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ABSTRAKT V ČESKÉM JAZYCE

Odhadování v malých oblastech založené na statistických modelech

Tato práce shrnuje hlavní výsledky autora získané v tematice zvané „odhadování v malých
oblastech“ (anglicky „small area estimation“ - SAE). SAE je odvětví matematické statistiky,
které se zabývá odhadováním parametrů v podmnožinách (nazývaných oblasti nebo domény)
jisté populace, ve kterých není k dispozici dostatečné množství dat pro spolehlivé přímé odhady.
Za tímto účelem zavádí SAE modely, které si „půjčují sílu“ ze souvisejících malých oblastí, z
dat získaných z externích administrativních zdrojů nebo z dat z jiných časových období. Přehled
základních principů, modelů a problémů vyskytujících se v SAE je obsahem první části práce.

Příspěvek autora k této problematice je ve formě publikovaných článků prezentován ve druhé
části práce a spočívá v několika modelech navržených pro odhadování parametrů malých oblastí.
Tyto modely jsou založeny na lineárních smíšených a zobecněných lineárních smíšených mode-
lech. Konkrétně je navrženo a studováno několik modifikací Fay-Herriotova modelu a regresního
modelu se vnořenými chybami a dále jsou uvažovány logistické smíšené modely pro binární
data. Pro všechny uvažované modely jsou řešeny následující problémy. Jsou odvozeny formule
a algoritmy pro odhadování neznámých parametrů modelu. Jsou studovány empirické nejlepší
prediktory parametrů malých oblastí založené na studovaných modelech. Zvláštní pozornost je
věnována odhadům střední kvadratické chyby prediktorů, neboť takováto míra přesnosti je po-
třebná pro praktické aplikace. Pro všechny modely jsou popsány analytické aproximace středních
kvadratických chyb nebo jejich odhady pomocí metody bootstrap.

Důležitou součástí vytváření nového modelu je návrh a realizace simulačních experimentů
studujících chování nových metod pro malé rozsahy výběrů a porovnávající je s již existujícími
metodami, pokud nějaké jsou. Nedílnou součástí prezentovaných prací je tedy vývoj netrivi-
álních softwarových nástrojů, neboť standardní statistické balíky nelze pro studované modely
použít a navíc je třeba často použít aproximace pomocí metody Monte Carlo. Aby byla ukázána
aplikovatelnost a přínos navržených metod v praxi, je ve všech článcích provedena aplikace na
reálná data.

Závěrem je uvedeno několik výsledků autora, týkajících se robustního odhadování a detekce
odlehlých pozorování v zobecněných lineárních modelech, které mohou být aplikovány na pro-
blémy odhadování v malých oblastech.





ABSTRACT IN ENGLISH

Model-based methods for small area estimation

This thesis summarizes main results of the author obtained in the field called “small area
estimation” (SAE). SAE is a branch of mathematical statistics which deals with the problem
of estimating population parameters in subsets (called areas or domains) of a population where
the sample sizes are not large enough to provide reliable direct estimates. For this purpose, SAE
introduces statistical models that “borrow strength” from related small areas, data from external
administrative sources or data from different time periods. An overview of basic principles,
models and problems encountered in SAE is given in the first part of the thesis.

The contribution of the author in the form of published papers is presented in the second part
of the thesis and consists of several models proposed for estimation of small area parameters.
These models are based on linear mixed and generalized linear mixed models. Namely, there are
proposed and studied several modifications of Fay-Herriot and nested error regression models
and there are considered logistic mixed models for binary data. For all the assumed models
the following problems are treated. Formulas and algorithms for estimation of the unknown
parameters of the models are derived. Model-based empirical best predictors of parameters of
small areas are studied. Special attention is paid to estimation of the mean squared error of
the predictors since such a measure of accuracy is needed in practical applications. For all the
models analytic approximation or bootstrap estimates of the mean squared errors are given.

An important part of developing a new model is to design and carry out simulation experi-
ments studying small sample size behaviour of the new methods and comparing them with the
existing ones if there are any available. It means that development of non-trivial software tools
is an integral part of the presented works since the standard statistical packages cannot be used
for the studied models and moreover Monte Carlo approximation methods must often be used.
Further, to show applicability and benefits of the proposed methods in practice, a real data
application are performed in all the papers.

In addition, several results of the author which are connected with robust estimation and
outlier detection in generalized linear models and which can be applied to small area estimation
problems are presented.
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Introduction
Survey-sampling is widely used in practice for obtaining information on a wide range of topics
of interest and its methodology is developing rapidly with increasing value of quantitative data
and major developments in computing power. At the beginning it was used to provide estimates
mainly for the total population under consideration (e.g. all inhabitants of a certain state),
but over time the demand for reliable estimates for a variety of subpopulation (domains) has
appeared and greatly increased. Domains may represent some geographic areas such as states,
provinces, counties, municipalities etc., or socio-demographic groups such as a specific age-sex-
race groups of people in a large geographic area. In this context, an estimator of a domain
parameter is called “direct estimator” if it is calculated just with the sample or auxiliary data
coming from the corresponding domain.

The overall sample size of a sample survey is usually determined to provide specific accuracy
of direct estimates for large geographical regions or broad demographic groups. But due to
budget restrictions and other constraints it is often not possible to have enough data to support
reliable direct estimators for all considered subpopulations (e.g. counties). Similar problems may
arise when all potential uses of the survey data are not anticipated at the design stage of the
study and new requirements or the level of domains of interest are specified after finishing the
survey, when it is almost impossible or very expensive to repeat the data collection process
and get the additional information. So in practical applications we often find situations, where
many domains of interest have very small or even zero sample size. Such domains, not having
large enough sample sizes for producing direct estimates of adequate precision, are called “small
areas”.

Small area estimation (SAE) is thus a field of mathematical statistics dealing with the
problem of obtaining reliable estimates of characteristics of interest (means, totals, quantiles
etc.) for domains for which only small samples or no samples are available, i.e. for small areas.
Of course it is not sufficient to provide just point estimates of some characteristic. A second
problem is how to asses the estimation error. In order to obtain estimates for small areas the idea
is to “borrow strength” by using variables from related or similar small areas and to formulate
“indirect” estimators that increase the effective sample size. Indirect estimators are based on a
model that provides a link to related small areas through auxiliary data obtained from external
sources such as large surveys, recent census or current administrative records.

SAE methods can be generally divided into “design-based” and “model-based” methods.
The design-based methods make use of survey-weights and they often employ an implicit model
for the construction of the estimators. However, the bias, the variance and other properties of
the estimators are evaluated under the probability distribution induced by the sampling design
used to select the sample. Under this setup, the population values are supposed to be fixed. On
the other hand, the model-based methods use an explicit model, treat the population values as
random, usually condition to the selected sample, and the inference properties of the estimators
are optimized with respect to the underlying model distribution. The latter methods use either
the frequentist approach or the Bayesian methodology. A common crucial feature to both SAE
approaches is the availability of good auxiliary data. Without having a set of covariates with
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a good predictive power for the small area parameters of interest, even the most complex and
elaborated models can be of little help with the small samples often encountered in practice.

Although the history of SAE goes back to the eleventh century England or seventeenth
century Canada as reported in Brackstone (1987), these early small area statistics were all
based on administrative records aiming at complete enumeration, and the real development of
SAE methodology can be dated to the last decade of the 20th century. Since then, the SAE
is flourishing both in research and applications. This is due to the demand for reliable small
area statistics coming from both the public and private sectors, which has been increasing
worldwide in recent years. The information obtained by SAE methods is used in regional and
urban planning, allocation of funds in many government programs covering education, public
health, poverty etc. In developing countries e.g. there is an increasing demand in governmental
agencies for income and poverty estimators in small areas. Another field of application is the
so called disease mapping when small area techniques are used to predict disease incidence over
different small areas which can help to identify factors (such as environmental pollution) causing
a disease. The importance of small area statistics has increased significantly also in the private
sector since many business decisions rely on the local socio-economic conditions. Of course this
rapid development of SAE methods is also connected with the increasing amount and quality
of collected data and with the advances in statistical data processing. Nowadays, high-speed
computers allow fast processing of large data sets and applications of much more complex and
complicated models than in the past.

The early development of SAE was done mainly in the USA (and Canada) where the Census
Bureau formed a committee on Small Area Income and Poverty Estimates in the early’s 1990
with the aim of providing estimates of income and poverty at state, county, and district levels.
Another examples are the Local Area Unemployment Statistics program of the Bureau of Labor
Statistics producing monthly estimates of unemployment rates for states, metropolitan areas,
and counties or the County Estimates Program of the National Agricultural Statistics Service
producing county estimates of crop yield. The European Union also did not want to stay away
from this increasing trend of using small area statistics and several European research projects
such us EURAREA, SAMPLE and AMELI have been supported by the European Commission.
Actually, the small area methods are used in the frame of the program “European Statistics on
Income and Living Conditions” (EU-SILC) which is one of the statistical operations that have
been harmonised for EU countries. The main goal of the Living Conditions Surveys (LCS) is
to provide a reference source on comparative statistics on the distribution of income and social
exclusion in the European environment.

More information about the small area estimation and its main developments during the
recent years can be found in the monographs of Rao (2003) and Rao and Molina (2015), and the
reviews of Ghosh and Rao (1994), Rao (1999), Pfeffermann (2002, 2013), and Jiang and Lahiri
(2006).

This thesis deals mainly with model-based methods under the frequentist approach and is
organized as follows. Chapter 1 introduces the small area estimation problem and two main
approaches to its solution. Chapter 2 presents basic principles of linear mixed models which
are then used in Chapter 3 for description of two types of small area models for continuous
responses. Chapter 4 deals with small area models for discrete responses based on generalized
linear mixed models. The main purpose of this initial part of the thesis is to give a brief overview
of basic problems, techniques and models which are encountered in small area estimation. At
the same time the contribution of the author to each of the presented type of models is shortly
explained. Chapter 5 presents relevant articles of the author, namely seven published impacted
papers and two papers published in a book. The thesis contains also two appendices which give
the CV and list of publications of the author.
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Chapter 1

Definition of the problem and basic
concepts

Consider a finite population U of size N which is partitioned into D domains or areas denoted
as Ud with Nd units in area d, so that U = ∪D

d=1Ud and N =
∑D

d=1 Nd. By population we
mean a collection of distinct units like persons, households, companies, hospitals etc. which can
be identified through the labels j = 1, . . . , N . An area may represent a concrete geographical
area or a socio-economic group. Let y denote the characteristic of interest (e.g. personal income,
indicator if a person is unemployed etc.) and ydj the corresponding value of characteristic y for
the j-th unit in area d, d = 1, . . . , D, j = 1, . . . , Nd. Under this notation, in each area d there
exists the vector

yd = (yd1, . . . , ydNd
)T , d = 1, . . . , D ,

containing the values of y associated with the units of area d.
From the population a sample s ⊂ U of size n is selected. Let s = s1 ∪ . . . ∪ sD, where

sd, d = 1, . . . , D, defines the sample observed for area d with corresponding sample sizes nd

satisfying n =
∑D

d=1 nd. The sample sizes nd may be generally random unless a planned sample
of fixed size is taken in each area. Without loss of generality, we assume that the sample in area
d consists of the first nd units of the subpopulation Ud so that the vector yd can be written in
the form yd = (yT

ds, yT
dr)T , where

• yds = (yd1, . . . , ydnd
)T is the vector corresponding to the nd observed units in area d

• ydr is the vector corresponding to the Nd − nd unobserved units in area d.

Now we are ready to state the basic task of small area estimation which is twofold.

General problem:
1. How to estimate, on the basis of the selected sample s, for each area d the
quantity

h(yd1, . . . , ydNd
) ,

where h is a known function.

2. How to express uncertainty of this estimate.

The function h may be linear in which case the two most typical examples of the target
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1.1. DESIGN-BASED METHODS

quantity are the population total in area d

Yd· �
Nd∑
j=1

ydj , d = 1, . . . , D ,

and the population mean in area d

Y d � 1
Nd

Nd∑
j=1

ydj , d = 1, . . . , D .

E.g. we may be interested in estimating the totals of unemployed people for each area or the
mean personal income for each area.

In order to give an example of used nonlinear function h let us mention for example the
family of so called FGT poverty measures which are defined for each area d as the area mean

Fαd =
1

Nd

Nd∑
j=1

Fαdj , d = 1, . . . , D ,

of the values Fαdj defined as

Fαdj =
(

z − ydj

z

)α

I(ydj < z), j = 1, . . . , Nd, α = 0, 1, 2,

where I(ydj < z) is the indicator function taking on value 1 if ydj < z and value 0 otherwise. To
explain the meaning of this family of measures imagine that ydj is some measure of welfare for
individual j in area d, such as income or expenditure, and z is a given fixed poverty line. It means
that z is the threshold for ydj under which a person is considered “to be poor”. E.g. EUROSTAT
defines the poverty line as the 60% of the median of the equivalent personal income in the whole
country or region during the previous year. Under this setup, for α = 0 the measure expresses
the proportion of individuals under poverty line in area d and it is called poverty incidence. For
α = 1 the measure is called poverty gap, and calculates the area mean of the relative distance to
the poverty line of each individual. The FGT measure for α = 2 is called poverty severity and
its large values should point out to areas with severe level of poverty.

In small area estimation there are basically two approaches to estimation of the target
characteristics of areas on the basis of the selected sample, namely the design-based approach
and the model-based approach. Since this thesis deals mainly with the latter one, we mention
now just basic principles of the traditional design-based approach.

1.1 Design-based methods
The basic feature of the design-based methods is that they suppose the population values ydj ,
d = 1, . . . , D, j = 1, . . . , Nd, to be fixed and the randomness is incorporated by the random
selection of the sample s. In practice, a probability sampling design is used to select a sample.
It is in fact a scheme for choosing the sample so that every subset s of the population U has
a known probability p(s) of selection. In general, it is difficult to calculate the probability p(s).
Some simple cases are

p(s) =
1(N
n

) or p(s) =
1

Nn
(1.1)

for a sample of size n under simple random sampling without replacement or simple random
sampling with replacement, respectively. Of course, usually more complicated designs are used
as e.g. stratified simple random sampling or stratified multistage sampling.
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1.1. DESIGN-BASED METHODS

All inferences under the design-based approach are done with respect to the selection pro-
babilities p(s) (sometimes called randomization distribution) of the sample s. For instance, the
definition of bias of some estimator T̂ of a quantity T , which is evaluated on the basis of sample
s, is

ED(T̂ − T ) =
∑
s⊂U

p(s)
(
T̂ (s) − T

)
,

where the summation is over all possible samples s that can be drawn from the population
using a particular sampling design. The subscript D indicates that the expectation is taken with
respect to a sampling design and it is not based on a model as in the next section. Similarly, the
variance of an estimator T̂ is defined as

VD(T̂ ) =
∑
s⊂U

p(s)
(
T̂ (s) − ED(T̂ )

)2
.

In order to derive theoretical properties of an estimator it is usually necessary to work with the
so called inclusion probabilities πj of individual j rather than with the selection probabilities p(s)
of the sample s. Let us explain their meaning. The probability πj that a unit j, j = 1, . . . , N ,
will be in the selected sample s is

πj =
∑

s∈s(j)
p(s) ,

where s(j) stand for the set of all potential samples that contain unit j, i.e. s(j) = {s ⊂ U | j ∈ s}.
For calculating the sampling variance the joint inclusion probability that a unit i and unit j will
be in the selected sample is needed and it can be expressed as

πi,j =
∑

s∈s(i,j)
p(s) ,

where s(i, j) = {s ⊂ U | i, j ∈ s}. In sample surveys the so called “sampling weights” wj play an
important role in constructing design-based estimators. An important basic choice of the weight
for individual j is wj = 1/πj , where πj is the inclusion probability of the individual. The weight
wj may be interpreted as the number of elements in the population represented by the sample
element j.

Example 1 One of the simplest sampling designs is the simple random sampling without re-
placement. It assumes that no unit can appear in the sample more than once and assigns the
same probabilities of selection 1/

(N
n

)
(cf. (1.1)) to each of the

(N
n

)
sets of n different units from

the population of size N . In this case, to calculate the inclusion probability for unit j it suffices
to evaluate the number of potential samples that contain unit j, i.e. the size of the set s(j).
But given that unit j is in the sample, the rest of n − 1 sample units must be selected from the
remaining N − 1 units in the population and this can be done in

(N−1
n−1

)
different ways. Thus

πj =
∑

s∈s(j)
p(s) =

∑
s∈s(j)

1(N
n

) = (N−1
n−1

)(N
n

) =
n

N

and the corresponding sampling weight for unit j is wj = N/n. Let us note that in a similar
way we may obtain the joint inclusion probability of units i and j in the form

πi,j =
n

N

n − 1
N − 1

.
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1.1. DESIGN-BASED METHODS

Let us now return to the general problem of estimating some function h(yd1, . . . , ydNd
) on

the basis of sample s. We split the discussion into two parts with respect to the used sampling
design.

I) For simplicity, let us first suppose that within each domain d a sample of size nd is selected
by simple random sampling without replacement and that the target quantities of interest are
the means Y d. If there is no additional information available, the direct estimator of the area
mean Y d is

Ŷ
dir

d = yd =
1
nd

nd∑
j=1

ydj , d = 1, . . . , D, (1.2)

and its design variance over the randomization distribution is given by

VD (yd) =
S2

d

nd

(
1 − nd

Nd

)
, where S2

d =
1

Nd − 1

Nd∑
j=1

(ydj − Y d)2 . (1.3)

The term “direct” is used to express that the estimator uses only the sample data coming from
the target area. The direct estimator is design-unbiased, i.e.

ED

(
Ŷ

dir

d

)
= Y d ,

but from the formula of the design variance one can see that for small sample sizes nd the
variance will be large, unless the variability of the y-values, S2

d , is sufficiently small. This is the
point where the problem of small area estimation arises. If there are domains where the sample
sizes nd are small in our sample, the direct estimates in these areas will not have adequate
precision because its variance will be large.

One possibility how to decrease the variability of direct estimators is to use some additional
auxiliary data. Suppose that vector of covariates xdj = (xdj,1, . . . , xdj,p)T , d = 1, . . . , D, j =
1, . . . , nd, is also known for each unit in the sample s and that the population area means Xd =
1/Nd

∑Nd
j=1 xdj are known as well. This additional information may be obtained for example from

recent census or some other administrative registers. In such case more efficient estimator called
synthetic regression estimator can be defined as

Ŷ
sr

d = yd +
(
Xd − xd

)T
β̂ ,

where xd = 1/nd
∑nd

j=1 xdj are the sample means of the covariates and

β̂ =

⎛⎝ D∑
d=1

nd∑
j=1

xdjxT
dj

⎞⎠−1⎛⎝ D∑
d=1

nd∑
j=1

xdjydj

⎞⎠
is the ordinary least square estimator of unknown parameter β = (β1, . . . , βp)T . This estimator
is motivated by a linear regression model of the y values on covariates x in the population with
a common vector of regression coefficients, it thus assumes that the areas are homogeneous with
respect to the estimated quantity, i.e. the vector of regression parameters β is similar across
the areas. The term “synthetic” refers to the fact that an estimator β̂ computed from data of
all the areas is used for every area separately, borrowing thus information from other “similar
areas”. Therefore the synthetic estimators are indirect estimators and they are sometimes called
“model-assisted”.

The main advantage of the synthetic regression estimator over the direct estimator is that
its design-based variance VD

(
Ŷ

sr

d

)
is of the order O(1/n), where n =

∑D
d=1 nd is usually large,
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1.1. DESIGN-BASED METHODS

while the design-based variance of the direct estimator is of the order O(1/nd) (cf. (1.3)) and nd

may be small. Hence, the synthetic regression estimator may decrease the variance substantially.
On the other hand, however, it may lead to a large bias if the assumption of homogeneity of the
regression coefficients within the population is not fulfilled.

To make compromise between the direct estimator with small or no bias but large variance
and the synthetic regression estimator with small variance but possibly large bias, sometimes a
linear combination of the two is assumed. The resulting estimator

Ŷ
com

d = τdŶ
dir

d + (1 − τd)Ŷ
sr

d , 0 ≤ τd ≤ 1,

is called composite estimator. Here the main question is the choice of the weights τd which should
be ideally selected so that the mean square error (MSE) of the resulting estimator is minimized.
But this is problematic since it is difficult to derive the bias of the synthetic estimator accurately
and the MSE is thus generally unknown. So the usual choice of the weights τd typically depends
on the sample size nd of the area d in such a way that in areas with larger sample size nd more
weight is put to the direct estimator. For more details on specifying the weights and other types
of composite estimators see Rao and Molina (2015).

II) If the sampling design is more complex and sampling weights wdj for the j-th unit in
area d are used, the direct estimator of the mean Y d is defined as

Ŷ
dir

d =
1

N̂d

nd∑
j=1

wdjydj ,

where N̂d =
∑nd

j=1 wdj . Note that for the choice wdj = Nd/nd, i.e. when the sample is selected
by simple random sampling without replacement within each area d, this estimator corresponds
to the ordinary direct estimator defined in (1.2). Since this estimator is used for practical ap-
plications in some of the attached papers we also give formula for estimating its design-based
variance, namely

V̂D

(
Ŷ

dir

d

)
=

1
N̂2

d

nd∑
j=1

wdj(wdj − 1)
(

ydj − Ŷ
dir

d

)2
.

This formula is taken from Särndal et al. (1992) (cf. pages 43, 185, 391) and it is valid under
the simplifications wdj = 1/πdj , πdj,dj = πdj and πdi,dj = πdiπdj for i �= j, where πdj denotes
the inclusion probability that the unit j in area d will be in the sample and πdi,dj denotes the
second-order inclusion probability that the both units i and j from area d will be in the sample.

Now we could again describe models incorporating (in addition to sampling weights) some
auxiliary data, define composite estimators or deal with design and properties of more complex
sampling schemes. But since the design-based approach is not the main concern of this thesis and
all the notions necessary for the next chapters were already discussed, we end the brief overview
of design-based methods here. For a more detailed discussion of design-based methods, we refer
the reader to the article by Lehtonen and Veijanen (2009) which contains a comprehensive review
of these methods in small area estimation. Another historical survey of design-based estimators
with many references is given in Marker (1999).

Let us finish this section by noting an important disadvantage of the design-based small area
estimation. Namely, these methods cannot be used for estimation of small area parameters for
areas with no sample. However, in practice it is often the case that only some areas are sampled
and estimation is required for all of them, whether sampled or not. This disadvantage can be to
some extent overcome by the model-based approach presented in the next section and following
chapters.
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1.2. MODEL-BASED SMALL AREA ESTIMATION

1.2 Model-based small area estimation
The model-based approach treats the population values ydj , d = 1, . . . , D, j = 1, . . . Nd, as
realizations of random variables Ydj unlike the design-based approach where they were fixed.
Relationships among the random variables are expressed by a model of their joint probability
distribution and inferences are made with respect to this model. So the bias and variance of
some estimate T̂ of a quantity T is under this approach given by

E
(
T̂ − T

)
and V

(
T̂
)
= E

(
T̂ − E(T̂ )

)2
,

respectively, where E denotes the expectation with respect to the underlying model. An estimator
T̂ is said to be model-unbiased if E(T̂ −T ) = 0. In the following chapters we will often deal with
another measure of inaccuracy of the estimator T̂ . It is called mean squared error (MSE) and
its definition is

MSE(T̂ ) = E
(
T̂ − T

)2
.

One can observe that MSE(T̂ ) reduces to the variance of the estimation error V(T̂ − T ) if T̂ is
model-unbiased estimator of T .

After selecting and observing a sample s, we will know the realizations y’s for the sample
units, but the Y values for non-sample units remains unknown. Estimating function

h(yd1, . . . , ydNd
)

thus entails predicting a function of the unobserved random variables Y ’s. Notice that the term
“prediction” is now used instead of estimation because the target characteristics are generally
random under the model. Prediction is thus not used in the usual sense of forecasting future
values, but in the sense of making a statistical guess about the unobserved random variables
Y ’s.

Remark 1 Let us note that in order to follow the notation of the presented papers our notation
used in the sequel will not strictly distinguish the random variable Y from its realization y. It
means that the symbol y may stay for a random variable as well as for a realization of a random
variable. In any case the actual meaning will be clear from the context.

The application of explicit models has become very popular and useful in small area estima-
tion since it gives an idea how the data are generated and how different sources of information
are combined. This approach has several advantages: 1) it allows formal model building process
based on the sample data; 2) “optimal” predictors can be derived under the assumed model; 3)
it provides the possibility of expressing uncertainty of the constructed predictors under the as-
sumption that the working model is reasonable; 4) a variety of models can be applied depending
on the nature of response variables and complexity of data structures (e.g. time dependance, spa-
tial dependance etc.). Since our conclusions will be based on our model a careful model selection
and model diagnostic is an important part of the estimation process. Let us note, however, that
the diagnostic of a model may be a difficult problem since SAE models contains assumptions on
unobservable random effects which are therefore difficult to verify.

Of a particular attention in SAE are the mixed effects models (models which contain fixed
and also random effects) which are very flexible in combining different sources of information.
Mixed models typically include area-specific random effect that helps to explain the between
area variability in the data which is not explained by the fixed effect part of the model. This
is in contrast with the synthetic estimation presented in the previous chapter where the used
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1.2. MODEL-BASED SMALL AREA ESTIMATION

implicit regression model assumes no between area variations other than those explained by the
auxiliary variables.

Estimation of mean squared errors is an essential part of the small area estimation theory.
In the case of estimating population parameters with model-based procedures, this problem has
been studied and solved by using empirical best linear unbiased predictors (EBLUPs) of linear
parameters under linear models with block-diagonal covariance matrix. Even in this case, the
standard estimator is not perfect because it estimates an approximation of the MSE and has
a cumbersome expression that needs to be derived for each considered model. For linear mixed
models with complicated covariance structure or for generalized linear mixed models, resampling
methods and specially bootstrap represent a good alternative because they are efficient and easy
to implement. More details about MSE estimation are given in the next chapters.

SAE models are generally classified into two classes based on the data availability of the
response and auxiliary variables of interest. If the response variable is available only at small
area level we speak about area level models. In this case, area level auxiliary information

xd = (xd1, . . . , xdp)T , d = 1, . . . , D,

is used. If the response variable is available at the unit level we speak about unit level models.
In this case unit level auxiliary information

xdj = (xdj1, . . . , xdjp)T , d = 1, . . . , D, j = 1, . . . , Nd,

as well as area level auxiliary information may be used.

In the next chapters we present three models which are in common use in small area estima-
tion. Namely, Fay-Herriot model, nested error regression model and logistic regression model.
In fact we can say that most of the recent developments in SAE were connected to these models
or to their extensions. We also try to explain what is the contribution of the author to SAE
methodology for each of the mentioned model.
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Chapter 2

Linear mixed models

Since the theory of linear mixed models plays a crucial role in SAE model-based approach, before
starting with SAE models in this chapter we first present a definition of linear mixed model and
a brief overview of corresponding methods which will be needed for explanation of SAE models
for continuous data. Specifically, we present two methods for estimation of parameters of linear
mixed models and two approaches for prediction of linear combination of model’s effects or linear
combinations of observations y. Finally we describe the problem of estimating mean square error
of linear predictors under linear mixed models.

Let us start with definition of a classical linear regression model which can be expressed as

y = Xβ + e ,

where y is a vector of observations, X is a matrix of known covariates, β is a vector of unknown
regression coefficients and e is a vector of random errors. This model considers the regression
coefficients β as fixed values. However in some cases it makes sense to assume that some of these
coefficients are random. This happens typically when the observations are correlated which may
be the case of small area estimation problems where the observations in different small areas are
usually assumed to be independent but observation within an area are assumed to be correlated.

A general linear mixed model may be expressed as

y = Xβ + Zu + e , (2.1)

where yn×1 is again a vector of observations, βp×1 is a vector of regression coefficients, which
are often called fixed effects, uq×1 is a vector of random effects, Xn×p and Zn×q are known
matrices of full rank and en×1 is a vector of random errors. It is usually assumed that the
random effects and random errors are independent, normally distributed with zero means and
known variance-covariance matrices,

V(u) = E(uuT ) = V u and V(e) = E(eeT ) = V e

which depend on some parameters σ = (σ1, . . . , σm)T called variance components. From (2.1) it
follows that the variance-covariance matrix of the vector y has the form

V = V(y) = ZV uZT + V e. (2.2)

It is assumed that the matrices V , V u and V e are nonsingular for all possible values of σ.

2.1 Estimation of parameters of linear mixed models
In the model (2.1) there are two unknown vectors of parameters, namely the regression coef-
ficients β and the variance components σ. Let us denote θT = (βT , σT ) the whole vector of
parameters with p + m elements. We describe two methods for estimating θ.
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2.1.1 MLE

Under normality, which is assumed in our model, the maximum likelihood estimates (MLE) are
efficient estimates of the parameter θ. The MLE θ̂ is defined as the argument of the maxima of
the log-likelihood function which for the model (2.1) is given by

�(θ) = �(β, σ) = c − 1
2
log |V | − 1

2
(y − Xβ)T V −1(y − Xβ) , (2.3)

where c denotes a generic constant. This function must be maximized numerically, e.g. by the
well known Fisher-scoring algorithm. From (2.3) it is not difficult to obtain the vector of scores

s(θ) =
∂�(θ)

∂θ
=
(

∂�(θ)
∂θ1

, . . . ,
∂�(θ)
∂θp+m

)T

and the Fisher information matrix I(θ) with the elements

Ii,j(θ) = −E
(

∂2�(θ)
∂θi∂θj

)
, i, j = 1, . . . , p + m .

The MLE θ̂ can be then obtained iteratively using the Fisher-scoring updating equation

θi+1 = θi + I(θi)−1s(θi) , (2.4)

where θi denotes the value of parameter θ obtained at the ith iteration of the algorithm.

2.1.2 REML

It is known that the MLE of the variance components σ are generally biased. A method called
restricted maximum likelihood (REML) was proposed to reduce the bias of the MLE estimators.
The idea is to transform the vector y so that the distribution of the transformed vector does not
depend on β and to estimate the σ and β independently. For this purpose, the REML method
uses the transformed data y∗ = AT y where A is any n × (n − p) matrix of full rank such that
AT X = 0. The log-likelihood function of the vector y∗ is called restricted log-likelihood function
and is given by (cf. p. 103 in Rao and Molina (2015))

�R(σ) = c − 1
2
log |V | − 1

2
log |XT V −1X| − 1

2
yT P y , (2.5)

where
P = V −1 − V −1X(XT V −1X)−1XT V −1 .

The REML estimate σ̂ of σ can be again obtained by the updating formula (2.4) but using
the vector of scores and Fisher information matrix calculated for the restricted log-likelihood
function �R. The REML estimate of β can be then obtained as

β =
(
XT V̂

−1
X
)−1

XT V̂
−1

y ,

where V̂ denotes the matrix V evaluated at σ̂. Note that the REML estimates do not depend
on the choice of matrix A. For more details and asymptotic distribution of REML estimates see
e.g. Cressie and Lahiri (1993).
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2.2 Prediction of linear combination of model effects
In this section we are interested in estimating a linear combination, τ = lT β+mT u, of the fixed
effects β and the realization of random effects u, for specified vectors of constants l and m. A
well known method for the prediction of τ is the best linear unbiased prediction (BLUP) which
was given originally by Henderson (1950). The BLUP τ̂ blup of τ is in fact linear (in observations
y) predictor of the form τ̂ = aT y + b where constants a and b are determined so that τ̂ blup is
model-unbiased and it minimizes the mean squared error in the class of linear unbiased predictors
τ̂ .

If the variance components σ of the model (2.1) are known, it can be shown that the BLUP
of τ is given by

τ̂ blup = lT β̂ + mT V uZT V −1(y − Xβ̂),

where
β̂ = (XT V −1X)−1XT V −1y

is the least squares estimator of β which is sometimes called best linear unbiased estimator
(BLUE) under the present setup. By an appropriate choice of the vectors l and m we can
immediately obtain the BLUP of u in the form

û = V uZT V −1(y − Xβ̂) . (2.6)

For more details see the chapter 7 in Searle et al. (1992) where it is also shown that the predictor
(2.6) is “optimal” in the sense that it minimizes E[(û − u)T A(û − u)] for arbitrary matrix A
which is positive definite.

The predictor τ̂ blup depends on the vector of variance components σ which is is typically
unknown in practice. Replacing σ by an estimator σ̂ in the formula of τ̂ blup we obtain new
predictor which is often called empirical best linear unbiased predictor (EBLUP) and denoted
by τ̂ eblup. Kackar and Harville (1981) give conditions on the estimator σ̂ under which the result-
ing EBLUP remains unbiased. Let us note that the MLE and REML estimators satisfy these
conditions under the model (2.1).

2.3 Prediction of linear combination of observations y

Let us now consider a finite population of N elements with population vector y = (y1, . . . , yN )
following the model introduced in (2.1) with population sizes N in the place of sizes n. From
the population a sample of size n is selected. Without loss of generality we can reorder the
population so that y = (yT

s , yT
r )T , where ys is the vector of n observed elements and yr is the

vector of N − n unobserved elements. In the following, the index s for the sample and the index
r for the rest of the population will be used when appropriate. In this notation and taking into
account the reordering we can write the matrix X and the covariance matrix V in the block
form

X =
(

Xs

Xr

)
, V = V(y) =

(
V ss V sr

V rs V rr

)
, (2.7)

where V ss = V(ys) is the covariance matrix of the observed elements, V rr = V(yr) is the
covariance matrix of the unobserved elements and V rs = Cov(yr, ys). We assume that V ss is
positive definite.

On the basis of the sample ys, we are interested in the estimation of a linear combination

η = aT y
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for a given vector a = (a1, . . . , aN ). If, for example, each ai = 1/N , then the target variable is the
population mean. The vector a can also be partitioned into parts, a = (aT

s , aT
r )T , corresponding

to the sample and non-sample units and our estimation target can be expressed in the form

η = aT y = aT
s ys + aT

r yr .

From the last formula it is clear that the problem of estimating aT y is equivalent to that of
predicting the linear combination aT

r yr of the unobserved random variables.
As η is a linear parameter, the predictor minimizing the mean squared error in the class of

model-unbiased predictors is the BLUP. From the general prediction theorem (see e.g. Section
2.2 of Valliant et al. (2000)), it follows that the BLUP of η, under the model (2.1), is

η̂blup = aT
s ys + aT

r

[
Xrβ̂ + V rsV −1

ss (ys − Xsβ̂)
]

, (2.8)

where
β̂ =

(
XT

s V ssXs

)−1
XT

s V −1
ss ys . (2.9)

The EBLUP η̂eblup is again obtained by substituting an estimator σ̂ in the formula (2.8).

2.4 Mean squared error of EBLUP
Estimation of the mean squared error of EBLUP is of significant interest, since in practical
applications we need an estimator of MSE as a measure of variability associated with our pre-
dictor. While EBLUP is quite easy to obtain, estimation of its MSE is a challenging problem.
Let us illustrate the basic principles for the EBLUP η̂eblup predicting the linear combination of
observations y. For the EBLUP τ̂ eblup used for prediction of the linear combination of the model
effects the arguments are similar.

The mean squared error of the EBLUP η̂eblup, denoted by

MSE(η̂eblup) = E
(
η̂eblup − η

)2
,

can be decomposed as

MSE(η̂eblup) = MSE(η̂blup) + E
(
η̂eblup − η̂blup

)2
, (2.10)

where the first term is the MSE of the BLUP η̂blup. It is clear that the MSE of the EBLUP
is always larger than the MSE of BLUP and the increase is caused by the variability of the
estimator σ̂ used for calculating the EBLUP. While the first term of the decomposition (2.10)
can be evaluated, the second term is generally intractable and must be approximated.

Kackar and Harville (1984) provided first simplification of the MSE and proposed an estima-
tor based on it. But the accuracy of the approximation was not studied. In a pioneering work,
Prasad and Rao (1990) gave a new approximation for models with block-diagonal covariance
matrices. They also studied a new estimator of the MSE and gave the specific expressions of this
estimator for some concrete models. The conditions imposed on the estimators of the variance
components are satisfied by estimators obtained by the Fitting Constants Method, also called
Henderson method 3, but they cannot be verified for maximum likelihood estimators. Datta and
Lahiri (2000) provided MSE estimators for general models with block-diagonal covariance ma-
trices, when variance components are estimated by MLE or REML methods. Das et al. (2004)
studied the approximation of the MSE for a wider class of models when variance components
are estimated by MLE or REML.
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Here we for illustration present a general formula for approximation of the MSE of η̂eblup

obtained by following Prasad and Rao (1990) and Das et al. (2004). Using the notation of Section
2.3, the approximation can be expressed in the following way:

MSE(η̂eblup) = g1(σ) + g2(σ) + g3(σ) + g4(σ), (2.11)

where

g1(σ) = aT
r ZrT sZT

r ar,

g2(σ) = [aT
r Xr − aT

r ZrT sZT
s V −1

e,ssXs]Qs[XT
r ar − XT

s V −1
e,ssZsT sZT

r ar],

g3(σ) ≈ tr
{
(∇bT )V ss(∇bT )T E

[
(σ̂ − σ)(σ̂ − σ)T

]}
,

g4(σ) = aT
r V e,rrar,

and T s = V u − V uZT
s V −1

ss ZsV u, Qs = (XT
s V −1Xs)−1, bT = aT

r ZrV uZT
s V −1

ss . The sym-
bols V e,ss, Zs and others are used to denote the observed elements of the matrices V e, Z,
correspondingly to the notation introduced in (2.7).

The Prasad-Rao estimator of MSE(η̂eblup) is then defined as

mse(η̂eblup) = g1(σ̂) + g2(σ̂) + 2g3(σ̂) + g4(σ̂),

where σ̂ is REML estimator of σ. Notice that a coefficient 2 has appeared before the term g3(σ̂).
This coefficient represents correction of bias introduced by substituting σ by its estimate σ̂ in
the formula (2.11).
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Chapter 3

Models for continuous responses

We are now ready to return to the problem of small area estimation and in this chapter we deal
with models for continuous responses. As mentioned before, these models may be divided into
area level and unit level models which are treated in separate sections.

3.1 Area level models
The basic area level model for continuous responses was firstly formulated by Fay and Herriot
(1979) and was used to improve the information obtained from design-based small area estimates
by using some additional auxiliary data xd = (xd1, . . . , xdp) at area level. It can be described in
the following way.

Let μd denote the characteristic of interest in the area d, e.g. the area population mean

μd = Y d =
1

Nd

Nd∑
j=1

ydj , d = 1, . . . , D ,

and yd be a direct estimator of μd with known design-based variance σ2
d. The Fay-Herriot model

is composed of two levels:

• Sampling model:
yd = μd + ed, d = 1, . . . , D ,

• Linking model:
μd = xT

d β + ud, d = 1, . . . , D ,

where ed ∼ N(0, σ2
d) are independent sampling errors, β is a vector of regression coefficients

and ud ∼ N(0, σ2
u) are random effects (model errors) which are assumed to be independent and

identically distributed (i.i.d.) and independent of the sampling errors ed.
In the above described model, the sampling model is used to account for the sampling

variability of the direct estimates yd. The linking model links the true small area parameters μd

to a vector of p known auxiliary variables. The parameters β and σ2
u of the linking model are

generally unknown and are estimated from the available data.
Let us note that the Fay-Herriot model can be expressed as an area level linear mixed model

yd = xT
d β + ud + ed, d = 1, . . . , D , (3.1)

where ud ∼ N(0, σ2
u), ed ∼ N(0, σ2

d), d = 1, . . . , D; they are all mutually independent and the
variances σ2

1, . . . , σ2
D are known. Our task is now to estimate the quantity μd = xT

d β + ud with
the aim to improve the direct estimates yd. In fact, we would like to eliminate the sampling error
contained in the direct estimates.
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Remark 2 Fay and Herriot (1979) originally used their model for estimating per-capita income
(PCI) of small places with population less than 1000 in the United States. The objective was to
decrease the variability of the design-based PCI estimates obtained by the U.S. Census Bureau
in 1970. As auxiliary data they used tax-refund data for 1969 and data on housing from the 1970
census. The random effects ud were used to capture the additional area-specific effects which
were not explained by the area level auxiliary variables. Fay-Herriot model demonstrated that
it can provide EBLUP estimators with better performance than the direct survey estimator and
a synthetic estimator used before by the U.S. Census Bureau.

3.1.1 Empirical best predictors

To derive the EBLUP of the parameter of interest notice that the Fay-Herriot model (3.1) can
be written in the matrix form⎛⎜⎝ y1

...
yD

⎞⎟⎠ =

⎛⎜⎝ x11 · · · x1p
...

...
...

xD1 · · · xdp

⎞⎟⎠
⎛⎜⎝ β1

...
βp

⎞⎟⎠+

⎛⎜⎝ u1
...

uD

⎞⎟⎠+

⎛⎜⎝ e1
...

eD

⎞⎟⎠
corresponding to the general formula of linear mixed model y = Xβ+Zu+e given in (2.1). So
the theory reviewed in the previous chapter can be used for estimating parameters of the model
and for constructing EBLUP and its MSE estimates.

Taking into account that matrix Z is the identity matrix ID×D in the present model and
the matrix V can be expressed as

V = ZV uZT + V e = V u + V e =

⎛⎜⎝ σ2
u + σ2

1 · · · 0
... . . . ...
0 · · · σ2

u + σ2
D

⎞⎟⎠ = diag
1≤d≤D

(σ2
u + σ2

d) ,

we can use the formula (2.6) to derive the BLUP of the components of vector u in the form

ûd =
σ2

u

σ2
u + σ2

d

(
yd − xT

d β̂
)

, d = 1, . . . , D ,

where β̂ = (XT V −1X)−1XT V −1y is the BLUE estimator of β. The BLUP of the parameter
μd is thus

Ŷ
blup

d = μ̂d = xT
d β̂ + ûd = xT

d β̂ +
σ2

u

σ2
u + σ2

d

(
yd − xT

d β̂
)
=

σ2
u

σ2
u + σ2

d

yd +
σ2

d

σ2
u + σ2

d

xT
d β̂ . (3.2)

The EBLUP Ŷ
eblup

d is then obtained by substituting an estimator σ̂2
u of the parameter σ2

u into
the formula (3.2).

3.1.2 MSE of EBLUP

Following the steps described in the Section 2.4, Prasad and Rao (1990) derived an approxima-
tion of the mean squared error of the EBLUP of Y d under Fay-Herriot model. The approximation
is

MSE(Ŷ
eblup

d ) ≈ g1d(σ2
u) + g2d(σ2

u) + gd3(σ2
u),
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where

g1d(σ2
u) =

σ2
uσ2

d

σ2
u + σ2

d

,

g2d(σ2
u) =

σ4
d

(σ2
u + σ2

d)2
xT

d (XT V −1X)−1xd,

g3d(σ2
u) =

σ4
d

(σ2
u + σ2

d)3
var(σ̂2

u) ,

and var(σ̂2
u) is the asymptotic variance of the estimator σ̂2

u which must be evaluated on the
basis of the method used for estimation of σ2

u. If e.g. maximum likelihood method is used for
estimating the model parameters then the asymptotic variance of σ2

u can be approximated by
the corresponding diagonal element of the inverse Fisher information matrix. Cressie and Lahiri
(1993) give the asymptotic variance formula also for REML estimators.

If we now substitute an estimate σ̂2
u instead of σ2

u in the formula of MSE, the resulting esti-
mator will be biased. The following approximately unbiased formula can be used for calculating
estimator mse of the mean squared error MSE,

mse(Ŷ
eblup

d ) = g1d(σ̂2
u) + g2d(σ̂2

u) + 2g3d(σ̂2
u).

For more details see Prasad and Rao (1990).

3.1.3 Contribution of the author to area level models

Many different extensions of Fay-Herriot model have been proposed in the literature. For ex-
ample, a multivariate generalization was studied by González-Manteiga et al. (2008b). Models
assuming spatial correlation between neighboring areas were considered in Singh et al. (2005),
Petrucci and Salvati (2006), and Pratesi and Salvati (2008) between others. Models with tempo-
ral correlation, using data from different time instants to improve the estimator at the current
instant, have been proposed e.g. in Choudry and Rao (1989), Rao and Yu (1994) or Ghosh et
al. (1996).

In this section we will try to explain the contribution of the author to the field of area level
models.

I) The Fay-Herriot model typically assumes that the domain random effects have a common
constant variance. However, in practise we often encounter situations where the domains are
divided in two groups and the direct estimates have different behaviour within them. This
situation may happen if we are interested in producing estimates for domains constructed by
crossing geographical area with sex category. In the paper

Esteban, M.D., Herrador, M., Hobza, T., Morales, D. (2011). A Fay-Herriot model with
different random effect variances. Communications in Statistics – Theory and Methods,
40(5), pp. 785-797,

presented in Section 5.1 on page 51, we suppose that the domains are divided into two groups,
denoted A and B, and we propose the following modification of the Fay-Herriot model

yd = xT
d β + ud + ed, d = 1, . . . , D = DA + DB, (3.3)

where
u1, . . . , uDA

∼ N(0, σ2
A), uDA+1, . . . , uD ∼ N(0, σ2

B),
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ed ∼ N(0, σ2
d), d = 1, . . . , D; they are all mutually independent and the variances σ2

1, . . . , σ2
D are

known. That means we assume that the variances σ2
A, σ2

B of the random effects may be different
in groups A and B.

In the paper we give formulas to estimate the model parameters, to calculate EBLUPs and to
estimate their means squared errors. Two simulation experiments, at area level and at unit level,
are presented and they show that if the proposed model is true and the standard Fay-Herriot
model is used, then a lack of precision is achieved. A motivating application to real data from
the Spanish Labour Force Survey is also given. The application deals with estimating proportion
of unemployed people by sex in the Canary Islands in the second trimester of 2003. As auxiliary
variables the population means of age and work categories were used. The conclusion from the
results of the application is that the newly introduced EBLUP gives better results than those
obtained by applying the standard Fay-Herriot model to the whole set of direct estimates or
those obtained by applying by sex two independent standard Fay-Herriot models. For more
details see Section 5.1.

II) Our second modification of Fay-Herriot model consists in allowing the area effects ud to
be fixed for some of the domains. The considered model thus has both fixed and random area
effects. The model is suitable for data sets containing some domains where the direct estimates
are e.g. much larger than in the rest or where in some domains the direct estimates have been
obtained with large sample sizes and therefore they are reliable. In the latter case, an appealing
property of the modified model is that the direct estimates coincide with EBLUP estimates in
the selected domains with fixed area effects. The model was formulated in the paper

Herrador, M., Esteban, M. D., Hobza, T., Morales, D. (2011). An Area-Level Model with
Fixed or Random Domain Effects in Small Area Estimation Problems. Modern Mathe-
matical Tools and Techniques in Capturing Complexity - Understanding Complex Systems,
Springer Berlin, pp. 303 - 314,

presented in Section 5.2 on page 65. It can be written in terms of fixed effect (F ) part and
random effect (R) part in the following way

(F ) yd = xT
d β + μd + ed, d = 1, . . . , DF ,

(R) yd = xT
d β + ud + ed, d = DF + 1, . . . , D,

where μ1, . . . , μDF
are the unknown parameters corresponding to the fixed effect levels and

uDF +1, . . . , uD are i.i.d. N(0, σ2
u) distributed random variables independent of the random errors

ed.
In the paper algorithms to fit the model, to calculate EBLUP and to estimate its MSE

are derived. The properties of the proposed estimator are studied by a simulation experiment
showing that the EBLUP and its MSE estimates are more precise than the estimates obtained
under the classical Fay-Herriot model if there are some domains with different behavior of the
direct estimates.

The model was also applied to the real data problem described in the previous paragraph.
In the Canary Islands 2013 data there are two domains with much larger sample sizes than
the rest so these two domains were put to the fixed part of the model. The application showed
that although the sample sizes are very different, the proportions of unemployed people behave
similarly across all domains so almost no differences between the proposed and classical model
were observed. Nevertheless, the possibility of obtaining model-based estimates that coincide
with the direct ones in the fixed part of the model is attractive from the point of view of
modelers and official statisticians.
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3.2 Unit level models
If the response variables and auxiliary data are available not only at the area level but also at
the individual level, unit level linear mixed models may be used to estimate domain parameters.
These models typically assume that the regression coefficients are constant but the intercepts are
random with realizations on domains. Such random intercept models in fact assign a regression
line with the same slope but different intercepts to each domain. The random intercept variance
then refers to the variability of the line heights at the origin.

In the setup of small area estimation the first model of this type was proposed by Battese
et al. (1988). Their model is usually called “nested error regression model” and its definition is

ydj = xT
djβ + ud + edj , d = 1, . . . , D, j = 1, . . . , nd , (3.4)

where ydj is the jth observation from area d, xdj is a corresponding vector of auxiliary variables, β
is a vector of unknown regression parameters, ud is an area-specific random effect (intercept) and
edj is a random error. It is further assumed that the random effects ud’s are i.i.d. random variables
with N(0, σ2

u) distribution which are independent of the random errors edj ’s. The random errors
edj ’s are also assumed to be independent with the distribution edj ∼ N(0, w−1

dj σ2
e), where wdj ’s

are known heteroscedasticity weights.

Remark 3 Battese at al. (1988) used the model (3.4) for estimating the areas under corn and
soybeans for each of 12 counties in North Central Iowa. Each county was divided into segments
and the sample observations ydj , expressing the number of hectares of corn and soybeans, were
obtained for a sample of segments by interviewing farmers. Sample sizes for the counties were
very small, ranging from 1 to 6 segments, making the direct estimates highly unprecise. In order
to increase precision of the estimates and to allow the use of a model, auxiliary variables were
obtained from satellite data for all the segments. The meaning of auxiliary variables xdj =
(xdj1, xdj2) was the number of pixels classified as corn or soybeans in the satellite picture of the
concrete segment j in the county d.

Notice that the model (3.4) can be written in the matrix form⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y11
...

y1n1

y21
...

y2n2
...

yD1
...

yDnD

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x111 · · · x11p
...

...
...

x1n11 · · · x1n1p

x211 · · · x21p
...

...
...

x2n21 · · · x2n2p
...

...
...

xD11 · · · xD1p
...

...
...

xDnD1 · · · xDnDp

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎝ β1
...

βp

⎞⎟⎠+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0
...

...
...

1 0 · · · 0
0 1 · · · 0
...

...
...

0 1 · · · 0
...

...
...

0 0 · · · 1
...

...
...

0 0 · · · 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎝ u1
...

uD

⎞⎟⎠+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e11
...

e1n1

e21
...

e2n2
...

eD1
...

eDnD

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
which again corresponds to the general formula of linear mixed model y = Xβ +Zu+ e given
in (2.1). Let us note that e.g. the matrix Z can be written as Z = diag1≤d≤D(1nd

), where
1m = (1, . . . , 1)T1×m.

3.2.1 Empirical best predictors
Let us now consider a finite population of Nd elements in area d from which a sample of sizes
nd is selected. In the following we assume that the model (3.4) holding for the sample data
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holds also for the whole population so that there is no selection bias. This implies that the
sample design used to select the sample is ignorable and need not to be taken into account in
construction of our predictors.

On the basis of the selected sample, we are interested in the estimation of the mean of the
small area d, i.e.

Y d =
1

Nd

Nd∑
j=1

ydj = aT y,

where aT = 1
Nd

(
0T

N1 , . . . , 0T
Nd−1

, 1T
Nd

, 0T
Nd+1, . . . , 0T

ND

)
and 0T

m = (0, . . . , 0)1×m. Taking into
account the reordering introduced in Section 2.3 the linear parameter aT y can be expressed in
the form

aT y = aT
s ys + aT

r yr ,

where
aT

s =
1

Nd

(
0T

n1 , . . . , 0T
nd−1 , 1T

nd
, 0T

nd+1 , . . . , 0T
nD

)
and

aT
r =

1
Nd

(
0T

N1−n1 , . . . , 0T
Nd−1−nd−1 , 1T

Nd−nd
, 0T

Nd+1−nd+1 , . . . , 0T
ND−nD

)
.

If the variance components σ2
u, σ2

e are known, the general formula (2.8) may be used for
calculation the EBLUP of aT y. We are not going to give a complete derivation here, for more
details we refer to the papers presented in Sections 5.3 and 5.5, let us just note that e.g. for the
matrix V rs it holds (cf. (2.2))

V rs = ZrV uZT
s + V e,rs ,

where Zr = diag1≤d≤D(1Nd−nd
) and V e,rs = 0 since edj ’s are supposed to be independent in

the whole population. Substituting these terms together with the known variance-covariance
matrices of the vectors u and e into the formula (2.8) and after some straightforward algebra,
the expression of the BLUP predictor of Y d takes the form

Ŷ
blup

d = (1 − fd)
[
Xdβ̂ + γw

d

(
Ŷ

dir

d − X̂
dir

d β̂

)]
+ fd

[
ŷd + (Xd − X̂d)β̂

]
, (3.5)

where β̂ is the BLUE estimator given in (2.9),

fd =
nd

Nd
, γw

d =
σ2

u

σ2
u +

σ2
e

wd

for wd =
nd∑

j=1
wdj ,

Xd =
1

Nd

Nd∑
j=1

xT
dj , X̂d =

1
nd

nd∑
j=1

xT
dj , ŷd =

1
nd

nd∑
j=1

ydj

and

Ŷ
dir

d =
1

wd

nd∑
j=1

wdjydj , X̂
dir

d =
1

wd

nd∑
j=1

wdjxT
dj .

The empirical best linear predictor Ŷ
eblup

d of Y d is then obtained from (3.5) by substituting
variance components by their consistent estimators.
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Remark 4 Notice, that the matrix Xr which contains the auxiliary variables for the non-
sampled elements and appears in the formula (2.8) is not involved in the final formula (3.5) of
the EBLUP. Actually, for the assumed form of the vector a the quantity depending on Xr can
be expressed as a function of the means Xd and X̂d. Thus, it is not necessary to know the
auxiliary data xdj for all elements of the population, which would be too restrictive in practical
applications. It is enough to know xdj for the units in the sample and in addition to know the
population means Xd. This is the information usually obtained from some external sources.

Remark 5 Another feature of the EBLUP based on the nested error regression model is that it
can provide predictions also for non-sampled areas. Let us assume the there is no sample in area
d, i.e. no variables ydj were observed for area d so nd = 0 . Then the formula (3.5) for EBLUP
reduces to

Ŷ d = Xdβ̂ .

This estimator takes into account the regression parameter β estimated from the sampled do-
mains and the auxiliary information for area d in the form of the area population mean Xd.

3.2.2 Mean squared error of EBLUP

Since the assumed model belongs to the class of linear mixed models, we can use the general
formula (2.11) and obtain approximation of the mean squared error of the above described
EBLUP in the form

MSE

(
Ŷ

eblup

d

)
= g1d(σ2

e , σ2
u) + g2d(σ2

e , σ2
u) + g3d(σ2

e , σ2
u) + g4d(σ2

e , σ2
u) , (3.6)

where

g1d(σ2
e , σ2

u) = (1 − fd)2(1 − γw
d )σ2

u

g2d(σ2
e , σ2

u) = (1 − fd)2
(

Xd − γw
d X̂

dir

d

)
(XT

s V −1
s Xs)−1

(
Xd − γw

d X̂
dir

d

)T

g3d(σ2
e , σ2

u) = (1 − fd)2
(

σ2
u +

σ2
e

wd

)−3 1
w2

d

{
σ4

eV(σ̂2
u) − 2σ2

uσ2
eCov(σ̂2

u, σ̂2
e) + σ4

uV(σ̂2
e)
}

,

g4d(σ2
e , σ2

u) =
σ2

e(Vd − νd)
N2

d

, Vd =
Nd∑
j=1

w−1
dj , νd =

nd∑
j=1

w−1
dj .

The asymptotic variances V(σ̂2
u), V(σ̂2

e) and the asymptotic covariance Cov(σ̂2
u, σ̂2

e) must be
evaluated on the basis of the method used for estimation of the variances σ2

u, σ2
e . Since the

derivation of the above presented formulas is quite technical, we present here just these final
expressions and for more details we refer the reader to Appendix 2 and Appendix 1 of the
paper presented in Section 5.3, where the procedure is illustrated for a more complex model and
asymptotic variances for REML estimates of the variance components are given.

Finally, by substituting the REML estimates σ̂2
u, σ̂2

e into the formula (3.6) and correcting
bias, we obtain the estimator mse of the mean squared error

mse

(
Ŷ

eblup

d

)
= g1d(σ̂2

e , σ̂2
u) + g2d(σ̂2

e , σ̂2
u) + 2 g3d(σ̂2

e , σ̂2
u) + g4d(σ̂2

e , σ̂2
u) .
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3.2.3 Contribution of the author to unit level models

Let us mention some extensions of the model (3.4) assumed in the literature. Fuller and Harter
(1987) propose a multivariate nested error regression model suitable for the cases where the
variable of interest ydj is a vector. Stukel (1991) studies two-fold nested error regression models
assuming that the small areas are further divided into clusters. Datta and Ghosh (1991) consider
a general linear mixed model that includes the model (3.4) as a special case.

Contribution of the author consists in the following three modifications of the nested error
regression model.

I) In the first contribution,

Esteban, M.D., Herrador, M., Hobza, T., Morales, D. (2013). A modified nested-error
regression model for small area estimation. Statistics: A Journal of Theoretical and Applied
Statistics, 47(2), pp. 258-273,

presented in Section 5.3 on page 78, we employ the idea already used in the case of Fay-Herriot
model and we propose a model having both fixed and random levels which can be written in
terms of fixed effect (F ) part and random effect (R) part in the following way:

(F ) ydj = xT
djβ + μd + edj , d = 1, . . . , DF , j = 1, . . . , nd,

(R) ydj = xT
djβ + ud + edj , d = DF + 1, . . . , D, j = 1, . . . , nd,

where μ1, . . . , μDF
are unknown parameters corresponding to the fixed effects and uDF +1, . . . , uD

are i.i.d. random effects independent of the random errors edj . This model is useful if there are, for
example, some domains where the quantity of interest is higher than in the rest of the domains.
We can imagine for instance that the quantity of interest is the personal income and in the
considered country there exist some “outlying” domains with much higher income. In such case,
the model intercepts may be much higher in the mentioned domains and the traditional model
does not fit well to data since some domains are responsible for overestimating the intercept
variance which negatively affects the EBLUP estimates. Another interesting case for applying
the modified model could be if there is demand, for administrative or political reasons, for
increasing the precision of estimates for any given domains. Such domains would be included in
the fixed part of the model.

Algorithms to fit the model by MLE method, to calculate the EBLUP of small area means
and to estimate its mean squared error are given in the paper. Further, an extensive simulation
study is presented showing that if there are some outlying domains, i.e. the proposed model is
true, and the standard nested error regression model is used, then a lack of precision is observed
with respect to the proposed model. On the other hand, if the standard model is true and
the proposed more complicated model is used, then the decrease of precision is negligible. An
application using the above described Canary Islands 2013 data and estimating the domain total
of unemployed people is also given. This application shows that the best model is not necessarily
the model with only random or with only fixed effects, but somewhere in between, i.e. a model
including both types of effects.

II) The nested error model assigns regression lines which are parallel with varying intercept
to domains. Further flexibility in modeling may be achieved by using models allowing different
slopes of the regression lines in different domains. For instance, it is conceivable that in some
provinces the effect of the unemployment status is steeper than in others and that this steepness
reflects policies, strategies and market conditions that differentiate provinces. One possibility
to reflect these differences is the use of random regression coefficient models which allow the
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coefficients of auxiliary variables to vary across domains. This type of models were proposed for
the first time in Moura nad Holt (1999). In the paper

Hobza, T., Morales, D. (2011). Small Area Estimation of Poverty Proportions under Ran-
dom Regression Coefficient Models. Modern Mathematical Tools and Techniques in Cap-
turing Complexity - Understanding Complex Systems, Springer Berlin, pp. 315 – 328,

presented in Section 5.4 on page 95, we develop the idea and present an application to estimation
of poverty proportions in Spanish provinces. The employed random regression coefficient model
has the form

ydj =
p∑

k=0
βkxkdj +

p∑
k=0

ukdxkdj + edj , d = 1, . . . , D, j = 1, . . . , nd, (3.7)

where ydj is the jth observation from area d, xkdj are auxiliary variables and βk are unknown
regression parameters. Further, random regression coefficients ukd

iid∼ N(0, σ2
k) and random errors

edj∼N(0, w−1
dj σ2

e) are independent, d = 1, . . . , D, j = 1 . . . , nd, k = 0, . . . , p. If x0dj = 1 for any
d and j then the model (3.7) contains a random intercept of the form β0 + u0d for area d. The
model variance and covariance parameters are σ2

e , σ2
k, k = 0, . . . , p and the heteroscedasticity

weights wdj ’s are supposed to be known.
The paper presents EBLUP estimates based on the proposed model and gives a closed-

formula procedure to estimate the mean squared error of the EBLUP. Behaviour of the obtained
EBLUP is compared by simulation experiment with the behaviour of the EBLUP based on the
classical nested error model. In the practical application we use data from the 2006 Spanish
Living Conditions Survey (SLCS) with the goal of estimating poverty proportions in the 52
Spanish provinces. Because poverty variable is dichotomic at the individual level, the sample
data from SLCS is previously aggregated to the level of census sections. As auxiliary variables
nationality and employment status are used. From the results we can conclude that the proposed
EBLUP behaves more smoothly and gives the best results with respect to the mean squared
error when compared to classical EBLUP or direct estimators.

III) In addition to the variability of the regression slopes across domains allowed in the previous
model (3.7), it is also possible to encounter situations where some correlation is detected between
the random slopes and random intercept. In a more advanced paper,

Hobza, T. and Morales, D. (2013). Small area estimation under random regression coeffi-
cient models. Journal of Statistical Computation and Simulation, 83(11), pp. 2160-2177,

presented in Section 5.5 on page 110, we work with model of the form (3.7) but with additional
assumptions

E(u0d ukd) = τk, d = 1, . . . , D, k = 1, . . . , p

and
E(u0d1 ukd2) = 0, if d1 �= d2 .

If we assume x0dj = 1 for all d and j then the correlation between the random intercept u0d and
the random part of the k-th regression parameter ukd is within area d modelled by means of the
covariance τk. It is obvious that the model (3.7) is a special case of the present model for the
choice τk = 0, k = 1, . . . , p.

Again, the formulas defining the EBLUP of domain mean and a closed-formula procedure
to estimate its error are given in the paper under the assumption that the REML estimates of
model parameters are used. We also propose a statistical test for deciding between models with
and without correlations. Several simulation studies showing behaviour of the modified model
and its advantages with respect to the model (3.7) without correlations and the standard nested
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error model are presented. Finally, we illustrate the methodology and carry out an analysis of
the 2006 SLCS data. Our target variables are the province means of the household normalized
net annual income and the considered auxiliary variables are the secondary education and the
employed labour status. Although it seems that the correlations τk do not play an important
role in the analysed data, the application shows that procedures using the models with random
intercepts produce some gain of precision with respect to direct estimates and EBLUP based on
the standard nested error model.
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Chapter 4

Models for discrete responses

The models presented in the previous chapters are suitable for continuous variables y, in fact a
normal distribution of the responses y was assumed. However, in many cases the observations
are discrete or categorical. For example, the variable of interest y may be binary and indicate
if a person is unemployed or not or it may represent count of individuals with some property
in a family, small company, hospital etc. In such cases the small area quantities of interest are
usually proportions or counts, for instance proportion or total of unemployed persons in the
area. To also cover this type of problems, an extension of linear models called generalized linear
models (GLM) was proposed in McCullagh and Nelder (1989). The generalization is done in
two directions. First, expectation of the random variable y need not to be connected directly
to a linear combination of some covariates (like in linear models) but it is associated with
a linear function of some covariates through a link function. Second, the distribution of the
variable y need not be normal but it is supposed to be a member of so called exponential family
of distributions. The exponential family covers a variety of distributions that include normal,
binomial, Poisson and multinomial as special cases. The GLM may be expressed by the formula

g(μi) = xT
i β, i = 1, . . . , n,

where μi = E(yi), yi are independent random variables from exponential family of distributions,
xi are known vectors of auxiliary variables, β is vector of unknown parameters and g is a known
link function.

4.1 Generalized linear mixed models
Although GLM’s are widely used in practical applications, they are usually not general enough
to be used in SAE since they do not cover the case when the observations are dependent, a case
often encountered in SAE problems. So another extension is needed. The idea is similar to that
used in linear mixed models, namely to include random effects and define a generalized linear
mixed model (GLMM).

Suppose that given a vector of random effects u the responses y1, . . . , yn are conditionally
independent such that the conditional distribution of yi given u is a member of the exponential
family with probability density function

fi(yi|u) = exp
{

yiθi − b(θi)
ai(φ)

+ ci(yi, φ)
}

, (4.1)

where b(·), ai(·), ci(·, ·) are known functions, and φ is a dispersion parameter which may or may
not be known. Using the notation μi = E(yi|u) for the conditional expectation of yi given u,
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which is associated with θi, the formula defining the GLMM is

g(μi) = xT
i β + zT

i u, i = 1, . . . , n, (4.2)

where

• xT
i = (xi1, . . . , xip) and zT

i = (zi1, . . . , ziq) are known vectors of auxiliary variables

• β = (β1, . . . , βp)T is a vector of unknown parameters (fixed effects)

• u = (u1, . . . , uq)T is a vector of random effects

• g(·) is a monotonous, differentiable function called link function.

It is further assumed that the vector of random effects is normally distributed, u ∼ N(0,Σu),
where the covariance matrix Σu may depend on a vector ϑ of unknown variance components.

First examples of GLMM were given in MacGibbon and Tomberlin (1989) and McCullagh
and Nelder (1989). Since then, GLLM’s have received considerable attention in various fields like
biology, medical research and surveys. Without being exhaustive we can mention e.g. Breslow
and Clayton (1993), Malec et al. (1997), Ghosh et al. (1998), Lahiri and Maiti (2002), Ghosh et
al. (2009), Erciulescu and Fuler (2013), Militino et al. (2015) and Boubeta et al. (2016). Even
though these models are very useful, they bring some difficulties concerning inference about the
parameters. The reason is the form of the log-likelihood function under a general GLMM,

log f(y) = log
∫

IRq
f(y|u) f(u) du = log

∫
IRq

(
n∏

i=1
fi(yi|u) f(u)

)
du,

which typically does not have a closed-form expression since it involves high-dimensional integral
that cannot be evaluated analytically. Moreover, this integral is usually difficult to evaluate even
numerically. For example, imagine that we have one random effect for each small area, there
are D = 50 small areas, the overall sample size is n = 1000 and the variables yi have discrete
distribution so that the density f(yi|u) is in fact probability function the values of which are
less than one. Then, the dimension of the integral is 50 and moreover, the integrand involves a
product of 1000 terms with each term less than one. Such a product is numerically zero so it is
difficult to evaluate the integral with Monte Carlo method. To overcome these difficulties some
approximation of the integral have to be used or non-likelihood-based inference must be taken
into account. For the ease of exposition we will illustrate these aspects as well as methods for
prediction of the target variable on the logistic mixed model which is the most common model
of the form (4.2). Moreover, we restrict ourselves to the unit level models in this chapter.

4.2 Unit level logistic mixed model
In this section we assume that the variable of interest is binary and we introduce a unit level
logistic mixed model. Again let D denote the number of small areas or domains and u =
(u1, . . . , uD)T be a vector of independent and N(0, σ2) distributed random effects. About the
target variable ydj , representing the jth sample observation from domain d, we assume that its
conditional distribution is Bernoulli with parameter pdj , i.e.

ydj |ud
∼ Be(pdj), d = 1, . . . , D, j = 1, . . . , nd.

For the probability function of this distribution it holds

P (ydj |u) = P (ydj |ud) = p
ydj

dj (1 − pdj)1−ydj for ydj ∈ {0, 1} (4.3)
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and the conditional expectation of ydj is

E(ydj |ud) = pdj .

It is easy to show that the probability function (4.3) belongs to the exponential family (4.1) and
that there is no unknown dispersion parameter φ in this case.

The basic unit level logistic mixed model uses logit function as the link function and can be
written in the form

g(pdj) = log
(

pdj

1 − pdj

)
= xT

djβ + ud, d = 1, . . . , D, j = 1, . . . , nd. (4.4)

The area specific random effects ud are used to explain the between area variability of the
response variable which is not captured by the auxiliary variables. From the formula (4.4) it
follows that the probability pdj that the variable ydj will take on value 1 is modelled as

pdj =
exp{xT

djβ + ud}
1 + exp{xT

djβ + ud} . (4.5)

In the following we consider the logistic mixed model (4.4), but the procedures are applicable
also to other models belonging to the class of GLMM models.

4.2.1 Estimation of parameters of logistic mixed model
Let us now turn our attention to estimation of the parameters of logistic mixed model. There
are two unknown parameters in the model (4.4), namely the vector of regression parameters β
and the variance component σ2 of the random effects.

First we illustrate the classical approach using maximum likelihood method for obtaining
parameter estimates. Under the assumed simple correlation structure of the vector u, notice
that Σu = σ2ID×D, the log-likelihood function can be written in the form

l(β, σ2;y) = logP (y) = log
∫

IRD
P (y|u)f(u) du = log

∫
IRD

(
D∏

d=1
P (yd|ud)f(ud)

)
du

= log
D∏

d=1

∫
IR

P (yd|ud)f(ud) dud =
D∑

d=1
log
∫

IR

nd∏
j=1

P (ydj |ud)f(ud) dud , (4.6)

where the notation y = (yT
1 , . . . , yT

D), yd = (yd1, . . . , ydnd
)T , d = 1, . . . , D, is used and f is

the probability density function of the normal distribution N(0, σ2). So the dimension of the
involved integral is one under the present model but the problem with product of many terms
less than 1 remains. Substituting the probability function (4.3) and the probabilities (4.5) into
the formula (4.6) the log-likelihood function can be expressed as

l(β, σ2;y) = −D

2
log(2πσ2) +

D∑
d=1

nd∑
j=1

ydjxT
djβ +

D∑
d=1

log
∫

IR
exp

{
hd(ud;β, σ2)

}
dud,

where

hd(ud;β, σ2) =
nd∑

j=1

[
ydjud − log

(
1 + exp{xT

djβ + ud}
)]

− u2
d

2σ2 .

The integrals ∫
IR
exp

{
hd(ud;β, σ2)

}
dud (4.7)

35



4.2. UNIT LEVEL LOGISTIC MIXED MODEL

cannot be solved analytically and some approximation must be used.
One possibility is to use Laplace approximation of the integral which consists in second

order Taylor expansion of the function hd(ud;β, σ2) around the argument of its maxima u∗
d. The

obtained expansion of hd is a quadratic function and the integral (4.7) may be then approximated
using the known Gauss integral. This way we obtain Laplace approximation of the log-likelihood
function and by its maximization we get the desired estimates.

Another way of approximation the log-likelihood provides method of penalized quasi-likelihood
(PQL) which was proposed in the context of generalized mixed models in Breslow and Clayton
(1993). PQL method gives an approximation of the log-likelihood function which has basically
the same form as the Laplace approximation except for one missing term which is neglected. The
estimation procedure is thus simplified and quicker than the Laplace method. It is known that
the PQL does not provide consistent estimates but for small sample sizes its behaviour is com-
parable with Laplace approximation. For more details about these methods see e.g. Demidenko
(2004).

The second approach to estimation of parameters of the logistic mixed model is the use
of methods which are not based on likelihood function. One such method was proposed by
Jiang (1998) and is called method of simulated moments (MSM). This method approximates the
method of moments which would use for estimation of the parameters β and σ2 the following
system of nonlinear equations

0 =
D∑

d=1

nd∑
j=1

E(ydj)xdjk −
D∑

d=1

nd∑
j=1

ydjxdjk, k = 1, . . . , p,

0 =
D∑

d=1
E(y2

d.) −
D∑

d=1
y2

d. ,

where yd. =
∑nd

j=1 ydj . As the expectations appearing in the equations cannot be explicitly
evaluated, they are approximated by Monte Carlo simulation. The resulting set of equations is
then solved numerically using the Newton-Raphson algorithm. Jiang (1998) proved that MSM
gives consistent estimators of model parameters. A detailed description of this method is given
in the Section 5.6.

4.2.2 Prediction of functions of fixed and random effects
Let us assume that the unit level logistic mixed model (4.4) - (4.3) holds not only for the sample
but also for all units of a population U with domain population sizes N1, . . . , ND. Let us denote
the sample ys = (yT

1s, . . . , yT
Ds)T , yds = (yd1, . . . ydnd

)T , d = 1, . . . , D, and consider the problem
of predicting a function of fixed and random effects,

ξ = ξ(β, u) , (4.8)

on the basis of the sample ys. Prediction of some function of mixed effects plays an important
role in small area estimation. We now describe two methods developed in this context.

Empirical best predictors

Jiang and Lahiri (2001) introduced best predictor (BP) of the parameter ξ which is defined by
the formula

ξ̂ bp = E(ξ|ys) = E(ξ(β, u)|ys) =
∫

IRD ξ(β, u)f(ys|u)f(u)du∫
IRD f(ys|u)f(u)du

. (4.9)
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This predictor is “best” in the sense of minimization of the mean squared error in the class of
predictors ξ̂ depending only on the sample ys, i.e.

ξ̂ bp ∈ argmin
ξ̂

E
(
ξ̂ − ξ

)2
.

Note that the BP depends on the sample ys and the parameters β, σ2. Since the parameters
are usually unknown, it is customary to replace them by appropriate estimators. The resulting
predictor is called empirical best predictor (EBP).

For illustration, let us assume that we are interested in estimating the population means

Y d =
1

Nd

Nd∑
j=1

ydj , d = 1, . . . , D .

These means may represent for example proportion of unemployed people in area d and may be
approximated by its conditional expectations, i.e. by the quantities

μd = E
(
Y d|ud

)
=

1
Nd

Nd∑
j=1

pdj , d = 1, . . . , D. (4.10)

Since the probabilities pdj are functions of the mixed effects (cf. formula (4.5)), we can use the
general formula (4.9) to derive the best predictor

p̂dj(β, σ2) = E(pdj |ys) =

∫
IR

exp{xT
djβ+ud}

1+exp{xT
dj

β+ud}P (yds|ud)f(ud)dud∫
IR P (yds|ud)f(ud)dud

. (4.11)

The EBP of pdj and μd are then p̂dj(β̂, σ̂2) and μ̂d = 1
Nd

∑Nd
j=1 p̂dj(β̂, σ̂2), respectively, and they

can be approximated by Monte Carlo simulations.

Plug-in predictor

González-Manteiga et al. (2007) proposed a simple (although not “best”) predictor called gener-
alized EBLUP (GEBLUP) or sometimes plug-in predictor in the literature. The plug-in predictor
of the function ξ(β, u) given in (4.8) is obtained simply by substituting β, u by parameter es-
timates β̂ and random effect predictors û, i.e.

ξ̂ in = ξ(β̂, û) .

Similarly, the plug-in predictor of the probability pdj is

p̂ in
dj =

exp{xT
djβ̂ + ûd}

1 + exp{xT
djβ̂ + ûd} .

Let us note that the prediction of the random effects ud is a separate task and can be solved
in different ways. For example the PQL and Laplace methods for estimating parameters of the
mixed model also provide predictors of the random effects ud which is not the case of the MSM.
When MSM is used to estimate the parameters of the model, the EBP of the random effects ud

may be used for construction of the plug-in predictor.
The main advantage of the plug-in predictors is their quite low computational demand in

comparison with EBP’s. For more details concerning the EBP and plug-in predictors and their
comparison see the Section 5.6.
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4.2.3 Mean squared error of predictors

In practise, it is desirable not only to compute the empirical predictors but also to asses their
variation. Estimation of the mean squared error of empirical predictors under generalized linear
mixed model is even more complex than under linear mixed model. The explicit expression of
the exact MSE does not exist and only large sample approximations obtained under certain
model assumptions are available. Jiang and Lahiri (2001) obtained an analytical approximation
of the MSE of the EBP under logistic mixed model. Jiang (2003) extended their results to the
class of generalized linear mixed models. González-Manteiga et al. (2007) gave an easy-to-apply
closed formula estimator of the MSE of the GEBLUP when the GLMM is fitted by using the
penalized maximum likelihood method. Molina et al. (2007) and López-Vizcaíno et al. (2013)
extended the results of González-Manteiga et al. (2007) to multinomial-logit mixed models.

In Section 5.6 we give a detailed derivation of the approximation to the MSE of EBP of
weighted sum of probabilities following the ideas of Jiang and Lahiri (2001) and Jiang (2003).
A disadvantage of their method is that it requires analytical derivation of the formulas for
each type of generalized linear mixed model and each function of mixed effects we want to
predict. Moreover, these MSE estimates are computationally very demanding. For these reasons,
resampling methods, which are applicable for estimating the MSE under more general model
assumptions and are efficient and easy to implement, represent a good alternative.

Some resampling methods for estimating the MSE of empirical predictors can already be
found in the literature. Jiang et al. (2002) introduced a jackknife methodology for MSE estima-
tion. Pfeffermann and Tiller (2005) proposed parametric and nonparametric bootstrap methods
for estimating the same quantity under state-space models. Hall and Maiti (2006a, 2006b) intro-
duced parametric and matched-moment double-bootstrap algorithms, and González-Manteiga
et al. (2007, 2008a, 2008b, 2010) applied bootstrap procedures to logistic and normal mixed
models.

In Section 5.6 we give more detailed description of the bootstrap estimation of the MSE.
Here we present just the basic idea of the parametric bootstrap technique for illustration. For
the model (4.4), the procedure consists of the following steps:

1. Fit the model to the sample and calculate θ̂ = (β̂, σ̂2) and the EBP ξ̂ebp of the quantity
of interest ξ.

2. Repeat B times (b = 1, . . . , B):

a) Generate a new “bootstrap” population from the model (4.4) with parameters θ̂ and
the same population sizes and covariates as the original population.

b) Compute the true value ξtrue,b of the quantity of interest ξ for this population.

c) From the bootstrap population select a bootstrap sample which has the same units
as the original sample.

d) For each bootstrap sample calculate the estimates θ̂
(b)

and the EBP ξ̂ebp,b of the
quantity of interest ξ.

3. Output: the bootstrap MSE estimator

mse∗(ξ̂ebp) =
1
B

B∑
b=1

(
ξ̂ebp,b − ξtrue,b

)2
.
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4.3 Contribution of the author to unit level logistic mixed mod-
els

I) A serious drawback of the best predictor of the form (4.11) is that if at least one of the auxiliary
variables is continuous, the calculation of the EBP μ̂d requires the availability of census file with
all the values of xdj for all the Nd units in area d. This is very restricting since in practice the
full census records are rarely available. This is why in the paper

Hobza, T., Morales, D. (2016). Empirical best prediction under unit level logit mixed
models. Journal of Official Statistics, 32(3), pp. 661-692,

presented in Section 5.6 on page 129, we study the special case where the covariates are cate-
gorical and take a finite number of values. Let us assume that xdj ∈ {z1, . . . , zK} for all d and
j and define the probabilities

qdk =
exp{zT

k β + ud}
1 + exp{zT

k β + ud} , k = 1, . . . , K.

Under this setup the target quantity μd given in (4.10) can be rewritten as

μd =
1

Nd

Nd∑
j=1

pdj =
1

Nd

K∑
k=1

Ndkqdk, d = 1, . . . , D, (4.12)

where Ndk = #{j ∈ Ud : xdj = zk} is the population size of the covariate class zk at the domain
d. For calculating the EBP of μd we thus do not need the full census file, it suffices to know the
covariate class sizes Ndk which can be obtained more easily from external sources.

In the above cited paper we consider the binomial-logit regression model

log
(

pdj

1 − pdj

)
= xT

djβ + φvd, d = 1, . . . , D, j = 1, . . . , nd, (4.13)

for random variables ydj which conditional distribution is binomial,

ydj |ud
∼ Bin(mdj , pdj), d = 1, . . . , D, j = 1, . . . , nd,

where mdj are known size parameters. Let us note that the model formula (4.13) is only a re-
parametrization of the formula (4.4), actually, instead of random effects ud ∼ N(0, σ2) we use
random effects φvd where vd ∼ N(0, 1) and φ is a variance parameter corresponding to σ in the
previous notation.

The model parameters are estimated by the method of simulated moments and EBP and
two plug-in estimators of the weighted sum of probabilities (4.12) are derived. For the EBP,
we adapt the calculations given by Jiang and Lahiri (2001) and Jiang (2003) and we give two
analytical estimators of the MSE approximation, without and with bias-correction term. Further,
two parametric bootstrap estimators of the MSE are considered.

All the derived methods are compared via a computationally intensive simulation study.
Jiang and Lahiri (2001) and Jiang (2003) studied the large sample properties of the EBPs
and MSE estimators. However they did not carry out simulation experiments to empirically
investigate the behavior of the EBPs and MSE estimators in the standard small area estimation
setup, i.e. when the domain sample sizes are small. Results of our simulations show that the
analytical approximations of the MSE work quite well but on the other side these estimators
bring some implementational and computational difficulties which make their use in practical
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applications almost impossible. For more details see Remark 5.1 in section 5.6. The bootstrap
MSE estimators present quite good behaviour and may be considered as suitable alternative.

Finally, we present an application to estimation of poverty proportions in the counties of
the region of Valencia in Spain. At the unit level, data are taken from the 2012 Spanish Living
Conditions Survey (SLCS2012) and the target variables indicate whether individuals are under
poverty line or not. As auxiliary variables we use the employment status of the individual
(employed, unemployed, inactive, child) and the corresponding population sizes of covariate
classes, Ndk, are obtained from the 2012 Spanish Labour Force Survey. The application shows
some gain of precision obtained by the model-based EBP with respect to the direct design-based
estimators.

II) Mixed models using temporal information are very useful because the recent past is generally
very informative for the present. Temporal models thus borrow strength from the past for better
estimation of the present. These models are employed in longitudinal studies with biological or
medical data. In the context of small are estimation their use is more recent and one can find
much more references dealing with the case of area level models. Time models at the unit level
need more requirements than the area level models. In fact they need more elaborate software
that has to be fed with data at the unit and at the aggregated level. In the paper

Hobza, T., Morales, D. (2016). Small area estimation of poverty proportions under a unit-
level temporal binomial-logit mixed model. TEST, submitted pp. 1-20,

we deal with a unit level temporal binomial-logit mixed model with independent time effects for
estimating poverty proportions and their changes between two consecutive years. Let us note
that since the paper was not accepted at the time of finishing of this thesis it is not included in
the Chapter 5. Here we give just its brief overview.

Let D and T be the number of small areas and time periods respectively. The model considers
two independent sets of random effects such that {v1,d : d = 1, . . . , D} and {v2,dt : d =
1, . . . , D, t = 1, . . . , T} are independent and identically distributed (i.i.d.) N(0, 1). These random
effects are used to take into account the between-domains and the between-periods variability
that is not explained by the auxiliary variables. The target variable ydtj represents the jth
sample observation from domain d at time period t and its conditional distribution is supposed
to be

ydtj |v1,d,v2,dt
∼ Bin(νdtj , pdtj), d = 1, . . . , D, t = 1, . . . , T, j = 1, . . . , ndt , (4.14)

where νdtj is a known size parameter. The model is represented by the formula

log
pdtj

1 − pdtj
= xT

dtjβ + φ1v1,d + φ2tv2,dt, d = 1, . . . , D, t = 1, . . . , T, j = 1, . . . , ndt, (4.15)

where φ1 > 0, φ2t > 0, t = 1, . . . , T , are variance parameters. We also consider two simpler mod-
els defined by the restrictions φ2t = φ2 or φ2t = 0 for all t ∈ {1, . . . , T}. Laplace approximation
of the log-likelihood function of the model is derived and algorithm for estimation of the model
parameters is given.

The main aim is to obtain empirical best predictors for the population averages

Y dt =
1

Ndt

Ndt∑
j=1

ydtj , d = 1, . . . , D, t = 1, . . . , T.

The EBP of Y dt can be expressed as the sum of two terms,

Ŷ dt =
1

Ndt

[ ndt∑
j=1

ydtj +
∑

j∈Udt,r

p̂dtj

]
,
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where Udt,r denotes the non-sampled elements of the population in area d at time t. The first
term is a sum of observed values and the second term may again be treated as a sum of weighted
probabilities if the covariates are categorical with finite possible values. Algorithms for calcu-
lation of the studied EBPs are given and their behaviour under the three assumed models is
compared with the behaviour of the plug-in predictors by a simulation study. From the results
it follows that the EBP and plug-in have similar behavior and the model without time effects
gives the worst results.

We also revisit the application given in the previous part I) to data from the SLCS2012.
This paper analyzes 2012-2013 data from the SLCS in the region of Valencia. The target of the
application is the estimation of 2013 poverty proportions and 2013-2012 changes at county level.
The results show that the EBP methodology is applicable to SAE real data problems and that
the use of temporal information increases the precision of estimates.

4.4 Contribution of the author to unit level generalized linear
models

In this section we describe several works which are themselves not directly connected to small
area estimation but which could be applied to small area problems. These works deals with robust
estimation and outlier detection in generalized linear models. The robust fitting of GLM is also of
great importance for SAE. For example, plug-in estimators of domain proportions based on unit
level logistic models and robust parameter estimators can be derived. Some robust approaches
to SAE were already proposed in the literature. Let us mention e.g. the M-quantile regression
assumed in Chambers and Tzavidis (2006) or the penalized spline regression used in Opsomer
et al. (2008). The author’s contribution to robust methods is the following.
I) In the first contribution,

Hobza T., Pardo L., Vajda, I. (2008). Robust Median Estimator in Logistic Regression.
Journal of Statistical Planning and Inference, 138(12), pp. 3822-3840,

presented in Section 5.7 on page 162, we assume the logistic regression model

log
(

pi

1 − pi

)
= xT

i β, i = 1, . . . , n,

where pi = E(Yi), Y1, . . . , Yn are independent random variables with Bernoulli distribution
Be(pi), i = 1, . . . , n, x1, . . . , xn are known regressors and β ∈ IRd is an unknown vector of
parameters. Notice that this model can be viewed as an unit level logistic model.

It is known that maximum likelihood estimates of the parameters β are sensitive to conta-
mination of the observations Y1, . . . , Yn by outliers or leverage points. For this reason, we propose
in the above mentioned paper an L1-estimator of parameters β which is based on median function
and which is expected to be more robust than the MLE. Unfortunately, it is not possible to apply
the median function of the Bernoulli observations Y1, . . . , Yn directly since it is piecewise constant
and it is thus not sensitive to small changes of the parameters pi. So the basic idea of the paper is
to assume a transformation, called statistical smoothing, of the discrete observations Y1, . . . , Yn.
This transformation consists in adding independent and uniformly on (0, 1) distributed random
variables Ui to the observations Yi, i.e. it considers the continuous data

Zi = Yi + Ui, i = 1, . . . , n,

where Ui
iid∼ U(0, 1). The median estimator β̂

Me
is then defined as

β̂
Me

= arg min
β∈IRd

n∑
i=1

∣∣∣Zi − m
(
p(xT

i β)
)∣∣∣ (4.16)
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where
p(xT

i β) =
exp(xT

i β)
1 + exp(xT

i β)

and m(p) is the median function

m (p) = F −1
p (1/2) = inf {z ∈ IR : Fp (z) ≥ 1/2} (4.17)

corresponding to the class of distribution functions Fp of the random variables

Z = Be (p) + U(0, 1)

when the parameter p varies in the closed interval [0, 1]. The median function (4.17) is strictly
increasing in p so the argument m

(
p(xT β)

)
in (4.16) detects every change of the product xT β.

Consistency and asymptotic normality of the median estimator are proved in the paper.
Moreover a method of enhancing the median estimator is introduced. This method increases
efficiency of the median estimator in some cases and consists in replacing the set of statistically
smoothed data Zi = Yi + Ui, 1 ≤ i ≤ n, by the expanded set obtained by considering for k > 1
the matrix of data

Zij = Yi + Uij , 1 ≤ i ≤ n, 1 ≤ j ≤ k, (4.18)

where Uij are U (0, 1)-distributed and mutually as well as on Y1, . . . , Yn independent random
variables, and applying the median estimator to this expanded set. In other words the k-enhanced
median estimator can be defined by

β̂
kMe

= arg min
β∈IRd

1
k

n∑
i=1

k∑
j=1

∣∣∣Yi + Uij − m
(
π(xT

i β)
)∣∣∣ . (4.19)

Simulation studies are carried out to study the sensitivity of the median estimators to outlying
and leverage points and to compare it with the sensitivity of some robust estimators previously
introduced in the literature. The median estimators seem to be more robust for larger sample
sizes and higher levels of contamination.

II) In the paper
Hobza, T., Pardo, L. and Vajda, I. (2012). Robust median estimator for generalized linear
models with binary responses. Kybernetika, 48(4), pp. 768-794,

presented in Section 5.8 on page 182, we generalize the results of the previous paper and we prove
consistency and asymptotic normality of the median estimator also in other types of generalized
linear models with binary responses. Namely, we deal with probit, log-log, complementary log-
log, scobit and power logit models. Formulas for the asymptotic covariance matrix of the median
estimator are derived under the above mentioned models. Results of simulation experiment
studying the behaviour of the median estimator under the probit model are also reported.

III)
It seems that the idea of enhancing the median estimator can still be improved. If we let

k → ∞ in (4.19), we get the formula

β̂
MMe

= arg min
β∈Rd+1

n∑
i=1

∫ 1

0

∣∣∣Yi + u − m
(
π(xT

i β)
)∣∣∣ du (4.20)

defining a deterministic estimate (i.e. it does not depend on any additionally generated random
sample used for statistical smoothing), which would conceivably inherit the good properties of
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the original estimate plus a smaller variance. This estimate is called modified median estimator
and is treated in the paper

Hobza, T., Martín, N., Pardo, L. (2016). A Wald-type test statistic based on robust mod-
ified median estimator in logistic regression models. Journal of Statistical Computation
and Simulation, submitted pp. 1-22.

Since the paper was not accepted at the time of finishing of this thesis it is not included in the
Chapter 5. Let us here just mention its principal ideas.

First, the asymptotic normality of the modified median estimator is proved. Further, based
on the modified median estimator, we define a Wald-type test statistic for the problem of testing

H0 : KT β = m against H1 : KT β �= m, (4.21)

where KT is any matrix of r rows and d columns and rank(KT ) = r and m is a vector of order
r of specified constants such that rank(KT , m) = r. The statistic is given by the formula

Wn(β̂
MMe

) = n(KT β̂
MMe − m)T

(
KT V̂n(β̂

MMe
)K
)−1

(KT β̂
MMe − m), (4.22)

where V̂n(β̂
MMe

) is an estimator of the asymptotic covariance matrix of the modified median
estimator. We show that under some regularity assumptions the asymptotic distribution of the
Wald-type test statistics is a chi-square distribution with r degrees of freedom and we derive
approximation of the power function of the proposed test. An extensive simulation study is
presented in order to analyze the efficiency as well as the robustness of the modified median
estimator and Wald-type test based on it. The results show that the modified median estimator
is much more efficient that the original median estimator and that the levels of the Wald-type
tests are significantly more resistent to contamination of data by outliers than the levels of
Bianco and Martínez (2009) robust test which was selected for comparison.

IV) In the last contribution included in this thesis,
Pardo, M.C., Hobza, T. (2014). Outlier detection method in GEEs, Biometrical Journal,
56(5), pp. 838-850,

presented in Section 5.9 on page 210, we propose an outlier detection technique in the context of
longitudinal data. The assumed model is similar to generalized linear model and can be written,
in the notation of this thesis, as

g(μdj) = xT
djβ, d = 1, . . . , D, j = 1, . . . , nd,

where g is a known link function, μdj = E(ydj) and the density of the response ydj is a member of
the exponential family defined in (4.1). The main difference with respect to the classical general
linear model is that the responses ydj need not be independent. More concretely, the elements
of the vector yd = (yd1, . . . , ydnd

)T may be correlated but the vectors yd, d = 1, . . . , D, are
independent. In the SAE context it would mean that the observations in different areas are
independent but the observations within an area are correlated. Notice that such correlation
structure corresponds to the correlation structure of the mixed model (4.4). So the proposed
method for detecting outliers could be used in the context of unit level logistic mixed models.

Remark 6 Other interpretation of the assumed model is that D is the total number of in-
dividuals in a study and for each individual d we have a vector of repeated measurements
yd = (yd1, . . . , ydnd

)T at nd time points. This interpretation is used in the above mentioned
paper and corresponds to the typical definition of longitudinal data.

43



4.4. CONTRIBUTION OF THE AUTHOR TO UNIT LEVEL GENERALIZED LINEAR
MODELS

The parameters of the model are estimated by the method of generalized estimating equations
(GEE) proposed by Liang and Zeger (1986). In order to describe the method for outlier detection
let us denote g(μd) = (g(μd1), . . . , g(μdnd

))T , d = 1, . . . , D, and Xd the matrix composed of the
rows xT

dj , j = 1, . . . , nd. To identify an outlier in a designated area, say i, we propose to use the
mean shift model

g(μd) =
{

Xiβ + γi, d = i;
Xdβ, d �= i, d = 1, . . . , D.

To test that area i is an outlier (or contains an outlier) is equivalent to test the hypothesis

H0 : γi = 0 versus H1 : γi �= 0 . (4.23)

If the null hypothesis is rejected, the i-th area or its element will be highlighted as an outlier.
Let us note that the choice γi = (γi1, . . . , γini)T leads to the test whether the area i as a whole
is an outlier, whereas the choice γi = (0, . . . , γij , . . . , 0)T leads to the test whether the j-th
observation in area i is an outlier. For testing the hypothesis (4.23) we use the “working” score
test studied by Rotnitzky and Jewell (1990).

The paper presents results of a simulation study which show that the proposed method
correctly singles out the outlier when the data set have a known one. An application to real
data set from a clinical trial is also given. The proposed approach detected the same outliers
as the methods applied to this data set in the literature and moreover another one which was
suspected to be an outlier by a visual scan of the data but which was not highlighted by any
other method.
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Conclusion and possible future
directions

This habilitation thesis deals with model-based methods for estimation of characteristics of areas
or domains where the sample sizes are not large enough to provide precise direct estimates. Such
areas are called small areas. Several modifications of linear models with random area effects for
continuous data are proposed as well as some generalized linear mixed models for discrete data.
For all the models the problems of estimation of the unknown parameters, best prediction of the
characteristic of interest and estimation of the mean squared error of the prediction are treated.
Results of the performed simulation experiments and applications to real data show that all the
studied methods can be used in real data problems and moreover they provide a significant gain
of precision with respect to classical methods or direct estimates. Further, methods proposed
for robust estimation and outlier detection in the context of generalized linear models and their
possible use in small area estimation problems are discussed.

In small area estimation, models with random effects for the areas introduce a correlation
structure for the elements within the same area, but elements in different small areas are consid-
ered to be uncorrelated. However, it is known that socioeconomic characteristics of individuals
in neighboring regions are usually more alike than those of individuals in distant regions. In
statistical terms, this means that there is some kind of dependency relationship between indi-
viduals that are in neighboring regions. When this dependency is not completely captured by
the auxi-liary variables in the model, it should be somehow incorporated in the correlation struc-
ture of the model. Not doing so may affect the performance of inferential procedures seriously
(Cressie, 1993). Nevertheless, the introduction of a dependence structure among small areas
entails a serious conceptual difference with respect to the traditional framework of independent
small areas, in which the overall covariance matrix is block-diagonal. Thus, these models require
new specific theoretical developments.

Some progress was already achieved in the frame of the basic Fay-Herriot model by Singh
et al. (2005), Petrucci and Salvati (2006) and Pratesi and Salvati (2008), who considered an
extension of the Fay-Herriot model by assuming that area effects follow a spatial autoregressive
process of order 1, SAR(1). Bayesian spatial models have been considered by Moura and Migon
(2002) and You and Zhou (2011).

Concerning possible extensions of the unit level temporal logistic mixed models considered
in Section 4.3, a first step could be to consider the model (4.15) with autoregressive correlation
structure of order 1, AR(1), for the random effects v2,d = (v2,d1, . . . , v2,dT ). By considering
spatial dependence, a new extension of the model (4.15) might be proposed. An spatio-temporal
model can be introduced by assuming that the area random effect v1 = (v1,1, . . . , v1,D) has a
SAR(1) distribution and the area-time random effects v2d, d = 1, . . . , D, have independent AR(1)
distributions. The derivation and implementations of SAE predictors based on such spatio-
temporal models are tasks for future research.
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