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1 Scope of this thesis

The theses offer a review of author's investigation of laser wavelength self-sweeping in fiber
lasers since the first notice of the effect almost ten years ago. The theses begin with
introduction about the fiber lasers; the fields closely related to the authors' actual research
interests, others than the main topic of thesis, are also mentioned. The introduction is
followed by comments to the collection of research papers starting from explanation of the
self-sweeping effect and the first observations of the self-sweeping in ring and Fabry-Perot
cavities of ytterbium fiber laser, to description of the associated self-pulsing, observation of
self-sweeping in fiber lasers with other active media and, finally, to investigation of the
reflectivity of fiber Bragg gratings that are spontaneously created along with the self-
sweeping effect. The first section is concluded with remarks concerning mainly the research
prospects in the field and, finally, with references.



1.1 Introduction

Fiber lasers are generally considered as one of the youngest and most rapidly developing
branch of lasers. In fact, we may observe waves of increased interest in fiber lasers in time
driven by various motivations and societal conditions [1-5]. The first fiber laser was proposed
in 1960 by Elias Snitzer [6], even before the first ruby laser of Ted Maiman [7], and before
the first single-mode optical fiber of Erich Spitz [8, 9]. Indeed, the neodymium-doped fiber
laser was experimentally demonstrated soon after the fiber laser proposal [10]. However,
the research of fiber lasers was then interrupted for about a decade. New interest came with
laser diode pumps [11]. Due to low power of the laser diodes the research become silent
until the fiber lasers devices were re-invented in mid-80's as the erbium-doped fiber
amplifiers (EDFA) become almost ideal amplifiers for the telecom systems operating around
1550 nm [12, 13].* The EDFA revolutionized the world of telecommunications and fueled the
global boom of the internet in 90's. A second revolution started just at the beginning of the
third millennium. With the availability of high-power, high brightness diode lasers to pump
rare-earth-doped double-clad fibers, the race for high power from ytterbium-doped single
mode fiber lasers began.

The high-power operation of fiber lasers was enabled mainly by the invention of
cladding pumping within a double-clad (DC) fiber structure. Such a fiber serves as an efficient
transformer of the low-brightness, high-power radiation of the laser diodes (coupled into the
large area inner cladding of the double-clad fiber) into a high-brightness, high-power laser
beam coming out from the rare-earth-doped, narrow fiber core, see Fig. 1. This form of
cladding pumping was first proposed by Robert Maurer in the seventies [16] and later
demonstrated by Elias Snitzer [17]. Independently, the cladding pumping was investigated
by research group of Valentin P. Gapontsev in the Institute of Radio Engineering and
Electronics (IRE) of the Academy of Sciences in Frjazino near Moscow and they proposed an
elegant and efficient all-fiber pump and signal combiner based on side-pumping scheme [18-
20].” Since the most common circular shape of optical fibers provides poor effective
absorption of the pump, various cross-sectional shapes of double-clad fibers have been
investigated both experimentally and theoretically in order to enhance the absorption of the

! In the region of the Czech Republic, the first working rare-earth-doped fiber was fabricated 18 July
1990 in the Czechoslovak Academy of Sciences by Vlastimil Matéjec and coworkers and the laser
action was demonstrated soon after by Jiti Karika and coworkers in the fiber sample no. P321 [14,
15].

? The first Czech cladding-pumped fiber laser was demonstrated in 2003 by Véclav Kubeéek and Alena
Zavadilova and coworkers in the Czech Technical University using the erbium- and ytterbium-doped
double-clad fiber made by the group of Vlastimil Matéjec and Ivan Kasik in the Institute of Radio
Engineering and Electronics (URE), now Institute of Photonics and Electronics (UFE) of the Czech
Academy of Sciences [21-23].



multimode-pump. These shapes include a D-shaped (shown in Fig. 1), hexagon, octagon,
flower, stadium, air-clad, stress-elements inclusion, spiral-cladding, air-hole inclusion and
several other shapes having broken-circular symmetry, see examples in Fig. 2. The beneficial
effect of mode mixing of the pump radiation by unconventional coiling was also observed
experimentally [24, 25], see Fig. 3(a). With the recently reported rigorous theoretical
description of the mode mixing [26, 27], the new research direction of optimization of the
double-clad active fibers was opened and the very first promising designs have been already
published [28], see Fig. 3(b), and [29], see Fig. 3(c).
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Figure 1. The principle of the cladding pumping of the DC active fiber: cross section of the
DC active fiber, transversal refractive index profile and transformation of the high-power,
low-quality (highly divergent) pump beam into high-power high quality (low divergent) laser

signal.
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Figure 2. Examples of DC fiber cross sections of the inner cladding; yellow part schematically
represent possible input pump distribution.



Main research effort was initially devoted to ytterbium-doped fiber lasers at
wavelength at around 1pum, with the dominant industrial applications in material
processing. Ytterbium-doped fibers exhibit low quantum defect (the difference between the
laser wavelength and the optical pump wavelength is very small) that helps to solve the
active fiber cooling because the excess heat is relatively small. Other advantages are simple
energy level structure (and correspondingly small effect of harmful energy upconversion
processes) and almost 100 % radiative transition from the upper laser level of ytterbium
near 1 um even in the silica glass with high phonon energy. Similarly, erbium still exhibits
almost 100 % radiative transition at 1.5 um. However, the laser transitions at longer
wavelengths at around 2 um in holmium and thulium-doped fibers are strongly affected by
the non-radiative, phonon assisted transitions that decrease the emission quantum
efficiency to much lower levels, e. g., only about 10 % in the case of 2 um laser transition in
silica-based thulium-doped fibers [30].

(a) (b) (c)

Figure 3. Examples of fiber layout for improvement of pump absorption efficiency: (a)
kidney-shaped spool, (b) twisted fiber on a standard circular spool, and (c) spiral spool. Spiral
spool offers slowly varying effective absorption cross section through change of coiling
diameter.

Even in the favorable case of ytterbium-doped fibers, great number of fiber design
and material issues has to be solved to allow the increase of the output power and to
mitigate number of limiting effects like stimulated Raman and Brillouin scattering (SRS, SBS),
cooling capabilities of the fibers, launched pump power, background losses, low effective
pump absorption, transverse mode-instabilities, optical damage and photodarkening [3]. It is
well known that mitigation of an unwanted effect has to be done taking into account other
effects. For example, the low effective absorption of the pump in double-clad active fibers
can be solved by using longer fiber but it is in contradiction with the effect of background
losses and especially with the detrimental nonlinear effects that scale proportionally with
the fiber length. The major breakthroughs in novel fiber designs involve the invention of
large mode area (LMA) fibers, typically achieved by making large cores with lower numerical
aperture, and methods to maintain single mode operation of LMA fibers [31], invention of



various kinds of components and fiber designs for efficient coupling and combination of the
optical pump and laser signal into the double-clad active fiber [3, 18, 19], microstructure and
air-clad designs of the double clad fiber and very large mode area rod-type fibers for high
pulse energy amplification. The output power levels emitted out of single ytterbium-doped
fiber laser source reached the theoretical level of about 20 kW [3]. Such high average power
was achieved thanks to the so called tandem pumping where the last stage of the laser
amplifiers is not pumped directly by multimode laser diode as shown in Fig. 1 but it is
pumped by multiple of high brightness fiber lasers.

This is the early millennia boom of fiber laser research that gives the general notion
of fiber laser being the youngest branch of lasers. Nowadays, we are witnessing new wave of
interest in fiber lasers that coincide with emerging new applications in many areas of human
activities, including new fast manufacturing processes (e. g., for the so called factories of the
future), robot-based processing, processing of new materials/organic electronic, solar cell
mass production, healthcare, light sources in biophotonics, environmental control and
security applications. For the new applications of fiber lasers, the race for the highest power
is usually not the priority, but the fiber laser devices with tailored performance, e. g.,
unconventional wavelengths, tailored beam shape, small footprint, high efficiency, are often
required.

The author and his coworkers contributed in many aspects to the research of fiber
lasers, e. g., in the study of coherent combination of Tm fiber lasers [32], modulational-
instability-based ultrafast fiber lasers [33], preparation of twin-core fibers [34] and long-
period fiber gratings [35] for fiber lasers; and range of active fibers doped with Er/Yb [36],
Ho [37], and Tm [38]. They have pioneered the research of ceramic nanoparticle doping of
rare-earth-doped silica fibers using Modified Chemical Vapor Deposition (MCVD) method
[39, 40]. They developed rigorous theoretical description of the mode mixing in DC fibers
that opened new way to design and optimization of high-power fiber lasers [26, 27, 41, 42]
as well as new solutions for pump and signal combining [36, 43]. Last but not least they
contributed to the discovery of laser wavelength self-sweeping in fiber lasers [35, 44] that is
subject of this theses.



1.2 Self-sweeping of fiber laser wavelength and its physical origin

Spontaneous or self-induced laser line sweeping (SLLS) is a special case of self-pulsing,
longitudinal-mode instability of a laser cavity. The designation of the effect reflects the fact
that the self-pulsing coexists with spectacular laser line drift with time. Examples of the laser
cavities where the self-sweeping effect was observed and examples of the laser line drift are
shown in Fig. 4 and 5, respectively. Most of the SLLS fiber lasers described in the literature
were configured in a Fabry-Perot resonator although other cavity arrangements are possible.
In fact, it was the ring cavity in Fig 3(b), where such laser wavelength drift in the range of
1076-1084 nm was for the first time briefly mentioned [35]. This observation was taken in
November 2008 while we were investigating applications of band-stop filters based on long-
period fiber grating (LPFG) for stabilization of laser output and determination of laser
wavelength.®> We studied the effect in various cavity setup and pump powers but we had not
found suitable explanation for the effect. The slow dynamics of the sweeping led us to
attribute the effect to temperature dependence. On the other hand almost perfect
periodicity and long term stability of the wavelength drift was in contradiction with the
temperature origin. Since the paper [35] was aimed at improving stability of a continuous-
wave operation of fiber ring laser and since we were not sure about correct explanation of
the self-sweeping, we mentioned the wavelength drift only shortly in the paper. Our
measurements of the year 2008 we published in more detail only in 2012 [44, 46] together
with new measurements in Fabry-Perot fiber laser cavity. The first detailed journal papers on
this subject were published in 2011 [47, 48]. Kir'yanov and Il'ichev [47] introduced the
abbreviation SLLS for the observed phenomenon and it is often adopted since then. As an
active medium, they used Yb-doped double clad fiber in a two-fiber bundle configuration, so
called GT Wave. The cross section of the GT Wave waveguide structure can be seen Fig. 2.
Ivan Lobach et al. [48] used similar fiber as it was used in [35]. They found notably excellent
explanation of the spectacular self-sweeping effect. Their explanation were inspired by
Victor Sergeyevich Pivtsov who recall his earlier observation of the self-sweeping in Ruby
laser, though in limited range of about 20 pm only [49]; self-sweeping was also observed in
unidirectional ring dye laser that swept in the interval of about 100 pm [50].

The SLLS can be explained by a spatial-hole burning (SHB) in the active fiber. At laser
threshold, the laser may radiate at single longitudinal mode that create standing wave in the
cavity. The population inversion is less depleted at nodes, where the laser intensity is
minimal, than at anti-nodes of the standing-wave, where the laser signal intensity is high.
Therefore, the initially lasing longitudinal mode quickly becomes less preferred than the
neighboring longitudinal modes as its gain decreased. The laser wavelength hops to the next

3 Earlier observation was taken in Yb-fiber laser in Fabry-Perot setup in the Czech Technical University
in spring 2008 [45]. However, the sweeping was not recorded and studied in details as it was in the
case of the ring laser.



longitudinal mode and the situation repeats as long as the spectral gain exceeds the cavity
losses. Then the longitudinal mode jumps back approximately to the position of the initial
laser wavelength. Note that in the case of fiber ring laser, the standing wave was created by
interference of the laser signal with parasitic reflection from unintentionally left
perpendicular cleave of the output coupler, see Fig. 4(a). The wavelength sweeping is quasi-
continuous because it respects the longitudinal mode-instability of consequential mode
hopping. Since the fiber laser cavity is typically couple of meters long, the spectral hops are
rather small, e. g., about 10 MHz for 10 m long Fabry-Perot cavity or 20 m long ring laser
cavity. It should be noted that the width of the detected spectral line in Fig. 5(a) does not
correspond to the actual line width but reflect the spectral resolution of the spectrometer
used, which was about 1 nm. Typically, the laser output is composed of single-longitudinal
mode or few-longitudinal modes and the linewidth is below 10 MHz. Spectral recording in
Fig. 5(a) is also influenced by rapidly falling sensitivity of the silicon-based CCD
photodetector of the used spectrometer. The laser emitted at around 1080 n, it means it
emits on the near-infrared edge of the photodetector sensitivity. In fact, the amplitude of
the laser output decreases much less from the beginning of the sweeping interval towards

its end.
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Figure 4. Examples of fiber laser setups in which the wavelength self-sweeping was
observed: (a) Fiber ring laser with optional long-period fiber gratings for selection of spectral
region of sweeping; (b) fiber laser in Fabry-Perot configuration.

From the spectral point of view the self-written grating exhibit itself as an
inhomogeneous gain broadening. The gain/loss spectrum is then modulated by a function
proportional to sinc(C(A-Ag)) where the constant C depends primarily on the grating length
and Ag is the wavelength of the narrow-bandwidth, high-power beam, see Fig. 6. Such a



spectral modulation is known from applications in erbium doped fiber lasers, e.g., narrowing
and stabilization of the linewidth of erbium doped fiber laser can be achieved by SHB in
twin-core fiber with cores doped with erbium [51]. Modulation of the laser cavity spectral
loss by the function sinc(C(A-Ay)) is apparent, e. g., from results of detailed numerical
modeling of the laser with erbium-doped twin-core fiber tracking filter in [51]. Lobach et al.
assumed in their explanation of the SLLS that the integral inversion population along the
fiber change significantly in time. Typically, the population inversion is higher before the
threshold and correspondingly the spectral gain curve, see the blue curve in Fig 5(a). As the
spectral peak of the gain shifts towards longer wavelength with decreasing excited level
population, such explanation implicates that only sweeping towards longer wavelengths is
possible. However, we reported later also sweeping in reverse direction, i. e., from longer
towards shorter wavelengths [52-54]. Therefore, the theoretical description in [48] became
no longer valid in regard to the initiation of sweeping and setting the direction of the
wavelength drift. The explanation of the self-sweeping had to be modified.
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Figure 5. (a) Spectra of the SLLS laser output radiation at several time instants during one
sweep period. The resolution of the spectrometer was 1 nm. (b) Example of the recording of
the laser wavelength in time.

One possible explanation of the SLLS is based on an assumption that the temporal
variation of the spectral gain (without taking into account the SHB) is significantly lower than
the modulation of spectral gain by sinc(C(A-Ay)) because of the SHB and the associated gain
grating. Under this assumption, the direction of sweeping is given by the slope of the gain
around the peak gain at the beginning of the sweeping interval. The laser wavelength is
shifted in the direction where the slope is lower, i. e., where the side peak of the gain grating
is higher, see Fig. 6(a). Such a theoretical hypothesis can explain the reverse (blue-shift)
sweeping direction as well as the red-shift observed in the first self-sweeping reports.
However, the difference between the sidelobes of the spectral gain caused by the gain



grating is very low and it is expected that other effect might be involved in the process of
determination of the sweeping direction.

Another possible explanation is based on refractive index grating discussed in
sections 1.4. Briefly, the longitudinal grating in inversion population (due to the SHB) causes
not only spectral modulation of gain, i. e., the gain grating, but also weak modulation of
refractive index through Kramers-Kronig relations, i. e., the reflective fiber Bragg grating
(FBG). Such narrowband reflection can modulate the spectral losses of the cavity. In such
way the actual direction of the sweeping would be determined by combination of effects of
the reflective and the gain gratings. In some SLLS laser cavities the effect of the gain grating
could dominate over the refractive index grating, e. g., in short cavities like the Ruby laser,
while in long cavities of fiber lasers could dominate the effect of the dynamic FBG. In
conclusion, the question of origin of the self-sweeping has not been answered yet fully and it
is a topic of ongoing research.
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Figure 6. (a) Yb-fiber gain spectrum just before laser threshold and at the onset of lasing.
Narrow-line laser signal creates a standing-wave that result in periodically changed
population inversion along the fiber. Such a grating leads to modulation of the gain
spectrum. (b) The gain spectra after four successive wavelength-mode hops. Figures are only
illustrative, not in real scale.

10



1.3 Self-pulsing associated with the laser wavelength self-sweeping

Each longitudinal mode radiates in limited time only, it does not reach the continuous wave
regime and it emits only in its temporal stage of relaxation oscillations. Therefore, the
temporal output of SLLS fiber laser is a pulse train of sustained relaxation oscillations.
Indeed, the sweeping rate scales with square root of an average lasing power [48, 55]. This
tendency coincides with the well-known dependency of the frequency of relaxation
oscillations on the average laser output power [56]. It supports the idea that the self-
sweeping effect exists only along with the self-pulsing mode of sustained relaxation
oscillations. Self-sweeping appears just above the threshold and it operates up to pump
power levels of multiple of the laser threshold pump power.

Further increases of the pump power may lead to a self-Q-switched regime. The peak
power of the giant pulses is limited by the onset of SRS. It can be of the order of several kW
as it was reported for the similar setup and pump-power levels [57]. It should be noted that
the transition from SLLS to self-Q-switched regime is not abrupt, but it is rather a gradual
process. The sweeping regime become less regular and it is transformed into a continuous
wave operation of the laser or giant pulses start to appear. Typical temporal characteristics
of the output power for different pump power levels are shown in Fig. 7. It refers to the
ytterbium fiber laser in Fabry-Perot configuration shown in Fig. 4(b) [58, 59]. A train of ~us
long narrow-linewidth pulses was generated in the SLLS regime. The laser in SLLS regime
oscillates either in a single or only a few longitudinal modes [48] and [44]. Indeed, a
sinusoidal beat signal corresponding to the interference of neighboring longitudinal modes
was often detected under the pulse envelope, see details of selected pulses in Fig. 7(b).
While increasing the pump power, a gradual transition of the sinusoidal signal to giant pulses
shorter than 10 ns could be observed.

Such self-pulsing instability with giant pulses generation may appear unexpectedly
and may have catastrophic consequences as it is well known among experimental
researchers in the field of fiber lasers; “ytterbium fiber lasers are particularly notorious in
this regard” wrote David Richardson et al. in [1]. For example, improperly designed rare-
earth doped fiber high-power amplifier chain may inder some conditions generate intense
pulses that may destroy inline components as well as the pump lasers. Despite the apparent
importance of the effect of self-Q-switched instability, only little information and
investigations have been reported in an open literature. Indeed, the researchers and
engineers have been often satisfied when they succeeded to avoid such instability; without
revealing its cause and physical principles [60]. The self-pulsation regimes have been
attributed, e. g., to reabsorption in an unpumped part of the active fiber [61, 62], Raman and
Brillouin scattering processes [57, 63] and ion pairs formation [64, 65]. Thanks to the stable
periodic sweeping, SLLS lasers can advantageously serve as a research platform for the
investigation of self-pulsing, longitudinal-mode instabilities in general. Although question
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about the physical origin of the self-Q-switching mode has not been fully answered yet, the
investigation of the SLLS effect has already brought some important indications. The narrow-
band feature of the SLLS favors the stimulated Brillouin scattering (SBS) and the distributed
mirror may increase the Q-factor of the resonator. It is the longitudinal-mode instability,
including SLLS as its special case, that may trigger the self-Q-switched regime, either through
the SBS or due to enhanced Q-factor of the cavity by creation of highly reflective FBGs that
are described in section 1.4.
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Figure 7. Temporal trace for various output powers of the fiber laser that gradually transit
from the SLLS regime (laser output power 0.15 W- 0.4 W) to the self-Q-switched regime
(>0.5 W). Pulse train (a) and detail of selected pulse (b). Note the beating between the
neighboring longitudinal modes below the pulse envelope.
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1.3 Self-sweeping in different active media

The first self-swept fiber lasers were demonstrated with ytterbium doped fibers as an active
medium as it was reviewed in previous chapters. Sweeping interval of more than 20 nm was
reported [66]. Spectral properties can be controlled to some extent by pump wavelength
[53, 55], length of the active fiber [67] and, in particular, by different types of additional
wavelength selective elements, such as wavelength division multiplexer [66], band pass filter
[52] and combination of band-stop filters based on long-period fiber gratings [35, 44]. The
control of the sweeping direction by the pump wavelength and pump power (and
correspondingly the population inversion) was demonstrated in the case of self-swept
ytterbium fiber laser, see Fig. 8-10 [46, 53]. The laser was built in Fabry-Perot configuration
according to Fig. 4(b).

So far, most of the research works were about self-swept ytterbium fiber lasers.
Nevertheless, the self-sweeping effect has been demonstrated in lasers with number of
other active media. Xiong Wang et al. built a self-swept laser using thulium- and holmium-
doped fiber that reached maximum sweeping interval of 17 nm in the emission band of
thulium between 1900 and 1930 nm; spectral position and sweeping range and rate were
dependent on the pump power [68]. Their laser was core-pumped by a single mode erbium
fiber laser at 1570 nm.

1082[4

5
£ ©
< 1080 | 14 5
< =
o 8
9 5
® 1078 H I=
= 5
\ . 12 g
® : : 2
— 1076 } | ] ) A liA 1L A

N 1 N 1 N 1 N 1 0
0 10 20 30 40

Time, s

Figure 8. Typical temporal dynamics of the laser wavelength and the peak power for the
regime of sweeping towards longer wavelengths, the so-called normal or redshift regime.
Pump power and laser diode case temperature was 0.38 W and 40 °C, respectively. The data
were collected using spectra measurements by the CCD-type spectrometer.
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Figure 4. Temporal dynamics of the laser wavelength and the peak power for the regime of
sweeping towards shorter wavelengths, the so-called reverse or blueshift regime. Pump
power and laser diode case temperature was 0.28 W and 40 °C, respectively. The data were
collected using spectra measurements by the CCD-type spectrometer.
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Figure 5. Temporal dynamics of the laser wavelength and the peak power for transition
regime between the two sweeping directions: sweeping towards longer wavelengths and
sweeping towards shorter wavelengths. Pump power and laser diode case temperature was
0.31 W and 40 °C, respectively. The data were collected using spectra measurements by the
CCD-type spectrometer.
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Concerning the most commonly used active fibers, i. e., erbium-doped fibers, it is not
possible currently to assemble the SLLS fiber laser as easily as it is in the case of ytterbium
fiber lasers. Erbium fiber laser with the SLLS effect was reported only by our team [52]. The
laser operated in the SLLS mode within in the range 1541 — 1565 nm set by the tunable
band-pass filter of 3 nm bandwidth. The sweeping interval was only about 0.5 nm as it was
limited by the bandpass filter. Both redshift and blueshift sweeping directions were
observed. Although we tested many different configurations and fibers, we achieved self-
sweeping only with a tunable band pass filter. The SLLS phenomenon is not limited to rare-
earth doped active media as it was observed also in a fiber laser doped with bismuth [69].

The bismuth fiber laser was pumped at 1310 nm by Raman fiber laser and operated
in about 10 nm wide self-sweeping regime around 1460 nm. Thanks to long-length of the
fiber laser (90 m), the small frequency separation of about 1 MHz between the longitudinal
modes gives almost quasi-continuous wavelength tuning. In addition, the output was
described as quasi-continuous as it consisted of densely spaced long pulses (~3 us) that
almost overlapped in time with each other. Apart from fiber lasers, reports of self-sweeping
in ruby and dye lasers should be mentioned [49, 50].
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Figure 9. Experimental setup of the holmium-doped fiber laser pumped by Tm-doped fiber
ring laser at around 2030 nm (a) and by a commercial fiber laser at 1940 nm (b).
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The latest successful SLLS demonstration was achieved around 2100 nm thanks to
stimulated emission of radiation in holmium where blueshift sweeping in 4 nm wide interval
was observed [54]. However, the sweeping was not that stable in time as it was the case in
ytterbium fiber lasers; it lasted only for couple of minutes and then it transferred into
irregular longitudinal-mode instability self-pulsing. After cooling down the holmium-doped
fiber, the SLLS could be again set into operation. The laser was pumped by in-house built
thulium-doped fiber laser emitting at around 2020 - 2030 nm. We tested the same holmium
fiber in the Czech Technical University by using commercial thulium fiber laser emitting at
1940 nm but only self-pulsing, longitudinal-mode instability regime was established and we
did not see the regular self-sweeping regime; both types of pumping were compared in
reference [70].
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Figure 10. Transmission of the wavelength division multiplexer. Wavelengths of the pump
lasers and signal are illustrated in the figure. Note that the resolution of FTIR spectrometer
was set to 16 nm. Therefore, the water vapor absorption around 1950 nm as well as the
minima of the coupling ratios are not resolved.

The experiments with holmium fiber laser are described here in more detail in order
to show an example of self-swept fiber leaser other than ytterbium-doped fiber laser. The
SLLS regime was observed in Fabry-Perot cavity configuration with low reflectivity of the
output mirror of 3.5 %, see Fig. 9. The other mirror was formed by the highly-reflective fiber-
loop mirror made of 3 dB coupler with broad and flat spectra transmission characteristics
around 2 micrometers. Residual part of the laser radiation in the fiber-loop mirror was
coupled out from the cavity through the other branch of the coupler. Then, this branch was
used for monitoring of the laser signal and correspondingly for monitoring of the laser
output temporal behavior. The InGaAs photodiode with oscilloscope were connected either
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through a circulator and FBG written into standard single mode fiber at 2100 nm, so that
only laser signal in close proximity to 2100 nm was detected, or directly using that branch of
the coupler. The fused fiber couplers were fabricated from G.652 fiber [37, 71]; measured
coupling ratio of the wavelength division multiplexer 1.95/2.1 um is shown in Fig. 10.
Temporal traces of the laser output when the laser was pumped at ~2030 nm are shown in
Fig. 11 (a,b). The self-sweeping operation can be clearly identified from the temporal output
behavior recorded using the FBG and the circulator, see Fig. 11 (a). The SLLS period is ~ 5.5 s.
Without the circulator and the FBG, we detected the typical train of sustained relaxation
oscillations, see example in Fig. 11(b). Individual pulses may contain fine substructure of
mode beating of neighboring longitudinal modes. The period of the mode beating
corresponds to the roundtrip time or its integer multiple. In the case of pumping at 1940 nm,
we tested various fiber lengths from 8 m down to 5 m.
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Figure 11. Temporal characteristics of the laser output traces beyond the FBG filter at 2100
nm and the circulator recorded by the oscilloscope for the case of pumping at ~2030 nm (a).
Temporal characteristics (b,c,d) were recorded without the FBG filter and the circulator. The
pump wavelength is shown in the respective figures. Longitudinal mode-instability and mode
beating was observed also for the case of pumping at 1940 nm (c,d).
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The time evolution of the spectra was recorded by the Fourier-transform infra-red
spectrometer Nicolet 8700. We used the so-called time series mode of the spectrometer, in
which fast spectrum recording was performed consecutively within a specified time interval,
e. g., 60 seconds. Example of such a time series recording is shown in Fig. 12. The
spectrometer linear scan velocity of 2.53 cm/s and low resolution of about 3 nm (8 cm™)
were set in order to allow fast scanning and in order to obtain more spectra within one
sweep. We observed SLLS with 3-6 nm span of laser wavelength sweeping at around 2100
nm and the sweeping rate was typically 0.7-0.9 nm/s.
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Figure 12. Sweeping of the laser wavelength recorded by the FTIR spectrometer in color
contour plot just after the laser was switched on (a) and selected spectra slices of the time
series recorded within one sweep (b). Note that the resolution was set to 3 nm in order to
allow fast recording of the time series spectra.
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1.4 Reflectivity of dynamic gratings in self-swept fiber lasers

Longitudinal mode instabilities in fiber lasers may induce periodic modulation of inversion
population in the active medium through the SHB effect. Since the spectral absorption and
emission of the gain media and its refractive index dispersion are related through the
Kramers-Kronig relations, it means that the periodic modulation of inversion population
creates also a grating in refractive index. Such gratings have pitch of less than a micrometer,
defined by half of the wavelength of the laser mode responsible for the grating build-up. The
effect of standing waves on the refractive index along the fiber is known for a long time; it
was even used for the creation of the first ever FBG by Ken O. Hill [72]. The refractive index
change with light-induced change of inversion population was studied for ytterbium doped
fibers in detail [73, 74]. However, despite the relatively long history of laser physics, the first
evaluation of reflectivity of the FBGs spontaneously created in the active media itself [58,
59] as well as the inscription of phase gratings [75] has been reported only very recently.
Since the reflectivity is significant in a wavelength range just around the lasing wavelength, it
is not easy to measure the reflectivity of these FBGs experimentally. Finally, the reflection of
about 5 % of such FBGs was successfully measured in a self-swept Yb fiber laser with a
polarization-maintaining fiber cavity laser. For the reflectivity measurement, the probe beam
was perpendicularly polarized with respect to the self-swept laser radiation [76, 77]. The
fiber laser was sweeping in wavelength interval from 1047 to 1070 nm and the external
probe laser was a single-frequency, linearly polarized Nd:YAG laser with about 1 kHz
linewidth at 1064 nm. When the self-swept laser wavelength crossed the wavelength of the
external probe beam, the dynamic fiber-Bragg gratings (associated with the instantaneous
wavelengths of the self-swept laser) reflected the probe beam. Since several other effects
affected the reflected probe signal and also the reflectivity of the dynamic fiber Bragg
grating can be polarization-dependent, the measured ~5 % reflectivity is only rough
estimation and more detailed study is needed to determine the reflectivity of the dynamic
gratings experimentally. Nevertheless, the existence of theoretically predicted significant
reflection was proved already experimentally.

The author of the theses developed a theoretical model of FBGs in a self-swept fiber
laser that allows for estimation of spectral reflectivity of the FBGs. The model consists of
several steps, as it is schematically shown in Fig. 13. Firstly, the refractive index change is
evaluated without taking into account interference effects. For given laser setup and active
fiber parameters one can evaluate the distribution of inversion population along the active
fiber by using a comprehensive numerical model of the active medium. The model is based
on simultaneous solution of laser rate equations and set of differential equations describing
propagation of the radiation. An efficient algorithm and computer code was developed in
house [78]. The paper [78] is about thulium fiber laser but the algorithm is easily
transferrable to another active media and the transient FBGs in self-swept ytterbium fiber
lasers were studied.
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Secondly, the interference pattern was considered in the model. Initially, only one standing
wave was considered, but the model was recently modified and extended so that it can
estimate reflection of more realistic case of several superimposed gratings with damped
modulation depths. Such superimposed damped Bragg gratings would be created by number
of successive lasing of neighboring longitudinal modes. It should be noted that sinusoidal
refractive index modulation is assumed, but in fact, the modulation can be different as
shown for an analogical case of spatial hole burning in the erbium-doped twin-core fiber
[51]. However, the models of fiber-Bragg gratings used in the next step are based on the
assumption of sinusoidal refractive index modulation.

Thirdly, the reflectivity is evaluated for the calculated refractive index grating. In the
simplest case of single Bragg grating, the reflectivity of the fiber grating of the whole Yb
doped fiber was evaluated by the transfer matrix method, described in detail by Erdogan
[79]. In the case of superimposed Bragg gratings we have developed new theoretical model
for estimation of the reflective based on coupled mode theory [80]. The model allows
treating complex refractive index in order to account for gain and loss along the fiber.

The resulted spectra of FBG reflectivity show that the overall reflectivity of the series
of superimposed gratings decreases with increasing number of modes involved. However,
for realistic values of temporal damping of the transient gratings they can still reach
significant values on the orders of units or tens of percent. The reflectivity depends on the
mutual position of the interference pattern and in the ratio of the optical power of the
forward and backward propagating laser signal. Therefore, the reflectivity can be to some
extent controlled by parameters of the laser. We have shown the influence of the resonator
length. The calculated reflection spectra correspond qualitatively to the recently reported
reflectivity measurement of spontaneously created distributed Bragg mirror in a fiber laser
with a similar setup.

21



1.5 Concluding remarks

Almost ten years of investigation of the wavelength self-sweeping in fiber lasers have
brought important contributions to laser physics and technology. Significance of the results
has two aspects: contribution to laser physics fundamentals and practical applications.

From the point of view of laser physics fundamentals, the SLLS fiber lasers offer
unique test bed for investigation of longitudinal mode instability thanks to regular periodic
nature of the effect. Significant reflection of spontaneously created FBG in the active
medium of the laser was predicted for the first time. Research of SLLS helps to understand
fiber laser instabilities and to find ways how to avoid them. For example, SLLS or
longitudinal-mode instability in general are undesired effects in fiber lasers that are intended
for cw mode of operation. In the case of self-pulsing instability like self-Q-switching it is even
more important as the peak power may damage components of the laser device itself or
measurement devices.

There are interesting analogies between the SLLS effect and transverse mode
instabilities and mode locked lasers. Therefore, thorough understanding of the self-sweeping
effect can be useful for research of other effects in fiber laser devices. The transversal-mode
instability can occur in high-power fiber amplifiers, namely those formed by LMA fibers [81,
82]. The transversal mode instability is caused by creating a fiber grating with grating pitch
orders of magnitude longer than the laser wavelength responsible for the grating build-up;
the grating enables coupling between different transversal modes of the fiber core
propagating in the same direction. On the contrary, the longitudinal-mode instability is
accompanied by creating a fiber grating with grating pitch close to the half of the laser
wavelength responsible for the creation of the grating; the grating enables coupling between
different longitudinal modes of the fiber core propagating in the opposite direction (it works
in reflection). Despite differences between the transversal and longitudinal mode
instabilities, both types of instabilities are analogical in terms of creating the refractive index
grating along the fiber. Therefore, the knowledge acquired in the description of transient
FBG may also be useful for understanding the transversal mode instabilities.

The longitudinal-mode instability (or longitudinal-mode sweeping) is kind of unique
special case of the free running regime of the laser, analogical to some extent with another
unique special case of the free running regime, the well-known regime of mode-locking. In
the regime of mode-locking, the longitudinal modes oscillate all together and they are
locked in phase. The spectrum is broad and the pulses are ultra-short. In the regime of
mode-(or self-) sweeping, the longitudinal modes do not oscillates together but they are
ordered in such a way that they are hopping from one longitudinal mode to the next one.
The spectrum is ultra-short (mostly single-frequency) and the pulses are broad. Since self-
swept lasers emit many longitudinal modes, arbitrary-waveform, short-pulses can be
synthesized in the Fourier domain [83].
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From the point of view of applications, the self-swept fiber lasers may find similar use
as other swept sources. Although the self-swept fiber lasers have drawbacks of slow
scanning frequency and narrower sweeping interval, they are attractive for their relatively
high power, simple design and inherently narrow linewidths. It makes these swept sources
interesting for applications in interrogation of optical fiber sensor arrays, component testing
and in laser spectroscopy. Indeed, SLLS applications in spectral testing of components with
narrow spectral features [66] and for testing high-speed spectrum analyzers were
demonstrated [84]. SLLS fiber laser was used for coherent Brillouin optical spectrum analyzer
[85]. Slight variations of the sweeping interval start and end, see for example Fig. 5(b), can
be mitigated by Michelson interferometer in the laser cavity as shown recently [86]. The
stabilizing effect of the Michelson interferometer is also an indirect evidence of dynamic
grating reflectivity. Another field of practical exploitation is all-fiber self-Q-switched fiber
lasers because understanding of triggering mechanisms should lead to substantial
improvement of all-fiber Q-switched laser sources and/or to development of stable and cost-
effective self-Q-switched fiber lasers.
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