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Chapter I

Introduction

I.1 Motivation of the Work

In the waste majority of textbooks on fluid dynamics, the incompressible fluid is defined us-
ing assumptions of constant density (and viscosity) of the fluid. The side-effect of such over-
simplified definition is that the resulting mathematical model, known as the system of incom-
pressible Navier-Stokes equations, only describes a very narrow, specific subclass of incompress-
ible flows which have constant density and simple rheological behavior characterized by con-
stant viscosity.

Many of the flows of practical interest do not satisfy these elementary assumptions. This is
e.g the case of complex flows in Environmental and Biomedical applications that are addressed
further in this work. Hereafter will be given few basic examples of situations where the con-
stant density and viscosity assumptions have to be relaxed to properly describe the physical
phenomena that is being investigated.

Variable density

This phenomena could be best demonstrated by a simple analysis of continuity equation, that
represents a mathematical formulation of mass conservation principle. In the flow described by
velocity field v(x, t) and density field ρ(x, t) these quantities are1 governed by the continuity
equation:

∂ρ

∂t
+ div(ρv) = 0 . (I.1)

Using the product rule of differentiation, the equation (I.1) can be rewritten into the form:

∂ρ

∂t
+ v · gradρ = −ρ divv . (I.2)

This equation could be understood as an advection equation for density with a source term on
the right-hand side. This source represents the effects of local changes of volume of consid-
ered flow parcels. The equation (I.2) thus states that because of the conservation of mass, the
changes of the volume of a fluid parcel have to be compensated by corresponding variation in
its density. In this context the isochoric (volume preserving) motion can thus be described by
a kinematic condition imposed on the velocity field, divv = 0. This divergence-free constraint
represents what most people understand under the term ”incompressibility”.

1in the absence of sources and sinks of mass
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Assuming now only the class of divergence-free flows, the mass conservation principle
represented by the equation (I.2) splits into two independent requirements:

∂ρ

∂t
+ v · gradρ

︸ ︷︷ ︸
=0

= −ρ divv︸ ︷︷ ︸
=0

. (I.3)

This could roughly be explained as splitting of mass conservation into two simultaneous re-
quirements on the conservation of volume and density.

1. Conservation of volume
divv = 0 (I.4)

2. Conservation of density
∂ρ

∂t
+ v · gradρ = 0 (I.5)

The equation (I.5) is an advection equation for density. Therefore in general there is no reason,
why the density should be considered as a constant. The density is in this case just a scalar
quantity advected by the flow and thus it depends on initial and boundary conditions whether
it will be constant or not. It is clear that if a constant density field is used as an initial condi-
tion with boundary conditions fixed at the same value, than the equation (I.5) is automatically
satisfied. In this special case the density will remain constant in space and time. However this
is just a very special case. In general, the incompressible flows are allowed to have variable
density.

There are many physical phenomena involving incompressible flows with variable density.
As an example of such flow, could serve e.g. a river inflow into the sea. The fresh river water
enters the see, where the water is salty and thus have higher density than the fresh water. There
is no doubt that the flow is incompressible in this case, however it is also evident that the local
density (and viscosity) depends on the water salinity (i.e. the local salt concentration).

In a little bit broader sense, the variable density incompressible flow concept could also be
used to describe physical situations, where the incompressibility (divergence-free) constraint is
satisfied only approximately. A typical example of such situation is the case when the density
depends on temperature (i.e. thermal dilatation of fluid is allowed). In the case the tempera-
ture based variations in density are allowed, the temperature (or equivalent density) equation
should be solved simultaneously with the equations of motion, because the temperature influ-
ences (via density) the main flow. A typical example of a model based on this kind of argu-
ments is the Boussinesq approximation. It can be successfully applied e.g. to problems involving
thermal convection of fluids in the atmosphere or ocean 2.

This second kind of situations, when the divergence-free constrain is only satisfied approxi-
mately, represents an area of mathematical modeling, where specific models are developed and
used for specific applications. In general one could believe that everything can be simulated
by the most general model (e.g. the compressible Navier-Stokes-Fourier equations). However
in many cases of practical interest it is not possible (or extremely difficult) to use the the full
compressible model due to the significant mathematical, numerical and computational prob-
lems arising in the case of nearly incompressible (low-Mach number) flows. Thus it is a com-
mon practice to use in these situations models based on incompressibility assumption. This

2More details on these models will be given in the Chapter E
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includes e.g. the mixing of incompressible fluids, some models of free-surface flows, convec-
tion of thermally dilatating fluids, and also simulations of fluid flows in weakly-compressible
regime.

Variable viscosity

This introductory section only aims to give some motivation and examples of situations where
the variable viscosity plays an important role3. There are basically two main reasons why the
viscosity should be assumed variable in specific cases. The first reason originates directly in the
physics of fluids. This includes the situations where the viscosity variation is experimentally
measurable depending e.g. on the type of the fluid actually studied, on the temperature, con-
centration of some chemicals or on time. There is a whole branch of fluid mechanics, dealing
with the rheology of fluids, which addresses the viscosity (and other rheological parameters)
variability from the physical point of view. This leads to existence of many different viscosity
constitutive relations applicable in specific situations for various fluids and flow situations.

In the second group of situations, where the variable viscosity assumption is often applied,
the viscosity variation is used as a mathematical modeling tool in order to take into account some
more complex physical phenomena, that results into effects analogical to those of (physically)
variable viscosity. An example of this approach is the eddy viscosity concept often used in
various models applied to turbulent flow simulations.

The boundary between these two groups of reasons for the use of variable viscosity is not
always quite clear. For example the microstructure of certain liquids (such as e.g. polymeric
liquids or blood) determines its macroscopic behavior. Thus also the apparent viscosity of these
fluids strongly depends (in space and time) on the actual microstructure of the fluid. The con-
tinuum models used in fluid mechanics usually can not include directly the description of this
microstructure and thus a suitable viscosity constitutive relation can be used as a bulk param-
eter to encounter for the local changes in the microstructure of liquid. So in fact the unresolved
micro-physics is hidden in the macroscopic viscosity constitutive law. A very similar situation
arises e.g. in the turbulence modeling. In Large Eddy Simulations for example the smallest
scale motion is filtered out and included in the model by the means of the so called eddy vis-
cosity. So again, the unresolved micro-physics is hidden in the bulk parameters of the flow.
Similar approach is used with Reynolds averaging of flow where the analogy of turbulent and
molecular diffusion is used to define the turbulent viscosity. This is the main principle of many
algebraic and one and two-equational models of turbulence (such as e.g. k − ε or k − ω).

These above examples demonstrate why the mathematical modeling and numerical solution of
incompressible flows represents a challenging problem for theoretical and applied researchers.
This work presents a short overview of few of the numerical methods useable in complex in-
compressible flows simulations. The applicability of these methods is demonstrated by solving
problems arising in environmental and biomedical applications.

3Some more complex rheological models will be introduced later, in the Chapter B.
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I.2 Objectives of the Work

The aim of this work is to present several numerical methods that have been successfully applied to
simulation of various complex incompressible flows.

The following steps are taken to achieve the objectives of the present work:

I. Presentation of numerical schemes
The models and numerical methods will be shortly described to be later
used in specific applications.

II. Application to environmental problems
Some of the models used in environmental aerodynamics and hydraulics
will be introduced.

III. Application to biomedical problems
Short introduction to rheology and its application in solving biomedical
fluid mechanics problems will be given.

I.3 Structure of the Work

The work is conceived as a collection of papers. These are sorted into two main blocks dealing
with either environmental or biomedical applications. These specialized parts are preceded by a
common introduction that contains the description of numerical methods that have been used.
According to the above points the presented text can be divided into three main parts.

Chapter N–Numerical Methods for Incompressible Flows (25 pages)
The introduction to this chapter contains brief description of the classical incompressible Navier-
Stokes system of equations. The main difficulties related to its numerical solution are revealed.
This introduction is followed by an overview of numerical methods that have been later used
in the environmental and biomedical applications mentioned in chapters E and B. List of rel-
evant references is given to document where are these numerical methods coming from and
where they have been used.

Chapter E–Environmental Applications (5 pages + 4 papers)
This chapter starts with a summary of the most notable characteristic properties of environ-
mental flows that make their simulation so challenging. Special attention is paid to models de-
scribing turbulent, variable-density and stratified flows. This theoretical summary is followed
by selected papers demonstrating the use of these models and their numerical solution.

Chapter B–Biomedical Applications (5 pages + 4 papers)
The specificity of biomedical applications is mainly related to the non-Newtonian rheological
behavior of the considered fluids. This issue will be addressed with special focus on blood
flows, including shear-thinning, viscoelastic and biochemical models of blood. Again, this
brief introduction is followed by selected papers demonstrating the use of these models and
their numerical solution.

The Concluding Remarks are shortly summarized at page 203.
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Introduction

The incompressible model can formally be obtained as a limit case of the full compressible
Navier-Stokes-Fourier system for Mach number going to zero. The mathematically rigorous
derivation of this (and some other) singular limits can be found e.g. in the recent book [N.15].
As a result of such limiting process (including all the simplifying assumptions), the energy
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equation becomes decoupled from the equations of motion, pressure changes its role from
thermodynamical quantity to some kind of kinematic forcing and incompressibility constraint
is expressed in terms of divergence-free velocity field. Here we will only mention some of the
final stages of the formal derivation of the incompressible model.

N.1 Mathematical Model

The model is based on balance of mass and linear momentum, and is complemented by suitable
constitutive laws for stress tensor.

N.1.1 Balance Laws

1. Balance of mass
For the flow described by velocity field v(x, t) and density field ρ(x, t) in the absence of
sources/sinks of mass, the mass conservation principle could be written as

∂ρ

∂t
+ div(ρv) = 0 . (N.1)

This equation (as well as its other variants) is often referred to as the continuity equation.

2. Balance of (linear) momentum
The inertial tendency of fluid can be expressed by the well known Newton’s second law,
which follows from the principle of conservation of momentum.

∂ρv

∂t
+ div(ρv ⊗ v) = divS + ρf . (N.2)

Here the f(x, t) stands for volume forces and S for stress tensor. The constitutive law,
relating the stress tensor to other flow variables, depends mainly on the considered fluid
and it will be discussed in the Section N.1.2.

N.1.2 Stress Tensor

Using the Stokes law the stress tensor S could be split into normal and viscous (i.e. spherical
and deviatoric) parts as S = T − p I , where T stands for the viscous stress tensor, while the
normal stress contribution is represented by pressure p(x, t) ( I being the identity tensor).

There is wide range of constitutive relations available for the definition of the stress tensor
in various fluids. One of the most widely used is the one of Newtonian fluid:

T = µ

(
∇v + ∇vT − 2

3
divv I

)
+ η divv I , (N.3)

In the relation (N.3) µ denotes the dynamic viscosity and η is used for bulk viscosity coefficient.
It is good to note at this place that due to the angular momentum conservation and applica-
tion of frame invariance principle, the stress tensor is symmetric and also depends just on the
symmetric part of the velocity gradient. An easy observation also shows, that in the case of
incompressible (i.e. divergence-free) flows, the relation (N.3) degenerates into

T = µ
(∇v + ∇vT ) = 2µD , (N.4)

where D denotes the symmetric part of the velocity gradient defined as D = (∇v + ∇vT )/2.
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N.1.3 Non-Homogeneous Incompressible Model

The motion equations describing the flow of incompressible fluid can be written in the follow-
ing general form: 1:

∂ρ

∂t
+ div(ρv) = 0 (N.5)

∂ρv

∂t
+ div(ρv ⊗ v) = divS + ρf (N.6)

These equations together with the incompressibility constraint divv = 0 and the constitutive
relation for Newtonian incompressible fluid S = −p I + 2µD and gravity force (acting along
the z coordinate axis) expressed as f = (0, 0, g) lead (exactly) to the following set of governing
equations for unknowns v, p and ρ:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (N.7)

∂ρ

∂t
+
∂(ρu)

∂x
+
∂(ρv)

∂y
+
∂(ρw)

∂z
= 0 (N.8)

∂(ρu)

∂t
+
∂(ρu2)

∂x
+
∂(ρuv)

∂y
+
∂(ρuw)

∂z
= −∂p

∂x
+ µ∆u (N.9)

∂(ρv)

∂t
+
∂(ρuv)

∂x
+
∂(ρv2)

∂y
+
∂(ρvw)

∂z
= −∂p

∂y
+ µ∆v (N.10)

∂(ρw)

∂t
+
∂(ρuw)

∂x
+
∂(ρvw)

∂y
+
∂(ρw2)

∂z
= −∂p

∂z
+ µ∆w + ρg (N.11)

The conservation of mass is represented by the continuity equation

∂ρ

∂t
+ div(ρv) = 0 (N.12)

Using the product rule of differentiation this could be rewritten as:

∂ρ

∂t
+ v · grad ρ = −ρdiv v . (N.13)

For incompressible flows satisfying the divergence-free constraint div v = 0 the right-hand side
of equation (N.13) vanishes and thus the continuity equation reduces to:

∂ρ

∂t
+ v · grad ρ = 0 . (N.14)

This equation can be used together with the chain rule of differentiation to rewrite the left-hand
side of the momentum balance (N.2):

∂ρv

∂t
+ div(ρv ⊗ v) = (N.15)

= v
∂ρ

∂t
+ ρ

∂v

∂t
+ ρdiv(v ⊗ v) + v (v · grad ρ) = (N.16)

= ρ

(
∂v

∂t
+ div(v ⊗ v)

)
+ v

(
∂ρ

∂t
+ v · grad ρ

)

︸ ︷︷ ︸
=0

(N.17)

1Here we assume that the energy equation is decoupled from the equations of motion and the consequences of
this simplification could be neglected. This e.g. means that heat production due to the mechanical energy dissipa-
tion is neglected. So is the possible density change related to temperature variations.
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Using the above described manipulation, the governing system (N.7)-(N.11) could alternatively
be rewritten as:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (N.18)

∂ρ

∂t
+
∂(ρu)

∂x
+
∂(ρv)

∂y
+
∂(ρw)

∂z
= 0 (N.19)

ρ

(
∂u

∂t
+
∂(u2)

∂x
+
∂(uv)

∂y
+
∂(uw)

∂z

)
= −∂p

∂x
+ µ∆u (N.20)

ρ

(
∂v

∂t
+
∂(uv)

∂x
+
∂(v2)

∂y
+
∂(vw)

∂z

)
= −∂p

∂y
+ µ∆v (N.21)

ρ

(
∂w

∂t
+
∂(uw)

∂x
+
∂(vw)

∂y
+
∂(w2)

∂z

)
= −∂p

∂z
+ µ∆w + ρg (N.22)

Here we have kept the continuity equation in its full original form, however it is also possible
to replace the equation (N.19) by the simplified version (N.14).

The governing systems (N.18)-(N.22), resp. (N.7)-(N.11), represent the full incompressible
(Newtonian) variable density model2. This model is sometimes called the non-homogeneous
(incompressible) Navier-Stokes equations.

N.1.4 Constant Density Incompressible Model

The constant density assumption further simplifies the above described full model (N.18)-
(N.22). It can now be written as:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (N.23)

∂u

∂t
+
∂(u2)

∂x
+
∂(uv)

∂y
+
∂(uw)

∂z
= −∂P

∂x
+ ν∆u (N.24)

∂v

∂t
+
∂(uv)

∂x
+
∂(v2)

∂y
+
∂(vw)

∂z
= −∂P

∂y
+ ν∆v (N.25)

∂w

∂t
+
∂(uw)

∂x
+
∂(vw)

∂y
+
∂(w2)

∂z
= −∂P

∂z
+ ν∆w + g (N.26)

where the original pressure p is rescaled by density to give P = p/ρ and the dynamical viscosity µ
is converted to kinematical viscosity ν = µ/ρ. The equation (N.19) resp. (N.14) has disappeared,
because it is automatically satisfied when the density ρ does not depends on space and time.
The system can be written in compact notation:

divv = 0 (N.27)
∂v

∂t
+ div(v ⊗ v) = −∇P + ν∆v + f (N.28)

This system is called (homogeneous, incompressible) Navier-Stokes equations. The momentum
equations (N.28) are written in so called conservative (or divergence) form, which is often re-
casted to the non-conservative (convective) form:

∂v

∂t
+ (v ·∇)v = −∇P + ν∆v + f . (N.29)

2Only the gravity force was considered as an example of many possible volume forces (e.g. Coriolis).
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It is good to remind here that the above system (N.28) assumes Newtonian fluids only,
where T = 2µD. For non-Newtonian (as well as for many turbulent) fluids models, the right-
hand side of momentum equations should be kept in a more general form:

∂v

∂t
+ div(v ⊗ v) = −∇P + divT + f (N.30)

allowing for other constitutive relations for the stress tensor T.

Observations & Remarks

For low Mach number flows the transition from full compressible model to the incompress-
ible one has some advantages but also drawbacks. The main advantage is that most of the
computational difficulties found in low-Mach flow simulations disappear. Also there are fewer
variables (and thus equations) in the classical incompressible model, so the simulations can be
more efficient. On the other hand, the drawback of the incompressible model can be that due to
the limit passage of Mach number Ma −→ 0 (i.e. the speed of sound c −→ ∞), the character of
the original equations has changed. The continuity equation, which was originally a hyperbolic
type evolution equation, degenerated into an elliptic type equation, which can be interpreted
as kinematic constraint imposed on velocity field. Also pressure has lost its original thermody-
namical character and became a kind of Lagrange multiplier to enforce the incompressibility
(i.e. the divergence-free constraint).

This change is also the cornerstone of most of the numerical challenges related to numerical
solution of incompressible flows. The major issue is how to compute the pressure. Typically, if
the momentum equations are used to obtain velocity components, the only equation remain-
ing to compute pressure is the degenerated continuity equation divv = 0, that does not even
explicitly contains the pressure. To overcome this pressure-velocity coupling problems, several
algorithms have been developed. Here we only shortly mention one of them that has been
used in the numerical simulations presented within this work.

N.2 Artificial Compressibility Method

The artificial compressibility method was originally developed by A. Chorin in the late sixties
(see [N.13]) as a simple and robust alternative to the already known, but in certain situations
quite fragile and expensive projection and fractional step methods. This method is also closely
related to the well known Uzawa algorithm that is widely used in finite-elements based methods
[N.17].

The basic idea behind the artificial compressibility is quite simple. It relies on the relaxation
of the incompressibility constraint, that is manifested by infinite speed of sound. By the re-
introduction of a finite (pseudo-) speed of sound into the continuity equation, an algorithm can
be constructed to compute pressure and enforce the divergence-free constraint. The continuity
equation is modified by adding the (pseudo-) time-derivative of pressure properly scaled by
the artificial speed of sound3 c as follows:

1

c2
∂p

∂t
+ div v = 0. (N.31)

3This artificial speed of sound has to be properly chosen with respect to the stability of the method, it should not
however influence the final, fully converged result.
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It is easy to see that this non-physical modification of the continuity equation disappears as
soon as the solution reaches its steady, divergence-free state. This is why this method is often
used together with time-marching approach to solve steady incompressible flows problems. The
main advantage of this method is that it is simple and robust. It does not requires the solution
of Poisson type equations as many other methods. On the other hand, this method is mainly
suitable for steady flow simulations, while for unsteady flows it has to be further extended by
a dual time-stepping technique, to enhance its accuracy in time.

N.3 Semi-Implicit Finite-Difference Scheme

The main reasons behind the choice of this method were simplicity (finite-difference discretiza-
tion) and robustness (semi-implicit approach). The method was first tested in [N.9] for a sim-
plified boundary layer approximation. It was later extended for the complete incompressible
(Reynolds-Averaged) Navier-Stokes equations including the pollution dispersion model. The
detailed analysis as well as many numerical results were summarized in the author’s PhD the-
sis [N.1]. Hereafter just the basic concepts of this method are summarized.

The system of governing equations (N.32),(N.33) is written in non-conservative form, tak-
ing into account the non-constant turbulent viscosity K.

ux + vy + wz = 0 (N.32)

Vt + uVx + vVy + wVz = −∇p
ρ

+ [KVx]x + [KVy]y + [KVz]z
︸ ︷︷ ︸

=RHS

(N.33)

This system (of Reynolds-Averaged Navier-Stokes) equations has been discretized on a non-
orthogonal, structured, boundary (i.e. terrain in this case), following mesh. Because of the
mesh non-orthogonality it was necessary to transform the equations from the x− y− z coordi-
nates to the mesh-wise directional local coordinate system s1 − s2 − z :

α

x

z

s1

∂
∂x = 1

cosα

(
∂
∂s1
− ∂

∂z sinα
)

β

z

s2

y

∂
∂y = 1

cosβ

(
∂
∂s2
− ∂

∂z sinβ
)

←−
δs =

Vi − Vi−1
∆s−

−→
δs =

Vi+1 − Vi
∆s+

δs =
1

2
(
←−
δs +

−→
δs )

Figure N.1: Local coordinate transformation

The symbol δs denotes the central difference with respect to the direction s. Similarly the−→
δs ,←−δs denote the forward and backward differences.

After the above described transformation the continuity equation (N.32) takes the form:

us1
cosα

+
vs2

cosβ
+ wz − uz tanα− vz tanβ = 0 , (N.34)
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while the momentum equations will be transformed to: 4

Vt + ũVs1 + ṽVs2 + w̃Vz = R̃HS . (N.35)

The modified coefficients are defined as follows:

ũ =
u

cosα
ṽ =

v

cosβ
w̃ = w − u tanα− v tanβ

The right-hand side is transformed in a similar way. The left-hand side of momentum equations
is discretized5 at time levels n and n+ 1 in the following way:

Vt ∼ −→
δtV

n
i,j,k

ũVs1 ∼ 1

2

(
ũni+1/2

−→
δs1V

n
i,j,k + ũni−1/2

←−
δs1V

n+1
i,j,k

)

ṽVs2 ∼ 1

2

{
1

2

(
ṽnj+1/2

−→
δs2Vi,j,k + ṽnj−1/2

←−
δs2Vi,j,k

)n
+

+
1

2

(
ṽnj+1/2

−→
δs2Vi,j,k + ṽnj−1/2

←−
δs2Vi,j,k

)n+1
}

w̃Vz ∼
1

2

{
1

2

(
w̃nk+1/2

−→
δzVi,j,k + w̃nk−1/2

←−
δzVi,j,k

)n
+

+
1

2

(
w̃nk+1/2

−→
δzVi,j,k + w̃nk−1/2

←−
δzVi,j,k

)n+1
}

The coefficients ũ, ṽ, w̃ are fixed at the time-level n in order to linearize locally the system to ob-
tain Oseen-like iterative solver. The combination of different asymmetric space discretization
at time levels n and n + 1 allows us to construct finally the numerical scheme that is centered
and second order in both space and time. The dissipative terms on right-hand side are approx-
imated in the same manner. Using this discretization, the system of linear algebraic equations
in each column of grid-points is obtained:

a1V
n+1
i,j+1,k + a2V

n+1
i,j,k + a3V

n+1
i,j−1,k + a4V

n+1
i,j,k+1 + a5V

n+1
i,j,k−1 = RHS (N.36)

This system is solved iteratively in vertical plane i = const. So the five-diagonal system is
converted into the three-diagonal.

a5V
η+1
i,j,k−1 + a2V

η+1
i,j,k + a4V

η+1
i,j,k+1 = RHS − a1Vηi,j+1,k − a3V

η+1
i,j−1,k (N.37)

The η denotes here the iterative index. Usually after 3−5 iterations the values of V = (u, v, w)T

are known with sufficient accuracy. Exactly the same solution scheme can also be used for the
scalar transport equations

This method has been used in the papers shown in the Sections E.1–E.2 as well as in many other
publications, solving the atmospheric boundary layer flows problems. These are listed in the
author’s full bibliography in the Appendix A, page 205.

4The R̃HS and RHS are the modified right-hand sides
5in the Crank-Nicolson style
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N.4 Explicit Finite-Volume Scheme

This scheme was chosen because it ensures conservativity and robustness even on highly dis-
torted grids. The choice of simple central fluxes was mainly driven by the requirement of low
numerical diffusion of the method and easy predictability of results.

The whole formulation is based on the principle of semi-discretization, where the time- and
space- discretizations are separated. In this section only the finite-volume spatial discretization
step is briefly summarized. For suitable time-discretizations (that have been used alongside
with this method) see the Section N.6.

The governing system of equations is a conservative formulation of Navier-Stokes equa-
tions6 (N.27)–(N.28) written here in a vector form.

R̃Wt + Fx + Gy + Hz = Rx + Sy + Tz + f
W

(N.38)

Where W = col(p, u, v, w) is the vector of unknowns, inviscid flux vectors are defined as F =
col(u, u2 + p, uv, uw),G = col(v, uv, v2 + p, vw), colH = (w, uw, vw,w2 + p). The viscous fluxes
R = col(0,Kux,Kvx,Kwx), S = col(0,Kuy,Kvy,Kwy), T = col(0,Kuz,Kvz,Kwz). The vector
of volume forces is denoted by f

W
. The symbol R̃ = diag(0, 1, 1, 1) denotes a diagonal matrix

that is in our model modified for the use of artificial compressibility by replacing R by R̃ =
diag(1/c2, 1, 1, 1). In this case c is the pseudo speed of sound7

Using this notation, the spatial finite-volume semi-discretization in the cellD can be written
in the following form:

∂W

∂t
=
−1

|D|

∮

∂D

[
(F− R), (G− S), (H− T)

]
· ν̂ dS +

1

|D|

∫

D
f

W
(N.39)

Here D denotes the computational cell, ν̂ is the outer unit normal vector of the cell boundary,
dS is the surface element of this boundary. Equation (N.39) can be rewritten in operator form:

∂W

∂t
= −L(W) (N.40)

Here L stands for the finite-volume discretization operator. This operator is still exact at this
stage and it must be properly discretized to allow for numerical solution. For clarity we write
here the space discretization operator definition:

LW =
1

|D|

{∮

∂D
[F,G,H] · ν̂ dS

︸ ︷︷ ︸
inviscid flux

−
∮

∂D
[R,S,T] · ν̂ dS

︸ ︷︷ ︸
viscous flux

+

∫

D
f̃

W
dV

︸ ︷︷ ︸
external force

}
(N.41)

The computational mesh is structured, consisting of hexahedral primary control volumes. To
evaluate the viscous fluxes also dual finite volumes are needed. These have octahedral shape
and are centered around the corresponding primary cell faces. See the figure N.2 for the
schematic view of such configuration.

6possibly with some generalizations for turbulent and non-Newtonian flows
7In the following text we use for simplicity c = 1 and therefore the matrices R and R̃ no more appear in expres-

sions.
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Figure N.2: Finite-volume grid in 3D

The inviscid flux integral can be approximated using centered cell fluxes, e.g. the value of the
flux F on the cell face with index ` = 1 is computed as the average of cell-centered values from
both sides of this face:

Fn1 =
1

2
[F(Wn

i,j,k) + F(Wn
i+1,j,k)] (N.42)

The contribution of inviscid fluxes is finally summed up over the cell faces ` = 1, . . . , 6. In this
way we can write the inviscid flux approximation:

∮

∂D
Fνx dy dz ≈

6∑

`=1

F`ν
x
` S` (N.43)

The discretization of viscous fluxes is a little bit more complicated since the vectors R,S,T
were defined using the derivatives of velocity components and these derivatives need to be
approximated at cell faces. This can be done using the dual finite-volume grid that is centered
around the corresponding faces (see Figure N.2).

The evaluation of the velocity gradient components is then replaced by the evaluation of the
surface integral over the dual volume boundary. Finally, this surface integral is approximated
by a discrete sum over the dual cell faces (with indices m = 1, . . . , 8). For example trying to
evaluate the first component of the viscous flux R1 (i.e. approximate ux) at the cell face l = 1
we must proceed in the following way:

ux ≈
∮

∂D̃
u νx dy dz ≈

8∑

m=1

umν
x
mSm (N.44)

The outer normal of the dual cell faces should be properly approximated νx ≈ νxm. The values
of velocity components in the middle nodes of these faces are taken as an average of the values
in the corresponding vertices.

The problem is now in the semi-discrete form:

dWijk

dt
= −L̃Wi,j,k (N.45)

This system of ordinary differential equations, for time-evolution of cell averaged quantities,
can be solved e.g. by some of the Runge-Kutta multistage methods shown in the Section N.6.

This method has been used e.g. in the papers solving the free-surface [N.10] or turbulent variable
density flows in [N.7, N.5]. Blood flow and coagulation problems were solved using this method
e.g. in [N.11], [N.12] or in the chapter [N.4] in [N.8]. Some of the biomedical applications of
this method are shown in the Sections B.1–B.4. Further examples of the use of this method can
be found in some works listed in the author’s full bibliography in the Appendix A, page 205.
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N.5 Compact Finite-Difference Scheme

This type of discretization8 was chosen because it offers high resolution while retaining well de-
fined dispersion/diffusion characteristics. This is quite rare among the modern high resolution
methods that often employ complicated non-linear reconstruction and stabilization techniques.
The family of compact (in the sense of narrow computational stencil) schemes in its current
form was introduced in [N.24] and is successfully used e.g. in computational aeroacoustics
(see e.g. [N.16], [N.30]). Its superior resolution and low numerical diffusion/dispersion makes
it suitable for capturing various wave phenomena, including those in stratified flows (as it is
shown in the Section E.3).

The basic concept of the compact finite-difference schemes naturally extends and gener-
alizes the construction of the classical (sometimes called explicit) finite difference approxima-
tions. In the classical approach the central approximation of first derivative φ′(x) of a (suffi-
ciently smooth) function φ(x) can be obtained as a (symmetric) linear combination of neigh-
boring grid values φi (resp. their divided differences).

φ′i ≈ α1
φi+1 − φi−1

2h
+ α2

φi+2 − φi−2
4h

+ . . .+ α`
φi+` − φi−`

2`h
(N.46)

The coefficients αm; m = 0, . . . , ` are obtained by matching the above expression to Taylor
expansion of φ(xi ±mh). So the classical central finite-difference approximations take the fol-
lowing form.

φ′i ≈
m=∑̀

m=1

αm
φi+m − φi−m

2mh
(N.47)

In vector (matrix) form the process of obtaining approximation of derivatives could be written
as follows:

I ~φ′ = Dα
~φ (N.48)

Here I is the identity matrix and Dα is the anti-symmetric (2` + 1)-diagonal matrix of coeffi-
cients αm. The identity matrix on the left-hand side means that to obtain the approximation of
derivatives we don’t have to solve any linear system, and the derivatives are obtained by ex-
plicit calculation. In general, the classical finite-difference approximation of the order p requires
a computational stencil of the width ph which contains p+ 1 grid points.

The compact approximations can reduce the computational stencil (needed for given or-
der of accuracy) and in some cases also improve the resolution of the method. The main idea
of compact finite differencing is quite simple. Instead of looking for an (explicit) formula ap-
proximating the value of φ′i, we will rather approximate a (symmetric) linear combination of
neighboring derivatives (. . . , φ′i−1, φ

′
i, φ
′
i+1, . . .).

aqφ
′
i−q + . . .+ a2φ

′
i−2 + a1φ

′
i−1 + φ′i + a1φ

′
i+1 + a2φ

′
i+2 + . . .+ aqφ

′
i+q ≈ (N.49)

≈ α1
φi+1 − φi−1

2h
+ α2

φi+2 − φi−2
4h

+ . . .+ α`
φi+` − φi−`

2`h
(N.50)

The approximation (N.49) could be understood as an implicit relation between the function
values φi and the approximate derivatives φ′i. This approach generalizes the classical finite-
differencing, which now becomes just a special case of the compact approach.

8The principle of semi-discretization is used to first discretize the governing equations in space and then to solve
the resulting system of ODE’s. This section only contains the information about the space-discretization step. For
time-integration methods see Section N.6.
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Using the compact differencing, the approximation formula becomes more complicated.

φ′i +

n=q∑

n=1

an(φ′i−n + φ′i+n) ≈
m=∑̀

m=1

αm
φi+m − φi−m

2mh
(N.51)

In vector (matrix) form the process of obtaining approximation of derivatives could be written
as follows:

Da
~φ′ = Dα

~φ (N.52)

This contrasts with the classical differencing where an explicit formula I ~φ′ = Dα
~φ is obtained.

The matrix Da on the left-hand side is the symmetric (2q + 1)-diagonal matrix of coefficients
an. Similarly the Dα is the anti-symmetric (2` + 1)-diagonal matrix of coefficients αm. In the
non-trivial case of q > 0 the matrix Da can not be easily inverted. Thus in order to obtain
the approximate derivatives ~φ′ we have to solve a system of linear algebraic equations (with
(2q + 1)-diagonal matrix).

Now let’s concentrate on compact schemes with at maximum penta-diagonal system of
equations and seven-point discretization stencil. These could be written in the form

a2φ
′
i−2+a1φ

′
i−1+φ′i+a1φ

′
i+1+a2φ

′
i+2 = α1

φi+1 − φi−1
2h

+α2
φi+2 − φi−2

4h
+α3

φi+3 − φi−3
6h

(N.53)

To get the approximation formula of desired order, it is necessary to match the general formula
with Taylor series expansions. The first non-matching coefficient determines the leading order
of the truncation error. The following conditions on the coefficients should be satisfied to attain
the required order of accuracy.

Second order α1 + α2 + α3 = 1 + 2a1 + 2a2

Fourth order α1 + 22α2 + 32α3 = 2 3!
2! (a1 + 22a2)

Sixth order α1 + 24α2 + 34α3 = 2 5!
4! (a1 + 24a2)

Eighth order α1 + 26α2 + 36α3 = 2 7!
6! (a1 + 26a2)

Tenth order α1 + 28α2 + 38α3 = 2 9!
9! (a1 + 28a2)

Table N.1: Order conditions for the compact approximations

It is obvious that for the approximations of the order lower than ten, there are more unknown
parameters than equations from the which these parameters can be computed. This means that
the coefficients for the lower order schemes are not unique. This offers a possibility to choose
a-priori some of the coefficients (usually to make the solution easier). For example we may get
schemes with tri-diagonal matrix (for a2 = 0) and also classical (explicit) difference schemes if
both a2 = 0 and a1 = 0. In the same way the discretization stencil width can be reduced by
choosing e.g. α3 = 0. This is shown in the table N.2, where the coefficients of the compact finite
difference schemes with tridiagonal matrix, having up to seven point stencil, are summarized.
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Scheme a1 a2 α1 α2 α3 Diagonals Points Order

A a 0 2
3(a+ 2) 1

3(4a− 1) 0 3 5 4

B a = 1
3

0 14
9

1
9 0 3 5 6

C a = 1
4

0 3
2 0 0 3 3 4

D a 0 2
3(a+ 2) 1

3(4a− 1) b 3 7 4

E a 0 1
6(a+ 9) 1

15(32a− 9) 1
10(−3a+ 1) 3 7 6

F a = 3
8

0 25
16

1
5 − 1

80 3 7 8

Table N.2: Parameters for tri-diagonal schemes

The scheme denoted by A in the table N.2 was constructed using the constraint for the tri-
diagonality of the resulting system of equation and therefore the coefficient a2 was set to zero.
Moreover the requirement of reduced computational stencil (up to five points) leads to the set-
ting α3 = 0. Without further constraints, this setup leads to one-parametric family of schemes
of the type A. Various specific choices of the free parameter amay further lead to either increase
of the order of accuracy of the scheme (as for a = 1/3 leading to, highest in this class, 6th order
of accuracy).

This method has been used in the papers shown in the Section E.3-E.4 and in publications [N.3]
and [N.6] solving stratified environmental flows. Some more publications where this scheme
was used are listed in the author’s full bibliography in the Appendix A, page 205.

N.6 Runge-Kutta Time-Integration Methods

As it was already mentioned in the previous sections, the concept of semi-discretization of
evolutionary PDE’s, allows to transform problems involving both space- and time- derivatives
into problems containing only the derivatives with respect to time. A typical example of such
approach could be the discretization of hyperbolic conservation laws. Written in one space
dimension, the conservation of scalar quantity w can be expressed in differential form as9:

wt + f(w)x = 0 . (N.54)

Assuming now that the equation (N.54) was discretized in space, e.g. using one of the suitable
FV or FD discretizations (e.g those described in Section N.4 and N.5), it is transformed into the
system of ODE’s of the form:

Wt = L̃(t,W(t)) , (N.55)

where W = W(t) is the vector of discretized variable, i.e. [W(t)]i = Wi(t) = w(xi, t), and L̃ is a
discrete version of the differentiation in space operator L = −f(w(t, xi))x.

The system (N.55) describes the evolution in time of the discrete grid values of unknown
function w. In order to solve the initial value problem based on this system of ODE’s, virtually
any of the methods originally developed for ODE’s could be used.

9The subscripts are used to denote partial derivatives.
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N.6.1 Classical Runge-Kutta (RK) Methods

A general Runge-Kutta method for the solution of the system (N.55) can be written in the
following form:10

W(r) = Wn + ∆t

s∑

p=1

arpL̃(tn + cp∆t,W
(p)) r = 1, . . . , s (N.56)

Wn+1 = Wn + ∆t
s∑

r=1

brL̃(tn + cr∆t,W
(r))

Here the coefficients cp indicate the positions, within the step, of the stage values, the coefficient
arp (forming an s × s matrix A) are showing the dependence of the stages on the derivatives
found at other stages, and the values br represent the weights of the stage derivatives in the
final step quadrature. It is a common practice to represent a Runge-Kutta method of the form
(N.56) by a partitioned tableau of its coefficients (sometimes called Butcher-array or table):

c A

bT
=

c1 a11 · · · a1s
...

...
...

cs as1 · · · ass
b1 · · · bs

(N.57)

In this work we only focus on some of the explicit methods suitable for time-integration of
semi-discretized evolutionary PDE’s. Within the class of explicit RK methods, there are some
them, that are widely considered as ”classical”. Let’s mention few of them for illustration. First
of all, it’s good to mention that the Euler method

Wn+1 = Wn + ∆tL̃(tn,W
n) , (N.58)

could be written in the form (N.56), resp. (N.57)11:

W(1) = Wn

Wn+1 = Wn + ∆tL̃(tn,W
(1))

resp.
0 0

1

Higher order RK methods can be constructed and used. The Butcher arrays for two of the
classical methods of third and fourth order are

0
1
3

1
3

2
3 0 2

3

1
4 0 3

4

(N.59)

0
1
2

1
2

1
2 0 1

2

1 0 0 1
1
6

1
3

1
3

1
6

(N.60)

The above third-order method (N.59) is usually called the Heun’s method, while the fourth
order method (N.60) is referred to as the method of Runge-Kutta.

The above methods have been constructed to attain the maximal possible order of accuracy
(for given number of stages). In some cases however it is more useful to relax the accuracy
order constraints to gain some other desirable properties. Some of the most relevant (for the
papers presented in this work) cases are discussed in following sections.

10See e.g. [N.21]
11The zero elements on diagonal of A and above are dropped for simplicity.
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N.6.2 Low-Storage RK Methods

Taking a closer look at the above classical examples of Runge-Kutta methods we may observe
that the amount of memory needed to calculate the value of Wn+1 differs significantly for these
methods. For example in the fourth order, four stage method (N.60), it is necessary to remember
all the values of L̃(tn + cr∆t,W

(r)) for r = 1, . . . , 4. This is because the weight coefficients br
appearing in the integration formula (N.56) are all non-zero.

Such behavior might be acceptable for the solution of single ODE’s or even for small sys-
tems of ODE’s. However in the case of solution of very large systems of ODE’s, appearing
as a result of the semidiscretization of multidimensional PDE’s, the memory consumption of
time-integration method may become a serious issue.

For low-storage algorithms we will require that the stage values of L̃ are always only used
once, only at the next stage evaluation, and then could be forgotten/replaced. Such behavior is
quite desirable especially for RK methods with higher number of stages. The Butcher tableau
for such method has a form:

0
c2 a21
... 0

. . .

cr 0 · · · ar,r−1
... 0 · · · . . .

cs 0 · · · 0 as,s−1
0 · · · 0 0 bs

(N.61)

This already simple form of the Butcher array could further be reduced using the natural con-
sistency requirements valid for all of the above RK methods, namely the

∑s
p=1 arp = cr and∑s

r=1 br = 1. The class of explicit s-stage low-storage RK methods introduced here could be
written in the simplified form:

W(0) = Wn

W(r) = W(0) + α(r)∆tL̃(W(r−1)) r = 1, . . . , s (N.62)

Wn+1 = W(s)

It is clear that such a method is fully determined by the choice of the coefficients α(r). The
methods we have used in our simulations were three- resp. four-stage variants with coefficients
α

(1)
= 1/2, α

(2)
= 1/2, α

(3)
= 1 resp. α

(1)
= 1/4, α

(2)
= 1/3, α

(3)
= 1/2, α

(3)
= 1. The order

of accuracy m of these methods is slightly lower than the number of stages s, i.e. m = s − 1,
which is compensated by larger stability region of these RK methods. When, for example, these
methods are applied to advection equation, the maximum allowable CFL number is equal to 2,
resp. to 2

√
2 for the above three- resp. four-stage schemes.

This method has been used together with the above described finite-volume space discretization
e.g. in the paper [N.10] and in other publications, solving the free-surface and internal turbulent
flows problems. These publications are listed in the author’s full bibliography in the Appendix
A, page 205.
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N.6.3 Advection-Diffusion Optimized RK Methods

From the definition of the multistage Runge-Kutta methods is obvious, that these methods re-
quire multiple evaluations of the operator L̃ within a single time-step. In the case discussed
here, L̃ is a space discretization operator which is based on the original PDE’s and the se-
lected discretization method. The construction of this operator is often quite complicated and
its evaluation might be computationally expensive. Thus the amount of computational work
increases rapidly with the number of stages of the applied RK method. This disadvantage is
usually compensated by the higher accuracy or higher stability of multistage methods.

In specific cases however, it is possible to reduce the amount of necessary computational
work per RK stage and improve the stability of the method at the same time. The approach
presented here (following the original references [N.23],[N.22]) is designed for the numerical
solution of advection-diffusion equations. The main idea behind this specific modification of
RK methods is that the discrete advection-diffusion operator L̃ could be split into the advection
and the diffusion part, and instead of evaluating the full operator L̃(W(r)) at each stage of
RK method, only a part of L̃ is updated at each stage (e.g. the advection part for advection
dominated problems), while the value of the remaining (diffusion) part of L̃ is kept frozen
from previous RK stage.

W(0) = Wn

W(r+1) = W(0) − α
(r)

∆t
(
Q(r−1) +D(r−1)

)
r = 1, . . . , s (N.63)

Wn+1 = W(s) (N.64)

Here the space discretization operator at stage (r) is split as follows:

L̃W(r) = Q(r) +D(r) . (N.65)

The inviscid (advection) flux Q is evaluated in usual way at each stage

Q(r) = QW(r) . (N.66)

The viscous (diffusive) flux D uses a blended value of from the previous stage and the actual
stage according to the following rule:

D(r) = β
(r)
DW(r) + (1− β

(r)
)D(r−1) with D(0) = DWn (N.67)

The coefficients α
(r)

and β
(r)

are chosen to guarantee large enough stability region for the
Runge-Kutta method. The following set of coefficients was used for this study:

α
(1)

= 1/3 β
(1)

= 1

α
(2)

= 4/15 β
(2)

= 1/2

α
(3)

= 5/9 β
(3)

= 0

α
(4)

= 1 β
(4)

= 0

It is easy to see that for this four-stage method only two evaluations of dissipative terms are
needed which saves significant amount of calculations while retaining the advantage of large
stability region of the method. Further admissible sets of coefficients together with comment
on the increase of the efficiency and robustness could be found in the original papers [N.23]
and [N.22] and the references therein.
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This method has been used together with the above described finite-volume space discretization
e.g. in the papers [N.7, N.5] dealing with variable density turbulent flows or in biomedical
applications shown in Sections B.1-B.4. Remaining publications employing this method are
listed in the author’s full bibliography in the Appendix A, page 205.

N.6.4 Strong Stability Preserving (SSP) RK Methods

The need of specific non-oscillatory time-discretizations arose for the first time in the late 80’s,
when the high resolution spatial discretizations were introduced. These new Total Variation
Diminishing (TVD) and Essentially Non-Oscillatory (ENO) schemes, among others, have been
used in conjunction with various time-discretizations to solve evolutionary PDE’s. It has been
found quite soon, that even in the case that a non-oscillatory space-discretization was used, the
numerical solution might still be spoiled by non-physical oscillations. These spurious artifacts
were introduced at the time-integration step by an inappropriate choice of time-discretization.

The early stages of the research in this field could be tracked down to the works [N.25] and
[N.26], where the idea of high order TVD time-discretizations has been developed for the class
of multistep schemes. About ten years later, similar approach was applied in the framework of
multistage Runge-Kutta schemes in [N.19], where the class of TVD Runge-Kutta schemes has
been developed and analyzed in detail. A little bit later, in [N.20], the theoretical background
of the Total Variation Diminishing (TVD) Runge-Kutta methods has been revised and general-
ized to cover a new, broader class of so called Strong Stability Preserving (SSP) Runge-Kutta
schemes. Since then, the SSP RK methods have been further developed and optimized e.g. in
[N.28] and [N.18].

The strong stability concept is based on the following definition (see e.g. [N.28]):

Definition N.1 The sequence {Wn} is called strongly stable in a certain norm ‖ · ‖, iff in the same
norm ‖Wn+1‖ ≤ ‖Wn‖ holds for all n ≥ 0.

Assuming that sequence {Wn} generated by the (forward) Euler method (N.58) is strongly sta-
ble, for given PDE and applied space discretization, the time-integration method itself is called
strongly stable. Problem is that the classical Euler method is only first order accurate. Higher
order methods, having the strong stability preserving property, could e.g. be constructed as
Runge-Kutta multistage methods.

The family of explicit SSP Runge-Kutta schemes is usually written in the form introduced
in [N.26]12 :

W(0) = Wn

W(r) =

r−1∑

p=0

(
αrpW

(p) + βrp∆tL̃(W(p))
)

r = 1, . . . , s (N.68)

Wn+1 = W(s)

It is not difficult to see that in the case the coefficients βrp are positive, the method (N.68) is
nothing but a convex combination of Euler stages with fractional time-steps of the length βrp

αrp
∆t.

Here we just shortly present some of the optimal, in the sense of accuracy versus stability, SSP

12It is possible to show, that the above SSP-RK methods could be rewritten from the Shu-Osher form (N.68) to
the more conventional Butcher form (N.56), resp. (N.57). The coefficients of some of these methods given in both,
Shu-Osher and Butcher formalism, are presented e.g. in [N.28].
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RK methods originally studied in [N.28]. The coefficients of second order SSP-RK methods are
shown in the table N.3, wherethe SSP(s,o) denotes the Runge-Kutta method which consists of
s stages and has order of accuracy o.

Method αrp βrp CFL

SSP(2,2)
1
1
2

1
2

1

0 1
2

1

SSP(3,2)

1

0 1
1
3 0 2

3

1
2

0 1
2

0 0 1
3

2

SSP(4,2)

1

0 1

0 0 1
1
4 0 0 3

4

1
3

0 1
3

0 0 1
3

0 0 0 1
4

3

Table N.3: Second order SSP-RK methods

This method has been used together with the compact FD discretization in the papers shown in
the Sections E.3-E.4 and in publications [N.3] and [N.6] solving stratified environmental flows.
Some more publications where this scheme was used are listed in the author’s full bibliography
in the Appendix A, page 205.

N.7 Numerical Stabilization Techniques

All the schemes presented in this work are based on central space-discretization. This means
they have low numerical diffusion which causes their oscillatory behavior in presence of high
solution gradients. Throughout this work this approach was chosen to be able to split the nu-
merical discretization and its stabilization into separate steps which offers more flexibility in
constructing problem-specific numerical methods. The following sections review the meth-
ods that have been used to stabilize the numerical solution and make it free of non-physical
oscillations.

N.7.1 Artificial Viscosity

Numerical discretizations in general contain some amount of imbedded numerical diffusion
and/or dispersion. This is due to the corresponding character of the leading order terms of the
discretization error. This can be shown by analyzing the modified equations of these numerical
methods13. The numerical methods that are based on discretizations with low numerical dif-
fusivity (as the central schemes used in this work) tend to be highly oscillatory and unstable.
One of the oldest and simplest ways, how to stabilize these numerical methods is the addition
of artificial viscosity terms. These terms are added explicitly and are emulating the effects of

13See e.g. the PhD thesis [N.1].
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physical diffusivity by enhancing the insufficient numerical diffusivity of the scheme. In order
to retain the resolution properties of the original method, the numerical viscosity terms should
be kept as small as possible just to damp the non-physical oscillations and to diminish with the
grid refinement.

As an example of such artificial viscosity the following artificial dissipation of second and
fourth order is shown.

DVni = D2Vni + D4Vni

D2Vni = ε̃2∆x
3 ∂

∂x
|Vx|Vx = ε̃2∆x

2(εi+1/2Vx − εi−1/2Vx)

εi+1/2 =

{ |Vi+1 − Vi| for |Vi+1 − Vi| < K
10

K
10 for |Vi+1 − Vk| ≥ K

10

D4Vni = ε̃4∆x
4Vxxxx = ε̃4

(
Vni−2 − 4Vni−1 + 6Vni − 4Vni+1 + Vni+2

)

The K = ν + νt is coefficient of turbulent diffusion. The coefficients ε̃2, ε̃4 ∈ R are constants of
order ∆x2 respectively ∆x4.

The fourth order viscosity was used to smooth the highest (spatial) frequency oscillations,
while the second order is applied close to high solution gradients. It is good to note that the
second order viscosity coefficients increase with the solution gradient, but are bounded from
above by the physical (in this case turbulent) diffusivity. This helps to reduce the unwanted
effects of these artificial terms which may spoil the solution of the original problem.

This method has been used mainly together with the semi-implicit finite-difference scheme in
the papers shown in the Sections E.1–E.2 as well as in many other publications, solving the
atmospheric boundary layer flows problems. These are listed in the author’s full bibliography in
the Appendix A, page 205.

N.7.2 Pressure Stabilization

Even if the artificial viscosity concept works well most of the time, in some cases however it
may affect the velocity field too strongly and interfere with the physical viscosity. Therefore
some other stabilization techniques have to be found that will help to stabilize the solution
without the unwanted effects on the velocity field.

One of such methods could be the pressure stabilization introduced in [N.29]. This pressure
stabilization method that consists in adding a pressure dissipation term (Laplacian) on the
right-hand side of the modified continuity equation (N.31). This term takes the form:

Qi,j,k =
1

|Di,j,k|
2N∑

`=1

p` − pi,j,k
b`

S`. (N.69)

Here ` denotes the control volume cell face index, p` is the pressure in the corresponding neigh-
boring cell and S` is the cell face area. The value b` has the dimension of velocity and represents
the maximal convective velocity in the domain and local diffusive velocity.

b` = max(
√
u2 + v2 + w2) +

2ν

L`
(N.70)
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Symbol L` corresponds to a distance between the current and the neighboring cell centers. It is
possible to show that on the uniform cartesian mesh with cells of size δx this term is given by:

Q =
δx

2b
∆p (N.71)

This stabilization method has some advantages over the classical artificial diffusion applied to
the velocity components. The artificial effects induced by the pressure dissipation term only
indirectly affect the velocity field and thus they do not interfere that much with the physical vis-
cous effects. Moreover, this stabilization term contains only second derivatives of the pressure
and will vanish if pressure is a linear function of space coordinates (like e.g. in the Poiseuille
flow or within a boundary layer).

This method has been used together with the finite-volume scheme in the papers shown in the
Sections E.1 and B.1–B.3 as well as in other publications, solving the free-surface and blood flow
problems. These are listed in the author’s full bibliography in the Appendix A, page 205.

N.7.3 Non-Linear TVD Filtering

As it was already discussed above, the numerical solution obtained using certain schemes suf-
fers from non-physical oscillations. This is why many specialized, non-oscillatory discretiza-
tions have been developed and successfully used (ENO, TVD, ...). The drawback of the use of
such non-oscillatory discretizations is that they are often computationally expensive and hard
to implement into already existing codes.

One of the alternative ways of obtaining oscillation-free solution, lies in the post-processing
of the resulting data, rather than in modification of the discretization algorithm itself. This idea
comes from the area of signal (image, acoustic, etc.) processing. It has been found that the
algorithms used for the signal de-noising can successfully be applied to remove the numerical
point-to-point oscillations that often appear in the numerical solution of physical problems.

The filter presented here follows the paper [N.14], where a family of discrete filters has been
proposed and studied. The general idea of this filtering algorithm can be written as follows:

i) Localize - The oscillations appear as the local minima/maxima of the solution. Thus the
filtering will only be applied to the points of local extrema. Non-extremal points will
remain unchanged.

ii) Measure - The amplitude of an oscillation could be estimated e.g. as a fraction of back-
ward/forward difference.

iii) Remove - As the value in the actual point is reduced/increased to remove the oscillatory
maxima/minima, the neighboring value(s) should also be modified to retain the overall
conservativity of the algorithm.

One of the simplest versions of such algorithm can be summarized as follows. Let’s have a
set of grid values φi, for i = 0, . . . , N , which approximate the scalar function values φ(xi) at
regularly spaced grid points xi. For each of the grid points in the range i = 1, . . . , N − 1 do the
following:

i) To localize the oscillation, compute the backward and forward differences of φ, i.e. (δ−φ)i =
φi − φi−1 and (δ+φ)i = φi+1 − φi. If (δ−φ)i · (δ+φ)i < 0, then there is a local extrema in xi,
that needs to be adjusted.
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ii) Estimate the amplitude of the oscillation at point xi as osc = min{(δφ)min, 0.5(δφ)max},
where (δφ)min = min{|(δ−φ)i|, |(δ+φ)i|} and (δφ)max = max{|(δ−φ)i|, |(δ+φ)i|}.

iii) Adjust the local extrema by subtracting/adding the value δφ = sign((δ+φ)i) · osc to the
φi, i.e set φi = φi + δφ . It means if (δ+φ)i < 0 (local maxima) set φi = φi − osc, or
φi = φi + osc when (δ−φ)i > 0 (local minima). To preserve the conservativity of the
method, redistribute the subtracted/added value osc, to the neighboring point(s). E.g.
adjust the value φi−1 or φi+1, depending on which of them is further from φi. I.e. if
|(δ−φ)i| > |(δ+φ)i| set φi−1 = φi−1 − δφ, or φi+1 = φi+1 − δφ, if |(δ−φ)i| < |(δ+φ)i|.

The procedure should be repeated until the stopping criterion (TV bound, number of filter
passes, ...) is satisfied. This filter, originally proposed in [N.14], was further extended and
studied in detail in [N.27]. The above algorithm could be fine-tuned by the appropriate choice
of relaxation parameter ω, by the which the correction value δφ can be multiplied.

The effect of the filter could be seen from the following figure N.7.3 (page 26) showing the
solution of 1D advection equation with stepwise initial data.
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Figure N.3: Comparison of the filtered Lax-Wendroff scheme with some other classical numer-
ical schemes CFL=0.5. (◦ numerical solution, —exact solution).

This method has been studied in detail in [N.2]. It was used in the papers shown in the Sections
B.1 and B.4. Some more publications where this technique was used are listed in the author’s
full bibliography in the Appendix A, page 205.
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N.7.4 Compact Filters

The main idea of filtering comes from the area of signal processing, where so called low-pass
filters are used to suppress high frequencies in various signals. The amplitudes of high fre-
quency modes are reduced, while low-frequencies remain unchanged. The filtering is in some
sense very close to the classical artificial viscosity approach used for the stabilization of the nu-
merical solution of hyperbolic PDEs. The filtering however is a little bit more general concept
because it can also be used for other than hyperbolic problems.

An important subclass of low-pass filters is formed by the compact filters. Specific compact
approximation functions are constructed in a similar fashion as the compact finite-difference
schemes described in the Section N.5. This approach was proposed in [N.24] and applied and
analyzed in [N.16] and [N.30]. According to [N.24] a typical compact filter could be written in
the following form:

b2φ̂i−2 + b1φ̂i−1 + φ̂i + b1φ̂i+1 + b2φ̂i+2 = (N.72)

= β0φi + β1
φi+1 + φi−1

2
+ β2

φi+2 + φi−2
2

+ β3
φi+3 + φi−3

2
.

The symmetric linear combination of the filtered grid values φ̂i is expressed as a weighted sum
of averages of the non-filtered values φi over stencils of different width. In the above example
five-diagonal system of equations needs to be solved to obtain the filtered values φ̂. The choice
of coefficients bj and βj defines a specific filter in terms of its order of approximation, stencil
width and number of non-empty diagonals in the corresponding system of equations.

In the context of the compact finite-difference schemes introduced in the table N.2 it is nat-
ural to focus the attention on the compact filters leading to the solution of tri-diagonal system
of equations. This family of filters could be written in the following simple form:

bφ̂i−1 + φ̂i + bφ̂i+1 =

N∑

n=0

βn
2

(φi−n + φi+n) . (N.73)

The coefficients βi can be chosen to obtain filters of various orders. The single remaining pa-
rameter b takes the values −0.5 5 b 5 0.5. From the table N.4, summarizing the coefficients of
compact filters, follows that the filter of order P can be obtained using the stencil of the width
2Ph, i.e. using 2P + 1 points. The effect of a certain filter could be characterized by its transfer

Filter β0 β1 β2 β3 β4 β5

F2 1+2b
2

1+2b
2 0 0 0 0

F4 5+6b
8

1+2b
2

2b−1
8 0 0 0

F6 11+10b
16

15+34b
32

3(2b−1)
16

1−2b
32 0 0

F8 93+70b
128

7+18b
16

7(2b−1)
32

1−2b
16

2b−1
128 0

F10 193+126b
256

105+302b
256

15(2b−1)
64

45(1−2b)
512

5(2b−1)
256

1−2b
512

Table N.4: Coefficients of the tri-diagonal family of compact filters.

function14. When both the original and filtered “signal” is represented in Fourier space by its

14Sometimes called spectral function or spectral response (see e.g. [N.30] for more details)
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wave number and corresponding amplitude, the value of transfer function T (w) is obtained
as the ratio of the amplitudes of filtered and non-filtered signal for a given wave number w.
According to [N.24] the transfer function of the tri-diagonal compact filter family is given by

T (w) =

∑N
n=0 βn cos(nw)

1 + 2b cos(w)
(N.74)

The shape of the transfer functions for different filters and values of the coefficient b are shown
in the figure N.4.
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Figure N.4: Transfer functions of different compact filters.

From the above figures it is evident that the damping effect of all the filters is stronger
with lower values of parameter b. Reduction of the parameter b forces also lower frequencies
being damped. The opposite effect is achieved by choosing the parameter b close to 0.5, when
only the highest wave number (corresponding to grid frequency, point-to-point oscillations)
components are damped. In the limit case of b = 0.5 the filter relation (N.73) reduces to identity,
i.e. φ̂ = φ, and no damping occurs at all.

This method has been used in the paper shown in the Sections E.3-E.4 and in publications [N.3]
and [N.6] solving stratified environmental flows. Some more publications where this scheme
was used are listed in the author’s full bibliography in the Appendix A, page 205.
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[N.7] BODNÁR, T., FRAUNIÉ, P., AND KOZEL, K. Simulation of the start-up of a turbulent free
convection driven by wall heating and cooling. In Topical Problems of Fluid Mechanics 2014
(Prague, 2014), Institute of Thermomechanics AS CR, pp. 21–24.
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The specific characteristics of the environmental applications included in this part of the
work are related to their rather complex geometry and mainly to the effects of turbulence and
variable density. The main aim of this introductory section is to present at one place an overview
of models generalizing the standard incompressible model derived in the section N.1. These
generalized models have further been used in the papers shown in the Sections E.1-E.4.

Models of Turbulence

Turbulence modeling in environmental flows is very complex and difficult task. The models
used in this work are based on Reynolds-Averaged Navier-Stokes equations and Boussinesq
assumption on the approximation of turbulent fluxes. The resulting system of incompress-
ible Reynolds-Averaged Navier-Stokes equations (with constant density) can be written in the
following way1:

divv = 0 (E.1)
∂v

∂t
+ div(v ⊗ v) = −∇P + div(2KD) + f (E.2)

It means that the model looks formally the same as the original Navier-Stokes system (N.27),
(N.30), however the variables changed their role from instantaneous to time-averaged quanti-
ties. Due to Boussinesq assumption, the molecular (constant) viscosity is replaced by a (non-
constant) turbulent diffusion coefficient K = ν + νT where the additional turbulent viscosity νT
has to be determined using suitable turbulence parametrization.

1The tensor D is the strain-rate tensor i.e. the symmetric part of the velocity gradient tensor. See the Chapter B
for details.
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The following two models have been used in this work.

Algebraic mixing length model

This model was chosen because of its simplicity and adaptation to atmospheric flows including
stratification.

According to idea of Prandtl2 it can be assumed that a fluid parcel is an entity that moves at
the distance (mixing length) ` keeping its original momentum. So the mixing length is in some
way analogous to the mean free path in the description of molecular diffusion. This analogy
leads to a simple expression for the turbulent (kinematic) viscosity νT

νT = `2
∥∥∥∇v

∥∥∥ (E.3)

For Atmospheric Boundary Layer (ABL), it can be assumed that the horizontal velocity
gradients are negligible in comparison to the vertical ones. Moreover it’s often supposed that
the vertical velocity component tends to zero and also its gradients are negligible. The basic
mixing length model (originally proposed by Prandtl) was modified for boundary layer flows
by Blackadar (1962) and generalized for stability effects by Estoque and Bhumralkar (1969). For
the flow in thermally stratified boundary layer the following stability function G can be used:

νT = `2
[(∂ū
∂z

)2
+
(∂v̄
∂z

)2]1/2
G (E.4)

Where the function G is given by :

G = (1 + β Ri)−2 for Ri > 0

G = (1− β Ri)2 for Ri ≤ 0
(E.5)

where β is a constant (≈ 3) and Ri stands for (gradient) Richardson number.
In this way the problem of turbulent closure was reduced to the problem of finding some

suitable formula for the mixing length `. The general expression for `, given by von Kármán is:

` =
−κ ∂|v|/∂z
∂2|v|/∂z2 (E.6)

Here the parameter κ = 0.36− 0.41 is von Kármán’s constant. The simplest assumption that can
be made on ` (inside the boundary layer) is that the mixing length is equal zero on the wall and
grows linearly with the distance from the surface.

` = κ z (E.7)

This simple linear dependency can give good results in the proximity of wall. At larger dis-
tances it is usually replaced by some suitable asymptotic value `∞. This free-stream mixing
length is the tuning parameter that can either be evaluated by experimental fitting or estimated
according to some empirical formula.

The above approach was reported e.g. in [E.1] or [E.10] detailed description can be found
in author’s PhD thesis [E.2].

This method has been used in the papers shown in the Sections E.1–E.2 as well as in many other
publications, solving the atmospheric boundary layer flows problems. These are listed in the
author’s full bibliography in the Appendix A, page 205.

2See e.g. the classical book [E.12]
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Hellsten’s modification of Menter’s SST k − ω model

This two-equation model was chosen as a step up from the elementary algebraic turbulence
model that only accounts for local velocity gradients. The aim was to better handle the turbu-
lence history in the flow, including large flow curvature and massive recirculation.

The main idea of this model is an attempt to locally use the better from the classical k − ε
and the k − ω models, depending on the flow regime. The experience shows, that the k − ω
model usually performs best close to the wall, while the k−εmodel performs better away from
the wall. Thus, following the construction of the original k − ω model of Wilcox, Menter [E.11]
created the Shear Stress Transport (SST) k − ω model using the fact, that both k − ε and k − ω
models can be formulated in the same way (just with different coefficients in the governing
equations) and then an automatic blending function can be used to smoothly switch between
the two models, depending on local flow conditions. The turbulent viscosity µT = ρνT can be
computed from

µT =
ρ k

ω
(E.8)

The turbulent kinetic energy k and specific rate of its dissipation ω can be determined by solv-
ing the following set of transport equations:

ρ
∂k

∂t
+ ρ

3∑

j=1

vj
∂k

∂xj
= P − β∗ρkω +

3∑

j=1

∂

∂xj

[(
µ+

µT

σk

) ∂k
∂xj

]
(E.9)

ρ
∂ω

∂t
+ ρ

3∑

j=1

vj
∂ω

∂xj
=

γρ

µT

P − F4βρω
2 +

3∑

j=1

∂

∂xj

[(
µ+

µT

σω

) ∂ω
∂xj

]
+ 2ρ

1− F1

σω2ω

3∑

j=1

∂k

∂xj

∂ω

∂xj

The coefficients appearing in these equations are described e.g. in [E.8] or [E.9].
Further modification of this model for high streamline curvature was provided by Hellsten

in 1998 (see [E.9]). This modification suggests that the centrifugal force can act in a way similar
to gravity in stratified flows and thus a correction term is added to the Menter’s original SST k−
ω model to account for this effect. The values of function F4 are in this modification computed
using:

F4 =
1

1 + CrcRi
where Crc ≈ 3.6 (E.10)

where the Richardson number analog Ri is defined by:

Ri =
|Ωij |
|Sij |

( |Ωij |
|Sij |

− 1

)
where Sij =

1

2

( ∂vi
∂xj

+
∂vj
∂xi

)
and Ωij =

1

2

( ∂vi
∂xj
− ∂vj
∂xi

)
. (E.11)

This model has been used in the paper [E.8] and [E.7]. An extension for buoyant flows was
described and used in [E.6]. Other publications, solving the turbulent free-surface or stratified
flows problems, using this model are listed in the author’s full bibliography in the Appendix A,
page 205.

Variable Density Models

Variable density is one of the typical features of environmental flows. The causes of these
density variations can however be very different from case to case. It can be e.g. the mixing of
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fluids with different densities (like the river to sea inflow), thermally driven convection (like
the thermal convection in atmosphere) or fluid density affected by the local concentration of
contaminants (e.g. salinity driven currents in the ocean). Typically a slightly different model
is used for each such phenomena, however all of them come from the basic non-homogeneous
incompressible model derived in the Section N.1. Only the few variations of this model will be
shown here, that were used in the full-length papers listed further in this chapter.

Surface capturing method for free-surface flows

The liquid/gas (water/air) interfaces are quite common in environmental flows. One of the
possible approaches how to handle situations involving such two-phase flows is to treat both
these phases as a single liquid with variable material properties (density and viscosity). In
this way, the whole problem can be solved as a single-component, but non-homogeneous fluid
problem. The interface between the two (typically immiscible) fluids is not a-priori known
during the simulations. It can however be obtained at any moment as one of the isosurfaces of
(e.g.) density. The governing system of equations can be the following:

divv = 0 (E.12)
∂ρ

∂t
+ v ·∇ρ = 0 (E.13)

∂v

∂t
+ div(v ⊗ v) = −∇p

ρ
+

1

ρ
div
[
2µ(ρ)D

]
+ g (E.14)

The viscosity µ is no longer a constant, but depends on the local density ρ(x, y, z, t) which
serves as a phase indicator. This means that the viscosity of fluid can take either the values of
µG for gas or µL for liquid, depending if the local density is equal to ρG or ρL . The free-surface
shape can then be tracked down as the isosurface of density ρS = (ρG + ρL)/2.

This generic formulation represents a basis for the Volume Of Fluid (VOF) method and
can further be refined. The density ρ in this case is a function that has discontinuity at the
liquid/gas interface. This jump can cause numerical difficulties. The spatio-temporal evolution
of density is governed by the advection equation (E.13). This e.g. means, that in steady case
v ⊥ ∇ρ, i.e. the density does not changes along a streamline. This directly leads to an idea to
use some other function, instead of density, as the phase indicator. Typically such a function can
have a character of the (signed) distance from the surface. In such case the function r(x, y, z, t)
will be smooth, with values that will e.g. be negative in the gas, while positive in the liquid.
The evolution of the indicator quantity r will be driven by the same advection equation as the
density. The free-surface is in this case represented by the isosurfaces r = 0, while the actual
density ρ(r) and viscosity µ(r) can be determined depending on the sign of r.

The advantage of this kind of model is its simplicity, with very straightforward possibility
of the extension for turbulent flows. The disadvantage might be its sensitivity to numerical
discretization and more difficult implementation of surface tension.

This model has been applied in the papers [E.8] and [E.7] as well as in other publications, solving
the turbulent free-surface flows problems. These are listed in the author’s full bibliography in
the Appendix A, page 205.
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Boussinesq approximation

This simplification is made, in situations when there exist an important background density
and pressure field to which the actual flow only adds a perturbation. This is typically the case
of flows that can be seen as a perturbation of hydrostatic state. In such a case the pressure and
density fields in the model (N.18)-(N.22) can be decomposed as ρ = ρ0+ρ′ and p = p0+p′, where
the background fields are given and linked together by the hydrostatic balance ∇p0 = ρ0g. In
this way, the (usually time-independent) hydrostatic fields can be subtracted from equations:

divv = 0 (E.15)
∂ρ′

∂t
+ v ·∇ρ′ = −v ·∇ρ0 (E.16)

∂v

∂t
+ div(v ⊗ v) =

1

ρ0 + ρ′

[
−∇p′ + div

(
2µD

)
+ ρ′g

]
(E.17)

This system is still complete and equivalent to (N.18)-(N.22). The simplification in the Boussi-
nesq approximation is to neglect the density perturbation ρ′ in the scaling factor (ρ0 + ρ′), but
to keep it in the buoyancy term ρ′g. So the full density (ρ0 + ρ′) is replaced either by the back-
ground density field ρ0 or even in some cases by a constant (mean) density ρ̄. This model
is typically used in flows, where the gravity acts along the vertical axis and thus the back-
ground fields ρ0(z) and p0(z) are horizontally homogeneous. Moreover if the flow is shallow,
the (ρ0 + ρ′) can easily be replaced by ρ̄ to give:

∂ρ′

∂t
+ v ·∇ρ′ = −w∂ρ0

∂z
(E.18)

∂v

∂t
+ div(v ⊗ v) = −∇P ′ + ν∆v +

ρ′

ρ̄
g (E.19)

The above described model is often, just with minor modifications, also used for the simulation
of thermal convection. In that case, the density variation is a consequence of thermal dilatation
of the fluid. Therefore, strictly speaking, the flow is no-more divergence-free (fluid parcels are
changing their volume) and thus another approximations have to be made to be able to use the
system (E.15)-(E.17). The transport equation for density perturbation (E.18) is then replaced by
the following advection-diffusion equation for potential temperature perturbation:

∂Θ′

∂t
+ v ·∇Θ′ = −w∂Θ0

∂z
+KΘ∆Θ′ (E.20)

Here again Θ = Θ0(z) + Θ′(x, y, z, t) and KΘ is the thermal diffusivity. It is good to note that
this equation has been obtained from the conservation of energy, rather than its density based
counterpart that comes from mass conservation3. The buoyancy term ρ′/ρ̄ in (E.19) is similarly
replaced by Θ′/Θ̄.

The Boussinesq approximation is popular because it can easily be implemented into ex-
isting (constant density) codes, just by adding one more transport equation and the buoyancy
term into the homogeneous Navier-Stokes system. From the computational point of view how-
ever, it does not brings any advantage over the full system.

This model was used in the paper shown in the Section E.3-E.4 and in publications [E.3] and
[E.5] solving stratified environmental flows. Some more publications where this model was used
are listed in the author’s full bibliography in the Appendix A, page 205.

3For details see author’s PhD thesis [E.2].
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E.1 On a Numerical Study of Atmospheric 2D and 3D Flows
over a Complex Topography with Forest
Including Pollution Dispersion

SLÁDEK I., BODNÁR T., KOZEL K.
In: Journal of Wind Engineering and Industrial Aerodynamics. 2007, vol. 95, no.
9-11, p. 1424-1444. ISSN 0167-6105.

This paper contains an overview of numerical results obtained for several cases of
atmospheric boundary layer flows. The comparison of 2D flow over sinusoidal hills
with the results found in literature was quite satisfactory, given the very simple al-
gebraic model of turbulence. Another comparison was performed for a forest canopy
model in a simplified geometry. The comparison showed only small differences be-
tween the numerical results obtained using the two reported numerical methods.
The final part shows a 3D example of the forest canopy simulation in a complex
terrain.

In this paper T. Bodnár performed the numerical simulations using the Model-2
solved by semi-implicit finite-difference scheme. The remaining finite-volume sim-
ulations were provided by Ivo Sládek using his own code.
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Abstract

The paper presents a mathematical and numerical investigation of the atmospheric boundary layer

(ABL) flow over a complex terrain. Two mathematical models described in details are based upon:

(1) full RANS equations written in the conservative form and (2) modification of the RANS

equations by Boussinesq approximation re-casted in the non-conservative form. Both models are

formulated for an incompressible flow under the indifferent atmospheric stratification together with a

simple algebraic turbulence model and a stationary boundary conditions. A pollution dispersion of

passive pollutant has been considered as well. Both models have been applied to a real case

atmospheric problem: an investigation of the influence of a forest stand on the flow over a complex

topography given by a surface coal field located in the North Bohemia. A non-homogeneous forest

stand is simulated by a special model based on a source term added to the momentum equations.

A forest free area is supposed to be covered by a low vegetation and its influence is simulated by a

surface roughness parameter.
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1. Introduction

The paper deals with a problem of flow and pollution dispersion in the atmospheric
boundary layer (ABL). The ABL can be defined as the lowest part of the earth’s

ARTICLE IN PRESS

Nomenclature

jn superscript related to time level
j00 superscript related to perturbation
j1;2;3 subscripts related to x; y; z-axis directions resp.
ji;j;k subscripts related to reference directions
jt;x;y;z subscripts related to derivative in time and in space resp.
j0 subscript related to mean value
jl subscript related to the lth face of control volume
j1 subscript related to free-stream
ai Runge–Kutta coefficients
b artificial sound speed
d; d
!

; d
 

central, forward, backward difference operators resp.
k von Karman constant
n; nT kinematic laminar viscosity, turbulent viscosity resp.
R density
sC turbulent Prandtl number for concentration
� artificial diffusion coefficients
Dt time step
Dx;Dy;Dz stream-wise, span-wise, wall-normal space increments resp.
Y potential temperature
O computational domain
Oijk control volume
a leaf area density of vegetation
CD specific aerodynamic drag coefficient of forest
l mixing length
p pressure
r forest drag coefficient
t time
u; v;w stream-wise, span-wise, wall-normal velocity components resp.
z0 surface roughness
C concentration of passive pollutant
H; h height of hill, forest block
K ;KC turbulent diffusion coefficients
L;B;D space difference operators

D
!

SðlÞ surface vector to lth face of control volume
~f volume force
~F ; ~G; ~H inviscid fluxes
~R; ~S; ~T viscous fluxes
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atmosphere. Its thickness depends on various conditions and ranges from several hundreds
of meters to approximately 2 km. The ABL is significantly influenced by the surface over
which the wind flows, its orography and roughness, by the free stream wind and also by the
vertical temperature gradient which is associated with the atmospheric thermal
stratification.
The ABL has a very close relation to a human activity and a prediction of wind field

over complex terrain plays an important role in many engineering applications such as an
evaluation of environmental impact by pollutant dispersion, a sitting of wind mills or
airports, etc. Because of difficulties and a high cost of experiments associated with the ABL
investigation, a reliable mathematical models together with a suitable numerical methods
are desired. Remark, a typical horizontal length scale in our flow problems ranges from
hundreds of meters to several kilometers (Castro and Apsley, 1997; Bodnár et al., 2003;
Sládek, 2005).

2. Mathematical models

The flow is assumed to be steady, viscous, incompressible, turbulent and neutrally
stratified.

2.1. Description of Model-1

The governing equations of the first model can be re-casted in the conservative,
dimensional and vector form

~F x þ ~Gy þ ~Hz ¼ ðK � ~RÞx þ ðK � ~SÞy þ ðK � ~TÞz. (1)

The artificial compressibility method is used for the numerical analysis

~W t þ ~Fx þ ~Gy þ ~Hz ¼ ðK � ~RÞx þ ðK � ~SÞy þ ðK � ~TÞz, (2)

where ~F ¼ ðu; u2 þ p=R; uv; uw; uCÞT, ~G ¼ ðv; vu; v2 þ p=R; vw; vCÞT, ~H ¼ ðw;wu;wv;w2 þ

p=R;wCÞT represent the physical inviscid fluxes and ~R ¼ ð0; ux; vx;wx; ðKC=KÞCxÞ
T, ~S ¼

ð0; uy; vy;wy; ðKC=KÞCyÞ
T and ~T ¼ ð0; uz; vz;wz; ðKC=KÞCzÞ

T denote the viscous fluxes,
~W ¼ ðp=b2; u; v;w;CÞT abbreviates the vector of unknown variables, namely the pressure,
the three velocity components and the concentration of passive pollutant, respectively, b
refers to the artificial sound speed, R ¼ const is density and finally K, KC represent the
diffusion coefficients, see Eq. (28).
System (2) is solved in the computational domain O under a stationary boundary

conditions for t!1 (t is an artificial time) to obtain the expected steady-state solution
for all the unknown variables involved in the vector ~W .

2.2. Numerical method for Model-1

A structured non-orthogonal grids made of hexahedral control cells are used for all
computations. The finite volume method of cell-centered type together with a multi-stage
explicit Runge–Kutta time integration scheme have been applied to solve (2) (Sládek et al.,
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2004; Sládek, 2005). Integration of (2) over each control cell Oijk givesZ
Oijk

~W t dV ¼

Z
Oijk

½ð~F � K � ~RÞx þ ð~G � K � ~SÞy þ ð~H � K � ~TÞz�dV . (3)

This identity can be rewritten using the Divergence theorem and the ‘‘Mean value’’
theorem

~W tjijk ¼ �
1

mijk

I
qOijk

½ð~F � K � ~RÞdS1 þ ð~G � K � ~SÞdS2 þ ð~H � K � ~TÞdS3�, (4)

where ~W tjijk is the mean value of ~W over the cell Oijk and mijk ¼
R
Oijk

dV denotes the
volume of the control cell. After space discretization of (4), we come up with a set of semi-
discrete system of ordinary differential equations for each Oijk

~W tjijkðtÞ ¼ L ~W ijkðtÞ, (5)

where L ~W ijk denotes the operator approximating the right-hand side of (4) which has the
following form:

L ~W ijk ¼ �
1

mijk

X6
l¼1

½ð
~~F l � Kl �

~~RlÞDSl
1

þ ð
~~Gl � Kl �

~~SlÞDSl
2 þ ð

~~Hl � Kl �
~~TlÞDSl

3�. ð6Þ

All the symbols in Eq. (6) denoted with subscript or superscript l refer to the lth cell face of
Oijk and ðDSl

1;DSl
2;DSl

3Þ represents the lth outer normal vector.
The inviscid numerical fluxes

~~Fl ;
~~Gl ;

~~Hl through the lth face of Oijk are computed as an
average from the mean value over cell Oijk and the mean value over the neighbor cell
sharing the lth face with cell Oijk, thus we get

~~Fl ¼
1
2
ð~F jOijk

þ ~F jlth neighbor of Oijk
Þ,

~~Gl ¼
1
2
ð~GjOijk

þ ~Gjlth neighbor of Oijk
Þ,

~~Hl ¼
1
2
ð ~HjOijk

þ ~Hjlth neighbor of Oijk
Þ; l ¼ 1; . . . ; 6. (7)

On the other hand, to compute the viscous fluxes at the lth face of cell Oijk, one has to
know the derivatives of the velocity components at all six faces of each hexahedral control
cell. The derivatives are evaluated using the dual control volumes of the octahedral shape
denoted by ŌðlÞijk, see Fig. 1. An example of the x-derivative computation of the u-velocity
component at the lth face of the hexahedral computational cell Oijk then reads

uxj
ðlÞ
ijk ¼

Z
ŌðlÞ

ijk

uxðx; y; z; tÞdV̄ ¼

Z
qŌðlÞ

ijk

udS̄1 �
X8
q¼1

~uðlÞq DS̄
ðl;qÞ
1 , (8)

where the index q goes through all faces of the dual octahedral control volume ŌðlÞijk and

DS̄
ðl;qÞ
1 abbreviates the first component of the qth outer normal vector related to the qth

face of the dual cell.
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Finally, the (3)-stage explicit Runge–Kutta time integration scheme is applied to system
(5) of ODEs

~W ð0Þ
ijk ¼

~W n
ijk,

~W ðmþ1Þ
ijk ¼ ~W ð0Þ

ijk � a1 � Dt � B ~W ðmÞ
ijk ,

~W ðnþ1Þ
ijk ¼ ~W ð3Þ

ijk ; m ¼ 0; . . . ; 2, (9)

where a1 ¼ a2 ¼ 1
2
, a3 ¼ 1 and it is second order accurate both in time and space on an

orthogonal grids. The operator B ~W ðmÞ
ijk defines a steady residual in the mth time level for

each control cell Oijk and it can be written as

B ~W ðmÞ
ijk ¼ L ~W ðmÞ

ijk þD ~W ð0Þ
ijk , (10)

where L ~W ijk corresponds to the operator resulting from the space discretization of system
(4) and the second term D ~W ijk abbreviates the artificial viscosity contribution either of
fourth order (for the pressure-velocity flow-field) or second order (for the concentration
field)

D ~W ijk ¼ � �
ð4Þ
x Dx4 ~W xxxxjijk � �

ð4Þ
y Dy4 ~W yyyyjijk � �

ð4Þ
z Dz4 ~W zzzzjijk

þ �ð2Þx Dx2 ~W xxjijk þ �
ð2Þ
y Dy2 ~W yyjijk þ �

ð2Þ
z Dz2 ~W zzjijk, ð11Þ

where �ð4Þ; �ð2Þ denote constant coefficients to be tuned empirically and all the derivatives
are substituted by central differences as it is shown hereafter for a 1D case for sake of
simplicity

D ~W i ¼ � �
ð4Þ
x ½

~W i�2 � 4 ~W i�1 þ 6 ~W i � 4 ~W iþ1 þ ~W iþ2�

þ �ð2Þy ½
~W i�1 � 2 ~W i þ ~W iþ1�. ð12Þ

This term removes a high frequency oscillations and wiggles generated in the computed
flow-field near a sharp corners in geometry or in the vicinity of a large gradients. If not
smoothed, the oscillations, resulting mainly due to the central type of differencing, may
completely destroy the numerical solution. Remark also, the artificial viscosity term does
not change the order of the applied numerical scheme.

ARTICLE IN PRESS

Fig. 1. A dual control volume.

I. Sládek et al. / J. Wind Eng. Ind. Aerodyn. 95 (2007) 1424–14441428

42 E. Environmental Applications



Due to the explicit numerical formulation the stability limit criterion valid for a regular
orthogonal meshes is applied as well

Dtpmin
Oijk

CFL

RA=Dxþ RB=Dyþ RC=Dzþ 2 � Kð1=Dx2 þ 1=Dy2 þ 1=Dz2Þ
(13)

where RA; RB; RC refer to the spectral radii of the inviscid Jacobi’s matrices and CFL ¼ 2
(Sládek et al., 2004; Sládek, 2005).

2.3. Description of Model-2

Hereafter, the full RANS equations are modified by the so-called Boussinesq
approximation according to which the mean turbulent quantities appearing in the RANS
are decomposed into the background ‘‘synoptic-scale’’ field denoted by subscript 0 and the
topography induced ‘‘meso-scale’’ perturbation denoted by 00. This decomposition is
applied to the density r ¼ r0 þ r00, the pressure p ¼ p0 þ p00 and also the potential
temperature Y ¼ Y0 þY00 (Bodnár, 2004).

Under the assumption of a neutral stratification, a constant density R0 and neglected
Coriolis force, a general governing equations can be simplified and transformed in the non-
conservative and dimensional form

ux þ vy þ wz ¼ 0, (14)

~Vt þ u~Vx þ v~V y þ w~V z ¼ �
rp00

r0
þ ð½K ~Vx�x þ ½K

~Vy�y þ ½K
~V z�zÞ, (15)

Ct þ uCx þ vCy þ wCz ¼ ð½KCCx�x þ ½KCCy�y þ ½KCCz�zÞ, (16)

where ~V ¼ ðu; v;wÞT stands for the velocity vector and meaning of the other symbols is the
same as in the Model-1, see Section 2.1.

2.4. Numerical method for Model-2

Unless the first numerical method described in Section 2.2 which uses the finite volume
approach combined with central differencing and the explicit time integration, the
numerical treatment of the governing system (14)–(16) yields the finite difference strategy
applied together with a semi-implicit time integration resulting in an asymmetric numerical
scheme (Bodnár et al., 2000, 2001; Bodnár, 2004).

Due to a mesh non-orthogonality one needs to transform the equations from the x–y–z

coordinate system to the mesh-wise directional local coordinate system s1–s2–z using the
following relations:

q
qx
¼

1

cos a
q
qs1
�

q
qz

sin a
� �

;
q
qy
¼

1

cos b
q
qs2
�

q
qz

sin b
� �

. (17)

Now, let us define the following difference operators to simplify notation of discretized
equations. The symbol ds denotes central difference with respect to direction s and
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similarly the ds

!

; ds

 

denote forward and backward differences

ds

 

¼
~Vi � ~Vi�1

Ds�
; ds

!

¼
~V iþ1 � ~V i

Dsþ
; ds ¼

1

2
ðds

 

þ ds

!

Þ. (18)

Let us also denote the right-hand side of (15) by symbol RHS. Using the local coordinate
transformations (17), the continuity equation (14) takes the form

us1

cos a
þ

vs2

cos b
þ wz � uz tan a� vz tan b ¼ 0 (19)

and the equations of motion (15) then read

~V t þ ~u~Vs1
þ ~v~V s2

þ ~w~V z ¼ gRHS, (20)

where the modified coefficients read

~u ¼
u

cos a
; ~v ¼

v

cos b
; ~w ¼ w� u tan a� v tan b. (21)

The right-hand side RHS is transformed in a similar way to gRHS. Now, the left-hand side
of momentum equation (15) is discretized as follows:

~V t� dt
!
~Vn

i;j;k; ~u~V s1
�1

2
ð ~un

iþ1=2 ds1

!
~Vn

i;j;k þ ~un
i�1=2 ds1

 
~V nþ1

i;j;k Þ, (22)

~v~V s2
�1

2
f1
2
ð~vn

jþ1=2 ds2

!
~V i;j;k þ ~v

n
j�1=2 ds2

 
~Vi;j;kÞ

n

þ 1
2
ð~vn

jþ1=2 ds2

!
~V i;j;k þ ~v

n
j�1=2 ds2

 
~Vi;j;kÞ

nþ1
g, ð23Þ

~w~Vz�
1
2
f1
2
ð ~wn

kþ1=2 dz

!
~V i;j;k þ ~wn

k�1=2 dz

 
~V i;j;kÞ

n

þ 1
2
ð ~wn

kþ1=2 dz

!
~V i;j;k þ ~wn

k�1=2 dz

 
~V i;j;kÞ

nþ1
g. ð24Þ

A combination of different asymmetric space discretization at time levels n and nþ 1
allows us to construct finally the numerical scheme that is centered and second order in
both space and time for steady cases. The diffusion terms on the right-hand side of (15) are
approximated in the same manner by central differences and denoted by RHS, hence one
obtains the system of linear algebraic equations:

a1
~Vnþ1

i;jþ1;k þ a2
~V nþ1

i;j;k þ a3
~V nþ1

i;j�1;k þ a4
~V nþ1

i;j;kþ1 þ a5
~V nþ1

i;j;k�1 ¼ RHS. (25)

This system is solved iteratively in the vertical plane i ¼ const. So, the five-diagonal system
is converted into the three-diagonal one:

a5
~VZþ1

i;j;k�1 þ a2
~V Zþ1

i;j;k þ a4
~V Zþ1

i;j;kþ1 ¼ RHS� a1
~V Z

i;jþ1;k � a3
~V Zþ1

i;j�1;k, (26)

where the Z denotes the iterative index. Usually after 3–5 iterations we know the values of
~V ¼ ðu; v;wÞT with a sufficient accuracy. Exactly the same solution scheme can also be
applied to the scalar transport equation (16).
For a steady problems the artificial compressibility method can be used and in such a

case the pressure is updated from the modified continuity equation

p00t ¼ �ðux þ vy þ wzÞ. (27)
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Also here the above described semi-implicit discretization is used to keep the consistency
with the momentum equations solver. Then we skip to ðnþ 1Þth time level and repeat
the cycle.

In order to improve the convergence of this method for a large Reynolds numbers, the
artificial viscosity terms of fourth or second order is added and the form is similar as in the
first numerical method for Model-1, see Section 2.2.

3. Turbulence modelling

A simple algebraic turbulence model is applied for both the Model-1 (2) and the Model-
2 (14)–(16) of governing equations in order to close the problem. The diffusion coefficients
K ;KC can be expressed in the dimensional case as

K ¼ nþ nT; KC ¼ nþ
nT
sC

where nT ¼ l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qu

qz

� �2

þ
qv

qz

� �2
s

, (28)

where nT is the turbulent viscosity, n is the laminar viscosity, sC ¼ 0:74 abbreviates the
turbulent Prandtl number. Parameter l refers to the Blackadar’s mixing length computed
by

l ¼
kðzþ z0Þ

1þ kððzþ z0Þ=l1Þ
; l1 ¼

27jV1j10
�5

l
, (29)

where k is the von Karman constant, l denotes the Coriolis parameter, z0 is the surface
roughness parameter, l1 represents the mixing length for z!1 and jV1j abbreviates the
geostrophic free-stream wind velocity (Sládek et al., 2003; Beneš et al., 2004).

4. Boundary conditions

Both models, the Model-1 (2) and the Model-2 (14)–(16), use the following boundary
conditions on a boundary qO of the computational domain O

� Inlet: u ¼ power�law�za, v ¼ w ¼ C ¼ 0.
� Outlet: Homogeneous Neumann conditions ux ¼ vx ¼ wx ¼ Cx ¼ 0.
� Wall: The no-slip condition for the velocity components and qC=qn ¼ 0.
� Top face: u ¼ U1, v ¼ 0, qw=qz ¼ qC=qz ¼ 0 where U1 denotes the free-stream wind

velocity.
� Side faces: Periodic conditions or homogeneous Neumann conditions uy ¼ vy ¼

wy ¼ Cy ¼ 0.

5. Validation study

5.1. Validation of Model-1

This model has been validated through the ERCOFTAC’s test-case of fully developed
channel water-flow over a 2D polynomial-shaped hill mounted on a flat plate (Almeida et
al., 1992; Davroux et al., 1995). The Almeida’s experimental and the ERCOFTAC’s
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reference k2� numerical data have been used. The mean centerline velocity is U0 ¼

2:147m=s and the hill height is H ¼ 28mm (16% hill) leading to the Reynolds number
6� 104. The computed stream-wise velocity profiles match the experimental and reference
k2� profiles with acceptable overall agreement since simple algebraic turbulence model is
applied and the wall layer is not finely resolved. A fairly large recirculation zone develops
having the length 4.4H in the experiment and 4.3H in simulation, see Figs. 2 and 3.

5.2. Validation of Model-2

According to the data published in Kim et al. (1997) we have chosen a 2D-domain with
two different sinusoidal single-hill terrain profiles which are shown in Figs. 4–6. A
boundary layer type of air-flow has been studied, characterized by the free-stream velocity
U1 ¼ 7m=s and boundary layer thickness of 0.25m at distance of 4m from the beginning
of the wind tunnel test section ð6� 1:2� 1:2mÞ. The corresponding Reynolds number is
1:17� 105.
The notation we use here to distinguish between hills with different slopes and heights is

the same as in Kim et al. (1997). It means the SxHy stands for the hill with maximum slope
0:x and height y cm. Our results show relatively good agreement with observation in the
case of separated flow over a group of S5-hills. The shape of recirculation zone we have
obtained is slightly different than that computed by Kim. However, matching between
experimental results and our predictions can be judged as acceptable when taking into
account the simplicity of the applied algebraic turbulence model (28).
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Fig. 4. Flow over S5H4 hill.

Fig. 5. Separation and re-attachment points marked by arrows, S5H4 hill.
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A single parameter that can be easily compared in these cases is the position of a re-
attachment point. This is marked in Figs. 5 and 7 as a distance from the hill crest expressed
in the terms of multiples of hill height H. The corresponding reference experimental values
for comparison are summarized in Table 1.

6. Forest modelling

In order to simulate a flow over a forest stand, a suitable model must be defined. The
vector of the outer forces caused by the presence of such a forest or any higher vegetation
obstacle has the following form (Wilson and Flesch, 1999);

~f ¼ ð�cDaujV j;�cDavjV j;�cDawjV jÞT, (30)

where cD represents the specific aerodynamic drag coefficient, a denotes the leaf area
density of the vegetation defined as the surface area of the plant material per unit volume
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Fig. 6. Flow over S5H7 hill.

Fig. 7. Separation and re-attachment points marked by arrows, S5H7 hill.

Table 1

Re-attachment point position, the reference data by Kim et al. (1997)

Hill Experiment Low-re model Our model

S5H4 5:25	 0:50 4.55 5.0

S5H7 4:30	 0:30 4.42 4.7
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½m2m�3� and finally jV j abbreviates the local velocity magnitude. Let us denote rh ¼ cD � a

meaning the ‘‘total’’ drag coefficient. The course of rh with respect to the height z is given
by the following expressions, see also Fig. 8:

rh ¼ r
z=h

0:75
for

z

h
p0:75 or

rh ¼ r
1� z=h

1� 0:75
for 0:75o

z

h
p1, (31)

where the drag coefficient r must be specified a priori. The term (30) has to be added to the
three momentum equations on their right-hand sides in both systems: the Model-1 (2) and
the Model-2 (14)–(16).

7. Application of Model-1 and Model-2

The real-case problem is related to the flow over a surface coal field located in the North
Bohemia. This field is supposed to be partially covered by a high forest stand. Hence, one
of the main goal of this numerical study is to estimate the influence of such a forest block
(as a vegetation natural obstacle) on the atmospheric flow over a complex topography and
its impact on a pollution dispersion as well.

At first, a series of a 2D-simulations over a simplified topography have been performed
without pollution dispersion using both the Model-1 (2) and the Model-2 (14)–(16).
Mainly, the influence of the forest height h and the forest drag r have been tested and the
results compared in between, see Section 7.1. At second, the Model-1 (2) has been applied
to a real-case 3D flow problem including a pollution dispersion, see Section 7.2.

7.1. Some 2D-tests of forest model

All the simulations have been performed on a 2D structured non-orthogonal grids. The
computational domain is 1000m long and 300m high and is discretized by 1000� 40 cells
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or nodes exponentially distributed in the vertical direction with minimal increment about
1m at the wall.
The other parameters are: the mean free stream velocity U1 ¼ 10m=s, the characteristic

wall-normal domain dimension L ¼ 300m and the corresponding Reynolds number 2� 108,
the roughness parameter z0 ¼ 0:1m and the power law exponent 2

9
are used to reconstruct the

inlet velocity profile. No other volume forces are supposed and the indifferent stratification of
ABL is assumed. A sketch of a 2D-computational domain is shown in Fig. 9.

7.1.1. Effect of forest height/drag

The vertically non-homogeneous forest stand is supposed to be 90m long and it starts
5m after the sudden step at ground representing the edge of a surface coal field, see Fig. 9.
The following studies have been performed:

� The effect of different forest heights of 0, 5, 10, 15m for the given drag coefficient
r ¼ 0:19 on the flow, see Figs. 10 and 12.
� The effect of different drag coefficients r ¼ 0:0; 0:04; 0:19; 0:95 for the given forest height

of 10m, see Figs. 11 and 13.

The position of the forest stand is displayed as a gray strip or a rectangle in Figs. 10–13
where the scale is in ½m=s�. Figs. 10 and 12 show the increasing flow deceleration with the
increasing forest height on the lee side of the forest block. However, this tendency is not so
evident inside the forest. Figs. 11 and 13 show that the deceleration is monotonously
dependent on the drag coefficient both inside and also behind the forest stand. So, we can
conclude that both models give the same predictions. The u-profiles obtained from the
applied models are shifted since the Model-1 (2) is based on the finite volume method and
the Model-2 (14)–(16) yields the finite difference method. Thus, the data are related to the
cell centers in the first case while the data are stored in the cell vertices in the latter case.

7.1.2. Results for wall-normal velocity component w

Hereafter, the results from both mathematical models related to distribution of the wall-
normal w-velocity component over the computational domain are compared in case of the
following two configurations;

� No forest stand.
� Forest stand of height 15m and having the drag r ¼ 0:19.
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The forest block position is outlined by the white rectangle. See Figs. 14–17 showing the
whole computational domain, the scale is in [m/s]. Figs. 18–21 show a detailed view on
region behind the sudden topography step the scale is again in [m/s]. A fairly large
recirculation zone develops behind the forest block, see Figs. 20 and 21. The predicted
length from both mathematical models is comparable.
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7.2. Real-case 3D-application of Model-1

Hereafter, only the Model-1 (2) has been applied to a problem of flow and pollution
dispersion over a complex 3D-surface coal field located in the North Bohemia. Two
configurations have been tested and compared

� With no forest blocks.
� With two forest blocks, one located just before and anther one placed just behind the depot.
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7.2.1. Problem description

The model of a real 3D-relief has been created on the basis of a topographic data
obtained by the Brown Coal Research Institute in Most in the Czech Republic. The whole
topography has been divided into two parts: a smaller part outlined by the frame-2
involved in the big one outlined by the frame-1, see Fig. 22. The location of a coal depot is
outlined as well as the flow direction. The next parameters for both frames are as follows:

Frame-1: Length 800m, width 480m, with horizontal grid resolution of 8m, gridded with
100� 60 mesh cells.
Frame-2: Length 400m, width 240m, with horizontal grid resolution of 4m, gridded with
100� 60 mesh cells as well.

The height of two computational domains based on both frames is the same and equals
�600m. Notice, both domains are gridded with 40 mesh cells in the vertical direction non-
uniformly distributed with a higher density close to a ground. The origin of the coordinate
system is located in the center of the coal depot which has the horizontal dimensions
80� 20m, see Fig. 22.

Remark, a study concerning the effect of the two forest blocks on the flow-field and also
on the pollution dispersion has been performed on the frame-2 case only, see Fig. 24 where
the blocks are outlined as black rectangles. The two forest blocks are 10m high with the
drag coefficient r ¼ 0:19. The purpose of the forest blocks as a natural obstacle is to
decrease the amount of the pollutant-dust transported away from the depot.

An important point is that the computational results related to the velocity-field based
on the frame-1 topography (with horizontally coarser grid) are then interpolated in the
frame-2 topography case (with finer grid) in order to reconstruct the inlet velocity profile in
the second case. This is the reason for the two-frame computational setting of the problem
due a high CPU-time cost of 3D-simulations.
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The other parameters are: the mean free stream velocity U1 ¼ 10m=s, the characteristic
wall-normal domain dimension L ¼ 600m leading to the Reynolds number 4� 108, the
roughness parameter z0 ¼ 0:1m and the power-law exponent 2

9
is used to reconstruct the

inlet velocity profile. No other volume forces are assumed and the intensity of a pollutant-
dust emanating from the depot is supposed to be proportional to the local velocity
gradient.
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Fig. 23. Pollution dispersion with no forest blocks on frame-2.

Fig. 24. Pollution dispersion with two forest blocks on frame-2.
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7.2.2. Some numerical results

The effect of the two forest blocks on a near-ground pollution dispersion is shown in
Figs. 23 and 24 equipped with the geographical altitude white contours and also with the
pollutant concentration contours (log-scale) superimposed in the overlay mode. One can
clearly see the decreased level of pollutant-dust concentration in the coal depot place and
also in the downstream region which is supposed to be inhabited.

8. Conclusion

We have described in details both the Model-1 (2) and the Model-2 (14)–(16). A
practical applicability and also a flexibility of the models have been demonstrated through
a real-case atmospheric boundary layer 2D and 3D-flow applications. The 3D-case also
includes a pollution dispersion of a passive pollutant-dust over a complex surface coal field
which is partially covered by a high and porous forest stand influencing the flow-field.

The effect of the forest height/drag has been demonstrated on the basis of results
obtained by both mathematical models applied to a 2D-flow simplified problem. I has been
found that the codes predict quite a similar results. Moreover, the presence of a forest
block significantly decelerates the incoming flow behind the forest and also deviates it from
the original direction. The results from the 3D simulations indicate that the level of the
pollutant concentration of dust drifted from a surface coal depot, located in between the
two forest blocks, is also reduced in the down-stream region from the depot. Thus, a
numerical design of the forest blocks represents a very promising methodology for a
pollution dispersion control.
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In this paper the immersed boundary approach was used to evaluate the possible
effect of large obstacles on the flow in atmospheric boundary layer. The immersed
boundary method was used to overcome the difficulty of specific grid generation each
time a new obstacle is simulated. In this way it was possible to perform all the sim-
ulations on the same grid that was only distorted due to the terrain orography. The
obstacles were simulated separately. This was important in order to avoid highly
distorted or multiblock grids, that would have been hard to handle together with the
semi-implicit finite-difference scheme used for this case. The aim of these simula-
tions was to get some idea about the modifications of flow field introduced by the
artificial obstacles. This should serve as a guideline for the evaluation of pollution
dispersion.

All the simulations presented in this paper were performed by T. Bodnár.
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Summary. — This paper presents some of the results of numerical simulations of
flow in the proximity of significant artificial terrain obstacles. The mathematical
model is based on Reynolds averaged Navier-Stokes equations for incompressible
flows. Turbulent closure of the model is obtained by a simple algebraic turbulence
model. The numerical solution is carried out by the semi-implicit finite-difference
scheme. The results of simple tests are presented and summarized. Model sensitivity
has been studied with respect to the simulated obstacle size and shape.

PACS 92.60.Fm – Boundary layer structure and processes.

Introduction

This study has been motivated by the request to evaluate the possible effect of down-
wind obstacles on the deposition of wind drifted coal dust. In the presented part of
this project our attention was concentrated on the detailed computation of the flow field
characteristics in the vicinity of large terrain obstacles. Special attempt has been made
to localize the areas where the flow is decelerating or recirculating. These flow regimes
could be critical from the point of view of surface particle deposition.

The problem of flow and pollution dispersion in the vicinity of terrain obstacles was
deeply explored in numerous studies in the past. Most papers deal with geometrical
set-up based on low smooth hills. One of the classical experimental works is the paper [1]
where the wake flows behind 2D polynomial hills are explored. Flow over 2D sinusoidal
topography with different hill slopes is studied experimentally in [2] and compared with
numerical simulation in [3]. The influence of multiple 2D sinusoidal hills on the flow field
is investigated in experimental study [4]. Some comparisons with CFD solutions were
presented there. Similar study was presented also in [5]. An experimental investigation
of flow and pollution dispersion in the disturbed boundary layer flow over a ridge was

c© Società Italiana di Fisica 619
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published in papers [6] and [7]. The wind tunnel study of the flow structure and pollution
dispersion from point sources in the vicinity of 3D single hill was published in papers [8]
and [9]. In these papers series of wind tunnel experiments is described to show the
importance of three-dimensionality of the flow- (and concentration-) field. Some further
material especially concerning the simulated pollution dispersion can be found in the
papers [10-16].

Another large group of studies focuses on the flow over artificial obstacles rather than
over smooth hills. The flow over different solid and porous fences was experimentally
investigated, e.g., in [17-20] or [21]. The comparison of experimental data with numerical
simulations could be found in [22]. The coal dust and sand dispersion in the presence
of porous fences was explored, e.g., in [23-26]. The effect of tree-blocks and forest edges
on the wind flow and pollution dispersion and deposition was studied, e.g., in [27, 28]
or [29].

Most of the above mentioned studies were focused on more or less simple geometry,
usually dealing with a flat terrain with single obstacles. The case we need to solve is
based on real (and thus complex) orography, where the natural terrain profile dominates
the flow. The artificial obstacles placed to the flow in this case only partially modify the
flow and concentration patterns. Therefore it is essential for this study to deal with the
actual orography corresponding to the true domain of interest.

The complex terrain profile used in this study represents a part of the opencast
coal mine where there is placed a coal storage. This storage acts as a source of coal
dust which is drifted by the wind. The detailed orography profile was obtained by a
combination of data from several geographical resources. In order to get maximum of
realistic details a laser scan of the terrain was performed and included into the orography
profile. The aim of this study is to give both qualitative and quantitative guidelines for
the evaluation of the environmental impact of artificial obstacles placed downwind from
the coal storage.

1. – Mathematical model

The flow in atmospheric boundary is turbulent in most simulations. The fluid motion
can be thus described by the Reynolds averaged Navier-Stokes equations (RANS). The
non-conservative form of the RANS system is represented by the following equations:

ux + vy + wz = 0,(1)

Vt + uVx + vVy + wVz = −∇p

ρ
+ [KVx]x + [KVy]y + [KVz]z.(2)

Here V = col(u, v, w) is the velocity vector, p is pressure, ρ is density.

The turbulence model is based on the Boussinesq hypothesis on the turbulent diffusion
coefficient K = ν + νT which is expressed as a sum of molecular and eddy viscosity(1).
Finally the following algebraic turbulence model was used to complete the governing

(1) The molecular viscosity is usually much smaller than the turbulent one, but it cannot be
neglected because it guarantees that the turbulent diffusion coefficient K will remain stricly
positive. This is important for the well posedness of the mathematical model and for the
stability of the numerical solver.
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Fig. 1. – Local coordinate transformation.

system:

(3) K = ν + νT , where νT = �2

[(
∂u

∂z

)2

+

(
∂v

∂z

)2
]1/2

.

The mixing length � is computed according to the following formula:

(4) � =
κ(z + z0)

1 + κ (z+z0)
�∞

, where �∞ =
27 |VG| 10−5

fc
.

Here fc = 1.1 × 10−4 ms denotes the Coriolis parameter and VG is the geostrophic wind
velocity at the upper boundary of domain.

2. – Numerical solution

2
.
1. Finite-difference discretization. – To discretize the governing system the non-

orthogonal, structured, boundary (i.e. terrain), following mesh was constructed. Because
of the mesh non-orthogonality it was necessary to transform the equations from the x-y-z
coordinates to the mesh-wise directional local coordinate system s1-s2-z (see fig. 1).

To simplify the notation of discretized equations the operators of differences are in-
troduced. The symbol δs denotes the central difference with respect to the direction s.

Similarly the
−→
δs ,

←−
δs denote the forward and backward differences.

2
.
2. Semi-implicit finite-difference scheme. – The system of governing equations (5),

(6) should be transformed into the above-described mesh-wise local coordinate system.

ux + vy + wz = 0,(5)

Vt + uVx + vVy + wVz = −∇p

ρ
+ [KVx]x + [KVy]y + [KVz]z

︸ ︷︷ ︸
=RHS

.(6)

Using the local coordinate transformation, this system could be rewritten so that the
continuity equation (5) takes the form

(7)
us1

cos α
+

vs2

cos β
+ wz − uz tan α − vz tan β = 0.
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Fig. 2. – Computational stencil for semi-implicit FD scheme.

The momentum equations will then be modified to the following form(2):

(8) Vt + ũVs1
+ ṽVs2

+ w̃Vz = R̃HS.

The modified coefficients are defined as follows:

ũ =
u

cos α
, ṽ =

v

cos β
, w̃ = w − u tan α − v tanβ.

The right-hand side is transformed in a similar way. The left-hand side of momentum
equations is discretized by the following way:

Vt ∼ −→
δt V

n
i,j,k,

ũVs1
∼ 1

2

(
ũn

i+1/2

−→
δs1

Vn
i,j,k + ũn

i−1/2

←−
δs1

Vn+1
i,j,k

)
,

ṽVs2
∼ 1

2

{
1

2

(
ṽn

j+1/2

−→
δs2

Vi,j,k + ṽn
j−1/2

←−
δs2

Vi,j,k

)n

+
1

2

(
ṽn

j+1/2

−→
δs2

Vi,j,k + ṽn
j−1/2

←−
δs2

Vi,j,k

)n+1
}

,

w̃Vz ∼ 1

2

{
1

2

(
w̃n

k+1/2

−→
δzVi,j,k + w̃n

k−1/2

←−
δzVi,j,k

)n

+
1

2

(
w̃n

k+1/2

−→
δzVi,j,k + w̃n

k−1/2

←−
δzVi,j,k

)n+1
}

.

The coefficients ũ, ṽ, w̃ are fixed at the time-level n in order to linearize locally the system
to obtain an Oseen-like iterative solver. The combination of different asymmetric space

(2) The R̃HS and RHS are the modified right-hand sides.
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discretization at time levels n and n+1 allows us to construct finally the numerical scheme
that is centered and second order in both space and time. The computational stencil is
different for discretization at time level n and n + 1 (see fig. 2). The dissipative terms
on the right-hand side are approximated in the same manner. Using this discretization,
the system of linear algebraic equations in each column of grid-points is obtained:

(9) a1V
n+1
i,j+1,k + a2V

n+1
i,j,k + a3V

n+1
i,j−1,k + a4V

n+1
i,j,k+1 + a5V

n+1
i,j,k−1 = RHS.

This system is solved iteratively in vertical plane i = const. So the five-diagonal system
is converted into the three-diagonal one.

(10) a5V
η+1
i,j,k−1 + a2V

η+1
i,j,k + a4V

η+1
i,j,k+1 = RHS − a1V

η
i,j+1,k − a3V

η+1
i,j−1,k.

The η denotes here the iterative index. Usually after 3–5 iterations the values of V =
(u, v, w)T are known with sufficient accuracy. Exactly the same solution scheme can also
be used for the scalar transport equations.

In the steady (or quasi-steady) problems the artificial compressibility method can be
used and in such a case the pressure is updated from the modified continuity equation.

(11) pt = −(ux + vy + wz).

Also here the above-described semi-implicit discretization is used to keep the consistency
with the momentum equations solver.

In order to improve the convergency of this method for high Reynolds numbers, the
artificial viscosity terms DVn

i,j,k are added. Then the solution algorithm skips to the time
level (n + 1).

2
.
3. Artificial viscosity . – The combination of artificial dissipation of second and fourth

order is used.

DVn
i = D2Vn

i + D4Vn
i ,

D2Vn
i = ε̃2Δx3 ∂

∂x
|Vx|Vx = ε̃2Δx2(εi+1/2Vx − εi−1/2Vx),

εi+1/2 =

⎧
⎨
⎩

|Vi+1 − Vi| for |Vi+1 − Vi| < K
10 ,

K
10 for |Vi+1 − Vk| ≥ K

10 ,

D4Vn
i = ε̃4Δx4Vxxxx = ε̃4

(
Vn

i−2 − 4Vn
i−1 + 6Vn

i − 4Vn
i+1 + Vn

i+2

)
.

The K = ν + νt is the coefficient of turbulent diffusion. The coefficients ε̃2, ε̃4 ∈ R are
constants of order Δx2, respectively Δx4.

The details of the numerical discretization could be found, e.g., in [30,31,29].

3. – Numerical results

Numerical experiments were performed in a 3D domain of the size 500 × 250 × 400
meters. The bottom boundary represents a complex terrain orography. The contours of
terrain elevation are shown in the following figure 3. The height difference between the
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Fig. 3. – Terrain elevation contours.

highest and the lowest point of the terrain profile is about 70 meters. The wind flow in
the model domain is forced by the prescribed velocity profile at the inlet (x = 0). The
maximum velocity 10 m/s is achieved at the upper boundary of the domain.

Figure 4 shows the wind flow streamlines at near-ground level for the basic variant
with no obstacles. This variant is used for reference and comparison because it represents
the actual state. In order to slow down and deflect the flow we have placed different
obstacles downwind from the expected source of pollution. The obstacles differ in their
shape and size. The first series of experiments uses an obstacle formed by a block with
horizontal size 10×60 meters which is rotated by 45 degrees with respect to mainstream
flow direction. The height of the obstacles varies between 3 and 9 meters. The immersed
boundary approach was used to simulate this impermeable block.
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Fig. 4. – Wind flow streamlines at the near-ground level for the case without obstacles.
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Fig. 5. – Wind flow streamlines at the near-ground level for the case with obstacle of height 3
meters.

In order to evaluate the impact of obstacle height on the flow the simulations were
run for the case with single obstacle with height 3, 6 and 9 meters. The streamlines at
the near-ground level for these cases are shown in figs. 5, 6 and 7. From the comparison
of figs. 5, 6 and 7 it is clearly visible that the increasing height of the obstacle leads to
significantly higher flow deviations. For the obstacle height 6 and 9 meters the impact
of the artificial obstacle is stronger (at least locally) than the influence of the local
orography. However even for the highest obstacle the flow is only disturbed locally and
no larger scale flow pattern modification was observed.
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Fig. 6. – Wind flow streamlines at the near-ground level for the case with obstacle of height 6
meters.
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Fig. 7. – Wind flow streamlines at the near-ground level for the case with obstacle of height 9
meters.

From the technological point of view it is not possible to build at the investigated
site obstacles higher than 9 meters and also the horizontal size of obstacles is strictly
limited. Thus when seeking for obstacles leading to more profound flow modifications it
is not possible to increase the obstacles dimensions. Therefore some other configurations
of obstacles of similar size were investigated assuming that it is possible to get better
results with another obstacle shape rather than larger size.

Two other variants have been tested as an attempt to increase the flow deflection
while respecting the technological obstacle size limitations. Instead of one large, two

x

y

0 100 200 300 400 500
0

50

100

150

200

250

Fig. 8. – Wind flow streamlines at the near-ground level for the case with two parallel obstacles
of height 9 meters.
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Fig. 9. – Wind flow streamlines at the near-ground level for the case with two obstacles of height
9 meters.

obstacles of smaller size and different configuration have been assumed. In both cases
the height of obstacles was 9 meters. The near-ground stramlines are shown in figs. 8
and 9. The simulation results have shown that the obstacles placed in the proximity of
the expected pollution source have only local impact on the flow field.

Thus it seems that it is not possible to achieve any larger scale flow deflection and
modify the pollutant dispersion trajectories. The only way to influence the downstream
airborne dust concentrations is to enhance the particle sedimentation. From this point
of view it is evident that the slower the flow is, the more particles will fall out of the
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Fig. 10. – Contours of near-ground wind slow-down for the case of obstacle of height 3 meters
with respect to the variant with no obstacles.
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Fig. 11. – Contours of near-ground wind slow-down for the case of obstacle of height 6 meters
with respect to the variant with no obstacles.

flow and sediment on the ground. In order to give some hints for evaluation of dust
sedimentation, the above mentioned variants of obstacles were evaluated from the point
of view of flow speed-up/slow-down at the near-ground level. As the flow slows down,
the sedimentation of wind-driven particles becomes more significant and thus to find
the regions of decelerated flow is of essential importance. The velocity magnitude fields
for all the above-described obstacle configurations were compared with the basic variant
without obstacles. This allows us to separate the effect of different obstacles on flow
deceleration.
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Fig. 12. – Contours of near-ground wind slow-down for the case of obstacle of height 9 meters
with respect to the variant with no obstacles.
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Fig. 13. – Contours of near-ground wind slow-down for the case of two parallel obstacles of
height 9 meters with respect to the variant with no obstacles.

Figures 10, 11 and 12 show the case where the obstacle is formed by one single
block of height 3, 6 or 9 meters. The contours of the flow deceleration are drawn at
the near-ground level where the deposition of wind-drifted particles could occur. The
comparison of figs. 10, 11 and 12 again shows the increasing effect of the wind-barriers
with their increasing height.

The remaining two variants with two smaller obstacles were compared with the basic
case in the same way. The flow deceleration for these cases is drawn in figs. 13 and 14.
In order to better understand the effects of different variants of wind-breaking obstacles
the detail of both, flow patterns and deceleration contours is drawn for the three most
promising variants in figs. 15, 16 and 17. From the comparison of the near-ground wind
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Fig. 14. – Contours of near-ground wind slow-down for the case of two different obstacles of
height 9 meters with respect to the variant with no obstacles.
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Fig. 15. – Streamlines and contours of wind slow-down at the near-ground level for the case of
one large obstacle of height 9 meters with respect to the variant with no obstacles.

slow-down it seems that the variant with two smaller parallel obstacles offers a slightly
larger region of flow deceleration and also the local flow deceleration is higher than for the
other two variants. Moreover the building area needed for this variant of wind-breakers
is a little bit smaller than for the other two cases.
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Fig. 16. – Streamlines and contours of wind slow-down at the near-ground level for the case of
two parallel obstacles of height 9 meters with respect to the variant with no obstacles.
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Fig. 17. – Streamlines and contours of wind slow-down at the near-ground level for the case of
two different obstacles of height 9 meters with respect to the variant with no obstacles.

4. – Conclusions, remarks

The selected mathematical model is able to properly describe the pollution dispersion
problems in complex terrain. Even if more sofisticated models are available for both the
flow and the turbulence parametrization, the kind of model used in this study seems to be
the right choice for the solution of complex pollution dispersion problems on engineering
level.

The numerical method used to solve the set of governing equations has proved suffi-
cient robustness and efficiency for reliable solution of the discussed type of problems. The
simple second-order, central in space and time, finite-difference discretization in combi-
nation with appropriate artificial viscosity stabilization is very easy to implement and
use, so it can be employed without excessive requirements on users and computational
resources. The presented numerical simulations have shown that the effect of simulated
obstacles has only local impact on the velocity field. This is caused mainly by the com-
plexity of the terrain, where the orography profile involves height changes with scales
much larger than the maximum available height of the simulated obstacles. Thus the
orography effect is dominant in this case. More detailed study of dust sedimentation
should be performed in order to quantify the effects of obstacles on deposition of parti-
cles of different sizes. The positive impact of wind-breaking barriers on the deposition
of larger particles may be outbalanced by the increase of the turbulent mixing of the
smaller particles. Another possible way of the future extension of this study is to as-
sume some of the permeable wind-breaking obstacles, like, e.g., porous fences or forest
blocks. This kind of obstacles may be more efficient in dissipating the energy of wind
and thus enhancing the sedimentation of airborne particles. The outputs of presented
numerical simulations allow very detailed comparison of several variants of wind-barriers.
Even simple side-by-side comparison of the above presented figures helps in evaluation
of environmental impact and efficiency of the proposed wind-barriers.
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E.3 Application of Compact Finite-Difference Schemes
to Simulations of Stably Stratified Fluid Flows

BODNÁR T., BENEŠ L., FRAUNIÉ PH., KOZEL K.
In: Applied Mathematics and Computation. 2012, vol. 219, p. 3336–3353,
doi:10.1016/j.amc.2011.08.058.

This paper is one of the first where we have presented numerical results from new
generation of numerical codes. The compact finite-difference scheme (with com-
pact filters for stabilization) implemented by the author of this work was compared
against the AUSM finite-volume scheme. The model solved here was the Boussi-
nesq approximation of stably stratified flow. Despite of the simple test setup, the
flow-field is quite complex featuring large wave fields. The tests have shown supe-
rior resolution of the family of compact finite-difference schemes for this case. The
issues related to numerical damping and grid independence were studied in detail.
The tests have helped to validate the numerical methods.

In this paper T. Bodnár performed all the simulations using compact finite-
difference scheme. The finite-volume results were provided by Luděk Beneš using
his own code.
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a b s t r a c t

This paper presents a comparison of the results of numerical simulations obtained by two
different numerical methods for one specific case of stably stratified incompressible flow.
The focus in this paper is on the numerical results obtained using some of the compact
finite-difference discretizations introduced in the paper [1]. The numerical scheme itself
follows the principle of semi-discretisation, with high order compact discretisation in
space, while the time integration is carried out by the Strong Stability Preserving Runge–
Kutta scheme. Results are compared against the reference solution obtained by the AUSM
finite volume method. The test case used to demonstrate the capabilities of selected
numerical methods represents the flow of stably stratified fluid over low, smooth, hill-like
wall mounted obstacle.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

The mathematical modelling and numerical simulation of stratified fluid flow presents a challenging problem with many
interesting applications. Stably stratified flows form a subclass of variable density flows where the mean flow density gra-
dient points in the direction gravity force. Such a specific configuration results in a buoyancy force that is responsible for very
distinct flow behaviour manifested by a presence of large-scale wave patterns in the flow-field.

From the numerical point of view, the simulations of stratified fluid flows are in general more demanding than the solution
of similar non-stratified flow cases (see our previous work [2–5] or [6]). There are several arguments supporting this state-
ment. First of all, the governing system describing the variable density fluid flow involves one more equation with respect
to classical (constant density) incompressible Navier–Stokes equations. It is the transport equation for the density (or its per-
turbation), which is coupled to momentum equations by a buoyancy term (see Section 2). As a consequence of this buoyant
force the obstacles in flow generate waves that propagate at long distances. These waves need to be properly resolved, with-
out unphysical damping or dispersion. Moreover the appearance of these waves should not be significantly affected by the
artificial boundaries of the computational domain. All these aspects of stably stratified fluid flows are addressed in this paper.

The above mentioned characteristic behaviour led us to the idea to use some of the compact finite-difference schemes for
the simulation of stratified fluid flows. These schemes have successfully been applied in the field of computational aeroacous-
tics where they became a standard tool in simulations of wave propagation phenomena. These methods offer a relatively
simple way of construction of formally high order discretisations with well defined diffusion and dispersion properties.
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2. Mathematical model

This section describes in detail the development of the simplified mathematical model for variable density incompress-
ible flow. The emphasise is on the explanation of the simplifications made in the model and their justification.

2.1. Full incompressible model

The motion equations describing the flow of incompressible fluid could be written in the following general form 1:
@q
@t
þ divðquÞ ¼0; ð1Þ

@qu
@t
þ divðqu� uÞ ¼divSþ qf : ð2Þ

These equations should be complemented by the incompressibility constraint divu = 0 and the rheological constitutive rela-
tion for Newtonian incompressible fluid S ¼ �pIþ 2lD (with D being the symmetric part of the velocity gradient and I

standing for the identity tensor). Expressing further the gravity force vector as f = (0,0,g), leads (exactly) to the following
set of governing equations for unknowns u, p and q:

@u
@x
þ @v
@y
þ @w
@z
¼0; ð3Þ

@q
@t
þ @ðquÞ

@x
þ @ðqvÞ

@y
þ @ðqwÞ

@z
¼0; ð4Þ

@ðquÞ
@t
þ @ðqu2Þ

@x
þ @ðquvÞ

@y
þ @ðquwÞ

@z
¼� @p

@x
þ lDu; ð5Þ

@ðqvÞ
@t

þ @ðquvÞ
@x

þ @ðqv2Þ
@y

þ @ðqvwÞ
@z

¼� @p
@y
þ lDv ; ð6Þ

@ðqwÞ
@t

þ @ðquwÞ
@x

þ @ðqvwÞ
@y

þ @ðqw2Þ
@z

¼� @p
@z
þ lDwþ qg: ð7Þ

The conservation of mass is represented by the continuity Eq. (4) can be written in the vector form
@q
@t
þ divðquÞ ¼ 0: ð8Þ

Using the chain rule of differentiation this equation can be rewritten as
@q
@t
þ u � grad q ¼ �q div u: ð9Þ

For incompressible flows satisfying the divergence-free constraint div u = 0, the right-hand side of Eq. (9) vanishes and thus
the continuity equation reduces to transport (advection) equation for density q:

@q
@t
þ u � grad q ¼ 0: ð10Þ

This equation can be used together with the chain rule of differentiation to rewrite the left-hand side of the momentum bal-
ance (2):

@qu
@t
þ divðqu�uÞ ¼ u

@q
@t
þq

@u
@t
þq divðu�uÞ þuðu � grad qÞ ¼ q

@u
@t
þ divðu�uÞ

� �
þu

@q
@t
þu � grad q

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼0

: ð11Þ

Using the above described manipulation, the governing system (3)–(7) could alternatively be rewritten as:

@u
@x
þ @v
@y
þ @w
@z
¼0; ð12Þ

@q
@t
þ @ðquÞ

@x
þ @ðqvÞ

@y
þ @ðqwÞ

@z
¼0; ð13Þ

q
@u
@t
þ @ðu

2Þ
@x
þ @ðuvÞ

@y
þ @ðuwÞ

@z

� �
¼� @p

@x
þ lDu; ð14Þ

q
@v
@t
þ @ðuvÞ

@x
þ @ðv

2Þ
@y
þ @ðvwÞ

@z

� �
¼� @p

@y
þ lDv ; ð15Þ

q
@w
@t
þ @ðuwÞ

@x
þ @ðvwÞ

@y
þ @ðw

2Þ
@z

� �
¼� @p

@z
þ lDwþ qg: ð16Þ

1 Here we assume that the energy equation is decoupled from the equations of motion and the consequences of this simplification could be neglected. This
e.g. means that heat production due to the mechanical energy dissipation is neglected.
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Here we have kept the continuity equation in its full original form, however it is also possible to replace the Eq. (13) by the
simplified (non-conservative) version (10).

The governing systems (12)–(16), resp. (3)–(7), represent the full incompressible variable density model. This model is
sometimes called the Non-homogeneous (incompressible) Navier–Stokes equations.

2.2. Boussinesq approximation

Now we will assume that the pressure and density fields are perturbation of hydrostatic equilibrium state, i.e.:

qðx; y; z; tÞ ¼q0ðzÞ þ q0ðx; y; z; tÞ; ð17Þ
pðx; y; z; tÞ ¼p0ðzÞ þ p0ðx; y; z; tÞ; ð18Þ

where the background density and pressure fields are linked by the hydrostatic relation:

@p0

@z
¼ q0g: ð19Þ

Using the above decomposition of density where q ¼ q0 þ q0, the full continuity equation

@q
@t
þ divðquÞ ¼ 0; ð20Þ

can be rewritten in the following way:

@q0

@t
þ divðq0uÞ ¼ � @q0

@t
þ divðq0uÞ

� �
: ð21Þ

Applying the chain rule on the right-hand side we get:

@q0

@t
þ divðq0uÞ ¼ � @q0

@t
þ u � grad q0 þ q0div u

� �
: ð22Þ

Assuming now that the background density only depends on the vertical coordinate, i.e. q0 ¼ q0ðzÞ and applying the diver-
gence-free constraint, most of the terms on the right-hand side of (22) will disappear:

@q0

@t
þ @ðq

0uÞ
@x

þ @ðq
0vÞ

@y
þ @ðq

0wÞ
@z

¼ � @q0

@t|{z}
¼0

þu
@q0

@x|{z}
¼0

þv @q0

@y|{z}
¼0

þw
@q0

@z
þ q0 div u|fflffl{zfflffl}

¼0

0BB@
1CCA: ð23Þ

Finally we end-up with the continuity equation rewritten as:

@q0

@t
þ @ðq

0uÞ
@x

þ @ðq
0vÞ

@y
þ @ðq

0wÞ
@z

¼ �w
@q0

@z
: ð24Þ

The Boussinesq approximation of momentum equations is obtained by introducing the above decomposition of density and
pressure into the momentum Eqs. ()()()(14)–(16). The density perturbation q0 is neglected on the left-hand side (in the con-
vective terms) while on the right-hand side it is retained. On the right-hand side the hydrostatic pressure was removed using
the hydrostatic relation (19) and the fact that according to (18) the horizontal parts of the background pressure gradient are
zero.

@u
@x
þ @v
@y
þ @w
@z
¼0; ð25Þ

@q0

@t
þ @ðq

0uÞ
@x

þ @ðq
0vÞ

@y
þ @ðq

0wÞ
@z

¼�w
@q0

@z
; ð26Þ

@u
@t
þ @ðu

2Þ
@x
þ @ðuvÞ

@y
þ @ðuwÞ

@z
¼ 1

q0
� @p0

@x
þ lDu

� �
; ð27Þ

@v
@t
þ @ðuvÞ

@x
þ @ðv

2Þ
@y
þ @ðvwÞ

@z
¼ 1

q0
� @p0

@y
þ lDv

� �
; ð28Þ

@w
@t
þ @ðuwÞ

@x
þ @ðvwÞ

@y
þ @ðw

2Þ
@z

¼ 1
q0
� @p0

@z
þ lDwþ q0g

� �
: ð29Þ

This system can equivalently be rewritten using the ‘‘complete’’ density q rather than the perturbation q0.
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@u
@x
þ @v
@y
þ @w
@z
¼0; ð30Þ

@q
@t
þ @ðquÞ

@x
þ @ðqvÞ

@y
þ @ðqwÞ

@z
¼0; ð31Þ

@u
@t
þ @ðu

2Þ
@x
þ @ðuvÞ

@y
þ @ðuwÞ

@z
¼ 1

q0
� @p0

@x
þ lDu

� �
; ð32Þ

@v
@t
þ @ðuvÞ

@x
þ @ðv

2Þ
@y
þ @ðvwÞ

@z
¼ 1

q0
� @p0

@y
þ lDv

� �
; ð33Þ

@w
@t
þ @ðuwÞ

@x
þ @ðvwÞ

@y
þ @ðw

2Þ
@z

¼ 1
q0
� @p0

@z
þ lDwþ ðq� q0Þg

� �
: ð34Þ

3. Numerical methods

This section briefly describes the numerical methods used to obtain numerical results presented in the Section 6. The
description is mainly focused on the compact schemes. The reference AUSM finite-volume method is only described briefly
for completeness.

3.1. Compact finite-difference schemes

Compact finite-difference schemes are presented here in the context of the principle of semi-discretisation. It means that
the space-and time-discretisations are carried out in separate steps. First, the space-derivatives are discretised using com-
pact finite-differences and then the resulting system of ODEs is integrated in time (e.g. by a suitable Runge–Kutta multistage
scheme in this case). The details of the space-and time-discretisation are discussed below.

3.1.1. Space discretisation
The spatial discretisation used in this work is directly based on the paper [1], where a class of high order compact finite

difference schemes was introduced and analysed. Although some more refined compact discretisations have recently been
introduced and analysed (e.g. in [7–9] or [10,11]), the original family of simple compact finite-differences introduced in [1]
and used in [12,13], will serve us well as a starting point in our investigation of capabilities of compact discretisations 2.

The main idea used to construct this family of schemes is that instead of approximating the spatial derivatives /0 of cer-
tain quantity / explicitly from the neighbouring values /i, the (symmetric) linear combination of neighbouring derivatives
ð. . . ;/0i�1;/

0
i;/

0
iþ1; . . .Þ is approximated by weighted average of central differences. The simplest compact finite difference

schemes use the approximation in the form

a /0i�1 þ /0i þ a /0iþ1 ¼ a1
/iþ1 � /i�1

2h
þ a2

/iþ2 � /i�2

4h
: ð35Þ

Here h = xi � xi�1 is the spatial step, while a and ak are the coefficients determining the specific scheme within the family
described by (35). It is easy to see that e.g. for a = 0,a1 = 1 and a2 = 0, the explicit second order central discretisation is
recovered.

It is evident that the schemes (35) form a subclass of three-diagonal schemes with five-point computational stencil. For
the simulations presented here, the following coefficients were used:

a1 ¼
2
3
ðaþ 2Þ a2 ¼

1
3
ð4a� 1Þ: ð36Þ

This choice of parameters leads to a one-parametric family of formally fourth order accurate schemes. For a = 0 the clas-
sical explicit fourth order discretisation is recovered, while for a = 0.25 the well known Padé scheme is obtained. As an
exception within this family of schemes, a single sixth order method can be obtained for the specific choice of a = 1/3.

The above described schemes are based on central discretisation in space with all the well known advantages and also
disadvantages of this type of methods. One of the disadvantages of central methods is the appearance of non-physical oscil-
lations in numerical solutions. A very efficient (but still not perfect) algorithm for filtering out these high frequency oscilla-
tions was also proposed in [1]. The low-pass filter (for the filtered values b/i) can be formulated in a form very similar to (35):

b b/i�1 þ b/i þ b b/iþ1 ¼ 2b0/i þ b1
/iþ1 þ /i�1

2h
þ b2

/iþ2 þ /i�2

4h
þ � � � : ð37Þ

The filters of different orders can be obtained for various choices of coefficients. Here the sixth order filter with coefficients

b0 ¼
1

16
ð11þ 10bÞ; b1 ¼

1
32
ð15þ 34bÞ; b2 ¼

1
16
ð6b� 3Þ; b3 ¼

1
32
ð1� 2bÞ; ð38Þ

2 We will further follow the terminology used in [1].
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was used. The parameter �0.5 < b < 0.5 is used to fine-tune the filter. See Section 6.3 for further details. For other filters from
this family see e.g. [12].

More information on the compact space discretisation can be found in [1,12,13] or in more recent works [7–9] or [10,11].

3.1.2. Temporal discretisation
The system of governing partial differential equations was discretised in space using the above described finite-difference

technique (represented further by the space discretisation operator fL). This leads to a system of ordinary differential equa-
tions (ODE) for time-evolution of grid values of the vector of unknowns W. This concept is called semi-discretisation or the
method of lines.

Resulting system of ODEs can be solved by a suitable time-integration method 3. Even in the case that a non-oscillatory
space-discretisation has been used, the numerical solution might still be spoiled by non-physical oscillations. These spurious
artifacts can be introduced at the time-integration step by an inappropriate choice of time-discretisation. This is why we have
used in this study the so called Strong Stability Preserving (SSP) Runge–Kutta methods.

The family of explicit SSP Runge–Kutta schemes is usually written in the form introduced in [14].

Wð0Þ ¼Wn;

WðrÞ ¼
Xr�1

p¼0
ðarpW

ðpÞ þ brpDtfLðWðpÞÞÞ r ¼ 1; . . . ; s; ð39Þ

Wnþ1 ¼WðsÞ:

difficult to see that in the case the coefficients brp are positive, the method (39) is nothing else but a convex combination of
Euler stages with fractional time-steps of the length brp

arp
Dt.

Here we just shortly recall some of the optimal, in the sense of accuracy versus stability, up to the order two SSP RK meth-
ods, originally studied in [15]. Hereafter the SSP(s,o) denotes the Runge–Kutta method which consists of s stages and has
order of accuracy o (See Table 1).

The method denoted by SSP(1,1) is nothing else but the Euler method, while SSP(2,2) stands for the modified Euler meth-
od. The coefficients of some other SSP-RK methods can be found in [15].

The comparison of Tables 1 and 2 shows that the higher order of RK method can only be achieved at the expense of the
reduction of the allowable time-step, resp. the CFL number.

The three stage second order SSP(3,2) Runge–Kutta method was used to obtain the results presented here. Other methods
have also been tested without visible influence on the final (steady) solution.

Table 1
First order SSP-RK methods coefficients.

Method arp brp CFL

SSP(1,1) 1 1 1

SSP(2,1) 1 1
2

2

0 1 0 1
2

1 1
3

SSP(3,1) 0 1 0 1
3

3

0 0 1 0 0 1
3

Table 2
Second order SSP-RK methods coefficients.

Method arp brp CFL

SSP(2,2) 1 1 1
1
2

1
2

0 1
2

1 1
2

SSP(3,2) 0 1 0 1
2

2
1
3

0 2
3

0 0 1
3

1 1
3

SSP(4,2) 0 1 0 1
3

3

0 0 1 0 0 1
3

1
4

0 0 3
4

0 0 0 1
4

3 It should be noted that all the test cases solved in this paper are steady (see Section 4). So even if the model equations and numerical solvers are used in the
unsteady form, it is just because the time-marching technique is adopted to reach the limit steady solution. This also allows us to use the artificial
compressibility method to compute the pressure in both numerical methods.
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3.2. AUSM finite-volume scheme

This method has been chosen for comparison with the above described compact finite-difference schemes. It represents a
popular choice amongst the modern high resolution finite-volume schemes. This particular scheme was previously used for
the simulation of stratified flow and compared successfully with other methods and experiments in [16–18].

3.2.1. Space discretisation
Also for this scheme the artificial compressibility method was used in dual time. The continuity equation is then rewritten

in the form (in 2D, x–z plane)

@p
@s
þ b2 @u

@x
þ @w
@z

� �
¼ 0; ð40Þ

where s is artificial time and b denotes the artificial compressibility parameter. The Eqs. (25)–(29) rewritten in the 2D con-
servative form are

PWt þ FðWÞx þ GðWÞz ¼ SðWÞ: ð41Þ

Here the W = [q,u,v,p]T, F = Fi � mFv and G = Gi � mGv contain the inviscid fluxes Fi,Gi and viscous fluxes Fv and Gv, S is the
source term, and P = diag(1,1,1,0). The fluxes and the source term are

FiðWÞ ¼½qu;u2 þ p;uw;b2u�T ; GiðWÞ ¼ ½qw;uw;w2 þ p;b2w�T ;
FvðWÞ ¼½0;ux;wx;0�T ; GvðWÞ ¼ ½0; uz;wz; 0�T ; ð42Þ

SðWÞ ¼½�w@q0=@z;0;�qg; 0�T :

The finite volume AUSM (Advection Upstream Splitting Method) scheme was used for spatial discretisation of the inviscid
fluxes:

Z
X

Fi
x þ Gi

z

� �
dS ¼

I
@X
ðFinx þ GinzÞdl �

X4

k¼1

un

.
u

w

b2

0BBB@
1CCCA

L=R

þ p

0
nx

nz

0

0BBB@
1CCCA

266664
377775Dlk: ð43Þ

where n is the cell face outer normal vector, un is the normal velocity vector, and qL=R are the quantities on left/right hand side
of the face respectively. The convective part is approximated by the upwind formula,

ðqÞL=R ¼
ðqÞL if uiþ1

2
> 0

ðqÞR otherwise

(
: ð44Þ

Quantities p and . on the cell face are approximated by the central formula from neighbouring cells. Velocities on the cell
faces are computed using MUSCL (Monotone Upstream-centred Schemes for Conservation Laws) reconstruction introduced
by van Leer [19] with Hemker–Koren limiter. This means that

qR ¼ qiþ1 �
1
2

dR and qL ¼ qi þ
1
2

dL; ð45Þ

with the limiter function given by

dL=R ¼
aL=R b2

L=R þ 2
� �

þ bL=R 2a2
L=R þ 1

� �
2a2

L=R þ 2b2
L=R � aL=RbL=R þ 3

; ð46Þ

aR ¼qiþ2 � qiþ1 aL ¼ qiþ1 � qi bR ¼ qiþ1 � qi bL ¼ qi � qi�1:

Because the pressure is discretised in a central way, the scheme is stabilised by the pressure diffusion according to [20]. The
discrete version of the additional diffusive flux has the following form:

Fp
iþ1=2;j ¼

0
0
0

g piþ1;j�pi;j

xx

0BBB@
1CCCA xx ¼ wr þ

2m
Dx

; ð47Þ

where wr is reference velocity (in our case the maximum velocity in flow field).
The viscous fluxes are discretised in the central way on a dual mesh. This scheme is formally of the second order of accu-

racy in space.
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3.2.2. Time integration
For the finite-volume AUSM reference model a fully unsteady solver was used. The dual time stepping approach was

adopted, so the separate time-discretisations were needed for physical and artificial time. The derivative with respect to
the physical time t is discretised by the second order BDF formula,

P
3Wnþ1 � 4Wn þWn�1

2Dt
þ FxðWnþ1Þ þ GzðWnþ1Þ ¼ SðWnþ1Þ; ð48Þ

RezðWnþ1Þ ¼ P
3Wnþ1 � 4Wn þWn�1

2Dt
þ FxðWnþ1Þ þ GzðWnþ1Þ � SðWnþ1Þ:

Arising system of equations

Reznþ1ðWÞ ¼ 0;

is solved by artificial compressibility method in the dual (artificial) time s. The stationary solution of the following system of
equationsePWs þ PWt þ FðWÞx þ GðWÞz ¼SðWÞ; ð49ÞePWs þ RezðWnþ1Þ ¼0; ð50Þ

with eP ¼ diagð1;1;1;1Þ is obtained in each physical time step. This system of ODEs is solved by an explicit 3–stage Runge–
Kutta method. The AUSM scheme has been validated in our previous studies. The scheme was successfully used for simula-
tion of the flow around moving ball in 2D and 3D stratified fluid for wide range of Richardson numbers.

4. Computational setup

The whole study is motivated by the investigation of environmental flows, namely the atmospheric boundary layer
flows in complex terrain. The computational test case was chosen to be as simple as possible, but retaining some of
the features found in real life environmental flows. Nevertheless it should be kept in mind that the flow computed is
not atmospheric.4

4.1. Computational domain

The 2D computational domain is selected as a part of wall-bounded half space with low smooth cosine-shaped hill
(shown in the Fig. 1). The hill height is h = 1 m, while the whole domain has dimensions 90 � 30 m.

4.2. Boundary conditions

Two-dimensional steady case is considered and thus only boundary conditions are given for this 2D case. The time-
marching method is used to find the steady solution as a limit of unsteady system solution for t ?1.

� Inlet . . . The velocity profile u = (u(z),0,0) is prescribed. The horizontal velocity component u is given by5 uðzÞ ¼ U0ðz=HÞ1=r

with U0 ¼ 1m � s�1 and r = 40. Density perturbation q0 is set to zero, while homogeneous Neumann condition is used for
pressure.
� Outlet . . . Homogeneous Neumann condition is prescribed for all velocity components, as well as for the pressure and

density perturbations.
� Wall . . . No-slip conditions are used on the wall, i.e. the velocity vector is set to u = (0,0,0). Homogeneous Neumann con-

dition is used for pressure and density perturbations.
� Free stream . . . Homogeneous Neumann condition is used for all quantities including pressure and density perturbations.

The background density field q0 is given by the linear profile q0ðzÞ ¼ qw þ cz with qw = 1.2 kg �m�3 and
c = � 0.01 kg �m�4. The characteristic Reynolds number is approximately Re = 1000 for this test case, based on the maximum
inflow velocity U0 ¼ 1m � s�1, hill height h = 1m and dynamic viscosity l = 10�3 kg �m�1 � s�1 . A range of gravity acceleration
g was used to test the behaviour of the model and numerical method for different Brunt-Väisälä frequencies. The values used
are g = �5,�10,�20,�50 m �s�2.

4 E.g. because the viscosity of the fluid is not the one of air and also the used values of gravity acceleration do not correspond to physical value(s) for the
Earth.

5 This inflow condition does not represents the model solution for undisturbed flow. It is an ad-hoc chosen velocity profile specifically suited for the test of
numerical methods.
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4.3. Computational grid

The numerical simulations were performed on a structured, non-orthogonal wall-fitted grid shown in the Fig. 2. The grid
has 233 � 117 points with the minimum cell size in the near-wall region Dz = 0.03 m.

5. Relation of the computational setup to environmental flows

The choice of mathematical model and especially the computational setup that we have used were mainly driven by our
aim to evaluate the differences in numerical solutions obtained using various numerical methods. Thus the well defined
model and simple setup were of primarily importance. The physical interpretation of the whole model setup only plays a
secondary role. In this section we only want to show that our setup can easily be ‘‘translated’’ into another one, that is often
used in environmental physics.

In our computational setup we have used a single background density profile q0ðzÞ and the stratification was changed by
variation of gravity acceleration that we denote for a moment by g0. Physicists on the other hand usually only work with a
single, physical value of gravity acceleration that we denote g⁄. Different levels of stratification can only be achieved using
various background density profiles q⁄(z). Based on the similarity of Brunt-Väisälä frequencies in both setups, we can
compute an equivalent background density profile for each of the computational cases that we solve in this paper. It can
be shown that the computational and physical setups are equivalent (with respect to Brunt-Väisälä frequencies) provided
that the following rules hold:

Computational setup. g0 ¼ �5;�10;�20;�50 m � s�2q0ðzÞ ¼ qw þ c0z, where c0 ¼ �0:01 kg �m�4;qw ¼ 1:2 kg �m�3,

Physical setup g⁄ ¼
: �10 m � s�2q	ðzÞ ¼ qw

q0ðzÞ
qw

� �g0
g	 where g0 ¼ �5;�10;�20;�50m � s�2.

It is necessary to keep in mind that even if we have provided the rules to guarantee the Brunt-Väisälä frequency similarity,
the corresponding Reynolds number similarity can not be achieved. In the computational setup, the local Reynolds number
profile (that depends on the local background density) is exactly the same in all test cases. For the physical setup however this
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h

6 h

z

x

30 h

Ω

Fig. 1. Computational domain configuration.
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Fig. 2. Computational grid structure.
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profile is different for each of the test cases. Therefore from the numerical point of view we prefer the use of the computational
setup, because the various Brunt-Väisälä frequencies can be achieved without affecting the Reynolds number.

6. Numerical results

In this section we present a comparison of numerical results obtained using some of the compact finite-difference
schemes and the AUSM finite-volume scheme. The testing of numerical methods was quite extensive and thus it is not pos-
sible to show all of the results here. We have chosen the results to be shown in order to demonstrate some of the main fea-
tures of these numerical methods and to support our findings summarised in the Section 7.

The family of compact schemes summarised in the Section 3.1 offers infinitely many combinations of space discretisa-
tions and filters. Moreover even for the schemes and filters of given order there are infinitely many possible choices of
parameters a and b. Thus in order to distinguish between these methods we use the notation CXaaaFYbbb for compact scheme
of order X with parameter a = aaa combined with the filter of order Y applied with the damping parameter b = bbb. For exam-
ple the following set of results (Fig. 4) was obtained with the fourth order Padé compact scheme (i.e. for a = 0.25) combined
with the sixth order compact filter with damping parameter b = 0.45. Such scheme is further denoted as C4025F6045.

6.1. The effects of stratification

The stratification has a severe impact on the flow-field. The inflow is represented by a purely horizontal flow. This is per-
turbed by a vertical impulse generated by the hill placed in about one third of the length of the computational domain. As a
consequence, the gravity waves occur in the flow field. The wavelength of these waves is inversely proportional to the Brunt-
Väisälä frequency

N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� g

�q
@q0

@z

s
: ð51Þ

This means that the spatial frequency of gravity waves increases either with the growth of the background density gradient
or with the increasing (absolute) value of gravity acceleration g. We have intentionally opted for changing the gravity accel-
eration rather than the vertical density gradient. The main reason was to avoid the limitations arising from the requirement
of positive density and to keep the Reynolds number strictly fixed for all the solved cases. The basic structure of the flow
pattern is summarised in the Fig. 3.

The dominant flow feature is clearly the hill generated gravity wave pattern in the proximity of the hill. In agreement
with the theory, the wavelength is getting shorter for higher stratification. It is also worth mentioning that the hill induced
flow perturbations occupy an extremely large part of the domain. This is in contrast with the classical non-stratified case,
where the hill induced flow deviations are localised to the close proximity of the hill and do not significantly affect the flow
far away from the hill. This particular difference between the non-stratified and stratified flow is what makes the stratified
case much more difficult to solve.

In the simulations presented here the stratification is also responsible for the amplification and propagation of some arti-
facts related to the choice and implementation of boundary conditions on the artificial boundaries of the computational do-
main. Most pronounced of these effects is the wave pattern located close to the lower left corner of the domain. This corner
effect is neither a numerical instability nor a numerical error. This is a physical effect caused by the choice of inlet velocity
profile. If a fully developed profile obtained (by the same method on the same grid) for the flow over a flat plate is prescribed,
this corner effect will disappear (or will be negligible). In this corner the prescribed velocity profile (that does not corre-
sponds to a fully developed profile) hits the wall and introduces a small vertical velocity perturbation to the flow. In the
non-stratified case this will only locally affect the flow field. In the stratified case however, this perturbation persists and
affects the flow in a much larger area. In physically relevant simulations, where often the boundary conditions come from
measurements and are not fully compatible with the model equations, such effects can seldom be fully eliminated. We have
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Fig. 3. Flow structure.
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Fig. 4. Vertical velocity contours for different values of stratification (i.e. for different values of gravity acceleration g = �5,�10,�20,�50 m � s�2).
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intentionally kept this corner effect in our simulations as another flow feature that should be numerically resolved. It is espe-
cially interesting because it appears close to the far-field boundary where the grid is rather coarse.

The Fig. 4 shows the vertical velocity contours6 for four different values of stratification. The visualisation of the flow in terms
of the vertical velocity contours has been chosen to emphasise the hill-induced vertical velocity perturbation superposed to the
originally purely horizontal background flow. Also the spatial structure of corresponding gravity waves is well documented in
these contour figures. The colour scale is kept the same for all the figures in order to be able to evaluate easily both, the frequency
and the amplitude of the gravity waves under different conditions. In the contour plots, the near zero contours have been skipped
(i.e. replaced by the white colour). The negative contour lines are dashed, while the positive are drawn by solid line.

As mentioned above, the gravity wave pattern generated by the hill can be characterised by the Brunt-Väisälä frequency N
or equivalently by a characteristic wavelength k / U0=N. This can clearly be seen from the Fig. 5 that shows the graph of the
vertical velocity versus the x coordinate on in cut represented by a straight line connecting points [0;0] and [30;30], i.e. on a
cut taken at the angle 45 degrees starting from the hill centre.

From the numerical point of view, the most challenging, from the four above shown cases, is the case with highest strat-
ification i.e. with g = �50 m � s�2. This is mainly due to the short wavelength of gravity waves that is difficult to resolve on the
coarse grid that we (intentionally) use. Further we will focus our attention to this case.

6.2. The influence of discretisation schemes

The influence of space discretisation on results was quite subtle. The major differences are visible in the coarse grid re-
gions. To demonstrate this, the classical second order scheme (i.e. a = 0,a1 = 1 in the approximation formula (35)) was used
as a reference. Schemes with a = 0 are sometimes called explicit, because this choice results in an explicit formula for the
approximation of derivatives instead of solving linear system like in the case of compact schemes. Usually it is recommended
to use fourth order damping/filtering with second order schemes, however in order to separate the influence of space dis-
cretisation from the effects of stabilisation, the same compact low-pass filter has been used in all cases. The sixth order com-
pact filter with the damping parameter b = 0.45 was used for all simulations in this section.

This explicit second order scheme (denoted further as E2 F6) performs quite well in fact (see Fig. 6). This is mainly due to
the use of high order filter instead of the application of some classical stabilisation techniques (upwinding, artificial viscos-
ity) which are usually of lower order. This becomes apparent from the comparison with the modern high resolution AUSM
finite volume scheme whose results are shown in the Fig. 7.

Both schemes perform very well in the proximity of the hill, where the grid spacing is more than sufficient to resolve the
gravity waves. At larger distances, the E2 F6 scheme seems to produce more details with the results being less smoothed.
Results closer to the AUSM scheme can be achieved at the expense of the use of stronger damping with the finite-difference
discretisation provided e.g. by some lower order filter or in combination with a similar kind of pressure stabilisation as is
used with the AUSM scheme.

Another feature shows-up when higher (fourth or sixth) order compact schemes are used instead of the explicit second
order formula. Because the grid spacing increases towards the outer boundaries of the computational domain, at some dis-
tance the grid resolution becomes insufficient to correctly resolve the short wavelength gravity waves. This is apparent in the
above results close to the right, outlet boundary where the waves just fade out without having physical reason for it. Com-
paring the above low-resolution results with the output higher order method, shown in the Fig. 8, clearly demonstrates the
superiority of higher order method that allows on the same grid to better resolve the waves on a coarse grid.

A more detailed comparison of the above methods is possible from the plots of the vertical velocity in different cuts of the
computational domain. The first cut, shown in the Fig. 9, is placed horizontally at the height z = 10 m.

Another interesting cut, shown in the Fig. 10, goes up-right from the hill centre at the angle of 45 degrees (the same as in
the Fig. 4).

In both of the Figs. 9 and 10 the AUSM scheme shows more damping than the other methods, with the compact fourth
order scheme having visibly higher resolving power and lower damping in the coarse grid regions.

6.3. The impact of stabilisation techniques

The numerical experiments have shown that the effects of the increasing order of the spatial discretisation are relatively
subtle when compared to the influence of different stabilisation methods. The type and amount of damping of non-physical
oscillations in the computational field has a strong impact on the convergence rate and the resolution of the numerical meth-
od. The compact filters used in this study contain a tuning parameter b 2 (�0.5;0.5) that allows to adjust the cut-off fre-
quency of the low-pass filter. Values of b close to 0.5 result in lower amount of damping, while for the values closer to
�0.5 the filtering is stronger and affects also the lower frequencies.

To get a rough idea about the effects of various filters, we may follow the analysis introduced in [1,12] stating that the
effect of a certain filter could be characterised by its transfer function7. When both the original and filtered ‘‘signal’’ is repre-

6 All the figures and results are in SI units, i.e. distances in meters and velocities in meters per second. The contour colour scales are the same for all figures.
7 Sometimes called spectral function or spectral response (see e.g. [12] for more details)
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sented in the Fourier space by its wave number and corresponding amplitude, the value of transfer function T(w) is obtained as
the ratio of the amplitudes of filtered and non-filtered signal for a given wave number w. According to [1] the transfer function
of the tri-diagonal compact filter of order N is given by

TðwÞ ¼
PN

n¼0bn cosðnwÞ
1þ 2b cosðwÞ : ð52Þ

The shape of the transfer functions for different filters and values of the coefficient b are shown in the Fig. 11.
The above figure only provides rough guidelines for comparison of different filters. A full, mathematically rigorous anal-

ysis of the impact of various filters in combination with different spatial and temporal discretisations should be provided in
critical cases (See e.g. [8,9]).
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Fig. 5. Vertical velocity plots for different values of stratification.
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The Fig. 8 shows the results obtained using the scheme C4038F6045, i.e. with the sixth order filter using the damping
parameter b = 0.45. In order to point out the effect of filtering, two other simulations with alternative values of parameter
b were performed. Stronger damping was obtained with b = 0 (Fig. 12) and for slightly weaker damping the value b = 0.48
was used (Fig. 13).

It is evident that the strong damping has smoothed out the waves in the far-field, while the wave structure (not the
amplitude) remains close to the less damped case.

In the case of low damping, the results are still free of point-to-point numerical oscillation, but the wave interferences
became more obvious. Further decrease of damping (i.e. b > 0.48) results in unsteady or divergent computation.

From the Fig. 11 follows that the high order filters are not able to efficiently damp the low frequency waves in the com-
putational field. This contributes to the high resolving power of the scheme but on the other hand it has also some side ef-
fects. The transitional travelling waves present in the computational field during the initial stage of the time-marching
process are only weakly damped. Therefore the convergence to steady state can be slow. Second problem comes with the
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Fig. 9. Vertical velocity plots for different schemes in a cut taken at the height z = 10 m.
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Fig. 8. Compact fourth order scheme C4038F6045. Vertical velocity contours.
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parasitic waves introduced by some boundary conditions (e.g. in the lower left corner in our simulations). These usually un-
wanted artifacts ere either unresolved or quickly damped by low order methods. With the high resolution scheme/filter
these physically irrelevant features remain unaffected and may influence the whole solution. The AUSM method presented
in this work used additional pressure stabilisation to face this kind of problem. In the simplest case of equidistant Cartesian
grid the pressure stabilisation term can be interpreted as additional Laplacian of pressure on the right hand side of the mod-
ified continuity equation. This kind of stabilisation has proved to be very efficient without significantly affecting the resolu-
tion of the scheme. Just for curiosity we have tried to apply similar kind of pressure stabilisation together with the high order
filter. The following Fig. 14 shows the results of simulation with additional pressure stabilisation. This figure should be di-
rectly compared with the last picture in the Fig. 4 or with the Fig. 8, where the same case is shown without the pressure
stabilisation.
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Fig. 11. Transfer functions of compact filters F2, F4, F6 for a range of parameters b.
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Fig. 12. Stronger damping. Scheme C4038F6000.
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Fig. 13. Weaker damping. Scheme C4038F6048.
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The additional pressure stabilisation helped to speed-up the convergence to steady state and also damped a little bit the
waves in the lower left corner of the domain. This has also minimised the wave interferences in the whole computational
field. The overall results look much cleaner and smoother without visibly reducing the scheme resolution in the coarse grid
areas in the far-field.

6.4. The effect of grid size and resolution

There is no doubt that the grid that we have used in the above presented simulations is in some situations a limiting fac-
tor that strongly affects the results of simulations. The grid is relatively small (in the sense of size of computational domain)
and also quite coarse in some areas. This choice of grid was made intentionally and we do not claim our results to be phys-
ically correct in all the regions of the computational domain. Our goal was to find the limitations of selected numerical meth-
ods for given grid.

To quantify the effects of the grid size and spacing, two additional cases are discussed here. First the double-sized grid
was used. In the original grid the grid covered the domain defined roughly as as two-dimensional interval h � 30; 60i �
h 0; 30i. the grid has smallest cells in the proximity of the hill and is smoothly coarsened towards the far-field. The coars-
ening is limited so that the next cell can only be 3% larger than the actual one. The same rule was used for the double-sized
domain defined roughly as h � 60; 120i � h0; 60i. The original grid had 233 � 117 cells, while on the extended domain there
are 384 � 241 grid cells. Running the computation on this extended domain with very coarse grid in the far-field (and almost
identical to the original one in the near-field) gives the results shown in the Fig. 15, where only the detail in the range of the
original small domain is shown.

The results look great in this detailed window being free of the boundary induced waves and their consequent interfer-
ences with the waves generated by the hill. The global look on the results in the whole domain (Fig. 16) reveals the obvious
fact that the very coarse grid spacing in the far-field does not allows for the resolution of any short wavelength gravity waves
(either physical or boundary induced) and attributes to the fast damping of all reflected waves.

The insufficient grid resolution of the above used grid in the far-field is demonstrated in the following Fig. 17 showing the
results from the double-sized domain with finer grid. In this case the grid coarsening towards the far-field is slower with
only 1% cell growth instead of the original 3% limit. In this case the fine, double-sized grid has 508 � 306 cells.

The finer grid does not allows for efficient damping of the boundary induced waves and their reflections in the far-field
using the high order filter only. The Fig. 18 shows the results obtained with the use of additional pressure stabilisation for the
same case.
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Fig. 14. Additional pressure stabilisation. Scheme C4025F6045.
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Fig. 15. Detail of the results from double-sized domain with coarse grid. Scheme C4038F6048.

3350 T. Bodnár et al. / Applied Mathematics and Computation 219 (2012) 3336–3353

E.3. Application of Compact Finite-Difference Schemes to Simulations of Stably Stratified
Fluid Flows 89



As in the case of smaller domain the pressure stabilisation helps to damp the far-field artifacts and speed-up the conver-
gence without significantly affecting the scheme resolution.

7. Conclusions and final remarks

In this paper we have compared the numerical results obtained using two significantly different numerical methods. We
have mainly focused our attention to some simple compact finite-difference schemes introduced in [1] and recalled in the
Section 3.1. During the extensive testing of these compact schemes we have found many interesting issues related to their
implementation and practical use for the simulation of stably stratified flows. Hereafter a short summary of some of our
main findings is presented.
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Fig. 16. Global view of the results from double-sized domain with coarse grid. Scheme C4038F6048.

Fig. 17. Results from double-sized domain with fine grid. Scheme C4038F6048.

Fig. 18. Results from double-sized domain with fine grid. Scheme C4038F6048 with additional pressure stabilisation.
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7.1. Discretisation related issues

The above described compact finite-difference discretisation has proved is ability to properly resolve all the flow features
of stratified fluid flow. In our simulations the compact schemes have clearly demonstrated its high resolution capabilities,
extreme flexibility and robustness. They not only perform well in comparison with standard schemes, but they still have
a great potential for further development. When it comes to resolution, the compact schemes are extremely well suited
for the simulations high frequency wave phenomena. In our simulations it has shown up that the high order schemes need
visibly less grid points per wavelength to correctly resolve the gravity waves.

The use of high order space discretisations has however revealed new problems related to their implementation and effi-
cient use. From this new kind of problems lets point out the issues related to the proper choice and implementation of
boundary conditions. In our simulations we have chosen quite steep inlet velocity profile. This choice led to generation of
parasitic gravity waves from the lower left corner of computational domain. First of all let’s note that this will cause just local
problem in the case of non-stratified flow, but with increasing stratification, the affected area will grow in size and impor-
tance. These small amplitude waves are well resolved by high order methods and thus may cause more problems and inter-
ferences with the hill generated waves in the whole domain. In this aspect, the low order discretisation may help together
with coarse grid close to the far-field boundaries,to damp faster the boundary condition related artifacts. The high order dis-
cretisation on the other hand helps to resolve all these unwanted phenomena and thus any boundary condition issues will
affect the overall results much stronger.

7.2. Stabilisation and damping

The application of high order central in space discretisation requires to use also some kind of high order stabilisation in
order to suppress non-physical oscillation appearing in the computational field. In this aspect the simple compact filters that
we have used have proved to be extremely efficient and flexible. In contrast to most of the modern high resolution schemes
(using e.g. some embedded upwinding or flux limiting), here the choice of stabilisation method is separated from the space
discretisation. This gives to the user more flexibility in the choice of type and amount of damping/filtering necessary to sta-
bilise the scheme without excessively affecting the results. In our tests the most efficient damping was usually provided by a
filter of two orders higher than the formal order of the chosen space discretisation. This is enough to damp the non-physical
(numerical) high frequency oscillations in the computational field. In some cases however it is useful to apply at least tem-
porarily some stronger or lower order stabilisation to speed-up the convergence. This is mainly connected with the need to
damp some of the artificial flow phenomena generated by far-field boundary conditions. These unwanted flow features have
higher wavelengths than the point-to-point numerical oscillations introduced by space discretisation and thus can not be
sufficiently damped by high order filters that only affect the highest frequencies. The temporary application of lower-order
damping during the initial part of simulation may speed-up the convergence to steady state by faster damping of the trav-
elling waves in the computational domain. In some cases, this over-damping can be used to partially damp the interferences
of physical waves generated by terrain features with those introduced by boundary conditions. In this way you can get better
looking results in the far-field, but at the expense of the loss of some resolution of the scheme.

7.3. Grid related issues

As mentioned above, the grid spacing severely affects the results of numerical simulations. While the use of high order
space discretisation may help to capture some of the flow features that are usually unresolved by lower order methods on
the same grid, the low level of damping that is characteristic for high order methods also brings some new problems to
numerical simulations. Some non-physical artifacts introduced by far-field boundary conditions can be unresolved or faster
damped by low order methods, while higher order schemes can contribute to the better resolution and longer persistence of
these unwanted features in computational field. In some cases, the grid coarsening in the far-field may help to avoid this
artificial effects to negatively influence the results in the interior proximity of physically relevant features in the interior
of the domain. As the numerical filtering only affects the wavelengths close to the mesh cell size, by appropriate extension
of the grid spacing we may intentionally damp also the longer wavelengths close to the far-field boundaries. Of course this
means that the numerical results in these coarse-grid regions are not physical anymore and serve only as a buffer region for
the smooth transition to the far-field boundary values.

From the physical point of view, there are two limits to be imposed on the grid spacing. The first limit comes from the
need to properly resolve the boundary layer in the near-wall region. Here the grid spacing is usually chosen to be inversely
proportional to Reynolds number to guarantee some minimal number of grid points in the boundary layer. Another limita-
tion to the grid spacing comes with stratification. In order to properly resolve the terrain induced gravity waves, the grid
spacing in the far-field area should not fall below certain threshold defined by the wavelength of these waves. This means
that the grid spacing in the physically relevant parts of the computational domain should be limited from above by a certain
cell size that is inversely proportional to the Brunt-Väisälä frequency N. The number of grid points needed per resolved
wavelength then further depends on the resolving power of the numerical scheme. High order methods in general require
less points per wavelength.
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7.4. Final remarks

The comparison of numerical results presented in this paper revealed several issues to be further addressed. We have
demonstrated that the compact finite-difference schemes that we have used are at least as good in terms of resolution
and robustness as the modern AUSM finite-volume scheme. So even if we have only used few of the simplest of the currently
available compact finite-difference schemes, it seems that they are able to deliver better resolution than one of the best
available finite-volume methods. The simulations have also shown that the use of high resolution methods not only brings
more detailed results, it also brings some difficulties. These are mainly connected with some unwanted numerical artifacts
being resolved and preserved by the high resolution methods. These non-physical (or better to say numerically introduced)
features are usually unresolved or quickly damped by low-order methods.

Our future work should definitely bring more light into the choice and implementation of suitable boundary conditions
especially for stratified flow. Another area to be explored is the dispersion and diffusion behaviour of numerical methods
with respect to numerical stabilisation in conjunction with high order time-and space-discretisations (see e.g. [7,8] or
[9]). Some further more detailed analysis of time-discretisation methods will be necessary for solving also the unsteady
problems.
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This paper presents the newly developed three-dimensional extension of the high-
resolution compact finite-difference code, previously used in papers [E.3], [E.4].
Besides of performing the tests of the newly implemented 3D scheme a series of sim-
ulations was used to demonstrate the behavior of the Boussinesq model within a
range of Reynolds and Froude numbers. Certain issues concerning the boundary
conditions were pointed out. This problem will further be addressed in a continua-
tion of this work.

All the numerical simulations presented in this paper were proposed and per-
formed by T. Bodnár.
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Abstract

The stably stratified fluid flow over smooth hills is one of the essential processes in environmental
fluid mechanics. The aim of this paper is to point out some of the key features of this phenomena,
both from the physical and mathematical modeling point of view. The three-dimensional laminar flow
over a smooth, axisymmetric hill is considered over a range of Froude and Reynolds numbers. The
numerical simulations are performed based on the Boussinesq approximation model, solved using a
high resolution compact finite difference numerical scheme. The obtained numerical results are dis-
cussed with respect to the observed physical phenomenology, taking into account the separate role of
varying velocity (Reynolds number) and stratification (Froude number). The encountered mathemat-
ical modeling and numerical solvability issues are discussed in detail, pointing out the key role of the
computational setup and boundary conditions.
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1 Introduction

Stratification is one of the most challenging features of environmental flows. It’s a consequence of a
gravity force, acting on a fluid with non-constant density, forming a vertically structured density pro-
file. Under typical circumstances, the heavier fluid is close to the bottom, while the lightest is at the
top, resulting in a vertically variable density profile, with negative vertical density gradient. This basic
fluid stratification is subject to various perturbations, typically introduced by obstacles, over which the
fluid flows. In contrast to the classical homogeneous (i.e. non-stratified) case, the flow perturbations in
stratified flows become more apparent, by forming a typical internal wave patterns due to the action of
buoyancy force.

The aim of this study is to get a deeper insight into this phenomena by means of numerical experi-
ments. The focus will be on laminar, stably stratified flow over an isolated smooth hill.

1.1 Physical background

The primary motivation for this study comes from atmospheric boundary layer flows over hills. There
are three main parameters naturally appearing in the description of this kind of flows.

1. Buoyancy frequency

N =

√
g

ρ∗
∂ρ0(z)

∂z
[s−1] (1)

This is the (angular) frequency of oscillations of a fluid parcel that was moved vertically from
its equilibrium position. Due to a density difference between the parcel and the surrounding
fluid, the buoyancy force tends to return it to equilibrium, which causes oscillations around the
equilibrium position. The parameter N is usually referred to as the Brunt–Väisälä frequency. Here
the key physical parameters are the gravity acceleration g, characteristic density ρ∗ and the vertical
density gradient1 γ = ∂ρ0

∂z .

2. Reynolds number

Re =
ρ∗U∞LR

µ
(2)

This parameter can be interpreted as a characteristic ratio between the inertial and viscous forces
in the flow. The physical parameters behind the Reynolds number are the characteristic velocity
U∞, length scale LR (e.g. the boundary layer thickness or hill height) and the fluid dynamical
viscosity µ.

3. Froude number
F =

U∞
NLF

(3)

The interpretation of this parameter depends on the choice of the characteristic length LF (hill
height, its half-length, etc.). It can be understood, for example, as a ratio of buoyancy time-scale
1/N over the advection time-scale LF /U∞. This is probably the most important parameter char-
acterizing the stratified flow over hills as it combines the effects of hill size with fluid velocity and
its stratification.

For the given geometrical configuration and given fluid, there only remain two free parameters charac-
terizing the considered problem. It’s the velocity U∞ of the fluid and its stratification γ, i.e. the parame-
ters Re and N . This is in contrast to several previous experimental and numerical studies, where towing
tank experiments were performed under predefined stratification, by only changing the characteristic
velocity U∞. In such a setup, both the Reynolds and Froude numbers, Re and F , vary simultaneously,
being proportional to U∞, while the buoyancy frequency N is kept constant. Thus it’s impossible to
separate the effects of Re and F . One of the aims of this study is to consider and evaluate the separate
effects of these two parameters on the flow field structure.

1Both g and γ are negative in the chosen coordinate system.
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1.2 Experimental evidence

The stratified flow over hills was studied in numerous experimental works in the past decades. Probably
the most influential study in this field is the paper Hunt and Snyder [15], where laboratory scale towing
tank experiments are described. The flow over a smooth, rotationally symmetric hill was simulated for
various characteristic Froude numbers. The resulting flow field was confronted with field observations
as well as with the analytical solutions of some approximate mathematical models. This problem setup
was later used as a basis for various experimental and numerical studies (including the one presented in
this paper). The three-dimensional wake structure behind a Gaussian shaped hills was studied in Kadri,
Bonneton, Chomaz, and Perrier [17]. The towing speed and hill diameter were varied, looking for a
change in the resulting wake structure. The papers Castro, Snyder, and Marsh [4] and Castro [3] describe
a series of experiments on stratified fluid flow over a sharp, prismatic ridges. Besides the variation in
Froude number (due to towing velocity), also the effect of the aspect ratio of the ridge was taken into
account. The conical and hemi-spherical hill shapes were used in towing tank experiments presented
in Vosper, Castro, Snyder, and Mobbs [43], to study the obstacle shape on flow field and drag under
different Froude numbers. In Gyüre and Jánosi [13] quasi-two-dimensional lee-wave formation behind
symmetric as well as asymmetric obstacles was studied in another towing tank experiment, looking
for typical wavelengths and amplitudes of lee-waves fields. A periodic in space hill (of rectangular,
triangular and sinusoidal shape) configuration was used in Sutherland and Aguilar [34] to study the
wave generation and boundary layer separation for different configurations and Froude numbers.

It’s good to note here, that all the above experiments were performed on scaled-down laboratory
sized models, towed in a water tank. Therefore, in fact, the primary way to change the Froude number
was to vary the towing velocity.

Another type of laboratory scale experiment is represented by Takahashi, Kato, Murakami, Ooka,
Yassin, and Kono [37] considering a wind tunnel (in contrast to the above towing tank experiments)
study on the turbulent structure of the airflow around a three-dimensional hill under stable, neutral
and unstable stratification. Similar (but 2D) experiments were also described in Ross, Arnold, Vosper,
Mobbs, Dixon, and Robins [23].

Some real scale atmospheric observations of stratified wind flow over a hill were presented e.g. in
Wooldridge, Fox, and Furman [46]. The flow structure over an isolated large hill of moderate slope
was described for a range of Froude numbers (both the velocity and stratification have changed). An
extension of a dividing streamline concept was tested against the experimental observations in Leo,
Thompson, Sabatino, and Fernando [19].

A combination of analytical solution of simple mathematical model with experimental investigation
is presented e.g. in Davis [5], where a two-dimensional flow over triangular ridge was considered. An
overview of simple two- and three-dimensional models is summarized in Smith [27], complemented
by an explanation of the physical phenomenology of stratified flows over mountains and experimen-
tal demonstration of the most important features. A comparison of linear and nonlinear models for
mountain waves are shown in Peltier and Clark [21], comparing the predicted wave-field with satellite
observations. Field observation data were compared against the linear model predictions in Weng [45].
Similar, linear theory model comparison with experimental data, this time from towing tank experiment,
was published in Thompson, Shipman, and Rottman [38].

1.3 Numerical studies

The mathematical modeling of stratified flows over hills came into play with the simplified models and
their analytical or semi-analytical solutions. Typical examples of such works are e.g. the linearized
hydrostatic models in Smith [27, 28, 29, 30, 31]. The the structure of lee vortices was analyzed using
simplified models in Smolarkiewicz and Rotunno [32] or Rotunno, Grubišić, and Smolarkiewicz [24].
The stratified separated flow around a mountain was solved analytically in Hunt, Vilenski, and Johnson
[16].

The fast evolution of computational tools and methods in recent years led to an increasing interest
in detailed numerical simulations of stratified flows over hills.

3
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The numerical simulations in Ding, Calhoun, and Street [7] and Ding and Street [6] are based on
the towing tank experimental setup introduced in the above mentioned paper [15]. It uses a finite-
volume code to solve a Large-Eddy Simulation (LES) extension of Boussinesq equations for the case of
a strongly stratified flow over a three-dimensional hill. Similar setup, but in the laminar case was used
also in Suzuki and Kuwahara [35], where the Boussinesq equations were solved by a finite difference
method using a generalized coordinate system.

The non-homogeneous incompressible Navier-Stokes equations were solved numerically for 3D flow
over an isolated hill in Hanazaki [14] and compared with some simplified models predictions. A finite-
volume solver on unstructured grids was developed in Szmelter, Zhang, and Smolarkiewicz [36], based
on inviscid Boussinesq model. It was used to simulate the flow over an axially symmetric isolated
hill of polynomial shape. The effects of Earth’s rotation were taken into account in Torres and Castillo
[39], where a finite-difference solver was used to simulate the Boussinesq approximation of laminar
incompressible Navier-Stokes equations.

The stratified flow separation for various hill heights and Froude numbers was investigated using
the inviscid Euler model in Ambaum and Marshall [1]. A two-dimensional numerical simulation of
stratified atmospheric flows at low Mach and Froude numbers is presented in Gatti-Bono and Colella
[12], where a new anelastic projection algorithm was developed to solve the compressible Euler equa-
tions using a finite-volume scheme. Similar problem was recently studied numerically in viscous, com-
pressible, turbulent setup in Sachsperger, Serafina, and Grubišić [25].

A numerical study of stably stratified flows over a two-dimensional hill was presented in [40]. A
finite-difference code was used to solve the Boussinesq approximation. This work was later extended
in Uchida and Ohya [41] by solving the problem using a 3D code as a quasi 2D case, looking for three-
dimensional separation effects and temporal drag evolution. In both cases, the no-slip conditions were
only used on the surface of the hill, while the free-slip conditions were used on the other parts of the
wall.

Various simplified models were often used, either separately or in a comparison either with more
complex models or with the experimental data. In Epifanio and Durran [9] a simplified weakly non-
linear semi-analytical model is solved for a free-slip non-rotating flow over a smooth ridge. A shallow-
water model was used in Epifanio [8] to study the lee vortices behind an isolated obstacle. A comparison
of the Long’s hydrostatic solution with a numerically solved non-linear model for a stratified flow over
a 2D mountain ridge was presented in Ling and Wang [20]. The influence of the hill height and aspect
ratio (spanwise to streamwise size) on the stratified flow field structure was studied in Bauer, Mayr,
Vergeiner, and Pichler [2] using the mesoscale code RAMS (Regional Atmospheric Modeling System). A
three-dimensional nonhydrostatic ocean model was solved in Ford [10] using a finite-element method
for the flow of stratified fluid past an isolated Gaussian seamount.

A comparison of numerical and experimental results for a flow over two-dimensional hills (trian-
gular and sinusoidal ridges) in both neutral and stably stratified turbulent wind flow were published
in Ross et al. [23]. The numerical model solved the time-dependent Boussinesq equations in a terrain-
following coordinate system and utilized a finite-difference discretization and an explicit time integra-
tion scheme2. Different turbulence closures were adopted and compared. Similar problem was solved
in Wan and Porté-Agel [44] employing a LES turbulence model.

2The same basic code (BLASIUS model from the U.K. Met Office) was also used in Ross and Vosper [22] for numerical simula-
tions of stably stratified flow through a mountain pass.
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2 Mathematical Model

2.1 Full incompressible model

The incompressible fluid flow can be described by velocity field v(x, t) and density field ρ(x, t), that are
governed by the balance of mass and linear momentum in the following general form:

∂ρ

∂t
+ div(ρv) = 0 (4)

∂ρv

∂t
+ div(ρv ⊗ v) = divS + ρf (5)

Here the f(x, t) stands for volume forces (only gravity force f = g = (0, 0, g) is assumed further).
The stress tensor S = T − pI (with I being the identity tensor) can be split into viscous (deviatoric)

part T and normal (spherical) contribution due to pressure p(x, t) . The viscous stress tensor in the
incompressible Newtonian fluids is defined by T = µ

(∇v + ∇vT
)

= 2µD , where D denotes the sym-
metric part of the velocity gradient and the coefficient µ is the dynamic viscosity, which is considered to
be constant3 in the present study.

These governing equations for unknowns v, p and ρ are supplemented by the incompressibility
constraint divv = 0, that can be understood as a differential formulation of a conservation of volume
principle. This divergence-free constraint can be used to simplify the above system of equations. The
conservation of mass is represented by the continuity equation (4), where the divergence of the product
(ρv) this can be expanded as

∂ρ

∂t
+ v · gradρ = −ρ div v (6)

For incompressible flowsthe right-hand side of equation (6) vanishes and thus the continuity equation
reduces to:

∂ρ

∂t
+ v · gradρ = 0 (7)

This is sometimes referred to as the convective (or non-conservative) form of continuity equation. It
represents a transport equation for density. This equation can be used to rewrite the left-hand side of
the momentum balance (5):

∂ρv

∂t
+ div(ρv ⊗ v) = ρ

(
∂v

∂t
+ div(v ⊗ v)

)
+ v

(
∂ρ

∂t
+ v · gradρ

)

︸ ︷︷ ︸
=0

(8)

Using this manipulation the momentum equation (5) can alternatively be rewritten as:

ρ

(
∂v

∂t
+ div(v ⊗ v)

)
= −gradp + div2µD + ρg (9)

Here the momentum equation (9) is written in the divergence (conservative) form. It can be rewritten
using the divergence-free constraint into the convective (non-conservative) form using the expansion

div(v ⊗ v) = (v · grad)v + v divv︸︷︷︸
=0

(10)

which leads to the convective form of the momentum equation (9)

ρ

(
∂v

∂t
+ v · gradv

)
= −gradp + div2µD + ρg (11)

The governing systems (4)-(5), resp. (7), (9), represent the full incompressible, viscous (laminar),
variable density model. This model is sometimes called the non-homogeneous Navier-Stokes equations.
This is the system that we use as a starting point to develop the so called Boussinesq approximation.

3Here we assume the case of laminar flow with constant viscosity. For turbulent flow with variable (eddy) viscosity the model
will require some changes.
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2.2 Boussinesq approximation

Now we will assume that the pressure and density fields are perturbation of hydrostatic equilibrium
state, i.e.:

ρ(x, t) = ρ
0
(x) + ρ′(x, t) i.e. ρ(x, y, z, t) = ρ

0
(z) + ρ′(x, y, z, t) (12)

p(x, t) = p0(x) + p′(x, t) i.e. p(x, y, z, t) = p0(z) + p′(x, y, z, t) (13)

where the background density and pressure fields are linked by the hydrostatic relation:

gradp
0

= ρ
0
g i.e.

∂p
0

∂z
= ρ

0
g . (14)

Using this decomposition of density where ρ = ρ0 + ρ′, the continuity equation (7) can be expanded to

∂ρ

∂t
+ v · gradρ =

∂ρ0

∂t︸︷︷︸
=0

+
∂ρ′

∂t
+ v · gradρ

0︸ ︷︷ ︸
γ

+v · grad ρ′ (15)

where the background (hydrostatic) pressure gradient was denoted by γ = (0, 0, γ), which leads to

∂ρ′

∂t
+ v · gradρ′ = −v · γ i.e.

∂ρ′

∂t
+ v · gradρ′ = −wγ (16)

This new version of the continuity equation is equivalent to the original (7), resp. (4).
The momentum equations (9) can be transformed in a similar way by withdrawing the background,

hydrostatic pressure gradient force. This leads to a rearranged equation

ρ

(
∂v

∂t
+ div(v ⊗ v)

)
= −gradp′ + div2µD + ρ′g . (17)

It is good to note here, that so far only decompositions and rearrangements were applied to the govern-
ing system. No approximations were made and thus the momentum equation (17) is still fully equiva-
lent to the original (9), resp. (5).

The Boussinesq approximation is obtained from the full model by replacing the complete density
ρ(x, t) on the right hand side of momentum equation (17) by a suitable fixed (in space and time) charac-
teristic density ρ∗. This immediately leads to the approximate set of governing equations, the so called
Boussinesq approximation:

∂ρ′

∂t
+ v · gradρ′ = −wγ (18)

ρ∗
(

∂v

∂t
+ div(v ⊗ v)

)
= −gradp′ + div2µD + ρ′g . (19)

Here the system was written in terms of the density perturbation ρ′ = (ρ − ρ
0
), however it can also be

written in terms of the complete density

∂ρ

∂t
+ v · gradρ = 0 (20)

ρ∗
(

∂v

∂t
+ div(v ⊗ v)

)
= −gradp′ + div2µD + (ρ − ρ

0
)g . (21)

This is the system that was used in the numerical simulations presented in this paper.
The only difference between the full system of non-homogeneous Navier-Stokes equations and the

Boussinesq approximation is in the scaling of certain terms in the momentum equation by the constant
characteristic density ρ∗ instead of the complete ρ(x, t). Thus the validity of Boussinesq approximation
depends on the difference between the ρ∗ and ρ(x, t) for the considered case.

The characteristic density ρ∗ is usually chosen as a kind of a mean density defined from the back-
ground density ρ

0
. Instead of using an average, we have chosen the characteristic density to be equal

to the background density at a pre-defined characteristic height h∗, i.e. ρ∗ = ρ
0
(h∗) and thus ρ

0
(z) =

ρ∗ + γ · (z − h∗). This choice allows to keep the ρ∗ (i.e. the Reynolds number) independent of the
computational domain size (height).
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3 Numerical Solver

The numerical solution of stably stratified flows is a very specific discipline. The typical resulting so-
lution includes all of the features of neutrally stratified cases (i.e. boundary layers, recirculation zones,
stagnation points, wakes, etc.), but in addition, the stable stratification allows the existence of gravity
waves in the computational field. These gravity waves usually have rather small amplitude, their wave-
length can vary according to the flow conditions, but more importantly, their spatial extent is enormous,
compared to the size of the geometrical feature (obstacle), that initially generated the perturbation.

This specific character of the solution of stably stratified flows makes them quite distinct from the
classical neutral cases. The numerical solution of stratified flows requires specific treatment starting
from grid generation, through numerical discretization and stabilization, up to the implementation of
specific boundary conditions that should be non-reflective for the internal waves.

The numerical solver presented hereafter is designed as a modular tool, where the spatial and tem-
poral discretizations are separated, and so is the numerical stabilization. Therefore a semi-discretization
is applied, i.e. first a discretization in space is applied, resulting in a system of ordinary differential
equations for temporal evolution of the variables in grid points. These ODEs are integrated in time by
a suitable method (Runge-Kutta multistage method was adopted here). The central in space discretiza-
tions are intentionally used (compact finite-difference schemes in this case), because they are free of
embedded upwinding and numerical diffusion.

Primary focus is on steady flows, so stationary solution is sought. Thus the artificial compressibility
method was adopted (adding a pseudo time-derivative of pressure to the divergence-free constraint).
The time-marching procedure is further applied, i.e. the stationary solution is obtained as a limit for
t −→ ∞ from solving an unsteady system of governing equations with steady boundary conditions. In
the limit, the time-derivatives will vanish (including the non-physical added time-derivative of pres-
sure) and the steady solution is recovered (satisfying the divergence-free condition).

3.1 Discretization in space

In order to resolve the low-amplitude and possibly high-(spatial) frequency gravity waves, a high reso-
lution numerical discretization is required. The compact finite-difference schemes seem to be a natural
choice, because they not only have a high formal order of accuracy, but they also have well documented
numerical dispersion/diffusion behavior.

This type of discretization was chosen because it offers high resolution while retaining well defined
dispersion/diffusion characteristics. This is a rare among the modern high resolution methods that often
employ complicated non-linear reconstruction and stabilization techniques. The family of compact (in
the sense of narrow computational stencil) schemes in its current form was introduced in [18] and is
successfully used e.g. in computational aeroacoustics (see e.g. [11], [42]). Its superior resolution and
low numerical diffusion/dispersion makes it suitable for capturing various wave phenomena, including
those in stratified flows.

The basic concept of the compact finite-difference schemes naturally extends and generalizes the
construction of the classical (sometimes called explicit) finite difference approximations. In the classical
approach the central approximation of first derivative φ′(x) of a (sufficiently smooth) function φ(x) can
be obtained as a (symmetric) linear combination of neighboring grid values φi (resp. their divided
differences).

φ′
i ≈ α1

φi+1 − φi−1

2h
+ α2

φi+2 − φi−2

4h
+ . . . + αℓ

φi+ℓ − φi−ℓ

2ℓh
(22)

The coefficients αm; m = 0, . . . , ℓ are obtained by matching the above expression to Taylor expansion of
φ(xi ± mh). So the classical central finite-difference approximations take the following form.

φ′
i ≈

m=ℓ∑

m=1

αm
φi+m − φi−m

2mh
(23)

The compact approximations can reduce the computational stencil (needed for required order of ac-
curacy) and in some cases also improve the resolution of the method. The main idea of compact finite
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differencing is to instead of looking for an (explicit) formula approximating the value of φ′
i, an approxi-

mate (symmetric) linear combination of neighboring derivatives (. . . , φ′
i−1, φ

′
i, φ

′
i+1, . . .) is sought.

aqφ
′
i−q + . . . + a2φ

′
i−2 + a1φ

′
i−1 + φ′

i + a1φ
′
i+1 + a2φ

′
i+2 + . . . + aqφ

′
i+q ≈ (24)

≈ α1
φi+1 − φi−1

2h
+ α2

φi+2 − φi−2

4h
+ . . . + αℓ

φi+ℓ − φi−ℓ

2ℓh
(25)

The approximation (24) could be understood as an implicit relation between the function values φi and
the approximate derivatives φ′

i. This approach generalizes the classical finite-differencing, which now
becomes just a special case of the compact approach.

Using the compact differencing, the approximation formula becomes more complicated.

φ′
i +

n=q∑

n=1

an(φ′
i−n + φ′

i+n) ≈
m=ℓ∑

m=1

αm
φi+m − φi−m

2mh
(26)

In this paper the compact schemes with at maximum tri-diagonal system of equations and five-point
discretization stencil are used. These could be written in the form:

a1φ
′
i−1 + φ′

i + a1φ
′
i+1 = α1

φi+1 − φi−1

2h
+ α2

φi+2 − φi−2

4h
. (27)

To get the approximation formula of desired order, it is necessary to match the general formula with
Taylor series expansions. The first non-matching coefficient determines the leading order of the trun-
cation error. The following conditions on the coefficients should be satisfied to attain certain order of
accuracy.

Second order α1 + α2 = 1 + 2a1

Fourth order α1 + 22α2 = 2 3!
2! a1

Sixth order α1 + 24α2 = 2 5!
4! a1

Table 1: Order conditions for compact approximations

It is obvious that for the approximations of the order lower than six, there are more unknown parame-
ters than equations from the which these parameters can be computed. This means that the coefficients
for the lower order schemes are not unique. This offers a possibility to choose a-priori some of the coef-
ficients (usually to make the solution easier). For example we may get the classical (explicit) difference
schemes for a1 = 0. In the same way the discretization stencil width can be reduced by choosing e.g.
α2 = 0. This is shown in the table 2 where the coefficients of the compact finite difference schemes with
tri-diagonal matrix and up to five point stencil are summarized.

Scheme a1 α1 α2 Diagonals Points Order

A a 2
3 (a + 2) 1

3 (4a − 1) 3 5 4

B a = 1
3

14
9

1
9 3 5 6

C a = 1
4

3
2 0 3 3 4

Table 2: Parameters for tri-diagonal schemes

Without further constrains, this setup leads to a one-parametric family of schemes of the type denoted A
in the Table 2. Various specific choices of the free parameter a may further lead to either increase of the
order of accuracy of the scheme (as for a = 1/3 leading to, highest in this class, 6th order of accuracy)
or reduction of the size of the computational stencil (as for a = 1/4 leading to three-point stencil rather
than five-point stencil necessary for classical explicit approximation of the same 4th order of accuracy).

The 6th order compact scheme with a = 1/3 was used for the simulations presented in this paper.
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3.2 Discretization in time

Due to a modularity of the numerical solver (and semi-discretization approach) a relative freedom is
kept in the choice of the method for numerical integration in time. Here we have opted for the explicit
Runge-Kutta multistage schemes, more specifically for the Strong Stability Preserving family of Runge-
Kutta (SSP-RK) schemes. This choice is motivated by the aim to retain simplicity, flexibility and guar-
anteed non-oscillatory behavior of discretization. The choice of explicit scheme leads to a very simple
implementation, at the expense of the lower computational efficiency (compared to implicit schemes),
especially in the steady case. The Runge-Kutta family of schemes allows for high flexibility of the solver,
because several specific methods can be tested just by switching the coefficients of the RK method. The
SSP-RK schemes were chosen to guarantee that no non-physical oscillations will be introduced by the
temporal discretization, which is of key importance in resolving any wave phenomena.

As it was already mentioned in the previous sections, the concept of semi-discretization of evolu-
tionary PDE’s, allows to transform problems involving both space- and time- derivatives into problems
containing only the derivatives with respect to time. A typical example of such approach could be the
discretization of hyperbolic conservation laws. Written in one space dimension, the conservation of
scalar quantity w(x, t) can be expressed in differential form as4:

wt + f(w)x = 0 . (28)

Assuming now that the equation (28) was discretized in space, e.g. using one of the suitable FV or FD
discretizations, it is transformed into the system of ODE’s of the form:

Wt = L̃(t, W(t)) , (29)

where W = W(t) is the vector of discretized variable, i.e. [W(t)]i = Wi(t) = w(xi, t), and L̃ is a discrete
version of the differentiation in space operator L = −f(w(xi, t))x.

The system (29) describes the evolution in time of the discrete grid values of unknown function w.
In order to solve the initial value problem based on this system of ODE’s, virtually any of the methods
originally developed for ODE’s could be used.

The family of explicit SSP Runge-Kutta schemes is usually written in the form introduced in [26]:

W(0) = Wn

W(r) =

r−1∑

p=0

(
αrpW

(p) + βrp∆tL̃(W(p))
)

r = 1, . . . , s (30)

Wn+1 = W(s)

It is not difficult to see that in the case the coefficients βrp are positive, the method (30) is nothing but a
convex combination of Euler stages with fractional time-steps of the length βrp

αrp
∆t. Here we just shortly

present some of the optimal, in the sense of accuracy versus stability, three-stage SSP-RK methods, orig-
inally studied in [33]. Hereafter the SSP(s,o) denotes the Runge-Kutta method which consists of s stages
and has order of accuracy o. The above described three-stage SSP-RK methods were used to obtain the
results in this paper. From the Table 3 follows that for given number of stages there is always a bal-
ance between the accuracy of the method and the maximum CFL number, where higher accuracy leads
to lower CFL. The actual choice of the method only requires the use of different coefficients, without
any additional re-programming of the code. The specific choice thus depends on the solved case and
required time-accuracy. The data in the Table 3 suggest that the choice of the first order method with
larger CFL (i.e. allowable time-step) should be preferable for seeking the steady case solution using the
time-marching technique as a limit for t −→ ∞.

3.3 Numerical stabilization

Because a central discretization of spatial derivatives is used, a suitable stabilization method is required
to remove the non-physical oscillations in the computational field.

4The subscripts are used to denote partial derivatives.
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Method αrp βrp CFL

SSP(3,1)

1

0 1

0 0 1

1
3

0 1
3

0 0 1
3

3

SSP(3,2)

1

0 1
1
3 0 2

3

1
2

0 1
2

0 0 1
3

2

SSP(3,3)

1
3
4

1
4

1
3 0 2

3

1

0 1
4

0 0 2
3

1

Table 3: Three stage SSP-RK methods

The main idea of filtering comes from the area of signal processing, where so called low-pass filters
are used to suppress high frequencies in various signals. The amplitudes of high frequency modes
are reduced, while low-frequencies remain unchanged. The filtering is in some sense very close to the
classical artificial viscosity approach used for the stabilization of the numerical solution of hyperbolic
PDEs. The filtering however is a little bit more general concept because it can also be used for other than
hyperbolic problems.

An important subclass of low-pass filters is formed by the compact filters. A specific compact ap-
proximation functions are constructed in a similar fashion as the compact finite-difference schemes. This
approach was proposed in [18] and applied and analyzed in [11] and [42]. According to [18] a typical
compact filter could be written in the following form 5 :

bφ̂i−1 + φ̂i + bφ̂i+1 =

N∑

n=0

βn

2
(φi−n + φi+n) (31)

The coefficients βi can be chosen to obtain filters of various orders. The single remaining parameter
b takes the values −0.5 ≦ b ≦ 0.5. From the table 4, summarizing the coefficients of compact filters,
follows that the filter of order P can be obtained using the stencil of the width 2Ph, i.e. using 2P + 1
points. The effect of a certain filter could be characterized by its transfer function6. When both the original

Filter β0 β1 β2 β3 β4

F2 1+2b
2

1+2b
2 0 0 0

F4 5+6b
8

1+2b
2

2b−1
8 0 0

F6 11+10b
16

15+34b
32

3(2b−1)
16

1−2b
32 0

F8 93+70b
128

7+18b
16

7(2b−1)
32

1−2b
16

2b−1
128

Table 4: Coefficients of the tri-diagonal family of compact filters.

and filtered “signal” is represented in Fourier space by its wave number and corresponding amplitude,
the value of transfer function T (w) is obtained as the ratio of the amplitudes of filtered and non-filtered

5In the context of the compact finite-difference schemes introduced in the table 2 it is natural to focus the attention on the
compact filters leading to the solution of tri-diagonal system of equations.

6Sometimes called spectral function or spectral response (see e.g. [42] for more details)
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signal for a given wave number w. According to [18] the transfer function of the tri-diagonal compact
filter family is given by

T (w) =

∑N
n=0 βn cos(nw)

1 + 2b cos(w)
(32)

The effect of filter order could be judged from the Figure 1.
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Figure 1: Transfer functions of compact filters for different values of b.

From the above figures it is evident that the damping effect of all the filters is stronger with lower
values of parameter b. Lowering the parameter b forces also lower frequencies being damped. The
opposite effect is achieved by choosing the parameter b close to 0.5, when only the highest wave number
(corresponding to grid frequency, point-to-point oscillations) components are damped. In the limit case
of b = 0.5 the filter relation (31) reduces to identity, i.e. φ̂ = φ, and no damping occurs at all.

The eight order filter was used in this paper along with the sixth order spatial discretization.

3.4 Curvilinear coordinate transformation

The governing equations are expressed in physical Cartesian coordinate system (x, y, z) in which, the
corresponding computational grid would be highly non-orthogonal, stretched and distorted. Such setup
is not suitable for performing the above described finite-difference discretization. Therefore a new, reg-
ularly spaced orthogonal grid is associated with a coordinate system (ξ, η, ζ).

x=x
y=y
z=z

(ξ,η,ζ)
(ξ,η,ζ)
(ξ,η,ζ)

ζ=ζ
η=η
ξ=ξ

(x,y,z)
(x,y,z)

(x,y,z)

x

y
z

ξ

η
ζ

Figure 2: Curvilinear coordinate transformation

The coordinate transformation between physical space (x, y, z) and computational space (ξ, η, ζ) is
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formally defined by the following relations:

x = x(ξ, η, ζ)
y = y(ξ, η, ζ)
z = z(ξ, η, ζ)



 x = x(ξ) (33)

The gradient of a scalar function φ(x, y, z) with respect to physical coordinates (x, y, z), i.e. ∇
x
φ, can be

expanded using the chain rule of differentiation as:

∂φ

∂x
=

∂φ

∂ξ

∂ξ

∂x
+

∂φ

∂η

∂η

∂x
+

∂φ

∂ζ

∂ζ

∂x

∂φ

∂y
=

∂φ

∂ξ

∂ξ

∂y
+

∂φ

∂η

∂η

∂y
+

∂φ

∂ζ

∂ζ

∂y

∂φ

∂z
=

∂φ

∂ξ

∂ξ

∂z
+

∂φ

∂η

∂η

∂z
+

∂φ

∂ζ

∂ζ

∂z





∇xφ = J
ξ
∇

ξ
φ (34)

The Jacobi matrix J
ξ

comes from the inverse transformation

J
ξ

=
∂(ξ, η, ζ)

∂(x, y, z)
=




∂ξ
∂x

∂η
∂x

∂ζ
∂x

∂ξ
∂y

∂η
∂y

∂ζ
∂y

∂ξ
∂z

∂η
∂z

∂ζ
∂z


 =




ξx ηx ζx

ξy ηy ζy

ξz ηz ζz


 (35)

This matrix is not computed directly, but using the Jacobi matrix J
x

, which arises in the expansion of
the gradient of φ(ξ, η, ζ) with respect to computational coordinates (ξ, η, ζ).

∂φ

∂ξ
=

∂φ

∂x

∂x

∂ξ
+

∂φ

∂y

∂y

∂ξ
+

∂φ

∂z

∂z

∂ξ

∂φ

∂η
=

∂φ

∂x

∂x

∂η
+

∂φ

∂y

∂y

∂η
+

∂φ

∂z

∂z

∂η

∂φ

∂ζ
=

∂φ

∂x

∂x

∂ζ
+

∂φ

∂y

∂y

∂ζ
+

∂φ

∂z

∂z

∂ζ





∇
ξ
φ = Jx ∇xφ (36)

Here the transformation Jacobi matrix J
x

is defined by:

J
x

=
∂(x, y, z)

∂(ξ, η, ζ)
=




∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ


 =




xξ yξ zξ

xη yη zη

xζ yζ zζ


 (37)

From the expansion of gradients (34) and (36) follows that

∇
x
φ = J

ξ
∇

ξ
φ =⇒ ∇

ξ
φ = J−1

ξ
∇

x
φ

∇
ξ
φ = J

x
∇

x
φ =⇒ ∇

x
φ = J−1

x
∇

ξ
φ



 =⇒

{ J−1
ξ

= J
x

J−1
x

= J
ξ

(38)

This means, that
∇xφ = J

ξ
∇

ξ
φ = J−1

x
∇

ξ
φ (39)

where

J
ξ

= J−1
x

=




xξ yξ zξ

xη yη zη

xζ yζ zζ




−1

=
1

detJ
x




yηzζ − zηyζ yζzξ − zζyξ yξzη − zξyη

zηxζ − xηzζ zζxξ − xζzξ zξxη − xξzη

xηyζ − yηxζ xζyξ − yζxξ xξyη − yξxη


 (40)

This matrix can be computed directly for given transformation x = x(ξ). It allows to evaluate the
physical space gradients ∇

x
φ by only computing those in computational space, i.e. ∇

ξ
φ and transforming

them using the Jacobi matrix J
ξ

according to (39).
For given curvilinear grid the Jacobi matrix can be computed point wise using suitable discretization

of spatial derivatives. In the numerical solver used to obtain the results presented in this paper, the
same compact finite-difference discretization scheme was used to evaluate Jacobi matrices as well as to
discretize the governing equations.
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4 Numerical Simulations

The numerical simulations presented in this paper are motivated by atmospheric boundary layer flows
in complex terrain under stable stratification. The aim of this initial study is to identify critical issues in
performing high-resolution three-dimensional simulations of stratified flows. Thus the computational
setup is kept simple, to be able to separate different flow features and identify their causes. The influence
of time/space discretization, numerical stabilization, boundary conditions and computational grid is
studied and discussed in detail.

4.1 Computational setup

The computational setup used in this study is motivated by the towing tank laboratory experiments
described in [15] and numerical simulations from [7]. This is however just a starting point and the
actual configuration of our numerical test cases differs substantially in several aspects from the above
mentioned papers.

4.1.1 Computational domain

A three-dimensional computational domain is chosen as a bounded part of a half-space, with a rotation-
ally symmetric hill placed on a wall. The 3D computational block has a size Lx × Ly × Lz , with the z
coordinate pointing in vertical direction (against the gravity acceleration) and the x coordinate pointing
in the free stream direction. The hill shape is the same as in [15], resp. [7], i.e. the surface elevation zs(r)
is given by an inverse of a fourth order polynomial in terms of a distance r from the hill symmetry axis.

zs(r) =
h

1 + (r/h)
4 (41)

The parameter (length scale) h represents the maximum hill height, as well as the hill half width7. The
domain dimensions, in terms of this parameter, are Lx = 30h, Ly = 10h, Lz = 5h. The hill is placed
(together with the origin of the coordinate system) at the center of this domain, i.e. at the position
Lx/2 = 15h from the inlet, at the plane of symmetry.

LxL
y

L
z

Y

X

Z

z

x

15h

L  =5hz

L  =30hx

h
h/2

2h

Figure 3: Computational domain configuration

4.1.2 Boundary conditions

Besides of physical relevance, the choice of boundary conditions is essential in obtaining well posed
mathematical problem that will be numerically solvable. In the case considered here, it should be kept
in mind that except the solid wall, all the other boundaries of the domain are artificial and so are most of

7The width of the hill at the height of z = h/2 is 2h.
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the boundary conditions. Our choice of the boundary conditions is motivated by physics and adjusted
to the character of governing equations of the mathematical model.

• Inlet . . . The velocity profile v = (u(z), 0, 0) is prescribed. The horizontal velocity component u is
given by the Pohlhausen-Kármán profile u(z) = U∗(2z̃ − 2z̃3 + z̃4), where non-dimensional height
z̃ is defined using the boundary layer thickness H as z̃ = z/H . Here we have chosen the boundary
layer thickness to be equal to the hill height, i.e. H = h Density perturbation ρ′ is set to zero, while
homogeneous Neumann condition is used for pressure.

• Outlet . . . Homogeneous Neumann condition is prescribed for all velocity components, as well as
for the pressure and density perturbations.

• Wall . . . No-slip conditions are used on the wall, i.e. the velocity vector is set to v = (0, 0, 0).
Homogeneous Neumann condition is used for pressure and density perturbations.

• Top (Free stream) . . . Homogeneous Neumann condition is used for all quantities including pres-
sure and density perturbations. Free stream is emulated rather than a free-slip condition used in
many other studies. This is essential for allowing the evolution of the boundary layer as well as
the vertical extension of the gravity wave field.

• Sides . . . Homogeneous Neumann condition is used for all quantities including pressure and den-
sity perturbations.

See the Section 4.2 for the remaining parameters.

4.1.3 Computational grid

The numerical simulations were performed on a structured, non-orthogonal wall-fitted grid shown in
the figure 4. The grid is refined close to the hill and near the wall.

XY

Z

XY

Z

Figure 4: Computational grid structure

The grid has 156 × 66 × 56 cells with the minimum cell size ∆xmin = h/10, ∆ymin = h/10, ∆zmin =
h/20. The cell size growth is limited to 5% in the horizontal and 2% in the vertical direction. I.e. the ratio
of the sizes of two consecutive cells is 1.05 and 1.02 respectively.

4.2 Simulation parameters

In the simulations shown below, the fluid and flow parameters are chosen close to those used in [15, 7].
The fluid is characterized by density ρ∗ = 1000kg · m−3 and dynamical viscosity µ = 10−3kg · m−1 · s−1.
The linear background density profile is defined by ρ

0
(z) = ρ∗ + γ · (z − h). The gravity acceleration

acts against the z coordinate, so g = −10m · s−2. The hill height h = 2cm = 0.02 m was chosen as
the characteristic length scale for both, the Reynolds number (where h represents the boundary layer
thickness) as well as for the Froude number (where h represents the vertical displacement scale).
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Figure 5: Characteristic values choice.

The two physical quantities that are being varied in simulations are the characteristic (free stream)
velocity U∞[m · s−1] and the background density gradient γ = ∂ρ0

∂z [kg · m−4]. The buoyancy frequency
N , Reynolds number Re can be then expressed in terms of these two free parameters as

N =

√
g

ρ∗ γ =

√
−10

103
γ = 0.1

√
|γ| (42)

Re =
ρ∗hU∞

µ
=

103 · 0.02 · U∞
10−3

= 2 · 104U∞ . (43)

The Froude number is then given by

F =
U∞
Nh

=
U∞

0.1
√

|γ| · 0.02
= 500

U∞√
|γ|

=
1

400

Re

N
(44)

The parameters for all solved cases are summarized in the table 5.

γ = 0
N = 0

γ = −25
N = 1/2

γ = −100
N = 1

γ = −400
N = 2

γ = −1600
N = 4

U∞ = 0.01
Re = 200

∞ 1 1/2 1/4 1/8

U∞ = 0.02
Re = 400

∞ 2 1 1/2 1/4

U∞ = 0.04
Re = 800

∞ 4 2 1 1/2

Table 5: Froude number as a function of simulation parameters
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4.3 Numerical results

The basic set of numerical simulations consists of 15 cases, whose parameters are described in the Table
5. The computational grid, boundary conditions and other simulation settings were kept exactly the
same for these simulations. In this series of simulations the aims were twofold:

1. Physical – Typically the Froude number is considered to be the key parameter in the investigation of
the stratified flow over hills. Here we were testing the model predictions sensitivity with respect to
variation of free-stream velocity U∞ (i.e. the Reynolds number) and background density gradient
γ (i.e. the Brunt–Väisälä frequency).

2. Numerical – The boundary of the computational domain (except the solid wall) is arbitrarily cho-
sen and the artificial boundary conditions are imposed. Our aim was to identify, describe and
understand some of the boundary issues that might affect the results.

The basic description of results is presented in this section, while some more detailed discussion
is kept for the Section 5. Some additional results (with different grid, boundary conditions, etc.) are
presented at the end of this section to demonstrate some specific features.

First of all let’s note that in the non-stratified case at the low speed U∞ = 0.01m/s the flow field is
steady and symmetric. By increasing the speed to U∞ = 0.02m/s, the wake behind the hill becomes
unsteady8, time-periodic but still symmetric, while at even higher speed U∞ = 0.04m/s, the wake starts
to become non-symmetric. If the stratification is introduced for these cases, the flow retains its steadiness
and symmetry. So evidently the stable stratification contributes to the stabilization of the flow.

In the stratified flows the flow field has a very specific wavy structure. While the amplitude of
the waves depends mainly on the height of the hill, the wavelength is dictated by the stratification
parameter γ and the flow speed U∞. This is clearly demonstrated in the Figure 6, showing the vertical
velocity contours (isosurfaces) for all the basic considered cases. It is easy to see that increase in U∞
leads to longer waves, while increasing the stratification parameter γ shortens the wavelength. It’s
important to note that e.g. reducing the velocity U∞ to one half has a similar effect as increasing the
stratification γ four times. So the wavelength depends on the ratio U∞/

√
γ. This similarity is hidden in

the Froude number F , which is confirmed e.g. by the relation (44). Comparing in the Figure 6 the flow
patterns for cases with the same Froude number clearly shows very similar shapes of the isosurfaces,
for the considered range of Reynolds numbers Re = 200 − 800. So the Froude number is really the key
parameter determining the flow pattern in strongly stratified flows.

The global character of results for the cases with same F seems to be quite similar. There are how-
ever significant differences that, at least locally distinguish, the separate influence of U∞ and γ. The
differences are clearly visible in the Figure 7 and 8, showing the streamlines in horizontal cuts of the
domain.

8Only a snapshot is shown for selected time.
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U∞ = 0.01 0.02 0.04

γ = 0

F = ∞ F = ∞ F = ∞

−25

F = 1 F = 2 F = 4

−100

F = 1/2 F = 1 F = 2

−400

F = 1/4 F = 1/2 F = 1

−1600

F = 1/8 F = 1/4 F = 1/2

Figure 6: Isosurfaces of the (nondimensional) vertical velocity w̃ = w/U∞.

The recirculation zone on the lee side of the hill changes (increases) in size with both the higher flow
speed U∞ and stratification γ. The effect of γ is weaker at lower speeds, leading to similar length of the
recirculation zone. For higher speeds however the length of recirculating region increases with γ. This is
due to buoyancy force acting against the vertical motion. As a consequence, at the highest stratification,
the recirculation zone is very flat, allowing only quasi two-dimensional horizontal recirculation in the
near wall region. The fluid parcels in the boundary layer simply don’t have enough kinetic energy to
raise to higher levels against the buoyancy force and are thus obliged to only move horizontally.
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Figure 7: Streamlines released at the height h/2.
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Figure 8: Streamlines released at the height h/10 behind the hill.
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Figure 9: Streamlines released along the xz symmetry plane with the offset of h/10.
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5 Conclusions and Remarks

5.1 Physical effects

The series of simulations clearly showed that the Froude number is the key parameter here. The cases
with the same Froude lead to a qualitatively very similar results. Nevertheless, the role of the advection
velocity is also extremely important.

• First, it should be understood, that although the changes in velocity consequently change the
Reynolds number, we are referring here to velocity induced effects only, because the viscosity
variation (to achieve the same Reynolds number) will have a completely different influence.

• The increase in the flow speed could lead to the loss of the flow stationarity, stability and symmetry.
The stronger stratification can help to stabilize the flow, however the velocity effect will be still
visible, potentially leading to turbulence.

• The kinetic energy of a fluid parcels depends on its velocity much stronger than the potential
energy does9. The balance between the kinetic and potential energy is the determining factor for
stratified flows.

• While reducing the flow speed, we are moving away from the class of “advection dominated
flows”. This has deep consequences in the physical nature of the flow. Rather than being governed
by the inlet conditions (due to advection), the flow becomes more and more dominated by the hill
induced perturbations (due to buoyancy source terms).

Velocity (Reynolds number) is very important in many different ways for the stratified flow over
hills. As for the non-stratified case, the vortex pattern behind the hill is steady and symmetric for low
speed, becoming first unsteady at higher speeds, later non-symmetric but periodic in time, and finally
asymmetric in space and aperiodic in time for highest speeds. The stratification plays a stabilizing
role in this game, postponing the symmetry and periodicity breakdown to higher velocities for larger
(absolute) values of the stratification (parameter γ).

Another velocity effect in the stratified flows is associated with the no-slip condition on the wall,
leading to very low-speed boundary layer, in which the fluid parcels have a very low kinetic energy, that
can be transformed to potential energy (due to gravity and stratification) in vertical motion. Therefore
the vertical motion is very restricted for fluid parcels within the boundary layer. The thickness of such
“horizontal-only motion” layer becomes larger as the characteristic velocity reduces.

5.2 Numerical issues

The numerical simulations revealed certain problems. Some of them are related to the chosen numerical
solver, while some are rather specific to strongly stratified flows.

5.2.1 Discretization

In general, the whole numerical solver performed very well in the simulations. The compact finite
difference discretization has proved its high resolving power in situations where the low amplitude
waves are essential. The compact filters seem to be a good choice, because they allow to damp the point-
to-point numerical oscillations without visibly affecting the longer wavelength physical features in the
flow. The sixth-order compact scheme with five point stencil and three-diagonal matrix (i.e. a = 1/3)
was used together with the eight order filter F8 (with coefficient b = 0.49). This combination was chosen
after many tests, considering its superior resolution capabilities and low level of damping of physical
waves (with longer wavelengths). Also the sixth order scheme seemed to be a marginally more robust
than the other schemes in this family.

9The potential energy is rather proportional to the hill height, just weakly depending on velocity and corresponding fluid
parcel vertical elevation.
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The choice of time-discretization seems to have only a very little impact on the numerical results. The
differences were mostly due to different stability requirements and thus different maximum achievable
time-steps associated with the chosen method. Although the accuracy (in time) was not of a primary
interest in this steady state simulations, the more accurate methods proved to be also more robust for
the studied problem. This is why the SSP (3, 3) method was used for our numerical simulations, despite
of the fact that the lower order three-stage methods were expected to have larger available CFL number.
The higher practical robustness of the higher order discretization can probably be attributed to the non-
linearity of the solved problem, where some transitional (in time) effects are better captured by the
higher order discretization without the need to reduce the time-step. Nevertheless, the final (steady)
results are not affected by the choice of the time-discretization. In this case it only affects the efficiency
(i.e. computational cost) of the solver.

5.2.2 Boundary conditions

As previously noted, most of the computational domain boundaries are artificial, and so are the bound-
ary conditions. These conditions should be chosen “soft”, in the sense that they should not significantly
affect the physical behavior of the flow, especially in the regions of the primary interest. They should
also respect the mathematical nature of the governing system, as well as the specific needs of numerical
discretization.

First observations showed that the boundary conditions setup, that worked very well for the ho-
mogeneous and non-stratified case, leads to certain problems in stratified case. The typical example is
the problem appearing in the near-wall region at the inlet boundary. As it can be seen in the Figure 6,
some waves are generated in that corner (edge) of the computational domain. These spurious waves are
becoming more pronounced with lower velocity and stronger stratification (parameter γ).

This kind of boundary issues is treated in different ways in the earlier studies of various authors.
For example only small part of the computational domain is shown (far from boundary), simulation is
stopped at finite time (before the spurious wave problem develops), artificial sponge regions are used
close to far-field boundaries (to damp all waves caused by boundary conditions), free-slip condition
is used instead of no-slip (to avoid inaccurate/inexact inlet boundary conditions), etc.. This kind of
numerical tricks can certainly be used, but it limits the validity of the numerical results, without truly
understanding and resolving the boundary issues at artificial boundaries.

The problems come from the inconsistencies between the behavior of flow field obtained from dis-
crete solution of governing equations confronted with artificial (and approximate) boundary conditions.
For example any inaccuracy (with respect to the exact solution with far-field values prescribed at infi-
nite distance) in prescribing e.g. velocity profile, generates a vertical perturbation to the flow field. This
perturbation (in the same way as e.g. hill) leads to a large spurious wave fields that may interfere with
the physical flow features deep inside of the computational domain. This spurious wave phenomena is
evidently connected with buoyancy and stratification.

Further investigation in this area is needed to fully fix the problem and to prescribe a meaningful,
problem-free boundary conditions.

5.2.3 Domain size

In order to verify the influence of the artificial boundaries (and associated boundary conditions) on the
structure of the flow-field, a series of additional simulations was performed on enlarged computational
domain. The size of the domain was doubled in each direction, while the distance of the hill from
the inlet was kept the same10. The grid spacing was kept the same as for the original domain, being
smoothly coarsened towards the outer boundaries.

The results obtained for the cases with γ = −400 and U∞ = 0.01, 0.02, 0.04 m/s are shown in the
Figure 10. The results are shown for the complete original domain, while the double-sized domain re-
sults are cut off to the original size. The results of simulations on the double sized domain do not exhibit
any significant differences in the near-hill flow structure. There are however some visible differences

10To assure the same boundary layer thickness.
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close to the artificial boundaries. This just confirms, that a special care must be taken concerning the
artificial boundary conditions on these ad-hoc chosen boundaries.

Original Double-sized

Figure 10: Isosurfaces of the (nondimensional) vertical velocity w̃ = w/U∞.

It is also worth noting that the non-physical disturbance in the lower inlet corner of the boundary
becomes more pronounced on the double-sized domain. This can be attributed to the longer distance of
the outflow boundary, where the “non-disturbed” flow is assumed with prescribed constant pressure.
As it was mentioned above, this phenomena deserves a further investigation and detailed explanation.

5.2.4 Grid resolution

The stratified flows exhibit massive wave fields that have to be resolved by numerical simulation. The
results demonstrate the physically justified behavior when the wavelength of gravity waves decreases
with lower flow speeds (i.e. lower Reynolds number). In fact, the Froude number is the key parameter
as the characteristic wavelength is the same for the cases with equal Froude number. This behavior is
expected from the physical point of view, however from the numerical simulation point of view, it’s
a little bit counter intuitive. This is due to the fact that for lower speed (Reynolds number) the grid
resolution should be increased (i.e. grid cell size decreased) in order to resolve the shorter wavelengths
in the gravity wave field.

In the numerical simulations of homogeneous (non-stratified) wall bounded flows the grid resolution
is dictated by the Reynolds number dependent boundary layer thickness. This affects namely the wall-
normal grid cell thickness, that should decrease as the Reynolds number increases. Typically the ∆z ∝
Re−1/2 as a consequence of the boundary layer thickness estimate. This limitation should primarily
apply in the wall-normal direction, i.e. across the boundary layer.

The second grid size limitation arises due to buoyancy induced waves and thus can be related to
Froude number. The grid cell size should be proportional to the Froude number (resp. to velocity or
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Reynolds number), i.e. ∆x ∝ F 1. This grid cell size limitation should apply along the flow, in the
direction of the wave propagation.

These limitations should be respected in the regions where physical flow features (boundary layers,
gravity wave fields) need to be resolved. On the other hand, the grid coarsening towards the far-field
(artificial) boundaries can be used to smoothly fade out the waves and to avoid their reflections from
artificial boundaries. Then however it should be kept in mind, that such flow field smoothing is non-
physical and so are the results in this coarse grid regions.

5.3 Conclusions

In the summary, it’s possible to say that the newly developed high resolution numerical code is able
to deliver very detailed information about the three-dimensional structure of the flow field in the case
of stably stratified flow over hills. The obtained results have brought a deeper insight into the effects
of different physical parameters to the qualitative as well as quantitative properties of the flow over a
range of Froude and Reynolds numbers.

The simulations however also brought and opened several questions that remain unanswered so
far. To name at least some of them, let’s mention the problems concerning a suitable mathematical
model, computational setup and boundary conditions. It was found, that the simulation results are
very (much more than in the homogeneous, non-stratified case) sensitive to computational setup. While
the higher grid resolution requirements can be met relatively easily, the choice of artificial boundaries
of the computational domain, including the prescription of meaningful and non-intrusive boundary
conditions seems to require more attention in the future. This is supposed to be the aim of our future
studies.
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Chapter B

Biomedical Applications
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The biomedical applications are represented here by the flow of blood. Due to the com-
plicated microstructure of blood, its rheological properties can no longer be captured by the
constitutive relation of Newtonian fluid (N.4). The main problem is that due to the complex
rheological behavior of blood, there is no single generally accepted model that can be used for
all hemodynamic simulations. The following sections are showing some of the models that
have been used for blood flow simulations presented in the full length papers listed further in
this chapter.

Rheological Constitutive Laws for Blood

From the point of view of fluid mechanics, blood is a very complex liquid. The major part is
formed by plasma. Blood plasma alone can be considered as a Newtonian liquid. It however
transports the other blood constituents as red blood cells, white blood cells, platelets and var-
ious proteins and chemicals. The complete list of blood constituents can be very long (see e.g.
[B.7], [B.4]). The particulate matter dispersed in plasma is responsible for the non-Newtonian
behavior of blood.

Generalized Newtonian models

This is the simplest class of non-Newtonian models as it differs from the Newtonian fluid
model just by variable viscosity. It means that the (viscous, or deviatoric) stress tensor is still
proportional to strain rate tensor D and can be expressed as T = 2µ(·)D. The apparent viscosity
µ(·) can be a function of flow variables1. The corresponding governing system (N.27),(N.30) is

1e.g. temperature, shear rate, pressure, concentration of chemicals, etc.
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then called generalized Navier-Stokes equations.
The generalized Newtonian models can account for the most distinct rheological property

of blood, which is its shear-thinning character. The red blood cells are one of the most impor-
tant components of blood. These small, disc-like elastic cells are mainly responsible for oxygen
transport. At rest, or at low shear rates, the red blood cells can aggregate and form a larger
structures called rouleaux. These larger structures are responsible for the increase of the appar-
ent viscosity of blood. Under higher shear rates however, these aggregates start to break into
individual cells. This mechanism (together with some others) leads to decrease of the viscosity
of blood with growing shear rate. Liquids exhibiting a decrease of viscosity in response to the
shear rate growth, are called shear-thinning.
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Figure B.1: Generalized Newtonian shear-thinning fluid and Newtonian fluid behavior.

In order to account for the shear-thinning behavior of blood, the constant viscosity coefficient
µ is replaced by a shear rate dependent viscosity function µ(γ̇) where shear rate is defined by
γ̇ = 2

√
D : D. This function can be written in the following general form

µ(γ̇) = µ∞ + (µ0 − µ∞)F (γ̇) . (B.1)

Here µ0 and µ∞ are the asymptotic viscosity values at zero and infinite shear rates. The appro-
priate transition between these values is assured by the shear rate dependent function F (γ̇),
which satisfies the limit conditions:

lim
γ̇→0+

F (γ̇) = 1 and lim
γ̇→∞

F (γ̇) = 0.

The class of generalized Newtonian models is from the mathematical modeling point of view
very similar to turbulent models using Boussinesq assumption on turbulent viscosity. In this
context, the above described simple non-Newtonian model looks like an algebraic turbulence
model.

This shear-thinning model has been used in all the papers shown in the Sections B.1–B.4 as well
as in many other publications (e.g. [B.9]), solving the blood flow problems. These are listed in
the author’s full bibliography in the Appendix A, page 205.
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Viscoelastic models

Blood cells are essentially elastic membranes filled by a fluid. Thus it seems reasonable, at
least under certain flow conditions, to expect that blood behaves like a viscoelastic fluid. At
low shear rates, erythrocytes aggregate and store elastic energy that accounts for the memory
effects in blood. Thurston [B.12] was among the earliest to recognize the viscoelastic nature of
blood. He also found out that the viscoelastic behavior is less prominent with increasing shear
rate.

There exist many models describing viscoelastic fluids. The Oldroyd-B model can be consid-
ered as one of the elementary models within this class. The stress tensor in the momentum
equations (N.30) is in this case governed by the following constitutive law:

T + λ1
δT

δt
= 2µ

(
D + λ2

δD

δt

)
, (B.2)

where λ1 and λ2 have dimension of time and represent the relaxation, resp. retardation time
scales. Symbol δ ·/δt denotes in this case the upper convected time-derivative. This is a kind of
a prototype model that is often used as a reference model in simulations of polymeric liquids.
It can be shown, that this model can further be decomposed into more elementary constitu-
tive laws for Newtonian and Maxwell fluids. This decomposition can be expressed using the
following simple mechanical analog for the Oldroyd type model2:
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Figure B.2: Mechanical analog of an Oldroyd-type model

The extra stress tensor T in equation (B.2) can be decomposed into its Newtonian (solvent) part
Ts and its elastic part Te. It means that the whole Oldroyd-B model (including the momentum
equations) can be written in the following form:

∂v

∂t
+ (v ·∇)v = −∇p

ρ
+

1

ρ
div
[
Ts + Te

]
(B.3)

Ts = 2µsD (B.4)

∂Te
∂t

+ (v ·∇) Te =
2µe
λ1

D− 1

λ1
Te + (WTe − TeW) + (DTe + TeW) (B.5)

2See the author’s paper [B.8] for details and references
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In the above equation (B.5) the D resp. W stands for the symmetric, resp. skew-symmetric part
of the velocity gradient. It is good to note, that this governing system only differs from the
standard incompressible Navier-Stokes equations by the additional term divTe. The evolution
of the viscoelastic extra stress tensor Te is governed by the tensorial equation (B.5). It means
that in 3D case 6 additional equations3 have to be solved together with the original governing
system (of 4 equations).

This model captures some of the viscoelastic effects, however for the purpose of blood flow
simulations it has to be extended by adding the shear-thinning effects into it. The easiest way
how to do that is to assume that the viscosity µs is shear dependent. This means that the
Ts = µs(γ̇)D, where the viscosity function µs(γ̇) is obtained from suitable experimental data.
Such variable-viscosity model is then referred to as the generalized Oldroyd-B model4.

The empirical three constant generalized Oldroyd-B model studied in [B.13] belongs to this
class. It has been obtained by fitting experimental data in one dimensional flows and gener-
alizing such curve fits to three dimensions. This model captures the shear-thinning behavior
of blood over a large range of shear rates but it has its limitations, given that the relaxation
times do not depend on the shear rate, which does not agree with experimental observations.
The model developed by Anand and Rajagopal [B.1] in the general thermodynamic frame-
work stated in [B.10] includes relaxation times depending on the shear rate and gives good
agreement with experimental data in steady Poiseuille and oscillatory flow.

This model follows quite different terminology and notation than the standard viscoelas-
tic models, it can however be transformed into a form that can directly be compared with
the above described Oldroyd-B model (see the full paper in Section B.3). The elastic stress is
expressed using the tensor Bκp(t), which is the left Cauchy-Green elastic stretch tensor with
respect to reference natural configuration κp(t). This tensor is governed by the following con-
stitutive law:

∂Bκp(t)
∂t

+ (v ·∇) Bκp(t) =
ω

λ
I− 1

λ
Bκp(t) +

[
LBκp(t) + Bκp(t)L

T
]

(B.6)

with D = (L + LT )/2 denoting the symmetric part of the velocity gradient tensor L = ∇v. It
should be noted that the coefficients ω and λ are scalar functions of the tensor Bκp(t), respec-
tively it’s invariants. The classical (constant coefficients) Oldroyd-B (resp. Upper-convected
Maxwell) model takes the same form:

∂Te
∂t

+ (v ·∇) Te =
2µe
λ

D− 1

λ
Te +

[
LTe + TeL

T
]

(B.7)

These models are formally similar, however the coefficients (or rather parameter functions λ =
λ(Bκp(t)) and ω = ω(Bκp(t))) in (B.6) are stress-dependent and thus can be chosen to capture the
specific shear-thinning behavior of blood. This model was for the first time used in the author’s
paper [B.6] (shown in the Section B.3), where it is compared with the classical models for blood
flow in simple geometry.

These viscoelastic models have been used in the papers shown in the Sections B.2 resp. B.3 as
well as in many other publications, solving some of the blood flows problems. These papers are
listed in the author’s full bibliography in the Appendix A, page 205.

3Only 6 components, because of the symmetry of the tensor Te.
4For more detailed discussion of the behavior of this model see e.g. the paper [B.9].
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Blood Coagulation Model

Blood coagulation is a very complex process that can not be simply (shortly) described here. It
will only serve as another example of incompressible flow with variable material properties. In
this specific case, the viscosity of fluid (blood) will locally depend not only on the shear-rate γ̇,
but also on the concentration of certain chemical.

For the purpose of this introduction, the whole blood coagulation process can be seen as a
cascade of biochemical reactions that leads to the production of fibrin. This is a polymer that is
present in blood clots (thrombi) at large concentration. It can be thus used as an indicator of the
presence of blood clots. The clot itself behaves like a very viscous (maybe viscoelastic) liquid.
Therefore one possible approach to clot-flow interaction modeling is to assume that the blood
viscosity is just variable, depending on the concentration of fibrin, and the whole blood-clot
two phase problem can be treated as a single liquid flow.

The model includes not only rheological factors but also biochemical indicators that are
essential to describe the coagulation and fibrinolysis (fibrin dissolution) dynamics and conse-
quently the formation, growth and dissolution of clots. It is based on the model introduced
in [B.3] and further developed and refined in [B.2]. A set of 23 coupled advection-diffusion-
reaction equations describing the evolution in time and space of various chemicals involved in
the extrinsic pathway of the blood coagulation process , takes the following form:

∂Ci
∂t

+ div (Ci v) = div (Di∇Ci) + Ri i = 1, . . . , 23 (B.8)

In these equations Ci stands for the concentration of i−th reactant, Di denotes the correspond-
ing diffusion coefficient (which could be a function of the shear rate). Ri are the nonlinear
reaction terms that represent the production or depletion of Ci due to the enzymatic cascade of
reactions. Equations (B.8) are complemented with appropriate initial and flux boundary con-
ditions, involving the concentration of various species at an injured site of the vascular wall.

This model was for the first time implemented in the paper shown in the Section B.1. It has
been coupled with generalized Navier-Stokes equations where viscosity was a function of local
shear-rate and fibrin concentration. The model suggest a linear growth of viscosity (resp. the
factor µ̃(C)) with concentration up to certain saturation level.
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Figure B.3: Clot viscosity behavior

This method has been used in the papers shown in the Sections B.1, B.4 as well as in some other
publications, including the chapter [B.4] in [B.5] or the paper [B.11]. These are listed in the
author’s full bibliography in the Appendix A, page 205.
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In this paper the complex coagulation model developed by prof. Rajagopal in [B.3]
and [B.2] was for the fist time used for 3D simulations. It was coupled with flow
equations based on generalized Navier-Stokes equations. Several difficulties had to
be overcome in order to successfully implement this completely new model. This
experience also led prof. Rajagopal to the release of a new, improved version of the
biochemistry model. Due to high computational cost of this model the advection-
diffusion optimized Runge-Kutta method was implemented, which saved a large
part of the computational time. Also because of the very small diffusion coeffi-
cients in the advection-diffusion-reaction equations, the non-linear TVD filtering
was adopted instead of the classical artificial viscosity, to minimize non-physical
diffusive effects.

T. Bodnár has implemented the blood flow and coagulation model and performed
all the simulations presented in this paper.
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The process of platelet activation and blood coagulation is quite complex and not yet
completely understood. Recently, a phenomenological meaningful model of blood
coagulation and clot formation in flowing blood that extends existing models to
integrate biochemical, physiological and rheological factors, has been developed. The
aim of this paper is to present results from a computational study of a simplified version
of this coupled fluid-biochemistry model. A generalized Newtonian model with shear-
thinning viscosity has been adopted to describe the flow of blood. To simulate the
biochemical changes and transport of various enzymes, proteins and platelets involved
in the coagulation process, a set of coupled advection–diffusion–reaction equations is
used. Three-dimensional numerical simulations are carried out for the whole model in a
straight vessel with circular cross-section, using a finite volume semi-discretization in
space, on structured grids, and a multistage scheme for time integration. Clot formation
and growth are investigated in the vicinity of an injured region of the vessel wall. These
are preliminary results aimed at showing the validation of the model and of the
numerical code.

Keywords: blood coagulation; clot; fibrin; finite-volume; Runge–Kutta
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1. Introduction

Haemostasis is a complex physiological process involving an interaction between blood

vessels, platelets, coagulation factors, coagulation inhibitors and fibrinolytic proteins.

When blood coagulates in a blood vessel during life, the process is called thrombosis.

Haemostasis keeps blood flowing while allowing solid clot formation, or thrombosis, to

prevent blood loss from sites of vascular damage. The haemostatic system preserves

intravascular integrity by achieving a balance between haemorrhage and thrombosis.

Blood platelets participate in both haemostasis and thrombosis. The first stage of

thrombogenesis is platelets activation, followed by platelets aggregation, adhesion and

blood coagulation, with the formation of clots. Blood platelets can be activated by

prolonged exposure to high or rapid increase in shear stress that lead to erythrocytes and

platelets damage [10,15]. This is due to mechanical vascular injuries or endothelial

disturbance, alterations in the blood composition, fissuring of atherosclerotic plaques as

well as to the contact of blood with the surfaces of medical devices. Numerous

experimental studies recognize that clot formation rarely occurs in regions of parallel flow,
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but primarily in regions of stagnation point flows, within blood vessel bifurcations,

branching and curvatures.

Following endothelial disruption, there is an immediate reaction that promotes

vasoconstriction, minimizing vessel diameter and diminishing blood loss. Vasoconstric-

tion slows blood flow, enhancing platelet adhesion and activation. During activation,

platelets undergo intrinsic and extrinsic mechanisms leading to a series of chemical and

morphological changes. Organelles contained in the platelet cytoplasm bind to collagen

(exposed by arterial damage), release their contents of cytoplasmic granules containing

serotonin, adenosine diphosphate (ADP) and platelet-activating factors and platelets

become spheroids in shape. Additional platelets attracted by ADP are activated, interact

with plasma proteins like fibrinogen and fibrin and promote platelet aggregation and

adhesion to sub-endothelial tissue. This results in the formation of haemostatic plugs and

concludes the primary step in haemostasis. However, when the concentration of activators

exceeds a threshold value, platelet aggregates that are formed by this process can break up,

damaging the platelets and causing aggregation at locations other than at the site of

damage.

The final haemostatic mechanism or secondary haemostasis is coagulation (clot

formation) which involves a very complex cascade of enzymatic reactions (Figure 1).

Thrombin is the bottom enzyme of the coagulation cascade. Prothrombin activator

converts prothrombin to thrombin. Thrombin activates platelets that release ADP which

Figure 1. Schematic of the cascade of events during clot formation and lysis.
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lead in turn to the activation of other platelets. The primary role of thrombin is to convert

fibrinogen, a blood protein, into polymerized fibrin, stabilizing the adhered platelets and

forming a viscoelastic blood clot (or thrombus) (e.g. [21,24]).

The clot attracts and stimulates the growth of fibroplasts and smooth muscle cells

within the vessel wall, and begins the repair process which ultimately results in fibrinolysis

and in the dissolution of the clot (clot lysis). Clot dissolution can also occur due to

mechanical factors such as high shear stress. In practice, a blood clot can be continuously

formed and dissolved. Generally, many factors affect its structure, including the

concentration of fibrinogen, thrombin, albumin, platelets and red bloodcells, and other not

specified factors which determine cross-linked structure of the fibrin network. At the end

of the haemostatic process, normal blood flow conditions are restored. However, some

abnormal haemodynamic and biochemical conditions of flowing blood, related to

inadequate levels or dysfunction of the haemostatic system, can lead to pathologies like

thromboembolic or bleeding disorders which are of great clinical importance.

The mechanism of platelet activation and blood coagulation is quite complex. Recent

reviews detailing the structure of the blood coagulation system are available for example

in Refs. [3,24].

Whole blood is a concentrated suspension of formed cellular elements that includes

red blood cells (RBCs) or erythrocytes, white blood cells or leukocytes and platelets or

thrombocytes, representing approximately 45% of the volume in human blood. These

cellular elements are suspended in plasma, an aqueous ionic solution of low viscosity.

Plasma behaves as a Newtonian fluid but whole blood has non-Newtonian properties. In the

large vessels where shear rates are high enough, it is also reasonable to assume that blood

has a constant viscosity and a Newtonian behaviour. However, in smaller vessels, or in

some disease conditions, the presence of the cells induces low shear rate and whole blood

exhibits remarkable non-Newtonian characteristics, like shear-thinning viscosity,

thixotropy, viscoelasticity and possibly a yield stress. This is largely due to erythrocytes

behaviour, namely their ability to aggregate into microstructures (rouleaux) at low shear

rates, their deformability into an infinite variety of shapes without changing volume and

their tendency to align with the flow field at high shear rates [8,25].

The most well-known non-Newtonian characteristic of blood is its shear-thinning

behaviour [7,9]: at low shear rates, blood seems to have a high apparent viscosity (due to

RBCs aggregation) while at high shear rates there is a reduction in the blood’s viscosity

(due to RBCs deformability). Stress relaxation properties of blood arise from its ability to

store and release elastic energy from RBC networks and are mainly related to the

viscoelastic nature of the RBC membrane. The viscoelastic behaviour of blood is less

important at higher shear rates [27]. An understanding of the coupling between the blood

composition and its physical properties is essential for developing suitable constitutive

models to describe blood behaviour (see the recent reviews [22,23]).

While there has been a considerable research effort in blood rheology, the constitutive

models have thus far focused on the aggregation and deformability of the RBCs, ignoring

the role of platelets in the flow characteristics. However, platelets, which are much smaller

than erythrocytes (approximately 6mm3 in size as compared to 90mm3) and form a small

fraction of the particulate matter in human blood (around 3% in volume) are among the

most sensitive of all the components of blood to chemical and physical agents and play an

important role in coagulation, as already discussed. In the last two decades, mathematical

modelling and computer simulation research have emerged as useful tools, supplementing

experimental data and analysis and giving new insights in the studies of the regulation of

the coagulation cascade in clinical applications and device design. Reliable
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phenomenological models that can predict regions of platelet activation and deposition

(either in artificial devices or in arteries) have the potential to help optimize design of such

devices and also identify regions of the arterial tree susceptible to the formation of

thrombotic plaques and possible rupture in stenosed arteries. Most of the models that are

currently in use neglect some of the biochemical or mechanical aspects involved in the

complex phenomena of blood coagulation and must be considered as first approaches to

address this oversight, see, for example [5,6,12,16,18,29,31,32]. Other relevant

biochemistry related references can be found in the recent review paper by Rajagopal

and Lawson [20]. Anand et al. [2–4] recently developed a phenomenological

comprehensive model for clot formation and lysis in flowing blood that extends existing

models to integrate biochemical, physiological and rheological factors. In what follows,

we present some preliminary computational results for a simplified version of this model

where the viscoelasticity of blood is not considered. Section 2 is devoted to a description

of the coupled blood flow-biochemistry mathematical model. The numerical methods and

adopted stabilization techniques are briefly outlined in Section 3. Preliminary results of the

three-dimensional simulations predicted by the simpler model are presented in Section 4.

Finally, some comments on the limitations and extensions of the model are also included.

2. Mathematical model

2.1 Blood flow equations

An incompressible generalized Newtonian model with shear-thinning viscosity has been

adopted to describe the flow of blood. We denote by u(x, t) and p(x, t) the blood velocity

and pressure defined in the domain V, the vascular lumen, with t $ 0. The application of

the physical principles of momentum and mass conservation leads to the equations defined

in V

r
›u

›t
þ u ·7u

� �
¼ 27p þ div t ðuÞ divu ¼ 0; ð1Þ

completed with appropriate initial and boundary conditions. Here, r is the fluid density and

t (u) is the deviatoric stress tensor, proportional to the symmetric part of the velocity

gradient, given by

t ðuÞ ¼ 2mð _gÞD; ð2Þ

where D ¼ ð7uþ 7uTÞ=2 is the stretching tensor, _g ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
D : D

p
is the shear rate

(a measure of the rate of shear deformation) and mð _gÞ is the shear dependent viscosity

function which decreases with increasing shear rate and can be written in the following

general form

mð _gÞ ¼ m1 þ ðm0 2 m1ÞFð _gÞ; ð3Þ

or, in non-dimensional form as

mð _gÞ2 m1

m0 2 m1

¼ Fð _gÞ:

Here, m0 ¼ lim _g!0mð _gÞ and m1 ¼ lim _g!1mð _gÞ are the asymptotic viscosity values at low

and high shear rates and Fð _gÞ is a shear dependent function satisfying the following natural

limit conditions lim _g!0Fð _gÞ ¼ 1 and lim _g!1Fð _gÞ ¼ 0. The generalized Cross model has

T. Bodnár and A. Sequeira86

B.1. Numerical Simulation of the Coagulation Dynamics of Blood 131



frequently been used for blood and has been adopted here. The corresponding viscosity

function is written as

mð _gÞ2 m1

m0 2 m1

¼
1

ð1 þ ðl _gÞbÞa
: ð4Þ

Using nonlinear regression analysis, it is possible to fit viscosity functions against

blood viscosity experimental data and obtain the corresponding parameters l, a and b.

However, blood viscosity is quite sensitive to a number of factors including haematocrit,

temperature, plasma viscosity, age of RBCs, exercise level, gender or disease state, and

care must be taken in selecting blood parameters for blood flow simulations. Here, we

have adopted the following values of the material constants (see Ref. [17]):

m0 ¼ 1:6 · 1021 Pa · s m1 ¼ 3:6 · 1023 Pa · s a ¼ 1:23 b ¼ 0:64 l ¼ 8:2 s: ð5Þ

The viscosity function (4) with these values is represented in Figure 2.

2.2 Equations governing the cascade of biochemical reactions

The model includes not only rheological factors but also biochemical indicators that are

essential to describe coagulation and fibrinolysis dynamics and consequently the

formation, growth and dissolution of clots. It is based on the model introduced in Ref. [3]

and further developed and refined in Ref. [2]. A set of twenty-three coupled advection–

diffusion–reaction equations, describing the evolution in time and space of various

enzymes and zymogenes, proteins, inhibitors, tissue plasminogen activator and

fibrin/fibrinogen (Table 1) involved in the extrinsic pathway of the blood coagulation

process and fibrinolysis in quiescent plasma, takes the following form

›Ci

›t
þ divðCiuÞ ¼ divðDi7CiÞ þ Ri i ¼ 1; . . . ; 23: ð6Þ

In these equations, Ci stands for the concentration of ith reactant, Di denotes the

corresponding diffusion coefficient (which could be a function of the shear rate) and u is

the velocity field. Ri are the nonlinear reaction terms that represent the production or

depletion of Ci due to the enzymatic cascade of reactions. The specific form of the reaction

terms, the diffusion coefficients and corresponding parameters for each of the 23-model

Figure 2. Variation of the apparent viscosity of blood as a function of the shear rate for the
generalized Cross model with physiological parameters given by (5).
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Equations (6) is shown in Tables 2 and 3. In order to keep the model readable, symbol [·] is

used to denote the concentration of a reactant and to distinguish it from its name (e.g.

[ATIII ] denotes the concentration of AntiThrombin III (ATIII)).

Equations (6) are complemented with appropriate initial and flux boundary conditions

involving the concentration of various species at an injured site of the vascular wall (see

Section 4.1.2). A schematic representation of these reactions, including boundary

conditions is given in Figure 3. This figure also includes interactions with two other

chemical species Z (tenase) and W (prothrombinase), see Table 6. Separate convection–

diffusion reactions are not written for the corresponding concentrations, since they are

embedded in the equations for VIIIa, IXa, Va and Xa. Their values can be obtained through

the relations [Z ] ¼ [VIIIa ][IXa ]/KdZ, [W ] ¼ [Va ][Xa ]/KdW [2], respectively.

2.3 Clot modeling

Under normal conditions, no clot exists and we assume that the presence of all these

constituents does not affect the velocity of the bulk flow. Clot formation occurs when an

activation threshold in the flux boundary conditions, related to the concentration of tissue

factor (TF–VIIa complex released from sub-endothelium) is exceeded and the clotting

cascade is initiated, which results in the increase of fibrin concentration [Ia ] in the clotting

area (see Section 4.1.2). Clot growth is determined by tracking in time the extent of the

flow region where fibrin concentration CF equals or exceeds a specific critical value CClot.

The clot region can thus be defined as a region where the fibrin concentration is higher than

in the normal blood. The main features of the modelling approach are schematically shown

in Figure 4.

Table 1. Constituents involved in the coagulation cascade and fibrinolysis.

Species Names

IXa ?Enzym?
IX Zymogen IX
VIIIa Enzym VIIIa
VIII Zymogen VIII
Va Enzym Va
V Zymogen V
Xa Enzym Xa
X Zymogen X
IIa Thrombin
II Prothrombin
Ia Fibrin
I Fibrinogen
XIa Enzym XIa
XI Zymogen XI
ATIII AntiThrombin-III
TFPI Tissue factor pathway inhibitor
APC Active protein C
PC Protein C
L1AT a1-AntiTrypsin
tPA Tissue plasminogen activator
PLA Plasmin
PLS Plasminogen
L2AP a2-AntiPlasmin
Z Tenase
W Prothrombinase
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An important assumption of the coupling strategy for blood and clot is to assume that

the corresponding constitutive models are similar, but their viscosities have different

values. This can be done introducing a viscosity factor related to the fibrin concentration

around the injured vessel wall region. More precisely, when fibrin concentration is close to

zero, the local viscosity is equal to the viscosity of blood (thus the viscosity factor is equal

to 1). As the fibrin concentration grows, the viscosity increases linearly up to a certain

threshold CClot and the viscosity factor is equal to m* (Figure 5). The parameters m* and

CClot should be chosen to mimic the clot properties. In our study, we have used m* ¼ 100

and CClot ¼ 1000 nM corresponding to a viscosity of the clot region 100 times higher than

that of the blood.

This model function of the viscosity factor based on fibrin concentration as well as the

values used to simulate the clot growth look reasonable, but can easily been improved if

experimental data are available.

3. Numerical methods

The numerical solution of the coupled fluid-biochemistry model given by Equations (1)–

(2)–(6) is obtained using a three-dimensional code based on a finite-volume semi-

discretization in space, on structured grids, where both inviscid and viscous flux integrals

are evaluated using centred cell numerical fluxes. An explicit multistage Runge–Kutta

scheme is used for time integration. The same method is applied for both the flow and the

biochemical solutions of the coupled model. The coupling is carried out by means of an

iterative process at each time step. The flow field is first computed using Equations (1)–(2)

Table 2. Reaction terms and diffusion coefficients.

Species Reaction terms (Ri)
Diffusion coefficients

Di (cm2/s)

IXa ðk9½XIa�½IX�Þ=ðK9M þ ½IX�Þ2 h9½IXa�½ATIII� 6:27 £ 1027

IX 2ðk9½XIa�½IX�Þ=ðK9M þ ½IX�Þ 5:63 £ 1027

VIIIa ðk8½IIa�½VIII�Þ=ðK8M þ ½VIII�Þ2 h8½VIIIa�
2ðhC8½APC�½VIIIa�Þ=ðHC8 þ ½VIIIa�Þ

3:92 £ 1027

VIII 2ðk8½IIa�½VIII�Þ=ðK8M þ ½VIII�Þ 3:12 £ 1027

Va ðk5½IIa�½V�Þ=ðK5M þ ½V�Þ2 h5½Va�
2ðhC5½APC�½Va�Þ=ðHC5M þ ½Va�Þ

3:82 £ 1027

V 2ðk5½IIa�½V�Þ=ðK5M þ ½V�Þ 5:63 £ 1027

Xa ðk10½Z�½X�Þ=ðK10M þ ½X�Þ2 h10½Xa�½ATIII�2 hTFPI½TFPI�½Xa� 7:37 £ 1027

X 2ðk10½Z�½X�Þ=ðK10M þ ½X�Þ 5:63 £ 1027

IIa ðk2½W�½II�Þ=ðK2M þ ½II�Þ2 h2½IIa�½ATIII� 6:47 £ 1027

II 2ðk2½W�½II�Þ=ðK2M þ ½II�Þ 5:21 £ 1027

Ia ðk1½IIa�½I�Þ=ðK1M þ ½I�Þ2 ðh1½PLA�½Ia�Þ=ðH1M þ ½Ia�Þ 2:47 £ 1027

I 2ðk1½IIa�½I�Þ=ðK1M þ ½I�Þ 3:10 £ 1027

XIa ðk11½IIa�½XI�Þ=ðK11M þ ½XI�Þ2 hA3
11 ½XIa�½ATIII�2 hL1

11½XIa�½L1AT� 5:00 £ 1027

XI 2ðk11½IIa�½XI�Þ=ðK11M þ ½XI�Þ 3:97 £ 1027

ATIII 2ðh9½IXa� þ h10½Xa� þ h2½IIa� þ hA3
11 ½XIa�Þ½ATIII� 5:57 £ 1027

TFPI 2hTFPI½TFPI�½Xa� 6:30 £ 1027

APC ðkPC½IIa�½PC�Þ=ðKPCM þ ½PC�Þ2 hPC½APC�½L1AT� 5:50 £ 1027

PC 2ðkPC½IIa�½PC�Þ=ðKPCM þ ½PC�Þ 5:44 £ 1027

L1AT 2hPC½APC�½L1AT�2 hL1
11½XIa�½L1AT� 5:82 £ 1027

tPA 0 5:28 £ 1027

PLA ðkPLA½tPA�½PLS�Þ=ðKPLAM þ ½PLS�Þ2 hPLA½PLA�½L2AP� 4:93 £ 1027

PLS 2ðkPLA½tPA�½PLS�Þ=ðKPLAM þ ½PLS�Þ 4:81 £ 1027

L2AP 2hPLA½PLA�½L2AP� 5:25 £ 1027
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with a given viscosity, and next inserted into (6) to obtain the concentrations (including

that of fibrin). The local viscosity is updated by a factor which depends on the calculated

fibrin concentration in the clotting area and the flow field is recomputed in the next time

step using the updated viscosity.

An artificial compressibility formulation (see, e.g. [28]) is used to calculate the

pressure and to enforce the divergence-free constraint. Continuity Equation (1)2 is

modified by adding the time-derivative of pressure properly scaled by the artificial speed

of sound c, as follows:

1

c2

›p

›t
þ div u ¼ 0: ð7Þ

Table 3. Reaction kinetics parameters.

Parameters Values Units

k9 11.0 min21

K9M 160 nM
hA3

9 0.0162 nM21 min21

k8 194.4 min21

K8M 112,000 nM
h8 0.222 min21

hC8 10.2 min21

HC8M 14.6 nM
k5 27.0 min21

K5M 140.5 nM
h5 0.17 min21

hC5 10.5 min21

HC5M 14.6 nM
k10 2391 min21

K10M 160.0 nM
h10 0.347 nM21 min21

hTFPI 0.48 nM21 min21

k2 1344.0 min21

K2M 1060.0 nM
h2 0.714 nM21 min21

k1 3540 min21

K1M 3160 nM
h1 1500 min21

H1M 250,000 nM
k11 0.0078 min21

K11M 50.0 nM
hA3

11 1.6 £ 1023 nM21 min21

hL1
11 1.3 £ 1025 nM21 min21

kPC 39.0 min21

KPCM 3190.0 nM
hPC 6.6 £ 1027 nM21 min21

kPLA 12.0 min21

KPLAM 18.0 nM
hPLA 0.096 nM21 min21

kAP
AP 18.0 nM21 min21

hIIa
AP 30.0 min21

KdZ 0.56 nM
KdW 0.1 nM
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This non-physical modification of the continuity equation is often used in steady flow

simulations. In the present case, the sub-iterative procedure based on the artificial

compressibility method is only used to enforce the divergence-free constraint before

simulating the biochemical concentrations. This could be justified by the quasi-steady

nature of the flow, due to the slow evolution in time of the local viscosity. Thus, it looks

acceptable to assume the flow to be described by a steady generalized Newtonian system at

each time step.

Figure 3. Schematic of the selected reactions involved in the extrinsic pathway of the blood
coagulation process.

Figure 4. Clot modeling.
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3.1 Space discretization

The computational mesh is structured and consists of hexahedral primary control

volumes. To evaluate the viscous fluxes also, dual finite volumes are needed. They have

octahedral shape and are centred around the corresponding primary cell faces. Figure 6

shows a schematic representation of this configuration. The same grid is used for the

calculation of both flow field and biochemical concentrations. Thus, it is natural to use

the same method for solving both problems simultaneously. The algorithm described

below for the flow variables W, can thus be directly applied to the calculation of the

concentrations Ci.

The system of generalized NS Equations (1)–(2) can be rewritten in the vector form.

Here, we use W to denote the vector of unknowns (including pressure). Vectors F, G and

H denote the inviscid fluxes in x, y, z directions, while R, S and T stand for their viscous

counterparts. Using this notation, the spatial finite-volume semi-discretization in the

computational cell D ; Di,j,k can be written in the following form:

›W

›t
¼

21

jDj

þ
›D

½ðF2 RÞ; ðG2 SÞ; ðH2 TÞ�·n̂ dS: ð8Þ

Here, n̂ denotes the outer unit normal vector of the cell boundary and dS is the surface

element of this boundary. Equation (8) can be rewritten in operator form:

›Wijk

›t
¼ 2LWi;j;k; ð9Þ

Figure 5. Clot viscosity behaviour.

Figure 6. Finite-volume grid in 3D.
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where L stands for the finite-volume discretization operator. This operator is still exact at

this stage and must be properly discretized.

The inviscid flux integral can be approximated using centred cell fluxes, e.g. the value

of the flux F on the cell face with index ‘ ¼ 1 is computed as the average of cell-centred

values from both sides of this face:

Fn
1 ¼

1

2
F Wn

i;j;k

� �
þ F Wn

iþ1;j;k

� �h i
: ð10Þ

The contribution of inviscid fluxes is finally summed up over the cell faces

‘ ¼ 1, . . . ,6. In this way, we can write the inviscid flux approximation:

þ
›D

Fn xdy dz <
X6

‘¼1

F‘n
x
‘S‘: ð11Þ

The discretization of viscous fluxes is more complicated since vectors R, S, T involve

the derivatives of the velocity components that need to be approximated at cell faces. This

can be done using a dual finite-volume grid, with octahedral cells, centred around the

corresponding faces (Figure 7). The evaluation of the velocity gradient components is then

replaced by the evaluation of the surface integral over the dual volume boundary. Finally,

this surface integral is approximated by a discrete sum over the dual cell faces (with

indices m ¼ 1, . . . ,8). For example, if we want to evaluate the first component of the

viscous flux R1 (i.e. to approximate ux) at the cell face l ¼ 1, we must proceed in the

following way:

ux <
þ
› ~D

un xdy dz <
X8

m¼1

umn
x
mSm: ð12Þ

The outer normal to the dual cell faces must be properly approximated n x < nx
m.

The values of the velocity components in the middle nodes of these faces are taken as an

average of the values in the corresponding vertices.

3.2 Time integration

After space discretization, the problem is now in the semi-discrete form:

dWijk

dt
¼ 2LWi;j;k; ð13Þ

where L is the approximate space discretization operator.

Figure 7. Inviscid flux (left) and viscous flux (right) discretizations.
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This system of ordinary differential equations for W (or concentration Ci) can be

solved, e.g. by the Runge–Kutta multistage method. For simplicity, we use the same time

integration method for both, flow field and concentrations. One of the simplest Runge–

Kutta methods can be written in the form:

Wð0Þ
i;j;k ¼ Wn

i;j;k

Wðrþ1Þ
i;j;k ¼ Wð0Þ

i;j;k 2 aðrÞDtLWðrÞ
i;j;k

Wnþ1
i;j;k ¼ WðmÞ

i;j;k:

ð14Þ

Here, r ¼ 1; . . . ;m is related to the m-stage method. The three-stage explicit RK

scheme has coefficients: a(1) ¼ 1/2, a(2) ¼ 1/2 and a(3) ¼ 1. This method is useful and

efficient with minimum requirements on the storage space associated with intermediate

stages.

The efficiency and robustness of the method could be further increased modifying the

above algoritm. The modification used in the numerical simulations presented in this paper

follows the Runge–Kutta time integration procedures outlined in Ref. [14] and further

refined in Ref. [13]. The idea behind this modified approach lies in splitting the space

discretization operator into its inviscid and viscous parts. The inviscid operator is

evaluated at each Runge–Kutta stage, while the viscous operator is evaluated in just a few

more stages. This corresponds to the use of different Runge–Kutta coefficients for time

integration of inviscid and viscous fluxes. The modified algorithm can thus be written in

the form:

Wð0Þ
i;j;k ¼ Wn

i;j;k

Wðrþ1Þ
i;j;k ¼ Wð0Þ

i;j;k 2 aðrÞDtðQðrÞ þDðrÞÞ

Wnþ1
i;j;k ¼ WðmÞ

i;j;k:

ð15Þ

Here, the space discretization operator at stage (r) is split as:

LWðrÞ
i;j;k ¼ QðrÞ þDðrÞ: ð16Þ

The inviscid flux Q is evaluated in the usual way at each stage

QðrÞ ¼ QWðrÞ
i;j;k with Qð0Þ ¼ QWn

i;j;k: ð17Þ

The viscous flux D uses a blended value from the previous and the actual stages

according to the following rule:

DðrÞ ¼ bðrÞDWðrÞ
i;j;k þ ð1 2 bðrÞÞDðr21Þ with Dð0Þ ¼ DWn

i;j;k: ð18Þ
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The coefficients a(r) and b(r) are chosen to guarantee a large enough stability region for

the Runge–Kutta method. The following set of coefficients was used in this study:

að1Þ ¼ 1=3 bð1Þ ¼ 1

að2Þ ¼ 4=15 bð2Þ ¼ 1=2

að3Þ ¼ 5=9 bð3Þ ¼ 0

að4Þ ¼ 1 bð4Þ ¼ 0

:

We realize that only two evaluations of the dissipative terms are needed when this

four-stage method is used. This characteristic of the method significantly saves the amount

of calculations while retaining the advantage of a large stability region. Further admissible

sets of coefficients together with comments on the increase of the efficiency and

robustness of the corresponding methods can be found in Refs. [13,14] and the references

therein.

3.3 Numerical stabilization

A well-known property of central schemes is that, in the presence of strong gradients, non-

physical oscillations appear in the solution. Procedures aiming at stabilizing the discrete

solution and to avoid spurious pressure modes can be accomplished according to several

criteria.

In the present simulations, we use a pressure stabilization method that consists in

adding a pressure dissipation term (Laplacian) on the right-hand side of the modified

continuity Equation (7). This term takes the form:

Qi;j;k ¼
1

jDi;j;kj

X2N

‘¼1

p‘ 2 pi;j;k

b‘

S‘: ð19Þ

Here, ‘ denotes the control volume cell face index, p‘ is the pressure in the

corresponding neighbouring cell and S‘ is the cell face area. The value b‘ has the

dimension of velocity and represents the maximal convective velocity in the domain and

local diffusive velocity.

b‘ ¼ max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

1 þ u2
2 þ u2

3

q� �
þ

2n

L‘

: ð20Þ

Symbol L‘ corresponds to a distance between the current and the neighbouring cell

centres.

It is possible to show that on the uniform cartesian mesh with cells of size dx, this term

is given by:

Q ¼
dx

2b
Dp: ð21Þ

This stabilization method has some advantages over the classical artificial diffusion

applied to the velocity components. The artificial effects induced by the pressure dissipation

term do not interfere with the physical shear dependent viscosity. Moreover, this stabili-

zation term contains only second derivatives of the pressure and will vanish if pressure is a

linear function of space coordinates. See also Ref. [19] for other stabilization approaches.

Finally, it is important to observe that since the diffusion coefficients in the advection–

diffusion–reaction equations of the biochemistry model are extremely small, the use of a

central space-discretization, with no internal numerical diffusion, seems to be a natural
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choice. To prevent the appearance of numerical oscillations typically associated to central

schemes, a special non-linear filter was also used at each iteration to postprocess the

concentration fields. This filtering technique described in Ref. [11] was further studied in

Ref. [26].

4. Numerical simulations and preliminary results

The computational domain consists of a segment of a rigid-walled cylindrical vessel with

diameter D ¼ 2R ¼ 6.2 mm and length L ¼ 10R ¼ 31 mm. The whole domain is

discretized using a structured multiblock mesh with hexahedral cells as shown in Figure 8.

The grid is fitted to the vessel wall in order to capture the near-wall gradients of the

velocity and concentration fields. The grid has 10 £ 10 £ 60 cells in the core block,

while there are 40 £ 20 £ 60 cells in the outer, near-wall block.

4.1 Boundary and initial conditions

4.1.1 Velocity and pressure

A fully developed velocity profile, with mean velocity U ¼ 3.1 cm/s (related to the vessel

length by U ¼ L/s ¼ 10R/s), is prescribed at the inlet (Dirichlet condition) and, at the

outlet, homogeneous Neumann conditions for the velocity components, are imposed.

Pressure is fixed only at the outlet and is extrapolated at the other boundaries. On the vessel

wall, no-slip Dirichlet conditions for the velocity field are prescribed. Since at time t ¼ 0

no clot exists, an undisturbed fully developed non-Newtonian flow is conveniently

computed and imposed as initial condition. This undisturbed flow is also used as initial

condition for the biochemistry simulations.

4.1.2 Concentrations

The vessel wall is impermeable and the boundary conditions for the concentrations of all the

twenty-three chemical species, at the healthy vessel wall, are homogeneous of Neumann

type (i.e. no-flux). In the injured wall region, no-flux boundary conditions are prescribed

for all constituents except for seven selected chemical species which are directly involved

in the initiation of the coagulation cascade [2–4]. Figure 9 represents this configuration.

The simulated vessel wall injury is considered to be a region which is the intersection

of the outer surface of the vessel with a sphere of radius R, centered on the vessel wall

Figure 8. Computational geometry and grid.
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at one third of the length of the vessel segment. This means the clotting surface on the

vessel wall is elliptical-shaped. In this region, non-homogeneous boundary conditions of

the Neumann type ›Ci=›n ¼ Bi are prescribed for the following seven chemicals: IXa, IX,

Xa, X, XIa, XI and tPa. These flux terms are summarized in Table 4, where [C]w denotes

the value of C on the wall.

Diffusion coefficients D have already been listed in Table 2. The length scale L is

chosen to be equal to the vessel radius R. The other parameters appearing in the

formulation of boundary fluxes are summarized in Table 5.

Along with these constant type parameters, another three free parameters describing

the level of the blood vessel wall injury appear and should be specified. These values are

the TF–VIIa complex concentration ([TF–VIIa ]), the number of intact endothelial cells

per unit area [ENDO ], and the XIIa enzyme concentration ([XIIa ]). These values should

be prescribed separately for injured and healthy vessel wall as shown in Figure 10 (using

??? and ??, respectively).

In addition, we require normal human physiological values as initial conditions for the

concentrations of all chemical species (see Refs. [2–4]). These values are listed in Table 6.

To avoid instabilities in the numerical simulations here, we assume that the initial

concentrations of the enzymes originally set to zero (IXa, VIIIa, Va, Xa, IIa and Ia) are

replaced by suitable very small (but non-zero) values, set to be 0.1% of the initial values

for the corresponding zymogens (IX, VIII, V, X, II and I). These free parameters are chosen

to be equal to zero on the healthy part of the vessel wall, while on the injured area their

prescribed values are shown in Table 7.

4.2 Numerical results

In this section, we present some of the results obtained with the three-dimensional

numerical simulations of the coupled fluid-biochemistry model described above for the

prediction of clot formation and growth around an injured vessel wall region, under

physiological conditions. As already mentioned (Section 2.3), the initiation of the clotting

cascade is associated to the extent of injury in the vessel wall, reflected in a threshold

concentration of the TF–VIIa complex (tissue factor) imposed in the flux boundary

conditions. The clot is formed when fibrin concentration [Ia ] equals or exceeds a specific

value (1000 nM in our case) and clot growth is determined by tracking in time the

evolution of fibrin concentration in the clot region.

All the twenty-three chemical species involved in the advection–reaction–diffusion

Equations (6) play an important role in the clotting process. Their concentrations are

computed pointwise in the whole computational domain and can be visualized during

Figure 9. Concentration boundary conditions.
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aselected simulation time. Figure 11 illustrates the evolution in time (300 s) of the

concentrations of the six most important species involved in the blood coagulation, namely

[IIa ] (Thrombin), [Ia ] (Fibrin), [ATIII ] (Anti-Thrombin III), [APC ] (Active Protein C),

[tPA ] (Tissue Plasminogen Activator) and [PLA ] (Plasmin). The concentrations versus

time history are shown at the centre of the simulated vessel wall injured region.

During the simulation time period of 300 s the concentrations of these chemicals

undergo a profound evolution. The most relevant is the jump in all concentrations that

occurs approximately 20 s after the initiation of the clotting cascade. At this time, the

system response becomes stronger and the concentration of fibrin increases rapidly and

reaches its maximum value at approximately 120 s, remaining relatively stable after that

time, Figure 11(b). Observing the different graphs shown in Figure 11, we also conclude

that the time evolution is not similar for the various chemical species.

Table 4. Flux boundary conditions at the injured vessel wall region.

Species Expressions of the boundary flux terms Bi

IXa ððk7;9½IX�
w½TF 2 VIIa�wÞ=ðK7;9M þ ½IX�wÞÞðL=DIXaÞ

IX 2ððk7;9½IX�
w½TF 2 VIIa�wÞ=ðK7;9M þ ½IX�wÞÞðL=DIXÞ

Xa ððk7;10½X�
w½TF –VIIa�wÞ=ðK7;10M þ ½X�wÞÞðL=DXaÞ

X 2ððk7;10½X�
w½TF 2 VIIa�wÞ=ðK7;10M þ ½X�wÞÞðL=DXÞ

XIa ððf11½XI�w½XIIa�w=ðF11M þ ½XI�wÞÞðL=DXIaÞ

XI 2ððf11½XI�w½XIIa�wÞ=ðF11M þ ½XI�wÞÞðL=DXIÞ

tPa ððkC
tPA þ kIIa

tPA½IIa�
w þ kIa

tPA½Ia�
wÞ½ENDO�wÞðL=DtPaÞ

Table 5. Boundary flux parameters.

Parameters Values Units

f11 0.034 min21

F11M 2000 nM
k7;9 32.4 nM
K7;9M 24 nM
k7,10 103 min21 m
K7,10M 240 nM

kC
tPA 6.52 £ 10213 nM m2 min21

kIIa
tPA 9:27 £ 10212e2134:8ðt2t0Þ m2 min21

kIa
tPA 5.059 £ 10218 m2 min21

Figure 10. Free parameters in flux boundary conditions.
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Clot growth can be better observed in Figure 12, which shows the contours of fibrin

concentration on the vessel wall after 60 s. The simulations suggest that fibrin

concentration has significantly increased in the clotting area. Moreover, due to advection,

fibrin is transported downstream in the injured vessel wall region, as expected and the

clot’s shape changes its form during the clotting process.

These phenomena become more evident in Figure 13, where the variations of surface

fibrin concentration contours during the initial 60 s of clotting are displayed. The length

scales of both axes correspond to the axial and tangential coordinates, normalized by the

vessel cross-section radius R. The blood flow direction is from left to right. In the first 20 s,

simulations do not show any change in the fibrin concentration and therefore only results

for the time period 30–60 s are shown in Figure 13. Due to advection, fibrin is transported

downstream in the injured vessel wall region, as already referred, and the clot’s shape

changes its form during the clotting process.

Advection effects are better captured with a longer simulation time of clot growth.

This is shown in Figure 14 for the time period 0–300 s. It is clear that the clot evolution

process is not yet finished, as the clot shape is still changing. Also, clot dissolution that

Table 6. Initial concentrations.

Species Initial values (nM)

IXa 0.0*

IX 90.0
VIIIa 0.0*

VIII 0.7
Va 0.0*

V 20.0
Xa 0.0*

X 170.0
IIa 0.0*

II 1400.0
Ia 0.0*

I 7000.0
XIa 0.0*

XI 30.0
ATIII 2410.0
TFPI 2.5
APC 0.0*

PC 60.0
L1AT 45000.0
tPA 0.08
PLA 0.0*

PLS 2180.0
L2AP 105.0

Table 7. Free parameters in boundary fluxes.

Concentrations Values

[TF–VIIa ] 0.25 nM
[ENDO ] 2.0 £ 109 cells/m2

[XIIa ] 375 nM
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occurs in regions where fibrin concentration drops below CClot, after initially exceeding it,

or when the shear stress exceeds a critical value forcing the clot’s rupture, has not been

captured in the present simulations. A longer time clot growth and dissolution needs more

computational time and is beyond the purpose of the preliminary numerical simulations

performed in this study.

5. Conclusion and remarks

Preliminary numerical results of three-dimensional simulations for a simplified version of

an advanced comprehensive model of clot growth and lysis, introduced and discussed in

Refs. [2–4], have been presented here to emphasize its effectiveness.

Figure 11. Time evolution of the concentrations of selected chemical species in the centre of the
clotting surface. (a) Thrombin [IIa]; (b) Fibrin [Ia]; (c) Anti-Thrombin III [ATIII]; (d) Active Protein
C [APC]; (e) Tissue Plasminogen [tPA]; (f) Plasmin [PLA].
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The blood flow model used in the simulations only captures its shear-thinning viscosity

and could be improved with more complex rheological models including viscoelasticity,

as studied by Yeleswarapu [30], or the thermodynamically based model derived by Anand

and Rajagopal [1] (with deformation dependent relaxation times) and used in Refs. [2–4].

Moreover, it would be interesting to incorporate in the solvers additional chemical

constituents and their interactions, as in those involved in platelets activation and

aggregation, to obtain numerical results for a more realistic coagulation model that fits

physiological experimental data and may be used in clinical applications. Results can also

Figure 12. Fibrin concentration on the vessel surface after 60 s.

Figure 13. Evolution of fibrin concentrations on the vessel wall during the first minute of clotting.
(a) 30 s; (b) 40 s; (c) 50 s; (d) 60 s.
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Figure 14. Evolution of fibrin concentrations on the vessel wall during the first 5 min of
clotting. (a) 30 s; (b) 60 s; (c) 90 s; (d) 120 s; (e) 150 s; (f) 180 s; (g) 210 s; (h) 240 s; (i) 270 s; (j) 300 s.
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be improved using more efficient and robust space and time semi-discretization solvers

that allow for the simulation of clot growth and dissolution with affordable computational

costs. This is the object of our current research.
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The shear-thinning viscosity model suggests that the fluid behaves quite differently
depending on the actual shear- resp. flow- rate. This study presents an overview
of results obtained for flows in a stenosed vessel under different flow-rates. The
solutions are compared, including such parameters like local wall-shear-stress or
pressure drop. The generalized Newtonian model was also implemented (in collab-
oration with M. Prosi) into an open source finite-element code LifeV, that was used
to simulate the blood flow in a segment of real blood vessel.

T. Bodnár performed all simulations for the idealized blood vessel using his own
finite-volume based code. The flow in the realistic vessel was solved by Martin
Prosi, using the modified LifeV finite-element code.
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a b s t r a c t

The aim of this paper is to describe and discuss the results of numerical comparative study
performed in order to demonstrate and quantify some of the most relevant non-Newtonian
characteristics of blood flow in medium-sized blood vessels, namely its shear-thinning and
viscoelastic behavior.

The models studied in this work are the classical Newtonian and Oldroyd-B models, as
well as their generalized (shear-thinning) modifications. Numerical tests are performed
on three-dimensional geometries, namely an idealized axisymmetric stenosis and a realis-
tic stenosed carotid bifurcation reconstructed from medical images. The numerical solution
of the system of governing equations is obtained by a finite-volume method on a struc-
tured grid. Model sensitivity tests are achieved with respect to the characteristic flow rate
to evaluate its impact on the observed non-Newtonian effects.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

There is strong evidence that hemodynamical factors such as flow separation, flow recirculation, low and oscillatory wall
shear stress, as well as changes in the rheological properties of blood and its components, play a major role in the develop-
ment and progression of atherosclerotic plaques and other arterial lesions (see e.g. [1–3]). However, their specific role is not
completely understood. The mathematical and numerical study of meaningful constitutive models, that can accurately cap-
ture the rheological response of blood over a range of physiological flow conditions, is recognized as an invaluable tool for
the interpretation and analysis of the circulatory system functionality, in both physiological and pathological situations [4].

Whole blood is a concentrated suspension of formed cellular elements that includes red blood cells (RBCs) or erythro-
cytes, white blood cells (WBCs) or leukocytes and platelets or thrombocytes. These cellular elements are suspended in an
aqueous polymer solution, the plasma, containing electrolytes and organic molecules such as metabolites, hormones,
enzymes, antibodies and other proteins [2]. Erythrocytes have been shown to exert the most significant influence on the
mechanical properties of blood, mainly due to their presence in very high concentration compared to the other formed
elements (approximately 4–6 � 106 RBC/mm3), comprising about 40–45% of its volume in healthy individuals (hematocrit).

While plasma is nearly a Newtonian fluid, whole blood exhibits marked non-Newtonian characteristics, in particular at
low shear rates, like shear-thinning viscosity, thixotropy, viscoelasticity, and possibly a yield stress. The non-Newtonian
behavior of blood is mainly explained by three phenomena: the tendency of erythrocytes to form three-dimensional micro-
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structures (rouleaux) at low shear rates, their deformability (or breakup) and their tendency to align with the flow field at
high shear rates. When blood is at rest or at low shear rates (below 1 s�1) it seems to have a high apparent viscosity, while
at high shear rates there is a reduction in the blood’s viscosity. Attempts to recognize the shear-thinning nature of blood
were initiated by Chien et al. [5,6] in the 1960s. Empirical models like the power-law, Cross, Carreau or W-S generalized
Newtonian fluid models (see [7,8]) have been obtained by fitting experimental data in one dimensional flows. More recently,
Vlastos et al. [9] proposed a modified Carreau equation to capture the shear dependence of blood viscosity.

None of the previous homogenized models can predict the viscoelastic response of blood. Blood cells are essentially elas-
tic membranes filled with a fluid and it seems reasonable, at least under certain flow conditions, to expect blood to behave
like a viscoelastic fluid. At low shear rates, erythrocytes aggregate and store elastic energy that accounts for the memory
effects in blood. At high shear rates, they disaggregate forming smaller rouleaux, and later individual cells, that are charac-
terized by distinct relaxation times. They lose their ability to store elastic energy and the dissipation is primarily due to the
internal friction. Thurston [10] was among the earliest to recognize the viscoelastic nature of blood and that the viscoelastic
behavior is less prominent with increasing shear rate. Thurston’s work (e.g. [11]) was suggested to be more applicable to
venous or low shear unhealthy blood flow than to arterial flows. Other viscoelastic constitutive models for describing blood
rheology have been proposed in the recent literature. The empirical three constant generalized Oldroyd-B model studied in
[12] belongs to this class. It has been obtained by fitting experimental data in one dimensional flows and generalizing such
curve fits to three dimensions. This model captures the shear-thinning behavior of blood over a large range of shear rates but
it has its limitations, given that the relaxation times do not depend on the shear rate, which does not agree with experimen-
tal observations. The model developed by Anand and Rajagopal [13] in the general thermodynamic framework stated in [14]
includes relaxation times depending on the shear rate and gives good agreement with experimental data in steady Poiseuille
and oscillatory flow.

Non-Newtonian homogeneous continuum models are very significant in hemodynamics and hemorheology. However, it
should be emphasized that blood flow is Newtonian in most parts of the arterial system and attention should be drawn to
flow regimes and clinical situations where non-Newtonian effects of blood can probably be observed. These include, for nor-
mal blood, regions of stable recirculation like in the venous system and parts of the arterial vasculature where geometry has
been altered and RBC aggregates become more stable, like downstream a stenosis, inside a saccular aneurysm or in some
cerebral anastomoses. In addition, several pathologies are accompanied by significant changes in the mechanical properties
of blood and this results in alterations in blood viscosity and viscoelastic properties, as reported in the recent review articles
[15,16].

Our purpose in this paper is to present a comparative numerical study of non-Newtonian fluid models capturing shear-
thinning and viscoelastic effects of blood flow in idealized and realistic stenosed vessels. Important contributions to this sub-
ject have been given by several authors. Among them we cite, for example,[17–19]. The work presented here follows and
significantly extends the preliminary results obtained in [20].

2. Mathematical models

As a first step towards the macroscopic modelling of blood flow in 3D regions of the vascular system, we recall the
momentum and mass balance laws for incompressible isothermal viscous flows

q
du
dt
¼ divT� $p; ð1Þ

divu ¼ 0: ð2Þ

Here u denotes the velocity field, p is the pressure, q is the density and dð�Þ=dt ¼ @ð�Þ=@t þ u � $ð�Þ denotes the material time
derivative. To close the system a constitutive equation relating the extra stress tensor T with the kinematic variables, veloc-
ity and pressure, must be provided. In the case of a Newtonian fluid T is proportional to the symmetric part of the velocity
gradient D ¼ ð$uþ $uTÞ=2, i.e. T = 2lD, where l is the constant viscosity. Substitution of the value of T into the Eq. (1) leads
to the well-known Navier–Stokes equations (NS) for an incompressible viscous fluid.

2.1. Shear-thinning and viscoelastic models

In order to account for the shear-thinning behavior of blood, the constant viscosity coefficient l is replaced by a shear rate
dependent viscosity function lð _cÞ where shear rate is defined by _c ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
D : D
p

. This function can be written in the following
general form

lð _cÞ ¼ l1 þ ðl0 � l1ÞFð _cÞ ð3Þ

or, in non-dimensional form as

lð _cÞ � l1
l0 � l1

¼ Fð _cÞ: ð4Þ

Here l0 and l1 are the asymptotic viscosity values at zero and infinite shear rates. The appropriate transition between these
values is carried out by the shear rate dependent function Fð _cÞ which satisfies the limit conditions
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lim
_c!0þ

Fð _cÞ ¼ 1 and lim
_c!1

Fð _cÞ ¼ 0:

There are many possible choices for such a function Fð _cÞ. One of the most frequently used shear-thinning models for blood is
the generalized Cross model given by

lð _cÞ ¼ l1 þ
l0 � l1

1þ ðk _cÞb
� �a : ð5Þ

Blood viscosity is quite sensitive to several factors including hematocrit, temperature, plasma viscosity, age of RBCs, gender,
healthy or disease state, which have a remarkable influence in the choice of parameters in the selected constitutive model,
obtained by calibration against suitable experimental data. The following parameters found in [21] have been used for the
blood flow simulations presented in this paper:

l0 ¼ 1:6 � 10�1 Pa � s l1 ¼ 3:6 � 10�3 Pa � s;
a ¼ 1:23; b ¼ 0:64 k ¼ 8:2 s:

The viscosity function Fð _cÞ is represented in Fig. 1.
It is important to remark the huge difference between the viscosity values l0 and l1. The ratio l0/l1 � 50 (see Sec-

tion 5.1 for further details).
To account for the viscoelasticity of blood we consider the equations for the conservation of linear momentum (1) and

mass (2) where the extra stress tensor T is decomposed into its Newtonian part Ts and its elastic part Te, T = Ts + Te, such
that

Ts ¼ 2lsð _cÞD ð6Þ

and Te satisfies a constitutive equation of Oldroyd-B type, namely

@Te

@t
þ ðu � $ÞTe ¼

2le

k1
D� 1

k1
Te þ ðWTe � TeWÞ þ ðDTe þ TeDÞ: ð7Þ

Here D and W denote the symmetric and antisymmetric parts of the velocity gradient related to local shear, resp. vorticity
(see e.g. [22]). The le denotes the elastic viscosity coefficient and k1 is the relaxation time. We consider le = 4.0 � 10�4 Pa � s
and k1 = 0.06 s (according to [21]). For the more detailed description of the models and their parameters see e.g. [20]. The
following four special parameters settings related to four specific models will be used in our numerical simulations:

Newtonian ðNSÞ lsð _cÞ ¼ l1 Te � 0;
Generalized Newtonian ðGNSÞ lsð _cÞ Te � 0;
Oldroyd-B ðOBÞ lsð _cÞ ¼ l1 Te;

Generalized Oldroyd-B ðGOBÞ lsð _cÞ Te:

These equations are solved for the variables velocity, pressure and shear stress, provided the viscosity function, flow
parameters and appropriate boundary conditions are given.

With respect to boundary conditions for the Navier–Stokes and generalized Navier–Stokes equations, it is necessary to
prescribe either the velocity or the surface traction force (Dirichlet or Neumann boundary conditions, respectively) at the
inflow boundary. Usually, physiological data are not available and a fully developed Poiseuille velocity profile (or the
Womersley solution, in the unsteady case) can be prescribed. This is an acceptable idealization of the inflow condition in
relatively long straight vessel segments. At the outflow boundary, a condition prescribing surface traction force can be ap-
plied and at the vessel wall, the no-slip condition is appropriate.
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Fig. 1. Viscosity function.
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The Oldroyd-B and generalized Oldroyd-B models are of mixed elliptic-hyperbolic type (or parabolic–hyperbolic, in the
unsteady case). The extra stresses behave hyperbolic, which means that they are only determined by past time. For these
models the boundary conditions are the same as for the Navier–Stokes and generalized Navier–Stokes equations. The stress
prescribed at the inflow is in this case only determined by the processes upwind from the inlet and thus represents in some
sens the fluid memory [22,35,36].

3. Numerical methods

The numerical solutions of the governing systems of PDEs are based on a finite-volume space discretization on structured
grids, and an explicit Runge–Kutta time integration scheme. Numerical fluxes are evaluated in a centered way for both invis-
cid and viscous parts. To avoid numerical oscillations a pressure stabilization technique proposed in [23] has been imple-
mented. We look for steady solutions by a time-marching approach, i.e. the unsteady governing systems are solved with
steady boundary conditions and stationary solutions are recovered when t ?1. Details on the space and time discretization
procedures are described in [24–26,20,27].

Assuming that the system of governing equations has been discretized in space, e.g. using the above mentioned finite-vol-
ume method, we obtain a system of ODE’s of the form

Wt ¼ Lðt;WðtÞÞ; ð8Þ

where W = W(t) is the vector of discretized variables, and L stands for the space differentiation operator.
System (8) describes the evolution in time of the discrete grid values of the unknown flow variables. In order to solve the

initial value problem based on this system of ODE’s, virtually any of the methods originaly developed for ODE’s could be
used. There is an enormous amount of specialized literature dealing with various aspects of the numerical solution of ODE’s.
Among others we mention e.g. [28,29] and references cited therein.

In this study the time integration is carried out by an explicit Runge–Kutta method. From the definition of the multistage
Runge–Kutta methods it is obvious that these methods require multiple evaluations of the operator L within a single time-
step. In the case discussed here, L is a space discretization operator which is based on the original system of PDE’s and the
selected discretization method. The construction of this operator is often quite complicated and the amount of computa-
tional work increases rapidly with the number of stages of the applied RK method. This disadvantage is usualy compensated
by the higher accuracy or higher stability of multistage methods. However, in specific cases, it is possible to reduce the
amount of computational work per RK stage and, at the same time, improve the stability of the method. The approach pre-
sented here is designed for the numerical solution of advection–diffusion equations. The main idea behind this specific mod-
ification of RK methods is that the discrete advection–diffusion operator L could be splitted into its advection and diffusion
parts and, instead of evaluating the full operator LðWðrÞÞ at each stage of RK method, only a part of L is updated at each stage
(e.g. the advection part for advection dominated problems), while the value of the remaining (diffusion) part of L is kept
frozen from the previous RK stage.

Wð0Þ ¼Wn;

Wðrþ1Þ ¼Wð0Þ � aðrÞDt Qðr�1Þ þ Dðr�1Þ� �
r ¼ 1; . . . ; s; ð9Þ

Wnþ1 ¼WðsÞ:

Here the space discretization operator at stage (r) is split as follows:

LWðrÞ ¼ QðrÞ þ DðrÞ: ð10Þ

The inviscid (advection) flux Q is evaluated in the usual way at each stage

QðrÞ ¼ QWðrÞ: ð11Þ

The viscous (diffusive) flux D uses a blended value from the previous stage and the actual stage according to the rule

DðrÞ ¼ bðrÞDWðrÞ þ ð1� bðrÞÞDðr�1Þ with Dð0Þ ¼ DWn: ð12Þ

The coefficients a(r) and b(r) are chosen to guarantee a large enough stability region for the Runge–Kutta method. The follow-
ing set of coefficients was used in this study:ing set of coefficients was used in this study:

að1Þ ¼ 1=3 bð1Þ ¼ 1;
að2Þ ¼ 4=15 bð2Þ ¼ 1=2;
að3Þ ¼ 5=9 bð3Þ ¼ 0;
að4Þ ¼ 1 bð4Þ ¼ 0:

It is easy to see that for this four-stage method only two evaluations of the dissipative terms are needed, which saves a
significant amount of calculations while retaining the advantage of a large stability region. Further admissible sets of
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coefficients can be used to improve the stability of the method. Comments on the efficiency and robustness of these methods
can be found in the original papers [30,31] and the references therein.

4. Numerical simulations

4.1. Test geometry

Numerical tests have been performed in an idealized stenosed vessel and applied in a realistic stenosed carotid bifurca-
tion reconstructed from medical images (Section 5.3). The stenosed vessel is assumed to be three-dimensional with circular
cross-section (see Figs. 2 and 3). The nominal vessel diameter is D = 2R = 6.2 mm which reduces smoothly to one half in the
stenosed region. The stenosis cross-sectional area ratio is 4:1 and thus a significant local acceleration of the flow is expected.

4.2. Computational grid

The computational domain is discretized using a structured, wall fitted mesh with hexahedral cells and uniform axial cell
spacing. Multiblock mesh structure was adopted to avoid high distortion of cells, see Fig. 3.

The outer mesh block has 40 � 16 � 80 cells, while the central mesh block has 10 � 10 � 80 control volumes.

4.3. Model parameters

Numerical simulations have been obtained under physiological conditions, using the values already introduced in Section
2.1 for the Cross model, as well as the following parameters used for blood flow in a carotid artery (see [21]):

le ¼ 4:0 � 10�4 Pa � s ls ¼ 3:6 � 10�3 Pa � s;
l0 ¼ l ¼ ls þ le l1 ¼ ls;

k1 ¼ 0:06 s q ¼ 1050 kg �m�3:

Using these data, fully developed Poiseuille velocity profile (for Newtonian fluid) is prescribed at the inlet (Dirichlet con-
dition). The flow rates are set to three different values Q = 0.5, 1.0, 2.0 cm3/s. At the outlet homogeneous Neumann conditions
for the velocity components and a constant pressure are prescribed. On the vessel walls no-slip homogeneous Dirichlet con-
ditions are prescribed for the velocity field. In the case of the Oldroyd-B and generalized Oldroyd-B models, homogeneous
Neumann conditions are imposed for the components of the extra stress tensor at all boundaries.

5. Numerical results

We use the models described in Section 2.1 to investigate the influence of the shear-thinning and viscoelastic effects on
the behavior of blood in different flow situations. To highlight these non-Newtonian effects, the solution of the NS equations,
obtained under the same conditions as the solutions of the non-Newtonian equations, is used as a reference for direct flow
field comparison. The only change is the viscosity which was kept constant (equal to l1) and the extra stress Te = 0. Numer-
ical simulations were performed and compared for all four models, i.e. for the Newtonian (NS) and generalized Newtonian
(GNS) models, and for the Oldroyd-B (OB) and generalized Oldroyd-B (GOB) models.

5.1. Viscosity distribution

In order to get more insight into the nature of non-Newtonian shear-thinning effects it is necessary to evaluate the influ-
ence of variable viscosity in the flow situations of practical interest.

The non-Newtonian behavior originates from the changes in local viscosity which depend on shear rate, as discussed in
Section 2.1. The characteristic shear rate varies depending on flow rate. For a given geometry, higher flow rates lead to higher

R 2R

R2R 2R 5R

10R

Fig. 2. Stenosis.
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shear rates. It is easy to see that in the case of Poiseuille flow (fully developed steady flow in a straight tube) the viscosity
attains its maxima l0 at the centerline, while the minimum value is reached at the wall.

Fig. 4 shows the variation of the apparent viscosity of blood as a function of the shear rate, for the generalized Cross model
(5) with the physiological parameters given in Section 2.1.

Defining the relative non-Newtonian extra viscosity ~l ¼ ðlð _cÞ � l1Þ=l1, which measures the deviation of the local
shear-thinning viscosity from the Newtonian one, we can observe three distinct ranges of values for the apparent viscosity,
marked with a color scale and separated by two important viscosity values. The value ~l ¼ 1 refers to the regions where the
actual viscosity is the double of the original Newtonian value l1. While moving away from _c ¼ 0 the viscosity changes
quickly, and this can be characterized, for example, by the value where ~l ¼ 10. The maximum value of the viscosity is, in
our case, ~l ¼ ðl0 � l1Þ=l1¼

: 45. These two characteristic viscosity values split the whole viscosity range into three regions
with different characteristics:

(i) 0 6 ~l 6 1 Low-viscosity region which can be described as ‘‘pseudo-Newtonian” region with characteristic viscosity
l1.

(ii) 1 6 ~l 6 10 Higher non-Newtonian viscosity region (with viscosity lð _cÞ) having strong shear rate dependency.
(iii) 10 6 ~l 6 45 High-viscosity region which can be characterized by low shear rate viscosity l0.

Based on the above viscosity field classification we can explore a wider range of shear rates, varying the flow rate. The
original value is Q0 = 1 cm3/s and simulations have been performed for the flow rates corresponding to Q = 2, 1, 0.5 cm3/s.

At this point it is good to mention here the fact that in the case of Poiseuille flow (i.e. fully developed steady flow in a
straight tube), the shear rate _c ¼ 0 at the axis of the pipe, while it’s maxima is achieved at the wall, where the shear is most
apparent due to the no-slip condition. Thus in undisturbed pipe flow, the shear-thinning viscosity theoreticaly reaches it’s
maxima l0 at the center axis of the pipe, while the apparent viscosity reduces towards the wall, where it’s minima (depend-
ing on the actual flow rate) is reached. This situation is however significantly modified when considering more complicated
geometry as in the case discussed here.

Axial contours of the ~l viscosity in the idealized axisymmetric stenosis are shown in Fig. 5 as a result of the generalized
Newtonian (GNS) model simulation. It is evident that with decreasing flow rate the non-Newtonian shear-thinning effects
become more pronounced. On the other hand in the basic case with flow rate Q/Q0 = 1 the only non-Newtonian effects could
be observed close to the entry (due to the prescribed ‘‘Newtonian” inlet velocity profile), in the center of the vessel just be-
hind the stenosis and at the boundary of reversal flow region within the recirculation zone. Increasing shear-thinning and
viscoelastic effects for decreasing flow rate values could also be observed in Figs. 10–12.

Z

X Y

Fig. 3. Computational grid structure.
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5.2. Flow field (idealized vessel)

Figs. 6–9 present a comparison of the axial velocity contours corresponding to the four models, with the flow rate
Q = 1.0 cm3/s. To emphasize the flow separation behind the stenosis the regions of reversal flow (with respect to axial direc-
tion) are marked with white color.

These results clearly show that for shear-thinning flows the recirculation zone becomes shorter. This is easy to under-
stand, because the characteristic viscosity in the Newtonian case is the l1 and thus a shear-thinning viscosity of the form
(5), leads to the increase of the local viscosity in the low shear regions. Other choices of the characteristic viscosity for the
Newtonian model may give significantly different results.

The combined shear-thinning and viscoelastic effects can be depicted by observing the difference between the general-
ized Oldroyd-B (GOB) and the Navier–Stokes (NS) solutions. Figs. 10–12 present the contours of the normalized difference
between these two solutions at various flow rates. The quantity plotted is (uGOB � uNS)/U0, where U0 is the maximum inlet
velocity (negative isolines are drawn by a dashed line).

Fig. 5. Contours of the renormalized viscosity ~l in the symmetry plane for flow rates (from top) Q = 2.0, 1.0, 0.5 cm3/s.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

Fig. 6. Axial velocity contours for the Newtonian (NS) fluid with constant viscosity l1 and flow rate Q = 1.0 cm3/s.

Fig. 8. Axial velocity contours for the (viscoelastic) Oldroyd-B (OB) fluid with constant viscosity l1 and flow rate Q = 1.0 cm3/s.

Fig. 7. Axial velocity contours for the generalized Newtonian (GNS) fluid with variable (shear-thinning) viscosity and flow rate Q = 1.0 cm3/s.
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This comparison again shows the significant increase of the non-Newtonian shear-thinning effects as the flow rate (and
thus the characteristic shear rate) decreases. As it was already mentioned, this is related to the choice of the characteristic
viscosity in the Newtonian case. At higher flow rates the viscosity is close to l1 (see Section 5.1 and Fig. 5) and thus the
results obtained with a shear-thinning model are close to the Newtonian model solution.

In blood flow experiments blood pressure can easily be measured, in particular the pressure drop (i.e. the inlet–outlet
pressure difference) needed to achieve a prescribed flow rate. The axial pressure profiles for all four models at various flow
rates are shown in Fig. 13. By simple observation we conclude that the main effect of the blood shear-thinning behavior is
visible mainly in the recirculation zone, where the local viscosity (and thus the resistance to flow) increases significantly. The
effects of viscoelasticity are about one order of magnitude lower in this case. This conclusion however has just a limited
validity for the given test case. For other cases, i.e. for pulsatile flow or other flow rates or geometries, the viscoelastic effects
may become more important. Similar conclusions could be drawn from the observation of the axial velocity profiles depicted
in Fig. 14.

Another important parameter in blood flow simulations is the wall shear stress (WSS). It represents the tangential com-
ponent of the surface force at the vessel wall, acting against the fluid flow.

WSS :¼ �ðT � n̂Þ � t̂: ð13Þ

Here n̂ is the local wall-normal unit vector (pointing towards the fluid) and t̂ is the corresponding unit tangential vector. The
wall shear stress profiles for all the models at various flow rates are shown in Fig. 15. The negative values of the WSS can be
found in regions of reversal flow and also in regions where the flow speeds up significantly.

5.3. Realistic stenosed bifurcation model

This test case has been selected to show the presence of non-Newtonian effects on blood flow behavior in a realistic
geometry reconstructed fom medical images. The computational domain corresponds to a human carotid bifurcation artery

Fig. 9. Axial velocity contours for the generalized Oldroyd-B (GOB) fluid with variable (shear-thinning) viscosity and flow rate Q = 1.0 cm3/s.

-0.21 -0.19 -0.17 -0.15 -0.13 -0.11 -0.09 -0.07 -0.05 -0.03 -0.01 0.01 0.03 0.05

Fig. 10. Normalized difference between the solutions of GOB and NS models with flow rate Q = 0.5 cm3/s.

Fig. 11. Normalized difference between the solutions of GOB and NS models with flow rate Q = 1.0 cm3/s.

Fig. 12. Normalized difference between the solutions of GOB and NS models with flow rate Q = 2.0 cm3/s.
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with a stenosis, as shown in Fig. 16. The geometrical model of the healthy bifurcation (without stenosis) has been developed
by Perktold (TU Graz) based on a digitalized experimental cast (Liepsch and Munich). For details of the geometry see [32]. A
stenosis of 75% has been generated in the internal carotid artery near the bifurcation region where stenotic obstructions re-
lated to atherosclerosis usually occur. For the discretization of the geometrical model we use tetrahedral elements. The
numerical solution of the Navier–Stokes equations is based on a velocity pressure splitting scheme with algebraic factoriza-
tion implemented in the open source finite element library LifeV (http://www.lifev.org). A detailed description of the numer-
ical method can be found in [33] or [34].

The main goal is to investigate shear-thinning effects in steady flow simulations, using the Newtonian and generalized
Cross models (Section 2.1). The shear-thinning viscosity parameters we use in this study are the physiological values used
in the previous test case (Section 2.1). The flow rate of 5.5 cm3/s imposed at the commmon carotid artery corresponds to the
mean physiologic flow rate. Together with the mean inflow diameter of 0.62 cm this results in a Reynolds number of Re = 300
in the Newtonian case. The difference between Newtonian and non-Newtonian solution in these simulations can be ob-
served comparing the wall shear stress distributions in the stenosed region, depicted in Figs. 17 and 18.

The same color scale is used in both figures, showing that the higher wall shear stress values are in the stenosed region
predicted by the generalized Navier–Stokes model. Also in the curved part of the upper branch the wall shear stress seems to
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Fig. 13. Pressure distribution along the axis of the vessel for the flow rates (from top) Q = 2.0, 1.0, 0.5 cm3/s.
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be higher in the shear-thinning case. The reason for this can clearly be confirmed by the results of the viscosity distribution
shown in Fig. 19. We conclude that the non-uniform viscosity distribution leads to important discrepancies between New-
tonian and generalized Newtonian model predictions. Therefore, in complex flow situations, it is of major importance to bet-
ter understand the influence of the viscosity distribution in complex flow situations.

6. Conclusions and final remarks

Classical Newtonian and Oldroyd-B models, as well as their generalized (shear-thinning) modifications have been consid-
ered to model blood flow in an idealized axisymmetric stenosis and in a realistic stenosed carotid bifurcation vessel, to inves-
tigate shear-thinning and viscoelastic effects in steady flow simulations.

Based on the above computation results we conclude that shear-thinning effects related to the flow variables (velocity
and pressure) and to WSS are more pronounced than the viscoelastic ones and they are predominant in the recirculation
zone downstream the stenosis, increasing as the flow rate (and consequently the shear rate) decreases. This could be
explained by the specific choice of the characteristic viscosity l1 for the reference Newtonian and (non-generalized)
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Oldroyd-B solution. For low shear rates the apparent viscosity is in the large part of the vessel close to the value l0 and thus
the differences from the Newtonian solution (obtained for the viscosity l1) are larger than in the case of high flow rate.
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Fig. 15. Wall shear stress (WSS) distribution along the axis of the vessel for the flow rates (from top) Q = 2.0, 1.0, 0.5 cm3/s.

Fig. 16. Stenosed carotid bifurcation geometry.
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The numerical method used to solve the governing equations seems to be sufficiently robust and efficient for the appro-
priate resolution of the given class of problems.

Future work will be devoted to an extension of this numerical study to unsteady blood flow and fluid-structure interac-
tion simulations in stenotic vessels, to provide a deeper understanding of the significance of the non-Newtonian character-
istics of blood and its correlation with the atherosclerosis.
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B.3 Simulation of the Three–Dimensional Flow of Blood Using a
Shear–Thinning Viscoelastic Fluid Model
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This paper contains an overview of numerical results obtained using a new non-
linear viscoelastic model proposed recently by Anand and Rajagopal [B.1] based on
the general thermodynamic framework postulated in [B.10]. This naturally shear-
thinning model created especially for blood flow simulations is compared with the
generalized Oldroyd-B model. This paper is a first attempt to use this new model for
practical 3D simulations. A significant effort has been made to convert the model
into a more standard notation that will allow for a detailed comparison with some
other classical models. Some new techniques had to be developed to use this model.
This part of the work still remains to be published in the near future.

In this paper T. Bodnár rewrote the new model (proposed by K.R. Rajagopal) into
the standard form and performed all the presented numerical simulations using his
own original finite-volume code.
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Abstract. This paper is concerned with the numerical simulation of a thermodynamically com-
patible viscoelastic shear-thinning fluid model, particularly well suited to describe the rheological
response of blood, under physiological conditions. Numerical simulations are performed in two
idealized three-dimensional geometries, a stenosis and a curved vessel, to investigate the combined
effects of flow inertia, viscosity and viscoelasticity in these geometries. The aim of this work is
to provide new insights into the modeling and simulation of homogeneous rheological models for
blood and a basis for further developments in modeling and prediction.

Key words: blood rheology, viscoelasticity, stenosis, curved vessel, secondary flows
AMS subject classification: 76A10, 76M12, 76Z05

1. Introduction
Blood is a complex mixture of several formed elements, red blood cells (RBCs or erythrocytes),
white blood cells (WBCs or leukocytes) and platelets (thrombocytes), in an aqueous polymeric
and ionic solution, the plasma, containing electrolytes, organic molecules and numerous proteins.
Despite being such a complicated mixture, it can be modeled in sufficiently large blood vessels as
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a single constituent fluid and, depending on the size of the blood vessels and the flow behvior, it is
approximated as a Navier-Stokes fluid or as a non-Newtonian fluid.

The presence of the formed elements in blood leads to some significant and fascinating changes
in its rheological properties and more experiments need to be performed, at the scale of the red
blood cells, to extend the existing models by including microstructural aspects of blood. Reliable
measurements of velocity and shear stress, as well as interactions between the cellular components
of blood and plasma are essential to develop these microstructural models, appropriate in smaller
vessels in which the cell and lumen sizes are comparable.

This paper concerns the flow of blood in vessels where it needs to be described by a non-
Newtonian fluid model. There is a large body of literature confirming that blood shear thins due
to the aggregation of the red blood cells, and the formation of rouleau 3D microstructures at low
shear rates and their deformability at high shear ([15, 16, 17, 18, 19]). There is also experimental
evidence that supports the fact that blood is capable of stress relaxation, see e.g. Thurston [30],
Quemada [27], Chien et al. [20]. Evans and Hochmuth [21] have found that the red blood cell
membrane, which is a component of blood, exhibits stress relaxation. Moreover, the experimental
results of Thurston [31] imply that the relaxation time depends on the shear rate. In view of the
available experimental evidence, it is reasonable to develop a non-Newtonian fluid model for blood
that is capable of shear-thinning and stress relaxation, with the relaxation time depending on the
shear rate. To date, very little is known concerning the response of such fluids.

Rajagopal and Srinivasa [28] have developed a thermodynamic framework within which one
could systematically develop rate type models to describe the viscoelastic response of fluids. The
framework is general enough to develop models wherein the relaxation time depends on the shear
rate. All that the thermodynamic framework requires is a knowledge of how the material stores
energy and how it produces entropy. The models that are developed, automatically satisfy the
second law of thermodynamics. In fact, the framework requires the rate of entropy production to
be non-negative. Moreover, from amongst the class of admissible constitutive relations meeting
the condition that the rate of entropy production is non-negative, this theory also requires that the
model should maximize the rate of entropy production. Based on [28], Anand et al. [1] introduced
a model that is suitable for describing the response characteristics of blood. This model contains
the Oldroyd-B model as a special sub-class.

The theory developed by Rajagopal and Srinivasa [28] makes use of the fact that the natural
configuration of the material changes as the body produces entropy, and also that one can unload
from the current configuration of the body to its natural configuration through an instantaneous
elastic response. As blood is modeled as a viscoelastic fluid capable of instantaneous elastic re-
sponse, the framework developed in [28] is particularly well suited to develop a model for blood.
This framework needs the specification of how the body stores and dissipates energy. The way in
which the body stores energy is usually provided by associating a specific Helmholtz potential with
the body, and how the body dissipates energy is given by a rate of dissipation function. However,
as shown recently in [29], not all viscoelastic fluids can be described within that earlier framework.
In fact, there are (rate type) viscoelastic fluids that cannot have a specific Helmholtz potential asso-
ciated with them. For certain viscoelastic fluids one cannot associate a specific Helmholtz potential
but only a Gibbs potential. Rate type fluids stemming from a Gibbs potential approach might be
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useful in describing the response of blood. In this paper we shall not pursue such models but re-
strict our attention to the model developed by Anand et al. [1] that has proven to be successful in
describing the response of blood.

Anand et al. [2], [3], [4] have also studied the problem of the formation and lysis of blood
clots, and more recently the problem of ATIII and protein C deficiency [5] within the context of
the above model. Due to the complexity of the model, their studies are based on simple geometries
and flow assumptions so that the problem under consideration can be reduced to a simple system
of equations in one spatial dimension. However, if the model is to be used to study realistic
problems with relevance to biomedicine, it is necessary to consider blood flow in more complex
geometries than those studied in the above referenced papers, and to perform three-dimensional
simulations. We address this issue in the present work. We consider the model described in [1] and
perform a numerical investigation of the combined effects of inertia, viscosity and viscoelasticity
of the fluid in two idealized three-dimensional geometries, a stenosis and a curved vessel. These
combined effects are observed by comparing the results of the axial velocity, radial velocity and
pressure contours for the new model with those obtained for classical blood flow models, namely
the Newtonian and the generalized (shear-thinning) Oldroyd-B models, as previously done in [10,
13, 14] (see also e.g. [24, 26, 23, 8]).

2. The mathematical model

2.1. Kinematics
In this section we provide the minimum kinematical definitions that will make this paper self-
contained. In order to understand the model that is being used in this work, it is necessary to define
some kinematical quantities. The notation introduced in Rajagopal and Srinivasa [28] is used here.
Let X ∈ κR denote a material point in the reference configuration κR of the body B (see Fig. 1),
and let x ∈ κt denote the same material point in the current configuration κt at time t. Let κp(t)

denote the natural configuration that can be accessed by instantaneously unloading the body which
is at the current configuration. As the body deforms, the underlying natural configuration κp(t)

changes. By the motion of a body we mean a one to one mapping χ(X, t), that assigns to each
point X ∈ κR a point x ∈ κt, for each t, i. e.,

χ : κR × R→ E , x := χ(X, t).

We will assume that the motion is invertible and sufficiently smooth, in such a way that all deriva-
tives that are taken make sense.

The deformation gradient FκR
is defined through

FκR
:=

∂χ

∂X
and the left and right Cauchy-Green stretch tensors BκR

and CκR
are defined through

BκR
:= FκR

F T
κR
, CκR

:= F T
κR
FκR

,
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Figure 1: Schematic of the natural configurations of a body B at time t.

where the superscript T denotes transpose. The deformation gradient and the Cauchy-Green stretch
tensors, with respect to the natural configuration, are defined by (see Fig. 1)

Fκp(t)
:=

∂χ

∂Xκp(t)

and

Bκp(t)
:= Fκp(t)

F T
κp(t)

, Cκp(t)
:= F T

κp(t)
Fκp(t)

,

respectively. The principal invariants of Bκp(t)
are given by

IBκp(t)
:= trBκp(t)

, IIBκp(t)
:=

1

2

[
(trBκp(t)

)2 − trB2
κp(t)

]
, IIIBκp(t)

:= detBκp(t)
.

The mapping G, that is a mapping from the reference configuration to the current natural
configuration is defined through

G := F−1
κp(t)

FκR
.

The velocity gradients L and Lκp(t)
, and their respective symmetric parts D and Dκp(t)

, are
defined through

L :=
d

dt
(FκR

)F−1
κR

, Lκp(t)
:=

dG

dt
G−1,
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D =:
1

2
(L+LT ), Dκp(t)

=:
1

2
(Lκp(t)

+LT
κp(t)

).

where d
dt

denotes the usual material time derivative.
The upper–convected Oldroyd derivative of a tensor A is defined by

O
A=:

dA

dt
−LA−ALT . (2.1)

It then follows that

O
Bκp(t)

=
dBκp(t)

dt
−LBκp(t)

−Bκp(t)
LT = −2Fκp(t)

Dκp(t)
F T

κp(t)
. (2.2)

Since we shall model blood as an incompressible viscoelastic shear-thinning fluid, we shall require
that

trD = 0, trDκp(t)
= 0.

The above kinematic conditions suffice for our purpose.

2.2. A shear-thinning viscoelastic rate type fluid model for blood
For details of the development of rate type viscoelastic fluid models capable of instantaneous elas-
tic response, within the context of a specific Helmholtz potential and rate of dissipation, we refer
the reader to [28]. The theory requires the specification of a Helmholtz potential ψ and a rate of
dissipation ξ that satisfies

ξ = T .D − ρ
dψ

dt
(2.3)

where ρ denotes the fluid density and T is the stress tensor. The model is assumed to meet the
requirement that amongst all processes that are accessible to the body it chooses that which max-
imizes the rate of dissipation (in general, the rate of entropy production). In this study we are
assuming that the processes undergone by blood are isothermal, otherwise we will have to modify
equation (2.3).

We shall assume that the specific Helmholtz potential is given by

ψ =
µ

2

(
IBκp(t)

− 3
)
. (2.4)

Thus, we are assuming that the fluid (blood) stores energy like a neo-Hookean solid. The constant
µ that appears in the above equation is the shear modulus and it is non-negative (in fact, positive)
based on physical considerations.

Next, we assume that the rate of dissipation function is given by

ξ = α
(
Dκp(t)

.Bκp(t)
Dκp(t)

)γ

+ η1D.D. (2.5)
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where α, γ and η1 are material parameters. When γ = 0, the above model corresponds to the
rate of dissipation in a generalized Oldroyd-B fluid (see [28]) and when γ = 1 and η1 = 0, the
rate of dissipation corresponds to that of a generalized Maxwell fluid. On the basis of physical
considerations, we shall assume that α and η1 are non-negative.

A lengthy but straightforward procedure based on the maximization of the rate of dissipation
leads to (see Anand et al. [3])

T = −p1 + S (2.6)

S = µBκp(t)
+ η1D, (2.7)

O
Bκp(t)

= −2
(µ
α

)1+2n (
tr(Bκp(t)

)− 3λ
)n [

Bκp(t)
− λ1

]
, (2.8)

λ =
3

tr
(
B−1

κp(t)

) , (2.9)

n =
γ − 1

1− 2γ
(2.10)

In the above equations,
O
Bκp(t)

stands for the upper-convected Oldroyd derivative of tensor Bκp(t)

defined by (2.2), 1 is the unit (identity) tensor, p denotes the Lagrange multiplier that is a con-
sequence of the requirement of incompressibility and S is usually referred to as the extra stress
tensor, or the constitutively determined part of the tensor T .

2.2.1. Governing equations

Since blood is modeled as an incompressible fluid, all motions have to satisfy the balance of mass

div u = 0, (2.11)

and the balance of linear momentum

ρ
du

dt
= divT (2.12)

where u is the velocity field and ρ denotes the density of blood. These equations have to be solved
simultaneously with the constitutive relations (2.6) - (2.10) wherein the expression for the stress is
substituted into (2.12) to obtain the governing equation for the velocity field u.

The following parameters obtained from human blood [1] will be used in the numerical simu-
lations of this model:

η1 = 0.01 Pa · s; µ = 0.1611 N/m2; n = 0.5859; K =
(µ
α

)1+2n

= 58.0725 s−1 (2.13)

(n is positive to ensure shear-thinning behavior).

6
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Equation (2.8) can be rewritten in a more conventional form in terms of the material time-
derivative. Let us denote by

1

τ(Bκp(t)
)
= 2K

(
tr(Bκp(t)

)− 3λ
)n

where τ = τ(Bκp(t)
) has the dimension of time and plays a role similar to the relaxation time in

the classical Oldroyd-B (Maxwell) model [10]. Using this expression, equation (2.8) for the tensor
Bκp(t)

can be rewritten in the following way

O
Bκp(t)

= − 1

τ(Bκp(t)
)

[
Bκp(t)

− λ1
]

(2.14)

Using the definition of the upper-convected time derivative (2.1), the left-hand side takes the form

dBκp(t)

dt
−

[
LBκp(t)

+Bκp(t)
LT

]
= − 1

τ(Bκp(t)
)

[
Bκp(t)

− λ1
]

(2.15)

Finally, expanding the material time-derivative on the left-hand side we end up with

∂Bκp(t)

∂t
+ (u ·∇) Bκp(t)

= −1

τ

[
Bκp(t)

− λ1
]
+
[
LBκp(t)

+Bκp(t)
LT

]
(2.16)

where the coefficients λ and τ are scalar functions of the tensor Bκp(t)
and its invariants. It is in-

teresting to observe that the classical Oldroyd-B (upper-convected Maxwell) model takes a similar
form

∂T e

∂t
+ (u ·∇) T e =

2ηe
τ

D − 1

τ
T e +

[
LT e +T eL

T
]

(2.17)

T e being the extra stress, ηe the elastic viscosity coefficient and τ the (constant) relaxation time.

3. Numerical simulations
Some numerical experiments have been performed in order to check the functionality of the above
described shear-thinning viscoelastic fluid model for blood flow (further denoted as bNOB) and
compare its predictions with the classical Newtonian (NS) and generalized Oldroyd-B (GOB)
fluid models, under different flow conditions. The GOB model used here is obtained from the
Oldroyd-B model (2.17) (see [10] for details) replacing the total (constant) viscosity by the shear
dependent viscosity given by the generalized Cross function

η(γ̇)− η∞
η0 − η∞

=
1

(1 + (αγ̇)b)a
(3.1)

where η0 and η∞ are the asymptotic viscosities at low and high shear rates and parameters α, a and
b are estimated by curve fitting of experimental data. These parameters of the GOB model have

7
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been taken from [10] (see also [26]), except for the asymptotic viscosities η0 and η∞, that have been
adjusted to fit the bNOB’s model parameters, namely η0 = 0.0736 Pa · s and η∞ = 0.005 Pa · s.

The main goal is to evaluate the hemodynamic and rheological characteristics of this new
bNOB model in two simple idealized three-dimensional geometries, based on previous works
dealing with similar test cases for simpler models as the generalized Newtonian or the classical
and generalized Oldroyd-B models [10, 13, 14].

3.1. Numerical method
The numerical method used to solve the governing equations is based on a spatial finite-volume
discretization on structured grids and an explicit Runge-Kutta time-stepping scheme, namely a
robust modified Runge-Kutta four-stage method [25]. The computational mesh is structured and
consists of hexahedral primary control volumes. To evaluate the viscous numerical fluxes also dual
finite volumes with octahedral shape and centered around the primary cell faces are used.

We look for steady solutions by a time-marching approach, which means that the unsteady
governing equations are solved with steady boundary conditions and steady solutions are recovered
when t→∞. An artificial compressibility formulation [33], often used in steady flow simulations,
is applied to obtain the pressure and to enforce the divergence-free constraint. The continuity
equation (2.11) is modified by adding the pressure time-derivative, properly scaled by the artificial
speed of sound c (equal to 1, for simplicity), as follows:

1

c2
∂p

∂t
+ div u = 0, (3.2)

A pressure stabilization technique has been used in the present simulations (see e. g. [33]) to
avoid numerical oscillations in the pressure mainly due to the presence of strong gradients. This
technique consists in adding a pressure dissipation term (Laplacian) into the right hand side of the
modified continuity equation (3.2) such that

∂p

∂t
+ c2div u = ε∆p, (3.3)

which, in particular, vanishes if the pressure is a linear function of the space coordinates.
The Reynolds number used in the simulations was quite low (of the order of 102) and thus

no additional stabilization was needed for the flow variables. The details of this approach can be
found in earlier papers [11, 12] and the references therein.

Numerical tests have been performed in two different geometries. The first computational
domain represents a non-symmetric (with respect to the bulk flow direction) cosine-shaped vessel
stenosis shown in Fig. 2. The stenosed vessel is three-dimensional, rotationally symmetric, with
diameter D = 2R = 6.2mm which reduces to its one half in the stenosed region. This leads to a
4 : 1 cross-sectional area reduction and thus to a significant local flow acceleration.

The second computational domain, is a curved 90◦ elbow shapped vessel with constant curva-
ture, as shown in Fig. 3. The curved vessel is three-dimensional with circular cross-section of the
same size as the above described stenosis. The length of the inflow and outflow straight sections
are Lin = Lout = 10R.

8
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Figure 2: Stenosed vessel
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Figure 3: Curved vessel (elbow)

3.1.1. Computational grid

The computational domain is discretized using a structured, wall fitted mesh with hexahedral cells
and non-uniform axial cell spacing. A multiblock mesh structure was adopted to avoid high distor-
tion of cells, see Fig. 4. The outer mesh block has 64×16×100 cells, while the central mesh block
has 16× 16× 100 control volumes. A similar grid structure was used in both test case geometries.

3.1.2. Boundary conditions

A parabolic velocity profile with given flow-rate Q is prescribed at the inlet of each domain, for
bNOB, GOB and NS models. Homogeneous Neumann conditions for the velocity components
are imposed at the outlet and no-slip conditions are prescribed at the wall. Pressure is fixed at
the outlet and extrapolated at the other boundaries. Moreover, homogeneous Neumann boundary
conditions are prescribed at all boundaries for the components of tensor Bκp(t). As an alterna-
tive, some simulations have been performed using a Dirichlet type boundary condition Bκp(t) = 1
prescribed at the inlet, but no significant impact on the solution has been found.

9
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Figure 4: Computational grid structure

3.2. Numerical Results
3.2.1. Stenosed vessel

The stenosed vessel has been chosen as a test case to study the behavior of the new blood model
bNOB in the presence of a high shear region. The sudden (but smooth) reduction of the cross-
sectional area generates jet-like flow patterns with significant recirculation zones downstream of
the stenosis. The sizes of the recirculation zones depend, for a given geometry, mainly on the flow
rate and the rheological model. Therefore, three different flow rates Q = 2.0, 1.0 and 0.5 cm3/s
were investigated in the simulations for the three considered models, using for the bNOB model
the blood flow parameters given by (2.13).

Flow field. The influence of the shear-thinning and viscoelastic effects on the qualitative behavior
of the flow field can be observed by comparing the results of the axial velocity, radial velocity and
pressure contours for both the Newtonian (NS) model (with viscosity η1 = 2η∞ = 0.01 Pa·s) and
the shear-thinning viscoelastic fluid model bNOB. Figures 5 and 6 show the axial velocity, radial
velocity and pressure contours † for the NS and bNOB models, with the flow rates Q = 2.0 cm3/s
and Q = 0.5 cm3/s, respectively.

As expected (see previous results in [10] and [14]) there are essentially two main differences
between the Newtonian (NS) model solution and the blood model (bNOB) solution.

i) The velocity profile obtained using the bNOB model is flatter in the central part of the
vessel, which corresponds to a reduced value of the maximum velocity. As a consequence,
the near wall flow is accelerated and thus the recirculation zones become shorter.

ii) The pressure drop is higher‡ for the bNOB flow model, due to the local increase of the
viscosity (with respect to the Newtonian flow reference viscosity η∞ = η1/2) in the low

†The color scale, with units in m/s (shown below in Fig. 7), is the same in both figures, to allow for a direct
comparison. Regions with negative axial velocity (i.e. reversal flow) are plotted in grey color.

‡The pressure is fixed at the outlet, with the same value for both cases. The resulting higher pressure at the inlet
indicates a higher pressure drop.
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shear regions, which leads to a higher pressure loss.

Both of these effects can be attributed to the combined shear-thinning and viscoelastic behavior
captured by the bNOB model. A better comparison can be done by directly observing figures (7 -
10) displaying the axial velocity and radial velocity contours for the NS, GOB and bNOB models
and both flow rates Q = 2.0 cm3/s and Q = 0.5 cm3/s.
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Figure 5: Axial velocity (top), radial velocity (middle) and pressure (bottom) contours, with flow
rate Q = 2.0 cm3/s, for the NS fluid (left) and bNOB fluid (right).
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Figure 6: Axial velocity (top), radial velocity (middle) and pressure (bottom) contours, with flow
rate Q = 0.5 cm3/s, for the NS fluid (left) and bNOB fluid (right).

A more detailed study of the rheological effects of the bNOB blood model on the axial veloc-
ity contours can be done by directly computing the differences between the NS and the bNOB
solutions or between the GOB and bNOB solutions. Figure 11 shows the normalized difference
between the NS and the bNOB solutions for different flow rates Q = 2.0, 1.0 and 0.5 cm3/s. It
is obvious that the velocity predicted by the bNOB blood model is lower in the central part of the

11
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Figure 7: Comparison of the axial velocity contours for Q = 2.0 cm3/s: NS fluid (top), GOB
model (middle) and bNOB blood model (bottom).
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Figure 8: Comparison of the radial velocity contours for Q = 2.0 cm3/s: NS fluid (top), GOB
model (middle) and bNOB blood model (bottom).

vessel than the one predicted by NS. This is compensated by a faster flow in the near-wall region.
This marked flattening of the velocity profile is a typical shear-thinning characteristic, not related
to the fluid viscoelasticity.

It is also interesting to observe that the magnitude of the axial velocity difference increases
with the reduction of the flow rate. This is a natural result, since the Newtonian (NS) solution is
computed using a lower viscosity η∞ and thus when the flow rate is reduced and, consequently, the
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Figure 9: Comparison of the axial velocity contours for Q = 0.5 cm3/s: NS fluid (top), GOB
model (middle) and bNOB blood model (bottom).
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Figure 10: Comparison of the radial velocity contours for Q = 0.5 cm3/s: NS fluid (top), GOB
model (middle) and bNOB blood model (bottom).

local shear-rate reduces as well, this leads to an increase of the local apparent viscosity. Therefore
the magnitude of the axial velocity differences is higher in this case. It is obvious that a different
choice of the reference viscosity for the NS model could lead to different results.

The normalized difference between the bNOB and GOB axial velocities, corresponding to the
three flow rates Q = 2.0, 1.0 and 0.5 cm3/s is shown in Figure 12. As expected, the impact of the
viscoelasticity on the flow behavior predicted by the bNOB blood model is less significant than
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the shear-thinning one shown in Figure 11.
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Figure 11: Relative difference of axial velocity (u
bNOB

− u
NS

)/U0 for flow rates Q =
2.0, 1.0 and 0.5 cm3/s (from top to bottom).
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Figure 12: Relative difference of axial velocity (u
bNOB

− u
GOB

)/U0 for flow rates Q =
2.0, 1.0 and 0.5 cm3/s (from top to bottom).

Forcing effects. The effects of the extra stress can be expressed in terms of the divergence of the
tensor Bκp(t)

The term divBκp(t)
represents an additional force in the balance of linear momentum
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(2.12) related to the viscoelastic behavior predicted by the bNOB blood model. In the present test
case the most important component of this force is the axial one. Figure 13 shows the contours of
the axial component of divBκp(t)

. The blue color represents a force acting against the main flow
and causing its deceleration, whose maximum value is attained at the axis of symmetry. This is
also a typical behavior captured by shear-thinning models, which has been previously observed in
[10] and [14] where the generalized (i.e. shear-thinning) Newtonian and generalized Oldroyd-B
models were compared with the classical Newtonian and Oldroyd-B models. Figure 14 shows

-2500 -1500 -500 500 1500 2500

-2500 -1500 -500 500 1500 2500

-2500 -1500 -500 500 1500 2500

Figure 13: Axial component of the divergence of the tensor Bκp(t)
for flow rates

Q = 2.0, 1.0 and 0.5 cm3/s (from top to bottom).

the contours of the six components of the extra stress tensor Bκp(t)
in the x − z plane, in some

cross-sections of the flow domain, for a flow rate Q = 2.0 cm3/s. The components bi of the tensor
Bκp(t)

are numbered according to the following scheme

Bκp(t)
=




b1 b2 b3
b2 b4 b5
b3 b5 b6




The contour color scale is the same for all these plots. It is clear that the diagonal components of
the tensor Bκp(t)

are dominant (in magnitude), so the whole tensor is a kind of perturbation of the
identity tensor 1 . The same has been observed for the lower flow rates.

3.3. Curved vessel
Flows in curved vessels are very challenging and considerably more complex than flows in straight
vessels. For inertial Newtonian flows it is well known that a slight curvature of the vessel axis

15

B.3. Simulation of the Three–Dimensional Flow of Blood Using a Shear–Thinning
Viscoelastic Fluid Model 179



T. Bodnár et al. Simulation of the three-dimensional flow of blood

X

Z
Y

b3

X

Z
Y

b1

X

Z
Y

b5
X

Z
Y

b6

X

Z
Y

b4

X

Z
Y

1.5

0.9

0.3

-0.3

-0.9

-1.5

b2

Figure 14: Contours of the components of tensor Bκp(t)
for the flow rate Q = 2.0 cm3/s.

induces centrifugal forces on the fluid and, in addition to the primary initial flow, a secondary
motion appears, sending fluid outward along the symmetry axis and returning along the upper and
lower curved surfaces. This secondary motion is induced by an imbalance between the cross-
stream pressure gradient and the centrifugal forces developed at the curvature sites, and consists of
a pair of symmetrical counter-rotating vortices that is superposed to the axial Poiseuille flow. This
results in asymmetrical wall stresses with high shear and low pressure regions (see e.g. [9, 22, 6,
7]).

A 90◦ curved vessel (Fig. 3) has been chosen as a second test case to study the behavior
of the new blood model bNOB in the presence of high streamline curvature and non-negligible
secondary flows. Since the secondary flow pattern is more pronounced at higher flow rates, only
the flow rate Q = 2.0 cm3/s has been considered for the simulations in this geometry.

One of the important features of the flow predicted by the new blood model bNOB is related
to the axial velocity profile. This can clearly be observed in Fig. 15 showing, for the NS, GOB
and bNOB models, the plots of the axial velocity in three different sections placed at 30◦, 60◦

and 90◦ in the curved part of the vessel. In the case of the bNOB and GOB models flatter axial
velocity profiles are obtained when compared to the NS model. As in the case of the flow in
the stenosed vessel, this effect can be attributed to the shear-thinning behavior predicted by the
bNOB and GOB models where the low shear rates around the centerline of the vessel lead to
a local increase of the apparent viscosity. In this case, it is apparent that viscoelasticity of both
flows does not play a significant impact in their behavior, however other numerical experiments
should be done to prove this ansatz. Curvature effects can be observed in the contours of the axial
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velocity, which are shifted away from the central axis as the curvature of the vessel increases. This
is visible in Fig. 16 and, with more details in Fig. 17. Secondary flow streamlines have a similar
qualitative behavior for the NS, GOB and bNOB models, as shown in Fig. 16. More details and
differences are visible in the comparison of axial and radial velocity contours shown in figures 17
and 18, where the magnitude of the secondary flow velocities is clearly lower for the GOB and
bNOB models due to a higher apparent viscosity.

Figures 19 and 20 show the normalized solution differences between the new bNOB and the
classical NS and shear-thinning GOB models. The differences on the axial velocity between the
bNOB and the Newtonian model (Fig. 19, left) show the expected slow-down of the core flow
(caused by the shear-thinning behavior) in the straight inlet part of the vessel. This is compensated
by a faster near-wall flow. As soon as the flow reaches the bended part of the curved vessel, the
slow core of the flow is pushed towards the outer wall (see Fig. 20 for a more detailed view),
while close to the inner radius of the bend, the flow becomes faster. A similar (although weaker)
tendency of the flow behavior can also be seen for the difference between the bNOB and GOB
models (Fig. 19, right and Fig. 21). This is mainly due to the fact that both models have a shear-
thinning viscosity. In the bNOB model shear-thinning effects seem to be slightly more pronounced
than in the GOB model. This behavior needs further investigation in a future work.

4. Conclusions and remarks
Blood is a very complex multiconstituent material that, in intermediate sized vessels, can be mod-
eled as a single homogeneized continuum which exhibits non-Newtonian behavior. Such response
can be captured by the phenomenological shear-thinning viscoelastic constitutive model of Anand
and Rajagopal [1]. The present work was devoted to the numerical simulation of this model in two
idealized three-dimensional geometries, a stenosis and a curved vessel, to investigate the combined
rheological effects of inertia, shear-thinning viscosity and viscoelasticity, for steady flows.

Solutions for the new shear-thinning viscoelastic model (bNOB) have been compared to the
classical Navier-Stokes (NS) and generalized Oldroyd-B (GOB) solutions showing, as expected,
that the shear-thinning effects are dominant with respect to the viscoelastic ones in both geome-
tries [10, 13, 14]. In the case of the stenosed vessel, the shear-thinning effects are predominant
in the recirculation zone downstream the stenosis, increasing as the flow rate (and consequently
the shear rate) decreases. In the curved vessel we observed in particular that the axial velocity
profile is flatter for the bNOB and GOB models than for the NS model. In summary, we can
also conclude that results obtained with the new bNOB model are very similar to those obtained
with the classical GOB model, showing in particular that the bNOB model has been properly
adjusted and implemented. In addition, this blood rheological model has been created within the
novel thermodynamical framework developed by Rajagopal and Srinivasa [28] and the simulations
presented here are one of the first making use of that promising approach.

Future work will be devoted to an extension of this numerical study to unsteady flows in geome-
tries like stenosed vessels with different degrees of contraction and curved vessels with different
curvatures, to provide a deeper understanding of the significance of the non-Newtonian character-
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Figure 15: Axial velocity profiles for NS flows (top row), GOB flows (middle row) and bNOB
flows (bottom row) in the curved vessel.

istics of blood captured by the bNOB model and their correlation with arterial diseases.
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B.4 Blood Coagulation Simulations Using a Viscoelastic Model

SEQUEIRA A., BODNÁR T.
In: Mathematical Modelling of Natural Phenomena. 2014, vol. 9, no. 6, p. 34–45.
ISSN 0973-5348, DOI: 10.1051/mmnp/20149604.

In this paper the non-linear viscoelastic model proposed by Anand and Rajagopal
in [B.1] (and solved by T. Bodnár in [B.6]) is for the first time adopted in blood
coagulation simulations. This paper is a natural extension and continuation of the
author’s previous papers shown in the sections B.1 and B.3. The main aim was to
prove the useabilty of the numerical solver and adopted flow-biochemistry coupling
strategy.

The computational test case was proposed and solved by T. Bodnár using his own
original finite-volume based code.
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Abstract. This paper presents numerical results based on a macroscopic blood coagulation
model coupled with a non-linear viscoelastic model for blood flow. The system of governing
equations is solved using a central finite-volume scheme for space discretization and an explicit
Runge-Kutta time-integration. An artificial compressibility method is used to resolve pressure
and a non-linear TVD filter is applied for stabilization. A simple test case of flowing blood over
a clotting surface in a straight 3D vessel is solved. This work presents a significant extension of
the previous studies [10] and [9].

Keywords and phrases: blood coagulation, clot, viscoelastic model, numerical simulations

Mathematics Subject Classification: 76Z05, 76V05, 80A32, 92C35, 74F25, 80A30,
92C45, 92C40

1. Introduction

Mathematical and numerical modeling of blood flow and related phenomena are very challenging prob-
lems. The flow of blood is difficult to model mainly due to its complex rheological behavior which can
be highly non-Newtonian in certain regimes in healthy and unhealthy blood flow conditions [17, 29, 30].
Rheological characteristics like shear-thinning viscosity, thixotropy, viscoelasticity or yield stress can be
observed. A variety of models have been developed for blood flow including some of these features and,
nowadays, it is still not possible to accept a single model to capture the most important mechanical prop-
erties of blood. The modeling approach is usually based on the blood flow conditions in view of predicting
its behavior. The work presented here follows previous studies [11–13] describing the shear-thinning and
viscoelastic behavior of blood in simple geometries. Even if blood flow is considered as purely mechanical,
its mathematical modeling and numerical simulations present serious challenges as shown e.g. in [18,21]
or [26].

The complex mechanical properties of blood flow are highly affected by the behavior of blood cellular
elements (red blood cells, white blood cells and platelets), in particular by the aggregation of red blood
cells into 3D microstructures at low shear rates and their disaggregation at high shear rates. Moreover,
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in flowing blood an enormous amount of biochemical reactions are associated to the complex process of
blood coagulation and hemostasis.

Blood coagulation is an extremely complex biological process following a wound or a spontaneous
internal injury, in which blood forms clots to prevent bleeding. The process involves platelets activation,
the subsequent release of multiple factors from their cytoplasmatic granules, their interaction with the
endothelial wall, with a huge impact of the flowing blood and on the thrombus growth regularization. The
clot formation is followed by its dissolution repairing the injured wall, which is due to mechanical factors
such as high shear stress (see e.g. [16,28]). The process of platelets activation and blood coagulation is not
yet well understood. Numerous experimental studies have been performed and recent reviews detailing
this complex process are available in the literature (as in e.g. [16] and references cited therein). A large
number of sound phenomenological models for clot formation and lysis, based on different strategies,
have been developed [6, 14, 25, 33] or [1, 24]. One of the major problems is the high complexity of the
chemical system which crucially depends on the supply of chemicals by the flowing blood. This leads to
an important dependence of the coagulation process on the blood flow. On the other hand the blood flow
characteristics are determined by the size of the clot, forming an obstacle to the flow.

Any reliable model of blood coagulation should integrate a large number of biochemical, physiologic
and rheological factors and be validated by experimental data. The aim of this paper is to present
a successful way of coupling two of the most complex macroscopic continuum based models of blood
flow and biochemistry proposed in [1, 3]. The work presented herein merges and significantly extends
our previous studies [10] and [9]. We refer the reader to those papers for details concerning the model
development and implementation, since they are essential to fully understand the present work.

The main added features introduced in this new paper are related to the extension of the coupled
coagulation model presented in [10] by switching from the simple generalized Newtonian model to a new
non-linear viscoelastic model that was previously implemented and tested in [9]. In comparison with our
previous papers, the clot evolution is simulated on a longer time-interval, giving a better picture of the
long-term behavior of the clotting process. In addition, the mechanical effects of the clot formation on
the perturbation of the surrounding blood flow is studied in more detail than in our previous works.

2. Mathematical Models

The mathematical model consists of a coupled system of nonlinear partial differential equations describing
the flow of blood and a biochemical cascade of reactions leading to the clot formation.

2.1. Blood Flow Model

The flow is described by a nonlinear shear-thinning and viscoelastic fluid model following the thermody-
namics framework established in [27] and extended for blood flow in [4]. The set of governing equations
is based on the conservation of mass (reduced to a divergence-free constraint) and the conservation of
linear momentum for an incompressible fluid

∇ · u = 0 (2.1)

ρ

(
∂u

∂t
+ u · ∇u

)
= ∇ · T . (2.2)

The stress tensor T is split as follows:

T = −p1 + µ Bκp(t) + η1D (2.3)

where D = (L + LT )/2 denotes the symmetric part of the velocity gradient tensor L, 1 stands for the
identity tensor and µ, η1 are positive material parameters.
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The upper-convected time-derivative1 of the elastic stretch tensor Bκp(t) is given by2:

▽
Bκp(t)

= − 1

τ(Bκp(t))

[
Bκp(t) − λ1

]
(2.5)

Here the τ = τ(Bκp(t)) defined by equation (2.6) has the dimension of time and plays a role similar to
the relaxation time in the classical Oldroyd-B (Maxwell) model [11].

1

τ(Bκp(t))
= 2K

(
tr(Bκp(t)) − 3λ

)n
(2.6)

The coefficient λ depends on the trace of the inverse of the tensor Bκp(t) according to

λ =
3

tr
(
B−1

κp(t)

) . (2.7)

The remaining model coefficients for blood are taken from [4]:

η1 = 0.01 Pa · s; µ = 0.1611 N/m2; n = 0.5859; K =
(µ

α

)1+2n

= 58.0725 s−1

Using the definition of the upper-convected time derivative (2.4), the left-hand side can be rewritten in
a more conventional form in terms of the material time-derivative:

dBκp(t)

dt
−

[
LBκp(t) + Bκp(t)L

T
]

= − 1

τ(Bκp(t))

[
Bκp(t) − λ1

]
(2.8)

Finally, expanding the material time-derivative on the left-hand side we end up with

∂Bκp(t)

∂t
+ (u · ∇) Bκp(t) = −1

τ

[
Bκp(t) − λ1

]
+

[
LBκp(t) + Bκp(t)L

T
]

(2.9)

where the coefficients λ and τ are scalar functions of the tensor Bκp(t) and its invariants. More details
related to this model and its implementation can be found e.g. in [9].

2.2. Biochemistry Model

The biochemistry model is based on a coupled set of non-linear advection-diffusion-reaction (ADR) equa-
tions. It has been originally developed in [1] and further extended in [3]. It describes the spatio-temporal
evolution of concentrations [Ci] of 23 chemical constituents (enzymes, zymogens, proteins, etc.) that can
be written as

∂[Ci]

∂t
+ u · ∇[Ci] = ∇ · (Di∇[Ci]) + Ri (2.10)

The non-linear chemical reaction terms Ri are mainly based on first order, second order or Michaelis-
Menten kinetics. As an example we mention the reaction term RIa in the equation for fibrin production3:

RIa =
k1[IIa][I]

K1M + [I]
− h1[PLA][Ia]

H1M + [Ia]
(2.11)

1The upper–convected Oldroyd derivative of a tensor A is defined by

▽
A=:

dA

dt
− LA − ALT . (2.4)

2The subscript κp(t) is used to emphasize that the stretch is expressed with respect to the natural (time dependent)
configuration κp(t). This notation has been used in [4, 27] and [9] where the model has been introduced and used.

3The subscript Ia refers to the chemical notation for factor Ia, an activated protein named fibrin.
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The concentrations of thrombin (denoted by [IIa]), fibrinogen (denoted by [I]), fibrin (denoted by [Ia])
and plasminogen (denoted by [PLA]) are used to evaluate the reaction term RIa. The chemical kinetics
rates k1, h1 and the constants K1M , H1M are known in the literature (taken from [3]). The values of the
diffusion parameters Di and the exact form of the reaction terms Ri are given in [10], where the model
has been implemented for the first time and used in 3D simulations.

2.3. Coupling Strategy

The clot is a gel like structure consisting of a polymer (fibrin network), entrapping various blood com-
ponents [16] and thus fibrin concentration can be used as an indicator of the clot formation. The main
idea is to make the material properties of blood/clot dependent on fibrin concentration. For low fibrin
concentration the fluid behaves like flowing blood, while for high fibrin concentration the fluid changes its
behavior to a clot-like medium. In our model the fluid viscosity is multiplied by a factor η̃1 that locally
depends (linearly, up to a certain saturation value η∗) on the fibrin concentration [Ia]. The viscosity η1

is multiplied by a non-dimensional factor η̃1

η̃1 = min

{
1 +

η∗ − 1

Cclot
[Ia], η∗

}
(2.12)

In our study we have used η∗ = 100 and Cclot = 1000 nM .
In this framework the clot is characterized as a highly viscous fluid. The region occupied by the

simulated clot represents an obstacle to the flow field, with much lower viscosity. This effect is even
significantly magnified due to the non-Newtonian shear-thinning behavior of blood, leading to a further
increase of the fluid viscosity in regions of low shear.

Changes in the viscosity modify the local flow field which consequently affects the concentration field
that leads to further changes in viscosity. In this way the interaction biochemistry-flow through this
coupling strategy is enforced. More details can be found in [10] where this technique has been used for a
generalized Newtonian model, i.e. neglecting the viscoelasticity. In the present study the technique has
been extended to the new non-linear viscoelastic model as suggested in [2, 3, 5].

3. Numerical Methods

The system of governing equations is rather complex and highly non-linear. This is why the numerical
discretization has been chosen to be as simple and predictable as possible. We do not claim this choice
is optimal, it only serves as the first step allowing the evaluation of the underlying mathematical model
and to test its applicability in simple configurations. A semi-discretization approach is adopted to first
discretize the PDEs in space and then integrating the resulting system of ODEs in time, both for the
blood flow and the biochemical model.

The space discretization is based on a simple central finite-volume discretization on a structured grid
with hexahedral cells. A multiblock grid topology with wall-fitted cells is used. The viscous fluxes are
also discretized using a finite-volume method over a diamond-shaped cells adjoint to primary control
volumes faces. This approach was used in our previous papers [8, 11,13] or in [22,23].

The time integration is performed using a Runge-Kutta (RK) multistage scheme. A specific advection-
diffusion optimized RK method is used to reduce the computational cost. The basic idea behind this
subclass of RK methods is to split the space-discretization operator into its inviscid and viscous parts. The
inviscid part is evaluated in every stage of the RK method while the viscous fluxes are only evaluated in a
few stages. This corresponds to an operator splitting technique with different RK methods (coefficients)
used for the advection step and another for the diffusion step. This allows to save several (very expensive)
evaluations of diffusive fluxes per time-step while retaining the rather large stability region of the RK
method. For details see [19,20] or [11, 13].

Along with these two basic components of the numerical solver a specific stabilization technique is
used to avoid non-physical numerical oscillations due to the central discretization. The non-linear TVD
filter [15, 32] was used to smooth the concentration fields, as recently reported in [7].

37

B.4. Blood Coagulation Simulations Using a Viscoelastic Model 193



“Sequeira˙mmnp2014˙6” — 2014/7/10 — 15:07 — page 38 — #5i
i

i
i

i
i

i
i

A. Sequeira, T. Bodnár Blood coagulation simulations using a non-linear viscoelastic flow model

4. Numerical Results

X
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Z

Figure 1. Grid structure and clotting surface position.
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Figure 2. Time evolution of selected concentrations in the center of the clotting surface
during the initial 100 seconds.
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Figure 3. Time evolution of selected concentrations in the center of the clotting surface
during the initial 10 minutes.

The numerical test case is similar to the one used in [10] and [9], where we refer the complete parameter
set for this simulation. The geometry represents a straight section of a blood vessel with diameter 6.2mm
and length 31mm with grid shown in Figure 1.

The clotting surface is simulated in a region that is formed by the intersection of a sphere (of radius
3.1mm) with the blood vessel wall. The evolution in space and time of the clot is tracked down.

The model is very complex and thus the simulations generate large amounts of data to be visualized,
analyzed, and understood. In this paper only a few snapshots of results are presented to demonstrate
some of the most important model outputs.

The evolution in time of some of the coagulation factors can be observed in figures 2 and 3. The
concentration is visualized in a single point located in the center of the clotting surface on the vessel wall.
Only the initial 600 seconds of clotting are shown.

These graphs show the nature of the coagulation process, initially very fast, with rather slow long term
evolution in the later phase.

The spatial extent of the clot can be shown using the fibrin concentration contours. Figure 4 shows
those contours on the surface of the blood vessel.

The velocity field is affected by the clotting which results in flow deceleration and velocity magnitude
reduction in the regions of high fibrin concentration. To quantify and visualize the local flow deceleration,
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Figure 4. Fibrin concentration contours on the vessel wall at time 100 s.

the non-dimensional velocity reduction δ is defined as

δ(x, t) =
q(x, 0) − q(x, t)

q(x, 0)
. (4.1)

Here q(x, t) is the local velocity magnitude q =
√

u2 + v2 + w2. Since the no-slip condition is imposed
on the vessel wall, the velocity reduction is evaluated in the first near-wall grid node.

A snapshot of flow velocity magnitude reduction δ is shown in Figure 5.
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Figure 5. Near wall velocity magnitude reduction δ at time 100 s.
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Time evolution of the clot growth and its effects on blood flow can be observed in Figure 6 showing
the fibrin concentration and the velocity reduction δ on the deployed vessel surface4.
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(a) Fibrin concentration [Ia]
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(b) Blood velocity reduction δ

Figure 6. Clot evolution during the initial 60 seconds: snapshots at times t =
20, 40, 60 s, from top to bottom.

4The spatial dimensions are normalized using the vessel radius (half-diameter) R = 3.1mm.
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The same kind of visualization, but for a longer period of 600 seconds was used in Figure 7.
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(a) Fibrin concentration [Ia]
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(b) Blood velocity reduction δ

Figure 7. Clot evolution during the initial 600 seconds: snapshots at times t =
120, 360, 600 s, from top to bottom.

A better picture of the fibrin levels during the initial phase of clotting can be seen in Figure 8 showing
the concentrations along a line segment passing through the center of the clotting surface. A longer time
evolution of the clot during the initial 600 s is visualized in the contour map in Figure 9. Resulting flow
deceleration is depicted in Figure 10.
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Figure 8. Fibrin concentration evolution along an axial surface line during the initial
60 seconds.
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Figure 9. Fibrin concentration [Ia] along the axial surface line.

5. Conclusions

The numerical study presented in this paper has demonstrated the successful implementation of the cou-
pled blood flow and the biochemistry models. The blood flow model is now more complex in comparison
with the one presented in our previous work for blood coagulation presented in [10]. The viscoelastic
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Figure 10. Flow velocity reduction δ in the near-wall layer along the axial direction.

extension of the model should allow to extend the range of applicability of the model to critical flow
regimes. However, the use of this non-linear viscoelastic model extension results in an important increase
of the computational costs. The original, generalized Newtonian model with shear-thinning viscosity,
contains 4 + 23 = 27 PDEs to solve in 3D. The new model has 6 more equations for the components of
the viscoelastic stress tensor. This means that we solved now 4 + 6 + 23 = 33 equations for the coupled
model accounting for the blood rheology and the biochemical processes.

Future research will focus on performance and robustness improvements of the model and numerical
solvers. The stability issues raised in [31] should also be addressed in the context of the new modifications
of the model. Both of these topics will be important in future applications of the model requiring long
time simulations of the clot growth evolution.
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[15] B. Engquist, P. Lötstedt, B. Sjögreen. Nonlinear filters for efficient shock computation. Mathematics of Computation,
52 (1989), no. 186, 509–537.

[16] A. Fasano, R.F. Santos, A. Sequeira. Blood coagulation: a puzzle for biologists, a maze for mathematicians. In
D. Ambrosi, A. Quarteroni, and G. Rozza (Eds.) Modeling of Physiological Flows. vol. 5, Modeling, Simulation &
Applications, ch. 3 (2012) 41–75, Springer.

[17] G.P. Galdi, R. Rannacher, A. M. Robertson, S. Turek (Eds.) Hemodynamical Flows: Modeling, Analysis and
Simulations. (Oberwolfach Seminars), (2008) Birkhäuser Verlag.
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Chapter C

Concluding Remarks

The numerical methods and simulations presented in this work were focused on the solution of
certain non-standard problems of incompressible fluids flows. Due to the variable density and
non-trivial rheological behavior of the considered fluids, the original in-house built numerical
codes were developed and used by the author of this work. The choice of mathematical mod-
els, numerical methods and discretization strategies was essentially motivated by the practical
complex applications, although mainly simplified cases were solved at this stage.

The numerical simulations presented in the above selection of papers has shown that the
adopted models and methods performed rather well in simulating specific physical phenom-
ena. In most cases the development and testing of the used mathematical model was at least
as important as the testing of numerical methods and their implementation. Thus the adopted
numerical methods and test cases were kept often simple, which made their behavior easier
to predict, distinguish and separate from the behavior of the considered mathematical model.
In this context, it can be concluded, that the presented numerical simulations provided a use-
ful insight into the development of new, non-standard numerical models of various physical
phenomena arising in biomedical and environmental applications.

The presented work is currently being further developed and extended by the author. In
the environmental applications branch, the variable density stratified flows are now studied in
detail. Especially the problems related to well posedness of the mathematical formulations are
addressed with special aim to employ mathematically consistent, computationally robust and
physically meaningful boundary conditions. The biomedical applications oriented research led
to a new series of works aimed to address the high Weissenberg number problem. The author’s
current work under progress in this field goes towards the application of the newly emerging
log-conformation transformation methods in the for numerical simulation of viscoelastic fluids
flows.

The wide range of problems presented in the above works has shown that the mathematical
modeling and numerical simulation of incompressible fluids flows remains a challenging area
of research. It has large potential of future development, to which the author of this work aims
to further contribute.

In Prague, July 30, 2017

Tomáš Bodnár
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[5] T. BODNÁR, A. FASANO, AND A. SEQUEIRA. Mathematical Models for Blood Coagulation,
pages 483–569. Fluid-Structure Interaction and Biomedical Applications. Birkhäuser, 2014.
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[31] L. PIRKL AND T. BODNÁR. The blood flow simulations using shear–thinning Oldroyd–B
models. In Topical Problems of Fluid Mechanics 2010 Proceedings, pages 115–118, Prague,
CZ, 2010.
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temporal modelling of dust transport over surface mining areas and neighbouring res-
idential zones. Sensors, 8(6):3830–3847, 2008.
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spheric flow modelling including pollution. In Wind Effects on Trees - Proceedings of the
International Conference, pages 183–188, Karlsruhe, DE, 2003.
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