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Abstract

The last decade has brought novel analytical approaches to analyzing neuroimaging data.
The well-established statistical methods are increasingly complemented by machine learn-
ing techniques. Together with advances in neuroimaging methods, these techniques en-
abled us to focus on a range of aspects of brain activity, from group-level analyses of
the effects of diseases to short-term brain states. However, the new approaches have also
brought new challenges related to optimal selection and combination of data preprocess-
ing steps, selection of informative features describing the brain states, and constructing
tools for the detection or classification of brain states.

In the theoretical part, we focus on functional Magnetic Resonance Imaging (fMRI).
We cover the essential steps necessary for preprocessing the fMRI data and then fur-
ther specify the brain states and characteristics and the methods for their detection.
Throughout this work, we use the term ”long-term brain characteristics” for features
mostly derived using conventional methods for fMRI data analysis reflecting the overall
and persistent state of the brain, whereas ”short-term brain states” refer to more transient
states related to, e.g., cognitive tasks or sensory stimulation, as well as spontaneous brain
activity dynamics.

The experimental part of the thesis summarizes the results of multiple studies con-
cerning the detection of brain states and characteristics from neuroimaging data, span-
ning both spontaneous brain dynamics and dynamics during various experimental mental
state manipulations and the brain state dynamics in healthy subjects and patients with
schizophrenia. The main results include a replication study highlighting the importance
of appropriate multiple testing correction and the use of nonparametric statistical proce-
dures for personality neuroscience, a study elucidating the role of stringent preprocessing
for observed functional connectivity changes in schizophrenia, and studying the role of
feature selection for detection of long-term brain characteristics alteration in patients
from both resting state and experimental task data. The studies concerning short-term
brain states focus on the prediction of the self-agency state in both healthy subjects and
schizophrenia patients, detection of spontaneously occurring externally and internally
oriented mental states, as well as successful multiple state classification based on rich
experimental ’functional localizer’ paradigm.

Keywords: neuroimaging, brain states, functional magnetic resonance imaging, machine
learning, schizophrenia, functional connectivity.
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Abstrakt

Posledńı desetilet́ı přineslo nové př́ıstupy k analýze neurozobrazovaćıch dat. Zavedené
statistické metody jsou stále častěji doplňovány metodami strojového učeńı. Společně s
pokroky v neurozobrazovaćıch metodách nám tyto metody umožnily zaměřit se na celou
řadu aspekt̊u mozkové aktivity, od skupinových analýz efektu nemoćı až po krátkodobé
mozkové stavy. Nové př́ıstupy však přinesly také nové výzvy souvisej́ıćı s optimálńım
výběrem a kombinaćı krok̊u pro předzpracováńı dat, výběrem vysvětluj́ıćıch veličin popisu-
j́ıćıch stavy mozku a konstrukćı nástroj̊u pro detekci a klasifikaci mozkových stav̊u.

V teoretické části se zaměř́ıme na funkčńı magnetickou rezonanci (fMRI). Zabýváme
se zde základńımi kroky pro předzpracováńı fMRI dat a poté bĺıže specifikujeme stavy a
charakteristiky mozku a metody jejich detekce. V této práci použ́ıváme termı́n ”dlouhodobé
charakteristiky mozku” pro charakteristiky odvozené pomoćı běžných metod pro analýzu
fMRI dat, které odrážej́ı celkový přetrvávaj́ıćı stav mozku, zat́ımco ”krátkodobé mozkové
stavy” se vztahuj́ı k přechodněǰśım stav̊um souvisej́ıćım např. s kognitivńımi úkoly,
smyslovou stimulaćı nebo také spontánńı dynamikou mozkové aktivity.

Experimentálńı část práce shrnuje výsledky několika studíı týkaj́ıćıch se detekce stav̊u
a charakteristik mozku z neurozobrazovaćıch dat, zahrnuj́ıćıch jak spontánńı mozkovou
dynamiku, tak dynamiku během r̊uzných experiment̊u ovlivňuj́ıćıch mentálńı stavy a také
dynamiku mozkových stav̊u u zdravých osob a pacient̊u se schizofreníı. Hlavńı výsledky
zahrnuj́ı replikačńı studii zd̊urazňuj́ıćı význam vhodné korekce pro mnohonásobné testováńı
a použit́ı neparametrických statistických metod v neurovědách, dále studii objasňuj́ıćı
význam d̊usledného předzpracováńı dat při pozorováńı změn funkčńı konektivity u schizofre-
nie a také studii zabývaj́ıćı se výběrem př́ıznak̊u pro detekci dlouhodobých změn mozkových
charakteristik u pacient̊u se schizofreníı jak z klidových dat, tak z dat s experimentálńı
úlohou. Studie týkaj́ıćı se krátkodobých mozkových stav̊u jsou zaměřené na predikci stav̊u
souvisej́ıćıch se sebeuvědoměńım (self-agency) jak u zdravých kontrol tak u pacient̊u se
schizofreníı, detekci spontánńıch externě či interně zaměřených mentálńıch stav̊u, a dále
také na klasifikaci několika stav̊u na základě paradigmatu s několika experimentálńımi
úlohami - funkčńıho lokalizéru.

kĺıčová slova: neurozobrazováńı, mozkové stavy, funkčńı magnetická rezonance, strojové
učeńı, schizofrenie, funkčńı konektivita.
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Chapter 1

Introduction

The advent of functional magnetic resonance imaging (fMRI) in the early 1990s is of-

ten credited to Seiji Ogawa with his discovery of the blood oxygenation level-dependent

(BOLD) effect [1]. Next to electroencephalography (EEG) or positron emission tomog-

raphy, fMRI opened a novel advanced approach to studying the functions of the human

brain. During the past few decades, functional neuroimaging techniques have boosted

our knowledge about cognitive processes or responses to stimuli in the human brain, as

the progress in neuroscientific research has been fueled by advances in computer science.

The advancement in computational neuroscience allowed us to study the mechanisms and

effects of psychiatric and neurological diseases. A central question is how these diseases

affect the repertoire and dynamics of brain states.

In the theoretical section of this work, we first briefly present current neuroimaging

modalities with the main focus on fMRI, the main modality used in the experimental

part of this thesis. We cover the commonly used analytical methods of the fMRI data,

such as the general linear model (GLM), which allows us to model the time course of the

BOLD signal measured by the fMRI, functional connectivity, which describes the temporal

dependency between two brain regions [2], or the independent component analysis which

is commonly used to reduce the high-dimensional fMRI data into a set of components

- brain networks - and allows us to further work with their corresponding time series.

Subsequently we attempt to delineate the term ’brain state’ and categorize the states in

terms of time to long-term characteristics on one side and short-term brain states on the

other. The study of the brain states is a specific discipline that builds upon the standard

analytical methods of the fMRI data and combines them with approaches for studying

the dynamics of the BOLD signal and machine learning.

In the experimental section of this work, we will present multiple interconnected stud-

ies, each offering a different perspective on studying brain states and characteristics but

sharing the aspect of the application of functional magnetic resonance imaging to cap-

1



CHAPTER 1. INTRODUCTION 2

ture brain states, ranging from characterizing spontaneous activity to a rich plethora of

experimental tasks, and from healthy activity to its alterations in disease, with particular

focus on schizophrenia. The chapters 5, 6, and 7 are building on a unique multimodal

prospective database of first-episode psychotic illness (ESO) project focused on the re-

search of schizophrenia. The ESO project involves building a large database of clinical

data of patients with schizophrenia and utilizes results of neuroimaging, biochemical, im-

munological, proteomic, neurocognitive, and genetic data with the aim to predict the

course of psychotic illnesses at their earliest stages. Chapter 5 is focused on monitoring

short-term brain state switches during an experimental task focused on self-agency and

further utilizes the extracted features in order to find a distinctive pattern of long-term

characteristics between healthy controls and patients with schizophrenia. In contrast, in

chapter 6, we compare two approaches to the calculation of functional connectivity as

a feature for the classification of healthy controls and patients based on spontaneous,

resting-state brain activity without experimental stimulation. In chapter 7, we further

study the influence of fMRI data preprocessing on the observable functional connectivity

differences between healthy controls and patients, challenging the classical dysconnection

hypothesis of schizophrenia. Chapters 8 and 9 are parts of a separate project focused

on studying healthy brain state dynamics. Chapter 8 is a multitask-based fMRI study

focused on key functions of the brain. In chapter 9, we performed a unique simultaneous

fMRI and EEG measurements to capture spontaneous brain activity in combination with

phenomenological records of individual inner experience, subsequently machine learning

was applied to classify these self-reported spontaneous mental states. Chapter 10 is fo-

cused on neural correlates of personality traits in functional connectivity.

The general aim of the thesis is thus to contribute to the understanding of the role of

technical aspects of data preprocessing and feature selection for the detection and charac-

terization of mental states and characteristics from neuroimaging data, with a particular

focus on functional magnetic resonance imaging of both rest and task in healthy subjects

and schizophrenia patients.



Chapter 2

Functional neuroimaging/Imaging

brain activity

We aim to capture and characterize the spatiotemporal dynamics of the brain through

neuroimaging. The most common techniques used to measure brain activity include EEG,

fMRI, or PET. However, each technique offers a different perspective on brain activity in

terms of temporal and spatial resolution - crucial parameters for capturing the spatiotem-

poral dynamics of a brain. See Fig 2.1 for the spatiotemporal comparison of methods used

in neuroscience [3]. While EEG can capture brain activity in the order of milliseconds [4],

it suffers from poor spatial resolution. Conversely, the fMRI offers a millimeter spatial

resolution, but the temporal resolution is limited due to the hemodynamics [5].

2.1 Functional Magnetic Resonance Imaging

Functional magnetic resonance imaging belongs to neuroimaging techniques, and since

the 1990s, it has been widely used for studying the human brain [6]. Compared to the

traditional MRI used for anatomical brain imaging, the fMRI continuously scans the

brain in time to record its functioning. The most common method of fMRI measures the

blood-oxygen-level-dependent signal, which reflects the regional hemodynamic changes

and the relative ratio of the oxygenated and deoxygenated blood [7]. The process of

neuronal activation requires oxygen and glucose, which leads to an increased demand

for oxygenated hemoglobin through hemodynamic response in the brain vessels [8]. The

hemodynamic response refers to the increase of the blood flow that occurs in the reaction

to neuronal activity and allows the oxygenated blood to the active neuronal tissue [1].

Fluctuations in the BOLD signal reflect the differences in magnetic susceptibility between

diamagnetic oxygenated hemoglobin and paramagnetic deoxygenated hemoglobin [6]. The

BOLD signal thus represents a proxy measure of the underlying neuronal activity.

3
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Figure 2.1: The space-time domain of methods in neuroscience. [3]

2.1.1 fMRI data preprocessing

Before analyzing the data, specific procedures must be performed with the obtained fMRI

images since the data are, to some extent, affected by artifacts and spurious fluctuations.

These artifactual fluctuations are generally caused by the subject in the MRI scanner

(movement or cardiac pulsation) or by the scanner itself [9]. As the fMRI scanning session

usually lasts several minutes, the subject’s head motion inevitably affects the BOLD

signal. The head motion can be described with rigid body transformations, i.e., rotation

and translation in all three axes. Using image registration techniques, the individual brain

scans acquired throughout the scanning session are realigned to match a reference image

(e.g., an average brain scan of the individual from the whole session).

The scanning of the brain is performed slice by slice, usually in the axial direction, with

a specified sampling period - repetition time (TR). This means the individual 2D images

(slices) are systematically acquired at different times, and so is the captured brain activity.

The slice timing correction is performed to correct these differences. It interpolates the

data in time and corrects for temporal offset between the slices as if they were acquired

at a single moment [10].

Group comparison of the obtained individual subject data is usually the goal of the

analysis pipeline. In order to do that, the individual brain images need to be trans-
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formed into a common space to match one another. This is done by transforming the

individual brain scans to match a template brain image. The most common template is

the MNI152 template created by the Montreal Neurological Institute, McGill University,

Canada. Similarly, as in the motion correction step, it requires estimation of the transfor-

mation parameters (i.e., translation, rotation, scaling, shearing), choice of a cost function

(e.g., least squares, normalized correlation, or mutual information) to find an optimal set

of parameters of the transformation and resampling of the original image to match the

template [10].

Usually, spatial smoothing of the images is performed as the last step by application of

a filter, which removes the high-frequency information - noise. The smoothing also helps to

reduce the anatomical differences between individual subjects. It is commonly performed

by convolution of the three-dimensional image with a three-dimensional Gaussian filter -

kernel [10].

2.2 Electroencephalography (EEG)

The EEG belongs to the methods of electrophysiology of the brain and plays a vital role

in neuroscientific research. The typical feature of EEG is neural oscillations, rhythmic

patterns of neural activity, with complex spatiotemporal patterns of different amplitude,

timing, and frequency that are driven by the excitability of populations of neurons [11].

The neural oscillations can be divided into five frequency bands (note that the detailed

taxonomy and frequency bins vary slightly across studies): delta (1–3 Hz), theta (4–7 Hz),

alpha (8–12 Hz), beta (13–30 Hz), and gamma (30–100 Hz) [12]. Perceptual, cognitive,

motor, and emotional processes are linked with specific patterns of neural oscillations

observed in EEG data [11], [13]. The neural oscillations contribute to different cognitive

functions depending on their location in the brain and amplitude, frequency, phase, and

coherence [14].

2.2.1 Simultaneous EEG-fMRI

The complementary advantages of fMRI and EEG call for their combination, ideally

using a simultaneous measurement. Such simultaneous EEG-fMRI recording is, however,

problematic due to the presence of electromagnetic fields that interfere with EEG, and

special equipment is required [15]. In order to perform the simultaneous measurement,

nonmagnetic wires and electrodes (possibly Ag/AgCl or Au) are necessary, in combination

with an MR-compatible amplifier and a fiber optic cable that is used to transfer the data to

a computer located outside the MRI room [15]. Even then, the EEG is negatively affected

by the rapidly changing gradient fields, radio-frequency pulses, and pulsative flow of blood
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synchronized with the cardiac cycle [16]. Particularly, the rapidly changing gradient fields

cause a high-amplitude artifact [15]. However, these artifacts can be removed during

preprocessing with the averaged artifact subtraction method developed by Allen et al. [17].



Chapter 3

Brain states and characteristics

The human brain is responsible for the retrieval, integration, and processing of infor-

mation [18]. Its activity is facilitated by interconnected neurons and a combination of

electrical and biochemical processes where an electrical impulse travels along an axon of a

neuron, which results in a release of neurochemicals - neurotransmitters - to the synapse

and transmission of the impulse on the dendrite of another neuron [19]. Brain activity can

be modulated by various factors like cognitively demanding tasks or sensory input [20]

and diseases such as schizophrenia [21] and epilepsy or Alzheimer’s disease [22]. However,

the brain is constantly active, even at rest [23].

The literature does not offer a unified and commonly accepted definition of a brain

state. From the neurophysiological point of view, Brown [24] describes brain states as

patterns of synchronous firing of the neuronal cells at the same time in the same frequency.

Kringelbach et al. [25] say that brain states consist of the continuously evolving dynamics

of widespread networks. More recently, [26] specified three criteria that must be met

when studying brain states: 1. brain state is the product of a specified cognitive or

physiological state, 2. brain state is characterized by a widely distributed pattern of

activity or coupling, and 3. brain state affects the future physiology and/or behavior of

the organism.

From the perspective of the brain states, they can be divided into long-term states

and characteristics that will typically reflect the overall state, possibly affected by factors

such as diseases or personality traits, etc., and short-term brain states related to various

cognitive functions or caused by sensory stimulation. This distinction determines the

modalities and possible methodological approaches. From the perspective of available

modalities (e.g., electroencephalography, functional magnetic resonance imaging, positron

emission tomography, etc.), there are two key factors that we have to consider - temporal

and spatial resolution. The former directly affects the spectrum of the detected brain

states, this is especially true for the short-term states, while the latter determines the

7
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amount of detail with which we can observe the detected states. Although there is no

clear boundary between the commonly used methods, we can possibly separate them into

two groups based on the way they work with time.

3.1 Long-term brain characteristics

The conventional approach to fMRI data analysis is based on tools for the detection

of long-term brain characteristics. Besides the commonly used concept of Statistical

parametric mapping (SPM) for the localization of regionally specific effects in functional

neuroimaging data [15], there are methods for characterizing the functional relationships

between different brain regions. A common aspect of these methods is their temporal

nature; they describe an average effect over a longer period of time rather than observing

the dynamic effects in the functional neuroimaging data. The long-term characteristics

reflect the persistent brain alterations that are related, e.g., to psychiatric disorders such

as schizophrenia, bipolar disorder, or neurological disorders like epilepsy. In the following,

we review the most commonly used methods, that can be used to extract some markers

of long-term brain characteristics, although some of them can be used also to provide

markers of momentary brain state or activity.

3.1.1 General linear model (GLM)

The General linear model allows us to model the time course of the measured BOLD

signal with a set of predictors. It is a common approach to analyzing the fMRI data

when the experimental design is a priori known and is defined as a set of conditions. The

condition, usually consisting of alternating blocks or shorter events of tasks or stimulation,

is represented with a boxcar time course convolved with a model of the hemodynamic

response function in order to closely resemble the physiological response of the brain. The

GLM on the subject level allows us to evaluate the effect of the experimental conditions

(explanatory variables/predictors) in the design matrix X on the response variable y -

the BOLD signal. The model can be defined as follows [27]:

y = Xβ + ϵ

On the subject level, X is a matrix of predictors, one predictor for each experimental

condition or nuisance variable (e.g., parameters of head motion estimated while performing

the motion correction), β is a vector of coefficients to be estimated for each predictor

(condition), and ϵ contains the residuals of the model (the error term). In Fig. 3.1 below

is a typical output of the statistical parametric mapping using GLM in the SPM toolbox
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(https://www.fil.ion.ucl.ac.uk/spm/).

Figure 3.1: General linear model in SPM toolbox

As a group comparison is usually of interest, the beta estimates from the subject-level

model are entered into the second-level GLM as the dependent variable y, and each group

is represented by a column vector in the design matrix X. Before the group comparison,

it is crucial to perform the spatial normalization of the fMRI data to the common space

(e.g., the MNI space). The GLM allows us to test hypotheses and statistically evaluate

the effects of experimental conditions or groups, employing statistics (t-test, ANOVA,

https://www.fil.ion.ucl.ac.uk/spm/
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etc.) on the beta estimates.

3.1.2 Brain parcellation and dimensionality reduction techniques

The original MRI brain image consists of tens or hundreds of thousands of three-dimensional

picture elements - voxels. As the fMRI scanning session involves obtaining a series of im-

ages throughout the experiment, each voxel represents a single time point within the

whole scanning session. Computation of the functional connectivity between each pair of

voxels would pose a challenging computational task. This task would, at the same time,

be largely useless, as the neighboring voxels carry similar information (e.g., due to original

spatial smoothness and additional spatial smoothing of the images) and thus do not repre-

sent independent variables. It is therefore reasonable to first reduce the dimensionality of

the original fMRI data from individual voxels to a smaller set of brain regions according to

their cyto- or myelo-architecture, their pattern of structural or functional connectivity to

other locations, or their topographical representation of the brain [28], [29]. Brain atlases

or data-driven approaches such as spatial ICA represent two commonly used methods for

the reduction of the original high-dimensional fMRI data.

Brain atlases

Atlases represent an approach to parcel the whole brain and reduce the high dimensional

data into a smaller subset of regions. For instance, the Automatic labeling atlas (AAL)

published by Mazoyer et al. [30] parcellating the brain into 90 regions is one of the most

commonly used. On the other side, other newly designed atlases attempt to improve

upon it, such as Craddock’s atlas that reflects intrinsic functional connectivity structure

- a commonly used variant is defined by 200 regions [31]. Another atlas example is the

Talairach atlas with 695 regions [32].

Independent component analysis (ICA)

ICA is a data-driven approach used to transform the original multivariate signal into

a set of independent components, where each component provides a grouping of brain

activity into regions that exhibit the same response pattern [33]. The aim of the ICA is to

decompose the original data into a product of a set of time series and spatial patterns [34].

In the spatial variant of ICA, the fMRI BOLD signal is represented by the time-space data

matrix of measurements Xtv, where t = 1. . . T is the number of time points, v = 1. . . V

is the number of voxels, then columns of mixing matrix A represent time courses, the

rows of S contains the k = 1. . .K independent spatial patterns and E represent white
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noise [35]–[37]:

Xtv =
K∑
k=1

AtkSkv + Evt

Note that here, the spatial loading maps are optimized to be independent rather than

aiming for temporal independence of source signals, as done in the initial formulation

of independent component analysis and commonly used for EEG decomposition. The

scheme of the spatial ICA is in Fig 3.2 [37] below.

Figure 3.2: Independent component analysis scheme [37].

Among the most popular ICA algorithms are the Infomax and FastICA algorithms [38].

The Infomax algorithm represents one way to find an unmixing matrix W (i.e., the inverse

of A) by maximizing the entropy of the outputs [39].

The essential advantage of the ICA as a data-driven approach is that it allows us

to identify a set of brain networks and their corresponding time series without prior

specification of the brain regions or the time courses. The number of components to be

extracted from the original data can be estimated using the minimum description length

(MDL) principle [40].

Independent components and brain networks The fMRI data may be grouped into

signals of interest (task-related, function-related, and transiently task-related) and signals

not of interest (physiology-related, motion-related, and scanner-related signals) [34]. The

resulting set of independent components, after performing the ICA on fMRI data, includes

both the components related to sources of noise and several components related to some

known brain networks [41], [42].

For instance, Beckmann et al. [43] performed ICA on resting-state fMRI data. They

found eight components that corresponded to brain networks: A - medial visual cortical

areas, B - lateral visual cortical areas, C - auditory system, D - sensorimotor system,

E - visuospatial system (default mode network (DMN)), F - executive control (central

executive network (CEN)), and G, H - dorsal visual stream, see Fig 3.3 below [43]:
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Figure 3.3: Eight resting-state networks (RSN) found by Beckmann et al. [43].

Fox et al. [44] found out that the brain dynamically alternates between two func-

tionally opposed networks - the default mode network (also known as the task-negative

network) and the central executive network (also known as the task-positive network).

The default mode network refers to a set of brain regions that include the medial prefrontal

cortex, posterior cingulate cortex, and inferior parietal lobule - regions that are more ac-

tive during self-referential processes and suppressed during the execution of goal-directed

tasks [45]–[47]. In contrast to the DMN, the executive network, which mainly includes

the dorsolateral prefrontal cortex, is activated during the processing of task-relevant infor-

mation, attentional control, working memory, and other higher-order cognitive tasks [48].

Some sort of switching between the above-stated networks is commonly thought to be

mediated by the salience network, which is responsible for processing the importance or

relevance of stimuli [49]. These three networks usually cooperate and form the basis of

the “three-network model”, as proposed by Menon [50].

Note that the number of reported fMRI resting state networks detected by ICA de-

composition is rather arbitrary and, in practice, depends on the amount of data available,
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choice of initial dimension reduction (MDL-based or heuristic), and other factors. For in-

stance, Shirer et al. [51] identified 14 brain networks, including the default mode network,

executive network, salience network, etc. On the other side, Kiviniemi et al. [52] reported

60 interpretable ICA resting state fMRI components.

3.1.3 Functional connectivity (FC)

Functional connectivity is defined as statistical dependence in activity between different

regions of the brain [53]. It is usually quantified by the linear correlation [54]. Func-

tional connectivity between regions with preprocessed BOLD signals x and y can thus be

calculated as follows [55]:

ρ =

∑N
n=1 (xn − x̄) (yn − ȳ)√∑N

n=1 (xn − x̄)2
√∑N

n=1 (yn − ȳ)2

Functional connectivity represents one of the essential analyses of fMRI data and

gives us information about the overall organization of functionally similar or dissimilar

regions in the brain. It is typically calculated between a set of regions of interest (ROI)

as an ROI-to-ROI correlation matrix (see Fig. 3.4 below) or seed-to-voxel connectivity

from one specified region to the rest of the brain. However, the original concept of

functional connectivity does not provide information about the causality or direction of

the relationship between pairs of regions.
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Figure 3.4: Functional connectivity matrix

As the connectivity is represented by a single correlation coefficient between a pair

of time series, it effectively sums up the relationship between the brain regions. It thus

reflects the long-term state of the brain. It was shown in many studies before that

differences in functional connectivity were found between healthy controls and patients

with schizophrenia [56], [57].

3.1.4 Multi-voxel pattern analysis (MVPA)

Compared to the traditional univariate analyses using individual voxels, MVPA is a multi-

variate approach that allows studying distributed spatial patterns of brain activity. One of

the strategies uses a spherical multivariate searchlight (spherical voxel mask) that moves

through the 3D brain image where a multivariate effect statistic is calculated at each loca-

tion, and a resulting map shows the ability of the multivariate signal in the local spherical

neighborhood to differentiate between experimental conditions [58]. Recursive feature

elimination is another variant that works as a multivariate feature selection algorithm

that uses a classifier (e.g., support vector machine) recursively to eliminate irrelevant

voxels for discrimination of conditions [59]. A relative contribution of each voxel to the
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discrimination of experimental conditions - a discriminative map - can be obtained during

training [60].

3.2 Short-term brain states

As opposed to the long-term characteristics, the short-term brain states focus on the

dynamic changes in the neuroimaging data. The methods used for the analysis of short-

term brain states directly rely on or build upon the approaches presented in the previous

section. Specifically, the spatial independent component analysis and atlas-based brain

parcellation are utilized as feature extraction techniques that allow us to work with the

BOLD signal itself. However, some technical aspects of the neuroimaging modalities,

such as temporal resolution, need to be considered, and collecting multimodal data might

be beneficial in that case. Short-term brain states are commonly linked to, e.g., various

tasks or sensory stimulations. However, as mental disorders impair performance in some

cognitive tasks, they not only alter the long-term brain characteristics, as measured by,

e.g., functional connectivity but also have an impact on the short-term brain states.

3.2.1 Dynamic functional connectivity (dFC)

Sliding window correlation (SWC)

Sliding window correlation is the simplest yet common method through which we can

assess the temporal changes in functional connectivity between brain regions represented

by time series x = (x1. . . xn) and y = (y1. . . yn). The window is defined by its length w,

which spans from t = 1 to t = w, and in each iteration when the window is moved by a

chosen step, the functional connectivity is computed within that window [55], [61]. The

sliding window correlation between time series x and y with sampling period - repetition

time (TR) - and window length w can be calculated as follows [62]:

cxy [n] =
TR

w

n+∆∑
i=n−∆

(xi − x̄n) (yi − ȳn) , ρxy [n] =
cxy [n]√

cxx [n] cyy [n]

However, the appropriate window length represents a crucial parameter for two rea-

sons - First, reliable calculation of the covariance, and second, temporal length of the

brain state. Too short window length has a limited number of time points from which

we calculate the functional connectivity, conversely, a window too long is unable to cap-

ture the fast changes in the functional connectivity. A window length of 30-60 seconds

was suggested as sufficient for both reliable calculation of the covariance, and correct

identification of the brain states [51], [63].
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Co-activation patterns (CAP)

Co-activation patterns reflect connectivity dynamics derived from a sequence of time

points where the BOLD signal exceeds an arbitrary threshold (e.g., one standard devi-

ation) [64]. For n regions and each time point t we get an n-by-n co-activation matrix,

where each element is either zero or one, depending on whether it crosses the arbitrary

threshold. By summation of all the co-activation matrices, we get an estimate of the

functional connectivity since it is believed that the synchronized signals will exceed the

arbitrary threshold most of the time together [64]. The problem with the original ap-

proach was that it did not consider the deactivations in the BOLD signal, but this can be

easily overcome. The arbitrary threshold should be chosen carefully as it directly affects

the significance of the considered crossings, and one should bear in mind that not all

peaks in the BOLD signal have their origin in neural processes but are instead caused by

the motion of the subject or other sources.

3.2.2 Activation profiles

The low-frequency fluctuations in the BOLD signal reflect the increases and the decreases

in activity of particular brain regions [8]. If we assume the fMRI BOLD signal is rep-

resented by the time-space data matrix of measurements Xtv, where t = 1. . . T is the

number of time points, v = 1. . . V is the number of voxels, we can think of the rows of the

matrix Xtv as activation profiles V (t) characterizing the increase or decrease in activity

of V voxels at time t. However, it might be reasonable, given the spatial correlation

and temporal autocorrelation of the BOLD signal, to reduce the high-dimensional data

in space (e.g., using spatial ICA or brain atlas) and/or time (e.g., by temporal averaging

of the signal). The activation profiles, in combination with machine learning methods,

could possibly serve as features for brain state detection.



Chapter 4

Detection of brain states and

characteristics: basic tools

In this chapter, we review several commonly used basic tools of machine learning, most

of which are used later in the experimental part of the thesis.

4.1 Supervised detection

4.1.1 Classification

• linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA) clas-

sifiers are based on the Bayes theorem that is used to derive the decision boundary

by maximizing the posterior probability [65]. Both LDA and QDA assume a nor-

mal distribution of the data in both classes with different means but a common

covariance matrix in the case of the LDA [66].

• support vector machine (SVM) classifier aims at finding a hyperplane [67]:

w · x+ b = 0

(where w is a weight vector, x is a feature vector, and b is the bias), that separates

the data points into classes so that the margin on both sides of the hyperplane is

maximized [68]. To describe the hyperplane, the algorithm uses the so-called support

vectors that are points xi closest to the boundary of the margin [67]. If the data is

linearly separable, we are talking about a hard-margin classifier. However, this is

hardly the case in real-world situations. When the data is not linearly separable, a

soft-margin SVM is used, which means that the classifier allows for misclassification.

A kernel trick is often used to transform the linearly inseparable input data to

17
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higher-dimensional feature space [69]. Some of the commonly used kernels include

quadratic, polynomial, and radial basis function (RBF).

• logistic linear classifier (LLC) is a probabilistic classification model that accepts

real-valued feature vectors of length n with k number of features on its input, i.e.,

the independent variables and measures the relationship between them and the

dependent variable (discrete and binary variable) by using probability scores as the

predicted values of the dependent variable [70]. The class membership probability

is given by the following formulas [71]:

P (1|x, β) = 1

1 + e−(β·x)

P (0|x, β) = 1− P (1|x, β)

• Linear perceptron classifier is a linear binary classifier that works with the input

real-valued feature vector x, the weight vector w, and the bias b, together with the

selected activation function [72]. The sign function is one of the commonly used

activation functions [73]. The algorithm adjusts the weights w and the bias b values

that define the hyperplane according to the number of misclassified data points

using a gradient descent learning algorithm. Artificial neural networks represent an

extension of the linear perceptron classifier [74].

• k-nearest neighbor (kNN), the class membership of each data point in a feature

vector x is based on k nearest neighbors (training samples) in the feature space,

where the k nearest samples get to vote, and the class with the most votes is

chosen [75]. Distance metrics used by the algorithm are, e.g., Euclidean, Chebychev,

Minkowski, and cosine [76]. Changing the value of k causes the decision boundary

to be more or less complicated.

• naive Bayes classifier (NBC) is a probabilistic machine-learning model based on the

Bayes theorem. It is called naive, as it assumes the features to be independent, but

this is usually violated in most cases [77]. Given the features x = (x1, x2, ..., xn),

and yi classes, the theorem can be rewritten as follows [78]:

P (yi|x) =
P (x|yi)P (yi)

P (x)

• decision trees (DT) have a wide spectrum of forms, utilizations, and properties [79].

One of the simplest forms of decision trees used in classification tasks is binary

decision trees with real inputs. In such classification trees, each observation passes
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through a series of binary decisions associated with internal nodes and arrives in the

leaf node containing a class identifier utilized for the prediction of observations [78].

An ensemble of decision trees is called random forest (RF) [80]. A popular technique

is bagging [81], which randomly samples training data set with replacement. Another

successful method of forest training is boosting [82], [83].

4.2 Unsupervised detection

While the experimental part of this thesis used only supervised machine learning tools for

brain state detection, for completeness, we mention at least the two unsupervised tools

that are most commonly used in the literature for brain state detection from neuroimaging

data.

4.2.1 Markov models

The Markov models generally represent an approach to modeling dynamic systems and

were found useful for modeling the brain state dynamics. The transitions between defined

states can be described by Markov models that assume that the future states depend only

on the current state and not on the events that happened in the past - Markov prop-

erty [84]. The Markov models can be used to describe brain activity through a dynamic

sequence of discrete brain states characterized by a specific spatiotemporal pattern of net-

work activity. We can define the Markov model with a length of T samples, state space

dimension M , with the observation variable (observed data) X = {x1, ...xt, ...xT}, the
hidden state sequence S = {s1, ...st, ...sT}, the parameters θ consisting of πtt−1 which de-

termines the state transition probability P (st|st−1) (the probability of transition to state

st depending only on state st−1), π0 which parametrize the initial state probability P (S0),

and θobs which describe the observation probabilities P (Xt|St) [85], [86].

4.2.2 Clustering

k-Means clustering

The simplest yet most commonly used algorithm for the detection of clusters [78]. The

algorithm aims to divideM points in N dimensions intoK non-overlapping clusters so that

the within-cluster sum of squares is minimized [87]. The algorithm initially requires the

user to specify the number of clusters. The algorithm proceeds iteratively as it assigns each

data point to the nearest mean (centroid of a cluster), recalculates means for observations

assigned to each cluster, and eventually stops when the assignments no longer change [87].



Chapter 5

Self-agency judgment in

schizophrenia

5.1 Introduction

In this chapter, we will use task-based fMRI data from the ESO project focused on re-

search on schizophrenia to, at first, attempt to distinguish brain states corresponding to

experimental conditions using the time series of selected brain networks, and in the second

part, we will try to find the long-term characteristics using features derived in the first step

to classify the subjects as healthy controls and patients with schizophrenia. Schizophrenia

is a severe, chronic, and complex mental disorder with a variety of symptoms tradition-

ally classified into three groups: positive, negative, and cognitive deficits [88]. Positive

symptoms involve abnormal thought contents, delusions, and hallucinations [89]. Neg-

ative symptoms include flattened emotions, diminished expression, or anhedonia [90].

Cognitive deficits are crucial aspects of schizophrenia, with deficits in attention, working

memory, verbal learning, and executive functions often appearing before the actual on-

set of the psychosis [91]. Research indicates that schizophrenia impairs the basic sense

of self-awareness, and social cognition, including empathy, or the theory of mind, which

refers to the ability to attribute mental states to others [92]. The self-awareness and

theory of mind may be a core marker of schizophrenia spectrum disorder [93]–[95]. The

sense of one’s self can viewed from many angles, according to [96], the term self-agency

is generally related to the subjective experience of causing or generating an action [96].

The attribution of actions to one’s self or to the other can be impaired in both ways in

schizophrenia, i.e., actions produced by others are falsely attributed to one’s self [97], and

self-produced actions are falsely attributed to an external agent [98]. Daprati et al. [97]

performed an experiment where subjects were required to execute simple hand movements

without visual control of their hands while an image of their own hand or somebody else’s

20
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hand performing the same or different movement was projected on a TV screen, and the

goal was for the subject to recognize their own hand movements. More recently, a similar

experiment was performed by [99], where the agency was assessed based on active and

passive hand movements and visual presentation of the participant’s own hand or the

hand of someone else. This discrepancy in sensorimotor control (the lack of congruence

between the sensory feedback of the action and the actual motor command) is closely

related to the concept of the ‘minimal self’ and is typical for schizophrenia [96].

In this study, we used a longitudinal dataset from an experiment by Spaniel et al. [100]

with motor task and temporal distortion of visual feedback. This experimental paradigm

was focused on self-agency/other-agency judgment in healthy controls and patients with

schizophrenia. Our first aim was to build a model for the classification of the two brain

states corresponding to the self-agency/other-agency experimental conditions. Our second

aim was to use the derived features for the classification of healthy controls and patients.

5.2 Materials and methods

5.2.1 Participants and study design

We obtained data from a total of 180 subjects, of which 81 subjects were healthy con-

trols and 99 subjects were patients diagnosed with schizophrenia according to the In-

ternational Classification of Diseases 10th Revision (ICD-10). Each subject underwent

the following fMRI experiment repeatedly in two separate visits, approximately one year

apart. The experimental task is focused on self-agency/other-agency judgment. A self-

agency experience was elicited and contrasted with other-agency perception in a motor

task through manipulation of incongruence between the subject’s motor intentions and

the visual feedback [100]. The participant in the MRI scanner used an MRI-compatible

joystick controller to move a cursor in the task environment, defined by a central square

that was projected on a screen behind the MRI scanner. The task was based on recogniz-

ing the presented movements of the cursor as ”self-controlled” versus ”other-controlled.”

In the ”other-controlled” condition, the subjects were instructed to try to keep moving

the cursor inside the central square whenever they thought that the cursor’s movement

was manipulated by somebody else (the cursor’s movement during the ”other-controlled”

was, in reality, manipulated through software-based random angular distortions of the

subject’s own actions) [100]. In the ”self-controlled” condition, the subjects were asked

to promptly shift the cursor outside the central square if they gained a distinct feel-

ing of self-agency [100]. The experiment consisted of 12 “self-controlled” blocks and 12

“other-controlled” blocks, each lasting 20 seconds.
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Figure 5.1: Paradigm of the joystick experiment (shifted by 6 seconds to compensate
for the delay of the BOLD signal).

5.2.2 Data acquisition, preprocessing, and analysis

The MRI data acquisition was performed at the National Institute of Mental Health

(NIMH), Klecany, the Czech Republic, using a 3 Tesla Siemens Prisma scanner equipped

with a standard 64-channel head coil. For anatomical reference, structural 3-dimensional

(3D) images were obtained using the T1-weighted (T1w) magnetization-prepared rapid

gradient echo (MPRAGE) sequence with the following parameters: repetition time (TR) = 2400 ms,

echo time (TE) = 2.3 ms, flip angle = 8◦, voxel size = 0.7 × 0.7 × 0.7 mm3, field of

view (FOV) = 224 × 224 mm, matrix size = 320 × 320, 240 sagittal slices. Functional

images were obtained using the T2*-weighted (T2*w) gradient echo-planar imaging (GR-

EPI) sequence sensitive to the blood oxygenation level-dependent (BOLD) signal with

the following parameters: repetition time (TR) = 2000 ms, echo time (TE) = 30ms, flip

angle = 90◦, voxel size = 3 × 3 × 3 mm3, field of view (FOV) = 192 × 192 mm, matrix

size = 64× 64, each volume with 30 axial slices (slice order: alternating increasing), 240

volumes in total.

First, the structural and functional images were converted from DICOM to NIFTI

format using the dcm2niix tool (Li et al., 2016). Prior to the analyses, the images were

preprocessed using a standard preprocessing pipeline in the CONN Toolbox (https:

//web.conn-toolbox.org/) for Matlab (The MathWorks, Inc., Massachusetts, USA)

labeled as ‘default preprocessing pipeline for volume-based analyses (direct normalization

to MNI-space)’. In particular, the structural images were segmented into gray matter,

white matter, and cerebrospinal fluid and directly normalized to the MNI space. Further,

the preprocessing steps of the functional images consisted of realignment and unwarping

(motion correction); slice-timing correction; outlier identification; direct segmentation

and normalization to the MNI space; and spatial smoothing with an 8 mm full-width half

maximum (FWHM) kernel.

We used independent component analysis (ICA) to decompose the original fMRI data

with the GIFT toolbox (https://trendscenter.org/software/gift/) for Matlab (The

MathWorks, Inc., Massachusetts, USA). The spatial variant of ICA reduces the original

data into a set of spatially independent components and their corresponding time series.

Prior to the ICA, the data underwent a two-step reduction process using principal com-

ponent analysis (PCA), and the minimum description length (MDL) principle was used

https://web.conn-toolbox.org/
https://web.conn-toolbox.org/
https://trendscenter.org/software/gift/
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to estimate the optimal number of independent components [101]. We used the Infomax

algorithm [39] for the ICA. To test the reliability of the extracted components, we used

the ICASSO method [102]. Based on 20 runs of the ICA, components with a stability

index below 0.9 were excluded from further analyses [102]. For further analyses, we used

the extracted time series of the individual spatial components. Ten data points at the

beginning of each time series were discarded, and the time series were finally filtered using

the Butterworth band-pass filter with a window of 0.008-0.09 Hz.

One of our aims was to build a binary classifier for the classification of the “other-

controlled” (OC) and “self-controlled” (SC) conditions using the ICA time series. The

longitudinal data set contained fMRI data acquired on each subject’s first and second

visits. We used the data from the first visit to train the individual classification models

and then used these models to predict which states the subjects were in during the same

experiment on their second visit. For the classification task, we used the time series of

the selected independent components on which we further applied principal component

analysis (PCA) to reduce the number of features for the classification task. The PCA was

performed in a single run on all the subject-individual time series concatenated in time.

To find the optimal number of principal components used as features for the classification

of the SC and OC conditions, we trained the classifier using one up to all principal

components. See Fig 5.2 with the first two principal components averaged across all

subjects (for visualization), where in yellow are the time points corresponding to the OC

condition and in blue are time points corresponding to the SC condition. We used a

support vector machine (SVM) classifier with linear and quadratic kernels in their default

settings as implemented in Matlab (The MathWorks, Inc., Massachusetts, USA). The

response variable was created from the OC and SC blocks representing the experimental

paradigm, see Fig 5.1. To compensate for the delay of the BOLD signal, we shifted the

response variable in time by 6 seconds, which corresponds to the default value of the delay

of the canonical HRF function in the SPM12 toolbox (https://www.fil.ion.ucl.ac.

uk/spm/).

In the additional analysis, to identify in the set of the original 27 ICA components

those that were related to the experimental paradigm, we performed for each subject a

linear regression analysis between each component’s time series and the time course of the

paradigm convolved with the model of hemodynamic response function from the SPM12

toolbox (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). One-sample t-test

was computed on the beta estimates to identify the significant paradigm-related compo-

nents, and subsequently, a two-sample t-test was performed to compare the beta estimates

between the healthy controls and patients. In an attempt to explain the possible between-

subjects differences in the testing accuracy of the classification of the two conditions, we

https://www.fil.ion.ucl.ac.uk/spm/
https://www.fil.ion.ucl.ac.uk/spm/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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calculated the mean absolute value of the beta estimates that were computed between

each subject’s time series and the experimental paradigm at visit two. This acted as a

proxy measure reflecting the overall response of each subject to the experimental task.

We then calculated a correlation between the mean absolute value of the beta estimates

and the testing accuracy values.

Our second aim was to build a model for the classification of healthy controls and

patients. We used two separate data sets. As the first one, we used the 27 beta estimates

from each subject from the linear regression performed in the previous step (one for each

of the 27 ICA components’ time series) as features. As the second data set, we used

the AAL atlas [30] to calculate functional connectivity (FC) between 90 brain regions for

each subject and use them as features. Prior to the classification, we performed principal

component analysis (PCA) to transform the original data in both data sets. In the first

data set, we transformed the original beta estimates to 27 principal components (PCs)

(the first 19 PCs explained 95 % of the total variance). In the second data set, we reduced

the number of AAL atlas-based FC features from a total of 4005 (90× (90−1)/2 = 4005)

to 140 PCs (the first 138 PCs explained 95 % of the total variance). In each data set,

to find the optimal number of principal components used as features, we trained the

classifiers using one up to all principal components, i.e., 27 and 140 PCs, respectively.

As the different sizes of subject groups could cause bias in the performance of classifiers,

eighteen randomly selected subjects were removed from the patients’ group to balance

the number of subjects in both classes. We used linear SVM in their default settings

as implemented in Matlab (The MathWorks, Inc., Massachusetts, USA), and to split

the data into training and testing data sets, we used the leave-two-out cross-validation

technique (LTO CV) in order to have an equal number of healthy controls and patients

for training. Using each data set separately, we prepared the following scenarios: both

training and testing within the first visit (v1v1), both training and testing within the

second visit (v2v2), training on visit one and testing on visit two (v1v2), or training on

visit two and testing on visit one (v2v1). In each of these four scenarios, we used the

leave-two-out cross-validation, i.e., two subjects were left out for testing (one subject from

each group), and the classifier was trained on the rest of the data.

5.3 Results

As was estimated with the minimum description length principle, a total of 35 components

were extracted using the independent component analysis. Eight ICA components with

a stability index below 0.9 (based on the ICASSO analysis) were excluded as they were

marked as unstable [102]. We used PCA on the time-concatenated individual-subject time
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series of the remaining 27 ICA components. The resulting principal components were used

as features for the classification of ”other-controlled” and ”self-controlled” conditions for

each subject separately. See the first two principal components averaged across all subjects

in Fig 5.2. The yellow and blue points in the graph correspond to the time points of the

”other-controlled” and ”self-controlled” conditions, respectively.

Figure 5.2: The first two principal components (averaged across all subjects)
of the original 27 time series. The yellow and blue points in the graph correspond to
the time points of the ”other-controlled” and ”self-controlled” conditions, respectively.)

To investigate the potential influence of the number of features on classification per-

formance, we performed PCA and classified the OC/SC conditions using one up to all 27

principal components (PCs) as features. The classification performance was the highest

if all 27 PCs were used for both linear and quadratic SVMs.
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(a) Average classification accuracy of ”self-
controlled” and ”other-controlled” condi-
tions using linear SVM.

(b) Average classification accuracy of ”self-
controlled” and ”other-controlled” condi-
tions using quadratic SVM.

Figure 5.3: Both graphs show classification accuracy averaged across the
individual-subject classifiers using one up to 27 principal components of the
original time series as features.

The maximum training accuracy (across the individual-subject classifiers) of the clas-

sification of the ”other-controlled” and ”self-controlled” conditions resulted in 89.4 % in

the case of linear SVM and 98 % with the quadratic SVM. The maximum testing accuracy

was 64.3 % using the linear SVM and 63 % in the case of quadratic SVM. For the visu-

alization of the test-set performance, we use the results of the linear SVM as it reached

slightly higher overall accuracy. As can be seen in 5.4, the individual models were success-

fully trained to differentiate between the “other-controlled” (yellow) and “self-controlled”

(blue) conditions, see Fig 5.4a. The individual-trained models predicted the condition

the subjects were in during the same experiment on their second visit, see Fig 5.4b, with

an average accuracy of 64 % (linear SVM). However, the prediction accuracy was signif-

icantly lower in patients (mean acc. 61 %) compared to the healthy controls (mean acc.

68 %) (two-sample t-test: t = 3.13, p < 0.01).

(a) Visit 1 - training set. (b) Visit 2 - testing set. (c) Visit 2 - testing accuracy.

Figure 5.4: Training and testing of the individual-subject linear SVM classifiers.
The black vertical line in all three subfigures divides the healthy controls from patients.
In subfigure 5.4c, the mean accuracy for healthy controls is marked with the green line,
mean accuracy for patients is marked with the red line.
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After performing a one-sample t-test on the beta estimates from the linear regression

analysis between each component’s time series and the experimental paradigm, we identi-

fied the components that represented brain networks that were previously reported in the

literature, see [100]. Namely, the anterior default mode (aDMN) network [t = 13.89,

p < 0.001], see Fig. 5.5a, the posterior default mode (pDMN) network [t = 12.33,

p < 0.001], see Fig 5.5b, and the central executive network (CEN) [t = −13.58, p < 0.001],

see Fig. 5.5c.

(a) aDMN network (b) pDMN network (c) CEN network

Figure 5.5: Brain networks significantly related to the experimental paradigm.

To evaluate possible differences in the beta estimates between healthy controls and

patients, we performed a group comparison using a two-sample t-test on the beta estimates

for the three components from the regression analysis, see Fig 5.6. On average, beta

estimates of three components were significantly different between healthy controls and

patients at the first visit: aDMN - t = 3.34, p < 0.05; pDMN - t = 3.17, p < 0.05; CEN -

t = −2.65, p < 0.05, and also at the second visit: aDMN - t = 5.27, p < 0.001; pDMN -

t = 5.64, p < 0.001; CEN - t = −4.40, p < 0.001.
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(a) Average beta estimates 1st visit. (b) Average beta estimates 2nd visit.

Figure 5.6: Comparison of the beta estimates between healthy controls and
patients.

In an attempt to explain the differences in the testing accuracy between the subjects at

visit two, we calculated a correlation between the testing accuracy and the mean absolute

value of the three beta estimates from the regression analysis. We hypothesized that the

subjects with large beta values (i.e., a strong effect of the condition on brain activity)

would have higher classification accuracy of the OC/SC conditions. We found a positive

relationship between the mean absolute beta estimates and the prediction accuracy of the

individual models with Pearson’s r = 0.39, p < 0.001).

Figure 5.7: Correlation between mean absolute beta values from each subject’s
second visit and testing accuracy using the data from the second visit.

In the second part of the study, we attempted to classify the healthy controls versus

patients. As the first data set, we used the full set of the beta estimates from the linear
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regression between the individual-subject time series and the experimental time course

and transformed them using PCA. We used one up to all 27 principal components as

features for the classification of healthy controls versus patients. See Fig 5.8 for results

using linear SVM. The maximum classification accuracy when both training and testing

within the first visit reached 66.1 % (v1v1, blue curve), when both training and testing

within the second visit reached 69.8 % (v2v2, yellow curve), when training on visit one

and testing on visit two reached 69.8 % (v1v2, red curve), and when training on visit two

and testing on visit one reached 64.2 % (v2v1, purple).

Figure 5.8: Accuracy of classification of healthy controls and patients using
linear SVM and principal components of beta estimates from the linear re-
gression analysis as features.

As the second data set for the classification of healthy controls and patients, we used

the AAL [30] atlas-based FC features. See Fig 5.9. The maximum classification accuracy

when both training and testing within the first visit reached 74.7 % (v1v1, blue curve),

when both training and testing within the second visit reached 69.1 % (v2v2, yellow

curve), when training on visit one and testing on visit two reached 64.2 % (v1v2, red

curve), and when training on visit two and testing on visit one reached 66.1 % (v2v1,

purple).
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Figure 5.9: Accuracy of classification of healthy controls and patients using
linear SVM and principal components of AAL90 atlas-based functional con-
nectivity as features.

5.4 Discussion

The individually trained models on data from the first visit were able to predict the

states represented by the “other-controlled” and “self-controlled” conditions at the second

visit. Compared to the linear SVM that reached the maximum (across individual-subject

classifiers) of 89 % training accuracy and 64 % testing accuracy, using the quadratic SVM

did not improve the prediction performance and led to relatively greater overfitting as

the accuracy dropped from its maximum of 98 % on the training data set to 63 % on the

testing data set. Using PCA to transform the features for the classification of OC/SC

conditions did not improve the performance of the classifiers, as the highest accuracy was

reached when all principal components were used together in the model.

Generally, the lower testing accuracy in some subjects in both groups might be because

some did not fully understand the experimental task. This is even more pronounced in

the group of patients where low compliance with the experimental task might be simply

given by the nature of the disease. Eventually, relatively low testing accuracy might not

be entirely due to the poor performance of the classifier but at least partially reflects

the inability of the subjects to successfully recognize the two conditions and switch be-

tween them. In some subjects, the accuracy dropped to about 50 %, which could mean

that those subjects did not fully comprehend the experimental task. We found a signifi-

cant correlation between the individual prediction accuracy values and the mean absolute

beta estimates from the regression analysis which supports our hypothesis that the low

prediction accuracy in some subjects is linked to their low engagement in the experiment.

We have shown that the switching between the two conditions is mainly driven by

the anterior and posterior parts of the default mode network (SC) and the central ex-

ecutive network (OC). This is in line with the literature, where the default mode net-
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work (DMN) is known to be related to spontaneous thoughts or self-referential processes

(Andrews-Hanna, 2010) [50], and is increased during passive internally directed cognitive

states [47]. Its higher activation during the SC condition could be related to the feeling of

gained control over the cognitively less demanding task, where the brain easily switches to

spontaneous thinking. Conversely, the DMN is attenuated during task performance [46],

and we found its activity significantly lower during the OC condition. The central ex-

ecutive network (CEN) is strongly activated during goal-directed cognitively demanding

tasks [50], [103]. During the OC condition, the CEN exhibited higher activation as the

subjects were engaged in relatively difficult task compared to the SC condition. The DMN

and CEN are part of the triple network model proposed by Menon [50], which also includes

a salience network that acts as a switch between the DMN and CEN. This switching seems

to be corrupted in schizophrenia [104], [105], and based on our comparison of the beta

estimates, the activation of the aDMN, pDMN, and CEN in response to the experimental

paradigm significantly differed in patients compared to the healthy controls.

The second aim of this study was to classify the healthy controls and patients. We

used the beta estimates from the linear regression and AAL [30] atlas-based FC as two

separate data sets. The SVM trained on the beta estimates from visit one was able to

predict group labels using data from visit two (v1v2), and also, the model exhibited similar

performance when classifying healthy controls and patients within the same visit (v2v2).

As was mentioned earlier, the beta estimates correspond to the effect of the condition on

brain activity and act as proxy measures reflecting the overall response of each subject to

the experimental task. Although the model trained using the data from visit one found a

discriminative pattern between healthy controls and patients, its performance was worse

when classifying subjects within the same visit (v1v1). However, using this model to

predict group labels at visit two (v1v2) resulted in better accuracy as the difference in the

effect of condition on brain activity was larger between the two groups. This is supported

by the results of the model trained on the data from visit two, which performed worse

when predicting group labels at visit one (v2v1). This could be partially caused by

the worsening of the disease in patients and/or better task performance of the healthy

controls. Using the atlas-based FC features for classification brought different results,

reaching 74.7 % when the model was trained on data from visit one and predicted the

group label at the same visit (v1v1). As shown in Fig 5.9, when ca. 40 or more principal

components were used, the group classification within the first visit was better than the

rest of the scenarios. We did not reach a higher classification accuracy with the task-based

FC features compared to the resting-state atlas-based FC features, which had an accuracy

of 87.22 % with a linear SVM; see our results in table A.1. However, combining the features

from the task-based and resting-state functional connectivity could potentially support



CHAPTER 5. SELF-AGENCY JUDGMENT IN SCHIZOPHRENIA 32

the classification performance and help delineate the trajectory of the disease.

5.5 Conclusion of the study

As our first aim, we trained the SVM to differentiate between OC/SC conditions using

data from the first visit of each subject and predict the conditions using data from their

second visit. We also identified the brain networks related to the two conditions and found

out that their relatively lower activation, compared to healthy controls, at least partially

explains the lower OC/SC classification performance in patients. As the second aim, we

used the derived beta estimates from linear regression analysis to train another model

to classify healthy controls versus patients, and similarly, as in chapter 6 or 7, we used

AAL [30] atlas-based functional connectivity to classify healthy controls versus patients.

According to the results, both sets of features, i.e., beta estimates and functional con-

nectivity, differentiate between healthy controls and patients, but each carries a different

piece of information.



Chapter 6

Classification of patients with

schizophrenia using functional

connectivity

6.1 Introduction

Schizophrenia is a neurodevelopmental disorder affecting ca. 1 % of the population [106].

The abnormal developmental processes of the brain likely appear long before clinical symp-

toms of the disease [107]. Based on the findings from the early neuroimaging studies, the

disconnection hypothesis was proposed by Friston [108] referring to reduced functional

connectivity. As discussed earlier, functional connectivity (FC) is defined as the tem-

poral correlation between spatially remote neurophysiological events [2], [109]. Later,

the dysconnection (i.e., impaired connection) concept in schizophrenia was described by

Stephan et al. [110] in terms of both structural and functional abnormal changes in the

brain.

Over the last decades, functional connectivity has been explored through neuroimaging

studies, measuring co-activation between brain regions [111]. In 1995, Biswal et al. [23]

demonstrated that brain regions exhibit some level of spontaneous co-activation even at

rest, i.e., without any task being performed. This was later replicated by many studies

(e.g., [41], [46], [112]–[114]). The novel neuroimaging techniques and analysis methods

enabled to study of the whole-brain functional connectivity patterns [111]. In 2005, Beck-

mann et al. [43] identified eight structural patterns - brain networks - in the resting-state

data using independent component analysis (ICA). ICA is a data-driven technique that

can decompose the original fMRI data into a set of spatially independent components -

brain networks - and then functional network connectivity (FNC) can be calculated be-

tween their corresponding time series [115]. The common strategy for calculating brain

33
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connectivity relies on a priori-defined regions of interest (ROI) [116]. These regions of

interest are commonly used in the form of atlases that parcellate the whole brain into

several parts, e.g., Talairach atlas [32] or automated anatomical labeling (AAL) atlas by

Tzurio-Mazoyer [30]. Usually, an average time series is computed across the voxels covered

by each region of the atlas, and functional connectivity is calculated between the averaged

time series of the corresponding regions, reflecting their functional dependency [116].

Since then, several studies have been conducted describing impaired connectivity be-

tween multiple brain networks in schizophrenia (see [117], or [118]). However, due to

methodological heterogeneities, the reported findings are highly inconsistent. One of the

sources of these heterogeneities is the a priori choice of selected brain regions of interest

(ROI) or the different brain parcellations according to anatomical or functional atlases.

Other sources of these heterogeneities are related to clinical samples as they include pa-

tients at different stages of the illness [119], or the studies are underpowered as they build

their conclusions on small sample sizes with 40 participants on an average [117].

In this study, we utilized resting-state fMRI data from patients with a first episode of

schizophrenia and healthy controls. Our aim was to build a model for the classification

of healthy controls and patients with a first episode of schizophrenia using atlas-based

functional connectivity computed with AAL atlas with 90 brain regions [30], the Craddock

atlas with 200 regions [31], and functional network connectivity between components

from independent component analysis (ICA) of the resting-state data as in the study of

Arbabshirani et al. [120], which we attempted to replicate.

6.2 Materials and methods

6.2.1 Participants and study design

We obtained MRI data from 190 subjects in total - 90 healthy controls (40 males), with

an average age: 27.69, SD: 6.82, and 100 patients (58 males), with an average age: 28.75,

SD: 6.83). The sample was checked for no significant difference in age and sex between the

two groups. The data set consists of resting-state fMRI data, the subjects were instructed

to lie still with their eyes closed.

6.2.2 Data acquisition, preprocessing, and analysis

The brain scans were acquired using a 3T Siemens Trio Tim MR scanner equipped with

a standard 12-channel head coil at the Institute for Clinical and Experimental Medicine,

Prague, the Czech Republic. Structural 3-dimensional (3D) images were obtained for

anatomical reference using the T1-weighted (T1w) magnetization-prepared rapid gradi-
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ent echo (MPRAGE) sequence with the following parameters: repetition time (TR) of

2300 ms, echo time (TE) 4.6 ms, flip angle 10◦, voxel size of 1 × 1 × 1 mm3, field of

view (FOV) = 256 × 256 mm, matrix size = 256 × 256, 224 sagittal slices. Functional

images were obtained using the T2*-weighted (T2*w) gradient echo-planar imaging (GR-

EPI) sequence sensitive to the blood oxygenation level-dependent (BOLD) signal with

the following parameters: repetition time (TR) = 2000 ms, echo time (TE) = 30 ms, flip

angle (FA) = 70◦, voxel size = 3×3×3 mm3, field of view (FOV) = 144×192 mm, matrix

size = 48 × 64, each volume with 35 axial slices (slice order: sequential decreasing), 400

volumes in total.

First, the structural and functional images were converted from DICOM to NIFTI

format using the dcm2niix tool [121]. The structural images were segmented into gray

matter, white matter, and cerebrospinal fluid and directly normalized to MNI space. The

following steps were performed with the functional data using a pipeline labeled as ”default

preprocessing pipeline for volume-based analyses (direct normalization to MNI-space)” in

CONN toolbox (https://web.conn-toolbox.org/) for Matlab 2017b (The MathWorks,

Inc., Massachusetts, USA). First, functional realignment (motion correction) and unwarp;

slice-timing correction; outlier identification; direct segmentation and normalization; and,

as a last step, functional smoothing with 8 mm full width at half maximum (FWHM)

kernel.

Following the preprocessing steps, we used two popular dimension reduction/data ex-

traction techniques - atlas-based parcellation and spatial independent component analysis

(ICA). The atlas-based approach parcellates the whole brain into a set of non-overlapping

regions. We used the AAL atlas with 90 regions [30] and the Craddock atlas with 200

regions [31]. Each voxel’s time series was extracted and averaged across the correspond-

ing region of each atlas. In the next step, we performed denoising of the extracted time

series. Using linear regression, time series from each region were orthogonalized against

five principal components of white matter (WM) signal, five principal components of cere-

brospinal fluid (CSF) signal (WM and CSF masks were created from segmentation of the

individual structural images), and six motion parameters with their temporal derivatives

(translations and rotations in all three axes obtained when performing realignment (mo-

tion correction) of the functional images). The resulting time series were band-pass filtered

with a window of 0.017− 0.15 Hz and linearly detrended. For each subject, we computed

functional connectivity (FC) matrices between 90 regions of the AAL atlas (AAL90) and

200 regions of the Craddock atlas (Craddock200). However, in the case of the Craddock

atlas, regions 36, 52, 77, 90, 120, 134, and 176 had to be excluded from further analyses

due to incomplete brain coverage of the original EPI images in two subjects.

In the second approach, we used spatial decomposition of the functional data with

https://web.conn-toolbox.org/
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independent component analysis (ICA), which reduces the data into a set of spatially

independent components and their corresponding time series. The ICA was performed

in the GIFT toolbox (https://trendscenter.org/software/gift/) for Matlab (The

MathWorks, Inc., Massachusetts, USA). Firstly, the data underwent a two-step reduction

process using principal component analysis (PCA), and the minimum description length

(MDL) principle was used to estimate the optimal number of independent components.

For the decomposition, we utilized the commonly used Infomax algorithm [39]. After a

visual inspection of the resulting components, three of them were identified as artifactual

and discarded. In the ICA approach, we created a data set ICA27 with a full set of

27 components and a data set ICA9, which consisted of nine components that matched

those from Arbabshirani et al. [120], as one of our aims was to replicate their study.

The extracted time series of the corresponding components were band-pass filtered with

a window of 0.017− 0.15 Hz and linearly detrended. Eventually, we computed functional

network connectivity (FNC) between the selected components separately for the ICA27

and ICA9 data sets.

As suggested by Arbabshirani et al. [120], allowing lag between signals is important

to account for variations in hemodynamic response shape among both brain regions and

individuals. Therefore, we additionally also prepared their lagged variants where the con-

nectivity between pairs (regions or networks) corresponds to their maximum correlation

from the interval from -3 up to +3 seconds [115], [120]. In order to compute the lagged

correlations within this interval, we interpolated the original time series from each data

set accordingly.

Overall, we thus have prepared eight datasets in total for the classification of healthy

controls and patients - ICA9, ICA27, AAL90, and Craddock200 - each in non-lagged

and lagged variants. As the dimension of all datasets except the ICA9 was greater than

the number of participants, we decided to reduce the dimensionality of the datasets using

principal component analysis (PCA). Moreover, the reduction increases the comparability

of tested datasets and classifiers not only because of the linear separability of subjects in

high-dimensional spaces but also due to convergence problems of some classifiers in high

dimensions. Consequently, we have applied PCA to all datasets, reducing the dimension

to 36. To improve comparability across methods, the number of components was chosen

with respect to the ICA9 dataset (9× (9− 1)/2 = 36).

The different sizes of two tested subject groups (patients, healthy controls) could cause

bias in the performance of classifiers in the next step. Therefore, 10 randomly selected

subjects were removed from the patients’ group to balance the number of subjects in both

classes. The reduced dataset was again checked for no significant difference in sex and

age between the two groups.

https://trendscenter.org/software/gift/
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To provide a comparison with reports in the literature (see e.g. [120]), as well as to as-

sess the robustness of the discriminability (and its dependence on the feature construction)

with respect to choice of the classifier, we used a set of multiple classifiers implemented

directly in Matlab 2017b (The MathWorks, Inc., Massachusetts, USA) or classifiers from

the PRTools toolbox (http://prtools.tudelft.nl/) for Matlab. From the linear meth-

ods, we used Linear Discriminant Analysis (LDA) in two implementations - the first is the

implementation from the PRTools toolbox in its default settings, and the second is the

original Matlab implementation using the pseudoinverse of the covariance matrix. The

Logistic Linear Classifier (LLC) and the linear perceptron classifiers were used from the

PRTools toolbox with the default settings. The linear Support Vector Machine (SVM)

classifier was used in the default settings in Matlab with autoscale settings (centering data

to zero mean and unit variance) both on and off. The maximum number of iterations of

the Sequential Minimal Optimization method used to find a separating hyperplane was

set to 200000 when utilizing a linear kernel due to convergence problems in preliminary

testing. From the non-linear classifiers, we used k-Nearest Neighbor implementation in

Matlab, the grid search approach through 5-fold cross-validation (CV) was employed to

search optimal k, and tested values were k = {1, 2, . . . , 10}. The remaining parameters

were left default. The Naive Bayes (NB) classifier was used in the default settings in

Matlab. Two different implementations of Quadratic Discriminant Analysis (QDA) were

used, the first is the implementation from the PRTools toolbox in its default settings,

and the second is the original MATLAB implementation using the pseudoinverse of the

covariance matrix. We used Decision Tree (DT) classifier was utilized in four different

settings: default Matlab classification tree settings, PRTools decision tree using informa-

tion gain as a criterion, PRTools decision tree using Fisher information as a criterion,

and Linear Classification Tree (LCT) considering all possible splits. Decision trees were

also employed in three Random Forrest (RF) classifiers. All RF settings utilized 11 trees

(10 could cause equal class probabilities). The first RF consisted of default Matlab clas-

sification trees. The second one used bagged LCT, considering all possible splits. The

third RF comprised boosted LCT using 10 decision splits at maximum. The Artificial

Neural Network (ANN) classifier was in the default settings in Matlab. The Support

Vector Machine (SVM) classifier was tested using the default Matlab implementation in

four different kernel settings: quadratic, polynomial, and Gaussian Radial Basis Function

(RBF). All kernels were used with autoscale settings (centering data to zero mean and unit

variance), both switched on and off. The order of polynomials in the polynomial kernel

was set to 3 because higher orders would possibly lead to overfitting. The σ parameter of

the RBF kernel was found using 22 points in a two-phase grid search during the classifier

training. The first phase tested 11 points equally distributed on a logarithmic scale from

http://prtools.tudelft.nl/
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10−3 to 103. The neighbor values of the best point were used as lower and upper bounds

for another 11 points linearly distributed in the second phase. The remaining settings

of all kernels were left default. The performance of the individual trained classifiers was

tested using the leave-one-out cross-validation (LOO CV) technique.

6.3 Results

For the overview of classification results of healthy controls and patients with a first

episode of schizophrenia using non-lagged and lagged correlation, see Fig 6.1 and Fig 6.2,

respectively. For the specific values of classification accuracy, see Table A.1 and Table A.2,

respectively. The tables contain the results after the PCA reduction for each classifier and

data set. For the results without PCA reduction, see the accuracy values in parentheses.

As for the comparison of the different classifiers, the highest classification accuracy of

87.22 % was reached using linear SVM (autoscale on) with the AAL90 dataset after PCA

reduction. Classification performance of at least 80 % was observed with the other linear

classifiers, such as linear discriminant analysis (LDA) or logistic linear classifier (LLC)

on the AAL90 data set, both non-lagged and lagged variants. The rest of the classifiers

did not reach 80 %, except for quadratic SVM without automatic scaling on the AAL90

data set, a lagged variant. Poor performance across all classifiers was observed on the

ICA9 data set. From all algorithms, the worst performance was observed with the KNN

classifier.

In general, the dimension reduction did not substantially decrease the performance

of the classifiers (with the exception of quadratic SVM with autoscale switched off), and

in many cases, it has led to substantial improvement. Many methods reached higher

performances after the application of PCA on the AAL90 data set. Improvement can be

observed even on the ICA9 datasets despite the fact that PCA did not reduce the dimen-

sion in this case but only rotated the input space to be axis-aligned with the directions

of the largest variance. The impact of dimension reduction is rather subtle in the case

of the ICA27 dataset, this suggests that the feature representation in the ICA27 dataset

was suboptimal not only due to their high number but, more generally, the connectivity

between the components may not be very informative.

Using the lagged version of functional connectivity did not substantially improve the

classification accuracies of the presented algorithms.
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(a) 36 PCs of non-lag FC and FNC features. (b) Original non-lag FC and FNC features.

Figure 6.1: Values of classification accuracy using various algorithms using non-
lag FC and FNC features.

(a) 36 PCs of lagged FC and FNC features. (b) Original lagged FC and FNC features.

Figure 6.2: Values of classification accuracy using various algorithms using
lagged FC and FNC features.
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6.4 Discussion

6.4.1 Effect of spatial dimension reduction

On average (across the various classifiers), features from atlas-based functional connec-

tivity performed better compared to ICA-based functional network connectivity features;

in particular, both the atlas-based feature sets outperformed the ICA-based representa-

tions. For ICs, the higher-dimensional representation (ICA27 dataset) was advantageous,

particularly/even when combined with an additional PCA step. On the other side, using

a more detailed Craddock200 atlas instead of AAL90 worsened the performance (both

with and without additional PCA dimension reduction), suggesting that FC from such

a fine atlas might be prone to too much estimation noise. From all data sets and clas-

sifiers, we found the best classification accuracy with features from the AAL90 data set

that achieved 87.22 % using the linear support vector machine (SVM) classifier. The

automated anatomical labeling (AAL) atlas [30] has been among the most used atlases

in recent years [122]–[130].

6.4.2 Role of classifier choice

On average, the linear classifiers such as LDA or LLC, and all variants of SVM performed

slightly better on all data sets compared to other algorithms. However, the linear SVM

was obviously misled by simple auto scaling (AS) transformation, which should not sub-

stantially influence SVM prediction accuracy. As for the traditional machine learning

algorithms, the SVM classifier is by far the most common one (see, e.g., [131] for re-

view). Mostly poor results of non-linear SVMs may indicate that using a kernel trick to

transform subjects to higher-dimensional space than the original space, which is already

high-dimensional, is unnecessary and does not improve the capabilities of linear SVM.

6.4.3 Role of functional connectivity lag optimization

Allowing the lag in the calculation of connectivity, as suggested by Jafri et al. [115], did

not improve the performance of the classifiers. Moreover, the classification accuracy of

the best-performing classifier on the AAL90 data set - linear SVM - dropped from 87.22 %

to 80.56 % when the lagged version of features was used.

Although the particular results may be only partially generalizable to other datasets,

acquisition parameters, cohorts and conditions, the current study provides several use-

ful insights into the role of different methodological choices in the design of diagnostic

classifiers from fMRI functional connectivity data. Namely, at least in our context, the

connectivity between extracted independent components (representing functional brain
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networks) manifests as clearly suboptimal with respect to the region-based functional

connectivity representation. This does not seem to be due to the number of features, and

thus it is likely that it rather represents a loss of information in the reduction to inde-

pendent components, as the connectivity between them might be not fully compensate

for the connectivity between regions (of the same or different networks). Further detailed

analysis is warranted for deeper insights into this mechanism.

Secondly, reduction of the data dimension using PCA before running the classifier

might be warranted, as it generally improved (albeit with exceptions) the performance

across other design choices. When it comes to the choice of classifier, the relatively

standard choice of linear support vector machine proved generally the most efficient.

This is in line with previous results comparing classifiers in this context (see, e.g., [120]

or [132] for review), supports its use in other studies [133]. Surely, this may be affected

by the relatively small sample sizes available for similar studies in neuroimaging; and

may be challenged when datasets with several orders of magnitude large sample sizes are

processed, calling potentially for the use of deep network approaches.

Finally, some other detailed methodological choices proved secondary - in particular,

optimizing the lag for functional connectivity, while theoretically compensating for in-

homogeneous hemodynamic and neuronal dynamics, seems largely irrelevant for overall

classification purposes.

Diagnosis is determined based on clinical interviews, but an independent validation

method is not available. Using the resting-state functional connectivity has proven to be

useful for the classification of healthy controls and patients with schizophrenia. Compared

to some other studies that used data from chronic patients [127], [134], we have reached

high classification accuracy using data from patients with a first episode of schizophrenia.

This is potentially useful for early diagnosis, which is crucial for the prognosis of the

disease [135]. Compared to the task-based fMRI, the resting-state data is easier to obtain

as it requires little to no effort from the participant and offers better comparability of

the obtained results between studies [136], [137]. It might be useful to combine more

modalities (e.g., structural MRI, DTI, etc.) and exploit their features in a multimodal

classifier [128].

6.5 Conclusion of the study

We have presented a comprehensive comparison of features based on functional connectiv-

ity for the classification of healthy controls and patients with a first episode of schizophre-

nia. Our attempt to replicate the results of Arbabshirani et al. [120] was unsuccessful.

Based on our results, the features derived from atlas-based functional connectivity outper-
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formed the ICA-based features. For this particular purpose, the ICA, in particular using

the functional connectivity between the components as a feature for machine learning,

might not be an optimal choice.



Chapter 7

Resting-state hyper- and

hypo-connectivity in early

schizophrenia: which tip of the

iceberg should we focus on?

7.1 Disclaimer

An original version of this work is to be submitted under the title: ”Resting-state hyper-

and hypo-connectivity in early schizophrenia: which tip of the iceberg should we focus

on?” for publication in the prestigious Schizophrenia Bulletin. Allow me to extend my

thanks to the coauthors who contributed to this endeavor: Marián Kolenič, Barbora

Rehák Bučková, Jaroslav Tintěra, Filip Španiel, Jǐŕı Horáček, Jaroslav Hlinka.

7.2 Introduction

Although a neurodevelopmental hypothesis for schizophrenia complemented by neurode-

generative process following the onset of psychosis is now well established, it is not clear

how these processes are linked to the brain dysfunction underlying specific schizophrenia

psychopathology [138]. The converging evidence from brain imaging studies indicates

that these processes lead to disordered brain inter-regional functional connectivity (FC),

and dysconnection represents the major candidate for the pathophysiological substrate of

psychotic symptoms [21]. Concretely, the dysconnection concept suggests that the specific

symptoms of schizophrenia can be described in terms of reduced or increased functional

coupling between distinct brain regions [139], [140]. This concept is in line with earlier

intuition referring to the title of the disease (i.e., “fragmented mind”), and it has been

43
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conceptualized in a neurobiological framework proposing a disruption of the anatomical

and functional connectivity between brain areas as the neurobiological correlate of al-

tered information processing [139]. To quantify such connectivity disruption, the concept

of functional connectivity formalized as temporal covariation of neural signals between

spatially disparate brain areas [141] is often used.

The functional dysconnection in schizophrenia has been reported to affect connections

of a multitude of brain regions such as the frontal lobe, including language areas [142]–

[145], sensory-motor cortex [146], temporal and limbic structures [147], [148], and thala-

mus [149]–[153]. Despite the fact that neuroimaging studies strongly support the role of al-

tered FC in schizophrenia, these reported findings are highly inconsistent, specific regions

associated with disconnection in schizophrenia still remain controversial, and a robust

conclusion has not yet been obtained. Some of the probable reasons for these inconclusive

results are the heterogeneity of clinical samples regarding the stage of illness [154] and low

sample sizes based on up to 40 participants on an average [155]. Indeed, a small sample

size has been previously systematically documented to give rise to heterogeneous localized

findings of white matter abnormalities in first-episode psychosis [156]. We further conjec-

ture that variability in the data preprocessing and analysis approaches might also con-

tribute to the variability of the observed results [157]. The majority of previous rs-fMRI

studies in schizophrenia reported hypoconnectivity between brain regions [155], [158], but

hyperconnectivity has also been repeatedly observed in various disease stages [154], [155],

[159], [160]. Longitudinal studies of FEP subjects reported (partial) normalization in

terms of increased fMRI activation after antipsychotic treatment [159]. Another factor

responsible for the heterogeneity of the findings is the methodological approaches focused

on FC between a priori preselected regions, as contrasted with a whole-brain analysis

based on the parcellation according to suitable anatomical or functional brain atlases.

Given these principal differences, the reported findings are strongly influenced by the a

priori choice of the regions of interest, which in some cases may not include all the patho-

physiologically relevant areas. On the other hand, whole-brain studies may suffer from

the fact that the correction for multiple comparisons could bring false negative results,

specifically in the case of underpowered studies. Our study aimed to remediate some

of the above-mentioned inconclusiveness and to utilize the whole-brain FC analysis on a

large cohort of 100 first-episode schizophrenia (FES) patients ensuring high homogene-

ity in terms of chronicity and exposure to medication. The connectivity was calculated

between all 90 brain regions comprising the Automated Anatomical Labeling (AAL) tem-

plate image [30] and compared with a group of 90 healthy controls. On the basis of the

previous evidence, we hypothesized that schizophrenia would show decreased connectivity

between the candidate brain regions. Furthermore, we tested whether FC changes were
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moderated by the effect of medication and whether they were linked to clinical factors

such as positive and negative symptoms of schizophrenia. In addition, we evaluated two

different denoising strategies of the fMRI data, as this step potentially affects the resulting

FC measures [157].

7.3 Methods

7.3.1 Study overview and samples

In total, 190 subjects participated in the study; 100 FES patients (mean age=28.75,

SD=6.83, 42 females/58 males) and 90 healthy volunteers serving as controls (mean

age=27.81, SD=6.82, 50 females/40 males). There were no significant differences be-

tween the patient and control samples in age and sex. In the patient group, at the time of

the MRI scan, the average duration of untreated psychosis was 3.23 months (S.D. = 4.82),

and the average duration of antipsychotic treatment was 2.29 months (S.D. = 4.58). The

study design was approved by the local Ethics Committee of the Institute of Clinical and

Experimental Medicine and the Psychiatric Center Prague. All subjects provided written

informed consent after receiving a complete description of the study.

The FES patients were diagnosed according to ICD-10 criteria and structured MINI

International Neuropsychiatric Interview [161]. FES subjects were investigated during

their first hospitalization in the Prague psychiatric hospitals with a catchment area of 1

million inhabitants. Patients were considered as FEP if they fulfilled these criteria: a)

first hospitalization for schizophrenia, and b) clinical interview identified first psychotic

and/or prodromal symptoms of psychosis not earlier than 24 months ago (mean=5.90

months, SD=6.16).

The resting fMRI was performed at the initial stage of second-generation antipsy-

chotic therapy (mean 10 weeks of medication at the time of rsfMRI). The mean dose

of chlorpromazine equivalents [162] was 381.7 mg (SD= 231.8) per day. Psychometrics

included Positive and Negative Symptom Scale, PANSS [163]. Ninety healthy control sub-

jects (HC) were recruited via a local advertisement; they had a similar socio-demographic

background as the FES to whom they were matched by age and sex.

The HC had a slightly higher number of years of education than the FEP (15.64,

SD=3.34 and 13.48, SD=2.28, t=4.466, p ≤ 0.001). HC were evaluated with MINI and

were excluded if they had a lifetime history of any psychiatric disorder or a family history

of psychotic disorders. Other exclusion criteria for both groups included a history of

seizures or significant head trauma, mental retardation, a history of substance dependence,

and any MRI contraindications. The protocol was approved by the institutional review
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boards of the National Institute on Mental Health, Klecany. Written informed consent

was obtained from all participants.

7.3.2 fMRI data acquisition

Scanning was performed with a 3T MRI scanner (Siemens Magnetom Trio) located at the

Institute of Clinical and Experimental Medicine in Prague, Czech Republic. Functional

images were obtained using T2-weighted echo-planar imaging (EPI) with blood oxygena-

tion level-dependent (BOLD) contrast using SENSE imaging. GE-EPIs (TR/TE=2000/30

ms, flip angle=70°) consisted of 35 axial slices acquired continuously in sequential de-

creasing order covering the entire cerebrum (voxel size=3×3×3 mm, slice dimensions

48x64 voxels). The next 400 functional volumes were used for the analysis. A three-

dimensional high-resolution MPRAGE T1-weighted image (TR/TE=2300/4.63 ms, flip

angle 10°, voxel size=1×1×1 mm) covering the entire brain was acquired at the beginning

of the scanning session and used for anatomical reference.

7.3.3 Data preprocessing, brain parcellation, and FC analysis

Functional MRI is a neuroimaging method that is based on measuring blood oxygen level-

dependent (BOLD) signal [164]. One of the typical features of the fMRI data is the noise

that is present in the raw BOLD signal [165], [166]. The presence of noise in the fMRI

data significantly limits the reliability of functional connectivity measures [167]. Typical

artifacts, such as subject movements, arterial pulsation, respiration, and also the hardware

of the MRI scanner itself, induce non-neural temporal correlations in the BOLD [168], and

relatively sophisticated data preprocessing is thus warranted to obtain maximize the level

to which the functional connectivity estimates reflect the underlying neuronal dynamics.

The rsfMRI data were corrected for head movement (realignment and regression) and

registered to MNI standard stereotactic space (Montreal Neurological Institute, MNI) with

a voxel size of 2×2×2 mm by a 12-parameter affine transform maximizing normalized cor-

relation with a customized EPI template image. This was followed by segmentation of the

anatomical images in order to create subject-specific white-matter and CSF masks. The

resulting anatomical images and masks were spatially normalized to a standard stereotaxic

MNI space with a voxel size of 2×2×2 mm.

The denoising steps included regression of six head-motion parameters (acquired while

performing the correction of head-motion) with their first-order temporal derivatives and

five principal components of white matter and cerebrospinal fluid. The CONN toolbox has

implemented a component-based noise correction method (CompCor) that, in the default

setting, performs PCA dimensionality reduction of white matter and cerebrospinal fluid
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time series derived from particular regions [169]. The CompCor method uses noise regions

of interest (ROIs) acquired while segmenting each subject’s high-resolution anatomical

images [170]. Time series from defined regions of interest were additionally linearly de-

trended in order to remove possible signal drift and finally filtered by a band-pass filter

with cutoff frequencies 0.004 - 0.1 Hz. We shall refer to this preprocessing setup as the

stringent denoising scheme.

As an alternative denoising pipeline, closer to the practice in some studies [171], [172],

we used a more moderate denoising scheme in which we used six head-motion parameters

without their first-order derivatives and only the mean time-series of white-matter and

cerebrospinal fluid (instead of the 5 PCA components for each compartment as in default

CompCorr pipeline described above). This alternative denoising pipeline was performed

without explicit linear detrending, however, the time series were also finally filtered by a

band-pass filter with cutoff frequencies 0.004 - 0.1 Hz.

7.3.4 Analysis

The whole analysis was carried out using the CONN toolbox (Gabrieli Lab. McGov-

ern Institute for Brain Research Massachusetts Institute of Technology, Massachusetts,

USA; www.nitrc.org/projects/conn). CONN is a complex Matlab-based toolbox for the

analysis of functional connectivity in resting-state or task-based fMRI data [173]. The

toolbox uses standard SPM (Wellcome Department of Imaging Neuroscience, London,

UK; www.fil.ion.ucl.ac.uk/spm) modules for data pre-preprocessing. The regional mean

time series were estimated by averaging voxel time series within each of the 90 brain

regions (excluding the cerebellar regions) comprising the Automated Anatomical Label-

ing (AAL) atlas [30]. To quantify the whole-brain pattern of functional connectivity, we

performed an ROI-to-ROI connectivity analysis by computing, for each subject, the Pear-

son’s correlation matrix among the regional mean time series. The resulting connectivity

matrices were represented as Fisher’s z-transformed Pearson’s r correlation coefficients.

We used a two-sample Student’s t-test in order to evaluate differences between groups.

A linear regression was used to determine the possible relation between the Positive and

Negative Syndrome Scale (PANSS, The PANSS Institute) and functional connectivity

in patients. In particular, we used the positive, negative, general, and total symptoms

subscales in four separate analyses [163]. To increase the statistical analysis power, these

analyses were limited to ROI pairs that showed a significant effect of disease (i.e., effect

in the initial between-group comparison). The resulting p-values from each analysis were

corrected for multiple testing by controlling the False Discovery Rate (FDR) [174], using

the Matlab implementation of FDR provided in the CONN toolbox, applied either to the

upper triangle of the FC matrix (in case of between-group analysis), or to the selection of
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candidate connections (in the case of the linear regression analysis). Additional analysis

with the moderate denoising scheme was performed using the identical preprocessing

pipeline as in our original analysis.

7.4 Results

7.4.1 Difference between healthy controls and schizophrenia pa-

tients

In the group comparison using the default, stringent, denoising scheme, a difference was

observed in a multitude of ROI pairs. 247 ROI-pairs were found to have significantly

greater functional connectivity (FDR-corrected p<0.05) in patients, while healthy vol-

unteers exhibited significantly greater (FDR-corrected p<0.05) functional connectivity in

134 ROI-pairs when compared to patients (see Fig 7.1). Despite the numerical prevalence

of observed hyperconnections in patients, healthy volunteers and patients did not differ

in the average functional connectivity, as the difference between both groups was 0.0003

(mean FC in patients=0.1315, SD=0.1758, mean FC in controls=0.1318, SD=0.1687,

t=0.0484, p=0.9615).

The most increased links in patients included a range of connections involving the

left and right thalamus, left and right globus pallidus, left middle cingulate gyrus, and

right parietal inferior gyrus. The strongest hyperconnectivity was observed in links that

involved the bilateral thalamic regions. In the opposite direction, the most decreased links

in patients involved the left fusiform gyrus, left parahippocampal gyrus, and right Heschl’s

gyrus. See Figure 7.2 for a graphical overview of group comparison of healthy controls

and patients, including its stability with respect to additional control for inter-subject

variability in the amount of head motion, see Discussion for details.

7.4.2 Association between symptom severity, medication, and

functional connectivity

We have observed a significant correlation between symptom severity measured by PANSS

and functional connectivity, as can be seen in Fig 7.3. To increase the power by focus-

ing on the most relevant candidate connections, we used a masking matrix of p-values

from a group comparison of healthy volunteers and patients to distinguish regions with

significantly greater functional connectivity in patients. PANSS total scale significantly

correlated with the functional connectivity of 17 ROI pairs. The strongest correlations

were observed in the right parietal inferior gyrus and left thalamus. PANSS general corre-
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Figure 7.1: Difference between HC and SCH. The most significant changes in
FC; higher FC in healthy controls = blue, higher FC in patients = yellow. For
visualization purposes, only the top 10% of the most significant results of each analysis
(p<0.05, FDR corrected) are shown.

Figure 7.2: Difference between HC and SCH. The significant differences after
the FDR<0.05 correction are shown in yellow (higher FC in patients) and blue
(higher FC in healthy controls). Left: Default analysis, Middle: Analysis including
additional inter-subject correction for amount of motion, Right: analysis including addi-
tional inter-subject correction for amount of motion as well as rejecting outliers. See the
Discussion section for details of the additional analysis shown in the Middle and Right
panels.
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Figure 7.3: Association between symptom severity and functional connectivity.
PANSS total scale significantly correlated with the functional connectivity of 17 ROI pairs
(red + blue links), and PANSS general scale significantly correlated with the functional
connectivity of two ROI pairs (blue links). Results with p<0.05, FDR corrected, are
shown.

lated with FC of 2 ROI pairs (also included in the above-mentioned 17). These were the

functional connectivity between the left olfactory cortex (AAL region 21) and the right

globus pallidus (AAL region 76) and between the left Heschl’s gyrus (AAL region 79) and

the right inferior parietal lobule (AAL region 62).

Further, we have observed a significant correlation between antipsychotic medication

at the time of the MRI scan (measured by chlorpromazine equivalent) and functional

connectivity. The strongest correlations were observed in the right parietal inferior gyrus

and left thalamus in the right inferior frontal gyrus (triangular part), right parietal inferior

gyrus, and left anterior cingulum (see Table 7.1).

We have also observed a significant correlation between antipsychotic medication at

the time of the MRI scan (measured by chlorpromazine equivalent) and symptom severity

measured by PANSS (r = 0.33, p <0.05).

7.4.3 Moderate preprocessing

In order to evaluate the stability of the above-presented findings with respect to the strict-

ness of denoising, we also performed our analysis with moderate denoising settings, as

was mentioned before. Healthy volunteers exhibited significantly higher (FDR-corrected

p<0.05) functional connectivity in 1862 ROI-pairs when compared to patients. Con-

versely, 13 ROI pairs were found to have significantly higher (FDR-corrected p<0.05)
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Region 1 Region 2 Correlation
Significance

Frontal Inf Tri R Cingulum Ant R 0.010
Frontal Inf Tri R Cingulum Post R 0.016
Frontal Mid R Amygdala R 0.016
Parietal Inf R Heschl L 0.016
Parietal Inf R Heschl R 0.016
Olfactory L Caudate R 0.022
Cingulum Ant L Temporal Mid L 0.022
Parietal Inf R Temporal Sup L 0.027
Frontal Inf Tri R Cingulum Ant L 0.038
Frontal Inf Orb R Cingulum Ant L 0.038
Parietal Inf R Temporal Sup R 0.044

Table 7.1: Correlation between antipsychotic medication at the time of the MRI
scan (measured by chlorpromazine equivalent) and functional connectivity,
note only p<0.05 FDR corrected are reported.

functional connectivity in patients. See Figure 7.5 for a graphical overview of all signif-

icant group comparison of healthy controls and patients. In stark contrast to the strin-

gent denoising scheme, the average functional connectivity was different between both

groups in the case of the moderate denoising scheme. The average connectivity differ-

ence between healthy controls and patients in the moderate scheme was 0.0616 (mean

FC in patients=0.2719, SD=0.2261, mean FC in controls=0.3335, SD=0.2280, t=3.5428,

p=0.0005). Indeed, the disease effect on functional connectivity indices was clearly biased

towards hypoconnectivity in the moderately denoised dataset, while there was a rela-

tively balanced hypoconnectivity and hyperconnectivity observed when using the default

stringent denoising scheme, see Figure 7.4 Right.

Despite these vast differences, the disease effect observed with the two denoising

schemes was strongly correlated (r=0.74, p<0.001), see Figure 7.4 Left for the scatterplot

across region pairs.

Unlike the stringent denoising case, we observed no significant relation between func-

tional connectivity and PANSS scales in the additional analysis with the moderate denois-

ing scheme. Similarly, we observed no significant relation to the antipsychotic medication

at the time of the MRI scan (measured by chlorpromazine equivalent).

Given the contrast of the observed disease effects for the two denoising schemes, we

have carried out additional classification analysis for the two groups (patients and healthy

controls). To this end, we applied a linear support vector machine to a set of the first

k principal components of the functional connectivity indices (in the order of decreasing

explained variance). The resulting classifier performance (quantified by accuracy) is shown

in Figure 7.6. Note that after an initial transition range (the first few principal components
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Figure 7.4: Comparison of the effect of disease on functional connectivity ob-
served with the stringent and moderate denoising. Left: Scatterplot of the mean
FC difference between patients and healthy controls in the stringent and moderate de-
noising scheme. Blue dashed lines mark identity, red line corresponds to the best linear
fit. Each dot corresponds to one pair of regions, showing the difference in their means
in the two denoising schemes. Right: histogram of the FC differences between healthy
controls and patients in the stringent and moderate denoising schemes. Note that while
the disease effects observed when using the two denoising schemes are significantly corre-
lated (r=0.74, p<0.001), the moderate denoising scheme suggests prevalent decreases of
connectivity in the disease, while the stringent preprocessing provides a more balanced
distribution of decreased and increased functional connectivities.

of the stringently denoised data do not provide very good accuracy of classification), the

two denoising schemes perform comparably, reaching top accuracies about 80 percent.

This would suggest that while the more stringent denoising (particularly more aggressively

filtering out artifactual signals) suppresses the apparent dominance of hypoconnectivity

in first-episode psychosis, while not losing discriminatory power and providing stronger

links of the neuroimaging marker (of functional connectivity) to clinical symptoms and

medication levels.

7.5 Discussion

Using the stringent denoising scheme, we observed a pattern of prevailing brain hypercon-

nectivity which correlated with both symptom severity as well as antipsychotic medication

in subjects at their first episode of psychosis. In detail, 247 ROI-pairs were found to have

significantly greater functional connectivity in patients, while 134 ROI-pairs lower connec-

tivity (FDR-corrected p<0.05). The most increased links in patients involved the bilateral
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Figure 7.5: Difference between HC and SCH for the moderate denoising variant.
The significant differences after the FDR<0.05 correction are shown in yellow (higher FC
in patients) and blue (higher FC in healthy controls).

Figure 7.6: Comparison of the stringent and moderate denoising strategist in
classifications of healthy controls and patients.
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thalamus, globus pallidus, left middle cingulate gyrus and right parietal inferior gyrus.

The most decreased links in patients involved the left fusiform gyrus left parahippocampal

gyrus, and right Heschl’s gyrus.

Notably, there was a considerable difference between the stringent and moderate de-

noising schemes in the number of significant ROI pairs in each group comparison. The use

of the moderate denoising scheme resulted in a higher number of ROI pairs that showed

significantly higher FC in the group of healthy controls than in the group of patients.

Conversely, the use of the stringent denoising scheme caused the number of ROI-pairs

with significantly higher FC to increase in the group of patients, compared to the group

of healthy controls, but proportions of significant ROI-pairs were overall more balanced in

this case. Note that the involved use of orthogonalization of the ROI BOLD signals with

respect to multiple (5 principle components) proxy signals from both the white matter

and the CSF compartment may be substantially stricter than used in a range of studies

in the literature and may explain much of the deviation of our results with respect to the

field. Despite the differences between denoising strategies, mean connectivity matrices

are strongly correlated within each group (for healthy controls, the correlation of FC in

moderate denoising and FC in the stringent denoising was 0.9402, for the patient group,

it was 0.9533, both p<0.001). Also, the difference between the groups, i.e., the disease ef-

fect, is strongly correlated between the denoising strategies (r=0.74, p<0.001, see Fig 7.4

left).

The strongest disease effects both in terms of hypo- and hyperconnectivity, are in gen-

eral in line with previous studies. In general, rs-fMRI studies previously reported both

hypo- and hyperconnectivity (regionally specific, but with higher prevalence of hypocon-

necivity), while task-activation studies typically reported hypoactivations in medication-

free patients [155], [159], [160]. At least two factors could potentially contribute to ob-

served connectivity changes, the neurodevelopmental process, which at this state manifests

as psychosis, and the effect of antipsychotic medication.

In terms of hypoconnectivity, two recent meta-analyses provide overall context. The

meta-analysis by Dong et al. [155] of rs-fMRI in Schizophrenia (fifty-six seed-based voxel-

wise datasets, including 2115 patients and 2297 healthy controls), with different stages of

disease (FE as well as chronic), revealed pattern of hypo-connectivity within DN (default

network), affective network (AN), ventral attention network (VAN), thalamus network

(TN) and somatosensory network (SS). Additionally, hypo-connectivity between the VAN

and TN, VAN and DN, VAN and frontoparietal network (FN), FN and TN, and FN and

DN. The only instance of hyper-connectivity in schizophrenia was observed between the

AN and VAN. (Note: AN - The affective network includes the amygdala, orbitofrontal

cortex (OFC), temporal cortex, pallidum, and insular cortex. The role of the affective
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network is emotion regulation and processing.)

In 2019, Li et al. [158] conducted a meta-analysis based on independent component

analysis (ICA) brain templates to evaluate dysconnectivity within resting-state brain

networks in patients with schizophrenia, based on 70 publications with 2,588 schizophrenia

patients and 2,567 healthy controls. They observed significant hypoconnectivities between

the seed regions and the areas in the auditory network (left insula), core network (right

superior temporal cortex), default mode network (right medial prefrontal cortex, and

left precuneus and anterior cingulate cortices), self-referential network (right superior

temporal cortex), and somatomotor network (right precentral gyrus) in schizophrenia

patients. No hyperconnectivity between the seed regions and any other areas within the

networks was detected in patients, compared with the connectivity in HCs.

In terms of hyperconnectivity, previous studies observed in schizophrenia observed

it dominantly in the region of the thalamus. Avarm et al. found hyperconnectivity or

increased intrinsic FC between thalamic nuclei and primary-sensorimotor cortices [175].

The increased thalamic FC to somatosensory were observed in both early stages [152] and

chronic patients [149], [153]. Ikuta et al. implemented cognitive control paradigms and

reported hyperactivation in the basal ganglia and thalamus [176]. Our findings of hyper-

connectivity in FEP dominantly in the thalamus (secondary in basal ganglia) correspond

with the above-mentioned studies. The used parcellation did not allow us to evaluate

individual thalamic nuclei with topographically arranged cortical projections. However,

our data show increased thalamic connectivity to the lateral temporal cortex (including

operculum and Heschl gyrus), parahippocampal, fusiform and lingual gyri, somatosensory

cortex (postcentral gyrus) and occipital cortex. Li et al. described increasing of thalamo-

temporal and thalamo-sensorimotor connectivity towards later stages of schizophrenia,

where thalamic changes became prominent [154].

Interestingly, a review of longitudinal FEP fMRI studies [159] revealed a pattern of

predominantly hypoactivation in several brain areas at baseline that may normalize to

a certain extent after antipsychotic treatment. In more detail, ten out of eleven studies

reported (partial) normalization by increased activation after treatment. Most studies re-

ported increased activation in PFC, basal ganglia, cingulate cortex, limbic system, parietal

cortex, temporal cortex, and thalamus. A more recent study by Chopra et al. revealed

that antipsychotic exposure was associated with increased FC primarily between the tha-

lamus and the rest of the brain [177]. This is in line with previous longitudinal studies,

which provided evidence of FC normalization after antipsychotic exposure [159], partic-

ularly within fronto-striatal-thalamic circuits [178]–[180] and corticolimbic [179], [181],

[182] and corticocortical systems [160], [183]. Based on previous literature, it seems that

antipsychotic treatment could help to normalize the BOLD signal in most cerebral regions,
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even in the first weeks of treatment [184].

Our findings of the association between the dosage of antipsychotic treatment at the

time of the scan and increased FC in the parietal inferior gyrus, thalamus, and inferior

frontal gyrus correspond with the previous above mentioned findings. However, due to

the cross-sectional design of our study, we can not exclude the possibility that observed

hyperconnectivity in patients with psychosis is driven by psychiatric disorders per se.

We observed a significant correlation between symptom severity measured by PANSS

and functional connectivity, with the strongest correlations in the right parietal inferior

gyrus and left thalamus. Similar findings were observed by Anticevic et al., who reported

an association between sensorimotor cortico-thalamic hyperconnectivity and general psy-

chopathology but no association with decreased FC of PFC-thalamic pathways [149]. Due

to the correlation between PANSS and chlorpromazine equivalent in our dataset it is not

possible to clearly distinguish each individual contribution to hyperconnectivity. Notably,

such a positive correlation is to be expected, as the medication is, in practice, likely to

reflect the level of observed clinical symptoms.

Other regions with significantly higher FC in FEP compared to HC in our study were

the pallidum and left middle cingulate gyrus (part of the ventral attention network). This

is partially in line with the meta-analysis of [155], which described hyper-connectivity in

schizophrenia between the affective network and the ventral attention network. Hyper-

connectivity of the auditory-sensorimotor network covering primary-sensorimotor cortices

with thalamus, striatum and pallidum was described by [175].

We observed lower FC in FEP compared to HC, especially in the parahippocampal

gyrus, transverse temporal gyrus (Heschl’s gyrus), and the fusiform gyrus. The parahip-

pocampal gyrus is part of the limbic system. The structure is involved in complex emotive

processes and has significant interconnectivity to other cortical limbic structures as well

as the amygdala [185]. This structure is part of a highly specialized network for process-

ing different types of emotional stimuli [186]. The parahippocampal gyrus also plays an

important role in both spatial memory [187] and navigation [188]. Our results of lower

FC in the parahippocampal region are in accordance with the meta-analysis of Li, 2019.

The same is true for the transverse temporal gyrus, which is part of the auditory brain

network [158]. Findings of lower FC of transverse temporal gyrus are also consistent

with previous fMRI studies in which individuals with schizophrenia exhibited abnormal

connectivity involving the superior temporal plane [158], which may underlie the vulner-

ability to psychopathology [189]–[192]. Interestingly, the fusiform gyrus (FG) is thought

to underlie the human ability to process faces and is crucial for interacting appropriately

in social situations [193]. It has been previously related to schizophrenia symptoms [194],

albeit more commonly discussed in relation to the social impairments seen in autistic
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spectrum disorders (ASD) [193].

Interestingly, we did not find any decrease of thalamic connectivity. Hence our re-

sults do not overlap fully with the majority of previous studies documenting the pattern

of thalamic under-connectivity with PFC and over-connectivity with somatosensory cor-

tices [149], [152], [153], [195]–[199]. Given the fact that some of these studies found

decreased thalamo-PFC connectivity in early stages patients [152] or even in high-risk

individuals [160] it is unlikely that the absence of thalamo-PFC connectivity decrease in

our sample is caused by the fact that we studied the FEP sample. We can speculate that

this discrepancy could be caused by the “normalization” of connectivity due to medica-

tion or by the methodological differences in parcellation (previous studies typically used

either voxel-based approach [149] or computed thalamic FC for the entire PFC together

with few larger ROIs only [152].

It is worth mentioning some technical considerations of the present study. We decided

to exclude slice-timing correction from our preprocessing pipeline since there are some

studies suggesting that this step has a negligible effect on resting-state data [200]. We also

excluded spatial smoothing because it affects neighboring voxels in a way that artificially

introduces correlations between them [201]. At the same time, the region-based analysis

introduces substantial spatial averaging, which more than compensates for the skipped

noise suppression effect of spatial smoothing. In terms of the selected denoising strategy,

several denoising strategies were discussed in recent papers. While a unique consensus has

not been reached in the field, the implementation of a more stringent denoising scheme

has become a standard practice [202], [203], motivating our default choice.

While the groups were matched for age, sex as well as head-motion, we also carried out

a control analysis where these three variables were included as covariates of no interest.

The results again remained qualitatively equivalent, suggesting that the effect of these

variables on FC is relatively small compared to the effect of disease; see Figure 7.2 Middle.

The results remained largely unchanged after additional removal of the 23 subjects who

showed maximum head motion larger than 1.5×IQR (interquartile range), the Tukey

criterion for detection of outliers [204]; see Figure 7.2 Right. The difference in the number

of ROI pairs with significantly changed FC could be due to lower degrees of freedom in

the additional corrected analyses.

Last but not least, we note that in line with most common practice, we use Pear-

son’s correlation coefficient to quantify functional connectivity. Note that although other

nonlinear approaches for functional connectivity assessment have been proposed, linear

Pearson’s correlation coefficient was shown to be sufficient under standard conditions as

with the current dataset [205].
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7.6 Conclusion of the study

In conclusion, our study using a whole-brain functional connectivity approach on a rela-

tively large sample has shown a balanced picture of hyperconnectivity and hypoconnec-

tivity in first-episode psychosis while demonstrating a significant relation between the af-

fected connection strengths to clinical symptoms and cumulative dosage of antipsychotic

medication. Importantly, we have shown that this balanced picture gets substantially

skewed in the direction of dominantly observed hypo- or dysconnectivity when applying

more moderate data-denoising schemes, while the relation to symptoms and medication

is rendered insignificant. While the results of both approaches are in overall qualitative

agreement, including with localization of most commonly reported disease connectivity

effects in the literature, taking into account the results obtained with the current strin-

gent denoising may provide a stronger relation to clinical variables and contribute to the

understanding of the diversity of previously reported results, as well as the interpretation

of schizophrenia as a dysconnection disease in general.



Chapter 8

Functional localizer

8.1 Introduction

Functional localizers are experimental paradigms used for localization of the neural corre-

lates of, e.g., cognitive tasks, reading, language, motor action, or auditory or visual stim-

ulation [206]. They have typically been utilized for the localization of language-selective

regions in individual brains [207]. Fedorenko et al. [208] emphasized higher functional

specificity of language-sensitive regions when identified within each subject individually.

As opposed to anatomical parcellation or functional atlases, functional localizers allow

the definition of individual regions of interest (ROI) and studying of the function in a

more restricted manner [209]. Madkhali et al. [210] focused on different motor areas of

the brain in each subject individually using the functional localizers and emphasized their

use for real-time fMRI neurofeedback research. As part of pre-surgical mapping, a finger-

tapping task is commonly administered to delineate the corresponding motor area [211].

Other paradigms focus on working memory and executive control to assess the individual

performance of the subjects [212], [213]. Moreover, other functional localizer paradigms

comprise a whole set of tasks used to investigate various functions, including cognitive

tests, auditory and visual perception, or motor actions [20], [206].

We performed an fMRI experiment using a functional localizer paradigm comprising

a battery of multiple tasks. Our aim was to utilize the obtained fMRI data from the

participants to find common patterns across them in an attempt to classify the individual

tasks.

59
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8.2 Materials and methods

8.2.1 Participants and study design

The experiment was conducted on a total of eight healthy volunteers (mean age: 30.13,

SD: 10.23, two males and six females) at the National Institute of Mental Health (NIMH)

in Klecany, the Czech Republic. All participants provided written informed consent to

participate in the study. The functional localizer paradigm we used consisted of the

following tasks: The N-back test, where a 3x3 grid was projected on the projector screen,

and the participants were instructed to observe the position of a square that was randomly

changing its position in the grid. There were two variants of this task - an easy one, 0-back

- where the participants were asked to press a button if the square was in the same position

as in the previous step, and a more difficult variant, 2-back - where the participants were

supposed to press the button if the square was in the same position as two steps back. The

next task on verbal fluency is word generation interleaved with counting - participants

were instructed to generate nouns starting with the letter that they saw on the screen in

front of them. This task was interleaved with blocks where they saw a cross (+) on the

screen. At that moment, the subjects were instructed to begin counting silently from one.

The next task was simple auditory stimulation, where the subject was passively listening

to spoken words. The stimulation periods were interleaved with blocks of silence. Another

task involved visual stimulation with a flashing checkerboard. The stimulation periods

were interleaved with blocks of a black screen. The last task was aimed at the subject’s

motor cortex - a finger-tapping task, separately for the right and left hand. The study

design is illustrated in Fig. 8.1. All tasks lasted for 16 seconds, with the exception of the

N-back task, which lasted 29 seconds.

Figure 8.1: Experimental paradigm of the functional localizer.

8.2.2 Data acquisition, preprocessing, and analysis

The data acquisition was performed at the National Institute of Mental Health (NIMH) in

Klecany, the Czech Republic. We used a 3 Tesla Siemens Prisma MRI scanner equipped

with a 64-channel head coil to obtain data from each participant. The anatomical 3-

dimensional (3D) images were obtained using the T1-weighted (T1w) magnetization-

prepared rapid gradient echo (MPRAGE) sequence with the following parameters: rep-
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etition time (TR) = 2400 ms, echo time (TE) = 2.3 ms, flip angle (FA) = 8◦, voxel

size = 0.7×0.7×0.7 mm3, field of view (FOV) = 224×224 mm, matrix size = 320×320,

240 sagittal slices. The functional images were acquired using a T2*-weighted (T2*w)

gradient echo-planar imaging (GR-EPI) sequence sensitive to the blood oxygenation level-

dependent (BOLD) signal. Functional images were obtained using the following parame-

ters: repetition time (TR) = 1 sec, echo time (TE) = 0.03 sec, multiband factor (MB) = 4,

flip angle (FA) = 52◦, acquisition matrix 104 × 104, 64 axial slices, isotropic resolu-

tion = 2× 2× 2 mm2, field of view (FOV) = 208× 208 mm, 608 volumes in total.

First, the structural and functional images were converted from DICOM to NIFTI

format using the dcm2niix tool [121]. Prior to the analyses, the images were prepro-

cessed using a standard preprocessing pipeline in the CONN Toolbox ( https://web.

conn-toolbox.org/) for Matlab (The MathWorks, Inc., Massachusetts, USA) labeled as

‘default preprocessing pipeline for volume-based analyses (direct normalization to MNI-

space)’. The structural images were segmented into gray matter, white matter, and

cerebrospinal fluid and directly normalized to MNI space. The preprocessing steps of the

functional images consisted of realignment and unwarp (motion correction); slice-timing

correction; outlier identification; direct segmentation and normalization to the MNI space;

and spatial smoothing with an 8 mm full-width half maximum (FWHM) kernel.

As a part of a standard analysis pipeline, we used a general linear model (GLM) in the

SPM toolbox (https://www.fil.ion.ucl.ac.uk/spm/) to localize the brain response to

the selected tasks and stimuli. For each subject, we built a first-level model with 16

predictors - 10 experimental tasks and six motion parameters as nuisance variables. To

assess the effect of each main condition, we contrasted these conditions against their

corresponding control conditions which resulted in six main contrasts: N-back test (2-

back against 0-back task), verbal fluency test (word generation against counting), auditory

stimulation (listening against blocks of silence), visual stimulation (flashing checkerboard

against all other conditions), stimulation of right motor cortex (finger tapping with left

thumb against a resting condition) and left motor cortex (finger tapping with right thumb

against a resting condition).

For the classification task, we performed the independent component analysis (ICA)

using the GIFT toolbox (https://trendscenter.org/software/gift/) in Matlab (The

MathWorks, Inc., Massachusetts, USA) to decompose the original fMRI data into their

spatially independent components and corresponding time series. Prior to the ICA, two-

step data reduction was performed using the principal component analysis (PCA). We

used the Infomax algorithm [39] for the decomposition, and the number of resulting

components was estimated with the Minimum Description Length (MDL) principle [101].

As a part of the GIFT toolbox, we used the ICASSO method to test the reliability of

https://web.conn-toolbox.org/
https://web.conn-toolbox.org/
https://www.fil.ion.ucl.ac.uk/spm/
https://trendscenter.org/software/gift/
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the extracted independent components [102]. Based on 20 runs of the ICA, components

with a stability index below 0.9 were excluded from further analyses [102]. We extracted

the individual time series of the corresponding independent components and applied a

Butterworth filter with a window of 0.008− 0.09 Hz.

We used the individual time series of the independent components to classify the

ten tasks from the functional localizer: 0 back, 2 back, word generation (vf on), counting

(vf off), listening, silence, visual stimulation, right-hand finger tapping (mot R), left-hand

finger tapping (mot L), and resting condition (mot off). For each subject and each task,

we created their activation profiles by taking the temporal averages of each independent

component’s time series within each task block. The BOLD signal typically exhibits

high autocorrelation, given the relatively short sampling period of the signal (repetition

time) and its low-frequency fluctuations. With temporal averaging, we could effectively

subsample the extracted time series which helped us to remove the remaining unwanted

fluctuations within each block.

Prior to training the classifiers, we used principal component analysis (PCA) to inves-

tigate the potential influence of the number of features on classification performance; one

up to all 33 principal components were used as features in the individual models, see the

activation profiles after applying PCA in Fig. 8.3. To train a multiclass classifier using the

activation profiles for each task, we used a support vector machine (SVM) classifier with

four different kernels: linear, quadratic, cubic, and radial basis function (RBF). To pre-

vent the models from overfitting, we used a nested cross-validation scheme. In the outer

loop, we split the data into testing and training datasets using the leave-one subject-out

(LOO) scheme, more specifically, all ten samples from the left-out subject were left out

from model training. In the subsequently nested inner loop, using the training data, grid

search was used to find the hyperparameters of selected kernels, and 5-fold cross-validation

(CV) was used to validate them. Eventually, the model with the best parameters was

selected and tested in the outer loop on the testing data set. The final dataset consisted of

80 samples (eight subjects with ten tasks each). The model was trained using 70 samples

from the other subjects to predict all ten tasks of the left-out subject from the testing

set.

8.3 Results

In Fig 8.2, you can see the results of the Statistical Parametric Mapping in the SPM

toolbox (https://www.fil.ion.ucl.ac.uk/spm/) on one subject. We contrasted six

main conditions against their control conditions. The n-back test (2-back against 0-back

task) revealed frontoparietal activation of the executive network, verbal fluency test (word

https://www.fil.ion.ucl.ac.uk/spm/
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generation against counting) activated the Broca’s area related to speech production,

auditory stimulation (listening against blocks of silence) activated the primary auditory

cortex, visual stimulation (flashing checkerboard against all other conditions) produced

activation of the primary visual cortex, and stimulation of right motor cortex (finger

tapping with left thumb against a resting condition) and left motor cortex (finger tapping

with right thumb against a resting condition) activated contralateral parts of the motor

cortex, particularly involved in motor control of fingers.

Figure 8.2: Results of the standard analytical pipeline using GLM on one sub-
ject, t-test threshold t = 4.90, p < 0.05 (FWE corrected). To assess the effect
of each main condition, we contrasted these conditions against their corresponding con-
trol conditions which resulted in six main contrasts: N-back test (2-back against 0-back
task), verbal fluency test (word generation against counting), auditory stimulation (listen-
ing against blocks of silence), visual stimulation (flashing checkerboard against all other
conditions), stimulation of right motor cortex (finger tapping with left thumb against a
resting condition) and left motor cortex (finger tapping with right thumb against a resting
condition).

Using the ICA to reduce the original data resulted in 41 independent components in

total. Based on 20 runs of the ICASSO algorithm, eight components exhibited a stability

index below 0.9 and were excluded [102]. The remaining 33 components were used further.

In Fig 8.3 below, the matrix shows all 80 samples, ten tasks from the functional

localizer collected from eight subjects. After temporal averaging, each subject’s task

was represented by a single row corresponding to an activation profile represented by 33

principal components. Figure 8.3 illustrates the first iteration of the leave-one subjects-

out scheme; the model was trained on the samples from other subjects (green rectangle)

and used for the prediction of ten tasks of the left-out subject (red rectangle).



CHAPTER 8. FUNCTIONAL LOCALIZER 64

Figure 8.3: Features for classification of ten tasks from the functional localizer
experiment after PCA. Marked is the first iteration of leave-one subject-out cross-
validation, the testing set is marked with a red rectangle, the training set is marked with
a green rectangle.

In Fig 8.4 is a graph of mean accuracy (across the individual LOO iterations) as a

function of the number of principal components (one up to all 33 PCs) used as features

for classification using SVM with linear, quadratic, cubic, and RBF kernels.
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Figure 8.4: The influence of the number of principal components used as fea-
tures on the classification accuracy of selected SVM classifiers

The highest testing accuracy (corresponding to the highest value in the graph above 8.4)

of the classification of the ten tasks using the LOO cross-validation was the following:

SVM linear = 86.2 %, SVM quadratic = 92.5 %, SVM cubic = 90.0 %, and SVM

RBF = 95.0 %. The confusion matrix in Fig. 8.5 below shows the overall performance of

the SVM RBF kernel classifier that reached the highest classification accuracy. On the

main diagonal are the numbers of correct predictions made for the eight instances of each

task. The column summary contains the number of correctly and incorrectly classified

observations for each predicted class (precision/1-precision), and the row summary con-

tains the number of correctly and incorrectly classified observations for each true class

(recall/1-recall). Misclassified samples were observed for the ’vf on’ task, ’listening’ and

’silence’ tasks, and ’mot off’ task.
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Figure 8.5: Leave-one subject-out, SVM RBF confusion matrix

For the purpose of visualization, we used t-distributed stochastic neighbor embedding

(t-SNE) to transform the original data into two dimensions, see Fig. 8.6 below. Individual

samples of most tasks form relatively homogenous clusters. The samples of, e.g., the

’silence’ and ’vf on’ tasks are slightly scattered between others.
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Figure 8.6: t-SNE - two-dimensional embedding of the multidimensional repre-
sentation of each subject’s task

The correlation matrix of average activation profiles for each task illustrates the dissim-

ilarity between the contrasting tasks: ’0 back’ vs. ’2 back’, ’vf on’ vs. ’vf off’, ’listening’

vs. ’silence’, and ’mot R’ vs. ’mot L’ vs. ’mot off’. The ’visual’ task does not have a

control condition, but it contains stimuli that are visually stronger relative to all other

tasks. Conversely, on average, we found a strong positive relationship between the ’vf off’

task and the ’silence’ task, which is largely given by a similar nature of these tasks.
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Figure 8.7: Correlation between average activation profiles of each task.

8.4 Discussion

The functional localizer paradigm comprises tasks for investigating various functions,

including cognitive functions, speech, auditory and visual perception, or motor action.

Our results have shown robust results across eight participants in all ten tasks. We have

shown how specific activation profiles created from time series extracted using independent

component analysis can be used to classify the corresponding tasks performed in the fMRI.

We reduced the original fMRI data in both space and time. We used ICA to decompose

the original data into a set of spatially independent components and further used their

corresponding time series. In the next step, we reduced the data in time by simply

averaging the time series within each task block. Temporal averaging acts as a filter and

reduces the artifactual BOLD fluctuations within each task block.

The classification performance in the leave-one subject-out scheme reached 86.2 %

when we used a linear SVM, improved with quadratic and cubic SVMs, and reached

95.0 % with SVM RBF. The relatively lower performance of the linear SVM is probably

given by the complex data structure. As can be seen in Fig 8.6, samples from each

task form homogeneous clusters, which reflects the relatively low inter-subject variability

and robustness of the tasks across the subjects. Using PCA to transform the features

helped us only marginally to improve the classification performance. With the increasing

number of principal components used as features, all SVMs crossed 90 % accuracy except
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for the linear SVM, whose classification performance started to decrease when 15 or more

principal components were used in the model.

Compared to, e.g., Song et al. [214], who reached an average accuracy of 96.7 % when

classifying seven tasks from a task-based fMRI experiment (emotion, motor, gambling,

language, relational, social, and working memory), we achieved comparable classification

performance but with a greater number of tasks.

The single-subject results from the GLM approach exhibited significant activations

(p < 0.05 FWE-corrected). Please note that these results on data from one subject are

intended to demonstrate the activations in relevant brain regions for each type of task, as

the relevant group analysis could not be performed due to the limited number of subjects.

8.5 Conclusion of the study

We have identified unique patterns for each of the ten tasks of the functional localizer

using activation profiles created from the time series of the corresponding ICA-based brain

networks. The results exhibit successful classification of the tasks and robustness of the

tasks when performed by the individual subjects. This experimental paradigm could be

routinely administered as a part of a standard fMRI protocol and it should be further

investigated whether this approach could be useful for the detection of mental states in

resting-state fMRI.



Chapter 9

Multimodal Investigation of Mental

and Brain Resting State Activity:

Distinguishing Internally and

Externally Oriented Attention

9.1 Introduction

Neuroscientific research on brain activity and brain states is traditionally performed in

laboratory-constrained environments that are distant from real-life conditions. This is typ-

ically given by the fact that the research is directly dependent on neuroimaging methods

such as EEG or fMRI, which imposes additional technical constraints on the experimental

setup – particularly strongly in the fMRI scanner that requires laying position, minimal

bodily movement, and further constraints on the experimental equipment. The ecological

validity of the results of resting-state analysis has, however, been repeatedly challenged.

The resting-state fMRI data capture the idling brain activity, not modified by any

explicitly controlled stimulation or task. It offers a powerful tool that allows us to in-

vestigate task-unconstrained and spontaneous brain activity. In recent years, there has

been a growing interest in studying cognitive processes that are not elicited from the

external environment, referred to as “mind-wandering” [215]. Mind-wandering can be

thought of as a disconnection from the external environment, often characterized as task-

unrelated thought, self-processing, and internally oriented thinking [216]–[218]. Without

any explicit task, the brain automatically switches to its default state of spontaneous

thought [219]. This phenomenon of spontaneous internally oriented thinking has been

linked to the default mode network (DMN) [45], [47]. As Vanhaudenhuyse et al. [220]

suggested, there are two anticorrelated systems, internal and external awareness. Exter-

70
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nal awareness involves attention directed to stimuli in the external world as a reaction to

information coming in through the senses [221]. This phenomenon is linked to the dorsal

attention network (DAN) [222]. The DAN is related to attention-demanding cognitive

tasks and working memory and is also known as a task-positive brain network [44], [223],

[224]. According to Spreng et al. [222], the DMN and DAN are modulated by a third

frontoparietal network (FPN), which flexibly couples with either of these networks de-

pending on the type of the task. The moderator that facilitates the switching between

internal and external cognition is the salience network (SN) formed by the anterior insula

and anterior cingulate cortex [103], [225].

Our aim was to find the corresponding neural correlates of the mental states repre-

sented by the two phenomena of externally and internally oriented attention using mul-

timodal neuroimaging data. In contrast to the task-based experiments modulating brain

activity, in this study, we explored spontaneous brain activity using the resting-state fMRI

with a focus on internally and externally oriented attention. The pursuit to unravel the

spontaneous mental states and link them to brain activity brings many challenges, as

observing the stream of mental activity directly is not possible. However, there have been

attempts to tackle this challenge, one of them is called Descriptive experience sampling

(DES) [226]. This method, relying on self-reporting, is intended to collect detailed phe-

nomenological data about the immediate subjective experience - mental activity. This

approach was later extended and used in combination with fMRI in order to connect

the obtained phenomenological data with the corresponding time-anchored brain activ-

ity [227]. On one side, the progress in neuroscientific research in the last decades has been

fueled by advances in computer science. On the other side, a high-fidelity description of

the mental activity remains a challenging task. We utilized the DES method to collect

the phenomenological data together with multimodal neuroimaging data from fMRI and

EEG and linked them through machine learning to unravel the brain states related to the

phenomena of internally and externally oriented attention. In this work, we will present

results based solely on the fMRI data, as the EEG section will be presented in a thesis

authored by Stanislav Jǐŕıček.

9.2 Materials and methods

9.2.1 Participants and study design

We analyzed eight healthy volunteers (mean age: 30.13, SD: 10.23, two males and six

females). The data set was acquired during a 7-year period at the National Institute of

Mental Health (NIMH) in Klecany, Czech Republic. Each participant first underwent four
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to six training sessions in their natural everyday environment to familiarize themselves

with the DES method [226]. They were trained to apprehend a pristine experience happen-

ing in the last uninterrupted moments before the beep and to make hand-written notes

right after apprehension for a sample-collecting interview with the researcher. Within

weeks after the training, the participant underwent nine sessions of 25-minute eyes-open

simultaneous EEG-fMRI recording with four pseudo-random beep events, where they ap-

prehended their before-the-beep experience and made notes about them without the use

of sight. These notes were processed immediately after each session in an expositional

recorded interview with the researcher. A participant usually underwent two such ses-

sions in a day. From the recorded interviews, researchers created a dataset of textual

descriptions of experience samples. Therefore, we had a total of 72 DES paradigm EEG-

fMRI recordings with 288 experience sampling events. Three independent raters were

trained in the DES method [226] to classify the obtained samples of subjects’ experience

into designated classes. The study was approved by the ethical committee of NIMH and

was conducted in accordance with the Declaration of Helsinki. All participants provided

written informed consent to participate in the study.

9.2.2 Data acquisition, preprocessing, and analysis

We performed simultaneous data acquisition using functional magnetic resonance imaging

(fMRI), electroencephalography (EEG), and an eye-tracking camera. The eye-tracking

data, however, was excluded from further analyses due to incomplete recordings. The

MRI room is equipped with a projector and a projector screen, which is behind and

in line with the bore of the MRI scanner. The 64-channel MRI head coil used in our

experiment was equipped with a mirror attached to it so the participants were able to see

the instructions and stimuli projected on the projector screen.

The imaging was performed using a 3 Tesla Siemens Prisma MRI scanner with a

64-channel head coil (Siemens Healthineers, Erlangen, Germany). The functional imag-

ing (fMRI) was performed using a multiband T2*-weighted echo-planar imaging (EPI)

sequence with the following parameter: multiband factor (MB) = 4, repetition time

(TR) = 700 ms, echo time (TE) = 30 ms, 48 axial slices, acquisition matrix = 74 ×
74, field of view (FOV) = 222 × 222 mm, isotropic resolution = 3 × 3 × 3 mm3, flip

angle (FA) = 52 ◦. The structural MRI images were acquired using a T1-weighted

magnetization-prepared rapid gradient echo (MPRAGE) sequence with parameters: repe-

tition time (TR) = 2300 ms, echo time (TE) = 2.33 ms, 240 sagittal slices, acquisition ma-

trix = 224×224, field of view (FOV) = 224×224 mm, isotropic resolution = 1×1×1 mm3,

flip angle (FA) = 8 ◦.

Prior to the analyses, the functional images were preprocessed using a standard pre-
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processing pipeline in the CONN toolbox (https://web.conn-toolbox.org/) for Matlab

(The MathWorks, Inc., Massachusetts, USA) labeled as ‘default mni’. The preprocessing

steps consisted of realignment and unwarp (motion correction); slice-timing correction;

outlier identification; direct segmentation and normalization to the MNI space; and spatial

smoothing with an 8mm full-width half maximum (FWHM) kernel.

fMRI data analysis

We used 14 large-scale resting-state brain network masks by Shirer et al. [51], see Fig 9.1

as regions of interest (ROI). We opted for these masks as they cover the main brain

networks that are recognized by the community. For each individual fMRI session, we

extracted the corresponding time series averaged across the voxels in each ROI using the

CONN toolbox (https://web.conn-toolbox.org/) for Matlab (The MathWorks, Inc.,

Massachusetts, USA). The extracted time series were linearly interpolated to match the

sampling frequency of the EEG signal and further normalized to z-scores.

https://web.conn-toolbox.org/
https://web.conn-toolbox.org/
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Figure 9.1: Masks of 14 functional networks obtained from [51] used for fMRI
BOLD feature extraction.

As a part of the quality control process, we wanted to identify the atypical individual

responses to the actual beep in the BOLD signal. We used the time series of the 14 brain

networks averaged across the 288 samples in a window that stretched from the moment of

the beep up to 25 seconds after the beep and applied PCA. The first principal component

represented the typical beep response. We then calculated Spearman’s correlation coef-

ficient between the individual beep responses from the corresponding time window and

the typical beep response. Samples with r < (Q1− 0.5× (Q3−Q1)) were excluded from

further analyses. In total, 48 samples were excluded from further analyses as they either

exhibited atypical responses in the BOLD or EEG signals or were not classified by all

three raters as internally or externally oriented mental states. Based on qualitative anal-

ysis of a subset of the subject reports, these atypical responses commonly corresponded

to decreased arousal/falling asleep/missing the beep/technical error in recording the beep



CHAPTER 9. INTERNALLY AND EXTERNALLY ORIENTED ATTENTION 75

timing.

The BOLD signal represents a proxy measure of the actual neuronal activity [10]. Due

to the hemodynamic response, the peak in the BOLD signal that we observe is delayed

for ca. 4-6 seconds after the actual neuronal activity [10]. In this study, we focused

on the BOLD signal’s activity preceding the moment of the beep, and to compensate

for the delayed hemodynamic response, we attempted to estimate the actual delay from

our data and adjusted the times of the beeps accordingly. We estimated the delay of

the hemodynamic response by finding the beginning of the leading edge of each subject’s

average BOLD signal (i.e., average across the 14 brain networks by Shirer et al. [51]). This

was calculated for each subject’s beep sample. The beginning of the leading edge of the

signal was identified as the first time point with a significant change of the BOLD signal

from each subject’s individual baseline (using the Wilcoxon rank sum test p < 0.01). The

baseline was created from a time-averaged 4.5-minute long time course of the subject’s

average BOLD signal before each beep sample. We then calculated the average delay

across all beep samples of all subjects to get a group estimate of 3.1 seconds. Instead of

shifting the BOLD signal, we adjusted the times of the beeps by -3.1 seconds. For the

classification task, we used the extracted BOLD activity of the 14 brain networks that

preceded the beeps.

Classification task

As each DES resting-state session contains four quasi-randomly placed beeps, with nine

sessions per subject, we obtained 288 samples in total. The subjects were trained to focus

on their inner experience that occurred before the beep. We a priori determined a time

window that stretched from 5 seconds up to 0.5 seconds before the beep, resulting in

45 window positions in total (with 100 ms resolution), in which we searched the BOLD

signal for the distinctive patterns of the phenomena of internally and externally oriented

thoughts. As the BOLD signal manifests in the lower frequency ranges, it exhibits a large

amount of autocorrelation, which means the data points are temporally dependent. We

used temporal averaging of the BOLD signal when creating features for the classifier.

To find the adequate level of temporal averaging (window size), we took the average

from one data point (100 ms) up to 20 data points (2 sec) preceding the moment within

the 4.5-second range for each of the 14 brain networks. This resulted in 730 different

combinations of window positions and window sizes. The resulting 240 samples (48 out

of 288 were discarded as outliers) and 14 predictors for each window position and window

size combination were used in the classification task.

We used a linear support vector machine (SVM) classifier in the default settings in

Matlab (The MathWorks, Inc., Massachusetts, USA). Due to the class imbalance of 163
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internal samples (IN) and 77 external samples (EX), we adjusted the misclassification cost

weights that penalize the misclassified samples from the larger class (IN) as a ratio of the

number of samples in EX class relative to the number of samples in IN class (77/163). To

evaluate the classification model and prevent it from overfitting, we used a 5-fold cross-

validation technique, which randomly splits the data into k equal parts (where k = 5)

and uses k − 1 parts for training and the rest of the data for validation.

To statistically test the level of classification accuracy, we implemented a permutation

statistical approach. For each of the 5000 permutations, we randomly permute the IN/EX

labels while keeping the subject-level structure. This means that all sample labels were

permuted separately for each subject. The accuracy (based on the same classifier setting

as for non-permuted data) was then used to build a permutation null distribution. The

permutation p-value was obtained based on the original (non-permuted) accuracy per-

centile in the null distribution. We obtained one p-value for each combination of window

size and position. We applied the Benjamini-Hochberg FDR correction [174] to correct

for multiple comparisons.

In addition, we performed an exploratory analysis of the IN/EX samples across the 14

brain networks in a larger time window that stretched from 15 seconds before the beep

up to 15 seconds after the beep to find the potential source of differences between the two

phenomena.

9.3 Results

In this section, we will present results that are based solely on the fMRI data, as the

analysis of the EEG was performed by Stanislav Jǐŕıček, and the results will be presented

in his thesis. We trained the SVM classifier to classify internally (IN) and externally (EX)

oriented inner experiences. Features for the classification task were extracted as temporal

averages of the BOLD signal in each of the main 14 brain functional networks in different

window sizes and window positions before the beep. Based on our prior hypothesis that

the two phenomena of inner experience should occur within the 5-second window before

the beep, we trained the classifier for all 730 combinations of window positions and window

sizes. The overall classification results are visualized in Figure 9.2. Subfigure 9.2a for fMRI

shows classification accuracy values as a function of different window sizes and window

positions used to derive the features. Fully opaque values represent statistically significant

results ( p < 0.05 FDR corrected), and partially transparent values show significant results

uncorrected for multiple comparisons (p < 0.05). For the best-performing classifier (blue

square), the permutation null distribution, together with the actual accuracy value (orange

bar), is visualized in the lower left part. The right column subfigure 9.2b shows the best-
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classifier confusion matrix.

(a) 730 combinations of window positions and
window size.

(b) Confusion matrix of the best-
performing classifier.

Figure 9.2: Classification performance of IN/EX samples using fMRI.

We used the time series of all 14 brain networks from[51] as features. From the

total of 730 combinations of window sizes and window positions, we found the highest

classification accuracy of 65.0 % in a window size of 0.8 seconds shifted by 2.6 seconds

before the moment of the beep. We performed permutation-based statistics with n = 5000

to evaluate the significance of the reached accuracy value and applied false discovery rate

(FDR) correction for multiple comparisons, which resulted in p < 0.001. The classifier

correctly predicted 104 internal samples from a total of 163 and 52 external samples from

a total of 77, see confusion matrix in 9.2b for details.

To gain insight into the differentiating features of brain activity preceding the events

reported as having internal/external type of mental content, we further explored the time

series in a larger window (15 seconds before and after the beep) than originally hypothe-

sized for the classification task. All time series are visualized in Figure 9.3 as a difference

between IN and EX samples. The opaque segments represent significant differences be-

tween the internal and external samples of experience in four brain networks: anterior

salience, high-level visual, posterior salience, and visuospatial network (Wilcoxon rank-

sum test, p < 0.01). This suggests that those networks contributed to the discriminative

power of the classifier the most.
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Figure 9.3: Difference between IN and EX samples in BOLD signal across 14
brain networks. Blue color codes an increase in BOLD signal in EX samples, and red
color codes an increase in BOLD signal in IN samples.

9.4 Discussion

We have shown that the two phenomena of internally and externally oriented attention can

be captured in the BOLD signal of fMRI. Their distinctive pattern was unraveled using the

time series of 14 brain networks defined by Shirer et al. [51] as features for classification. As

we have shown more closely in the exploratory analysis, the main difference between the

two phenomena was captured in four brain networks: anterior salience network, high-level

visual network, posterior salience, and visuospatial network [51]. These networks exhibited

significantly higher activation during the externally oriented attention compared to the

internal one. The purpose of the exploratory part of our analysis is to unravel the possible

sources that are responsible for the differences between the two phenomena. However, as

these results were not subjected to rigorous statistical testing, they should only further

illustrate the differences...

One of the networks that contributed to the classification of IN/EX is the posterior

salience network (pSN), which covers the inferior parietal lobules (IPL), that are related

to functions such as sensory processing or sensorimotor integration [228]. This typically

involves processing visual, auditory, and tactile stimulation that commonly appeared in

the samples of externally oriented attention; 43 EX samples contained visual perception,

and 54 EX samples contained bodily sensations. Other functions include basic atten-

tion, language, or social cognition [229], visuospatial attention that involves the ability

to focus on relevant parts of the visual perception [223], or memory-guided hand manip-

ulation [230], [231]. Partially, the pSN also covers the posterior insulas related to, e.g.,

the perception of pain [232]. Although none of the subjects characterized their prevail-
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ing experience as painful, some subjects reported mild discomfort or muscular spasms.

The typical network that is linked to external attention is the visuospatial network, also

known as the dorsal attention network (DAN), which is related to attention-demanding

and external goal-oriented tasks [103]. It is engaged during externally directed attentional

tasks or visuospatial planning [233], [234]. Further, switching between internally oriented

and externally oriented cognition is performed through switching between the default

mode network (DMN) and dorsal attention network (DAN), while these networks are

modulated by a third frontoparietal control network [222]. The DMN and DAN networks

exhibit negative functional network connectivity and are inversely engaged during exter-

nally and internally oriented cognition [44], [233]. Both the posterior salience network

and dorsal attention network support the evidence of the distinctive pattern of externally

oriented attention captured in the BOLD signal.

The classification of the two states was focused on the time window of ca. 5 seconds

before the beep. As many of the samples of inner experience are related to actions

and experiential content that was possibly present even before the 5-second window, it

is meaningful to explore possible differences between the phenomena in a wider time

frame before the beep. We found higher activation during externally oriented attention

compared to internally oriented attention in the high-level visual network, also known as

the secondary visual cortex or V2 area [235]. It splits into the dorsal stream related to

object recognition and the ventral stream, which focuses on spatial tasks and visual-motor

skills [236]. Further, the V2 is crucial for the processing of object-recognition memory and

visual memory processing [237]. Further, we found a difference in the anterior salience

network (SN), which plays the role of a gatekeeper [225]. When it detects significantly

salient events, it facilitates access to attention and working memory [225], [238]. The

salience network is a part of the triple brain network model, which further consists of

the default mode network (DMN) and central executive network (CEN), and is believed

to work as a switch between these large-scale networks [50], [239], [240]. It switches

between salient external stimuli and internal events [225], [239], [241]. The SN shows

an increase in activation during the performance of cognitively demanding tasks [238].

According to Elton et al., [103], the salience network interacts with executive networks

in salience detection, processing, and focused attention control. Surprisingly, we did not

find any significant difference in the default mode network (DMN), which is suppressed

during externally oriented cognitive processes [223] and which activity is anticorrelated

to that of the dorsal attention network during externally oriented attention [233], [234].

Compared to the study of Fernyhough et al. [242], they found no significant brain response

when comparing externally oriented attention to internally oriented attention but found

significant activation of the DMN in the internal versus external attention.
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9.5 Conclusion of the study

Following the results of the previous studies, we have identified the brain networks related

to the phenomena of externally oriented attention. We have also obtained valuable aspects

of the phenomena of internally and externally oriented attention by incorporating EEG

into the simultaneous measurement with fMRI; here, the results based on the analysis

of the EEG data will be published as a part of another thesis, as they were the primary

responsibility of my team colleague Stanislav Jiricek. As a first study, we have linked

the multimodal neuroimaging/electrophysiology data together with the phenomenological

records of individual spontaneous inner experience through machine learning.



Chapter 10

Personality reflection in the brain’s

intrinsic functional architecture

remains elusive

10.1 Disclaimer

An original version of this work was accepted and published as an article in PLOS One

on the 2nd of June 2020, under the title: Personality reflection in the brain’s intrinsic

functional architecture remains elusive [243]. Allow me to extend my thanks to the

coauthors who contributed to this endeavor: Renata Androvičová, Iveta Fajnerová, Filip

Děchtěrenko, Jan Rydlo, Jǐŕı Horáček, Jǐŕı Lukavský, Jaroslav Tintěra, Jaroslav Hlinka.

10.2 Introduction

In their lives, people encounter many different situations, and they can act in many dif-

ferent ways. However, their behavior is not random, and it tends to be partly predictable.

This invariance in how people think, feel, and behave is being incorporated in the term

personality [244]. Many concepts have been used to describe personality traits, but due

to their mutual correlations, it is possible to describe human personality with a smaller

number of underlying factors [245]. The popular solution is the Five-Factor Model or Big

Five [246]. While this concept was proposed initially as descriptive, there is an increasing

amount of literature linking it to the biological level.

In recent years, there has been a considerable increase of interest in research into the

neurobiological correlates of inter-individual behavioral differences. In this context, the

term ‘personality neuroscience’ has been coined [247]. A wide range of measurement and

data analysis methods have been used to find neuroimaging correlates of personality dif-
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ferences assessed by standard psychometric tools. For illustration, consider the selection

of neuroimaging results related to individual dimensions of the Big Five model: Wei,

Duan, Yang, Liao, Gao, Ding, et al. [248] found a linkage between the default mode

network and neuroticism and extraversion. Neuroticism, as a personality trait that in-

dexes the tendency to experience a negative effect, was associated with the functioning

of the amygdala and the prefrontal cortex [249], [250]. Also, evidence based on diffu-

sion tensor imaging indicates a positive correlation between neuroticism and the measure

of loss of white matter integrity in the anterior cingulum and tracts that connect the

prefrontal cortex and the amygdala [251], but the breakdown in the white matter in-

tegrity could be more widespread [252]. The neurotic brain was argued to have overall

less than optimal functional network organization and exhibits overall weaker functional

connections [253]. Extraversion is characterized as a social dimension associated with a

preference for seeking, engaging in social interactions, the implication in gregariousness,

and excitement-seeking [254], [255]. Low-frequency oscillations in the precuneus and the

medial prefrontal cortex in the resting state were found to have a relationship with a

degree of extraversion [256]. Higher extraversion score also correlated with an increased

amygdala resting-state functional connectivity with the putamen, temporal pole, insula,

and occipital cortex [257] and the right precuneus and both superior and inferior parietal

lobes [258]. A high degree of extraversion has been linked with a greater response to

positive visual emotion cues in the amygdala [259]. Openness, sometimes described as in-

tellect, is associated with imagination, intellectual engagement, and aesthetic interest and

was found to have a relationship with the functioning of the dorsolateral prefrontal cor-

tex [260] and was also associated with increased activity in the right inferior parietal lobe

and decreased activity in the bilateral superior parietal cortex and the left precuneus [258].

Agreeableness encompasses traits known as altruism, desires, rights of others, empathy,

and other forms [261]–[263] and was found to be positively correlated with the medial

prefrontal cortex and anterior cingulate cortex. Conscientiousness relates to traits like

orderliness and self-discipline [264] and was positively correlated with the right superior

parietal cortex [258].

Notably, several neuroimaging studies have attempted to find brain correlates of person-

ality dimensions using whole-brain analysis in the search for association with any of the

measured personality dimensions. Among these, Adelstein, Shehzad, Mennes, DeYoung,

Zuo, Kelly, et al. [265] reported that each domain of personality predicted resting state

functional connectivity (rs-FC) of seed regions placed within the anterior cingulate and

precuneus with a unique pattern of brain regions.

As part of a larger project exploring the neuroimaging correlates of personality, we have

decided to mimic the analysis of Adelstein, Shehzad, Mennes, DeYoung, Zuo, Kelly, et
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al. [265] using an independent sample of data. Our main question was: does an in-

dependent study support the findings of Adelstein, Shehzad, Mennes, DeYoung, Zuo,

Kelly, et al. [265]? In other words, do the five domains of neuroticism, extraversion,

openness, agreeableness, and conscientiousness according to NEO Five-Factor Inventory

(NEO-FFI) [246], [266] - predict resting-state MRI functional connectivity as described

by Adelstein, Shehzad, Mennes, DeYoung, Zuo, Kelly, et al. [265]?

We use a larger sample of 84 subjects (instead of 39 in the original study, which more-

over used multiple scans from some of the participants), an equivalent data processing

pipeline, and the Gaussian random field (GRF) approach for multiple testing correction,

which was used in the original study. There were some differences in the data acquisi-

tion (see Discussion), however, both schemes fall more or less within the standard resting

state acquisition. To gain more insight into our results, we complemented our analysis by

re-analyzing our data with another (more conservative) preprocessing scheme and also by

using a permutation testing-based inference instead of the Gaussian random field (GRF)

approach for multiple testing correction.

10.3 Materials and methods

General design

We used similar study design and analytical approaches as were originally proposed by

Adelstein, Shehzad, Mennes, DeYoung, Zuo, Kelly, et al. [265]. Additionally, in order to

evaluate the results, two different scenarios of denoising of the functional MRI data and

two different methods of statistical inference were used.

10.3.1 Participants

We acquired MRI brain scans of 84 healthy controls (80 right-handed, 48 males, mean

age 30.83 ± 8.48). The distribution of age and gender was similar to that in Adelstein,

Shehzad, Mennes, DeYoung, Zuo, Kelly, et al. [265] (they reported results from 39 right-

handed adults, including 18 males, with a mean age of 30 ± 8 years)). All participants

gave written informed consent. The study was approved by the Ethics Committee of

IKEM (Institute for Clinical and Experimental Medicine in Prague, Czech Republic).
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10.3.2 Assessment (NEO-FFI)

The participants filled out a Czech version of the NEO Five-Factor Inventory (NEO-FFI).

The inventory consists of 60 items, and it is used to assess five personality dimensions:

1) neuroticism, 2) extraversion, 3) openness, 4) agreeableness, 5) conscientiousness [246],

[266], [267].

10.3.3 Data acquisition

Data acquisition took place at the IKEM using a Siemens TrioTim 3T MR machine.

A high-resolution 3D anatomical T1-weighted image was acquired (TR = 2300 ms, TE

= 4.63 ms, flip angle = 10°, FOV 256 × 256, image matrix size 256 × 256, voxel size

= 1 × 1 × 1 mm, 224 sagittal slices) using the magnetization prepared gradient echo

(MPRAGE) sequence. Then, the functional T2*-weighted images with blood oxygena-

tion level-dependent (BOLD) contrast (TR = 2500 ms, TE = 30 ms, flip angle = 90°,
FOV 192 × 192, image matrix size 64 × 64, voxel size = 3 × 3 × 3 mm, 44 axial slices,

240 volumes in total for each subject) were collected using the echo-planar imaging (EPI)

technique.

10.3.4 ROI selection

We selected the anterior cingulate cortex and precuneus as our two main areas of inter-

est, which were split into 18 spatially separated spherical seed regions of interest (ROIs)

with a diameter of 8 mm. The ROIs were placed as in the study by Adelstein, Shehzad,

Mennes, DeYoung, Zuo, Kelly, et al. [265] and sample the key midline structures of the

anterior cingulate cortex and the precuneus, two functionally heterogeneous brain areas

involved in diverse aspects of cognition, that are commonly investigated in resting state

functional connectivity studies. In particular, ten unilateral ROIs were placed in the an-

terior cingulate cortex, and eight unilateral ROIs in the precuneus.

10.3.5 Functional data preprocessing

The preprocessing pipeline of the resting-state functional images was carried out using the

CONN toolbox (The Gabrieli Lab, McGovern Institute for Brain Research, MIT) in Mat-

lab (The MathWorks, Inc.). The CONN toolbox used standard preprocessing modules

from the SPM8 toolbox (Wellcome Trust Centre for Neuroimaging, UCL). The prepro-
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cessing pipeline comprised slice timing correction for continuous decreasing acquisition,

motion correction, which realigned all functional images to a mean functional image,

normalization of the functional images into the MNI 152 standard space, and spatial

smoothing with 6 mm FWHM kernel.

10.3.6 Nuisance signal regression

In our analysis, we used two different denoising schemes in order to assess their potential

impact on the final results.

The first approach corresponded to that of Adelstein, Shehzad, Mennes, DeYoung, Zuo,

Kelly, et al. [265]. Prior to the denoising procedures in the CONN toolbox, all preprocessed

functional images were mean-based intensity normalized by a factor of 10000 using the

FSL’s suit fslmaths command. The resulting time series were further band-pass filtered

using the FFT-based filter with a frequency window of 0.009 - 0.1 Hz which suppresses the

low-frequency fluctuations and physiological noise of higher frequency mostly generated

by cardiac and respiratory function [268]. This was followed by quadratic detrending,

which reduces trends in a time domain, and also despiking, which reduces the influence

of potential outlier scans. An average time series extracted from a whole brain, an aver-

age time series of the white matter of the cerebrospinal fluid, and as well as six motion

parameters (calculated while performing realignment of the functional images - rotations

and translations in all three cardinal directions X, Y, Z), were used in a linear regression

to reduce their potential confounding effect. Final denoised time series of interest were

further used in the first-level statistics.

The second denoising approach was based on a default denoising scheme, which is stan-

dardly implemented in the CONN toolbox (without a ‘motion scrubbing’ option). This

approach comprised the same band-pass filtering as mentioned above, using the FFT-

based filter with 0.009 - 0.1 Hz frequency window. This was followed by a linear detrend-

ing of the time series. CompCor approach, which is implemented in the CONN toolbox,

was used to perform a principal component analysis with time series corresponding to the

white matter and the cerebrospinal fluid [269]. Five components of the white matter, five

components of the cerebrospinal fluid, and as well as six motion parameters with their 1st

order temporal derivatives were used in a linear regression to reduce their confounding

effect on the signal of interest. Final denoised time series of interest were further used in

the first-level statistics.
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10.3.7 Statistical analysis

Similarly, as in the case of denoising, we have used two different methodologies also in the

case of statistical inference, namely at the level of multiple testing correction procedure

at the second-level (group-level) inference. In particular, the commonly used Gaussian

random field theory-based approach used in the original paper is increasingly criticized

as potentially giving rise to an alarming rate of false positive findings [270]. This mo-

tivated us to rerun the analyses using a permutation (randomization) testing approach

that should be more robust in this respect.

Note that the multiple testing correction mentioned provides correction across the spatial

domain (i.e., many thousands of brain voxels for which the functional connectivity to a

particular seed is assessed). However, it does not provide correction across the multiple

hypotheses assessed (there are 18 seed regions considered for each of the five personality

domains, and tests are carried out for both positive and negative effects). In line with the

original article, we do not carry out any explicit correction across these 180 analyses, and

the overall framework is thus prone to provide on average 180 × 0.05 = 9 false positive

findings even in the case that there was no link between personality and brain functional

connectivity. While the original study apparently reported a much higher number of ob-

served relations than 9, a key question is whether this wealth of findings is reproducible

in an independent analysis or potentially an artifact of the applied Gaussian random field

theory-based multiple testing correction across space in each of the 180 analyses.

A general linear model (a default method in the CONN to determine functional connec-

tivity) was used to determine functional connectivity between the average time series of

each of the selected ROIs and that of every other voxel in a brain. Beta maps which were

further used in second-level statistics in combination with the Gaussian random field the-

ory, were by default converted to Pearson’s r correlation maps. The original first-level

beta maps were also used as input for second-level statistics based on permutation tests.

10.3.8 The Gaussian random field theory

The first approach, along the lines of the original study, involved the Gaussian random

field theory. Technically, the second-level statistics were conducted using the general lin-

ear model with all five personality domains for each subject controlled for both age and

sex as covariates in the CONN toolbox. Resulting second-level t-maps were estimated for

smoothness using the FSL’s smoothest utility and further corrected for multiple compar-

isons with the Gaussian random field theory as implemented in the FSL’s cluster utility.

Final t-maps were thresholded at t>2.3 and p<0.05 (one-sided test), in line with Adel-
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stein, Shehzad, Mennes, DeYoung, Zuo, Kelly, et al. [265]. This resulted in a total of 180

statistical maps, one for each of the defined ROIs, for each of the five personality domains,

representing either a positive or negative relationship.

10.3.9 Permutation tests

In the other approach, based on the permutation tests, we used individual first-level beta

maps from each of the 18 ROIs, which we merged along all subjects in order to create

4D maps, which were then used in the second-level inference. We used FSL’s randomise

tool for nonparametric permutation tests, which enabled us to use a standard general

linear model [271] with all five personality domains for each subject controlled for both

age and sex as covariates. The tool was set to make 5000 permutations when creating the

null distribution, and a cluster-based threshold of t>2.3 was selected. Only results with

p<0.05 were considered in a final assessment.

10.4 Results

Personality domain scores

The descriptive statistics of the five personality domain scores are shown below in Ta-

ble 10.1.

Table 10.1: Descriptive statistics for the NEO-FFI Five personality domain
scores. The sample mean and standard deviation of scores for each personality domain.

domain mean st.d.
neuroticism -0.369 ±1.117
extraversion 0.085 ±0.858
openness 0.543 ±1.075
agreeableness 0.284 ±0.876
conscientiousness 0.274 ±0.888

Functional connectivity correlates of personality domain scores

When using the original denoising scheme and statistical inference method (the Gaussian

random field theory), we have observed significant results in 74 out of the 180 analyses

carried out (see Table 10.2). These include a number of areas of functional connectivity

correlates for each of the personality dimensions.
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Table 10.2: A number of analyses with statistically significant results when using
the original denoising and the GRF approach. Thresholded at t>2.3 and p<0.05
(corrected). Overall, 180 analyses were carried out, using 18 functional connectivity seeds
for each personality domain and direction of effect.

analysis n e o a c total
positive 5 6 2 7 12 32
negative 6 5 5 10 16 42
total 11 11 7 17 28 74

For a summary visualization of obtained results, see Fig 10.1. In general, we have

observed widespread cortical and subcortical areas of significant relation of FC and per-

sonality. Visual comparison with Fig 2 of the original study by Adelstein, Shehzad,

Mennes, DeYoung, Zuo, Kelly, et al. [265] suggests a rather weak overlap of the observed

results. To obtain some quantitative evidence on the agreement between the results, we

have computed the number of analyses in which both datasets provided at least one sig-

nificant cluster (even if spatially distinct), as the exact spatial overlap is technically not

possible to be determined based on the available results. The original study detected 106

of the 180 analyses as significant (using the Gaussian random field approach for multiple

testing correction), but only 42 of these were also among those 74 that were significant in

our data.

Figure 10.1: Personality trait measures ‘predicted’ by rs-FC using the original
denoising and the GRF approach. Thresholded at t>2.3 and p<0.05 (corrected),
positive - left, negative - right. Connections inferred as having a relationship with per-
sonality, grouped by color based on the personality domain: neuroticism = lightblue,
extraversion = blue, openness = red, agreeableness = violet, conscientiousness = yellow.
The significant functional connectivity maps of all 18 seeds are overlaid in a single image
for compactness of presentation. The position of slices corresponds to MNI coordinates
of -5,0,0.
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The observed overlap between the two studies corresponds to results expected at ran-

dom (expected false positive results count is 180×(106÷180)×(74÷180) = 43.58 results).

This only strengthens the suspicion that the results of both studies amount to false pos-

itives. To gain more insight, we have repeated the analyses with a permutation-based

inference scheme (instead of Gaussian random field theory) to control for multiple testing

problems. Here, the extent of the results obtained was much smaller, see Fig 10.2. The

resulting areas of personality-related functional connectivity clusters consisted generally

of a spatially much more restricted subset of the results of the initial analyses. Still, even

the intersection of these two analyses, when merged across all 18 seeds and all personality

domains and directions of change, provided a rich set of results.

Figure 10.2: Personality trait measures ‘predicted’ by rs-FC using the original
denoising and the permutation-based approach. Thresholded at t>2.3 and p<0.05
(corrected), positive - left, negative - right. Connections inferred as having a relation-
ship with personality, grouped by color based on the personality domain: neuroticism =
lightblue, extraversion = blue, openness = red, agreeableness = violet, conscientiousness
= yellow. The significant functional connectivity maps of all 18 seeds are overlaid in a
single image for compactness of presentation. The position of slices corresponds to MNI
coordinates of -5,0,0.

In particular, a significantly positive relationship with the resting-state seed-to-voxel

functional connectivity was found for extraversion, agreeableness, and conscientiousness.

Extraversion was found to have a significantly positive relationship with the temporal

pole, the temporal fusiform cortex (posterior division), the parahippocampal gyrus, the

insular cortex, and the planum polare. Agreeableness had a positive relationship with the

functional connectivity in the frontal orbital cortex, the parahippocampal gyrus (anterior

division), the subcallosal cortex, and the temporal pole. Conscientiousness was signifi-

cantly positively correlated with the precentral gyrus, the lingual gyrus, the postcentral

gyrus, the temporal occipital fusiform gyrus, the lateral occipital cortex (superior and in-
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ferior division), the central opercular cortex, the juxtapositional lobule cortex, the cuneal

cortex, the temporal fusiform cortex (posterior division), and the inferior temporal cor-

tex (temporooccipital part). Conversely, negative relationship between the seed-to-voxel

functional connectivity of the default mode network and the other regions in the brain

was found for conscientiousness in the parahippocampal gyrus (anterior division), the

temporal pole, the temporal fusiform cortex (anterior division), the temporal occipital

fusiform cortex, the temporal fusiform cortex (posterior division), the inferior temporal

gyrus (anterior division), the planum polare, and the insular cortex.

Notably, in the case of permutation-based inference, we have observed only 6 of the 180

analyses provide a ‘significant effect’ result (see Table 10.3). Note that when controlling

at p<0.05 FWE in each of the analyses, the expected number of significant analyses in

a set of 180 is 180 × 0.05 = 9. In other words, the number of observed results from the

permutation-based inference approach is in line with the hypothesis of no relation between

personality and functional connectivity.

Table 10.3: A number of analyses with statistically significant results when using
the original denoising and the permutation-based approach. Thresholded at
t>2.3 and p<0.05 (corrected). Overall, 180 analyses were carried out, using 18 functional
connectivity seeds for each personality domain and direction of effect.

analysis n e o a c total
positive 0 1 0 1 2 4
negative 0 1 0 0 1 2
total 0 2 0 1 3 6

Using the alternative denoising scheme, we have observed a quantitatively similar

effect - namely, a high number of distributed clusters of personality-related functional

connectivity under the use of GRF-based statistical inference, falling down to a result

consistent with the hypothesis of no relation when permutation-based statistical inference

was used. See Fig 10.3 and 10.4 and Table 10.4 and 10.5 for reference.
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Figure 10.3: Personality trait measures ‘predicted’ by rs-FC using the default
CONN denoising and the GRF approach. Thresholded at t>2.3 and p<0.05 (cor-
rected), positive - left, negative - right. Connections inferred as having a relationship with
personality, grouped by color based on the personality domain: neuroticism = lightblue,
extraversion = blue, openness = red, agreeableness = violet, conscientiousness = yellow.
The significant functional connectivity maps of all 18 seeds are overlaid in a single image
for compactness of presentation. The position of slices corresponds to MNI coordinates
of -5,0,0.

Figure 10.4: Personality trait measures ‘predicted’ by rs-FC using the default
CONN denoising and the permutation-based approach. Thresholded at t>2.3
and p<0.05 (corrected), positive - left, negative - right. Connections inferred as hav-
ing a relationship with personality, grouped by color based on the personality domain:
neuroticism = lightblue, extraversion = blue, openness = red, agreeableness = violet,
conscientiousness = yellow. The significant functional connectivity maps of all 18 seeds
are overlaid in a single image for compactness of presentation. The position of slices cor-
responds to MNI coordinates of -5,0,0.
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Table 10.4: A number of analyses with statistically significant results when
using the default CONN denoising and the GRF approach. Thresholded at
t>2.3 and p<0.05 (corrected). Overall, 180 analyses were carried out, using 18 functional
connectivity seeds for each personality domain and direction of effect.

analysis n e o a c total
positive 3 7 3 10 3 26
negative 4 5 9 9 8 35
total 7 12 12 19 11 61

Table 10.5: A number of analyses with statistically significant results when us-
ing the default CONN denoising and the permutation-based approach. Thresh-
olded at t>2.3 and p<0.05 (corrected). Overall, 180 analyses were carried out, using 18
functional connectivity seeds for each personality domain and direction of effect.

analysis n e o a c total
positive 0 0 2 0 0 2
negative 2 1 0 3 2 8
total 2 1 2 3 2 10

Considering common results of both methods of statistical inference, using the default

CONN denoising, openness exhibited a significantly positive relationship with the resting-

state seed-to-voxel functional connectivity. Openness had a positive relationship with the

temporal occipital fusiform cortex, the occipital fusiform gyrus, the lingual gyrus, the lat-

eral occipital cortex (inferior division), the temporal fusiform cortex (posterior division),

the lateral occipital cortex (superior division), and the parahippocampal gyrus (posterior

division). A negative relationship between the seed-to-voxel functional connectivity of

the default mode network and the other regions in the brain was found for neuroticism,

extraversion, agreeableness, and conscientiousness. Neuroticism had a negative relation-

ship with the occipital fusiform gyrus, the lateral occipital cortex (inferior division), the

occipital pole, the lateral occipital cortex (superior division), the lingual gyrus, and the

temporal occipital fusiform cortex. Extraversion exhibited a negative relationship with the

occipital fusiform gyrus, the lateral occipital cortex (inferior division), the lingual gyrus,

the intracalcarine cortex, the lateral occipital cortex (superior division), the occipital pole,

the cingulate gyrus (posterior division) and the precuneus cortex. Agreeableness was neg-

atively related to the occipital pole, the lateral occipital cortex (superior division), the

lingual gyrus, the lateral occipital cortex (inferior division), the occipital fusiform gyrus,

the cuneal cortex, the intracalcarine cortex, the supracalcarine cortex, and the precuneus

cortex. Conscientiousness had a negative relationship with the lingual gyrus, the occip-

ital pole, the occipital fusiform gyrus, the lateral occipital cortex (superior and inferior

division), the temporal occipital fusiform cortex, the cuneal cortex, and the intracalcarine

cortex.
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10.5 Discussion

Adelstein, Shehzad, Mennes, DeYoung, Zuo, Kelly, et al. [265] showed a relationship be-

tween all five personality scales of the NEO-FFI and the inter-individual variations in

the resting-state seed-to-voxel functional connectivity between the default mode network

seeds and other regions of a brain. We endeavored to independently query the questions

asked in the study of Adelstein’s using a larger dataset with participants of similar age

with a slightly higher proportion of males. We used the CONN toolbox with a similar im-

age preprocessing pipeline, as well as with an alternative denoising scheme and statistical

method for multiple testing correction. In general, we have not been able to reproduce

the observed results, and our methodological analysis suggests that most if not all of the

results reported by Adelstein, Shehzad, Mennes, DeYoung, Zuo, Kelly, et al. [265] consti-

tute false positive findings.

Of course, the reproducibility of specific experimental results, including in neuroimag-

ing research, is affected by many factors related to the experimental setup [272]. For

instance, different MRI acquisition protocols and different preprocessing and denoising

pipelines could have an effect on the observed results, for instance, due to differential

sensitivity to various imaging artifacts. Our acquisition protocol slightly differs from the

one used by Adelstein, Shehzad, Mennes, DeYoung, Zuo, Kelly, et al. [265]. Compared to

the authors, we have a lower sampling frequency of the functional images but a substan-

tially longer acquisition. There is evidence that says that scan length and also sampling

frequency can significantly affect the reliability of the functional connectivity measures

from resting-state data [273].

On the other side, one should reasonably expect a substantial level of generalizability

of results across experimental settings within the broad realm of ‘standard’ resting state

fMRI, at least in qualitative terms. Of course, the appropriate sample size is crucial for

obtaining robust results. In this sense, the use of only 37 subjects and multisession mea-

surements in the original study undermines the generalizability of their results and also

complicates the use of the assumption of independent sampling at any statistical analysis

at the group level.

The BOLD signal is generally more or less corrupted by various types of physiological arti-

facts or hardware-related artifacts like long-term instabilities of the scanner baseline [274].

There are two substantial differences between presented denoising strategies - mean-based

intensity normalization and global signal regression. The global signal regression, based

on a whole brain mask, is commonly used to reduce physiological noise, such as respi-

ratory and cardiac noise, under the assumption that the global signal is not correlated

with task-induced signal [275]. Notably, the global signal regression was found to cause

significant shifts in the functional connectivity values [268], [276], [277]. Additionally,
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the global signal is derived from the data itself and is an unknown mixture of neural and

non-neural fluctuations, which affects the inter-regional correlations and complicates their

interpretations [278]. But conclusions are rather controversial, and further investigation

is needed.

Concerning the presented statistical methods, Gaussian random field-based cluster size

tests are derived from a distribution approximation of cluster sizes based upon various

parametric distributions [279]. Several assumptions like uniformly smoothed images and

sufficiently high cluster-defining threshold are required [280]–[282]. However, there is evi-

dence suggesting that the Gaussian random field-based tests tend to be less conservative

under certain conditions compared to permutation tests [279], [283]–[285]; strong evidence

for the inflated false positive rate of Gaussian random-field based tests was recently pub-

lished by Eklund, Nichols, Knutsson [270].

When comparing the results, it is evident that using permutation tests (that impose

less distributional assumptions) always resulted in fewer clusters when compared to the

Gaussian random field theory, irrespective of the denoising scheme used. But reasonably

overlapping clusters between these statistical methods do exist, in particular, significant

areas based on the permutation-based inference are generally a restricted subset of the

less conservative results based on GRF. Due to the number of analyses carried out (180

whole-brain regressions), we have limited the number of permutations to 5000.

10.6 Conclusion

Our attempt at independent validation of the results by Adelstein, Shehzad, Mennes,

DeYoung, Zuo, Kelly, et al. [265] was unsuccessful. While we have detected similarly

extended clusters of significant results across the whole brain as in the original study, the

results had a generally independent structure with respect to the original ones in terms

of space, pertinent seed regions, and personality dimensions. Reanalysis of the data

using robust permutation-based correction for multiple testing problem yielded results

consistent with the hypothesis of no relation between personality dimensions and resting

state functional connectivity. While, of course, this does not disprove the existence of

such a link, it suggests that it may be much more subtle and elusive than it may seem at

first sight.
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Conclusion

The presented thesis has provided an overview of the challenges and tools in the area of

detection of mental states and characteristics from neuroimaging data, and furthermore

presented multiple original contributions in this area in the respective studies presented

as chapters in the experimental part of the thesis.

In chapter 5, we used longitudinal task-based fMRI data collected at two visits from

an experiment focused on self-agency judgment in healthy controls and patients with

schizophrenia. In the first part of the study, we performed a classification of two ex-

perimental conditions, ”other-controlled” and ”self-controlled”, using individual-subject-

trained models based on data from the first visit to predict the conditions in the second

visit with an average out-of-sample accuracy of 64.3 % (linear SVM). In the second part

of the study, we compared two sets of features for the classification of healthy controls

and patients based on the task fMRI data. As the first feature set, we used beta esti-

mates from linear regression analysis between individual-subject ICA time series and the

experimental paradigm that approximated the brain-state dynamic of the two conditions

for each subject. Using these beta estimates from the first visit, we were able to classify

healthy controls and patients at the first visit with 66.1 % accuracy and at visit two

with 69.8 % accuracy. As the second set, we used AAL atlas [30] functional connectivity

matrices, where we reached 74.7 % accuracy when classifying the subjects at the first

visit, the accuracy was 64.2 % when we used the same model to predict the group labels

at the second visit. This demonstrates the utility of atlas-based functional connectivity

estimates as features for machine learning, even in the case of a task-based paradigm,

although FC is predominantly used for spontaneous activity/resting state data, where

explicit hypotheses on activity timing are not available.

In chapter 6, we performed a comprehensive comparison of features based on atlas-

based and ICA-based resting-state functional connectivity in an attempt to classify healthy

controls and patients with schizophrenia using multiple classification algorithms. Based

95
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on our results, the features derived from the atlas-based functional connectivity consis-

tently outperformed the ICA-based features. This suggests that despite the clear utility

of ICA as a dimension reduction tool in neuroimaging, its time series might be suboptimal

as input for functional connectivity analysis, at least for this particular purpose.

In chapter 7, our study using a whole-brain functional connectivity approach on a

relatively large sample has shown a balanced picture of hyperconnectivity and hypocon-

nectivity in first-episode psychosis while demonstrating a significant relation between the

affected connection strengths to clinical symptoms and cumulative dosage of antipsychotic

medication. We performed the same analysis using a more moderate denoising scheme

which resulted in an overall increase of hypoconnectivity and no relation of the functional

connectivity to symptoms or medication. Taking into account the results obtained with

the current stringent denoising may provide a stronger relation to clinical variables and

contribute to understanding the diversity of previously reported results.

In chapter 8, using a multitask-based fMRI experiment, we have identified unique

patterns for each of the ten tasks of the functional localizer. As features, we used activation

profiles created from a time series of the corresponding ICA-based brain networks. We

successfully built a multiclass classifier of ten experimental tasks that included cognitive

tasks, word generation, auditory and visual stimulation, and a motor task. Using an SVM

classifier with RBF kernel, we have reached 95.0 % accuracy on data from eight subjects.

The discovered task-specific activation profiles could be potentially further used to decode

the brain states in resting-state fMRI.

In chapter 9, we have identified the brain networks related to the phenomena of exter-

nally oriented attention. By incorporating EEG into the simultaneous measurement with

fMRI, we obtained valuable aspects of the two phenomena (the results based on the analy-

sis of the EEG data will be published as a part of another thesis, as they were the primary

responsibility of my team colleague Stanislav Jiricek). As a first study, we have linked

the multimodal neuroimaging/electrophysiology data together with the phenomenological

records of individual spontaneous inner experience through machine learning.

In chapter 10, we attempted to unravel the neural correlates of personality traits as

in [265]. We used two common approaches to multiple testing correction, i.e., the Gaussian

random field (GRF) and permutation-based tests. Our attempt to replicate the original

results [265] was unsuccessful. Reanalysis of the data using robust permutation-based

correction for multiple testing problem yielded results consistent with the hypothesis of

no relation between personality dimensions and resting state functional connectivity. This

provides an illustration of the dangers of heavy multiple testing and the role of appropriate

statistical corrections and nonparametric approaches in neuroimaging.
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11.1 Future work

In our future work, we would like to further concentrate on decoding mental states in

resting-state data. We are working on multimodal analyses of fMRI and EEG, together

with other methods, e.g., eye-tracking camera, as we believe that the modalities can

complement each other in terms of different perspectives on brain or spatial and temporal

resolution. As for the longitudinal data sets, we would like to focus on the long-term

prediction of the trajectory of diseases such as schizophrenia or bipolar disorder and also

monitor the effect of medication.
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naschewski, T., Bandeira, C., Başgöze, Z., Cupertino, R. B., Bau, C. H. D., Bauer,
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D., . . . Tomeček, D., Paus, T. (2021). Virtual Histology of Cortical Thickness

and Shared Neurobiology in 6 Psychiatric Disorders. JAMA Psychiatry, 78(1).

https://doi.org/10.1001/jamapsychiatry.2020.2694

[7] Piorecky, M., Koudelka, V., Miletinova, E., Buskova, J., Strobl, J., Horacek, J.,

Brunovsky, M., Jiricek, S., Hlinka, J., Tomeček, D., & Piorecka, V. (2020). Simul-
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Appendix A

Appendix

non-lagged

ICA9 ICA27 AAL90 Cradd.200

LDA PRTools 68.33(70.00) 70.56(50.00) 80.00(50.00) 77.22(50.00)

LDA Matlab 68.33(70.00) 70.56(68.33) 80.00(82.78) 77.22(67.22)

LLC PRTools 68.33(68.89) 70.56(66.11) 80.00(76.67) 73.33(67.78)

Lin. Percep. 47.78(NaN) 68.33(NaN) 78.89(NaN) 74.44(NaN)

SVM l. AS on 66.11(67.78) 68.89(74.44) 87.22(83.33) 71.11(70.00)

SVM l. AS off 66.00(65.00) 70.00(73.33) 74.00(80.56) 74.00(72.22)

SVM q. AS on 68.33(66.11) 63.89(76.67) 61.11(80.00) 55.00(73.89)

SVM q. AS off 68.00(61.11) 73.00(65.00) 79.00(57.78) 58.00(56.11)

SVM c. AS on 61.67(62.22) 65.56(77.78) 67.78(74.44) 62.78(70.00)

SVM c. AS off 58.00(61.67) 74.00(61.67) 61.00(50.00) 50.00(65.00)

SVM RBF AS on 63.00(70.00) 72.00(75.00) 78.00(80.00) 57.00(73.89)

SVM RBF AS off 61.00(68.89) 69.00(73.89) 79.00(81.67) 24.00(73.89)

KNN 55.00(54.44) 58.00(55.56) 58.00(57.78) 59.00(58.33)

NB 71.11(71.67) 72.78(71.11) 76.11(76.67) 75.56(73.89)

QDA PRTools 63.33(62.78) 65.00(50.00) 71.11(50.00) 67.78(50.00)

QDA Matlab 63.33(62.78) 65.00(65.00) 71.11(50.00) 67.78(55.00)

DT Matlab 72.22(63.89) 61.11(59.44) 57.22(57.22) 72.78(48.33)

DT PRTools I.g. 67.78(66.67) 58.33(60.56) 56.11(53.89) 72.78(50.00)

DT PRTools F.c. 52.78(65.56) 56.11(60.56) 56.11(59.44) 58.89(59.44)

LCT PRTools 63.89(NaN) 66.11(NaN) 76.67(NaN) 72.78(NaN)

RF M. default 62.33(64.83) 59.83(65.17) 63.78(64.50) 63.61(61.44)

RF M. bagg. 66.78(64.39) 68.72(70.61) 74.89(77.72) 72.06(73.11)

RF M. boost. 62.22(56.67) 67.78(63.33) 75.56(76.11) 70.56(68.89)

ANN 59.33(66.00) 64.83(68.17) 79.44(68.11) 71.67(67.28)

Table A.1: Values of classification accuracy using various algorithms and non-
lag FC and FNC features.
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lagged

ICA9 ICA27 AAL90 Cradd.200

LDA PRTools 65.56(65.56) 69.44(50.00) 81.11(50.00) 77.22(NaN)

LDA Matlab 64.44(64.44) 69.44(64.44) 81.11(78.33) 77.22(73.33)

LLC PRTools 62.22(62.22) 67.78(70.00) 81.67(80.56) 76.67(NaN)

Lin. Percep. 47.22(NaN) 66.67(NaN) 77.78(NaN) 0.00(NaN)

SVM l. AS on 67.78(64.44) 70.00(73.89) 80.56(81.67) 74.44(81.11)

SVM l. AS off 71.11(71.11) 68.00(74.44) 81.00(80.00) 78.00(79.44)

SVM q. AS on 61.11(61.67) 62.22(74.44) 66.11(82.78) 55.00(79.44)

SVM q. AS off 57.22(53.33) 66.00(62.78) 83.00(55.56) 78.00(50.00)

SVM c. AS on 61.11(61.67) 61.67(72.22) 68.33(68.89) 62.78(50.00)

SVM c. AS off 55.00(62.78) 65.00(58.89) 52.00(50.00) 50.00(50.00)

SVM RBF AS on 68.33(68.33) 67.00(71.67) 79.00(77.22) 50.00(78.33)

SVM RBF AS off 67.22(70.56) 70.00(73.33) 78.00(80.00) 50.00(77.78)

KNN 56.67(53.89) 48.00(55.00) 56.00(57.78) 53.00(57.22)

NB 66.11(68.89) 65.00(74.44) 71.11(77.22) 71.11(73.33)

QDA PRTools 64.44(64.44) 64.44(50.00) 71.11(50.00) 67.78(NaN)

QDA Matlab 64.44(64.44) 64.44(62.22) 71.11(50.00) 67.78(NaN)

DT Matlab 52.78(51.67) 62.22(70.00) 56.11(67.78) 69.44(51.11)

DT PRTools I.g. 50.00(56.11) 68.33(52.78) 57.78(67.22) 61.11(38.89)

DT PRTools F.c. 58.89(53.33) 61.11(59.44) 62.78(57.22) 53.89(57.78)

LCT PRTools 61.11(NaN) 61.11(NaN) 73.33(NaN) 69.44(NaN)

RF M. default 60.22(65.56) 60.67(65.17) 64.28(64.50) 62.11(60.50)

RF M. bagg. 63.94(63.39) 63.22(71.83) 75.39(76.83) 72.56(75.44)

RF M. boost. 60.00(60.00) 63.33(66.67) 72.22(78.33) 67.78(72.22)

ANN 59.78(63.22) 61.72(65.33) 76.94(68.33) 71.94(61.61)

Table A.2: Values of classification accuracy using various algorithms and lagged
FC and FNC features.
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