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Preface

This habilitation thesis includes a part of my original and pioneering results
published during the period of about fifteen years after obtaining the doctoral
degree. The corresponding papers were published in high-ranking journals and
have a very good citation. Most of results, obtained already more than twenty
years ago, are still actual presently and represent thus the basis of theoretical
description of diffractive electroproduction of vector mesons off nuclei.

Within this field the main emphasize is devoted to investigation of effects oc-
curing in interactions with both nucleon and nuclear targets. The theoretical
description of the diffractive process of vector meson production is based on the
light-cone (LC) quantum-chromodynamics dipole approach using the rigourous
path integral technique, which allows to incorporate naturally the color trans-
parency and coherence length effects. Besides the quark shadowing I included
also the nuclear suppression of gluons at small values of Bjorken xBj within the
same LC approach treating it as shadowing corrections for the higher Fock states
containing gluons.

All these effects were analysed in elastic (coherent) and quasielastic (incoher-
ent) production of different vector mesons off nuclei. I discussed possibilities for
separated study of color transparency and the onset of coherence length effects.

A part of presented papers is devoted to investigation of anomalies in produc-
tion of (2S) radially excited vector mesons. From the specific behavior of the
nucleus-to-nucleon ratio of production cross sections as function of the photon
energy and virtuality one can study a shape of radial wave functions with the
corresponding position of the node.

Investigating different aspects of diffractive electroproduction of vector mesons,
the presented papers are divided into four chapters and are collected in the Ap-
pendix.
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1. Introduction

The dynamics of vector meson (ρ, Φ, J/Ψ, Υ, ...) production is presently a hot
topic evolved intensively during last three decades. Currently the photoproduc-
tion of vector mesons represents one of the intensive channels in ultra-peripheral
collisions of heavy ions (UPC) studied by experiments [1, 2] at the Large Hadron
Collider (LHC) at CERN. If the nucleus remains in the ground state, γ A→ V A,
such reaction is called coherent, otherwise we call it incoherent.

Discovery of J/Ψ in 1973 confirmed the idea of charm quark and gave a basis
for its further investigations, which were affected also by new experiments situ-
ated on more developed accelerators using more and more powerful electronics.
Later, at the beginning of 90’s the experiments with relativistic heavy-ion col-
lisions [3] stimulated the enhanced interest about charmonium suppression as a
possible indication of the quark-gluon plasma formation. That fact has given a
further motivation to continue in investigation of space-time pattern of charmo-
nium production and opened new possibilities to analyze various corresponding
phenomena occuring in interactions off nuclei.

In diffractive electroproduction of vector mesons one should include and study
two main phenomena occuring in interactions with nuclear targets: the color
transparency (absorption) and coherence (shadowing) length effets.

1.1. Color transparency

One of the fundamental phenomenon coming from the quantum-chromodynamics
(QCD) is color transparency (CT) studied intensively almost three last decades.
This effect manifests itself as more transparent nuclear medium for colorless
hadronic wave packets than predicted by the Glauber model. Besides the nuclear
medium becomes more transparent for smaller transverse sizes r of the hadron.

The CT phenomenon can be treated either in the hadronic or in the quark ba-
sis. The former approach leads to Gribov’s inelastic corrections [4], the latter one
manifests itself as a result of color screening [5, 6] (see also the review [7]). Al-
though these two approaches are complementary, the quark-gluon interpretation
is more intuitive and straightforward. Colorless objects (hadrons) can interact
only because the color is distributed inside them. Consequently, a point-like col-
orless object is bare of any interaction with external color field. Therefore its
cross section vanishes σ(r) ∝ r2 at r → 0 [5]. This fact naturally explains the
correlation between the cross sections of hadrons and their sizes [8, 9, 10].

In the classical probabilistic approach the final state absorption of the produced
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1. Introduction

meson can be estimated through the survival probability W (z, b) of the vector
meson produced at the point with longitudinal coordinate z and impact parameter
~b,

W (z, b) = exp


−σV Nin

∞∫

z

dz′ ρA(b, z′)


 , (1.1)

where ρA(b, z) is the nuclear density and σV Nin is the inelastic V N cross section.
Going beyond the classical approach, which is represented by the vector domi-

nance model (VDM), the diffractive process initiating the production of the vector
meson on a bound nucleon is γ∗N → q̄q N (with possible glue). Such a process of
diffractive electroproduction of vector mesons off nuclei is very effective and sensi-
tive for study of CT. A photon of high virtuality Q2 is expected to produce a pair
with a small ∼ 1/Q2 transverse separation 1. Then CT manifests itself as a van-
ishing absorption of the small sized colorless q̄q wave packet during propagation
through the nucleus. However, the transverse size of the colorless pair may evolve
during the time of propagation due to transverse motion of the quarks. Besides,
the medium filters out large size configurations which have larger absorption cross
section, an effect known as color filtering. Eventually, the resulting distribution
amplitude of the q̄q wave packet must be projected onto the wave function of the
vector meson V .

Dynamical evolution of the small size q̄q pair to a normal size vector meson is
controlled by the time scale called formation time. Due to uncertainty principle,
one needs time interval to resolve different levels V (the ground state) or V ′

(the next excited state) in the final state. In the rest frame of the nucleus this
formation time is Lorentz dilated,

tf =
2 ν

m′V
2 −m2

V

, (1.2)

where ν is the photon energy; mV and m′V is the mass of a vector meson in the
1S ground state and 2S radially excited state, respectively.

A rigorous quantum-mechanical description of the pair evolution was suggested
in [11] and is based on the light-cone Green function technique. This approach is
presented below in Sect. 2.

According to quark-hadron duality we expect an equivalent description of
diffractive vector meson production also in the hadronic basis. Such a descrip-
tion is presented in [12] and looks quite different. Here the incident photon may
produce different states on a bound nucleon, the V meson ground state or an
excited state. Those states propagate through the nucleus experiencing multiple
diagonal and off-diagonal diffractive interactions, and eventually the ground state
is detected.
1For production of light vector mesons (ρ0, Φ0) very asymmetric pairs can be possible when

the q or q̄ carry almost the whole photon momentum. As a results the q̄q pair can have a
large separation, see Chapter 2 and Eq. (2.12). Not so for production of charmonia where
one can use the nonrelativistic approximation, α = 0.5, with rather high accuracy.
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1.2. Effects of quantum coherence; shadowing of quarks and gluons

Comparing the both descriptions, neither of them can be calculated exactly,
and therefore each has advantages and shortcomings as was discussed in [13].
However, they are complementary and rely on different approximations and their
comparison may provide a scale for the theoretical uncertainty involved.

1.2. Effects of quantum coherence; shadowing of
quarks and gluons

In contrast to final state absorption, the quark shadowing is a pure quantum-
mechanical effect resulting from destructive interference of the amplitudes for
which the interaction takes place on different bound nucleons. This phenomenon
is also known to cause nuclear suppression. It can be interpreted as a competi-
tion between the different nucleons participating in the reaction: since the total
probability cannot exceed one, each participating nucleon diminishes the chances
of others to contribute to the process.

Calculating nuclear absporption at small energies using the Glauber formula
one should not expect any shadowing due to smallness of the photoproduction
cross section. However, it has been realized back in the 60s (see the review [14])
that the photon can interact via its hadronic fluctuations. During propagation
of these fluctuations through a medium they may interact with a large hadronic
cross section, which causes shadowing. Consequently, shadowing effets reflect
the distance from the absorption point when the pointlike photon becomes the
hadronlike q̄q pair. This may be also interpreted as a lifetime of q̄q fluctuation
providing the time scale which controls shadowing. Again, it can be estimated
relying on the uncertainty principle and Lorentz time dilation as,

tc =
2 ν

Q2 +m2
V

. (1.3)

It is usually called coherence time, but we also will use the term coherence length
(CL), since light-cone kinematics is assumed, lc = tc (similarly, for formation
length lf = tf ). CL is related to the longitudinal momentum transfer qc = 1/lc
in the process γ∗N → V N , which controls the interference of the production
amplitudes from different nucleons.

1.3. Mixing of absorption and shadowing

There are many reactions where the initial state shadowing has been indeed
observed experimentally since no final state absorption is expected. For example
the total photoabsorption cross section on nuclei (see [14]), the inclusive deep-
inelastic cross section [15, 16], the total neutrino-nucleus cross section [17], the
Drell-Yan reaction of dilepton production [18, 19], etc. However, in the case of
electroproduction of vector mesons off nuclei, it is difficult to study separately
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1. Introduction

shadowing and absorption effects as two different sources of nuclear suppression
since they occur with the same cross section. For this reason one should study
differences in manifestations of these effects in the two limiting cases [11], what
can be illustrated within VDM.

In the low energy limit of small lc, shorter than the mean internucleon spacing
∼ 2 fm, only the final state absorption matters. Then the ratio of the quasielastic
(or incoherent) γ∗A → V X and γ∗N → V X cross sections, usually called
nuclear transparency, reads,

TrincA

∣∣∣
lc�RA

≡ σγ
∗A
V

Aσγ
∗N
V

=
1

A

∫
d2b

∞∫

−∞

dz ρA(b, z) exp


−σV Nin

∞∫

z

dz′ ρA(b, z′)




=
1

AσV Nin

∫
d2b

{
1− exp

[
−σV Nin T (b)

]}
=

σV Ain
AσV Nin

. (1.4)

In the high energy limit of long lc the expression for nuclear transparency takes
a different form,

TrincA

∣∣∣
lc�RA

=

∫
d2b TA(b) exp

[
−σV Nin TA(b)

]
, (1.5)

where we assume σV Nel � σV Nin for the sake of simplicity. TA(b) is the nuclear
thickness function

TA(b) =

∞∫

−∞

dz ρA(b, z) . (1.6)

The exact expression beyond VDM which interpolates between the low and high
energy regimes (1.4) and (1.5) can be found in [20].

The expression Eq. (1.5) clearly demonstrates that at large energies correspond-
ing to long lc the vector meson attenuates along the whole nucleus thickness, but
only along roughly half of that length in (1.4). This confirms our expectation
that nuclear shadowing also contributes to Eq. (1.5) increasing suppression.

The problem of separation of CT and CL effects arises especially in production
of light vector mesons (ρ0, Φ0) [13]. In this case the coherence length is larger or
comparable with the formation one starting from the photoproduction limit up
to Q2 ∼ 1 ÷ 2 GeV2. In charmonium production [21], however, there is a strong
inequality lf > lc independently of Q2 and ν. It leads to a different scenario of
CT-CL mixing compared to production of light vector mesons as is discussed in
Chapter 3.

In exclusive production of vector mesons at high energies besides quark shad-
owing discussed in Chapters 3 and 4 we included also gluon shadowing (GS)
corrections as an important phenomenon at small Bjorken-xBj [13]. The GS
effect also suppresses electroproduction of vector mesons as is discussed in Chap-
ter 5. In terms of the light-cone QCD approach the process of gluon shadowing
is related to the inclusion of higher Fock components, |q̄q nG〉, containing gluons
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1.4. Outline of the habilitation thesis

[22]. Such fluctuations might be quite heavy compared to the simplest |q̄q〉 fluc-
tuation, therefore, they have a shorter lifetime [23] and need a higher energy to
be relevant.

It was shown in [24, 21] that for electroproduction of charmonia off nuclei the
gluon shadowing starts to be important at c.m. collision energy

√
s ≥ 30−60 GeV

depending on nuclear target A and photon virtuality Q2. However, we have
found that in incoherent electroproduction of charmonia off nuclei [21] the gluon
shadowing contribution to overall suppression is quite small within the kinematic
range important for investigation of CT.

1.4. Outline of the habilitation thesis

In the next Chapter 2 we present a short review of the light-cone (LC) dipole
approach to diffractive electroproduction of vector mesons in the rest frame of the
nucleon target. The key ingredient of this approach is the universal interaction
cross section for a colorless quark-antiquark dipole and a nucleon presented in
Sect. 2.1. The Sect. 2.2 is devoted to description of the LC wave function for a
quark-antiquark fluctuation of the virtual photon. Here we treat the both, free
and interacting q̄q pairs of the photon. The model for the LC wave function of a
vector meson is described in Sect. 2.3. As a rigorous test of the model we present
in Sect. 2.4 calculations of the cross section of elastic electroproduction of ρ and
φ mesons off a nucleon target. We found a good agreement with available data
as function of the collision energy and photon virtuality Q2.

Chapter 3 is devoted to incoherent production of vector mesons off nuclei.
In Sect. 3.1 the absorption is incorporated using the path integral formalism
by introducing an imaginary part of the potential into the two-dimensional LC
Schrödinger equation for the Green function. Different limiting cases of short and
long coherence and formation lengths are considered in Sections 3.1.1, 3.1.2 and
3.1.3, respectively. The exact expression Eq. (3.10) presented in Section 3.1.4 for
the cross section of incoherent vector meson production represents the general
case with no restrictions on the magnitude of the coherence length. Numerical
calculations and comparison with available data are presented in Sect. 3.2.

Coherent production of vector mesons off nuclei leaving the nucleus intact is
studied in Chapter 4. The formalism described in Sect. 4.1 is simpler than in the
case of incoherent production. The calculations and the comparison with data are
presented in Sect. 4.2. Here we show that the effect of CT on the Q2 dependence
of nuclear transparency at lc = const is weaker than in the case of incoherent
production and is difficult to be detected at low energies since the cross section
is small.

At large energies the exclusive production of vector mesons is controlled by
the small-xBj physics, and gluon shadowing becomes an important phenomenon.
In Chapter 5 gluon shadowing is calculated and included in the calculations for
nuclear transparency.
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1. Introduction

The results of the present habilitation thesis are summarized and discussed in
Sect. 6.
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2. Short review of the light-cone
dipole phenomenology for
γ∗N → V N

In the light-cone dipole approach the amplitude of a diffractive process is treated
as elastic scattering of a q̄q fluctuation of the incident particle. The elastic am-
plitude is given by convolution of the universal flavor independent dipole cross
section for the q̄q interaction with a nucleon, σq̄q, [5] and the initial and final
wave functions. Then for the exclusive photo- or electroproduction of vector
mesons γ∗N → V N the forward production amplitude can be represented in the
quantum-mechanical form

Mγ∗N→V N(s,Q2) = 〈V |σNq̄q(~ρ, s)|γ∗〉 =

1∫

0

dα

∫
d2r Ψ∗V (~r, α)σq̄q(~r, s) Ψγ∗(~r, α,Q

2)

(2.1)
with the normalization

dσ

dt

∣∣∣∣
t=0

=
|M|2
16π

. (2.2)

For calculations of the photoproduction amplitude one needs to know the fol-
lowing ingredients of Eq. (2.1): (i) the dipole cross section σq̄q(~r, s) which depends
on the q̄q transverse separation ~r and the c.m. energy squared s. (ii) The light-
cone (LC) wave function of the photon Ψγ∗(~r, α,Q

2) which also depends on the
photon virtuality Q2 and the relative share α of the photon momentum carried
by the quark. (iii) The LC wave function ΨV (~r, α) of the vector meson.

Note that in the LC formalism the photon and meson wave functions contain
also higher Fock states |q̄q〉, |q̄qG〉, |q̄q2G〉, etc. The effects of higher Fock states
are implicitly incorporated into the energy dependence of the dipole cross section
σq̄q(~r, s) as is given in Eq. (2.1). However, as for nuclear targets, one must
explicitly include the higher Fock states because their eikonalization leads to
gluon shadowing as will be dicussed in Chapter 5.

2.1. Phenomenological dipole cross section

The dipole cross section σq̄q(~r, s) represents the interaction of a q̄q dipole of
transverse separation ~r with a nucleon [5]. It is a flavor independent universal
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2. Short review of the light-cone dipole phenomenology for γ∗N → V N

function of ~r and energy and allows to describe in a uniform way various high
energy processes. It is known to vanish quadratically σq̄q(r, s) ∝ r2 as r → 0
due to color screening (CT property) and cannot be predicted reliably because
of poorly known higher order pQCD corrections and nonperturbative effects.
Detailed discussion about the dipole cross section σq̄q(~r, s) can be found in [13].

There are several popular parameterizations of σq̄q(~r, s). The first group of
parametrizations suggested in [25, 26, 27, 28, 29] reflects the fact that at small
separations the dipole cross section should be a function of r and xBj ∼ 1/(r2 s) to
reproduce the Bjorken scaling. It well describes data for deep-inelastic scattering
(DIS) at small xBj and medium and high Q2. However, at small Q2 it cannot be
correct since it predicts energy independent hadronic cross sections. Besides, xBj
is not any more a proper variable at small Q2 and should be replaced by energy.
For this reason we used in calculations also the parameterization suggested in [30],
which is similar to one in [25, 26, 27, 28, 29], but contains an explicit dependence
on energy. In this case our approach will be valid down to the limit of real
photoproduction. This parametrizatnion has the following form:

σq̄q(r, s) = σ0(s)
[
1− e−r2/r20(s)

]
. (2.3)

It correctly reproduces the hadronic cross sections for the choice

σ0(s) = σπptot(s)

[
1 +

3

8

r2
0(s)

〈r2
ch〉

]
mb , (2.4)

r0(s) = 0.88

(
s

s0

)−0.14

fm . (2.5)

Here 〈r2
ch〉 = 0.44 fm2 is the mean pion charge radius squared; s0 = 1000 GeV2.

The cross section σπptot(s) was fitted to data in [31, 32],

σπptot(s) = 23.6

(
s

s0

)0.079

+ 0.432

(
s

s0

)−0.45

mb , (2.6)

containing the Pomeron and Reggeon parts as was presented and discussed in
[13].

The dipole cross section Eqs.(2.3) – (2.6) provides the imaginary part of the
elastic amplitude. It is known, however, that the energy dependence of the total
cross section generates also a real part [33],

σq̄q(r, s)⇒
(

1− i π
2

∂

∂ ln(s)

)
σq̄q(r, s) . (2.7)

The energy dependence of the dipole cross section Eq. (2.3) is rather steep at
small r leading to a large real part which should not be neglected. For instance,
the photoproduction amplitude of γN → J/ΨN rises ∝ s0.2 and the real-to-
imaginary part ratio is over 30%.
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2.2. The q̄q wave function of the photon

Although the form of Eq. (2.3) successfully describes data for DIS at small
x only up to Q2 ≈ 10 ÷ 20 GeV2 we prefer this parameterization for study of
vector meson electroproduction. The reason is that we want to study CT effects
predominantly in the range Q2 ≤ 20 GeV2 and in addition the parameterization
in Eq. (2.3) describes the transition toward photoproduction limit better than
parameterizations presented in [25, 26, 27, 28, 29].

2.2. The q̄q wave function of the photon

The perturbative distribution amplitude (“wave function”) of the q̄q Fock compo-
nent of the photon has the following form for transversely (T) and longitudinally
(L) polarized photons [34, 35, 36],

ΨT,L
q̄q (~r, α) =

√
NC αem
2π

Zq χ̄ Ô
T,L χK0(ε r) (2.8)

where χ and χ̄ are the spinors of the quark and antiquark, respectively; Zq is
the quark charge; NC = 3 is the number of colors. K0(εr) is a modified Bessel
function with

ε2 = α (1− α)Q2 +m2
q , (2.9)

where mq is the quark mass, and α is the fraction of the LC momentum of the

photon carried by the quark. The operators ÔT,L read,

ÔT = mq ~σ · ~e+ i (1− 2α) (~σ · ~n) (~e · ~∇r) + (~σ × ~e) · ~∇r , (2.10)

ÔL = 2Qα(1− α) (~σ · ~n) . (2.11)

Here ~∇r acts on transverse coordinate ~r; ~e is the polarization vector of the photon
and ~n is a unit vector parallel to the photon momentum.

In general, the transverse q̄q separation is controlled by the distribution ampli-
tude Eq. (2.8) with the mean value,

〈r〉 ∼ 1

ε
=

1√
Q2 α (1− α) +m2

q

. (2.12)

For production of light vector mesons very asymmetric q̄q pairs with α or
(1−α) ∼< m2

q/Q
2 become possible. Consequently, the mean transverse separation

〈r〉 ∼ 1/mq is huge since one must use current quark masses within pQCD. How-
ever, that is not the case of heavy vector meson production due to large quark
masses and corresponding nonperturbative interaction effects between heavy Q
and Q̄ are rather weak. Despite of this fact for completeness we include these
nonperturbative interaction effects in all calculations using from [30, 13] the cor-
responding phenomenology based on the light-cone Green function approach.

The Green function Gq̄q(z1, ~r1; z2, ~r2) describes the propagation of an interact-
ing q̄q pair between points with longitudinal coordinates z1 and z2 and with initial
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2. Short review of the light-cone dipole phenomenology for γ∗N → V N

and final separations ~r1 and ~r2. This Green function satisfies the two-dimensional
Schrödinger equation,

i
d

dz2

Gq̄q(z1, ~r1; z2, ~r2) =

[
ε2 −∆r2

2 ν α (1− α)
+ Vq̄q(z2, ~r2, α)

]
Gq̄q(z1, ~r1; z2, ~r2) .

(2.13)
Here ν is the photon energy. The Laplacian ∆r acts on the coordinate r.

The imaginary part of the LC potential Vq̄q(z2, ~r2, α) in (2.13) is responsible for
attenuation of the q̄q in the medium, while the real part represents the interaction
between the q and q̄. This potential is supposed to provide the correct LC wave
functions of vector mesons. For the sake of simplicity we use the oscillator form
of the potential,

ReVq̄q(z2, ~r2, α) =
a4(α)~r2

2

2 ν α(1− α)
, (2.14)

which leads to a Gaussian r-dependence of the LC wave function of the meson
ground state. The shape of the function a(α) will be discussed below in this
section.

In this case the equation (2.13) has an analytical solution, the harmonic oscil-
lator Green function [37],

Gq̄q(z1, ~r1; z2, ~r2) =

a2(α)

2π i sin(ω∆z)
exp

{
i a2(α)

sin(ω∆z)

[
(r2

1 + r2
2) cos(ω∆z)− 2~r1 · ~r2

]}

× exp

[
− i ε2 ∆z

2 ν α (1− α)

]
, (2.15)

where ∆z = z2 − z1 and

ω =
a2(α)

ν α(1− α)
. (2.16)

The boundary condition is Gq̄q(z1, ~r1; z2, ~r2)|z2=z1 = δ2(~r1 − ~r2).
If we write the transverse part as

χ̄ ÔTχ = A+ ~B · ~∇r1 , (2.17)

then the distribution functions read,

ΨT
q̄q(~r, α) = Zq

√
αem

[
AΦ0(ε, r, λ) + ~B ~Φ1(ε, r, λ)

]
, (2.18)

ΨL
q̄q(~r, α) = 2Zq

√
αemQα(1− α) χ̄ ~σ · ~n χΦ0(ε, r, λ) , (2.19)

where

λ =
2 a2(α)

ε2
. (2.20)

The functions Φ0,1 in Eqs. (2.18) and (2.19) are defined as

Φ0(ε, r, λ) =
1

4π

∞∫

0

dt
λ

sh(λt)
exp

[
− λε2r2

4
cth(λt)− t

]
, (2.21)
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2.3. The meson wave function

~Φ1(ε, r, λ) =
ε2~r

8π

∞∫

0

dt

[
λ

sh(λt)

]2

exp

[
− λε2r2

4
cth(λt)− t

]
. (2.22)

Note that the q̄− q interaction enters Eqs. (2.18) and (2.19) via the parameter
λ defined in (2.20). In the limit of vanishing interaction λ→ 0 (i.e. Q2 →∞, α
is fixed, α 6= 0 or 1) Eqs. (2.18) - (2.19) produce the perturbative expressions of
Eq. (2.8).

With the choice a2(α) ∝ α(1 − α) the end-point behavior of the mean square
interquark separation 〈r2〉 ∝ 1/α(1 − α) contradicts the idea of confinement.
Following [30] we fix this problem via a simple modification of the LC potential,

a2(α) = a2
0 + 4a2

1 α(1− α) . (2.23)

The parameters a0 and a1 were adjusted in [30] to data on total photoabsorption
cross section [38, 39], diffractive photon dissociation and shadowing in nuclear
photoabsorption reaction.

2.3. The meson wave function

The last ingredient in elastic production amplitude (2.1) is the vector meson wave
function. We use a popular prescription [40] applying the Lorentz boost to the
rest frame wave function assumed to be Gaussian which leads to radial parts of
transversely (T) and longitudinally (L) polarized mesons in the form,

ΦT,L
V (~r, α) = CT,L α(1− α) f(α) exp

[
− α(1− α)~r2

2R2

]
(2.24)

with a normalization defined below, and

f(α) = exp

[
− m2

q R
2

2α(1− α)

]
. (2.25)

This procedure is ill motivated since the q̄q are not classical particles. Neverthe-
less, a detailed analysis of this problem [41] leads to the same form as Eq. (2.24)
used in calculations with the parameters from [42].

We assume that the distribution amplitude of q̄q fluctuations for the vector
meson and for the photon have a similar structure [42]. Then in analogy to
Eqs. (2.18) – (2.19),

ΨT
V (~r, α) = (A+ ~B · ~∇) ΦT

V (r, α) ; (2.26)

ΨL
V (~r, α) = 2mV α(1− α) (χ̄ ~σ · ~nχ) ΦL

V (r, α) . (2.27)

Correspondingly, the normalization conditions for the transverse and longitu-
dinal vector meson wave functions read,

NC

∫
d2r

∫
dα

{
m2
q

∣∣∣ΦT
V (~r, α)

∣∣∣
2

+
[
α2 + (1− α)2

] ∣∣∣∂rΦT
V (~r, α)

∣∣∣
2
}

= 1 (2.28)

4NC

∫
d2r

∫
dαα2 (1− α)2m2

V

∣∣∣ΦL
V (~r, α)

∣∣∣
2

= 1 . (2.29)
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2. Short review of the light-cone dipole phenomenology for γ∗N → V N

2.4. Model predictions vs. data

As the first test of the LC dipole approach we compared model predictions with
data for for nucleon target. The forward production amplitude γ∗N → V N for
transverse and longitudinal photons and vector mesons is calculated using the
nonperturbative photon Eqs. (2.18), (2.19) and vector meson Eqs. (2.26), (2.27)
wave functions. It has the following form [13, 21],

MT
γ∗N→V N(s,Q2)

∣∣∣
t=0

= NC Zq
√
αem

∫
d2r σq̄q(~r, s)

1∫

0

dα
{
m2
q Φ0(ε, ~r, λ)ΨT

V (~r, α)

+
[
α2 + (1− α)2

]
~Φ1(ε, ~r, λ) · ~∇r ΨT

V (~r, α)
}

; (2.30)

ML
γ∗N→V N(s,Q2)

∣∣∣
t=0

= 4NC Zq
√
αemmV Q

∫
d2r σq̄q(~r, s)

×
1∫

0

dαα2 (1− α)2 Φ0(ε, ~r, λ)ΨL
V (~r, α) . (2.31)

These amplitudes are normalized as |MT,L|2 = 16π dσT,LN /dt
∣∣∣
t=0

. We included the

real part of the amplitude according to the prescription described in Sect. 2.1. We
calculated the cross sections σ = σT +ε σL assuming that the photon polarization
is ε = 1.

Now we can check the absolute value of the predicted cross section by compar-
ing with data for elastic electroproduction γ∗ p → V p for ρ and φ mesons [13].
Unfortunately, data are available only for the cross section integrated over t,

σT,L(γ∗N → V N) =
|MT,L|2

16π Bγ∗N
, (2.32)

where Bγ∗N is the t-slope parameter of the differential cross section fixed from
available data.

Our predictions are plotted in Fig. 2.1 together with the data on the Q2 de-
pendence of the cross section from NMC, H1 and ZEUS [43, 44, 45, 46]).

We used the Q2 dependent slope of the differential cross section dσ(γ∗N →
V N)/dt ∝ exp

[
BV
γ∗N(Q2) t

]
parametrized as [47],

Bγ∗N(s,Q2) = βV0 (s) +
βV1 (s)

Q2 +m2
V

− 1

2
ln

(
Q2 +m2

V

m2
V

)
. (2.33)

We performed a fit [13] to the data [43, 48] from fixed target experiments for
the Q2 dependent slope in ρ production obtaining the parameters for W ≈ 10−
15 GeV, βρ0 = (6.2± 0.2) GeV−2, βρ1 = 1.5± 0.2. Using data from HERA [44, 45,
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2.4. Model predictions vs. data

Figure 2.1.: Q2- dependence of the cross section for the reactions γ∗ p→
ρ p (left) and γ∗ p→ φ p (right). The dashed and solid curves
are compared with data at W = 15 GeV [43] and at 75 GeV
([44, 45] for ρ and [46] for φ), respectively. The figure is
taken from [13].

49, 50, 51, 52, 53] for ρ production atW = 75 GeV we get, βρ0 = (7.1±0.1) GeV−2,
βρ1 = 2.0± 0.1.

Repeating the same analysis for φ production we get at W ≈ 10−15 GeV from
data [43, 54], βφ0 = (5.9± 0.1) GeV−2, βφ1 = 0.5± 0.1. Data from HERA [55, 46]
give, βφ0 = (6.7± 0.2) GeV−2, βφ1 = 1.0± 0.1. For calculations shown in Fig. 2.1
we use the central values of these parameters.

As the second test of our approach is a description of the low Q2 region as well
since the effects of the nonperturbative interaction between the q and q̄ in the
photon fluctuation are naturally incorporated in the Green function formalism.
Comparison of the model with data [56, 57, 50, 51, 58] for the energy dependence
of the cross section of real ρ photoproduction is presented in Fig. 2.2 [13]. Here we
used the energy dependent slope parameter, Bρ

γN = Bρ
0 + 2α′ ln(s/s0) with α′ =

0.25 GeV−2 and Bρ
0 = 7.6 GeV−2, s0 = 20 GeV2 fitted to data [59, 56, 49, 51, 52].

The Pomeron part of the dipole cross section depicted by the dashed curve in
Fig. 2.2 cannot explain the data at low energies, W ∼< 15 GeV, while the addition
of the Regge term (solid curve) leads to a good agreement for all energies.

Notice that the normalization of the cross section and its energy and Q2 de-
pendence are remarkably well reproduced in Figs. 2.1 – 2.2.

Variety of further predictions for the real and virtual photoproduction of dif-
ferent vector mesons and also their 2S radial excitations can be found in refs. [60,
61, 42, 62, 21, 13]

15



2. Short review of the light-cone dipole phenomenology for γ∗N → V N

Figure 2.2.: Energy dependence of the real photoproduction cross section
on a nucleon, γ p→ ρ0 p. Our results (solid curve) are com-
pared with data from the fixed target [56, 57], and collider
HERA H1 [50] and ZEUS [51, 58] experiments. The dashed
curve contains only the gluonic exchange in the t-channel.
The figure is taken from ref. [13].

2.5. Summary of the attached papers

2.5.1. Scanning the BFKL pomeron in elastic production of
vector mesons at HERA

Physics Letters B 341 (1994) 228,
more than 100 citations
listed as A.1 on page 41.

In this article we demonstrated for the first time that the elastic production
of vector mesons γ∗N → V N is the pomeron-exchange dominated diffractive
reaction with much potential of probing the BFKL pomeron. We showed that
the BFKL pomeron can be described in terms of the dipole cross section which is a
solution of the generalized BFKL equation. For determination of the intercept of
the BFKL pomeron is unavoidable to investigate the diffractive electroproduction
of ρ0 and J/Ψ mesons at large Q2 ∼ (100 − 200)GeV2 and/or the quasireal
photoproduction of the Υ. We discussed for the first time that the energy and
Q2 dependence of elastic production of vector mesons at HERA allow scanning
the dipole cross section as a function of dipole size r.
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2.5. Summary of the attached papers

2.5.2. Color dipole systematics of diffractive photo- and
electroproduction of vector mesons

Physics Letters B374 (1996) 199
more than 50 citations
listed as A.2 on page 51.

In this paper we present the first evaluation of color dipole cross section from
experimental data on diffractive photo- and electroproduction of vector mesons.
The dipole-size and energy dependence of the found dipole cross section is con-
sistent with expectations from the BFKL dynamics.

2.5.3. Color dipole phenomenology of diffractive
electroproduction of light vector mesons at HERA

Zeitschrift fr Physik C75 (1997) 71
more than 100 citations
listed as A.3 on page 57.

Here we developed for the first time the color dipole phenomenology of diffrac-
tive photo- and electroproduction γ∗N → V (V ′)N of light vector mesons (V (1S) =
φ0, ω0, ρ0) and their radial excitations (V ′(2S) = φ′, ω′, ρ′). We have shown that
the nodal structure of the radial wave function for the 2S states in conjunction
with the energy dependence of the color dipole cross section lead to a strikingly
different Q2 and ν dependence of diffractive production of the V (1S) and V ′(2S)
vector mesons. We also discussed the restoration of flavor symmetry and univer-
sality properties in production of different vector mesons as a function of Q2+m2

V .
We have found a good agreement of the color dipole model predictions for the ρ0

and φ0 production with available experimental data from the EMC, NMC, ZEUS
and H1 collaborations.

2.5.4. Anomalous t-dependence in diffractive
electroproduction of 2S radially excited light vector
mesons at HERA

European Physical Journal C18 (2001) 711
3 citations
listed as A.4 on page 75.

Within the color dipole gBFKL dynamics applied to the diffraction slope, we
predict an anomalous t dependence of the differential cross section as a function
of energy and Q2 for production of radially excited V ′(2S) light vector mesons
in contradiction with a well known standard monotonous t- behaviour for V (1S)
mesons. The origin of this phenomenon is based on the interplay of the nodal
structure of V ′(2S) radial wave function with the energy- and dipole size depen-
dence of the color dipole cross section and of the diffraction slope. We present
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2. Short review of the light-cone dipole phenomenology for γ∗N → V N

how a different position of the node in V ′(2S) wave function leads to a differ-
ent form of anomalous t- behavior of the differential cross section and discuss a
possibility how to determine this position from the low energy and HERA data.
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3. Incoherent production of vector
mesons off nuclei

Here and in the next Chapter 4 we present shortly the LC color dipole approach
based on the rigorous Green function formalism and its corresponding general-
ization for nuclear targets developed in [13, 21] as a powerfull tool for description
of incoherent and coherent electroproduction of vector mesons off nuclei.

The diffractive incoherent (quasielastic) production of vector mesons off nuclei,
γ∗A→ V X, is associated with a break up of the nucleus, but without production
of new particles. In another words, one sums over all final states of the target nu-
cleus except those which contain particle (pion) creation. The observable usually
studied experimentally is nuclear transparency defined as

TrincA =
σincγ∗A→V X

Aσγ∗N→V N
. (3.1)

The t-slope of the differential quasielastic cross section is the same as on a nucleon
target. Therefore, instead of integrated cross sections one can also use nuclear
transparency expressed in terms of the forward differential cross sections Eq. (2.2),

TrincA =
1

A

∣∣∣∣
Mγ∗A→V X(s,Q2)

Mγ∗N→V N(s,Q2)

∣∣∣∣
2

. (3.2)

3.1. The LC Green function approach

In the LC Green function approach [13] the physical photon |γ∗〉 can be de-
composed into different Fock states, namely, the bare photon |γ∗〉0, |q̄q〉, |q̄qG〉,
etc. As we mentioned above the higher Fock states containing gluons describe
the energy dependence of the photoproduction reaction on a nucleon. Besides,
those Fock components also lead to gluon shadowing as far as nuclear effects are
concerned. However, these fluctuations are heavier and have a shorter coher-
ence time (lifetime) than the lowest |q̄q〉 state. Consequently, gluon shadowing
will be dominated at high energies. Detailed description and calculation of the
gluon shadowing for the case of vector meson production off nuclei is presented
in [13, 24] and will be discussed below in Chapter 5.

Propagation of an interacting q̄q pair in a nuclear medium is described by the
Green function satisfying the evolution Eq. (2.13). However, the potential in this
case acquires an imaginary part which represents absorption in the medium,

ImVq̄q(z2, ~r, α) = −σq̄q(~r, s)
2

ρA(b, z2) . (3.3)
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3. Incoherent production of vector mesons off nuclei

The evolution equation (2.13) with the potential Vq̄q(z2, ~r2, α) containing this
imaginary part was used in [63, 23], and nuclear shadowing in deep-inelastic
scattering was calculated in good agreement with data.

The analytical solution of Eq. (2.15) is only known for the harmonic oscillator
potential V (r) ∝ r2. This corresponds to a quadratic approximation of the dipole
cross section,

σq̄q(r, s) = C(s) r2 , (3.4)

which allows to obtain the Green function in an analytical form. The energy
dependent factor C(s) was adjusted in [13].

Note, that in the limit lc � RA (the so called “frozen” approximation) the
Green function takes the simple form,

Gq̄q(z1, ~r1; z2, ~r2)⇒ δ(~r1 − ~r2) exp


−1

2
σq̄q(r1)

z2∫

z1

dz ρA(b, z)


 . (3.5)

With the potential Eqs. (3.3) – (3.4) the solution of Eq. (2.13) has the same
form as Eq. (2.15), except that one should replace ω ⇒ Ω, where

Ω =

√
a4(α)− i ρA(b, z) ν α (1− α)C(s)

ν α(1− α)
. (3.6)

Depending on the value of lc one can distinguish several different regimes in
incoherent production of vector mesons:

3.1.1. Short coherence lenght in light vector meson
production

The CL is much shorter than the mean nucleon spacing in a nucleus (lc → 0).
In this case G(z2, ~r2; z1, ~r1) → δ(z2 − z1) since strong oscillations suppress prop-
agation of the q̄q over longer distances. In the case according to Eq. (1.2) the
formation time of the meson wave function is very short as well. Apparently, for
light vector mesons lf ∼ lc, so both must be short. In this case nuclear trans-
parency is given by the simple formula Eq. (1.4) corresponding to the Glauber
approximation

3.1.2. Short coherence lenght in heavy vector meson
production

In the intermediate case lc → 0, but lf ∼ RA, which can only be realized for
heavy flavor quarkonia, the formation of the meson wave function is described by
the Green function and the numerator of the nuclear transparency ratio Eq. (3.2)
has the form [11],

∣∣∣Mγ∗A→V X(s,Q2)
∣∣∣
2

lc→0; lf∼RA

=

∫
d2b

∫ ∞

−∞
dz ρA(b, z)

∣∣∣F1(b, z)
∣∣∣
2

, (3.7)
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3.1. The LC Green function approach

where

F1(b, z) =

∫ 1

0

dα

∫
d2r1 d

2r2 Ψ∗V (~r2, α)G(z′, ~r2; z, ~r1)σq̄q(r1, s) Ψγ∗(~r1, α)
∣∣∣
z′→∞

(3.8)
This expression is illustrated in Fig. 3.1a. The photon creates at the point z a

q z
1

*

q

z

a

z

b

VγVγ*

Figure 3.1.: The incident virtual photon produces incoherently at the
point z (quasielastic scattering) the colorless q̄q pair which
then evolves propagating through the nucleus and forms the
V-meson wave function (a). Alternatively, the photon can
first produce diffractively and coherently at the point z1 the
colorless q̄q which then experiences quasielastic scattering at
the point z (b). Propagation of the q̄q pair is described by
the Green function (shaded areas). The figure is taken from
[13].

colorless q̄q pair with transverse separation ~r1. The quark and antiquark then
propagate through the nucleus along different trajectories and end up with a
separation ~r2. The contributions from different paths are summed up giving rise
to the Green function G(z′, ~r2; z, ~r1) which is convoluted in (3.7) with the wave
functions of γ∗ and V . The corresponding path integral technique was suggested
in [11] and developred in [13].

3.1.3. Long coherence lenght

In this case lc � RA and G(z2, ~r2; z1, ~r1) → δ(~r2 − ~r1), i.e. all fluctuations of
the transverse q̄q separation are “frozen” by Lorentz time dilation. Then, the
numerator on the r.h.s. of Eq. (3.2) takes the form [11],

∣∣∣Mγ∗A→V X(s,Q2)
∣∣∣
2

lc�RA

=

∫
d2b TA(b)

∣∣∣∣
∫
d2r

∫ 1

0

dα

× Ψ∗V (~r, α)σq̄q(r, s) exp

[
−1

2
σq̄q(r, s)TA(b)

]
Ψγ∗(~r, α,Q

2)

∣∣∣∣
2

. (3.9)
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3. Incoherent production of vector mesons off nuclei

In this case the q̄q attenuates with a constant absorption cross section like in the
Glauber model, except that the whole exponential is averaged rather than just
the cross section in the exponent. The difference between the results of the two
prescriptions are well known as inelastic corrections of Gribov [5].

3.1.4. General formula for incoherent electroproduction
amplitude

This new result has been developed and presented for the first time in [13]. It
represents the general case with no restrictions for either lc or lf and can be
applied to electroproduction of vector mesons beyond the limits discussed above
in Sections 3.1.1, 3.1.2 and 3.1.3.

Within the VDM the corresponding Glauber model expression interpolating
between the limiting cases of low [Sections 3.1.1, 3.1.2] and high [Section 3.1.3]
energies was derived for the first time in [20]. We generalize that formalism to the
LC dipole approach, and the incoherent photoproduction amplitude is represented
as a sum of two terms [64] illustrated in Fig. 3.1b,

∣∣∣Mγ∗A→V X(s,Q2)
∣∣∣
2

=

∫
d2b

∞∫

−∞

dz ρA(b, z)
∣∣∣F1(b, z)− F2(b, z)

∣∣∣
2

. (3.10)

The first term F1(b, z) introduced above in Eq. (3.8) is represented by Fig. 3.1a.
Alone it would correspond to the short lc limit as was presented in Section 3.1.2.
The second term F2(b, z) in (3.10) corresponds to the situation illustrated in
Fig. 3.1b when incident photon produces a q̄q pair diffractively and coherently
at the point z1 prior to incoherent quasielastic scattering at point z. The LC
Green functions describe the evolution of the q̄q over the distance from z1 to z
and further on, up to the formation of the meson wave function. Correspondingly,
this term has the form,

F2(b, z) =
1

2

z∫

−∞

dz1 ρA(b, z1)

1∫

0

dα

∫
d2r1 d

2r2 d
2rΨ∗V (~r2, α)

×G(z′ →∞, ~r2; z, ~r)σq̄q(~r, s)G(z, ~r; z1, ~r1)σq̄q(~r1, s) Ψγ∗(~r1, α) . (3.11)

Note that Eq. (3.10) correctly reproduces the limits presented in Sections 3.1.1,
3.1.2 and 3.1.3.

3.2. Color transparency vs. coherence length effects

In this section we will discuss how to discriminate between color transparency and
coherence length effects. Exclusive incoherent electroproduction of vector mesons
off nuclei was suggested already in [65] as a sensitive way to detect CT. Increasing
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3.2. Color transparency vs. coherence length effects

the photon virtuality Q2 one squeezes the produced q̄q wave packet. The smaller
is the transverse size of colorless system propagating through the nucleus the
weaker is its attenuation. Here we assume that the energy is sufficiently high
(lf � RA) and the fluctuations of the q̄q separation are frozen by Lorentz time
dilation. Thus, a rise of nuclear transparency TrincA (Q2) with Q2 should signal
CT effects. Indeed, such a rise was observed in the E665 experiment at Fermilab
for exclusive production of ρ0 mesons off nuclei by a muon beam. This has been
claimed in [66] to be a manifestation of CT.

However, we should check whether the expected signal for CT is mixed with
the effect of coherence length [67, 20]. Indeed, if the coherence length varies from
long to short compared to the nuclear size the nuclear transparency rises because
the length of the path in nuclear matter becomes shorter and the vector meson
(or q̄q) attenuates less. This happens when Q2 increases at fixed ν. One should
carefully disentangle these two phenomena.

3.2.1. Long coherence length

It has been checked in [67] that the coherence length in the kinematic range
corresponding to E665 experiment is sufficiently long allowing to use the “frozen”
approximation, except of the highest values of Q2 ∼> 5 GeV2. We calculated
nuclear transparency, TrincA for ρ0 production using the exact Eq. (3.10) and the
simplified “frozen” approximation Eqs. (3.5) – (3.9). The results are depicted in
Fig. 3.2 by solid and dashed curves respectively.

One can see that fluctuations of the size of the q̄q pair become important only
at high Q2 causing a separation of the solid and dashed curves. At smaller Q2 the
observed variation of TrincA (Q2) is a net manifestation of CT. The agreement with
our model is surprisingly good for calcium, while we underestimate the nuclear
transparency at small Q2 for lead. This may be a manifestation of large Coulomb
corrections as found in [68], which are of the order αem Z ≈ 0.6 for lead.

3.2.2. Medium long coherence length

At lower energies corresponding to HERMES experiment at HERA and at JLab
one should carefully discriminate between the effects of CT and CL [67, 20]. A
simple prescription [12] to eliminate the effect of CL from the data on the Q2

dependence of nuclear transparency is to bin the data in a way which keeps
lc = const. It means that one should vary simultaneously ν and Q2 maintaining
the CL Eq. (1.3) constant,

ν =
1

2
lc (Q2 +m2

V ) . (3.12)

In this case the Glauber model predicts a Q2 independent nuclear transparency,
and any rise with Q2 would signal CT [12].
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3. Incoherent production of vector mesons off nuclei

Figure 3.2.: Q2- dependence of nuclear transparency for lead and cal-
cium TrPb and TrCa. The experimental points are from the
E665 experiment [66]. Both the curves and data for lead are
rescaled by the factor 1/2. Solid and dashed curves show
our results using the LC Green function approach Eq. (3.10)
and the “frozen” approximation Eq. (3.9) respectively. The
figure is taken from [13].

The LC Green function technique incorporates both the effects of coherence and
formation. We performed calculations of TrincA (Q2) at fixed lc starting from differ-
ent minimal values of ν, which correspond to real photoproduction in Eq. (3.12),

νmin =
1

2
lcm

2
V . (3.13)

The results for incoherent production of ρ and φ at νmin = 0.9, 2, 5 and 10 GeV
(lc = 0.6− 6.75 fm) are presented in Fig. 3.3 for nitrogen, krypton and lead.

Variety of another predictions for the nuclear transparency in incoherent pro-
duction of different vector mesons and their 2S radial excitations can be found
in [69, 65, 70, 20, 13, 21, 71, 72]

3.3. Summary of the attached papers

3.3.1. Anomalous A-dependence of diffractive leptoproduction
of the radial excitation ρ′(2S)

Physics Letters B339 (1994) 194
15 citations
listed as A.5 on page 83
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3.3. Summary of the attached papers

Figure 3.3.: Q2 dependence of the nuclear transparency TrincA for exclu-
sive electroproduction of ρ (left) and φ (right) mesons on
nuclear targets 14N , 84Kr and 207Pb (from top to bottom).
The CL is fixed at lc = 0.60, 1.35, 3.37 and 6.75 fm. The
figure is taken from [13].

In this article we predicted a strikingly different A and Q2 dependence of
quasielastic leptoproduction of the ρ0(1S)-meson and its radial excitation ρ′(2S)
on nuclei. Whereas for the ρ0 production nuclear transparency TA decreases
monotonically with A, for the ρ′ nuclear transparency TA can have the coun-
terintuitive nonmonotonic A-dependence, having the minimum for light nuclei,
and increasing with A for medium and heavy nuclei. Strong enhancement of the
ρ′/ρ0 cross section ratio makes nuclear targets the ρ′-factory. The origin of the
anomalous A-dependence is in the interplay of color transparency effects with
the nodal structure of the ρ′ wave function. The predicted effects take place at
moderate Q2 ∼< (2−3)GeV2, which can be explored in high statistics experiments
at CEBAF.
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3. Incoherent production of vector mesons off nuclei

3.3.2. Incoherent production of charmonia off nuclei as a
good tool for study of color transparency

Physical Review C66 (2002) 045204
5 citations
listed as A.6 on page 91

This article si devoted to study of electroproduction of charmonia off nu-
clei within the light-cone QCD formalism which incorporates color transparency
(CT), coherence length (CL) effects and gluon shadowing. We found a strong
onset of CT effects in the range of Q2 ≤ 20 GeV2 in contrast to production of
light vector mesons (ρ0, Φ0) when at small and medium energies CT and the on-
set of CL effects are not easily separated. They are stronger at low than at high
energies and can be easily identified by the planned future experiments. Our
parameter-free model calculations explained well the NMC data for the Sn/C
ratio of nuclear transparencies as function of the photon energy. We provided for
the first time predictions for incoherent and coherent production of charmonia
for future measurements.
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4. Coherent production of vector
mesons off nuclei

If electroproduction of a vector meson leaves the target intact the process is
usually called coherent or elastic. The mesons produced at different longitudinal
coordinates and impact parameters add up coherently. This fact considerably
simplifies the expressions for the cross sections compared to the case of incoherent
production presented in Chapter 3.

4.1. The formalism

Within the LC dipole formalism the integrated cross section has the form,

σcohA ≡ σcohγ∗A→V A =

∫
d2q

∣∣∣∣
∫
d2b ei~q·

~bMcoh
γ∗A→V A(b)

∣∣∣∣
2

=

∫
d2 b |Mcoh

γ∗A→V A(b) |2 ,
(4.1)

where

Mcoh
γ∗A→V A(b) =

∞∫

−∞

dz ρA(b, z)F1(b, z) , (4.2)

with the function F1(b, z) defined in (3.8).
One should not use Eq. (3.2) for nuclear transparency any more since the t-

slopes of the differential cross sections for nucleon and nuclear targets are different
and do not cancel in the ratio. Therefore, the nuclear transparency also includes
the slope parameter Bγ∗N for the process γ∗N → V N ,

TrcohA =
σcohA
AσN

=
16π Bγ∗N σ

coh
A

A |Mγ∗N→V N(s,Q2) |2 (4.3)

One can also define a t-dependent transparency for coherent electroproduction
of vector mesons,

TrcohA (t) =
dσcohA /dt

A2 dσN/dt|t=0

, (4.4)

where the differential cross section for coherent production γ∗A→ V A reads

dσcohA
dt

=
1

16 π

∣∣∣∣∣∣

∫
d2b ei

~b·~q

∞∫

−∞

dz ρA(b, z)F1(b, z)

∣∣∣∣∣∣

2

(4.5)
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4. Coherent production of vector mesons off nuclei

with F1(b, z) defined in (3.8). This expression is simplified in the limit of long
coherence time (t = −q2),

dσcohA
dt

∣∣∣
lc�RA

=
1

4π

∣∣∣∣∣

∫
d2b ei

~b·~q
∫
d2r

{
1 − exp

[
− 1

2
σq̄q(~r, s)T (b)

]}

×
1∫

0

dαΨ∗V (~r, α) Ψγ∗(~r, α)

∣∣∣∣∣∣

2

, (4.6)

a form which resembles its VDM analogue [14].

4.2. Predictions vs. data

Using Eq. (4.3) we can also calculate the normalized ratio of coherent cross sec-
tions on two nuclei Rcoh(A1/A2) = TrcohA1

/TrcohA2
. The results of calculations for

Rcoh(Pb/C) and Rcoh(Ca/C) are depicted by solid curves in Fig. 4.1 and com-
pared with data from the E665 experiment [66] shown by squares and triangles,
respectively. The calculations of TrcohA were performed at mean photon energy

Figure 4.1.: Q2- dependence of the total cross section ratio Rcoh(A/C) =
12σcohA /AσcohC for the coherent process γ∗A → ρ0A. Exper-
imental points are from E665 [66] for Pb/C (squares) and
Ca/C (triangles). Solid curves include the variation of lc
and lf with Q2. Dashed curves are calculated in the “frozen”
approximation lc � RA. The figure is taken from [13].

ν̄ = 138 GeV with the Q2 dependent slope given by Eq. (2.33). All effects of CL
and CT were included via the LC Green function formalism. In order to check
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4.2. Predictions vs. data

the onset of high energy limit, lc � RA, we presented also calculations in the
“frozen” approximation and plotted the results as dashed curves in Fig. 4.1. One
can see that the accuracy of this high energy approximation is rather good for
calcium, while for lead it significantly deviates from the exact result already at
Q2 ∼> 2 GeV2 since the approximation lc � RA is less fulfilled for heavier nuclei.

We also see that the contraction of the CL with Q2 causes an effect opposite to
CT, namely nuclear transparency is suppressed rather than enhanced. Therefore,
there is no danger that CL effects can mock CT, and one can conclude that this
is an advantage of coherent compared to incoherent production [67]. However, at
medium energy, when lc ∼< RA, the suppression at short CL is so strong that no
rise of nuclear transparency with Q2 might be observable.

Note that in contrast to incoherent production where nuclear transparency is
expected to saturate as TrincA (Q2) → 1 at large Q2, for the coherent process
nuclear transparency reaches a higher limit, TrcohA (Q2) → A1/3 (of course, A1/3

is valid only for very large nuclei, otherwise it is an approximate number). The
dashed curves in Fig. 4.1 nearly reach this upper limit at Q2 ∼ 10 GeV2.

Figure 4.2.: The same as in Fig. 3.3, but for coherent production of ρ and
φ, γ∗A→ V A. The figure is taken from [13].

One can eliminate the effects of CL and single out the net CT effect in a way
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4. Coherent production of vector mesons off nuclei

similar to what was suggested for incoherent reactions in Chapter 3 by selecting
experimental events with lc = const. We calculated nuclear transparency for
the coherent reaction γ∗A → ρ(φ)A at fixed values of lc. The results for lc =
1.35, 3.37, 13.50 fm are depicted in Fig. 4.2 for several nuclei.

Variety of another predictions for the nuclear transparency in coherent produc-
tion of different vector mesons and their 2S radial excitations can be found in
[65, 13, 21, 71, 72].

4.3. Summary of the attached papers

4.3.1. Production of polarized vector mesons off nuclei

Physical Review C76 (2007) 025210
5 citations
listed as A.7 on page 105

This article is devoted to investigation of color transparency (CT) and coher-
ence length (CL) effects in electroproduction of longitudinally (L) and transver-
sally (T) polarized vector mesons using the light-cone QCD dipole formalism.
We predicted both the A and Q2 dependence of the L/T - ratios, for ρ0 mesons
produced coherently and incoherently off nuclei in the kinematic region corre-
sponding to HERMES experiment. We showed for the first time that for an
incoherent reaction the CT and CL effects add up and result in a monotonic A
dependence of the L/T -ratio at different values of Q2. On the contrary, for a
coherent process the contraction of the CL with Q2 causes an effect opposite to
that of CT and we expect quite a nontrivial A dependence, especially at large
Q2 � m2

V .
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5. Gluon shadowing

In the LC Green function approach [63, 23, 13, 21, 73, 74] the physical photon |γ∗〉
is decomposed into different Fock states, namely, the bare photon |γ∗〉0, plus |q̄q〉,
|q̄qG〉, etc. As we mentioned above in Chapter 2 the higher Fock states containing
gluons describe the energy dependence of the photoabsorption cross section on
a nucleon, and also lead to gluon shadowing (GS) in the nuclear case. However,
these fluctuations are heavier and have a shorter coherence time (lifetime) than
the lowest |q̄q〉 state, and dominates at higher energies, i.e. at smaller values of
Bjorken xBj ∼< 0.01 [13, 21, 73, 74]. Since no data for GS are available one has
to rely on theoretical calculations as will be discussed below.

The phenomenon of GS, just as for the case of nuclear shadowing discussed in
Chapter 1, can be treated differently depending on the reference frame. In the
infinite momentum frame this phenomenon looks similar to gluon-gluon fusion,
corresponding to a nonlinear term in the evolution equation [75]. This effect
should lead to a suppression of the small-xBj gluons also in a nucleon, and lead
to a precocious onset of the saturation effects for heavy nuclei. Within such a
parton model interpretation, in the infinite momentum frame of the nucleus the
gluon clouds of nucleons which have the same impact parameter overlap at small
xBj in the longitudinal direction. This allows gluons originated from different
nucleons to fuse, leading to a gluon density which is not proportional to the
density of nucleons any more. This is gluon shadowing.

The same phenomenon looks quite different in the rest frame of the nucleus. It
corresponds to the process of gluon radiation and shadowing corrections, related
to multiple interactions of the radiated gluons in the nuclear medium [22]. This is
a coherence phenomenon known as the Landau-Pomeranchuk effect, namely the
suppression of bremsstrahlung by interference of radiation from different scatter-
ing centers, demanding a sufficiently long coherence time of radiation, a condition
equivalent to a small Bjorken xBj in the parton model.

Although these two different interpretations are not Lorentz invariant, they
represent the same phenomenon, related to the Lorentz invariant Reggeon graphs.
It was already discussed in detail in [13, 76] that the double-scattering correction
to the cross section of gluon radiation can be expressed in Regge theory via the
triple-Pomeron diagram. It is interpreted as a fusion of two Pomerons originated
from different nucleons, 2 IP → IP, which leads to a reduction of the nuclear
gluon density GA.

There are still very few numerical evaluations of gluon shadowing in the lit-
erature, all of them done in the rest frame of the nucleus, using the idea from
ref. [22]. As was discussed in [13] gluon shadowing can be identified as the shad-
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5. Gluon shadowing

owing correction to the longitudinal cross section coming from the GG dipole
representing the |q̄qG〉 Fock component of the photon. An important point for
the evaluation of GS is knowing about the transverse size of this GG dipole (ra-
dius of propagation of the LC gluons). This size has been extracted in [30] and
found to be rather small, r0 ≈ 0.3 fm [77].

The small size of quark-gluon fluctuations has been incorporated into the LC
dipole approach via nonperturbative LC potential describing the quark-gluon
interaction. Such a potential was introduced into the Schrödinger equation for
the LC Green function describing the propagation of a quark-gluon system [30,
23, 13, 21, 74].

We have improved in refs. [13, 21, 74] the calculations from [30] of the ratio of
gluon densities in nuclei and nucleon,

RG(xBj, Q
2) =

GA(xBj, Q
2)

AGN(xBj, Q2)
≈ 1− ∆σ(q̄qG)

σγ
∗A
tot

, (5.1)

where ∆σ(q̄qG) is the inelastic correction to the total cross section σγ
∗A
tot related

to the creation of a q̄qG intermediate state,

∆σ(q̄qG) = Re

∞∫

−∞

dz2

z2∫

−∞

dz1 ρA(b, z1) ρA(b, z2)

∫
d2x2 d

2y2 d
2x1 d

2y1

∫
dαq

dαG
αG

×F †γ∗→q̄qG(~x2, ~y2, αq, αG) Gq̄qG(~x2, ~y2, z2; ~x1, ~y1, z1) Fγ∗→q̄qG(~x1, ~y1, αq, αG) .

(5.2)

Here ~x and ~y are the transverse distances from the gluon to the quark and anti-
quark, respectively, αq is the fraction of the LC momentum of the q̄q carried by
the quark, and αG is the fraction of the photon momentum carried by the gluon.
Fγ∗→q̄qG is the amplitude of diffractive q̄qG production in a γ∗N interaction [30],
and it is given by

Fγ∗→q̄qG(~x, ~y, αq, αG) =
9

8
Ψq̄q(αq, ~x− ~y)

[
ΨqG

(
αG
αq
, ~x

)
−Ψq̄G

(
αG

1− αq
, ~y

)]

×
[
σq̄q(x) + σq̄q(y)− σq̄q(~x− ~y)

]
, (5.3)

where Ψq̄q and Ψq̄G are the LC distribution functions of the q̄q fluctuations of a
photon and qG fluctuations of a quark, respectively.

In the above equation Gq̄qG(~x2, ~y2, z2; ~x1, ~y1, z1) is the LC Green function which
describes the propagation of the q̄qG system from the initial state with longitudi-
nal and transverse coordinates z1 and ~x1, ~y1, respectively, to the final coordinates
(z2, ~x2, ~y2). For the calculation of gluon shadowing one should suppress the intrin-
sic q̄q separation, i.e. assume ~x = ~y. In this case the Green function simplifies, and
effectively describes the propagation of a gluon-gluon dipole through a medium.
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Notice that calculations of GS [30, 23, 13, 21, 74] has been performed only
for the lowest Fock component containing just one LC gluon. In terms of the
parton model it reproduces the effects of fusion of many gluons to one gluon.
Inclusion of higher multigluon Fock components is still a challenge. However,
their effect can be essentially taken into account by the eikonalization of the
calculated RG(xBj, Q

2), as was argued in [78]. In another words, the dipole cross
section, should be renormalized everywhere, in the form

σq̄q ⇒ RG σq̄q . (5.4)

Such a procedure makes the nuclear medium more transparent. This could be
expected since Gribov’s inelastic shadowing is known to suppress the total hadron-
nucleus cross sections, i.e. to make nuclei more transparent [5, 79].

As an illustration of not very strong onset of GS, here we present RG(xBj, Q
2),

Eq. (5.1), for different nuclear thicknesses TA(b). Using an approximation of
constant nuclear density (see Eq. (2.15)), TA(b) = ρ0 L, where L = 2

√
R2
A − b2,

the ratio RG(xBj, Q
2) is also implicitly a function of L. An example for the

calculated L-dependence of RG(xBj, Q
2) at Q2 = 4 GeV2 is depicted in Fig. 5.1

for different values of xBj. As one should expect, the longer L, the stronger is

Figure 5.1.: The ratio of nucleus to nucleon gluon densities as function
of the thickness of the nucleus, L = T (b)/ρ0, at Q2 = 4 and
different fixed values of xBj. The figure is taken from [13].

gluon shadowing at small xBj. We have found [30, 23, 13, 21, 74] that at higher Q2

the gluon shadowing slowly (logarithmically) decreases, in accordance with the
expectations based on the evolution equation [80], which clearly demonstrates
that GS is a leading-twist effect.

One can expect from Eq. (5.4) that GS should always diminish the nuclear
cross sections of various processes in nuclear targets, and that the onset of GS
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5. Gluon shadowing

is stronger for heavier nuclei. However, this is not so for incoherent electropro-
duction of vector mesons, analyzed in [13]. Indeed, although the renormalization
Eq. (5.4) suppresses the pre-exponential factor σq̄q(r, s) on the r.h.s. of Eq. (3.9),
it simultaneously increases the exponential. These two effects essentially cancel.
Consequently, the nuclear cross section for incoherent electroproduction of vector
mesons is rather insensitive to GS as was demonstrated in [13]. Furthermore, the
effect of GS is stronger for light than for heavy nuclear targets, in contradiction
with the standard intuition. Moreover, for heavy nuclei the effect GS can lead
even to a counterintuitive enhancement (antishadowing), as was analyzed in [13].
For the case of coherent vector meson production γ∗A → V A [13, 21], GS was
shown to be a much stronger effect in comparison with incoherent production.

Similarly, it was analyzed in ref. [76, 81, 82] that multiple scattering of higher
Fock states containing gluons leads to an additional suppression of the Drell-
Yan cross section. In [74] we demonstrated that GS also suppresses the total
photoabsorption cross section on a nucleus σγ

∗A
tot (xBj, Q

2). Here we predicted
quite a strong effect of GS in the shadowing region of small xBj ∼< (0.01÷ 0.001),
in the kinematic range of available data corresponding to small and medium
values of Q2 ∼ a few GeV2.

5.1. Summary of the attached papers

5.1.1. Gluon Shadowing in DIS off Nuclei

Journal of Physics G35 (2008) 115010
5 citations
listed as A.8 on page 127.

This paper is devoted to study of nuclear shadowing in deep-inelastic scattering
at small Bjorken xBj ∼< 0.01 within the light-cone QCD dipole formalism based
on the Green function technique. We have performed calculations of the nuclear
shadowing for the q̄q Fock component of the photon, which has been based on
an exact numerical solution of the evolution equation for the Green function.
We demonstrated unavoidability of this exact numerical solution for the range of
Bjorken xBj ∼> 10−4. The eikonal approximation, used so far in most of other
models, can be applied only at high energies, when xBj ∼< 10−4 and the transverse
size of the q̄q Fock component is ”frozen” during propagation through the nuclear
matter. The main emphasize has been devoted to study of gluon shadowing. At
xBj ≤ 0.01 we have found quite a large contribution of gluon suppression to nu-
clear shadowing, as a shadowing correction for the higher Fock states containing
gluons. We have compared numerical results for nuclear shadowing with avail-
able data from the E665 and NMC collaborations. We have predicted also the
magnitude of nuclear shadowing at very small xBj corresponding to LHC kine-
matical range. Finally, we have confronted our model predictions with the results
obtained from other models.

34



6. Summary and conclusions

Electroproduction of vector mesons off nuclei is subject to an interplay between
coherence (shadowing) and formation (color transparency) effects. We presented
in Chapter 3 a rigorous quantum-mechanical approach based on the light-cone
QCD Green function formalism [30, 13, 21], which naturally incorporates these
interference effects. Our main results and observations are the following:

• In Chapters 2, 3 and 4 we presented a comprehensive model, based on the
rigorous light-cone QCD Green function formalism, for theoretical descrip-
tion [30, 13] of exclusive electroproduction of vector mesons off nuclei. The
original and pioneering result is represented by general formulas, Eq. (3.10)
for incoherent production and Eq. (4.2) for coherent production, which in-
terpolate between low and high energy limits, which are frequently used in
the literature.

• Due to quark-hadron duality the Green function formalism under consid-
eration is equivalent to a solution of the full multi-channel problem in the
hadronic representation [12].

• In the incoherent electroproduction of vector mesons off nuclei (see Chap-
ter 3) at medium and low energies, the onset of coherence effects (shad-
owing) can mimic the expected signal of CT. Then the observation of a
rising nuclear transparency as function of Q2 for fixed lc would signal color
transparency (see Fig. 3.3 and also [21]).

• Electroproduction of charmonia and bottomonia off nuclei is also very con-
venient for study of an interplay between coherence and formation effects
[21]. A strong inequality lc < lf (see Section 3.1.2) in all kinematic region
of ν and Q2 leads to a different scenario of CT-CL mixing as compared to
light vector mesons (see Section 3.1.1). Consequently, at small and moder-
ate photon energies, when lc ∼< 1÷ 2 fm, the problem of CT-CL separation
is not so arisen.

• Predictions for the nucleus-to-nucleon ratio of electroproduction cross sec-
tions as a function of Q2 at different fixed lc shows rather strong onset of
CT effects in incoherent production of charmonia [21]. Although the vari-
ation with Q2 of nuclear transparency is predicted to be less strong than
for production of light vector mesons [13], it is still rather significant to be
investigated experimentally even in the range of Q2 ∼< 20 GeV2.

35



6. Summary and conclusions

• The successful experimental confirmation [83] of the predicted coherence
length effects [20] seems to be an accidental consequence of the specific
correlation between Q2 and lc in the HERMES data. The parameter-free
rigorous calculations in [13] described well the observed variation of nuclear
transparency with lc as a result of a complicated interplay between the color
transparency and coherence length effects.

• There are other effects, like the lowest order inelastic corrections and the
finite lifetime of vector mesons [13], which cause a rise of nuclear trans-
parency with Q2 at lc = const mimicking thus a signal of CT. We found in
[13] that both effects are too weak to be relevant.

• We have found in Chapter 4 that effects of CT in coherent production of
light vector mesons are less pronounced (see Fig. 4.2). Although nuclear
transparency decreases with Q2 and does not mimic CT in this case, the CL
effects significantly modify the Q2 dependence and may completely elimi-
nate any signal of CT at medium energies as is depicted in Fig. 4.1.

• The effects of CT in coherent production of charmonia [21] are found to be
weak similarly as in production of light vector mesons [13]. A wider range
of Q2 ≤ 100 GeV2 and heavy nuclei gives higher chances for experimental
investigation of CT.

• At small xBj ∼< 0.01 we included the nuclear suppression of gluons, as was
discussed in Chapter 5, within the same LC approach treating it as shadow-
ing corrections for the higher Fock states containing gluons. The nonper-
turbative interaction of the LC gluons significantly reduces the predicted
magnitude of gluon shadowing (see Fig. 5.1).

• Two main effects govern the magnitude of gluon shadowing: The amplitude
of meson production off a bound nucleon is suppressed due to a reduced
amount of gluons in the nucleus. On the other hand the same effect makes
the nuclear medium more transparent and enhances the meson survival
probability.

• For incoherent production of light vector mesons (ρ and Φ) these two ef-
fects nearly compensate each other for heavy nuclei as was demonstrated
in [13]. The cross section for coherent production is less for more transpar-
ent nuclei, therefore the effect of gluon shadowing is more pronounced [13].
These corrections are not important in the kinematic range corresponding
to HERMES or JLab energies, but are significant at higher energies starting
from the RHIC kinematical region.

• The effects of gluon shadowing in electroproduction of charmonia were
shown to be significant only at much higher energies than in production
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of light vector mesons due to large mass of c̄c fluctuation. It was man-
ifested in [21] that these corrections are quite small at medium energies
dominant in searching for CT effects.

• For electroproduction of radially excited (2S) vector mesons, there is a
strong correlation between a nontrivial and anomalous behavior of nuclear
transparency as function of the mass number, photon energy and virtuality
and the shape of the radial wave function with the corresponding position
of the node. It gives a possibility to determine this position from data
obtained in the future planned experiments.
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Abstract 

Elastic production of vector mesons Y* N --* V N is the pomeron-exchange dominated diffractive reaction with much 
potential of probing the BFKL pomeron. The BFKL pomeron can conveniently be described in terms of the dipole cross 
section which is a solution of the generalized BFKL equation. In this paper we discuss, how the energy and Q2 dependence of 
elastic production of vector mesons at HERA will allow scanning the dipole cross section as a function of dipole size r. We 
show that determination of the intercept of the BFKL pomeron requires measuring the p 0 and J / ~  production at Q2 ,,. ( 100- 
200) GeV 2 and/or the quasireal photoproduction of the Y. We present predictions for the effective intercept in the kinematic 
range of the forthcoming HERA experiments, which can shed much light on the nonperturbative component of the pomeron. 

Elastic real and virtual photoproduction of  vector 
mesons 

T*P ~ Vp , V = pO, to O, qbo, j /xl t ,  y .... (1) 

is the typical diffractive reaction, dominated by 
pomeron exchange. Determination of  parameters of  
the BFKL pomeron [1] ,  in particular of  its inter- 
cept A t ,  is an outstanding problem for the HERA 
experiments on small x, and exploring the potential 
of  reaction (1) is of  great importance. In [2--4] we 
developed a novel approach to the BFKL pomeron 
in terms of  the dipole cross section tr(st, r) which 
satisfies the generalized BFKL equation. Here r is the 
size of  the color dipole, s t = I o g [ 2 m p u / ( Q  2 + m2)]  
is the rapidity, my is the vector meson mass, Q2 is the 

l E-mail: kph 154@ zam00 l.zam.kfa-juelich.de. 

virtuality of  the photon and v its energy in the proton 
rest frame. At very high v and/or  very small Bjorken 
variable x one expects 

o'(st, r) = t rp ( r )  exp(Arst)  (2) 

and 

F2(x ,  Q2) o ( e x p ( A r s t ) , , ~ ( 1 )  ar (3) 

with the intercept Ap which does not depend on Q2, 
the real photoproduction Q2 = 0 not excepted. Under- 
standing the onset of  the BFKL regime (2,3) is the 
most pressing issue, because experimentally a steep 
rise of  F 2 ( x , Q  2) at HERA [5] is accompanied by 
a much slower rise of  the real photoabsorption cross 
section [6] .  

0370-2693/94/$07.00 ~) 1994 Elsevier Science B.V. All rights reserved 
SSDI 0370-2693(94)0 1279-2 
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What makes reactions ( 1 ) exceptionally important 
is the scanning phenomenon discovered in [ 7-11 ], by 
which elastic production amplitude probes the dipole 
cross section at the scanning radius 

C 
rs ~ X/~v + Q2" (4) 

The scale parameter C is rather large, and in [11 ] 
we gave an estimate C ~ 6. Changing Q2 and 
the mass of the produced vector meson, one can 
probe o'(sC, r) and measure the effective intercept 
Aeff(sC, r) = a logo'(s ¢, r)/a~ in a very broad range 
of dipole size r, from the nonperturbative regime of 
r > 1 f down to the perturbative regime of r << 1 
f. The HERA experiments are already amassing the 
data on production of vector mesons, and the purpose 
of this communication is to present the detailed pre- 
dictions for reactions (1) from the approach to the 
BFKL pomeron developed in [2--4,12-15]. 

In order to set up the framework, we briefly review 
properties of the dipole cross section. In [ 3,4,12,13 ] 
we studied solutions of the generalized BFKL equation 
in the realistic model with the finite correlation radius 
Rc for perturbative gluons and the running QCD cou- 
pling as(r), which freezes at large distances ots(r > 

_(fr) R f)  = Us = 0.8. With the Rc = 0 .3 f  as suggested by 
the lattice QCD studies, An, = 0.4 [4,12]. The major 
findings are: 

Firstly, the onset of the asymptotic behaviour (2,3) 
was found to be extremely slow. Namely, the effective 
intercept Aefr(~, r) varies quite strongly in the range 
of r and s ¢ relevant to the HERA experiments on DIS. 
The usually discussed structure function F2(x,Q 2) 
receives contributions from a broad range of r and, for 
this reason, its x dependence does not allow a reliable 
experimental determination of the intercept At.  

Secondly, by the diffusion property of the BFKL 
kernel [ 1,4,12], at asymptotic energies the behaviour 
(2) takes over at all values of r, including r > Re, 
thus unifying the asymptotic energy dependence of 
the bare pomeron-exchange contribution to hadronic 
scattering, the real photoproduction and deep inelastic 
scattering. Furthermore, by the same diffusion prop- 
erty, the intercept Ar  is almost entirely controlled by 
the region of r ,,~ Rc [4,12]. 

Thirdly, there happens to exist a "magic" size ra 
½Rc, at which the precocious asymptotic behaviour 

Aetr(~, r) ~ Ar will persist over the whole range of 
x at HERA. In [4,15] we showed how one can zoom 
at r ~ ra, measuring at HERA the charm structure 
function at Q2 < l0 GeV 2, the longitudinal structure 
function FL(X,Q 2) at Q2 ... (10--40) GeV 2 and the 
scaling violations OFt (x, Q 2 ) / a  log Q2 at 0 2 ~ ( 2 -  
10) GeV 2. 

Fourthly, the BFKL pomeron describes the ex- 
change by perturbative gluons with the typical inter- 
action radius '~Rc. At low energy and large dipole size 
r >> Rc, the nonperturbative scattering mechanism 
can take over. The rise of the BFKL perturbative cross 
section is driven by the rising multiplicity of pertur- 
bative gluons in the high-energy photon (hadron), 
for the nonperturbative mechanism one can expect 
the (approximately) energy-independent contribution 
or(npt)(r) to the dipole cross section. A large contri- 
bution from the O "(npt) ( r )  reconciles the steep rise of 
F2(x,Q 2) [5] with a much weaker energy depen- 
dence of the real photoabsorption cross section [6]. 
As we shall discuss below, the scanning phenomenon 
allows to study in much detail a transition between 
the nonperturbative and perturbative regimes, which 
makes reactions ( 1 ) particularly important. 

The origin of the scanning phenomenon is as fol- 
lows: In the dipole-cross section representation, the 
amplitude of the forward production y* p ~ V N of 
the (T) transverse and (L) longitudinally polarized 
vector mesons reads [7-11,16,17] 

.A4r(s¢,Q2 ) = N c C v ~  
(2,n-) 2 

1 

dz {m2Ko(er)qb(r, z) × f d2r (e,r) f z(f-z) 
o 

- [Z 2 + (1 - z)2]eKl(er)Or(b(z,r)} 

- 1 f dr 2 tr(~, r._.....~)WT(Q2,r2 ) (5) 
(m 2 + 02) 2 r 2 r 2 

AdL(( ,Q 2) = NcCv4~v/~-~em 2V/-~ 
(2¢r) 2 mv 

I 

x f d2r~r(#,r) f dz 
o 
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{[m2q + z ( l -  z )m2 ] Ko(er)(b(r,z ) x 

- eKl (er)artb(Z, r) } 

1 2V/-~ f dr 2 tr(~,r) wl.(Q2,r2). 
(m 2+Q2)2 my d r 2 r 2 

(6) 

Here Arc = 3 is the number of colours, Cv = 72' 3-~2' 
2 for the pO, too, 4)o, j / ~  production, respectively, 3 ' 3  

Ko, l (x) is the modified Bessel function, 

e 2 = mq2+Z(1  - z ) Q  2 , (7) 

qb(z,r) is the lightcone wave function of the qq 
Fock state of  the vector meson in the mixed ( z , r ) -  
representation, where r is the transverse separation 
of the quark and antiquark and z is a fraction of 
the lightcone momentum carried by the quark. The 
normalization of amplitudes is such that dtr/dtlt=o = 
I.MI2/16~ ", the wave functions are normalized by 

1 

N c f d 2 r  / dz {m2gb2(r,z ) 
2--~ z (1 -  z) 

0 

+ [z2 + (l - z)2][dr~b(r,z)]2} = l. (8) 

At very large Q2 the scanning radius becomes small 
and the effects of  short-distance interquark interaction 
by QCD gluon exchange in wave functions of vec- 
tor mesons become important. We incorporate these 
"Coulomb" effects as follows [ 16] : Let the interquark 
potential be V( R) = Vc( R) - 4 as( R) /R, where R 
is the 3D separation of the q and q and V~(R) is the 
confining potential which is smooth at R ~ 0, which 
we describe by the 3D harmonic oscillator. Treating 
the Coulomb interaction as a perturbation, the short- 
distance behaviour of the wave function can be written 
as  

I ] q ' ( R )  - -q 'o (R)  + ~ o ( 0 ) C e x p  2a(R)  ' (9) 

where ~t'o(R) is a wave function in the confining po- 
tential and a(R) is the "running Bohr radius" 

3C 
a ( R )  - (10) 

8mqOt s ( R )  
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The parameter C can not be fixed in the first order in 
the Coulomb perturbation, the choice C < 1 is natural 
to have a steep decrease of the Coulomb correction in 
(9) at large R. If  the Vqq vertex is taken in the form 
Fqyuq, then the standard nonrelativistic relationship 
between the vertex function F and the Fourier trans- 
form xt,(p) = fd3Ralr(R) exp(-ipR) reads 

~ ( p 2 )  o~ F (p2 )  (11) 
4p 2 + 4m 2 - m 2 '  

the lightcone generalization of which is achieved by 
the substitution [ 18 ] 

p2 / (M2 _ 4m2q) = mq 2 + k2 2 (12) 
= 4Z( 1 -- Z )  - -  mq,  

where M is the invariant mass of the qq system. In 
terms of the p2 of Eq. (12), for the ground state vector 
mesons this gives 

~ ( M  2) = N o I  (27r)3/2R30exp [_  ~t~o p i n 2  21j 

64,n.a 3 (p2) / 
+ C ( 1  +4aE(pE)p2)2 ~ , (13) 

where a ( p  2) is still given by Eq. (10) with the a s ( p  2) 
taken in the momentum representation. Notice, that 
the asymptotics of the Coulomb correction in (13) 
is cx: aS(p  2) and does not depend on the parameter 
C. Finally, the lightcone wave function ~b(r, z ) in the 
mixed (r ,  z ) representation is given by 

f d2k ~ ,  2- 
(b(r,z) = J (--~)2 ~P )exp(ikr) ,  (14) 

in which, finally, a ( p  2) is substituted for a ( r ) .  The ex- 
plicit form of ~b(r, z ) in terms of the modified Bessel 
functions [16] is too lengthy to be reproduced here. 
We fix the parameters C and R0 so as to reproduce the 
width of the V --* e+e - decay and the mean squared 
radius of the ground state. For the p0 we assume the 
same charge radius as for the pion (r E} = 0.97 f 2  for 
the J /~  we take (r 2} = 0.15 f 2  from the potential 
model analysis [ 19]. For the P0, the resulting parame- 
ters are C = 0.25 and R 2 = 0.76 f2 at mq = 0.15 GeV, 
for the J/xlt: C = 0.5, R 2 = 0.16 f2 at mq = 1.3 GeV. 
More detailed discussion of this relativization proce- 
dure and applications to the form factor calculations 
will be presented elsewhere [ 16]. 
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Fig. I. Weight functions Wr.L(Q2,r 2) as a function of a variable y = r2(Q 2 + m~). 

8 

The dipole cross section can be related to the 
gluon structure function of the target proton G(x ,  q2)  

[2,17,20,21] 

"rr22 A 
t r ( ( , r )  = --~-r a s ( r ) G ( x  = exp(sC:),q 2 = ~-~) 

r 2 [  l _ _ _ ~ ] ' - ' e x p ( a p s ¢ ) ,  
o~ [ a s ( r ) J  

(15) 

where y = 4/3Ap [ 14] and A ~ 10 (the emergence 
of this large numerical factor is explained in detail 
in [22] ) The most important property of the dipole 
cross section is the color transparency driven depen- 
dence cx r 2 at small r. Because Ko, l ( x )  cx e x p ( - x )  
at large x, and the wave function of the vector meson 
is smooth, the amplitudes (5,6) will be dominated by 
the contribution from r ~ 3/e, which in the nonrela- 
tivistic approximation of my "~ 2mq and z "~ ½ leads 
to the scanning radius (4) and the estimate C ~ 6. 
When the scanning radius is small, rs < Rv, where 

Rv is the vector meson radius, the amplitudes (6,7) 
can be evaluated as 

1 
Mr o~ r2tr(~, rs) o~ (m2v + Q2)2 ' (16) 

Mc cx v/-~ ~ I r2sor( l~, rs) cx - -  mv my (m 2 + Q 2 ) 2  

oc V / - ~ M r ,  (17) 
m v  

which must be contrasted to prediction of the vector 
dominance model Mr oc 1/(m2v + Q2). This depar- 
ture from the vector dominance comes entirely from 
colour transparency property of the dipole cross sec- 
tion [ l i ]. Production of the longitudinally polarized 
vector mesons dominates at Q2 >> m 2. 

The scanning property is quantified by weight func- 
tion Wr, L(QI,  r 2) in Eqs. (5),  (6),  which we intro- 
duced following [13]. The Wr, L(Q2,r  2) are sharply 
peaked (Fig. 1) and, because t r (s~,r) /r  2 is a slow 
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function of r, see Eq. (15), the position of the peak 
gives the scanning radius rs. At sufficiently large Q2 
such that rs < Rv, which typically means Q2 >> m~, 
the position of the peak in the variable y = rZ(Q 2 + 
m2v) very weakly depends on Q2. For production of the 
longitudinally polarized vector mesons, the peak cor- 
responds to CL( J /q  t )  ~ 7 and CL(p  °) ,-~ 8. For the 
transversely polarized p0 mesons, with rising Q2 the 
peak is slowly drifting towards Cr ,,~ 12 at Q2 ,,, I00 
GeV 2, which can be understood as follows [ 11 ] : At a 
fixed z, the scanning radius rs ~ 3/¢. For the longitu- 
dinal photons, the wave function is peaked at z '-~ ½, 
hence the estimate C m. 6 is rather accurate (for the re- 
lated discussion of the longitudinal structure function 
see [2,17,22,23] ). In the opposite to that, the trans- 
verse structure function receives significant contribu- 
tion from the very asymmetric pairs with z, ( 1 - z ) ",~ 
m2q/Q 2, which have a large, hadronic transverse size 
r ~ 1/mq [ 2 , 1 7 ] .  Because of the contribution of such 
asymmetric pairs, the effective scanning radius for the 
transversely polarized vector mesons decreases with 
Q2 less rapidly than given by the simple estimate (4),  
but the difference between CT and CL remains small 
even at Q2 ,,~ 100 GeV 2. Notice, that because of very 
large numerical value of Cr, L, the scanning radius rs 
Eq. (4) remains large, and the relativistic effects in 
wave functions are still marginal, in a very broad range 
of Q2. For instance, for the j / q t  we find CT .~ CL 
and very close to the nonrelativistic estimate CXL ~ 6 
even at Q2 >> m2v. 

At small Q2, the scanning radius rs is large, and one 
probes the dipole cross section in the nonperturbative 
domain of r. In Fig. 2 we present the decomposition 
of the dipole cross section into the nonperturbative 
component o'(npt)(r) and the o'(Pt)(~ :, r) which is a 
solution of the perturbative BFKL equation 2 : 

o ' ( ( ,  r)  = o "(not) ( r )  + o "(pt) (~:, r)  (18) 

This additivity of  the bare pomeron cross sections 
and/or of the eikonal functions when the unitarization 
is considered, is the simplest assumption [ 14], and 
more refined treatment will be necessary in an analy- 
sis of the future high-precision data. The shape of the 

2This Pig. 2 updates Pig. 1 of Ref. [14], in which the mistake 
was made in plotting trot) (~', r). This plotting mistake does not 
affect any of predictions made in [ IZl.], though. Our choice of 
o "thor) (r)  in this paper is slightly different from that in [ 14]. 

- -  .:.:-- _- 
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Pig. 2. Decomposition of the dipole cross section into the BFKL 
perturbative tr(t~) (~, r) and the nonperturbative o -(nt~) (r) compo- 
nents. The growth of the BFKL cross section with energy (rapid- 
ity) is shown. 

10 2 f . . . . .  

10 
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0 -: / 
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nonperturbative cross section is the largest unknown 
in the problem, and is mostly driven by our analysis of  
the Q2 dependence of the photoproduction of vector 
mesons [ 8-11 ] and of structure functions at moderate 
Q2 [ 18], which are well described by the dipole cross 
section calculated in [ 17]. Therefore, the O r(npt) ( r )  is 
tuned so as to reproduce the dipole cross section of 
Ref. [ 17] at ~: = ~0 = - log 0.03, which we take as the 
starting point for the BFKL evolution. In terms of the 
relation (15), the o ' (npt ) ( r )  corresponds to the non- 
perturbative component of  the gluon structure function 
G(x ,  Q2) which comes from the soft transverse mo- 
menta [ 14 ]. As such, this nonperturbative contribution 
is always implicitly present in the phenomenological 
gluon densities. In Fig. 2 we show how the O "(pt) (~ ,  r )  
evolves with the rapidity ~:. At small r, the total dipole 
cross section is dominated by the BFKL cross section 
O "(pt) (~:, r) ,  and at sufficiently large ~ the o'(P0 ( ( ,  r)  
takes over the o ' (npt ) ( r )  also at large r. In this region, 
because of the so-called double logarithmic effects, 
the effective intercept Aefl(~:, r) > Am, [3,4]. At large 
r, Aefr(~:, r) << Am, because of the large contribution 
from the nonperturbative cross section O r(npt) ( r ) .  The 
analysis [4,13] has shown that there exists a magic 
radius r ~ ra, at which Aeff(~:, r) ~ Am, starting al- 
ready at moderate ~:. At this value of r, the nonpertur- 
bative cross section is small, and zooming at r ,-~ ra 
shall allow direct measurement of Am, at HERA. 

The above discussion refers to the bare pomeron 
cross section. With the conventional Gaussian 
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parametrization of the elastic scattering peak, 
d~rel/dt cx e x p ( - B l / I ) ,  where Ill is the momen- 
tum transfer squared, the profile function of elastic 
scattering takes the form 

O'tot _ 
r ( b )  = ~--~--~ exp , (19) 

where b is the impact parameter. The rise of the bare 
pomeron cross section will eventually conflict the s- 
channel unitarity bound F(b)  _< 1, and comments 
on the unitarity effects are in order. Unique solution 
of the unitarization problem is lacking; for the crude 
estimate we apply the/C-matrix unitraization 

F0(b) 
r ( b )  - (20) 

1 + F 0 ( b )  " 

When the rising strength of the bare pomeron interac- 
tion F0(b) >> I, the unitraized profile function tends 
to the black disc limit F(b)  ~ 1. The/C-matrix uni- 
tarization leads to a particularly simple form of the 
unitarized total cross section [2,21] 

° ' ( u ) ( ~ ' r )  = 4vrB l°g (1 + °'(ge' r - - - - -~ ) )  " 4 7 r B  (21) 

For a crude evaluation of the unitarization effects, we 
take the energy-independent diffraction slope B = 10 
GeV -2. Evidently, the unitarization effects only be- 
come important when o-(~, r) > 4orB ,-~ 50 mb, i.e., 
either at large r and / or at very high energy if r is small. 

Our predictions for the energy dependence of differ- 
ent photoproduction observables are shown in Figs. 3, 
4. In Fig. 3 we show the real photoabsorption cross 
section. It was calculated using the wave function of 
the photon derived in [ 171, assuming the effective 
quark mass mu,a = 0.15 GeV, which is the sole param- 
eter in the quark wave function. Only the nonperturba- 
rive contribution to  O'tot ( ' y p )  is sensitive to this param- 
eter. For the comparison purposes, we also show our 
predictions for O ' t o t ( p 0 p ) ,  which is close to  O'tot(TTN ) 

and has a rise consistent with the observed trend of 
the hadronic total cross sections (for the recent re- 
view and high-energy extrapolations see [25]) .  We 
attribute the slow rise o f  O' tot (Tp ) and O'tot(p°p) to the 
large contribution from the nonperturbative large-size 
cross section (for the early discussion of such a sce- 
nario see [ 26] ). The effect of the unitarization slowly 
rises with energy. It predominantly affects the nonper- 
turbative cross section and, given the uncertanty in the 

! • FNAL (.1978) 103 x YP 
• • ZEUS (.199~) ~ 

c HI (199E) / ~ 

B 
' - . . . .  g 

j 0 i - - -  
1 0  10 ~ 10 a 10 4 0 5 

~' (CeV) 

Fig. 3. The predicted energy dependence of the (B)  bare and (U)  
unitarized total pop and real photoabsorption cross section. The 
data shown are from the HERA 161 and FNAL [211 experiments. 

absolute normalization of the o "(npt)(r), at small ener- 
gies it can be compensated for by upwards renormal- 
ization of the input O r(npt) ( r ) .  The energy dependent 
pan of the unitarization correction is, however, the 
genuine effect and brings our results for O'tot ( 'Yp)  to a 
better agreement with the experiment [6]. The simple 
/C-matrix unitarization, as well as the eikonal unita- 
rization, lacks the so-called triple-pomeron contribu- 
tion, which enhances the effect of unitarization at high 
energies ( [2,21 ] and references therein) and can tame 
the somewhat too rapid a growth of O'tot("/p ) , a de- 
scription of the low energy data [24] also can be aug- 
mented, by adding to the nonperturbative cross-section 
the Regge-behaving cx 1/v/ff terms [25]. However, 
the purpose of the present analysis is understanding 
the gross features of the BFKL phenomenology rather 
than fitting the low-Q 2 and low-energy experimental 
data. Recently, there was much discussion on the per- 
turbative QCD contribution to the real photoabsorption 
cross section O'tot ( 'yp) ,  in which the eikonal is evalu- 
ated with the BFKL cross section substituted for the 
inclusive minijet cross section ([27] and references 
therein) which is incorrect (for the related criticism 
see [281). 

In Fig. 4 we show how the unitarization affects the 
energy dependence of do'/dtlt_-o for the real photo- 
production of the p0 and J /q ' .  In the former case the 
scanning radius is large, rs > 1 f, in the latter case 
rs ",~ 0.4 f. We also show the unitarization effect for 
the virtual photoproduction of the longitudinally po- 
larized p0 meson at Q2 = 120 GeV 2, appropriate for 
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Fig. 4. The predicted energy (rapidity) dependence of the (B) 
bare and (U) unitarized differential cross section of forward real 
and virtual photoproduction of the p0 and J/tl,. 

the scanning radius rs " ra "~ 0.15 f. Notice a rapid 
decrease of the unitarization correction with the de- 
crease of  the scanning radius rs. 

For a crude estimate of elastic production cross 
section we can take B ( p  °) ~ 10 GeV 2 [6] and 
B ( J / ~ )  ,.~ 4 GeV 2 [28]. For the real photoproduc- 
tion of the p0 at v G = ~ '  = 200 GeV, we find 
t r ( T p  ---* pOp) /Or to t ( ) 'p )  = 0 . 0 8 5  (for t h e  ba re ,  n o n -  

unitarized, cross sections this ratio equals 0.135), 
in good agreement with the ZEUS determination 
0.1 + 0.04 [6]. For the real photoproduction of the 
J / ~  at v = 150 GeV we find t r (yp  --* J/Xt, p)  ~ 16 
nb, which agrees with the E687 result of 17.9 :t: 4.0 
nb at v = 177 GeV and 9.8 + 2.9 nb at v = 121 GeV 
[29]. The rise of  the J/,Ir production cross section 

with energy observed by E687 is also consistent with 
our prediction in Fig. 4. Our estimate for the real 
photoproduction of the j /qr  at HERA at v/s = 200 
GeV, i.e., g: = 8.3 is O'tot() 'p ---* J / t l c p )  ~ 90 rib, 
i.e., we predict the five-fold increase from FNAL to 
HERA. Theoretical calculations of the forward pro- 
duction cross section are more straightforward and 
are free of uncertainties with the energy dependence 
of the diffraction slope, and it is very much desir- 
able that the experimental data are presented in the 
form of dtr/dtl,=o. More detailed comparison with 
the experiment will be presented elsewhere. 

In Fig. 5 we present our predictions for the effective 
intercept 

I a Iog(do'/dO l,=o) 
Aeff(~,Q2) = 2 a~ 

for the transverse and longitudinal polarizations of the 
J / *  and pO. The rise of Aetr(~, Q2) with energy and 
Q2 is an interplay of the BFKL perturbative and the 
nonperturbative cross section. On the other hand, for 
the J/q '  and the longitudinally polarized pO, at Q2 
C2/r2A ,,, (100-200) GeV 2 we predict the precocious 
BFKL behaviour Aeer(~:, Q2) m A1,. Such a behaviour 
of Aeff(~:, Q2) is a very definitive prediction of our 
approach. Because of a large value of Cr(p°) ,  in the 
transverse pO production the magic scanning radius 
rs ~ ra and Aeff(s c, Q2) ~ A1, are not attainable even 
at Q2 ,,~ 200 GeV 2. This prediction is difficult to test, 
though, because trr << try.. It is interesting that one 
has rs " ra also for the quasireal photoproduction 
of the Y (1S), which reaction can even be favoured 
for the higher flux of quasireal photons. For the po 
and J / ~  production at large Q2, the kinematical range 
of HERA corresponds to e x p ( - s  c) ~ x > 10 -5 • 
(Q2/GeV2), in which region the unitarization effects 
can still be neglected. We emphasize that precisely 
the same approach with the same dipole cross section, 
gives a very good description of the HERA data on 
F2(x ,Q 2) [141. 

Within our lightcone formalism, the dipole cross 
section is a universal quantity, and all the dependence 
on the process is contained in wave functions of the 
initial and secondary particle. The point we wish to 
make is that once the different production processes 
y*p ---, 14,-p are studied at values Q/2 so arranged as 
to have the same scanning radius rs Eq. (4),  then the 
production cross sections will exhibit identical energy 

47



J. Nemchik et al. / Physics Letters 8 341 (1994) 228-237 235 

4 3 10 -5 . 

0.0 . . . . . . .  - 

O 0  L 4 3 10 -5 

10 10 2 
q2+mvZ (CeV z) 

1 10 10 2" 
QZ+mvZ (GeV z) 

Fig. 5. The energy (rapidity) and Q2 dependence of the effective intercept A¢ff(~:, Q2) for the forward production of the transverse and 
longitudinal p0 and J/~. 

dependence. One must compare the cross sections at 
energy t,i corresponding to the same rapidity s c. For in- 
stance, we predict identical energy (~) dependence of 
the real photoproduction of the J/q" and of the virtual 
photoproduction of the longitudinal and transverse p0 
at Q2 ~ 20 GeV 2 and ~30 GeV 2, respectively. This 
rescaling from one vector meson to another constitutes 
an important cross-check of the whole formalism. 

More predictions can be made, which are specific 
of the small gluon correlation radius Rc = 0.3 f. 
Namely for this reason, the perturbative BFKL cross 
section o -(pt) (¢, r) is concentrated at smaller r than 
the o "("pt) ( r ) ,  and the onset of the dominance of the 
BFKL cross section is followed by a change of the Q2 
dependence of the forward production cross section. 
In Fig. 6 we present our predictions for the energy 
dependence of 

Dr = (m2v + Q2)4. do'..___~r 
dt It--O' 

m~ dcrL 
DL = (m2v + 02) 4. Q---~. at ,=o' 

R = m2v ao-(Ti  ~ vL) 
Q2 do'('y~- ~ Vr) 

The gradual rise of  DL,r with QZ comes predominantly 
from the rising density of gluons, see Eq. (15). No- 
tice, that the ratio dO~L/dCrr rises much slower than 
Q2/m2 and exhibits a substantial energy dependence 
at fixed Q2, which can be tested at HERA. We strongly 
advocate studying the Q2 dependence at fixed rapidity 

rather than the fixed energy 1,,. 
Eqs. (15) - (17)  show that the vector-meson pro- 

duction amplitude measures the dipole cross section 
cr(~:, rs) and the gluon structure function of the pro- 
ton. We wish to emphasize that this measurement is 
exceedingly sensitive to the rs - Q2 relationship. Typ- 
ically, one will probe the gluon structure function 
G (~, Q2) at the factorization scale q2 ,~ 7"(Q2 -t- m2v ), 
where 

A 
rT, L ~ C2T, L (22) 

In the range of Q2 ,.~ (10_100) GeV 2 of the practi- 
cal interest, we find zr, L( J / ~  ) ~ 0.2, r L ( p  °) ~ 0.15 
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Fig. 6. Predictions for the Q2 dependence of the differential cross ,section of forward production and the ratio of  the longitudinal and 
transverse cross sections. Shown am the quantities Dr.L and R defined in the text. 

and 7r(p  °) ,,, (0.07-0.1).  The emergence of such a 
dramatically small rescaling coefficients rr.L is a con- 
sequence of colour transparency. It was overlooked in 
[ 30], in which the proportionality of production am- 
plitudes to the gluon density was discussed in a very 
different technique. We emphasize that the scale fac- 
tor A in Eq. (15) is universal, only the scale factors 
Cr.L depend on the amplitude and/or structure func- 
tion calculated in terms of the dipole cross section 
[22]. 

A brief commment on the production of the 2S ra- 
dial excitations p '  and q"  is in order. The wave func- 
tion of the 2S state has a node, because of which the 
corresponding weight function Wr, L (Q2, r 2) changes 
the sign at r ~ Rv. The resulting cancellations of the 
r > Rv and r < Rv contributions to the production 

amplitude (the node effect) lead to a strong suppres- 
sion of the p,/pO and q " / ( J / q ' )  production ratio 
[7-11].  With increasing energy and with the onset 
of the dominance of o'(pt)(~:,r), which is concen- 
trated at smaller r, the node effect will decrease. For 
instance, in the real photoproduction the W ' / ( J / W )  
ratio is expected to increase by the factor ,,~3 from the 
CERN/FNAL energies to the highest energies avail- 
able at HERA [ 31 ]. The interesting possibility is that 
for the radially excited light mesons ( ¢ ' ,  oY, p ' ) ,  in 
the real photoproduction the V' /V  ratio may exhibit 
the anomalous, nonmonotonic energy dependence, 
when this ratio first decreases with energy, and then 
starts increasing In the opposite to this, at large Q2 
such that rs << Rv, the node effect disappears, and 
we expect p,/po ~ W , / ( j / ~ )  ~ 1 over the whole 
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energy range. 
Conclusions. The purpose of this paper was to ex- 

amine how the dipole cross section tr(s c, r) is scanned 
in the virtual photoproduction of vector mesons. The 
BFKL dipole cross section, complemented by the non- 
perturbative dipole cross section at large r, gives the 
unified description of the photoproduction processes 
in the whole range of v and Q2, including the real 
photoproduction. The same dipole cross section gives 
a good description [ 14] of the proton structure func- 
tion measured at HERA. Changing Q2, one can probe 
the energy dependence of tr(~:, r) in a broad range 
of radii from the nonperturbative region of r ,-~ 1 f 
down to the perturbative domain of r << 1 f. One can 
zoom at the magic radius ra and determine at HERA 
the pomeron intercept At,, measuring the cross sec- 
tion of elastic po, j/q, production at at Q2 ,,~ ( 100- 
200) GeV 2 and the quasireal photoproduction of the 
Y ( I S ) .  We argued that this determination of At, is 
not affected by the unitarity corrections. We make a 
strong point that it is the dipole size r rather than the 
photon's virtuality Q2, which controls the energy de- 
pendence of diffractive amplitudes: the value of Q2 
needed to scan the dipole cross section at the magic 
radius ra strongly varies from the process to process, 
c.f. the discussion in [ 15]. We predict very specific 
variation with energy of the Q2 dependence of elastic 
production cross section and of the L/T ratio, which 
derive from the small correlation radius for perturba- 
rive gluons Rc -,~ 0.3 f. Elastic production is found to 
probe the gluon structure function of the proton at an 
anomalously small factorization scale. 
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Abstract 

We present the first evaluation of the color dipole cross section from experimental data on diffractive photo- and 
electroproduction of vector mesons. The dipole size and energy dependence of the found dipole cross section are consistent 
with expectations from the BFKL dynamics. 

In the color dipole picture of high energy scatter- 
ing [ l-41 the dipole cross section is as fundamental 
a quantity as the low x gluon structure function of the 
proton in the conventional parton model. The diffrac- 

tive electroproduction of vector mesons 

Y*P -+ VP 9 V = p”, o”, +‘, J/q, Y (1) 

offers a unique window on the dipole cross section [ 5- 
71. Here the crucial point is that for the shrinkage of 
the transverse size of the virtual photon with virtuality 
Q2, the 1s vector meson production amplitude probes 
the dipole cross section at the dipole size r N rs, 

where the scanning radius equals [ 8,9] 

rs = &&p (2) 

’ E-mail: nemchik@to.infn.it. 

with A = 6. Specifically, the amplitudes of production 
of the transversely (T) and longitudinally (L) polar- 
ized 1s vector mesons are of the form [ 8,9] 

and one can extract the dipole cross section from the 
vector meson production cross sections. For the alter- 
native description of vector meson production at very 
large Q* in terms of the gluon structure function of 
the proton see [ 10,111. 

In the present communication we report the results 
of the first evaluation of the color dipole cross section 
from the experimental data on real photoproduction 
and electroproduction of the p”, +” and J/q from the 
fixed target and HERA collider experiments. A nice 
consistency with color blindness of the dipole cross 
section is found. When one takes the same value of 
the scanning radius, the p”, 4° and J/q production 
data yield close values of the dipole cross section. The 
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results of the HERA experiments allow the first eval- 
uation of energy dependence of the dipole cross sec- 
tion at different dipole sizes and confirm the predic- 
tion from BFKL dynamics that the smaller the dipole 
size, the faster the increase of the dipole cross section 

[X121. 
One needs the probability amplitudes to find color 

dipole of size r in the photon and vector meson. Here 
we use the formalism introduced in [ 1,5] and ex- 
pounded in [ 91. The spin independence of the dipole 
cross section leads to the s-channel helicity conserva- 
tion. In terms of the light-cone “radial” wave function 
4( Y, z, ) of the qq Fock state of the vector meson and 
the color dipole cross section a( Y, Y), the imaginary 
part of the forward production amplitudes equals 

ImMdwf, Q2) = NCGd=G 
WI2 

1 

X s d2r&,ff, r> J dz 

z(1 -z) 
0 

- [z2 + Cl- z>21EKl(Er)ar~(r,z) 1 
1 

J 

dr2 (+(xeff, r) 

= (m2,+Q2)2 7 r2 
WQ2, r2) 

= ,m/GCv~(xefl, rs> 4 
mt+Q2 

(3) 

1 

X .I d2rcr( xeEr r) 
J 

di 

0 

x [mi+z(l -z>m2, 
1 

- EKI <w>&&r, z) 

1 

where r is the transverse qq separation in the light- 
cone meson, i.e., the dipole size, z is the fraction of 
the momentum of the meson carried by the quark, 

E2=mi+z(1 -z)Q2, (5) 

NC = 3 is the number of colors, CV = 5, &, 5, 5 

for the p”, w”, #‘, J/q production, respectively, 
KO,J (x) is the modified Bessel function. In (3)) (4) 
the dipole cross section enters at an effective value of 
the Bjorken variable 

(6) 

The normalization of production amplitudes is such 
that 

da WI2 

-z r* =-iG7 
(7) 

Eqs. (3), (4) give the imaginary part of production 
amplitudes, one can easily include small corrections 
for the real part by the substitution [ 131 

= 1 - iw(x,ff,r) a(x,ff,r> 
1 

(8) 

Many gluon containing higher Fock states qqg.. . are 
very important at high energy Y. The crucial point is 
that in leading log $ their effect can be reabsorbed into 
the energy dependence of a( X, r) , which satisfies the 
generalized BFKL equation ( [ 2,3], for the related ap- 
proach see also [ 41) . The color dipole factorization 
formulas (3), (4) follow from diagonalization of the 
scattering matrix in the (r, z) representation. Clearly, 
this factorization holds even when the dipole size is 
large, beyond the perturbative region of small sizes. 
Only the wave function of the lowest qQ Fock state 
enters the color dipole factorization (3)) (4) formu- 
las. At large dipole size r one can identify #(r, z ), 
which is the probability amplitude to find the dipole 
of size r, with the constituent quark wave function of 
the meson and to develop a viable phenomenology of 
diffractive scattering which is purely perturbative for 
small size mesons and allows a sensible interpolation 
between soft interactions for large dipoles and hard 

Ko(sr)&r, z> 

m 
= mv(mt + Q2)2 J dr2 dxeff. r> 

r2 r2 
K(Q2, r2) 

JZI” m2, 
= gLAG&a(x,ff, 0) - 

mv m$+Q2’ 
(4) 
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Table 1 
Values of the parameters R2, C and rrz4 of the wave function of 
vector mesons [9] 

Parameter 

R2 [fm’l 
C 
my I GeV] 

PO t5O J/9 Y 

1.370 0.690 0.135 0.015 
0.360 0.530 1.130 1.990 
0.150 0.300 1.300 5.000 

perturbative interactions of small dipoles. Here the key 
property is the flavour independence of the pomeron 
exchange dipole cross section. The detailed descrip- 
tion of parameterization of 4( r, z ), which incorpo- 
rates the hard-QCD short distance behaviour, is given 

in [ 91. The parameters of the wave function were con- 

strained to reproduce the generally accepted radii of 
vector mesons and the width of leptonic decays V -+ 
e+e-, they are listed in Table 1. 

Eqs. (3)) (4) describe the pure pomeron exchange, 
which dominates at large values of the Regge param- 

eter w = 1 /xeff. At moderate values of w = l/xe~ a 
substantial part of the yp total cross section is due to 
the non-vacuum Reggeon exchange contribution. For 
instance, the Regge fit to the yp total cross section can 
be cast in the form [ 141 

CrtodYP) = mP(YP) ( 1 1+ $ 
where the term A/w* in the factor f = 1+ A/wA rep- 
resents the non-vacuum Reggeon exchange contribu- 
tion, the Donnachie-Landshoff fit gives A = 2.332 and 
A = 0.533. The similar Regge correction emerges also 

in real p” photoproduction amplitude. We do not know 
how large this non-vacuum contribution to the p” pro- 
duction is at large Q*, for the crude estimation we as- 
sume that the Reggeon/pomeron ratio scales with o, 
which is not inconsistent with the known decomposi- 
tion of the proton structure function into the valence 
(non-vacuum Reggeon) and sea (pomeron) contribu- 
tions. Then, for the NMC kinematics we find f = 1.25 
at u 2 70 relevant to Q* = 3 GeV* and f = 1.8 at 
w 21 9 relevant to Q * = 20 GeV*. For the HERA en- 
ergy range the non-vacuum Reggeon exchange con- 
tribution can be neglected due to a large value of the 
Regge parameter o. In practical terms, we calculate 
the quantity 

dg(y* + V)/dtJea = f*dap(y* -+ V)/dtJ,a. 

For the Zweig rule, one expects f = 1 for the 
4’) J/T, Y production. 

In the final form of amplitudes in ( 3)) (4) we sepa- 
rated out the rapid dependence on Q2 and/or scanning 
radius rs, and the so introduced coefficient functions 
gz~ are smooth functions of Q*. The possibility of 
such a local relationship between the production am- 
plitude and the dipole cross section at a well defined 
dipole size rs is based on two observations: 

i) the weight functions WTL(Q~,~=) have a sharp 

peak at r =.&,L/~Q~withAr,LN6 [9], _ 
ii) the ratio &(*_K,K, r) /r2 is a smooth function of 

the radius [3,12]. 
For these reasons, the coefficient functions ~T,L have 

only a weak sensitivity to the detailed shape of the 

dipole cross section. The gross features of a( X,R, r) 
are well understood and in [ 151 good quantitative de- 
scription of the small-x structure function of the pro- 
ton was obtained in the color dipole BFKL dynamics. 
The model dependence of gzL can be evaluated using 
the low-energy and high-energy forms of U(X~R. r) 
described in [ l&9], which have a markedly different r 
dependence. In Fig. 1 we present the Q* dependence of 
gzr, for different production processes at W = 15 GeV 
and W = 150 GeV (values of interest for the fixed tar- 
get and HERA experiments respectively). The vari- 
ation of the resulting coefficient functions gr,L from 
small to large W does not exceed 15%, which is a con- 
servative estimate of the theoretical uncertainty of the 
above procedure. The residual smooth Q* dependence 
of gxL mostly reflects the smooth and well understood 
Q* dependence of the scale factors AT,L which enter 

the relationship between the position AT,L/&%$ 
of the peak of WC, ( Q *,r*) andrsasgivenbyEq. (2) 
(see also the discussion in [9]). In (3), (4>, the gzL 
are so defined as to relate the amplitude to (T( X~R, rs) 
at the well defined scanning radius (2), reabsorbing 
the effect of small departure of AT,L from 6 into gzL. 

The experimentally measured forward cross produc- 
tion section section equals 

du(y* -+ V) 
dt Ir=o 

The difference between LY~L and CK~ for the longitu- 
dinal and transverse cross sections and the overall ef- 
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o-“;o; 10 e 
Q2[ deV2] 

Fig. 1. The Q* dependence of the coefficient functions ~T,J at 
W = 15 GeV (dashed curve) and W = 150 GeV (solid curve). 

feet of the real part is marginal and can safely be ne- 
glected compared to other uncertainties. Then, making 
use of the so determined ~T,L, in terms of the exper- 

imentally measured forward production cross section 
we can write using Eq. (3), (4), (7) and ( 10) 

1 1 Q2+m2, 2 
g(xeffYrs) = ?c, + a 

-112 

Here E is the longitudinal polarization of the photon, 
the values of which are taken from the correspond- 
ing experimental publications. In ( 11) f is the above 
discussed factor which accounts for the non-vacuum 
Reggeon contribution to the p” production, for the 4’ 
and J/q production, f = 1. In the case that the ex- 
perimental data are presented in the form of the t- 
integrated cross section, we evaluate 

(x1.6) I J/P-HERA l 

Fig. 2. The dipole size dependence of the dipole cross section 
extracted from the experimental data on photoproduction and elec- 
troproduction of vector mesons: the NMC data on 4’ and pa 
production [ 181, the EMC data on J/V production [23,25], the 
R687 data on J/v production [ 241, the FNAL data on pa produc- 
tion [ 161, the ZEUS data on pa production [ 20-221, the ZEUS 
data on +a production [ 171, the Hl data on pa production [ 191 
and the average of the Hl and ZEUS data on J/v production 
[ 26,271. The dashed and solid curve show the dipole cross section 
of the model [15,9] evaluated for the c.m.s. energy W = 15 and 
W = 70 GeV respectively. The data points at HERA energies and 
the corresponding solid curve are multiplied by the factor 1.5. 

da(y* --+ V) 

dt 
= Bm(y* --+ n 

t=o 

using the diffraction slope B as cited in the same pub- 
lication. In Fig. 2 we show the results of such anal- 
ysis of the low energy [ 161 and ZEUS [ 171 data on 
real photoproduction of the 400, the NMC data [ 181 
on electroproduction of the p” and 4O, the HERA re- 
sults on real and virtual photoproduction of the p” (Hl 
[ 191, ZEUS [ 20-221) , fixed target data on real photo- 
production [ 23,241 and electroproduction [ 2.51 of the 
J/q and HERA results on real photoproduction of the 
J/q (Hl [ 261, ZEUS [ 271). The error bars shown 
here correspond to the error bars in the measured cross 
sections as cited in the experimental publications. The 
experimental data on vector meson production fall into 
the two broad categories: the fixed target data taken at 
typical center of mass energy W -( 10-15) GeV and 
the HERA collider data taken at W ~(70-150) GeV. 
The color dipole cross section is flavour blind, there 
is only kinematical dependence on the vector meson 
through the definition of xen. However, if different re- 
actions are compared at the same value of the scanning 
radius rs, i.e., at the same value of Q2 + m$, then at 
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the fixed energy v the corresponding values of xeff are 
equal. Consequently, we expect that within each data 
group, the procedure ( 11) applied to different vec- 
tor mesons will yield the same value of a( xen, rs) at 
the same value of rs. This is an important consistency 

check. The experimental data on the vector meson pro- 
duction give a solid evidence for the decrease of the 
dipole cross section towards small dipole size rs. The 

fixed target data exhibit a decrease of c+(x,ff, rs) by 
one order in the magnitude from rs M 1.2 fm in real 
photoproduction of the r$O down to YS M 0.24 fm in 

electroproduction of the p” at Q2 = 23 GeV2 and of 
the J/q at Q2 = 13 GeV2. In the region of overlapping 
values of rs there is a remarkable consistency between 

the dipole size dependence and also absolute values 
of the dipole cross section determined from the data 
on the p”, $O and J/q production, in agreement with 
the flavour independence of the dipole cross section. 

The high energy data from HERA exhibit a de- 
crease of the dipole cross section by the factor -6-7 
from rs = 1.5 fm in real photoproduction of the p” 

down to IS = 0.26 fm in electroproduction of the p” 
at Q2 = 19.5GeV2. A comparison of the fixed-target 
and HERA data on real photoproduction and electro- 

production confirms the prediction [ 3,12,91 of faster 
growth of the dipole cross section at smaller dipole 

size, although the error bars are still large. 
The above determination of a( x,n, TS) is rather 

crude for the several reasons. 
i) First, the early EMC data on vector meson pro- 

duction are well known to have been plagued by a 
background from the inelastic process y*p --+ VX. A 
comparison of the more recent NMC [ 181 and the 
EMC data [28] on the p” production suggests that 
the inelastic admixture could have enhanced the ob- 

served cross section by as large factor as N 3 at Q2 = 
17 GeV2. Such an uncertainty would have resulted in 
overestimation of U( x,fr, us) by the factor N 1.8. This 
may be an origin of slightly larger values of a( x,8, us) 
deduced from the EMC data [ 251 on the J/q electro- 
production. Also the scattering of the measured J/9 
photoproduction cross sections is quite large, N 50%. 
Still, this factor of 2 uncertainty is much smaller than 
the more than one order in magnitude variation of 
(T(x~~, us) over the considered span in YS. In the re- 
cent NMC data [ 181 a special care has been taken to 
eliminate an inelastic background and the values of 
(T( x,ff, rs) from the p” and 4’ production data are 

consistent within the experimental error bars. 
ii) There are further uncertainties with the value of 

the diffraction slope B. At large Q2, the values of B 
could have been underestimated due to the same in- 
elastic background. Even in the better quality data, 
there are uncertainties with extrapolation down to t = 
0. Because of the curvature of the diffraction cone, 
one may somewhat underestimate the forward cross 
section. The experimental situation with the diffrac- 
tion slopes is quite unsatisfactory, in the case of the 
J/q and at large Q2 for light vector mesons even the 
N 50% uncertainty cannot be excluded at the moment. 
However, this uncertainty in the diffraction slope cor- 

responds to 5 25% uncertainty in our evaluation of 
a( x,n, r-s), which is sufficient for the purposes of the 
present exploratory evaluation of a( xen, rs) . 

iii) There is also the above evaluated conservative 
515% theoretical inaccuracy of our procedure. 

iv) Finally, there is a residual uncertainty with the 
wave function of light vector mesons. As a matter 
of fact, if the dipole cross section were known, then 

diffractive y*p --+ Vp must be regarded as a local 
probe of the wave function of vector mesons at r M rs 
[ 71, which may eventually become one of applications 
of vector meson production. To this end, the consis- 
tency of a( xeffr r) determined from different reactions 

indicates that wave functions of vector mesons are rea- 
sonably constrained by the leptonic width. Here we 
only wish to notice that at high Q* and small scanning 
radius, the vector meson production cross section is 
cc I( V --+ e+e-) and even the factor 2 uncertainty in 

this quantity corresponds to only s 40% uncertainty 
in the determination of the dipole cross section. 

To summarize, within the above stated uncertainties 
of our simple procedure and the experimental error 

bars, there is a consistency between the dipole cross 
section determined from the p” 4° and J/T production 
data. This is the first direct determination of the dipole 
cross section from the experimental data and our main 
conclusions on properties of the dipole cross section 
are not affected by the above cited uncertainties. 

In Fig. 2 we show also the dipole cross section 
from the BFKL analysis [ 15,9], which gives a good 
quantitative description of structure function of the 
photon at small x. We conclude that the color dipole 
BFKL dynamics provides a unified description of the 
experimental data on diffractive production of vector 
mesons and on the proton structure function. 
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Conclusions. We presented the first determination 
of the dipole cross section from the experimental data 

on diffractive production of vector mesons. We evalu- 
ated the color dipole cross section a( x,~, rs) at dipole 
size rs down to rs M 0.2 fm and confirmed the theoret- 

ically expected rapid decrease of U(X,E, rs) towards 
small rs. We found a remarkable consistency between 

the absolute value and the dipole size and energy de- 
pendence of the dipole cross section extracted from 
the data on different vector mesons. This constitutes 

an important cross-check of the color dipole picture 

of the QCD pomeron. The found pattern of the energy 
dependence of the dipole cross section is consistent 
with the flavour independence and with expectations 

from the BFKL dynamics. 

This work was partly supported by the INTAS grant 

No. 93-239. 
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FÜR PHYSIK C
c© Springer-Verlag 1997

Color dipole phenomenology of diffractive electroproduction
of light vector mesons at HERA

J. Nemchik1,2, N.N. Nikolaev3,4, E. Predazzi1, B.G. Zakharov1,4
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Abstract. We develop the color dipole phenomenology of
diffractive photo- and electroproduction γ∗ N → V (V ′)N
of light vector mesons (V (1S) = φ0, ω0, ρ0) and their radial
excitations (V ′(2S) = φ′, ω′, ρ′). The node of the radial wave
function of the 2S states in conjunction with the energy de-
pendence of the color dipole cross section is shown to lead
to a strikingly different Q2 and ν dependence of diffrac-
tive production of the V (1S) and V ′(2S) vector mesons.
We discuss the restoration of flavor symmetry and univer-
sality properties of production of different vector mesons as
a function of Q2 +m2

V . The color dipole model predictions
for the ρ0 and φ0 production are in good agreement with
the experimental data from the EMC, NMC, ZEUS and H1
collaborations. We present the first direct evaluation of the
dipole cross section from these data.

1 Introduction

Diffractive electroproduction of vector mesons

γ∗p → V p , V = ρ0, ω0, φ0, J/Ψ, Υ (1)

at high energy ν offers a unique possibility of studying the
pomeron exchange at high energies [1–8]. Particularly im-
portant is the observation that the transverse size of the pho-
ton shrinks with the increase of its virtuality Q2. This prop-
erty can conveniently be quantified in the mixed (r, z) light-
cone technique [9, 10], in which the high energy hadrons and
photons are described as systems of color dipoles with the
transverse size r frozen during the interaction process. The
interaction of color dipoles with the target nucleon is quan-
tified by the color dipole cross section σ(ν, r) whose evolu-
tion with the energy ν is described by the generalized BFKL
equation [10, 11] (for a related approach see also [12]). The
shrinkage of the photon with Q2 together with the small-size
behavior of the dipole cross section (∼ r2) leads to what has
come to be known as the scanning phenomenon [4–6]: the
V (1S) vector meson production amplitude is dominated by
the contribution from the dipole cross section at the dipole
size r ∼ rS , where rS is the scanning radius

rS ≈ A√
m2

V +Q2
. (2)

This scanning property makes the vector meson production
an ideal laboratory for testing the generalized BFKL dy-
namics [gBFKL hereafter]. At large Q2 and/or for heavy
vector mesons, the amplitude of reaction (1) becomes short-
distance dominated and is perturbatively calculable in terms
of the short-distance behavior of the vector mesons wave
function. However, the asymptotic short distance formulas
[3, 7] are not yet applicable at the moderate Q2 ∼< 20GeV2
of interest in the present fixed target and HERA experiments
where the scanning radius rS is still large due to a large scale
parameter A ≈ 6 in (2) as derived in [6]. For this reason,
the onset of the short-distance dominance is very slow and
there emerges a unique possibility of studying the transi-
tion between the soft and hard interaction regimes in a well
controlled manner. Furthermore, the scanning phenomenon
allows to directly test the steeper subasymptotic energy de-
pendence of the dipole cross section at smaller dipole size
r, which is one interesting consequence of the color dipole
gBFKL dynamics [11, 13].
The scanning phenomenon has particularly interesting

implications for the diffractive production of the 2S radially
excited vector mesons
γ∗p → V ′p , V ′(2S) = ρ′, ω′, φ′, Ψ ′, Υ ′ .. (3)
Here one encounters the node effect: a tricky and strong can-
cellation between the large and the small size contributions
to the production amplitude i.e., those above and below the
node position rn in the 2S radial wave function [2, 14, 15]
respectively. The node effect is the only dynamical mecha-
nism that gives a strong natural suppression of the photopro-
duction of excited vector mesons V ′(2S) vs. V (1S) mesons.
For instance, it correctly predicted [2, 14] the strong sup-
pression of real photoproduction of the Ψ ′ compared to the
J/Ψ observed in the NMC experiment [16] and confirmed
recently in the high statistics E687 experiment [17]. In an-
ticipation of the new experimental data on real and virtual
V ′ photoproduction from HERA, it is important to further
explore the salient features of the node effect in the frame-
work of the color dipole gBFKL dynamics. At moderate
Q2, the scanning radius rS is comparable to rn. First, for
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this reason even a slight variation of rS with Q2 leads to a
strong change of the cancellation pattern in the V ′(2S) pro-
duction amplitude and to an anomalous Q2 dependence for
the electroproduction of the radially excited vector mesons
[2, 14, 15]. Second, the cancellation pattern is sensitive also
to the dipole-size dependence of the color dipole cross sec-
tion σ(ν, r) which in the gBFKL dynamics changes which ν
leading to an anomalous energy dependence for producing
the V ′(2S) vector mesons as compared to a smooth energy
dependence for the V (1S) ground state vector mesons. This
anomalous Q2 and energy dependence of the V ′(2S) pro-
duction offers a unique signature of the 2S radial excitation
vs. the D-wave state. Third, at very small Q2, the V ′(2S)
production amplitude can be of opposite sign with respect
to that of the V (1S) production amplitude (the overcompen-
sation scenario of [15]) to then conform to the same sign
at larger Q2 (the undercompensation scenario of [15]). Here
we wish to emphasize that the relative sign of the V ′ and
V production amplitudes is experimentally measurable us-
ing the so-called Söding-Pumplin effect ([18, 19], see also
[20]).
In this paper we develop the color dipole phenomenology

of diffractive photo- and electroproduction of the 1S ground
state and of the 2S radially excited vector mesons. As stated
above, for a large scanning radius, the large distance contri-
bution to the production amplitude is not yet negligibly small
in the so far experimentally studied region of Q2, in partic-
ular in the 2S meson production. In this paper we show that
the Q2 and energy dependence of the diffractive production
of vector mesons offers a unique possibility of studying how
the color dipole cross section changes from the large nonper-
turbative to the small perturbative dipole size. The problem
can be attacked both ways. First, we present detailed predic-
tions using the color dipole cross section [21, 6], which gives
a very good quantitative description of the proton structure
function from very small to large Q2. Second, we can invert
the problem and evaluate the color dipole cross section from
the corresponding experimental data. Such an evaluation of
the dipole cross section is presented here for the first time.
The paper is organized as follows. In Sect. 2 we formu-

late the color dipole factorization for vector meson produc-
tion amplitudes. In Sect. 3 we present our numerical results.
We find good agreement with the experimental data from
the fixed target and HERA collider experiments. The sub-
ject of Sect. 4 is the anomalous Q2 and energy dependence
of electroproduction of 2S radially excited vector mesons. In
Sect. 5 we discuss the scaling relations between production
cross sections for different vector mesons and the restoration
of flavor symmetry in the variable Q2+m2

V . We comment on
how the scanning phenomenon enables a direct comparison
of the spatial wave functions of the ρ0 and ω0 mesons. The
first evaluation of the dipole cross section from the experi-
mental data is presented in Sect. 6. In Sect. 7 we summarize
our main results and conclusions. In the Appendix we de-
scribe the lightcone parameterization of the wave functions
of the V (1S) and V (2S) vector mesons used in our analysis.

2 Color dipole factorization
for vector meson production

The Fock state expansion for relativistic mesons starts with
the quark-antiquark state which can be considered as a color
dipole. The relevant variables are the dipole moment r which
is the transverse separation (with respect to the collision
axis) of the quark and antiquark and z - the fraction of
the lightcone momentum of the meson carried by a quark.
The interaction of the relativistic color dipole with the target
nucleon is described by the energy dependent color dipole
cross section σ(ν, r). The many gluon contributions of higher
Fock states qq̄g... become very important at high energy ν.
The crucial point is that in the leading log 1x the effect of
higher Fock states can be reabsorbed into the energy de-
pendence of σ(ν, r), which satisfies the generalized BFKL
equation ([10, 11]). The flavor blind (one should really say
flavor tasteless) dipole cross section unifies the description
of various diffractive processes. To apply the color dipole
formalism to deep inelastic and quarkonium scattering and
diffractive production of vector mesons one needs the prob-
ability amplitudes Ψγ∗ (r, z) and ΨV (r, z) to find the color
dipole of size r in the photon and quarkonium (vector me-
son), respectively. The color dipole distribution in (virtual)
photons was derived in [9, 10]. In terms of these probability
amplitudes, the imaginary part of the virtual photoproduction
of vector mesons in the forward direction (t = 0) reads

ImM = 〈V |σ(ν, r)|γ∗〉 =
∫ 1

0
dz

∫
d2rσ(ν, r)

·Ψ∗
V (r, z)Ψγ∗ (r, z) (4)

whose normalization is dσ/dt|t=0 = |M|2/16π. For small
size heavy quarkonium the probability amplitude ΨV (r, z)
can safely be identified with the constituent quark-antiquark
quarkonium wave function. The color dipole factorization
(4) takes advantage of the diagonalization of the scattering
matrix in the (r, z) representation, which clearly holds even
when the dipole size r is large, i.e. beyond the perturbative
region of short distances. Due to this property and to the
fact that in leading log 1x the effect of higher Fock states
is reabsorbed in the energy dependence of the dipole cross
section σ(ν, r), as a starting approximation we can identify
the probability amplitude ΨV (r, z) for large size dipoles in
light vector mesons with the constituent quark wave func-
tion of the meson. This provides a viable phenomenology of
diffractive scattering which is purely perturbative for small
size mesons and/or large Q2 and small scanning radius rS
and allows a sensible interpolation between soft interactions
for large dipoles and hard perturbative interactions of small
dipoles. For light quarkonia and small Q2, this implies the
assumption that small-size constituent quarks are the rele-
vant degrees of freedom and the spatial separation of con-
stituent quarks is a major dynamical variable in the scat-
tering process.1 The large-r contribution to the production
amplitude (6) depends on both the dipole cross section for
large-size dipoles and the distribution amplitudes of large-
size color dipoles and/or on the nonperturbative wave func-
1 See also earlier works on the color dipole analysis of hadronic diffrac-

tive interactions which used constituent quark wave functions for the color
dipole distribution amplitudes [22]
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tions of light vector mesons at large r, both of which are
poorly known at the moment. Still, testing the predictions
from such a minimal model is interesting for its own sake
and can shed light on the transition between the soft and
hard scattering regimes which is still far from understood.
An analysis of the sensitivity to models for the nonpertur-
bative wave functions of vector mesons and to how one can
disentangle the effects of large r behavior of the wave func-
tion and of the dipole cross section, goes beyond the scope
of the present exploratory study.
The energy dependence of the dipole cross section is

quantified in terms of the dimensionless rapidity ξ, which
in deep inelastic scattering equals ξ = log 1x . Consideration
of the intermediate masses in diagrams for exclusive pro-
duction of vector mesons shows that to the leading log 1x
approximation one must take ξ = log 1

xeff
, where

xeff =
Q2 +m2

V

2mpν
, (5)

and mV is a mass of the vector meson. The pomeron ex-
change dominance holds when the Regge parameter is large,

ω =
1

xeff
=

2mpν

(Q2 +m2
V )

� 1 . (6)

Hereafter, we write the amplitudes in terms of σ(xeff , r).
The spin independence of the dipole cross section σ(xeff , r)
in (4) leads to the s-channel helicity conservation: the
transversely polarized photons produce transversely polar-
ized vector mesons and the longitudinally polarized vector
mesons are produced by longitudinal photons. More explic-
itly, the form of the forward production amplitudes for the
transversely (T) and the longitudinally (L) polarized vector
mesons in terms of the lightcone radial wave function φ(r, z)
of the qq̄ Fock state of the vector meson reads [6]

ImMT (xeff , Q
2) =

NcCV

√
4παem

(2π)2

∫
d2rσ(xeff , r)

·
∫ 1

0

dz

z(1− z)
{
m2

qK0(εr)φ(r, z)

−[z2 + (1− z)2]εK1(εr)∂rφ(r, z)
}

=
1

(m2
V +Q2)2

∫
dr2

r2
σ(xeff , r)

r2
WT (Q2, r2) (7)

ImML(xeff , Q
2) =

NcCV

√
4παem

(2π)2
2
√
Q2

mV

∫
d2rσ(xeff , r)

·
∫ 1

0
dz

{
[m2

q + z(1− z)m2
V ]K0(εr)φ(r, z)

−εK1(εr)∂rφ(r, z)}

=
1

(m2
V +Q2)2

2
√
Q2

mV

∫
dr2

r2
σ(xeff , r)

r2
WL(Q2, r2) (8)

where

ε2 = m2
q + z(1− z)Q2 , (9)

αem is the fine structure constant, Nc = 3 is the number
of colors, CV = 1√

2
, 1
3
√
2
, 13 ,

2
3 for ρ0, ω0, φ0, J/Ψ pro-

duction, respectively and K0,1(x) are the modified Bessel

functions. The detailed discussion and parameterization of
φ(r, z) is given in the Appendix, here we only mention that
the form of φ(r, z) we use has the hard-QCD driven short
distance behavior and gives the electromagnetic form fac-
tor of mesons with the correct QCD asymptotic behavior.
At large r we follow the conventional spectroscopic mod-
els [23] and constrain the parameters of the wave functions
by the widths of the leptonic decays V, V ′ → e+e−, the
radii of the vector mesons and the 2S-1S mass splitting.
The terms ∝ φ(r, z)K0(εr) and ∝ ∂rφ(r, z)εK1(εr), i.e.,
∂rφ(r, z)∂rK0(εr), in the integrands of (7) and (8) derive
from the helicity conserving and helicity nonconserving tran-
sitions γ∗ → qq̄ and V → qq̄ in the AμΨγμΨ and VμΨγμΨ
vertices (see Bjorken et al. [24] and [9]; the technique of
calculation of traces in the spinorial representation of the
relevant Feynman amplitudes is given in [9] and need not
be repeated here; for the related Melosh transformation anal-
ysis see [25]). For the heavy quarkonium the nonrelativistic
approximation [2] has a rather high accuracy, the relativistic
corrections become important only at large Q2 and for the
production of light vector mesons. Equations (7),(8) give the
imaginary part of the production amplitudes; one can easily
include small corrections for the real part by performing the
substitution [26],

σ(xeff , r) =⇒
(
1− i · π

2
· ∂

∂ log xeff

)
σ(xeff , r)

=
[
1− i · αV (xeff , r)

]
σ(xeff , r) (10)

For brevity, in the subsequent discussion we suppress the
real part of the production amplitude; it is consistently in-
cluded in all the numerical calculations.
The color dipole cross section is flavor blind. The only

kinematical sensitivity to the vector meson produced comes
via the rapidity variable, see (5). For small r, in the leading
log 1x and leading log

1
r2 , i.e., leading logQ

2, the dipole cross
section can be related [27] to the gluon structure function
G(x, Q̄2) of the target nucleon through

σ(x, r) =
π2

3
r2αs(r)G(x, Q̄2) , (11)

where the gluon structure function enters at the factorization
scale Q̄2 ∼ B

r2 (for the origin of the large scale factor B ∼
10, see [28]). The integrands of (7),(8) are smooth at small r
and decrease exponentially at r > 1/ε due to the exponential
decrease of the modified Bessel functions. Together with the
∝ r2 behavior of the color dipole cross section (11), this
implies that the amplitudes (7),(8) receive their dominant
contribution from r ≈ rS . (Equation (2) assumes that the
scanning radius rS is substantially smaller than the radius
RV of the vector meson.) Then, a simple evaluation gives
[5]

ImMT ∝ r2Sσ(xeff , rS) ∝ 1
Q2 +m2

V

σ(xeff , rS)

∝ 1
(Q2 +m2

V )2
(12)

and

ImML ≈
√
Q2

mV
MT ∝

√
Q2

mV
r2Sσ(xeff , rS)

59



74

∝
√
Q2

mV

1
(Q2 +m2

V )2
(13)

respectively.2 The prediction of the dominance of the lon-
gitudinal cross section at large Q2 is shared by all the
models of diffractive leptoproduction, starting with the vec-
tor dominance model ([3, 5, 7], for an excellent review
of early work on photo- and electroproduction of vector
mesons and on vector dominance model see Bauer et al.
[29]) and is confirmed by all the experiments on leptopro-
duction of the ρ0 at large Q2 [30–33]. The first factor
∝ r2S ∝ 1/(Q2 + m2

V ) in (12) comes from the overlap of
wave function of the shrinking photon and that of the vector
meson. The familiar vector dominance model (VDM) pre-
diction is MT ∝ 1

(m2
V
+Q2)σtot(ρN ), whereas in our QCD

approach a small σ(xeff , rS) ∝ r2S ∝ 1/(Q2 + m2
V ) en-

ters instead of σtot(V N ). In (12),(13) we show only the
leadingQ2 dependence, suppressing the phenomenologically
important departure form the law σ(x, r) ∝ r2, whose large
Q2 dependence can be related to scaling violations in the
gluon density (see (11) and the discussion below). We recall
that the shrinkage of the virtual photons and/or the decrease
of the scanning radius rS with Q2 is the origin of color
transparency effects in diffractive leptoproduction of vector
mesons off nuclei [2, 4, 5, 34]. The important confirmation
of the quantitative predictions [4, 5] of color transparency
effects based on the same technique as used here came from
the E665 experiment [35].
A more accurate analysis of the scanning phenomenon

can be performed in terms of the weight functionsWT,L(Q2, r2)
which are sharply peaked at r ≈ AT,L/

√
Q2 +m2

V ; in the
relevant variable log r the width of the peak in WL(Q2, r2)
at half maximum equals Δ log r ≈ 1.2 for J/Ψ production
and Δ log r ≈ 1.3 for ρ0 production and varies little with
Q2 [6]. The values of the scale parameter AT,L turn out
to be close to A ∼ 6, which follows from rS = 3/ε with
the nonrelativistic choice z = 0.5; in general AT,L ≥ 6
and increases slowly with Q2. This Q2 dependence of AT,L

comes from the large-size asymmetric qq̄ configurations
when, for instance, the antiquark and the quark in the pho-
ton and in the vector mesons carry a very large and a
very small fraction of the meson momentum respectively
(or the other way around). A comparison of the integrands
in (7) and (8) shows that the latter contains an extra factor
z(1− z) which makes considerably smaller the contribution
from asymmetric configurations to the longitudinal meson
production. For completeness, we quote the results of [6]:
AT,L(J/Ψ ;Q2 = 0) ≈ 6, AT,L(J/Ψ ;Q2 = 100GeV2) ≈
7, AL(ρ0;Q2 = 0) ≈ 6.5, AL(ρ0;Q2 = 100GeV2) ≈
10, AT (ρ0;Q2 = 0) ≈ 7, AT (ρ0, Q2 = 100GeV2) ≈ 12.
An alternative formulation of the slow onset of the purely

perturbative regime can be seen as follows: at very large Q2
when the scanning radius is very small, the dipole cross
section σ(xeff , r) and the vector meson production ampli-
tudes are proportional to the gluon density G(xeff , Q̄

2) at
the factorization scale Q̄2 = τ (Q2 + m2

V ) (see also [3, 7]
which use momentum-space wave functions, related to the
2 Unless otherwise specified, for each flavor, mV will always be the

mass of the ground state 1S vector meson

Fig. 1. The color dipole model predictions for the total cross section
σtot(V N ) for the interaction of the light vector mesons ρ, ρ′, φ and φ′
with the nucleon target as a function of c.m.s. energy W

color dipole factorization by the Fourier-Bessel transform;
the detailed comparison with the work of Brodsky et al. [7]
will be presented below in Sect. 6). The large values of
AT,L previously quoted, reflect into very small values of τ
[6]: in the interesting region of Q2 ∼> 10GeV 2 one finds
τT,L(J/Ψ ) ≈ 0.2, τL(ρ0) ≈ 0.15 and τT (ρ0) ≈0.07-0.1,
which is different and substantially smaller than the values
τ = 0.25 suggested in [3] and τ = 1 suggested in [7]. Very
large Q2 values are needed for reaching the perturbatively
large Q̄2 and for the applicability of the pQCD relationship
(11).
Consequently, for the domain presently under experi-

mental study, Q2 +m2
V ∼<10-20GeV2, the production ampli-

tudes receive substantial contribution from semiperturbative
and nonperturbative r. In [21, 6] this contribution was mod-
eled by the energy independent soft cross section σ(npt)(r).
The particular form of this cross section successfully pre-
dicted [21] the proton structure function at very small Q2
recently measured by the E665 collaboration [36] and also
gave a good description of real photoabsorption [6]. As an
example, in Fig. 1 we present an evaluation of the vector
meson-nucleon total cross section

σtot(V N ) =
Nc

2π

∫ 1

0

dz

z2(1− z)2

∫
d2r

{
m2

qφ(r, z)
2

+[z2 + (1− z)2][∂rφ(r, z)]2
}
σ(xeff , r) . (14)

The total cross section σtot(ρ0N ) so found, is close to
σtot(πN ), and the rise of σtot(V N ) with the c.m.s energy
W is consistent with the observed trend of the hadronic total
cross sections [37]. In the color dipole picture the smaller
values of σtot(φN ) and σtot(φ′N ) derive from the smaller
radius of the ss̄ quarkonium. In the simple model [21, 6]
the rise of σtot(V N ) is entirely due to the gBFKL rise of
the perturbative component σ(pt)(xeff , r) of the dipole cross
section. The rate of rise is small for two reasons: i) at moder-
ate energy, σ(pt)(xeff , r) at large r is much smaller than the
soft cross section σ(npt)(r), ii) at large r the subasymptotic
effective intercept of the gBFKL pomeron is small [11, 13].
The detailed description of the dipole cross section used in
the present analysis is given in [21, 6] and will not be re-
peated here. It is partly shown below in Fig. 16. The reason
why we focus here on this particular model is that its success
in phenomenological applications makes it a realistic tool for
the interpolation between soft and hard scattering regions.
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Fig. 2. The color dipole model predictions for the Q2 dependence of the
observed cross section σ(γ∗ → V ) = σT (γ∗ → V ) + εσL(γ∗ → V ) of
exclusive ρ0 and φ0 production vs. the low-energy NMC [31] and high-
energy ZEUS [32, 38] and H1 [33] data. The top curve is a prediction for
the ρ0 production at W = 70GeV, the lower curves are for the ρ0, φ0

production at W = 15GeV. The dashed curve for the ρ0 shows the pure
pomeron contribution σ�(γ∗ → ρ0), the solid curve for the ρ0 shows the
effect of correcting for the non-vacuum Reggeon exchange as described in
the text

Once the vector mesons wave functions are fixed from their
spectroscopic and decay properties, all the results for diffrac-
tive real and virtual photoproduction of vector mesons to be
reported here do not contain any adjustable parameters.

3 Diffractive ρ0 and φ0 production: predictions
and comparison with experiment

The most interesting prediction from the color dipole dynam-
ics is a rapid decrease of production amplitudes (12),(13) at
large Q2. The broadest region of Q2 was covered in the re-
cent NMC experiment [31] where special care was taken to
minimize the inelastic production background which plagued
earlier data on ρ0 and J/Ψ production. In Fig. 2 we com-
pare our predictions for ρ0 and φ0 production with the NMC
data and the data from the HERA experiments [32, 38, 33].
Shown here is the observed polarization-unseparated cross
section σ(γ∗ → V ) = σT (γ∗ → V ) + εσL(γ∗ → V ) for the
value of the longitudinal polarization ε of the virtual photon
taken from the corresponding experimental paper (typically,
ε ∼ 1). The quantity which is best predicted theoretically is
dσ(γ∗ → V )/dt|t=0; in our evaluation of the total production
cross section σ(γ∗ → V ) = B(γ∗ → V )dσ(γ∗ → V )/dt|t=0
we use the diffraction slope B(γ∗ → V ) given in the corre-
sponding experimental paper.
Equations (7),(8) describe the pure pomeron exchange

contribution to the production amplitude. While at HERA
energies secondary Reggeon exchanges can be neglected
since the Regge parameter ω is very large, at the lower en-
ergy of the NMC experiment, 〈ν〉 =(90-140)GeV, the Regge
parameter ω is small and non-vacuum Reggeon exchange
cannot be neglected. The fit to σtot(γp) can, for instance, be
cast in the form

σtot(γp) = σ�(γp) ·
(
1 +

A

ωΔ

)
(15)

where the term A/ωΔ in the factor f = 1 + A/ωΔ repre-
sents the non-vacuum Reggeon exchange contribution. The
Donnachie-Landshoff fit gives A = 2.332 and Δ = 0.533

Fig. 3. The color dipole model energy dependence predictions for forward
real photoproduction of ρ0 mesons compared with fixed target data [39] and
high energy data from the ZEUS [40, 41] and H1 [43] experiments at HERA
collider. The dashed curve is the pure pomeron exchange contribution, the
solid curve shows the correction for the the non-vacuum Reggeon exchange
as described in the text

[37]. We do not know how large this non-vacuum contribu-
tion to ρ0 production is at largeQ2; for a crude estimation we
assume the Reggeon/pomeron ratio to scale with ω, which is
not inconsistent with the known decomposition of the proton
structure function into the valence (non-vacuum Reggeon)
and sea (pomeron) contributions. Then, for the NMC kine-
matics we find f = 1.25 at ω � 70, Q2 = 3GeV2 and f = 1.8
at ω � 9, Q2 = 20GeV2. This departure of f from unity pro-
vides a conservative scale for the theoretical uncertainties at
moderate values of ω. Anyway, the Q2 dependence of the
Reggeon correction factor f is weak compared with the very
rapid variations of MT and ML with Q2. The correction
for the secondary exchanges, σ(γ∗ → ρ0) = f 2σ�(γ∗ → ρ0),
brings the theory to a better agreement with the NMC data.
The dipole cross section of [21, 6] correctly describes the
variation of the ρ0 production cross section over 3 orders of
magnitude from Q2 = 0 to Q2 = 16.5GeV2. For φ0 produc-
tion, f ≡ 1 due to the Zweig rule and the pure pomeron con-
tribution correctly reproduces the magnitude of σ(γ∗ → φ0)
and its variation over nearly three orders of magnitude from
Q2 = 0 to Q2 = 11.3GeV2.
The specific prediction from the gBFKL dynamics is a

steeper subasymptotic growth with energy of the dipole cross
section σ(ν, r) at smaller dipole size r, which by virtue
of the scanning phenomenon translates into a steeper rise
of σ(γ∗ → V ) at higher Q2 and/or for heavy quarkonia.
This consequence of the color dipole dynamics was first ex-
plored in [6]; the ρ0 wave function parameters used in [6]
are slightly different from those used here but the difference
in σ(γ∗ → ρ0) is marginal. The agreement of our high-
energy results with the HERA data is good for both Q2 = 0
(Fig. 3) and large Q2 (Fig. 2) and confirms the growth of the
dipole cross section with energy expected from the gBFKL
dynamics.
The above high-Q2 data are dominated by the longi-

tudinal cross section; real photoproduction (Q2 = 0) mea-
sures the purely transverse cross section. In Fig. 3 we
present our results with and without secondary Reggeon
corrections (dσ�(γ → ρ0)/dt|t=0 and dσ(γ → ρ0)/dt|t=0 =
f 2dσ�(γ → ρ0)/dt|t=0 respectively) as a function of en-
ergy. The Reggeon correction factor f 2 brings the theory to
a better agreement with the low energy ρ0 production data
[39]. Real photoproduction of ρ0 is dominated by the soft
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Table 1. The parameters R2, C,mq and α of the vector mesons wave function and some of the observables
evaluated with these wave functions: the r.m.s. RV , the leptonic width Γ (e+e−) and the V ′(2S)−V (1S)
mass splitting. The values of Γ (e+e−) from the Particle Data Tables [50] is shown for the comparison

Parameter ρ0 ρ′ φ0 φ′ J/Ψ Ψ ′ Υ Υ ′

R2 [fm2] 1.37 1.39 0.69 0.83 0.135 0.248 0.015 0.047
C 0.36 0.28 0.53 0.44 1.13 0.99 1.99 1.72
mq [GeV] 0.15 0.15 0.30 0.30 1.30 1.30 5.00 5.00
α 0.86 0.94 1.20 1.53
RV [fm] 1.30 2.28 0.91 1.68 0.41 0.83 0.19 0.42
Δm(2S − 1S) [GeV] 0.73 0.64 0.60 0.55
Γ (e+e−) [keV] 6.29 2.62 1.23 0.47 5.06 1.78 1.20 0.54
Γ exp(e+e−) [keV] 6.77 1.37 0.48 5.36 2.14 1.34 0.56

±0.32 ±0.05 ±0.14 ±0.29 ±0.21 ±0.04 ±0.140

Fig. 4. The color dipole model predictions for the energy dependence of
real photoproduction of the φ0 mesons compared with fixed target [44] and
high energy ZEUS data [45] (open square in the top box). The color dipole
model predictions for the energy dependence of real photoproduction of the
ρ0 mesons compared with fixed target [39] and high energy ZEUS [40–42]
(open squares and triangles in the bottom box) and H1 data [43] (stars in
the bottom box)

contribution, the growth of the production cross section is
driven by the rising gBFKL component of the dipole cross
section. Our predictions for high energy agree well with the
recent ZEUS [40–42] and H1 [43] data. The φ0 produc-
tion is pomeron dominated which implies f ≡ 1. We find
good agreement with the fixed target [44] and ZEUS [45]
data on real photoproduction of the φ0, although the error
bars are large (Fig. 4). Because in φ0 photoproduction the
relevant dipole sizes are smaller than in the ρ0 case, (see
the radii of ρ0 and φ0 in Table 1), we predict a steep en-
ergy dependence of the φ0 production forward cross section:
dσ(γ → φ0)/dt|t=0 is predicted to grow by a factor ≈ 2.5
from 3.75μb/GeV 2 at ν = 175GeV , i.e., W = 18GeV , up
to ∼ 8.84μb/GeV 2 at W = 170GeV at HERA. At W =
70GeV we have σ(γ → φ0) = 0.87μb which agrees with the
first ZEUS measurement σ(γ → φ0) = 0.96 ± 0.27μb [45].
More detailed predictions for the energy and Q2 dependence
of dσ(γ∗ → V )/dt|t=0 are presented in Fig. 5 and clearly
show a steeper rise with energy at larger Q2 (see also [6]).
In Fig. 6 we show our predictions for

Fig. 5. The color dipole model predictions of the forward differential cross
sections dσL,T (γ∗ → V )/dt|t=0 for transversely (T) (top boxes) and lon-
gitudinally (L) (middle boxes) polarized ρ0 and φ0 and for the polarization-
unseparated dσ(γ∗ → V )/dt|t=0 = dσT (γ∗ → V )/dt|t=0 + εdσL(γ∗ →
V )/dt|t=0 (bottom boxes) for ε = 1 as a function of the c.m.s. energy W
at different values of Q2

RLT =
m2

V

Q2
dσL(γ∗ → V )
dσT (γ∗ → V )

. (16)

The steady decrease of RLT with Q2 which implies a
diminution of the dominance of the longitudinal cross section
is a very specific prediction of the color dipole approach. It
follows from a larger contribution from large size dipoles to
the production amplitude for the transversely polarized vec-
tor mesons and larger value of the average scanning radius,
i.e., AT ∼> AL [6]. This prediction can be checked with the
higher precision data from HERA; the available experimen-
tal data [30–33] agree with RLT < 1 but have still large
error bars.
The Q2 dependence of the observed polarization-unsepa-

rated cross section depends on the longitudinal polarization
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Fig. 6. The color dipole model predictions for the Q2 and W dependence
of the ratio of the longitudinal and transverse differential cross sections in

the form of the quantity RLT =
m2

V

Q2
dσL(γ∗→V )
dσT (γ∗→V ) , where mV is the mass

of the vector meson. The solid and dashed curves are for W = 15GeV
and W = 150GeV

Fig. 7. The color dipole model predictions for the dependence on the scaling
variable Q2 +m2

V of the polarization-unseparated dσ(γ∗ → V )/dt|t=0 =
dσT (γ∗ → V )/dt|t=0 + εdσL(γ∗ → V )/dt|t=0 for ε = 1 at the HERA
energy W = 100GeV

ε of the virtual photon. To a crude approximation the color
dipole dynamics predicts

σ(γ∗ → V ) = σT (γ∗ → V ) + εσL(γ∗ → V )

∝ 1
(Q2 +m2

V )4

(
1 + εRLT

Q2

m2
V

)
(17)

If one approximates (17) by the (Q2 + m2
V )−n behavior,

one finds n ∼ 3 vs. n ∼ 1 in the naive VDM. In (17)
we suppressed the extra Q2 dependence which at large Q2
comes from the scaling violations in the gluon density factor
∝ G2(x, τ (Q2 +m2

V )), see (11). For these scaling violations,
at fixed xeff and asymptotically large Q2 we expect n ∼< 3.
In Fig. 7a we present our predictions for ρ0 and φ0 produc-
tion at W = 100GeV as a function of Q2 + m2

V assum-
ing for the longitudinal polarization ε = 1 as in the ZEUS

[32, 46] and H1 [33, 47] kinematics. These cross sections
can be roughly approximated by the ∝ (Q2 + m2

V )−n law
with the exponent n ≈ 2.4 for the semiperturbative rS re-
gion 1 ∼< Q2 ∼< 10 GeV2. At fixed W , xeff varies with
Q2 and for the xeff dependence of σ(xeff , Q

2) we predict
n ≈ 3.2 for the perturbative 15 ∼< Q2 ∼< 100GeV2 where rS
is small. We strongly urge a careful analysis of the Q2 de-
pendence in terms of the natural variable Q2 +m2

V (for more
discussion see Sect. 5 below). For the sake of completeness,
in Fig. 5 we present also our predictions for the energy de-
pendence of the polarization-unseparated production cross
section σ = σT + εσL for the typical ε = 1.

4 Anomalies in electroproduction of 2S radially excited
vector mesons

Here the keyword is the node effect - the Q2 and energy
dependent cancellations from the soft (large size) and hard
(small size) contributions to the production amplitude of the
V ′(2S) radially excited vector mesons. When the value of
the scanning radius rS is close to the node rn ∼ RV , these
cancellations must exhibit a strong dependence on both Q2

and energy due to the different energy dependence of the
dipole cross section at small (r < RV ) and large (r > RV )
dipole sizes. It must be made clear from the very begin-
ning that when strong cancellations of the large and small
region contributions are involved, the predictive power be-
comes very weak and the results strongly model dependent.
Our predictions for the production of the V ′(2S) radial exci-
tations which we report here serve mostly as an illustration
of the unusual Q2 and energy dependence possible in these
reactions. (Manifestations of the node effect in electropro-
duction on nuclei were discussed earlier, see [15] and [48])
In the nonrelativistic limit of heavy quarkonia, the node

effect will not depend on the polarization of the virtual pho-
ton and of the produced vector meson. Not so for light vector
mesons. The wave functions of the transversely and longi-
tudinally polarized photons are different, the regions of z
which contribute to the MT and ML are different, and
the Q2 and energy dependence of the node effect in produc-
tion of the transverse and longitudinally polarized V ′(2S)
vector mesons will be different.
Let us start with the transverse amplitude. Two cases

can occur [15], the undercompensation and the overcom-
pensation scenario. In the undercompensation case, the pro-
duction amplitude 〈2S|σ(xeff , r)|γ∗〉 is dominated by the
positive contribution coming from r ∼< rn and the V (1S)
and V ′(2S) photoproduction amplitudes have the same sign.
With our model wave functions this scenario is realized for
transversely polarized ρ′ and φ′ (we can not, however, ex-
clude the overcompensation scenario). As discussed in [15],
in the undercompensation scenario a decrease of of the scan-
ning radius with Q2 leads to a rapid decrease of the negative
contribution coming from large r ∼> rn and to a rapid rise of
the V ′(2S)/V (1S) production ratio with Q2. The stronger
the suppression of the real photoproduction of the V ′(2S)
state, the steeper the Q2 dependence of the V ′(2S)/V (1S)
production ratio expected at small Q2. With our model wave
functions, the ρ′(2S)/ρ0 and φ′(2S)/φ0 production ratios
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Fig. 8. The color dipole model predictions for the Q2 and W dependence
of the ratios σ(γ∗ → ρ′(2S))/σ(γ∗ → ρ0) and σ(γ∗ → φ′(2S))/σ(γ∗ →
φ0) for the (T) and (L) polarization of the vector mesons

for the transverse polarization are predicted to rise by more
than one order of magnitude in the range Q2 ∼< 0.5GeV2,
see Fig. 8; the V (2S) and V (1S) production cross sections
become comparable at Q2 ∼> 1GeV2, when the production
amplitudes are dominated by dipole sizes r � rn [15, 6].
For the longitudinally polarized ρ′(2S) and φ′(2S)

mesons, our model wave functions predict overcompensa-
tion; at Q2 = 0GeV 2 the amplitude is dominated by the
negative contribution from r ∼> rn. Consequently, with the
increase of Q2, i.e. with the decrease of the scanning radius
rS , one encounters the exact cancellation of the large and
small distance contributions. Our model wave functions lead
to this exact node effect in the dominant imaginary part of
the production amplitude at some value Q2n ∼ 0.5GeV2 for
both the ρ′L(2S) and φ′

L(2S) production (see Fig. 6). The
value of Q2n is slightly different for the imaginary and the
real part of the production amplitude but the real part is typ-
ically very small and this difference will be hard to observe
experimentally. Here we can not insist on the precise value
of Q2n which is subject to the soft-hard cancellations, our
emphasis is on the likely scenario with the exact node effect
at a finite Q2n.
We wish to emphasize that only the experiment will

be able to decide between the overcompensation and un-
dercompensation scenarios. For instance, let the ρ0 and
ρ′(2S) be observed in the ππ photoproduction channel.
The Söding-Pumplin effect of interference between the di-
rect, non-resonant γp → ππp production and the reso-
nant γp → ρ0(ρ′)p → ππp production amplitudes leads
to the skewed ρ0 and ρ′ mass spectrum. The asymmetry
of the ρ0(ρ′) mass spectrum depends on the sign of the
ρ0(ρ′) production amplitudes ([18], the detailed theory has
been worked out in [19]). The Söding-Pumplin technique
has already been applied to the ρ′(1600) mass region in
γp → π+π−p at 20 GeV studied in the SLAC experiment
[20]. Their fit to the ρ′(1600) mass spectrum requires that
the sign of the ρ′ production amplitude be negative relative
to that of the ρ. Although the interpretation of this result is
not clear at the moment, because there are two ρ′(1450) and

Fig. 9. The color dipole model predictions for the Q2 dependence of
the ratio of the polarization-unseparated forward production cross sections
dσ(γ∗ → ρ′(2S))/dσ(γ∗ → ρ0) and dσ(γ∗ → φ′(2S))/dσ(γ∗ → φ0)
for the polarization of the virtual photon ε = 1 at the HERA energy
W = 100GeV vs. H1 data [52] for the ρ′/ρ production ratio

ρ′(1700) states which were not resolved in this experiment,
the Söding-Pumplin technique seems promising.
With the further increase of Q2 and decrease of the scan-

ning radius one enters the above described undercompensa-
tion scenario. Although the radii of the ss̄ and uū, dd̄ vector
mesons are different, the Q2 dependence of ρ′(2S)/ρ0 and
φ′(2S)/φ0 production cross section ratios will exhibit a sim-
ilar pattern. For both the transverse and longitudinally polar-
ized photons, these ratios rise steeply with Q2 on the scale
Q2 ∼ 0.5GeV2. At large Q2 where the production of lon-
gitudinally polarized mesons dominates, the ρ′(2S)/ρ0 and
φ′(2S)/φ0 cross section ratios level off at ∼ 0.3 (see Fig. 8).
This large-Q2 limiting value of the ρ′(2S)/ρ0 and φ′(2S)/φ0
cross section ratios depend on the ratio of V ′(2S) and V (1S)
wave functions at the origin, which in potential models is
subject to the detailed form of the confining potential [23].
It is interesting that due to the different node effect for the
T and L polarizations, we find RLT (2S)� RLT (1S) , see
Fig. 6.
In Fig. 7b we present our predictions for the Q2 depen-

dence of the polarization-unseparated cross section σ(γ∗ →
V ′(2S)) = σT (γ∗ → V ′(2S)) + εσL(γ∗ → V ′(2S)) at the
HERA energy W = 100GeV assuming ε = 1. In Fig. 9
we show the Q2 dependence of the polarization-unseparated
forward cross section ratios dσ(γ∗ → ρ′(2S))/dσ(γ∗ → ρ0)
and dσ(γ∗ → φ′(2S))/dσ(γ∗ → φ0) at W = 100GeV. Due
to its smallness, the anomalous properties of σL(2S) at small
Q2 are essentially invisible in the polarization-unseparated
V ′(2S) production cross section shown in Figs. 7b, 9 and 10.
In contrast to σ(γ∗ → V (1S)), which falls monotonically
and steeply from Q2 = 0GeV 2 on, the σ(γ∗ → V ′(2S))
shown in Fig. 7b exhibits a weak rise at small Q2. At Q2
large enough that the scanning radius rS < RV and the
node effect becomes negligible, we predict very similar de-
pendence on Q2 +m2

V of the V ′(2S) and V (1S) production.
Color dipole dynamics uniquely is the source of such

a tricky Q2 dependence of the V ′(2S)/V (1S) production
ratio. We already mentioned the experimental confirmation
[16, 17] of the node effect predicted in Ψ ′ production [2].
Further experimental confirmations of the node effect, in
particular of the unique overcompensation scenario which
is possible for light vector mesons, would be extremely
interesting. The available experimental data on real pho-
toproduction of radially excited light V ′(2S) mesons con-
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Fig. 10. The color dipole model predictions of the forward differential
cross sections dσL,T (γ∗ → V ′)/dt|t=0 for transversely(T) (top boxes)
and longitudinally (L) (middle boxes) polarized radially excited vector
mesons ρ′(2S) and φ′(2S) and for the polarization-unseparated dσ(γ∗ →
V ′)/dt|t=0 = dσT (γ∗ → V ′)/dt|t=0 + εdσL(γ∗ → V ′)/dt|t=0 for ε = 1
(bottom boxes) as a function of the c.m.s. energy W at different values of
Q2

firm σ(γ → V ′(2S))/σ(γ → V (1S)) � 1, but are still
of a poor quality and the branching ratios of the V ′ de-
cays are not yet established (for a review see [49] and
the Review of Particle Properties [50]). For instance, the
FNAL E401 experiment at ν ≈ 100 GeV found [44]
σ(γ → φ′(1700,K+K−)) = 8.0±2.7(stat)±1.4(syst) nb to
be compared with σ(γ → φ) ≈ 0.55μb (see Fig. 4). In the
ρ family, the very spectroscopy of the ρ′ mesons is not yet
conclusive [49, 50]. There are two ρ′ states, ρ′(1450) and
ρ′(1600), the 2S and D-wave assignment for these states is
not yet clear. The first high energy data on the ρ′(1450) and
ρ′(1700) leptoproduction were reported by the E665 collabo-
ration [51]. These E665 data refer to the coherent production
on Ca target. For the ρ′(1700), they exhibit a strong rise of
R21 = σ(ρ′ → 4π)/σ(ρ → 2π) with Q2 by more than one
order of magnitude from (0.004± 0.004) at Q2 = 0.15GeV 2

to (0.15± 0.07) at Q2 = 4.5GeV 2. Such a steep Q2 depen-
dence is perfectly consistent with our expectations for the
production of radially excited 2S light vector mesons. For
the ρ′(1450) there is a weak evidence of a nonmonotonic
Q2 dependence: R21 = (0.035± 0.011) at Q2 = 0.15GeV 2

followed by decrease down to R21 = (0.012 ± 0.004) at
Q2 = 0.3GeV 2 and then to an increase and leveling off to
R21 = (0.08± 0.04) at larger Q2 ≥ 2GeV 2. Such a Q2 de-
pendence of R21 would be natural for a D-wave state which
has a nodeless radial wave function. If these E665 observa-
tions will be confirmed in higher statistics experiments, then

the color dipole interpretation of the Q2 dependence would
strongly suggest the 2S and D-wave state assignments for the
ρ′(1700) and ρ′(1450), respectively. We remind the reader
that, for a quantitative comparison with the predictions of
our model (shown in Fig. 10), the E665 results for R21 must
be corrected for the branching ratio B(ρ′ → 4π), which is
still experimentally unknown [50].
Recently the new data on elastic ρ′ electroproduction were
presented from the H1 collaboration [52]. The observed
signal can be interpreted in terms of the production of a
single resonance with mass 1.57 ± 0.02GeV and width
0.18 ± 0.09GeV, which can be analysed in terms of inter-
fering production of ρ′(1450) and ρ′(1700). They found the
ratio R21 = 0.35±0.09±0.11 and R21 = 0.38±0.10±0.11
for < Q2 >= 7 and 15GeV2 in a broad energy range from
W = 60 to 110GeV. These values of R21 are consistent with
our color dipole predictions (see Fig. 9).
The energy dependence of the ρ′(2S), φ′(2S) real pho-

toproduction is shown in Fig. 10 and has its own pecu-
liarities. In the color dipole gBFKL dynamics, the negative
contribution to the 2S production amplitude coming from
large size dipoles, r ∼> rn, has a slower growth with en-
ergy than the positive contribution coming from the small
size dipoles r ∼< rn. For this reason, in the undercompen-
sation regime the destructive interference of the two con-
tributions becomes weaker at higher energy and we pre-
dict a growth of the V ′(2S)/V (1S) cross section ratios
with energy. Taking only the pure pomeron contributions
into account, we find for the forward cross section ratio
dσ(γ → ρ′(2S)/dσ(γ → ρ0) = 0.041 at W = 15 GeV,
which at HERA energies increases to 0.063 and 0.071 at
W = 100GeV and W = 150GeV, respectively. Whereas
in ρ and ρ′ production one must be aware of the non-
vacuum Reggeon exchange contributions at lower energy,
in the pomeron dominated φ′, φ real photoproduction we
find a somewhat faster rise of dσ(γ → φ′(2S)/dσ(γ → φ0)
with energy from 0.054 at W = 15 GeV to 0.089 and 0.099
at W = 100GeV and W = 150GeV, respectively.
If the leptoproduction of the longitudinally polarized

V ′
L(2S) will be separated experimentally, we will have a
chance of studying the Q2 and energy dependence in the
overcompensation scenario. Start with the moderate energy
and consider Q2 very close to Q2n but still ∼< Q2n. In this
case the negative contribution from r ∼> rn takes over in
the V ′

L(2S) production amplitude. With increasing energy,
the positive contribution to the production amplitude rises
faster and ultimately takes over. At some intermediate en-
ergy, there will be an exact cancellation of the two con-
tributions to the production amplitude and the longitudinal
V ′
L(2S) production cross section shall exhibit a minimum
at this energy (the minimum will partly be filled because
cancellations in the real and imaginary part of the produc-
tion amplitude are not simultaneous). With our model wave
functions, we find a nonmonotonic energy dependence of the
ρ′L(2S) and φ′

L(2S) production at Q2 ≈ 0.5GeV2, which is
shown in Figs. 8 and 10. At higher Q2 and smaller scanning
radii rS the energy dependence of V ′

L(2S)/VL(1S) produc-
tion ratio becomes very weak.
Finally, a brief comment on the t-dependence of the dif-

ferential cross sections is in order. For the 1S vector mesons
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Fig. 11. The color dipole model predictions for the energy dependence of
the ratio of the polarization-unseparated forward production cross sections
dσ(γ∗ → φ0)/dσ(γ∗ → ρ0) for the polarization of the virtual photon
ε = 1 at different values of Q2

we expect the conventional diffractive peak with smooth
and gentle energy dependence. For the radially excited vec-
tor mesons the t-dependence can be anomalous. The point is
that the large size contribution to the V ′(2S) meson produc-
tion amplitude has steeper t-dependence that the small size
contribution. The destructive interference of these two am-
plitudes can lead to two effects: i) the diffraction slope in the
V ′(2S) meson production will be smaller than in the V (1S)
meson production, ii) the effective diffraction slope for the
V ′(2S) meson production decreases towards small t contrary
to the familiar increase for the V (1S) meson production.
High statistics data on the ρ′, φ′ production at HERA are
needed to test these predictions. More detailed discussion of
the diffraction slope will be presented elsewhere.

5 Scaling relations for the production
of different vector mesons

The color dipole cross section is flavor blind and only de-
pends on the dipole size. The results (12),(13) for the produc-
tion amplitudes strongly suggest restoration of flavor sym-
metry, i.e., a similarity between the production of different
vector mesons when compared at the same value of the scan-
ning radius rS and/or the same value of Q2 +m2

V .3 Such a
comparison must be performed at the same energy, which
also provides the equality of xeff at equal Q2 + m2

V . Ev-
idently, the value of Q2 must be large enough so that the
scanning radius rS is smaller than the radii of vector mesons
compared.
In order to illustrate the above point we present in

Figs. 11 and 12 the ratio of forward production cross sec-
tions R((J/Ψ )/ρ0;Q2) = dσ(γ∗ → J/Ψ )/dσ(γ∗ → ρ0) and
R(φ0/ρ0;Q2) = dσ(γ∗ → φ0)/dσ(γ∗ → ρ0) as a function of
the c.m.s energy W at different Q2 (here we use for the
J/Ψ production cross section the values obtained from a re-
cent calculation [54], which practically coincide with those
of [6], the slight difference being due to a somewhat differ-
ent J/Ψ wave function). Here we compare the polarization-
unseparated cross sections σ = σT + εσL, taking for defi-
niteness ε = 1 which is typical of the HERA kinematics.
3 For the first considerations of the restoration of flavor symmetry in

diffractive production of vector mesons off nuclei see [5], the scaling rela-
tions between diffraction slopes for γ∗p → V p are discussed in [53]

Fig. 12. The color dipole model predictions for the energy dependence of
the ratio of the polarization-unseparated forward production cross sections
dσ(γ∗ → J/Ψ )/dσ(γ∗ → ρ0) for the polarization of the virtual photon
ε = 1 at different values of Q2

These ratios exhibit quite a strong Q2 dependence, which
predominantly comes from the Q2 dependence of the factor(

Q2 +m2
V1

Q2 +m2
V2

)n

,

which changes rapidly when the two vector mesons have
different masses. The energy dependence of the cross sec-
tion ratios taken at the same Q2 derives from the different
energy dependence of the dipole cross section which enters
at different radii rSi ≈ 6√

Q2+m2
V i

in the numerator and de-

nominator of the V1/V2 cross section ratio,

R(V1/V2;Q2) =
σ(γ∗ → V1)
σ(γ∗ → V2)

∝ σ2(ν, rS1)
σ2(ν, rS2)

.

In the HERA energy range we predict R((J/Ψ )/ρ0;Q2 =
0) = σ(γ → J/Ψ )/σ(γ → ρ0) = 0.0022 at W = 70GeV
and 0.0032 at W = 150GeV, which agrees with the exper-
imentally observed ratio 0.0041 ± 0.0016 at W ∼ 70GeV
and 0.0054 ± 0.0017 at W ∼ 150GeV of H1 [55, 43]
and with the ratio 0.0035 ± 0.0012 at W ∼ 70GeV and
0.0045± 0.0023 atW ∼ 150GeV of ZEUS [40, 41, 56]. No-
tice the rise of R((J/Ψ )/ρ0;Q2) by more than 3 orders in the
magnitude from Q2 = 0 to Q2 = 100GeV2. Our result for the
ratio R(φ0/ρ0;Q2 = 0) = dσ(γ → φ0)/dσ�(γ → ρ0) shown
in Fig. 11 is substantially smaller than the factor 2/9 ex-
pected from the naive VDM, in a very good agreement with
the experiment ([44] and references therein). This suppres-
sion is a natural consequence of the color dipole approach
and derives from the smaller radius of the ss̄ quarkonium
and smaller transverse size of the ss̄ Fock state of the photon
as compared to the radius of the ρ0 and size of the uū, dd̄
Fock states of the photon, respectively, cf. Table 1. For in-
creasing Q2s, the ratio R(φ0/ρ0;Q2) overshoots the VDM
ratio 2/9 and rises by one order of magnitude from Q2 = 0
to Q2 = 100GeV2. In Figs. 11 and 12 we compare only
pure pomeron contributions to the production cross section;
at smaller values of the energy and of the Regge parameter
ω, the φ0/ρ0 and (J/Ψ )/ρ0 production ratios will be further
suppressed by the factor f 2.
The remarkable restoration of flavor symmetry in the

natural scaling variable Q2 +m2
V is demonstrated in Figs. 13

and 14, where we present a ratio R(i/k;Q2 + m2
V ) of the
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Fig. 13. Approximate scaling in the variable Q2 + m2
V for the ratio of

the polarization-unseparated forward production cross sections dσ(γ∗ →
φ0)/dσ(γ∗ → ρ0) and dσ(γ∗ → J/Ψ )/dσ(γ∗ → ρ0) for the polarization
of the virtual photon ε = 1. The horizontal dotted straight lines show the
ratio corresponding to (18)

Fig. 14. Approximate scaling in the variable Q2 + m2
V for the ratio of

the polarization-unseparated forward production cross sectionsf dσ(γ∗ →
φ0)/dσ(γ∗ → ρ0) and dσ(γ∗ → J/Ψ )/dσ(γ∗ → ρ0). at c.m.s. energy
W = 150GeV (the polarization of the virtual photon ε = 1)

same cross sections taken at equal Q2 + m2
V rather than

equal Q2. A marginal variation of the R((J/Ψ )/ρ0;Q2 +
m2

V ) and R(φ0/ρ0;Q2 +m2
V ) in this scaling variable must

be contrasted with the variation of the R((J/Ψ )/ρ0;Q2 =
0) and R(φ0/ρ0;Q2 = 0) by the three and one orders in
the magnitude previously mentioned, respectively, over the
same span of Q2 values 0 < Q2 < 100GeV2. The origin
of the slight departures from exact scaling in the variable
Q2 +m2

V comes from a well understood difference between
the scales AT,L and τT,L for production of different vector
mesons. The same difference of AT,L and τT,L brings in the
energy dependence of R(i/k;Q2 + m2

V ). This is a specific
prediction from the preasymptotic gBFKL dynamics. The
radii of the φ0 and ρ0 mesons do not differ much and for this
reason we find a precocious scaling in Q2 +m2

V . The energy
dependence of the φ0/ρ0 ratio also turns out very weak. The
radii of the ρ0 and J/Ψ differ much more strongly and the
ratio R((J/Ψ )/ρ0;Q2 + m2

V ) exhibits a somewhat stronger
dependence on energy and Q2 +m2

V . For the same reason,

Fig. 15. The Q2 dependence of the coefficient functions gT,L at W =
15GeV (dashed curve) and W = 150GeV (solid curve)

we predict a substantial departure of R(i/k;Q2 +m2
V ) from

the short-distance formula

R(i/k;Q2 +m2
V ) =

miΓi(e+e−)
mkΓk(e+e−)

, (18)

which is shown in Fig. 13 by horizontal lines. The formula
(18) can readily be derived generalizing the asymptotic-Q2
considerations [3] (for further discussion of the crucial rôle
of the scaling variable Q2+m2

V in this comparison see below
Sect. 6).
The case of the ω0, ω′ virtual photoproduction is very

interesting. Is the ρ0−ω0 mass degeneracy accidental? Does
it imply also similar spatial wave functions in the ρ and ω
families? The scanning property of diffractive production
allows a direct comparison of spatial wave functions of the
ρ0 and ω0. If the ω0 − ρ0 degeneracy extends also to the
spatial wave functions, then we predict

σ(γ∗ → ω0)
σ(γ∗ → ρ0)

=
1
9

(19)

independent of energy and Q2. On the other hand, if the radii
of the ρ0 and ω0 are different, for instance Rω < Rρ, then
the ω0/ρ0 production ratio must exhibit the Q2 dependence
reminiscent of the φ0/ρ0 ratio. Similarly, a comparison of
the ω′ and ρ′ production can shed light on the isospin de-
pendence of interquark forces in vector mesons.

6 Determination of color dipole cross section
from vector meson production data

Inverting (12),(13) one can evaluate σ(xeff , r) from the vec-
tor meson production data. It is convenient to cast (12),(13)
in the form

ImMT = gT
√
4παemCV σ(xeff , rS)

m2
v

m2
V +Q2

(20)
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ImML = gL
√
4παemCV σ(xeff , rS)

√
Q2

mV
· m2

v

m2
V +Q2

(21)

In (20),(21) the coefficient functions gT,L are defined so as
to relate the amplitude to σ(rS) at the well defined scanning
radius (2) with A ≡ 6. The major point of this decomposition
is that at large Q2 and/or small rS ∼< RV , the coefficients
gT,L will be very smooth functions of Q2 and energy. The
smooth Q2 and energy dependence of gT,L mostly reflects
the smooth and well understood Q2 dependence of the scale
factors AT,L. Such a procedure is somewhat crude and the
ImMT,L − σ(xeff , rS) relationship is sensitive to the as-
sumed r dependence of the dipole cross section σ(xeff , r).
Using the dipole cross section [6] the shape of which changes
significantly from ω = 1

xeff
= 30 up to ω = 3 · 106, we have

checked that this sensitivity is weak. In Fig. 15 we present
the Q2 dependence of gT,L for different production pro-
cesses at W = 15GeV and W = 150GeV. The variation of
the resulting coefficient functions gT,L from small to large
W does not exceed 15%, which is a conservative estimate
of the theoretical uncertainty of the above procedure.
The experimentally measured forward cross production

section section equals

dσ(γ∗ → V )
dt

|t=0 = f 2

16π

·
[
(1 + α2V,T )M

2
T + ε(1 + α

2
V,L)M

2
L

]
(22)

The difference between αV,L and αV,T for the longitudinal
and transverse cross sections and the overall effect of the
real part is marginal and can safely be neglected compared
to other uncertainties. Then, making use of the above deter-
mined gT,L and combining (20), (21) and (22), we obtain

σ(xeff , rS) =
1
f
· 1
CV

· Q
2 +m2

V

m2
V

· 2√
αem

·
(
g2T + ε g

2
L · Q2

M 2
V

)−1/2

· (1 + α2V )−1/2
√

dσ(γ∗ → V )
dt

∣∣∣∣
t=0

(23)

Here ε is the longitudinal polarization of the photon the
values of which are taken from the corresponding experi-
mental publications. In (22),(23) f is the above discussed
factor which accounts for the non-vacuum Reggeon con-
tribution to ρ0 production; for φ0 and J/Ψ production,
f ≡ 1. In the case the experimental data are presented
in the form of the t-integrated cross section, we evaluate
dσ(γ∗→V )

dt

∣∣∣
t=0
= Bσtot(γ∗ → V ) using the diffraction slope

B as cited in the same experimental publication.
In Fig. 16 we show the results of such an analysis on

the low energy [44] and ZEUS [45] φ0 real photoproduc-
tion data, on the ρ0 and φ0 NMC electroproduction data
[31], on the ρ0 HERA real and virtual photoproduction (H1
[33], ZEUS [40, 41, 32]), on the fixed target data on real
photoproduction (EMC [57], E687 [58]), on the EMC J/Ψ
electroproduction data ([59]) and on the HERA real photo-
production J/Ψ data (H1 [55], ZEUS [56]). The error bars

Fig. 16. The dipole size dependence of the dipole cross section extracted
from the experimental data on photoproduction and electroproduction of
vector mesons: the NMC data on φ0 and ρ0 production [31], the EMC data
on J/Ψ production [57, 59], the E687 data on J/Ψ production [58], the
FNAL data on ρ0 production [44], the ZEUS data on φ0 production [45], the
ZEUS data on ρ0 production [40, 41, 32], the H1 data on ρ0 production [33]
and the average of the H1 and ZEUS data on J/Ψ production [55, 56]. The
dashed and solid curve show the dipole cross section of the model [21, 6]
evaluated for the c.m.s. energy W = 15 and W = 70 GeV respectively.
The data points at HERA energies and the corresponding solid curve are
multiplied by the factor 1.5

are the error bars in the measured cross sections as cited
in the experimental publications. The experimental data on
the vector meson production give a solid evidence for a
decrease of σ(xeff , rS) by one order of magnitude from
rS ≈ 1.2 fm in φ0 real photoproduction down to rS ≈ 0.24
fm in the electroproduction of ρ0 at Q2 = 23GeV2 and of
J/Ψ at Q2 = 13GeV2. In the region of overlapping val-
ues of rS there is a remarkable consistency between the
dipole size dependence and the absolute values of the dipole
cross section determined from the data on the ρ0, φ0 and
J/Ψ production, in agreement with the flavor independence
of the dipole cross section. A comparison of determinations
of σ(xeff , r) at fixed-target and HERA energy confirms the
prediction [11, 13, 6] of faster growth of the dipole cross
section at smaller dipole size, although the error bars are
still large.
The above determination of σ(xeff , rS) is rather crude

for several reasons.
i) First, a comparison of the NMC [31] and early EMC data
[60] on ρ0 production suggests that the admixture of inelas-
tic process γ∗p → V X could have enhanced the EMC cross
section by as large a factor as ∼ 3 at Q2 = 17GeV 2. The
value of σ(γ∗ → V ) thus overestimated, leads to σ(xeff , rS)
overestimated by the factor ∼ √

3, which may be a reason
why the EMC J/Ψ electroproduction data [59] lead consis-
tently to somewhat larger values of σ(xeff , rS). Still, even
this factor of ∼ √

3 uncertainty is much smaller than the
more than one order of magnitude by which σ(xeff , rS)
varies over the considered span of rS . In the recent NMC
data [31] a special care has been taken to eliminate an in-
elastic background and the values of σ(xeff , rS) from the
ρ0 and φ0 production data are consistent within the experi-
mental error bars.
ii) There are further uncertainties with the value of the
diffraction slope B(γ∗ → V ) and the curvature of the
diffraction cone which affect the extrapolation down to t = 0.
The experimental situation with the diffraction slopes is quite
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unsatisfactory; in the case of the J/Ψ and of the light vec-
tor mesons at large Q2, one can not exclude even a ∼ 50%
uncertainty in the value of B(γ∗ → V ). However, this un-
certainty in B(γ∗ → V ) corresponds to ∼< 25% uncertainty
in our evaluation of σ(xeff , rS), which is sufficient for the
purposes of the present exploratory study.
iii) In addition, there is also the above evaluated conserva-
tive ∼< 15% theoretical inaccuracy of our procedure.
iv) Finally, there is a residual uncertainty concerning the
wave function of light vector mesons. As a matter of fact, if
the dipole cross section were known, the diffractive produc-
tion γ∗p → V p would be a unique local probe of the vector
meson wave function at r ≈ rS [4]; this may well become
one of the major applications of vector meson production.
To this aim, the consistency of σ(xeff , r) determined from
different reactions indicates that the wave functions of vector
mesons are reasonably constrained by modern spectroscopic
models and by the leptonic width.
This is the first direct determination of the dipole cross

section from the experimental data and our main conclusions
on the properties of the dipole cross section are not affected
by the above cited uncertainties. In Fig. 16 we show also
the dipole cross section from the gBFKL analysis [21, 6],
which gives a good quantitative description of the photon
structure function at small x. We conclude that the color
dipole gBFKL dynamics provides a unified description of
diffractive production of vector mesons and of the proton
structure function.
Finally, a comparison of the color dipole analysis of

diffractive electroproduction [4, 5, 6] with the related mo-
mentum space analysis of [3, 7] is in order. At a very large
Q2 and/or very short scanning radius, rS � RV , elec-
troproduction probes the wave function of vector mesons
and/or the z-distribution amplitude at a vanishing transverse
size, integrated over z with the z-dependent factor which
emerges in (7),(8). The wave function at the vanishing 3-
dimensional separation of the quark and antiquark can be
related to the width of the leptonic decay, V → e+e−.
The form of the z-dependent factor is mostly dictated by
r2S ∼ 1/(4z(1−z)Q2+m2

V ) which emerges in the integrands
of (7),(8) after the r integration, and for the asymptotical Q2
when 4z(1− z)Q2 � m2

V , Brodsky et al. [7] introduced the
moment of the longitudinal distribution amplitude

ηV =

∫ 1
0 dz 1

2z(1−z)ΨV (r = 0, z)∫ 1
0 dzΨV (r = 0, z)

. (24)

One must be careful with the interpretation of ηV , though,
because for the very asymmetric qq̄ configurations, z(1 −
z) ∼< M 2

V /Q
2, the scanning radius stays large even for Q2 →

∞; for instance, precisely these asymmetric configurations
dominate the cross section of the diffraction dissociation of
photons, γ∗p → Xp, into the continuum states X [9, 10].
With these reservations, we can combine the representations
(20),(21), the pQCD relationship (11) and the formula (2)
for the scanning radius, and cast the production amplitude
in the form (here we focus on the dominant longitudinal
amplitude)

ML =
8π2

3
fV

√
4παemηV mV

√
Q2

mV

1
(Q2 +m2

V )2

Fig. 17. The Q2 dependence of the parameter ηV in the representation (25)
for the amplitude of leptoproduction of different vector mesons at fixed
energy W = 150GeV

Fig. 18. The xeff dependence of the parameter ηV in the representation
(25) for the amplitude of leptoproduction of different vector mesons at
several values of Q2

·αS(Q̄2)G(x, Q̄2) =
2fV eηV mV

9

√
Q2

mV

(
6
A

)2
r2Sσ(rS) ,

(25)

where

f 2V =
3

8πα2em
Γ (V → e+e−)mV . (26)

Then, we can present our results for ML in terms of this
parameter ηV . The first line of (25) gives the asymptotic-Q2
form of ML in terms of the gluon structure function of the
proton, the second line is equivalent to it at large pQCD
factorization scale Q̄2 and serves as a working definition of
ηV at moderately large Q2 and/or moderately small scanning
radius rS . The above finding that gT,L only weakly depend
on Q2 and energy, already suggests that ηV defined by the
second line of (25) will be approximately constant, and now
we show that this is indeed the case.
Evidently, the resulting values of ηV will depend on the

pQCD factorization scale Q̄2. The scale parameter τ in the
pQCD factorization scale Q̄2 = τ (Q2 +m2

V ) was evaluated
in [6]. It is related to the scale parameter B ≈ 10 in the
pQCD formula (11) and the scale parameter A in the scan-
ning radius (2) as τ ∼ B/A2, for production of the longi-
tudinal vector mesons in DIS [6] finds τL(J/Ψ ) ≈ 0.2 and
τL(ρ0) ≈ 0.15. Reference [7] cites the asymptotic leading
twist form of (25), with m2

V neglected in the denomina-
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tor compared to Q2 and with the pQCD factorization scale
Q̄2 = Q2, besides the more accurate definition of the pQCD
scale Q̄2 we differ from [7] also by the factor 2 in (11). The
scale A in the scanning radius is given by the position of the
peak in WL(Q2, r2), it varies slightly with Q2; bringing in
the slight variation of the scale factors AT,L, at large Q2 it
is reasonable to take AL(J/Ψ ) = 6 and AL(ρ0, φ0) = 8 [6].
With this choice of AL, our results for the production ampli-
tude ML correspond to the values of ηV shown in Figs. 17
and 18. For the nonrelativistic quarkonium, in which z ≈ 1

2 ,
(24) gives ηV ≈ 2. The Υ is a good approximation to the
nonrelativistic quarkonium and we indeed find ηV ≈ 2. Tak-
ing a fixed scale A, we neglected the slight variation of τ
with Q2, which propagates into the slight variation of ηV
with Q2. Because the shape of the color dipole cross sec-
tion varies with xeff , the scale parameter A varies also with
x slightly. Taking the x-independent A, we cause the slight
mismatch of the x-dependence of the r.h.s. and l.h.s. of (24),
which propagates into the weak xeff dependence of ηV . In
Fig. 17 we show ηV for the fixed energy W = 150GeV
relevant to the HERA experiments, here the combined Q2

and xeff dependence of the scale parameter A contribute
to the variation of ηV . The issue of the Q2 and x depen-
dence of the pQCD factorization scale Q̄2 in (24) deserves
a dedicated analysis, here we wish to focus only on the fact
that the so determined ηV exhibits a remarkably weak vari-
ation with Q2 and xeff . Furthermore, Fig. 18 shows that
the xeff -dependence of ηV becomes substantially weaker at
larger Q2. This testifies the importance of Q2+m2

V as a rele-
vant scaling variable, which absorbs major mass corrections
to the Q2 dependence of the production amplitude (see also
the discussion of the flavor symmetry restoration in Sect. 5).
To this end we wish to notice that the expansion

1
(Q2 +m2

V )2
=
1
Q4

(
1 +

2m2
V

Q2
− ...

)
(27)

corresponds to the abnormally large scale 2m2
V for the higher

twist correction to the leading twist production amplitude.
For the light vector mesons, Brodsky et al. estimate ηV =
3–5; our results in Figs. 17 and 18 are very close to these es-
timates, as it must be expected because the momentum-space
technique of Brodsky et al. and our color dipole factoriza-
tion technique are related by the Fourier-Bessel transform.
With the present poor knowledge of the large dipole distri-
butions in vector mesons and/or the wave functions of vector
mesons, the variations of ηV in Figs. 17 and 18 and the range
of estimates for ηV in [7] indicate the range of uncertainty
in the predictions of leptoproduction amplitudes.

7 Conclusions

The purpose of this paper is the phenomenology of diffrac-
tive photoproduction and electroproduction of ground state
(1S) and radially excited (2S) light vector mesons in the
framework of the color dipole picture of the QCD pomeron.
In this picture, the Q2 dependence of production of the 1S
vector mesons is controlled by the shrinkage of the trans-
verse size of the virtual photon and the small dipole size
dependence of the color dipole cross section. Taking the

same color dipole cross section as used in the previous suc-
cessful prediction of the low x structure function of the pro-
ton, we have obtained a good quantitative description of the
experimental data on diffractive photoproduction and elec-
troproduction of 1S vector mesons ρ0, φ0 and J/Ψ . We have
presented the first determination of the dipole cross section
from these data and found a remarkable consistency between
the absolute value and the dipole size and energy dependence
of the dipole cross section extracted from the data on differ-
ent vector mesons. This represents an important cross-check
of the color dipole picture. The pattern we found for the en-
ergy dependence of the dipole cross section is consistent with
flavor independence and with expectations from the gBFKL
dynamics. The color dipole picture leads to the restoration
of flavor symmetry and to novel scaling relations between
the production of different vector mesons when compared
at the same Q2 +m2

V . Such relations are borne out by the
available data and will be further tested when the higher
precision data from HERA will become available. Regard-
ing this (Q2 +m2

V )-scaling, perhaps still more interesting are
the deviations from scaling, which originate from a substan-
tial contribution of the large size dipoles even at very large
Q2s.
The second class of predictions concerns the rich pattern

of an anomalous Q2 and energy dependence of the produc-
tion of the V ′(2S) radially excited vector mesons, which de-
pends entirely on the quantum mechanical fact that the 2S
wave function has a node which makes these anomalies an
unavoidable effect. We find a very strong suppression of the
V ′(2S)/V (1S) production ratio in the real photoproduction
limit of very small Q2. For the longitudinally polarized 2S
mesons we find a plausible overcompensation scenario lead-
ing to a sharp dip of the longitudinal cross section σL(2S)
at some finite Q2 = Q2n ∼ 0.5GeV2. The position Q2n of
this dip depends on the energy and leads to a nonmono-
tonic energy dependence of σL(2S) at fixed Q2. Regarding
the experimental choice between the overcompensation and
undercompensation scenarios in the HERA experiments, the
situation looks quite favorable because the sign of the ρ′ pro-
duction amplitude relative to that of the ρ0 can be measured
directly by the Söding-Pumplin method. At larger Q2, the
scanning radius becomes shorter, and we predict a steep rise
of the 2S/1S cross section ratio, typically by one order of
magnitude on the very short scale Q2 ∼< 0.5GeV 2 in agree-
ment with the present indications from the E665 data. The
flattening of this 2S/1S ratio at large Q2 is a non-negotiable
prediction from the color dipole dynamics. Remarkably, the
Q2 dependence of the V ′ production offers a unique pos-
sibility of distinguishing between 2S radially excited and
D-wave vector mesons.
Finally, in the color dipole framework, a comparison of

the Q2 dependence of the diffractive production of the ρ0

and ω0 constitutes a direct comparison of the spatial wave
functions of the two mesons. A comparison of the Q2 de-
pendence of the ω′ and ρ′ production can shed light on
the isospin dependence of the interquark forces in vector
mesons.
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Note added in proof: Since the paper was submitted for publication (in
1995), to the time it was accepted, many new data have appeared from
the ZEUS and H1 collaborations. As a consequence, quite a few references
have been added (following the advice of the referee) and a number of data
points have been correspondingly added in some of the figures (Figs. 2, 3,
4 and 9). Also, an explicative sentence concerning ρ′ production has been
added in Sect. 4.

Appendix

Here we present the parameterization of the wave functions
of vector mesons in the lightcone mixed (r, z) representation.
Due to the fact that small size qq̄ configurations become im-
portant at large Q2, one needs to include the short distance
hard QCD gluon exchange effects to make the electromag-
netic form factors consistent with the QCD predictions. Here
we follow a simple procedure suggested in [6], which uses
the relativization technique of [61, 62]. We are perfectly
aware of the fact that the wave functions of light vector
mesons are still unknown; in the present exploratory study
our major concern is to have a parameterization which is
consistent with the size of vector mesons as suggested by the
conventional spectroscopic models and has the short distance
behavior driven by the hard QCD gluon exchange [62].
Let the V qq̄ vertex be Γ q̄Vμγμq where the vertex func-

tion Γ is a function of the lightcone invariant variable [61]

p2 =
1
4
(M 2 − 4m2

q) (28)

where M is the invariant mass of the qq̄ system

M 2 =
m2

q + k2

z(1− z)
, (29)

k and mq are the transverse momentum and quark mass,
and z is the fraction of lightcone momentum of the meson
carried by the quark (0 < z < 1). In the nonrelativistic limit
p is the 3-momentum of the quark and we have the familiar
relationship between the vertex function and the momentum
space wave function

Ψ (p2) ∝ Γ (p2)
4p2 + 4m2

q −m2
V

. (30)

The hard gluon exchange Coulomb interaction 4
3
αS (d)

d ,
where d is the 3-dimensional quark-antiquark separation and
αS(d) is the running QCD coupling in the coordinate rep-
resentation, is singular at the origin, d → 0, but becomes
important only at short distances d, much smaller than the ra-
dius RV of the vector meson. For this reason, the hard gluon
Coulomb interaction can be treated perturbatively. Namely,
let Ψsoft(d) be the wave function of the vector meson in the
soft, non-singular potential. Solving the Schrödinger equa-
tion at small d to the first order in Coulomb interaction, one
readily finds the Coulomb-corrected wave function of the
form

Ψ (d) = Ψsoft(d) + Ψsoft(0)C exp
(
− d

2Ca(d)

)
. (31)

Here a(d) is the “running Bohr radius” equal to

a(d) =
3

8mαs(d)
(32)

where m = mq/2 is the reduced quark mass. The param-
eter C is controlled by the transition between the hard
Coulomb and the soft confining interaction; we treat it as
a variational parameter. (Similar analysis of the correction
to the momentum space wave function for the short distance
Coulomb interaction is reviewed in [62]). The 3-dimensional
Fourier transform of the Coulomb-corrected wave function
(31) reads

Ψ (p) = N0

{
(2πR2)3/2 exp

[
−1
2
p2R2

]

+C4
64a3(p2)π

(1 + 4C2a2(p2)p2)2

}
, (33)

where a(p2) is still given by (32) with the running αS(p2)
evaluated in the momentum representation.
The relativistic lightcone wave function Ψ (z,k) is ob-

tained from Ψ (p) by the standard substitution of the light
cone expression (28, 29) for the nonrelativistic p2 in (33)
[61, 62]. The relativistic wave function thus obtained gives
the correct QCD asymptotics ∝ αS(Q2)/Q2 of the vector
meson form factor, in perfect correspondence to the familiar
hard QCD mechanism (for the review see [62]; the more de-
tailed analysis of form factors will be presented elsewhere).
Then, the lightcone radial wave function is the Fourier trans-
form

φ(r, z) =
∫

d2k
(2π)2

Ψ (z,k) exp(ikr) . (34)

With the conventional harmonic oscillator form of Ψsoft(d)
we obtain the simple analytical formula

φ1S(r, z) = Ψ0(1S)
{
4z(1− z)

√
2πR21S exp

[
− m2

qR
2
1S

8z(1− z)

]

· exp
[
−2z(1− z)r2

R21S

]
exp

[
m2

qR
2
1S

2

]

+C4
16a3(r)
AB3 rK1(βr)

}
(35)

where a(r) is given by (32), β = A/B, and

A2 = 1 +
C2a2(r)m2

q

z(1− z)
− 4C2a2(r)m2

q (36)

B2 =
C2a2(r)
z(1− z)

(37)

For the 1S ground state vector mesons we determine the
parameters R21S and C by the standard variational proce-
dure using the conventional linear+Coulomb potential mod-
els [23]. We check that the resulting wave function are
consistent with the experimentally measured width of the
V → e+e− decay (see Tab. 1). This is one of the major con-
straints because at very large Q2 and/or rS � RV , the elec-
troproduction amplitude is controlled by the wave function
at the vanishing transverse size. For the heavy quarkonia, we

71



86

check that the radii of the 1S states are close to the results
of more sophisticated solution of the Schrödinger equation
[23]. The radius of the ρ0 meson given by our wave function
is consistent with the charge radius of the pion. Still another
cross check is provided by σtot(ρ0N ) discussed in Sect. 3,
which comes out very close to the pion-nucleon total cross
section.
The node of the radial wave function of the V ′(2S) is

expected at rn ∼ RV far beyond the Coulomb region. For
this reason, we only modify the soft component of the wave
function and take the same functional form of the Coulomb
correction as for the 1S state:

φ2S(r, z) = Ψ0(2S)
{
4z(1− z)

√
2πR22S exp

[
− m2

qR
2
2S

8z(1− z)

]

· exp
[
−2z(1− z)r2

R22S

]
exp

[
m2

qR
2
2S

2

]

·
{
1− α

[
1 +m2

qR
2
2S − m2

qR
2
2S

4z(1− z)
+
4z(1− z)

R22S
r2
]}

+C4
16a3(r)
AB3 rK1βr)

}}
. (38)

The new parameter α controls the position rn of the node.
The two parameters α and R2S are determined from the
orthogonality condition

Nc

2π

∫ 1

0

dz

z2(1− z)2

∫
d2r

{
m2

qφi(r, z)φk(r, z) + [z2

+(1− z)2][∂rφi(r, z)][∂rφk(r, z)]
}
= δik (39)

and from the 2S − 1S mass splitting evaluated with the
same linear+Coulomb potential. For the heavy quarkonia,
we can check the resulting V ′(2S) wave function against
the accurate data on the width of the V ′(2S)→ e+e− decay,
the agreement in all the cases is good. The so determined
parameters, the quark masses used and some comparisons
with the experiment are summarized in Table 1. It is Ca(r)
which defines at which radii the interaction is important. A
posteriori, for light vector mesons C is found small, the ra-
dius Ca(r) is indeed small and the resulting parameters are
consistent with the assumption that the Coulomb interaction
is a short-distance perturbation. Furthermore, for the light
vector mesons we find R1S ≈ R2S . For heavier mesons C
is larger and Coulomb effects are becoming more important
and R2S > R1S closer to the one for the Coulomb system
(see Table 1). Because our Ansatz for the relativistic wave
function has the correct short-distance QCD behavior and
gives a reasonable description of soft cross sections, we be-
lieve it provides a reasonable interpolation between the soft
and hard regimes in the electroproduction of vector mesons.
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Abstract. Within the color dipole gBFKL phenomenology of the diffraction slope we predict an anomalous
t-dependence of the differential cross section dσ/dt as a function of energy and Q2 for the production of
radially excited V ′(2S) light vector mesons. The pattern we found for the t-dependence for dσ/dt is in
contradiction with the well-known standard monotonical t-behavior for the V (1S) vector mesons. The
origin of this phenomenon lies in the interplay of the nodal structure of the V ′(2S) radial wave function
and the energy and dipole size dependence of the color dipole cross section and the diffraction slope. We
show how a different position of the node in the V ′(2S) wave function leads to a different pattern of
anomalous t-behavior of dσ/dt and discuss the possibility to determine this position from the low energy
and HERA data.

1 Introduction

The diffractive photo- and electroproduction of ground
state (V (1S)) and radially excited (V ′(2S)) vector
mesons,

γ∗p → V (V ′)p V = ρ, Φ, ω, J/Ψ, Υ · · ·
(V ′ = ρ′, Φ′, ω′, Ψ ′, Υ ′ · · ·), (1)

at high c.m.s. energy W = s1/2, intensively studied by the
recent experiments at HERA, represents one of the main
sources for the further development of pomeron physics.
Pomeron exchange in the diffractive leptoproduction of
vector mesons at high energies has been intensively stud-
ied [1–9] within the framework of perturbative QCD
(pQCD).

The standard approach to pQCD is based on the
BFKL equation [10–12], which represents the integral
equation for the leading-log s (LLs) evolution of the gluon
distribution, formulated in the scaling approximation of
the infinite gluon correlation radius Rc → ∞ (massless
gluons) and of the fixed running coupling αS = const.
Later, however, a novel s-channel approach to the LLs
BFKL equation (the running gBFKL approach) has been
developed [13,14] in terms of the color dipole cross section
σ(ξ, r) (hereafter r is the transverse size of the color dipole,
ξ = log(W 2 + Q2)/(m2

V + Q2) is the rapidity variable)
which consistently incorporates the asymptotic freedom
(AF) (i.e. the running QCD coupling αS(r)) and the finite
propagation radius Rc of perturbative gluons. The freezing
of αS(r), αS(r) ≤ αfr

S , and the gluon correlation radius Rc

represent the nonperturbative parameters, which describe

the transition from the soft (nonperturbative, infrared) to
the hard (perturbative) region.

The details of the gBFKL phenomenology of diffractive
electroproduction of light vector mesons are presented in
[15]. The color dipole phenomenology of the diffraction
slope for photo- and electroproduction of heavy vector
mesons has been developed in [16]. The analysis of the
diffractive production of light [6,15] and heavy [16] vec-
tor mesons at t = 0 within the gBFKL phenomenology
shows that the V (1S) vector meson production amplitude
probes the color dipole cross section at the dipole size
r ∼ rS (scanning phenomenon [17,4–6]), where the scan-
ning radius can be expressed through the scale parameter
A:

rS ≈ A√
m2

V + Q2
, (2)

where Q2 is the photon virtuality, mV is the vector meson
mass and A ≈ 6. Consequently, changing Q2 and the mass
of the produced vector meson one can probe the dipole
cross section σ(ξ, r) and the dipole diffraction slope B(ξ, r)
and thus measure the effective intercept ∆eff(ξ, r) =
∂ log σ(ξ, r)/∂ξ and the local Regge slope α′

eff(ξ, r) =
(1/2)∂B(ξ, r)/∂ξ in a very broad range of the dipole size
r. This fact allows one to study the transition from large
nonperturbative dipole size rS � Rc to the perturbative
region of very short rS � Rc.

The experimental investigation of the electroproduc-
tion of radially excited V ′(2S) vector mesons can provide
additional information on the dipole cross section and the
dipole diffraction slope.
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The presence of the node in the V ′(2S) radial wave
function leads to a strong cancellation of dipole size contri-
butions to the production amplitude from the region above
and below the node position rn (the node effect [2,17,4,
18,15,16]). For this reason the amplitudes for the electro-
production of the V (1S) and V ′(2S) vector mesons probe
σ(ξ, r) and B(ξ, r) in a different way. The onset of a strong
node effect has been demonstrated in [15], where the study
of the electroproduction of V ′(2S) light vector mesons has
shown a very spectacular pattern of anomalous Q2 and en-
ergy dependence for the production cross section. For the
electroproduction of V ′(2S) heavy vector mesons the node
effect becomes much weaker but still leads to a slightly dif-
ferent Q2- and energy dependence of the production cross
section for Ψ ′ versus J/Ψ and to a nonmonotonical Q2-
dependence of the diffraction slope at small Q2 � 5 GeV2

for Ψ ′ production [16]. Another manifestation of the node
effect experimentally confirmed at HERA (and at fixed
target experiments as well) in J/Ψ and Ψ ′ photoproduc-
tion is a strong suppression of the diffractive production
of V ′(2S) versus V (1S). The stronger the node effect, the
smaller is the V ′(2S)/V (1S) ratio of the production cross
sections. The node effect also leads to a counterintuitive
inequality, B(γ∗ → Ψ ′) � B(γ∗ → J/Ψ) [16], which can
be tested at HERA. Therefore, it is very important to
further explore the salient features of the node effect in
conjunction with the emerging gBFKL phenomenology of
the diffraction slope [19,20,16], especially in the produc-
tion of V ′(2S) light vector mesons where the node effect
is expected to be very strong. An anomalous energy and
Q2-dependence of the diffraction slope for the production
of V ′(2S) light vector mesons has recently been studied in
[21]. We found a correspondence between a specific non-
monotonic Q2 and energy behavior of the diffraction slope
and the position of the node in the V ′(2S) radial wave
function. Moreover, we demonstrated that the above coun-
terintuitive inequality found for the production of heavy
vector mesons is not always valid for the production of
light vector mesons.

In the present paper we concentrate on the model pre-
dictions for the differential cross sections dσ(γ∗ →
V (1S))/dt and dσ(γ∗ → V ′(2S))/dt at different energies
and Q2 and discuss for the first time how the explicit pat-
tern of anomalous t behavior of dσ(γ∗ → V ′(2S))/dt is
connected with the position of the node in the radial wave
function. We predict a strikingly different t-dependence of
the differential cross section at different energies and Q2

for the production of V ′(2S) versus V (1S) vector mesons.
The pattern we found for the anomalous t-behavior for
dσ(γ∗ → V ′(2S))/dt can be tested at HERA.

This paper is organized as follows. In Sect. 2 we present
a very short description of the color dipole phenomenol-
ogy of diffractive photo- and electroproduction of vector
mesons and the main results of the gBFKL phenomenol-
ogy of the diffraction slope. In Sect. 3 we present the model
predictions for the differential cross sections dσ(γ∗ →
V (1S))/dt and dσ(γ∗ → V ′(2S))/dt at different Q2 and
energies, and we discuss how the position of the node in
the V ′(2S) radial wave function can be extracted from

the data. The summary and conclusions are presented in
Sect. 4.

2 Short review of the color dipole
phenomenology for vector meson production
and the diffraction slope

In the mixed (r, z)-representation the high energy meson
is considered as a system of a color dipole described by the
distribution of the transverse separation r of the quark and
antiquark given by the qq̄ wave function Ψ(r, z), where z is
the fraction of the meson’s light-cone momentum carried
by a quark. The Fock state expansion for the relativistic
meson starts with the qq̄ state, and the higher Fock states
qq̄g · · · become very important at high energy. The inter-
action of the relativistic color dipole of the dipole size r
with the target nucleon is quantified by the energy de-
pendent color dipole cross section σ(ξ, r) satisfying the
gBFKL equation [13,14] for the energy evolution. This
reflects the fact that in the leading-log 1/x approxima-
tion the effect of higher Fock states can be reabsorbed
into the energy dependence of σ(ξ, r). The dipole cross
section is flavor independent and represents the univer-
sal function of r which describes various diffractive pro-
cesses in unified form. At high energy when the transverse
separation r of the quark and antiquark is frozen during
the interaction process, the scattering matrix describing
the qq̄–nucleon interaction becomes diagonal in the mixed
(r, z)-representation (z is known also as the Sudakov light-
cone variable). This diagonalization property exists even
when the dipole size r is large, i.e. beyond the perturba-
tive region of short distances. The detailed discussion of
the space-time pattern of diffractive electroproduction of
vector mesons is presented in [16,15].

Following the advantage of the (r, z)-diagonalization
of the qq̄–N scattering matrix, the imaginary part of the
production amplitude for the real (virtual) photoproduc-
tion of vector mesons with momentum transfer q can be
represented in the factorized form

ImM(γ∗ → V, ξ,Q2,q)

= 〈V |σ(ξ, r, z,q)|γ∗〉

=

1∫

0

dz

∫
d2rσ(ξ, r, z,q)Ψ∗

V (r, z)Ψγ∗(r, z) (3)

the normalization of which is dσ/dt|t=0 = |M|2/16π. In
(3), Ψγ∗(r, z) and ΨV (r, z) represent the probability am-
plitudes to find a color dipole of size r in the photon and
quarkonium (vector meson), respectively. The color dipole
distribution in (virtual) photons was derived in [22,13].
σ(ξ, r, z,q) is the scattering matrix for the qq̄–N interac-
tion and represents the above mentioned color dipole cross
section for q = 0. The color dipole cross section σ(ξ, r) de-
pends only on the dipole size r. For small q, as considered
in this paper, one can safely neglect the z-dependence of
σ(ξ, r, z,q) for light and heavy vector meson production
and set z = 1/2. This follows partially from the analysis
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within a double gluon exchange approximation [22] lead-
ing to a slow z-dependence of the dipole cross section.

The energy dependence of the dipole cross section is
quantified in terms of the dimensionless rapidity ξ = log 1/
xeff ; xeff is the effective value of the Bjorken variable

xeff =
Q2 + m2

V

Q2 + W 2
≈ m2

V + Q2

2νmp
, (4)

where mp and mV is the proton mass and mass of the vec-
tor meson, respectively. Hereafter, we will write the energy
dependence of the dipole cross section in both variables,
either in ξ or in xeff whatever seems convenient.

The production amplitudes for the transversely (T)
and the longitudinally (L) polarized vector mesons with
small momentum transfer q can be written in more ex-
plicit form [6,16]:

ImMT(xeff , Q
2,q)

=
NcCV

√
4παem

(2π)2

∫
d2rσ(xeff , r,q)

×
∫ 1

0

dz

z(1 − z)

{
m2

qK0(εr)φ(r, z) − [z2 + (1 − z)2]

×εK1(εr)∂rφ(r, z)}

=
1

(m2
V + Q2)2

∫
dr2

r2
σ(xeff , r,q)

r2
WT(Q2, r2) (5)

ImML(xeff , Q
2,q)

=
NcCV

√
4παem

(2π)2
2
√
Q2

mV

∫
d2rσ(xeff , r,q)

∫ 1

0

dz

×
{

[m2
q + z(1 − z)m2

V ]K0(εr)φ(r, z) − ∂2
rφ(r, z)

}

=
1

(m2
V + Q2)2

2
√
Q2

mV

∫
dr2

r2
σ(xeff , r,q)

r2
WL(Q2, r2),

(6)

where
ε2 = m2

q + z(1 − z)Q2; (7)

αem is the fine structure constant, Nc = 3 is the number
of colors, CV = 1/21/2, 1/(3

√
2), 1/3, 2/3, 1/3 for ρ0, ω0,

φ0, J/Ψ, Υ production, respectively, and the K0,1(x) are
the modified Bessel functions. The detailed discussion and
parameterization of the light-cone radial wave function
φ(r, z) of the qq̄ Fock state of the vector meson is given in
[15].

The terms ∝ εK1(εr)∂rφ(r, z) for (T) polarization and
∝ K0(εr)∂2

rΦ(r, z) for (L) polarization in the integrands
of (5) and (6) represent the relativistic corrections; these
become important at large Q2 and for the production of
light vector mesons. For the production of heavy quarko-
nia, the nonrelativistic approximation can be used with a
rather high accuracy [2].

For small dipole size and q = 0 in the leading-log 1/x
approximation the dipole cross section can be related to
the gluon structure function G(x, q2) of the target nucleon
through

σ(x, r) =
π2

3
r2αs(r)G(x, q2), (8)

where the gluon structure function enters at the factor-
ization scale q2 ∼ B/r2 [23] with the parameter B ∼ 10
[24].

The weight functions WT(Q2, r2) and WL(Q2, r2) in-
troduced in (5) and (6) have a smooth Q2-behavior [6] and
are very convenient for the analysis of the scanning phe-
nomenon. They are sharply peaked at r ≈ AT,L/(Q2 +

m2
V )1/2. At small Q2 the values of the scale parameter

AT,L are close to A ∼ 6, which follows from rS = 3/ε with
the nonrelativistic choice z = 1/2. In general, AT,L ≥ 6
and increases slowly with Q2 [6]. For the production of
light vector mesons the relativistic corrections play an
important role, especially at large Q2 � m2

V , and they
lead to a Q2-dependence of AL,T coming from the large
size asymmetric qq̄-configurations AL(ρ0;Q2 = 0) ≈ 6.5,
AL(ρ0;Q2 = 100 GeV2) ≈ 10, AT(ρ0;Q2 = 0) ≈ 7,
AT(ρ0, Q2 = 100 GeV2) ≈ 12 [6]. Due to an extra fac-
tor z(1− z) in the integrand of (6) in comparison with (5)
the contribution from asymmetric qq̄-configurations to the
longitudinal meson production is considerably smaller.

The integrands in (5) and (6) contain the dipole cross
section σ(ξ, r,q). As was already mentioned, due to a very
slow onset of the pure perturbative region (see (2)) one can
easily anticipate a contribution to the production ampli-
tude coming from the semiperturbative and nonperturba-
tive r � Rc. Following the simplest assumption about the
additive property of the perturbative and nonperturbative
mechanism of interaction we can represent the contribu-
tion of the bare pomeron exchange to σ(ξ, r,q) as a sum
of the perturbative and nonperturbative components1:

σ(ξ, r,q) = σpt(ξ, r,q) + σnpt(ξ, r,q), (9)

with the parameterization of both components at small q

σpt,npt(ξ, r,q) =

σpt,npt(ξ, r,q = 0) exp

(
−1

2
Bpt,npt(ξ, r)q

2

)
. (10)

Here σpt,npt(ξ, r,q = 0) = σpt,npt(ξ, r) represent the con-
tributions of the perturbative and nonperturbative mech-
anisms to the qq̄–nucleon interaction cross section, re-
spectively; Bpt(ξ, r) and Bnpt(ξ, r) are the corresponding
dipole diffraction slopes.

The small real part of the production amplitudes can
be taken in the form [25]

ReM(ξ, r) =
π

2

∂

∂ξ
ImM(ξ, r), (11)

and can easily be included in the production amplitudes
(5) and (6) using the substitution

σ(xeff , r,q) →
(

1 − i
π

2

∂

∂ log xeff

)
σ(xeff , r)

= [1 − iαV (xeff , r)]σ(xeff , r,q). (12)

1 The additive property of such a decomposition of the dipole
cross section has been already discussed in [15,16]
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The formalism for the calculation of σpt(ξ, r) in the lead-
ing-log s approximation was developed in [22,13,14]. The
contribution σnpt(ξ, r) to the dipole cross section was used
in [26,6,15,16], where we assumed that this soft nonper-
turbative component of the pomeron is a simple Regge
pole with intercept ∆npt = 0. The particular form to-
gether with the assumption of the energy independent
σnpt(ξ = ξ0, r) = σnpt(r) (ξ0 corresponds to the bound-
ary condition for the gBFKL evolution: ξ0 = log(1/x0),
x0 = 0.03) allows one to successfully describe the proton
structure function at very small Q2 [26], the real pho-
toabsorption [6] and the diffractive real and virtual pho-
toproduction of light [15] and heavy [16] vector mesons.
A larger contribution of the nonperturbative pomeron ex-
change to σtot(γp) versus σtot(γ

∗p) can, for example, ex-
plain the much slower rise with energy of the real pho-
toabsorption cross section σtot(γp) in comparison with
F2(x,Q2) ∝ σtot(γ

∗p) observed at HERA [27,28]. Be-
sides, the reasonable form of σnpt(r) was confirmed in the
process of the first determination of the dipole cross sec-
tion from the data on vector meson electroproduction [29].
The energy and dipole size dependence of the extracted
σ(ξ, r) is in a good agreement with the dipole cross sec-
tion obtained from the gBFKL dynamics [6,26]. The non-
perturbative component of the pomeron exchange plays a
dominant role at low NMC energies in the production of
the light vector mesons, where the scanning radius rS, see
(2), is large. However, the perturbative component of the
pomeron becomes more important with the rise of energy
also in the nonperturbative region of the dipole size.

If one starts with the familiar impact-parameter rep-
resentation for the amplitude of elastic scattering of the
color dipole,

ImM(ξ, r,q) = 2

∫
d2b exp(−iqb)Γ (ξ, r,b), (13)

then the diffraction slope B = −2d log ImM/dq2|q=0

equals

B(ξ, r) =
1

2
〈b 2〉 = λ(ξ, r)/σ(ξ, r), (14)

where

λ(ξ, r) =

∫
d2bb2Γ (ξ, r,b). (15)

The generalization of the color dipole factorization for-
mula (3) to the diffraction slope of the reaction γ∗p → V p
reads

B(γ∗ → V, ξ,Q2)ImM(γ∗ → V, ξ,Q2,q = 0)

=

1∫

0

dz

∫
d2rλ(ξ, r)Ψ∗

V (r, z)Ψγ∗(r, z). (16)

The diffraction cone in the color dipole gBFKL ap-
proach for the production of vector mesons has been stud-
ied in detail in [16]. Here we only present the salient fea-
ture of the color diffraction slope emphasizing the pres-
ence of the geometrical contribution from the beam dipole,

r2/8, and the contribution from the target proton size,
R2

N/3:

B(ξ, r) =
1

8
r2 +

1

3
R2

N + 2α′
IP(ξ − ξ0) + O(R2

c), (17)

where RN is the radius of the proton. For the electro-
production of light vector mesons the scanning radius is
larger than the correlation one, r � Rc, even for Q2 �
50 GeV2, and one recovers a sort of additive quark model,
in which the uncorrelated gluonic clouds build up around
the beam and target quarks and antiquarks and the term
2α′

IP(ξ − ξ0) describes the familiar Regge growth of the
diffraction slope for the quark–quark scattering. The ge-
ometrical contribution to the diffraction slope from the
target proton size (1/3)R2

N persists for all the dipole sizes
r � Rc and r � Rc. The last term in (17) is also associated
with the proton size and is negligibly small.

The soft pomeron and diffractive scattering of a large
color dipole have also been studied in detail in [16]. Here
we assume the conventional Regge rise of the diffraction
slope for the soft pomeron [16]

Bnpt(ξ, r) = ∆Bd(r) + ∆BN + 2α
′
npt(ξ − ξ0), (18)

where ∆Bd(r) and ∆BN stand for the contribution from
the beam dipole and target nucleon size. As a guidance we
take the experimental data on the pion–nucleon scattering
[30], which suggest α′

npt = 0.15 GeV−2. In (18) the proton
size contribution is

∆BN =
1

3
R2

N , (19)

and the beam dipole contribution has been proposed to
have the form [16]

∆Bd(r) =
r2

8

r2 + aR2
N

3r2 + aR2
N

, (20)

where a is a phenomenological parameter, a ∼ 1. We
take ∆BN = 4.8 GeV−2. Then the pion–nucleon diffrac-
tion slope is reproduced with a reasonable value of the
parameter a in (20): a = 0.9 for α′

npt = 0.15 GeV−2.
Following the simple geometrical properties of the

gBFKL diffraction slope B(ξ, r) (see (17) and [19]) one
can express its energy dependence through the energy de-
pendent effective Regge slope α′

eff(ξ, r)

Bpt(ξ, r) ≈
1

3
〈R2

N 〉 +
1

8
r2 + 2α′

eff(ξ, r)(ξ − ξ0). (21)

The effective Regge slope α′
eff(ξ, r) varies with energy dif-

ferently at different dipole sizes [19]. At fixed scanning ra-
dius and/or Q2+m2

V , it decreases with energy. At fixed ra-
pidity ξ and/or xeff , see (4), α′

eff(ξ, r) rises with r � 1.5 fm.
At fixed energy it is a flat function of the scanning ra-
dius. At asymptotically large ξ (W ), α′

eff(ξ, r) → α′
IP =

0.072 GeV−2. At lower and HERA energies the subasymp-
totic α′

eff(ξ, r) ∼ (0.15–0.20) GeV−2 and is very close to
α′
soft known from the Regge phenomenology of soft scat-

tering. This means that the gBKFL dynamics predicts
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a substantial rise with the energy and dipole size of the
diffraction slope B(ξ, r) in accordance with the energy
and dipole size dependence of the effective Regge slope
α′
eff(ξ, r) and due to the presence of the geometrical com-

ponents ∝ r2 in (17) and ∆Bd(r) ∝ r1.7 in (18) (see also
(20))2. The overall dipole diffraction slope contains con-
tributions from both Bnpt(ξ, r) and Bpt(ξ, r) and the cor-
responding geometrical component has rα-behavior with
1.7 < α � 2.0. Therefore, for discussions on the quali-
tative level in the subsequent section we assume (with a
quite reasonable accuracy) an approximate r2-dependence
of the geometrical component contribution to the dipole
diffraction slope.

Using the expressions (5) and (6) for the (T) and (L)
production amplitudes in conjunction with (9), (10), (18)
and (21) we can calculate the differential cross section of
the vector meson electroproduction as a function of t.

3 Anomalous t-dependence
of the differential cross section
for the production of V ′(2S) vector mesons

The most important feature for V ′(2S) vector meson pro-
duction is the node effect – the Q2- and energy dependent
cancellations from the soft (large size) and hard (small
size) contributions (i.e. from the region above and below
the node position, rn) to the V ′(2S) production ampli-
tude. The strong Q2-dependence of these cancellations
comes from the scanning phenomenon (2) when the scan-
ning radius rS for some value of Q2 is close to rn ∼ RV

(RV is the vector meson radius). The energy dependence
of the node effect is due to a different energy dependence
of the dipole cross section at small (r < RV ) and large
(r > RV ) dipole sizes. We would like to emphasize from
the very beginning that in the region of energy and Q2

where the exact node effect is encountered the predic-
tive power becomes weak and the predictions are strongly
model dependent. The model predictions for V ′(2S) vec-
tor mesons presented in this section serve mostly as an
illustration of a possible anomalous Q2 and energy depen-
dence3.

There are several reasons to expect that for the pro-
duction of V ′(2S) light vector mesons the node effect de-
pends on the polarization of the virtual photon and of
the produced vector meson [15]. First, the wave functions
of (T) and (L) polarized (virtual) photons are different.
Second, different regions of z contribute to MT and ML.

2 The dipole size behavior of ∆Bd(r) (20) representing
the geometrical contribution to the dipole diffraction slope
Bnpt(ξ, r) (18) for diffractive scattering of a large color dipole
has the standard r2-dependence at small, r2 � aR2

N , and large,
r2 � aR2

N , values of the dipole size, respectively. In the in-
termediate region, r2 ∼ aR2

N , which corresponds to the pro-
duction of V (1S) and V ′(2S) light vector mesons, the dipole
size dependence of ∆Bd(r) can be parameterized by the power
function rα with α ∼ 1.7

3 Manifestations of the node effect in electroproduction on
nuclei were discussed in [18,31]

Third, different scanning radii for the production of (T)
and (L) polarized vector mesons and the different energy
dependence of σ(ξ, r) at these scanning radii lead to a dif-
ferent Q2 and energy dependence of the node effect in the
production of (T) and (L) polarized V ′(2S) vector mesons.
Not so for the nonrelativistic limit of heavy quarkonia,
where the node effect is very weak and is approximately
polarization independent. There is only a weak polariza-
tion dependence of the node effect for Ψ ′ production [16].
For Υ ′ production the node effect is negligibly small and
is almost polarization independent.

There are two possible scenarios for the node effect
which can occur in the V ′(2S) production amplitude: the
undercompensation and the overcompensation scenario
[18].

In the undercompensation scenario, the V ′(2S) pro-
duction amplitude 〈V ′(2S)|σ(ξ, r)|γ∗〉 is dominated by the
positive contribution coming from small dipole sizes, r �
rn, and the V (1S) and V ′(2S) photoproduction ampli-
tudes have the same sign. This scenario corresponds
namely to the production of V ′(2S) heavy vector mesons
Ψ ′(2S) and Υ ′(2S). In the overcompensation scenario, the
V ′(2S) production amplitude is dominated by the nega-
tive contribution coming from large dipole sizes, r � rn,
and the V (1S) and V ′(2S) photoproduction amplitudes
have opposite sign4.

The anomalous properties of the diffraction slope were
recently studied in [21] and come from the expression (16),
which can be rewritten as the ratio of two matrix elements:

B(γ∗ → V (V ′), ξ, Q2)

=

1∫
0

dz
∫

d2rΨ∗
V (V ′)(r, z)σ(ξ, r)B(ξ, r)Ψγ∗(r, z)

1∫
0

dz
∫

d2rΨ∗
V (V ′)(r, z)σ(ξ, r)Ψγ∗(r, z)

. (22)

The production amplitude in the denominator of (22)
is dominated by the contribution from the dipole size cor-
responding to the scanning radius rS (2). However, due
to the approximately ∝ r2 behavior of the dipole diffrac-
tion slope (see the discussion in Sect. 2), the integrand of
the matrix element in the numerator of (22), is peaked by
r = rB ∼ 5/3rS > rS.

Let us discuss now the possible peculiarities in the t-
dependence of the differential cross section dσ/dt for the
V ′(2S) production. Because of an approximate ∝ r2 be-
havior of the geometrical contribution to the diffraction
slope, the large size negative contribution to the produc-
tion amplitude from the region above the node position
corresponds to a larger value of the diffraction slope than
the small size contribution from the region below the node
position. This means that the negative contribution to the
V ′(2S) production amplitude has a steeper t-dependence
than the positive contribution. This can be understood
in a somewhat demonstrative form when the t-dependent
production amplitude reads

4 A discussion of the experimental determination of the rela-
tive sign of the V ′(2S) and V (1S) production amplitudes using
the so-called Söding–Pumplin effect [32,33] is presented in [15]
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716 J. Nemchik: Anomalous t-dependence in diffractive electroproduction

Fig. 1. The color dipole model predictions for the differential
cross sections dσ(γ∗ → V (V ′))/dt for the real photoproduction
(Q2 = 0) of ρ0, ρ′(2S), φ0 and φ′(2S) at different values of the
c.m.s. energy W

M(t) = α exp

(
−1

2
B1t

)
− β exp

(
−1

2
B2t

)
, (23)

where α and β represent the contributions to the matrix
element from the region below and above the node po-
sition with the corresponding effective diffraction slopes
B1 and B2, respectively (B1 < B2). Consequently, the
inequality α > β corresponds to the undercompensation
whereas α < β is associated with the overcompensation
regime. The destructive interference of these two contribu-
tions results in a decrease of the effective diffraction slope
for the V ′(2S) meson production towards small t, con-
trary to the familiar increase for the V (1S) meson pro-
duction. Such a situation is shown in Fig. 1, where we
present the model predictions for the differential cross
section dσ(γ∗ → V (V ′))/dt for the production of the
V (1S) and V ′(2S) mesons at different c.m.s. energies W
and at Q2 = 0. The real photoproduction measures the
purely transverse cross section. Using the vector meson
wave functions from [15] the forward production ampli-
tude (3) is in the undercompensation regime (positive
value). However, the matrix element in the numerator of
(22) is safely in the overcompensation regime (negative
value) (at W � 150 GeV for ρ′(2S) production and at
W � 30 GeV for φ′(2S) production) because of rB > rS.
As the result, we predict the negative value diffraction
slope at t = 0 and Q2 = 0. At t > 0 the node effect
becomes weaker. The higher t, the weaker is the node ef-
fect as a consequence of the destructive interference dis-
cussed above. Consequently, the differential cross section
first rises with t, and flattens off at t ∈ (0.0–0.2) GeV2,
having a broad maximum. At large t, the node effect is
weak and dσ(γ∗ → V ′(2S))/dt decreases with t monoton-
ically as for V (1S) production. The position of the maxi-
mum can be roughly evaluated from (23) and reads

tmax ∼ 1

B −A
log

[
β2

α2

B2

A2

]
, (24)

with the supplementary condition

Fig. 2. The color dipole model predictions for the differential
cross sections dσL,T(γ

∗ → V ′(2S))/dt for transversely (T) (top
boxes) and longitudinally (L) (middle boxes) polarized radially
excited ρ′(2S), φ′(2S) and for the polarization-unseparated
dσ(γ∗ → V ′)/dt = dσT(γ

∗ → V ′(2S))/dt + εdσL(γ
∗ →

V ′(2S))/dt for ε = 1 (bottom boxes) at Q2 = 0.5GeV2 and
different values of the c.m.s. energy W

β

α
>

A

B
, (25)

where A = 2B1 and B = 2B2, A < B. If the condition
(25) is not fulfilled, dσ(γ∗ → V ′(2S))/dt has no maximum
and exhibits a standard monotonical t-behavior as for the
production of V (1S) mesons.

The predicted nonmonotonic t-behavior of the differ-
ential cross section for ρ′(2S) and φ′(2S) production in
the photoproduction limit is strikingly different, especially
at smaller energies, from the familiar decrease with t of
dσ(γ → ρ0(1S))/dt and dσ(γ → φ0(1S))/dt (see Fig. 1).
Here we cannot insist on the precise form of the t-depen-
dence of the differential cross sections; the main emphasis
is on the likely pattern of the t-dependence coming from
the node effect.

At larger energies, W � 150 GeV for the ρ′(2S) photo-
production and W � 30 GeV for φ′(2S) photoproduction,
the node effect becomes weaker and we predict the posi-
tive value diffraction slope at t = 0 because both the ma-
trix elements in (22) are positive valued. For this reason,
the nonmonotonic t-dependence of the differential cross
section is exchanged for the monotonic one, but still the
effective diffraction slope decreases slightly towards small
t (see Fig. 1).

Because of a possible overcompensation scenario for
ρ′L(2S) and φ′

L(2S) mesons in the forward direction (t =
0) and at small Q2 (see [15]), we present in Fig. 2 the
model predictions for dσ(γ∗ → V ′(2S))/dt at different
energies W and at fixed Q2 = 0.5 GeV2 for the produc-
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tion of (T), (L) polarized and polarization-unseparated
ρ′(2S) and φ′(2S) mesons. As was mentioned above, at
Q2 = 0.5 GeV2, the node effect becomes weaker, the am-
plitudes for both ρ′T(2S) and φ′

T(2S) production at t = 0
are in the undercompensation regime and the correspond-
ing slope parameters B(ρ′T(2S)) and B(φ′

T(2S)) have a
positive value. For this reason, we predict the familiar t-
dependence of dσ(γ∗ → V ′

T(2S))/dt (see bottom boxes in
Fig. 2). The above mentioned maximum of dσ/dt is ab-
sent because of a weaker node effect and consequently the
condition (25) is not fulfilled.

However, at Q2 � 0.5 GeV2, the production ampli-
tude for ρ′L(2S) and φ′

L(2S) in the forward direction (and
the matrix element 〈V ′

L(2S)|σ(ξ, r)B(ξ, r)|γ∗〉 as well) is
still in the overcompensation regime and the correspond-
ing diffraction slope B(V ′

L(2S)) has a positive value at
small energies, W � 20 GeV. This results in the very spec-
tacular pattern of anomalous t-dependence for dσ(γ∗ →
V ′
L(2S))/dt shown in Fig. 2 (middle boxes). With rising

t due to the above described destructive interference of
two contributions to the production amplitude with dif-
ferent t-dependences (see (23)), one encounters the exact
node effect at some t ∼ tmin. Consequently, the differential
cross section first falls rapidly with t, having a minimum
at t ∼ tmin. At still larger t, when the overcompensa-
tion scenario of the t-dependent production amplitude is
changed for the undercompensation one and the slope pa-
rameter becomes negatively valued, dσ(γ∗ → V ′

L(2S))/dt
rises with t and the further pattern of the t-behavior is
analogous to that for V ′

T(2S) production (see Fig. 1).
The position of the minimum in the differential cross

section is model dependent and can be roughly estimated
from (23):

tmin ∼ 1

B −A
log

[
β2

α2

]
. (26)

The gBFKL model predictions give tmin ∼ 0.03 GeV2

for ρ′L(2S) production and tmin ∼ 0.05 GeV2 for φ′
L(2S)

production at Q2 = 0.5 GeV2 and at W = 5 GeV. How-
ever, we cannot exclude the possibility that this minimum
will be placed at other values of t. At Q2 < 0.5 GeV2, tmin

reaches larger values of t. At higher energy, the position of
tmin is shifted to a smaller value of t unless the exact node
effect is reached at t = 0. At still larger energy, when the
V ′
L(2S) production amplitude is in the undercompensa-

tion regime, this minimum disappears and we predict the
pattern of t-behavior for dσ(γ∗ → V ′

L(2S))/dt analogous
to that for dσ(γ → V ′

T(2S))/dt in the photoproduction
limit described in Fig. 1. These predicted anomalies can
be tested at HERA measuring the diffractive electropro-
duction of V ′(2S) light vector mesons in the separate (T)
and (L) polarizations.

4 Conclusions

We study the diffractive photo- and electroproduction of
the ground state V (1S) and radially excited V ′(2S) vec-
tor mesons within the color dipole gBFKL dynamics with

the main emphasis on the differential cross section dσ/dt.
There are two main consequences of vector meson produc-
tion coming from the gBFKL dynamics.

First, the energy dependence of the V (1S) vector me-
son production is controlled by the energy dependence of
the dipole cross section which is steeper for smaller dipole
sizes. The energy dependence of the diffraction slope for
V (1S) production is given by the effective Regge slope
with a small variation with energy.

Second, the Q2-dependence of the V (1S) vector meson
production is controlled by the shrinkage of the transverse
size of the virtual photon and the small dipole size depen-
dence of the color dipole cross section. The Q2-behavior
of the diffraction slope is given by the geometrical contri-
bution with an approximate ∼ r2 behavior coming from
the color dipole gBFKL phenomenology of the slope pa-
rameter.

As a consequence of the node in the V ′(2S) radial wave
function, we predict a strikingly different t-dependence of
the differential cross section for the production of V ′(2S)
versus V (1S) vector mesons. The origin of this is in the
destructive interference of the large distance negative con-
tribution to the production amplitude from the region
above the node position with a steeper t-dependence and
the small distance positive contribution to the production
amplitude from the region below the node position with
a weaker t-dependence. As a result, we predict at Q2 = 0
a nonmonotonic t-dependence of dσ(γ → V ′

T(2S))/dt and
a decreasing diffraction slope for V ′

T(2S) mesons towards
small values of t in contrast with the familiar increase for
the V (1S) mesons. The differential cross section dσ(γ →
V ′
T(2S))/dt first rises with t, having a broad maximum at

t ∼ tmax as given by (24). The position of the maximum is
model dependent and is shifted to smaller values of t with
rising energy and Q2 due to a weaker node effect. At larger
t when the node effect is still weaker, dσ(γ → V ′

T(2S))/dt
has the standard monotonic t-behavior as for the produc-
tion of V (1S) vector mesons. This pattern of the anoma-
lous t-dependence of dσ(γ → V ′

T(2S))/dt corresponds to
the undercompensation scenario for the production am-
plitude.

For the production of (L) polarized V ′
L(2S) mesons,

there is overcompensation at t = 0 leading to an ex-
act cancellation of the positive contribution from large
size dipoles and the negative contribution from small size
dipoles to the production amplitude and to a minimum
of the differential cross section at some value of t ∼ tmin.
The position of tmin is given by (25), is energy depen-
dent, and leads to a complicated pattern of anomalous
t-dependence for dσ(γ∗ → V ′

L(2S))/dt at fixed Q2. Con-
sequently, dσ(γ∗ → V ′

L(2S))/dt first falls with t having
a minimum at t ∼ tmin when the overcompensation sce-
nario is changed for the undercompensation one. The fol-
lowing pattern of t-behavior is then analogous to dσ(γ →
V ′
T(2S))/dt at Q2 = 0. These anomalies are also energy

and Q2-dependent and can be tested at HERA.
The experimental investigation of the t-dependent dif-

ferential cross section for real photoproduction (Q2 = 0)
of V ′(2S) vector mesons at fixed target and HERA exper-
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iments offers an unique possibility to make a choice be-
tween the undercompensation and overcompensation sce-
narios. The presence of the minimum in dσ(γ → V ′(2S))/
dt for a broad energy range corresponds to the overcom-
pensation scenario. Otherwise, the V ′(2S) production am-
plitude is in the undercompensation scenario.

The position of the node in the radial V ′(2S) wave
function can be tested also by the vector meson data with
the separate (L) and (T) polarizations at Q2 > 0. The
existence of a dip (minimum) (for a broad energy range)
in the t-dependent differential cross section is connected
again with the overcompensation scenario in the V ′(2S)
production amplitude. The broad maximum and/or the
standard monotonic t-behavior of dσ/dt leads one to pre-
fer the undercompensation scenario.
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Abstract 

We predict a strikingly different A- and Q2-dependence of quasielastic leptoproduction of the po (1S)-meson and its radial 
excitation p' (2S) on nuclei. Whereas for po production the nuclear transparency TA decreases monotonically with A, for the 
p' nuclear transparency TA can have the counterintuitive nonmonotonic A-dependence, having a minimum for light nuclei, 
and increasing with A for medium and heavy nuclei. Strong enhancement of the p,/po cross section ratio makes nuclear 
targets of the p'-factory. The origin of the anomalous A-dependence is in the interplay of color transparency effects with the 
nodal structure of the p' wave function. The predicted effects take place at moderate Q2 < (2 - 3) GeV 2, which can be 
explored in high statistics experiments at CEBAF. 

1. In t roduc t ion  

The recent FNAL E665 experiment [ 1 ] on the ex- 
clusive virtual photoproduction of  the p°-mesons on 
nuclei confirmed the long anticipated effect of  color 
transparency (CT):  decrease of  nuclear attenuation of  
the produced p°-mesons with increasing virtuality Q2 
of  photons [2,3]. Regarding the accuracy of  the data, 
the potential of  the CERN and FNAL muon scatter- 
ing experiments is nearly exhausted. Fortunately, very 
high statistics experiments can be performed at CE- 
BAF upgraded to the (8 - 12) GeV energy range [4].  
(For discussion of  the vector meson physics as the 
case for ( 10 - 20) GeV electron facility see [5] ,  high 
energy aspects of  leptoproduction of  vector mesons 
are discussed in [3,6], for the recent review on CT 
see [ 7] . )  Apart from the much more detailed studies 

of  the onset of  CT in p0 production, the CEBAF ex- 
periments can open an entirely new window on CT, as 
due to high luminosity and excellent CLAS facility, 
an accurate measurement of  production of  the radially 
excited p~-meson becomes possible for the first time. 
As we shall demonstrate below, CT leads to a spec- 
tacular pattern of  anomalous A- and Q2-dependence 
of  p '  production. 

The crucial observation is that the very mechanism 
of  CT leads to a novel phenomenon of  scanning the 
wave function of  vector mesons [2,8,9]. Specifically, 
the amplitude of  the forward production T~-P ~ Vr N 
of  the transverse polarized vector mesons can be writ- 
ten as 

0370-2693/94/$07.00 (g) 1994 Elsevier Science B.V. All rights reserved 
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M u  = NcG 4~Vq-K~m 
(2rr) 2 

1 

az m2Ko(~r)4,(r,z). xfd2r¢(r) fz(f-z) 
o 

(1) 

Here C a = 1 /v~ ,  Nc = 3 is the number of colours, 
K0.1 (x) is the modified Bessel function, 

8 2  2 -- m q  q- Z(1 -- z ) Q  2 , (2 )  

mq ---- 0.3 GeV is the quark mass, ~b(z, r) is the light- 
cone wave function of the qq Fock state of the vector 
meson in the mixed (z, r )-representation, where r is 
the transverse separation of the quark and antiquark 
and z is a fraction of the lightcone momentum car- 
ried by the quark. In Eq. (2),  we used the explicit 
form qbr, (z, r) c~ Ko(er) for the photon wavefunc- 
tion [8,10]. The normalization of amplitudes is such 
that do'/dt[,_-o = 1A412/16~ -, the wave functions are 
normalized by 

1 
N~ m2qb2(r,z)=l (3) 
2--~ z (1 - -  z) " 

o 

If the Vqq vertex is taken in the form Fqy~q, then 
the standard nonrelativistic relationship between the 
vertex function F and the Fourier transform qt(p)  = 
f d3//~It (R) e x p ( - i p R )  of the wavefunction reads 

air ( p  2) ~ F(P 2) 
4p 2 + 4m2q _ m2 ,  (4) 

the lightcone generalization of which is achieved by 
the substitution [ 11 ] 

2q_k2  
4p 2 + 4rn2q = M 2 _ m q  

z(1 - z )  (5) 

For the p0(IS) and the pt(2S) we use the wave func- 
tions of the harmonic oscillator type 

altl ( M  2) = N1 exp(-1R21M2), (6) 

aI'2(M2) = N2 {1 - a [3 - RZ(¼M 2 -  mq2)] } 

× exp(-½R2M2) , (7) 

195 

The lightcone wave function qb(r,z) in the mixed 
(r ,  z ) representation is given by 

= f  d2k 2 ~b(r,z) (-~-~)2aI'(M ) exp(ikr) . (8) 

The parameter R 2 = 1.078 fm 2 was chosen to have 
(r 2)p0 = 1.2 fm 2, which corresponds to the similar 
charge radii of the p+ and ~+-mesons and leads to 
O'tot(p0N) = 23 mb. For the pt-meson, we assume 
a harmonic oscillator model motivated size, (r 2)p, = 
2.5(r 2)p0, and impose the orthogonality of the 1S and 
2S wavefunctions, which gives R22 = 0.807 fm 2, a = 
0.725 and, for purpose of reference, O'tot(P t N )  -- 28 
mb. In this paper we only are interested in the re- 
gion of small Q2, in which the relativistic corrections 
coming from the lower components of the quark wave 
functions can be neglected; full relativistic treatment 
demonstrates a very slow onset of relativistic effects 
with increasing Q2 [ 12]. 

In Eq. ( 1 ), t - ( r )  is the cross section for interaction 
with the nucleon of the qq color dipole of size r. We 
use t - ( r )  calculated in [ 12]. By virtue of CT, for the 
small-size color dipole [ 10,13] 

o-(r) cx r 2 , (9) 

and the production amplitude ( 1 ) receives the domi- 
nant contribution from ( [3] and see below) 

6 
r ,'~ rs - ~ Q2 (10) 

The wave function of the radial excitation pt(2S) 
has a node. For this reason, in the p'  production ampli- 
tude there is the node efffect - cancellations between 
the contributions from r below, and above, the node, 
which depends on the scanning radius rs. If the node 
effect is strong, even slight variations of rs lead to an 
anomalously rapid variation of the p~ production am- 
plitude, which must be contrasted to the smooth Q2_ 
and rs-dependence of the pO(IS) production ampli- 
tude. The point which we wish to make in this commu- 
nication is that apart from changing Q2, one can also 
vary the effective scanning radius employing the CT 
property of stronger nuclear attenuation of the large- 
r states. We predict a strikingly different, and often 
counterintuitive, A- (and Q2)-dependence of pt and 
pO production on nuclei, the experimental observation 
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of which will shed new light on our understanding of 
the mechanism of CT. 

2. Scanning the wave function of t h e / / - m e s o n  

We start with the derivation of the scanning radius 
rs Eq. (10). The most important feature of the photon 
wave function ~br. (r, z ) is an exponential decrease at 
large distances [2,3,8-10] 

Or* (r , z  ) o(Ko(er)  oc e x p ( - e r )  . (11) 

In the nonrelativistic quarkonium z '-~ 1/2 and, by 
virtue of Eqs. (11 ) and (2),  the relevant qq fluctua- 
tions have a size 

1 2 
(12) 

r ~ rQ - ~/m2q + IQ2  x / ~ v + Q  2 

The wave function of the vector meson is smooth at 
small r. Then, because of CT property Eq. (9), the 
integrand in Eq. (1) will be peaked at r ~ rs ~ 3rQ 
as it is stated in Eq. (10). The product c r ( r )~7 .  (z, r) 
acts as a distribution which probes the wave func- 
tion of the vector meson at the scanning radius r 
rs [2,9]. The large numerical factor on the r.h.s, of 
Eq. (10) stretches the large-size dominance, and the 
simple nonrelativistic approximation z ~ 1/2 remains 
viable in a broad range of Q2 < (3 - 5) GeV 2 of 
interest at CEBAF. 

For ~ '  and Y' production, the node effect is 
perturbatively tractable even for the real pho- 
toproduction Q2 = 0. The prediction [8] of 
t r (yN --~ xP 'N) / t r (yN --~ J / ~ N )  = 0.17 is in 
excellent agreement with the NMC result 0.20-4- 
0.05(stat)+0.07(syst)  for this ratio [14]. In this 
case the node effect is relatively weak. For the light 
mesons the scanning radius rs is larger and, at small 
Q=, the node effect is much stronger. With the above 
described harmonic oscillator wave function, we find 
the Q2-dependence of the p,/pO production ratio 
shown in Fig. 1. It corresponds to the overcompensa- 
tion scenario when, at Q2 = 0, the p '  production am- 
plitude is dominated by the contribution from r above 
the node. As Q2 increases and the scanning radius 
rs decreases, we encounter the exact node effect, the 
p,/pO production ratio has a dip at finite Q2, and with 
the further increase of Q2 and decrease of rs, we have 

~-"10 -~ 
3 

10 -2 

-QIO 
b 
~ 1 0  4 

10 5 

, / 0  
0.1 l 

qe [GeV ~ ] 
10 

Fig. 1. The Q2-dependence of the p'  (2S)/pO( 1 S) ratio of forward 
production cross sections. 

the undercompensation regime - the flee-nucleon 
amplitude will be dominated by the contribution from 
r below the node. The node effect will decrease with 
rising Q2 and the p,/pO ratio will rise with Q2. 

At small Q2 the scanning radius is large, and we are 
not in the domain of the perturbative QCD. What, then, 
are our firm predictions? Firstly, the strong node effect 
and the strong suppression of the real photoproduction 
of the p '  is not negotiable, and this prediction is con- 
sistent with the meagre experimental information (for 
the review see [ 15] ). Secondly, the wave functions of 
the p0(IS)  and p ' (2S)  at the origin are approximately 
equal. Therefore, at very large Q2 when rs is very 
small, we have a firm prediction that dtrp, ~ dtrpO. 
In the above overcompensation scenario, the p,/pO ra- 
tio has a dip at finite Q2. The position of this dip is 
model dependent, but the prediction of the steep rise 
of the p,/pO in the region of Q2 < (2 - 3)GeV 2 is a 

finn consequence of the Q2-dependence of the scan- 
ning radius, which is driven by CT. This is precisely 
the region where the high statistics data can be taken 
at CEBAF, and the experimental observation of such 
a dramatic large-distance manifestation of CT will be 
very important contribution to our understanding of 
the onset of CT. 

3. The two possible scenarios for the node effect 
in p' production on nuclei 

p '  production on nuclei is indispensable for testing 
the node affect, as nuclear attenuation gives still an- 
other handle on the scanning radius. For the sake of 
definiteness, we discuss quasielastic (incoherent) p' 
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production on nuclei, extension to the coherent pro- 
duction is straightforward and will be presented else- 
where. 

At high energy r,, the (virtual) photon forms its 
qq Fock state at a distance (the coherence length) in 
front of the target nucleus (nucleon) 

2r, 
lc - Q2 + m2v • (13) 

After interaction with the target, the q# pair recom- 
bines into the observed vector meson V with the for- 
mation (recombination) length 

I f  -- mvArn ' (14) 

where Am is the typical level splitting in the quarko- 
nium. At low energy and I f  << RA, where R3 is a 
radius of the target nucleus, recombination of the qq 
pair into the vector meson takes place well inside the 
nucleus, nuclear attenuation will be given by the free- 
nucleon VN cross section and the CT effect disappears. 
The condition I f  > RA is crucial for the onset of CT, 
and for the pO, p, system it requires 

> (3 - 4) • A1/3 GeV, (15) 

which for light and medium nuclei is well within the 
reach of the (8 - 12) GeV upgrade of CEBAF. (In 
this energy range we can also limit ourselves to the 
contribution from the lowest qq Fock states of the 
photon and vector meson.) In the opposite to that, the 
condition lc > RA is not imperative for the onset of CT. 
Nuclear attenuation effects only increase somewhat 
when lc increases from lc << RA to Ic > RA [2,16]. 
The finite-energy effects can easily be incorporated 
using the path integral technique developed in [8,2]. 
For the sake of simplicity, in this paper we concentrate 
on the high-energy limit of f f ,  lc > RA, when the 
nuclear transparency TA = dtra/AtrN equals [2,9,16] 

TrA = ~ d2br(b)  

x (V[o-(r)exp [-½tr(r)T(b)] ly*) 2 (16) 
<VIo'(r)ly*) 2 

Here T(b) = f dZnA (b, z) is the optical thickness 
of a nucleus, where na (b, Z ) is the nuclear matter 
density (For the compilation of the nuclear density 

parameters see [17]) .  The A-dependence of the 
node effect comes from the nuclear attenuation factor 
exp[-½tr(r)T(b)]  in the nuclear matrix element 
. / ~ A ( T )  -~ (VIo'(r) exp [-½~r(r)T( b) ] lY*)- 

Firstly, consider the value of Q2, at which the cross 
section for p' production on the free nucleon takes its 
minimal value because of the exact node effect. Be- 
cause of the r-dependence of the attenuation factor, in 
the nuclear amplitude the node effect will be incom- 
plete. Consequently, as a function of Q2, the nuclear 
transparency TA will have a spike TA >> 1 at a finite 
value of Q2 [2]. 

Secondly, consider p~ production on nuclei at a 
fixed value of Q2 such that the free nucleon ampli- 
tude is still in the overcompensation regime. Increas- 
ing A and enhancing the importance of the attenuation 
factor e x p [ - 1  o-(r)T( b)] ,  we shall bring the nuclear 
amplitude to the nearly exact compensation regime. 
Therefore, the pt/pO production ratio, as well as the 
nuclear transparency for pl production, will decrease 
with A and take a minimum value at a certain finite A. 
With the further increase of A, the undercompensation 
regime takes over, and we encounter a very counterin- 
tuitive situation: the nuclear transparency for the p~ is 
larger for the strongly absorbing nuclei! This situation 
is illustrated in Fig. 2a and must be contrasted with 
the smooth and uneventful decrease of transparency 
for p0 production on heavy nuclei. 

Evidently, the possibility of the perfect node effect 
in J~4A(T) depends on the optical thickness T(b).  
This is shown in Fig. 3, in which we present the relative 
nuclear matrix element 

R(T) = (P'l°'(r) exp[-½° ' (r )T(b) l lY*)  (17) 
<p'l~(r)ly*) 

At large impact parameter b, at the periphery of the 
nucleus, the optical thickness of the nucleus is small, 
the overcompensation in the nuclear matrix element is 
the same as for the free nucleon, and we have R(T) = 
1. At smaller impact parameters, one encounters the 
exact node effect: R(T) = 0. At still smaller impact 
parameters, the overcompensation changes for the un- 
dercompensation and R(T) < 0. Here the breaking 
of the compensation and the overall attenuation start 
competing. For very heavy nuclei and small impact pa- 
rameters, the overall attenuation takes over and R(T) 
starts decreasing again. For the particular case of real 
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Fig. 2. The Q2_ and A-dependence of the nuclear transparency for p0(1S) and p' (2S)  electroproduction on nuclei. 
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Fig. 3. The impact parameter dependence of the reduced nuclear 
matrix element R(T)  for the real photoproduction of the p ' ( 2 8 ) .  

photoproduction, and for the specific wave function of 
the pt-meson, in the undercompensation domain we 
have mR(T)[ < 1. The resulting A-dependence of the 
nuclear transparency TA is shown in Fig. 2a. It takes 
the minimum value for the 7Li target, then increases 
with A, flattens and starts decreasing for very heavy 
nuclei. 

In Fig. 2 we show how the nuclear transparency for 
the pt varies with Q2. The slight increase of Q2 up 
to Q2 = 0.2 GeV 2 and the slight change of the scan- 
ning radius enhance the node effect in the free nu- 
cleon amplitude, see Fig. 1. In this case, we find an 

almost exact node effect for the 4He target, which is 
followed by the dominant undercompensation regime 
for heavier nuclei (Fig. 2b). Also, in this case the un- 
dercompensation regime for heavy nuclei is followed 
by IR(T)I > 1, which leads to significant antishad- 
owing TA > 1. 

With the further increase of Q2 one enters the pure 
undercompensation regime for all the targets. Nuclear 
suppression of the node effect enhances MA and nu- 
clear transparency TA, whereas the overall attenuation 
factor exp [ - lo . (r  ) T(b) ] decreases TA. Of these two 
competing effects, the former remains stronger and we 
find antishadowing of p' production in a broad range 
of A and Q2, see Figs. 2c-2e. Typically, we find a nu- 
clear enhancement of the p,/po production ratio on 
heavy targets by one order in magnitude with respect 
to the free nucleon target. This enables leptoproduc- 
tion on nuclei of the pt factory, and the pt produc- 
tion experiments at CEBAF can contribute much to 
the poorly understood spectroscopy of the radially ex- 
cited vector mesons. Only at a relatively large Q2 > 2 
GeV 2, the attenuation effect takes over, and nuclear 
transparency for pt production will start decreasing 
monotonically with A (Fig. 2f). Still, this decrease 
is much weaker than for the p°-meson. At very large 
Q2, when the node effect disappears because of the 
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small scanning radius rs, the nuclear transparency for 
p0 and p~ production will become identical. This pat- 
tern repeats qualitatively the one studied in [2,8] for 
the J / ~ -  and xlt~-mesons. 

Notice, that for p0 production, the nuclear trans- 
parency is a very slow function of Q2. For instance, 
for the lead target Tpb(Q 2 = 0) ~ 0.1 and Teb(Q 2 = 
2 GeV 2) ~ 0.23. The reason for this slow onset of 
color transparency is that because of the large numer- 
ical factor on the r.h.s of Eq. (10), even at Q2 = 2 
GeV 2 the scanning radius is still large, rs N 0.8 fm. 
Furthermore, a more detailed analysis [3] has shown 
that nuclear shadowing is controlled by a still larger 
r N 5r a. Our numerical predictions [2,3] for the Q2_ 
dependence of incoherent and coherent p0 production 
on nuclei are in excellent agreement with the E665 
data. 

The above presented results refer to the production 
of the transversely polarized p0_ and p~-mesons. Ac- 
curate separation of production of the transverse and 
longitudinal cross section can easily be done in the 
high statistics CEBAF experiments. Here we only wish 
to mention the interesting possibility that for the lon- 
gitudinally polarized p'-mesons, the exact node effect 
can take place at a value of Q2 different from that for 
the transversely polarized p~-mesons, and polarization 
of the produced p~ can exhibit very rapid change with 
Q2. 

4. Discussion of  the results and conclusions 

We presented the strong case for the anomalous Q2_ 
and A-dependence of incoherent production of the p'- 
meson on nuclear targets. The origin of the effect is in 
the Q2-dependence of the scanning radius rs, which 
follows from the color transparency property in QCD. 
At the relatively small values of Q2 discussed in this 
paper, the scanning radius is rather large, of the order 
of the size of the p°-meson. For this reason, the p~ 
production amplitude proves to be extremely sensitive 
to the nodal structure of the p~ wave function. Specif- 
ically, the node effect leads to a strong suppression of 
the p~/pO ratio in real photoproduction, which is con- 
sistent with the meagre experimental information on 
the production of radially excited vector mesons. 

In the overcompensation scenario suggested by 
the lightcone generalization of the simple oscillator 

model, the most striking effect is the nonmonotonic 
A-dependence of the nuclear transparency shown in 
Fig. 2. The numerical predictions are very sensitive 
to the position of the node in the wave function of 
2S states. It is quite possible that the dip of nuclear 
transparency TA will take place for targets much heav- 
ier than in Figs. 2a, 2b, and the disappearance of the 
node effect and the onset of the more conventional 
nuclear shadowing TA < 1 for p~ production like in 
Fig. 2f only will take place at much larger Q2. Also, 
the possibility of the undercompensation at Q2 = 0 
can not be excluded. However, the strikingly different 
A-dependence of incoherent p0 and p~ production on 
nuclei persists in such a broad range of Q2 and scan- 
ning radius rs, that the existence of the phenomenon 
of anomalous A- and Q2-dependence of p'  produc- 
tion cannot be denied. It is a direct manifestation of 
the color-transparency driven Q2-dependence of the 
scanning radius and, as such, deserves a dedicated 
experimental study. 

For the sake of simplicity, here we concentrated on 
the high energy limit in which the theoretical treat- 
ment of nuclear production is greatly simplified. One 
can easily go beyond the frozen-size approximation 
employing the path-integral technique [2,8]. The de- 
tailed analysis performed in [ 2] shows that at energies 
of the virtual photon ,,~ ( 6 -  10) GeV, the subasymp- 
totic corrections do not change much the predictions 
for nuclear transparency. This is the energy range wich 
can be reached at CEBAF after the energy upgrade. 

A few more comments about the possibilities of CE- 
BAF are worthwhile. Because of the strong suppres- 
sion of the p, /po production ratio, the high luminosity 
of CEBAF is absolutely crucial for high-statistics ex- 
periments on p' production. Notice, that the most in- 
teresting anomalies in the A- and Q2-dependence take 
place near the minimum of the p~ production cross 
section. Furthermore, the observation of pt production 
requires detection of its 4-pion decays, and here one 
can take advantage of the CLAS multiparticle spec- 
trometer available at CEBAF. Finally, similar effects 
must persist also for to ~ and ~b t production, and also in 
the coherent production of the radially excited mesons. 
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Incoherent production of charmonia off nuclei as a good tool for the study of color transparency
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Within a light-cone QCD formalism incorporating color transparency, coherence length effects, and gluon
shadowing, we study electroproduction ofJ/C off nuclei. In contrast to light vector meson production when at
small and medium energies color transparency and coherence length effects are not easily separated, in char-
monium production color transparency effects dominate. We found rather large color transparency effects in
the range ofQ2<20 GeV2. They are stronger at low than at high energies and can be easily identified by the
planned future experiments. Model calculations explain well the data of the New Muon Collaboration on the
Sn/C ratio of nuclear transparencies as a function of the photon energy. We provide predictions for incoherent
and coherent charmonium production for future measurements.

DOI: 10.1103/PhysRevC.66.045204 PACS number~s!: 13.60.Le, 25.30.Rw, 25.20.Lj

I. INTRODUCTION: SPACE-TIME PATTERN
OF CHARMONIUM PRODUCTION

The dynamics of charmonium production has been a hot
topic evolved intensively during almost the last three de-
cades. Discovery ofJ/C in 1973 confirmed the idea of
charm quark and gave a basis for its further investigations,
affected also by further experiments carried out at new ac-
celerators using more powerful electronics. Later, at the be-
ginning of 1990’s the experiments with relativistic heavy-ion
collisions@1# stimulated the enhanced interest about charmo-
nium suppression as a possible indication of the quark-gluon
plasma formation. This fact became a motive power in in-
vestigation of space-time pattern of charmonium production
and opened new possibilities to analyze various consequent
phenomena.

One of the fundamental phenomena coming from QCD is
color transparency~CT!, studied intensively for almost the
last two decades. This phenomenon can be treated either in
the hadronic or in the quark basis. The former approach leads
to Gribov’s inelastic corrections@2#, the latter one manifests
itself as a result of color screening@3,4#. Although these two
approaches are complementary, the quark-gluon interpreta-
tion is more intuitive and straightforward. Colorless hadrons
can interact only because color is distributed inside them. If
the hadron transverse sizer tends to zero then the interaction
cross sections(r ) vanishes asr 2 @3#. As a result, the nuclear
medium is more transparent for smaller transverse size of the
hadron. Besides, this fact naturally explains the correlation
between the cross sections of hadrons and their sizes@5–7#.

Investigation of diffractive electroproduction of vector
mesons off nuclei is very effective and sensitive for the study
of CT. A photon of high virtualityQ2 is expected to produce
a pair with a small;1/Q2 transverse separation.1 Then CT

manifests itself as a vanishing absorption of the small sized
colorless q̄q wave packet during propagation through the
nucleus. Dynamical evolution of the small sizedq̄q pair to a
normal sized vector meson is controlled by the time scale,
called formation time. Due to the uncertainty principle, one
needs a time interval to resolve different levelsV ~the ground
state! or V8 ~the next excited state! in the final state. In the
rest frame of the nucleus this formation time is Lorentz di-
lated,

t f5
2n

mV8
22mV

2
, ~1!

where n is the photon energy. A rigorous quantum-
mechanical description of the pair evolution was suggested
in Ref. @8# and is based on the light-cone Green function
technique. A complementary description of the same process
in the hadronic basis is presented in Ref.@9#.

Another phenomenon known to cause nuclear suppression
is the effect of quantum coherence. It results from destructive
interference of the amplitudes for which the interaction takes
place on different bound nucleons. It reflects the distance
from the absorption point when the pointlike photon be-
comes the hadronlikeq̄q pair. This may also be interpreted
as a lifetime ofq̄q fluctuation providing the time scale which
controls the shadowing. Again, it can be estimated by relying
on the uncertainty principle and Lorentz time dilation as

tc5
2n

Q21mV
2

. ~2!

It is usually called coherence time, but we will also use the
term coherence length~CL!, since light-cone kinematics is
assumed,l c5tc ~similarly, for formation lengthl f5t f). CL
is related to the longitudinal momentum transferqc51/l c in
g* N→VN, which controls the interference of the produc-
tion amplitudes from different nucleons.

Exclusive production of vector mesons at high energies is
controlled by the small-xB j (xB j is the Bjorken variable!
physics, and gluon shadowing becomes an important phe-

1For production of light vector mesons (r0, F0) very asymmetric

pairs can be possible when eitherq or q̄ carries almost the whole

photon momentum. As a result, theq̄q pair can have a large sepa-
ration, see Sec. II and Eq.~17!. However, it is not so for the pro-

duction of charmonia, where mainly symmetricq̄q pairs~eitherq or

q̄ carries one half of the whole photon momentum! dominate.
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nomenon@10#. It was shown in Ref.@11# that for electropro-
duction of charmonia off nuclei the gluon shadowing starts
to be important at center-of-mass system~c.m.s.! energies
As>30–60 GeV, depending on nuclear target andQ2. Al-
though the gluon shadowing is quite small in the kinematic
range important for investigation of CT and discussed in the
present paper, we include it in all calculations.

In electroproduction of vector mesons off nuclei one
needs to disentangle CT~absorption! and CL~shadowing! as
the two sources of nuclear suppression. Detailed analysis of
the CT and CL effects in electroproduction of vector mesons
off nuclei showed@10# that one can easily identify the dif-
ference of the nuclear suppression corresponding to absorp-
tion and shadowing in two limiting cases which can be illus-
trated for the example of vector dominance model~VDM !.

~i! In the limit of small l c , shorter than the mean inter-
nucleon spacing;2 fm, only final state absorption matters.
The ratio of the quasielastic~or incoherent! g* A→VX and
g* N→VX cross sections, usually called nuclear transpar-
ency ~Tr!, reads@8#

TrA
incu l c!RA

[
sV

g* A

AsV
g* N

5
1

AE d2bE
2`

`

dzrA~b,z!

3expF2s in
VNE

z

`

dz8rA~b,z8!G
5

1

As in
VNE d2b$12exp@2s in

VNT~b!#%

5
s in

VA

As in
VN

. ~3!

Here z is the longitudinal coordinate andbW is the impact
parameter of the production point of vector meson. In Eq.~3!
rA(b,z) is the nuclear density ands in

VN is the inelasticV-N
cross section.

~ii ! In the limit of long l c the expression for nuclear trans-
parency takes a different form,

TrA
incu l c@RA

5E d2bTA~b!exp@2s in
VNTA~b!#, ~4!

where we assumesel
VN!s in

VN for the sake of simplicity.
TA(b) is the nuclear thickness function

TA~b!5E
2`

`

dzrA~b,z!. ~5!

The exact expression that interpolates between the two re-
gimes, Eqs.~3! and ~4!, can be found in Ref.@12#.

The problem of CT-CL separation arises especially in pro-
duction of light vector mesons (r0, F0) @10#. In this case the
coherence and formation lengths are comparable starting
from the photoproduction limit up toQ2;1 –2 GeV2. In
charmonium production, however, there is a strong inequal-
ity l f. l c independent ofQ2 and n. It leads to a different

scenario of CT-CL mixing compared to light vector meson
production. This fact gives a motivation for separate study of
J/C production presented in this paper using light-cone di-
pole approach generalized for the case of a finite coherence
length and developed in Ref.@10#. Another reason is sup-
ported by the recent paper@11#, where charmonium produc-
tion was calculated in the approximation of long coherence
length l c@RA using realistic charmonium wave functions
from Ref.@13# and corrections for finite values ofl c . It gives
very interesting possibility to compare the predictions of the
present paper with the results obtained from Ref.@11# for
enhancement of reliability of theoretical predictions as a re-
alistic basis for planned future electron-nucleus collisions.

The paper is organized as follows. In Sec. II we present a
short review of the light-cone~LC! approach to diffractive
electroproduction of vector mesons in the rest frame of the
nucleon target. Here we also present the following individual
ingredients contained in the production amplitude.

~i! The dipole cross section characterizing the universal
interaction cross section for a colorless quark-antiquark di-
pole and a nucleon.

~ii ! The LC wave function for a quark-antiquark fluctua-
tion of the virtual photon.

~iii ! The LC wave function of charmonia.
As the first test of the model we calculate in Sec. III the

cross section of elastic electroproduction ofJ/C off a
nucleon target. Model calculations reproduce both energy
andQ2 dependence remarkably well, including the absolute
normalization.

Section IV is devoted to incoherent production ofJ/C off
nuclei. Model predictions are compared with the data of the
New Muon Collaboration~NMC! on the Sn/C ratio of
nuclear transparencies as a function of the photon energy. We
find a different scenario of an interplay between coherence
and formation length effects from that occurring in light vec-
tor meson production. Because a variation ofl c with Q2 can
mimic CT at medium and low energies, one can map experi-
mental events inQ2 and n in such a way as to keepl c

5const. The LC dipole formalism predicts rather large effect
of CT in the range ofQ2<20 GeV2. This fact makes it fea-
sible to find a clear signal of CT effects also in exclusive
production ofJ/C in the planned future experiments.

Coherent production of vector mesons off nuclei leaving
the nucleus intact is studied in Sec. V. The detailed calcula-
tions show that the effect of CT on theQ2 dependence of
nuclear transparency atl c5const is weaker than in the case
of incoherent production and is difficult to be detected at low
energies since the cross section is small.

We show that the gluon shadowing suppresses electropro-
duction of charmonia at high energies. However, it is not
very significant in the energy range important for search of
CT effects. Despite this fact, we include the gluon shadowing
effects in all calculations for nuclear transparency.

The results of the paper are summarized and discussed in
Sec. VI. An optimistic prognosis for discovery of CT in elec-
troproduction of charmonia is made for the future experi-
ments.
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II. A SHORT REVIEW OF THE LIGHT-CONE DIPOLE
PHENOMENOLOGY FOR ELASTIC

ELECTROPRODUCTION OF CHARMONIA g* N\JÕC N

The LC dipole approach for elastic electroproduction
g* N→VN was already used in Ref.@13# to study the exclu-
sive photo- and electroproduction of charmonia and in Ref.
@10# for elastic virtual photoproduction of light vector me-
sonsr0 andF0. Therefore, we present only a short review of
this LC phenomenology with the main emphasis on elastic
electroproduction of charmonia. Here a diffractive process is
treated as elastic scattering of aq̄q fluctuation (c̄c fluctua-
tion for the case of charmonium production! of the incident
particle. The elastic amplitude is given by convolution of the
universal flavor independent dipole cross section for theq̄q
interaction with a nucleon,s q̄q , @3# and the initial and final
wave functions. For the exclusive photo- or electroproduc-
tion of charmoniag* N→J/C N the forward production am-
plitude is represented in the quantum-mechanical form,

Mg* N→J/CN~s,Q2!5^J/Cus q̄q
N

~rW,s!ug* &

5E
0

1

daE d2rCJ/C* ~rW,a!

3s q̄q~rW,s!C c̄c~rW,a,Q2!, ~6!

with the normalization

ds

dt U
t50

5
uMu2

16p
. ~7!

In order to calculate the photoproduction amplitude one
needs to know the following ingredients of Eq.~6!.

~i! The dipole cross sections q̄q(rW,s) which depends on
the q̄q transverse separationrW and the c.m. energy squareds.

~ii ! The LC wave function of thec̄c Fock component of
the photonC c̄c(rW,a,Q2), which also depends on the photon
virtuality Q2 and the relative sharea of the photon momen-
tum carried by the quark.

~iii ! The LC wave functionCJ/C(rW,a) of J/C.
Note that in the LC formalism the photon and meson

wave functions contain also higher Fock statesuq̄q&, uq̄qG&,
uq̄q2G&, etc. The effects of higher Fock states are implicitly
incorporated into the energy dependence of the dipole cross
sections q̄q(rW,s) as is given in Eq.~6!.

The dipole cross sections q̄q(rW,s) represents the interac-
tion of a q̄q dipole of transverse separationrW with a nucleon
@3#. It is a flavor independent universal function ofrW and
energy and allows to describe various high-energy processes
in an uniform way. It is known to vanish quadratically
s q̄q(r ,s)}r 2 as r→0 due to color screening~CT property!
and cannot be predicted reliably because of poorly known
higher-order perturbative QCD (pQCD) corrections and
nonperturbative effects. A detailed discussion about the di-
pole cross sections q̄q(rW,s) with an emphasis on the produc-
tion of light vector mesons is presented in Ref.@10#. In elec-

troproduction of charmonia the corresponding transverse
separations ofc̄c dipole reach the values<0.4 fm ~semiper-
turbative region!. It means that nonperturbative effects are
sufficiently smaller as compared to light vector mesons.
Similarly, the relativistic corrections are also small enough
and the nonrelativistic limita50.5 can be safely used with
rather high accuracy@8#.

There are two popular parametrizations ofs q̄q(rW,s). The
first one suggested in Ref.@14# reflects the fact that at small
separations the dipole cross section should be a function ofr
and xB j;1/(r 2s) to reproduce Bjorken scaling. It describes
well the data for deep-inelastic scattering~DIS! at smallxB j
and medium and highQ2. However, at smallQ2 it cannot be
correct since it predicts energy independent hadronic cross
sections. Besides,xB j is not anymore a proper variable at
small Q2 and should be replaced by energy. This defect is
removed by the second parametrization suggested in Ref.
@15#, which is similar to the one in Ref.@14#, but contains an
explicit energy dependence. It is valid down to the limit of
real photoproduction. Since we want to study CT effects
starting fromQ250, we choose the second parametrization,
which has the following form:

s q̄q~r ,s!5s0~s!@12e2r 2/r 0
2(s)#, ~8!

where

s0~s!5s tot
pp~s!F11

3

8

r 0
2~s!

^r ch
2 &

G mb ~9!

and

r 0~s!50.88S s

s0
D 20.14

fm. ~10!

Here ^r ch
2 &50.44 fm2 is the mean pion charge radius

squared;s051000 GeV2. The cross sections tot
pp(s) was fit-

ted to data in Refs.@16,17#,

s tot
pp~s!523.6S s

s0
D 0.079

mb. ~11!

The dipole cross section, Eqs.~8!–~11!, provides the imagi-
nary part of the elastic amplitude. It is known, however, that
the energy dependence of the total cross section generates
also a real part@18#,

s q̄q~r ,s!⇒S 12 i
p

2

]

] ln~s! Ds q̄q~r ,s!. ~12!

The energy dependence of the dipole cross section Eq.~8! is
rather steep at smallr, leading to a large real part which
should not be neglected. For instance, the photoproduction
amplitude of the processgN→J/CN rises }s0.2 and the
real-to-imaginary part ratio is over 30%.

Although the calculations of DIS using parametrization of
the dipole cross section, Eq.~8!, successfully describe the
data at smallxB j up toQ2'10 GeV2, we prefer this param-
etrization for study of charmonium electroproduction. The
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reason is that we want to study CT effects predominantly in
the range ofQ2<20 GeV2 and, in addition, parametrization
Eq. ~8! describes the transition toward photoproduction limit
better than the parametrization presented in Ref.@14#. Be-
sides, in the paper@13# it was shown by studying electropro-
duction of charmonia off nucleons that the difference be-
tween the predictions using both parametrizations@14# and
Eq. ~8! is rather small and can be taken as a measure of the
theoretical uncertainty.

The perturbative distribution amplitude~‘‘wave func-
tion’’ ! of the q̄q ( c̄c for J/C production! Fock component
of the photon has the following form for transversely~T! and
longitudinally ~L! polarized photons@19–21#:

C q̄q
T,L

~rW,a!5
ANCaem

2p
Zqx̄ÔT,LxK0~er !, ~13!

wherex and x̄ are the spinors of the quark and antiquark,
respectively;Zq is the quark charge,Zq5Zc52/3 for J/C
production; NC53 is the number of colors.K0(er ) is a
modified Bessel function with

e25a~12a!Q21mc
2 , ~14!

where mc51.5 GeV is mass of thec quark, anda is the
fraction of the LC momentum of the photon carried by the
quark. The operatorsÔT,L read

ÔT5mcsW •eW1 i ~122a!~sW •nW !~eW•¹Wr !1~sW 3eW !•¹Wr ,
~15!

ÔL52Qa~12a!~sW •nW !. ~16!

Here¹Wr acts on transverse coordinaterW; eW is the polarization
vector of the photon,nW is a unit vector parallel to the photon
momentum, andsW is the three vector of the Pauli spin ma-
trices.

In general, the transverseq̄q separation is controlled by
the distribution amplitude, Eq.~13!, with the mean value

^r &;
1

e
5

1

AQ2a~12a!1mq
2

. ~17!

For production of light vector meson very asymmetricq̄q
pairs with a or (12a)&mq

2/Q2 become possible. Conse-
quently, the mean transverse separation^r &;1/mq becomes
huge since one must use current quark masses within PQCD.
However, that is not the case in charmonium production be-
cause of a large quark massmc51.5 GeV. Therefore, we are
out of the problem how to include nonperturbative interac-
tion effects betweenc and c̄ because they are rather small.
Despite this fact, for completeness we include these nonper-
turbative interaction effects in all calculations to avoid small
but supplementary uncertainties in predictions. We take from
Ref. @15# the corresponding phenomenology including the
interaction betweenc and c̄ based on the light-cone Green
function approach.

The Green functionGq̄q(z1 ,rW1 ;z2 ,rW2) describes the
propagation of an interactingq̄q pair (c̄c pair for the case of
J/C production! between points with longitudinal coordi-
natesz1 andz2 and with initial and final separationsrW1 and
rW2. This Green function satisfies the two-dimensional Schro¨-
dinger equation,

i
d

dz2
Gq̄q~z1 ,rW1 ;z2 ,rW2!

5F e22D r 2

2na~12a!
1Vq̄q~z2 ,rW2 ,a!G

3Gq̄q~z1 ,rW1 ;z2 ,rW2!. ~18!

Here n is the photon energy. The LaplacianD r acts on the
coordinater.

The imaginary part of the LC potentialVq̄q(z2 ,rW2 ,a) in
Eq. ~18! is responsible for attenuation of theq̄q in the me-
dium, while the real part represents the interaction betweenq

and q̄. This potential is supposed to provide the correct LC
wave functions of vector mesons. For the sake of simplicity
we use the oscillator form of the potential,

ReVq̄q~z2 ,rW2 ,a!5
a4~a!rW2

2

2na~12a!
, ~19!

which leads to a Gaussianr dependence of the LC wave
function of the meson ground state. The shape of the func-
tion a(a) will be discussed below.

In this case, Eq.~18! has an analytical solution, the har-
monic oscillator Green function@22#,

Gq̄q~z1 ,rW1 ;z2 ,rW2!

5
a2~a!

2p i sin~vDz!
expH ia2~a!

sin~vDz!
@~r 1

21r 2
2!cos~vDz!

22rW1•rW2#J expF2
i e2Dz

2na~12a!G , ~20!

whereDz5z22z1 and

v5
a2~a!

na~12a!
. ~21!

The boundary condition is Gq̄q(z1 ,rW1 ;z2 ,rW2)uz25z1

5d2(rW12rW2).
The probability amplitude to find theq̄q fluctuation of a

photon at the pointz2 with separationrW is given by an inte-
gral over the pointz1, where theq̄q is created by the photon
with initial zero separation,
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C q̄q
T,L

~rW,a!5
iZqAaem

4pna~12a!
E

2`

z2
dz1

3~ x̄ÔT,Lx!Gq̄q~z1 ,rW1 ;z2 ,rW !ur 150 . ~22!

The operatorsÔT,L are defined in Eqs.~15! and ~16!. Here
they act on the coordinaterW1.

If we write the transverse part as

x̄ÔTx5x̄mcsW •eWx1x̄@ i ~122a!~sW •nW !eW

1~sW 3eW !#x•¹Wr

5E1FW •¹Wr , ~23!

then the distribution functions read

C q̄q
T

~rW,a!5ZqAaem@EF0~e,r ,l!1FW •FW 1~e,r ,l!#,
~24!

C q̄q
L

~rW,a!52ZqAaemQa~12a!x̄sW •nW xF0~e,r ,l!,
~25!

where

l5
2a2~a!

e2
. ~26!

The functionsF0,1 in Eqs.~24! and ~25! are defined as

F0~e,r ,l!5
1

4pE0

`

dt
l

sh~lt !
expF2

le2r 2

4
cth~lt !2t G ,

~27!

FW 1~e,r ,l!5
e2rW

8pE
0

`

dtF l

sh~lt !G
2

expF2
le2r 2

4
cth~lt !2t G ,

~28!

where sh(x) and cth(x) is the hyperbolic sine and hyperbolic
cotangent, respectively. Note that theq̄-q interaction enters
Eqs.~24! and~25! via the parameterl defined in Eq.~26!. In
the limit of vanishing interactionl→0 ~i.e., Q2→`, a is
fixed,a5” 0 or 1) Eqs.~24! and~25! produce the perturbative
expressions of Eq.~13!. As mentioned above, for charmo-
nium production nonperturbative interaction effects are quite
weak. Consequently, the parameterl ~26! is rather small due
to a large mass of thec quark.

With the choicea2(a)}a(12a) the end-point behavior
of the mean square interquark separation^r 2&}1/a(12a)
contradicts the idea of confinement. Following Ref.@15# we
fix this problem via a simple modification of the LC
potential,

a2~a!5a0
214a1

2a~12a!. ~29!

The parametersa0 anda1 were adjusted in Ref.@15# to the
data on total photoabsorption cross section@23,24#, diffrac-
tive photon dissociation, and shadowing in nuclear photoab-

sorption reaction. The results of our calculations vary within
1% only whena0 anda1 satisfy the relation

a0
25v1.15~0.112!2 GeV2,

a1
25~12v !1.15~0.165!2 GeV2, ~30!

wherev takes any value 0<v<1. In the view of this insen-
sitivity of the observables we fix the parameters atv51/2.
We checked that this choice does not affect our results be-
yond a few percent uncertainty.

The last ingredient in elastic production amplitude~6! is
the charmonium wave function. We use a popular prescrip-
tion @25# applying the Lorentz boost to the rest frame wave
function assumed to be Gaussian, which leads to radial parts
of transversely and longitudinally polarized mesons in the
form

FJ/C
T,L ~rW,a!5CJ/C

T,L a~12a! f ~a!expF2
a~12a!r 2

2R2 G
~31!

with a normalization defined below, and

f ~a!5expF2
mc

2R2

2a~12a!
G ~32!

with the parameters from Ref.@26#, R50.183 fm andmc
51.5 GeV. A detailed analysis of various problems in this
relativization procedure@27# leads to the same form as Eq.
~31!.

We assume that the distribution amplitudes ofc̄c fluctua-
tions for J/C and for the photon have a similar structure
@26#. Then in analogy to Eqs.~24! and ~25!,

CJ/C
T ~rW,a!5~E1FW •¹Wr !FJ/C

T ~rW,a!, ~33!

CJ/C
L ~rW,a!52mJ/Ca~12a!~x̄sW •nW x!FJ/C

L ~rW,a!.
~34!

Correspondingly, the normalization conditions for the
transverse and longitudinal charmonium wave functions read

NCE d2r E da$mc
2uFJ/C

T ~rW,a!u2

1@a21~12a!2#u] rFJ/C
T ~rW,a!u2%

51, ~35!

4NCE d2r E da a2~12a!2mJ/C
2 uFJ/C

L ~rW,a!u251.

~36!

III. ELECTROPRODUCTION OF JÕC ON A NUCLEON,
COMPARISON WITH DATA

In this section we verify first the LC approach by com-
paring with data for nucleon target. The forward production
amplitudeg* N→J/CN for transverse and longitudinal pho-
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tons and charmonium is calculated using the nonperturbative
photon, Eqs.~24! and ~25!, and vector meson, Eqs.~33!,
~34!, wave functions and has the following form:

Mg* N→J/CN
T

~s,Q2!u t50

5NCZcA2 aemE d2rs q̄q~rW,s!

3E
0

1

da$mc
2F0~e,rW,l!FJ/C

T ~rW,a!

2@a21~12a!2#FW 1~e,rW,l!•¹WrFJ/C
T ~rW,a!%,

~37!

Mg* N→J/CN
L

~s,Q2!u t50

54NCZcA2 aemmJ/CQE d2rs q̄q~rW,s!E
0

1

da a2

3~12a!2F0~e,rW,l!FJ/C
L ~rW,a!. ~38!

These amplitudes are normalized asuM T,Lu2
516pdsN

T,L/dtu t50. The real part of the amplitude is in-
cluded according to the prescription described in the preced-
ing section. We calculate the cross sectionss5sT1e8sL

assuming that the photon polarization ise851.
Now we can check the absolute value of the production

cross section by comparing with data for elastic charmonium
electroproduction g* p→J/Cp. Unfortunately, data are
available only for the cross section integrated overt,

sT,L~g* N→J/C N!5
uM T,Lu2

16pBJ/C
, ~39!

where BJ/C is the slope parameter in reactiong* N
→J/CN. We use the experimental value@28# BJ/C
54.7 GeV22.

Our predictions are plotted in Fig. 1, together with the
data on theQ21mJ/C

2 dependence of the cross section from
H1 @29# and ZEUS@30#.

The second test of our approach is a description of the
realJ/C photoproduction. As we discussed in the preceding

section, we include for completeness into calculations the

nonperturbative interaction effects betweenc and c̄ although
they are rather small. Comparison of the model with data
@31,32,28,33# for the energy dependence of the cross section
of real J/C photoproduction is presented in Fig. 2.

The normalization of the cross section and its energy and
Q2 dependence are remarkably well reproduced in Figs. 1
and 2. This is an important achievement since the absolute
normalization is usually much more difficult to reproduce the
production cross sections than nuclear effects. For instance,
the similar, but simplified calculations in Ref.@8# underesti-
mate theJ/C photoproduction cross section on protons by
an order of magnitude.

As a cross check for the choice of theJ/C wave function
in Eqs. ~31! and ~32! we also calculated the totalJ/C
nucleon cross section, which was already estimated in Ref.
@13# using the charmonium wave functions calculated with

several realisticq̄q potentials. TheJ/C nucleon total cross
section has the form

s tot
J/C2N5NCE d2r E da$mc

2uFJ/C
T ~rW,a!u2

1@a21~12a!2#u] rFJ/C
T ~rW,a!u2%s q̄q~rW,s!.

~40!

We calculateds tot
J/C2N with the charmonium wave function

in the form ~31! ~corresponding to quadraticq̄-q potential!
with the parameters described in the preceding section. For
the dipole cross section we adopt the parametrization~8!
which is designed to describe low-Q2 data. Then, atAs
510 GeV we obtains tot

J/C2N54.2 mb, which is not in con-
tradiction withs tot

J/C2N53.660.1 mb evaluated in Ref.@13#

using more realisticq̄-q potentials and/or charmonium wave
functions.

FIG. 1. Q21mJ/C
2 dependence of the integrated cross section for

the reactionsg* p→J/Cp. The model calculations are compared
with H1 @29# and ZEUS@30# data at energyW590 GeV.

FIG. 2. Energy dependence of the real photoproduction cross
section on a nucleon,gp→J/Cp. Our results are compared with
data from the fixed target E401@31#, E516@32#, and collider HERA
H1 @28# and ZEUS@33# experiments.
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IV. INCOHERENT PRODUCTION
OF CHARMONIA OFF NUCLEI

A. The LC Green function formalism

In this section we present a short review of the LC Green
function formalism for incoherent production of an arbitrary
vector meson. For the case of charmonium production one
should replaceV→J/C andq̄q→ c̄c. In general, the diffrac-
tive incoherent~quasielastic! production of vector mesons
off nuclei, g* A→VX, is associated with a breakup of the
nucleus, but without production of new particles. In other
words, one sums over all final states of the target nucleus
except those which contain particle~pion! creation. The ob-
servable usually studied experimentally is nuclear transpar-
ency defined as

TrA
inc5

sg* A→VX
inc

Asg* N→VN

. ~41!

The t slope of the differential quasielastic cross section is the
same as on a nucleon target. Therefore, instead of integrated
cross sections one can also use nuclear transparency ex-
pressed via the forward differential cross sections Eq.~7!,

TrA
inc5

1

AUMg* A→VX~s,Q2!

Mg* N→VN~s,Q2!
U2

. ~42!

In the LC Green function approach@10# the physical pho-
ton ug* & is decomposed into different Fock states, namely,
the bare photonug* &0 , uq̄q&, uq̄qG&, etc. As we mentioned
above, the higher Fock states containing gluons describe the
energy dependence of the photoproduction reaction on a
nucleon. Besides, those Fock components also lead to gluon
shadowing as far as nuclear effects are concerned. However,
these fluctuations are heavier and have a shorter coherence
time ~lifetime! than the lowestuq̄q& state. Therefore, at me-
dium energies onlyuq̄q& fluctuations of the photon matter.
Consequently, gluon shadowing related to the higher Fock
states will be dominated at high energies. Detailed descrip-
tion and calculation of gluon shadowing for the case of vec-
tor meson production off nuclei is presented in Refs.@10,11#.

Although the gluon shadowing effects are rather small in the
kinematic range important for study of CT effects in elastic
and quasielastic charmonium production off nuclei, we in-
clude them in all calculations.

Propagation of an interactingq̄q pair in a nuclear medium
is also described by the Green function satisfying the evolu-
tion Eq.~18!. However, the potential in this case acquires an
imaginary part which represents absorption in the medium,

Im Vq̄q~z2 ,rW,a!52
s q̄q~rW,s!

2
rA~b,z2!, ~43!

whererA(b,z2) is the nuclear density function defined at the
point with longitudinal coordinatez2 and impact parameter
bW . The evolution equation ~18! with the potential
Vq̄q(z2 ,rW2 ,a) containing this imaginary part was used in
Refs.@34,35#, and nuclear shadowing in deep-inelastic scat-
tering was calculated in good agreement with data.

The analytical solution of Eq.~20! is only known for the
harmonic oscillator potentialV(r )}r 2. To keep the calcula-
tions reasonably simple we are forced to use the dipole ap-
proximation,

s q̄q~r ,s!5C~s!r 2, ~44!

which allows to obtain the Green function in an analytical
form.

The energy dependent factorC(s) in Eq. ~44! is adjusted
by demanding that calculations employing the approximation
Eq. ~44! reproduce correctly the results based on the realistic
cross section Eq.~8! in the limit l c@RA ~the so called ‘‘fro-
zen’’ approximation! when the Green function takes the
simple form,

Gq̄q~z1 ,rW1 ;z2 ,rW2!

⇒d~rW12rW2!expF2
1

2
s q̄q~r 1!E

z1

z2
dzrA~b,z!G , ~45!

where the dependence of the Green function on impact pa-
rameter is dropped. Thus, for incoherent production of vector
mesons, the factorC(s) is fixed by the relation

E d2bTA~b!U E d2rr 2expF2
1

2
C~s!r 2TA~b!G E daCV*

T,L~rW,a!C q̄q
T,L

~rW,a!U2

U E d2r r 2E daCV*
T,L~rW,a!C q̄q

T,L
~rW,a!U2

5

E d2bTA~b!U E d2r s q̄q~r ,s!expF2
1

2
s q̄q~r ,s!TA~b!G E daCV*

T,L~rW,a!C q̄q
T,L

~rW,a!U2

U E d2r s q̄q~r ,s!E da CV*
T,L~rW,a!C q̄q

T,L
~rW,a!U2 ~46!
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To take advantage of the analytical form of the Green
function which is known only for the LC potential Eq.~43!
with a constant nuclear density, we use the approximation
rA(b,z)5r0Q(RA

22b22z2). Therefore we have to use this
form for Eq. ~46! as well. The value of the mean nuclear
densityr0 was determined using the relation

E d2b@12exp~2s0r0ARA
22b2!#

5E d2bF12expS 2
s0

2
T~b! D G , ~47!

where the nuclear thickness functionTA(b) is calculated
with the realistic Woods-Saxon form of the nuclear density.
The value ofr0 turns out to be practically independent of the
cross sections0 in the range from 1 to 50 mb.

With the potential Eqs.~43! and ~44! the solution of Eq.
~18! has the same form as Eq.~20!, except that one should
replacev⇒V anda2(a)⇒b(a), where

V5
b~a!

na~12a!
5

Aa4~a!2 irA~b,z!na~12a!C~s!

na~12a!
.

~48!

As we discussed in Ref.@10# the value ofl c can distin-
guish different regimes of vector meson production.

~i! The CL is much shorter than the mean nucleon spacing
in a nucleus (l c→0). In this caseG(z2 ,rW2 ;z1 ,rW1)→d(z2
2z1). Correspondingly, the formation time of the meson
wave function is very short as well as given in Eq.~1!. For
light vector mesonsl f; l c and since formation and coherence
lengths are proportional to photon energy both must be short.
Consequently, nuclear transparency is given by the simple
formula Eq.~3! corresponding to the Glauber approximation.

~ii ! In production of charmonia and other heavy flavor
quarkonii there is a strong inequalityl c, l f and the interme-
diate casel c→0, but l f;RA can be realized. Then the for-
mation of the meson wave function is described by the Green
function and the numerator of the nuclear transparency ratio
Eq. ~42! has the form@8#,

uMg* A→VX~s,Q2!u l c→0;l f;RA

2

5E d2bE
2`

`

dzrA~b,z!uF1~b,z!u2, ~49!

where

F1~b,z!5E
0

1

daE d2r 1d2r 2CV* ~rW2 ,a!G~z8,rW2 ;z,rW1!

3s q̄q~r 1 ,s!C q̄q~rW1 ,a!uz8→` . ~50!

~iii ! In the high-energy limitl c@RA ~in fact, it is more
correct to compare with the mean free path of theq̄q in a
nuclear medium if the latter is shorter than the nuclear ra-
dius!. In this caseG(z2 ,rW2 ;z1 ,rW1)→d(rW22rW1), i.e., all fluc-
tuations of the transverseq̄q separation are ‘‘frozen’’ by Lor-
entz time dilation. Then, the numerator on the right-hand
side of Eq.~42! takes the form@8#,

uMg* A→VX~s,Q2!u l c@RA

2

5E d2b TA~b!U E d2r E
0

1

daCV* ~rW,a!s q̄q~r ,s!

3expF2
1

2
s q̄q~r ,s!TA~b!GC q̄q~rW,a,Q2!U2

. ~51!

In this case theq̄q attenuates with a constant absorption
cross section like in the Glauber model, except that the
whole exponential is averaged rather than just the cross sec-
tion in the exponent. The difference between the results of
the two prescriptions are the well known inelastic corrections
of Gribov @3#.

~iv! This regime reflects the general case when there is no
restrictions for eitherl c or l f . The corresponding theoretical
tool has been developed for the first time only recently in
Ref. @10# and applied to electroproduction of light vector
mesons at medium and high energies. Even within the VDM
the Glauber model expression interpolating between the lim-
iting cases of low@~i!, ~ii !# and high@~iii !# energies has been
derived only recently@12# as well. In this general case the
incoherent photoproduction amplitude is represented as a
sum of two terms@36#,

uMg* A→VX~s,Q2!u2

5E d2bE
2`

`

dzrA~b,z!uF1~b,z!2F2~b,z!u2.

~52!

The first termF1(b,z) introduced above in Eq.~50! alone
would correspond to the shortl c limit ~ii !. The second term
F2(b,z) in Eq. ~52! corresponds to the situation when the
incident photon produces aq̄q pair diffractively and coher-
ently at the pointz1 prior to incoherent quasielastic scatter-
ing at pointz. The LC Green functions describe the evolution
of the q̄q over the distance fromz1 to z and further on, up to
the formation of the meson wave function. Correspondingly,
this term has the form,

F2~b,z!5
1

2E2`

z

dz1rA~b,z1!E
0

1

daE d2r 1d2r 2d2r

3CV* ~rW2 ,a!G~z8→`,rW2 ;z,rW !s q̄q~rW,s!

3G~z,rW;z1 ,rW1!s q̄q~rW1 ,s!C q̄q~rW1 ,a!. ~53!

Equation~52! correctly reproduces the limits~i!–~iii !. At l c
→0 the second termF2(b,z) vanishes because of strong
oscillations, and Eq.~52! reproduces the Glauber expression
Eq. ~3!. At l c@RA the phase shift in the Green functions can
be neglected and they acquire the simple form
G(z2 ,rW2 ;z1 ,rW1)→d(rW22rW1). In this case the integration
over longitudinal coordinates in Eqs.~50! and ~53! can be
performed explicitly and the asymptotic expression Eq.~51!
is recovered as well.
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B. Comparison with data for incoherent production of JÕC

Exclusive incoherent electroproduction of vector mesons
off nuclei has been suggested in Ref.@37# to be very conve-
nient for investigation of CT. Increasing the photon virtuality

Q2, one squeezes the producedq̄q wave packet. Such a
small colorless system propagates through the nucleus with
little attenuation, provided that the energy is sufficiently high

( l f@RA) so the fluctuations of theq̄q separation are frozen
during propagation. Consequently, a rise of nuclear transpar-
ency TrA

inc(Q2) with Q2 should give a signal for CT. Indeed,
such a rise was observed in the E665 experiment@38# at
Fermilab for exclusive production ofr0 mesons off nuclei,
what has been claimed as a manifestation of CT.

However, the effect of coherence length@39,12# leads also
to a rise of TrA

inc(Q2) with Q2 and so can imitate CT effects.
This happens when the coherence length varies from long to
short @see Eq.~2!# compared to the nuclear size, and the
length of the path in nuclear matter becomes shorter. Conse-
quently, the vector meson~or q̄q) attenuates less in nuclear
medium. This happens whenQ2 increases at fixedn. There-
fore one should carefully disentangle these two phenomena.

Unfortunately, the data on charmonium electroproduction
off nuclei are very scanty so far. There are only data from the
NMC experiment@40# concerning energy dependence of the
ratio of nuclear transparencies TrSn

inc and TrC
inc for incoherent

production ofJ/C at Q250. The corresponding photon en-
ergy varies from 60 to 210 GeV. It allows to study the tran-
sition from medium long to long coherence length, which
varies from 2.4 to 8.5 fm. For longl c*8.5 fm the ‘‘frozen’’
approximation can be used with high accuracy. In this case,
nuclear transparency TrA

inc of incoherent~quasielastic! J/C
production can be calculated using Eq.~52! and the simpli-
fied ‘‘frozen’’ approximation Eqs.~45!, ~51!. For medium
long coherence length one cannot use the ‘‘frozen’’ approxi-
mation and fluctuations of the size of theq̄q pair become
important. Because of a strong inequalityl c, l f for charmo-
nium production CT effects are expected to be dominant at
small and moderate energies. Consequently, they should lead
to a rise with energy of TrA

inc . Such a scenario is depicted in
Fig. 3 by solid and dashed curves. Dashed curve show our
results using the LC Green function approach in the limit of
short coherence lengthl c→0, Eq. ~49!. The solid curve in-
cludes in addition also CL effects. Thus, the effect of coher-
ence length manifest itself as a separation between the solid
and dashed curves. Energy rise of the ratio TrSn

inc/TrC
inc at

small and medium energy is a net manifestation of CT. It
follows from the rise of formation time, see Eq.~1!. At larger
energies when CL effects also become important the
TrSn

inc/TrC
inc ratio starts to fall down gradually.2 Unfortunately,

the NMC data have quite large error bars and therefore give
only an indication for such a behavior. More accurate data

are needed for exploratory study of CT and CL effects. Char-
monium real photoproduction off nuclei at small and large
energies is very sensitive for investigation of CT and CL
effect separately. However, it is not so for real photoproduc-
tion of light vector mesons when coherence and formation
lengths are comparable and CT-CL mixing exists already at
small energies.

Problem of separation of CT and CL effects was discussed
in details in Ref.@10# with the main emphasis to light vector
meson production wherel c* l f at Q2&1 –2 GeV2. In this
paper we present the results for charmonium production,
where a strong inequalityl c, l f in all discussed kinematic
regions leads to a different scenario of CT-CL mixing com-
pared to production of light vector mesons. Consequently, at
fixed Q2 and at small and medium energies the problem of
CT-CL separation is not so acute. Besides, there is a prescrip-
tion how to eliminate the effect of CL from the data on the
Q2 dependence of nuclear transparency@9#. One should sim-
ply bin the data in a way that keepsl c5const. It means that
one should vary simultaneouslyn and Q2 maintaining the
CL Eq. ~2! constant,

n5
1

2
l c~Q21mJ/C

2 !. ~54!

In this case the Glauber model predicts aQ2 indepen-
dent nuclear transparency, and any rise withQ2 would signal
CT @9#.

The LC Green function technique incorporates both the
effects of coherence and formation. We performed calcula-
tions of TrA

inc(Q2) at fixed l c starting from different minimal
values of n, which correspond to real photoproduction
in Eq. ~54!,

nmin5
1

2
l cmJ/C

2 . ~55!

2In energy dependence of nuclear transparency at fixedQ2, the
effect of the coherence follows from variation of the coherence
length from small to large values compared to the nuclear size, see
Eq. ~2!.

FIG. 3. Energy dependence of the ratio of nuclear transparencies
TrSn and TrC vs experimental points taken from the NMC experi-
ment @40#. Solid and dashed curves show our results using the LC
Green function approach in general case with no restriction for
eitherl c or l f , Eq. ~52!, and in the limit ofl c→0, Eq.~49!, respec-
tively.
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The results for incoherent production ofJ/C at nmin

524.3, 121.7, and 487 GeV (l c51,5 and 20 fm) are pre-
sented in Fig. 4 for beryllium, iron, and lead. We use the
nonperturbative LC wave function of the photon with the
parameters of the LC potentiala0,1 fixed in accordance with
Eq. ~30! at v51/2. We use quark massmc51.5 GeV.

Although the predicted variation of nuclear transparency
with Q2 at fixed l c is less than for light vector meson pro-
duction @10#, it is still sufficiently significant to be investi-
gated experimentally even in the range ofQ2&20 GeV2. CT
effects ~the rise withQ2 of nuclear transparency! are more
pronounced at low than at high energies and can be easily
identified by the planned future experiments.

We also calculated the energy dependence of nuclear
transparency at fixedQ2. The results for beryllium, iron, and
lead are shown in Fig. 5 for different values ofQ2. The
interesting feature is the presence of a maximum of transpar-
ency at some energy, which is much more evident than in
production of light vector mesons@10#. At small and moder-

ate energies a strong rise of TrA
inc with energy, especially for

the lead target, is a manifestation of net CT effects resulting
from a strong inequalityl c, l f . The existence of maxima of
TrA

inc results from the interplay of coherence and formation
effects. Indeed, the formation length rises with energy lead-
ing to an increasing nuclear transparency. At some energy,
however, the effect of CL is switched on leading to a growth
of the path length of theq̄q in the nucleus, i.e., to a suppres-
sion of nuclear transparency. This also explains the unusual
ordering of curves at small and moderateQ2 calculated for
different values ofl c as is depicted in Fig. 4.

V. COHERENT PRODUCTION OF JÕC

First of all we present a short introduction to coherent
production of vector mesons. One should replaceV→J/C
and q̄q→ c̄c when coherent production of charmonia is

FIG. 4. Q2 dependence of the nuclear transparency TrA
inc for

exclusive electroproduction ofJ/C on nuclear targets9Be, 56Fe,
and 207Pb ~from top to bottom!. The CL is fixed atl c51, 5, and
20 fm.

FIG. 5. Nuclear transparency for incoherent electroproduction
g* A→J/C X as a function of energy atQ250, 5, 20, and
100 GeV2 for beryllium, iron, and lead. The solid curves and
dashed curves for lead correspond to calculations with and without
gluon shadowing, respectively.
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treated. In general, in coherent~elastic! electroproduction of
a vector meson the target nucleus remains intact, so all the
vector mesons produced at different longitudinal coordinates
and impact parameters add up coherently. This condition
considerably simplifies the expressions for the production
cross sections. The integrated cross section has the form

sA
coh[sg* A→VA

coh
5E d2qU E d2b eiq•W bWMg* A→VA

coh
~b!U2

5E d2buMg* A→VA
coh

~b!u2, ~56!

where

Mg* A→VA
coh

~b!5E
2`

`

dzrA~b,z!F1~b,z!, ~57!

with the functionF1(b,z) defined in Eq.~50!.
One should not use Eq.~42! for nuclear transparency any-

more since thet-slopes of the differential cross sections for
nucleon and nuclear targets are different and do not cancel in
the ratio. Therefore, the nuclear transparency also includes
the slope parameterBV for the processg* N→VN,

TrA
coh5

sA
coh

AsN
5

16pBVsA
coh

AuMg* N→VN~s,Q2!u2
. ~58!

The energy dependent factorC(s) in dipole cross section
approximation Eq.~44! is adjusted in an analogical way as
for incoherent charmonium production described in the pre-
ceding section. However, in contrast to Eq.~46! the factor
C(s) is fixed now by the following relation:

E d2bU E d2r E daCV*
T,L~rW,a!C q̄q

T,L
~rW,a!H 12expF2

1

2
C~s!r 2TA~b!G J U2

U E d2r E daCV*
T,L~rW,a!C~s!r 2C q̄q

T,L
~rW,a!U2

5

E d2bU E d2r E daCV*
T,L~rW,a!C q̄q

T,L
~rW,a!H 12expF2

1

2
s q̄q~r ,s!TA~b!G J U2

U E d2r E daCV*
T,L~rW,a!s q̄q~r ,s!C q̄q

T,L
~rW,a!U2 . ~59!

A. Predictions for coherent production of JÕC

Unfortunately, there are no data yet on coherent electro-
production of charmonia. Therefore, we present only predic-
tions that can be later verified and tested in the future
planned experiments.

One can eliminate the effects of CL and single out the net
CT effect in a way similar to what was suggested for inco-
herent reactions by selecting experimental events withl c

5const. We calculated nuclear transparency for the coherent
reactiong* A→J/CA at fixed values ofl c . The results for
l c51, 5, and 20 fm are depicted in Fig. 6 for several nuclei.
We performed calculations of TrA

coh with the slope BV

5BJ/C54.7 GeV22. The effect of a rise of TrA
coh is not suf-

ficiently large to be observable in the range ofQ2

<20 GeV2. A wider range ofQ2<100 GeV2 and heavy nu-
clei gives higher chances for experimental investigation of
CT. However, it encounters the problem of low yields
at highQ2.

Note that in contrast to incoherent production where
nuclear transparency is expected to saturate as TrA

inc(Q2)
→1 at largeQ2, for the coherent process nuclear transpar-
ency reaches a higher limit, TrA

coh(Q2)→A1/3.
We also calculated nuclear transparency as function of

energy at fixedQ2. The results forJ/C produced coherently
off beryllium, iron, and lead are depicted in Fig. 7 atQ2

50, 5, 20, and 100 GeV2. TrA
coh is very small at low energy,

which of course does not mean that nuclear matter is not
transparent, but the nuclear coherent cross section is sup-
pressed by the nuclear form factor. Indeed, the longitudinal
momentum transfer which is equal to the inverse CL, is large
when the CL is short. However, at high energyl c@RA and
nuclear transparency nearly saturates~it decreases withn
only due to the rising dipole cross section!. The saturation
level is higher at largerQ2, which is a manifestation of CT.

Note that in all calculations the effects of gluon shadow-
ing are included in a way analogical to that described in the
recent papers@10,11#. They are much smaller than in produc-
tion of light vector mesons. For illustration, they are depicted
in Figs. 5 and 7 for the lead target as a difference between
solid and dashed lines at various values ofQ2. In the photo-
production limit Q250 the onset of gluon shadowing be-
comes important at rather high photon energyn
.1000 GeV for incoherent andn.500 GeV for coherent
production. This corresponds to the claim made in Ref.@15#
that the onset of gluon shadowing requires smallerxB j than
the onset of quark shadowing. The reason is that the fluctua-
tions containing gluons are, in general, heavier than theq̄q
and have a shorter CL.

Although gluon shadowing is included in all calculations,
it is small enough in the kinematic range important for in-
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vestigation of CT. Consequently, it does not affect the main
achievements and conclusions important in the process of
searching for CT effects in charmonium coherent and inco-
herent production off nuclei.

VI. SUMMARY AND CONCLUSIONS

In the present paper we focused the main emphasis on the
production of charmonia due to advantages as compared
with light vector meson production@10#. Electroproduction
of charmonia off nuclei is a very convenient way to study the
interplay between coherence~shadowing! and formation
~color transparency! effects. A strong inequalityl c, l f in all
kinematic region ofn andQ2 leads to a different scenario of
mixing of CT and CL effects as compared to light vector
mesons wherel c* l f at Q2&1 –2 GeV2. Consequently, at
small and moderate energies a problem of CT-CL separation
is not so acute. Besides, due to quite a large mass of thec
quark the relativistic corrections and nonperturbative effects
are sufficiently small. They are negligible investigating the
production of still heavier vector mesons~bottonium, topo-
nium!. However, one encounters the problem of very low

yields as well as very small CT and CL effects~due to very

large masses ofq̄q fluctuactions and vector mesons! to be
measured experimentally. Therefore production of charmonia
represents some compromise, because the above mentioned
theoretical uncertainties~typical for light vector mesons! and
very small production rates~typical for still heavier vector
mesons! are eliminated to a certain extent keeping suffi-
ciently large CT and CL effects. This fact supports an en-
hanced interest to study electroproduction of charmonia off
nuclei separately. We used from Ref.@10# a rigorous
quantum-mechanical approach based on the light-cone QCD
Green function formalism which naturally incorporates the
interference effects of CT and CL. Our main results and ob-
servations are the following.

Within the suggested approach taken from Ref.@10#, in-
terpolating between the previously known low- and high-
energy limits we studied for the first time CT effects in co-

FIG. 6. The same as in Fig. 4, but for coherent production of
J/C, g* A→J/C A. FIG. 7. Nuclear transparency for coherent electroproduction

g* A→J/C A as a function of energy atQ250, 5, 20, and
100 GeV2 for beryllium, iron, and lead. The solid curves and
dashed curves for lead correspond to calculations with and without
gluon shadowing, respectively.
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herent and incoherent electroproduction of charmonia off
nuclei.

As the first test we compare the model predictions with
available data from the NMC experiment on energy depen-
dence of the nuclear transparency ratio TrSn

inc/TrC
inc for inco-

herent production ofJ/C at Q250. We found a good agree-
ment with the data, which confirms the dominance of CT
effects at small and medium and CL effects at medium large
and large energies.

The onset of coherence effects~shadowing! can mimic the
expected signal of CT in incoherent electroproduction of
charmonia at medium large and large energies. In order to
single out the formation effect the data must be taken at such
energy andQ2 which keepl c5const. Then the observation
of a rise withQ2 of nuclear transparency for fixedl c would
give a signal of color transparency. Predictions of TrA

inc(Q2)
as a function ofQ2 at different fixedl c show rather large CT
effects in incoherent production of charmonia. Although the
variation of nuclear transparency withQ2 at fixed l c is pre-
dicted to be less than for the production of light vector me-
sons@10#, it is still sufficiently significant to be investigated
experimentally even in the range ofQ2&20 GeV2. CT ef-
fects ~the rise withQ2 of nuclear transparency! are more
pronounced at low than at high energies and can be easily
identified by the planned future experiments.

The effects of CT in coherent production of charmonia are
found to be less pronounced, similarly as in production of
light vector mesons@10#. A wider rangeQ2<100 GeV2 and
heavy nuclei give higher chances for experimental investiga-
tion of CT. However, it faces the problem of low yields at
high Q2.

The effects of gluon shadowing were shown to be impor-
tant only at much higher energies than in production of light

vector mesons due to large mass ofc̄c fluctuation. Nuclear
suppression of gluons was calculated within the same LC
approach and included in predictions. It was manifested that
these corrections are quite small at medium energies which
are dominant in the process of searching for CT effects.

Finally, one can compare the predictions for incoherent
and coherent charmonium production off lead target~see
Figs. 4, 5, 6, and 7! obtained within rigorous quantum-
mechanical approach based on the light-cone QCD Green
function formalism~incorporating naturally CT and CL ef-
fects! with the results of Ref.@11# evaluated in the approxi-
mation of long coherence lengthl c@RA ~without CT effects!
allow to employ realistic light-cone wave functions of char-
monia from Ref.@13# and to make corrections for finite val-
ues ofl c . We find a nice quantitative agreement at moderate
and high energies and at low and medium values ofQ2. This
fact confirms justification to use that high-energy approxima-
tion @11# for charmonium electroproduction off nuclei in the
kinematic region where CL effects dominate. Besides, using
advantages from both approaches, one can perform in the
future fully realistic calculations using known LC dipole ap-
proach based on Green function formalism employing a re-
alistic dipole cross section and using realistic LC wave func-
tions of charmonia from@13#.

In conclusion, the predicted rather large effects of CT in
incoherent electroproduction of charmonia off nuclei open
further possibilities to search for CT with medium energy
electrons and can be tested in future experiments.
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Production of polarized vector mesons off nuclei
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2Joint Institute for Nuclear Research, Dubna, RU-141980 Moscow Region, Russia
3Institute of Experimental Physics SAS, Watsonova 47, SK-04001 Kosice, Slovakia

(Received 13 March 2007; published 20 August 2007)

Using the light-cone QCD dipole formalism we investigate manifestations of color transparency (CT) and
coherence length (CL) effects in electroproduction of longitudinally (L) and transversally (T ) polarized vector
mesons. Motivated by forthcoming data from the HERMES experiment we predict both the A and Q2 dependence
of the L/T ratios for ρ0 mesons produced coherently and incoherently off nuclei. For an incoherent reaction the
CT and CL effects add up and result in a monotonic A dependence of the L/T ratio at different values of Q2. In
contrast, for a coherent process the contraction of the CL with Q2 causes an effect opposite to that of CT and we
expect quite a nontrivial A dependence.

DOI: 10.1103/PhysRevC.76.025210 PACS number(s): 13.60.Le, 12.38.−t, 13.85.Lg, 24.85.+p

I. INTRODUCTION

Electroproduction of vector mesons has been intensively
studied during the past three decades. Numerous fixed-target
experiments have provided high-quality data: the OMEGA [1]
and NMC [2] experiments at CERN, CHIO [3] and E665
experiments at Fermilab [4], etc. [5]. In particular, the E665
Collaboration [6] observed for the first time a manifestation
of color transparency [7,8] in vector meson production on
nuclear targets. The data confirmed the predictions for color
transparency presented in Ref. [9].

Moreover, important dynamical information on vector
meson electroproduction, in a wide range of Q2 and energies
and for different photon polarizations, transverse (T ) and
longitudinal (L), was provided by experiments performed by
both the ZEUS [10] and H1 [11] Collaborations at HERA. In
particular it was found that the longitudinal-to-transverse ratio,
RLT , for exclusive electroproduction of ρ0 mesons, rises with
Q2, but has a weak energy dependence at fixed Q2 [2,4,12–21].
Some correlation between the energy and Q2 dependence was
detected in the ZEUS experiment [12]. The energy dependence
of the ratio RLT is stronger at larger Q2.

These observations can be understood within the dipole
approach [22]. The shrinkage of the q̄q component of the
photon with Q2 and the small-size behavior of the dipole cross
section [7], σq̄q(r) ∼ r2,1 lead to a scanning effect [9,22,23].
Namely, the vector meson production amplitude is dominated
by the contribution of dipole sizes of the order of r ∼ rS , where

rS ≈ Y√
Q2 + m2

V

, (1)

and the product of the photon wave function and the dipole
cross section forms a sharp peak. Varying Q2 and the mass
of vector meson mV one can study the transition from the
nonperturbative region of large rS to the perturbative region

1σq̄q (r) is the cross section for the interaction with a nucleon of the
q̄q fluctuations of the photon having transverse separations �r .

of very small rS � RV , where RV is the radius of the vector
meson.

Factor Y in Eq. (1) was evaluated in [22] at Y ≈ 6. However,
this estimate made use of a nonrelativistic approximation,
which is reasonable for charmonium and is rather accurate
for bottonium production. Moreover, in the general case the
parameter Y depends on polarization and increases slowly
with Q2. The Q2 dependence of YT,L is related to so-called
aligned-jet configurations of the q̄q configurations when q or q̄

carry almost the whole momentum of the photon. Since these
end-point configurations in longitudinally polarized photons
are suppressed, one should expect YL < YT . In another words,
the production amplitude of longitudinal vector mesons scans
their wave function at smaller transverse sizes. According
to Eq. (1) higher Q2 results in a smaller transverse size
of the color q̄q dipole (i.e., in a smaller rS). Stronger
energy dependence of the dipole cross section σq̄q(r, s) at
smaller dipole size causes a weak energy dependence of
the ratio RLT (see also Ref. [24]). However, large errors of
available data do not allow this energy dependence to be seen
clearly.

Equation (1) shows that one can reach small perturbative
scanning radius only at very large scale (Q2 � m2

V ).
There is much experimental and theoretical evidence [25,

26] that a semihard scale of a nonperturbative origin exists
in QCD [27]. Namely, the mean transverse distance of gluon
propagation is small, of the order of r0 ∼ 0.3 fm. To rely
on pQCD calculations one should make the scanning radius
smaller than r0, that is,

(
Q2 + m2

V

)
>∼ Q2

pQCD = Y 2

r2
0

. (2)

As was discussed in Refs. [28–30], nuclear targets represent
unique analyzers of the dynamics of vector meson production.
They allow us to study other phenomena such as color
transparency (CT), coherence length (CL) effects, and gluon
shadowing (GS). These effects were studied in Ref. [28] for
coherent and incoherent electroproduction of vector mesons,
and within a quantum-mechanical description of the q̄q
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evolution, based on the light-cone (LC) Green function tech-
nique [31]. The same LC Green function formalism has been
applied also for Drell-Yan production in proton-nucleus and
nucleus-nucleus interactions [32], and for nuclear shadowing
in deep-inelastic scattering [33,34].

Data for vector meson production off nuclei are usually
presented in the form of the so-called nuclear transparency,
defined as a ratio

T rA = σγ ∗A→V X

Aσγ ∗N→V X

(3)

for the diffractive incoherent (quasielasic) production of vector
mesons, γ ∗A → V X, where one sums over all final states of
the target nucleus except those that contain particle (pion)
creation.

If electroproduction of a vector meson leaves the target
intact, the process γ ∗A → V A is usually called coherent or
elastic. For this process one can formally define the nuclear
transparency in the same way, Eq. (3); however, the coherent
production cross section σ coh

γ ∗A→V A has a form different from
the incoherent cross section σ inc

γ ∗A→V X, as will be seen in
Secs. IV and V [see Eqs. (65) and (73)].

There are two time scales that control the dynamics of
vector meson production [28]. The first time scale, called
formation time, is connected with the phenomenon called
color transparency. This effect comes from QCD and has
been studied intensively for almost two decades. The second
time scale, known as the coherence time, is connected with
quantum coherence effects. Both phenomena cause nuclear
suppression.

The phenomenon of CT can be treated either in the hadronic
or in the quark basis. The former approach leads to Gribov’s
inelastic corrections [35], whereas the latter manifests itself
as a result of color screening [7,8]. Although these two
approaches are complementary, the quark-gluon interpretation
is more intuitive and straightforward, coming from the fact that
colorless hadrons can interact only because color is distributed
inside them. If the hadron transverse size r tends to zero then
the interaction cross section σq̄q(r) vanishes as r2 [7]. As a
result, the nuclear medium is more transparent for smaller
transverse size hadrons. Besides, this fact naturally explains
the correlation between the cross sections of hadrons and their
sizes [36–38].

Diffractive electroproduction of vector mesons off nuclei is
one of the most effective processes for studying CT. According
to Eq. (1), in this case a photon of high virtuality Q2 � m2

V is
expected to produce a pair with a small transverse separation
∼1/Q2.2 Then CT manifests itself as a vanishing absorption
of the small-size colorless q̄q wave packet during propagation
through the nucleus. The dynamical evolution of this small-
size q̄q pair into a normal-size vector meson is controlled by
the time scale called formation time. Because of the uncertainty
principle, one needs a time interval to resolve different levels
V (the ground state) or V ′ (the next excited state) in the final

2In fact, the situation is somewhat more complicated. For very
asymmetric pairs, when the q or q̄ carry almost the whole photon
momentum, the pair can have a large separation; see Sec. II.

state. In the rest frame of the nucleus this formation time is
Lorentz dilated,

tf = 2ν

m′2
V − m2

V

, (4)

where ν is the photon energy. A rigorous quantum-mechanical
description of the pair evolution was suggested in Ref. [31]
and is based on the nonrelativistic light-cone Green function
technique. A complementary description of the same process
in the hadronic basis is presented in Ref. [39].

Another phenomenon known to cause nuclear suppression
is quantum coherence, which results from the destructive
interference of amplitudes for which the interaction takes
place on different bound nucleons. It is controlled by the
distance from the production to the absorption point when
the pointlike photon becomes the hadronlike q̄q pair and may
be also interpreted as the lifetime of q̄q fluctuation, thus
providing the time scale that controls shadowing. Again, it
can be estimated by relying on the uncertainty principle and
Lorentz time dilation as

tc = 2ν

Q2 + m2
V

. (5)

This is usually called coherence time, but we also will use the
term coherence length, since light-cone kinematics is assumed,
lc = tc (similarly, for formation length lf = tf ). The CL is
related to the longitudinal momentum transfer in γ ∗N → V N

as qc = 1/lc, which controls the interference of the production
amplitudes from different nucleons.

Since the exclusive production of vector mesons at high
energies is controlled by small-xBj physics, gluon shadowing
becomes an important issue [28]. In fact, GS suppresses
electroproduction of vector mesons. Although it has been
shown [40] that for electroproduction of charmonia off nuclei
GS starts to be important at center-of-mass energies

√
(s) �

30–60 GeV, the same does not happen for electroproduction
of light vector mesons [28], where GS starts to be effective
at smaller energy values

√
(s) � 7–30 GeV. Nevertheless, GS

in the HERMES kinematical range discussed in the present
paper is negligible and does not need to be included in
calculations.

In electroproduction of vector mesons off nuclei one
needs to disentangle CT (absorption) and CL (shadowing)
as the two sources of nuclear suppression. These effects
can be associated with final- and initial-state interactions,
respectively. A detailed analysis of the CT and CL effects in
electroproduction of vector mesons off nuclei showed [28],
for a vector dominance model (VDM) example, that one
can easily identify the difference of the nuclear suppression
corresponding to absorption and shadowing, in the two limiting
cases:

(i) The limit of lc shorter than the mean internucleon spacing
(∼2 fm). In this case only final-state absorption matters.
The ratio of the quasielastic (or incoherent) γ ∗A → V X

and γ ∗N → V X cross sections, usually called nuclear

025210-2106
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transparency, reads [31]

T r inc
A

∣∣∣
lc�RA

≡ σ
γ ∗A
V

Aσ
γ ∗N
V

= 1

A

∫
d2b

∫ ∞

−∞
dz ρA(b, z)

× exp

[
−σV N

in

∫ ∞

z

dz′ ρA(b, z′)
]

= 1

AσV N
in

∫
d2b

{
1 − exp

[ − σV N
in TA(b)

]}
= σV A

in

AσV N
in

. (6)

Here z is the longitudinal coordinate and �b the impact
parameter of the production point of vector meson. In
Eq. (6) ρA(b, z) is the nuclear density and σV N

in is the
inelastic V N cross section.

(ii) The limit of long lc, where the expression for the nuclear
transparency takes a different form,

T r inc
A

∣∣∣
lc�RA

=
∫

d2bTA(b) exp
[ − σV N

in TA(b)
]
, (7)

and where we assume σV N
el � σV N

in for the sake of
simplicity. Here TA(b) is the nuclear thickness function

TA(b) =
∫ ∞

−∞
dz ρA(b, z). (8)

The exact expression that interpolates between the two
regimes (6) and (7) can be found in Ref. [41].

The problem of CT-CL separation is different depending on
the mass of the produced vector meson. In the production of
light vector mesons (ρ0,�0) [28] the coherence length is larger
or comparable with the formation length, lc >∼ lf , starting
from the photoproduction limit up to Q2 ∼ 1–2 GeV2. For
charmonium production, however, there is a strong inequality
lc < lf independent of Q2 and ν [29,30], which therefore leads
to a different scenario of CT-CL mixing.

Recently, new HERMES data [42,43] for diffractive exclu-
sive electroproduction of ρ0 mesons on nitrogen target have
gradually become available. At the beginning the data were
presented as a dependence of nuclear transparencies (3) on
coherence length (5). The data for incoherent ρ0 production
decrease with lc, as expected from the effects of initial-state
interactions. In contrast, the nuclear transparency for coherent
ρ0 production increases with coherence length, as expected
from the effects of the nuclear form factor [28]. However,
each lc bin of the data contains different values of ν and Q2

(i.e., there are different contributions from both effects, CT and
CL). For this reason the lc behavior of nuclear transparency
does not allow us to study CT and CL effects separately.
Therefore it was proposed in Refs. [28,39] that CT can be
separately studied, eliminating the effect of CL from the data
on the Q2 dependence of nuclear transparency, in a way that
keeps lc = const. According to this prescription, the HERMES
data [43] were later presented as the Q2 dependence of nuclear
transparency, albeit at different fixed values of lc. Then the
rise of T r inc

A and T rcoh
A with Q2 represents a signature of CT.

The HERMES data [43] are in a good agreement with the
predictions from Ref. [28].

New HERMES data on neon and krypton targets should
be presented soon and these will allow us to verify further
the predictions for CT from Ref. [28]. In addition, gradually
increasing the statistics of the HERMES data should allow us
to also obtain results at different polarizations L and T , and this
offers the interesting possibility of studying the polarization
dependence of the CT and CL effects, in both coherent and
incoherent production of vector mesons. The data are usually
presented as the L/T ratio RA

LT of the corresponding nuclear
cross sections. Knowing the nucleon L/T ratio RLT one can
define the nuclear modification factor as

f (s,Q2, A) = RA
LT

RLT

(9)

for both coherent and incoherent processes. The nuclear
modification factor represents a modification of the nucleon
L/T ratio, given by a nuclear environment. Its deviation
from unity allows one to obtain information about a possible
different onset of CT and CL effects in the production of
L and T vector mesons. Therefore an exploratory study
of the Q2 and A dependence of the factors finc and fcoh

gives an alternative way for investigating CT and CL effects
in coherent and incoherent production of vector mesons, at
different polarizations L and T . This is the main goal of the
present paper.

The paper is organized as follows. In Sec. II we present
the light-cone approach to diffractive electroproduction of
vector mesons in the rest frame of the nucleon target.
Here we also describe the individual ingredients contained
in the production amplitude: (i) the dipole cross section, (ii)
the LC wave function for a quark-antiquark fluctuation of the
virtual photon, and (iii) the LC wave function of the vector
meson.

In Sec. III we calculate the nucleon L/T ratio RLT of
the cross sections for exclusive electroproduction of L and
T polarized ρ0,�0, and charmonia. The model calculations
reproduce quite well the available data for the Q2 dependence
of RLT . This is an important test of the model because
RLT is included in the calculations of the nuclear L/T

ratio.
Section IV is devoted to the incoherent production of vector

mesons off nuclei. First, in Sec. IV A we define the different
transparency ratios, and in Sec. IV B, we briefly describe
the formalism based on the LC Green function technique.
In Sec. IV C we analyze different regimes of incoherent
production of vector mesons, depending on the magnitude
of the coherence length. Then in Sec. IV D we present a
discussion on the A and Q2 behavior of the nuclear L/T

ratio in the limit of long coherence length lc � RA, because in
this limit the corresponding formulas and theoretical treatment
get simplified with respect to the general case lc ∼ RA, where
there is a strong CT-CL mixing. Here we also present the
model predictions for the nuclear modification factor finc

and nuclear L/T ratio. Finally, we study the general case
when there is no restriction on the coherence length. The
numerical calculations of Sec. IV E produce the prediction
for the L/T ratio of nuclear cross sections, for production of
L and T polarized vector mesons, as a function of the mass
number A at different fixed values of 〈Q2〉 corresponding to
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the HERMES kinematics. We find a monotonic A dependence
of this ratio. We discuss why this A behavior of RA

LT (inc)
only weakly changes with Q2. Following the prescription of
Refs. [28,39] we also investigate how a clear signal of CT
effects manifests itself separately in the production of L and
T polarized vector mesons. We present the model predictions
for the Q2 dependence of finc at different fixed values of
the coherence length. Such a polarization dependence of CT
effects can be analyzed by the HERMES Collaboration and in
the experiments at JLab.

Coherent production of vector mesons off nuclei leaving
the nucleus intact is studied in Sec. V. The formalism,
with an emphasis on the nuclear L/T ratio, is described in
Sec. V A. Then, just as for incoherent production, we analyze
in Sec. V B the A and Q2 behavior of the nuclear L/T ratio,
in the limit of long coherence length. Here we also present the
corresponding model predictions for the nuclear modification
factor and the L/T ratio. The general case with no restriction
on the coherence length is analyzed in Sec. V C. In contrast to
incoherent vector meson production, here we find, at medium
and large values of Q2 (when lc <∼ RA, where RA is the
nuclear radius), a nonmonotonic A dependence of the nuclear
L/T ratio. This nontrivial and anomalous A dependence of
RA

LT (coh) is even more complicated at larger values of Q2, as
a result of a stronger interplay between CT and CL effects.
We find also a different manifestation of the net CT effects
in the production of L and T polarized vector mesons, by
performing the predictions at fixed values of the coherence
length.

Gluon shadowing starts to manifest itself at
√

s �
7–30 GeV and is not significant in the HERMES energy range
studied in the present paper. Therefore it is not included in the
calculations.

The results of the paper are summarized and discussed
in Sec. VI. The important conclusion of a nontrivial A

dependence of the coherent nuclear L/T ratio for the expected
new HERMES data and for the future planned experiments is
stressed.

II. COLOR DIPOLE PHENOMENOLOGY FOR ELASTIC
ELECTROPRODUCTION OF VECTOR MESONS

γ ∗ N → V N

The LC dipole approach for elastic electroproduction
γ ∗N → V N was already used in Ref. [44] to study the
exclusive photo- and electroproduction of charmonia, and in
Ref. [28] for elastic virtual photoproduction of the light vector
mesons ρ0 and �0 (for a review see also Ref. [45]). Therefore,
we present only a short review of this LC phenomenology,
with the main emphasis on looking at the effects of the
different polarizations L and T . In this approach a diffractive
process is treated as elastic scattering of a q̄q fluctuation
of the incident particle. The elastic amplitude is given by
convolution of the universal flavor-independent dipole cross
section for the q̄q interaction with a nucleon, σq̄q [7], and the
initial and final wave functions. For the exclusive photo- or
electroproduction of vector mesons γ ∗N → V N the forward

production amplitude is represented in the following form:

Mγ ∗N→V N (s,Q2) = 〈V |σq̄q(�r, s)|γ ∗〉

=
∫ 1

0
dα

∫
d2r�∗

V (�r, α)σq̄q(�r, s)

×�γ ∗ (�r, α,Q2), (10)

with the normalization

dσ (γ ∗N → V N )

dt

∣∣∣∣
t=0

= |Mγ ∗N→V N (s,Q2)|2
16π

. (11)

There are three ingredients contributing to the amplitude (10):

(i) the dipole cross section σq̄q(�r, s), which depends on the
q̄q transverse separation �r and the c.m. energy squared
s,

(ii) the LC wave function of the photon �γ ∗ (�r, α,Q2), which
depends also on the photon virtuality Q2 and the relative
share α of the photon momentum carried by the quark,
and

(iii) the LC wave function �V (�r, α) of the vector meson.

Notice that in the LC formalism the photon and
meson wave functions also contain higher Fock states
|q̄q〉, |q̄qG〉, |q̄q2G〉, etc. The effects of higher Fock states
are implicitly incorporated into the energy dependence of the
dipole cross section σq̄q(�r, s), as is given in Eq. (10).

A. Dipole cross section

The dipole cross section σq̄q(�r, s) represents the interaction
of a q̄q dipole of transverse separation �r with a nucleon [7]. It
is a flavor-independent universal function of �r and energy, and
allows us to describe in a uniform way various high-energy
processes. It is known to vanish quadratically [σq̄q(r, s) ∝ r2]
as r → 0, owing to color screening (CT property). The dipole
cross section cannot be predicted reliably because of poorly
known higher order pQCD corrections and nonperturbative
effects. A detailed discussion of the dipole cross section in
connection with production of vector mesons is presented in
Ref. [28].

There are two popular parametrizations of σq̄q(�r, s). The
first, suggested in Ref. [46], reflects the fact that at small
separations the dipole cross section should be a function of r

and xBj ∼ 1/(r2s), to reproduce Bjorken scaling. It describes
well data for deep-inelastic scattering (DIS) at small xBj and
medium and high Q2. However, at small Q2 it cannot be
correct since it predicts energy-independent hadronic cross
sections. Besides, xBj is no longer a proper variable at
small Q2 and should be replaced by energy. This defect is
removed by the second parametrization proposed in Ref. [27],
which is similar to the first one [46] but contains an explicit
dependence on energy, and it is valid down to the limit of real
photoproduction. Since we will consider HERMES data with
a typical kinematical region of the photon energy, 5 < ν <

24 GeV, and virtuality, 0.8 < Q2 < 5 GeV2, we choose the
second parametrization, which has the following form:

σq̄q(r, s) = σ0(s)
[
1 − e−r2/r2

0 (s)
]
, (12)
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where

σ0(s) = σ
πp
tot (s)

[
1 + 3

8

r2
0 (s)〈
r2

ch

〉 ]
mb (13)

and

r0(s) = 0.88

(
s

s0

)−0.14

fm. (14)

Here 〈r2
ch〉 = 0.44 fm2 is the mean pion charge radius squared,

and s0 = 1000 GeV2. The cross section σ
πp
tot (s) was fitted to

data in Ref. [47,48] and reads

σ
πp
tot (s) = 23.6

(
s

s0

)0.079

+ 1.425

(
s

s0

)−0.45

mb. (15)

This represents the Pomeron and Reggeon parts, correspond-
ing to exchange of gluons and q̄q, respectively. A detailed
description of the incorporation of Reggeons into the LC dipole
formalism can be found in Ref. [28].

The dipole cross section presented in Eqs. (12)–(15)
provides the imaginary part of the elastic amplitude. It is
known, however, that the energy dependence of the total cross
section also generates a real part [49],

σq̄q(r, s) ⇒
(

1 − i
π

2

∂

∂ ln(s)

)
σq̄q(r, s). (16)

Therefore the energy dependence of the dipole cross section
given by Eq. (12), which is rather steep at small r , leads to a
large real part that should not be neglected.

B. The q̄q wave function of the photon

The perturbative distribution amplitude (“wave function”)
of the q̄q Fock component of the photon has the following
form, for T and L polarized photons [50–52]:

�
T,L
q̄q (�r, α) =

√
NCαem

2π
Zqχ̄ÔT ,LχK0(εr), (17)

where χ and χ̄ are the spinors of the quark and anti-
quark, respectively, Zq is the quark charge, with Zq =
1/

√
2, 1/3

√
2, 1/3, 2/3, and 1/3 for ρ0, ω0,�0, J/�, and

ϒ production respectively, NC = 3 is the number of colors.
and K0(εr) is a modified Bessel function with

ε2 = α(1 − α)Q2 + m2
q . (18)

Here mq is the quark mass, and α is the fraction of the LC
momentum of the photon carried by the quark. The operators
ÔT ,L are given by

ÔT = mq �σ · �e + i(1 − 2α)(�σ · �n)(�e · �∇r ) + (�σ × �e) · �∇r ,

(19)

ÔL = 2Qα(1 − α)(�σ · �n). (20)

Here �∇r acts on the transverse coordinate �r, �e is the polar-
ization vector of the photon, �n is a unit vector parallel to the
photon momentum, and �σ is the three-vector of the Pauli spin
matrices.

The transverse separation of the q̄q pair contains an explicit
α dependence and can be written uby sing the expression for

the scanning radius, Eq. (1), as

rq̄q ∼ 1

ε
= 1√

Q2α(1 − α) + m2
q

(21)

∼ rS

3
= Ỹ√

Q2 + m2
V

,

where Ỹ = Y/3. For very asymmetric q̄q pairs the LC
variable α or (1 − α) <∼ m2

q/Q
2. Consequently, the transverse

separation rq̄q ∼ 1̃/mq and the scanning radius rS become
large. However, this is not the case of charmonium and
bottonium production because of the large quark masses
mc = 1.5 GeV and mb = 5.0 GeV, respectively. Therefore in
this latter case it is straightforward to include nonperturbative
interaction effects between q and q̄. In the production of light
vector mesons there are two ways to fix the problem of a huge
q̄q transverse separation. One can introduce an effective quark
mass mq ≈ �QCD, which should represent the nonperturbative
interaction effects between the q and q̄, or one can introduce
this interaction explicitly. We use the second possibility, with
the corresponding phenomenology based on the LC Green
function approach developed in Ref. [27].

The Green function Gq̄q(z1, �r1; z2, �r2) describes the propa-
gation of an interacting q̄q pair between points with longitudi-
nal coordinates z1 and z2, and with initial and final separations
�r1 and �r2. This Green function satisfies the two-dimensional
Schrödinger equation,

i
d

dz2
Gq̄q(z1, �r1; z2, �r2)

=
{

ε2 − �r2

2να(1 − α)
+ Vq̄q(z2, �r2, α)

}
Gq̄q(z1, �r1; z2, �r2).

(22)

Here ν is the photon energy, and the Laplacian �r acts on the
coordinate r .

The imaginary part of the LC potential Vq̄q(z2, �r2, α) in
Eq. (22) is responsible for the attenuation of the q̄q in
the medium, whereas the real part represents the interaction
between the q and q̄. This potential is supposed to provide the
correct LC wave functions of the vector mesons. For the sake
of simplicity we use the oscillator form of the potential,

ReVq̄q(z2, �r2, α) = a4(α)�r2
2

2να(1 − α)
, (23)

which leads to a Gaussian r dependence of the LC wave
function of the meson ground state. The shape of the function
a(α) will be discussed in the following.

In this case Eq. (22) has an analytical solution, leading to an
explicit form of the harmonic oscillator Green function [53],

Gq̄q(z1, �r1; z2, �r2)

= a2(α)

2πisin(ω�z)
exp

{
ia2(α)

sin(ω�z)

[(
r2

1 + r2
2

)
cos(ω�z)

− 2�r1 · �r2
]}

exp

[
− iε2�z

2να(1 − α)

]
, (24)
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where �z = z2 − z1 and

ω = a2(α)

να(1 − α)
. (25)

The boundary condition is Gq̄q(z1, �r1; z2, �r2)|z2=z1 = δ2(�r1 −
�r2).

The probability amplitude of finding the q̄q fluctuation of a
photon at the point z2 with separation �r is given by an integral
over the point z1 where the q̄q is created by the photon with
initial separation zero:

�
T,L
q̄q (�r, α) = iZq

√
αem

4πνα(1 − α)

×
∫ z2

−∞
dz1 (χ̄ÔT ,Lχ )Gq̄q(z1, �r1; z2, �r)

∣∣∣
r1=0

.

(26)

The operators ÔT ,L are defined by Eqs. (19) and (20). Here
they act on the coordinate �r1.

If we write the transverse part as

χ̄ÔT χ = χ̄mq �σ · �eχ + χ̄ [i(1 − 2α)(�σ · �n)�e + (�σ × �e)]χ · �∇r

= E + �F · �∇r , (27)

then the distribution functions read

�T
q̄q(�r, α) = Zq

√
αem[E�0(ε, r, λ) + �F · ��1(ε, r, λ)],

(28)

�L
q̄q(�r, α) = 2Zq

√
αemQα(1 − α)χ̄ �σ · �nχ�0(ε, r, λ),

(29)

where

λ = 2a2(α)

ε2
. (30)

The functions �0,1 in Eqs. (28) and (29) are defined as

�0(ε, r, λ) = 1

4π

∫ ∞

0
dt

λ

sh(λt)

× exp

[
−λε2r2

4
cth(λt) − t

]
, (31)

��1(ε, r, λ) = ε2�r
8π

∫ ∞

0
dt

[
λ

sh(λt)

]2

× exp

[
−λε2r2

4
cth(λt) − t

]
, (32)

where sh(x) and cth(x) are the hyperbolic sine and hyperbolic
cotangent, respectively. Note that the q̄-q interaction enters
Eqs. (28) and (29) via the parameter λ defined in Eq. (30).
In the limit of vanishing interaction (λ → 0; i.e., Q2 →
∞, α fixed, α �= 0 or 1), Eqs. (28) and (29) produce the
perturbative expressions of Eq. (17). As previously mentioned,
for charmonium and bottonium production nonperturbative
interaction effects are weak. Consequently, the parameter λ

is then rather small owing to the large quark masses mc =

1.5 GeV and mb = 5.0 GeV, and it is given by

λ = 8a2(α)

Q2 + 4m2
c,b

. (33)

With the choice a2(α) ∝ α(1 − α) the end-point behavior
of the mean-square interquark separation 〈r2〉 ∝ 1/α(1 − α)
contradicts the idea of confinement. Following Ref. [27] we
fix this problem via a simple modification of the LC potential,

a2(α) = a2
0 + 4a2

1α(1 − α). (34)

The parameters a0 and a1 were adjusted in Ref. [27] to data on
total photoabsorption cross section [54,55], diffractive photon
dissociation, and shadowing in nuclear photoabsorption reac-
tions. The results of our calculations vary within only 1% when
a0 and a1 satisfy the relations

a2
0 = v1.15(0.112)2 GeV2,

(35)
a2

1 = (1 − v)1.15(0.165)2 GeV2,

where v takes any value in the range 0 < v < 1. In view of
this insensitivity of the observables we fix the parameters at
v = 1/2. We checked that this choice does not affect our results
beyond a few percent uncertainty.

C. Vector meson wave function

The last ingredient in the elastic production amplitude (10)
is the vector meson wave function. We use the popular pre-
scription of Ref. [56], obtained by applying a Lorentz boost to
the rest-frame wave function, assumed to be Gaussian, which
in turn leads to radial parts of transversely and longitudinally
polarized mesons in the form (for an alternative description of
the vector meson wave function see Refs. [57,58])

�
T,L
V (�r, α) = CT,Lα(1 − α)f (α) exp

[
−α(1 − α)�r2

2R2

]
, (36)

with the normalization defined in the following, and

f (α) = exp

[
− m2

qR
2

2α(1 − α)

]
, (37)

with the parameters, taken from Ref. [24], R = 0.515 fm,
mq = 0.1 GeV for ρ0 production; R = 0.415 fm, mq =
0.3 GeV for �0 production; R = 0.183 fm, mq = 1.3 GeV for
charmonium production; and R = 0.061 fm, mq = 5.0 GeV
for bottonium production.

We assume that the distribution amplitude of the q̄q

fluctuations for both the vector meson and the photon have
a similar structure [24]. Then in analogy to Eqs. (28) and (29),

�T
V (�r, α) = (E + �F · �∇r )�T

V (�r, α), (38)

�L
V (�r, α) = 2mV α(1 − α)(χ̄ �σ · �nχ )�L

V (�r, α). (39)
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Correspondingly, the normalization conditions for the
transverse and longitudinal vector meson wave functions read

NC

∫
d2r

∫
dα

[
m2

q

∣∣�T
V (�r, α)

∣∣2

+ [α2 + (1 − α)2]
∣∣∂r�

T
V (�r, α)

∣∣2] = 1 (40)

and

4NC

∫
d2r

∫
dαα2(1 − α)2m2

V

∣∣�L
V (�r, α)

∣∣2 = 1. (41)

III. ELECTROPRODUCTION OF VECTOR MESONS ON A
NUCLEON: COMPARISON WITH DATA

As the first test of the formalism, in this section we verify the
LC approach by comparing its results with data for nucleon
targets. Since the expected new HERMES data will be, at
separate polarizations L and T , predominantly for electropro-
duction of ρ0, we focus our attention on the production of
light vector mesons. Using all the ingredients specified in the
previous section [i.e., the nonperturbative photon equations
(28) and (29) and vector meson wave function equations (38)
and (39)], we can calculate the forward production amplitude
γ ∗N → V N for transverse and longitudinal photons and
vector mesons. Under the assumption of s-channel helicity
conservation (SCHC), the forward scattering amplitude reads

MT
γ ∗N→V N (s,Q2)

∣∣
t=0 = NCZq

√
2αem

∫
d2rσq̄q(�r, s)

×
∫ 1

0
dα

{
m2

q�0(ε, �r, λ)�T
V (�r, α)

− [α2 + (1 − α)2] ��1(ε, �r, λ)

× �∇r�
T
V (�r, α)

}
, (42)

ML
γ ∗N→V N (s,Q2)

∣∣
t=0 = 4NCZq

√
2αemmV Q

∫
d2rσq̄q(�r, s)

×
∫ 1

0
dαα2(1 − α)2

×�0(ε, �r, λ)�L
V (�r, α). (43)

These amplitudes are normalized as |MT ,L|2 =
16πdσ

T,L
N /dt |t=0, and their real parts are included

according to the prescription described in Sec. II. The
terms ∝ �0(ε, �r, λ)�V (�r, α) and ∝ ��1(ε, �r, λ) · �∇r�V (�r, α)
in Eqs. (42) and (43) correspond to the helicity-conserving
and helicity-flip transitions in the γ ∗ → q̄q, V → q̄q

vertices, respectively. The helicity-flip transitions represent
the relativistic corrections. For heavy quarkonium these
corrections become important only at large Q2 � m2

V .
For production of light vector mesons, however, they are
non-negligible even in the photoproduction limit, Q2 = 0.

Usually the data are presented in the form of the production
cross section σ = σT + ε′σL, at fixed photon polarization ε′.
Here the cross section integrated over t reads

σT,L(γ ∗N → V N ) = |MT ,L|2
16πBγ ∗N

, (44)

where Bγ ∗N ≡ B is the slope parameter in the reaction γ ∗p →
Vp. The absolute value of the production cross section has
already been checked by comparing with data for elastic ρ0

and �0 electroproduction in Ref. [28] and for charmonium
exclusive electroproduction γ ∗p → J/�p in Refs. [29,30].

Motivated by the expected data from the HERMES Collab-
oration, we are going to make predictions for the production
cross sections σL,T (γ ∗N → V N ) at separate polarizations
L and T . However, the data are usually presented as the
ratio RLT = σL(γ ∗N → V N)/σT (γ ∗N → V N ) at different
photon virtualities Q2. Then a deviation of RLT from unity
indicates a difference in the production mechanisms of L and
T polarized vector mesons. To calculate the ratio RLT , using
Eqs. (42) and (43) for forward production amplitudes at dif-
ferent polarizations L and T , one should know corresponding
slope parameters Bγ ∗

LN ≡ BL and Bγ ∗
T N ≡ BT :

RLT = |ML|2
|MT |2

BT

BL

≈ |ML|2
|MT |2

(
1 + �BT L

B

)
, (45)

where �BT L = BT − BL.
The scanning phenomenon, Eq. (1), was already discussed

in Refs. [22,24,59], and it can be understood qualitatively by
analyzing the forward production amplitude (10). Here we
assume for simplicity the perturbative distribution amplitudes
of the q̄q Fock component of the photon containing the Bessel
function K0(εr) [see Eq. (17)]. As was mentioned in the
previous section, the most important property of the dipole
cross section σq̄q(�r, s) is the CT-driven dependence ∝ r2 at
small r . Because of the smooth shape of the vector meson wave
functions �

L,T
V (r, α) [see Eq. (36)] and because of the behavior

of the Bessel functions K0,1(x) ∝ exp(−x) at large values of
x, the production amplitude is dominated by the contribution
from rS ≈ 3/ε. In the nonrelativistic approximation of mV ∼
2mq and α ∼ 0.5, it leads to the scanning radius [Eq. (1)]
and the estimate Y ≈ 6 (see also Fig. 1). In general, to be
more precise, the scanning property [see Eq. (1)] is quantified
separately for L and T polarizations via the Q2-dependent
scale parameters YL and YT , as illustrated in Fig. 1. The dotted
line represents the fact that for electroproduction of bottonia
both scale parameters YT ∼ YL ∼ 6, and they practically do
not depend on Q2 as a consequence of the nonrelativistic
approximation. Dashed lines describe the Q2 dependence of
YL and YT for charmonium electroproduction. One can see
that both YL and YT smoothly rise with Q2, do not differ much
from each other, and are a little bit higher than the value 6
resulting from the nonrelativistic approximation. For this
reason charmonium can be safely treated as a nonrelativistic
object at small and medium values of Q2 such that rS >∼ RJ/� .3

At larger Q2 � m2
J/� , the scale parameters YL,T have a

stronger Q2 dependence, reaching ∼7.7 at Q2 = 100 GeV2,
which differs from the nonrelativistic value Y ∼ 6. This means
that relativistic effects are no longer negligible and should
be included in the calculations [59]. However, the situation
is completely different for light vector meson production, as
illustrated in Fig. 1 by the solid lines. In this case, the presence

3RJ/� is the radius of charmonium.
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FIG. 1. Q2 dependence of the scale parameters YL and YT , from
the expression for the scanning radius [Eq. (1)], corresponding to
the production of L and T polarized vector mesons. Solid, dashed,
and dotted lines represent electroproduction of ρ0, J/�, and ϒ ,
respectively.

of strong relativistic effects causes the scale parameters to rise
with Q2 much more rapidly than for the production of heavy
vector mesons.

Compared to ML [Eq. (42)] the transverse production
amplitude MT [Eq. (43)] receives larger contributions from
large-size asymmetric end-point q̄q fluctuations with α(1 −
α) � 1. This is illustrated in Fig. 1, where YT > YL in
the whole Q2 range, and the difference between YT and
YL rises with Q2. This fact is especially evident for the
electroproduction of ρ0 mesons, depicted by the solid lines.
For electroproduction of charmonia the difference between
YT and YL is small as a consequence of small relativistic
effects, whereas for electroproduction of bottonia it was
already indicated in Ref. [59] that YT ∼ YL ∼ 6 in a very broad
Q2 range, which supports the conclusion that the relativistic
corrections are negligible.

At small rS <∼ RV , the production amplitudes (42) and (43)
can be evaluated as

MT ∝ r2
Sσq̄q(rS, s) ∝ Y 4

T(
Q2 + m2

V

)2 , (46)

ML ∝
√

Q2

mV

r2
Sσq̄q(rS, s) ∝

√
Q2

mV

Y 4
L(

Q2 + m2
V

)2

∝
√

Q2

mV

Y 4
L

Y 4
T

MT , (47)

which means that the longitudinally polarized vector mesons
dominate at Q2 � m2

V .
A detailed analysis of the diffraction cone [59,60] for

exclusive vector meson electroproduction, within the color
dipole generalized Balitskij-Fadin-Kuraev-Lipatov (BFKL)
phenomenology, showed the presence of geometrical

contributions from the target nucleon ∼ BN and the beam
dipole ∼ r2. At fixed energy and according to the scanning
phenomenon [Eq. (1)], the diffraction slope is predicted to
decrease with (Q2 + m2

V ) as

B(Q2) ∼ BN + C̃r2
S ≈ BN + const

Y 2

Q2 + m2
V

. (48)

One can see from Eq. (48) that different scanning properties
for L and T polarized vector mesons (YL < YT ; see Fig. 1 and
subsequent discussion) lead also to an inequality BL < BT

of the slope parameters in the reactions γ ∗
LN → VLN and

γ ∗
T N → VT N . Consequently, the difference �BT L in Eq. (45)

is positive and can be estimated as

�BT L ∝ �Y 2
T L

Q2 + m2
V

, (49)

where

�Y 2
T L = Y 2

T − Y 2
L. (50)

For electroproduction of ρ0 mesons at small Q2 <∼ m2
ρ the

rise of �Y 2
T L with Q2 can compensate or even overcompensate

the decrease of �BT L with (Q2 + m2
ρ). Consequently, the

difference �BT L in Eq. (49) can weakly rise with Q2. This
does not happen at larger Q2 > m2

ρ , when �BT L decreases
slowly with Q2. In the HERMES kinematical range �BT L ∼
0.7 GeV−2 at Q2 = 0.7 GeV2, reaching a value of ∼0.4 GeV−2

at Q2 = 5 GeV2. Correspondingly, the factor �BT L/B in
Eq. (45), treated as a correction to unity in the brackets, is
about 0.09 at Q2 = 0.7 GeV2 and decreases very slowly with
Q2, reaching a value of ∼0.07 at Q2 = 5 GeV2. For this reason
the factor �BT L/B cannot be neglected in the calculations.

Using Eqs. (45) and (47) one can present the nucleon L/T

ratio as

RLT ∝ Q2

m2
V

Y 8
L

Y 8
T

BT

BL

≈ Q2

m2
V

FY (Q2)

(
1 + �BT L

B

)
, (51)

and thus RLT is given mainly by three ingredients:

(i) The factor Q2/m2
V , which comes from σL [see Eq. (43)],

represents a generic consequence of electromagnetic
gauge invariance.

(ii) The Q2-dependent factor FY (Q2) = Y 8
L/Y 8

T , which
comes from the scanning phenomenon [Eq. (1)], reflects
the different relativistic corrections for the L and T pro-
duction amplitudes. These corrections become important
only at large Q2 � m2

V (see Fig. 1). The factor FY leads
to a substantial reduction of the rise of RLT with Q2,
especially for the production of light vector mesons.

(iii) The factor BT /BL follows from the fact that the slope
parameters BL and BT for the production of L and
T polarized vector mesons are different. According to
the scanning property (BL < BT ), this factor decreases
slightly with Q2, tending to unity from above at large
Q2 � m2

V [59]. The ratio BT /BL leads to an additional
but small reduction of the Q2 rise of RLT .

Our predictions are plotted in Figs. 2 and 3, together with the
data on the Q2 dependence of the ratio RLT for the production
of ρ0 and �0 mesons, taken from Ref. [21]. We added also the
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FIG. 2. Q2 dependence of the ratio RLT of the integrated cross
sections for the reactions γ ∗

Lp → ρ0
Lp and γ ∗

T p → ρ0
T p. The solid

and dashed lines represent model calculations at W = 15 and 90 GeV,
respectively. The data are taken from Ref. [21]. The preliminary H1
and ZEUS data can be found in Refs. [18] and [14], respectively. The
dotted curve represents the Q2/m2

V rise of RLT .

last published data from H1 [16] and preliminary data from
the H1 [18] and ZEUS [14,15] Collaborations. The analogous
Q2 dependence of RLT for electroproduction of charmonia is
plotted in Fig. 4 together with results from the H1 [61] and
ZEUS [62] Collaborations.

One can see from Eq. (51) that the Q2 rise of the nucleon
ratio RLT gets diminished by the factor FY , coming from
the different scanning properties of the L and T production
amplitudes, and by the ratio of the slope parameters BT
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respectively. The data are taken from Ref. [21] and H1 data are from
Ref. [16]. The preliminary ZEUS data can be found in Ref. [15]. The
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FIG. 4. Q2 dependence of the ratio RLT of the integrated cross
sections for the reactions γ ∗

Lp → (J/�)Lp and γ ∗
T p → (J/�)T p.

The model calculations are performed at W = 90 GeV. The H1 and
ZEUS data are taken from Refs. [61] and [62], respectively. The
dotted curve represents the Q2/m2

V rise of RLT .

and BL. In the nonrelativistic approximation, represented
by the electroproduction of bottonia, the factor FY ∼ 1 [see
Eq. (51) and Fig. 1] and BT ∼ BL. Consequently, the ratio RLT

rises with Q2 as ∼ Q2/m2
V [59]. However, electroproduction

of light vector mesons has large relativistic effects and the
different scanning properties for the L and T production
amplitudes (YL < YT ) lead to a large decrease of the dom-
inance of the longitudinal cross section ∝ |ML|2. Thus the
ratio RLT rises with Q2 much less rapidly than Q2/m2

V . This
is illustrated in Figs. 2 and 3 as a difference between the
solid (dashed) and dotted lines. For charmonium production
the decrease of the rise of the ratio RLT with Q2/m2

J/� is
much less effective because of smaller relativistic effects, as
one can see in Fig. 4 as a difference between the solid and
dotted lines. Notice that in all calculations we assumed SCHC
as the consequence of the spin independence of the dipole
cross section σq̄q(r, s) in the forward production amplitude
[Eq. (10)]. This assumption is supported by the low-energy
data, indicating that the amplitude for the photon-vector meson
transition is predominantly s-channel conserving (i.e., the
helicity of the vector meson is equal to that of the photon
when the spin-quantization axis is chosen along the direction
of the meson momentum in the γ ∗p center-of-mass system).
In general, however, small helicity-single-flip and helicity-
double-flip contributions to the production amplitude have
been reported in π+π− photoproduction in the ρ0 mass region,
at W <∼ 4 GeV [63]. Helicity-single-flip amplitudes have
also been observed in ρ0 electroproduction for 1.3 < W <

2.8 GeV and 0.3 < Q2 < 1.4 GeV2 [64]. A helicity-single-flip
contribution of (14 ± 8)% was measured in ρ0 muo production
at W = 17 GeV [3].

At high energy the breaking of SCHC has been measured by
the ZEUS [65] and H1 [17] Collaborations at HERA. The size
of the SCHC-breaking effects was quantified by evaluating
the ratios of the helicity-single-flip and helicity-double-flip
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amplitudes to the helicity-conserving amplitudes. The ratio of
T01 (for production of L polarized ρ0 mesons from T photons)
to the helicity-conserving amplitudes,

τ01 = |T01|√
|T00|2 + |T11|2

, (52)

gives the values τ01 = (6.9 ± 2.7)% for 0.25 < Q2 <

0.85 GeV2 and τ01 = (7.9 ± 2.6)% for 3 < Q2 < 30 GeV2,
determined by the ZEUS Collaboration [65]. The H1 result
for this quantity is (8 ± 3)% [17]. The ratio of helicity-
double-flip amplitudes to the helicity-conserving amplitudes
τ1−1, defined analogously as τ01 in Eq. (52), gives the values
τ1−1 = (4.8 ± 2.8)% for 0.25 < Q2 < 0.85 GeV2 and τ1−1 =
(1.4 ± 6.5)% for 3 < Q2 < 30 GeV2 [65]. In addition, the
ZEUS Collaboration [65] also determined the nucleon L/T

ratio for ρ0 electroproduction, without assuming SCHC. Those
results differ from those derived from the SCHC hypothesis
by less than 3%. Similarly, the last data from the HERMES
Collaboration [21] on electroproduction of ρ0 and �0 mesons
at 4 < W < 6 GeV and 0.7 < Q2 < 5 GeV2 confirm the
breaking of SCHC and are consistent with the H1 [17]
and ZEUS [65] results. The observed deviation from SCHC
changes the ratio RLT by only a few percent. Because in
the present paper we will focus predominantly on theoretical
predictions for the ratio of the L and T production cross
sections on nucleon and nuclear targets we can safely assume
SCHC.

The second test of our approach is the description of the
energy dependence of the production amplitudes [Eqs. (42)
and (43)], which is given by the energy-dependent dipole cross
section. As we mentioned in the previous section σq̄q(r, s)
has a stronger energy dependence at smaller dipole sizes.
According to the scanning phenomenon, the dipole cross
section is scanned at smaller transverse size in the L than in
the T production amplitude. Consequently, the L production
amplitude has a stronger energy dependence and so we expect
a weak energy dependence of the ratio RLT . Model predictions
at W = 15 and 90 GeV are depicted in Figs. 2 and 3 by the
dashed and solid lines. One can see that the data error bars are
too large to see such a weak energy dependence.

IV. INCOHERENT PRODUCTION OF VECTOR MESONS
OFF NUCLEI

A. Introduction

In diffractive incoherent (quasielastic) production of vector
mesons off nuclei, γ ∗A → V X, one sums over all final states
of the target nucleus, except those that contain particle (pion)
creation. The observable that is usually studied experimentally
is the nuclear transparency, defined as

T r inc
A = σ inc

γ ∗A→V X

Aσγ ∗N→V N

. (53)

The t slope of the differential quasielastic cross section is the
same as on a nucleon target. Therefore, instead of integrated
cross sections one can also use the forward differential cross

sections given in Eq. (11) to write

T r inc
A = 1

A

∣∣∣∣Mγ ∗A→V X(s,Q2)

Mγ ∗N→V N (s,Q2)

∣∣∣∣2

. (54)

We consider also the production of either longitudinal or trans-
verse polarized vector mesons on nucleon and nuclear targets,
and then one can define nuclear transparency separately for
incoherent production of L and T vector mesons as

T r inc
A (L) = 1

A

∣∣∣∣∣Mγ ∗
LA→VLX(s,Q2)

Mγ ∗
LN→VLN (s,Q2)

∣∣∣∣∣
2

(55)

and

T r inc
A (T ) = 1

A

∣∣∣∣∣Mγ ∗
T A→VT X(s,Q2)

Mγ ∗
T N→VT N (s,Q2)

∣∣∣∣∣
2

. (56)

However, to study the ratio of L and T polarized vector
meson production on nuclear targets using forward differential
cross sections we should also include the difference between
the L and T slope parameters, as was done in the previous
section [see Eq. (45)]:

RA
LT (inc) =

σ inc
γ ∗

LA→VLX

σ inc
γ ∗

T A→VT X

=
∣∣∣∣∣Mγ ∗

LA→VLX(s,Q2)

Mγ ∗
T A→VT X(s,Q2)

∣∣∣∣∣
2

BT

BL

= RLT

T r inc
A (L)

T r inc
A (T )

= RLT finc(s,Q2, A), (57)

where the nuclear transparencies T r inc
A (L) and T r inc

A (T ) for
L and T polarized vector mesons are given by Eqs. (55) and
(56), respectively. The variable finc in Eq. (57) represents the
nuclear modification factor already introduced by Eq. (9).

B. The LC Green function formalism

The nuclear forward production amplitude Mγ ∗A→V X

(s,Q2) was calculated by using the LC Green function
approach in Ref. [28]. In this approach the physical photon
|γ ∗〉 is decomposed into different Fock states, namely, the
bare photon |γ ∗〉0 plus |q̄q〉, |q̄qG〉, etc. As we mentioned
earlier the higher Fock states containing gluons describe
the energy dependence of the photoproduction reaction on a
nucleon. In addition, these Fock components also lead to gluon
shadowing as far as nuclear effects are concerned. However,
these fluctuations are heavier and have a shorter coherence time
(lifetime) than the lowest |q̄q〉 state, and therefore at medium
energies only the |q̄q〉 fluctuations of the photon matter.
Consequently, gluon shadowing, related to the higher Fock
states, will dominate at high energies. A detailed description
and calculation of gluon shadowing for the case of vector
meson production off nuclei is presented in Refs. [28,40]. In
the HERMES kinematical range studied in the present paper
gluon shadowing is negligible and therefore is not included in
the calculations.

The propagation of an interacting q̄q pair in a nuclear
medium is described by the Green function satisfying the
evolution equation (22). However, the potential in this case
acquires an imaginary part, which represents absorption in the
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medium [see Eq. (6) for notation],

ImVq̄q(z2, �r, α) = −σq̄q(�r, s)

2
ρA(b, z2). (58)

The evolution equation (22), with the potential Vq̄q(z2, �r2, α)
containing this imaginary part, was used in Refs. [33,34]. In
particular, nuclear shadowing in deep-inelastic scattering was
calculated, in good agreement with data.

Analytical solutions of Eq. (22) are only known for
the harmonic oscillator potential V (r) ∝ r2. Furthermore, to
keep the calculations reasonably simple we use the dipole
approximation

σq̄q(r, s) = C(s)r2, (59)

which allows us to obtain the Green function in an analytical
form [see Eq. (24)].

The energy-dependent factor C(s) was adjusted by de-
manding that the calculations employing the approximation of
Eq. (59) reproduce correctly the results based on the realistic
cross section [Eq. (12)], in the limit lc � RA (the so-called
frozen approximation), when the Green function takes the
simple form

Gq̄q(z1, �r1; z2, �r2)

⇒ δ(�r1 − �r2) exp

[
−1

2
σq̄q(r1)

∫ z2

z1

dz ρA(b, z)

]
, (60)

where the dependence of the Green function on impact
parameter has been dropped. A detailed description of the
determination of the factors C(s), separately for coherent and
incoherent vector meson production, is presented in Ref. [28].

With the potential given by Eqs. (58) and (59), the solution
of Eq. (22) has the same form as Eq. (24), except that one
should replace ω with �, where

� =
√

a4(α) − iρA(b, z)να(1 − α)C(s)

να(1 − α)
. (61)

The evolution equation (22), with the potential Vq̄q(z2,

�r2, α) containing the imaginary part [Eq. (58)], and with
the realistic dipole cross section [Eq. (12)], was recently
solved numerically for the first time in Ref. [66]. There
it was shown that the nuclear shadowing in deep-inelastic
scattering depends on the form of the dipole cross section σq̄q .
However, the approximation (59) gives a nuclear shadowing
that is very close to realistic numerical calculations using the
parametrization of Eq. (12), in the HERMES kinematical range
under consideration in the present paper. For this reason we
can safely use the dipole approximation (59) for the calculation
of vector meson production.

C. Different regimes for incoherent production of vector mesons

As we discussed in Ref. [28], the value of lc can distinguish
different regimes of vector meson production.

(i) When the CL is much shorter than the mean nucleon
spacing in a nucleus (lc → 0), G(z2, �r2; z1, �r1) → δ(z2 − z1).
Correspondingly, the formation time of the meson wave
function is very short, and it is given by Eq. (4). For light vector
mesons lf ∼ lc, and since the formation and coherence lengths

are proportional to the photon energy, both must be short.
Consequently, nuclear transparency is given by the simple
formula [Eq. (6)] corresponding to the Glauber approximation.

(ii) In the production of charmonia and other heavy flavors,
the intermediate case lc → 0, but lf ∼ RA, can be realized.
Then the formation of the meson wave function is described
by the Green function, and the numerator of the nuclear
transparency ratio, Eq. (54), has the form [31]

|Mγ ∗A→V X(s,Q2)|2lc→0;lf ∼RA

=
∫

d2b

∫ ∞

−∞
dz ρA(b, z)|F1(b, z)|2, (62)

where

F1(b, z) =
∫ 1

0
dα

∫
d2r1d

2r2�
∗
V (�r2, α)

×G(z′, �r2; z, �r1)σq̄q(r1, s)�γ ∗ (�r1, α)|z′→∞. (63)

(iii) In the high-energy limit (lc � RA; in fact, it is more
correct to compare with the mean free path of the q̄q in
a nuclear medium if the latter is shorter than the nuclear
radius), G(z2, �r2; z1, �r1) → δ(�r2 − �r1) (i.e., all fluctuations of
the transverse q̄q separation are “frozen” by Lorentz time
dilation). Then, the numerator on the right-hand side (r.h.s.) of
Eq. (54) takes the form [31]

|Mγ ∗A→V X(s,Q2)|2lc�RA
=

∫
d2bTA(b)

×
∣∣∣∣∫ d2r

∫ 1

0
dα�∗

V (�r, α)σq̄q(r, s)

× exp

[
−1

2
σq̄q(r, s)TA(b)

]
�γ ∗ (�r, α,Q2)

∣∣∣∣2

. (64)

In this case the q̄q pair attenuates with a constant absorption
cross section, as in the Glauber model, except that the whole
exponential is averaged rather than just the cross section
in the exponent. The difference between the results of the
two prescriptions are the well-known inelastic corrections of
Gribov [7].

(iv) In the general case when there are no restrictions for
either lc or lf , the corresponding theoretical tool has been
developed for the first time only recently in Ref. [28] and
has been applied to electroproduction of light vector mesons
at medium and high energies. The same approach was used
later for the study of virtual photoproduction of heavy vector
mesons [29,30]. Even within the VDM the Glauber model
expression interpolating between the limiting cases of low
[(i) and (ii)] and high [(iii)] energies has also been derived
only recently [41]. In this general case the incoherent nuclear
production amplitude squared is represented as a sum of two
terms [67],

|Mγ ∗A→V X(s,Q2)|2 =
∫

d2b

∫ ∞

−∞
dz ρA(b, z)

× |F1(b, z) − F2(b, z)|2. (65)

The first term, F1(b, z), introduced in Eq. (63), corresponds
to the short lc limit (ii). The second term, F2(b, z), in Eq. (65)
corresponds to the situation when the incident photon produces
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a q̄q pair diffractively and coherently at the point z1, prior to
incoherent quasielastic scattering at point z. The LC Green
functions describe the evolution of the q̄q over the distance
from z1 to z and further on, up to the formation of the meson
wave function. Correspondingly, this term has the form

F2(b, z) = 1

2

∫ z

−∞
dz1 ρA(b, z1)

∫ 1

0
dα

∫
d2r1d

2r2d
2r

×�∗
V (�r2, α)G(z′ → ∞, �r2; z, �r)σq̄q(�r, s)

×G(z, �r; z1, �r1)σq̄q(�r1, s)�γ ∗ (�r1, α). (66)

Equation (65) correctly reproduces the limits (i)–(iii).
At lc → 0 the second term, F2(b, z), vanishes because of
strong oscillations, and Eq. (65) reproduces the Glauber
expression [Eq. (6)]. At lc � RA the phase shift in the
Green functions can be neglected and they acquire the simple
form G(z2, �r2; z1, �r1) → δ(�r2 − �r1). In this case the integration

over longitudinal coordinates in Eqs. (63) and (66) can be
performed explicitly, and the asymptotic expression [Eq. (64)]
is recovered as well.

D. The nuclear ratio RA
LT (inc) in the limit of long coherence
length (lc � RA)

One can see from Eqs. (9) and (57) that the nuclear ratio
RA

LT (inc) differs from the nucleon ratio RLT by the nuclear
modification factor for the incoherent process finc(s,Q2, A),
given also as the ratio T r inc

A (L)/T r inc
A (T ) of nuclear trans-

parencies for the corresponding polarizations L and T .
To understand more intuitively and simply the Q2 and A

dependence of the nuclear ratio RA
LT (inc), it is convenient

to present the nuclear transparency in the high-energy limit
[lc � RA; see Eq. (64)]:

T r inc
A

∣∣
lc�RA

=
∫

d2bTA(b)
∣∣ ∫ d2r

∫ 1
0 dα�∗

V (�r, α)σq̄q(r, s) exp
[ − 1

2σq̄q(r, s)TA(b)
]
�γ ∗ (�r, α,Q2)

∣∣2

A
∣∣ ∫ d2r

∫ 1
0 dα�∗

V (�r, α)σq̄q(r, s)�γ ∗(�r, α,Q2)
∣∣2

= 1 − �
1

A

∫
d2bTA(b)2 + · · · , (67)

where the CT observable [9]

� =
∫

d2r
∫ 1

0 dα�∗
V (�r, α)σ 2

q̄q(r, s)�γ ∗ (�r, α,Q2)∫
d2r

∫ 1
0 dα�∗

V (�r, α)σq̄q(r, s)�γ ∗ (�r, α,Q2)
(68)

measures the strength of the intranuclear final-state interaction
(FSI).

For the sake of clarity in the subsequent discussion we
have explicitly shown in Eq. (67) only the leading term of
the FSI. Evaluation of the strength of the FSI can be done by
using the scanning phenomenon [Eq. (1); see also Eq. (21)
and Fig. 1]. Since the integrand of the matrix element in the
numerator of Eq. (68) is peaked at r ∼ rFSI = 5/3rS,

4 the FSI
is dominated by the contribution from q̄q pairs of transverse
size r ∼ rFSI. At large Q2 � m2

V and/or for production of
heavy vector mesons, when rFSI � RV , the observable � ≈
σq̄q(rFSI, s) and the nuclear transparency tend to unity from
below:

1 − T r inc
A ∝ 〈TA〉 Y 2

Q2 + m2
V

, (69)

where 〈TA〉 is the mean nuclear thickness given by

〈TA〉 =
∫

d2bTA(b)2

A
. (70)

The proportionality in Eq. (69) holds for 1 − T r inc
A � 1.

The nuclear modification factor finc(s,Q2, A) in Eq. (57)
measures the nuclear modification of the nucleon L/T ratio.
Using Eq. (69) and different scanning properties for the

4Extension to the higher order rescattering is straightforward.

production of L and T polarized vector mesons, one can write
the following expression:

finc(Q2, A) − 1 ∝ 〈TA〉 �Y 2
T L

Q2 + m2
V

, (71)

where �Y 2
T L is given by Eq. (50). Thus at large Q2 � m2

V

the factor finc tends to unity from above. On the r.h.s. of
Eq. (71) the mean nuclear thickness causes a rise of finc with
A, whereas the fraction is responsible for the Q2 dependence.

As was already mentioned in Sec. II, different scale
parameters YL and YT lead to different scanning properties
for the production of L and T polarized vector mesons. In
fact, the L production amplitude is controlled by a smaller
dipole size than the T amplitude (YL < YT ). Therefore, the
following can be concluded:

(i) For bottonium production YT
.= YL ∼ 6, the variable

�Y 2
T L → 0, and the nuclear modification factor finc ∼ 1,

for any fixed mass number A of the nuclear target.
Consequently, the Q2 dependence of the nuclear L/T

ratio is almost exactly given by the analogous ratio RLT

for the process on a nucleon target.
(ii) For charmonium production both parameters YL and YT

slightly depend on Q2 and do not differ much from
each other. Consequently, the factor finc > 1 does not
differ much from unity, and it gradually decreases with
Q2, tending to unity at large Q2 � m2

V . According to
Eq. (71), this deviation of finc from unity rises weakly
with A.

(iii) The most interesting situation is in the production of light
vector mesons, where one should expect a much stronger
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FIG. 5. A dependence of the nuclear modification factor finc =
T r inc

A (L)/T r inc
A (T ) as the ratio of nuclear transparencies for inco-

herent production of L and T polarized ρ0 mesons, at different
fixed values of 〈Q2〉. Calculations are performed in the limit of long
coherence length, lc � RA.

nuclear modification of the nucleon ratio RLT than for
heavy mesons. At small and medium values of Q2, such
as rS >∼ RV , there is a strong Q2 dependence of both
scale parameters YL and YT . Moreover, the difference
between YT and YL rises very rapidly with Q2 (see
Fig. 1), resulting in a strong Q2 behavior of �Y 2

T L. The
rise with Q2 of �Y 2

T L in the numerator of the r.h.s. of
Eq. (71) can fully compensate or even overcompensate a
decrease of the r.h.s. of Eq. (71), with (Q2 + m2

V ). This
fact causes a weak Q2 rise of the nuclear modification
factor. Such expectation is confirmed by Fig. 5, where
we present the A dependence of finc for incoherent
production of ρ0 mesons, at several values of 〈Q2〉 and
at ν = 15 GeV, corresponding to HERMES kinematics.

According to Eq. (71), at fixed value of 〈Q2〉 one should
expect a monotonic A rise of finc, caused by the mean nuclear
thickness 〈TA〉. This is in accordance with the predictions
presented in Fig. 5, where one can see quite a strong nuclear
modification of the nucleon L/T ratio for heavy nuclei.

Using our results for the nucleon L/T ratio (see Fig. 2)
and for the nuclear modification factor finc (see Fig. 5), we
calculated the nuclear L/T ratio. The results are depicted
in Fig. 6. One can see again a monotonic A dependence of
RA

LT (inc), coming from the A behavior of finc.
Finally, we emphasize that the discussion presented here

concerns the high-energy limit lc � RA, when the q̄q fluc-
tuations can be treated as frozen during the propagation
through the nuclear target. This simplification was used for
a better and more intuitive qualitative understanding of the
Q2 and A behavior of the nuclear ratio RA

LT (inc). In this
frozen approximation any rise of nuclear transparency with
Q2 represents a net manifestation of CT [28–30], because
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FIG. 6. A dependence of the nuclear ratio RA
LT (inc) [Eq. (57)] of

the cross sections [Eq. (64)], for incoherent production of L and T

polarized ρ0 mesons off nuclei, and at different fixed values of 〈Q2〉.
Calculations are performed in the limit of long coherence length,
lc � RA.

CL effects are negligible. Generally, at smaller lc <∼ RA, when
fluctuations of the size of the q̄q pair become important, one
should include in addition CL effects, and therefore go beyond
the simplified frozen approximation. Thus in this kinematical
region one should solve the problem of CT-CL mixing. Both
CT and CL effects are naturally incorporated in the LC Green
function formalism, and the corresponding formulas become
much more complicated, as one can see here. As was analyzed
in detail in Ref. [28], the effects of CL can mock the signal of
CT if the coherence length varies from long to short compared
to the nuclear size. In this case the nuclear transparency rises
with Q2 because the length of the path in nuclear matter
becomes shorter, and the vector meson (or q̄q) attenuates
less. Consequently, the effects of CL lead to a stronger Q2

dependence of T r inc
A than in the frozen approximation, because

both effects work in the same direction. This leads to the
following expectations:

(i) According to the scanning phenomenon [Eq. (1)] and
Eq. (71) one should expect a little bit stronger Q2 de-
pendence of finc. However, in the HERMES kinematical
range the formation length lf >∼ lc and the CL lc ∼ RA

and varies with Q2 approximately from 4 to 1 fm. Then a
different interplay of coherence and formation effects at
different values of Q2 and A can modify or even change
the expected monotonic Q2 dependence of finc (see
Sec. IV E).

(ii) The monotonic A dependence of finc and/or RA
LT (inc)

should remain. The CT-CL mixing can only modify the
rate of the A rise of the nuclear modification factor finc

and/or RA
LT (inc).

In conclusion, we expect that the realistic calculations
performed within the LC Green function approach do not affect
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significantly the expectations and conclusions concerning
the Q2 and A dependence of the nuclear ratio RA

LT (inc) as
presented here in the frozen approximation.

E. Realistic predictions for the nuclear ratio RA
LT (inc)

Exclusive incoherent electroproduction of vector mesons
off nuclei has been suggested in Ref. [9,28] to be a very
convenient process for the investigation of CT. By increasing
the photon virtuality Q2 one squeezes the produced q̄q wave
packet, and such a small colorless system propagates through
the nucleus with little attenuation, provided that the energy
is sufficiently high (lf � RA), so the fluctuations of the q̄q

separation become frozen during propagation. Consequently,
a rise of nuclear transparency T r inc

A (Q2) with Q2 should give
a signal for CT. Indeed, such a rise was observed in the
E665 experiment [6] at Fermilab for exclusive production of
ρ0 mesons off nuclei, and this has been claimed as a manifes-
tation of CT. However, the effect of coherence length [41,68]
leads also to a rise of T r inc

A (Q2) with Q2, therefore imitating
the CT effects. Both effects work in the same direction and
so from this the problem of CT-CL separation arises, although
this has been already solved in Refs. [28,39], where a simple
prescription for the elimination of CL effects from the data on
the Q2 dependence of nuclear transparency was presented. One
should bin the data in a way that keeps lc = const. This means
that one should vary simultaneously ν and Q2, maintaining
the CL Eq. (5) constant,

ν = 1
2 lc

(
Q2 + m2

V

)
. (72)

In this case any rise with Q2 of nuclear transparency signals
CT [28,39].

In the present paper we investigate differences and pe-
culiarities in the production of vector mesons at different
polarizations. The data are usually presented as the ratio
of the nuclear cross sections for production of L and T

polarized vector mesons. Dependence of this ratio on various
variables demonstrates different properties and phenomena in
the production of vector mesons, at separated polarizations.
Therefore it is interesting to study the Q2 and A behavior of the
nuclear ratio RA

LT (inc) = σ inc
A (L)/σ inc

A (T ) as a manifestation of
the polarization dependence of the CT and CL effects. Because
new data from the HERMES Collaboration will appear soon
we provide predictions for the nuclear ratio RA

LT (inc) in the
HERMES kinematical range and analyze the corresponding
phenomena.

Motivated by the expected new data from the HERMES
Collaboration we concentrate in the present paper on the
production of light vector mesons (ρ0 and �0). Because the
results of the calculation for the production of ρ0 and �0

are quite similar we present predictions only for ρ0 mesons.
However, as was discussed in Refs. [28–30], the coherence
and formation effects in electroproduction of vector mesons
off nuclei are much more visible for light than for heavy vector
mesons, as is the case for differences in electroproduction of
L and T polarized vector mesons. The LC Green function
technique is a very effective tool for such studies because both
CT and CL effects are naturally incorporated.

According to Eqs. (9) and (57) the nuclear modification
factor finc [or ratio T r inc

A (L)/T r inc
A (T ) of nuclear transparen-

cies] for incoherent production of L and T polarized vector
mesons represents the strength of the nuclear modification
of the nucleon ratio RLT . Therefore besides the nuclear ratio
RA

LT (inc) the ratio finc is also a very effective variable for the
study of differences in the production of L and T polarized
vector mesons off nuclei.

First we investigate different manifestations of net CT
effects in incoherent electroproduction of L and T polarized ρ0

mesons, using the Eq. (72) prescription, which states that one
should study the Q2 dependence of the factor finc at fixed val-
ues of the CL Eq. (5). According to the scanning phenomenon
[see Eq. (1) and Fig. 1], for incoherent electroproduction of
L polarized vector mesons one expects a stronger CT ef-
fect than for T polarized vector mesons. Consequently, at
arbitrary Q2 the nuclear transparency T r inc

A (L) > T r inc
A (T )

and the nuclear modification factor finc > 1. The results
of finc for incoherent production of ρ0 at values of lc =
0.6, 1.0, 2.0, 3.0, 5.0, and 7 fm are presented in Fig. 7 for
nitrogen, krypton, and lead. One can see the following:

(i) The nuclear modification factor decreases slightly with
Q2, and at fixed lc the photon energy rises with Q2.
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FIG. 7. Q2 dependence of the ratio finc = T r inc
A (L)/T r inc

A (T ) of
nuclear transparencies for incoherent production of L and T polarized
ρ0 mesons on nuclear targets 14N, 84Kr, and 207Pb (from top to
bottom). The CL Eq. (5) is fixed at lc = 0.6, 1.0, 2.0, 3.0, 5.0, and
7.0 fm.
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Because of a weaker Q2 dependence of the nuclear
transparency at larger photon energy, there is also a
smaller difference between T r inc

A (L) and T r inc
A (T ) (i.e.,

a smaller value of finc).
(ii) The Q2 dependence of finc is stronger at smaller

lc. In fact, if the coherence length is long then the
formation length is also long, lf >∼ lc � RA, and nuclear
transparency rises with Q2 only because the mean
transverse separation of the q̄q fluctuation decreases.
Because the production of L polarized vector mesons
is scanned at smaller q̄q transverse separations, the
nuclear transparency T r inc

A (L) > T r inc
A (T ) and finc > 1.

If, however, lc <∼ RA and is fixed, the photon energy rises
with Q2 and the formation length [Eq. (4)] rises as well.
Thus, these two effects, the Q2 dependence of lf and the
q̄q transverse size, add up and lead to a steeper growth
of T r inc

A (Q2) for short lc. Consequently, this stronger Q2

dependence leads to a larger difference between T r inc
A (L)

and T r inc
A (T ) (i.e., to a larger value of finc).

(iii) The weak Q2 rise of finc at large lc >∼ 5 fm is given by
the Reggeon part contribution to the dipole cross section,
Eq. (15).

In Fig. 8 we present the A dependence of the ratio finc at
ν = 15 GeV and at several fixed values of Q2, corresponding to
the HERMES kinematical range. One can see that finc > 1 as
a consequence of the different scanning properties of T r inc

A (L)
and T r inc

A (T ) [see Eq. (71) and subsequent discussion]. Notice
the weak Q2 dependence of finc, coming from the factor
�Y 2

T L/(Q2 + m2
V ) on the r.h.s. of Eq. (71). However, in

contrast to the results from the frozen approximation (see
Fig. 5) the nuclear modification factor finc decreases now
slightly with Q2 as a consequence of a strong CT-CL mixing.
Moreover, at larger values of A >∼ 84 there is a change in the
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FIG. 8. A dependence of the ratio finc = T r inc
A (L)/T r inc

A (T ) of
nuclear transparencies for incoherent production of L and T polarized
ρ0 mesons at different fixed values of 〈Q2〉. Calculations are
performed at the photon energy ν = 15 GeV.

order of the curves calculated for different values of Q2. This
change is a manifestation of a different interplay of coherence
and formation effects as a function of Q2 and A. At larger
Q2 the effects of CL become more important also for lighter
nuclei, when the condition lc <∼ RA starts to be effective.

As we already discussed in Sec. IV D, the A dependence of
the nuclear factor finc comes, in the high-energy limit, from
the A-dependent mean nuclear thickness [see Eqs. (69) and
(70)]. Figure 8 shows that by performing realistic calculations
(without restrictions on the coherence length) we also predict a
monotonic A rise of finc, similar to that obtained in the frozen
approximation (see Fig. 5), because both CT and CL effects
work in the same direction. However, in comparison with the
frozen approximation, the A dependence of the CL-CT mixing
causes a decrease of the A growth of finc.

According to Eq. (57), using known values for the nuclear
modification factor finc (see Fig. 8) and the nucleon L/T

ratio (see Fig. 2), we present in Fig. 9 the A dependence
of the nuclear ratio RA

LT (inc). The predictions are shown at
several values of 〈Q2〉 and at ν = 15 GeV, corresponding to the
HERMES kinematical range. The Q2 dependence of RA

LT (inc)
is given by the convolution of the Q2 behavior of the nucleon
ratio RLT (see Fig. 2) with nuclear factor finc (see Fig. 8). One
can see a monotonic increase of the A dependence of RA

LT (inc)
as a consequence of the monotonic increase with A behavior
of finc.

V. COHERENT PRODUCTION OF VECTOR MESONS

A. The LC Green function formalism

If electroproduction of a vector meson leaves the target
intact, the process is usually called coherent or elastic, and
the mesons produced at different longitudinal coordinates and
impact parameters add up coherently. This fact considerably
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FIG. 9. A dependence of the nuclear ratio RA
LT (inc) [Eq. (57)] of

the cross sections for incoherent production of L and T polarized ρ0

mesons off nuclei, at different fixed values of 〈Q2〉. Calculations are
performed at the photon energy ν = 15 GeV.
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simplifies the expressions for the cross sections, compared to
the case of incoherent production. The integrated cross section
has the form

σ coh
A ≡ σ coh

γ ∗A→V A =
∫

d2q

∣∣∣∣∫ d2bei �q·�bMcoh
γ ∗A→V A(b)

∣∣∣∣2

=
∫

d2b|Mcoh
γ ∗A→V A(b)|2, (73)

where the coherent nuclear production amplitude is expressed
as

Mcoh
γ ∗A→V A(b) =

∫ ∞

−∞
dz ρA(b, z)F1(b, z) (74)

and the function F1(b, z) is defined by Eq. (63).
In contrast to incoherent vector meson production, the

t slopes of the differential cross sections for nucleon and
nuclear targets are different and do not cancel in the ratio.
Therefore, the coherent nuclear transparency also includes the
slope parameter Bγ ∗N for the process γ ∗N → V N ,5

T rcoh
A = σ coh

A

AσN

= 16πBγ ∗Nσ coh
A

A|Mγ ∗N→V N (s,Q2)|2 . (75)

Because we study the L/T ratio of nuclear cross sections, just
as for incoherent vector meson production [see Eq. (57)] one
can define the coherent nuclear ratio RA

LT (coh) as

RA
LT (coh) =

σ coh
γ ∗

LA→VLA

σ coh
γ ∗

T A→VT A

= RLT

T rcoh
A (L)

T rcoh
A (T )

= RLT fcoh(s,Q2, A), (76)

where T rcoh
A (L) and T rcoh

A (T ) are defined by Eq. (75) and
represent the nuclear transparencies for coherent production
of L and T polarized vector mesons, respectively. The nucleon
L/T ratio RLT in Eq. (76) is defined by Eq. (45).

B. The nuclear ratio RA
LT (coh) in the limit of long coherence
length (lc � RA)

Expression (73) is simplified in the limit of long coherence
time (lc � RA) as

σ coh
A

∣∣
lc�RA

= 4
∫

d2b

∣∣∣∣∣
∫

d2r

{
1 − exp

[
−1

2
σq̄q(�r, s)TA(b)

]}

×
∫ 1

0
dα�∗

V (�r, α)�γ ∗ (�r, α)

∣∣∣∣2

. (77)

Here, again, for the sake of clarity in the subsequent
discussion we assume the frozen approximation (lc � RA),
which simplifies the expressions for the cross sections and
allows us to understand on a qualitative level the differences
between coherent production of L and T polarized vector

5Note that, in contrast to incoherent production, where nuclear
transparency is expected to saturate as T r inc

A (Q2) → 1 at large Q2,
for the coherent process nuclear transparency reaches a higher limit,
T rcoh

A (Q2) → A1/3.

mesons. The generalization of this long-lc limit to a more
complicated realistic case using the LC Green function
approach will be discussed in Sec. V C.

In the limit lc � RA the total integrated cross section for
coherent vector meson production is given by Eq. (77), and
consequently the nuclear ratio RA

LT (coh) can be written as

RA
LT (coh) = RLT

BL

BT

.

∫
d2bT 2

A(b)
[
1 − 1

2�LTA(b) + · · · ]∫
d2bT 2

A(b)
[
1 − 1

2�T TA(b) + · · · ]
= RLT

BL

BT

.
〈TA〉 − 1

2�L〈T 2
A〉 + · · ·

〈TA〉 − 1
2�T 〈T 2

A〉 + · · · , (78)

where the mean nuclear thickness 〈TA〉 is defined by Eq. (70),
and the mean nuclear thickness squared 〈T 2

A〉 is given by〈
T 2

A

〉 =
∫

d2bTA(b)3

A
. (79)

In Eq. (78) the variable � is defined by Eq. (68) and for
simplicity we have explicitly shown only the leading term of
the FSI.

As we discussed in Sec. IV, the FSI is dominated by the
contribution from q̄q pairs of transverse size r ∼ rFSI = 5/3rS .
At large Q2 � m2

V and/or for production of heavy vector
mesons, when rFSI � RV the observable � ≈ σq̄q(rFSI, s), and
according to the scanning phenomenon [Eq. (1)] the func-
tion 1 − g(Q2)T rcoh

A scales with (Q2 + m2
V ) [compare with

Eq. (69)],

1 − g(Q2)T rcoh
A ∝ 〈TA〉 Y 2

Q2 + m2
V

, (80)

where the Q2-dependent function g(Q2) reads

g(Q2) = 1

〈TA〉
1

16πB(Q2)
. (81)

The relation (80) holds for 1 − g(Q2)T rcoh
A � 1.

It can be seen from Eq. (76) that, in analogy with finc,
one can define the coherent nuclear modification factor fcoh

as the ratio of the coherent nuclear and nucleon L/T ratio.
A deviation of fcoh from unity as a function of Q2 and A

provides information about how the coherence and formation
effects manifest themselves in coherent electroproduction of
vector mesons at different polarizations L and T . Therefore
now we discuss the Q2 and A dependence of fcoh. For this
purpose it is convenient to write the following expression,
using Eqs. (78), (80), and (81):

BT

BL

fcoh − 1 ∝ �Y 2
T L

Q2 + m2
V

〈T 2
A〉

〈TA〉 ≈ 〈TA〉 �Y 2
T L

Q2 + m2
V

, (82)

where 〈T 2
A〉 is defined by Eq. (79). Within the discussed frozen

approximation we include for simplicity in Eq. (82) only the
leading term of the FSI, when Q2 � m2

V .
By assuming the equality BL = BT , Eq. (82) leads to an

analogous Q2 and A behavior of fcoh, as the one in Eq. (71)
for the incoherent nuclear modification factor finc. This is
fulfilled at large Q2 � m2

V and/or for the production of heavy
vector mesons, when the relativistic effects are small enough
to apply safely the nonrelativistic approximation. At small and
medium Q2, however, BL < BT [59] and the BT /BL ratio
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on the left-hand side (l.h.s.) of Eq. (82) reduces the coherent
nuclear factor fcoh. Consequently, for light nuclear targets A <∼
10 the factor fcoh can be less than unity.

As was discussed in detail in Sec. IV D, for bottonium
production YT

.= YL ∼ 6, and the slope parameters BL ≈ BT .
Consequently, fcoh ∼ 1 and the Q2 dependence of the nuclear
L/T ratio for coherent reactions is almost exactly given by
the analogous ratio RLT for the process on a nucleon. This
conclusion is essentially the same as the one expected for
incoherent production of bottonia.

For charmonium production both YL and YT depend
slightly on Q2 and do not differ much from each other.
Consequently, the difference �Y 2

T L acquires a small value and
rises very weakly with Q2. Because BT /BL ≈ 1.03 in the
photoproduction limit, the nuclear factor fcoh can go below
unity at small values of Q2 and A. As Q2 increases the ratio
BT /BL tends to unity from above and fcoh gradually comes
to unity from below at small A or from above at medium and
large A.

In contrast to the production of heavy vector mesons, for
the production of light vector mesons we expect much larger
nuclear modifications of the nucleon ratio RLT , just as for
the incoherent processes discussed in Sec. IV. At small and
medium Q2 such as rS >∼ RV , there is a strong Q2 dependence
of �Y 2

T L, which can even overcompensate the rise of (Q2 +
m2

V ) in the denominator of Eq. (82). This fact can lead to a weak
rise with Q2 of the coherent nuclear factor fcoh, which is further
enhanced by the decrease of the BT /BL ratio on the l.h.s. of
Eq. (82). As a result, we expect a stronger Q2 dependence
of fcoh than of finc. Such an expectation is supported by
calculations performed in the limit of long coherence length
and is shown in Fig. 10 (compare with Fig. 5).
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of the cross sections [Eq. (77)] for coherent production of L and
T polarized ρ0 mesons off nuclei, at different fixed values of 〈Q2〉.
Calculations are performed in the limit of long coherence length,
lc � RA.

Concluding, in the HERMES kinematical range, ∼ 1 <

Q2 < 5 GeV2, studied in the present paper, we expect a rise
with Q2 of the nuclear modification factor fcoh. The rate of
this rise is then given by the mean nuclear thickness, as follows
from Eq. (82). Consequently, we expect a monotonic rise of
fcoh with A, just as for the incoherent nuclear modification
factor finc (see also Fig. 5). Monotonic A-increase behavior
of fcoh is confirmed also by the predictions depicted in
Fig. 10 at several values of 〈Q2〉, corresponding to the
HERMES kinematical range.

For completeness we also calculated the nuclear L/T ratio
using the known nuclear modification factor fcoh and the
nucleon L/T ratio. The results are presented in Fig. 11.
One can see a monotonic A dependence of RA

LT (coh) as
a consequence of a corresponding monotonic A-increase
behavior of fcoh.

In the following section we demonstrate, however, that
in contrast to incoherent vector meson production such a
picture of Q2 and A behavior for fcoh and/or RA

LT (coh)
drastically changes going beyond this frozen approximation.
This is the crucial point that leads to interesting physics in the
investigation of light vector mesons produced coherently off
nuclei.

C. Realistic predictions for the nuclear ratio RA
LT (coh)

Analogously as was done for incoherent production of
vector mesons, here we study the differences in coherent
electroproduction of L and T polarized vector mesons off
nuclei, performing a realistic calculation without restrictions
on the CL. We focus on the production of ρ0 mesons,
where CT and CL effects are the most visible. This is also
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supported by our expectations about the new data from the
HERMES Collaboration, and therefore our calculations cover
the corresponding kinematical range. We use the LC Green
function formalism, which naturally incorporates both CT and
CL effects.

First, we study the net CT effect in L and T polarizations,
by eliminating the effects of CL in a way similar to what was
suggested for incoherent reactions, which involves selecting
experimental data with lc = const. We calculated the nuclear
modification factor fcoh for the coherent reaction γ ∗A → ρ0A

as a function of Q2, at different fixed values of lc. The results
for lc = 0.6, 1.0, 2.0, 3.0, 5.0, and 7.0 fm are depicted in
Fig. 12. In contrast to the incoherent processes one can observe
a much more complicated Q2 behavior, which is the result of an
interplay between CT and CL effects when a contraction of the
CL causes an effect opposite to that of CT. This CL-CT mixing
as a function of Q2 changes the order of curves calculated at
different values of lc.

Following Eq. (76) we give the coherent nuclear factor
fcoh as the ratio T rcoh

A (L)/T rcoh
A (T ) of nuclear transparencies

for coherent production of L and T polarized vector mesons.
It represents the strength of the nuclear modification of the
nucleon ratio RLT . In Fig. 13 we present the A dependence
of fcoh for ρ0 production, at photon energy ν = 15 GeV
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ρ0 electroproduction
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f co
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FIG. 12. Q2 dependence of the ratio fcoh = T rcoh
A (L)/T rcoh

A (T )
of nuclear transparencies for coherent production of L and T

polarized ρ0 mesons on nuclear targets 14N, 84Kr, and 207Pb (from
top to bottom). The CL Eq. (5) is fixed at lc = 0.6, 1.0, 2.0, 3.0, 5.0,

and 7.0 fm.
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FIG. 13. A dependence of the ratio fcoh = T rcoh
A (L)/T rcoh

A (T )
of nuclear transparencies for coherent production of L and T

polarized ρ0 mesons at different fixed values of 〈Q2〉. Calculations
are performed at the photon energy ν = 15 GeV.

and several fixed values of 〈Q2〉, corresponding to the
HERMES kinematical range. One can see that the predictions
dramatically changed from those that we found for the limit of
long CL, lc � RA, in Sec. V B. This is because the HERMES
kinematics does not allow us to neglect the effects of CL.
Only at very small A <∼ 4 and at Q2 <∼ 3 GeV2 can one
assume small CL effects, because lc > RA. Then the A and
Q2 behavior of fcoh follows the scenario described within the
frozen approximation (see Sec. V B), which means that fcoh

rises with Q2 and has a monotonic A dependence.
In Ref. [28] it was demonstrated that for coherent pro-

duction of vector mesons the contraction of the CL with Q2

causes an effect opposite to that of CT. Nuclear transparency is
suppressed rather than enhanced. At large Q2, when lc <∼ RA,
and at medium energies, corresponding to the HERMES
kinematics, the suppression of nuclear transparency can be
so strong that it fully compensates or even overcompensates
the rise of nuclear transparency with Q2 given by CT.
Because T rcoh

A (L) is scanned at smaller dipole sizes than
T rcoh

A (T ), one can expect that at fixed Q2 the former nuclear
transparency has stronger CL effects than the latter one. This
different manifestation of CL effects for L and T polarizations
depends also on A. Consequently, one may expect a nontrivial
and nonmonotonic A and Q2 dependence of the nuclear
modification factor fcoh.

Mainly because of the effects of CL, there is an unusual
order of curves at different values of 〈Q2〉, as is shown in
Fig. 13. Moreover, the order of curves is changed at various
values of A, as a consequence of the fact that the condition lc �
RA is broken in a different degree for different nuclear targets.
At 〈Q2〉 = 1 GeV2 the effects of CL start to be important
at A >∼ 100 and lead to a diminishing of the A rise of the
nuclear factor fcoh. One can see by the thick solid line in
Fig. 13 that there is even a maximum of fcoh at A ∼ 200,

025210-18122



PRODUCTION OF POLARIZED VECTOR MESONS OFF NUCLEI PHYSICAL REVIEW C 76, 025210 (2007)

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

1 10 10
2

A

R
L

T
 A

 (
co

h)

COHERENT

< Q2 > = 1.0 GeV2

< Q2 > = 1.5 GeV2

< Q2 > = 2.0 GeV2

< Q2 > = 3.0 GeV2

< Q2 > = 5.0 GeV2

FIG. 14. A dependence of the nuclear ratio RA
LT (coh) (76) of

the cross sections for coherent production of L and T polarized ρ0

mesons off nuclei at different fixed values of 〈Q2〉. Calculations are
performed at the photon energy ν = 15 GeV.

as a natural demonstration of the effectiveness of CL effects.
Larger 〈Q2〉 leads to a contraction of the CL. Consequently,
the effect of CL-contraction becomes also important for lighter
nuclear targets, which means that the maximum is shifted to
smaller values of A. The combination of the A rise of fcoh

through the nuclear profile function [Eq. (8)], together with
the different manifestation of CL effects as a function of Q2

and A, lead to a nontrivial and nonmonotonic A dependence of
fcoh, as is shown in Fig. 13. This A dependence is even more
complicated at larger values of 〈Q2〉, when the CL effects are
effective at a different level, for a broader range of nuclear
targets.

In Fig. 14 we present the A dependence of the nuclear ratio
RA

LT (coh), obtained from the nuclear modification factor fcoh

and the nucleon L/T ratio [see Eq. (76)]. The predictions
are shown at several values of 〈Q2〉, and at ν = 15 GeV,
corresponding to the HERMES kinematical range. One can
see that a nonmonotonic A dependence of fcoh is projected
into a nonmonotonic A dependence of RA

LT (coh). The Q2

dependence of RA
LT (coh) is given by the convolution of the Q2

behavior of the nucleon ratio RLT (see Fig. 2) with the nuclear
factor fcoh (see Fig. 13). The predicted anomalous A behavior
of the coherent nuclear ratio RA

LT (coh) at different values of
〈Q2〉 is a undeniable and irrefutable manifestation of strong
CL effects and can be tested by the HERMES Collaboration
or at JLab.

VI. SUMMARY AND CONCLUSIONS

Electroproduction of vector mesons off nuclei is a very
effective tool for the study of the interplay between coherence
(shadowing) and formation (color transparency) effects. In
the present paper we investigated how these effects manifest

themselves differently in the production of L and T polarized
vector mesons off nuclei. The data are usually presented as
the L/T ratio of the nuclear production cross sections. Then
an investigation of the behavior of this ratio as a function
of various variables (Q2, A, etc.), and a deviation of this
ratio from unity, allows the study of different properties and
manifestations of corresponding phenomena in the produc-
tion of vector mesons, at separated polarizations. We used,
from Ref. [28], a rigorous quantum-mechanical approach
based on the light-cone QCD Green function formalism,
which naturally incorporates these interference effects. We
focused on the production of light vector mesons, because
here the polarization dependence of CT and CL effects is
much more visible than in the production of heavy vector
mesons. Because new data from the HERMES Collaboration
are expected to appear soon, we presented predictions for
the nuclear L/T ratios [see Eqs. (57) and (76)] within the
corresponding kinematical range. These predictions are made
for ρ0 mesons produced both coherently and incoherently off
nuclei.

The strength of the nuclear modification of the nucleon
L/T ratio [Eq. (45)] is given by the nuclear modification
factors finc and fcoh, which are defined as the ratio of nuclear
transparencies for electroproduction of L and T polarized
vector mesons [see Eqs. (57) and (76)]. If these factors are
equal to unity there are no nuclear effects. Therefore in addition
tp the nuclear L/T ratios, the nuclear modification factors are
also very effective variables for the study of differences in the
production of L and T polarized vector mesons off nuclei. The
nuclear L/T ratio is then given as the product of the nucleon
L/T ratio and the nuclear modification factor.

As the first step we compare the nucleon L/T ratio as a
function of Q2 with available data on electroproduction of
ρ0 and �0 mesons and charmonia and find a nice agreement
(see Figs. 2, 3, and 4). This is a very important achievement
because the nucleon L/T ratio represents a basis for the
correct determination of the nuclear L/T ratio via the nuclear
modification factor.

To obtain more intuitive information about the A and Q2

behavior of the nuclear L/T ratio and/or nuclear modification
factor we presented on the qualitative level, using the scanning
phenomenon [Eq. (1)], the corresponding predictions in the
high-energy limit (lc � RA). Here the expressions for nuclear
production cross sections are sufficiently simplified. This
so-called frozen approximation includes only CT because there
are no fluctuations of the transverse size of the q̄q pair. For
incoherent electroproduction of ρ0 mesons we predict a very
weak Q2 growth of finc in the HERMES kinematical range
(see Fig. 5) owing to a strong Q2 rise of a difference between
the scanning radii corresponding to T and L polarizations
[see Fig. 1 and Eq. (1)]. In contrast to incoherent processes,
for ρ0 mesons produced coherently off nuclei one should
include in fcoh also the slope parameters BL and BT for
different polarizations L and T [see Eq. (82)]. Consequently,
we expect a stronger Q2 dependence of fcoh (see Fig. 10)
owing to different Q2 dependences of the corresponding slope
parameters. We predict a monotonic rise with A of both nuclear
factors finc and fcoh, which comes from the A-dependent mean
nuclear thickness.
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The “frozen” approximation cannot be applied for the study
of differences in electroproduction of vector mesons off nuclei
at different polarizations, in the HERMES kinematical range.
Therefore we use the approach of Ref. [28], which interpolates
between the previously known low- and high-energy limits for
incoherent production [see Eq. (65)]. Equation (74) does the
same for coherent production.

In the incoherent electroproduction of vector mesons at
low and medium energies, the onset of coherence effects
(shadowing) can mimic the expected signal of CT. Both effects,
CT and CL, work in the same direction. In comparison with
the high-energy limit, the onset of CL has little effect on the
A and Q2 behavior of finc. Consequently, we predict again a
weak Q2 dependence of finc (see Fig. 8). An investigation of
the A dependence of finc reveals that the interplay between
CT and CL effects changes the order of curves calculated
at different values of Q2. The CL-CT mixing also modifies
the rate of the A rise of finc, but it conserves the monotonic
A dependence typical for the frozen approximation (see
Fig. 8). Therefore we predict a monotonic A increase behavior
of the nuclear L/T ratio as well at different values of Q2 (see
Fig. 9).

In coherent production of vector mesons the natural
incorporation of the CL effects in the Green function formalism
changes drastically the A and Q2 behavior of fcoh predicted
for the high-energy limit. The contraction of the CL with
Q2 causes an effect opposite to that of CT. There is a
different manifestation of CL effects at various values of
Q2 and A, which together with CT effects leads to a
nontrivial and anomalous A and Q2 dependence of the nuclear
modification factor. The nonmonotonic A dependence is even
more complicated at larger values of Q2 as a result of stronger
CL effects for a broader range of nuclear targets (see Fig. 8).
Consequently, we predict also a nonmonotonic and anomalous
A dependence of the nuclear L/T ratio at different values of

Q2 (see Fig. 14), which gives a motivation to detect such
anomalous manifestations of strong CL effects in experiments
with the HERMES spectrometer and especially at JLab.

We also investigated different manifestations of net CT
effects at different polarizations L and T , using a prescription
from Refs. [28,39], calculating the nuclear modification factor
as a function of Q2 at various fixed values of the coherence
length.

(i) In incoherent production of ρ0 mesons, we found a
stronger CT effects for L than for T polarization (i.e.,
finc > 1). Moreover, finc rises toward small values of Q2

at short lc <∼ RA (see Fig. 7). The two effects, that is, the
Q2 dependence of lf and the q̄q transverse size, add up
and lead to a steeper Q2 growth of nuclear transparency,
and consequently to larger values of finc.

(ii) In coherent production of ρ0 mesons we predicted also
fcoh > 1 (see Fig. 12). However, the Q2 behavior of fcoh

is more complicated in comparison with the incoherent
reaction, which follows from the fact that a contraction
of the CL with Q2 causes an effect opposite to that of
CT. Then the CT-CL mixing as a function of Q2 changes
the order of curves calculated at different values of lc.

In conclusion, the exploratory study of the A dependence of
the nuclear L/T ratio, especially in coherent electroproduction
of light vector mesons off nuclei, opens new possibilities for
the search for the CL effects and their different manifestations
at different polarizations with medium-energy electrons.
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Abstract

Within a light-cone quantum-chromodynamics dipole formalism based on
the Green function technique, we study nuclear shadowing in deep-inelastic
scattering at small Bjorken xBj � 0.01. Such a formalism incorporates naturally
color transparency and coherence length effects. Calculations of the nuclear
shadowing for the q̄q Fock component of the photon are based on an exact
numerical solution of the evolution equation for the Green function, using a
realistic form of the dipole cross section and nuclear density function. Such
an exact numerical solution is unavoidable for xBj � 10−4, when a variation
of the transverse size of the q̄q Fock component must be taken into account.
The eikonal approximation, used so far in most other models, can be applied
only at high energies, when xBj � 10−4 and the transverse size of the q̄q

Fock component is ‘frozen’ during propagation through the nuclear matter. At
xBj � 0.01, we find quite a large contribution of gluon suppression to nuclear
shadowing, as a shadowing correction for the higher Fock states containing
gluons. Numerical results for nuclear shadowing are compared with the
available data from the E665 and NMC collaborations. Nuclear shadowing
is also predicted at very small xBj corresponding to LHC kinematical range.
Finally, the model predictions are compared and discussed with the results
obtained from other models.

1. Introduction

Nuclear shadowing in deep-inelastic scattering (DIS) off nuclei is usually studied via nuclear
structure functions. In the shadowing region of small Bjorken, xBj � 0.01, the structure
function F2 per nucleon turns out to be smaller in nuclei than in a free nucleon (see the review
[1], for example). This affects then the corresponding study of nuclear effects, mainly in
connection with the interpretation of the results coming from hadron–nucleus and heavy-ion
experiments.
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Nuclear shadowing, intensively investigated during the last two decades, can be treated
differently depending on the reference frame. In the infinite momentum frame of the nucleus,
it can be interpreted as a result of parton fusion [2–5], leading to a reduction of the parton
density at low Bjorken, xBj. In the rest frame of the nucleus, however, this phenomenon looks
like nuclear shadowing of the hadronic fluctuations of the virtual photon, and occurs due to
their multiple scattering inside the target [6–18]. Although these two physical interpretations
are complementary, the one based on the rest frame of the nucleus is more intuitive and
straightforward.

The dynamics of nuclear shadowing in DIS is controlled by the effect of quantum
coherence, which results from the destructive interference of amplitudes for which the
interaction takes place on different bound nucleons. Taking into account the |q̄q〉 Fock
component of the photon, quantum coherence can be characterized by the lifetime of the
q̄q fluctuation, which, in turn, can be estimated by relying on the uncertainty principle and
Lorentz time dilation as

tc = 2ν

Q2 + M2
q̄q

, (1)

where ν is the photon energy, Q2 is photon virtuality, and Mq̄q is the effective mass of the q̄q

pair. This is usually called coherence time, but we will also use the term coherence length
(CL), since light-cone kinematics is assumed, lc = tc. The CL is related to the longitudinal
momentum transfer by qc = 1/lc. Note that for higher Fock states containing gluons
|q̄qG〉, |q̄q2G〉, . . . , the corresponding effective masses are larger than Mq̄q . Consequently,
these fluctuations have a shorter coherence time than the lowest |q̄q〉 state. The effect of CL
is naturally incorporated in the Green function formalism, which has already been applied to
DIS, Drell–Yan pair production [17–19], and vector meson production [20, 21] (see also the
following section).

In the present paper, nuclear shadowing in DIS will be treated using again the Green
function approach. Such a quantum mechanical treatment requires us to solve the evolution
equation for the Green function. Usually, for simplicity this equation is set up in a such way as
to obtain the Green function in an analytical form (see [17, 19], for example), which requires,
however, to implement several approximations into a rigorous quantum-mechanical approach,
such as a constant nuclear density function (36) and a specific quadratic form (35) of the dipole
cross section. The solution obtained in a such way is the harmonic oscillator Green function
[22] (see also equation (16)), usually used for the calculation of nuclear shadowing [17, 19, 23].
Then, the question about the accuracy of the predictions for nuclear shadowing using such
approximations naturally arises.

In the process of searching for the corresponding answer, in 2003 the evolution equation
for the Green function was solved numerically for the first time in [18]. This allowed
us to exclude any additional assumptions and avoid supplementary approximations, which
caused theoretical uncertainties. The corresponding predictions for nuclear shadowing in
DIS at small xBj, based on the exact numerical solution of the evolution equation for the
Green function [17, 18], showed quite a large difference in comparison with approximate
calculations [19] obtained within the harmonic oscillator Green function approach, in the
kinematic region, when lc � RA (RA is the nuclear radius). However, no comparison
with data was performed using this path integral technique based on an exact numerical
solution of the two-dimensional Schrödinger equation for the Green function. This is
one of the main goals of the present paper. Such a comparison with data provides a
better baseline for future studies of the QCD dynamics, not only in DIS off nuclei but
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also in further processes occurring in lepton (proton)–nucleus interactions and in heavy-ion
collisions.

The calculations of nuclear shadowing in DIS off nuclei presented so far within the light-
cone (LC) Green function approach [17–19] were performed assuming only q̄q fluctuations
of the photon, and neglecting higher Fock components containing gluons and sea quarks.
The effects of higher Fock states are included in the energy dependence of the dipole
cross section, σq̄q(�r, s)5. However, as soon as nuclear effects are considered, these Fock
states |q̄qG〉, |q̄q2G〉, . . . , lead to gluon shadowing (GS), which, for simplicity, has been
neglected so far when the model predictions were compared with experimental data. The
contribution of the gluon suppression to nuclear shadowing represents a shadowing correction
for the multigluon higher Fock states. It was shown in [24] that GS becomes effective
at small xBj � 0.01. The present available experimental data cover the shadowing region
∼0.0001 � xBj � 0.01, and therefore, the contribution of GS to the overall nuclear shadowing
should be included. This is a further goal of the present paper.

Different (but equivalent) descriptions of GS are known, depending on the reference
frame. In the infinite momentum frame of the nucleus it looks like fusion of gluons,
which overlap in the longitudinal direction at small xBj, leading to a reduction of the
gluon density. In the rest frame of the nucleus the same phenomenon looks as a specific
part of Gribov’s inelastic corrections [25]. The lowest order inelastic correction related to
diffractive dissociation γ ∗N → XN [26] contains PPR and PPP contributions (in terms
of the triple-Regge phenomenology, see [27]). The former is related to quark shadowing,
while the latter, the triple-Pomeron term, corresponds to gluon shadowing. Indeed, only
diffractive gluon radiation can provide the MX dependence dσdd

/
dM2

X ∝ 1
/
M2

X of the
diffractive dissociation cross section. In terms of the light-cone QCD approach the same
process is related to the inclusion of higher Fock components, |q̄qnG〉, containing gluons
[28]. Such fluctuations might be quite heavy compared to the simplest |q̄q〉 fluctuation,
and therefore have a shorter lifetime (see equation (1)), and need higher energies to be
relevant.

Calculations of the GS contribution to nuclear suppression have been already performed
within the light-cone QCD approach, for both coherent and incoherent productions of vector
mesons [20, 21], and also for production of Drell–Yan pairs [17]. They showed (except for
the specific case of incoherent production of vector mesons) that GS is a non-negligible effect,
especially for heavy nuclear targets at small and medium values of photon virtualities Q2 �
a few GeV2 and at large photon energies ν. This is another reason to include the effect of GS
for the calculation of nuclear shadowing, especially for making more realistic comparison of
the predictions with experimental data.

Note also that by investigating shadowing in the region of small xBj � 0.01 we can safely
omit the nuclear antishadowing effect that assumed to be beyond the shadowing dynamics
[8, 9].

The paper is organized as follows. In section 2, we present a short description of the light-
cone dipole phenomenology for nuclear shadowing in DIS, together with the Green function
formalism. In section 3, we discuss how gluon shadowing modifies the total photoabsorption
cross section on a nucleus. In section 4, numerical results are presented and compared with
experimental data, and also with the results from other models, in a broad range of xBj. Finally,
in section 5, we summarize our main results and discuss the possibility of future experimental
evidence of the GS contribution to the overall nuclear shadowing in DIS at small values of
xBj.

5 Here �r represents the transverse separation of the q̄q photon fluctuation, and s is the center-of-mass energy squared.
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2. Light-cone dipole approach to nuclear shadowing

In the rest frame of the nucleus the nuclear shadowing in the total virtual photoabsorption
cross section σ

γ ∗A
tot (xBj,Q

2) (or in the structure function FA
2 (xBj,Q

2)) can be decomposed
over different Fock components of the virtual photon. Then the total photoabsorption cross
section on a nucleus can be formally represented in the form

σ
γ ∗A
tot (xBj,Q

2) = Aσ
γ ∗N
tot (xBj,Q

2) − �σtot(xBj,Q
2), (2)

where

�σtot(xBj,Q
2) = �σtot(q̄q) + �σtot(q̄qG) + �σtot(q̄q2G) + · · · . (3)

Here the Bjorken variable xBj is given by

xBj = Q2

2mNν
≈ Q2

Q2 + s
, (4)

where s is the γ ∗-nucleon center-of-mass (cm) energy squared, mN is the mass of the nucleon,
and σ

γ ∗N
tot (xBj,Q

2) in (2) is the total photoabsorption cross section on a nucleon:

σ
γ ∗N
tot (xBj,Q

2) =
∫

d2r

∫ 1

0
dα|�q̄q(�r, α,Q2)|2σq̄q(�r, s). (5)

In this last expression, σq̄q(�r, s) is the dipole cross section, which depends on the q̄q transverse
separation �r and the cm energy squared s, and �q̄q(�r, α,Q2) is the LC wavefunction of the q̄q

Fock component of the photon, which depends also on the photon virtuality Q2 and the relative
share α of the photon momentum carried by the quark. Note that xBj is related to the cm energy
squared s via equation (4). Consequently, hereafter we will write the energy dependence of
variables in subsequent formulae also via an xBj-dependence, whenever convenient.

The total photoabsorption cross section on a nucleon target (5) contains two ingredients.
The first ingredient is given by the dipole cross section σq̄q(�r, s), representing the interaction
of a q̄q dipole of transverse separation �r with a nucleon [29]. It is a flavor-independent
universal function of �r and energy, and allows us to describe various high-energy processes in
an uniform way. It is also known to vanish quadratically, σq̄q(r, s) ∝ r2 as r → 0, due to color
screening (property of color transparency [29–31]), and cannot be predicted reliably because
of poorly known higher order perturbative QCD (pQCD) corrections and nonperturbative
effects. However, it can be extracted from experimental data on DIS and structure functions
using reasonable parametrizations, and in this case pQCD corrections and nonperturbative
effects are naturally included in σq̄q(r, s).

There are two popular parameterizations of σq̄q(�r, s): GBW presented in [32], and
KST proposed in [24]. Detailed discussions and comparison of these two parametrizations
can be found in [18, 20, 23]. Whereas the GBW parametrization cannot be applied in
the nonperturbative region of Q2, the KST parametrization gives a good description of the
transition down to the limit of real photoproduction, Q2 = 0. Because we will study the
shadowing region of small xBj � 0.01, where available experimental data from the E665 and
NMC collaborations cover small and moderate values of Q2 � 2 ÷ 3 GeV2, we will prefer
the latter parametrization.

The KST parametrization [24] has the following form, which contains an explicit
dependence on energy:

σq̄q(r, s) = σ0(s)

[
1 − exp

(
− r2

R2
0(s)

)]
. (6)
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The explicit energy dependence in the parameter σ0(s) is introduced in a such way that it
guarantees that the correct hadronic cross sections is reproduced:

σ0(s) = σ
πp
tot (s)

(
1 +

3R2
0(s)

8
〈
r2

ch

〉
π

)
, (7)

where σ
πp
tot (s) = 23.6(s/s0)

0.079 + 1.432(s/s0)
−0.45 mb, which contains the Pomeron and

Reggeon parts of the πp total cross section [33], and R0(s) = 0.88(s/s0)
−λ/2 fm, with

λ = 0.28, and where s0 = 1000 GeV2 is the energy-dependent radius. In equation (7),〈
r2

ch

〉
π

= 0.44 fm2 is the mean pion charge radius squared. The form of equation (6) successfully
describes the data for DIS at small xBj only up to Q2 ≈ 10 GeV2. Nevertheless, this interval of
Q2 is sufficient for the purpose of the present paper, which is focused on the study of nuclear
shadowing at small xBj � 0.01 in the kinematic range, Q2 � 4 GeV2, covered by the available
E665 and NMC data.

However, as we will present the predictions for nuclear shadowing at very small xBj down
to 10−7 accesible by the prepared experiments at LHC and at larger values of Q2 � 10 GeV2,
we will also use the second GBW parametrization [32] of the dipole cross section.

The second ingredient of σ
γ ∗N
tot (xBj,Q

2) in (5) is the perturbative distribution amplitude
(‘wavefunction’) of the q̄q Fock component of the photon. For transversely (T) and
longitudinally (L) polarized photons it has the form [34, 35, 10]

�
T,L
q̄q (�r, α,Q2) =

√
NCαem

2π
Zqχ̄ÔT ,LχK0(εr), (8)

where χ and χ̄ are the spinors of the quark and antiquark respectively, Zq is the quark charge,
NC = 3 is the number of colors, and K0(εr) is a modified Bessel function with

ε2 = α(1 − α)Q2 + m2
q, (9)

where mq is the quark mass. The operators ÔT ,L read

ÔT = mq �σ · �e + i(1 − 2α)(�σ · �n)(�e · �∇r ) + (�σ × �e) · �∇r , (10)

ÔL = 2Qα(1 − α)(�σ · �n). (11)

Here �∇r acts on the transverse coordinate �r, �e is the polarization vector of the photon, �n is a
unit vector parallel to the photon momentum, and �σ is the 3-vector of the Pauli spin-matrices.

The distribution amplitude equation (8) controls the transverse q̄q separation with the
mean value

〈r〉 ∼ 1

ε
= 1√

Q2α(1 − α) + m2
q

. (12)

For very asymmetric q̄q pairs with α or (1−α) � m2
q

/
Q2 the mean transverse separation

〈r〉 ∼ 1/mq becomes huge, since one must use current quark masses within pQCD. A popular
recipe to fix this problem is to introduce an effective quark mass, meff ∼ �QCD, which
represents the nonperturbative interaction effects between q and q̄. It is more consistent and
straightforward, however, to introduce this interaction explicitly through a phenomenology
based on the light-cone Green function approach, and which has been developed in [24].

The Green function Gq̄q( �r2, z2; �r1, z1) describes the propagation of an interacting q̄q pair
between points with longitudinal coordinates z1 and z2 and with initial and final separations
�r1 and �r2. This Green function satisfies the two-dimensional Schrödinger equation:

i
d

dz2
Gq̄q( �r2, z2; �r1, z1) =

[
ε2 − �r2

2να(1 − α)
+ Vq̄q(z2, �r2, α)

]
Gq̄q( �r2, z2; �r1, z1), (13)
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with the boundary condition

Gq̄q( �r2, z2; �r1, z1)|z2=z1 = δ2( �r1 − �r2). (14)

In equation (13) ν is the photon energy, and the Laplacian �r acts on the coordinate r.
We start with the propagation of a q̄q pair in vacuum. The LC potential Vq̄q(z2, �r2, α)

in (13) contains only the real part, which is responsible for the interaction between q and q̄.
For the sake of simplicity we use an oscillator form of this potential. Although more realistic
models for the real part of the potential are available [36, 37], however, the solution of the
corresponding Schrödinger equation for the light-cone Green function is a challenge. The
analytic solution has been known so far only for the oscillator potential. Otherwise one has to
solve the Schrödinger equation numerically, which needs a dedicated study.

On the other hand, the mean q̄q transverse separation which is fitted to diffraction data is
important. Any form of the potential must comply with this condition. The same restriction
is imposed on the quark–gluon Fock states. The mean quark–gluon separation, which matters
for shadowing, is fixed by high-mass diffraction data and should not be much affected by the
choice of a model for the potential:

Re Vq̄q(z2, �r2, α) = a4(α) �r2
2

2να(1 − α)
. (15)

Then, one can solve the two-dimensional Schrödinger equation (13) analytically, and the
solution is given by the harmonic oscillator Green function [38]:

Gq̄q( �r2, z2; �r1, z1) = a2(α)

2π i sin(ω�z)
exp

{
ia2(α)

sin(ω�z)

[(
r2

1 + r2
2

)
cos(ω�z) − 2 �r1 · �r2

]}
× exp

[
− iε2�z

2να(1 − α)

]
, (16)

where �z = z2 − z1, and

ω = a2(α)

να(1 − α)
. (17)

The shape of the function a(α) in equation (15) will be discussed below.
The probability amplitude to find the q̄q fluctuation of a photon at the point z2, with

separation �r , is given by an integral over the point z1, where the q̄q is created by the photon
with initial separation zero:

�
T,L
q̄q (�r, α) = iZq

√
αem

4πEα(1 − α)

∫ z2

−∞
dz1(χ̄ÔT ,Lχ)Gq̄q(�r, z2; �r1, z1)|r1=0. (18)

The operators ÔT ,L are defined by equations (10) and (11), and here they act on the coordinate
�r1.

If we write the transverse part as

χ̄ÔT χ = χ̄mc �σ · �eχ + χ̄ [i(1 − 2α)(�σ · �n)�e + (�σ × �e)]χ · �∇r = E + �F · �∇r , (19)

then the distribution functions read

�T
q̄q(�r, α) = Zq

√
αem[E�0(ε, r, λ) + �F ��1(ε, r, λ)], (20)

�L
q̄q(�r, α) = 2Zq

√
αemQα(1 − α)χ̄ �σ · �nχ�0(ε, r, λ), (21)

where

λ = 2a2(α)

ε2
. (22)
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The functions �0,1 in equations (20) and (21) are defined as

�0(ε, r, λ) = 1

4π

∫ ∞

0
dt

λ

sh(λt)
exp

[
−λε2r2

4
cth(λt) − t

]
, (23)

��1(ε, r, λ) = ε2�r
8π

∫ ∞

0
dt

[
λ

sh(λt)

]2

exp

[
−λε2r2

4
cth(λt) − t

]
, (24)

where sh(x) and cth(x) are the hyperbolic sine and hyperbolic cotangent, respectively.
Note that the q̄–q interaction enters in equations (20) and (21) via the parameter λ defined

in equation (22). In the limit of vanishing interaction λ → 0 (i.e. Q2 → ∞, α is fixed, α = 0
or 1) equations (20) and (21) produce the perturbative expressions of equation (8).

With the choice of a2(α) ∝ α(1−α), the end-point behavior of the mean-square interquark
separation is 〈r2〉 ∝ 1/α(1 − α), which contradicts the idea of confinement. Following [24],
we fix this problem via a simple modification of the LC potential:

a2(α) = a2
0 + 4a2

1α(1 − α). (25)

The parameters a0 and a1 were adjusted in [24] to the data on total photoabsorption cross
section [39, 40], diffractive photon dissociation and shadowing in nuclear photoabsorption
reaction. The results of our calculations vary within only 1% when a0 and a1 satisfy the
relation

a2
0 = v1.15(0.112)2 GeV2,

(26)
a2

1 = (1 − v)1.15(0.165)2 GeV2,

where v takes any value, 0 < v < 1. In view of this insensitivity of the observables we fix the
parameters at v = 1/2. We checked that this choice does not affect our results beyond a few
percent uncertainty.

The matrix element (5) contains the LC wavefunction squared, which has the following
form for T and L polarizations, in the limit of vanishing interaction between q̄ and q:

∣∣�T
q̄q(�r, α,Q2)

∣∣2 = 2NCαem

(2π)2

Nf∑
f =1

Z2
f

[
m2

f K0(ε, r)
2 + [α2 + (1 − α)2]ε2K1(εr)

2] (27)

and∣∣�L
q̄q(�r, α,Q2)

∣∣2 = 8NCαem

(2π)2

Nf∑
f =1

Z2
f Q2α2(1 − α)2K0(εr)

2, (28)

where K1 is the modified Bessel function,

K1(z) = − d

dz
K0(z). (29)

If one includes the nonperturbative q̄–q interaction, the perturbative expressions (27) and
(28) should be replaced by

∣∣�T
npt(�r, α,Q2)

∣∣2 = 2NCαem

Nf∑
f =1

Z2
f

[
m2

f �2
0(ε, r, λ) + [α2 + (1 − α)2]| ��1(ε, r, λ)|2] (30)

and ∣∣�L
npt(�r, α,Q2)

∣∣2 = 8NCαem

Nf∑
f =1

Z2
f Q2α2(1 − α)2�2

0(ε, r, λ). (31)
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Figure 1. A cartoon for the shadowing term �σtot(xBj, Q
2) = �σtot(q̄q) in (2). Propagation

of the q̄q pair through the nucleus is described by the Green function Gq̄q( �r2, z2; �r1, z1), which
results from the summation over different paths of the q̄q pair.

Note that in the LC formalism the photon wavefunction contains also higher Fock
states |q̄q〉, |q̄qG〉, |q̄q2G〉, etc, but its effect can be implicitly incorporated into the energy
dependence of the dipole cross section σq̄q(�r, s), as is given in equation (5). The energy
dependence of the dipole cross section is naturally included in the realistic KST parametrization
of equation (6).

Now we will continue with our discussion of DIS on nuclear targets, and will study the
propagation of a q̄q pair in nuclear matter. Some work has already been done in this direction.
In fact, the derivation of the formula for nuclear shadowing, keeping only the first shadowing
term in equation (2), �σtot(xBj,Q

2) = �σtot(q̄q), can be found in [41]. This term represents
the shadowing correction for the lowest q̄q Fock state, and has the following form:

�σtot(xBj,Q
2) = 1

2
Re

∫
d2b

∫ ∞

−∞
dz1 ρA(b, z1)

∫ ∞

z1

dz2 ρA(b, z2)

∫ 1

0
dα A(z1, z2, α), (32)

with

A(z1, z2, α) =
∫

d2r2 �∗
q̄q ( �r2, α,Q2)σq̄q(r2, s)

×
∫

d2r1 Gq̄q( �r2, z2; �r1, z1)σq̄q(r1, s)�q̄q( �r1, α,Q2). (33)

When nonpertubative interaction effects between q̄ and q are explicitly included, one
should replace in equation (33) �q̄q(�r, α,Q2) �⇒ �npt(�r, α,Q2) and �∗

q̄q (�r, α,Q2) �⇒
�∗

npt(�r, α,Q2).
In equation (32), ρA(b, z) represents the nuclear density function defined at the point with

longitudinal coordinate z and impact parameter �b.
The shadowing term �σtot(xBj,Q

2) = �σtot(q̄q) in (2) is illustrated in figure 1. At
the point z1, the initial photon diffractively produces the q̄q pair (γ ∗N → q̄qN) with
transverse separation �r1. The q̄q pair then propagates through the nucleus along arbitrary
curved trajectories, which are summed over, and arrives at the point z2 with transverse
separation �r2. The initial and final separations are controlled by the LC wavefunction of
the q̄q Fock component of the photon �q̄q(�r, α,Q2). During propagation through the nucleus
the q̄q pair interacts with bound nucleons via the dipole cross section σq̄q(r, s), which depends
on the local transverse separation �r . The Green function Gq̄q( �r2, z2; �r1, z1) describes the
propagation of the q̄q pair from z1 to z2.

Describing the propagation of the q̄q pair in a nuclear medium, the Green
function Gq̄q( �r2, z2; �r1, z1) satisfies again the time-dependent two-dimensional Schrödinger
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equation (13). However, the potential in this case acquires in addition an imaginary part.
This imaginary part of the LC potential Vq̄q(z2, �r2, α) in equation (13) is responsible for the
attenuation of the q̄q photon fluctuation in the medium, and has the following form:

ImVq̄q(z2, �r, α) = −σq̄q(�r, s)
2

ρA(b, z2). (34)

As was already mentioned above, the analytical solution of equation (13) is known only
for the harmonic oscillator potential Vq̄q(r) ∝ r2. Consequently, in order to keep such an
analytical solution one should also use a quadratic approximation for the imaginary part of
Vq̄q(z2, �r2, α), i.e.,

σq̄q(r, s) = C(s)r2 (35)

and uniform nuclear density

ρA(b, z) = ρ0�
(
R2

A − b2 − z2). (36)

In this case, the solution of equation (13) has the same form as equation (16), except that one
should replace ω �⇒ � and a2(α) �⇒ b(α), where

� = b(α)

να(1 − α)
=

√
a4(α) − iρA(b, z)να(1 − α)C(s)

να(1 − α)
. (37)

The determination of the energy-dependent factor C(s) in equation (35) and the mean
nuclear density ρ0 in equation (36) can be realized by the procedure described in [17, 18, 23],
and will be discussed below.

Investigating nuclear shadowing in DIS one can distinguish between two regimes,
depending on the value of the coherence length:

(i) We start with the general case when there are no restrictions for lc. If lc ∼ RA one has
to take into account the variation of the transverse size r during propagation of the q̄q

pair through the nucleus, which is naturally included using a correct quantum-mechanical
treatment based on the Green function formalism presented above. The overall total
photoabsorption cross section on a nucleus is given as a sum over T and L polarizations,
σγ ∗A = σ

γ ∗A
T + ε′σγ ∗A

L , assuming that the photon polarization ε′ = 1. If one takes into
account only the q̄q Fock component of the photon, the full expression after summation
over all flavors, colors, helicities and spin states becomes [42]

σγ ∗A(xBj,Q
2) = Aσγ ∗N(xBj,Q

2) − �σ(xBj,Q
2)

= A

∫
d2r

∫ 1

0
dα σq̄q(r, s)

(∣∣�T
q̄q(�r, α,Q2)

∣∣2
+

∣∣�L
q̄q(�r, α,Q2)

∣∣2)
− NCαem

(2π)2

Nf∑
f =1

Z2
f Re

∫
d2b

∫ ∞

−∞
dz1

∫ ∞

z1

dz2

∫ 1

0
dα

∫
d2r1

∫
d2r2

× ρA(b, z1)ρA(b, z2)σq̄q(r2, s)σq̄q(r1, s)

× {
[α2 + (1 − α)2]ε2 �r1 · �r2

r1r2
K1(εr1)K1(εr2)

+
[
m2

f + 4Q2α2(1 − α)2]K0(εr1)K0(εr2)
}
Gq̄q( �r2, z2; �r1, z1) (38)

Here,
∣∣�T,L

q̄q (�r, α,Q2)
∣∣2

are the absolute squares of the LC wavefunctions for the q̄q

fluctuation of T and L polarized photons, summed over all flavors, and with the form
given by equations (27) and (28), respectively.
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If one takes into account the nonperturbative interaction effects between q̄ and q of the
virtual photon the expression for σγ ∗A(xBj,Q

2) equation (38) takes the following form:

σ
γ ∗A
npt (xBj,Q

2) = Aσ
γ ∗N
npt (xBj,Q

2) − �σnpt(xBj,Q
2)

= A

∫
d2r

∫ 1

0
dα σq̄q(r, s)

(∣∣�T
npt(�r, α,Q2)

∣∣2
+

∣∣�L
npt(�r, α,Q2)

∣∣2)
−NCαem

Nf∑
f =1

Z2
f Re

∫
d2b

∫ ∞

−∞
dz1

∫ ∞

z1

dz2

∫ 1

0
dα

∫
d2r1

∫
d2r2

× ρA(b, z1)ρA(b, z2)σq̄q(r2, s)σq̄q(r1, s)

× {
[α2 + (1 − α)2] ��1(ε, r1, λ) · ��1(ε, r2, λ)

+
[
m2

f + 4Q2α2(1 − α)2]�0(ε, r1, λ)�0(ε, r2, λ)
}
Gq̄q( �r2, z2; �r1, z1)

(39)

where
∣∣�T,L

npt (�r, α,Q2)
∣∣2

is now given by equations (30) and (31), respectively.
(ii) The CL is much larger than the mean nucleon spacing in a nucleus (lc � RA), which

is the high-energy limit. Correspondingly, the transverse separation r between q̄ and q
does not vary during propagation through the nucleus (Lorentz time dilation). In this
case, the eikonal formula for the total photoabsorption cross section on a nucleus can be
obtained as a limiting case of the Green function formalism. Indeed, in the high-energy
limit ν → ∞, the kinetic term in equation (13) can be neglected, and the Green function
reads

Gq̄q(b; �r2, z2; �r1, z1)|ν→∞ = δ( �r2 − �r1) exp

[
−1

2
σq̄q(r2, s)

∫ z2

z1

dzρA(b, z)

]
(40)

Including nonperturbative interaction effects between q̄ and q, after substitution of
expression (40) into equation (39), one arrives at the following results:

σ
γ ∗A
npt (xBj,Q

2) = 2
∫

d2b

∫
d2r

∫ 1

0
dα

{
1 − exp

[
−1

2
σq̄q(r, s)TA(b)

]}

× 2NCαem

Nf∑
f =1

Z2
f

{
[α2 + (1 − α)2]| ��1(ε, r, λ)|2

+
[
m2

f + 4Q2α2(1 − α)2]�2
0(ε, r, λ)

}
,

where

TA(b) =
∫ ∞

−∞
dzρA(b, z) (42)

is the nuclear thickness calculated with the realistic Wood–Saxon form of the nuclear
density, with parameters taken from [43].

At the photon polarization parameter ε′ = 1 the structure function ratio FA
2

/
FN

2
is related to nuclear shadowing R(A/N , and can be expressed via a ratio of the total
photoabsorption cross sections,

FA
2 (xBj,Q

2)

FN
2 (xBj,Q2)

= AR(A/N) = σ
γ ∗A
T (xBj,Q

2) + σ
γ ∗A
L (xBj,Q

2)

σ
γ ∗N
T (xBj,Q2) + σ

γ ∗N
L (xBj,Q2)

, (43)

where the numerator on the right-hand side (rhs) is given by equation (39), whereas the
denominator can be expressed as the first term of equation (39) divided by the mass
number A.
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As already mentioned above, an explicit analytical expression for the Green function
Gq̄q( �r2, z2; �r1, z1) (16) can be found only for the quadratic form of the dipole cross section
(35), and for uniform nuclear density function (36). It was shown in [17–19, 23] that such
an approximation gives results of reasonable accuracy, especially at small xBj � 10−4 and for
heavy nuclei. Nevertheless, it can be even more precise if one considers the fact that expression
(41) in the high-energy limit can be easily calculated using realistic parametrizations of the
dipole cross section (see equation (6) for the KST parametrization and [32] for the GBW
parametrization) and a realistic nuclear density function ρA(b, z) [43]. Consequently, one
needs to know the full Green function only in the transition region from non-shadowing
(xBj ∼ 0.1) to a fully developed shadowing given when coherence length lc � RA,
which corresponds to xBj � 10−4 depending on the value of Q2. Therefore, the value of
the energy-dependent factor, C(s), in equation (35) can be determined by the procedure
described in [17, 23, 20]. According to this procedure, the factor C(s) is adjusted by
demanding that calculations employing the approximation (35) reproduce correctly the results
for nuclear shadowing in DIS based on the realistic parametrizations of the dipole cross section
equation (6) in the limit lc � RA, when the Green function takes the simple form (40).
Consequently, the factor C(s) is fixed by the relation∫

d2b
∫

d2r|�q̄q(�r, α,Q2)|2 {
1 − exp

[− 1
2C(s)r2TA(b)

]}∫
d2r|�q̄q(�r, α,Q2)|2C(s)r2

=
∫

d2b
∫

d2r|�q̄q(�r, α,Q2)|2{1 − exp
[− 1

2σq̄q(r, s)TA(b)
]}∫

d2r|�q̄q(�r, α,Q2)|2σq̄q(r, s)
. (44)

Correspondingly, the value ρ0 of the uniform nuclear density (36) is fixed in an analogous way
using the following relation:∫

d2b
[
1 − exp

(−σ0ρ0

√
R2

A − b2
)] =

∫
d2b

[
1 − exp

(
−1

2
σ0TA(b)

)]
, (45)

where the value of ρ0 was found to be practically independent of the cross section σ0, when
this changed from 1 to 50 mb [17, 23]. Such a procedure for the determination of the factors
C(s) and ρ0 was applied also in [20, 21], in the case of incoherent and coherent production of
vector mesons off nuclei.

In order to remove the above-mentioned uncertainties, the evolution equation for the
Green function was solved numerically for the first time in [18]. Such an exact solution can
be performed for arbitrary parametrization of the dipole cross section and for realistic nuclear
density functions, although a nice analytical form for the Green function is lost in this case.

In the process of numerical solution of the Schrödinger equation (13) for the Green
function Gq̄q( �r2, z2; �r1, z1) with the initial condition (14), it is much more convenient to use
the following substitutions [18]:

g0( �r2, z2; z1, λ) =
∫

d2r1 �0(ε, r1, λ)σq̄q(r1, s)Gq̄q( �r2, z2; �r1, z1), (46)

and
�r2

r2
g1( �r2, z2; z1, λ) =

∫
d2r1 ��1(ε, r1, λ)σq̄q(r1, s)Gq̄q( �r2, z2; �r1, z1). (47)

After some algebra with equation (13) these new functions g0( �r2, z2; z1, λ) and g1( �r2, z2; z1, λ)

can be shown to satisfy the following evolution equations:

i
d

dz2
g0( �r2, z2; z1, λ) =

{
1

2μq̄q

[
ε2 − ∂2

∂r2
2

− 1

r2

∂

∂r2

]
+ Vq̄q(z2, �r2, α)

}
g0( �r2, z2; z1, λ)

(48)
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and

i
d

dz2
g1( �r2, z2; z1, λ)

=
{

1

2μq̄q

[
ε2 − ∂2

∂r2
2

− 1

r2

∂

∂r2
+

1

r2
2

]
+ Vq̄q(z2, �r2, α)

}
g1( �r2, z2; z1, λ), (49)

with the boundary conditions

g0( �r2, z2; z1, λ)|z2=z1 = �0(ε, r2, λ)σq̄q(r2, s) (50)

and

g1( �r2, z2; z1, λ)|z2=z1 = �̃1(ε, r2, λ)σq̄q(r2, s), (51)

where �̃1(ε, r, λ) is connected with ��1(ε, r, λ) by the following relation:

��1(ε, r, λ) = �r
r
�̃1(ε, r, λ). (52)

In equations (48) and (49), the quantity,

μq̄q = να(1 − α), (53)

plays the role of the reduced mass of the q̄q pair.
Now expression (39) for total photoabsorption cross section on a nucleus reads

σ
γ ∗A
npt (xBj,Q

2) = Aσ
γ ∗N
npt (xBj,Q

2) − �σ(xBj,Q
2)

= A

∫
d2r

∫ 1

0
dα σq̄q(r, s)

(∣∣�T
npt(�r, α,Q2)

∣∣2
+

∣∣�L
npt(�r, α,Q2)

∣∣2)
− 3αem

Nf∑
f =1

Z2
f Re

∫
d2b

∫ ∞

−∞
dz1

∫ ∞

z1

dz2

∫ 1

0
dα

∫
d2r2

× ρA(b, z1)ρA(b, z2)σq̄q(r2, s)

× {
[α2 + (1 − α)2]�̃1(ε, r2, λ)g1( �r2, z2; z1, λ)

+
[
m2

f + 4Q2α2(1 − α)2]�0(ε, r2, λ)g0( �r2, z2; z1, λ)
}

(54)

Note that this equation explicitly includes nonperturbative interaction effects between q̄ and
q. Details of the algorithm for the numerical solution of equations (48) and (49) can be found
in [18].

Finally, we would like to emphasize that the q̄q Fock component of the photon represents
the highest twist shadowing correction [17], and vanishes at large quark masses as 1

/
m2

f .
This does not happen for higher Fock states containing gluons, which lead to GS. Therefore
GS represents the leading twist shadowing correction [24, 44]. Moreover, a steep energy
dependence of the dipole cross section σq̄q(r, s) (see equation (6)) especially at smaller dipole
sizes r causes a steep energy rise in both corrections.

3. Gluon shadowing

In the LC Green function approach [17–21], the physical photon |γ ∗〉 is decomposed into
different Fock states, namely, the bare photon |γ ∗〉0, plus |q̄q〉, |q̄qG〉, etc. As mentioned
above, the higher Fock states containing gluons describe the energy dependence of the
photoabsorption cross section on a nucleon, and also lead to GS in the nuclear case. However,
these fluctuations are heavier and have a shorter coherence time (lifetime) than the lowest |q̄q〉
state, and therefore at small and medium energies only the |q̄q〉 fluctuations of the photon
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matter. Consequently, GS, which is related to the higher Fock states, will dominate at higher
energies, i.e. at small values of xBj � 0.01. Since we will study the shadowing region of
xBj � 0.01 and the available experimental data reach values of xBj down to ∼ 10−4, we will
include GS in our calculations and show that it is not a negligible effect. Besides, no data for
gluon shadowing are available, and one has to rely on calculations.

In the previous section, we discussed the nuclear shadowing for the |q̄q〉 Fock component
of the photon. It is dominated by the transverse photon polarizations, because the
corresponding photoabsorption cross section is scanned at larger dipole sizes than for the
longitudinal photon polarization. The transverse q̄q separation is controlled by the distribution
amplitude equation (8), with the mean value given by equation (12). Contributions of large
size dipoles come from the asymmetric q̄q fluctuations of the virtual photon, when the quark
and antiquark in the photon carry a very large (α → 1) and a very small fraction (α → 0)

of the photon momentum, and vice versa. The LC wavefunction for longitudinal photons
(28) contains a term α2(1 − α)2, which makes considerably smaller the contribution from
asymmetric q̄q configurations than for transversal photons (see equation (27)). Consequently,
in contrast to transverse photons, all q̄q dipoles from longitudinal photons have a size squared
∝1/Q2 and the double-scattering term vanishes as ∝1/Q4. The leading-twist contribution for
the shadowing of longitudinal photons arises from the |q̄qG〉 Fock component of the photon
because the gluon can propagate relatively far from the q̄q pair, although the q̄–q separation is
of the order 1/Q2. After radiation of the gluon the pair is in an octet state, and consequently
the |q̄qG〉 state represents a GG dipole. Then, the corresponding correction to the longitudinal
cross section is just gluon shadowing.

The phenomenon of GS, as for the case of nuclear shadowing discussed in the introduction,
can be treated differently depending on the reference frame. In the infinite momentum frame
this phenomenon looks similar to gluon–gluon fusion, corresponding to a nonlinear term in
the evolution equation [45]. This effect should lead to a suppression of the small xBj gluons
also in a nucleon, and to a precocious onset of the saturation effects for heavy nuclei. Within
a parton model interpretation, in the infinite momentum frame of the nucleus the gluon clouds
of nucleons which have the same impact parameter overlap at small xBj in the longitudinal
direction. This allows gluons originated from different nucleons to fuse, leading to a gluon
density which is not proportional to the density of nucleons any more. This is gluon shadowing.

The same phenomenon looks quite different in the rest frame of the nucleus. It corresponds
to the process of gluon radiation and shadowing corrections, related to multiple interactions
of the radiated gluons in the nuclear medium [28]. This is a coherence phenomenon known as
the Landau–Pomeranchuk effect, namely the suppression of bremsstrahlung by interference
of radiation from different scattering centers, demanding a sufficiently long coherence time of
radiation, a condition equivalent to a small Bjorken xBj in the parton model.

Although these two different interpretations are not Lorentz invariant, they represent the
same phenomenon, related to the Lorentz invariant Reggeon graphs. It was already discussed
in detail in [20, 46] that the double-scattering correction to the cross section of gluon radiation
can be expressed in Regge theory via the triple-Pomeron diagram. It is interpreted as a fusion
of two Pomerons originated from different nucleons, 2P → P, which leads to a reduction of
the nuclear gluon density GA.

Note that in the hadronic representation such a suppression of the parton density
corresponds to Gribov’s inelastic shadowing [25], which is related to the single diffraction
cross section. In particular, GS corresponds to the triple-Pomeron term in the diffractive
dissociation cross section, which enters the calculations of inelastic corrections.

There are still very few numerical evaluations of gluon shadowing in the literature, all
of them done in the rest frame of the nucleus, using the idea from [28]. As was discussed
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above, gluon shadowing can be identified as the shadowing correction to the longitudinal cross
section coming from the GG dipole representing the |q̄qG〉 Fock component of the photon.
An important point for the evaluation of GS is to know about the transverse size of this GG

dipole. This size has been extracted in [24] from data for diffractive excitation of the incident
hadrons to the states of large mass, the so-called triple-Pomeron region. The corresponding
diffraction cross section (∝r4) is a more sensitive probe of the mean transverse separation
than the total cross section (∝r2). Consequently, it was found in [24] that the mean dipole
size of the GG system (radius of propagation of the LC gluons) is rather small, r0 ≈ 0.3 fm
[47]. Such a small quark–gluon fluctuation represents the only known way how to resolve the
long-standing problem of the small size of the triple-Pomeron coupling.

In order to incorporate the smallness of the size of quark–gluon fluctuations into the LC
dipole approach, a nonperturbative LC potential describing the quark–gluon interaction was
introduced into the Schrödinger equation for the LC Green function describing the propagation
of a quark–gluon system. The strength of the potential was fixed by data on high mass

(
M2

X

)
diffraction pp → pX [24]. This approach allows us to extend the methods of pQCD to the
region of small Q2. Since a new semihard scale 1/r0 ∼ 0.65 GeV is introduced, one should
not expect a substantial variation of gluon shadowing at Q2 � 4

/
r2

0 . Indeed, the calculations
performed in [24] for Q2 = 0 and 4 GeV2, using different techniques, led to about the same
gluon shadowing. At higher Q2 shadowing slowly (logarithmically) decreases, in accordance
with the expectations based on the evolution equation [4], which clearly demonstrates that GS
is a leading-twist effect.

In this paper, we repeated the calculations [24] of the ratio of the gluon densities in nuclei
and nucleon:

RG(xBj,Q
2) = GA(xBj,Q

2)

AGN(xBj,Q2)
≈ 1 − �σtot(q̄qG)

σ
γ ∗A
tot

, (55)

where �σtot(q̄qG) is the inelastic correction to the total cross section σ
γ ∗A
tot , related to the

creation of a |q̄qG〉 intermediate Fock state,

�σtot(q̄qG) = Re
∫ ∞

−∞
dz2

∫ z2

−∞
dz1 ρA(b, z1)ρA(b, z2)

∫
d2x2 d2y2 d2x1 d2y1

∫
dαq

dαG

αG

×F
†
γ ∗→q̄qG(�x2, �y2, αq, αG)Gq̄qG(�x2, �y2, z2; �x1, �y1, z1)

×Fγ ∗→q̄qG(�x1, �y1, αq, αG). (56)

Here, �x and �y are the transverse distances from the gluon to the quark and antiquark,
respectively, αq is the fraction of the LC momentum of the q̄q carried by the quark, and
αG is the fraction of the photon momentum carried by the gluon. Fγ ∗→q̄qG is the amplitude of
diffractive q̄qG production in a γ ∗N interaction [24], and it is given by

Fγ ∗→q̄qG(�x, �y, αq, αG) = 9

8
�q̄q(αq, �x − �y)

[
�qG

(
αG

αq

, �x
)

− �q̄G

(
αG

1 − αq

, �y
)]

× [σq̄q(x) + σq̄q(y) − σq̄q(�x − �y)], (57)

where �q̄q and �q̄G are the LC distribution functions of the q̄q fluctuations of a photon and
qG fluctuations of a quark, respectively.

In the above equation Gq̄qG(�x2, �y2, z2; �x1, �y1, z1) is the LC Green function which describes
the propagation of the q̄qG system from the initial state with longitudinal and transverse
coordinates z1 and �x1, �y1, respectively, to the final coordinates (z2, �x2, �y2). For the calculation
of gluon shadowing one should suppress the intrinsic q̄q separation, i.e. assume �x = �y. In this
case, the Green function simplifies, and effectively describes the propagation of a gluon–gluon
dipole through a medium.
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Figure 2. The ratio of the nucleus-to-nucleon gluon densities as a function of the thickness of the
nucleus, L = T (b)/ρ0, at Q2 = 4 GeV2 and different fixed values of xBj. Figure is taken from
[20].

An important finding of [24] is the presence of a strong nonperturbative interaction which
squeezes the gluon–gluon wavepacket and substantially diminishes gluon shadowing. The
smallness of the gluon–gluon transverse separation is not a model assumption, but is dictated
by data for hadronic diffraction into large masses (triple-Pomeron regime), which is controlled
by diffractive gluon radiation.

Further calculational details can be found in [24]. In our case we calculated the gluon
shadowing only for the lowest Fock component containing just one LC gluon. In terms of
the parton model it reproduces the effects of fusion of many gluons to one gluon (in terms of
Regge approach it corresponds to the nP → P vertex). Inclusion of higher multigluon Fock
components is still a challenge. However, their effect can be essentially taken into account
by the eikonalization of the calculated RG(xBj,Q

2), as argued in [48]. In other words, the
dipole cross section, which is proportional to the gluon density at small separations, should
be renormalized everywhere, in the form

σq̄q ⇒ RGσq̄q . (58)

Such a procedure makes the nuclear medium more transparent. This could be expected since
Gribov’s inelastic shadowing is known to suppress the total hadron–nucleus cross sections,
i.e., to make nuclei more transparent [29, 49].

As an illustration of not very strong onset of GS, here we present RG(xBj,Q
2),

equation (55), for different nuclear thicknesses TA(b). Using an approximation of constant
nuclear density (see equation (36)), TA(b) = ρ0L, where L = 2

√
R2

A − b2, the ratio
RG(xBj,Q

2) is also implicitly a function of L. An example for the calculated L-dependence of
RG(xBj,Q

2) at Q2 = 4 GeV2 is depicted in figure 2 for different values of xBj.
One can expect intuitively from equation (58) that GS should always diminish the nuclear

cross sections of various processes in nuclear targets, and that the onset of GS is stronger for
heavier nuclei. However, this is not so for incoherent electroproduction of vector mesons,
analyzed in [20]. The specific structure of the expression for the nuclear production cross
section causes that the cross section of incoherent electroproduction of vector mesons is rather

15

142



J. Phys. G: Nucl. Part. Phys. 35 (2008) 115010 B Z Kopeliovich et al

insensitive to GS. Furthermore, the effect of GS is stronger for light than for heavy nuclear
targets, in contradiction with the standard intuition. Moreover, for heavy nuclei the effect GS
can lead even to a counterintuitive enhancement (antishadowing), as was analyzed in [20].
For the case of coherent vector meson production γ ∗A → V A [20], GS was shown to be a
much stronger effect in comparison with incoherent production, which confirms the expected
reduction of the nuclear production cross section.

Similarly, it was analyzed in [46] that multiple scattering of higher Fock states containing
gluons leads to an additional suppression of the Drell–Yan cross section. In the present
paper, we will demonstrate that gluon shadowing also suppresses the total photoabsorption
cross section on a nucleus σ

γ ∗A
tot (xBj,Q

2). Here we expect quite a strong effect of GS on the
shadowing region of small xBj � (0.01 ÷ 0.001), in the kinematic range of available data
corresponding to small and medium values of Q2 ∼ a few GeV2.

4. Numerical results

As mentioned above, the main goal of this paper is to compare for the first time available
experimental data with realistic predictions for nuclear shadowing in DIS, based on exact
numerical solutions of the evolution equation for the Green function. Such a comparison is
performed for the shadowing region of small xBj � 0.01. As was discussed in the previous
section one should take into account also a contribution of gluon shadowing, which increases
the overall nuclear suppression. The effect of GS was already calculated in [50], but only
for the FC

2 /FD
2 ratio of structure functions. Although the quark shadowing was compute

approximately via a longitudinal form factor of the nucleus and assuming only the leading
shadowing term, it was shown that GS is a rather large effect at xBj ∼ 10−4. In the present
paper, we will also show that GS is not a negligible effect, and can, in principle, be detected
by the data on the total photoabsorption nuclear cross section in future experiments.

The predictions for nuclear shadowing based on an exact numerical solution of the
evolution equation was compared in [18] with approximate results obtained by using the
harmonic oscillatory form of the Green function (16). Quite a large discrepancy was found
in the range of xBj � 0.001, where the variation of the transverse size of the q̄q pair during
propagation through the nucleus becomes important. Such a variation is naturally included
in the Green function formalism and consequently the exact shape of the Green function is
extremely important.

We use an algorithm for the numerical solution of the Schrödinger equation for the Green
function, as developed and described in [18]. This gives the possibility of calculating nuclear
shadowing for arbitrary LC potentials Vq̄q(z, �r, α) and nuclear density functions. Because
the available data from the E665 [51, 52] and NMC [53, 54] collaborations cover the region
of small and medium values of Q2 � 4 GeV2, we prefer the KST parametrization of the
dipole cross section (6), which is valid down to the limit of real photoproduction. In contrast,
the second GBW parametrization [32] of the dipole cross section cannot be applied in the
nonperturbative region and therefore we do not use it in our calculations.

In the process of exact numerical solutions of the evolution equation for the Green
function, the imaginary part of the LC potential (34) contains the corresponding KST dipole
cross section as well. The nuclear density function ρA(b, z) was taken in the realistic Wood–
Saxon form, with parameters taken from [43]. The nonperturbative interaction effects between
q̄ and q are included explicitly via the real part of the LC potential of the form (15), which
is supported also by the fact that the data from E665 and NMC collaborations correspond to
very small values of Q2 � 1 GeV2 in the region of small xBj � 0.004.
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Figure 3. Nuclear shadowing for lead. Calculations correspond to exact numerical solution of the
evolution equation for the Green function using the KST [24] parametrization of the dipole cross
section and a realistic nuclear density function of the Woods–Saxon form [43]. The thick and thin
solid curves represent the predictions calculated with and without contribution of gluon shadowing,
respectively. The dotted lines are calculated using a constant nuclear density function (36) and the
quadratic form of the dipole cross section, σ(r, s) = C(s)r2, where the energy-dependent factor
C(s) is determined by equation (44). The dashed curves are calculated for the same quadratic form
of the dipole cross section, but for the realistic nuclear density function ([43]).

We included also the effects of gluon shadowing for the lowest Fock component containing
just one LC gluon. Although the inclusion of higher Fock components with more gluons is
complicated, their effect was essentially taken into account by eikonalization of the calculated
RG(xBj,Q

2) [48], i.e., using the renormalization (58).
Nuclear shadowing effects were studied via the xBj-behavior of the ratio of proton structure

functions (43) divided by the mass number A. First we present nuclear shadowing for a lead
target in figure 3 at different fixed values of Q2. The thick and thin solid curves represent the
predictions obtained with and without the contribution of gluon shadowing, respectively.

One can see that the onset of GS happens at smaller xBj than the quark shadowing, which
is supported by the fact that higher Fock fluctuations containing gluons are in general heavier
than q̄q, and have a shorter coherence length. Figure 3 demonstrates quite a strong effect of
GS on the range of xBj ∈ (0.01, 0.0001), where most of the available data exist. This is a result
of the suppression of the dipole cross section by the renormalization (58), which can result
only in a reduction of the total photoabsorption cross section on a nuclear target. Besides, the
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effect of GS is stronger at smaller Q2 because corresponding Fock fluctuations of the photon
have a larger transverse size.

In figure 3 we also present, for comparison and by the dotted lines, the approximate
predictions for nuclear shadowing in DIS using constant nuclear density (36) and the quadratic
form of the dipole cross section, σ(r, s) = C(s)r2. The energy-dependent factor C(s) is
determined by equation (44), and the uniform nuclear density is fixed by the condition (45).
One can see that these approximate predictions overestimate the values of nuclear shadowing
obtained by means of an exact numerical solution of the evolution equation for the Green
function. The difference from the exact calculation (thin solid lines) is not large and rises
toward small values of Q2. The reason is that the quadratic approximation of the dipole cross
section cannot be applied exactly at large dipole sizes. Since the available data from the E665
[51, 52] and NMC [53, 54] collaborations at smallest values of xBj correspond also to small
Q2 � 1 GeV2, one can expect a larger difference between the exact and approximate results
in comparison with what is shown in figure 3 at Q2 = 2 GeV2. Keeping the quadratic form
of the dipole cross section, but using the realistic nuclear density [43], one can obtain the
results depicted in figure 3 by the dashed lines. It brings a better agreement with the exact
calculations.

At low xBj � 10−4 one should expect a saturation of nuclear shadowing at the level given
by equation (41). This is realized only for the dipole cross section, without energy dependence,
i.e., for example, for parametrization (35) of the dipole cross section with constant factor
C(s) ≈ 3 [19]. However, this is not so for the realistic KST parametrization equation (6),
where the saturation level is not fixed exactly due to energy (Bjorken xBj-)dependence of the
dipole cross section σq̄q(r, s).

In figure 4, we present a comparison of the model predictions with experimental data at
small xBj, from the E665 [51, 52] and NMC [53, 54] collaborations. One can see a quite
reasonable agreement with experimental data, in spite of the absence of any free parameters in
the model. Several comments are in order: first, if GS is not taken into account, for the C/D
and Ca/D ratios the nuclear shadowing looks overestimated in comparison with the E665 data
for xBj ∼ 0.01, while it looks in a good agreement for C/D, and a little bit underestimated
for Ca/D in comparison with the NMC data. This is affected by the known incompatibility
of the results from both experiments for the ratios over D. Second, as was discussed in the
previous section, the effect of GS produces an additional nuclear shadowing which rises with
mass number A. Consequently, it leads to a small overestimation of the nuclear shadowing
for the C/D and Ca/D ratios in comparison with the E665 data, but it seems to be in good
agreement with the NMC data.

For heavy nuclear targets there is only E665 data for the ratios Xe/D and Pb/D.
Figure 4 shows a reasonable good description of these data, even if the effect of GS is
taken into account. The difference between the solid and dashed lines in figure 4 represents
quite a large effect of GS, which was neglected up to the present time in calculations of nuclear
shadowing in DIS [17, 19, 23] assuming that it would be a very small effect in the kinematic
range covered by the available experimental data. In contrast, looking at figure 4 one can see
that the effect of GS as an additional nuclear shadowing cannot be neglected and should be
included in calculations already in the region of xBj � 0.01 ÷ 0.001. Very large error bars
especially at small xBj ∼ 10−4 do not allow us to investigate separately the effect of GS, and
therefore more exact new data on nuclear shadowing in DIS at small xBj are very important
for further exploratory studies on the nuclear modification of structure functions and also for
gluon shadowing.

For completeness we present also in figures 5 and 6 predictions for nuclear shadowing
down to very small xBj = 10−7 accessible by experiments at LHC using two different realistic
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Figure 4. Comparison of the model with experimental data from the E665 [51, 52] and NMC
[53, 54] collaborations. Calculations correspond to the exact numerical solution of the evolution
equation for the Green function using KST [24] parametrization of the dipole cross section and a
realistic nuclear density function of the Woods–Saxon form [43]. The solid and dashed curves are
calculated with and without the contribution of gluon shadowing, respectively.

parametrizations of the dipole cross section, KST [24] and GBW [32]. Again, one can see
quite large effect of GS as a difference between the solid and dashed lines.

Here, we would like to emphasize that at xBj � 10−4 transverse size separations of the
photon fluctuations are ‘frozen’ during propagation through nuclear medium and one can use
the simplified expressions, equations (40) and (41) for calculation of nuclear shadowing.

Finally, we present, in figure 7, a comparison of the nuclear shadowing calculated using
our model with the results of other models, for Q2 = 3 GeV2 (except the results of [55], which
are at Q2 = 4 GeV2). Note that the difference between models rises toward small values of
xBj, as a result of the different treatment of various nuclear effects, and absence of relevant
experimental information at such small xBj. At xBj = 10−5 we predict quite a large effect of
GS (compare upper and lower thick solid lines).

In [56], nuclear structure functions were studied using the relation with diffraction on
nucleons known as Gribov inelastic corrections. The results of these calculations are depicted
in figure 7 by dotted curves.

The model presented in [55] employs again a parametrization of hard diffraction at the
scale Q2

0, which gives nuclear shadowing in terms of Gribov’s corrections similar to [56].
Then the nuclear suppression calculated at Q2

0 is used as an initial condition for Dokshitzer–
Gribov–Lipatov–Altareli–Parisi (DGLAP) [57] evolution. This results are presented in
figure 7 by dashed curves.

The model based on a numerical solution of the nonlinear equation for small-xBj evolution
in nuclei was employed in [58]. The result is shown in figure 7 by thin solid curve.
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Figure 5. Model predictions for nuclear shadowing for a broad xBj-region down to 10−7

corresponding to LHC kinematical range at three different values of Q2 = 2, 6 and 18 GeV2.
Calculations of the nuclear shadowing for the q̄q Fock component of the photon correspond to
the exact numerical solution of the evolution equation for the Green function using KST [24]
parametrization of the dipole cross section and a realistic nuclear density function of the Woods–
Saxon form [43]. The solid and dashed curves are calculated with and without the contribution of
gluon shadowing, respectively.

At very small xBj our model predictions, including the effect of GS, roughly agrees with
those of [56], but lie below the results of other models. If the effect of GS is not taken into
account the situation is substantially different and the corresponding curve (see the upper thick
solid line) lies in between the results from other models.

Most models presented above are based on eikonal formulae, which should be used only
in the high-energy limit, when the coherence length lc � RA, i.e. at xBj � 10−4. However,
they were applied also in the region when lc � RA. In this transition shadowing region,
xBj ∈ (0.0001, 0.01), such approximations lead in general to a larger nuclear shadowing
than a realistic situation, when more exact expressions should be more appropriate (compare
equations (39) and (41)). For this reason, theoretical predictions of most models overestimate
nuclear shadowing in the range of xBj where available experimental data exist.

So far, the main source of experimental information on gluon shadowing was DIS on
nuclei. Although it probes only quark distributions, the Q2-dependence of nuclear effects
is related via the evolution equations to the gluon distribution. For the smallest value of
xBj = 0.01 reached in the NMC experiment the gluon suppression factor RG(Sn)/RG(C) =
0.87 ± 0.05 was obtained in [59] within the leading-log (LL) approximation. This result
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Figure 6. The same as figure 5, but with GBW [32] parametrization of the dipole cross section.
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Figure 7. Comparison of the model results for the ratio Pb/nucleon obtained without (upper thick
solid line) and with (lower thick solid line) gluon shadowing, with other models, versus xBj, at
fixed Q2 = 3 GeV2. Bartels are the results from [58], Frankfurt from [55] (Q2 = 4 GeV2), and
ACKLS from [56].

is somewhat lower that our expectation RG ∼ 0.98 which can be read out from figure 2.
However, according to [59] the next-to-LL corrections at xBj = 0.01 are about 10–20%,
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which apparently eliminates the disagreement with our calculations. Furthermore, the full
leading-order (LO) DGLAP analysis of the NMC data [53, 54] in [60], which should not be
less accurate than LL calculations, led to a conclusion that the NMC data are not sensitive to
gluon shadowing. Moreover, the recent next-to-LO (NLO) analysis by de Florian and Sassot
[61] was claimed to be sensitive to gluons. This analysis found almost no GS at xBj = 0.01 in
good agreement with our calculations.

Other possible sources of information about gluon shadowing were considered in [62–64].
It was proposed in [62] to probe gluons in nuclei by direct photons produced in p–A collisions
in the proton fragmentation region where one can access smallest values of the light-front
momentum fraction variable x2 in nuclei. This, however, should not work, since at large value
of the light-front momentum fraction variable x1 in the proton (i.e., at large Feynman xF ) one
faces the energy sharing problem [65]: it is more difficult to give the whole energy to one
particle in p–A, than in p–p collision. This effect leads to a breakdown of QCD factorization
and to nuclear suppression observed at forward rapidities [65–68] in any reaction measured
so far, even at low energies, where no shadowing is possible.

An attempt to impose a restriction on GS analyzing the nuclear effects in J/� production
observed in p–A collisions by the E866 experiment [69], was made in [63]. The mechanisms
of J/� production and nuclear effects are so complicated that it would be risky to rely on
oversimplified models. Indeed, the analysis performed in this paper completely misses the
color transparency effects, which are rather strong [70] and vary throughout the interval of xF

studied in this paper. For this reason the results of the analysis are not trustable.
The new analysis of nuclear parton distribution functions performed in [64] included the

BRAHMS data for high-pT pion production at forward rapidities [71]. As mentioned above,
hadron production in this kinematic region of large x1 (xF ) is suppressed by multiple parton
interactions [65], rather than by shadowing. Consequently, the results of this analysis are
not trustable either. Moreover, it seems to provide another confirmation for an alternative
dynamics for the suppression observed in the data [71]. Indeed, it was concluded in [64] that
gluons in lead target are completely terminated at xBj = 10−4 where RG < 0.05 is predicted.
This cannot be true because in the limit of strong shadowing the gluon ratio has a simple form
RG = πR2

A

/
(Aσeff), where σeff is the effective cross section responsible for shadowing. The

strong effect predicted in [64] needs σeff > 150 mb.

5. Summary and conclusions

We presented a rigorous quantum-mechanical approach based on the light-cone QCD Green
function formalism which naturally incorporates the interference effects of CT and CL. Within
this approach [17–19, 41] we studied nuclear shadowing in deep-inelastic scattering at small
Bjorken xBj.

Calculations of nuclear shadowing corresponding to the q̄q component of the virtual
photon performed so far were based only on efforts to solve the evolution equation for the
Green function analytically, and unfortunately an analytical harmonic oscillatory form of the
Green function (16) could be obtained only by using additional approximations, like a constant
nuclear density function (36) and the dipole cross section of the quadratic form (35). This
brings additional theoretical uncertainties in the predictions for nuclear shadowing. In order to
remove these uncertainties we solve the evolution equation for the Green function numerically,
which does not require additional approximations.

In [18], it was found for the first time the exact numerical solution of the evolution equation
for the Green function, using two realistic parametrizations of the dipole cross section (GBW
[32] and KST [24]), and a realistic nuclear density function of the Woods–Saxon form [43].

22

149



J. Phys. G: Nucl. Part. Phys. 35 (2008) 115010 B Z Kopeliovich et al

It was demonstrated that the corresponding nuclear shadowing shows quite large differences
from approximate results [17, 19]. On the other hand, we showed that approximate calculations
corresponding to uniform nuclear density (48) and quadratic dipole cross section (47), but with
the energy-dependent factor C(s) determined by equation (44), bring a better agreement with
exact realistic calculations (see figure 3). However, the difference from the exact calculations
rises toward small values of Q2, where available data exist at smallest values of xBj ∼ 10−4.
This confirms the claim that the quadratic approximation of the dipole cross section cannot be
applied at large dipole sizes.

Since the available data from the shadowing region of xBj � 0.01 comes mostly from the
E665 and NMC collaborations, and cover only small and medium values of Q2 � 4 GeV2,
we used only the KST realistic parametrization [24] of the dipole cross section, which is more
suitable for this kinematic region, and the corresponding expressions can be applied down to
the limit of real photoproduction. On the other hand, the data obtained at the lower part of
the xBj-kinematic interval correspond to very low values of Q2 < 1 GeV2 (nonperturbative
region). For this reason we include explicitly the nonperturbative interaction effects between
q̄ and q, taking into account the real part of the LC potential Vq̄q (15) in the time-dependent
two-dimensional Schrödinger equation (13).

In order to compare the realistic calculations with data on nuclear shadowing, the effects
of GS are taken into account. The same path integral technique [24] can be applied in this
case, and GS was calculated only for the lowest Fock component containing just one LC
gluon. Although the inclusion of higher Fock components containing more gluons is still a
challenge, their effect was essentially taken into account by eikonalization of the calculated
RG(xBj,Q

2),using the renormalization (58). We found quite a large effect of GS, which starts
to be important already at xBj ∼ 0.01. The effect of GS rises toward small xBj because higher
Fock components with more gluons having shorter coherence time will contribute to overall
nuclear shadowing. Such a situation is illustrated in figure 3.

Performing numerical calculations, we find that our model is in reasonable agreement
with existing experimental data (see figure 4). Large error bars and incompatibility of the
experimental results from the E665 and NMC collaborations do not allow us to study separately
the effect of GS, and therefore more accurate new data on nuclear shadowing in DIS off nuclei
at still smaller xBj � 10−5 are very important for further exploratory studies of GS effects.

Comparison among various models shows large differences for the Pb/nucleon ratio of
structure functions at xBj = 10−5 and Q2 = 3 GeV2 (see figure 7), which has a large impact
on the calculation of high-pT particles in nuclear collisions at RHIC and LHC. Such large
differences at small xBj among different models should be testable by the new more precise
data on nuclear structure functions, which can be obtained in lepton–ion collider planned at
BNL [72].

In most models presented above, the final formulae for nuclear shadowing are based on
the eikonal approximation, which can be used exactly only in the high-energy limit, lc � RA.
Consequently, such an approach cannot be really applied in the transition shadowing region,
lc ≈ RA, where xBj ∈ (0.0001, 0.01), because it produces a larger nuclear shadowing than
in a realistic case when more appropriate expressions should be taken into account (compare
equations (39) and (41)).

Concluding, a combination of the exact numerical solution of the evolution equation
for the Green function with the universality of the LC dipole approach based on the Green
function formalism provides us with a very powerful tool for realistic calculations of many
processes. It allows us to minimize theoretical uncertainties in the predictions of nuclear
shadowing in DIS off nuclei, which gives the possibility of obtaining reliable information
about nuclear modification of the structure functions at low xBj, with an important impact on
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the physics performed in heavy-ion collisions at RHIC and in lepton–ion interactions planned
at BNL.

Acknowledgments

This work was supported in part by Fondecyt (Chile) grants 1050589 and 1050519, by DFG
(Germany) grant PI182/3-1, by the Slovak Funding Agency, grant no 2/7058/27 and the grant
VZ MSM 6840770039 and LC 07048 (Czech Republic).

References

[1] Arneodo M 1994 Phys. Rep. 240 301
[2] Kancheli O V 1973 Sov. Phys. JETP Lett. 18 274
[3] Gribov V N, Levin E M and Ryskin M G 1983 Phys. Rep. 100 1
[4] Mueller A H and Qiu J 1986 Nucl. Phys. B 268 427
[5] Qiu J 1987 Nucl. Phys. B 291 746
[6] Bauer T H, Spital R D, Yennie D R and Pipkin F M 1978 Rev. Mod. Phys. 50 261
[7] Frankfurt L L and Strikman M I 1988 Phys. Rep. 160 235
[8] Brodsky S J and Lu H J 1990 Phys. Rev. Lett. 64 1342
[9] Brodsky S J, Schmidt I and Yang J-J 2004 Phys. Rev. D 70 116003

[10] Nikolaev N N and Zakharov B G 1991 Z. Phys. C 49 607
[11] Melnitchouk W and Thomas A W 1993 Phys. Lett. B 317 437
[12] Nikolaev N N, Piller G and Zakharov B G 1995 JETP 81 851
[13] Piller G, Ratzka W and Weise W 1995 Z. Phys. A 352 427
[14] Kopeliovich B Z and Povh B 1996 Phys. Lett. B 367 329
[15] Kopeliovich B Z and Povh B 1997 Z. Phys. A 356 467
[16] Piller G and Weise W 2000 Phys. Rep. 330 1
[17] Kopeliovich B Z, Raufeisen J and Tarasov A V 2000 Phys. Rev. C 62 035204
[18] Nemchik J 2003 Phys. Rev. C 68 035206
[19] Kopeliovich B Z, Raufeisen J and Tarasov A V 1998 Phys. Lett. B 440 151
[20] Kopeliovich B Z, Nemchik J, Schaefer A and Tarasov A V 2002 Phys. Rev. C 65 035201
[21] Nemchik J 2002 Phys. Rev. C 66 045204
[22] Kopeliovich B Z and Zakharov B G 1991 Phys. Rev. D 44 3466
[23] Raufeisen J 2000 PhD Thesis Heidelberg (arXiv:hep-ph/0009358)
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