suffer from the reality gap, where the level of the used abstraction makes it im-
possible to deploy the trained agents in real systems, where exploits fail, network
communication is unreliable or other unexpected events occur.

In this chapter, we aim to develop a solution that has these properties as a step closer
to agents that can be deployed in the real world. This problem requires a specialized

Section 6.2 of this chapter is based on [60]. The code for this chapter is in repositories https://github.com/

jaromiru/NASimEmu and https://github.com/jaromiru/NASimEmu-agents.

87

https://github.com/jaromiru/NASimEmu
https://github.com/jaromiru/NASimEmu
https://github.com/jaromiru/NASimEmu-agents

88 case study : automated penetration testing

framework to train agents, but the existing solutions [e.g., 103, 133, 137, 139] do not offer
the features we need, especially regarding the generalization and validation requirements.
Hence, in the first part of this chapter, we present a novel NASimEmu framework
for training deep RL offensive agents with the aforementioned properties in mind.
As a starting point, we adopted an existing NASim simulator [133] and enhanced its
realism and randomization capabilities so that it can generate random scenario variations
differing in the number of hosts and their configuration. Additionally, we implemented
an emulator with the same interface as the simulator, using industry-level tools, such
as Vagrant, VirtualBox, and Metasploit. This approach allows agents to be trained in
simulation and deployed in emulation, thus validating the realism of the used abstraction.

In the second part, we develop autonomous offensive deep RL agents with the gener-
alization goal in mind. In contrast to prior work [17, 161] that focuses on performance
in particular training scenarios, we use the designs from Chapters 4 and 5 to develop
several RL agent architectures that are invariant to input/output length and permutation,
hence allowing the models to operate on different network topologies with arbitrary
number of hosts. These architectures involve weight sharing and inductive biases that
help them perform well in unseen scenarios.

To give the agents the ability to terminate episodes autonomously without an explicit
signal, they can be augmented with a terminal action that is part of their policy and
trained normally, as we do in Chapters 3 and 4. Additionally, we propose an alternative
solution that does not involve a trainable terminal action, and which can replace a strict
episode limit with minimal changes and keeping the same training hyperparameters.

In the last section of this chapter, we perform a thorough evaluation of the proposed
models within our new framework. We establish the supremacy of invariant models to
fully connected architectures when deployed in novel and structurally different scenarios.
Next, we show the importance of the implicit terminal action, evaluate various ablations
and show the behaviour of our models in large-scale random networks. Finally, we
validate our framework with a successful transfer of a simulation-trained agent to the
emulation environment.

The chapter is structured as follows. Section 6.1 discusses the related work. Section 6.2
presents NASimEmu, a novel framework for training deep RL agents, and Section 6.3
describes model architectures and the optimal stopping problem. Sections 6.4 and 6.5
experimentally evaluate the proposed models, using our framework and the chapter
concludes in Section 6.6.

6.1 related work

The existing penetration testing frameworks targetting RL can be separated into simulators
[3, 23, 28, 103, 133, 139] and emulators [15, 83, 137]. However, none of the frameworks
contains both the simulator and emulator that would allow training the agent in the
former and seamlessly deploying it in the latter. We present NASimEmu that includes
both, and by doing it ensures that the used abstraction is realistic. Note that although the
authors of CybORG [139] claim to have developed both the simulator and emulator, the
latter was never published and the authors confirmed via email that its development was
discontinued. Several other frameworks focus on the attacker vs. defender game [15, 45,
46, 104, 108, 139].

6.2 nasimemu framework 89

Recently, large language models (LLMs) [126, 160] have been applied in the automated
penetration testing. This approach promises online learning, precise goal designation
and versatility in overcoming unforeseen challenges, but the proposed models require
orders of magnitude more compute than the approach we propose in this chapter. We
speculate that both worlds could be complementary in future – a deep RL-optimized
policy can act upon what is exactly enumerable and LLMs can provide low-level actions,
such as implementation and execution of custom exploits for specific systems.

In Section 6.3.3, we introduce a novel approach to the optimal stopping problem, where
we want to train a policy that can terminate at any time. Related work [26] focuses on
a problem where the decision is either to continue, or to stop, while the environment
evolves stochastically. This corresponds to a situation with a fixed behavioural policy
that acts, and one only searches for optimal steps when to terminate. However, in our
case, we search for both the optimal stopping policy and the behavioural policy at the
same time, which requires a different approach.

6.2 nasimemu framework

In recent years, a number of frameworks have been created to train deep RL agents. We
surveyed their capabilities and identified important deficiencies. The first issue is that no
existing framework provides means to train deep RL agents efficiently while ensuring
that they can be deployed in real systems. In general, the frameworks can be divided
into two groups, simulators [103, 133] and emulators [83, 137]. Simulators provide an
in-memory abstraction of processes that happen in real computer networks and are
much faster and easier to use than their real counterparts. Deep RL algorithms are
notoriously sample-inefficient, unstable and require large batches to train properly [105,
107, 132]. Hence, simulators are perfect for generating the data these algorithms need,
possibly training multiple agents in parallel and discarding those that fail. However, the
simulators often suffer from the reality gap, where the level of the used abstraction makes
it impossible to deploy the trained agents in real systems. For example, the authors of
CyberBattleSim [103] themselves argue that their framework is too simplistic to be used
in the real world.

On the other hand, emulators are well-grounded in reality, as they use virtual machines
with real operating systems (OSs), services and processes, connected in a virtualized com-
puter network. While they are realistic and provide a controlled way to test autonomous
agents, they are slow and not scalable for the demands of deep RL training.

Second, the metric used to measure the agents’ performance is often ill-defined, which
manifests in the frameworks’ unrealistic design decisions. As already noted, it is common
practice to use the same static network to both train and test agents and to measure
the number of training steps required to learn the optimal path. Given this goal, the
frameworks often do not allow training agents in different scenarios simultaneously
and promote implementing agents that can solve one particular network, but do not
transfer to others. In the real world, the agents would be deployed in unknown and
structurally different networks. Hence, the performance should be measured in separate
testing networks not encountered during the training.

This section presents Network Attack Simulator & Emulator (NASimEmu), a frame-
work designed with the realism-first approach. We implemented a realistic emulator
and adapted an existing NASim simulator [133] to be aligned with the requirements the

90 case study : automated penetration testing

emulator produced. Both the simulator and emulator share the same OpenAI Gym [14]
interface and everything that is possible in one can be done in the other.

Our simulator facilitates training by providing observations that summarize the in-
formation gathered so far. It comes with several predefined scenarios to benchmark
agents and encourages the implementation of general agents by allowing training and
testing in multiple distinct scenarios. Many different networks can be generated from
a single scenario description with random variations in the number of hosts in subnets
and their configuration. The framework does not leak unrealistic information (e.g., the
number of hosts in the observation size) and the episode termination is left to the agent.
Additionally, it comes with a debugging tool to visualize the agents’ knowledge.

Our emulator is based on Vagrant, an industry-level tool for managing virtual networks,
VirtualBox, routing and traffic filtering with a Mikrotik RouterOS host and an attacker
node running MetaSploit. It comes with configurable Linux and Windows machines,
based on Metasploitable3 images, with pre-defined vulnerable services to choose from.
Crucially, the emulator implements an interface common with the simulator, and it
translates agents’ actions into MetaSploit commands and reconstructs observations from
the resulting logs. Any scenario generated for the simulator can be translated to the
emulation with a single command and an agent trained in simulation can be seamlessly
deployed in emulation.

In summary, NASimEmu introduces a new framework that provides both the simulator
and emulator that allows agents trained in simulation to be seamlessly deployed in
emulation and validates the realism of the simulator. Additionally, the framework gives
an incentive to train general agents by generating random scenario instances that vary in
topology, size and configuration and can measure the performance in separate, multiple
and structurally different training and testing scenarios.

6.2.1 Simulator

The simulator is based on Network Attack Simulator (NASim) [133] and it is a memory-
based abstraction of the processes that happen in a real network. It contains hosts with
their configuration and status and simulates the network communication and other
processes, based on received actions. After each action, an observation is returned. Many
simulations can be run in parallel (e.g., in our experiments, we use 128 environments).
Below, we describe the simulator from a high-level perspective and refer the reader to
[133] for additional details. At the end, we list of changes made to the original NASim.

The network is defined by a scenario, which describes the network topology, host
configuration (OS, services, processes and sensitivity), exploits and privilege escalations.
The topology describes the network division into subnets where a firewall blocks all
communication between disconnected subnets and allows it otherwise.

NASimEmu supports three ways of scenario creation. Static scenarios describe precisely
the whole network and hosts’ configuration. Random scenario are completely randomly
generated, based on the prescribed parameters (e.g., size of the network, number of
exploits, etc.). We add support for dynamic scenarios that enhance the variability of static
scenarios. The motivation is to describe prototypical situations, e.g., typical university
or corporate networks, while the details in scenario instances vary. In the real world,
some objects (OSs, services, exploits, etc.) can be listed upfront and stay true in all
scenarios. Dynamic scenarios are partially fixed and some properties are left to chance.

6.2 nasimemu framework 91

last performed action

sensitivity
(node color)

discovered services

access level
(id color)

Figure 6.1: An example rendered observation for debugging purposes. It graphically shows the
discovered nodes, their known services, access levels, sensitivity and the last action.

In particular, the number of hosts in subnets and hosts’ configuration can be randomized,
while the network topology and lists of possible OSs, services, processes, exploits and
privilege escalations stay fixed. The chance that a host is sensitive is determined by a
scenario-defined subnet sensitivity.

During execution, the simulator maintains the current state of the network, which
contains states of each host as a vector specifying the host’s address, flags whether it has
been compromised, reached and discovered, its value, current access level by the agent,
OS and a list of services and processes running on the host.

The following actions are available: Exploit(exploit_id, target), PrivilegeEscalation(privesc
_id, target), ServiceScan(target), OSScan(target), SubnetScan(target), ProcessScan(target)
and TerminalAction. All of the actions target a previously discovered host. Commonly,
the attacker cannot reach its target directly, but must proxy the communication through
other controlled hosts. The simulator abstracts this away and allows an action if a path
to the target exists. We show that the path can be automatically determined even in
emulation. When performing an action, the internal state changes accordingly and a
partial observation is returned. The observation includes only the discovered hosts, and
it summarizes all the information gathered by the agent in the current episode.

There is a small negative reward for each step and a positive reward is only given
when the agent gains privileged access to a sensitive host. The simulator never terminates
an episode unless TerminalAction is received. Simply terminating an episode when
all sensitive hosts are exploited does not correspond to the real world, where such
information is unavailable. Still, the agent’s behaviour can be hard-coded to terminate
after a specific number of steps, or in the way we show in the later sections.

To encourage training for generalization, the simulator accepts multiple scenarios
for training or testing, one of which is randomly chosen for each episode. To ease the
subsequent processing of observations by agents’ models, the sizes of host vectors are
united across all scenarios. However, the overall observation size still varies, depending
on the number of visible hosts and total hosts in the scenario instance. To ease debugging,
the environment also provides an observation visualizer that shows discovered hosts

92 case study : automated penetration testing

Table 6.1: Services, exploits and privilege escalations in the NASimEmu emulator.

service OS port exploit action msf module access exploit IDs

ProFTPD Linux 21 e_proftpd proftpd_modcopy_... user CVE-2015-3306

Drupal Linux 80 e_drupal drupal_coder_exec user SA-CONTRIB-
2016-039

PhpWiki Linux 80 e_phpwiki phpwiki_ploticus_... user CVE-2014-5519

WordPress Windows 80 e_wp_ninja wp_ninja_forms_... user CVE-2016-1209

ElasticSearch Windows 9200 e_elasticsearch script_mvel_rce root CVE-2014-3120

MySQL Linux & 3306 - - - -
Windows

Linux kernel Linux local pe_kernel overlayfs_priv_esc root CVE-2015-1328

CVE-2015-8660

and their services, gained access levels, which hosts are sensitive and the last action (see
Figure 6.1).

Below we summarize the changes made to the original NASim:

• The new dynamic scenarios support random variations while fixing certain objects.

• Agents can be trained or tested in multiple scenarios simultaneously (a random
scenario is chosen from a list in each episode).

• The sizes of host vectors are united across all scenarios.

• The simulator randomly permutes the node and segment IDs at the beginning of
the episode to prevent memorization of fixed addresses.

• Observations keep the revealed information so far to help the agent remember the
results of past actions.

• The environment does not trigger the end of an episode. The agent has to terminate
with TerminalAction.

• The observations are optionally returned as a graph with nodes representing
subnets and individual hosts.

• The observations can be visualized.

6.2.2 Emulator

The emulator is an important part of NASimEmu that uses virtual machines and network-
ing to let the agent interact with a controlled, but real environment. It can substitute the
simulator and contains necessary wrappers to translate agents’ actions into instructions
for the attacker machine, and it reconstructs the observations from the resulting logs.
Having the emulator where simulation-trained agents can be deployed is important, since
it verifies that the simulation abstraction is realistic.

The emulator uses Vagrant to manage a network of virtual hosts. The individual
hosts run in VirtualBox and are based on configurable Metasploitable images. A single
RouterOS instance acts as a router and firewall and segments the network into subnets.
The attacker host runs Kali Linux with Metasploit that is remotely connected to the

6.2 nasimemu framework 93

agent

simulation / emulation
environment

rewards
observations

actions

emulation

observationsactions
RPC
calls

metasploit
controller

observation
converter

vagrant
virtual machines

logs

Figure 6.2: Left: The RL environment of NASimEmu with a substitutable simulation and emula-
tion. Right: The emulator translates agents’ actions to commands for the Metasploit
framework that runs on the attacker machine and recreates observations from the
resulting logs. Simulation-trained agents can be seamlessly deployed in the emulator.

NASimEmu interface (see Figure 6.2). Every action that an agent issues is translated into
a command for the Metasploit framework, executed and the result is processed back
into the NASimEmu observation. Importantly, Metasploit on the attacker machine is
automatically configured to route the traffic to newly discovered parts of the network
through the controlled hosts that discovered them. Hence, the path from the attacker to a
target node can be determined automatically for any action.

The Exploit and PrivilegeEscalation actions are translated into predefined Metasploit
modules (see Table 6.1). The ServiceScan performs a port scan and based on the result, it
may perform additional checks (e.g., connect to and determine installed services on the
HTTP server). OSScan tries to fingerprint the OS of the target. SubnetScan performs ping
sweep from the controlled target machine, where we use the fact that ping is installed by
default both on Linux and Windows. Since we currently do not implement any processes
in NASimEmu, ProcessScan does nothing. In future versions, it would return a list of local
processes that can be leveraged through privilege escalation. TerminalAction is a meta
action that is not translated, but instead instructs the framework to end the process.

It is possible to extend NASimEmu with new services, processes or exploits. Services
or processes require installation and start scripts and the detection procedure needs to
be implemented for the ServiceScan or ProcessScan actions. For exploits and privilege
escalations, Metasploit must contain the corresponding modules and action and observa-
tion converters that control Metasploit and reconstruct observations from logs must be
implemented. Finally, a unique identifier for the new service, process, exploit or privilege
escalation has to be added to a scenario description.

Currently, NASimEmu supports configurable Linux and Windows machines. We have
implemented six services, five of which are exploitable and Linux machines are vulnerable
to a privilege escalation attack (see Table 6.1 for the complete list). The sensitive data is
modelled as a specific file at the root of the filesystem (/loot or c:/loot). It contains a
unique string and is accessible only by the privileged user, although the file is visible
by any user. Hence, the agent can determine whether the host contains the sensitive
information when it gains any access, but can recover it only through the privileged user.

Any NASimEmu scenario can be instantiated into a Vagrantfile descriptor. Upon user
command, the network is populated with virtual machines and their services are disabled
or enabled as defined in the descriptor. For example:

94 case study : automated penetration testing

NASimEmu$./setup_vagrant.sh scenario.v2.yaml

NASimEmu/vagrant$ vagrant up

Bringing machine ’router’ up with ’virtualbox’ provider...

Bringing machine ’attacker’ up with ’virtualbox’ provider...

Bringing machine ’target10’ up with ’virtualbox’ provider...

Bringing machine ’target40’ up with ’virtualbox’ provider...

[...]

6.2.3 Known limitations

We strive to be transparent about the capabilities of our framework. Despite the efforts
to make NASimEmu realistic, it still comes with a few shortcomings associated with
the level of abstraction in the simulation. We hypothesize that most of the issues can be
removed by modifying the simulation, but leave it to future work.

• Different versions of the same service can be modelled with unique identifiers and
in the emulation, the controller needs to fingerprint these services. However, our
implementation does not currently cover the case where it is not possible to tell
service versions apart.

• NASimEmu creates scenario instances where the hosts’ configuration is indepen-
dently randomized. In reality, the configurations are likely to be correlated to other
hosts in subnets. While NASimEmu builds upon NASim [133] and can generate
correlated host configurations for totally random scenarios (i.e., when the topol-
ogy, hosts’ configuration and even OSs, services, processes, exploits and privilege
escalations are randomly generated), it cannot be yet done for the new dynamic
scenarios, where certain objects stay fixed.

• The abstraction of NASimEmu does not include storing and using discovered
credentials. We hypothesize that their inclusion should be possible, e.g., by taking
inspiration from [103].

• When an agent performs an exploit, it is assumed to work with certain probability,
if there is a corresponding service running on the host. In reality, this is not always
the case – services may be configured in various ways or patched, causing exploits
to always fail.

• The firewall currently blocks or allows all traffic between subnets, based on the
network topology. With this assumption, the agent can specify only the action
target, while the source is determined automatically (it is the path the host was
discovered from). However, in real networks, firewalls may block only certain ports,
while allowing them from different sources.

• In NASimEmu, only the attacker is modelled. Honeypots can be modelled in the
network with a negative reward, but an adversarial defender currently cannot.

6.3 deep rl agents 95

6.3 deep rl agents

In this section, we design deep RL-based agents for the penetration testing problem
with the architectures proposed in former chapters that are input permutation and size
invariant. Specifically, we use MIL architecture inspired from Chapter 4, GNN-based
architecture from Chapter 5 and, additionally, we implement Attention-based architecture
[148]. We formalize two action selection variants – one based on concatenating outputs to
a single matrix, as done in Chapter 4 when selecting a feature from a set of objects, and
decomposed version, as proposed in Chapter 5. For comparison to common approaches,
we implement multi-layer perceptron (MLP). We also show how to encode the last
performed action in the input, and discuss recurrent memory. Finally, we introduce a
novel approach to the optimal stopping problem, i.e., when to terminate the episode in
case the environment does not provide such a signal, without a trainable terminal action.

6.3.1 Architectures

For agents to be successful in scenarios unseen during training, they must contain useful
inductive biases, which can be provided with weight sharing and size-and-permutation
invariance wrt. the hosts. Further, it may be beneficial to be aware of the subnet connec-
tions and remember the results of past actions. Invariance is important to support the
ever-changing topologies of different scenarios. Awareness of segment connections is
required to tell the scenarios apart. Memory is beneficial, because some action results are
not reflected in observations. In this section, we propose several architectures, some of
which are based on monolithic feed-forward networks (MLP), while others include weight
sharing (MIL, GNN and Attention). Refer to Figure 6.3 when reading their description.

MLP (multi-layer perceptron, Fig. 6.3a) is a simple, fixed-architecture feed-forward
neural network. The observed host feature vectors are concatenated and zero-padded to
the limit of 30 hosts. The input is processed with two non-linear fully connected layers.
The output is processed with two separate heads. The first one is a linear layer outputting
the state value and the second is a softmax layer followed, outputting probabilities for all
possible actions (with size 30× action_dim). The actions corresponding to the padding
are masked out, so that the model can choose only from the available actions. The MLP
model has several drawbacks. It has a limited capacity, its input is inherently ordered,
and each of the input host vectors is treated uniquely, with its own model weights. Hence,
transformations learned for a host vector in one position are not applicable to different
positions. Further, because of the padding, different parts of the network receive different
amounts of training.

All other architectures described below use weight sharing and are permutation
invariant, i.e., the input order does not influence the results. These properties provide
an inductive bias, since anything learned about one host can be directly applied to
another, and enable the models to process an unlimited number of hosts. To preserve the
information about the order the hosts were discovered, which informs the agent about
its attack path, where it entered the network and which hosts it discovered last, the input
is augmented with sine-cosine positional encoding [148], in the order of discovery. Note
that the MLP can implicitly access the same information because its input is ordered in
the same way. Moreover, this positional encoding is not applicable to the MLP, since it
would append the same constant to every input, which can be reduced to a scalar bias.

96 case study : automated penetration testing

ϕMLP

state s

V (s)
padding mask

P (n, a)

} {
ϕemb

agg.

state s

concat

ϕinner

V (s)

select
action

∼ pos. emb.

(a) MLP (b) MIL

ϕemb

agg.
V (s)

self-attn.

select
action

state s

∼ pos. emb.

concat

ϕemb

V (s)

GNN

global
embedding

select
action

state s

∼ pos. emb.

graph
structure

(c) attention (d) GNN

ϕact

action values

concat
softmax} P (n, a)

P (n) P (a|n)

× =P (n, a)

ϕact n

ϕact a

(e) matrix action select (f) compound action select

model layers parameters notes

MLP 3 180k limited to 30 hosts

MIL 3 13k

GNN 5 91k uses network structure

Attention 3 22k

Figure 6.3: Used architectures. MLP has limited capacity, its input is padded and output masked.
Input for other architectures includes order of nodes’ discovery in their positional
encoding. Their output can be either in matrix form (e), or compound form (f). GNN
uses information about subnet connections. The table shows model sizes for the matrix
action variants, the number of layers includes embedding and output layers.

MIL (Fig. 6.3b) is a model inspired by the Multiple-Instance Learning algorithm (see
Section 2.3) – the embedding part of the model used in Chapter 4, but without the
hierarchy. It processes each host feature vector individually with a shared embedding
function, implemented as a single non-linear layer. The outputs are aggregated with their
concatenated element-wise mean and maximum and processed with a single non-linear
layer (ϕinner). This aggregation is concatenated back to the hosts’ embeddings. Parallelly,
the aggregation is used to compute the state value, with a single linear layer.

There are two possible action selection mechanisms for MIL and all further architectures.
First, the matrix action selection (Fig. 6.3e) simply concatenates all output rows (there is
one for each host in the input), and processes them with softmax (equivalently to eq. 4.2),
resulting into P(n,a), joint probability of selecting the node n and the specific action a

(e.g., ServiceScan or ExploitProFTPd). This corresponds to the feature selection mechanism
from a set of objects in Chapter 4. The second possibility is compound action selection

6.3 deep rl agents 97

(Fig. 6.3f, eq. 5.4), that processes the output with two separate functions (ϕact_n and
ϕact_a), which produce factored probabilities P(n) and P(a | n). The final probability is
then computed by their product, P(n,a) = P(a | n)× P(n). This is the decomposition
described in Chapter 5 with inverted arguments – first, the node is selected and then,
based on this selection, the particular action is chosen.

GNN (Fig. 6.3d) uses graph neural networks to process not only the individual hosts’
embeddings, but also the computer network structure – the observed subnet connections.
Its input is a graph including the information shown in Figure 6.1, and we use the
architecture described in Chapter 5, with three message passes. The output is a single
embedding vector per each node in the input, and a global embedding, which is used to
compute the state value with a linear layer. This is the only architecture that has access
to the information about subnet connections, in addition to all the information other
architectures have.

Finally, Attention (Fig. 6.3c) uses self-attention [148] to exchange information between
individual hosts. After the embedding non-linearity, we use a single attention layer with
two heads. Additionally, we concatenate the original embeddings back to the computed
attention results. To produce the state value, we aggregate the attention results in the
same way as in MIL, and process them with a linear layer. We deviated from the standard
implementation of the transformer block described by Vaswani et al. [148] – first, to make
the architecture as close to MIL as possible for better comparison, and second, because
we observed better performance. Traditionally, skip connections are used instead of the
concatenation and the model includes a layer normalization [5], which we do not use.

6.3.2 Last action encoding

To better inform the agent about the past, we encode the last performed action into the
input. We add a {0, 1}n vector to each host’s features, where n is the number of possible
NASimEmu actions (e.g., SubnetScan or ExploitProFTPd). Since only one action targetting
a single host is made at each step, the encoding for the targetted host contains a single 1

that indicates which action was performed and all other values, for all other hosts, are
zero.

As a more sophisticated way, one of the internal layers can be replaced with a recurrent
memory layer, e.g., long short-term memory (LSTM) [54] or gated recurrent unit (GRU)
[21]. For MLP, one of the layers has to be replaced with the recurrent layer. For MIL,
we propose to include it in place of ϕinner. For GNN, one can make the ϕglb in eq. 5.3
recurrent in the pre-last message passing step. For Attention, it is unclear where to put
the recurrence, hence we do not provide any recommendation. Note that with recurrence,
one should always use the last action encoding, as described before, to inform the model
about which actions were taken in the past.

6.3.3 Optimal stopping problem

Usually, it is the responsibility of the environment to provide the agent with a stop
signal (e.g., the original NASim [133] works this way). However, it is unrealistic, and
hence the NASimEmu framework does not provide such a signal and lets the agent be
responsible for the termination. While it is possible to simply augment the action space

98 case study : automated penetration testing

with a terminal action aT and leave the training to the original training algorithm (as we
did in Chapters 3 and 4), it requires careful fine-tuning of the exploration to avoid early
convergence to a local minimum – otherwise the agent quickly learns to stop immediately,
and to never explore.

In this section, we offer an alternative method. In our problem, every step incurs a
small cost, and the only positive reward is given when the agent successfully gains
control of a sensitive host. On the other hand, terminating in any situation would yield
a total future reward of 0. Let πT be an optimal policy that can terminate at each step.
Such policy would terminate exactly if its value VπT(s) ⩽ 0, since, in such a situation, the
best possible action would be aT . Given this insight, we propose the following algorithm.
Let π be the original policy that is being trained, then the policy πT behaves as:

πT(s) =

{
aT if V̄πT(s) ⩽ 0

a ∼ π(s) otherwise
(6.1)

where V̄πT is a state value function, which returns the value of a policy that behaves like
π in state s, and like πT afterwards, i.e., under a policy that enforces a single non-terminal
action, but can terminate later:

V̄πT(s) = E
r,s ′∼t(s,a)
a∼π(s)

[
r+ γVπT(s)

]
; V̄πT(T) = 0 (6.2)

Finally, let VπT be the correct state value function of πT , i.e., of the policy that can
terminate immediately:

VπT(s) = max
(
0, V̄πT(s)

)
(6.3)

The original training algorithm (A2C or PPO) can be used directly with πT , which
means updating π when VπT(s) > 0 and skipping the training step otherwise. Note that
VπT(s) from eq. (6.3) needs to be used to compute the advantage function in eqs. (2.7) or
(2.11), and its value can be easily computed given V̄πT(s). Finally, the model needs to
output an estimate of V̄πT , and it needs to be updated according to eq. (6.2). Note that if
we remove the aT option in (6.1) and the max from (6.3), we recover the original training
algorithm.

Using the policy πT , removes the complexity of learning additional parameters for
the terminal action. However, it does not alleviate the need for careful exploration, since
such a policy would most certainly never learn. Because the initial VπT is close to zero
for most states, πT would prematurely issue aT in most cases.

Therefore, we propose to enforce the exploration by disabling the aT action for some
number of epochs at the start of the training. However, this leads to biased gradient
estimates, since we train a policy that cannot terminate, with a critic of a policy that can.
As we show in Section 6.5.2, such bias does not hinder the training in practice. One needs
to be careful to let the policy train sufficiently with disabled aT , since after enabling it,
the policy πT abruptly cuts off all regions of the state space where V̄πT(s) ⩽ 0.

While this method removes the requirement for an elaborate exploration schedule
(e.g., complex annealing of the αh parameter) it introduces a new hyperparameter –
the length of the initial training with disabled aT . However, we find the setting of this
hyperparameter to be simple, and can even be done automatically – when the training
performance begins to culminate, it is the signal to enable the terminal action.

6.4 experiment setup 99

Attacker

A: private_wifi
nodes=[1], sens=0.0

B: public_servers
nodes=[1-4], sens=0.0

C: study_dept
nodes=[1-6], sens=0.0

D: it_maintenance
nodes=[1-6], sens=0.0

E: employees
nodes=[2-9], sens=0.0

F: classrooms
nodes=[3-10], sens=0.0

G: db
nodes=[1-4], sens=0.5

H: hpc
nodes=[2-6], sens=0.2

I: backup
nodes=[1-4], sens=0.9

Attacker

A: private_wifi
nodes=[1], sens=0.0

B: public_servers
nodes=[1-4], sens=0.0

C: intranet_servers
nodes=[1-4], sens=0.0

D: hr
nodes=[1-6], sens=0.3

E: employees
nodes=[2-9], sens=0.3

F: management
nodes=[1-4], sens=0.5

G: db
nodes=[1-4], sens=0.3

H: it_maintenance
nodes=[1-4], sens=0.0

(a) university (b) corporate

Figure 6.4: Two scenario blueprints used in our experiments – we use university for training, and
corporate for testing. As we are not interested in performance in one static scenario,
but rather generalization capabilities of the trained agents, we introduce random
variations in the actual generated instances. They differ in details, such as concrete
configurations of hosts, which hosts are sensitive and also how many hosts are in
individual subnets.

6.4 experiment setup

This section describes the scenarios, exact implementation, baseline algorithm and the
metric used in the experiments.

6.4.1 Scenarios

To see how the agents perform in environments they were not trained in, we defined
two prototypical scenarios, university and corporation, visualized in Figure 6.4. In both
scenarios, the network is segmented into subnets typically found in the corresponding
real environments and some of them contain sensitive information. As often found in
real networks, the scenarios do not follow the perfect blueprint and best practices, but
contain firewall misconfigurations and other mistakes, allowing the attacker to move
within the network.

Both scenarios share some similarities, but differ in their topology, location of sensitive
information and subnet sizes. Note that generated scenario instances differ in hosts’
configurations, sensitivity and the number of hosts in individual subnets. In our
experiments, we use university as the training scenario and corporation for testing. Ideally,
the agent should learn a general strategy that will be viable in both.

In the university scenario, the agent starts with an access to private_wifi subnet, which
is connected to public_servers. This represents a demilitarized zone (DMZ), which
would contain services such as intranet HTTP or SMTP servers, etc. However, due to
misconfigurations, it is directly connected to study_dept, employees and it_maintenace

subnets. These subnets do not contain any sensitive information themselves, but are
selectively connected to further subnets (classrooms, hpc, backup and db), and in some
of them, hosts contain valuable data.

100 case study : automated penetration testing

In the corporation scenario, the agent also starts with access to private_wifi, con-
nected to public_servers. This time, the firewall only allows further connections to
it_maintenance, which is connected to intranet_servers and sensitive db. The sen-
sitive data is located in subnets hr, employees, management and db, accessible from
intranet_servers.

Available exploits and privilege escalations are defined in Table 6.1, hosts’ configuration
is randomized., and exploits succeed with a probability of 0.8, which is closer to reality
where exploits can fail due to network failures, internal working of OS, etc. The MySQL
service runs on all sensitive nodes, and, with a 10% chance, on non-sensitive nodes.

6.4.2 Implementation details

We used AdamW optimizer [94] with a weight decay of 1× 10−4 and the PPO algorithm
(Alg. 2.1) with parameters K = 3, T = 8, ϵ = 0.2 to optimize the models. Batches were
made of 128 environments simulated in parallel. For non-linearities, we used LeakyReLU
[96]. The target network parameter is ρ = 0.1 and the critic learning coefficient is
αv = 0.033. Gradients’ norms were clipped at 3.0. The learning rate was scheduled
exponentially, starting from 0.003 and lowering by factor 0.5 every 25 epochs to the
minimum of 1× 10−4. Exploration parameter αh was scheduled in the 1

T manner, starting
at 0.3, and lowering by T every 10 epochs, to the minimum of 0.003. Intermediate layers
output embeddings of size 64. The GNN model used 3 message passes. The complete code
for all model variations is available at https://github.com/jaromiru/NASimEmu-agents.

6.4.3 Baseline algorithm

For better comparison, we designed a baseline strategy that brute-forces the network by
scanning and exploiting every node, escalating privileges on sensitive nodes, scanning
for subnets once in each new subnet and terminating when no other action is possible.
While this baseline is unrealistic for real networks that can contain defence mechanisms,
it provides a good comparison to our algorithms. While it collects all possible sensitive
information from every network, it generally uses an excessive number of actions. We
assume that the trained algorithms would be able to exploit the network structure and
other information to proceed in a more sophisticated way, and hence achieve higher
reward in fewer steps.

6.4.4 Metrics and setup

For each method, we perform six runs and report the average ± one standard deviation of
the top three runs, since deep RL is inherently unstable, some runs can fail and selecting
the top few runs is a common practice [105]. At each epoch, we evaluate the runs in 100

episodes and report the average achieved reward and episode lengths. The episode step
limit is set to 100, and, unless stated otherwise, we force the algorithm to use the whole
step limit during the first 30 epochs, and then enable the terminal aT action.

The training of one model (200 epochs) took about 15 hours using two threads of Intel
Xeon Scalable Gold 6146 3.2 GHz CPU and 4 GB of RAM. No GPUs were used during
the training.

https://github.com/jaromiru/NASimEmu-agents

6.5 experiment results 101

0 25 50 75 100 125 150 175

−10

0

10

20

30
av

er
ag

e
re

w
ar

d

MIL train / test

MLP train / test

baseline train / test

0 25 50 75 100 125 150 175
epoch

40

60

80

100

120

ep
is

o
de

le
ng

th

Figure 6.5: Generalization experiment. MIL and MLP models were trained in university scenarios
and tested in corporate scenarios. The terminal action was enabled after the first 30

epochs. Average of top-3 runs ± one standard deviation.

6.5 experiment results

In this section, we investigate the behaviour of the proposed deep RL models from various
points of view. We explore their generalization capabilities, analyse their behaviour
and test different model variants to understand them in detail. Further, we investigate
whether the termination method presented in Section 6.3.2 is valid and scalability to
large computer networks. Finally, we demonstrate the transfer of a simulation-trained
agent to emulation.

6.5.1 Generalization to novel scenarios

The first experiment focuses on the agent’s ability to generalize beyond its training data.
Specifically, we want to test the hypothesis that the invariant architectures are better
suited for generalization than fully connected networks. For this experiment, we selected
the MIL model to represent the invariant architectures and compared it to the MLP model.
Both models were trained with implicit aT , matrix action output, last-action embedding
and no recurrence in random instances of the university scenario (training) and we observe
its performance in the corporate scenario (testing). Additionally, we analyse the agent’s
behaviour in selected episodes.

Figure 6.5 shows that the MIL model outperforms the MLP architecture both in
training and testing scenarios. The results show that the invariant architecture learns
faster, achieves better results and also generalizes better to novel scenarios not seen
during the training. We attribute these qualities to the weight sharing of MIL (all nodes
are processed with a shared function) and the associated inductive bias. Interestingly,

102 case study : automated penetration testing

[2 0] service_scanSubnet 2
[2 0] e_elasticsearch

elasticsearchSubnet 2

(1) entry node scanning (2) exploiting ElasticSearch

[2 0] subnet_scan
elasticsearchSubnet 2

[2 0]
elasticsearch

Subnet 2

[4 0] service_scan

Subnet 4

(3) scanning the network from [2, 0] (4) service scan on [4, 0]

[2 0]
elasticsearch

Subnet 2

[4 0] e_drupal
drupal

Subnet 4

[2 0]
elasticsearch

Subnet 2

[4 0] subnet_scan
drupal

Subnet 4

(5) exploiting Drupal (6) scanning the network from [4, 0]

[2 0]
elasticsearch

Subnet 2

[4 0]
drupal

Subnet 4

[6 0] e_wp_ninja

Subnet 6

[2 0]
elasticsearch

Subnet 2

[4 0]
drupal

Subnet 4

[6 0] subnet_scan
elasticsearch, ninja

Subnet 6

(7) blindly exploiting WordPress (success) (8) scanning the network from [6, 0]

[2 0]
elasticsearch

Subnet 2

[4 0]
drupal

Subnet 4[5 0]
Subnet 5

[6 0]
elasticsearch, ninja

Subnet 6

[8 0] service_scan

Subnet 8

[2 0]
elasticsearch

Subnet 2

[4 0]
drupal

Subnet 4[5 0] e_drupal
Subnet 5

[6 0]
elasticsearch, ninja

Subnet 6

[8 0]
drupal, phpwiki

Subnet 8

(9) service scan on [8, 0] (10-13) blindly trying 4 exploits (success)

Figure 6.6: Example run of a trained MIL agent, evaluated in a novel corporation scenario. From
step (7) on, the agent encounters situations not present in training data, but proceeds
gracefully. At steps (7) and (10-13), it chose not to perform a service scan, but rather
to run exploits blindly – a viable, but suboptimal strategy. Within these 13 steps,
the agent did not discover any sensitive hosts, but demonstrated successful lateral
movement. Note that the subnet labels are obfuscated to avoid their memorization.

6.5 experiment results 103

0 25 50 75 100 125 150 175

−10

0

10

20

30
av

er
ag

e
re

w
ar

d
(t

ra
in

)

MIL w/ aT
MIL w/o aT
MIL trainable aT
aT enabled

baseline

0 25 50 75 100 125 150 175
epoch

40

60

80

100

120

ep
is

o
de

le
ng

th
(t

ra
in

)

Figure 6.7: Training performance of the MIL model with the implicit terminal aT action (Sec. 6.3.3),
without it and with a trainable aT . The top graph shows the average reward per step,
and the bottom shows episode lengths. The terminal action was enabled after the first
30 epochs. Average of top-3 runs ± one standard deviation.

the baseline strategy outperformed MIL in testing scenarios. This can be explained by
learned biases that do not transfer well (e.g., locations of sensitive subnets). Moreover,
the baseline algorithm unrealistically expects that simply exploiting all possible nodes is
a feasible strategy, which will most certainly not be the case in real networks that may
contain defence mechanisms. Taking fewer steps to achieve the goal is therefore desirable
– while baseline finished testing scenarios with 89 steps on average, MIL needed only 61.
In training scenarios, the difference is even larger, 117 steps compared to 37.

To assess the quality of the transfer, we analysed the behaviour of a selected model in
a particular instance of the corporate scenario. Figure 6.6 shows how the agent proceeds
in the first 13 steps. First 6 steps could be generated within the training scenario, but
from step 7, the agent encounters novel situations – no university scenario instance can
result in such observations. This run shows that the agent grasps the new situations
gracefully. We can deduce that the agent has learned general concepts that can be used in
any scenario – scanning and exploiting nodes, lateral movement and scanning for other
subnets. But it also learned scenario-specific concepts, such that it prioritizes nodes with
an active MySQL service (sensitive nodes always have this service running), and, if it
finds a sensitive node, it prioritizes nodes in the same subnet (sensitivity in a particular
subnet is highly correlated). This is consistent with our expectations, and we note that no
model can be absolutely general – certain biases are important for good performance, as
proposed by the no free lunch theorem [155].

104 case study : automated penetration testing

6.5.2 Training to terminate

In the next experiment, we investigate whether the agent learns to stop using the terminal
aT action. We compare three algorithm variants – one using implicit, computed aT action
(the action is executed when if V̄πT ⩽ 0, as in Section 6.3.3), one with explicit, trainable
aT action (the action is part of the trained policy), and an algorithm without aT action
(i.e., it always runs for 100 steps). To enforce exploration, the first two algorithms are
forced to run for 100 steps in the first 30 epochs. After that, the terminal action is enabled.

Let us first discuss a possible issue with the implicit aT algorithm. Both A2C and PPO
are on-policy algorithms, and require the critic (i.e., the value function used to compute
advantage A(s,a)) in eq. (2.7) or (2.11) to estimate values according to the current policy
π. Additionally, it requires the transitions in the expectation to be sampled from the
distribution generated by π. However, the implicit algorithm actually uses the value
function from eq. (6.2), which is aligned with a policy that can terminate at any point.
This is not true during the first 30 epochs, where the algorithm is forced to run for 100

steps in every episode. This misalignment between the critic and the sampled trajectories
is a potential source of instability, because the gradients become biased.

With the explicit aT algorithm, there is a different issue. The π(aT | s) is an output
of a neural network, which stays uninitialized during the first 30 epochs. Moreover, all
π(· | s) outputs are mutually linked, due to the softmax computation. After 30 epochs, the
π(aT | s) output is abruptly enabled, causing training instabilities. Note that this issue
can be mitigated in the way used in Chapter 4 – enabling the aT action from the start
and precise control of the exploration parameter αh. This, however, requires extensive
hyperparameter tuning, including the decay schedule of αh.

Finally, the algorithm without the terminal action does not suffer from these issues.
It is, however, unable to terminate and always has to use all 100 steps in each episode,
which can result in degraded performance.

Figure 6.7 shows the results. The algorithm with the implicit aT gradually improves
performance during the first 30 epochs where the performance culminates, only to start
improving again when the aT action is enabled. The average number of actions required
for each episode stabilizes at around 40, which proves that the use of aT is critical. This
result demonstrates that the algorithm works in practice, despite it being off-policy.

The other two algorithms train exactly the same for the first 30 epochs, after which
the performance explicit aT algorithm abruptly degrades and never recovers. We also
experimented with the version when aT is enabled from the start, but we were unable to
find the right exploration schedule to reach the performance of the implicit aT algorithm.
However, we note that it should be possible, as demonstrated in Chapter 4.

We conclude that the implicit aT algorithm works in practice, and is a plug-in sub-
stitute for the version without the terminal actions, since it shares exactly the same
hyperparameters and configuration.

6.5.3 History matters

The observations returned by NASimEmu aggregate all the information that was revealed
within the episode, which includes discovered hosts, their configuration, status and
observed services or the hosts’ discovery order (in their positional encoding).

6.5 experiment results 105

Table 6.2: Average reward ± one std. of MIL model with states augmented with the last action
embedding, without it and with a recurrent GRU layer.

algorithm train reward test reward

baseline 26.2 29.3

MIL with last action embedding 31.8 ± 1.7 16.1 ± 1.2

MIL with last action embedding + GRU 21.4 ± 15.1 12.3 ± 8.7

MIL without last action embedding 28.3 ± 0.8 3.0 ± 0.8

However, this does not include the complete history required for optimal decision-
making. For example, the results of some actions do not change the observation – failed
exploits or subnet scans with empty results do not reveal anything new. Similarly, the
exact order of past actions and the number of repeated exploit or privilege escalation
attempts is not preserved.

To determine whether such history, and in which detail, is required for good perfor-
mance, we designed the following experiment. We train an agent with the observations
provided by NASimEmu (which contain the aggregated history), an agent augmented
with the embedding of the last performed action (as specified in Section 6.3.2), and the
same agent additionally augmented with GRU memory. The GRU has a single layer and
replaces the ϕinner function of MIL (see Figure 6.3b).

Table 6.2 shows the results. While the agent without the last action embedding per-
forms comparably to the agent with such an embedding in the training scenarios, its
performance is much worse in the testing scenarios. This demonstrates that at least partial
knowledge of history is crucial for good generalization. When analysing individual traces,
we discovered that the agent with the last action embedding uses the knowledge not to
repeat failed exploits, or not to scan for the same subnet twice in a row.

Adding GRU made the training unstable, which can be seen from its high variance. We
noticed that with recurrence, the training is generally slower and hence the exploration
phase (first 30 epochs) may be too short. That is, if the agent does not learn a good value
estimate during the first 30 epochs, it may happen that enabling terminal action results
in premature episode terminations, since the value of most states would be lesser than
0. Hence, we tried prolonging the initial exploration phase to 50 epochs, but it did not
result in improved performance.

However, the top-1 performance of the GRU-enhanced model (not shown) was slightly
better than without the recurrence. It is possible that the algorithm can be tuned to be
stable and to provide consistently good performance, but we leave it for further research.
We conclude that in practice, the last action embedding is sufficient for good performance
and generalization, while offering good stability during the training.

6.5.4 Other architectures

We have already established the fact that the MIL invariant architecture achieves better
performance than the MLP model in Section 6.5.1. In the following experiment, we
compare MIL with other invariant architectures, namely GNN and Attention, as defined
in Section 6.3.1. Moreover, we analyse how the matrix action representation compares to

106 case study : automated penetration testing

Table 6.3: Comparison of MIL, GNN and Attention invariant architectures in two variants – with
matrix and compound action representation. Average reward ± one standard deviation.

algorithm train reward test reward

baseline 26.2 29.3

MIL (matrix) 31.8 ± 1.7 16.1 ± 1.2

MIL (compound) 29.9 ± 0.9 18.1 ± 1.4

GNN (matrix) 30.7 ± 2.7 16.4 ± 3.5

GNN (compound) 14.4 ± 12.2 7.0 ± 9.3

Attention (matrix) 32.5 ± 0.3 17.2 ± 1.0

Attention (compound) 31.3 ± 0.2 15.9 ± 1.7

its compound variant. Our hypothesis is that since the model with the compound action
learns factored probability P(a | n)× P(n) = P(a,n), where a is the particular action to
perform (e.g., ServiceScan or ExploitProFTPd) on a node n, it should generalize better than
model that directly learns P(a,n). However, its architecture is more complex, which may
impede training. For all variants, we use implicit aT enabled after 30 epochs, last-action
embedding, no recurrence and the same hyperparameters and configuration.

Results in Table 6.3 indicate that there are only minor differences between all architec-
ture variants in their asymptotic performance, both in the training and testing scenarios.
Only GNN trained slower initially, and although we prolonged the exploration phase
for the GNN with the compound action selection to 50 epochs, its training was unstable
(however, the top-1 model performed comparably to others).

6.5.5 Scaling to large networks

The previous university and corporation scenarios had a moderate number of hosts (up
to 50), and contained a relatively small number of possible OSs, services, processes and
corresponding exploits and privilege escalations. In the following experiment, we are
interested in whether our approach can scale to more complex problems, especially
problems where there are more configuration variations. We leverage the capability of
NASimEmu to generate random instances that vary in subnet sizes, hosts’ configuration
and location of the sensitive information. These instances contain 38 randomly configured
hosts, split into subnets, each containing 4-6 hosts. The first subnet represents DMZ and
always contains only a single, sensitive host. The rest forms a binary tree connected to
the DMZ subnet. One random subnet is selected, and its hosts are set to be sensitive with
80% probability. There are 4 possible OSs, 10 services and 4 processes, and the exploits
and privilege escalation have 80% probability of success.

Although these scenarios do not correspond to real-life situations, it is useful to test the
agent quantitatively. The goal is to gain access to DMZ, search for the sensitive subnet,
exploit all of its hosts, escalate privileges on the sensitive ones (gaining user-level access
reveals whether the host contains sensitive information, but it can be accessed with root-
level access only) and terminate. Due to randomness, it is possible that some or all of the
sensitive nodes are unreachable. Thus, this experiment also examines the agent’s ability
to terminate when such a situation occurs. The larger number of host configurations

6.5 experiment results 107

0 25 50 75 100 125 150 175
epoch

0

20

av
er

ag
e

re
w

ar
d

MIL reward / ep. len.

baseline reward / ep. len.

100

150

200

ep
is

o
de

le
ng

th

Figure 6.8: The scaling experiment. The graph shows the average reward and episode lengths of
MIL and baseline algorithms in large, randomly generated scenarios. Terminal action
was enabled after the first 100 epochs. Average reward / episode lengths ± one std.

resulted in longer episodes and slower training than in university or corporation scenarios,
therefore we increased the episode step limit to 200, and also we prolonged the initial
exploration phase (disabled aT) to 100 epochs. All other settings were left the same.

Note that the models trained previously in the university scenario cannot be used in this
experiment, because the random instances contain different sets of services, processes,
exploits, etc. (however, these are the same for all random instances). Figure 6.8 displays
training progression of MIL. It shows that the model learned a policy that is better than
the baseline, both in the achieved reward and the number of steps required to finish each
episode, thus confirming that our approach scales to more complex problems.

6.5.6 Transfer to emulation

In this qualitative experiment, we are interested in whether a simulation-trained agent
can be deployed in emulation. If so, it suggests that the simulation is a valid abstraction
of the real world. We trained a MIL model in specific scenarios containing 5-11 hosts,
similar to university and corporation, and then instantiated one training instance in the
emulator. This instance contained 10 virtual hosts, including the router and the attacker
nodes, and it was emulated on a single consumer-grade machine.

Listing 6.1 shows the output from the run. It has been slightly modified for readability,
commented and shows the first 17 steps, until the agent exploits a sensitive node. To
better understand the process, we provide a brief description of the appearing classes.
EmulatedNASimEnv is the OpenAI Gym wrapper that receives raw actions from the model
and forwards them to EmulatedNetwork, a high-level virtual network abstraction. Also, it
creates observations from the log results. The action is translated into single or multiple
calls to Metasploit, performed by MsfClient. Note that the scenario description is given
to the agent just to inform it about what OSs, services, processes, exploits and privilege
escalation are available. However, no information about the network itself is used.

The experiment found that while there were small discrepancies between the simulation
and emulation, the agent was able to perform credibly in the emulation. Specifically, it
was able to scan and exploit individual hosts and pivot through the network to gain
access to firewalled parts. In the following description, we reference the steps from
Listing 6.1 in parentheses. Note that in a few cases, the agent performed nonsensical
ProcessScan, and we omitted the corresponding steps in the following text.

108 case study : automated penetration testing

The agent started with scanning the initial DMZ node (0), where it found that it runs
ElasticSearch and WordPress and chose to exploit the latter. It gained user access (1), and
used it to scan further parts of the network (2), discovering four new hosts in subnets
192.168.3.0/24 and 192.168.4.0/24. The agent chose one host from the second subnet
to scan (3) and exploit its ProFTPD service (6-9), but found that it does not contain any
sensitive information. Since the agent has been trained on instances of this scenario, it
could determine that the subnet 192.168.4.0/24 probably corresponds to a subnet, which
does not contain any sensitive hosts. Therefore, it picked a host in the other subnet to
scan and exploit. It discovered that it ran ProFTPD, Drupal, PhpWiki and MySQL services
(14). The MySQL is an indication that the host could contain sensitive data, hence the
agent exploited its Drupal service (15, 16), and found that the host is running Linux and
indeed contains sensitive information. It escalated its privileges by exploiting the Linux
kernel (17) and upon success, it recovered the sensitive information.

We noticed two differences between simulation and emulation. First, real network
connectivity is sometimes unreliable, and it leads to failed actions. Second, exploits can
sometimes fail without an obvious reason. However, in both of these cases, the agent was
able to recover, simply by repeating the failed action.

Listing 6.1: Commented output from the simulation-trained model, executed in the emulator.

1 rrl-nasim$ python main.py -load_model trained_model.pt --trace test_scenario.v2.yaml --emulate
2

3 # Initially, the agent automatically performs a scan of the network to determine which hosts are reachable.
4 INFO:MsfClient:Connecting to msfrpcd at 127.0.0.1:55553
5 INFO:EmulatedNASimEnv:reset()
6 INFO:MsfClient:Executing auxiliary:scanner/portscan/tcp with params {’RHOSTS’: ’192.168.1-5.100-110’, ’PORTS’: ’22’, ’THREADS’: 10}
7 INFO:MsfClient:Scan result: [’192.168.1.100:22’]
8 # Below is the current observation of the agent. Compr. = Compromised; Reach. = Reachable; Disc. = Discovered
9 +---------+--------+--------+-------+-------+--------+-------+---------+---------+--------+---------+----------+----------+-------+

10 | Address | Compr. | Reach. | Disc. | Value | Access | linux | windows | proftpd | drupal | phpwiki | e_search | wp_ninja | mysql |
11 +---------+--------+--------+-------+-------+--------+-------+---------+---------+--------+---------+----------+----------+-------+
12 | (1, 0) | False | True | True | 0.0 | 0.0 | False | False | False | False | False | False | False | False |
13 +---------+--------+--------+-------+-------+--------+-------+---------+---------+--------+---------+----------+----------+-------+
14

15 # Next, the agent scans the discovered node.
16 STEP 0
17 INFO:EmulatedNASimEnv:step() with ServiceScan: name=service_scan, target=(1, 0), cost=1.00, prob=1.00, req_access=USER
18 INFO:MsfClient:Executing auxiliary:scanner/portscan/tcp with params {’RHOSTS’: ’192.168.1.100’, ’PORTS’: ’21,80,3306,9200’, ’THREADS’:

↪→ 10}
19 INFO:MsfClient:Scan result: [’192.168.1.100:80’, ’192.168.1.100:9200’]
20 INFO:MsfClient:Executing auxiliary:scanner/http/dir_scanner with params {’RHOSTS’: ’192.168.1.100’, ’RPORT’: ’80’, ’THREADS’: 1, ’

↪→ DICTIONARY’: ’/vagrant/http_dir.txt’}
21 INFO:MsfClient:Folders found on the Http service: [’uploads’, ’wordpress’]
22 INFO:EmulatedNetwork:Found these services: {’21_linux_proftpd’: False, ’80_linux_drupal’: False, ’80_linux_phpwiki’: False, ’9200_windows

↪→ _elasticsearch’: True, ’80_windows_wp_ninja’: True, ’3306_any_mysql’: False} (192.168.1.100).
23

24 a: ServiceScan: name=service_scan, target=(1, 0), cost=1.00, prob=1.00, req_access=USER, r: 0.0, d: False
25 V(s)=6.26
26 +---------+--------+--------+-------+-------+--------+-------+---------+---------+--------+---------+----------+----------+-------+
27 | Address | Compr. | Reach. | Disc. | Value | Access | linux | windows | proftpd | drupal | phpwiki | e_search | wp_ninja | mysql |
28 +---------+--------+--------+-------+-------+--------+-------+---------+---------+--------+---------+----------+----------+-------+
29 | (1, 0) | False | True | True | 0.0 | 0.0 | False | False | False | False | False | True | True | False |
30 +---------+--------+--------+-------+-------+--------+-------+---------+---------+--------+---------+----------+----------+-------+
31

32 # As the agent sees that the host is running e_search service, it tries to exploit it.
33 STEP 1
34 INFO:EmulatedNASimEnv:step() with Exploit: name=e_wp_ninja, target=(1, 0), cost=1.00, prob=1.00, req_access=USER, os=windows, service=80_

↪→ windows_wp_ninja, access=1
35 INFO:MsfClient:Executing exploit:multi/http/wp_ninja_forms_unauthenticated_file_upload with params {’RHOSTS’: ’192.168.1.100’, ’TARGETURI

↪→ ’: ’/wordpress/’, ’FORM_PATH’: ’index.php/king-of-hearts/’, ’RPORT’: ’80’, ’AllowNoCleanup’: True}
36 INFO:MsfClient:Executing exploit:multi/handler with params {}
37 INFO:MsfClient:Opened new session #1 for 192.168.1.100
38 INFO:MsfClient:Running ‘DIR C:‘ at #1 (192.168.1.100)
39 INFO:MsfClient:Executing post:multi/general/execute with params {’COMMAND’: ’cmd /c "DIR C:"’, ’SESSION’: 1}
40 INFO:MsfClient:Running ‘whoami /groups‘ at #1 (192.168.1.100)
41 INFO:MsfClient:Executing post:multi/general/execute with params {’COMMAND’: ’cmd /c "whoami /groups"’, ’SESSION’: 1}
42 a: Exploit: name=e_wp_ninja, target=(1, 0), cost=1.00, prob=1.00, req_access=USER, os=windows, service=80_windows_wp_ninja, access=1, r:

↪→ 0.0, d: False
43 V(s)=6.51
44 +---------+--------+--------+-------+-------+--------+-------+---------+---------+--------+---------+----------+----------+-------+
45 | Address | Compr. | Reach. | Disc. | Value | Access | linux | windows | proftpd | drupal | phpwiki | e_search | wp_ninja | mysql |
46 +---------+--------+--------+-------+-------+--------+-------+---------+---------+--------+---------+----------+----------+-------+
47 | (1, 0) | True | True | True | 0.0 | 1.0 | False | False | False | False | False | True | True | False |
48 +---------+--------+--------+-------+-------+--------+-------+---------+---------+--------+---------+----------+----------+-------+
49

50 # The host is compromised. The next step is to perform a network scan from the exploited host to see other parts of the network.
51 STEP 2
52 INFO:EmulatedNASimEnv:step() with SubnetScan: name=subnet_scan, target=(1, 0), cost=1.00, prob=1.00, req_access=USER
53 INFO:MsfClient:Executing post:multi/gather/ping_sweep with params {’RHOSTS’: ’192.168.1-5.100-110’, ’SESSION’: 1}
54 INFO:MsfClient:Scan result: [’192.168.1.100’, ’192.168.3.101’, ’192.168.3.100’, ’192.168.4.101’, ’192.168.4.100’]
55 INFO:EmulatedNetwork:Found new hosts {’192.168.3.100’, ’192.168.3.101’, ’192.168.4.100’, ’192.168.4.101’}, creating a route from

↪→ 192.168.1.100.
56 INFO:MsfClient:Executing msfconsole command: ‘route add 192.168.3.0/24 1‘
57 INFO:MsfClient:Executing msfconsole command: ‘route add 192.168.4.0/24 1‘
58 a: SubnetScan: name=subnet_scan, target=(1, 0), cost=1.00, prob=1.00, req_access=USER, r: 0.0, d: False
59 V(s)=7.10

6.5 experiment results 109

60 +---------+--------+--------+-------+-------+--------+-------+---------+---------+--------+---------+----------+----------+-------+
61 | Address | Compr. | Reach. | Disc. | Value | Access | linux | windows | proftpd | drupal | phpwiki | e_search | wp_ninja | mysql |
62 +---------+--------+--------+-------+-------+--------+-------+---------+---------+--------+---------+----------+----------+-------+
63 | (1, 0) | True | True | True | 0.0 | 1.0 | False | False | False | False | False | True | True | False |
64 | (3, 1) | False | True | True | 0.0 | 0.0 | False | False | False | False | False | False | False | False |
65 | (3, 0) | False | True | True | 0.0 | 0.0 | False | False | False | False | False | False | False | False |
66 | (4, 1) | False | True | True | 0.0 | 0.0 | False | False | False | False | False | False | False | False |
67 | (4, 0) | False | True | True | 0.0 | 0.0 | False | False | False | False | False | False | False | False |
68 +---------+--------+--------+-------+-------+--------+-------+---------+---------+--------+---------+----------+----------+-------+
69

70 # The agent discovered several nodes in two different subnets. Metasploit was automatically configured to use the first host as
71 # a pivot to access these parts of the network. Now the agent chooses one of the hosts and scans it.
72 STEP 3
73 INFO:EmulatedNASimEnv:step() with ServiceScan: name=service_scan, target=(4, 0), cost=1.00, prob=1.00, req_access=USER
74 INFO:MsfClient:Executing auxiliary:scanner/portscan/tcp with params {’RHOSTS’: ’192.168.4.100’, ’PORTS’: ’21,80,3306,9200’, ’THREADS’:

↪→ 10}
75 INFO:MsfClient:Scan result: [’192.168.4.100:21’, ’192.168.4.100:80’]
76 INFO:MsfClient:Executing auxiliary:scanner/http/dir_scanner with params {’RHOSTS’: ’192.168.4.100’, ’RPORT’: ’80’, ’THREADS’: 1, ’

↪→ DICTIONARY’: ’/vagrant/http_dir.txt’}
77 INFO:MsfClient:Folders found on the Http service: [’uploads’, ’phpwiki’]
78 INFO:EmulatedNetwork:Found these services: {’21_linux_proftpd’: True, ’80_linux_drupal’: False, ’80_linux_phpwiki’: True, ’9200_windows_

↪→ elasticsearch’: False, ’80_windows_wp_ninja’: False, ’3306_any_mysql’: False} (192.168.4.100).
79

80 a: ServiceScan: name=service_scan, target=(4, 0), cost=1.00, prob=1.00, req_access=USER, r: 0.0, d: False
81 V(s)=11.46
82 +---------+--------+--------+-------+-------+--------+-------+---------+---------+--------+---------+----------+----------+-------+
83 | Address | Compr. | Reach. | Disc. | Value | Access | linux | windows | proftpd | drupal | phpwiki | e_search | wp_ninja | mysql |
84 +---------+--------+--------+-------+-------+--------+-------+---------+---------+--------+---------+----------+----------+-------+
85 | (1, 0) | True | True | True | 0.0 | 1.0 | False | False | False | False | False | True | True | False |
86 | (3, 1) | False | True | True | 0.0 | 0.0 | False | False | False | False | False | False | False | False |
87 | (3, 0) | False | True | True | 0.0 | 0.0 | False | False | False | False | False | False | False | False |
88 | (4, 1) | False | True | True | 0.0 | 0.0 | False | False | False | False | False | False | False | False |
89 | (4, 0) | False | True | True | 0.0 | 0.0 | False | False | True | False | True | False | False | False |
90 +---------+--------+--------+-------+-------+--------+-------+---------+---------+--------+---------+----------+----------+-------+
91

92 # ProcessScan actions are non-sensical in our case, because there are not any processes defined. The tested model is not perfect.
93 STEP 4
94 INFO:EmulatedNASimEnv:step() with ProcessScan: name=process_scan, target=(4, 0), cost=1.00, prob=1.00, req_access=USER
95 a: ProcessScan: name=process_scan, target=(4, 0), cost=1.00, prob=1.00, req_access=USER, r: 0.0, d: False
96 V(s)=6.47
97

98 STEP 5
99 INFO:EmulatedNASimEnv:step() with ProcessScan: name=process_scan, target=(4, 0), cost=1.00, prob=1.00, req_access=USER

100 a: ProcessScan: name=process_scan, target=(4, 0), cost=1.00, prob=1.00, req_access=USER, r: 0.0, d: False
101 V(s)=6.47
102

103 # The agent tries to exploit the proftpd service on the (4, 0) host, but the exploit fails for unknown reason.
104 STEP 6
105 INFO:EmulatedNASimEnv:step() with Exploit: name=e_proftpd, target=(4, 0), cost=1.00, prob=1.00, req_access=USER, os=linux, service=21_

↪→ linux_proftpd, access=1
106 INFO:MsfClient:Executing exploit:unix/ftp/proftpd_modcopy_exec with params {’RHOSTS’: ’192.168.4.100’, ’SITEPATH’: ’/var/www/uploads/’, ’

↪→ TARGETURI’: ’/uploads/’}
107 INFO:MsfClient:No session created.
108 WARNING:EmulatedNetwork:Failed exploit: Exploit: name=e_proftpd, target=(4, 0), cost=1.00, prob=1.00, req_access=USER, os=linux, service

↪→ =21_linux_proftpd, access=1
109

110 a: Exploit: name=e_proftpd, target=(4, 0), cost=1.00, prob=1.00, req_access=USER, os=linux, service=21_linux_proftpd, access=1, r: 0.0, d
↪→ : False

111 V(s)=6.47
112

113 # It tries the same exploit again, and it fails again.
114 STEP 7
115 INFO:EmulatedNASimEnv:step() with Exploit: name=e_proftpd, target=(4, 0), cost=1.00, prob=1.00, req_access=USER, os=linux, service=21_

↪→ linux_proftpd, access=1
116 INFO:MsfClient:Executing exploit:unix/ftp/proftpd_modcopy_exec with params {’RHOSTS’: ’192.168.4.100’, ’SITEPATH’: ’/var/www/uploads/’, ’

↪→ TARGETURI’: ’/uploads/’}
117 INFO:MsfClient:No session created.
118 WARNING:EmulatedNetwork:Failed exploit: Exploit: name=e_proftpd, target=(4, 0), cost=1.00, prob=1.00, req_access=USER, os=linux, service

↪→ =21_linux_proftpd, access=1
119 a: Exploit: name=e_proftpd, target=(4, 0), cost=1.00, prob=1.00, req_access=USER, os=linux, service=21_linux_proftpd, access=1, r: 0.0, d

↪→ : False
120 V(s)=6.47
121

122 STEP 8
123 INFO:EmulatedNASimEnv:step() with ProcessScan: name=process_scan, target=(4, 0), cost=1.00, prob=1.00, req_access=USER
124 a: ProcessScan: name=process_scan, target=(4, 0), cost=1.00, prob=1.00, req_access=USER, r: 0.0, d: False
125

126 # Finally, the exploit succeeds. Automatically, the host is examined whether it contains sensitive data and if it can be accessed.
127 STEP 9
128 INFO:EmulatedNASimEnv:step() with Exploit: name=e_proftpd, target=(4, 0), cost=1.00, prob=1.00, req_access=USER, os=linux, service=21_

↪→ linux_proftpd, access=1
129 INFO:MsfClient:Executing exploit:unix/ftp/proftpd_modcopy_exec with params {’RHOSTS’: ’192.168.4.100’, ’SITEPATH’: ’/var/www/uploads/’, ’

↪→ TARGETURI’: ’/uploads/’}
130 INFO:MsfClient:Opened new session #2 for 192.168.4.100
131 INFO:MsfClient:Running ‘test -f /home/kylo_ren/loot; echo NO_LOOT=$?‘ at #2 (192.168.4.100)
132 INFO:MsfClient:Executing post:multi/general/execute with params {’COMMAND’: ’test -f /home/kylo_ren/loot; echo NO_LOOT=$?’, ’SESSION’: 2}
133 INFO:MsfClient:Running ‘whoami‘ at #2 (192.168.4.100)
134 INFO:MsfClient:Executing post:multi/general/execute with params {’COMMAND’: ’whoami’, ’SESSION’: 2}
135 a: Exploit: name=e_proftpd, target=(4, 0), cost=1.00, prob=1.00, req_access=USER, os=linux, service=21_linux_proftpd, access=1, r: 0.0, d

↪→ : False
136 V(s)=6.47
137 +---------+--------+--------+-------+-------+--------+-------+---------+---------+--------+---------+----------+----------+-------+
138 | Address | Compr. | Reach. | Disc. | Value | Access | linux | windows | proftpd | drupal | phpwiki | e_search | wp_ninja | mysql |
139 +---------+--------+--------+-------+-------+--------+-------+---------+---------+--------+---------+----------+----------+-------+
140 | (1, 0) | True | True | True | 0.0 | 1.0 | False | False | False | False | False | True | True | False |
141 | (3, 1) | False | True | True | 0.0 | 0.0 | False | False | False | False | False | False | False | False |
142 | (3, 0) | False | True | True | 0.0 | 0.0 | False | False | False | False | False | False | False | False |
143 | (4, 1) | False | True | True | 0.0 | 0.0 | False | False | False | False | False | False | False | False |
144 | (4, 0) | True | True | True | 0.0 | 1.0 | False | False | True | False | True | False | False | False |
145 +---------+--------+--------+-------+-------+--------+-------+---------+---------+--------+---------+----------+----------+-------+
146

147 STEP 10
148 INFO:EmulatedNASimEnv:step() with ProcessScan: name=process_scan, target=(4, 0), cost=1.00, prob=1.00, req_access=USER
149 a: ProcessScan: name=process_scan, target=(4, 0), cost=1.00, prob=1.00, req_access=USER, r: 0.0, d: False
150 V(s)=6.28
151

152 STEP 11
153 INFO:EmulatedNASimEnv:step() with ProcessScan: name=process_scan, target=(4, 1), cost=1.00, prob=1.00, req_access=USER
154 a: ProcessScan: name=process_scan, target=(4, 1), cost=1.00, prob=1.00, req_access=USER, r: 0.0, d: False

110 case study : automated penetration testing

155 V(s)=6.28
156

157 STEP 12
158 INFO:EmulatedNASimEnv:step() with ProcessScan: name=process_scan, target=(4, 1), cost=1.00, prob=1.00, req_access=USER
159 a: ProcessScan: name=process_scan, target=(4, 1), cost=1.00, prob=1.00, req_access=USER, r: 0.0, d: False
160 V(s)=6.28
161

162 STEP 13
163 INFO:EmulatedNASimEnv:step() with ProcessScan: name=process_scan, target=(4, 0), cost=1.00, prob=1.00, req_access=USER
164 a: ProcessScan: name=process_scan, target=(4, 0), cost=1.00, prob=1.00, req_access=USER, r: 0.0, d: False
165 V(s)=6.28
166

167 # The agent focuses on a different node and scans it.
168 STEP 14
169 INFO:EmulatedNASimEnv:step() with ServiceScan: name=service_scan, target=(3, 0), cost=1.00, prob=1.00, req_access=USER
170 INFO:MsfClient:Executing auxiliary:scanner/portscan/tcp with params {’RHOSTS’: ’192.168.3.100’, ’PORTS’: ’21,80,3306,9200’, ’THREADS’:

↪→ 10}
171 INFO:MsfClient:Scan result: [’192.168.3.100:21’, ’192.168.3.100:3306’, ’192.168.3.100:80’]
172 INFO:MsfClient:Executing auxiliary:scanner/http/dir_scanner with params {’RHOSTS’: ’192.168.3.100’, ’RPORT’: ’80’, ’THREADS’: 1, ’

↪→ DICTIONARY’: ’/vagrant/http_dir.txt’}
173 INFO:MsfClient:Folders found on the Http service: [’uploads’, ’drupal’, ’phpwiki’]
174 INFO:EmulatedNetwork:Found these services: {’21_linux_proftpd’: True, ’80_linux_drupal’: True, ’80_linux_phpwiki’: True, ’9200_windows_

↪→ elasticsearch’: False, ’80_windows_wp_ninja’: False, ’3306_any_mysql’: True} (192.168.3.100).
175

176 a: ServiceScan: name=service_scan, target=(3, 0), cost=1.00, prob=1.00, req_access=USER, r: 0.0, d: False
177 V(s)=6.28
178 +---------+--------+--------+-------+-------+--------+-------+---------+---------+--------+---------+----------+----------+-------+
179 | Address | Compr. | Reach. | Disc. | Value | Access | linux | windows | proftpd | drupal | phpwiki | e_search | wp_ninja | mysql |
180 +---------+--------+--------+-------+-------+--------+-------+---------+---------+--------+---------+----------+----------+-------+
181 | (1, 0) | True | True | True | 0.0 | 1.0 | False | False | False | False | False | True | True | False |
182 | (3, 1) | False | True | True | 0.0 | 0.0 | False | False | False | False | False | False | False | False |
183 | (3, 0) | False | True | True | 0.0 | 0.0 | False | False | True | True | True | False | False | True |
184 | (4, 1) | False | True | True | 0.0 | 0.0 | False | False | False | False | False | False | False | False |
185 | (4, 0) | True | True | True | 0.0 | 1.0 | False | False | True | False | True | False | False | False |
186 +---------+--------+--------+-------+-------+--------+-------+---------+---------+--------+---------+----------+----------+-------+
187

188 # It discovered that the (3, 0) node runs the mysql service, which is an indication that the node could be sensitive. It tries to exploit
↪→ the drupal service.

189 STEP 15
190 INFO:EmulatedNASimEnv:step() with Exploit: name=e_drupal, target=(3, 0), cost=1.00, prob=1.00, req_access=USER, os=linux, service=80_

↪→ linux_drupal, access=1
191 INFO:MsfClient:Executing exploit:unix/webapp/drupal_coder_exec with params {’RHOSTS’: ’192.168.3.100’, ’TARGETURI’: ’/drupal’}
192 INFO:MsfClient:No session created.
193 WARNING:EmulatedNetwork:Failed exploit: Exploit: name=e_drupal, target=(3, 0), cost=1.00, prob=1.00, req_access=USER, os=linux, service

↪→ =80_linux_drupal, access=1
194

195 a: Exploit: name=e_drupal, target=(3, 0), cost=1.00, prob=1.00, req_access=USER, os=linux, service=80_linux_drupal, access=1, r: 0.0, d:
↪→ False

196 V(s)=12.98
197

198 # It tries again and this time succeeds. The examination shows that the host contains sensitive information, but it can be accessed only
↪→ by a privileged user.

199 STEP 16
200 INFO:EmulatedNASimEnv:step() with Exploit: name=e_drupal, target=(3, 0), cost=1.00, prob=1.00, req_access=USER, os=linux, service=80_

↪→ linux_drupal, access=1
201 INFO:MsfClient:Executing exploit:unix/webapp/drupal_coder_exec with params {’RHOSTS’: ’192.168.3.100’, ’TARGETURI’: ’/drupal’}
202 INFO:MsfClient:Opened new session #3 for 192.168.3.100
203 INFO:MsfClient:Running ‘test -f /home/kylo_ren/loot; echo NO_LOOT=$?‘ at #3 (192.168.3.100)
204 INFO:MsfClient:Executing post:multi/general/execute with params {’COMMAND’: ’test -f /home/kylo_ren/loot; echo NO_LOOT=$?’, ’SESSION’: 3}
205 INFO:MsfClient:Running ‘cat /home/kylo_ren/loot‘ at #3 (192.168.3.100)
206 INFO:MsfClient:Executing post:multi/general/execute with params {’COMMAND’: ’cat /home/kylo_ren/loot’, ’SESSION’: 3}
207 INFO:MsfClient:Running ‘whoami‘ at #3 (192.168.3.100)
208 INFO:MsfClient:Executing post:multi/general/execute with params {’COMMAND’: ’whoami’, ’SESSION’: 3}
209

210 a: Exploit: name=e_drupal, target=(3, 0), cost=1.00, prob=1.00, req_access=USER, os=linux, service=80_linux_drupal, access=1, r: 0.0, d:
↪→ False

211 V(s)=12.98
212 +---------+--------+--------+-------+-------+--------+-------+---------+---------+--------+---------+----------+----------+-------+
213 | Address | Compr. | Reach. | Disc. | Value | Access | linux | windows | proftpd | drupal | phpwiki | e_search | wp_ninja | mysql |
214 +---------+--------+--------+-------+-------+--------+-------+---------+---------+--------+---------+----------+----------+-------+
215 | (1, 0) | True | True | True | 0.0 | 1.0 | False | False | False | False | False | True | True | False |
216 | (3, 1) | False | True | True | 0.0 | 0.0 | False | False | False | False | False | False | False | False |
217 | (3, 0) | True | True | True | 100.0 | 1.0 | False | False | True | True | True | False | False | True |
218 | (4, 1) | False | True | True | 0.0 | 0.0 | False | False | False | False | False | False | False | False |
219 | (4, 0) | True | True | True | 0.0 | 1.0 | False | False | True | False | True | False | False | False |
220 +---------+--------+--------+-------+-------+--------+-------+---------+---------+--------+---------+----------+----------+-------+
221

222 # The agent tries to escalate privileges, and after success it collects the sensitive information (the loot).
223 STEP 17
224 INFO:EmulatedNASimEnv:step() with PrivilegeEscalation: name=pe_kernel, target=(3, 0), cost=1.00, prob=1.00, req_access=USER, os=linux,

↪→ process=None, access=2
225 INFO:MsfClient:Executing exploit:linux/local/overlayfs_priv_esc with params {’SESSION’: 3, ’target’: 0}
226 INFO:MsfClient:Opened new session #4 for 192.168.3.100
227 INFO:MsfClient:Running ‘test -f /home/kylo_ren/loot; echo NO_LOOT=$?‘ at #4 (192.168.3.100)
228 INFO:MsfClient:Executing post:multi/general/execute with params {’COMMAND’: ’test -f /home/kylo_ren/loot; echo NO_LOOT=$?’, ’SESSION’: 4}
229 INFO:MsfClient:Running ‘cat /home/kylo_ren/loot‘ at #4 (192.168.3.100)
230 INFO:MsfClient:Executing post:multi/general/execute with params {’COMMAND’: ’cat /home/kylo_ren/loot’, ’SESSION’: 4}
231 INFO:EmulatedNetwork:----------------------
232 INFO:EmulatedNetwork:Loot recovered: LOOT=28a5b8532399467452f55775a05daa10
233 INFO:EmulatedNetwork:----------------------
234 INFO:MsfClient:Running ‘whoami‘ at #4 (192.168.3.100)
235 INFO:MsfClient:Executing post:multi/general/execute with params {’COMMAND’: ’whoami’, ’SESSION’: 4}
236 a: PrivilegeEscalation: name=pe_kernel, target=(3, 0), cost=1.00, prob=1.00, req_access=USER, os=linux, process=None, access=2, r: 0.0, d

↪→ : False
237 V(s)=16.02
238 +---------+--------+--------+-------+-------+--------+-------+---------+---------+--------+---------+----------+----------+-------+
239 | Address | Compr. | Reach. | Disc. | Value | Access | linux | windows | proftpd | drupal | phpwiki | e_search | wp_ninja | mysql |
240 +---------+--------+--------+-------+-------+--------+-------+---------+---------+--------+---------+----------+----------+-------+
241 | (1, 0) | True | True | True | 0.0 | 1.0 | False | False | False | False | False | True | True | False |
242 | (3, 1) | False | True | True | 0.0 | 0.0 | False | False | False | False | False | False | False | False |
243 | (3, 0) | True | True | True | 100.0 | 2.0 | False | False | True | True | True | False | False | True |
244 | (4, 1) | False | True | True | 0.0 | 0.0 | False | False | False | False | False | False | False | False |
245 | (4, 0) | True | True | True | 0.0 | 1.0 | False | False | True | False | True | False | False | False |
246 +---------+--------+--------+-------+-------+--------+-------+---------+---------+--------+---------+----------+----------+-------+

6.6 chapter conclusion 111

6.6 chapter conclusion

This chapter focused on automated penetration testing, where we put to use the concepts
investigated in previous chapters. Because the current penetration testing frameworks
lacked features and were not realistic enough, we first introduced NASimEmu, a novel
framework for training general deep RL-based agents. Then, we designed several agent
architectures – the MIL architecture and matrix action representation from Chapter 4,
the GNN architecture and decomposed action representation from Chapter 5, and an
additional architecture based on attention. To facilitate training, we introduced a novel ap-
proach to the optimal stopping problem, where one learns both stopping and behavioural
policies at the same time, and which does not involve a parametrized terminal action.

We were able to successfully construct an agent that generalizes to unseen scenarios
and is scalable to large networks. Additionally, we performed a successful transfer of a
simulation-trained model into realistic emulation. A separate experiment showed that
the proposed approach to the optimal stopping problem leads to simpler training with
an easier configuration of exploration hyperparameters.

Further experiments showed that most architecture variants achieve similar perfor-
mance. Comparing multiple factors, the best architecture, for this particular problem,
is MIL with matrix action selection, since it achieves comparable performance to other
variants, but it is simplest and smallest in terms of the number of parameters. We argue
that GNN finds its usage in domains with a lot of structural information that is not easily
encoded in the node representations themselves. Additionally, the compound action
selection is necessary in domains with multi-parameter actions.

7
C O N C L U S I O N

This thesis presented several practical information acquisition problems and proposed
deep RL-based solutions for each of them. In each chapter, the proposed method con-
tributed to the related state-of-the-art, either in performance, generality, or with a novel
approach. Let us conclude by summarizing the main contributions and the possible
future work.

7.1 thesis contributions

• Chapter 3 introduced a flexible reinforcement learning (RL) framework for solving
the Classification with Costly Features (CwCF) problem, where the goal is to
optimize a multi-criteria accuracy vs. cost objective. The chapter introduced a base
method, a modification allowing users to directly specify their average or hard
budget, a modification that enables the method to work with datasets with missing
features, and it also showed how to incorporate an existing legacy classifier. All
method variants were evaluated with several diverse datasets, where they robustly
outperformed competing algorithms.

• Chapter 4 explored a more general case where the data is not flat any more, but
hierarchical instead. The chapter augmented the CwCF framework so that it can
process such data naturally and directly select features in the hierarchy, as opposed
to existing methods. The experiments showed that the proposed method results in
substantial cost savings while not sacrificing accuracy, compared to algorithms that
access complete data. A separate experiment demonstrated its practical use in a
malicious web domain identification.

• Chapter 5 abstracted the problem even further, focused on a relational worldview,
and presented a novel method based on deep reinforcement learning, graph neural
networks and autoregressive policy decomposition. The method processes the
objects and their relations encoded as a graph, and performs multi-parameter
actions, where each parameter corresponds to a single object. Moreover, specific
actions can also select an arbitrary subset of objects. Compared to alternative
approaches, the parameters can be selected in a linear time and space, and the
trained models are not fixed to a specific problem size, allowing them to be
deployed in differently-sized problems. The experiments demonstrated impressive
zero-shot generalization to different problem variations and sizes. Moreover, they
demonstrated the framework’s capability to select a subset of objects at once. In
a setting traditionally dominated by planners, one experiment demonstrated that
while our method can operate even in large problems, competing planning-based
methods cannot, due to their exponential time and space demands.

• Chapter 6 presented a case study, utilizing insight gained from the previous chapters
to design multiple deep RL agent architectures for a practical problem of automated

113

114 conclusion

offensive penetration testing. Additionally, it proposed a novel framework for
training general agents and a novel approach to the optimal stopping problem,
where one learns both stopping and behavioural policies at the same time without
a parametrized terminal action. The experiments demonstrated that the proposed
architectures learn general policies applicable to unseen scenarios, and showed
that our approach to the optimal stopping problem provides benefits to the user,
such as easily configurable hyperparameters. The final experiment demonstrated a
successful transfer of a simulation-trained model into realistic emulation.

7.2 future work

All methods presented in this thesis could be improved with new advancements in
deep RL. Possibly, their sample complexity may be improved with offline RL methods
[82]. Similarly, the sequential processing may benefit from the use of recurrent neural
networks or transformers [85], which could leverage temporal consistencies in state
representations. The symbolic and relational approach presented in Chapter 5 could
benefit from curriculum learning [11], since the models can be trained in smaller problem
instances and deployed in larger. The penetration testing framework from Chapter 6

could be further improved to be more realistic.
In all practical problems, we see great potential to increase versatility, generality and

practicality by combining the existing approaches with large language models (LLMs)
[167]. Since such models enable understanding, processing and embedding of inputs
that were designed primarily for humans (such as plain text, code, pictures and videos,
but also interfaces such as a command line), it could be feasible to tackle domains that
were, only recently, hard to process by machines. These models could be complementary
to deep RL in practical problems, since, contrary to LLMs, deep RL models are usually
more compute-efficient, and can be trained to optimize given objectives.

a
P U B L I C AT I O N S

This section lists the author’s publications, their citations according to Google Scholar in
February 2024, and the author’s contribution. Presentations at conferences and workshops
without proceedings are in footnotes. All publications are related to this thesis.

journal publications

• Jaromír Janisch, Tomáš Pevný, and Viliam Lisý. “Classification with Costly Fea-
tures as a Sequential Decision-Making Problem.” In: Machine Learning 109.8 (2020),
pp. 1587–1615 (33 citations, 80% contribution)

• Jaromír Janisch, Tomáš Pevný, and Viliam Lisý. “Classification with Costly Features
in Hierarchical Deep Sets.” In: - (under review / minor revision) (arXiv:1911.08756

– 1 citation, 80% contribution) *

• Jaromír Janisch, Tomáš Pevný, and Viliam Lisý. “Symbolic Relational Deep Rein-
forcement Learning based on Graph Neural Networks and Autoregressive Policy
Decomposition.” In: - (under review) (arXiv:2009.12462 – 20 citations, 80% contribu-
tion) *†

conferences and workshops with proceedings

• Jaromír Janisch, Tomáš Pevný, and Viliam Lisý. “Classification with Costly Features
using Deep Reinforcement Learning.” In: AAAI Conference on Artificial Intelligence.
2019 (100 citations, 80% contribution) ‡

• Jaromír Janisch, Tomáš Pevný, and Viliam Lisý. “NASimEmu: Network Attack
Simulator & Emulator for Training Agents Generalizing to Novel Scenarios.” In:
Computer Security. ESORICS 2023 International Workshops. Springer International
Publishing, 2024 (3 citations, 80% contribution)

* Also presented at Reinforcement Learning for Real Life (RL4RealLife) workshop at NeurIPS 2021.
† Also presented at CyberSec&AI Connected 2020.
‡ Also presented at Adaptive Learning Agents (ALA) workshop at ICML 2018.

115

B I B L I O G R A P H Y

[1] Dhaval Adjodah, Tim Klinger, and Joshua Joseph. “Symbolic Relation Networks
for Reinforcement Learning.” In: Relational Representation Learning Workshop (2018).

[2] Constructions Aeronautiques, Adele Howe, Craig Knoblock, ISI Drew McDermott,
Ashwin Ram, Manuela Veloso, Daniel Weld, David Wilkins SRI, Anthony Barrett,
Dave Christianson, et al. “Pddl| the planning domain definition language.” In:
Technical Report, Tech. Rep. (1998).

[3] Alex Andrew, Sam Spillard, Joshua Collyer, and Neil Dhir. “Developing Optimal
Causal Cyber-Defence Agents via Cyber Security Simulation.” In: International Con-
fernece on Machine Learning (ICML). Workshop on Machine Learning for Cybersecurity
(ML4Cyber). July 2022.

[4] Melissa J Azur, Elizabeth A Stuart, Constantine Frangakis, and Philip J Leaf.
“Multiple imputation by chained equations: what is it and how does it work?” In:
International journal of methods in psychiatric research 20.1 (2011), pp. 40–49.

[5] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. “Layer normalization.”
In: arXiv preprint arXiv:1607.06450 (2016).

[6] Franz Baader, Ian Horrocks, Carsten Lutz, and Uli Sattler. Introduction to description
logic. Cambridge: Cambridge University Press, 2017.

[7] Victor Bapst, Alvaro Sanchez-Gonzalez, Carl Doersch, Kimberly Stachenfeld,
Pushmeet Kohli, Peter Battaglia, and Jessica Hamrick. “Structured agents for
physical construction.” In: International Conference on Machine Learning. PMLR.
2019, pp. 464–474.

[8] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez,
Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam
Santoro, Ryan Faulkner, et al. “Relational inductive biases, deep learning, and
graph networks.” In: arXiv preprint arXiv:1806.01261 (2018).

[9] Valentina Bayer-Zubek and Thomas G Dietterich. “Integrating learning from
examples into the search for diagnostic policies.” In: Journal of Artificial Intelligence
Research 24 (2005), pp. 263–303.

[10] Djalel Benbouzid, Róbert Busa-Fekete, and Balázs Kégl. “Fast classification us-
ing sparse decision DAGs.” In: Proceedings of the 29th International Coference on
International Conference on Machine Learning. Omnipress. 2012, pp. 747–754.

[11] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. “Curricu-
lum learning.” In: Proceedings of the 26th annual international conference on machine
learning. 2009, pp. 41–48.

[12] Dimitri P Bertsekas. Nonlinear programming. Athena scientific Belmont, 1999.

[13] Verónica Bolón-Canedo, Iago Porto-Díaz, Noelia Sánchez-Maroño, and Amparo
Alonso-Betanzos. “A framework for cost-based feature selection.” In: Pattern
Recognition 47.7 (2014), pp. 2481–2489.

117

118 bibliography

[14] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-
man, Jie Tang, and Wojciech Zaremba. “OpenAI gym.” In: arXiv preprint arXiv:1606.01540
10 (2016).

[15] Pavel Čeleda, Jakub Čegan, Jan Vykopal, Daniel Tovarňák, et al. “Kypo–a platform
for cyber defence exercises.” In: M&S Support to Operational Tasks Including War
Gaming, Logistics, Cyber Defence. NATO Science and Technology Organization (2015).

[16] Nicolo Cesa-Bianchi, Shai Shalev-Shwartz, and Ohad Shamir. “Efficient learning
with partially observed attributes.” In: Journal of Machine Learning Research 12.Oct
(2011), pp. 2857–2878.

[17] Jinyin Chen, Shulong Hu, Haibin Zheng, Changyou Xing, and Guomin Zhang.
“GAIL-PT: An intelligent penetration testing framework with generative adversar-
ial imitation learning.” In: Computers & Security 126 (2023), p. 103055.

[18] Yang-En Chen, Kai-Fu Tang, Yu-Shao Peng, and Edward Y Chang. “Effective
medical test suggestions using deep reinforcement learning.” In: arXiv preprint
arXiv:1905.12916 (2019).

[19] Ziheng Chen, Jin Huang, Hongshik Ahn, and Xin Ning. “Costly features classi-
fication using monte carlo tree search.” In: 2021 International Joint Conference on
Neural Networks (IJCNN). IEEE. 2021, pp. 1–8.

[20] Andrew Chester, Michael Dann, Fabio Zambetta, and John Thangarajah. “Oracle-
SAGE: Planning Ahead in Graph-Based Deep Reinforcement Learning.” In: Joint
European Conference on Machine Learning and Knowledge Discovery in Databases.
Springer. 2022, pp. 52–67.

[21] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio.
“On the properties of neural machine translation: Encoder-decoder approaches.”
In: arXiv preprint arXiv:1409.1259 (2014).

[22] Yinlam Chow, Mohammad Ghavamzadeh, Lucas Janson, and Marco Pavone.
“Risk-Constrained Reinforcement Learning with Percentile Risk Criteria.” In:
Journal of Machine Learning Research 18.167 (2017), pp. 1–167.

[23] Ankur Chowdhary, Dijiang Huang, Jayasurya Sevalur Mahendran, Daniel Romo,
Yuli Deng, and Abdulhakim Sabur. “Autonomous security analysis and pen-
etration testing.” In: 2020 16th International Conference on Mobility, Sensing and
Networking (MSN). IEEE. 2020, pp. 508–515.

[24] Gabriella Contardo, Ludovic Denoyer, and Thierry Artieres. “Recurrent neural
networks for adaptive feature acquisition.” In: International Conference on Neural
Information Processing. Springer. 2016, pp. 591–599.

[25] Marc Damashek. “Gauging similarity with n-grams: Language-independent cate-
gorization of text.” In: Science 267.5199 (1995), pp. 843–848.

[26] Niranjan Damera Venkata and Chiranjib Bhattacharyya. “Deep Recurrent Optimal
Stopping.” In: Advances in Neural Information Processing Systems 36 (2024).

[27] Kun Deng, Chris Bourke, Stephen Scott, Julie Sunderman, and Yaling Zheng.
“Bandit-based algorithms for budgeted learning.” In: Seventh IEEE International
Conference on Data Mining (ICDM 2007). IEEE. 2007, pp. 463–468.

bibliography 119

[28] Martin Drašar, Stephen Moskal, Shanchieh Yang, and Pavol Zat’ko. “Session-
level adversary intent-driven cyberattack simulator.” In: 2020 IEEE/ACM 24th
International Symposium on Distributed Simulation and Real Time Applications (DS-
RT). IEEE. 2020, pp. 1–9.

[29] Gabriel Dulac-Arnold, Ludovic Denoyer, Philippe Preux, and Patrick Gallinari.
“Datum-wise classification: a sequential approach to sparsity.” In: Joint European
Conference on Machine Learning and Knowledge Discovery in Databases. Springer. 2011,
pp. 375–390.

[30] Gabriel Dulac-Arnold, Nir Levine, Daniel J Mankowitz, Jerry Li, Cosmin Paduraru,
Sven Gowal, and Todd Hester. “Challenges of real-world reinforcement learning:
definitions, benchmarks and analysis.” In: Machine Learning 110.9 (2021), pp. 2419–
2468.

[31] Sašo Džeroski, Luc De Raedt, and Kurt Driessens. “Relational reinforcement
learning.” In: Machine learning 43.1-2 (2001), pp. 7–52.

[32] Guillem Frances, Blai Bonet, and Hector Geffner. “Learning general planning
policies from small examples without supervision.” In: Proceedings of the AAAI
Conference on Artificial Intelligence. Vol. 35. 13. 2021, pp. 11801–11808.

[33] Sankalp Garg, Aniket Bajpai, and Mausam. “Symbolic network: generalized neural
policies for relational MDPs.” In: International Conference on Machine Learning.
PMLR. 2020, pp. 3397–3407.

[34] Marta Garnelo, Kai Arulkumaran, and Murray Shanahan. “Towards deep symbolic
reinforcement learning.” In: arXiv preprint arXiv:1609.05518 (2016).

[35] Wenbo Gong, Sebastian Tschiatschek, Sebastian Nowozin, Richard E Turner, José
Miguel Hernández-Lobato, and Cheng Zhang. “Icebreaker: Element-wise efficient
information acquisition with a bayesian deep latent gaussian model.” In: Advances
in neural information processing systems 32 (2019).

[36] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. “Generative adversarial nets.”
In: Advances in neural information processing systems. 2014, pp. 2672–2680.

[37] Joshua Goodman. “Classes for fast maximum entropy training.” In: 2001 IEEE
International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat.
No. 01CH37221). Vol. 1. IEEE. 2001, pp. 561–564.

[38] Edward Groshev, Aviv Tamar, Maxwell Goldstein, Siddharth Srivastava, and Pieter
Abbeel. “Learning generalized reactive policies using deep neural networks.” In:
2018 AAAI Spring Symposium Series. 2018.

[39] Carlos Guestrin, Daphne Koller, Ronald Parr, and Shobha Venkataraman. “Effi-
cient solution algorithms for factored MDPs.” In: Journal of Artificial Intelligence
Research 19 (2003), pp. 399–468.

[40] Arthur Guez, Mehdi Mirza, Karol Gregor, Rishabh Kabra, Sébastien Racanière,
Théophane Weber, David Raposo, Adam Santoro, Laurent Orseau, Tom Eccles,
et al. An investigation of Model-free planning: boxoban levels. https://github.com/
deepmind/boxoban-levels/. 2018.

https://github.com/deepmind/boxoban-levels/
https://github.com/deepmind/boxoban-levels/

120 bibliography

[41] Arthur Guez, Mehdi Mirza, Karol Gregor, Rishabh Kabra, Sébastien Racanière,
Théophane Weber, David Raposo, Adam Santoro, Laurent Orseau, Tom Eccles,
et al. “An investigation of model-free planning.” In: International Conference on
Machine Learning. PMLR. 2019, pp. 2464–2473.

[42] Isabelle Guyon and André Elisseeff. “An introduction to variable and feature
selection.” In: Journal of machine learning research 3.Mar (2003), pp. 1157–1182.

[43] Isabelle Guyon, Jason Weston, Stephen Barnhill, and Vladimir Vapnik. “Gene
selection for cancer classification using support vector machines.” In: Machine
learning 46.1-3 (2002), pp. 389–422.

[44] Will Hamilton, Zhitao Ying, and Jure Leskovec. “Inductive representation learning
on large graphs.” In: Advances in Neural Information Processing Systems. 2017,
pp. 1024–1034.

[45] Kim Hammar and Rolf Stadler. “Finding effective security strategies through
reinforcement learning and self-play.” In: 2020 16th International Conference on
Network and Service Management (CNSM). IEEE. 2020, pp. 1–9.

[46] Kim Hammar and Rolf Stadler. “Learning intrusion prevention policies through
optimal stopping.” In: 2021 17th International Conference on Network and Service
Management (CNSM). IEEE. 2021, pp. 509–517.

[47] Jessica B. Hamrick, Kelsey R. Allen, Victor Bapst, Tina Zhu, Kevin R. McKee,
Josh Tenenbaum, and Peter W. Battaglia. “Relational inductive bias for physical
construction in humans and machines.” In: Proceedings of the 40th Annual Meeting
of the Cognitive Science Society, CogSci 2018, Madison, WI, USA, July 25-28, 2018.
Ed. by Chuck Kalish, Martina A. Rau, Xiaojin (Jerry) Zhu, and Timothy T. Rogers.
2018.

[48] Jack Harmer, Linus Gisslén, Jorge del Val, Henrik Holst, Joakim Bergdahl, Tom
Olsson, Kristoffer Sjöö, and Magnus Nordin. “Imitation learning with concurrent
actions in 3D games.” In: 2018 IEEE Conference on Computational Intelligence and
Games (CIG). IEEE. 2018, pp. 1–8.

[49] Rishi Hazra and Luc De Raedt. “Deep Explainable Relational Reinforcement
Learning: A Neuro-Symbolic Approach.” In: arXiv preprint arXiv:2304.08349 (2023).

[50] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep residual learning
for image recognition.” In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2016, pp. 770–778.

[51] Malte Helmert. “The fast downward planning system.” In: Journal of Artificial
Intelligence Research 26 (2006), pp. 191–246.

[52] Malte Helmert and Carmel Domshlak. “Lm-cut: Optimal planning with the
landmark-cut heuristic.” In: Seventh international planning competition (IPC 2011),
deterministic part (2011), pp. 103–105.

[53] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski,
Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver. “Rain-
bow: Combining improvements in deep reinforcement learning.” In: Thirty-Second
AAAI Conference on Artificial Intelligence. 2018.

[54] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory.” In: Neural
computation 9.8 (1997), pp. 1735–1780.

bibliography 121

[55] Arthur E Hoerl and Robert W Kennard. “Ridge regression: Biased estimation for
nonorthogonal problems.” In: Technometrics 12.1 (1970), pp. 55–67.

[56] Kurt Hornik. “Approximation capabilities of multilayer feedforward networks.”
In: Neural networks 4.2 (1991), pp. 251–257.

[57] Max Jaderberg, Wojciech M Czarnecki, Iain Dunning, Luke Marris, Guy Lever,
Antonio Garcia Castaneda, Charles Beattie, Neil C Rabinowitz, Ari S Morcos, Avra-
ham Ruderman, et al. “Human-level performance in 3D multiplayer games with
population-based reinforcement learning.” In: Science 364.6443 (2019), pp. 859–865.

[58] Jaromír Janisch, Tomáš Pevný, and Viliam Lisý. “Classification with Costly Fea-
tures using Deep Reinforcement Learning.” In: AAAI Conference on Artificial Intelli-
gence. 2019.

[59] Jaromír Janisch, Tomáš Pevný, and Viliam Lisý. “Classification with Costly Fea-
tures as a Sequential Decision-Making Problem.” In: Machine Learning 109.8 (2020),
pp. 1587–1615.

[60] Jaromír Janisch, Tomáš Pevný, and Viliam Lisý. “NASimEmu: Network Attack
Simulator & Emulator for Training Agents Generalizing to Novel Scenarios.” In:
Computer Security. ESORICS 2023 International Workshops. Springer International
Publishing, 2024.

[61] Jaromír Janisch, Tomáš Pevný, and Viliam Lisý. “Classification with Costly Fea-
tures in Hierarchical Deep Sets.” In: - (under review / minor revision).

[62] Jaromír Janisch, Tomáš Pevný, and Viliam Lisý. “Symbolic Relational Deep Rein-
forcement Learning based on Graph Neural Networks and Autoregressive Policy
Decomposition.” In: - (under review).

[63] Daniel Jarrett and Mihaela Van Der Schaar. “Inverse Active Sensing: Modeling and
Understanding Timely Decision-Making.” In: International Conference on Machine
Learning. PMLR. 2020, pp. 4713–4723.

[64] Daniel Jarrett, Jinsung Yoon, Ioana Bica, Zhaozhi Qian, Ari Ercole, and Mihaela
van der Schaar. “Clairvoyance: A pipeline toolkit for medical time series.” In:
International Conference on Learning Representations. 2020.

[65] Shihao Ji and Lawrence Carin. “Cost-sensitive feature acquisition and classifica-
tion.” In: Pattern Recognition 40.5 (2007), pp. 1474–1485.

[66] Mohammad Kachuee, Orpaz Goldstein, Kimmo Karkkainen, Sajad Darabi, and
Majid Sarrafzadeh. “Opportunistic Learning: Budgeted Cost-Sensitive Learning
from Data Streams.” In: International Conference on Learning Representations. 2019.

[67] Aloak Kapoor and Russell Greiner. “Learning and classifying under hard bud-
gets.” In: European Conference on Machine Learning. Springer. 2005, pp. 170–181.

[68] Rushang Karia and Siddharth Srivastava. “Relational Abstractions for General-
ized Reinforcement Learning on Symbolic Problems.” In: 31st International Joint
Conference on Artificial Intelligence, IJCAI 2022. International Joint Conferences on
Artificial Intelligence. 2022, pp. 3135–3142.

[69] Thomas Keller and Patrick Eyerich. “PROST: Probabilistic Planning Based on
UCT.” In: Proceedings of the Twenty-Second International Conference on Automated
Planning and Scheduling (ICAPS). 2012.

122 bibliography

[70] Thomas Keller and Malte Helmert. “Trial-based Heuristic Tree Search for Finite
Horizon MDPs.” In: Proceedings of the Twenty-Third International Conference on
Automated Planning and Scheduling (ICAPS). 2013.

[71] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization.”
In: International Conference on Learning Representations. 2015.

[72] Thomas N Kipf and Max Welling. “Semi-supervised classification with graph
convolutional networks.” In: arXiv preprint arXiv:1609.02907 (2016).

[73] Alex Krizhevsky and Geoffrey Hinton. “Learning multiple layers of features from
tiny images.” MA thesis. University of Toronto, 2009.

[74] Farzana Kulsoom, Sanam Narejo, Zahid Mehmood, Hassan Nazeer Chaudhry,
Ayesha Butt, and Ali Kashif Bashir. “A review of machine learning-based human
activity recognition for diverse applications.” In: Neural Computing and Applications
34.21 (2022), pp. 18289–18324.

[75] Matt Kusner, Wenlin Chen, Quan Zhou, Zhixiang Xu, Kilian Weinberger, and Yixin
Chen. “Feature-Cost Sensitive Learning with Submodular Trees of Classifiers.” In:
AAAI Conference on Artificial Intelligence. 2014, pp. 1939–1945.

[76] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning.” In: Nature
521.7553 (2015), pp. 436–444.

[77] Junhyun Lee, Inyeop Lee, and Jaewoo Kang. “Self-attention graph pooling.” In:
International conference on machine learning. PMLR. 2019, pp. 3734–3743.

[78] Min Hun Lee, Daniel P Siewiorek, Asim Smailagic, Alexandre Bernardino, and
Sergi Bermúdez i Badia. “Co-design and evaluation of an intelligent decision
support system for stroke rehabilitation assessment.” In: Proceedings of the ACM
on Human-Computer Interaction 4.CSCW2 (2020), pp. 1–27.

[79] Min Hun Lee, Daniel P Siewiorek, Asim Smailagic, Alexandre Bernardino, and
Sergi Bermúdez i Badia. “Interactive hybrid approach to combine machine and
human intelligence for personalized rehabilitation assessment.” In: Proceedings of
the ACM Conference on Health, Inference, and Learning. 2020, pp. 160–169.

[80] Joel Z Leibo, Cyprien de Masson d’Autume, Daniel Zoran, David Amos, Charles
Beattie, Keith Anderson, Antonio García Castañeda, Manuel Sanchez, Simon
Green, Audrunas Gruslys, et al. “Psychlab: a psychology laboratory for deep
reinforcement learning agents.” In: arXiv preprint arXiv:1801.08116 (2018).

[81] Moshe Leshno, Vladimir Ya Lin, Allan Pinkus, and Shimon Schocken. “Multilayer
feedforward networks with a nonpolynomial activation function can approximate
any function.” In: Neural networks 6.6 (1993), pp. 861–867.

[82] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. “Offline reinforcement
learning: Tutorial, review, and perspectives on open problems.” In: arXiv preprint
arXiv:2005.01643 (2020).

[83] Li Li, Raed Fayad, and Adrian Taylor. “CyGIL: A cyber gym for training au-
tonomous agents over emulated network systems.” In: Proceedings of the 1st Inter-
national Workshop on Adaptive Cyber Defense (2021).

[84] Richard Li, Allan Jabri, Trevor Darrell, and Pulkit Agrawal. “Towards Practical
Multi-Object Manipulation using Relational Reinforcement Learning.” In: arXiv
preprint arXiv:1912.11032 (2019).

bibliography 123

[85] Wenzhe Li, Hao Luo, Zichuan Lin, Chongjie Zhang, Zongqing Lu, and Deheng
Ye. “A Survey on Transformers in Reinforcement Learning.” In: Transactions on
Machine Learning Research (2023). issn: 2835-8856. url: https://openreview.net/
forum?id=r30yuDPvf2.

[86] Yang Li and Junier Oliva. “Active feature acquisition with generative surrogate
models.” In: International Conference on Machine Learning. PMLR. 2021, pp. 6450–
6459.

[87] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. “Gated graph
sequence neural networks.” In: arXiv preprint arXiv:1511.05493 (2015).

[88] Yuxi Li. “Deep reinforcement learning.” In: arXiv preprint arXiv:1810.06339 (2018).

[89] M. Lichman. UCI Machine Learning Repository. 2013. url: http://archive.ics.
uci.edu/ml.

[90] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. “Continuous control with deep
reinforcement learning.” In: International Conference on Learning Representations.
2016.

[91] Enlu Lin, Qiong Chen, and Xiaoming Qi. “Deep reinforcement learning for imbal-
anced classification.” In: Applied Intelligence 50 (2020), pp. 2488–2502.

[92] Long-Ji Lin. “Reinforcement learning for robots using neural networks.” PhD
thesis. Carnegie Mellon University, 1993.

[93] Xiaofeng Liu, BVK Kumar, Chao Yang, Qingming Tang, and Jane You. “Dependency-
aware attention control for unconstrained face recognition with image sets.” In:
Proceedings of the European Conference on Computer Vision (ECCV). 2018, pp. 548–565.

[94] Ilya Loshchilov and Frank Hutter. “Decoupled weight decay regularization.” In:
International Conference on Learning Representations. 2017.

[95] Ilya Loshchilov and Frank Hutter. “Decoupled Weight Decay Regularization.” In:
International Conference on Learning Representations. 2018.

[96] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. “Rectifier nonlinearities
improve neural network acoustic models.” In: International Conference on Learning
Representations. 2013.

[97] Sebastián Maldonado, Juan Pérez, and Cristián Bravo. “Cost-based feature selec-
tion for support vector machines: An application in credit scoring.” In: European
Journal of Operational Research 261.2 (2017), pp. 656–665.

[98] Shlomi Maliah and Guy Shani. “MDP-Based Cost Sensitive Classification Using
Decision Trees.” In: AAAI Conference on Artificial Intelligence. 2018, pp. 3746–3753.

[99] Šimon Mandlík. “Mapping the Internet — Modelling Entity Interactions in Com-
plex Heterogeneous Networks.” MA thesis. Czech technical university in Prague,
2020.

[100] Šimon and Račinský, Matěj and Lisý, Viliam and Pevný, Tomáš Mandlík. “JsonGrinder.
jl: automated differentiable neural architecture for embedding arbitrary JSON
data.” In: Journal of Machine Learning Research 23.298 (2022), pp. 1–5.

https://openreview.net/forum?id=r30yuDPvf2
https://openreview.net/forum?id=r30yuDPvf2
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

124 bibliography

[101] Coralie Martinez, Emmanuel Ramasso, Guillaume Perrin, and Michèle Rombaut.
“Adaptive early classification of temporal sequences using deep reinforcement
learning.” In: Knowledge-Based Systems 190 (2020), p. 105290.

[102] Luke Metz, Julian Ibarz, Navdeep Jaitly, and James Davidson. “Discrete sequential
prediction of continuous actions for deep rl.” In: arXiv preprint arXiv:1705.05035
(2017).

[103] Microsoft. CyberBattleSim. https://github.com/microsoft/cyberbattlesim.
Created by Christian Seifert, Michael Betser, William Blum, James Bono, Kate
Farris, Emily Goren, Justin Grana, Kristian Holsheimer, Brandon Marken, Joshua
Neil, Nicole Nichols, Jugal Parikh, Haoran Wei. 2021.

[104] Erik Miehling, Mohammad Rasouli, and Demosthenis Teneketzis. “Optimal de-
fense policies for partially observable spreading processes on Bayesian attack
graphs.” In: Proceedings of the second ACM workshop on moving target defense. 2015,
pp. 67–76.

[105] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy
Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. “Asynchronous
methods for deep reinforcement learning.” In: International Conference on Machine
Learning. 2016, pp. 1928–1937.

[106] Volodymyr Mnih, Nicolas Heess, Alex Graves, et al. “Recurrent models of visual
attention.” In: Advances in neural information processing systems. 2014, pp. 2204–2212.

[107] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. “Human-level control through deep reinforcement learning.” In:
Nature 518.7540 (2015), pp. 529–533.

[108] Andres Molina-Markham, Cory Miniter, Becky Powell, and Ahmad Ridley. “Net-
work environment design for autonomous cyberdefense.” In: arXiv preprint arXiv:2103.07583
(2021).

[109] Seyed Vahid Moravvej, Roohallah Alizadehsani, Sadia Khanam, Zahra Sobhaninia,
Afshin Shoeibi, Fahime Khozeimeh, Zahra Alizadeh Sani, Ru-San Tan, Abbas
Khosravi, Saeid Nahavandi, et al. “RLMD-PA: A reinforcement learning-based my-
ocarditis diagnosis combined with a population-based algorithm for pretraining
weights.” In: Contrast Media & Molecular Imaging 2022 (2022).

[110] Frederic Morin and Yoshua Bengio. “Hierarchical probabilistic neural network
language model.” In: Aistats. Vol. 5. Citeseer. 2005, pp. 246–252.

[111] Jan Motl and Oliver Schulte. “The CTU Prague relational learning repository.” In:
arXiv preprint arXiv:1511.03086 (2015). url: https://relational.fit.cvut.cz/.

[112] Rémi Munos, Tom Stepleton, Anna Harutyunyan, and Marc Bellemare. “Safe
and efficient off-policy reinforcement learning.” In: Advances in Neural Information
Processing Systems. 2016, pp. 1054–1062.

[113] Feng Nan and Venkatesh Saligrama. “Adaptive Classification for Prediction Under
a Budget.” In: Advances in Neural Information Processing Systems. 2017, pp. 4730–
4740.

[114] Feng Nan, Joseph Wang, and Venkatesh Saligrama. “Feature-Budgeted Random
Forest.” In: International Conference on Machine Learning. 2015, pp. 1983–1991.

https://github.com/microsoft/cyberbattlesim
https://relational.fit.cvut.cz/

bibliography 125

[115] Feng Nan, Joseph Wang, and Venkatesh Saligrama. “Pruning random forests for
prediction on a budget.” In: Advances in Neural Information Processing Systems. 2016,
pp. 2334–2342.

[116] Jun Hao Alvin Ng and R Petrick. “Firstorder function approximation for transfer
learning in relational mdps.” In: ICAPS PRL workshop. 2021.

[117] Fabio Pardo, Arash Tavakoli, Vitaly Levdik, and Petar Kormushev. “Time limits
in reinforcement learning.” In: International Conference on Machine Learning. 2018,
pp. 4045–4054.

[118] Ali Payani and Faramarz Fekri. “Incorporating Relational Background Knowledge
into Reinforcement Learning via Differentiable Inductive Logic Programming.”
In: arXiv preprint arXiv:2003.10386 (2020).

[119] Yu-Shao Peng, Kai-Fu Tang, Hsuan-Tien Lin, and Edward Chang. “REFUEL:
Exploring Sparse Features in Deep Reinforcement Learning for Fast Disease
Diagnosis.” In: Advances in Neural Information Processing Systems. 2018.

[120] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. “Deepwalk: Online learning
of social representations.” In: Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM. 2014, pp. 701–710.

[121] Tomáš Pevný and Vojtěch Kovařík. “Approximation capability of neural networks
on spaces of probability measures and tree-structured domains.” In: arXiv preprint
arXiv:1906.00764 (2019).

[122] Tomáš Pevný and Petr Somol. “Discriminative models for multi-instance prob-
lems with tree structure.” In: Proceedings of the 2016 ACM Workshop on Artificial
Intelligence and Security. ACM. 2016, pp. 83–91.

[123] Tomáš Pevný and Petr Somol. “Using neural network formalism to solve multiple-
instance problems.” In: International Symposium on Neural Networks. Springer. 2017,
pp. 135–142.

[124] Sébastien Racanière, Théophane Weber, David Reichert, Lars Buesing, Arthur
Guez, Danilo Jimenez Rezende, Adria Puigdomenech Badia, Oriol Vinyals, Nicolas
Heess, Yujia Li, et al. “Imagination-augmented agents for deep reinforcement
learning.” In: Advances in neural information processing systems. 2017, pp. 5690–5701.

[125] Joseph Redmon and Ali Farhadi. “YOLOv3: An incremental improvement.” In:
arXiv preprint arXiv:1804.02767 (2018).

[126] Maria Rigaki, Ondřej Lukáš, Carlos A Catania, and Sebastian Garcia. “Out of
the cage: How stochastic parrots win in cyber security environments.” In: arXiv
preprint arXiv:2308.12086 (2023).

[127] Jorai Rijsdijk, Lichao Wu, Guilherme Perin, and Stjepan Picek. “Reinforcement
learning for hyperparameter tuning in deep learning-based side-channel analysis.”
In: IACR Transactions on Cryptographic Hardware and Embedded Systems (2021),
pp. 677–707.

[128] Or Rivlin, Tamir Hazan, and Erez Karpas. “Generalized planning with deep
reinforcement learning.” In: arXiv preprint arXiv:2005.02305 (2020).

[129] Scott Sanner. “Relational dynamic influence diagram language (RDDL): Language
description.” In: Unpublished manuscript. Australian National University 32 (2010),
p. 27.

126 bibliography

[130] Adam Santoro, David Raposo, David G Barrett, Mateusz Malinowski, Razvan
Pascanu, Peter Battaglia, and Timothy Lillicrap. “A simple neural network module
for relational reasoning.” In: Advances in neural information processing systems. 2017,
pp. 4967–4976.

[131] Max-Philipp B. Schrader. gym-sokoban. https://github.com/mpSchrader/gym-
sokoban. 2018.

[132] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
“Proximal policy optimization algorithms.” In: arXiv preprint arXiv:1707.06347
(2017).

[133] Jonathon Schwartz and Hanna Kurniawati. “Autonomous penetration testing
using reinforcement learning.” In: arXiv preprint arXiv:1905.05965 (2019).

[134] William Shen, Felipe Trevizan, and Sylvie Thiébaux. “Learning domain-independent
planning heuristics with hypergraph networks.” In: Proceedings of the International
Conference on Automated Planning and Scheduling. Vol. 30. 2020, pp. 574–584.

[135] Hajin Shim, Sung Ju Hwang, and Eunho Yang. “Joint Active Feature Acquisi-
tion and Classification with Variable-Size Set Encoding.” In: Advances in Neural
Information Processing Systems. 2018, pp. 1375–1385.

[136] David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega, and Pierre
Vandergheynst. “The emerging field of signal processing on graphs: Extending
high-dimensional data analysis to networks and other irregular domains.” In:
IEEE signal processing magazine 30.3 (2013), pp. 83–98.

[137] Thorsten Sick and Fabrizio Biondi. PurpleDome: Simulation environment for at-
tacks on computer networks. https://github.com/avast/PurpleDome. (visited on
09.02.2022). 2022.

[138] John Slaney and Sylvie Thiébaux. “Blocks world revisited.” In: Artificial Intelligence
125.1-2 (2001), pp. 119–153.

[139] Maxwell Standen, Martin Lucas, David Bowman, Toby J Richer, Junae Kim, and
Damian Marriott. “CybORG: A gym for the development of autonomous cyber
agents.” In: Proceedings of the 1st International Workshop on Adaptive Cyber Defense
(2021).

[140] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction (2nd
ed.) Cambridge, MA: MIT press, 2018.

[141] Ming Tan. “Cost-sensitive learning of classification knowledge and its applications
in robotics.” In: Machine Learning 13.1 (1993), pp. 7–33.

[142] Yunhao Tang and Shipra Agrawal. “Discretizing continuous action space for on-
policy optimization.” In: Proceedings of the AAAI Conference on Artificial Intelligence.
Vol. 34. 2020, pp. 5981–5988.

[143] Sam Toyer, Sylvie Thiébaux, Felipe Trevizan, and Lexing Xie. “Asnets: Deep
learning for generalised planning.” In: Journal of Artificial Intelligence Research 68

(2020), pp. 1–68.

[144] Sam Toyer, Felipe Trevizan, Sylvie Thiébaux, and Lexing Xie. “Action schema
networks: Generalised policies with deep learning.” In: Proceedings of the AAAI
Conference on Artificial Intelligence. Vol. 32. 1. 2018.

https://github.com/mpSchrader/gym-sokoban
https://github.com/mpSchrader/gym-sokoban
https://github.com/avast/PurpleDome

bibliography 127

[145] Kirill Trapeznikov and Venkatesh Saligrama. “Supervised sequential classification
under budget constraints.” In: Artificial Intelligence and Statistics. 2013, pp. 581–589.

[146] Hado Van Hasselt, Arthur Guez, and David Silver. “Deep Reinforcement Learn-
ing with Double Q-Learning.” In: AAAI Conference on Artificial Intelligence. 2016,
pp. 2094–2100.

[147] Martijn Van Otterlo. “A survey of reinforcement learning in relational domains.”
In: Centre for Telematics and Information Technology (CTIT) University of Twente, Tech.
Rep (2005).

[148] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan
N Gomez, Łukasz Kaiser, and Illia Polosukhin. “Attention is all you need.” In:
Advances in neural information processing systems 30 (2017).

[149] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew
Dudzik, Junyoung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko
Georgiev, et al. “Grandmaster level in StarCraft II using multi-agent reinforcement
learning.” In: Nature (2019), pp. 1–5.

[150] Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha
Vezhnevets, Michelle Yeo, Alireza Makhzani, Heinrich Küttler, John Agapiou, Ju-
lian Schrittwieser, et al. “Starcraft II: A new challenge for reinforcement learning.”
In: arXiv preprint arXiv:1708.04782 (2017).

[151] Joseph Wang, Tolga Bolukbasi, Kirill Trapeznikov, and Venkatesh Saligrama.
“Model selection by linear programming.” In: European Conference on Computer
Vision. Springer. 2014, pp. 647–662.

[152] Joseph Wang, Kirill Trapeznikov, and Venkatesh Saligrama. “An lp for sequential
learning under budgets.” In: Artificial Intelligence and Statistics. 2014, pp. 987–995.

[153] Joseph Wang, Kirill Trapeznikov, and Venkatesh Saligrama. “Efficient learning by
directed acyclic graph for resource constrained prediction.” In: Advances in Neural
Information Processing Systems. 2015, pp. 2152–2160.

[154] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando
Freitas. “Dueling Network Architectures for Deep Reinforcement Learning.” In:
International Conference on Machine Learning. 2016, pp. 1995–2003.

[155] David H Wolpert and William G Macready. “No free lunch theorems for op-
timization.” In: IEEE transactions on evolutionary computation 1.1 (1997), pp. 67–
82.

[156] Junfeng Xu, Zhengxing Sun, and Chen Ma. “Crowd aware summarization of
surveillance videos by deep reinforcement learning.” In: Multimedia Tools and
Applications 80.4 (2021), pp. 6121–6141.

[157] Zhixiang Xu, Matt Kusner, Kilian Weinberger, and Minmin Chen. “Cost-sensitive
tree of classifiers.” In: International Conference on Machine Learning. 2013, pp. 133–
141.

[158] Zhixiang Xu, Matt Kusner, Kilian Weinberger, Minmin Chen, and Olivier Chapelle.
“Classifier cascades and trees for minimizing feature evaluation cost.” In: Journal
of Machine Learning Research 15.1 (2014), pp. 2113–2144.

128 bibliography

[159] Zhixiang Xu, Kilian Weinberger, and Olivier Chapelle. “The greedy miser: learning
under test-time budgets.” In: Proceedings of the 29th International Coference on
International Conference on Machine Learning. Omnipress. 2012, pp. 1299–1306.

[160] John Yang, Akshara Prabhakar, Shunyu Yao, Kexin Pei, and Karthik R Narasimhan.
“Language Agents as Hackers: Evaluating Cybersecurity Skills with Capture the
Flag.” In: Multi-Agent Security Workshop@ NeurIPS’23. 2023.

[161] Yizhou Yang and Xin Liu. “Behaviour-Diverse Automatic Penetration Testing: A
Curiosity-Driven Multi-Objective Deep Reinforcement Learning Approach.” In:
arXiv preprint arXiv:2202.10630 (2022).

[162] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan
R Salakhutdinov, and Alexander J Smola. “Deep sets.” In: Advances in neural
information processing systems. 2017, pp. 3391–3401.

[163] Vinicius Zambaldi, David Raposo, Adam Santoro, Victor Bapst, Yujia Li, Igor
Babuschkin, Karl Tuyls, David Reichert, Timothy Lillicrap, Edward Lockhart, et al.
“Deep reinforcement learning with relational inductive biases.” In: International
Conference on Learning Representations. 2019.

[164] Mikulas Zelinka, Xingdi Yuan, Marc-Alexandre Cote, Romain Laroche, and Adam
Trischler. “Building Dynamic Knowledge Graphs from Text-based Games.” In:
arXiv preprint arXiv:1910.09532 (2019).

[165] Si Zhang, Hanghang Tong, Jiejun Xu, and Ross Maciejewski. “Graph convolutional
networks: a comprehensive review.” In: Computational Social Networks 6.1 (2019),
pp. 1–23.

[166] Yiming Zhang, Quan Ho Vuong, Kenny Song, Xiao-Yue Gong, and Keith W Ross.
“Efficient entropy for policy gradient with multidimensional action space.” In:
arXiv preprint arXiv:1806.00589 (2018).

[167] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou,
Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, et al. “A survey of large
language models.” In: arXiv preprint arXiv:2303.18223 (2023).

[168] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu,
Lifeng Wang, Changcheng Li, and Maosong Sun. “Graph neural networks: A
review of methods and applications.” In: AI open 1 (2020), pp. 57–81.

[169] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, and Maosong
Sun. “Graph neural networks: A review of methods and applications.” In: arXiv
preprint arXiv:1812.08434 (2018).

[170] Navid Zolghadr, Gábor Bartók, Russell Greiner, András György, and Csaba
Szepesvári. “Online Learning with Costly Features and Labels.” In: Advances in
Neural Information Processing Systems. 2013, pp. 1241–1249.

	Dedication
	Acknowledgments
	Abstract
	Contents
	Acronyms
	Notation
	1 Introduction
	2 Technical Background
	2.1 Deep reinforcement learning
	2.1.1 Value based methods
	2.1.2 Policy gradient methods

	2.2 Graph neural networks
	2.3 Hierarchical multiple-instance learning

	3 Classification with Costly Features
	3.1 Related work
	3.2 Problem variations
	3.2.1 Overview
	3.2.2 Common notation
	3.2.3 Average budget with trade-off parameter lambda
	3.2.4 Average budget with specific target b
	3.2.5 Hard budget
	3.2.6 Missing features
	3.2.7 High-performance classifier

	3.3 Method
	3.4 Experiment setup
	3.4.1 Evaluation metric
	3.4.2 Baseline method
	3.4.3 Used datasets
	3.4.4 Compared Algorithms
	3.4.5 Methodology

	3.5 Experiment results
	3.5.1 Time and memory requirements
	3.5.2 Average budget with trade-off lambda
	3.5.3 Average budget with target b
	3.5.4 Hard budget
	3.5.5 Missing features
	3.5.6 High-performance classifier
	3.5.7 Effect of the RL algorithm

	3.6 Chapter conclusion

	4 CwCF and Hierarchical Multiple-Instance Data
	4.1 Related work
	4.2 Problem
	4.2.1 Structured data
	4.2.2 CwCF with structured data

	4.3 Method
	4.3.1 Input pre-processing
	4.3.2 Input embedding
	4.3.3 Classifier
	4.3.4 Value function and terminal action
	4.3.5 Action selection
	4.3.6 Training
	4.3.7 Pretraining classifier

	4.4 Experiment setup
	4.4.1 Tested algorithms
	4.4.2 Used datasets
	4.4.3 Implementation and hyperparameters
	4.4.4 Methodology

	4.5 Experiment results
	4.5.1 Behaviour analysis: Synthetic dataset
	4.5.2 Real-world domain: Threatcrowd
	4.5.3 Quantitative experiments: Other datasets
	4.5.4 Remarks

	4.6 Discussion
	4.7 Chapter conclusion

	5 Symbolic and Relational Approach
	5.1 Related work
	5.2 Problem
	5.2.1 State and goal
	5.2.2 Actions

	5.3 Method
	5.3.1 Graph Neural Network
	5.3.2 Policy decomposition
	5.3.3 Model training

	5.4 Experiment setup
	5.4.1 Time-limits
	5.4.2 Reference machine
	5.4.3 Implementation details

	5.5 Experiments
	5.5.1 BlockWorld
	5.5.2 Sokoban
	5.5.3 SysAdmin

	5.6 Discussion
	5.7 Chapter conclusion

	6 Case Study: Automated Penetration Testing
	6.1 Related work
	6.2 NASimEmu framework
	6.2.1 Simulator
	6.2.2 Emulator
	6.2.3 Known limitations

	6.3 Deep RL agents
	6.3.1 Architectures
	6.3.2 Last action encoding
	6.3.3 Optimal stopping problem

	6.4 Experiment setup
	6.4.1 Scenarios
	6.4.2 Implementation details
	6.4.3 Baseline algorithm
	6.4.4 Metrics and setup

	6.5 Experiment results
	6.5.1 Generalization to novel scenarios
	6.5.2 Training to terminate
	6.5.3 History matters
	6.5.4 Other architectures
	6.5.5 Scaling to large networks
	6.5.6 Transfer to emulation

	6.6 Chapter conclusion

	7 Conclusion
	7.1 Thesis contributions
	7.2 Future work

	a Publications
	 Bibliography

