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Prague, 2017



This thesis is the result of my own work, except where explicit reference is made to the
work of others and has not been submitted for another qualification to this or any other
university.

Martin Štefaňák
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Abstract

Over the last two decades quantum walks have proven to be a very useful concept in quantum

information processing, quantum communication and quantum simulations. The presented

thesis reviews our contribution to this field of research. We provide a thorough introduction

to methods used for the study of quantum walks and their potential applications. To keep

the presentation intelligible we focus on specific examples. In particular, we analyze in detail

the properties of homogeneous quantum walks on a one-dimensional lattice with two and

three internal states. The application of the obtained results is illustrated on the examples

persistence of unvisited sites and quantum transport to an absorbing sink. We also discuss

quantum walks on finite graphs and their applications to quantum search and perfect state

transfer. Extension of the presented results, which can be found in enclosed published papers,

is discussed in detail.
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Notation

Z set of integers
C set of complex numbers
〈x〉 mean value of a random variable x
∆x standard deviation of a random variable x
H separable complex Hilbert space
l2(C) Hilbert space of square summable complex sequences
L2((a, b), dx) Hilbert space of square integrable complex function on the interval (a, b)
|ψ〉 vector from H
ψ column vector representing |ψ〉 in a particular basis of H
〈ψ| linear functional on H
〈φ|ψ〉 scalar product in H
Â linear operator on H
A matrix representation of operator Â in a particular basis of H
Î identity operator on H
⊗ tensor product
δij Kronecker delta
U(n) group of n× n unitary matrices
f(t) = O(g(t)) |f | is bounded above by g asymptotically, i.e.

∃ c, t0 > 0, ∀ t ≥ t0, |f(t)| ≤ cg(t)

f(t) = Ω(g(t)) f is bounded below by g asymptotically, i.e.

∃ c, t0 > 0, ∀ t ≥ t0, f(t) ≥ cg(t)

f(t) = Θ(g(t)) f is bounded below and above by g asymptotically, i.e.

f(t) = O(g(t)) and f(t) = Ω(g(t))

f(t) ∼ g(t) f is equal to g asymptotically, i.e. lim
t→∞

f(t)
g(t)

= 1
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Chapter 1

Introduction

Quantum walks [1] emerged during the 1990’s as quantum mechanical extensions of classical

random walks on a graph or a lattice, although similar ideas appeared already in 1960’s in

the works of Feynman and Hibbs on discretization of Dirac equation [2] and in the 1980’s in

the work of Gudder on quantum graphic dynamics [3,4]. The time evolution of the quantum

walk can be either continuous [5] or discrete [6]. In continuous-time quantum walk [5,7] the

evolution of the particle is governed by the Schrödinger equation where the Hamiltonian is

given by the discrete Laplacian of the graph. On the other hand, for discrete-time quantum

walks the evolution is given by successive application of a unitary evolution operator [6].

In the classical case the discrete-time and continuous-time versions or random walks are

equivalent, since we can obtain one from the other by taking an appropriate limit. However, in

the quantum case this holds only in several simple cases [8–10], and in general continuous-time

and discrete-time quantum walks are not equivalent. Nevertheless, their basic features are

similar. Indeed, in both cases coherent evolution of the particle’s wave-function manifested

in the interference of probability amplitudes results in fundamentally different properties

in comparison with the classical random walk. In particular, homogeneous quantum walks

on infinite regular lattices spread quadratically faster than their classical counterpart [11].

Indeed, quantum walk is a ballistic process analogous to spreading of light in dispersive

media [12], whereas the classical random walk corresponds to a diffusion.

In our work we have focused on the discrete-time quantum walks. Meyer has shown

[6] that in order to obtain a non-trivial evolution the particle performing the discrete-time

quantum walk cannot be a scalar. A straight-forward way to overcome this constraint is to

embed the particle with an additional internal degree of freedom, usually called the coin,

which governs the displacements of the particle [11,13]. This leads us to the coined quantum

walk which is the topic of this thesis. Coined quantum walks are naturally defined on

regular graphs and lattices. Several variants of coin-less discrete-time quantum walks were

proposed. In scattering quantum walks [14–16], which were introduced following the analogy

with interferometric networks, the states of the quantum particle corresponds to the directed
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edges of the graph. Scattering walks are better suited for graphs with varying vertex degrees

than coined quantum walks, however, the two models are fully equivalent as showed in detail

in [17, 18]. Another version of coin-less quantum walk was proposed by Szegedy [19] who

considered a construction of discrete-time quantum walks based on quantization of classical

Markov chains. Certain instances of the Szegedey’s model can be converted into the coined

quantum walk [20, 21], however, the Szegedy’s model is more general. Another formulation

of a discrete-time quantum walk dynamics is represented by the staggered quantum walk

model [22–26] where the evolution of the particle is governed by reflections that correspond

to tessellations of the underlying graph. The staggered quantum walk model was recently

proven to be more general than both the coined and the Szegedy’s walk [27,28]. Finally, we

note that there is a distinct variant of discrete-time quantum walks, called open quantum

walks [29], where the evolution of the walker is driven purely by interactions with the external

environment. Open quantum walks are formulated as quantum Markov chains on graphs [30].

The behaviour of quantum walks is usually investigated in the asymptotic limit. For

homogeneous translational invariant walks on infinite lattices there exists powerful methods

based on Fourier transformation [11]. They allow us to derive in a straightforward way the

weak-limit theorems [31] which rigorously prove the ballistic nature of quantum walks. We

note that the weak limit theorems can be also derived using the path integral approach

[32–34], although with considerably more effort. Homogeneous quantum walks with higher-

dimensional coins show additional non-classical effects such as trapping [35–45] where part

of the wave-function is captured in the vicinity of the origin. Nevertheless, trapping walks

still spread ballistically. Similar effect can be also observed for quantum walks where the

translational invariance is broken, e.g. due to point defects [46–50] or restriction of the walk

to a half-line [51]. Such walks without translational invariance are significantly more difficult

to investigate, however, analytical treatment is still tractable in some cases. For example,

the so-called CGMV method [52] which utilizes matrix-valued orthogonal polynomials can

be applied to quantum walks on a line [53] or a half-line [54] with position dependent coins.

Certain quantum walks with position dependent coins show the effect of Anderson localization

[55] manifested by the absence of spreading. Similar effect was observed in quantum walks

on a line under the influence of external electric field [56] which implement linearly increasing

position dependent phase. The electric field induces either ballistic propagation or Anderson

localization, depending on the phase difference per lattice site being a rational multiple of

2π or not. Extending the walk to a 2D lattice allows one to implement artificial magnetic

field [57] which shows similar relation between spreading (ballistic/diffusive) and the ratio

of magnetic flux through the unit cell to flux quantum (rational/irrational). Great attention

has been focused on the influence of external perturbations on the behaviour of quantum

walks. It was found that phase noise random in both position and time leads to decoherence

and classical behaviour [58, 59]. On the other hand, spatially dependent phase noise results

in Anderson localization [60–62]. Another form of external perturbation represented by
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randomly disappearing edges leads to quantum walks on dynamical percolation graphs [63].

Asymptotic dynamics of such walks can be treated within the framework of random unitary

channels [64–66]. It is highly sensitive to the structure of the percolated graph and boundary

conditions [67–69].

Soon after the introduction of quantum walks their potential for quantum information

processing was identified [70], in particular, in problems related to graphs. The most

promising applications are the quantum walk based algorithms for searching an unsorted

database [19, 71–85] which can be formulated as finding a marked vertex of a graph. The

quantum walk search offers a quadratic speed-up over its classical counterpart. These re-

sults significantly extend the original Grover’s search algorithm [86, 87] by representing the

database with various graphs structures which might be easier to implement in the future

experiments. While the original quantum walk search algorithms were analyzed on sym-

metric regular lattices or graphs, such as the hypercube or the complete graph, later it was

found that high symmetry [88, 89] or connectivity [90] is not required for the optimal run-

time of the algorithm. Recently, it was shown [91] that the continuous-time quantum walk

search algorithm is optimal for almost all graphs. Quantum walks have been applied to the

problem of graph isomorphism testing [92–97] or detecting anomalies in graphs [98–100].

They can be used to achieve quantum state transfer between two vertices of a graph or a

lattice [101–106]. Open quantum walks can be used to implement dissipative quantum com-

putation and quantum state engineering [107,108]. We note that both continuous-time [109]

and discrete-time [110] quantum walks were shown to be universal tools for quantum com-

putation, however, the implementation relies on construction of rather complicated graphs

and does not seem to be, at least at the moment, suitable for experimental realizations.

Outside of quantum information processing quantum walks were applied to various tasks

in the field of quantum simulations. Both continuous-time [111–116] and discrete-time [117–

122] quantum walks are natural candidates for modeling of coherent transport on graphs

and networks. They are instrumental in discretization of Weyl [123,124] and Dirac [125–133]

equations. Great attention has been recently focused on the abilities of quantum walks to

simulate various topological phases of matter [134–145]. The properties of the resulting

topologically protected bound states were explored in detail [146,147].

Wide potential application of quantum walks attracted considerable attention to the

design of experimental schemes. Various implementations of quantum walks were proposed,

including ion traps [148], neutral trapped atoms [149,150] and Rydberg atoms [151] in optical

lattices, cavity quantum electrodynamics [152, 153], optical cavities [154], linear optics [155,

156], Bose-Einstein condensates [157], arrays of quantum dots [158], semiconductor quantum

rings [159], optical angular momentum of light [160], parametric down-conversion in nonlinear

crystals [161], or superconducting qubits [162]. For a review on possible realization schemes

we refer the reader to [163].

Plenty of successful experimental realizations of quantum walks were reported over the
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past decade. Discrete-time quantum walks were implemented in the experiments with op-

tically trapped neutral atoms [164] and ions [165]. The coin degree of freedom is realized

by two electronic levels addressed by a laser. A neutral atom experiment was instrumental

for simulating the effects of artificial electric fields [166]. Large part of experiments employs

interference of light, either coherent or single photons. Continuous-time quantum walks

were implemented in integrated wave-guide arrays [168–171]. Discrete-time quantum walks

were realized in linear optics experiments mimicking the optical Galton board [172, 173] or

beam-displacer interferometers [174,175]. However, in these schemes the number of required

optical elements grows with the desired number of steps of the walk. This can be over-

come by utilizing loop architecture and time multiplexing [176], where the position of the

walker is encoded into the time of detection. Incorporation of fast-switching programable

electro-optical modulators into the optical loops enabled to demonstrate experimentally the

effects of decoherence and Anderson localization [177] or a walk on a dynamically percolated

graph [178]. Anderson localization was also observed in a walk of two entangled photons

in an integrated interferometer array [179]. Effects of topological phases in quantum walks

were experimentally demonstrated in a photonic implementation based on optical angular

momentum [180] and superconducting circuits [181].

The presented thesis summarizes the work done by the author in the field of quantum

walks over the past years. The main body of the text comprises of three Chapters where we

illustrate the methods used for analysis of quantum walks and their applications on specific

examples. Each Chapter ends with a detailed discussion of extensions of the presented

results which can be found in published papers enclosed at the end of the thesis. For easier

orientation in the text the author’s contributions are listed separately in the bibliography.

They are labeled by Roman numerals and ordered chronologically.

The rest of the thesis is organized as follows: Chapter 2 is dedicated to the introduction

of analytical methods applicable for homogeneous quantum walks. We briefly introduce

coined quantum walks on a line, in particular, the two-state walk with the Hadamard coin

(Hadamard walk). This model is used to illustrate the methods of analysis of homogeneous

quantum walks, namely the Fourier transformation, stationary phase approximation and the

weak-limit theorem. The role of the initial state on the evolution of the Hadamard walk is

understood in detail by expressing the derived results in a suitable basis of the coin space.

As an example of application of our results we investigate the persistence of unvisited sites.

In Chapter 3 the trapping effect and its implications on the behaviour of quantum walks

are discussed. We begin with the three-state walk with the Grover coin and investigate the

stability of the trapping effect under perturbation of the coin operator. The properties of the

derived one-parameter family of walks which preserves the trapping effect are investigated

in detail. This model is applied to the study of quantum transport on the ring graph with

an absorbing sink. We investigate the restrictions imposed on the transport efficiency by

the trapping effect. In Chapter 4 we illustrate the application of quantum walks to perfect
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state transfer between two vertices of graph. We discuss the relation between the Grover’s

search algorithm and the quantum walk search algorithm, and introduce the modification of

the latter to achieve perfect state transfer. Finally, we conclude and present an outlook in

Chapter 5.
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Chapter 2

Analytical Methods for Homogeneous
Coined Quantum Walks

2.1 Introduction

In this chapter we review some elementary but highly efficient methods for analyzing the

evolution of homogenous coined quantum walks. In particular, we focus on the Fourier

analysis [11] and the weak-limit theorem [31]. We describe our contribution to this field,

which is a detailed analysis of the role of the initial coin state on the evolution of the quantum

walk. The analysis simplifies considerably by choosing a suitable basis of the coin space. We

illustrate these methods on the example of the Hadamard walk on a line which was extensively

studied in the literature [11,12,32,33,182–184].

The Chapter is organized as follows: we briefly review the classical random walk on a line

and introduce the Hadamard walk as its quantum counterpart in Section 2.2. In Section 2.3

the time evolution of the Hadamard walk is solved with the help of the Fourier transfor-

mation. The form of the solution allows us to employ the stationary phase approximation

in Section 2.4 to derive some basic properties of the probability distribution generated by

the Hadamard walk. We proceed further with the analysis of the probability distribution in

Section 2.5 where we derive the weak-limit theorem and the limit density. The dependence

of the limit density on the initial condition is investigated in more detail in Section 2.6. The

application of the limit density is illustrated on the study of persistence of unvisited sites

in Section 2.7. Finally, in Section 2.8 we discuss the extension of the described methods to

different models of coined quantum walks which we have considered in [I,V,VI,VII,VIII,IX].

2.2 Hadamard Walk on a Line

Let us first briefly review the classical random walk on a line which is a stochastic process

where the particle moves on an integer lattice in discrete time steps. We consider an unbiased
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random walk where in each step the particle has two possibilities: it can move from its present

position x to the neighboring lattice points x ± 1 with equal probability. Suppose that the

particle starts the walk from the origin of the lattice x = 0. After the first step, we find it

at sites x = 1 or x = −1 with equal probability one-half. The probability p(x, t) that the

particle is at position x at a latter time t is determined by the following recurrence relations

p(x, t) =
1

2
p(x− 1, t− 1) +

1

2
p(x+ 1, t− 1), x ∈ Z. (2.1)

The solution of the equations (2.1) with the initial condition p(0, 0) = 1 is given by

p(x, t) =
1

2t

(
t
t+x
2

)
, (2.2)

where we consider only positions x with the same parity as t. Indeed, the walk is bipartite,

i.e. the particle cannot be found at odd (even) position in even (odd) number of steps. We

can understand the formula (2.2) in the following way: all random paths connecting the

origin and the final destination x in t steps have the same probability 1/2t, and the number

of such paths is given by the binomial coefficient. Using the formula (2.2) it is straightforward

to calculate various attributes of the random walk, e.g. the mean value and the standard

deviation of the particle’s position. The mean value vanishes since the random walk we

consider is unbiased. The standard deviation grows with the square root of the number of

steps which corresponds to the fact that the classical random walk is a diffusion process. For

large number of steps t we can approximate the exact probability distribution (2.2) with the

Gaussian distribution

p(x, t) ≈ 1√
2πt

e−
x2

2t2 ,

which has a vanishing mean value and a standard deviation ∆x =
√
t.

Let us now turn to the quantum counterpart of the classical random walk on a line. We

consider a propagation of a quantum particle on an integer lattice described by discrete-time

unitary evolution. We denote by |x〉, x ∈ Z, the state of the particle being located at the

vertex x. These vectors form an orthonormal basis of the position space HP

HP = Span {|x〉|x ∈ Z} = l2(C), 〈x|y〉 = δxy,
∑

x

|x〉〈x| = ÎP .

The propagation of the quantum particle should resemble the classical random walk, where

the particle moves from its present position to the nearest neighbours. Instead of choos-

ing the particular direction randomly we would like the quantum particle to evolve into a

superposition

|x〉 −→ |x− 1〉+ |x+ 1〉. (2.3)

However, the time evolution according to the rule (2.3) is not unitary, since it does not

preserve orthogonality of vectors |x〉 and |x ± 2〉. One possibility to make it unitary is to
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consider a quantum particle which has an internal degree of freedom, usually called the coin.

This leads us to the coined version of the discrete-time quantum walk [6]. In our particular

case the coin has two orthogonal states |L〉 and |R〉 which form a basis of the corresponding

coin space HC

HC = Span {|L〉, |R〉} = C2.

The complete Hilbert space of such a two-state coined quantum walk on a line is thus given

by the tensor product of the position space HP and the coin space HC

H = HP ⊗HC = l2(C)⊗ C2.

The state of the coin determines the next move of the particle according to the rules

|x〉|L〉 −→ |x− 1〉|L〉, |x〉|R〉 −→ |x+ 1〉|R〉.

This transformation is described by the conditional shift operator Ŝ

Ŝ =
∞∑

x=−∞

(
|x− 1〉〈x| ⊗ |L〉〈L|+ |x+ 1〉〈x| ⊗ |R〉〈R|

)
.

The time evolution described purely by the shift operator Ŝ would be trivial, since the part

of the initial wave-function with the coin state |L〉 (|R〉) will propagate to the left (right)

and these two parts will never interfere. In order to achieve a non-trivial time evolution we

have to rotate the state of the coin before each application of the shift operator Ŝ. This is

mathematically described by the coin operator which in principle can be any unitary acting on

the two-dimensional coin space HC . Moreover, it can be also position and time-dependent.

For comparison with the considered classical case where the rules of the evolution do not

change we consider the coin operator to be homogeneous in both position and time. We

restrict ourselves to a particular choice of the coin given by the Hadamard transformation

Ĥ, which is defined by the action on the basis states

Ĥ|L〉 =
1√
2

(|L〉+ |R〉) , Ĥ|R〉 =
1√
2

(|L〉 − |R〉) .

This transformation is in the standard basis of the coin space {|L〉, |R〉} represented by the

matrix

H =
1√
2

(
1 1
1 −1

)
. (2.4)

We refer to the two-state quantum walk with this particular choice of the coin operator as

the Hadamard walk. The unitary evolution operator Û which performs a single step of the

Hadamard walk is given by

Û = Ŝ ·
(
ÎP ⊗ Ĥ

)
. (2.5)
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Suppose that the quantum particle starts the walk at the origin with an initial coin state

|ψC〉
|ψ(0)〉 = |0〉 ⊗ |ψC〉. (2.6)

The initial coin state |ψC〉 is decomposed into the standard basis of the coin space as

|ψC〉 = ψL|L〉+ ψR|R〉, (2.7)

where the amplitudes fulfil the normalization condition

|ψL|2 + |ψR|2 = 1.

The state of the particle after t steps of the Hadamard walk is given by successive applications

of the unitary evolution operator Û to the initial state

|ψ(t)〉 = Û t|ψ(0)〉. (2.8)

We see that in the quantum case there is no randomness in the time evolution itself - it is the

usual unitary evolution of a closed quantum mechanical system. Nevertheless, randomness

enters through the measurement. Indeed, if we want to know the position of the particle we

have to make a measurement. The probability to find the particle at position x after t steps

of the walk is given by the standard quantum mechanical formula

p(x, t) =
∑

i=L,R

|〈x|〈i|ψ(t)〉|2 ,

where we sum over the two internal coin states. The state vector after t steps |ψ(t)〉 can be

written as a superposition

|ψ(t)〉 =
∞∑

x=−∞

(
ψL(x, t)|x〉|L〉+ ψR(x, t)|x〉|R〉

)
, (2.9)

where ψL,R(x, t) are the probability amplitudes of finding the particle at position x with the

coin state |L〉, |R〉 after t steps of the walk. Let us denote by ψ(x, t) the vector of probability

amplitudes corresponding to the position x after t steps, i.e.

ψ(x, t) = (ψL(x, t), ψR(x, t))T .

The probability distribution of the particle’s position generated by the Hadamard walk is

then given by

p(x, t) = ||ψ(x, t)||2 = |ψL(x, t)|2 + |ψR(x, t)|2.
For comparison, we show in Figure 2.1 the probability distributions of the classical random

walk and the Hadamard walk after t = 100 steps. Classical random walk depicted by the
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red dots results in a Gaussian distribution with zero mean value and standard deviation

proportional to the square-root of the number of steps. Indeed, the classical random walk is

a diffusive process. On the other hand, the probability distribution of the Hadamard walk

depicted by the black dots is characterized by two dominant peaks on the edges. Due to the

choice of the initial coin state |ψC〉 = |L〉 the peak on the left is more pronounced. Moreover,

the standard deviation is proportional to the number of steps, i.e. it grows quadratically faster

than in the classical case. The ballistic nature of quantum walks arises from interference of

probability amplitudes assigned to different trajectories leading to the same final lattice point.

We note that it is important that we let the quantum particle evolve freely and make the

position measurement only at the very end. If we perform a position measurement after each

step we obtain one classical random path and by making a statistics of such paths we recover

a classical random walk.

−70 35 0 35 70
0

0.05

0.1

x

p
(x
,t
)

Figure 2.1: The probability distribution p(x, t) of the classical random walk (red dots) and
the Hadamard walk (black dots) after 100 steps. We plot p(x, t) only for even x, since after
even number of steps the probability to find the particle at odd positions is zero. The width
of the distribution is proportional to

√
t in the classical case and t in the quantum case.

2.3 Fourier Analysis

In this Section we solve the time-evolution equation of the Hadamard walk (2.8) with the

help of the Fourier transformation. We follow the approach of [11]. Let us first rewrite the

equation (2.8) into a set of equations for the probability amplitudes ψ(x, t). We find that
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(2.8) is equivalent to an infinite set of matrix equations

ψ(x, t) = HLψ(x+ 1, t− 1) +HRψ(x− 1, t− 1), x ∈ Z, (2.10)

where we have defined the matrices

HL =
1√
2

(
1 1
0 0

)
, HR =

1√
2

(
0 0
1 −1

)
.

These equations are reminiscent of the time evolution equations of the classical random walk

(2.1). However, in (2.10) we transform probability amplitudes instead of probabilities. This

difference is at the heart of the quadratically faster growth of the standard deviation for

quantum walks in comparison to the classical random walk.

Let us define the Fourier transformation F̂ as the isometry between the Hilbert space

of the Hadamard walk (i.e. l2(C) ⊗ C2) and the Hilbert space of pairs of square integrable

complex functions on the unit circle L2((0, 2π), dk)⊗ C2. For ψ ∈ l2(C)⊗ C2, i.e.

ψ = {ψ(x)}∞x=−∞ , ψ(x) ∈ C2,
∑

x

||ψ(x)||2 <∞

we define its Fourier transformation ψ̃ ∈ L2((0, 2π), dk)⊗ C2 by

ψ̃(k) = (F̂ψ)(k) =
∞∑

x=−∞

eixkψ(x).

Multiplying the equation (2.10) by eixk and summing over all x we find that in the Fourier

picture the time-evolution equation reads

ψ̃(k, t) = Ũ(k)ψ̃(k, t− 1), (2.11)

where Ũ(k) is the Fourier transformation of the evolution operator Û which is given by

Ũ(k) = D(k) ·H, D(k) =

(
e−ik 0

0 eik

)
. (2.12)

The recurrence relation (2.11) is easily reduced to

ψ̃(k, t) = Ũ(k)tψ̃(k, 0), (2.13)

where ψ̃(k, 0) is the Fourier transformation of the initial state. Since we consider the initial

state of the form (2.6), we find that its Fourier transformation is a k-independent vector ψC
with components given by the amplitudes of the initial coin state (2.7), i.e.

ψ̃(k, 0) = ψC = (ψL, ψR)T .
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The time evolution equation (2.13) is readily solved by diagonalizing the matrix Ũ(k). From

(2.12) we find that the eigenvalues of Ũ(k) are given by

λ1(k) = e−iω(k), λ2(k) = −eiω(k),

where the phase ω(k) is determined by the formula

ω(k) = arcsin

(
sin k√

2

)
. (2.14)

The eigenvectors of Ũ(k) corresponding to λj can be expressed in the following form

v1(k) =
1

n1(k)

(
1

−1 +
√

2e−iω(k)+ik

)
,

v2(k) =
1

n2(k)

(
1

−1−
√

2eiω(k)+ik

)
. (2.15)

Here the functions ni(k) represent the normalization factors which equal

n1,2(k) =

√
4− 2

√
2 cos(k ∓ ω(k)).

The solution of the time-evolution equation in the momentum representation (2.13) is thus

given by

ψ̃(k, t) = e−iω(k)tv1(k)f1(k) + (−1)teiω(k)tv2(k)f2(k), (2.16)

where fj(k) denotes the overlap of the eigenvector vj(k) with the Fourier transformation of

the initial state, i.e.

fj(k) = (vj(k), ψC) .

Finally, with the help of the inverse Fourier transformation F̂−1 defined by

ψ(x) =
(
F̂−1ψ̃

)
(x) =

2π∫

0

dk

2π
e−ixkψ̃(k),

we obtain the solution of the time-evolution equation in the position representation in the

form

ψ(x, t) = I1(x, t) + (−1)t I2(x, t). (2.17)

Here we have defined the integrals

I1(x, t) =

2π∫

0

dk

2π
e−ixke−iω(k)tv1(k)f1(k),

I2(x, t) =

2π∫

0

dk

2π
e−ixkeiω(k)tv2(k)f2(k).
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This is an exact solution, however, the integrals are difficult to evaluate analytically. Nev-

ertheless, the form of the solution (2.17) allows us to easily identify some basic properties

of the probability distribution generated by the Hadamard walk. In particular, we use it

to explain the qualitatively different features of the probability p(x, t) in dependence on the

relation between |x| and t, as illustrated in Figure 2.2.

−70 35 0 35 70

10−1

10−3

10−5

x

p
(x
,t
)

Figure 2.2: Probability distribution of the Hadamard walk with the initial coin state |ψC〉 =
|L〉 after t = 100 steps on a logarithmic scale. We clearly observe different regimes of the
probability p(x, t) depending on the value of |x|. The probability distribution is almost flat
for |x| < 70. There are significant peaks around positions x = ±70. Finally, for |x| > 70 the
probability distribution decreases rapidly.

2.4 Stationary Phase Approximation

Figure 2.2 indicates that there are three distinct regimes of the probability distribution p(x, t)

depending on the relation between the number of steps t and the distance from the origin |x|.
For |x| & 0.7t the probability distribution decreases rapidly. Around the points x ≈ ±0.7t

we observe quite dominant peaks. For smaller values of |x| the probability distribution is

almost flat. We explain this behaviour by analyzing the asymptotic scaling of the probability

distribution. Following the approach of [11] we employ the method of stationary phase [185]

to investigate the properties of the integrals Ij(x, t) for large t. We first rewrite the integrals
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into a more suitable form

I1(x, t) =

2π∫

0

dk

2π
eiω−(k,

x
t
)tv1(k)f1(k),

I2(x, t) =

2π∫

0

dk

2π
eiω+(k,x

t
)tv2(k)f2(k), (2.18)

where we have defined the phases ω± according to

ω±

(
k,
x

t

)
≡ ±ω(k)− x

t
k.

The asymptotic behaviour of (2.18) can be determined with the stationary phase approxi-

mation [185]. Accordingly, the rate of decay is given by the order of the stationary points of

the phases ω±. We say that k0 is a stationary point of ωj of the order p− 1 if the first p− 1

derivatives of ωj at k0 vanish and the p-th derivative is non-vanishing. The contribution of

such a stationary point k0 to the integral (2.18) is of the order of t−1/p for large t. If no

stationary point within the range of integration exists then the integral decays exponentially

with t.

Let us now specify the results for the Hadamard walk. From the expression (2.14) we

find that the conditions for k0 to be a stationary point of the order at least 1 are given by

dω±
dk

∣∣∣∣
k0

= ± dω

dk

∣∣∣∣
k0

− x

t
= ± cos k0√

2− sin2 k0
− x

t
= 0. (2.19)

The range of the function dω
dk

= cos k√
2−sin2 k

is limited to the interval 〈− 1√
2
, 1√

2
〉. Hence, for

|x|
t
> 1√

2
the equations (2.19) do not have a solution, i.e. there are no stationary points of

the phases ω±. As follows from the stationary phase approximation, the integrals Ij(x, t)
decay exponentially with t for |x| > t√

2
. Therefore, the probability distribution p(x, t) also

decreases rapidly for |x| > t√
2
. We illustrate this behaviour in Figure 2.3.

For |x|
t
< 1√

2
the equations (2.19) have solutions k±1,2 given by

dω+

dk
= 0 ⇒ k+1 = arccos

(
x
t

1− x2

t2

)
, k+2 = 2π − k+1 ,

dω−
dk

= 0 ⇒ k−1 = arccos

(
−

x
t

1− x2

t2

)
, k−2 = 2π − k−1 .

Moreover, all stationary points k±1,2 are of the first order, since the second derivatives of ω±
are non-vanishing as one can readily check from

∣∣∣∣∣
d2ω±
dk2

∣∣∣∣
k±1,2

∣∣∣∣∣ =

(
1− x2

t2

)√
1− 2

x2

t2
.
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Figure 2.3: Asymptotic scaling of the probability distribution p(x, t) with respect to the
number of steps t for |x| > t√

2
. We have chosen the position x to increase linearly with the

number of steps t according to x ≈ 0.8 t. The plot uses logarithmic scale to highlight the long-
time behaviour. The green dashed line corresponds to the exponential fit p(x, t) ∼ c1 e

−c2 t.

The stationary phase approximation indicates that for large t the integrals scales according

to Ij(x, t) = Θ
(
t−

1
2

)
for |x| < t√

2
. The same applies to the probability amplitude ψ(x, t).

Hence, for |x| < t√
2

the probability behaves like p(x, t) ∼ c t−1. To illustrate this behaviour

we plot the probability p(x, t) for a fixed position x = 0 as a function of the number of steps

t in Figure 2.4.

Finally, let us consider the points x
t

= ± 1√
2
. In this case both the first and the second

derivatives of ω± vanish at k±1,2, however, one can check that the third derivatives are non-

zero. Hence, for x
t

= ± 1√
2

the phases ω± have second order stationary points, and we find

that the integrals (2.18) behave as I2,3
(
x = ± t√

2
, t
)

= Θ
(
t−

1
3

)
. This result indicates that in

the vicinity of the points x = ± t√
2

the probability distribution behaves like p(x, t) ∼ c t−
2
3 .

Hence, it decays slower than for smaller or larger values of |x| which corresponds to the

presence of peaks in the probability distribution. The asymptotic scaling of the probability

distribution for x ≈ t√
2

is illustrated in Figure 2.5.

The distance of the peaks from the origin increases linearly with the number of steps.

Hence, one can say that they propagate with a constant velocity which is given by

v =

∣∣∣∣∣
dω

dk

∣∣∣∣
k±1,2

∣∣∣∣∣ =
1√
2
.

This result proves the ballistic spreading of the Hadamard walk on a line. Note that there
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Figure 2.4: Probability to find the particle p(x, t) after t steps for a fixed position x = 0.
The black dots are obtained from the numerical simulation. The green dashed line is given
by the fit p(x, t) ∼ c t−1. We use log-log scale to unravel the asymptotic behaviour of p(x, t).

100 200 500 1000
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t/
√
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Figure 2.5: Asymptotic scaling of the probability p(x, t) for x ≈ t√
2
. This point corresponds

to the position of the peak in the probability distribution after t steps. The black dots are
obtained from the numerical simulation. The green dashed line is determined by the fit
p(x, t) ∼ c t−

2
3 . We use log-log scale to unravel the asymptotic behaviour of p(x, t).

is a simple analogy of the spreading of a homogeneous quantum walk on a line with the

propagation of a wave in a dispersive medium. Indeed, consider the Fourier variable k as
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a wave-number and the phase ω(k) as frequency. Equation (2.14) represents the dispersion

relation. Taking the derivative with respect to k we obtain the group velocity [186]. The

wavefront, i.e. the peak in the probability distribution, propagates with the maximal group

velocity.

We summarize our observations of a generic probability distribution generated by the

Hadamard walk on a line in the Table 2.1.

Distance from the origin Behaviour of p(x, t)

0 < |x| < t√
2

p(x, t) ∼ c t−1

|x| ≈ t√
2 p(x, t) ∼ c t−

2
3

|x| > t√
2

p(x, t) ∼ c1 e
−c2 t

Table 2.1: Behaviour of a generic probability distribution p(x, t) in dependence on the relation
between |x| and t.

2.5 Weak-limit Theorem

In principle, one can continue with the stationary phase approximation to evaluate higher-

order corrections and obtain a more precise description of the probability distribution. How-

ever, this procedure is rather tedious. There exists a more straightforward alternative which

is based on the observation that the moments of the re-scaled position x
t

(or pseudo-velocity)

converge in the limit of large number of steps t. To illustrate this behaviour we display in

Figure 2.6 the first and the second moment of the random variable x
t

as a function of t.

The convergence of moments can be formulated as a week-limit theorem [31]: the pseudo-

velocity x
t

converges weakly in the asymptotic limit of t→ +∞ to a random variable v. We

will prove this statement and derive the explicit form of the probability density of the random

variable v, which we refer to as the limit density. We then discuss how the limit density can

be used to approximate the probability distribution p(x, t) of the Hadamard walk.

The n-th moment of the pseudo-velocity is given by
〈(x

t

)n〉
=

1

tn
〈X̂n〉 =

1

tn
〈ψ(t)|X̂n|ψ(t)〉, (2.20)

where the position operator X̂ acts on the state vector (2.9) as

X̂|ψ(t)〉 =
∞∑

x=−∞

x
(
ψL(x, t)|x〉|L〉+ ψR(x, t)|x〉|R〉

)
.
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Figure 2.6: First two moments of x
t

as a function of the number of steps t. We clearly see
that both moments converge to their limiting value. The initial coin state of the Hadamard
walk was chosen as |ψC〉 = |L〉.

The easiest way to evaluate the scalar product in (2.20) is to use the Fourier transformation

which turns the position operator X̂ into a differential operator with respect to k, i.e.

F̂ X̂F̂−1 = i
d

dk
.

Hence, we find the expression for the n-th moment of the particle’s position

〈X̂n〉 = 〈ψ̃(t)|F̂ X̂nF̂−1|ψ̃(t)〉 =

2π∫

0

dk

2π
ψ̃†(k, t)

(
i
d

dk

)n
ψ̃(k, t), (2.21)
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where ψ̃(k, t) is given in (2.16). Let us now turn to the integrand. From the form of the

solution in the momentum representation (2.16) we find the relation

(
i
d

dk

)n
ψ̃(k, t) = tn

(
dω

dk

)n (
e−iω(k)tf1(k)v1(k) + (−1)t+neiω(k)tf2(k)v2(k)

)
+O(tn−1).

The eigenvectors vj(k) of the evolution operator in the Fourier picture (2.12) satisfy the

following orthogonality relations

(vi(k), vj(k)) = δij ∀k ∈ (0, 2π).

This allows us to express the integrand of (2.21) in the form

ψ̃†(k, t)

(
i
d

dk

)n
ψ̃(k, t) = tn

(
dω

dk

)n (
|f1(k)|2 + (−1)n |f2(k)|2

)
+O(tn−1).

Hence, the moments of the pseudo-velocity x
t

are given by

〈(x
t

)n〉
=

1

tn
〈X̂n〉 =

2π∫

0

dk

2π

(
dω

dk

)n (
(−1)n |f1(k)|2 + |f2(k)|2

)
+O(t−1). (2.22)

With the explicit form of the eigenvectors (2.15) we obtain the following relations

|f1(k)|2 + |f2(k)|2 = 1,

|f1(k)|2 − |f2(k)|2 =

(
|ψL|2 − |ψR|2 + ψLψR + ψRψL

)
cos k + Im

(
ψLψR − ψLψR

)
sin k√

1 + cos2 k

We introduce a new integration variable v defined by

v =
dω

dk
=

cos k√
1 + cos2 k

.

Inverting this relation we find

dk =
dv

(1− v2)
√

1− 2v2
.

After some algebra we express the asymptotic values of the moments of pseudo-velocity x
t

(2.22) as an integral over the variable v. For even moments we obtain

lim
t→∞

〈(x
t

)2n〉
=

1√
2∫

− 1√
2

v2n
dv

π(1− v2)
√

1− 2v2
, (2.23)
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while for odd moments we find

lim
t→∞

〈(x
t

)2n+1
〉

= −

1√
2∫

− 1√
2

v2n+1

(
|ψL|2 − |ψR|2 + ψLψR + ψRψL

)
vdv

π(1− v2)
√

1− 2v2
. (2.24)

We can summarize these results in the form of a weak-limit theorem [31]: the pseudo-velocity
x
t

converges weakly in the asymptotic limit of t → +∞ to a random variable v. The limit

density of v can be deduced from (2.23) and (2.24) using the method of moments. We find

that it is given by [32,33]

w(v) =
M(ψL, ψR)

π (1− v2)
√

1− 2v2
, (2.25)

where M(ψL, ψR) denotes the weight function which depends on the initial coin state

M(ψL, ψR) = 1−
(
|ψL|2 − |ψR|2 + ψLψR + ψRψL

)
v. (2.26)

Since the range of the random variable v is finite the limit density w(v) is determined uniquely.

One can easily check that
1√
2∫

− 1√
2

w(v)dv = 1,

i.e. the density is properly normalized.

We use the limit density w(v) to approximate the exact probability distribution p(x, t) of

the Hadamard walk according to

p(x, t) ≈ 2

t
w
(x
t

)
. (2.27)

The factor of 2 arises from the fact that the Hadamard walk is bipartite, i.e. it occupies

only half of the available lattice points at each step. Within this approximation the peaks in

the probability distribution p(x, t) correspond to the divergencies of the limit density w(v).

Indeed, one can readily see from (2.25) that w(v) diverges for v → ± 1√
2
. Hence, w

(
x
t

)

diverges at x = ± t√
2
, which coincides with the position of the peaks after t steps. We

illustrate the approximation (2.27) for the initial coin state |ψC〉 = |L〉 in Figure 2.7.

2.6 Change of the Basis in the Coin Space

Let us now investigate the role of the initial coin state |ψC〉 on the shape of the probability

distribution in more detail. In principle, this is captured in the limit density through the

weight function (2.26), however, the dependence on the initial coin state is rather involved.
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Figure 2.7: The probability distribution after 100 steps of the Hadamard walk for the initial
coin state |ψC〉 = |L〉. The black dots are obtained from the numerical simulation. The
red curve corresponds to the approximation (2.27). Notice that the peaks in the probability
distribution p(x, t) correspond to the divergencies of the limit density w(x

t
). The plot is on

the log-scale.

Following the approach of [I] we show that the weight (2.26) can be considerably simplified

by expressing the initial coin state in a more suitable basis of the coin space.

The weight functionM(ψL, ψR) depends on the initial coin state through the amplitudes

ψL,R corresponding to the decomposition (2.7) of |ψC〉 into the standard basis of the coin

space {|L〉, |R〉}. However, we are free to use any basis, and we might find one in which the

expression for the weight function (2.26) simplifies. A natural candidate is the basis formed

by the eigenvectors of the coin operator Ĥ which are given by

|χ+〉 =

√
2 +
√

2

2
|L〉+

√
2−
√

2

2
|R〉,

|χ−〉 =

√
2−
√

2

2
|L〉 −

√
2 +
√

2

2
|R〉. (2.28)

The vectors |χ±〉 satisfy the eigenvalue equations

Ĥ|χ±〉 = ±|χ±〉.

Consider the particle starting the walk with the initial coin state |ψC〉 expressed in the

eigenvector basis as

|ψC〉 = h+|χ+〉+ h−|χ−〉, (2.29)
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where the amplitudes h± satisfy the normalization condition

|h+|2 + |h−|2 = 1.

The coefficients of this vector in the standard basis are then given by

ψL =

√
2 +
√

2

2
h+ +

√
2−
√

2

2
h−,

ψR =

√
2−
√

2

2
h+ −

√
2 +
√

2

2
h−.

Substituting these formulas into (2.26) we find that in the new basis the weight functionM
acquires a much simpler form

M(h+, h−) = 1−
√

2
(
2|h+|2 − 1

)
v. (2.30)

This allows us to get a better understanding of the role of the initial state on the evolution

of the quantum walk. First, we see that the coherence of the initial coin state does not

influence the shape of the probability distribution or the asymptotic values of the moments

of the pseudo-velocity. Indeed, the weight function (2.30) depends only on the probability

|h+|2 of the initial coin state being in the eigenvector |χ+〉. Hence, pure initial coin state

(2.29) and a mixed state of the form

ρ̂C = |h+|2|χ+〉〈χ+|+ |h−|2|χ−〉〈χ−|,

result in exactly the same limit density.

Second, we easily find that the eigenvectors |χ±〉 play a special role since they lead to a

non-generic probability distribution with only one peak. Indeed, if we consider |χ+〉 as the

initial coin state of the Hadamard walk the weight function reduces to

M(h+ = 1, h− = 0) = 1−
√

2v.

The limit density then has the form

w|χ+〉(v) =

√
1−
√

2v

π (1− v2)
√

1 +
√

2v
. (2.31)

We see that the limit density diverges for v → − 1√
2
, however, for v → 1√

2
it tends to zero.

Hence, for |ψC〉 = |χ+〉 the resulting probability distribution has only one peak on the left

hand side of the lattice. We illustrate this feature in Figure 2.8. Note that for the choice

|ψC〉 = |χ−〉 the probability distribution will be the exact mirror image of the one presented

in Figure 2.8.
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Figure 2.8: The probability distribution after 100 steps of the Hadamard walk for the initial
coin state |ψC〉 = |χ+〉. The black dots are obtained from the numerical simulation. The
red curve corresponds to the approximation with the limit density (2.31). The choice of the
initial coin state |χ+〉 results in a probability distribution with only one peak, in contrast
to a generic probability distribution presented Figure 2.7. We use log-scale to unravel the
behaviour of the probability distribution near x ≈ 70.

2.7 Persistence of Unvisited Sites

Finally, let us illustrate the application of the limit density on the example of persistence

of unvisited sites [VIII, 187, 188]. Persistence describes the probability that a given site

remains unvisited until certain number of steps. For classical random walks on a line and a

plane persistence of any site tends to zero for large number of steps. In particular, on one-

dimensional lattice persistence obeys an inverse power-law with exponent 1/2, which follows

in a straightforward way from the diffusive behaviour of a classical random walk [187]. In

the context of quantum walks persistence was first introduced in [188] where persistence of

unvisited sites for the Hadamard walk on a line was analyzed. Since measurement has a non-

trivial effect on the state of the quantum system, one has to specify a particular measurement

scheme to extend the concept of persistence to the domain of quantum walks. The authors

of [188] have considered a scheme where the quantum walk is restarted from the beginning

after the measurement, and in each iteration one additional step is performed. In this way

the effect of measurement on the quantum state is minimized. This measurement scheme

was originally introduced in [189] in the context of recurrence of quantum walks, which

can be viewed as a complementary event to that of persistence. In [188] it was found that

persistence of any site follows an inverse power-law with exponent determined numerically
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as λ ≈ 0.318. In contrast to the classical case, no clear connection of the exponent to the

ballistic behaviour of the quantum walk was found. We gave analytical explanation of the

numerical results found by [188] in the paper [VIII] where we have also extended the study

of persistence to different models of quantum walks. Let us now briefly review the approach

we have pursued in [VIII].

By persistence of a site x we understand the probability that the particular lattice point

remains unvisited until T steps. Since the walk starts at the origin of the lattice we only

consider persistence of sites x 6= 0. We find that this probability is given by [188]

Px(T ) =
T∏

t=1

(1− p(x, t)). (2.32)

We are interested in the asymptotic behaviour of persistence for large T . For this purpose

we re-write (2.32) in the exponential form

Px(T ) = exp

(
ln

(
T∏

t=1

(1− p(x, t))
))

= exp

(
T∑

t=1

ln(1− p(x, t))
)
.

We replace the logarithm by the first order Taylor expansion and arrive at

Px(T ) ≈ exp

(
−

T∑

t=1

p(x, t)

)
. (2.33)

Next, we approximate the exact probability p(x, t) with the limit density w(v) according to

(2.27) and replace the sum in (2.33) with an integral

Ix(T ) =

T∫

1

1

t
w
(x
t

)
dt.

We obtain the following approximation of persistence

Px(T ) ≈ exp (−Ix(T )) .

Using the form of the limit density of the Hadamard walk (2.25) the integral Ix(T ) can be

evaluated explicitly. We find that for large T it grows logarithmically according to [VIII]

Ix(T ) ∼ 1

π
ln

(
T

|x|

)
.

Hence, in the asymptotic regime persistence of site x follows an inverse power-law

Px(T ) ∼ c

(
T

|x|

)− 1
π

, (2.34)

independent of the initial coin state. The numerical value of the exponent λ = 1
π
≈ 0.318

coincides with the result obtained in [188].

To illustrate the power-law behaviour (2.34) we display in Figure 2.9 the persistence of

site x = 10.
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Figure 2.9: Persistence of site x = 10 for the Hadamard walk as a function of the number
of steps T . The particle starts the walk at the origin with initial coin state |L〉. The green-
dashed line corresponds to the power-law (2.34).

2.8 Discussion

In principle, any homogeneous quantum walk on infinite lattice can be analyzed along the

lines we have presented in this Chapter. The Fourier analysis reduces the solution of the

time-evolution equation to the diagonalization of a finite-size matrix depending on continuous

momentum. However, to find the eigenvalues and eigenvectors of the evolution operator in

the Fourier picture analytically is quite a difficult task, especially for quantum walks with

more internal degrees of freedom or on higher dimensional lattices. Hence, the limit density in

a closed form is known only for several models of quantum walks. Moreover, the dependence

of the limit density on the initial coin state is usually rather involved and the complexity

increases with growing dimension of the coin space. In this context the simplification of the

weight function by a proper choice of the basis of the coin space becomes a crucial point for

further analysis of the considered quantum walk and its application.

We have first employed this idea in [I] for the analysis of a quantum walk on a line with

two particles. We analyzed the directional correlations between the two particles, i.e. the

probability Ps(t) that the particles are after t steps of the walk on the same side of the lattice

with respect to the common starting point. We have considered non-interacting particles,

i.e. the evolution operator of the two-particle walk has the form

Û (2) = Û ⊗ Û ,

where Û is the evolution operator of the two-state Hadamard walk given in (2.5). Never-
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theless, the probability distribution of the two-particle walk in general does not factorize

into a product of single-particle distributions. Indeed, entangled initial coin states result in

non-trivial correlations between the positions of the particles. This makes the dependence

of the limit density on the initial coin state in the standard basis of the four-dimensional

coin space quite involved. However, the limit density simplifies considerably when the initial

coin state is expressed in terms of the basis formed by the eigenvectors of the two-particle

coin operator Ĥ ⊗ Ĥ. This basis can be constructed from the eigenvectors of the Hadamard

operator (2.28) by taking their tensor product. Expressing the two-particle initial state in

the eigenvector basis in the form

|ΨC〉 =
∑

α,β=±

h(αβ)|χα〉|χβ〉,

we found that the limiting value of the directional correlations is given by

Ps = lim
t→∞

Ps(t) =
1

4

(
1 + 2(|h(++)|2 + |h(−−)|2)

)
.

This result shows that the directional correlations for the two-particle Hadamard walk on a

line are bounded between 1
4

and 3
4
. The maximum value is reached when the initial coin state

|ΨC〉 is an eigenstate of Ĥ ⊗ Ĥ with eigenvalue +1, while the minimum value is obtained

for |ΨC〉 being an eigenstate corresponding to the eigenvalue -1. In addition, we have ana-

lyzed the directional correlations for the walk of non-interacting indistinguishable bosons or

fermions. We have shown that it can be reduced to the problem of distinguishable particles

with a particular coin state. Finally, we have introduced a two-particle quantum walk with

point interactions between the particles by altering the coin operator when the two particles

are at the same position. We have indicated by a numerical simulation that for certain point

interactions one can exceed the limits of directional correlations for non-interacting particles.

This result was later explained analytically in [190].

Quantum walk of two particles on a line, including interactions, was experimentally im-

plemented in [II] using photonic time-multiplexing. The experiment was the first realization

of a quantum walk on a non-trivial graph structure, in this case a square lattice. This is

mathematically equivalent to a walk of two particles on a line. To simulate the quantum

walk of interacting particles one has to alter the coin operator on the diagonal of the square

lattice, which corresponds to the two particles being at the same position. In the experiment

this was achieved using a fast-switching electro-optical modulator.

We have elaborated on the idea of using the basis of the coin space formed by the eigen-

vectors of the coin operator for the description of a quantum walk in [V] where we have

studied two families of three-state quantum walks on a line which we introduced in [III].

These families of quantum walks exhibit the so-called trapping effect which we discuss in

great detail in the following Chapter. In the paper [V] we focused on the role of the initial
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coin state and its coherence in controlling the properties of the quantum walk. The use of

the basis of the coin space formed by the eigenvectors of the coin operator allowed us to

easily identify non-generic solutions which are hidden in the standard basis description. The

results of [V] were used extensively in [VII] and [VIII]. In the paper [VII] we have studied

the excitation transport to an absorbing center on a ring graph modeled by a discrete-time

quantum walk. The results obtained in [V] allowed us to quantify the efficiency of trans-

port in dependence of the initial condition, as we illustrate in the following Chapter. The

paper [VIII] was dedicated to the analysis of the asymptotic scaling of persistence of unvis-

ited sites for quantum walks on a line. As we have illustrated on the particular case of the

Hadamard walk on a line in Section 2.7, for two-state quantum walks persistence follows an

inverse power law, similarly like for the classical random walk. However, for quantum walks

there is no connection between the behaviour of persistence and the scaling of the standard

deviation. In particular, in [VIII] we have considered two-state quantum walks with the coin

C(ρ) =

(
ρ

√
1− ρ2√

1− ρ2 −ρ

)
, 0 < ρ < 1,

which extends the Hadamard walk corresponding to the case ρ = 1√
2
. The coin parameter

ρ directly determines the velocity of the peaks. We found that in the asymptotic regime

persistence of site x follows an inverse power-law

Px(T ) ∼ c

(
T

|x|

)−λ
,

with the exponent

λ =

√
1− ρ2
ρπ

.

Hence, for two-state quantum walks the exponent is determined solely by the coin parameter

ρ and it can attain any positive value. For three-state quantum walks the behaviour of

persistence can be more involved, as we discuss in the following Chapter.

The analysis of limit distributions and their dependence on the initial coin state was

extended further in [VI] to quantum walks with Wigner coins which were introduced in [37].

The authors of [37] have discussed a model of quantum walk on a line where the particle can

make 2j + 1 displacements in each step, where j is a positive integer or half-integer. The

coin operator is given by 2j + 1-dimensional Wigner rotation matrix. The results in [37]

were provided in terms of the standard basis of the coin space and their complexity made

further analysis of the properties of the quantum walks with Wigner coins quite demanding.

In contrast to our previous results for the two-state [I] and three-state quantum walks [V]

the eigenvectors of the coin operator do not directly provide the suitable basis. Instead,

we have constructed the suitable basis for the two-state model corresponding to j = 1
2

by

explicitly identifying coin states resulting in non-generic densities. From the shape of these
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basis vectors we have derived a formula which enabled us to construct a suitable basis for

arbitrary j. The simple form of the limit density in the suitable basis allowed us to identify

various dynamical regimes in which the quantum walks with Wigner coins can be operated

in. As an example, we showed that it is possible to find an initial state which reduces the

number of peaks in the probability distribution from generic 2j + 1 to a single one.

Finally, in the paper [IX] we adopted the ideas developed for quantum walks on a line

in [I, V, VI] to quantum walks on a square lattice. We investigated the dependence of the

limit density of the two-dimensional quantum walk studied in [38] on the initial coin state.

We have shown that similar to [I, V] the eigenvectors of the coin operator form a suitable

basis for the description of the properties of the quantum walk. In particular, we found

non-generic probability distributions where certain peaks are suppressed.
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Chapter 3

Trapping Effect in Quantum Walks

3.1 Introduction

We dedicate this Chapter to the discussion of homogeneous quantum walks for which the

unitary evolution operator has a non-empty point spectrum. The existence of point spectrum

leads to the so-called trapping effect: part of the wave-function is trapped in the vicinity of

the origin which inhibits the spreading of the particle through the lattice. This is a purely

quantum-mechanical effect which has no classical counterpart. In the probability distribution

of the quantum walk the trapping effect is manifested by an additional peak located at the

origin, which does not spread and does not vanish with increasing number of steps. The

trapping was first observed in the three-state quantum walk on a line where the coin operator

is given by the Grover operator [35,36]. Later it was identified in quantum walks on higher-

dimensional lattices [41–43] and more complicated graph structures [44,45].

The Chapter is organized as follows: we introduce and explain the trapping effect on the

example of the three-state walk on a line with the Grover coin in Section 3.2. We perform

the Fourier analysis of the walk in Section 3.3 and show that the trapping effect arises due to

the existence of the point spectrum of the evolution operator. The stability of the trapping

effect under perturbation of the coin operator is investigated in Section 3.4. For the later

discussion we focus on a particular one-parameter family of coins which preserve the trapping

nature of the three-state Grover walk. The properties of the considered one-parameter family

of quantum walks on a line are analyzed in Section 3.5 and 3.6. In Section 3.5 we investigate

the limit density. The trapping probability is evaluated in Section 3.6. In Section 3.7 we

consider the three-state quantum walk on a ring graph as a model of quantum transport to

an absorbing sink. We conclude in Section 3.8 and discuss the consequences of trapping we

have analyzed in the papers [III, IV,V,VII,VIII].
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3.2 Three-state Grover Walk on a Line

Let us begin with the formal definition of the three-state Grover walk on a line. The Hilbert

space of this quantum walk has the usual form of the tensor product of the position space

HP and the coin space HC , i.e.

H = HP ⊗HC .

Since we consider a quantum walk on a line, the position space is the same as for the two-state

Hadamard walk which we have discussed in the previous Chapter, i.e.

HP = Span{|x〉|x ∈ Z} = l2(C),

However, the particle is now allowed to remain at its present position. Hence, the coin space

is three-dimensional

HC = Span{|L〉, |S〉, |R〉} = C3, (3.1)

and the basis state |S〉 corresponds to the particle staying at its present position.

The discrete-time evolution of the three-state Grover walk is given by the unitary operator

Û according to

|ψ(t)〉 = Û t|ψ(0)〉, (3.2)

where |ψ(0)〉 is the initial state of the walk. We assume that it has the form

|ψ(0)〉 = |0〉 ⊗ |ψC〉, (3.3)

i.e. the particle starts the walk from the origin x = 0 with some initial coin state |ψC〉.
Since we consider a homogeneous quantum walk the evolution operator Û is a product of the

displacement operator Ŝ and the coin operator Ĉ

Û = Ŝ ·
(
ÎP ⊗ Ĉ

)
. (3.4)

For the three-state walk on the line the displacement operator is given by

Ŝ =
∞∑

x=−∞

(
|x− 1〉〈x| ⊗ |L〉〈L|+ |x〉〈x| ⊗ |S〉〈S|+ |x+ 1〉〈x| ⊗ |R〉〈R|

)
. (3.5)

As the coin we choose the Grover operator Ĝ on the three-dimensional coin space HC , which

is defined as

Ĝ = 2|w〉〈w| − ÎC .
By |w〉 we have denoted the uniform superposition of all basis states of the coin space

|w〉 =
1√
3

(|L〉+ |S〉+ |R〉) .
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In the standard basis {|L〉, |S〉, |R〉} of the coin space the Grover operator Ĝ is given by the

matrix

G =
1

3



−1 2 2
2 −1 2
2 2 −1


 . (3.6)

The state vector after t steps of the three-state Grover walk |ψ(t)〉 can be written as a

superposition

|ψ(t)〉 =
∞∑

x=−∞

(
ψL(x, t)|x〉|L〉+ ψS(x, t)|x〉|S〉+ ψR(x, t)|x〉|R〉

)
,

where ψj(x, t) are the probability amplitudes of finding the particle at position x with the

coin state j (j = L, S,R) after t steps of the walk. Let us denote by ψ(x, t) the vector of

probability amplitudes corresponding to the position x after t steps, i.e.

ψ(x, t) = (ψL(x, t), ψS(x, t), ψR(x, t))T .

The probability distribution of the particle’s position generated by the three-state Grover

walk is then given by

p(x, t) = ||ψ(x, t)||2 = |ψL(x, t)|2 + |ψS(x, t)|2 + |ψR(x, t)|2.

For illustration, we show in Figure 3.1 a generic probability distribution obtained for the

three-state Grover walk with the initial state |ψC〉 = |S〉 after t = 50 steps (blue) and t = 100

steps (red).

The probability distribution presented in Figure 3.1 has three characteristic peaks. Two

traveling peaks are located at the edges of the probability distribution and their distance

from the origin increases linearly with the number of steps t, which shows the ballistic nature

of the quantum walk. The height of these peaks decreases with the number of steps. On the

other hand, the additional peak at the origin is stationary and it does not vanish even for

large number of steps t, as we illustrate in Figure 3.2. Here we present the probability to find

the particle at the origin of the walk as a function of the number of steps. One can clearly

see that p(0, t) does not vanish even for large t. Moreover, the same holds for any position

x on the lattice. We point out that this is a purely quantum-mechanical effect arising from

the additional degree of freedom offered in the quantum coin. Indeed, in a classical random

walk allowing the particle to stay at its present position does not influence the probability

distribution significantly - it will remain a Gaussian. In fact, one step of such a three-state

classical random walk is equivalent to two steps of the usual two-state random walk.

In general, we say that a quantum walk shows the trapping effect if

lim
t→∞

p(x, t) ≡ p∞(x) 6= 0,
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Figure 3.1: Probability distribution of the three-state Grover walk for the initial coin state
|ψC〉 = |S〉 after t = 50 steps (blue) and t = 100 steps (red).
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Figure 3.2: Probability to find the particle at the origin x = 0 as a function of the number
of steps t. The initial coin state was chosen as |S〉. The plot clearly indicates that the
probability p(0, t) converges to a non-zero value.

for some initial coin states. This feature, which is not present in a two-state quantum

walk on a line discussed in the previous Chapter, was identified for the first time in [35, 36]

and termed localization. However, this is often confused with the Anderson localization

35



which in the context of quantum walks arises from static phase disorder [60], see [61, 62] for

a comprehensive mathematical description. To avoid this confusion we refer to the effect

occurring in the three-state Grover walk as trapping. Trapping occurs for homogeneous

quantum walks where the time-evolution operator has, apart from the continuous spectrum,

also a non-empty point spectrum, as we show in the following Section. The probability

distribution of such quantum walk still spreads ballistically (∆x = Θ(t)), however, part of

the probability distribution is trapped in the vicinity of the starting point, as indicated in

Figure 3.1. In contrast, the Anderson localization is a dynamical effect of spatial randomness

which reduces the spectrum of the evolution operator to pure point, resulting in the absence

of spreading (∆x = Θ(1)).

We note that the trapping effect disappears if we choose the initial coin state as the

”leaving state” according to [35,36]

|ψC〉 =
1√
6
|L〉 −

√
2

3
|S〉+

1√
6
|R〉. (3.7)

We illustrate this feature in Figure 3.3. The initial coin state (3.7) results in a non-generic

probability distribution of the three-state Grover walk. We note that it is an eigenstate of the

Grover operator corresponding to the eigenvalue −1. Such states will become useful when

we analyze the role of the initial coin state on the probability distribution, as we have shown

in the previous Chapter.

−70 35 0 35 70
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x

p
(x
,t
)

Figure 3.3: Probability distribution of the three-state Grover walk for the leaving state given
by (3.7) after t = 100 steps. Notice the absence of the central peak in the probability
distribution when compared with Figure 3.1.
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3.3 Fourier Analysis

In this Section we perform the Fourier analysis of the three-state Grover walk. We show that

the trapping effect stems from the fact that the evolution operator of the three-state Grover

walk has an infinitely degenerate eigenvalue.

Similarly to Section 2.3 we introduce the Fourier transformation and find that the time-

evolution equation (3.2) turns into

ψ̃(k, t) = Ũ(k)tψ̃(k, 0). (3.8)

Here we have denoted by Ũ(k) the Fourier transformation of the evolution operator which is

given by

Ũ(k) = D(k) ·G, D(k) =




e−ik 0 0
0 1 0
0 0 eik


 . (3.9)

Since we consider the particle starting the walk from the origin the Fourier transformation

of the initial state reads

ψ̃(k, 0) = ψC = (ψL, ψS, ψR)T ,

where ψj are the probability amplitudes of |ψC〉 in the standard basis of the coin space.

Let us turn to the spectrum of the evolution operator Û . From (3.9) we find that the

eigenvalues of Ũ(k) are given by

λ1 = 1, λ2,3(k) = e±iω(k),

where ω(k) is determined by the dispersion relations

ω(k) = arccos

(
−1

3
(2 + cos k)

)
. (3.10)

We note that λ2,3(k) correspond to the continuous spectrum of the evolution operator Û ,

while λ1 = 1 determines its point spectrum. Moreover, λ1 = 1 is an eigenvalue of Û with

infinite degeneracy [35,36]. Indeed, the (non-normalized) eigenvector of Ũ(k) corresponding

to λ1 is easily found to be

v1(k) =

(
1,

1

2

(
1 + eik

)
, eik
)T

. (3.11)

Performing the inverse Fourier transformation we find the eigenvector in the position space

|s0〉 = |0〉
(
|L〉+

1

2
|S〉
)

+ |1〉
(
|R〉+

1

2
|S〉
)
.
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Moreover, due to the translational invariance of the walk, we can shift the vector |s0〉 any-

where on the lattice and obtain an infinite set of eigenvectors

|sx〉 = |x〉
(
|L〉+

1

2
|S〉
)

+ |x+ 1〉
(
|R〉+

1

2
|S〉
)
, x ∈ Z.

One can readily check that they satisfy the equation

Û |sx〉 = |sx〉,

i.e. they are eigenvectors of the evolution operator with eigenvalue 1.

We show that the existence of the point spectrum of the evolution operator Û is indeed

responsible for the trapping effect. As in the Section 2.3 we find that the solution of the

time-evolution equation in the Fourier picture (3.8) can be written in the form

ψ̃(k, t) = v1(k)f1(k) + eiω(k)tv2(k)f2(k) + e−iω(k)tv3(k)f3(k),

where fj(k) denotes the overlap of the eigenvector vj(k) with the Fourier transformation of

the initial state, i.e.

fj(k) = (vj(k), ψC) . (3.12)

The explicit form of the eigenvector vj(k) corresponding to the eigenvalue λj is not relevant

at the moment. With the help of the inverse Fourier transformation we obtain the solution

of the time-evolution equation in the position representation

ψ(x, t) = I1(x) + I2(x, t) + I3(x, t),

where we have defined the integrals

I1(x) =

2π∫

0

dk

2π
e−ixkv1(k)f1(k),

I2(x, t) =

2π∫

0

dk

2π
e−ixkeiω(k)tv2(k)f2(k),

I3(x, t) =

2π∫

0

dk

2π
e−ixke−iω(k)tv3(k)f3(k). (3.13)

In order to investigate the trapping effect we focus on the asymptotic behaviour of the proba-

bility amplitude. As follows from the Riemann-Lebesque lemma the two time-dependent inte-

grals in (3.13) vanish as t approaches infinity. However, the first integral is time-independent.

Hence, we find that the probability amplitude at position x in the asymptotic limit t→ +∞
is given by

ψ∞(x) ≡ lim
t→+∞

ψ(x, t) = I1(x),
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which can be non-zero. This results in the non-vanishing probability of finding the particle

at finite position x in the limit of infinite number of steps

lim
t→+∞

p(x, t) = p∞(x) = ||ψ∞(x)||2 6= 0, (3.14)

which we have defined as trapping.

We note that for the initial coin state (3.7) the trapping effect disappears, as we have

illustrated in Figure 3.3. This behaviour is straightforward to explain. Indeed, the Fourier

transformation of the initial state (3.7)

ψC =

(
1√
6
,−
√

2

3
,

1√
6

)T

,

is orthogonal to the eigenvector v1(k) corresponding to the point spectrum (3.11), i.e. the

overlap f1(k) is zero. Hence, the integral I1(x) vanishes, and so does the probability p(x, t)

for large t.

We conclude the Fourier analysis of the three-state Grover walk by evaluating the velocity

of spreading of the walk through the lattice. This is determined by the continuous part of the

spectrum of the evolution operator, i.e. the dispersion relations (3.10). As we have discussed

in Section 2.4, the stationary phase approximation indicates that homogeneous quantum

walks on a line spread ballistically. The traveling peaks propagate with a constant velocity

given by the maximum of the group velocity

v =

∣∣∣∣∣
dω

dk

∣∣∣∣
k0

∣∣∣∣∣ ,

where k0 satisfies
d2ω

dk2

∣∣∣∣
k0

= 0.

From the explicit form of the dispersion relations (3.10) we find that for the three-state

Grover walk the velocity of the traveling peaks is given by

v =
1√
3
.

This is in accordance with Figure 3.1, which shows the traveling peaks at positions approxi-

mately ±29 after 50 steps (blue dots) and ±58 after 100 steps (red dots).

3.4 Stability of the Trapping Effect

Let us now turn to the problem of stability of the trapping effect under the change of the coin

operator. As we have shown in the previous Section, the trapping effect in the three-state
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Grover walk arises from the fact that the evolution operator of the walk has a non-empty

point-spectrum. It may be anticipated that the presence of the point spectrum is highly

sensitive to the choice of the coin operator. It might not be limited to isolated examples such

as the Grover coin, however, even a small perturbation of the coin in a wrong direction can

eliminate the eigenvalue. This can be crucial for experimental realizations of such quantum

walks, since imperfections in all operations have to be taken into account.

We have addressed this issue for three-state quantum walks in [III] and [IV]. In [III] we

have derived two one-parameter families of coins which preserve the point spectrum. The sets

were obtained by a suitable parametrization either of the eigenvalues or of the eigenvectors

of the Grover matrix. Later, in the paper [IV] we have provided a full classification of U(3)

coins which lead to the trapping effect for three-state quantum walks on a line.

Let us now illustrate the approach how to find the sets of coins preserving the trapping

effect which we have pursued in [III]. We focus on the parametrization of eigenvectors of the

Grover matrix. This was inspired by the work of Watabe et al. [38] where a one-parameter

family of 2D quantum walks which contained the four-state Grover walk was studied. This set

of quantum walks preserves the trapping effect of the four-state Grover walk. The particular

property of the corresponding one-parameter set of 4 × 4 coin operators is that they have

the same spectrum as the Grover matrix. In [III] we have adopted this feature to construct

a similar set of 3× 3 coins.

We begin with the spectral decomposition of the 3 × 3 Grover coin. The eigenvalues of

the Grover matrix are given by

ν1 = ν2 = −1, ν3 = 1.

The corresponding eigenvectors can be chosen as

|γ−1 〉 =
1√
6

(|L〉 − 2|S〉+ |R〉) ,

|γ−2 〉 =
1√
2

(|L〉 − |R〉) ,

|γ+〉 =
1√
3

(|L〉+ |S〉+ |R〉) . (3.15)

The 3× 3 Grover operator can be thus decomposed in the form

Ĝ = −|γ−1 〉〈γ−1 | − |γ−2 〉〈γ−2 |+ |γ+〉〈γ+|.
Let us now consider two rather trivial coin operators which have the same spectrum as

the Grover matrix and which also lead to trapping of the corresponding three-state quantum

walk. One of such coin operators is in the standard basis of the coin space given by the

matrix

G′ =




0 0 1
0 −1 0
1 0 0


 .
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Using this matrix as a coin for a three-state quantum walk results in a trivial evolution -

the particle either stays at the origin, or jumps to the left or right but immediately returns

back in the next step. Such a walk does not spread through the lattice. Indeed, one can

readily check that the spectrum of the corresponding evolution operator is pure point, i.e.

the continuous spectrum is absent.

The second coin operator we consider is given by the matrix

G′′ =



−1 0 0
0 1 0
0 0 −1


 .

The dynamics of the resulting quantum walk is also simple. The |S〉 component of the initial

state remains forever at the origin which corresponds to trapping. The |L〉 (|R〉) component

moves in every step to the left (right). After t steps the particle can be found only on three

lattice points - either x = 0 or x = ±t. In contrast to the walk driven by the coin G′ the walk

with coin G′′ spreads through the lattice with the maximal possible velocity of the traveling

peaks v = 1.

In order to connect the Grover matrix and the matrices G′ and G′′ we examine their

eigenvectors. The eigenvectors of the Grover operator were given in (3.15). The eigenvectors

of Ĝ′ are

|α−1 〉 = −|S〉,
|α−2 〉 =

1√
2

(|L〉 − |R〉) ,

|α+〉 =
1√
2

(|L〉+ |R〉) .

Finally, the eigenvectors of Ĝ′′ are given by

|β−1 〉 =
1√
2

(|L〉+ |R〉) ,

|β−2 〉 =
1√
2

(|L〉 − |R〉) ,

|β+〉 = |S〉.

In all three cases the first two eigenvectors correspond to the eigenvalue −1 while the third

one has the eigenvalue +1. Notice that the second eigenvector can be chosen such that

it is always the same. We parameterize the first and the third eigenvector so that they

continuously change from |α±〉 through |γ±〉 to |β±〉 while remaining mutually orthogonal

41



and normalized. This parametrization is given by

|σ−1 〉 =
ρ√
2
|L〉 −

√
1− ρ2|S〉+

ρ√
2
|R〉,

|σ−2 〉 =
1√
2

(|L〉 − |R〉),

|σ+〉 =

√
1− ρ2

2
|L〉+ ρ|S〉+

√
1− ρ2

2
|R〉. (3.16)

With these vectors we construct the following one-parameter set of coin operators

Ĝ(ρ) = −|σ−1 〉〈σ−1 | − |σ−2 〉〈σ−2 |+ |σ+〉〈σ+|,

which is in the standard basis of the coin space represented by the matrix

G(ρ) =




−ρ2 ρ
√

2(1− ρ2) 1− ρ2
ρ
√

2(1− ρ2) 2ρ2 − 1 ρ
√

2(1− ρ2)
1− ρ2 ρ

√
2(1− ρ2) −ρ2


 . (3.17)

The matrices G′ and G′′ correspond to the values ρ = 0 and ρ = 1, respectively. The Grover

matrix G is given by the coin parameter ρ = 1√
3
.

Due to the construction described above we will refer to the three-state quantum walks

with the one-parameter set of coins (3.17) as the eigenvector family of walks. Let us now

show that they exhibit the trapping effect and that the coin parameter ρ directly determines

the velocity of the traveling peaks. In order to prove this we investigate the spectrum of the

evolution operator, which is readily found to be

λ1 = 1, λ2,3(k, ρ) = e±iω(k,ρ).

The existence of k-independent eigenvalue λ1 = 1 shows that indeed the one-parameter family

of coins (3.17) leads to the trapping effect. Let us now investigate the physical meaning of the

parameter ρ. For this reason we examine the continuous spectrum of the evolution operator,

which is determined by the dispersion relations

ω(k, ρ) = arccos
(
ρ2 − 1− ρ2 cos k

)
.

We see that the parameter ρ alters the dispersion relations and therefore it influences the rate

of spreading of the corresponding quantum walk. To determine the velocity of the traveling

peaks we have to identify the maximum of the group velocity dω
dk

. We find that the second

derivative
d2ω

dk2
=
ρ(ρ2 − 1)

√
1− cos k

(2− ρ2 + ρ2 cos k)
3
2

,
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vanishes for k0 = 0. Hence, the velocity of the traveling peaks is given by

v(ρ) =

∣∣∣∣∣
dω

dk

∣∣∣∣
k0

∣∣∣∣∣ = ρ,

i.e. it is directly determined by the coin parameter. Since ρ can be varied from zero to one

we can achieve faster or slower spreading than for the Grover walk corresponding to the value

ρ = 1√
3
.

The one-parameter set of coins (3.17) does not exhaust all U(3) matrices that lead to

the trapping effect for the three-state quantum walks on a line. We gave full classification of

such coins in the paper [IV] where we have also investigated their main physical properties.

However, to keep the discussion simple we focus on the eigenvector family of three-state

quantum walks. In the following Sections we investigate their properties in more detail.

3.5 Weak-limit Theorem

By analogy with the two-state Hadamard walk studied in the previous Chapter it can be

shown that for the eigenvector family of walks the moments of the re-scaled position x
t

also

converge in the limit of large number of steps t. This fact allows one to derive a weak limit

theorem using the steps we have outlined in Section 2.5. One can show that the following

statement holds

lim
t→∞

〈(x
t

)n〉
=

ρ∫

−ρ

vnw(v)dv, (3.18)

however, only for n ≥ 1, as we discuss later. The explicit form of the limit density w(v) was

derived in [39] for the particular case of the three-state Grover walk corresponding to the

parameter ρ = 1√
3

and in [40] for general value of ρ. It was shown that the limit density has

the form

w(v) =

√
1− ρ2

2π(1− v2)
√
ρ2 − v2

M,

where the weight function M is a second-order polynomial in v

M =M0 +M1v +M2v
2.

The coefficients Mj depend on the initial coin state of the walk. A drawback of [39,40] was

that they presented the results in terms of the standard basis of the coin space {|L〉, |S〉, |R〉}
in which the coefficients Mj have a rather lengthy form. This can be remedied by using a

more suitable basis of the coin space, as we have discussed in the previous Chapter. We have

addressed this issue in [V] where we have shown that the suitable basis can be built from the

eigenvectors of the coin operator given in (3.16). Let us now briefly review the results of [V].
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Instead of using the standard basis we decompose the initial coin state |ψC〉 into the

eigenstate basis (3.16) in the form

|ψC〉 = g+|σ+〉+ g1|σ−1 〉+ g2|σ−2 〉.

The probability amplitudes g+ and g1,2 are restricted by the normalization condition

|g+|2 + |g1|2 + |g2|2 = 1.

In terms of the amplitudes g+ and g1,2 the coefficients Mj are given by

M0 = 2(1− |g2|2),
M1 = −2

ρ
(g1g2 + g1g2) ,

M2 =
2

ρ2
(
|g2|2 − |g+|2

)
.

The limit density then reads

w(v) =

√
1− ρ2

π(1− v2)
√
ρ2 − v2

(
1− |g2|2 − (g1g2 + g1g2)

v

ρ
+ (|g2|2 − |g+|2)

v2

ρ2

)
.

(3.19)

We note that the limit density (3.19) is not normalized to unity. Indeed, we obtain the

following result
ρ∫

−ρ

w(v)dv = 1− |g2|2 −
√

1− ρ2 − 1

ρ2
(|g2|2 − |g+|2). (3.20)

This is smaller than one unless g2 = g+ = 0 and g1 = 1, i.e. the initial coin state is chosen

as |σ−1 〉. It can be shown [V] that the state |σ−1 〉 is the leaving state, i.e. it results in the

absence of trapping as we have illustrated in Figure 3.3 for the particular case of the Grover

walk (ρ = 1√
3
). Hence, the formula (3.18) does not hold for the zeroth moment. The limit

density is not sufficient to fully describe the probability distribution as it was in Chapter 2

for the two-state Hadamard walk. This is due to the fact that the limit density captures

only the spreading part of the probability distribution which is determined by the continuous

spectrum of the evolution operator. However, the evolution operator of the eigenvector

family of quantum walks has also a point spectrum which leads to the trapping effect, i.e.

the probability to find a particle at a finite position x has a non-vanishing limit for large t

given by the trapping probability (3.14). As we show in the following Section, the trapping

probability p∞(x) decreases exponentially with the distance from the origin. Due to this

sharp decay it does not contribute to the moments of the re-scaled position (3.18), except

44



for n = 0. The approximation of the exact probability distribution of the eigenvector family

of three-state quantum walks with the limit density

p(x, t) ≈ 1

t
w
(x
t

)
,

holds only for sufficiently large |x|. In the vicinity of the origin the exact probability distri-

bution is dominated by the trapping probability which we evaluate in the following Section.

Note that in comparison with the approximation (2.27) of the probability distribution of the

two-state Hadamard walk the factor of 2 is missing in front of the limit density. The reason

is that the three-state quantum walks we consider in the present Chapter are not bipartite.

Simple form of the limit density (3.19) in terms of the basis (3.16) allows us to easily

identify extremal regimes in which the eigenvector family of walks can be operated in. As we

have illustrated in Figure 3.1 a generic probability distribution has two traveling peaks, which

correspond to the divergencies of the limit density (3.19) for v approaching ±ρ. However,

there are various initial states leading to non-generic probability distribution. As for the

two-state Hadamard walk studied in the previous Chapter it is possible to construct states

for which one of the traveling peaks disappears. Indeed, consider e.g. the coin state

|σL〉 =
1√
2

(
|σ−1 〉+ |σ−2 〉

)
. (3.21)

From the relation (3.19) we find that the limit density for this initial state reads

w|σL〉(v) =

√
1− ρ2

√
(ρ− v)3

2πρ2(1− v2)√ρ+ v
. (3.22)

Such a density tends to zero for v approaching ρ. Nevertheless, the divergency at v = −ρ
remains. We illustrate this feature in Figure 3.4 where we display the distribution after 100

steps for the coin parameter ρ = 0.3.

Moreover, both traveling peaks can be eliminated by a proper choice of the initial state.

This is not possible for two-state Hadamard walk. Indeed, choosing the initial coin state as

the eigenvector |σ+〉 leads to the limit density of the form

w|σ+〉(v) =

√
1− ρ2

√
ρ2 − v2

πρ2(1− v2) . (3.23)

We see that the density does not diverge for v approaching ±ρ but rather tends to zero.

Hence, both traveling peaks on the edges of the probability distribution vanish. We illustrate

this effect in Figure 3.5, where we display the probability distribution after 100 steps.

Finally, let us discuss the behaviour of the limit density (3.19) for small values of v. For

the two-state Hadamard walk analyzed in the previous Chapter the limit density is flat in

the vicinity of the origin, irrespective of the initial condition. In contrast, for the eigenvector
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Figure 3.4: Probability distribution p(x, t) of the three-state quantum walk with the coin
parameter ρ = 0.3 after 100 steps. As the initial state we have chosen |σL〉 given by equation
(3.21). The peak on the right-hand side of the probability distribution vanishes, as predicted
by the limit density (3.22). We use logarithmic scale on the y-axis to highlight this feature.

family of walks the limit density can have a significant dip for small v. Indeed, for the

eigenstate |σ−2 〉 the limit density is given by

w|σ−2 〉(v) =

√
1− ρ2v2

πρ2(1− v2)
√
ρ2 − v2

. (3.24)

We see that the density vanishes as v tends to zero. To illustrate this effect we plot in

Figure 3.6 the distribution after 100 steps on a logarithmic scale. The coin parameter was

chosen as ρ = 0.7. The plot indicates that the probability distribution tends to zero for small

|x|, except for a very small neighbourhood of the origin where the trapping effects dominates.

Before we turn to the detailed analysis of the trapping probability let us point out an-

other benefit of the description of the considered family of quantum walks in terms of the

eigenvector basis (3.16). The form of the limit density (3.19) makes it clear that they have

the same properties for all values of ρ ∈ (0, 1). More precisely, for a given amplitudes g+, g1
and g2 the shape of the resulting probability distribution is the same for any value of ρ.

Indeed, ρ is just a scaling parameter determining the width of the probability distribution.

This result is far from obvious in the standard basis description given in [40].
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Figure 3.5: Probability distribution p(x, t) of the three-state quantum walk with the coin
parameter ρ = 0.5 after 100 steps. The initial state was chosen as |ψC〉 = |σ+〉. The black
dots are obtained from the numerical simulation. The red curve corresponds to the limit
density (3.23). Notice the absence of the traveling peaks on the edges of the probability
distribution. Instead, the probability distribution approximated with the limit density (3.23)
tend to zero for x→ ±ρt. To unravel this effect we display the plot on the logarithmic scale.

3.6 Evaluation of the Trapping Probability

To conclude the analysis of the probability distribution generated by the eigenvector family

of walks we evaluate the trapping probability p∞(x), i.e. the probability that we find the

particle at position x in the limit of t → ∞. The trapping probability p∞(x) is determined

from the limiting probability amplitude ψ∞(x) according to (3.14). The limiting probability

amplitude is given by the following integral

ψ∞(x) =

2π∫

0

dk

2π
e−ixkf1(k)v1(k), (3.25)

where v1(k) is an eigenvector of the evolution operator in the Fourier picture Ũ(k) corre-

sponding to the k-independent eigenvalue 1 and f1(k) denotes its overlap with the Fourier

transformation of the initial state (3.12). For the considered family of walks the explicit form

of the eigenvector v1(k) is easily found to be

v1(k) =
1

n(k)

(√
1− ρ2, ρ√

2
(1 + eik), eik

√
1− ρ2

)T
,
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Figure 3.6: Probability distribution p(x, t) of the three-state quantum walk with the coin
parameter ρ = 0.7 after 100 steps. The initial state was chosen as |ψC〉 = |σ−2 〉. Notice that
the probability distribution is not flat. There is a significant dip for small |x|, in accordance
with the prediction obtained from the limit density (3.24). For better visibility of the dip we
use logarithmic scale on the y-axis. The sharp peak at the origin corresponds to the trapping
effect.

where n(k) denotes the normalization factor given by

n(k) =
√

2− ρ2(1− cos k).

The integrand of (3.25) then reads

e−ixkf1(k)v1(k) =
e−ixk

2− ρ2(1− cos k)




√
1−ρ2
2

(
1 + e−ik

)
g+ + 1−ρ2√

2

(
1− e−ik

)
g2

ρ
2

(
eik + 2 + e−ik

)
g+ +

ρ
√

1−ρ2
2

(
eik − e−ik

)
g2

√
1−ρ2
2

(
1 + eik

)
g+ − 1−ρ2√

2

(
1− eik

)
g2



.

Hence, the limiting probability amplitude (3.25) can be decomposed into integrals of the

form

I(x) =

2π∫

0

dk

2π

e−ixk

2− ρ2(1− cos k)
.
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Following the method of residues we obtain the result

I(x) =

{
z = eik
dz
iz

= dk

}
=

1

πi

∮

|z|=1

z−x

z2 + 22−ρ2
ρ2
z + 1

dz =
(−1)|x|

2
√

1− ρ2
Q|x|,

where the factor Q depends on the coin parameter ρ according to

Q =
2− ρ2 − 2

√
1− ρ2

ρ2
.

The limiting probability amplitude is thus given by

ψ∞(x) =




√
1−ρ2
2

(I(x) + I(x+ 1)) g+ + 1−ρ2√
2

(I(x)− I(x+ 1)) g2

ρ
2

(I(x− 1) + 2I(x) + I(x+ 1)) g+ +
ρ
√

1−ρ2
2

(I(x− 1)− I(x+ 1)) g2

√
1−ρ2
2

(I(x) + I(x− 1)) g+ − 1−ρ2√
2

(I(x)− I(x− 1)) g2



.

The trapping probability is determined by the square norm of the limiting probability am-

plitude. After some algebra we find that it reduces into

p∞(x) =





2−2ρ2
ρ4

Q2|x||g+ − g2|2, x < 0,

1
ρ2
Q
(
|g+|2 + (1− ρ2)|g2|2

)
, x = 0,

2−2ρ2
ρ4

Q2x|g+ + g2|2, x > 0

(3.26)

This result shows that the trapping probability indeed decays exponentially with the distance

from the origin |x|. Hence, it does not contribute to higher moments of the re-scaled position
x
t
, as we have discussed in the previous Section. In the eigenvector basis (3.16) only two

amplitudes of the initial coin state, namely g+ and g2, are relevant for the determination of the

trapping probability. Indeed, for the leaving state |σ−1 〉 the trapping effect does not emerge.

This reduces the complexity of the expression for the trapping probability tremendously

in comparison with the standard basis description [40]. We clearly see that the trapping

probability can be highly asymmetric, since the dependence on the initial coin state is different

for positive and negative x. In fact, the asymmetry can be made such that the trapping

appears only for x ≥ 0 (or only for x ≤ 0) by a proper choice of the initial coin state. We

illustrate this in Figure 3.7 where we display the probability distribution near the origin for

the initial coin state

|ψC〉 =
1√
2

(
|σ+〉+ |σ−2 〉

)
. (3.27)
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For such an initial state the trapping probability (3.26) reduces to

p∞(x) =





0, x < 0

(
1
ρ2
− 1

2

)
Q, x = 0

4−4ρ2
ρ4

Q2x, x > 0

(3.28)
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Figure 3.7: Probability distribution after t = 10000 steps of the three-state Grover walk
(ρ = 1√

3
) with the initial coin state (3.27). We see that the trapping probability is non-zero

only for x ≥ 0, in accordance with the analytical prediction (3.28). To highlight this feature
we evolved the walk for more steps and focused only on a small neighbourhood of the origin.

The trapping probability (3.26) together with the limit density (3.19) can be used to

approximate the exact probability distribution of the eigenvector family of walks according

to

p(x, t) ≈ 1

t
w
(x
t

)
+ p∞(x). (3.29)

The trapping probability p∞(x) dominates in the vicinity of the origin, while the limit density

governs the behaviour at larger distances. We note that one can easily check that

∞∑

m=−∞

p∞(m) = |g2|2 +

√
1− ρ2 − 1

ρ2
(
|g2|2 − |g+|2

)
.
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This together with (3.20) results in

∞∑

m=−∞

p∞(m) +

ρ∫

−ρ

w(v) dv = 1,

i.e. within the approximation (3.29) the probability distribution is properly normalized to

unity.

3.7 Transport in Three-state Quantum Walk

In this Section we investigate the three-state quantum walk as a model of coherent excitation

transport to an absorbing center, which we refer to as sink. We consider a ring graph with the

excitation starting the walk opposite to the sink. We show that the trapping effect restricts

the transport of excitation, i.e. the particle has a chance to remain on the ring without ever

reaching the sink.

Let us now formally describe our model of excitation transport. We first adopt the

eigenvector family of walks on an infinite line investigated in the previous Sections to a

finite-size ring with 2N vertices labeled from −N + 1 to N . The position space HP is now

finite-dimensional

HP = Span{|x〉|x = −N + 1, . . . N} = C2N ,

while the coin spaceHC remains the same (3.1). The step operator of the three-state quantum

walk on an infinite line (3.5) has to be replaced with

Ŝring =
N∑

x=−N+1

(
|x− 1〉〈x| ⊗ |L〉〈L|+ |x〉〈x| ⊗ |S〉〈S|+ |x+ 1〉〈x| ⊗ |R〉〈R|

)
,

where we consider periodic boundary condition N ≡ −N . The excitation enters the ring at

the vertex 0, i.e. the initial state is of the form (3.3). However, the time evolution of the

walk is not given purely by the unitary operator Û (3.4). Indeed, there is a sink located

opposite the starting point, i.e. at the vertex N , which takes the excitation away from the

ring. Mathematically, the action of the sink is described by the projection operator

π̂ =
(
ÎP − |N〉〈N |

)
⊗ ÎC .

Hence, the complete time evolution is not unitary and the state of the excitation after t steps

is described by the vector

|ψ(t)〉 =
(
π̂ · Û

)t
|ψ(0)〉,

with norm generally less than unity.
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In the following we analyze the properties of the survival probability P(t), i.e. the prob-

ability that the excitation remains on the ring until time t, which is given by

P(t) = 〈ψ(t)|ψ(t)〉.

We also consider the asymptotic transport efficiency η defined as

η = 1− lim
t→∞
P(t).

Let us derive an approximation of the asymptotic behaviour of the survival probability P(t)

for large t. We begin with the estimate

P(t) ≤
∥∥∥∥
(
π̂ · Û

)t∥∥∥∥
2

= exp

(
2t ln

(∥∥∥∥
(
π̂ · Û

)t∥∥∥∥
1
t

))
.

For large t the argument of the logarithm can be approximated according to

∥∥∥∥
(
π̂ · Û

)t∥∥∥∥
1
t

≈ |λl|,

where λl is the leading eigenvalue of π̂ · Û , i.e. the largest eigenvalue in absolute value. In

the case of |λl| < 1 we can make the first-order Taylor expansion of the logarithm

ln

(∥∥∥∥
(
π̂ · Û

)t∥∥∥∥
1
t

)
≈ ln |λl| ≈ −(1− |λl|),

and find that the survival probability behaves in the asymptotic limit as an exponential

P(t) ∼ c e−γt, (3.30)

where the decay rate γ reads

γ = 2(1− |λl|).
In such a case, the asymptotic transport efficiency η is unity. This occurs e.g. when the

excitation dynamic is modeled by a two-state quantum walk, as we have shown in [VII].

However, for the three-state walk model with the coin (3.17) we find that |λl| = 1. Indeed,

the unitary evolution operator Û of the three-state quantum walk on a ring (without the

sink) has an eigenvalue 1 with 2N -fold degeneracy. The corresponding eigenvectors (linearly

independent but overlapping) are easily found to be

|sx〉 = |x〉
(√

1− ρ2|L〉+
ρ√
2
|S〉
)

+ |x+ 1〉
(
ρ√
2
|S〉+

√
1− ρ2|R〉

)
, (3.31)

where x ranges from −N + 1 to N . Notice that only two of these vectors, namely |sN−1〉
and |sN〉, have support on the vertex N where the sink is located. Hence, the vectors |sn〉
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with n ∈ {−N + 1, . . . , N − 2} are not affected by the presence of the sink and they are

eigenvectors of π̂ · Û with eigenvalue one, i.e. λl = 1. Consequently, the trapping effect in

the three-state quantum walk persists even in the presence of the sink. This result indicates

that the survival probability does not vanish and the excitation transport is not efficient.

We have investigated the transport properties of the eigenvector family of walks on a ring

in full detail in [VII]. With the knowledge of the stationary states (3.31) one can evaluate the

asymptotic transport efficiency η explicitly for small rings, i.e. small values of N . However,

the calculation requires the use of Gramm-Schmidt orthogonalization procedure to form an

orthonormal basis in the degenerate subspace corresponding to λl = 1. This becomes rather

tedious for larger values of N . Nevertheless, we can estimate the transport efficiency using

the results we have obtained for the trapping probability in the case of the walk on an infinite

line (3.26). Within this approximation the limiting value of the survival probability is given

by summing the trapping probabilities over all vertices of the ring excluding the sink

lim
t→∞
P(t) =

N−1∑

x=−N+1

p∞(x).

From the explicit form of the trapping probability for the infinite line (3.26) the asymptotic

transport efficiency η is found to be [VII]

η = 1−
N−1∑

x=−N+1

p∞(x)

= 1− Q

ρ2

(√
1− ρ2

(
1−Q2(N−1)) (|g2|2 + |g+|2

)
+ (1− ρ2)|g2|2 + |g+|2

)
. (3.32)

We see that the transport efficiency depends crucially on the initial coin state. It follows

that the smallest value of η is obtained when the initial coin state is chosen as the eigenstate

|σ+〉. To illustrate this result we show in Figure 3.8 the course of the survival probability

P(t) as a function of the number of steps. The considered ring has 10 vertices, i.e. N = 5.

The coin parameter is chosen as ρ = 1√
3

corresponding to the three-state Grover walk. In

this case the asymptotic transport efficiency is approximately η ≈ 0.45.

We note that for the leaving state |σ−1 〉 the asymptotic transport efficiency (3.32) reaches

unity. Indeed, for |σ−1 〉 trapping effect disappears and the survival probability decays ex-

ponentially according to (3.30). The decay rate γ can be estimated using the sub-leading

eigenvalue λsl of π̂ · Û according to

γ = 2(1− |λsl|). (3.33)

We illustrate this behaviour in Figure 3.9 where we consider the three-state Grover walk

(ρ = 1√
3
) on a ring with 10 vertices. The plot shows the survival probability as a function of

the number of steps t on a logarithmic scale.
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|ψC〉 = |σ+〉
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Figure 3.8: Survival probability for the three-state Grover walk (ρ = 1√
3
) on a ring with 10

vertices, i.e. N = 5, in dependence on the number of steps. As the initial coin state we
have chosen the eigenvector |σ+〉 for which the trapping effect is the strongest. The survival

probability P(t) approaches the red line given by
N−1∑

x=−N+1

p∞(x) ≈ 0.55.

3.8 Discussion

In this Chapter we have illustrated the trapping effect on the example of the three-state

Grover walk on a line and its one-parameter extension, i.e. the eigenvector family of walks

which we derived in [III]. However, the one-parameter set of coins (3.17) does not exhaust

all U(3) matrices which lead to the trapping effect for three-state quantum walks. In the

paper [III] we have constructed another one-parameter set of coins by a suitable parametriza-

tion of the eigenvalues of the Grover matrix, which we refer to as eigenvalue family. The

construction was based on the fact that by definition the Grover matrix (3.6) commutes with

all permutations. The eigenvectors of the Grover operator (3.15) are chosen in such a way

that they are also eigenvectors of the permutation matrix

Π =




0 0 1
0 1 0
1 0 0


 .

Using this matrix as a coin for a three-state quantum walk trivially results in trapping, since

the particle either stays at the origin, or jumps to the left or right but immediately returns

back in the next step. Notice that the eigenvector |σ−2 〉 corresponds to the same eigenvalue

−1 for both the Grover matrix G and the permutation matrix Π. The same applies to |σ+〉.
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Figure 3.9: Survival probability for the three-state Grover walk (ρ = 1√
3
) on a ring with 10

vertices, i.e. N = 5, in dependence on the number of steps. As the initial coin state we
have chosen the eigenvector |σ−1 〉 for which the trapping effect is absent. In such a case the
survival probability P(t) vanishes exponentially, as highlighted by the log-scale. The red line
corresponds to the decay rate γ determined by (3.33).

However, for the eigenvector |σ−1 〉 the eigenvalues of Ĝ and Π̂ differ, since

Ĝ|σ−1 〉 = −|σ−1 〉,
Π̂|σ−1 〉 = |σ−1 〉.

Hence, we can continuously change from the Grover coin to the permutation matrix Π by

parameterizing the eigenvalue corresponding to |σ−1 〉. We thus arrive at the following one-

parameter family (eigenvalue family) of coin operators

Ĉ(ϕ) = −e2iϕ|γ−1 〉〈γ−1 | − |γ−2 〉〈γ−2 |+ |γ+〉〈γ+|, (3.34)

where the factor of 2 was added for convenience. In [III] we have shown that the eigenvalue

family of quantum walks preserves the trapping effect. The coin parameter ϕ also determines

the speed of spreading of the walks through the lattice. In contrast to the eigenvector family

the relation between ϕ and the velocity of the peaks is more involved.

We elaborated on the results of [III] in the paper [IV] where we have determined all coin

operators for which the three-state quantum walk on a line has a non-empty point spectrum.

Our construction was based on explicit calculation of the spectrum of the evolution operator

in the Fourier space. We have determined sufficient and necessary conditions on the coin

operator which guarantees the existence of a point spectrum of the evolution operator of the
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quantum walk. These requirements were solved with the help of a particular parametrization

of the unitary group, leading us to two sets of non-trivial solutions. The one-parameter

families of trapping walks identified in [III] are special cases of these more general solutions.

Our results imply that trapping is a rare feature, since trapping coins represent a set of zero

measure in the unitary group U(3). Physical implications of our results were discussed. As

representative physical parameters we have chosen the propagation velocity and trapping

probability at the origin. We have shown that the peak velocity as well as the strength of

trapping depend only on few parameters defining the coin. Moreover, we have shown that

for any U(3) trapping coin there exists a leaving state for which the trapping vanishes.

The properties of the probability distributions for both families of three-state quantum

walks introduced in [III] were analyzed in full detail in [V]. The results for the eigenvector

family were illustrated in Sections 3.5 and 3.6 where we have discussed the limit density and

the trapping probability in the eigenvector basis. We have shown that all walks from the

eigenvector family have the same properties and the coin parameter ρ simply sets the scale,

i.e. it determines the width of the distribution but does not affect its overall shape. This fact

is rather hidden in the standard basis description. Concerning the eigenvalue family of walks

the limit density and the trapping probability can be found in [V]. The limit density for the

coin (3.34) is much more involved. In contrast with the eigenvector family the shape of the

limit density changes dramatically with the coin parameter, i.e. ϕ is not a simple scaling

parameter. On the other hand, the trapping probability does not depend on ϕ, i.e. it is the

same for all walks from the eigenvalue family.

The results of [V] were extensively used in [VII] and [VIII]. In the paper [VII] we have

studied the excitation transport to an absorbing center on a ring graph. The propagation

of excitation was modeled by a discrete-time quantum walk with an absorbing sink opposite

the starting vertex, which we have briefly reviewed in Section 3.7. We have shown that for

a two-state quantum walk model, where the excitation has to leave its actual position to the

neighboring sites, the survival probability decays exponentially and the transport efficiency

is unity. The decay rate of the survival probability is estimated with the leading eigenvalue of

the evolution operator. However, if the propagation of excitation is modeled by a three-state

quantum walk which shows the trapping effect then part of the wave-packet never reaches

the sink. In such a case, the survival probability does not vanish and the excitation transport

is not efficient, as we have discussed in Section 3.7 for the eigenvector family of three-state

quantum walks. We have also analyzed the effect of dynamical percolation of the ring on

the transport efficiency. Improving transport by allowing the edges to break randomly seems

to be a bit counterintuitive at the first sight. However, percolation can in some situations

eliminate the trapping effect and thus improve the asymptotic transport efficiency to unity.

In particular, we have considered an extension of the eigenvector family of coins (3.17) with
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an additional phase parameter α of the form

C(ρ, α) =




−ρ2 ρ
√

2− 2ρ2 e−iα (1− ρ2)
ρ
√

2− 2ρ2 2ρ2 − 1 e−iαρ
√

2− 2ρ2

eiα (1− ρ2) eiαρ
√

2− 2ρ2 −ρ2


 .

The phase parameter α does not influence the dynamics of the unperturbed walk (i.e. without

percolation). However, the situation changes when we consider dynamical percolation of

the ring where any edge occurs in a given time step with some probability p, and the edge

configuration changes in time. The evolution of a quantum walk on a dynamically percolated

graph is described within the framework of random unitary channels [67, 68]. It simplifies

considerably in the asymptotic regime where it is described by the attractor space. We have

shown that the stationary states of the unperturbed walk, which have the form

|sx〉 = |x〉
(√

1− ρ2|L〉+
ρ√
2
|S〉
)

+ |x+ 1〉
(
ρ√
2
|S〉+ eiα

√
1− ρ2|R〉

)
,

belong to the attractor space only for α = 0. Hence, for α 6= 0 dynamical percolation of the

ring eliminates the trapping effect which makes the transport of excitation efficient, i.e. η = 1

for all initial coin states. In such a case, the survival probability vanishes exponentially. We

have investigated the dependence of the decay rate on the phase α and the edge probability

p.

In the paper [VIII] we have analyzed the behaviour of persistence of unvisited sites for

quantum walks on a line. The results for the two-state quantum walks were briefly discussed

in the previous Chapter. We have also analyzed persistence for the eigenvector family of

three-state quantum walks. We have found that the persistence of site x is given by

Px(T ) ∼ c

(
T

|x|

)−λ
e−p∞(x)T ,

where p∞(x) is the trapping probability (3.26) and the exponent λ is given by

λ =

√
1− ρ2
πρ

(
1− |g2|2

)
.

We see that in contrast to two-state quantum walks the scaling of persistence is not given

solely by the inverse power law. The second contribution to the asymptotic behavior of

persistence is an exponential decay coming from the trapping nature of the studied family

of quantum walks. Moreover, both the exponent of the inverse power-law λ and the decay

constant of the exponential decay given by the trapping probability p∞(x) depend also on the

initial coin state and its coherence. We have shown that various regimes of persistence are

achieved by altering the initial condition, ranging from purely exponential decay to purely

inverse power-law behavior. Moreover, one can employ the asymmetry of the trapping effect

to achieve different asymptotic scaling of persistence for sites on the positive and negative

half line.
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Chapter 4

Quantum Walk Approach to Perfect
State Transfer

4.1 Introduction

In this Chapter we illustrate the application of quantum walks to perfect state transfer [191]

between two vertices of a graph which we have investigated in [X, XI]. Our approach is

based on a modification of the quantum walk search algorithm on a given graph. The

quantum walk search algorithm is closely related to the Grover’s algorithm for searching an

unsorted database. For this reason we first review in Section 4.2 the Grover’s algorithm and

show that it yields an optimal solution. In Section 4.3 we discuss the quantum walk search

algorithm. In particular, we show that for the star graph the quantum walk search is exactly

equivalent to the Grover’s algorithm. The approach to the perfect state transfer based on

the modification of the quantum walk search algorithm is addressed in Section 4.4. As an

example, we show that it achieves perfect state transfer between two vertices of a star graph.

Finally, in Section 4.5 we discuss the extension of the quantum walk based state transfer to

different graph structures which we have investigated in [X,XI].

4.2 Grover’s Search Algorithm

Consider an unstructured search space of N elements with indexes from 0 to N − 1. For

convenience we assume that N = 2n, i.e. the index can be stored using n bits. We can

always add empty entries into the database to make sure that its size is a power of two. We

will identify the integer index x with its binary representation xn−1 . . . x1x0, xj ∈ {0, 1}. For

simplicity we consider that there is one marked item with index m which is the only solution

of the search problem. Extensions to search with more solutions are also possible [192].
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Marking of the item can be represented by a function f defined by

f(x) =

{
0, x 6= m
1, x = m

Suppose that we have access to an oracle Om which is a black-box with the ability to recognize

the solution to the search problem. In the classical setting the oracle simply implements the

function f . Since the database we search is unstructured, it is clear that to find the marked

item we need to query the classical oracle Θ(N) times. Remarkably, Grover has shown [86,87]

that quantum mechanics helps to reduce the number of oracle queries to Θ(
√
N). Let us now

briefly review the main ingredients of the Grover’s search algorithm. We follow closely the

approach detailed in [193].

The database has N = 2n entries and so it can be represented using n qubits. To

every index x = 0, . . . , N − 1 we assign a vector |x〉 which coincides with one vector of the

computational basis according to

|x〉 ≡ |xn−1 . . . x1x0〉, x = xn−12
n−1 + . . .+ x12

1 + x02
0.

The quantum oracle Ôm utilizes another ancilla qubit which changes value if x = m. More

precisely, the action of the oracle on the computational basis is given by

Ôm|x〉|q〉 = |x〉|q ⊕ f(x)〉,

where |q〉 corresponds to the state of the ancilla qubit and ⊕ denotes addition modulo 2. We

can check whether x is the solution of the search problem by applying the oracle to the state

|x〉|0〉 and measuring the oracle qubit - it will have the value 1 if and only if x = m. However,

it is more convenient to consider the ancilla qubit to be initially in the superposition

|q〉 =
1√
2

(|0〉 − |1〉).

Indeed, we find that for x 6= m the state |x〉|q〉 does not change after the application of the

oracle. On the other hand, for x = m the oracle only multiplies the state |m〉|q〉 by a factor

−1. In both cases the state of the ancilla qubit remains unchanged and it can be omitted

from from further discussion of the Grover’s search algorithm. With this convention the

action of the quantum oracle on the basis states |x〉 is given by

Ôm|x〉 = (−1)f(x)|x〉.

The oracle thus marks the solution by shifting its phase by π. Since we consider one marked

item with index m the unitary operator corresponding to the oracle reads

Ôm = Î − 2|m〉〈m|.
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In addition to the oracle Ôm the Grover’s search algorithm utilizes the Grover operator

Ĝ which we have already seen in the previous Chapter for a particular case of a three-

dimensional Hilbert space. For a system composed of n qubits the Grover operator can be

decomposed into three elementary steps. First, we apply the Hadamard transformation Ĥ,

whose matrix representation is given in (2.4), to all n individual qubits. Second, we perform

a conditional phase shift such that all states except |0〉 are multiplied by −1. Finally, we

again apply the Hadamard transformation to all n qubits. The combined action of these

three operations can be written as

Ĝ = Ĥ⊗n(2|0〉〈0| − I)Ĥ⊗n = 2|w〉〈w| − Î ,

where |w〉 denotes the equal-weight superposition of all basis states, i.e.

|w〉 =
1√
N

N∑

x=0

|x〉.

The steps of the Grover’s search algorithm are as follows:

1. Initialize the system in the equal-weight superposition of all basis states

|ψ(0)〉 = |w〉.

2. Apply the Grover iteration Û given by

Û = ĜÔm,

on the system T -times.

3. Measure the system in the computational basis.

Let us now prove that the runtime of the Grover’s algorithm is Θ(
√
N).

First, we show that for a proper choice of T = O(
√
N) the system will be with high

probability in the marked state |m〉. We note that the evolution of the database under the

Grover iteration Û is quite simple since the states |w〉 and |m〉 span an invariant subspace

of Û , and Û acts in this two-dimensional space as a rotation. Indeed, consider the two-

dimensional space Hinv spanned by the vectors |m〉 and

|m〉 =
1√

N − 1

∑

x 6=m

|x〉.

Clearly, the vector |w〉 also belongs to Hinv, since we find

|w〉 =
1√
N
|m〉+

√
N − 1

N
|m〉. (4.1)
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From the definition of the Grover iteration Û we see that it is a product of two reflections.

The oracle Ôm performs a reflection about the vector |m〉. Similarly, the Grover operator

performs a reflection about the vector |w〉. Since both |m〉 and |w〉 belong to Hinv we find

that their product is a rotation in the plane spanned by |m〉 and |m〉. This shows that Hinv

is indeed an invariant subspace of Û and that

|ψ(t)〉 = Û t|w〉,

remains in Hinv for all t. More precisely, the action of Û on the vectors |m〉, |m〉 is easily

found to be

Û |m〉 =
N − 2

N
|m〉 − 2

√
N − 1

N
|m〉,

Û |m〉 =
2
√
N − 1

N
|m〉+

N − 2

N
|m〉. (4.2)

The effective evolution operator Ûeff , i.e. the restriction of the operator Û on the invariant

subspace Hinv, is in the orthonormal basis {|m〉, |m〉} represented by the following 2 × 2

rotation matrix

Ueff =

(
cos θ sin θ
− sin θ cos θ

)
,

where the angle θ is determined by the formulas

cos θ =
N − 2

N
, sin θ =

2
√
N − 1

N
.

With this convention we can rewrite the initial state of the database (4.1) into the form

|w〉 = sin

(
θ

2

)
|m〉+ cos

(
θ

2

)
|m〉.

We find that after t iterations of the Grover’s algorithm the state of the system is given by

|ψ(t)〉 = Û t|w〉 = sin

(
(2t+ 1)θ

2

)
|m〉+ cos

(
(2t+ 1)θ

2

)
|m〉.

Therefore, the probability to detect the system in the marked state |m〉 after t iterations of

the Grover’s algorithm reads

p(t) = cos2
(

(2t+ 1)θ

2

)
. (4.3)

Hence, the number of iterations of the Grover’s algorithm required to find the marked item

with high probability should be chosen as the closest integer to

T =
π

2θ
− 1.
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We find that for large N the number of iterations scales according to

T =
π

4

√
N +O

(
1√
N

)
.

For such T the probability of success (4.3) approaches 1 for large N since

p(T ) = 1−O
(

1

N

)
.

We conclude that the Grover’s search algorithm finds the marked item after O(
√
N) oracle

queries, i.e. it offers a quadratic speed-up over the classical search. Next, we show that the

Grover’s search is optimal, since any quantum search on an unsorted database requires at

least Ω(
√
N) oracle queries [194].

In general, the oracle based quantum search alternates the oracle and some other unitaries

Ûj which might be different from each other. Suppose that the search starts in the state |φ(0)〉
and we apply the oracle t times. We consider the marked item to have an index x. Between

the oracle queries we apply the unitary operations Û1, Û2, . . ., Ût. The state of the system is

then given by

|φx(t)〉 = ÛtÔx . . . Û1Ôx|φ(0)〉.
The subscript x denotes the fact that we apply the oracle Ôx. We also introduce the vector

|φ(t)〉 = Ût . . . Û1|φ(0)〉,

corresponding to the applications of the unitaries Ûj without the oracle. Let us define

D(t) =
∑

x

‖φx(t)− φ(t)‖2,

where we write φ instead of |φ〉 to simplify the notation. The quantity D(t) indicates the

deviation caused by the oracle after t iterations from the evolution solely due to the unitaries

Ûj. First, we prove that D(t) cannot grow faster than O(t2). On the other hand, we show

that to successfully identify the marked item D(t) has to be of the order of Ω(N). These two

results combined provide the lower bound Ω(
√
N) on the number of oracle queries required.

We first prove by induction that D(t) ≤ 4t2. For t = 0 we find that the inequality holds

since D(0) = 0. Let us now turn to D(t+ 1). We express it in the form

D(t+ 1) =
∑

x

‖φx(t+ 1)− φ(t+ 1)‖2 =
∑

x

∥∥∥Ût+1

(
Ôxφx(t)− φ(t)

)∥∥∥
2

=
∑

x

∥∥∥Ôxφx(t)− φ(t)
∥∥∥
2

=
∑

x

∥∥∥Ôx(φx(t)− φ(t)) + (Ôx − Î)φ(t)
∥∥∥
2

,
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where we have used the unitarity of the operation Ût+1. Now we use the inequality

‖a+ b‖2 ≤ ‖a‖2 + 2‖a‖‖b‖+ ‖b‖2,

where we consider

a = Ôx(φx(t)− φ(t)),

b = (Ôx − Î)φ(t) = −2〈x|φ(t)〉|x〉.

We find the upper bound

D(t+ 1) ≤
∑

x

(
‖φx(t)− φ(t)‖2 + 4‖φx(t)− φ(t)‖|〈x|φ(t)〉|+ 4|〈x|φ(t)〉|2

)

≤ D(t) + 4
∑

x

‖φx(t)− φ(t)‖|〈x|φ(t)〉|+ 4,

where we have used the fact that
∑

x

|〈x|φ(t)〉|2 = ‖φ(t)‖2 = 1.

Now we use the Cauchy-Schwartz inequality to estimate the second term

∑

x

‖φx(t)− φ(t)‖|〈x|φ(t)〉| ≤
(∑

x

‖φx(t)− φ(t)‖2
) 1

2
(∑

x

|〈x|φ(t)〉|2
) 1

2

=
√
D(t).

Hence, we obtain the inequality

D(t+ 1) ≤ D(t) + 4
√
D(t) + 4.

By induction hypothesis we assume that D(t) ≤ 4t2 and therefore we find

D(t+ 1) ≤ 4t2 + 8t+ 4 = 4(t+ 1)2,

which completes the first part of the proof.

To complete the proof we have to show that the success probability of at least 1
2
, i.e.

|〈x|φx(t)〉|2 ≥
1

2
,

can only be reached if D(t) is Ω(N). Without loss of generality we may assume that

|〈x|φx(t)〉| = 〈x|φx(t)〉,

which leads us to the estimate

‖φx(t)− x‖2 = 2− 2|〈x|φx(t)〉| ≤ 2−
√

2. (4.4)
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We find the lower bound for D(t)

D(t) =
∑

x

‖(φx(t)− x) + (x− φ(t))‖2 ≥ E(t)− 2
∑

x

‖φx(t)− x‖‖x− φ(t)‖+ F (t),

where we have defined the quantities

E(t) =
∑

x

‖φx(t)− x‖2,

F (t) =
∑

x

‖x− φ(t)‖2.

The Cauchy-Schwartz inequality implies that

∑

x

‖φx(t)− x‖‖x− φ(t)‖ ≤
(∑

x

‖φx(t)− x‖2
) 1

2
(∑

x

‖x− φ(t)‖2
) 1

2

=
√
E(t)F (t),

and therefore for D(t) we obtain

D(t) ≥ F (t)− 2
√
E(t)F (t) + E(t) =

(√
F (t)−

√
E(t)

)2

Let us now estimate the quantities E(t) and F (t). From (4.4) we see that

E(t) ≤ (2−
√

2)N. (4.5)

Concerning F (t) we find

F (t) =
∑

x

‖x− φ(t)‖2 ≥
∑

x

(2− 2Re〈x|φ(t)〉) ≥ 2N − 2
∑

x

|〈x|φ(t)〉|.

The sum can be estimated with the Cauchy-Schwartz inequality

∑

x

|〈x|φ(t)〉| ≤
(∑

x

|〈x|φ(t)〉|2
) 1

2
(∑

x

1

) 1
2

=
√
N,

and we obtain the lower bound for F (t) in the form

F (t) ≥ 2N − 2
√
N.

Combining this result with the estimate (4.5) we find that for sufficiently large N and c <

(
√

2−
√

2−
√

2)2 the inequality

D(t) ≥ cN,

holds. Since we have shown that D(t) ≤ 4t2 we conclude that

t ≥
√
cN

4
,

i.e. to find the marked item with probability at least one-half we have to query the oracle

Ω(
√
N) times. This completes the proof of optimality of the Grover’s search algorithm and

we conclude that it requires Θ(
√
N) iterations.
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4.3 Quantum Walk Search Algorithm

In this Section we turn to the search algorithm based on quantum walks. We introduce the

main ideas and discuss the relation to the Grover’s search. Then we analyze in detail the

coined quantum walk search on the star graph.

For the quantum walk based search we represent the database with a graph G = (V,E).

Each vertex v ∈ V of the graph corresponds to a particular item of the database. The solution

to the search problem is represented by a marked vertex. Our task is to find the marked

vertex with high probability by evolving a quantum walker on the graph. Marking the vertex

corresponds to changing the dynamics of the quantum walk on that particular node, such as

choosing a different coin operator in the coined quantum walk or setting a different on-site

energy in the continuous-time quantum walk. The walker is initialized in an equal-weight

superposition of all computational basis states to ensure that no additional information is

added into the system. We evolve the walker for t steps (or time t in the continuous-time

quantum walk) and then measure its position on the graph. The maximum probability of

finding the walker on the marked vertex and the runtime t depends on the number of vertices

of the graph G, which is equal to the size of the database N , and also on its structure.

The advantage of the quantum walk based search algorithm when compared with the

Grover’s search is that it allows to represent the database by various graphs, which might

be easier to implement in future experiments. However, the optimality of the quantum

walk search depends crucially on the structure of the graph. Coined quantum walk search

algorithm was shown to be optimal for hypercube [71] and for lattices [74] of dimensions

d greater than 2, i.e. it finds the marked node after O(
√
N) steps of the walk. Another

variant of discrete-time coinless quantum walk capable of optimal search on regular graphs

was proposed by Szegedy [19]. Continuous-time quantum walk was shown to be optimal [72]

for search on the complete graph, hypercube and lattices with d > 4. Moreover, including

the coin degree of freedom the continuous-time quantum walk search is optimal for lattices

with d > 2 [73]. Later it was found that high symmetry or connectivity of the graph

is in fact not required for the optimal runtime of the continuous-time quantum walk search

algorithm [88–90]. In fact, Chakraborty et al. [91] have shown that continuous-time quantum

walk search algorithm is optimal for almost all graphs.

Let us now illustrate the quantum walk search algorithm on the particular example of the

search on the star graph. The star is a bipartite graph consisting of a central vertex labeled

as 0 connected to N external vertices with labels 1 to N . One of the external vertices is

marked and we want to find it by means of a quantum walk. We consider a coined quantum

walk where the particle jumps from the external vertices to the central vertex and back. The

position space is spanned by the vectors |j〉p, with j = 0, . . . , N , corresponding to the particle

being at the vertex j. The coin space has to be defined separately for the external vertices

and for the central vertex, since they have different degrees. At the external nodes the coin
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space is one-dimensional, since the particle can jump only to the central vertex 0. We denote

the coin state as |0〉c. At the central node the coin space is N -dimensional, as the particle is

allowed to jump to any external vertex j, with j = 1, . . . , N . We denote the corresponding

coin states as |j〉c. The complete Hilbert space of the coined quantum walk on the star graph

is therefore spanned by vectors

|j〉p ⊗ |0〉c ≡ |j, 0〉,
|0〉p ⊗ |j〉c ≡ |0, j〉,

where j runs from 1 to N . The first index corresponds to the vertex and the second index

corresponds to the coin state.

The evolution operator of a single step of the walk can be written as a product of the

step operator Ŝ and the coin operator Ĉ

Û = Ŝ · Ĉ. (4.6)

The walk describes the particle hopping between the external vertices and the central node.

Hence, the step operator is given by

Ŝ =
N∑

j=1

(|j, 0〉〈0, j|+ |0, j〉〈j, 0|) .

Let us now turn to the coin operator. At the external nodes, where the coin space is one-

dimensional, we choose the coin operator to act as identity. However, at the marked vertex m

the coin acts as a phase shift of π. At the central node the states |j〉c form an N -dimensional

space, and we choose the coin operator to act there as the Grover operator

Ĝ = 2|w〉c〈w| − Î ,

where |w〉c denotes the symmetric superposition of all basis states |j〉c

|w〉c =
1√
N

N∑

j=1

|j〉c.

Hence, the coin operator has the form

Ĉ =
(
ÎN − 2|m〉p〈m|

)
⊗ |0〉c〈0|+ |0〉p〈0| ⊗ Ĝ.

After some algebra we find that the evolution operator (4.6) can be re-written as

Û =
N∑

j=1

|0, j〉〈j, 0| − 2|0,m〉〈m, 0|+ 2

N

N∑

i,j=1

|i, 0〉〈0, j| −
N∑

j=1

|j, 0〉〈0, j|. (4.7)
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We start the walk in an equal-weight superposition of states corresponding to the external

vertices

|ψ(0)〉 =
1√
N

N∑

j=1

|j, 0〉.

The state of the walk after t steps is given by

|ψ(t)〉 = Û t|ψ(0)〉.

We show that after O(
√
N) steps the particle will be with high probability on the marked

vertex. In fact, we prove that for the star graph two steps of the coined quantum walk are

exactly equivalent to one Grover iteration. Clearly, the walk is bipartite, since the particle

hops between the external vertices to the central vertex and back. Hence, it is sufficient to

focus on the square of the unitary evolution operator of the walk (4.7). We find that the

action of Û2 on the states |j, 0〉 is given by

Û2|j, 0〉 =
2

N

∑

i 6=j

|i, 0〉 − N − 2

N
|j, 0〉, j 6= m,

Û2|m, 0〉 =
N − 2

N
|m, 0〉 − 2(N − 1)

N

∑

i 6=m

|i, 0〉. (4.8)

It is then straightforward to see that the states |m, 0〉 and

|m, 0〉 =
1√

N − 1

N∑

j 6=m

|j, 0〉,

form an invariant subspace of Û2. Indeed, using (4.8) we obtain

Û2|m, 0〉 =
N − 2

N
|m, 0〉 − 2

√
N − 1

N
|m, 0〉,

Û2|m, 0〉 =
2
√
N − 1

N
|m, 0〉+

N − 2

N
|m, 0〉,

which is identical to the action of the Grover iteration (4.2). Hence, two steps of the coined

quantum walk on the star graph are exactly equivalent to one Grover iteration. Using the

results for the Grover’s search we conclude that we find the marked vertex m with high

probability when we chose the number of steps of the quantum walk as an even integer

closest to

T =
π

2

√
N +O

(
1√
N

)
.
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4.4 Perfect State Transfer by Means of Quantum Walks

Finally, let us turn to the perfect state transfer based on a quantum walk. We consider a

graph with N vertices where two of them, a sender and a receiver, want to communicate.

One possibility to achieve this is based on a simple modification of the quantum walk search

algorithm [104]. First, we mark both the sender and the receiver vertex, i.e. we use different

coin on these two distinguished locations. Second, we start the walk on the sender vertex in

an equal-weight superposition of all coin states. We then evolve the quantum walk and after

O(
√
N) steps the particle should reach the receiver vertex.

Let us illustrate this approach to perfect state transfer on the example of the star graph

with N external vertices which we have investigated in detail in [X]. Two of the external

vertices, the sender labeled s and the receiver labeled r, are marked by a using a different

coin operation. The coin operator is therefore given by

Ĉ =
(
ÎN − 2|s〉p〈s| − 2|r〉p〈r|

)
⊗ |0〉c〈0|+ |0〉p〈0| ⊗ Ĝ,

which corresponds to phase shift of π on the sender and the receiver. The evolution operator

determining a single step of the coined quantum walk then reads

Û =
N∑

j=1

|0, j〉〈j, 0| − 2|0, s〉〈s, 0| − 2|0, r〉〈r, 0|+ 2

N

N∑

i,j=1

|i, 0〉〈0, j| −
N∑

j=1

|j, 0〉〈0, j|.

(4.9)

We initialize the walk in the sender vertex, i.e. the initial state is

|ψ(0)〉 = |s, 0〉.
We show that after O(

√
N) steps of the coined quantum walk the particle will be with high

probability located on the receiver vertex r. We again make use of the bipartiteness of the

graph and focus on the square of the evolution operator (4.9). Its action on the computational

basis states is given by

Û2|s, 0〉 = − 2

N

∑

i 6=s

|i, 0〉+

(
1− 2

N

)
|s, 0〉,

Û2|r, 0〉 = − 2

N

∑

i 6=r

|i, 0〉+

(
1− 2

N

)
|r, 0〉,

Û2|j, 0〉 =
2

N

∑

i 6=j

|i, 0〉 −
(

1− 2

N

)
|j, 0〉, j 6= s, r. (4.10)

Using these expressions it is straightforward to show that the three orthogonal states |s, 0〉,
|r, 0〉 and

|sr, 0〉 =
1√

N − 2

∑

j 6=s,r

|j, 0〉,
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form an invariant subspace with respect to Û2. Indeed, from (4.10) we find

Û2|s, 0〉 =
N − 2

N
|s, 0〉 − 2

N
|r, 0〉 − 2

√
N − 2

N
|sr, 0〉,

Û2|r, 0〉 = − 2

N
|s, 0〉+

N − 2

N
|r, 0〉 − 2

√
N − 2

N
|sr, 0〉,

Û2|sr, 0〉 =
2
√
N − 2

N
(|s, 0〉+ |r, 0〉)− N − 4

N
|sr, 0〉.

Hence, the time evolution of the walk for the fixed initial state |s, 0〉 is described by the

effective evolution operator Ûeff , which is in the {|s, 0〉, |r, 0〉, |sr, 0〉} basis given by the

following 3x3 matrix

Ueff =




N−2
N

− 2
N

2
√
N−2
N

− 2
N

N−2
N

2
√
N−2
N

−2
√
N−2
N

−2
√
N−2
N

N−4
N


 .

Diagonalization of Ûeff is straightforward. We find that it has an eigenvector

|χ0〉 =
1√
2

(|s, 0〉 − |r, 0〉) ,

corresponding to the eigenvalue λ = 1. The remaining two eigenvectors have the form

|χ±〉 =
1

2
(|s, 0〉+ |r, 0〉)± i√

2
|sr, 0〉.

They correspond to a pair of conjugated eigenvalues

λ± = e±iω,

where the phase ω is given by

ω = arccos

(
N − 4

N

)
. (4.11)

Let us now analyze the evolution of the initial state |s, 0〉 under the effective evolution

operator Ûeff . We find that the initial condition |s, 0〉 and the desired target state |r, 0〉 can

be decomposed into the eigenbasis of Ûeff as

|s, 0〉 =
1√
2
|χ0〉+

1

2

(
|χ+〉+ |χ−〉

)
,

|r, 0〉 = − 1√
2
|χ0〉+

1

2

(
|χ+〉+ |χ−〉

)
.

After t applications of the effective evolution operator Ûeff , i.e. after 2t steps of the walk,

we obtain

|ψ(2t)〉 =
1√
2
|χ0〉+

eiωt

2

(
|χ+〉+ e−2iωt|χ−〉

)
. (4.12)
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For ωt = π the state reduces to −|r, 0〉, i.e. the receiver state up to an irrelevant global

phase factor. We conclude that the walk achieves (almost) perfect state transfer between

the sender and the receiver provided that we choose the number of steps as the closest even

integer to 2π/ω, i.e.

T =
2π

arccos
(
N−4
N

) . (4.13)

With the Taylor expansion we find that the number of steps required for the state transfer

scales with the size of the star graph according to

T =
π√
2

√
N +O

(
1√
N

)
.

For illustration we display in Figure 4.1 the fidelity between the state of the walk (4.12)

and the target state |r, 0〉 as a function of the number of steps. From (4.12) we find that it

is given by

F(2t) = |〈ψ(2t)|r, 0〉|2 = sin4

(
ωt

2

)
. (4.14)

Note that for odd time steps the fidelity is zero since the walk is bipartite. In Figure 4.1 the

number of vertices of the star graph was chosen as N = 100. As follows from (4.13) the first

maximum of the fidelity is reached after 22 steps of the walk.

4.5 Discussion

The efficiency of the state transfer, i.e. the probability that the particle is actually found at

the receiver vertex, depends crucially on the type of the graph where the quantum walk takes

place. For the quantum walk search this is not a problem: as far as the probability of finding

the marked vertex does not vanish with increasing N , one can repeat the search algorithm

k times to find the solution with probability 1− ε. The number of repetitions k depends on

the error tolerance ε and not on the size of the graph N . Hence, the optimality of the search

algorithm, i.e. the ability to find the marked vertex in O(
√
N) steps, is preserved. However,

for the sake of perfect state transfer we want to succeed in a single trial, i.e. the probability

of the particle reaching the receiver vertex should be as high as possible, ideally reaching

unity. This is possible only on few types of graphs, such as the star which we have discussed

in the previous Section. In [X] we have shown that the coined quantum walk achieves perfect

state transfer on a complete graph with additional self-loop on each vertex. In this case the

invariant subspace is five-dimensional, nevertheless, the problem is still analytically tractable.

We have found that the spectrum of the effective evolution operator in the invariant subspace
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Figure 4.1: Fidelity between the state of the walk (4.12) and the target state |r, 0〉 for the
walk on the star graph as a function of the number of steps t. The black dots correspond
to the numerical simulation and the red line is given by (4.14). Fidelity is plotted only at
even number of steps, since it vanishes when t is odd. We have considered the star graph
with N = 100 external vertices. The first maximum of fidelity is reached after 22 steps, in
accordance with (4.13).

is given by the eigenvalues

λ0 = 1,

λ±1 = e±iω,

λ±2 = e±2iω,

where the phase ω is the same as for the star graph (4.11). This implies that the number of

steps required for perfect state transfer on the complete graphs with self-loops is the same as

for the star graph. Moreover, we have considered perfect state transfer by means of Szegedy’s

walk with queries [82] on a complete graph. Here the invariant subspace is seven-dimensional

and the problem can be treated analytically only in the asymptotic limit N → +∞. We

have found that for large N the dynamics of the Szegedy’s walk with queries on the complete

graph reduces to that of the coined walk on the star graph, i.e. the perfect state transfer

with high fidelity can be achieved in the asymptotic limit.

The results for the star graph were extended in [XI] to complete bipartite graphs Km,n

of m plus n vertices. Indeed, the star graph is a special case of a complete bipartite graph

with a single vertex in one of the parts, i.e. Km,1. We have shown that when both the sender

and the receiver vertices are located in the same part of the graph the perfect state transfer

is achieved. The size of the second part is irrelevant, since the dynamics in the invariant
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subspace is identical to the one for the star graph. On the other hand, when the sender

and the receiver are in the opposite parts the particle is found at the receiver vertex with

certainty only when the parts of the bipartite graph have the same size, i.e. m = n. When

their sizes differ the fidelity of state transfer decreases, and the maximal attainable value of

fidelity is given by

Fmax =

(√
(m− 1)(n− 1) +

√
mn

m+ n− 1

)2

.

We note that there exists another approach to perfect state transfer based on quantum

walks where one defines dynamics at each individual vertex in order to achieve state transfer

between two the sender and the receiver. This method was applied to achieve perfect state

transfer on a circle [101, 103] and a square lattice [102]. However, it requires considerably

more control over the graph in comparison with the approach based on the modification of

the quantum walk search, where we have to adjust the dynamics only at the sender and

receiver vertex.
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Chapter 5

Conclusions

Over the years quantum walks have established a solid position in quantum information

theory. They have been successfully applied to various tasks from quantum information

processing, quantum communication or quantum simulations. We believe that our work has

contributed to this effort.

We concentrated mostly on homogeneous quantum walks where the Fourier analysis is

applicable. For certain models it is possible to diagonalize the evolution operator and derive

the weak-limit theorem. However, the explicit form of the limit density is often rather

complicated, in particular, due to the dependence on the initial coin state. We showed that

this issue can be remedied by utilizing a more suitable basis of the coin space [I, V, VI, IX]

which reduces the complexity of the formulas tremendously. This allows one to easily identify

features which are hidden in the standard basis description. The subsequent analysis of

applications of quantum walks is considerably simplified, as we demonstrated on the examples

of quantum transport on a ring [VII] or persistence of unvisited sites [VIII]. We plan to

investigate the potential of our approach for higher-dimensional quantum walks with more

internal degrees of freedom. In addition, we will discuss its application to quantum walks

without translational invariance.

Large part of our work was focused on the effect of trapping [III,IV,V]. We provided a full

classification of U(3) coins which lead to the trapping effect for three-state quantum walks on

a line [IV]. Physical properties of the trapping walks in dependence on the coin parameters

were analyzed. We were able to analytically solve the dynamics of particular families of three-

state walks. The explicit form of their limit density and trapping probability was derived [V].

At the moment we are preparing a similar classification of U(4) trapping coins for four-state

quantum walks on a square lattice [196]. The approach we pursued for U(3) coins in [IV], i.e.

a direct construction of the coin operator from the conditions on the existence of the point

spectrum, is not convenient for larger matrices. Instead, we employ the properties of the

stationary states to reconstruct the coin operator. We also prove that this construction is

exhaustive, i.e. we indeed obtain all U(4) trapping coins. The additional degrees of freedom
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offered by larger coin space results in features which do not exist for three-state walks. As an

example, the effect of strong trapping was identified in [195]. It was found that for certain

U(4) coins the leaving state, i.e. an initial state for which the trapping vanishes, does not

exist. Hence, in strong trapping walks the trapping effect is always present, irrespective of

the initial condition. This is not possible in three-state walks where the leaving state always

exists [IV]. We plan to investigate the trapping probability in four-state walks on a square

grid in full detail. It would be interesting to see if the trapping probability can be made

asymmetric and directionally dependent, in a similar way as for the three-state walks. The

identification of suitable bases of the coin space will be crucial for this analysis.

We investigated quantum walks as models of coherent excitation transport to an absorbing

sink on a simple ring graph [VII]. Our results show that the trapping effect seriously inhibits

transport. However, we found that in certain cases the trapping effect can be eliminated by

dynamical percolation, since the stationary states of the trapped walk do not belong to the

attractor space of the walk on the dynamically changing ring. Hence, allowing the edges to

break randomly might improve the efficiency of transport, which is quite a counterintuitive

result. We plan to extend this analysis to more complicated graphs, such as torus, trees or

regular graphs. In such cases the topology of the graph might play a non-trivial role, since it

certainly affects the structure of the stationary states of the trapped walk. Moreover, it can

lead to existence of additional attractors of the walk when we consider dynamical percolation

of the graph. We plan to investigate the interplay between these two effects in more detail.

The application of quantum walks to the problem of perfect state transfer between two

vertices of a graph was addressed in [X, XI]. Our approach relies on a simple modification

of the quantum walk search algorithm. Its efficiency depends crucially on the structure of

the underlying graph. We proved by explicit calculation that one can achieve perfect state

transfer with unit fidelity on a star graph and complete graph with self-loops. In the case

of the Szegedy’s walk on a complete graph the perfect state transfer is achieved with high

fidelity in the asymptotic limit. For complete bipartite graphs we showed that the unit

fidelity of perfect state transfer is ensured when the sender and the receiver vertices are in

the same part of the graph. Otherwise, unit fidelity is achieved only when the two parts have

the size. It is of interest to identify additional graphs where perfect state transfer can be

performed with high fidelity, at least in the limit of large size of the graph. In addition, we

plan to investigate perfect state transfer by means of quantum walks under the influence of

imperfections, such as phase noise, coin inhomogeneity or percolation.

Finally, let us mention the advancements in the experimental realizations of quantum

walks. We have a close collaboration with the experimental group of prof. Christine Silber-

horn at the University of Paderborn, Germany. Her group realizes discrete-time quantum

walks by utilizing photonic time-multiplexing and loop architecture [176] which significantly

reduces the number of required optical elements. The photonic platform is intrinsically

coherent and stable. Moreover, with the incorporation of programmable electro-optical mod-
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ulators it is possible to simulate dynamical effects, such as Anderson localization [177] or

quantum transport in random media [178]. We have collaborated with them extensively on

the first optical implementation of a 2D quantum walk [II] which was able to simulate a

walk of two particles on a line, including the case of interacting particles. In these exper-

iments the measurement process was somewhat limited, since it was performed through a

probabilistic out-coupling. Indeed, after the step of a quantum walk is executed the light

pulse passes through a weakly reflective beam-splitter which most likely sends it back into

the loop to continue the quantum walk evolution, however, with a probability of a few per-

cent it is coupled out to a polarization resolving detection via avalanche photodiodes. The

time of detection of the light pulse uniquely determines the number of steps performed and

the position on the lattice. One can then reconstruct the probability distribution at any

desired time-step by normalizing the frequencies of detection appropriately. However, the

probabilistic nature of this measurement scheme does not allow us to focus on a particular

site or a particular time step. Moreover, it increases the photon loss per round-trip which re-

duces the visibility and limits the achievable number of steps. The group of prof. Silberhorn

devised a deterministic out-coupling scheme which solves these issues. This measurement

setup employs programmable electro-optical modulators to couple-out on demand a light

pulse corresponding to the desired time and position without affecting the coherence of the

rest of the wave-packet. In addition to improved visibility at higher number of steps the

deterministic out-coupling enables us to implement an absorbing sink. Recently [197] we

have used the setup to experimentally demonstrate the role of the measurement scheme on

the recurrence probability in quantum walks [189,198,199]. In the nearest future we plan to

apply the experiment to simulate quantum transport to an absorbing sink.
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[VI] I. Bezděková, M. Štefaňák and I. Jex, Phys. Rev. A 92, 022347 (2015).
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[64] J. Novotný, G. Alber and I. Jex, J. Phys. A 42, 282003 (2009).
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2

starting the walk in a separable state. We determine the limits for the directional correlations and show that, for
any value within these limits, one can design a corresponding separable initial state. Next, we prove that the bounds
cannot be exceeded by considering entanglement in the initial state. On the other hand, introducing quantum walks
with δ-interactions, we show that the directional correlations can be increased above the limit for non-interacting
particles.

Our paper is organized as follows: we briefly review the quantum walk on a line with one and two non-interacting
particles in Section II and introduce the probability to be on the same side of the lattice Ps. In Section III we analyze
the probability Ps for separable initial states. Entangled initial states are considered in Section IV. In Section V
we study the influence of the indistinguishability on the probability Ps. In Section VI we introduce the concept of
δ-interacting quantum walks to break the limits of non-interacting quantum walks. We summarize our results in
Section VII.

II. QUANTUM WALK ON A LINE WITH ONE AND TWO PARTICLES

Let us first briefly review the quantum walk of a single particle on a line (see e.g. Ref. [67] for a more detailed
introduction). The Hilbert space of the particle is given by a tensor product

H = HP ⊗HC
of the position space

HP = `2(Z) = Span {|m〉| m ∈ Z}

and the two-dimensional coin space

HC = Span {|L〉, |R〉} .

We consider a particle starting the quantum walk from the origin, i.e. the initial state has the form

|ψ(0)〉 = |0〉 ⊗ |ψC〉,

where |ψC〉 denotes the initial state of the coin. After t steps of the quantum walk the state of the particle is given by

|ψ(t)〉 ≡
∑

m

(
ψL(m, t)|m〉|L〉+ ψR(m, t)|m〉|R〉

)
= U t|ψ(0)〉 , (1)

where the unitary propagator U has the form

U = S (I ⊗ C) . (2)

The coin operator C flips the state of the coin before the particle is displaced. In principle, C can be an arbitrary
unitary operation on the coin space HC . We choose the most studied case of the Hadamard coin, denoted by CH ,
which is defined by its action on the basis states

CH |L〉 =
1√
2

(|L〉+ |R〉), CH |R〉 =
1√
2

(|L〉 − |R〉).

After the coin flip the step operator S displaces the particle from its current position according to its coin state

S|m〉|L〉 −→ |m− 1〉|L〉, S|m〉|R〉 −→ |m+ 1〉|R〉.

The coefficients ψL,(R)(m, t) in (1) represent the probability amplitudes of finding the particle at position m after t
steps of the quantum walk with the coin state |L(R)〉. The probability distribution generated by the quantum walk
is given by

p(m, t) = |〈m|〈L|ψ(t)〉|2 + |〈m|〈R|ψ(t)〉|2 = |ψL(m, t)|2 + |ψR(m, t)|2 .

The extension of the formalism described above to two distinguishable particles has been given in [58]. One should
consider the bipartite Hilbert state as a tensor product

H12 = H1 ⊗H2
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of the single particle Hilbert spaces. We consider non-interacting particles, i.e. their time evolution is independent.
Hence, the propagator of the two-particle quantum walk can be written in a factorized form

U12 = U1 ⊗ U2, (3)

where U1 (U2) is the propagator of the first (second) particle given by Eq. (2). Note that this factorized time evolution
cannot increase entanglement between the particles. In this paper we consider particles starting from the same lattice
point (the origin). Hence, the initial state of the two-particle quantum walk has the shape

|Ψ(0)〉 = |0, 0〉 ⊗ |ΨC〉,

where |ΨC〉 is the initial coin state of the two particles.
Let us first consider the case when the initial coin state is separable, i.e.

|ΨC〉 = |ψ1〉 ⊗ |ψ2〉 . (4)

Since entanglement is not induced in the process of time evolution, the two-particle state remains factorized and the
joint probability distribution p(m,n, t) of finding the first particle at the mth and the second at the nth site at time
t is reduced to the product of single particle distributions

p(m,n, t) = p1(m, t) · p2(n, t) . (5)

Here, pi(m, t) is the probability distribution of a single-particle quantum walk given that the initial coin state was
|ψi〉. Hence, the two-particle quantum walk with initially separable coin state is fully determined by the single-particle
quantum walk.

We turn to the situation when the initial coin state |ΨC〉 does not factorize. In such a case, the joint probability
distribution p(m,n, t) cannot be written in a product form (5). Nevertheless, we can map the two-particle walk on a
line to a quantum walk of a single particle on a square lattice. Indeed, we can write the two-particle propagator (3)
in the following form

U12 = S12(IP12
⊗ (CH ⊗ CH)), (6)

where IP12 is the identity on the joint position space and the joint step operator S12 is given by the tensor product
of the single particle step operators Si. The relation (6) implies that we can consider the two-particle propagator
U12 as a propagator of single-particle walk on a plane with the coin given by the tensor product of two Hadamard
operators. Hence, the two quantum walks in consideration are equivalent. This correspondence allows us to treat the
joint probability distribution of the two-particle walk with the tools developed for the single-particle quantum walks.

Finally, let us briefly comment on a quantum walk with indistinguishable particles. It is natural to use the second

quantization formalism. We denote the bosonic creation operators by â†(m,i) and the fermionic creation operators by

b̂†(n,j), e.g. â†(m,i) creates one bosonic particle at position m with the internal state |i〉, i = L,R. The dynamics of

the quantum walk with indistinguishable particles is defined on a one-particle level, i.e. a single step is given by the
following transformation of the creation operators

â†(m,L) −→
1√
2

(
â†(m−1,L) + â†(m+1,R)

)
, â†(m,R) −→

1√
2

(
â†(m−1,L) − â

†
(m+1,R)

)
,

for bosonic particles, similarly for fermions. The difference is that the bosonic operators fulfill the commutation
relations

[
â(m,i), â(n,j)

]
= 0 ,

[
â(m,i), â

†
(n,j)

]
= δmnδij , (7)

while the fermionic operators satisfy the anti-commutation relations

{
b̂(m,i), b̂(n,j)

}
= 0 ,

{
b̂(m,i), b̂

†
(n,j)

}
= δmnδij . (8)

Since the dynamics is defined on a single-particle level, one can describe the state of the two indistinguishable particles
after t steps of the quantum walk in terms of the single-particle probability amplitudes (see Ref. [59] for a more detailed
discussion).

89



4

In the present paper we focus on the directional correlations between the two particles. We quantify this property
by the probability Ps that both particles are found after t steps of the quantum walk on the same side of the line.
For distinguishable particles it is given by

Ps(t) =

0∑

m=−t

0∑

n=−t
p(m,n, t) +

t∑

m=1

t∑

n=1

p(m,n, t) . (9)

For indistinguishable particles p(m,n, t) ≡ p(n,m, t), i.e. these two probabilities correspond to the same physical
event. Hence, the sums in (9) have to be restricted over an ordered pair (m,n) with m ≥ n, i.e.

Ps(t) =

0∑

n=−t

(
0∑

m=n

p(m,n, t)

)
+

t∑

n=1

(
t∑

m=n

p(m,n, t)

)
. (10)

In particular, we will be interested in the asymptotic limits of the probability Ps in its dependence on the initial coin
state of the two particles. We consider both separable and entangled coin states, as well as indistinguishability of the
particles, in the following Sections.

III. SEPARABLE INITIAL STATES

Let us now specify the probability Ps for two distinguishable particles which start the quantum walk with a
separable coin state (4). As discussed in the previous Section the joint probability distribution p(m,n, t) factorizes
(5). Therefore, the probability to be on the same side of the lattice Ps simplifies into

Ps(t) = P−1 (t) · P−2 (t) + P+
1 (t) · P+

2 (t) , (11)

Here we have denoted by P±i (t) the probability that the particle which have started the quantum walk with the coin
state |ψi〉 is on the positive or negative half-axis after t steps, i.e.

P−i (t) =

0∑

m=−t
pi(m, t), P+

i (t) =

t∑

m=1

pi(m, t).

In Figure 1 we plot the course of the probability Ps(t) with the number of steps t. To unravel the dependence on the
initial coin state |ΨC〉 we consider three cases - (i) |ΨC〉 = |L〉⊗ |R〉 (black dots), (ii) |ΨC〉 = |L〉⊗ |L〉 (open circles),
and (iii) |ΨC〉 = 1√

2
(|L〉+ i|R〉) ⊗ 1√

2
(|L〉+ i|R〉) (open diamonds). We find that after some initial oscillations the

probability Ps quickly approach steady values which are determined by the initial coin state.
Let us now determine the asymptotic value of the probability Ps in dependence of the initial coin state. Consider

a general separable coin state of the form

|ΨC〉 = (a1|L〉+ b1|R〉)⊗ (a2|L〉+ b2|R〉) .

The asymptotic probability distribution for a single particle is given by [24]

p(x, t, ai, bi) =
1− x

t ((ai + bi)ai + (ai − bi)bi)
πt
√

1− 2x
2

t2 (1− x2

t2 )
. (12)

The probability that the particle is on the negative or positive half-axis is obtained by integrating the probability
density over the corresponding interval

P−i (ai, bi) =

0∫

− t√
2

p(x, t, ai, bi)dx =
1

4
(2 + ((ai + bi)ai + (ai − bi)bi)) ,

P+
i (ai, bi) =

t√
2∫

0

p(x, t, ai, bi)dx =
1

4
(2− ((ai + bi)ai + (ai − bi)bi)) . (13)
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FIG. 1: The probability Ps that two distinguishable particles performing a quantum walk on a line end on the same side as
a function of time. Both particles start the quantum walk from the origin. As the initial coin state |ΨC〉 we choose one of
the three factorized states - (i) |L〉 for the first particle and |R〉 for the second particle (black dots), (ii) |L〉 for both particles
(open circles), and (iii) |ψS〉 ≡ 1√

2
(|L〉+ i|R〉) for both particles (open diamonds). We find that for the initial coin state (i)

the particles are more likely to be on the opposite side, since Ps < 1/2. Indeed, due to the choice of the coin state |LR〉
the probability distribution of the first particle is biased to the left while the probability distribution of the second particle is
biased to the right. On the other hand, for the initial state |LL〉 both probability distributions are biased to the left. Hence,
the particles are more likely to be found on the same side. Finally, for the initial state (iii) which results in the symmetric
single-particle probability distribution the particles are equally likely to be on the same or the opposite side of the line. The
asymptotic values of Ps for all three initial states are in agreement with the analytic estimation of Eq.(15).

Note that within the approximation of Eq. (12) the resulting integrals are time-independent, i.e. we immediately
obtain the asymptotic values of the probabilities P±i . This is due to the fact that the asymptotic probability density
depends only on the ratio x/t.

Inserting the results of (13) into the Eq.(11) we find that the probability Ps is given by

P (sep)
s =

1

8

(
4 +

(
(a1 + b1)a1 + (a1 − b1)b1

) (
(a2 + b2)a2 + (a2 − b2)b2

) )
.

(14)

In particular, for the initial states (i − iii) considered in Figure 1, we find the asymptotic values

P (LR)
s ≡ Ps(1, 0, 0, 1) =

3

8
, P (LL)

s ≡ Ps(1, 0, 1, 0) =
5

8
,

P (S)
s ≡ Ps(

1√
2
,
i√
2
,

1√
2
,
i√
2

) =
1

2
. (15)

These results are in perfect agreement with the numerical simulations presented in Figure 1.

Let us now analyze the probability P
(sep)
s in more detail. First, we recast the formula (14) in a simpler form by a

change of the basis of the coin space. Consider the basis formed by the eigenstates of the Hadamard coin

CH |χ±〉 = ±|χ±〉 ,

which have the following expression in the standard basis

|χ±〉 =

√
2±
√

2

2
|L〉 ±

√
2∓
√

2

2
|R〉 . (16)

We decompose the single-particle coin state in the Hadamard basis

|ψi〉 = h+i |χ+〉+ h−i |χ−〉 .
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FIG. 2: The probability to be on the same side P
(sep)
s in its dependence on the coefficients of the initial coin states. The

parameters h+
i are given by the overlap of the coin state |ψi〉 with the eigenstate |χ+〉 of the Hadamard coin. We find that

the probability P
(sep)
s reaches the maximum value 3/4 when both h+

1,2 equals either zero or one. The minimum value 1/4 is

obtained if one the h+
i is zero while the other one is unity.

From the expression (16) we find the transformation between the coefficients in the standard and the Hadamard basis

ai =

√
2 +
√

2

2
h+i +

√
2−
√

2

2
h−i , bi =

√
2−
√

2

2
h+i −

√
2 +
√

2

2
h−i .

With the help of these relations we find that the formula (14) for the probability P
(sep)
s simplifies in the Hadamard

basis into

P (sep)
s =

1

4

(
2 + (2

∣∣h+1
∣∣2 − 1)(2

∣∣h+2
∣∣2 − 1)

)
. (17)

Here we have used the normalization of the single-particle coin state |ψi〉, i.e. the condition

|h+i |2 + |h−i |2 = 1 . (18)

We display the probability to be on the same side P
(sep)
s in its dependence on the parameters h+i in Figure 2. We

find that P
(sep)
s reaches the maximum value 3/4 provided that both h+i equals zero or unity, i.e. when both particles

start the walk in the same eigenstate of the Hadamard coin. Indeed, starting the single-particle walk in the eigenstate
|χ+〉 (|χ−〉) leads to a probability distribution which is maximally biased towards left (right). We illustrate this
feature in Figure 3. Note that this effect has been identified numerically in [26]. Hence, when both particles start
the walk in the same eigenstate of the Hadamard coin, their probability distributions are maximally biased towards
the same direction and, consequently, the particles are the most likely to be on the same side. On the other hand, if
the particles start the walk in the different eigenstates (e.g. the first one in |χ+〉 and the second one in |χ−〉, which
corresponds to h+1 = 1 and h+2 = 0), the probability distributions are maximally biased in the opposite directions. In

such a case, the particles are the most likely to be on the opposite side of the lattice and P
(sep)
s reaches the minimum

1/4.

IV. ENTANGLED INITIAL STATES

Let us now analyze the probability that the particles will be on the same side of the lattice Ps for the initial coin
states |ΨC〉 which are not factorized. We follow two approaches. First, we analyze the particular case of maximally
entangled Bell states. We express the two-particle state in terms of single-particle amplitudes. In this way, we
decompose the joint probability distribution into single-particle distributions plus an interference term. We then use
the results of the previous section to find the asymptotic value of the probability Ps. By this approach we emphasize
the role of the interference of probability amplitudes. Second, we employ the equivalence between the two-particle
walk on a line and single-particle walk on a square lattice discussed in Section II. This correspondence allows us to
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FIG. 3: Single-particle probability distribution for the initial coin state |ψC〉 = |χ+〉. We find only one peak on the left side of
the lattice, the peak on the right side has disappeared. Consequently, the resulting probability distribution is maximally biased
towards left. Choosing the initial coin state as |ψC〉 = |χ−〉 will flip the plot around the origin and the resulting probability
distribution will be maximally biased to the right.

use the tools developed for the quantum walks with a single particle, namely the weak limit theorems [23], to find the
asymptotic probability density for the two-particle walk on a line. We leave the details of the calculation for the A.
With the explicit form of the probability density we finally derive the asymptotic value of the probability Ps for an
arbitrary two-particle coin state.

We start by examining the particular case of maximally entangled Bell states

|ψ±〉 =
1√
2

(|LR〉 ± |RL〉) , |φ±〉 =
1√
2

(|LL〉 ± |RR〉) . (19)

Obviously, the joint probability distribution p(m,n, t) is no longer a product of the single-particle probability dis-
tributions. However, we can still express it in terms of the single-particle probability amplitudes. Let us denote by

ψ
(L)
i (m, t) the amplitude of the particle being after t steps at the position m with the coin state |i〉, i = L,R, provided

that the initial coin state was |L〉. Similarly, let ψ
(R)
i (m, t) be the amplitude for the initial coin state |R〉. With

this notation we express the joint probability distributions generated by quantum walk of two particles with initially
entangled coins by

p(ψ
±)(m,n, t) =

1

2

∑

i,j=L,R

∣∣∣ψ(L)
i (m, t)ψ

(R)
j (n, t)± ψ(R)

i (m, t)ψ
(L)
j (n, t)

∣∣∣
2

,

p(φ
±)(m,n, t) =

1

2

∑

i,j=L,R

∣∣∣ψ(L)
i (m, t)ψ

(L)
j (n, t)± ψ(R)

i (m, t)ψ
(R)
j (n, t)

∣∣∣
2

,

where the superscript indicates the initial coin state. We now make use of the fact that the amplitudes ψ
(L,R)
i (m, t)

are real valued. Indeed, both the Hadamard coin and the initial states have only real entries. Hence, the amplitudes
cannot attain any imaginary part during the time evolution. Therefore, we can replace the absolute values by simple
brackets and expand the joint probability distributions in the form

p(ψ
±)(m,n, t) =

1

2

(
p(L)(m, t)p(R)(n, t) + p(R)(m, t)p(L)(n, t)

)
±

±ϕ(m, t)ϕ(n, t) ,

p(φ
±)(m,n, t) =

1

2

(
p(L)(m, t)p(L)(n, t) + p(R)(m, t)p(R)(n, t)

)
±

±ϕ(m, t)ϕ(n, t) . (20)
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Here, we have used the notation

ϕ(m, t) = ψ
(L)
L (m, t)ψ

(R)
L (m, t) + ψ

(L)
R (m, t)ψ

(R)
R (m, t)

to shorten the formulas. When we insert the expressions (20) into the definition (9) of the probability Ps we find that
the later one can be written in the form

P (ψ±)
s (t) = P (LR)

s (t)± I(t), P (φ±)
s (t) = P (LL)

s (t)± I(t) .

The interference term I(t) is given by

I(t) =
(
ϕ−(t)

)2
+
(
ϕ+(t)

)2
,

where we have denoted

ϕ−(t) =

0∑

m=−t
ϕ(m, t), ϕ+(t) =

t∑

m=1

ϕ(m, t) .

Let us now turn to the asymptotic values of Ps in dependence on the choice of the Bell state. The limits of P
(LR)
s and

P
(LL)
s are given in (15). We obtain the asymptotic value of the interference term I(t) from the numerical simulation,

which indicates

I(t→ +∞) =
1

8
.

Finally, for the limiting values of the probability Ps we find

P (ψ+)
s =

1

2
, P (ψ−)

s =
1

4
, P (φ+)

s =
3

4
, P (φ−)

s =
1

2
. (21)

We display the dependence of Ps on the number of steps and the choice of the initial coin state in Figure 4. We
find that the probability Ps quickly approach the steady values, similarly as for the factorized coin states which we
have shown in Figure 1. For |ψ+〉 (open circles) and |φ−〉 (black dots) the particles are asymptotically equally likely
to be on the same or on the opposite side. For the Bell state |φ+〉 (stars) the particles are more likely to be on the
same side of the line. Finally, for the singlet state |ψ−〉 (open diamonds) the particles are more likely to be on the
opposite side. The asymptotic values of the probabilities Ps are in agreement with the results of (21).

After we have analyzed the particular case of the Bell states we turn to a general initial coin state. As in the previous
Section, we make use of the asymptotic probability density p(x1, x2, t) and replace the sums in (9) by integrals. We
derive the explicit form of the asymptotic probability density in the A. Performing the integrations we arrive at the
following expression

Ps =
1

4

(
2 + |h(++)|2 + |h(−−)|2 − |h(+−)|2 − |h(−+)|2

)

for the probability to be on the same side. Here we have denoted by h(αβ) the coefficients of the decomposition of

the initial coin state |ΨC〉 into the basis formed by the tensor product of the eigenvectors |χ±〉 of the Hadamard coin
CH , i.e.

|ΨC〉 =
∑

α,β=±
h(αβ)|χα〉|χβ〉. (22)

Finally, using the normalization condition for the initial coin state |ΨC〉

|h(++)|2 + |h(−+)|2 + |h(+−)|2 + |h(−−)|2 = 1,

we can simplify the expression for the probability P
(ent)
s into the form

P (ent)
s =

1

4

(
1 + 2(|h(++)|2 + |h(−−)|2)

)
. (23)

The dependence of the probability P
(ent)
s on the initial coin state is illustrated in Figure 5. We find that the

probability to be on the same side for entangled initial coin states P
(ent)
s satisfies exactly the same bounds as the
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FIG. 4: The probability that two distinguishable particles performing a quantum walk on a line with initially entangled coins
end on the same side as a function of time. Both particles start the quantum walk from the origin. As the initial coin state
|ΨC〉 we choose one of the Bell states (19). For the Bell states |ψ+〉 (open circles) and |φ−〉 (black dots) the particles are equally
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and |φ+〉 (stars) the differences remain in the asymptotic limit. The particles are more likely to be on the opposite side for the
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findings of (21).
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FIG. 5: The probability to be on the same side of the lattice P
(ent)
s in its dependence on the choice of the initial coin state.

We find that P
(ent)
s is bounded in the same way as P

(sep)
s displayed in Figure 2. The maximum is obtained for states satisfying

the condition |h(++)|2 + |h(−−)|2 = 1, while the minimum is reached when h(++) = h(−−) = 0.

probability P
(sep)
s derived in the previous Section for separable initial coin states. The maximum value of 3/4 is

reached when |h(++)|2 + |h(−−)|2 = 1. In such a case, the initial coin state |ΨC〉 is an eigenstate of the two-particle
coin CH ⊗ CH corresponding to the eigenvalue +1. On the other hand, the minimum value 1/4 of the probability

P
(ent)
s is attained when both h(++) and h(−−) vanishes. This corresponds to |ΨC〉 being the eigenstate of the coin
CH ⊗ CH with the eigenvalue −1.

Finally, we note that for separable coin states the formula (23) reduces to Eq. (17) which we have derived in the
previous Section. Indeed, for separable states we have the relation

h(++) = h+1 h
+
2 , h(−−) = h−1 h

−
2 ,
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which together with the normalization (18) implies

Ps =
1

4

(
1 + 2|h+1 |2|h+2 |2 + 2|h−1 |2|h−2 |2

)

=
1

4

(
1 + 2|h+1 |2|h+2 |2 + 2(1− |h+1 |2)(1− |h+2 |2)

)

=
1

4

(
2 + (2

∣∣h+1
∣∣2 − 1)(2

∣∣h+2
∣∣2 − 1)

)
= P (sep)

s .

V. INDISTINGUISHABLE PARTICLES

Let us now briefly discuss the probability to be on the same side Ps for indistinguishable particles. We show that for
a particular choice of the initial state of the two bosons or fermions the problem reduces to the case of distinguishable
particles with maximally entangled coins.

As the initial state of the quantum walk we choose

|Ψ(0)〉 = |1(0,L)1(0,R)〉 ,

i.e. both particles are initially at the origin with the opposite coin states. Recalling the amplitudes ψ
(L)
i (ψ

(R)
i ) for the

single particle performing the quantum walk with the initial coin state |L〉 (|R〉) we express the state of two bosons
and fermions in the following form

|Ψ(B)(t)〉 =
∑

m,n

∑

i,j=L,R

ψ
(L)
i (m, t)ψ

(R)
j (n, t)â†(m,i)â

†
(n,j)|vac〉 ,

|Ψ(F )(t)〉 =
∑

m,n

∑

i,j=L,R

ψ
(L)
i (m, t)ψ

(R)
j (n, t)b̂†(m,i)b̂

†
(n,j)|vac〉 , (24)

where |vac〉 denotes the vacuum state. Note that in (24) both summation indexes m and n run over all possible sites.
Using the commutation (7) and anti-commutation (8) relations we can restrict the sums in (24) over an ordered pair
(m,n) with m ≥ n. The resulting wave-function will be symmetric or antisymmetric.

We turn to the joint probabilities p(m,n, t) that after t steps we detect a particle at site m and simultaneously a
particle at site n, with m ≥ n. First, for m 6= n we find

p(B,F )(m,n, t) =
∣∣∣〈1(m,i)1(n,j)|Ψ(B,F )(t)〉

∣∣∣
2

=
∑

i,j=L,R

∣∣∣ψ(L)
i (m, t)ψ

(R)
j (n, t)± ψ(R)

i (m, t)ψ
(L)
j (n, t)

∣∣∣
2

,

where the + sign on the right hand side corresponds to the bosonic (B) , and the − sign to the fermionic (F ).
Comparing these expressions with the results for Bell states (20) we identify the relation

p(B)(m,n, t) = 2p(ψ
+)(m,n, t) , p(F )(m,n, t) = 2p(ψ

−)(m,n, t) . (25)

For m = n we obtain for bosons

p(B)(m,m, t) =
∣∣∣〈2(m,L)|Ψ(B)(t)〉

∣∣∣
2

+
∣∣∣〈2(m,R)|Ψ(B)(t)〉

∣∣∣
2

+

+
∣∣∣〈1(m,L)1(m,R)|Ψ(B)(t)〉

∣∣∣
2

= 2
∣∣∣ψ(L)
L (m, t)ψ

(R)
L (m, t)

∣∣∣
2

+ 2
∣∣∣ψ(L)
R (m, t)ψ

(R)
R (m, t)

∣∣∣
2

+

+
∣∣∣ψ(L)
L (m, t)ψ

(R)
R (m, t) + ψ

(L)
R (m, t)ψ

(R)
L (m, t)

∣∣∣
2

,

and for fermions

p(F )(m,m, t) =
∣∣∣〈1(m,L)1(m,R)|Ψ(F )(t)〉

∣∣∣
2

=
∣∣∣ψ(L)
L (m, t)ψ

(R)
R (m, t)− ψ(L)

R (m, t)ψ
(R)
L (m, t)

∣∣∣
2

.
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We note that relations similar to (25) hold as well for m = n. Indeed, we find the following for bosons

p(B)(m,m, t) =
1

2

∑

i,j=L,R

∣∣∣ψ(L)
i (m, t)ψ

(R)
j (m, t) + ψ

(R)
i (m, t)ψ

(L)
j (m, t)

∣∣∣
2

= p(ψ
+)(m,m, t) , (26)

and for fermions

p(F )(m,m, t) =
1

2

∑

i,j=L,R

∣∣∣ψ(L)
i (m, t)ψ

(R)
j (m, t)− ψ(R)

i (m, t)ψ
(L)
j (m, t)

∣∣∣
2

= p(ψ
−)(m,m, t) . (27)

Finally, we derive the probability Ps that the bosons (or fermions) are on the same side of the line. As we have
already discussed, for indistinguishable particles we have used the formula (10) where the summation is restricted to
an ordered pair (m,n) with m ≥ n. However, using the results of (25), (26) and (27) we can replace p(B,F )(m,n, t)

by p(ψ
±)(m,n, t) in (10) and extend the summation over all pairs of m and n. Hence, we find that

P (B)
s (t) = P (ψ+)

s (t) , P (F )
s (t) = P (ψ−)

s (t) .

In summary, the results for bosons (resp. fermions) are the same as for distinguishable particle which have started
the quantum walk with entangled coin state |ψ+〉 (resp. |ψ−〉). This is a direct consequence, of course, of the required
symmetry properties of two-particle boson and fermion states. We note that also the fact that the particles have
started the walk from the same lattice point is important. However, when the two indistinguishable particles start the
walk spatially separated their evolution differs from that of distinguishable particles with entangled coin states [59].
Indeed, indistinguishability starts to play a role when the wave-functions begin to overlap, whereas entanglement is a
non-local property.

VI. QUANTUM WALKS WITH δ-INTERACTIONS

We have seen in the preceding sections that entanglement in two-particle non-interacting quantum walks cannot
break the limit of probabilities we found for separable particles. A natural question arises: What happens if we consider
interacting particles? This motivates us to introduce the concept of two-particle quantum walks with δ-interaction.
To do that, we change the factorized time evolution operator defined in (3). In the original time evolution the coin
was the same factorized coin in all lattice point pairs (m,n), in the δ-interaction quantum walk we change the coin
to a non-factorized one Cδ, when the particles are at the same lattice point m = n.

Considering the above, we define the unitary time evolution operator for quantum walks with δ-interacting particles
on a line as

Uδ = S12(P̄δ ⊗ (CH ⊗ CH)) + S12(Pδ ⊗ Cδ) ,
where Pδ is the projector on the joint position state

Pδ =
∑

m

|m〉|m〉〈m|〈m| ,

and

P̄δ = IP12
− Pδ .

As an example, we consider the entangling δ-interaction coin Cδ of the following form

Cδ =
1

2




1 1 1 1
1 −1 −1 1
−1 1 −1 1
−1 −1 1 1


 . (28)

In Figure 6 we present the results of a numerical simulation of the corresponding quantum walk with δ-interaction.
The initial coin state was chosen to be the Bell state |φ−〉. From the upper plot we find that the joint probability
distribution is concentrated on the diagonal, thus the particles are likely to be found on the same side. The lower
plot clearly indicate that quantum walks on a line with δ-interactions can break the upper limit of Ps = 3/4 which
we have derived for non-interacting particles.
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FIG. 6: Joint probability distribution (upper plot) and the probability to be on the same side of the lattice Ps (lower plot)
for two interacting particles performing a quantum walk on a line. The δ-interaction coin Cδ is realized by a matrix (28). As
the initial coin state we have chosen one of the Bell states, namely |ΨC〉 = |φ−〉. The resulting joint probability distribution is
mostly concentrated on the diagonal, as can be seen from the upper plot. Consequently, the particles are very likely to be on
the same side of the lattice. Indeed, the lower plot indicates that the asymptotic value of the probability Ps exceeds 0.8.

VII. CONCLUSIONS

We have analyzed the two-particle quantum walk on a line focusing on the directional correlations between the
particles. The directional correlation of two non-interacting particles on the line is shown to be confined in an
interval, independent of wether the initial state is entangled or not. The bounds of the interval are reached when the
initial states coincide with the eigenstates of the coin operator.

Introducing a δ-interaction one can exceed the limit we derived for non-interacting particles. The δ-interaction
breaks the translational symmetry, thus new analytical tools are needed to investigate the properties of the introduced
model. In the picture of the joint time evolution, this scheme could be considered as an inhomogeneous two-dimensional
quantum walk, where the coin is changed on the diagonal line m = n.
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APPENDIX A: ASYMPTOTIC PROBABILITY DISTRIBUTION FOR A QUANTUM WALK WITH
TWO ENTANGLED PARTICLES

In this appendix we derive the asymptotic probability density for a quantum walk on a line with two particles for
an arbitrary initial coin state |ΨC〉. We make use of the close relation between the two-particle walk on a line and a
single-particle walk on a plane discussed in Section II. We then employ the weak limit theorem [23].

The time-evolution of the Hadamard walk on a plane is in the Fourier representation determined by the propagator

Ũ12(k1, k2) = Ũ1(k1)⊗ Ũ2(k2) .

Here, Ũj(k) denotes the single-particle propagator of the Hadamard walk on a line, which is given by

Ũj(k) = D
(
e−ik, eik

)
· CH .

Since Ũ12(k1, k2) has a structure of a tensor product of two unitary matrices we write its eigenvalues in the form

λij(k1, k2) = eiωij(k1,k2) = ei(ωi(k1)+ωj(k2)), i, j = 1, 2 , (A1)

where eiωi(k) are the eigenvalues of the matrix Ũj(k). Their phases ωi(k) are determined by

ω1(k) = arcsin

(
sin k√

2

)
, ω2(k) = π − ω1(k) . (A2)

Similarly, we write the corresponding eigenvectors of Ũ12(k1, k2) in the form of a tensor product

vij(k1, k2) = vi(k1)⊗ vj(k2)

of the eigenvectors of the matrices Ũj(kj)

v1(k) =
1√
n1(k)

(
eik,
√

2eiω1(k) − eik
)T

,

v2(k) =
1√
n2(k)

(
−eik,

√
2e−iω1(k) + eik

)T
. (A3)

The normalization of the eigenvectors is given by

n1(k) = 2
(

1 + cos2 k − cos k
√

1 + cos2 k
)
,

n2(k) = 2
(

1 + cos2 k + cos k
√

1 + cos2 k
)
.

The weak limit theorem [23] states that the cumulative distribution function equals

F (x̃1, x̃2) =

2∑

i,j=1

∫

∇ω−1
i,j ((−∞,x̃1)×(−∞,x̃2) )

dµij , (A4)

where we have denoted x̃i = xi

t . The probability measure µij is determined by

µij = |(vij(k1, k2), ψC)|2 dk1
2π

dk2
2π

.
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The four-component vector ψC corresponds to the initial state of the coin |ΨC〉. From the explicit form of the
eigenvectors vij(k1, k2) given in (A3) we find that the probability measures µij equal

µij =
1

4

[
1 + (−1)i+1

(
C1C(k1) + S1S(k1)

)
+

+(−1)j+1
(
C2C(k2) + S2S(k2)

)
+

+(−1)i+j
(
C12C(k1)C(k2) + S12S(k1)S(k2)+

+X1C(k1)S(k2) +X2S(k1)C(k2)
)] dk1

2π

dk2
2π

. (A5)

Here, we have used the notation

C(k) =
cos k√

1 + cos2 k
, S(k) =

sin k√
1 + cos2 k

,

to shorten the formulas. The coefficients C, S and X entering the expressions (A5) can be determined from the initial
state of the coin |ΨC〉.

To obtain the cumulative distribution function (A4) we also have to find the integration domains. These are

determined by the gradients of the phases ωi,j(k1, k2) of the eigenvalues of the propagator Ũ12(k1, k2). From their
explicit form given in (A1) and (A2) we find that the gradients are

∇ωij(k1, k2) =
(
(−1)i+1C(k1), (−1)j+1C(k2)

)
.

Using the above derived results and the substitution

C(ki) =
cos ki√

1 + cos2 ki
= qi, dki =

dqi

(1− q2i )
√

1− 2q2i
,

we can simplify the cumulative distribution function into the form

F (x̃1, x̃2) =
1

π2

x̃1∫

− 1√
2

dq1

(1− q21)
√

1− 2q21

x̃2∫

− 1√
2

dq2

(1− q22)
√

1− 2q22

[
1− C1q1 − C2q2 + C12q1q2

]
.

With the help of the relation

p(x, y) =
∂2F

∂x∂y

between the cumulative distribution F (x, y) and the probability density p(x, y) we find that the later one is given by

p(x1, x2, t) =
1

π2(1− x2
1

t2 )

√
1− 2

x2
1

t2 (1− x2
2

t2 )

√
1− 2

x2
2

t2

[
1− C1

x1
t
− C2

x2
t

+ C12
x1x2
t2

]
.

Finally, we give the explicit form of the coefficients C1, C2 and C12. We find that they have a particularly simple
form in the basis formed by the tensor product of eigenvectors of the Hadamard coin |χ±〉, which have been given in
(16). With the decomposition of the initial coin state in the Hadamard basis as given in (22) we obtain the following
expressions for the coefficients C1,2 and C12:

C1 =
√

2
(
|h(++)|2 + |h(+−)|2 − |h(−+)|2 − |h(−−)|2

)
,

C2 =
√

2
(
|h(++)|2 + |h(−+)|2 − |h(+−)|2 − |h(−−)|2

)
,

C12 = 2
(
|h(++)|2 + |h(−−)|2 − |h(+−)|2 − |h(−+)|2

)
.
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Multi-dimensional quantum walks can exhibit highly non-trivial topological structure, providing
a powerful tool for simulating quantum information and transport systems. We present a flexible
implementation of a 2D optical quantum walk on a lattice, demonstrating a scalable quantum
walk on a non-trivial graph structure. We realized a coherent quantum walk over 12 steps and
169 positions using an optical fiber network. With our broad spectrum of quantum coins we were
able to simulate the creation of entanglement in bipartite systems with conditioned interactions.
Introducing dynamic control allowed for the investigation of effects such as strong non-linearities
or two-particle scattering. Our results illustrate the potential of quantum walks as a route for
simulating and understanding complex quantum systems.

Quantum simulation constitutes a paradigm for developing our understanding of quantum mechanical systems. A
current challenge is to find schemes, that can be readily implemented in the laboratory to provide insights into complex
quantum phenomena. Quantum walks [1–3] serve as an ideal test-bed for studying the dynamics of such systems.
Examples include understanding the role of entanglement and interactions between quantum particles, the occurrence
of localization effects [4], topological phases [5], energy transport in photosynthesis [6, 7], and the mimicking of the
formation of molecule states [8]. While theoretical investigations already take advantage of complex graph structures
in higher dimensions, experimental implementations are still limited by the required physical resources.

All demonstrated quantum walks have so far been restricted to evolution in one dimension. They have been realized
in a variety of architectures, including photonic [9–12] and atomic [13–15] systems. Achieving increased dimensionality
in a quantum walk [16] is of practical interest as many physical phenomena cannot be simulated with a single walker
in a one-dimensional quantum walk, such as multi-particle entanglement and non-linear interactions. Furthermore, in
quantum computation based on quantum walks [17, 18] search algorithms exhibit a speed-up only in higher dimensional
graphs [19–22]. The first optical approaches to increasing the complexity of a linear quantum walk [23–25] showed
that the dimensionality of the system is effectively expanded by using two walkers, keeping the graph one-dimensional.
While adding additional walkers to the system is promising, introducing conditioned interactions and in particular
controlled non-linear interactions at the single photon level is technologically very challenging. Interactions between
walkers typically result in the appearance of entanglement, and have been shown to improve certain applications,
such as the graph isomorphism problem [26]. In the absence of such interactions, the two walkers remain effectively
independent, which severely limits observable quantum features.

We present a highly scalable implementation of an optical quantum walk on two spatial dimensions for quantum
simulation, using frugal physical resources. One major advance of a two-dimensional system is the possibility to
simulate a discrete evolution of two-particles including controlled interactions. In particular, one walker, in our case
a coherent light pulse, on a 2D lattice is topologically equivalent to two-walkers acting on a one-dimensional graph.
Thus, despite using an entirely classical light source, our experiment is able to demonstrate several archetypal two-
particle quantum features. For our simulations we exploit the similarity between coherent processes in quantum
mechanics and classical optics [27, 28], as it was used for example to demonstrate Grover’s quantum search algorithm
[29].

A quantum walk consists of a walker, such as a photon or an atom, which coherently propagates between discrete
vertices on a graph. A walker is defined as a bipartite system consisting of position (x) and a quantum coin (c). The
position value indicates at which vertex in the graph the walker resides, while the coin is an ancillary quantum state
determining the direction of the walker at the next step. In a two-dimensional quantum walk the basis states of a
walker are of the form |x1, x2, c1, c2〉 describing its position x1,2 in spatial dimension 1 and 2 and the corresponding
two-sided coin parameters with c1,2 = ±1. The evolution takes place in discrete steps, each of which has two stages,

∗Electronic address: Andreas.Schreiber@upb.de

103



2

HWP

HWP

PBS

PBS

BS

BS

EOM

x +1

x -1

x +1

APDs

(0,0)

∆ τ1

∆ τ2

Time

∆ τ1

∆ τ2

(1,-1
)

x -1
(-1

,-1
)(-

1,1)

(1,1)

Step1

Step2

A

B

Time

1

2

2

1

SMF

x

x

x
x

x
x

HWPHWP

PBS

PBS

APDs

BS

FIG. 1: (A) Experimental setup. Our photon source is a pulsed diode laser with pulse width 88ps, wavelength
805nm and repetition rate 110kHz. The photons are initialized at position |x1, x2〉 = |0, 0〉 in horizontal polarization

(corresponding to coin state |c1, c2〉 = | − 1,−1〉). Once coupled into the setup through a low reflectivity beam
splitter (BS, reflectivity 3%), their polarization state is manipulated with an EOM and a half-wave plate (HWP).
The photonic wave packets are split by a polarizing beam splitter (PBS) and routed through single-mode fibres

(SMF) of length 135m or 145m, implementing a temporal step in the x2 direction. Additional HWPs and a second
PBS perform a step in the x1 direction based on the same principle. The split wave packet after the first step with
equal splitting is indicated in the picture. At each step the photons have a probability of 12% (4%) in loops x1 − 1
(x1 + 1) of being coupled out to a polarization and hence coin state resolving detection of the arrival time via four
avalanche photodiodes (APDs). Including losses and detection efficiency, the probability of a photon continuing the

walk after one step is 52% (12%) without (with) the EOM. (B) Projection of the spatial lattice onto a
one-dimensional temporally encoded pulse chain for step one and two. Each step consists of a shift in both x1

direction, corresponding to a time difference of ∆τ1 = 3.11ns, and x2 direction with ∆τ2 = 46.42ns.

defined by coin (Ĉ) and step (Ŝ) operators. The coin operator coherently manipulates the coin parameter, leaving
the position unchanged, whereas the step operator updates the position according to the new coin value. Explicitly,
with a so-called Hadamard coin ĈH = Ĥ1 ⊗ Ĥ2, a single step in the evolution is defined by the operators,

Ĥi|xi,±1〉 → (|xi, 1〉 ± |xi,−1〉)/
√

2, ∀i = 1, 2

Ŝ|x1, x2, c1, c2〉 → |x1 + c1, x2 + c2, c1, c2〉. (1)

The evolution of the system proceeds by repeatedly applying coin and step operators on the initial state |ψin〉,
resulting in |ψn〉 = (ŜĈ)n|ψin〉 after n steps. The step operator Ŝ hereby translates superpositions and entanglement
between the coin parameters directly to the spatial domain, imprinting signatures of quantum effects in the final
probability distribution.

We performed 2D quantum walks with photons obtained from attenuated laser pulses. The two internal coin
states are represented by two polarization modes (horizontal and vertical) in two different spatial modes [App. 1],
similar to the proposal in [30]. Incident photons follow, depending on their polarization, four different paths in a
fiber network (Fig. 1A). The four paths correspond to the four different directions a walker can take in one step on a
2D lattice. Different path lengths in the circuit generate a temporally encoded state, where different position states
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are represented by discrete time-bins (Fig. 1B). Each round trip in the setup implements a single step operation
while the quantum coin operation is performed with linear optical elements (half-wave plates, HWP) [App. 1]. In
order to adjust the coin operator independently at each position we employed a fast-switching electro-optic modulator
(EOM). A measurement with time-resolving single-photon counting modules allowed for the reconstruction of the
output photo-statistics [App. 2].

We have implemented two different kinds of quantum coins in our 2D quantum walks. First we investigated
quantum walks driven only by separable coin operations, Ĉ = Ĉ1⊗ Ĉ2. Here the separability can directly be observed
in the spatial spread over the lattice, when initializing the walker in a separable state. As an example we measured
a Hadamard walk with photons initially localized at position |x1, x2〉 = |0, 0〉. The probability distribution showing
at which position the photons were detected after ten steps (Fig. 2A+B) can be factorized into two independent
distributions of one-dimensional quantum walks [16], stating no conceptual advantage of a 2D-quantum walk. However,
two-dimensional quantum walks allow for much greater complexity using controlled operations. These operations
condition the transformation of one coin state on the actual state of the other. Due to the induced quantum correlations
one obtains a non-trivial evolution resulting in an inseparable final state. The probability distribution for a Hadamard
walk with an additional controlling operation can be seen in Fig. 2C+D. We compare the ideal theoretical distribution
with the measured photo-statistics via the similarity, S = (

∑
x1,x2

√
Pth(x1, x2)Pexp(x1, x2))

2, quantifying the equality

of two classical probability distributions (S = 0 for a completely orthogonal distributions and S = 1 for identical
distributions). For the Hadamard walk (Fig. 2A+B) we observe S = 0.957 ± 0.003, and for the quantum walk with
controlling gates (Fig. 2C+D) S = 0.903± 0.018 (after 10 steps, across 121 positions).

Increasing the number of walkers in a quantum walk effectively increases its dimensionality [23]. Specifically, for a
given 1D quantum walk with N positions and two walkers, there exists an isomorphic square lattice walk of size N 2

with one walker. By this topological analogy, a measured spatial distribution from a 2D lattice with positions (x1, x2)
can be interpreted as a coincidence measurement for two walkers at positions x1 and x2 propagating on the same linear
graph. Hereby each combined coin operation of both particles, including controlled operations, has an equivalent coin
operation in a 2D quantum walk. This allows us to interpret the 2D walk in Fig. 2C+D as a quantum walk with
controlled two-particle operations, a system typically creating two-particle entanglement. The inseparability of the
final probability distribution is then a direct signature of the simulated entanglement.

In Fig. 2E we show a lower bound for the simulated entanglement between the two particles during the stepwise
evolution with four different coin operations. We quantified the simulated entanglement via the von Neumann entropy
E, assuming pure final states after the quantum walk [App. 4]. For this calculation the relative phases between
the positions and coins were reconstructed from the obtained interference patterns, while phases between the four
coin states were chosen to minimize the entanglement value. Without conditioned operations the two particles
evolve independently (E = 0), whereas an evolution including controlled operations reveals a probability distribution
characterized by bipartite entanglement. We found that the interactions presented in Fig. 2C+D exhibit an entropy
of at least E = 2.63 ± 0.01 after 12 steps, which is 56% of the maximal entropy (given by a maximally entangled
state). The non-zero entropies obtained in the higher steps of the separable Hadamard walk are attributed to the
high sensitivity of the entropy measure to small errors in the distribution for E ≈ 0.

The investigated interactions can be interpreted as long-distance interactions with the interaction strength being
independent of the spatial distance of the particles. This is a unique effect and highly non-trivial to demonstrate in
actual two-particle quantum systems.

Contrary to the position independent interactions is the evolution of two-particle quantum walks with short-range
interactions, that is interactions occurring only when both particles occupy the same position. These interactions can
be interpreted as two-particle scattering or non-linear interactions. When utilizing a 2D quantum walk to simulate
two walkers, all vertices on the diagonal of the 2D-lattice correspond to both walkers occupying the same position.
Hence, we can introduce non-linear interactions by modifying the coin operator on the diagonal positions while keeping
all other positions unaffected. As an example of a two-particle quantum walk with non-linear interactions (Fig. 3),
the coin operator on the diagonal is in the form Cnl = (H1 ⊗ H2)CZ , where CZ is a controlled phase operation
implemented by a fast switching EOM. The chosen operation simulates a quantum scenario of particular interest
– the creation of bound molecule states, predicted as a consequence of two-particle scattering [8]. Evidently, the
quantum walk is to a large extent confined to the main diagonal (

∑
x

P (x, x) = 0.317 ± 0.006 as opposed to the

Hadamard walk
∑
x

P (x, x) = 0.242± 0.001), a signature of the presence of a bound molecule state. In general, using

a coin invariant under particle exchange, bosonic or fermionic behavior can be simulated, depending on whether
the initial states are chosen to be symmetric or anti-symmetric with respect to particle permutations. With our
initial state being invariant under particle exchange we simulated an effective Bose-Hubbard type non-linearity for
two bosons [31]. We have demonstrated an efficient implementation of a two-dimensional quantum walk and proved
the experimental feasibility to simulate a diversity of interesting multi-particle quantum effects. Our experiment
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FIG. 2: Measured and simulated probability distribution P (x1, x2) (traced over the coin space) after ten steps of a
2D quantum walk with initial state |0, 0,−1,−1〉. Theoretical (A) and measured (B) probability distribution of a

2D Hadamard walk using the operation ĈH (Eq. 1). As only separable coin operations were performed (inset), the
distribution is separable, given by a product of two one-dimensional distributions (gray). Theoretical (C) and
measured (D) probability distribution of a 2D walk with controlled-Not X and controlled-phase operation Z,

resulting in an unfactorizable distribution. Here c2 is only transformed by XZ| ± 1〉 → ±| ∓ 1〉 if c1 = −1 . The
results (B) and (D) are obtained by detecting over 7× 103 events and calibrated by the detection efficiencies of all
four coin basis states. (E) Dynamic evolution of the Von Neumann entropy E generated by quantum walks (B) and

(D) and quantum walks using controlled Hadamard coin operations (inset). The experimental values (dots) and
theoretical predictions (dashed lines) mark a lower boundary for simulated two-particle entanglement. Statistical

errors are smaller than the dot size.
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FIG. 3: (A) Circuit representation of coin operations simulating non-linear interactions via 2D quantum walk. Only
when the two virtual particles meet (x1 = x2) a controlled operation is applied. Theoretical (B) and measured (C)

coincidence distribution P (x1, x2) (traced over the coin space) after seven steps of a simulated two-particle quantum
walk with initial state |0, 0,−1,−1〉. The high probability that both particles are at the same position (diagonal) is a
striking signature of bound states. The measured distribution is reconstructed by detecting over 8× 103 events and
has a similarity of S = 0.957± 0.013. Adding the EOM to the setup for dynamical control limits the step number to

n = 7 due to the higher losses per step. Small imperfections of the EOM are included in the theoretical plot.

overcomes the technical challenges of two-particle experiments, while exhibiting very high similarity and scalability.
Combined with the flexibility in the choice of input state, controlling the coin at each position independently allows
for simulations of a broad spectrum of dynamic quantum systems under different physical conditions.

Our experimental architecture can be generalized to more than two dimensions, with the addition of extra loops and
orbital angular momentum modes as coin states [32]. This opens a largely unexplored field of research, facilitating
quantum simulation applications with multiple walkers, including bosonic and fermionic behavior, and non-linear
interactions. It may be possible to study the effects of higher dimensional localization, graph percolations or utilize
the network topology in conjunction with single- or two-photon states. Additionally, a foreseeable future application
for our system is the implementation of a quantum search algorithm. We demonstrated that, with a physical resource
overhead, a classical experiment can simulate many genuine quantum features. While our experiment is important
for simulation applications, it is equally interesting for understanding fundamental physics at the border between
classical and quantum coherence theory.
Acknowledgements: We acknowledge financial support from the German Israel Foundation (Project No.
970/2007). AG, MŠ, VP, CH and IJ acknowledge grant support from MSM6840770039 and MSMT LC06002,
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APPENDIX A: APPENDIX 1: QUANTUM GATES WITH OPTICAL ELEMENTS

We realized the four internal coin states |±1,±1〉 with the linear polarization states, horizontal |H〉 and vertical |V 〉,
and two spatial modes |a〉 and |b〉, similar to the four spatial modes proposed in (27 ). The spatial modes correspond
to the two input ports of the first polarizing beam splitter (Fig. A.1)). We encoded the states by

|H, a〉 → | − 1,−1〉; |V, a〉 → | − 1,+1〉;
|H, b〉 → |+ 1,+1〉; |V, b〉 → |+ 1,−1〉. (A1)

To implement our quantum operations in the four-dimensional Hilbert space of the quantum coin we decomposed the
U(4) unitary coin operation into products of multiple U(2) operations (31 ). Each U(2) transformation is implemented
either by half-wave plates (HWP) or an electro-optic modulator (EOM).

In the basis of the four coin states the transformations are given by

ĈHWP1
=




cos(2θ1) sin(2θ1) 0 0
sin(2θ1) − cos(2θ1) 0 0

0 0 1 0
0 0 0 1


,

ĈHWP2
=




1 0 0 0
0 1 0 0
0 0 cos(2θ2) sin(2θ2)
0 0 sin(2θ2) − cos(2θ2)


,

ĈHWP3
=




cos(2θ3) 0 0 sin(2θ3)
0 1 0 0
0 0 1 0

sin(2θ3) 0 0 − cos(2θ3)


,

ĈHWP4
=




1 0 0 0
0 − cos(2θ4) sin(2θ4) 0
0 sin(2θ4) cos(2θ4) 0
0 0 0 1


,

ĈEOM =



eıφ(x1,x2) 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1


,

(A2)

with θi being the angle of HWPi, i = {1, .., 4}, relative to its optical axis and φ(x1, x2) a tunable phase.
Depending on the position of the four HWPs in the setup (Fig. A.1A) they operate on different coin state pairs,

due to the spatial switch via polarizing beam splitters (PBS). The Hadamard coin (Fig. 2B+E) was obtained for the
configurations θi = π/8,∀i, while the coin used in Fig. 2D+E was given by θ1 = −π/8, θ2−4 = π/8. To implement
controlled-Hadamard gates either HWP2,3 or HWP2,4 were aligned to their optical axis (θ = 0), while the remaining
plates were set to θ = π/8 (Fig. 2E). The transformation of the EOM with φ(x1, x2) = π corresponds to a controlled-Z
operation.

Additional static phase factors changing the relative phase between the four coin states can occur during the
propagation through the setup. However, these phases do not influence the final propability distribution due to the
property of the coin operators that can be implemented with the used optical elements. Given precise phase control,
two additional HWPs and a PBS would allow the implementation of arbitrary U(4) coin operators.

APPENDIX B: APPENDIX 2: QUANTUM WALK IMPLEMENTATION VIA TIME-MULTIPLEXING

Our experiment simulates a 2D quantum walk on a regular square lattice, which means that a walker can move
in four possible directions from a given site. The direction of the movement is determined by the current coin state
of the walker. To implement the quantum walk in a 2D topology we use the time-multiplexing technique (9 ). This
method maps each individual position of the 2D graph on the one-dimensional time line. In contrast to determining
the direction of the following step in space, the coin state defines a fixed time delay in the time-multiplexed system.
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FIG. A.1: (A) Schematic setup including five time stages during the first step of a Hadamard walk. The laser pulse

is initialized at (1) in horizontal polarization (arrow). After the coin operation Ĉ2 (2) the vertical step (3) is

implemented via two single-mode fibers (SMF) of different lengths. Subsequently Ĉ1 (4) performs the coin operation
for the horizontal direction, followed by the step operation implemented in free space (5). We compensate for

different losses in arms a and b via different splitting ratios of the according BS. The corresponding spatial spread
on a 2D lattice is shown for part (1), (3) and (5). (B) Mapping of the timing information of detected events onto

spatial coordinates. The minimal time for a round trip Tmin is 676ns. For more details see text.
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Fig. A.1 shows the first step of a quantum walk in our system and the corresponding mapping of the temporal
spread on the 2D lattice. The propagation of the initial pulse representing the walker through the setup is split into
five parts:

(1) We initialize the photonic input state in the coin state |H, a〉 with the starting time corresponding to position
|x1, x2〉 = |0, 0〉.

(2) After launching the pulse into the setup we perform the coin operation Ĉ2 = ĈHWP2
ĈHWP1

ĈEOM, as defined in
Eq. A2.

(3) Split by a polarizing beam splitter (PBS) the pulse travels through two fibers of different lengths. The resulting
time separation ∆τ2 can be interpreted as a step in vertical (x2) direction. We hereby define the transformation
x2 → x2 − 1 for pulses passing the longer fiber, while the pulses in the shorter arm acquire the transformation
x2 → x2 + 1. Additional retardation plates hereby compensate for unwanted polarization effects in the fibers.

(4) Subsequently HWP3 and HWP4 implement the coin operation Ĉ1 = ĈHWP3
ĈHWP4

(Eq. A2), determining the
coin state for the horizontal (x1) direction.

(5) The step operator in the horizontal (x1) direction is performed with a second PBS and a temporal shift ∆τ1,
obtained by traveling in two free space paths of different lengths.

As a result one step in our quantum walk setup combines both a shift in vertical and horizontal direction, restricting
the translation on a 2D grid to the diagonal neighbors (Fig. 1B). Starting in the origin, this leads to a spread over
maximally (n+ 1)2 positions after n steps.

After each step a time resolving measurement gives information about the location of the photon. The detection
times for the first and second step of a Hadamard walk are shown in Fig. A.1B. At the first detection the photons can
arrive at four different times, which is either the minimal time Tmin (corresponding to position state |1, 1〉), Tmin + ∆τ1
stating position |1,−1〉, Tmin + ∆τ2 (| − 1, 1〉) or Tmin + ∆τ1 + ∆τ2 (| − 1,−1〉). At the second step on the other hand,
multiple pulses can arrive simultaneously at the detectors. Independent of the coin state and, hence, spatial and
polarization modes of the photons, all coinciding detections correspond to the same position state |x1, x2〉. In the

following step wave packets in the same time bin and spatial mode interfere at HWP1,2 (Ĉ2), while wave packets in

different spatial modes can interfere at HWP3,4 (Ĉ1).

APPENDIX C: APPENDIX 3: LIMITS AND IMPERFECTIONS

During the time evolution, the area of the grid covered by the quantum walker grows quadratically with the
number of steps. The use of the time-multiplexing technique guarantees that the number of elements stays constant
independent of the size of the simulated grid. In the experimental implementation it is only the lengths of the
optical paths that needs to be adjusted to the maximum number of steps that are to be realized. In addition, the
performance of our time-multiplexed setup is limited only by imperfections of the optical components resulting in
errors, decoherence and losses. In the following we want to discuss each point individually.

A sharp limitation for the maximal step number is given by the design of the experiment. If the minimal time
for one round trip Tmin is shorter than the temporal expansion of all positions in a single step, temporal overlaps
between different steps can occur. We choose our experimental parameters Tmin and ∆τ1,2 without EOM such that
∆τ2 > 13 · ∆τ1 and Tmin > 13 · ∆τ2 to prevent temporal overlaps of different positions for the first 12 steps. An
occurring additional delay induced by the modulator changed the conditions without inducing unwanted temporal
overlaps. However, by simply changing the fiber lengths or the path differences the step number can easily be increased.

The most significant source of systematic errors in the setup is the EOM. Due to the architecture of the modulator
the applied phase is not only affecting the horizontal polarization component, as shown in Eq. A2, but also the vertical
component with a factor 1/3.5. This decreases the achievable similarities for quantum walks where controlled-Z coin
operations are used. Additionally, the wave front of pulses passing the modulator are distorted differently for both
polarizations, which influences the occurring interferences. Both effects are included in the theory presented in Fig. 3B.
A replacement of the EOM with an optimized modulator would improve the achievable similarity at higher number
of steps.

Decoherence in the time-multiplexed setup can occur if mechanical vibrations of the optical elements influence the
interference properties. Typically mirrors vibrate with a frequency below 500Hz, corresponding to a time scale of
2ms. The duration of twelve steps in the current setup is less than 10µs, a factor of 200 faster compared to mirror
vibrations. This suggests that decoherence effects will not influence the time-multiplexed quantum walk up to at least
100 steps.
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At the present stage the main factor limiting the scalability is given by the losses per step. These are induced by the
probabilistic detection method and losses at optical elements. To counter the effect of losses one can either start with
an increased intensity or use optical amplifiers, as shown in (32 ). While the first approach requires an active protection
of the single-photon detectors, the second prohibits the use of the experiment with single-photon sources. A third
method to reduce the losses is a change from probabilistic to a deterministic coupling mechanism with additional
polarization modulators. This technique combined with a change-over to a low-loss wavelength regime (1550nm),
makes the setup interesting for single photon input states. Using one of the described methods to circumvent the
losses can increase the number of steps significantly.

APPENDIX D: APPENDIX 4: ENTANGLEMENT

To quantify the two-particle entanglement simulated in the system we assumed that the quantum walk evolution
results in a pure state |ψn〉 =

∑
x1,x2,c1,c2

ax1,x2,c1,c2 |x1, x2, c1, c2〉 after n steps, with the complex parameters ax1,x2,c1,c2 ∈
C. The assumption is based on the fact that the system does not show signs of decoherence for any of the coin
operators, confirmed by the high values of the measured similarities.

The von Neumann entropy E, which quantifies the entanglement (33 ) is given by

E(ρ1) = −
∑

i

λilog2λi, (A3)

with the eigenvalues λi of the reduced density matrix ρ1 = Tr2(ρ) = Tr2(|ψn〉〈ψn|), given by the trace over one
subsystem. For details see (23 ).

By individually measuring the arrival probability in each coin and position state we obtain the absolute squared of
the parameters |ax1,x2,c1,c2 |2, hence no direct extraction of the phase information is possible. However, we can obtain
information about the relative phases between position and coin states from the final interference pattern. As a result
we can reconstruct the phase distribution with the help of the theoretical model up to three undetermined relative
phases between the four different coin states and a global phase factor. By choosing the phases inducing the minimal
entropy, we are able to give a lower bound for the simulated entanglement in the experiment.
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Continuous deformations of the Grover walk preserving localization
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The three-state Grover walk on a line exhibits the localization effect characterized by a non-
vanishing probability of the particle to stay at the origin. We present two continuous deformations
of the Grover walk which preserve its localization nature. The resulting quantum walks differ in
the rate at which they spread through the lattice. The velocities of the left and right-traveling
probability peaks are given by the maximum of the group velocity. We find the explicit form of
peak velocities in dependence on the coin parameter. Our results show that localization of the
quantum walk is not a singular property of an isolated coin operator but can be found for entire
families of coins.

I. INTRODUCTION

Quantum walks have been introduced by Aharonov et al. [1] as a generalization of a classical random walk [2]
to a unitary discrete-time evolution of a quantum particle. The particle moves on a graph or a lattice in discrete
time-steps according to its internal degree of freedom, which is usually refer to as coin. In analogy with the coin
tossing which tells the classical particle where to go the state of the coin is altered by the coin operator before the
displacement itself. However, in a quantum walk each trajectory is assigned a certain probability amplitude and not
a probability. Different trajectories interfere which leads to a ballistic spreading of a probability density of a quantum
particle. Indeed, quantum walk can be considered as a wave phenomena [3]. This analogy allowed to adopt and
develop a number of concepts used in wave propagation in material media for quantum walks. For instance, Kempf
and Portugal defined the hitting time based on the concept of group velocity [4].

The application of quantum walks for quantum information processing have been proposed [5]. In particular, one
can use the quantum walk to implement the quantum search algorithm [6]. The performance of the search algorithm
crucially depends on the choice of the coin operator [7]. A review of quantum walk based algorithms can be found in
[8].

For a two-state walk on a line the coin operator is given by a U(2) matrix. Nevertheless, it has been shown [9] that
it is sufficient to consider the one-parameter family of coins

C(ρ) =

(
ρ

√
1− ρ2√

1− ρ2 −ρ

)
,

with 0 ≤ ρ ≤ 1. The phases in a general U(2) matrix turn out to be either irrelevant for the quantum walk evolution

or can be compensated by the choice of the initial state. The choice of ρ = 1/
√

2 corresponds to the most studied case
of the Hadamard walk [10]. The coin parameter determines the rate at which the walk spreads through the lattice.
For unbiased walks the peaks of the probability density propagates with constant velocity ±ρ. This also illustrates the
ballistic nature of a quantum walk. Biasing the walk by allowing the particle to make longer jumps in one direction
speeds up one of the peaks and slows down the other [11]. This has a crucial impact on the recurrence properties
of the quantum walk [12]. The understanding of recurrence requires the knowledge of the asymptotic properties of a
quantum walk. For two-state quantum walks these characteristics can be obtained from the limit theorems derived by
Konno [13, 14]. Grimmett et al. [15] have extended the weak limit theorems to higher-dimensional quantum walks.
For a review of asymptotic methods in quantum walks see [16].

Allowing the particle to stay at its actual position we have to extend the coin to a U(3) matrix. The resulting
three-state quantum walks lead to dynamics which cannot occur in the two-state walk. As an example, the intriguing
effect of localization has been found in the three-state Grover walk on a line [17, 18]. Here the particle has a non-
vanishing probability to stay at the origin. However, the localization effect is sensitive to the dimensionality of the
lattice. There is no localization in the three-state Grover walk on a triangular lattice [19]. Nevertheless, localization
is not limited to quantum walks which allow the particle to stand still. The Grover walk on a 2D square lattice
represents such an example [20].

We note that there are two types of localization in the context of quantum walks. The one we have just discussed
and which we will focus on in the present paper is inherent to certain quantum walks without any perturbations. It
stems from the fact that the unitary propagator of the walk has a non-empty point spectrum. As the wave packet
spreads it overlaps with the corresponding bound states which results in partial trapping of the particle in the vicinity
of the origin. The second kind is the Anderson localization which arises e.g. from static phase disorder [21] or spatial
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coin inhomogeneity [22]. This dynamical localization was experimentally observed in the photonic implementation of
quantum walk on a line [23]. For a comprehensive mathematical description of this effect we refer to the literature
[24, 25].

In contrast to the two-state walk the properties of a three-state walk with a general U(3) coin operator are not fully
understood. The present paper is a step in classification of the three-state quantum walks. By deforming the Grover
matrix we find two families of coins which lead to a localizing quantum walk. The first one-parameter family of coins
is based on the variation of the spectrum of the Grover matrix. Another one-parameter family of coin operators is
obtained by modifying the eigenvectors of the Grover matrix. In both cases we show how does the coin parameter
determine the rate of spreading of the corresponding quantum walk by calculating the explicit form of the peak
velocities. While for the first family of walks the peak velocities can only decrease when compared to the Grover walk,
the second deformation allows to increase them to the maximum possible value.

Our manuscript is organized as follows: In Section II we briefly review the properties of the three-state Grover
walk on a line following the Fourier analysis. We determine the peak velocities of the Grover walk by applying the
stationary phase approximation in Section III. In Section IV we introduce two deformations of the Grover walk which
preserves its localization nature and analyze their peak velocities. We conclude and present an outlook in Section V.

II. THREE-STATE GROVER WALK ON A LINE

Let us first review the three-state Grover walk on a line [17, 18]. The Hilbert space of the particle is given by the
tensor product

H = HP ⊗HC

of the position space

HP = Span {|m〉,m ∈ Z}

and the coin space HC . In each step the particle has three possibilities - it can move to the left or right or stay at its
current location. To each of these options we assign a vector of the standard basis of the coin space HC , i.e. the coin
space is three-dimensional

HC = C3 = Span {|L〉, |S〉, |R〉} .

A single step of the quantum walk is realized by the propagator U given by

U = S · (IP ⊗ C),

where S is the conditional step operator, IP denotes the identity on the position space and C is the coin operator.
For our three-state walk the conditional step operator S has the following form

S =

+∞∑

m=−∞

(
|m− 1〉〈m| ⊗ |L〉〈L|+ |m〉〈m| ⊗ |S〉〈S|

+|m+ 1〉〈m| ⊗ |R〉〈R|
)
.

As the coin operator we choose the 3× 3 Grover matrix

C = CG =
1

3



−1 2 2
2 −1 2
2 2 −1


 .

The state of the particle after t steps is given by the successive application of the unitary propagator on the initial
state

|ψ(t)〉 =
∑

m

|m〉
(
ψL(m, t)|L〉+ ψS(m, t)|S〉

+ψR(m, t)|R〉
)

= U t|ψ(0)〉. (1)
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The probability distribution of the particle’s position after t steps of quantum walk is obtained by tracing out the
coin degree of freedom

p(m, t) = |ψL(m, t)|2 + |ψS(m, t)|2 + |ψR(m, t)|2
= ||ψ(m, t)||2.

Here we have introduced the vector of probability amplitudes

ψ(m, t) = (ψL(m, t), ψS(m, t), ψR(m, t))
T
.

Since the walk we consider is translationally invariant the time evolution equation (1) greatly simplifies using the
Fourier transformation

ψ̃(k, t) =

+∞∑

m=−∞
eimkψ(m, t), (2)

where the momentum k ranges from 0 to 2π. Indeed, applying the Fourier transformation (2) to the time evolution
equation (1), we find

ψ̃(k, t) = Ũ(k)ψ̃(k, t− 1) = Ũ t(k)ψ̃(k, 0). (3)

Here ψ̃(k, 0) denotes the Fourier transformation of the initial state of the particle. It equals the initial coin state ψC
of the particle provided that it starts the walk from the origin. The momentum representation of the time evolution
operator Ũ(k) is given by

Ũ(k) = Diag
(
e−ik, 1, eik

)
· CG. (4)

The time evolution equation in the momentum representation (3) is readily solved by diagonalizing the propagator

(4). We express the eigenvalues of Ũ(k) in the form λj = exp(iωj(k)) and denote the corresponding eigenvectors by
vj(k). For the three-state Grover walk the phases read

ω1,2(k) = ± arccos

(
−1

3
(2 + cos k)

)
,

ω3(k) = 0. (5)

Since the phase ω3 vanishes we find that the corresponding eigenvalue λ3 equals 1 independent of k. In other words,
the propagator of the Grover walk has a non-empty point spectrum. This leads to the localization effect [17, 18].
Finally, the solution of the time evolution equation in the momentum representation (3) has the form

ψ̃(k, t) =

3∑

j=1

eiωj(k)t (vj(k), ψC) vj(k).

After the inverse Fourier transformation we obtain the solution in the position representation

ψ(m, t) =

3∑

j=1

2π∫

0

dk

2π
ei(ωj(k)−m

t k)t (vj(k), ψC) vj(k). (6)

III. PEAK VELOCITY OF THE GROVER WALK

Let us now determine the rate at which the three-state Grover walk spreads through the lattice. We employ the
stationary phase approximation [26] which determines the behavior of the amplitude (6) for t → +∞. Accordingly,
the rate of the decay is given by the order of the stationary points of the phase

ω̃j(k) ≡ ωj(k)− m

t
k. (7)
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The peak corresponds to the stationary point of the second order - both the first and the second derivatives of the
phase (7) with respect to k vanish. Thus we have to solve a set of equations

dω̃j
dk

=
dωj
dk
− m

t
= 0,

d2ω̃j
dk2

=
d2ωj
dk2

= 0, (8)

for k and m. Assume that k0 satisfies the second equation in (8). From the first equation in (8) we find that the
position of the peak after t steps is

m =
dωj
dk

∣∣∣∣
k0

t.

The peak thus propagates with constant velocity which is given by
dωj

dk

∣∣∣
k0

.

We find that there is a simple analogy with wave theory. Indeed, consider k as wavenumber and ωj(k) as frequency.
Equations (5) represent the dispersion relations. Taking the derivative with respect to k we obtain the group velocity
[4]. The wavefront, i.e. the peak in the probability distribution, propagates with the maximal group velocity.

Let us specify the results for the three-state Grover walk. From the explicit form of the dispersion relations (5) we
find that the second equation in (8) reads

d2ω1,2

dk2
= ±2

√
1− cos k

(5 + cos k)3
= 0.

This relation is satisfied for k0 = 0. Evaluating the first derivative of ωj(k) at this point we obtain the velocities of
the left and right-traveling peaks

vR = lim
k→0+

dω2

dk
=

1√
3
,

vL = lim
k→0+

dω1

dk
= − 1√

3
. (9)

Note that from the constant phase ω3 ≡ 0 one immediately obtains vS = 0. Indeed, the constant eigenvalue results
in the central peak of the probability distribution which does not propagate.

To illustrate our results we plot in Figure 1 the probability distribution of the three-state Grover walk after T = 50
steps. The probability distribution contains three dominant peaks. Their positions are determined by the velocities
vL,R and vS .

IV. DEFORMATIONS OF THE GROVER WALK

We begin with the spectral decomposition of the Grover coin. Consider the following orthonormal basis

v1 =
1√
6

(1,−2, 1)
T
,

v2 =
1√
2

(1, 0,−1)
T
,

v3 =
1√
3

(1, 1, 1)
T
, (10)

formed by the eigenvectors of the Grover coin with eigenvalues λ1 = λ2 = −1 and λ3 = 1. The Grover coin can be
thus decomposed in the form

CG =

3∑

j=1

λjPj = −P1 − P2 + P3, (11)

where Pj is the projection on the subspace spanned by the corresponding eigenvector.
In the following we introduce two deformations of the three-state Grover walk which preserves its localization

nature. First, we modify the eigenvalues of the coin and keep the eigenvectors constant. Second, we leave the
spectrum unchanged and deform the eigenvectors.
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FIG. 1: The probability distribution of the three-state Grover walk after T = 50 steps. The initial coin state of the walk was
ψC = 1√

3
(1,−1, 1). One can clearly identify three dominant peaks in the probability distribution. The peak at the origin

corresponds to the localization nature of the Grover walk and does not propagate. The peaks on the sides travel with constant
velocities vL,R = ± 1√

3
. The grid-lines corresponding to TvL,R ≈ ±29 coincides with the positions of the peaks obtained from

the numerical simulation.

A. Deforming the eigenvalues

The Grover matrix is very symmetric - it is invariant under all permutations of the basis states. Hence, we can
diagonalize it together with any permutation matrix. The eigenvectors of the Grover matrix presented in Eq. (10)
are chosen in such a way that they are also eigenvectors of the permutation matrix

Π =




0 0 1
0 1 0
1 0 0


 .

The corresponding eigenvalues are µ1 = µ3 = 1 and µ2 = −1. The permutation Π interchanges the |L〉 and |R〉 coin
states and preserves the |S〉 state. Using this matrix as a coin for a three-state quantum walk results in a trivial
evolution - the particle either stays at the origin, or jumps to the left or right but immediately returns back in the
next step. Such a walk does not spread through the lattice and the velocities vanish.

Notice that the eigenvector v2 corresponds to the same eigenvalue λ2 = µ2 = −1 for both the Grover and the
permutation matrix Π. The same applies to v3 since λ3 = µ3 = 1. However, for v1 we have λ1 = −1 and µ1 = 1.
This suggest to introduce a phase factor in front of the projector P1 in the spectral decomposition of the Grover coin
(11). In this way we can continuously change from the Grover coin to the permutation matrix Π. We thus arrive at
the following one-parameter family of coin operators

C1(ϕ) = −e2iϕP1 − P2 + P3

=
1

6



−1− e2iϕ 2(1 + e2iϕ) 5− e2iϕ
2(1 + e2iϕ) 2(1− 2e2iϕ) 2(1 + e2iϕ)

5− e2iϕ 2(1 + e2iϕ) −1− e2iϕ


 .

(12)

The factor of 2 in the exponent was included for convenience. We show that the family of three-state quantum walks
with the coin operator (12) posses the localization property of the Grover walk. The phase parameter ϕ determines
the rate of spreading of the probability distribution through the lattice.
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The dispersion relations for the one-parameter family of quantum walks with the coin operator (12) are

ω1,2(k, ϕ) = ϕ± arccos

(
−1

3
(2 + cos k) cosϕ

)
,

ω3(k, ϕ) = 0.

As for the original Grover walk we find that one frequency is independent of k. This ensures that the localization
effect is preserved.

Let us now determine the velocities of the peaks, i.e. the maximal group velocity. The second derivatives of the
frequencies ω1,2(k, ϕ)

∂2ω1,2

∂k2
= ∓9 cos k − cos2 ϕ(2 + 5 cos k + 2 cos2 k)

(9− cos2 ϕ(2 + cos k)2)
3
2

cosϕ

vanish for

k0 = arccos

(
1

4 cos2 ϕ

(
9− 5 cos2 ϕ−

3
√

9− 10 cos2 ϕ+ cos4 ϕ
))

.

Evaluating the group velocities
∂ω1,2

∂k at the stationary point k0 we obtain the velocities of the left and right-going
peaks

vR(ϕ) =
∂ω2

∂k

∣∣∣∣
k0

=
1√
6

√
3− cos2 ϕ− sinϕ

√
9− cos2 ϕ,

vL(ϕ) =
∂ω1

∂k

∣∣∣∣
k0

= −vR(ϕ). (13)

We illustrate our results in Figures 2 and 3. In Figure 2 we display the velocity vR(ϕ) as a function of the coin
parameter ϕ. It turns out that the dependence is almost linear

vR(ϕ) ≈ 1√
3

(
1− 2ϕ

π

)
.

The inset shows the variation of vR(ϕ) from this linear approximation. We find that from the one-parameter family
of quantum walks with the coin operator CG(ϕ) the Grover walk is the fastest one, as vR(ϕ) attains the maximal
value 1√

3
for ϕ = 0. With increasing ϕ the velocity of the right peak drops down and it becomes zero for ϕ = π/2.

In Figure 3 we show the probability distribution of the generalized three-state localizing walk with the parameter
ϕ = π/4 after T = 50 steps. In comparison with the original Grover walk displayed in Figure 1 we find that the
distribution spreads much slower.

B. Deforming the eigenvectors

Our second approach to the deformation of the Grover walk is inspired by the work of Watabe et al. [27]. The
authors have studied a one-parameter family of 2D four-state quantum walks which contained the Grover walk. This
set of quantum walks also preserves the localization effect. The particular property of the corresponding one-parameter
set of 4× 4 coin operators is that they have the same spectrum as the Grover matrix. We show that this feature can
be employed to construct a similar set of 3× 3 coins.

Let us first consider two rather trivial coin operators which have the same spectrum as the Grover matrix and which
also preserve localization of the corresponding quantum walk. One of such matrices is similar to the permutation
matrix Π introduced in the previous section, namely

C =




0 0 1
0 −1 0
1 0 0


 .
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FIG. 2: The velocity of the vR(ϕ) for the one-parameter family of quantum walks defined by the coin operator CG(ϕ) (12).
Despite the rather complicated formula (13) for vR(ϕ) we see that it decreases almost linearly with ϕ. The dashed curve
corresponds to the straight line 1√

3
(1 − 2ϕ/π). The inset shows the difference of the two curves.

FIG. 3: The probability distribution of the three-state walk with the coin operator C1(π/4) after T = 50 steps. As for the
Grover walk we have chosen the initial coin state according to ψC = 1√

3
(1,−1, 1). When compared with Figure 1 we find that

the spreading of the probability distribution is much slower than for the Grover walk. Indeed, for ϕ = π/4 the peak velocities
drops down to vL,R(π/4) ≈ ±0.27, which is less than a half of the velocities for the Grover walk.

We have only changed the sign of the diagonal element which ensures that C has the same spectrum as the Grover
matrix. Nevertheless, the corresponding quantum walk is the same as the walk with the permutation coin Π. The
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walk is trivially localizing and the peak velocities equal zero. The second coin operator we consider is given by

C ′ =



−1 0 0
0 1 0
0 0 −1


 .

The dynamics of the resulting quantum walk is simple. The |S〉 component of the initial state remains at the origin
which corresponds to localization. The |L〉 (|R〉) component moves in every step to the left (right). After t steps the
particle can be found only on three lattice points - either m = 0 or m = ±t. In contrast to the walk driven by the
coin C the walk with coin C ′ spreads through the lattice with the maximal possible peak velocities vL,R = ±1.

In order to connect the Grover matrix and the matrices C and C ′ we examine their eigenvectors. The eigenvectors
of the Grover matrix were given in (10). The eigenvectors of C are

u1 = (0,−1, 0)
T
,

u2 =
1√
2

(1, 0,−1)
T
,

u3 =
1√
2

(1, 0, 1)
T
.

Finally, the eigenvectors of C ′ are given by

w1 =
1√
2

(1, 0, 1)
T
,

w2 =
1√
2

(1, 0,−1)
T
,

w3 = (0, 1, 0)
T
.

The first two eigenvectors correspond to the eigenvalue −1 while the third one has the eigenvalue 1. Notice that
the second eigenvector can be chosen such that it is always the same. We parameterize the eigenvectors in such
a way that they continuously change from u1,3 to w1,3 while remaining mutually orthogonal and normalized. This
parametrization is given by

v1(ρ) =

(
ρ√
2
,−
√

1− ρ2, ρ√
2

)T
,

v2(ρ) =
1√
2

(1, 0,−1)
T
,

v3(ρ) =

(√
1− ρ2

2
, ρ,

√
1− ρ2

2

)T
.

With these vectors we construct the following one-parameter set of coin operators

C2(ρ) = −P1(ρ)− P2(ρ) + P3(ρ)

=




−ρ2 ρ
√

2(1− ρ2) 1− ρ2
ρ
√

2(1− ρ2) 2ρ2 − 1 ρ
√

2(1− ρ2)

1− ρ2 ρ
√

2(1− ρ2) −ρ2


 .

(14)

The matrices C and C ′ correspond to the values ρ = 0 and ρ = 1, respectively. The Grover matrix is given by the
coin parameter ρ = 1√

3
.

We now show that the three-state quantum walks with the one-parameter family of coins (14) exhibits the local-
ization effect and that the coin parameter ρ directly determines the peak velocities. In order to prove this we analyze
the dispersion relations

ω1,2(k, ρ) = ± arccos
(
ρ2 − 1− ρ2 cos k

)
,

ω3(k, ρ) = 0. (15)
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FIG. 4: The probability distribution of the three-state walk with the coin operator C2(ρ) after T = 50 steps. The initial coin
state of the walk is ψC = 1√

2
(1, 0, 1). As the coin parameter we have chosen ρ = 0.9. This results in much faster spreading of

the probability distribution. The peaks appear at the position ±ρ · T = ±45, in accordance with the analytical result (16).

One of the frequencies is independent of the wavenumber, which guarantees the localization property of the corre-
sponding one-parameter family of quantum walks with coin operator (14). Concerning the peak velocities, we have
to determine for which wavenumber do the second derivatives of ω1,2 vanish. From their explicit form

∂2ω1,2

∂k2
= ±ρ(ρ2 − 1)

√
1− cos k

(2− ρ2 + ρ2 cos k)
3
2

we see that they are both equal to zero for k0 = 0. Hence, the peak velocities are given by

vR(ρ) = lim
k→0+

∂ω2

∂k
= ρ,

vL(ρ) = lim
k→0+

∂ω1

∂k
= −ρ. (16)

Since ρ can be varied from zero to one we can achieve faster spreading than for the Grover walk. We illustrate these
results in Figure 4.

V. CONCLUSIONS

We have introduced two deformations of the Grover walk which preserve its localization nature. The coin parameters
determine the velocities of the peaks in the probability distributions of the particle’s position. The two families of
walks differ in the achievable rate of spreading across the lattice. For the first one the upper limit is given by the
original Grover walk. In the second case this limit on the peak velocity can be broken.

The presented construction of two sets of coins can be extended to higher-dimensional quantum walks in a straight-
forward way. In fact, the family of 2D quantum walks studied in [27] can be obtained by the deformation of the
eigenvectors of the 4× 4 Grover matrix. Concerning the deformation based on the modification of the spectrum, one
has to diagonalize the Grover matrix together with a permutation matrix which interchanges the displacements that
mutually cancels each other. There is a unique eigenvector corresponding to eigenvalue −1 for the Grover matrix and
eigenvalue 1 for the permutation. A construction similar to the one given in (12) yields a one-parameter set of coins
preserving localization.

Our results show that localization effect can be found for a set of quantum walks. The presented construction is
a step in a systematic classification of localizing quantum walks not only on a line but also in higher dimensions. It
remains an open question if there exist coin operators outside the two families we have identified which also lead to
localization.

121



10

Acknowledgments

We acknowledge the financial support from MSM 6840770039, MSMT LC06002 and SGS11/132/OHK4/2T/14.

[1] Y. Aharonov, L. Davidovich, N. Zagury, Phys. Rev. A 48, 1687 (1993)
[2] B.D. Hughes, Random walks and random environments, Vol. 1: Random walks (Oxford University Press, Oxford, 1995)
[3] P. Knight, E. Roldan, J. Sipe, Phys. Rev. A 68, 020301 (2003)
[4] A. Kempf, R. Portugal, Phys. Rev. A 79, 052317 (2009)
[5] D. Aharonov, A. Ambainis, J. Kempe, U. Vazirani, , in Proceedings of the 33th STOC (ACM, New York, NY, 2001), p. 50
[6] N. Shenvi, J. Kempe, K. Whaley, Phys. Rev. A 67, 052307 (2003)
[7] A. Ambainis, J. Kempe, A. Rivosh, , in Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms

(2005), p. 1099
[8] M. Santha, Quantum walk based search algorithms, in Theory and Applications of Models of Computation, edited by M.

Agrawal, D. Z. Du, Z. H. Duan and A. S. Li (Springer, Berlin, 2008), Vol. 4978 of Lecture Notes in Computer Science,
p. 31

[9] B. Tregenna, W. Flanagan, R. Maile, V. Kendon, New J. Phys. 5, 83 (2003)
[10] A. Ambainis, E. Bach, A. Nayak, A. Vishwanath, J. Watrous, , in Proceedings of the 33th STOC (ACM, New York, NY,

2001), p. 60
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Evolution operators of certain quantum walks possess, apart from the continuous part, also point
spectrum. The existence of eigenvalues and the corresponding stationary states lead to partial
trapping of the walker in the vicinity of the origin. We analyze the stability of this feature for
three-state quantum walks on a line subject to homogenous coin deformations. We find two classes
of coin operators that preserve the point spectrum. These new classes of coins are generalizations
of coins found previously by different methods and shed light on the rich spectrum of coins that can
drive discrete-time quantum walks.

I. INTRODUCTION

Quantum walks [1] have become quite popular in the last few years. This is motivated by their potential applications
in quantum information theory [2], statistical physics [3, 4] and transport theory [5]. Additional interest in quantum
walks was stimulated by the now considerable number of experiments [6–13] which have demonstrated the basic
properties of quantum walks. They have shown in an impressive way the quantum coherence which is needed for
their realization. Among the basic effects associated with quantum walks is the fast spreading of the walker across
the underlying grid.

The key role in the analysis of the quantum walk plays the determination of the spectrum of the unitary evolution
operator. For quantum walks with homogeneous coin on infinite lattice one can employ Fourier analysis [14], which
reduces this problem to that of finding the eigenvalues of a finite-size matrix dependent on the wave-number k.
The ballistic spreading of the quantum walk can be deduced from the analogy with wave theory. The continuous
spectrum of the evolution operator corresponds to the k-dependent eigenvalues which can be described by dispersion
relations. This allows one to find the group velocity and its distribution [15] which determines the propagation of
the wave packets. The peaks in the probability distribution of the quantum walk propagate at constant rate given
by the maximum of the group velocity [16]. However, the evolution operators of certain quantum walks also have a
non-empty point spectrum, which is represented by k-independent eigenvalues. In such a case, the evolution does not
consist of purely ballistic spreading. Indeed, as the walker spreads through the lattice its wave-function overlaps with
the stationary states. The walker is therefore partially trapped in the vicinity of the origin. This feature, also known
as localization, was found in the three-state walk on a line with the Grover coin operator [17, 18], where the evolution
operator has one eigenvalue equal to unity. Similarly, Grover walk on a square lattice also has a point spectrum [19]
consisting of ±1. This can be exploited for a number of effects. The form of the spectrum can be used to sculpture the
shape of the walker’s wave packet, the walker can be trapped at particular position and can also lead to the effect of
full revival [20], where the walker’s wave-packet undergoes a periodic time-evolution. It may be anticipated, however,
that the presence of the point spectrum will be highly sensitive to the choice of the coin operator. Even a small
perturbation in a wrong direction can eliminate the eigenvalues. This can be crucial for experimental realizations of
such quantum walks, where the imperfections in all operations has to be taken into account. In [21] the authors have
analyzed a one-parameter modification of the Grover walk on a square lattice which preserves the point spectrum.
The coin parameter controls the rate at which the particle spread through the lattice. We have extended this idea
to three-state walk [22] on a line and found two one-parameter families of walks with point spectrum. Their coin
operators are constructed as either eigenvalue or eigenvector deformations of the Grover coin. It is not clear, however,
whether the two sets exhaust all possible three-state walks with point spectrum. The present paper aims to address
this issue. The determination of coin families with a point spectrum contribute significantly to the classification of
coins with respect to their physical properties, i.e. to localizing and non-localizing coins. Even though this is a very
crude classification it certainly helps and in addition it simplifies experimental considerations when the wave packet
propagating as a quantum walk is of interest.

The paper is organized as follows: In Section II we find the conditions on the coin operator which guarantees that
the evolution operator of the quantum walk has a point spectrum. We solve these requirements in Section III with
the help of a particular parametrization of the unitary group. We find three trivial solutions and two non-trivial ones.
In Section IV we analyze the dependence of the rate of spreading of the walk through the lattice on the remaining
coin parameters. Finally, we study the trapping of the walker in Section V. We conclude and present an outlook in
Section VI.
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II. CHARACTERISTIC EQUATION AND CONDITIONS ON THE COIN OPERATOR

We consider a three-state discrete-time quantum walk on a line with a homogeneous coin operator Ĉ. We denote
the basis coin states as |L〉, |S〉 and |R〉, which correspond to the step to the left, staying at the present position and
the step to the right. The simplest way to solve the dynamics is to analyze it in the momentum representation [14].
In the Fourier representation the evolution operator has the form

Ũ(k) = D
(
e−ik, 1, eik

)
· C, (1)

where D denotes a diagonal matrix and C is the matrix representation of the coin operator with matrix elements

Cij = 〈i|Ĉ|j〉, with i, j = L, S, R. (2)

We are interested in quantum walks which show the localization effect. This feature corresponds to the fact that the
evolution operator in the Fourier representation (1) has an eigenvalue independent of k. Note that if (1) has two
eigenvalues independent of k, the third one has to be also constant. This follows immediately from the fact that the
determinant of (1) is the same as determinant of C which is independent of k. The case when the evolution operator
(1) has all three eigenvalues independent of k leads to a trivial quantum walk with no spreading. Let us therefore
assume that only one eigenvalue of the evolution operator is independent of k. Then we can always put the eigenvalues
into the form

λ0 = eiϕ, λ1,2(k) = e±iω(k), (3)

simply by multiplying the coin operator by a global phase factor, which does not influence the overall dynamics. The
function ω(k) has to be real for all k, since the evolution operator Ũ(k) is unitary and its eigenvalues must be of
modulus 1. Consider the characteristic equation

det
(

Ũ(k)− λ
)

= (λ0 − λ)(λ1 − λ)(λ2 − λ) = 0. (4)

The terms with same power of λ on the left and the right hand side of the equation give the following relations

λ0: eiϕ = det C

λ1: 1 + eiϕ
(
eiω(k) + e−iω(k)

)
= mLe

ik +mS +mRe
−ik.

λ2: eiϕ + eiω(k) + e−iω(k) = CLLe
−ik + CSS + CRRe

ik

Here we have denoted by mi the minors of the coin operator, i.e.

mL = det

(
CSS CSR
CRS CRR

)
, mS = det

(
CLL CLR
CRL CRR

)
, mR = det

(
CLL CLS
CSL CSS

)
. (5)

The third equation leads to the dispersion relations determining the ω(k) in the form

2 cosω(k) = CLLe
−ik + CSS + CRRe

ik − eiϕ. (6)

This function has to be real for all k, which is only possible if

CLL = C∗RR = ρeiγ , CSS = eiϕ − 2µ, ρ, γ, µ ∈ R, (7)

where the star denotes the complex conjugation. The dispersion relations then attain a simple form

cosω(k) = ρ cos(k − γ)− µ. (8)

Note that they are fully determined by the diagonal elements of the coin operator. Moreover, if ρ = 0, i.e. when
CLL = CRR = 0, then ω is constant. In such a case the evolution operator has purely point spectrum and the quantum
walk is trivial - it does not spread at all.

Let us now consider the terms with λ1 which lead us to the dispersion relations in the form

2 cosω(k) = e−iϕ
(
mLe

ik +mS +mRe
−ik − 1

)
. (9)

Comparing this formula with (6) we find the following conditions involving the off-diagonal elements of C

CLL = e−iϕ (CLLCSS − CLSCSL) , (10)

CRR = e−iϕ (CRRCSS − CSRCRS) = C∗LL, (11)

CSS − eiϕ = e−iϕ (CLLCRR − CLRCRL − 1) . (12)

Moreover, the matrix C has to be unitary.
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III. PARAMETRIZATION OF THE UNITARY GROUP

In order to find coins which satisfy the conditions (10)-(12) we first parameterize the three-dimensional unitary
group, which has a dimension nine, in the following way [23]

C = D
(
eiα1 , eiα2 , eiα3

)
· V ·D

(
eiβ1 , eiβ2 , eiβ3

)
. (13)

Here the matrix V is the quark mixing matrix

V =




c12c13 c13s12 e−iδs13
−c23s12 − eiδc12s13s23 c12c23 − eiδs12s13s23 c13s23
s12s23 − eiδc12c23s13 −c12s23 − eiδc23s12s13 c13c23


 , (14)

familiar from the Standard model [24]. For brevity we have used the notation

cij = cos θij , sij = sin θij . (15)

The mixing matrix has four real parameters θ12, θ13, θ23 and δ. The five remaining independent parameters are

γ1 = α1 + β1, γ2 = α1 + β2, γ3 = α1 + β3, γ4 = α2 + β1, γ5 = α3 + β1. (16)

With this parametrization a general 3x3 unitary matrix is given by

C =




eiγ1c12c13 eiγ2c13s12 e−i(δ−γ3)s13
−eiγ4

(
c23s12 + eiδc12s13s23

)
e−i(γ1−γ2−γ4)

(
c12c23 − eiδs12s13s23

)
e−i(γ1−γ3−γ4)c13s23

eiγ5
(
s12s23 − eiδc12c23s13

)
−e−i(γ1−γ2−γ5)

(
c12s23 + eiδc23s12s13

)
e−i(γ1−γ3−γ5)c13c23


 . (17)

Note that the determinant of C equals

det C = eiϕ = e−i(γ1−γ2−γ3−γ4−γ5). (18)

Let us now turn to the requirements for the non-empty point spectrum of the evolution operator. The relations
(10) and (11) lead to the condition

c13

(
c12 − ei(γ3+γ5)c23

)
= 0. (19)

This is satisfied in the following cases:

1. c13 = 0, i.e. θ13 = π
2 - trivial solution, no dynamics

The coin operator has the form

C =




0 0 e−i(δ−γ3)

−eiγ4
(
c23s12 + eiδc12s23

)
e−i(γ1−γ2−γ4)

(
c12c23 − eiδs12s23

)
0

eiγ5
(
s12s23 − eiδc12c23

)
−e−i(γ1−γ2−γ5)

(
c12s23 + eiδc23s12

)
0


 . (20)

Since CLL = CRR = 0, the evolution operator does not have a continuous spectrum.

We note that the alternative choice of θ13 = −π2 results in an equivalent matrix (in the sense of the properties
of the quantum walk). The same will apply to other solutions of equation (19) given bellow. We will therefore
always treat only one possible choice of the angles in the range (−π, π).

2. c12 = c23 = 0, i.e. θ12 = θ23 = π
2 - trivial solution, no dynamics

The coin operator has the form

C =




0 eiγ2c13 e−i(δ−γ3)s13
0 −ei(δ−γ1+γ2+γ4)s13 e−i(γ1−γ3−γ4)c13
eiγ5 0 0


 . (21)

Since CLL = CRR = 0, the evolution operator does not have a continuous spectrum.
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3. γ3 = −γ5, c12 = c23

From the equation (12) follows the condition

(sin(γ1 − γ2 − γ4)− sin(δ − γ1 + γ2 + γ4)s13)s23 = 0. (22)

This requires that one of the following is satisfied:

(a) s23 = 0, i.e. θ23 = 0 - trivial solution, decoupling

C =




eiγ1c13 0 e−i(δ+γ5)s13
0 e−i(γ1−γ2−γ4) 0

−ei(δ+γ5)s13 0 e−iγ1c13


 (23)

In this case the state of the coin |S〉 is decoupled from the other two states |L,R〉. The walk reduces to a
two-state walk and the |S〉 component of the initial state remains at the origin.

(b) δ = 0, γ1 = γ2 + γ4 - nontrivial solution

In this case the coin operator is given by the following matrix

C1 =




ei(γ2+γ4)c13c23 eiγ2c13s23 e−iγ5s13
−eiγ4c23(1 + s13)s23 c223 − s13s223 e−i(γ2+γ5)c13s23
eiγ5

(
−c223s13 + s223

)
−e−i(γ4−γ5)c23(1 + s13)s23 e−i(γ2+γ4)c13c23


 , (24)

which depends on five parameters γ2, γ4, γ5, θ13 and θ23. The dispersion relations (8) now reads

ω(k) = arccos

[
c13c23 cos(k − γ2 − γ4)− 1

2
s223(1 + s13)

]
. (25)

Notice that for

γ2 = γ4 = γ5 = 0, θ13 = arcsin(1− ρ2), θ23 = arccos

(
− ρ√

2− ρ2

)

the coin operator (24) reduces to

Cρ =




−ρ2 ρ
√

2− 2ρ2 1− ρ2
ρ
√

2− 2ρ2 −1 + 2ρ2 ρ
√

2− 2ρ2

1− ρ2 ρ
√

2− 2ρ2 −ρ2


 .

This is the family of coin operators we have found in [22] through the deformation of eigenvectors of the
Grover matrix.

(c) δ 6= γ1 − γ2 − γ4, s13 = sin(γ1−γ2−γ4)
sin(δ−γ1+γ2+γ4) - nontrivial solution

In this case, the coin operator equals

C2 =




eiγ1c23B eiγ2Bs23 −e−i(δ+γ5)A sinκ
−ei(γ1−γ2)As23c23 sin δ eiκ

(
c223 + eiδAs223 sinκ

)
e−i(γ1−γ4+γ5)Bs23

eiγ5
(
s223 + eiδc223A sinκ

)
−e−i(γ4−γ5)As23c23 sin δ e−iγ1c23B


 . (26)

For brevity we have used the notation

κ = γ2 + γ4 − γ1, A =
1

sin(δ + κ)
, B =

√
A2 sin δ sin(δ + 2κ). (27)

The set of solutions C2 depends on six parameters, namely γ1, γ2, γ4, γ5, δ and θ23. We note that this class
of coins is well defined only when the condition

−1 ≤ s13 ≤ 1, i.e. − 1 ≤ sinκ

sin(δ + κ)
≤ 1, (28)
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is satisfied. The dispersion relations are now determined by

ω(k) = arccos

[
Bc23 cos(k − γ1)− 1

2
As223 sin δ

]
. (29)

Notice that for the choice of the parameters

γ1 = γ2 = π, θ23 = − arctan 2, γ4 = γ5 = −ϕ, δ = ϕ+ arccotan

(
2 cotϕ

3

)

the coin operator (26) reduces to

Cϕ =




− cosϕ
3

2 cosϕ
3

2 cosϕ
3 − i sinϕ

2 cosϕ
3 − cosϕ

3 − i sinϕ 2 cosϕ
3

2 cosϕ
3 − i sinϕ 2 cosϕ

3 − cosϕ
3


 .

This set is up to a global phase factor eiϕ equal to the one-parameter family we have found in [22] by the
deformation of eigenvalues of the Grover matrix.

The solutions C1 and C2 represents all coin operators which result in three-state quantum walk with point spectrum.
Before we proceed with the analysis of their physical properties we point out that the derived results imply that the
existence of point spectrum is a rather rare feature. Indeed, the found solutions depend on five, respectively six
parameters, while a general coin operator depends on nine parameters. Hence, both families of coins C1 and C2

represent a set of zero measure in the unitary group U(3).

IV. PEAK VELOCITIES OF THE RESULTING QUANTUM WALKS

Let us now analyze the coin operators we have found in more detail. As a first physical parameter we consider the
peak velocity [16] which describes the rate of spreading of the quantum walk through the lattice. The peak velocity is
determined as the maximum of the group velocity v = dω

dk . Notice that for both sets of coins C1 and C2 the dispersion
relations are of the form

ω(k) = arccos (ρ cos(k − γ)− µ) . (30)

To determine the peak velocity of the corresponding quantum walk we have to find k0 such that the second derivative
of ω vanishes. This leads us to the equation

ρµ(1 + cos2(k0 − γ)) + (1− ρ2 − µ2) cos(k0 − γ) = 0. (31)

The solutions are given by

k0 = γ ± arccos ∆, (32)

where we have denoted

∆ =
ρ2 + µ2 − 1 +

√
(1− ρ2 − µ2)2 − 4ρ2µ2

2ρµ
. (33)

The peak velocities are then found by evaluating the first derivative of ω at the point k0. We obtain the following
result

vpeak =
ρ
√

1−∆2

√
1− (µ− ρ∆)2

. (34)

Note that neither ∆ nor vpeak depend on γ, so this parameter does not have a dynamical consequence.

127



6

A. The class C1

For the set of coin operators C1 the parameters ρ and µ are given by

ρ = cos θ13 cos θ23, µ =
1

2
(1 + sin θ13) sin2 θ23. (35)

We find that for the five-parameter family of coins C1 the peak velocity depends only on two, namely θ13 and θ23.
The choice of the parameters γ2, γ4, γ5 does not influence the dynamics of the quantum walk.

The peak velocity as a function of θ13 and θ23 is displayed in Figure 1. As expected, the peak velocity is zero for
θ13 = ±π/2 and θ23 = ±π/2, since these parameters correspond to the trivial solutions. The peak velocity is smooth
except for the curve determined by

cos θ23 = ± cos θ13
1 + sin θ13

, (36)

where it has a discontinuous derivative. For a given θ23 the maximum of the peak velocity lies on this curve and is
given by

vmax =

√
cos θ23 cos

(
2 arctan

(
1− cos θ23
1 + cos θ23

))
(37)

FIG. 1: On the left we show the absolute value of the peak velocity for the set of coin operators C1 in dependence on the
parameters θ13 and θ23. The upper right plot displays the cut for θ23 equal to π/4. Notice the two spikes at the values of θ13
determined by Eq. (36). The lower right plot shows the maximum peak velocity for a given θ23 which is determined by Eq.
(37).

B. The class C2

In the second case the coefficients are equal to

ρ =

√
sin δ sin(δ + 2κ)

sin2(δ + κ)
cos θ23, µ =

sin δ

2 sin(δ + κ)
sin2 θ23. (38)

We see that for the six-parameter family of coins C2 the peak velocity depends only on three, namely δ, θ23 and κ
which is a linear combination of γ1, γ2 and γ4, see equation (27).

128



7

The peak velocity as a function of the angles δ and θ23 is shown in Figure 2 on the left. We fix the value of the
remaining parameter κ = π/5. As before, the peak velocity vanishes for θ23 = ±π/2. On the right we display the
maximum of the peak velocity as a function of κ. For a given κ, the maximum of the peak velocity is reached for
θ23 = 0 and δ = π/2− κ, and reduces to

vmax = | cosκ|. (39)

-Π 0 Π

0

0.5

1

κ

v m
a
x

FIG. 2: On the left we show the peak velocity for the set of coin operators C2. We have chosen the parameter κ = π/5. Due to
the condition (28) not all values of δ are admissible. The maximum of the peak velocity as a function of the angle κ is shown
on the right. The maximum is reached for the values θ23 = 0 and δ = π/2 − κ.

V. TRAPPING PROBABILITY

As we have already mentioned, the dynamics of the quantum walks we are interested in do not consist of just
ballistic spreading. The existence of eigenvalue that is independent of k and the corresponding bound state leads to
partial trapping of the walker at the origin. In this section we analyze this feature in more detail.

We denote by v(k) =
(
vL(k), vS(k), vR(k)

)T
the momentum representation of the (non-normalized) stationary state,

i.e. the eigenstate of the evolution operator (1) corresponding to the constant eigenvalue. By n(k) we denote the
square norm of this vector. In a similar way, we denote by v1,2(k) the (normalized) eigenvectors of (1) corresponding

to eigenvalues e±iω(k) Let the initial state of the coin be equal to

|ϕ〉 = ϕL|L〉+ ϕS |S〉+ ϕR|R〉. (40)

The momentum representation of the initial state of the walk |0〉 ⊗ |ϕ〉 is then simply ϕ =
(
ϕL, ϕS , ϕR

)T
. Using

Fourier analysis [14] we find that the probability amplitude of particle being at the origin after t steps of the walk is
given by

ψ(0, t) =

π∫

−π

dk

2π

1

n(k)
(v(k), ϕ) v(k) +

π∫

−π

dk

2π
eiω(k)t (v1(k), ϕ) v1(k) +

+

π∫

−π

dk

2π
e−iω(k)t (v2(k), ϕ) v2(k). (41)

With the stationary phase approximation [25] one can show that the time-dependent integrals in (41) behave as ∼ t− 1
2

for large values of t. Hence, in the limit t→ +∞ only the first term in (41) remains and we find

ψϕ∞ ≡ lim
t→+∞

ψ(0, t) =

π∫

−π

dk

2π

1

n(k)
(v(k), ϕ) v(k). (42)
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The localization probability is then equal to the square norm of the amplitude. Since we want to focus on the role
of the coin operator on the walker trapping, we consider the initial coin state of the walker as the maximally mixed
state. In such a case, the trapping probability can be expressed in the form

P∞ =
1

3

(
|ψL∞|2 + |ψS∞|2 + |ψR∞|2

)
, (43)

where ψj∞ is the limiting amplitude for the initial coin state |j〉, i.e.

ψj∞ =

π∫

−π

dk

2π

1

n(k)
vj
∗
(k)v(k), j = L, S,R. (44)

In the following we will see that k-dependence of the stationary state v(k) involves only the term eik. The product

vj
∗
(k)v(k) will be a linear combination of functions e−ik, 1, eik. The square norm of the stationary state will be of

the form

n(k) = a− 2b cos(k − c). (45)

This implies that the amplitudes (44) can be decomposed into integrals

In =

π∫

−π

dk

2π

eink

a− 2b cos(k − c) , n = −1, 0, 1. (46)

Such an integral can be turned into a contour integral over a unit circle in a complex plane

In =

{
eik = z
dk = dz

iz

}
= − 1

2πi

∮
zndz

be−icz2 − az + beic
, (47)

which is easily evaluated with the help of the residues. We find the following result

I0 =
1√

a2 − 4b2
, I1 = I∗−1 =

a√
a2−4b2 − 1

2b
eic. (48)

Let us now specify the results for the two sets of coin operators.

A. The Class C1

For the first class of the coins the stationary state is given by

v(k) =




−e−iγ5(sin θ13
2 + cos θ132 )s23

ei(k−γ2−γ5)(sin θ13
2 − cos θ132 ) + ei(γ4−γ5)(sin θ13

2 + cos θ132 )c23
−eik(sin θ13

2 + cos θ132 )s23


 . (49)

The square of the norm of this vector is equal to

n(k) = 2 + (1 + s13)s223 − 2c13c23 cos(k − γ2 − γ4). (50)

The parameters a, b and c are therefore

a = 2 + (1 + s13)s223, b = c13c23, c = γ2 + γ4. (51)

We find that the limiting amplitudes at the origin (44) are given by

ψL∞ =




I0(1 + s13)s223
e−iγ2(|I1|c13 − I0c23(1 + s13))s23

eiγ5 |I1|(1 + s13)s223


 ,

ψS∞ =




eiγ2(|I1|c13s23 − I0)
I0(1 + c223 − s13s223)− 2|I1|c13c23

ei(γ2+γ5)(I0c13s23 − |I1|(1 + s13)s23c23)


 ,

ψR∞ =




e−iγ5 |I1|(1 + s13)s223
e−i(γ2+γ5)(I0c13 − |I1|(1 + s13)s23c23)

I0(1 + s13)s223


 . (52)
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The trapping probability at the origin for a maximally mixed initial coin state then equals

P∞ =
1

3
I20

[
1 + c423 +

1

2
(2 + s223)2 + (s213 + 2s13 −

1

2
)s423

]
−

−4

3
I0|I1|c13c23

[
1 + c223 + (2 + s13)s223

]
−

−4

3
|I1|2(1 + s13)(c223s13 − 1) (53)

Notice that the result is independent of the γi’s. The only relevant parameters are the angles θ13 and θ23, i.e. the
same parameters which also determine the rate of spreading of the walk. We display the behaviour of the localization
probability in Figure 3.

FIG. 3: Localization probability for the first class.

B. The Class C2

In the second case the stationary state is equal to

v(k) =




ei(γ2+γ4) sin δs23
−ei(γ1+γ4) sin δc23 + ei(k+γ4)

√
sin δ sin(δ + 2κ)

ei(k+γ1+γ5) sin δs13


 . (54)

The normalization of this vector is given by the factor

n(k) = sin δ
(

sin(δ + 2κ) + (1 + s223) sin δ − 2c23
√

sin δ sin(δ + 2κ) cos(k − γ1)
)

(55)

The parameters a, b, c are then given by

a = sin δ(sin δ(1 + s223) + sin(δ + 2κ)), b = sin δc23
√

sin δ sin(δ + 2κ), c = γ1. (56)
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The probability amplitudes at the origin in the limit t→ +∞ tend to the values

ψL∞ =




I0 sin2 δs223
ei(γ1−γ2) sin δs23(|I1|

√
sin δ sin(δ + 2κ)− I0c23 sin δ)

ei(γ1+γ5−κ)|I1| sin2 δs223


 ,

ψS∞ =




ei(γ2−γ1) sin δs23(|I1|
√

sin δ sin(δ + 2κ)− I0c23 sin δ)

sin δ(I0(c223 sin δ + sin(δ + 2κ))− 2|I1|c23
√

sin δ sin(δ + 2κ))

ei(γ1+γ5−γ4) sin δs23(I0
√

sin δ sin(δ + 2κ)− |I1|c23 sin δ)


 ,

ψR∞ =




ei(κ−γ1−γ5)|I1| sin2 δs223
ei(γ4−γ1−γ5) sin δs23(I0

√
sin δ sin(δ + 2κ)− |I1|c23 sin δ)

I0 sin2 δs223


 . (57)

Finally, the probability of finding the particle at the origin is given by

P∞ =
1

3
I20 sin2 δ

[
(c223 sin δ + sin(δ + 2κ))2 + 2 sin2 δs423+

+2 sin δs223(c223 sin δ + sin(δ + 2κ))
]

+

+
2

3
|I1|2 sin3 δ

[
sin δs223 + (1 + c223) sin(δ + 2κ)

]
−

−4

3
I0|I1|c23 sin2 δ

[
(1 + s223) sin δ + sin(δ + 2κ)

√
sin δ sin(δ + 2κ)

]
. (58)

Note that the result depends on γi’s only through κ = γ2 + γ4− γ1. The localization probability thus depend only on
δ, θ23 and κ. These parameters also determine the peak velocity of the walk. We show the course of this function in
Figure 4

FIG. 4: Localization probability for the second class of coins. The parameter κ has been chosen equal to π/5. The admissible
range of the parameter δ is limited by the condition (28).

VI. CONCLUSIONS

We have found two classes of coins for three state quantum walks on the line which have a point spectrum. Previously
found coins [22] having this property are special cases of the defined classes. In this perspective our results complete
the classification of three-step quantum walks on a line which exhibit the localization effect. The obtained formulas
(24), (26) determine all coin operators leading to localizing quantum walks. The sets of coin operators depend on five,
respectively six parameters. Our results imply that localization is a rare feature, since both families of coins represent
a set of zero measure in the unitary group U(3).
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Physical implications of our results have been discussed. As representative physical parameters we have chosen the
propagation velocity and trapping probability at the origin. We have shown that the peak velocity as well as the
strength of localization depend only on few parameters defining the coin, namely two for the first class and three
for the second. We derived explicit formula specifying the dependencies of the physically relevant parameters on
the parameters used to define the coin matrix. Explicit formulas for the velocity and trapping allow to quantify the
strength of localization and magnitude of the speed. Hence the extreme regimes of three state walks on the line can
be pinpointed. The very moderate dependence of localization and peak velocity on matrix parameters has to be put
into contrast with the original coin matrix which has nine independent parameters.

The identification of the two localizing coin classes allows us to estimate the degree of control we need to have
over the coin in order to see localization in an experiment. Such an analysis is relevant when considering possible
experimental implementations for instance using the optical feedback loop [8]. The coin control, usually realized as
an internal degree of freedom of the particle spin or angular momentum [12, 26], must be sufficiently strict because
localization exhibited by the coins applies only to a very limited range of parameters when compared to the full
parameter size of a general U(3) coin.
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Limit distributions of three-state quantum walks: the role of coin eigenstates
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We analyze two families of three-state quantum walks which show the localization effect. We focus
on the role of the initial coin state and its coherence in controlling the properties of the quantum
walk. In particular, we show that the description of the walk simplifies considerably when the initial
coin state is decomposed in the basis formed by the eigenvectors of the coin operator. This allows us
to express the limit distributions in a much more convenient form. Consequently, striking features
which are hidden in the standard basis description are easily identified. Moreover, the dependence
of moments of the position distribution on the initial coin state can be analyzed in full detail. In
particular, we find that in the eigenvector basis the even moments and the localization probability
at the origin depend only on incoherent combination of probabilities. In contrast, odd moments and
localization outside the origin are affected by the coherence of the initial coin state.

I. INTRODUCTION

Quantum walks [1–3] emerged as an extension of a concept of a random walk to a unitary evolution of a quantum
particle on a discrete graph or lattice. Soon, their potential for quantum information processing was recognized [4].
The quantum walk based algorithms which outperforms their classical counterparts were implemented for problems
such as database search [5] or finding a path in a randomly glued tree graphs [6]. Later it was shown [7, 8] that
quantum walks represent a universal tool for quantum computation. More recently quantum walk based algorithms
are being developed for problems such as graph isomorphism testing [9–11] or finding structural anomalies in graphs
[12–14].

For quite a long time the quantum walk was rather a theoretical concept, even though very fruitful. However, in
2009 the first experimental realization of a quantum walk on a line utilizing optically trapped atoms [15] has been
reported. The experiments with cold ions [16, 17] and photons [18, 19] followed shortly afterwards. These experiments
were latter expanded to implement a quantum walk on a line with two non-interacting particles [20–22]. More recently,
an experiment implementing a quantum walk on a square lattice [23] has been realized which was capable of simulating
the walk on a line of two interacting particles [24].

One of the distinctive features of quantum walks when compared with classical random walks is their quadratically
faster spreading. This stems from the fact that the quantum walk is a wave phenomenon [25] rather than a diffusion.
The probability distributions resulting from quantum walks have typically an inverted-bell shape with characteristic
peaks on the edges which propagate through the lattice with constant velocity. For quantum walks with homogeneous
coin the probability distribution can be investigated by means of Fourier analysis [26]. Important results are the weak-
limit theorems [27] which prove the convergence of the moments of the re-scaled position of the quantum particle
in the limit of large number of steps. This allows one to derive the so-called group-velocity density which can be
used to approximate the probability distribution generated by the quantum walk and to evaluate the moments of
this distribution. More recently, a method based on matrix-valued orthogonal polynomials have been developed [28]
which extends the analysis to models with inhomogeneities.

In the present paper we investigate the position distributions of two one-parameter families of three-state quantum
walks which we have introduced in [29]. These families of quantum walks were derived as extensions of the three-state
Grover walk. This particular model was extensively studied in the literature [30, 31] where it was found that it differs
considerably from the two-state walk [32]. Namely, the three-state Grover walk features the so-called localization
effect, which means that the particle has a non-vanishing probability to stay at any position even in the limit of
infinite number of steps. The reason why does this effect appear is that the evolution operator of the three-state
Grover walk possess apart from continuous spectrum also an isolated eigenvalue. The corresponding stationary state
is unfolded over the whole lattice. Provided that it has a non-zero overlap with the initial condition, part of the
wave-packet describing the quantum particle will remain trapped at the already visited sites and will not evolve
anymore. This results in an additional central peak in the probability distribution of the three-state Grover walk
which is exponentially decaying with the distance from the origin but is independent of the number of steps. The
same holds for the two families of quantum walks we have derived in [29] since they preserve the point spectrum.
However, they do not exhaust the set of quantum walks with localization, as we have recently shown in [33]. The
probability distribution of such quantum walks is not described solely by the group-velocity density, since this part
takes into account only the continuous spectrum. To obtain the full probability distribution one has to include also
the localization stemming from the point spectrum. For the three-state Grover walk these two parts of the probability

135



2

distribution were derived recently by Falkner and Boettcher in [34], where the authors have also discussed the rate
of convergence of the moments of the distribution to the asymptotic values determined by the group-velocity density.
At the same time, Machida [35] presented similar results extended to one of the families of quantum walks with
localization we have introduced in [29] and discussed the application of the three-state walk for preparation of discrete
uniform measures. However, both results [34, 35] have a significant drawback. Namely, the dependence of both the
group-velocity density and the localization probability on the initial coin state is rather involved. The reason for
this inconvenience is that the initial coin state is expressed in the standard basis of the coin space. However, we can
describe the initial state in a different basis which proves to be more suitable for the analysis of the quantum walk.
In [36] we have shown that for the Hadamard walk on a line this suitable basis is given by the eigenstates of the coin
operator. The approach resembles the transformation from bare states to dressed states familiar from quantum optics
[37]. In the present paper we explore the transformation to the basis formed by the eigenstates of the coin operator
further and apply it to the two families of three-state quantum walks introduced in [29].

The paper is organized as follows: In Section II we analyze the family of quantum walks constructed in [29] as
a parametrization of eigenvectors of the Grover coin. We show that the results [34, 35] simplify considerably when
the initial coin state is expressed in basis formed by eigenvectors of the coin operator. This allows us to determine
the dependence of the moments of the distribution on the initial coin state. We also discuss the extremal regimes of
quantum walks in consideration. In Section III we turn to the second family of quantum walks from [29] which was
constructed as a parametrization of eigenvalues of the Grover matrix. The details of the derivation of the localization
probability and the group-velocity density are left for the Appendix A. Finally, we conclude and present an outlook
in Section IV.

II. EIGENVECTOR FAMILY

Let us begin with a family of quantum walks which was introduced in [29] and recently analyzed in [34, 35]. The
coin operators are in the standard basis of the coin space {|L〉, |S〉, |R〉} given by the following matrix [38]

C(ρ) =




−ρ2 ρ
√

2− 2ρ2 1− ρ2
ρ
√

2− 2ρ2 2ρ2 − 1 ρ
√

2− 2ρ2

1− ρ2 ρ
√

2− 2ρ2 −ρ2


 , (1)

with the coin parameter ρ ∈ (0, 1). We exclude the boundary points from our consideration since they result in trivial
walks. Indeed, for ρ = 0 the coin (1) reduces to a permutation matrix with an additional phase shift to the state |S〉.
Walk with such a coin can merely hop back and forth between the origin and its nearest neighbours. For the choice
of ρ = 1 the coin (1) reduces to an identity matrix with an additional phase shift to the states |L〉 and |R〉. Such a
coin is not mixing the coin states and the walk is simple - the |L〉 component of the initial coin state keeps hopping to
the left, the |R〉 component keeps hopping to the right and the |S〉 component remains at the origin. Both quantum
walks with ρ = 0 and ρ = 1 can be analyzed in a straightforward way without the need for the week-limit theorems.

The set of coin operators (1) was constructed in [29] by a special parametrization of the eigenvectors of the 3x3
Grover matrix which is a member of this family corresponding to the choice of the coin parameter ρ = 1√

3
. One

can show [29] that the evolution operators of the quantum walks with the coin (1) have a non-empty point spectrum
for all values of ρ ∈ (0, 1). Consequently, the quantum walks show the localization effect in a similar way as found
originally for the three-state Grover walk [30, 31]. The coin parameter ρ determines directly the peak velocity of the
walk [29], i.e. the positions of the peaks after t steps of the quantum walk will be ±ρt.

The group-velocity density of quantum walks with the coin (1) was recently derived by Falkner and Boettcher [34]
for the special case of the Grover walk corresponding to ρ = 1√

3
, and by Machida [35] for a general value of ρ. For a

particle starting the walk from the origin with the initial coin state |ψC〉 the density has the form

w(v) =

√
1− ρ2(d0 + d1v + d2v

2)

2π(1− v2)
√
ρ2 − v2

. (2)

With the group-velocity density (2) one can determine the asymptotic value of the re-scaled moments of the particle’s
position m in the limit of large number of steps t. Namely, the following relations hold for all n ∈ N

lim
t→+∞

〈(m
t

)n〉
= 〈vn〉 =

ρ∫

−ρ

vn w(v) dv. (3)
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The group-velocity density can be also used to approximate the probability distribution after a finite number of steps
t. We have to replace v in (2) with m

t and simultaneously re-normalize the distribution by 1
t . This will be applied

later in the Figures where we will compare the analytical results with a finite time numerical simulation.
Note that the density (2) looks relatively simple. However, we have yet to specify the terms di which involve the

dependence on the initial coin state |ψC〉. Machida [35] found that they are given by

d0 = |α+ γ|2 + 2|β|2,
d1 = 2

{
− |α− β|2 + |γ − β|2−

−
(

2−
√

2− 2ρ2

ρ

)
Re
(
(α− γ)β

)
}
, (4)

d2 = |α|2 − 2|β|2 + |γ|2 −

−2

{√
2− 2ρ2

ρ
Re
(
(α+ γ)β

)
+

2− ρ2
ρ2

Re (αγ)

}

where α, β and γ are the coefficients of |ψC〉 in the standard basis, i.e.

|ψC〉 = α|L〉+ β|S〉+ γ|R〉. (5)

However, if we decompose the initial coin state in a more suitable basis it will simplify the relations (4) considerably.
It can be anticipated that such a suitable basis is the one formed by the eigenstates of the coin operator. The
eigenvectors of the coin operator (1) read [29]

|σ+〉 =

√
1− ρ2

2
|L〉+ ρ|S〉+

√
1− ρ2

2
|R〉,

|σ−1 〉 =
ρ√
2
|L〉 −

√
1− ρ2|S〉+

ρ√
2
|R〉,

|σ−2 〉 =
1√
2

(|L〉 − |R〉). (6)

They satisfy the eigenvalue equations

C(ρ)|σ+〉 = |σ+〉, C(ρ)|σ−i 〉 = −|σ−i 〉, i = 1, 2.

We decompose the initial coin state into the eigenstate basis in the form

|ψC〉 = g+|σ+〉+ g1|σ−1 〉+ g2|σ−2 〉, (7)

where the probability amplitudes g+ and g1,2 are restricted by the normalization condition

|g+|2 + |g1|2 + |g2|2 = 1. (8)

From the relations (6) we find that the coefficients in the standard basis α, β, γ are in the eigenstate basis given by

α =
1√
2

(√
1− ρ2g+ + ρg1 + g2

)
,

β = g+ρ−
√

1− ρ2g1,

γ =
1√
2

(√
1− ρ2g+ + ρg1 − g2

)
.

Plugging these expressions into (4) and using the normalization condition (8) we obtain much more convenient formulas
for the terms di, namely

d0 = 2(1− |g2|2),

d1 = −2

ρ
(g1g2 + g1g2) ,

d2 =
2

ρ2
(
|g1|2 + 2|g2|2 − 1

)
. (9)
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Finally, the group-velocity density reads

w(v) =

√
1− ρ2

π(1− v2)
√
ρ2 − v2

(
1− |g2|2 − (10)

−(g1g2 + g1g2)
v

ρ
+ (|g1|2 + 2|g2|2 − 1)

v2

ρ2

)
.

This result allows us to determine the dependence of the moments (3) on the initial coin state in a straightforward
way. Namely, odd moments of the group-velocity have the form

〈v2n+1〉 = On(ρ) (g1g2 + g1g2) ,

where we have denoted

On(ρ) = −
√

1− ρ2
ρ

ρ∫

−ρ

v2n+2

π(1− v2)
√
ρ2 − v2

dv.

We see that in the eigenstate basis the odd moments are determined by the coherent combination of the probability
amplitudes g1 and g2. On the other hand, the even moments (3) depend only on the probabilities |g1|2 and |g2|2 of
finding the particle initially in the coin state |σ−1 〉 or |σ−2 〉. This means that the mixed initial coin state of the form

ρC = |g+|2|σ+〉〈σ+|+ |g1|2|σ−1 〉〈σ−1 |+ |g2|2|σ−2 〉〈σ−2 |,
results in a distribution with the same even moments as the pure coin state (7). In particular, the second moment is
given by

〈v2〉 =
(
|g1|2 + 1

)
∆1(ρ) +

(
|g2|2 − 1

)
∆2(ρ), (11)

where we have used the notation

∆1(ρ) =
1 + ρ2 −

√
1− ρ2

2 + 2
√

1− ρ2
,

∆2(ρ) =
2− ρ2 − 2

√
1− ρ2

ρ2
.

One can easily check that the inequalities

∆1(ρ) > ∆2(ρ) > 0,

hold for all ρ ∈ (0, 1). It is then straightforward to show that the state giving rise to the distribution with the smallest
variance is the one corresponding to g1 = g2 = 0, i.e. the eigenstate |σ+〉. Analogously, the eigenstate |σ−1 〉 yields
the distribution with the greatest variance. We display the second moment (11) as a function of the probabilities
|g1|2 and |g2|2 in Fig. 1 for the choice of the coin parameter ρ = 0.5. The plot indicates that |σ+〉 yields the smallest
variance while |σ−1 〉 gives the greatest.

We note that the group-velocity density (10) is not normalized to unity, as was found in [34, 35]. Indeed, we obtain
the following result

ρ∫

−ρ

w(v)dv = 1− |g2|2 −
√

1− ρ2 − 1

ρ2
(
|g1|2 + 2|g2|2 − 1

)
. (12)

The remaining part of the probability is in the exponential peak corresponding to localization. This was also recently
calculated by Falkner and Boettcher [34] for ρ = 1√

3
corresponding to the Grover walk, and by Machida [35] for a

general value of ρ. The probability to find the particle at position m in the limit t→ +∞ is given by [35]

p∞(m) =
1

128(1− ρ2)2

{
2(1− ρ2)

∣∣∣Bν|m+1| +Aν|m|
∣∣∣
2

+

+ρ2
∣∣∣Bν|m+1| + (A+B)ν|m| +Aν|m−1|

∣∣∣
2

+

2(1− ρ2)
∣∣∣Bν|m| +Aν|m−1|

∣∣∣
2
}
.
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FIG. 1: (Color online) Second moment of the three-state walk with the coin operator (1) as a function of |g1|2 and |g2|2. We
have chosen the coin parameter ρ = 0.5. The plot indicates that the greatest variance is achieved for the initial state |σ−1 〉,
while the smallest results from |σ+〉. The domain of the plot is restricted to the lower triangle since the probabilities |g1|2 and
|g2|2 are limited by the normalization condition (8).

Here ν depends on the coin parameter

ν = −2− ρ2 − 2
√

1− ρ2
ρ2

,

and A, B involves the initial coin state

A = 4
(
1− ρ2

)
α+ 2ρ

√
2− 2ρ2β,

B = 4
(
1− ρ2

)
γ + 2ρ

√
2− 2ρ2β.

The simplification of this result by turning into the eigenvector basis (6) is perhaps even more significant than the
one achieved for the group-velocity density (10). Indeed, after some algebra we find that the localization probability
p∞(m) is given by

p∞(m) =





2−2ρ2
ρ4 ν2m|g+ + g2|2, m > 0,

1
ρ2 |ν|

{
|g+|2 + (1− ρ2)|g2|2

}
, m = 0,

2−2ρ2
ρ4 ν2|m||g+ − g2|2, m < 0

(13)

This result shows that the central peak is indeed an exponential with the base ν2, except for the origin. Moreover,
the dependence on the initial coin state is particularly simple in the eigenvector basis. For the origin the localization
probability is given by an incoherent combination of |g+|2 and |g2|2, while outside the dependence is determined by
a coherent combination of amplitudes g+ and g2. Moreover, the dependence differs for positive and negative m. This
fact can be exploited to force the particle to localize only on the positive or negative half-line by a proper choice of
the initial coin state. As an example, consider the initial coin state

|ψC〉 =
1√
2

(
|σ+〉+ |σ−2 〉

)
.
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Using the expression (13) we find that in this case the localization probability equals

p∞(m) =





4−4ρ2
ρ4 ν2m, m > 0

(
1
ρ2 − 1

2

)
|ν|, m = 0

0, m < 0

(14)

Localization thus appears only on the positive half-line. We illustrate this effect in Figure 2 where we present the
probability distribution of the Grover walk corresponding to ρ = 1√

3
after t = 1000 steps. To unravel the unusual

behaviour of localization we display only a small neighbourhood of the origin.

0-5 5
0

0.1

0.2

m

p
(m

,t
) |ψC〉 = 1√

2

(
|σ+〉+ |σ−

2 〉
)

FIG. 2: (Color online) Probability distribution in the vicinity of the origin for the three-state Grover walk starting with the
initial state |ψC〉 = 1√

2

(
|σ+〉+ |σ−2 〉

)
after t = 1000 steps. The localization depicted by the blue-dashed line appears only for

positive m, as predicted by (14).

We note that one can easily check that

∞∑

m=−∞
p∞(m) = |g2|2 +

√
1− ρ2 − 1

ρ2
(
|g2|2 − |g+|2

)
.

This together with (12) and the normalization condition (8) results in

∞∑

m=−∞
p∞(m) +

ρ∫

−ρ

w(v) dv = 1,

i.e. the complete probability density is properly normalized to unity.
Let us now illustrate our findings on several examples. A typical distribution resulting from the three-state walk

with the coin (1) has three characteristic peaks. Two are on the edges of the distribution and correspond to the
divergency of the group-velocity density (10) for v approaching ±ρ. The third one is the exponential peak at the
origin corresponding to localization (13). However, these characteristics will be altered considerably when we chose
one of the eigenvectors of the coin operator as the initial state of the walk.

First, consider the eigenstate |σ+〉 as the initial coin state of the walk. From the relation (10) we find that the
group-velocity density is given by

w|σ+〉(v) =

√
1− ρ2

√
ρ2 − v2

πρ2(1− v2)
. (15)
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We see that the density does not diverge for v approaching ±ρ. Hence, both peaks on the edges of the distribution
disappear. We illustrate this effect in Fig. 3, where we display the distribution after 100 steps. The coin parameter
was chosen as ρ = 0.7.

FIG. 3: (Color online) Probability distribution of the three-state walk with the coin parameter ρ = 0.7 after t = 100 steps. As
the initial state we have chosen the coin eigenstate |σ+〉. For this initial coin state both peaks on the edges of the distribution
vanish. This corresponds to the fact that the group-velocity density (15), depicted by the red curve, tends to zero for v
approaching ±ρ. To unravel this feature we plot the probability distribution on the logarithmic scale. The blue-dashed line
depicts the localization probability (13).

Let us turn to the eigenstate |σ−1 〉. From the relation (13) we see that for the choice of the parameters g1 = 1 and
g2 = g+ = 0 the localization probability equals zero for all m. Hence, for this initial state the localization disappears,
in accordance with the findings of [35]. We illustrate this effect in Fig. 4, where we show the distribution after 100
steps and the coin parameter ρ = 0.8. We can clearly see that there are only two peaks on the edges of the distribution.
Consequently, the state |σ−1 〉 yields the distribution with the greatest variance, as indicated by Fig. 1.

-80 -40 0 40 80
0

0.025

0.05

m

p
(m

,t
)

|ψC〉 = |σ−
1 〉

FIG. 4: (Color online) Probability distribution of the three-state walk with the coin parameter ρ = 0.8 after t = 100 steps. As
the initial state we have chosen the coin eigenstate |σ−1 〉. For this initial coin state the localization effect disappears. The red
curve corresponds to the density (10).
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FIG. 5: (Color online) Probability distribution of the three-state walk with the coin parameter ρ = 0.5 after t = 100 steps.
As the initial state we have chosen the coin eigenstate |σ−2 〉. The probability density (16) depicted by the red curve tends to
zero near the origin. To unravel this effect we use logarithmic scale on the y-axis. The blue-dashed line corresponds to the
localization probability (13).

Concerning the last eigenstate |σ−2 〉, we find that the group-velocity density is given by

w|σ−
2 〉(v) =

√
1− ρ2v2

πρ2(1− v2)
√
ρ2 − v2

. (16)

We see that the density vanishes as v tends to zero. To illustrate this effect we plot in Fig. 5 the distribution after
100 steps on a logarithmic scale. The coin parameter was chosen as ρ = 0.5. The plot indicates that the distribution
tends to zero around the origin, except for a very small neighbourhood where the localization dominates.

We have seen that for the initial coin state |σ+〉 both peaks on the edges of the distribution vanish. However, it is
possible to construct a state for which only one of the peaks disappears. Indeed, consider the coin state

|σL〉 =
1√
2

(
|σ−1 〉+ |σ−2 〉

)
. (17)

From the relation (10) we find that the group-velocity density for this initial state reads

w|σL〉(v) =

√
1− ρ2

√
(ρ− v)3

2πρ2(1− v2)
√
ρ+ v

. (18)

Such a density tends to zero for v approaching ρ. Nevertheless, the divergency at v = −ρ remains. We illustrate this
feature in Fig. 6 where we display the distribution after 100 steps for the coin parameter ρ = 0.6.

To conclude this Section, we note that the characteristic features of this family of quantum walks are maintained
for all values of the coin parameter ρ ∈ (0, 1), which scales the rate at which the walk spreads through the lattice.
The three-state Grover walk is a particular case corresponding to the case ρ = 1√

3
. The change of the basis of the

coin space to the one formed by the eigenstates of the coin operator (1) allowed us to simplify the description of the
walk considerably. Consequently, interesting dynamical regimes which are otherwise hidden were easily identified.

III. EIGENVALUE FAMILY

Let us turn to the second family of quantum walks we have introduced in [29]. The coin operators are in the
standard basis of the coin space represented by the following matrix

C(ϕ) =
1

6



−1− e2iϕ 2(1 + e2iϕ) 5− e2iϕ
2(1 + e2iϕ) 2(1− 2e2iϕ) 2(1 + e2iϕ)

5− e2iϕ 2(1 + e2iϕ) −1− e2iϕ


 , (19)
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|ψC〉 = |σL〉

FIG. 6: (Color online) Probability distribution of the three-state walk with the coin parameter ρ = 0.6 after t = 100 steps.
As the initial coin state we have chosen |σL〉 given by equation (17). In this case the peak on the right hand side of the
lattice disappears, as predicted by the density (18) illustrated with the red curve. The blue-dashed line depicts the localization
probability (13).

with the coin parameter ϕ ∈ 〈0, π2 ). For the choice of ϕ = 0 the coin operator turns to the 3x3 Grover matrix. We
exclude the other boundary point ϕ = π

2 from our consideration since in such a case the coin operator (19) reduces
to a permutation matrix and the resulting quantum walk is trivial.

The set of matrices (19) was constructed in [29] as a special parametrization of the eigenvalues of the 3x3 Grover
matrix. It was shown that the evolution operators of quantum walks with the coin operators (19) maintain a point
spectrum for all values of ϕ ∈ 〈0, π2 ). Hence, the family of quantum walks driven by such coins show the localization
effect. The parameter ϕ determines the rate at which the walk spreads through the lattice. Namely, we have shown
in [29] that the positions of the peaks after t steps of the walk will be ±ηt, where the peak velocity η is given by

η =
1√
6

√
3− cos2 ϕ− sinϕ

√
9− cos2 ϕ. (20)

Before we proceed with the analysis of this family of quantum walks, we first choose a suitable basis in the coin
space. We again employ the eigenstates of the coin operator (19) which are given by

|γ+〉 =
1√
3

(|L〉+ |S〉+ |R〉) ,

|γ−1 〉 =
1√
6

(|L〉 − 2|S〉+ |R〉) ,

|γ−2 〉 =
1√
2

(|L〉 − |R〉) .

They satisfy the following eigenvalue equations

C(ϕ)|γ+〉 = |γ+〉,
C(ϕ)|γ−1 〉 = −e2iϕ|γ−1 〉,
C(ϕ)|γ−2 〉 = −|γ−2 〉.

We decompose the initial coin state |ψC〉 into the eigenvector basis in the following form

|ψC〉 = g+|γ+〉+ g1|γ−1 〉+ g2|γ−2 〉, (21)

where the probability amplitudes g+ and g1,2 satisfy the normalization condition (8).
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Let us now turn to the group-velocity density of the family of quantum walks with coin operators (19). We leave
the details of the derivation for the Appendix, where we show that it can be expressed in the following form

w(v) =
1

6π(1− v2)Θ

[ (
3|g1|2 + 5|g2|2 − 2

)
Λ++

+
(
1− |g1|2 − 2|g2|2

)
Ω−

−
√

3v(g1g2 + g1g2 + i(g1g2 − g1g2) tanϕ)Λ++

+iv(g2g+ − g2g+)Ξ
]
. (22)

Here we have denoted

Λ± = Φ+ ± Φ−,

Φ± =
√

9(1− v2)− (5 + 3v2) cos2 ϕ± 12Θ cosϕ,

Ω = 4 cosϕ
(5− 3v2) cosϕΛ+ + 3ΘΛ−

8 cos2 ϕ+ 3v2 sin2 ϕ
,

Ξ = 3
√

6 tanϕ
(v2 + cos2 ϕ)Λ+ −Θ cosϕΛ−

8 cos2 ϕ+ 3v2 sin2 ϕ
,

Θ =

√√√√(η2 − v2)

(
η2 − v2 + sinϕ

√
1− cos2 ϕ

9

)
.

(23)

The formula for the group-velocity (22) is much more involved than the one derived in the previous Section (see
equation (10)). Nevertheless, the dependence on the initial coin state is still relatively simple in the eigenvector basis.
In particular, one can show that the even moments depend only on the probabilities |g1|2 and |g2|2 of finding the
particle initially in the coin state |γ−1 〉 or |γ−2 〉. Indeed, note that all expressions defined in (23) are even functions
of v. Consequently, the first two terms in the group-velocity density (22) are even in v, while the remaining two are
odd. Hence, only the first two terms of (22) contribute to the calculation of even moments. As an example, for the
second moment we obtain the result

〈v2〉 =
(
3|g1|2 + 5|g2|2 − 2

)
∆1(ϕ) +

+
(
1− |g1|2 − 2|g2|2

)
∆2(ϕ), (24)

where ∆i(ϕ) denotes the following integrals

∆1(ϕ) =

η∫

−η

v2

6π(1− v2)Θ
Λ+ dv,

∆2(ϕ) =

η∫

−η

v2

6π(1− v2)Θ
Ω dv,

which have to be evaluated numerically for a given value of ϕ. We display the second moment as a function of the
probabilities |g1|2 and |g2|2 in Fig. 7. The coin parameter ϕ was chosen as π

4 . The plot indicates that the greatest

second moment is achieved for the eigenstate |γ−1 〉, while the smallest results from |γ+〉.
We note that the odd moments are determined by the last two terms of the group-velocity density (22). Hence,

they are influenced by the coherence of the initial coin state.
Similarly to the previous model the group-velocity density (22) is not normalized since we find

η∫

−η

w(v) dv =
√

6− 2 + (3−
√

6)|g1|2 + (5− 2
√

6)|g2|2, (25)

which differs from one unless g1 = 1. The remaining part of the probability is in the localization. Concerning this part
of the probability distribution we show in the Appendix that it is completely independent of ϕ. Hence, it coincides

144



11

0 0.5 1
0

0.5

1

0

0.01

0.02

0.03

0.04

|g1|2

|g2|2

FIG. 7: (Color online) Second moment of the three-state walk with the coin (19) as a function of |g1|2 and |g2|2. We have
chosen the coin parameter ϕ = π

4
. Note the different scale in comparison with Fig. 1. The domain of the plot is restricted due

to the normalization condition (8).

with the result for the three-state Grover walk corresponding to the choice of ϕ = 0. As we have mentioned earlier,
the Grover walk also belongs to the eigenvector family we have studied in the previous Section. Using the result (13)
for ρ = 1√

3
corresponding to the Grover walk we find that the localization probability for three-state quantum walks

with the coin (19) reads

p∞(m) =





12(5− 2
√

6)2m|g+ + g2|2, m > 0,

(5− 2
√

6)(3|g+|2 + 2|g2|2), m = 0,

12(5− 2
√

6)2|m||g+ − g2|2, m < 0.

(26)

We can easily check that

∞∑

m=−∞
p∞(m) = (

√
6− 2)|g2|2 + (3−

√
6)|g+|2,

which together with (25) and the normalization condition (8) guarantees that

∞∑

m=−∞
p∞(m) +

η∫

−η

w(v) dv = 1.

Let us now illustrate our findings on several examples. For the choice of the coin parameter ϕ = 0 the walk reduces
to the three-state Grover walk and the group velocity density (22) simplifies enormously to

w(v) =

√
2

π(1− v2)
√

1− 3v2

(
1− |g2|2 −

−
√

3(g1g2 + g1g2)v + 3(|g1|2 + 2|g2|2 − 1)v2
)
.

Note that this formula coincides with the result (10) of the previous Section for the particular choice of ρ = 1√
3
.

Hence, all features we have discussed in Section II apply to the choice of ϕ = 0. In particular, the coin eigenstates
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will play a special role since they result in an extremal regime of the walk. For ϕ > 0 the role of coin eigenstates will
be less prominent and most of the features we have found in Section II diminish. The only exception is the behaviour
of localization (26) which is completely independent of ϕ. As a consequence, choosing the eigenvector |γ−1 〉 as the
initial coin state of the walk will cancel localization for any value of the coin parameter ϕ.

Let us first consider the eigenstate |γ+〉. In the special case of ϕ = 0 the distribution will not have peaks at the
edges, see Fig. 3 for comparison. For very small values of the coin parameter, such as ϕ = 0.01 illustrated in the upper
plot of Fig. 8, the density bends down as v approaches ±η. Nevertheless, the density depicted by the red curve does
not converge to zero. Instead, it diverges at v = ±η for any non-zero value of the coin parameter ϕ. With increasing
value ϕ the bending of the density diminish and it attains the familiar inverted-bell shape. This is illustrated in the
lower plot of Fig. 8 where we choose the coin parameter ϕ = π

4 .
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|ψC〉 = |γ+〉

ϕ = 0.01
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FIG. 8: (Color online) Probability distribution of the three-state walk after t = 100 steps on a logarithmic scale. The red
curve denotes the density (22) and the blue-dashed line corresponds to the localization probability (26). As the initial state
we have chosen the coin eigenstate |γ+〉. For small values of the coin parameter, such as ϕ = 0.01 depicted in the upper plot,
the density bends to zero for v approaching ±η. However, for any ϕ > 0 the density diverges as these points. For increasing
values of ϕ the density obtains the inverted-bell shape common for quantum walks. This is illustrated in the lower plot where
we choose the coin parameter ϕ = π

4
.

In Fig. 9 we illustrate the probability distribution after 100 steps for the initial coin state |γ−1 〉. The coin parameter
ϕ was chosen as π

6 . As we have discussed before, choosing this eigenvector as the initial coin state results in the
absence of localization for all values of the coin parameter ϕ.
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FIG. 9: (Color online) Probability distribution of the three-state walk with the coin parameter ϕ = π
6

after t = 100 steps. The

red curve corresponds to the density (22). As the initial state we have chosen the coin eigenstate |γ−1 〉. For this initial coin
state the localization effect disappears for all values of ϕ.

As a last scenario we consider the eigenstate |γ−2 〉. In the particular case of ϕ = 0 the distribution will resemble the
one illustrated in Fig. 5, i.e. the density tends to zero at the origin. For small values of the coin parameter, such as
ϕ = 0.01 depicted in the upper plot of Fig. 10, the density maintains a significant dip at the origin. However, it does
not converge to zero for any positive ϕ. With increasing values of the coin parameter the dip at the origin diminish.
This is illustrated in the lower plot of Fig. 10 where we choose the coin parameter ϕ = π

3 .
To conclude this Section, we have found that the transformation from the standard basis of the coin space to the

eigenstate basis is fruitful also for the quantum walks with coin operators (19). In contrast to the results obtained in
the previous Section, the present family does not preserve all features of the three-state Grover walk. The exception
is the behaviour of localization which is independent ϕ.

IV. CONCLUSIONS

The limit distributions of two families of three-state quantum walks closely related to the Grover walk have been
derived. The first family of quantum walks we have analyzed maintains all properties of the three-state Grover
walk. The coin parameter scales the spreading of the walk through the lattice. In contrast, for the second family of
quantum walks the features of the three-state Grover walk gradually diminish as the coin parameter increases. The
only exception is the behaviour of localization which is the same for all quantum walks within this family.

We have found that limit distributions of both families of quantum walks obtain a particularly simple form when we
express the initial coin state in terms of the eigenvectors of the coin operator. This allowed us to reveal the extremal
regimes of quantum walk dynamics. Moreover, the dependence of the moments of the distribution on the initial
condition can be analyzed in full detail. We have shown that the even moments and the localization probability at the
origin depend only on the probabilities of finding the particle initially in the eigenstates of the coin operator. Hence,
an incoherent mixture of eigenstates yields in this respect the same results as a pure initial coin state, provided that
the aforementioned probabilities are the same. On the other hand, the odd moments and the localization probability
outside the origin are determined by the coherence of the initial coin state.

Changing the basis of the coin space to the one formed by the eigenvectors of the coin operator proved to be a very
useful tool for the analysis of both families of quantum walks. We expect that this approach will be fruitful also in
other models of quantum walks and that it will allow us to uncover otherwise hidden features.
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FIG. 10: (Color online) Probability distribution of the three-state walk after t = 100 steps on a logarithmic scale. The red
curve denotes the density (22) and the blue-dashed line corresponds to the localization probability (26). As the initial state we
have chosen the coin eigenstate |γ−2 〉. For small values of the coin parameter the density has a dip around the origin. This is
illustrated in the upper plot where we choose ϕ = 0.01. With increasing values of the coin parameter the density flattens, as
depicted in the lower plot for ϕ = π

3
.
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APPENDIX A: FOURIER ANALYSIS OF THE EIGENVALUE FAMILY OF THREE-STATE
QUANTUM WALKS

In this appendix we derive the limit distribution of the three-state quantum walk with the coin (19). In the Fourier
representation [26] the evolution operator is given by

Ũ(k) = Diag
(
e−ik, 1, eik

)
· C(ϕ) =

1

6



−e−ik(1 + e2iϕ) 2e−ik(1 + e2iϕ) e−ik(5− e2iϕ)

2(1 + e2iϕ) 2(1− 2e2iϕ) 2(1 + e2iϕ)
eik(5− e2iϕ) 2eik(1 + e2iϕ) −eik(1 + e2iϕ)


 .

The eigenvalues of this matrix are

λ1 = 1, λ2,3 = ei(ϕ±ω(k)),

where ω(k) is determined by the dispersion relations

ω(k) = − arccos

(
−1

3
(2 + cos k) cosϕ

)
.

The corresponding eigenvectors have the form

v1(k) =

√
2

5 + cos k




1
1
2

(
1 + eik

)

eik


 , v2,3(k) =

1√
n2,3(k)




(
e−ik + e−i(ϕ±ω)

)
cosϕ

cosω + e±iω − e−i(2ϕ±ω) + cos k cosϕ(
e−ik + ei(ϕ±ω)

)
cosϕ


 , (A1)

where we have denoted by n2,3(k) the normalization factors which reads

n2,3(k) =
4

3
cos2 ϕ

{
9− 4 cos2 ϕ± 2 sinϕ

√
9− (2 + cos k)2 cos2 ϕ−

− cos k
(

(4 + cos k) cos2 ϕ± sinϕ
√

9− (2 + cos k)2 cos2 ϕ
)}

.

We note that the first eigenvalue is independent of k. Hence, the eigenvector v1 is a stationary state. As we will
see later this eigenstate will determine the localization probability. The remaining eigenstates v2,3 will contribute to
the group-velocity density.

Let us begin with the localization probability that the particle will be found at position m in the asymptotic limit
t→ +∞. We denote by ψC the Fourier transformation of the initial state of the quantum walk |0〉 ⊗ |ψC〉. By fj(k)
we mark the overlaps between the eigenstates vj(k) and ψC , i.e.

fj(k) = (vj(k), ψC).

The probability amplitude of the particle being at position m after t steps of the walk is then given by

ψ(m, t) =

2π∫

0

dk

2π
e−imkf1(k) v1(k) + (A2)

+

2π∫

0

dk

2π
e−imkei(ϕ+ω(k))tf2(k) v2(k) +

+

2π∫

0

dk

2π
e−imkei(ϕ−ω(k))tf3(k) v3(k).

It follows from the Riemann-Lebesque lemma that the two time-dependent integrals in (A2) vanish as t approaches
infinity. Hence, in the limit t→ +∞ only the first term in (A2) remains and we find

ψ∞(m) ≡ lim
t→+∞

ψ(m, t) =

2π∫

0

dk

2π
e−imkf1(k) v1(k).

149



16

The localization probability p∞(m) that the particle is trapped at position m as t approaches infinity is then given
by |ψ∞(m)|2. We see that it depends solely on the stationary state v1(k). Since v1(k) is independent of the coin
parameter ϕ the localization probability p∞(m) is the same for the whole family of quantum walks. The result
coincides with the one for the three-state Grover walk corresponding to the value ϕ = 0.

We now turn to the derivation of the group-velocity density. This can be deduced by calculating the moments of
the particle’s position in the Fourier representation [39]. Let m denote the position of the particle after t steps of
the quantum walk. One can show [27] that the n-th moment of the re-scaled position m

t converges in the limit of
t→ +∞. Following the approach of [39] we find that the limiting value of the moment is given by

lim
t→+∞

〈(m
t

)n〉
=

2π∫

0

(
dω

dk

)n (
(−1)n |f2(k)|2 + |f3(k)|2

) dk

2π
. (A3)

Let us determine the overlap functions fj(k), respectively the term
(

(−1)n |f2(k)|2 + |f3(k)|2
)

. We note that

v =
dω

dk
=

cosϕ sin k√
9− (2 + cos k)2 cos2 ϕ

, (A4)

is an odd function of k. Hence, for even n it is sufficient to find only the even part of |f2(k)|2 + |f3(k)|2, since the
contribution of the odd part to the integral (A3) is zero. Similarly, for odd n it is sufficient to determine the odd part
of −|f2(k)|2 + |f3(k)|2. To do this we consider the decomposition of the initial coin state |ψC〉 in the eigenstate basis
as in (21). The Fourier transformation of the initial state of the walk |0〉 ⊗ |ψC〉 is then given by

ψC =




g1√
6

+ g2√
2

+ g+√
3

g+√
3
−
√

2
3g1

g1√
6
− g2√

2
+ g+√

3




With the explicit form of the eigenvectors (A1) we then find that the even part of |f2(k)|2 + |f3(k)|2 reads

{
|f1(k)|2 + |f2(k)|2

}
even

= 3|g1|2 + 5|g2|2 − 2 +
(
1− |g1|2 − 2|g2|2

) 12

5 + cos k

In a similar way, the odd part of −|f2(k)|2 + |f3(k)|2 is given by

{
−|f2(k)|2 + |f3(k)|2

}
odd

=

(
−
√

3(g1g2 + g1g2 + i(g1g2 − g1g2) tanϕ) + i
√

6(g2g+ − g2g+)
2 + cos k

5 + cos k
tanϕ

)
×

× cosϕ sin k√
9− (2 + cos k)2 cos2 ϕ

The last part of the derivation of the group-velocity density is to make the substitution k → v in the integral (A3),
where the group-velocity v is defined in (A4). The transformation from k to v is not unique and has to be done
separately in two intervals. For k ∈ (0, k0) ∪ (2π − k0, 2π), where

k0 = arccos

(
1

4 cos2 ϕ
(9− 5 cos2 ϕ− 3 sinϕ

√
9− cos2 ϕ)

)
,

we find from (A4) the that the following relations hold

cos k =
2v2 +

√
1 + 3v2 − 9v2 1−v2

cos2 ϕ

1− v2 ,

sin k = v

√
9(1− v2)2 − cos2 ϕ

(
2 +

√
1 + 3v2 − 9v2 1−v2

cos2 ϕ

)2

cosϕ(1− v2)
.
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Similarly, in the interval k ∈ (k0, 2π − k0) we find the identities

cos k =
2v2 −

√
1 + 3v2 − 9v2 1−v2

cos2 ϕ

1− v2 ,

sin k = v

√
9(1− v2)2 − cos2 ϕ

(
2−

√
1 + 3v2 − 9v2 1−v2

cos2 ϕ

)2

cosϕ(1− v2)
.

Performing all steps of the substitution from k to v is quite tedious but after some algebra we find that the moments
(A3) can be re-written in the form

lim
t→+∞

〈(m
t

)n〉
=

η∫

−η

vn w(v) dv,

where η is the maximum of the group velocity v(k) which is achieved at k = k0. We find that it is given by

η =
1√
6

√
3− cos2 ϕ− sinϕ

√
9− cos2 ϕ.

By w(v) we have labeled the group-velocity density which can be expressed in the form

w(v) =
1

6π(1− v2)Θ

[ (
3|g1|2 + 5|g2|2 − 2

)
Λ+ +

(
1− |g1|2 − 2|g2|2

)
Ω−

−
√

3v(g1g2 + g1g2 + i(g1g2 − g1g2) tanϕ)Λ+ + iv(g2g+ − g2g+)Ξ
]
.

Here we have used the notation

Λ± = Φ+ ± Φ−, Φ± =
√

9(1− v2)− (5 + 3v2) cos2 ϕ± 12Θ cosϕ,

Ω = 4 cosϕ
(5− 3v2) cosϕΛ+ + 3ΘΛ−

8 cos2 ϕ+ 3v2 sin2 ϕ
,

Ξ = 3
√

6 tanϕ
(v2 + cos2 ϕ)Λ+ −Θ cosϕΛ−

8 cos2 ϕ+ 3v2 sin2 ϕ
,

Θ =

√√√√(η2 − v2)

(
η2 − v2 + sinϕ

√
1− cos2 ϕ

9

)
.
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[13] M. Hillery, H. J. Zheng, E. Feldman, D. Reitzner and V. Bužek, Phys. Rev. A 85, 062325 (2012)
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1Department of Physics, Faculty of Nuclear Sciences and Physical Engineering,
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The analysis of a physical problem simplifies considerably when one uses a suitable coordinate
system. We apply this approach to the discrete-time quantum walks with coins given by 2j + 1-
dimensional Wigner rotation matrices (Wigner walks), a model which was introduced in T. Miyazaki
et al., Phys. Rev. A 76, 012332 (2007). First, we show that from the three parameters of the coin
operator only one is physically relevant for the limit density of the Wigner walk. Next, we construct
a suitable basis of the coin space in which the limit density of the Wigner walk acquires a much
simpler form. This allows us to identify various dynamical regimes which are otherwise hidden in
the standard basis description. As an example, we show that it is possible to find an initial state
which reduces the number of peaks in the probability distribution from generic 2j+1 to a single one.
Moreover, the models with integer j lead to the trapping effect. The derived formula for the trapping
probability reveals that it can be highly asymmetric and it deviates from purely exponential decay.
Explicit results are given up to the dimension five.

I. INTRODUCTION

Quantum walk [1–3] is an extension of the concept of a random walk [4] to unitary evolution of a quantum particle
on a graph. Both continuous-time and discrete-time (or coined) quantum walks have found promising applications in
quantum information processing, e.g. in quantum search algorithms [5–8], graph isomorphism testing [9–11], finding
structural anomalies in graphs [12–14] or as universal tools for quantum computation [15, 16]. Quantum walks were
realized in a number of experiments using optically trapped atoms [17], cold ions [18, 19] and photons [20–26].

The dynamics of the discrete-time quantum walks crucially depends on the choice of the coin operator and the
initial state [27], which has essential implications for the performance of the search algorithm [28]. The behaviour
of two-state quantum walks with homogeneous coin is fully understood [29]. This is not true for quantum walks
with higher-dimensional coins, since the complexity of the unitary group grows rapidly with its dimension. Most
of the known results were obtained for quantum walks with Grover coin which leads to the so-called trapping (or
localization) effect [30, 31]. In contrast to the two-state walk, which show purely ballistic spreading, the particle
performing the Grover walk has a non-vanishing probability to remain trapped in the vicinity of the origin. This is
represented by a stationary peak in the probability distribution located at the origin, which does not vanish with the
increasing number of steps but decays exponentially with the distance from the starting point. The Grover walk and
its extensions were intensively studied, either for line [30–36], plane [37–39] or higher dimensional lattices [40, 41].

Among the few models of quantum walks on a line which were solved analytically for arbitrary dimension of the
coin operator, i.e. arbitrary number of displacements particle can make in a single time-step, are the Wigner walks
introduced in [42]. This model utilizes 2j + 1-dimensional Wigner rotation matrices as coin operators and is closely
related to the tensor product model of quantum walks [43–46]. Explicitly, using the Fourier analysis [47] and the
weak-limit theorem [48], the limit density of the Wigner walks was derived in [42] for arbitrary j. However, as the
authors point out in [42], the dependence of the limit density on the initial coin state is rather involved. The reason
for this inconvenience is that the initial coin state is decomposed into the standard basis of the coin space, i.e. the one
in which the step operator is defined. The aim of our paper is to present an alternative approach to [42]. Namely, by
using a more suitable basis of the coin space we put the results of [42] into much more convenient form. This allows
us to identify previously unknown features which are hidden in the standard basis description. As an example, we
show that while the generic probability distribution of the 2j + 1-dimensional Wigner walk has 2j + 1 peaks, there
exist initial conditions for which the number of peaks reduces to one. Moreover, the models with integer j exhibit
the trapping effect similar to the Grover walk. This feature was not analyzed in detail in [42]. We derive the explicit
formula for the trapping probability for j = 1 and j = 2. Our results show that the trapping probability can be
highly asymmetric. Moreover, the decay of the trapping probability with the distance from the origin is not exactly
exponential for j = 2.

The paper is organized as follows. In Section II we review the results on quantum walks with Wigner coin obtained
in [42]. We find that when we focus only on the limit density and its moments the number of physically relevant
coin parameters can be reduced from three to one. Next, we outline the procedure to determine the suitable basis
of the coin space in which the limit density simplifies considerably. Namely, we choose the basis states among those
which give rise to non-generic distributions. In Section III the suitable basis is determined for the simplest case of the
two-state model. Moreover, we find a recipe for the construction of suitable bases for higher-dimensional models. We
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apply this recipe in Section IV to the three-state model and we find that it is equivalent to the three-state Grover walk
[30, 31] and its one-parameter generalization [32–35]. In Sections V and VI the four-state and five-state models are
studied, respectively. Expressing the limit density in the suitable basis allows us to determine additional non-generic
situations. In particular, we find initial conditions such that the number of peaks in the probability distribution is
reduced to one. Finally, we summarize our results and present an outlook in Section VII. More technical details of
the analysis are left for the Appendices.

II. QUANTUM WALKS WITH WIGNER COINS

In this Section we review the quantum walks on a line with Wigner coins (Wigner walks) following their introduction
and analysis in [42]. The Hilbert space of the Wigner walk is given by a tensor product

H = HP ⊗HC ,

of the position space

HP = Span {|x〉|x ∈ Z} ,

and the coin space HC . The dimension of the coin space is 2j + 1, where j is a (half-)integer. The standard basis of
the coin space is formed by vectors |m〉 corresponding to the jumps of length 2m where m = −j,−j + 1 . . . , j. Single
step of the time-evolution is given by a unitary operator

Û = Ŝ · (Î ⊗ R̂(j)(α, β, γ)), (1)

where Ŝ is the step operator

Ŝ =

+∞∑

x=−∞

j∑

m=−j
|x+ 2m〉〈x| ⊗ |m〉〈m|, (2)

and R̂(j)(α, β, γ) denotes the coin operator which is given by the Wigner rotation matrix [49, 50], i.e. the 2j + 1-
dimensional irreducible representation of the rotation group SO(3). The matrix elements of the coin in the standard
basis of the coin space

R(j)
mn(α, β, γ) = 〈m|R̂(j)(α, β, γ)|n〉,

are given by

R(j)
mn(α, β, γ) = e−iαmr(j)mn(β)e−iγn,

where

r(j)mn(β) =
∑

l

Γ(j,m, n, l)

(
cos

β

2

)2j+m−n−2l(
sin

β

2

)2l−m+n

.

The factor Γ(j,m, n, l) reads

Γ(j,m, n, l) = (−1)l
√

(j +m)!(j −m)!(j + n)!(j − n)!

(j − n− l)!(j +m− l)!(l −m+ n)!l!
. (3)

The summation index l runs over all integers such that all factorials in (3) are well defined.
As the initial state of the Wigner walk we consider

|ψ(0)〉 = |0〉 ⊗ |ψC〉,

i.e. the particle starts from the origin with the initial coin state

|ψC〉 =

j∑

m=−j
qm|m〉. (4)
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The amplitudes qm fulfill the normalization condition

j∑

m=−j
|qm|2 = 1.

The state of the particle after t steps of the walk reads

|ψ(t)〉 = Û t|ψ(0)〉,

which can be decomposed into the standard basis as

|ψ(t)〉 =
∑

x

j∑

m=−j
Ψ(j)
m (x, t)|x〉 ⊗ |m〉.

The probability to find the particle at position x after t steps of the quantum walk is then given by

p(j)(x, t) =

j∑

m=−j

∣∣∣Ψ(j)
m (x, t)

∣∣∣
2

.

We note that all Wigner walks are bipartite, i.e. half of the lattice points are empty at any time step. For integer j
the odd sites are never occupied, while for half-integer j the walk oscillates between even and odd sites.

Since the Wigner walks are translationally invariant, their analysis is greatly simplified in the Fourier picture
[47]. Moreover, in the asymptotic limit the moments of the particle’s re-scaled position (or pseudo-velocity) can be
expressed in the form [48]

lim
t→+∞

〈(x
t

)n〉
=

∫
vnν(j)(v)dv, (5)

where ν(j)(v) is the limit density. Its explicit form for Wigner walks was derived in [42] where it was shown that it is
given by a sum

ν(j)(v) =
∑

0<m≤j
ν(j,m)(v). (6)

The summation index m runs over (half-)integers, depending on whether j is half-integer or integer, in unit steps.
The individual densities ν(j,m)(v) have the form

ν(j,m)(v) =
1

2m
µ

(
v

2m
; cos

β

2

)
M(j,m)

( v

2m

)
(7)

where µ(v; a) is the Konno’s density function [51, 52]

µ(v; a) =

√
1− a2

π(1− v2)
√

(a− v)(a+ v)
. (8)

The symbolM(j,m)(v) denotes the weight function which is a polynomial of degree 2j in v with coefficients determined
by the initial state and the coin parameters β and γ. The decomposition (6) of the limit density ν(j)(v) into dje
densities ν(j,m)(v) indicates that the 2j + 1-state Wigner walk can be considered as superposition of dje walks which

propagates through the lattice with different velocity given by 2m cos β2 . In addition to the evaluation of moments
(5), the limit density (6) can be used to approximate the shape of the probability distribution of the Wigner walk in
finite time according to

p(j)(x, t) ≈ 2

t
ν(j)(

x

t
). (9)

The factor of 2 accounts for the fact that the Wigner walks are bipartite. Note that the Konno’s density function
µ(v; a) diverges for v → ±a. These divergencies correspond to the 2j+1 peaks (2j if j is an integer) in the probability

distribution p(j)(x, t) which are found at x ≈ ±2m cos β2 t, where the range of the index m is the same as in the sum
(6).
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We note that for integer j the particle is allowed to stay at its actual position, while for half-integer j it has to
leave the previously occupied site. This has a crucial impact on the dynamics of the quantum walk, as was found in
[42]. Indeed, for half-integer j the spectrum of the evolution operator (1) is purely continuous, while for integer j it
has, in addition, an isolated eigenvalue with infinitely-many localized eigenstates. The presence of the point spectrum
results in an additional peak in the center of the probability distribution which decays rapidly with the distance from
the origin. Moreover, the peak does not vanish with increasing number of time steps, i.e. for integer j the particle
has a non-vanishing probability to remain at position x in the asymptotic limit. This feature was first observed for
three-state Grover walk on a line [30, 31]. We denote the limiting value of the probability to remain at position x as

p(j)∞ (x) = lim
t→∞

p(j)(x, t), (10)

and call it the trapping probability. Its explicit form was not given in [42]. We evaluate the trapping probability in
Sections IV and VI, where we treat the Wigner walks with j = 1, resp. j = 2, following the approach used in [33–35].

In principle, the formulas (6), (7) and the general expression for the weight functionsM(j,m)(v) derived in [42] allow
us to calculate the limit density ν(j)(v) for arbitrary (half-)integer j. However, the actual form of the limit density is
rather complicated already for small values of j, as can be observed in [42] where the authors provided the explicit
results up to j = 3

2 . This makes further investigation of Wigner walks quite demanding. It is the aim of the paper
to simplify the limit density as much as possible. In order to do so, we first discuss which of the coin parameters are
physically relevant. Second, we simplify the dependence of the weight function on the initial coin state by choosing a
more suitable basis in the coin space. Since we are interested only in the moments and the limit density, we consider
two Wigner walks with coins R̂(j)(α1, β1, γ1) and R̂(j)(α2, β2, γ2) as equivalent if for any initial coin state |ψC1

〉 of
the first walk there exists an initial coin state of the second walk |ψC2

〉 such that the resulting limit densities are the
same. We note that two equivalent Wigner walks, as we have defined them, might exhibit different properties when
additional aspects of quantum walks, such as topological phases [53–60], are of interest.

Let us begin with the coin parameters. Notice that Konno’s density function depends only on one of them, namely
β. Moreover, as was shown in [42] the weight functions M(j,m) are determined by the initial coin state and the coin
parameters β and γ, but they are independent of α. Hence, all quantum walks with different α are equivalent, as
far as the limit density and the moments of the particle’s position are concerned. Therefore, we consider α = 0 from
now on. Moreover, the dependence of the weights M(j,m) on γ is rather simple. As was found in [42] the parameter

γ enters only through the terms of the form qmqne
−i(m−n)γ . Hence, the Wigner walk with coin R̂(j)(0, β, 0) and the

initial coin state (4) gives the same limit density as the Wigner walk with the coin R̂(j)(0, β, γ) and the initial coin
state

|ψγC〉 =

j∑

m=−j
qme

imγ |m〉.

Therefore, all models with different γ are equivalent according to our definition and we restrict our further analysis
to the case γ = 0. Hence, we are left with only one physically relevant coin parameter β. We note that for two-state
walks the equivalence of the three-parameter set of quantum walks with coins R̂(1/2)(α, β, γ), which in fact covers

all translationally invariant two-state quantum walks, with the single-parameter family R̂(1/2)(0, β, 0) was already
established in [61]. The above discussion shows that within the set of Wigner walks the equivalence hold for arbitrary
j.

We now turn to a slightly different parametrization of the coin operator R̂(j)(0, β, 0) which is more suitable in the
context of Wigner walks. Namely, instead of β we consider the parameter ρ given by

ρ = cos
β

2
,

which corresponds to the divergencies of the limit densities (7). It also directly determines the speed of propagation
of the wave-packet through the lattice [62]. Since the Euler angle β is limited to the interval [0, π], the new parameter
ρ varies from 0 to 1, and the identity

sin
β

2
=
√

1− ρ2,

holds. Finally, we define the coin operator R̂(j)(ρ) ≡ R̂(j)(0, β, 0) with the matrix elements in the standard basis given
by

R(j)
mn(ρ) = 〈m|R̂(j)(ρ)|n〉 =

∑

l

Γ(j,m, n, l)

×ρ2j+m−n−2l
(√

1− ρ2
)2l−m+n

. (11)
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Let us now turn to the dependence of the limit density on the initial coin state. As was pointed out in [42], the
weight functions M(j,m) are rather involved functions of the coefficients qi of the initial coin state in the standard
basis. The aim of this paper is to simplify these expressions by choosing a more suitable basis of the coin space.
Following the common experience of quantum mechanics one would expect that the suitable basis is the one given
by the eigenvectors of the operator involved. This is indeed the case of the three-state Grover walk [35]. However,
for Wigner walks the eigenvectors do not represent the best choice. To construct the suitable basis we consider
one additional property of the eigenvectors of the Grover coin used in [35]. Namely, the basis vectors were chosen
such that they result in non-generic distributions of the Grover walk, i.e. they reduce the number of peaks in the
probability distribution. We adopt this requirement for Wigner walks and select the suitable basis vectors among such
states. The conditions for non-generic distributions are straightforward in the asymptotic limit, since then the peaks
correspond to the divergencies of the limit density (6). Therefore, we have to determine the states for which some
of the divergencies of (6) vanish. In the following Section we solve these conditions and determine the suitable basis
states for the two-state model. We then rewrite the suitable basis in terms of the eigenvectors of the coin operator.
This gives us a recipe for construction of suitable bases in higher-dimensional models.

III. TWO-STATE MODEL

We begin with the simplest case of a two-state model where j = 1
2 . The coin space is two-dimensional with the

basis states |1/2〉, | − 1/2〉, which correspond to the jumps of one step to the right and one step to the left. In the
standard basis the matrix representation of the coin operator is given by

R(1/2)(ρ) =

(
ρ −

√
1− ρ2√

1− ρ2 ρ

)
. (12)

The limiting probability density calculated in [42] reads

ν(1/2)(v) = µ(v; ρ)M(1/2,1/2), (13)

where µ(v; ρ) is the Konno’s density function (8) and the weight M(1/2,1/2) is given by

M(1/2,1/2) = 1 +M(1/2,1/2)
1 v. (14)

The linear term M(1/2,1/2)
1 in the weight has the form

M(1/2,1/2)
1 = −|q1/2|2 + |q−1/2|2 +

+

√
1− ρ2
ρ

(q1/2q−1/2 + q1/2q−1/2), (15)

where qi’s represent the coefficients of the initial coin state in the standard basis of the coin space

|ψC〉 = q1/2|1/2〉+ q−1/2| − 1/2〉. (16)

We will now determine the suitable basis for the description of the two-state model. Following the discussion in the
previous section, we will construct the suitable basis from the states which lead to non-generic probability distributions,
i.e. the states for which one of the divergencies of the limit density (13) vanishes. These divergencies coincide with
those of the Konno‘s density function (8), which appear for v = ±ρ. To eliminate them we have to find such q±1/2
that the weight function tends to zero faster than the denominator of the Konno’s density function for v = ±ρ, i.e.
the weight has to attain the form

M( 1
2 ,

1
2 ) = 1± v

ρ
.

157



6

Hence, the linear term (15) has to be equal to ± 1
ρ . The solutions of these two equations

1− v

ρ
: q1/2 =

√
1 + ρ

2

q−1/2 = −
√

1− ρ
2

,

1 +
v

ρ
: q1/2 =

√
1− ρ

2
,

q−1/2 =

√
1 + ρ

2
,

provide the coefficients of the initial states (16) that eliminate the divergence of the limit density (13) at v = ±ρ. We
denote these vectors as |χ±〉. In the standard basis they have the form

|χ+〉 =

√
1 + ρ

2
|1/2〉 −

√
1− ρ

2
| − 1/2〉,

|χ−〉 =

√
1− ρ

2
|1/2〉+

√
1 + ρ

2
| − 1/2〉. (17)

Clearly, these two states form an orthonormal basis of the coin space. Moreover, we find that in this basis the weight
function (14) simplifies considerably. We express the initial coin state in terms of the basis {|χ±〉} according to

|ψC〉 = h+|χ+〉+ h−|χ−〉.

The correspondence between the amplitudes of the initial coin state in the suitable basis hi and in the standard basis
is then given by

q1/2 =

√
1 + ρ

2
h+ +

√
1− ρ

2
h−,

q−1/2 = −
√

1− ρ
2

h+ +

√
1 + ρ

2
h−.

Inserting these relations into the formula (15) we find that the linear term of the weight function reduces into

M(1/2,1/2)
1 =

1

ρ
(1− 2|h+|2).

Hence, the limit density for a two-state quantum walk with Wigner coin (12) in the suitable basis {|χ±〉} reads

ν(1/2)(v) =

√
1− ρ2

(
1 + (1− 2|h+|2) vρ

)

π(1− v2)
√

(ρ− v)(ρ+ v)
. (18)

This result shows another benefit of using the basis {|χ±〉}. Namely, by absorbing part of the ρ dependence into the
definition of the basis states (17), ρ is effectively reduced to a scaling parameter. Indeed, varying the value of ρ while
keeping the amplitudes h+ and h− untouched does not affect the shape of the limit density (18). The parameter ρ
simply determines how far the density is stretched. We point out that the same will apply for Wigner walks with
higher values of j.

To illustrate our results we display in FIG. 1 the probability distribution for the initial coin state |χ−〉 after 100
steps. The red curve depicts the limit density which for |χ−〉 is given by

ν
(1/2)
|χ−〉 (v) =

√
1− ρ2√ρ+ v

πρ(1− v2)
√
ρ− v .

Clearly, the limit density diverges for v → ρ but tends to zero for v → −ρ. This corresponds to the presence of only
one peak in FIG. 1 which we emphasize by using a logarithmic scale on the y-axis [63].

Let us point out that the limit density of any homogeneous two-state quantum walk on a line can be transformed into
the form (18). Indeed, the two-dimensional Wigner coins R̂(1/2)(α, β, γ) covers all SU(2) matrices and the equivalence
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FIG. 1: (Color online) Probability distribution after 100 steps of the two-state Wigner walk with the coin R(1/2)(ρ). The initial
state was chosen as |χ−〉. The coin parameter is ρ = 0.8. We note that for different values of ρ the probability distribution will
have the same shape, only its width will change accordingly. The same applies to all figures.

of a general SU(2) walk to the walk with the coin R̂(1/2)(ρ) was already pointed out in [61]. Hence, for any two-state
quantum walk on a line one can find two orthogonal coin states giving rise to non-generic distributions with only one
peak.

Finally, let us rewrite the suitable basis {|χ±〉} in terms of the eigenvectors of the coin operator (12). This
decomposition will be useful in the following Sections where we treat higher-dimensional models. The eigenvectors of
the coin operator (12) are given by

|ψ±〉 =
1√
2

(|1/2〉 ∓ i| − 1/2〉). (19)

They satisfy the eigenvalue equations

R̂(1/2)(ρ)|ψ±〉 = e±iϕ|ψ±〉,
where the phase of the eigenvalues reads

ϕ = arccos ρ.

The decomposition of the suitable basis {|χ±〉} into the eigenvectors (19) is easily found to be

|χ+〉 =
1√
2

(
e−i

ϕ
2 |ψ+〉+ ei

ϕ
2 |ψ−〉

)
,

|χ−〉 =
i√
2

(
e−i

ϕ
2 |ψ+〉 − eiϕ2 |ψ−〉

)
. (20)

These relations provide us with a recipe for construction of suitable bases for j > 1
2 .

IV. THREE-STATE MODEL

In this Section we analyze the three-state Wigner walk which is driven by the coin operator

R(1)(ρ) =




ρ2 −
√

2ρ
√

1− ρ2 1− ρ2√
2ρ
√

1− ρ2 −1 + 2ρ2 −
√

2ρ
√

1− ρ2
1− ρ2

√
2ρ
√

1− ρ2 ρ2


 .
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The Wigner matrix R(1)(ρ) is reminiscent of the modified Grover coin which was introduced in [32] and recently
analyzed in more detail in [34, 35]. Therefore, it is not surprising that the two models yield the same results, as we
identify in the following subsections. In fact, the affinity of the three-state Wigner walk and the three-state Grover
walk was already discussed in [42].

In the three-state Wigner walk the particle is allowed to remain at its present position. As we have discussed
before, this implies that the probability distribution of the three-state Wigner walk is not described solely by the
limit density (6). There is an additional non-vanishing and stationary peak at the origin due to the trapping effect
(10). We analyze the limit density in subsection IV A and the trapping probability in subsection IV B. Before we give
their explicit forms, we first construct the suitable basis of the coin space. We adopt the recipe provided by Eq. (20),
which gives the decomposition of the suitable basis states for the two-state model into the eigenvectors of the coin
operator. For the three-state model, the coin R̂(1)(ρ) has two eigenvectors |ψ±〉 satisfying the eigenvalue equations

R̂(1)(ρ)|ψ±〉 = e±iϕ|ψ±〉.

The explicit form of the eigenvectors and the phase ϕ is left for the Appendix A. Following the formula (20) for the
two-state model, we construct from |ψ±〉 two orthonormal vectors |χ±〉 which will serve as part of the new basis.

Moreover, the coin R̂(1)(ρ) has an additional eigenvector |ψ0〉 corresponding to the eigenvalue one. This vector is
indeed orthogonal to both |ψ±〉 and |χ±〉. Hence, we consider it as the last vector of the new basis which reads

|χ0〉 = |ψ0〉,

|χ+〉 =
1√
2

(
e−i

ϕ
2 |ψ+〉+ ei

ϕ
2 |ψ−〉

)
,

|χ−〉 =
i√
2

(
e−i

ϕ
2 |ψ+〉 − eiϕ2 |ψ−〉

)
. (21)

The initial state is now decomposed in the suitable basis {|χ0〉, |χ±〉} according to

|ψC〉 = h0|χ0〉+ h+|χ+〉+ h−|χ−〉. (22)

The explicit correspondence between the amplitudes of the initial state in the suitable basis hi and in the standard
basis qi is given in the Appendix A. In the following we show that the limit density and the trapping probability
obtain much more convenient forms when expressed in the basis {|χ0〉, |χ±〉}.

A. Limit density

The limit density for the three-state Wigner walk was derived in [42] and reads

ν(1)(v) =
1

2
µ
(v

2
; ρ
)
M(1,1)

(v
2

)
,

where M(1,1)(v) can be expressed as a polynomial of degree two in v

M(1,1)(v) =M(1,1)
0 +M(1,1)

1 v +M(1,1)
2 v2.

The individual terms M(1,1)
i depend on the coin parameter ρ and the initial coin state. Their explicit form in the

standard basis was given in [42], we present it in the Appendix A for comparison. There we also show how the terms

M(1,1)
i simplify when we expand the initial state into the suitable basis according to (22). Indeed, in the suitable

basis we obtain

M(1,1)
0 = |h+|2 + |h−|2,

M(1,1)
1 =

1

ρ
(h0h− + h0h

−),

M(1,1)
2 =

1

ρ2
(|h0|2 − |h+|2).

For illustration we show in FIGs. 2,3 and 4 the probability distribution of the three-state Wigner walk with the
initial coin state given by one of the suitable basis vectors (21). In FIG. 2 we find that for |χ0〉 the limit density tends
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FIG. 2: Probability distribution after 100 steps of the three-state Wigner walk. The initial coin state was chosen as |χ0〉 and
the coin parameter is ρ = 0.5
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|ψC〉 = |χ+〉

ρ = 0.8

FIG. 3: Probability distribution after 100 steps of the three-state Wigner walk. The initial coin state was chosen as |χ+〉 and
the coin parameter is ρ = 0.8

to zero at the origin. Indeed, for h0 = 1 the constant term of the limit density M(1,1)
0 vanishes. Nevertheless, the

probability distribution at the origin does not vanish due to the trapping effect[64]. For |χ+〉 both peaks at v → ±2ρ
vanishes, as we illustrate in FIG. 3. Finally, FIG. 4 indicates that for the last basis vector |χ−〉 the trapping at the
origin disappears, which we identify analytically in the Appendix A.

We point out that the limit density of the three-state Grover walk and its one-parameter extension exhibit all of
these features [35]. Moreover, in the following subsection we show that also the trapping effect of the three-state
Wigner walk is the same as for the three-state Grover walk.
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FIG. 4: Probability distribution after 100 steps of the three-state Wigner walk. The initial coin state was chosen as |χ−〉 and
the coin parameter is ρ = 0.6

B. Trapping probability

Let us now turn to the trapping probability. The details of the calculations are left for the Appendix A. Following
the same approach that was used for the three-state Grover walk in [33–35] we find that in the suitable basis (21) the
trapping probability reads

p(1)∞ (2x) =





Q2|x| 2(1−ρ2)
ρ4 |h0 − h+|2, x < 0,

Q
ρ2 ((1− ρ2)|h0|2 + |h+|2), x = 0,

Q2x 2(1−ρ2)
ρ4 |h0 + h+|2, x > 0.

(23)

Here we have denoted

Q =
2− ρ2 − 2

√
1− ρ2

ρ2
. (24)

We note that the trapping probability for the one-parameter extension of the three-state Grover walk has exactly the
same form [35].

In the suitable basis (21), the trapping probability (23) is independent of the amplitude h− of the initial coin state
(22). This fact reduces the dependence of the trapping probability to just two amplitudes h0 and h+. However,
the expression (23) can be simplified further by an additional change of basis. Notice that the dependence of the
trapping probability is different for positive and negative positions. In fact, one can choose such an initial state that
the trapping effect appears only on positive or negative semi-axis. We note that the same feature was identified for
the three-state Grover walk [33] and its one-parameter extension [35]. For the three-state Wigner walk with the initial
coin state

|λ+〉 =
1√
2

(
|χ0〉+ |χ+〉

)
,

the trapping effect appears only for non-negative positions. Similarly, the state

|λ−〉 =
1√
2

(
|χ0〉 − |χ+〉

)

shows trapping only for non-positive x. We illustrate this feature in FIG. 5.
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FIG. 5: Probability distribution after 10000 steps of the three-state Wigner walk. The initial coin state was chosen as |λ−〉
and the coin parameter is ρ = 0.5. Only a small vicinity of the origin is displayed to emphasize that for |λ−〉 the trapping
effect appears only for x ≤ 0. Higher number of steps in comparison with other figures was chosen so that the trapping effect
is sufficiently pronounced further from the origin.

The vectors |λ+〉 and |λ−〉 are mutually orthogonal. Moreover, they are both orthogonal to |χ−〉 and the triplet
{|χ−〉, |λ±〉} forms an orthonormal basis of the coin space. When we decompose the initial coin state as

|ψC〉 = h−|χ−〉+ l+|λ+〉+ l−|λ−〉,

we find that the trapping probability turns into

p∞(2x) =





Q2|x| 2(1−ρ2)
ρ4 |l−|2, x < 0,

Q
ρ2

(
|l+|2 + |l−|2 − 1

2ρ2 |l+ + l−|2
)
, x = 0,

Q2x 2(1−ρ2)
ρ4 |l+|2, x > 0.

The advantage of the basis {|χ−〉, |λ±〉} is that the trapping probability outside the origin has a simpler form. Namely,
it depends only on one amplitude l+ (resp. l−) for positive x (resp. negative x). This additional change of basis
becomes crucial in Section VI where we treat the five-state Wigner walk.

V. FOUR-STATE MODEL

For j = 3
2 we obtain a four state quantum walk model with the coin operator determined by (11). The coin operator

R̂(3/2)(ρ) has two pairs of eigenvectors |ψ±1 〉 and |ψ±2 〉 with conjugated pairs of eigenvalues

R̂(3/2)(ρ)|ψ±1 〉 = e±iϕ1 |ψ±1 〉,
R̂(3/2)(ρ)|ψ±2 〉 = e±iϕ2 |ψ±2 〉.

The explicit form of the eigenvectors and the phases ϕ1,2 is given in the Appendix B. Following the formula (20)
we construct the suitable basis by combining only the eigenvectors corresponding to the same phase factor ϕ1 or ϕ2.
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Therefore, we consider the suitable basis in the form

|χ+
1 〉 =

1√
2

(e−i
ϕ1
2 |ψ+

1 〉+ ei
ϕ1
2 |ψ−1 〉),

|χ−1 〉 =
i√
2

(e−i
ϕ1
2 |ψ+

1 〉 − ei
ϕ1
2 |ψ−1 〉),

|χ+
2 〉 =

1√
2

(e−i
ϕ2
2 |ψ+

2 〉+ ei
ϕ2
2 |ψ−2 〉),

|χ−2 〉 =
i√
2

(e−i
ϕ2
2 |ψ+

2 〉 − ei
ϕ2
2 |ψ−2 〉). (25)

The initial coin state is decomposed in the suitable basis according to

|ψC〉 = h+1 |χ+
1 〉+ h−1 |χ−1 〉+ h+2 |χ+

2 〉+ h−2 |χ−2 〉.

We present the explicit relation between the amplitudes in the suitable basis hi and the standard basis qi in the
Appendix B.

Let us now turn to the limit density which for the four-state model is given by a sum of two densities [42]

ν(3/2)(v) = ν(3/2,1/2)(v) + ν(3/2,3/2)(v).

The individual densities corresponding to a slower walk (m = 1
2 ) and a faster walk (m = 3

2 ) read

ν(3/2,1/2)(v) = µ(v; ρ)M(3/2,1/2)(v),

ν(3/2,3/2)(v) =
1

3
µ
(v

3
; ρ
)
M(3/2,3/2)

(v
3

)
, (26)

The weight functions M(3/2,m)(v) are given by cubic polynomials in v

M(3/2,m)(v) =

3∑

k=0

M(3/2,m)
i vi, (27)

with coefficients M(3/2,m)
i determined by the initial coin state and the coin parameter ρ. Their explicit forms in the

standard basis of the coin space are given in [42]. We express them in terms of the suitable basis {|χ±1 〉, |χ±2 〉} in the
Appendix B. Using the expressions (B3) and (B4) one can show by direct computation that each of the basis states
|χ±i 〉 eliminates two peaks of the probability distribution - one in each of the individual limit densities ν(3/2,1/2)(v)

and ν(3/2,3/2)(v). To illustrate our results we present in FIGs. 6 and 7 the probability distributions for the initial
states |χ+

1 〉 and |χ+
2 〉.

We point out that it is possible to eliminate both peaks for each limit density ν(3/2,m)(v) on its own. In order to
do so we have to find an initial coin state such that both divergences provided by the Konno’s density µ(v; ρ) in (26)
vanishes. Hence, the weight function have to be of the form

M(3/2,m)(v) = (ρ2 − v2)(a+ bv),

for some arbitrary constants a and b. This is satisfied provided that

M(3/2,m)
0 + ρ2M(3/2,m)

2 = 0,

M(3/2,m)
1 + ρ2M(3/2,m)

3 = 0. (28)

Adding and subtracting these two equations for the weight function M(3/2,1/2)(v) we obtain the following

|h+1 +
√

3h+2 |2 = 0, |h−1 +
√

3h−2 |2 = 0,

which lead us to the relations

h+2 = − 1√
3
h+1 , h−2 = − 1√

3
h−1 . (29)
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FIG. 6: (Color online) Probability distribution after 100 steps of the four-state Wigner walk. The initial coin state was chosen
as |χ+

1 〉. The coin parameter is ρ = 0.8. The initial state |χ−1 〉 results in a distribution which is a mirror image of the present
one.
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FIG. 7: (Color online) Probability distribution after 100 steps of the four-state Wigner walk. The initial coin state was chosen
as |χ+

2 〉. The coin parameter is ρ = 0.5. For the initial state |χ−2 〉 the probability distribution is a mirror image of the present
one.

Hence, we find a two-dimensional subset of states

|ψ(1/2)
C 〉 = h+1 |χ+

1 〉+ h−1 |χ−1 〉 −
h+1√

3
|χ+

2 〉 −
h−1√

3
|χ−2 〉, (30)

for which the peaks of the slower walk described by ν(3/2,1/2)(v) vanishes. We note that for the vectors of the family
(30) with either h+1 = h+2 = 0 or h−1 = h−2 = 0 in addition one of the peaks of the faster walk vanishes, i.e. these
states result in a probability distribution with only one peak. We illustrate this result in FIG. 8.

Similarly, we can cancel both divergencies for the second limit density ν(3/2,3/2)(v) corresponding to the faster peaks
in the probability distribution. From the equations (28) for m = 3

2 we find that both faster peaks vanish provided
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FIG. 8: (Color online) Probability distribution after 100 steps of the four-state Wigner walk. The initial coin state
√

3
2
|χ−1 〉 −

1
2
|χ−2 〉 was chosen as a part of the set (30) for which the inner peaks in the probability distribution vanishes. Moreover, since

h+
1 = h+

2 = 0, only one of the outer peaks is present. The coin parameter is ρ = 0.6

that

h+2 =
√

3h+1 , h−2 =
√

3h−1 . (31)

Hence, we obtain a two-dimensional set of initial states

|ψ(3/2)
C 〉 = h+1 |χ+

1 〉+ h−1 |χ−1 〉+
√

3h+1 |χ+
2 〉+

√
3h−1 |χ−2 〉, (32)

for which the outer peaks in the probability distribution vanishes. Moreover, the vectors from the family (32) satisfying
either h+1 = h+2 = 0 or h−1 = h−2 = 0 lead to elimination of one additional peak of the slower walk, i.e. they result in
a probability distribution with only one peak. We illustrate this result in FIG. 9.

Clearly, it is impossible to fulfill both conditions (29) and (31) simultaneously. Hence, the probability distribution
of the four-state Wigner walk has always at least one peak.

VI. FIVE-STATE MODEL

In this Section we analyze the case j = 2 which leads to the five-state Wigner walk. Similarly to the three-state
model, which we have discussed in Section IV, the probability distribution of the five-state model consists of the limit
density and the trapping probability. We treat them in subsections VI A and VI B, but first we construct the suitable
basis of the coin space following the recipe (20). The coin operator R̂(2)(ρ) has two pairs of eigenvectors |ψ±1 〉 and
|ψ±2 〉 corresponding to two pairs of conjugated eigenvalues

R̂(2)(ρ)|ψ±1 〉 = e±iϕ1 |ψ±1 〉,
R̂(2)(ρ)|ψ±2 〉 = e±iϕ2 |ψ±2 〉.

The explicit form of the eigenvectors and the phases ϕ1,2 is left for the Appendix C. From these two pairs of

eigenvectors we construct four basis vectors |χ±1 〉 and |χ±2 〉 according to (25). In addition, the coin R̂(2)(ρ) has an
eigenvalue 1. We include the corresponding eigenvector |ψ0〉 as the last basis vector. Hence, we obtain the suitable
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FIG. 9: (Color online) Probability distribution after 100 steps of the four-state Wigner walk. The initial coin state 1
2
|χ+

1 〉 +√
3

2
|χ+

2 〉 is an element of the set (32) for which the outer peaks in the probability distribution vanishes. Since h−1 = h−2 = 0,
only one of the inner peaks is present. The coin parameter is ρ = 0.8

basis in the form

|χ0〉 = |ψ0〉,

|χ+
1 〉 =

1√
2

(
e−i

ϕ1
2 |ψ+

1 〉+ ei
ϕ1
2 |ψ−1 〉

)
,

|χ−1 〉 =
i√
2

(
e−i

ϕ1
2 |ψ+

1 〉 − ei
ϕ1
2 |ψ−1 〉

)
,

|χ+
2 〉 =

1√
2

(
e−i

ϕ1
2 |ψ+

2 〉+ ei
ϕ1
2 |ψ−2 〉

)
,

|χ−2 〉 =
i√
2

(
e−i

ϕ1
2 |ψ+

2 〉 − ei
ϕ1
2 |ψ−2 〉

)
. (33)

The initial state is decomposed into the suitable basis according to

|ψC〉 = h0|χ0〉+ h+1 |χ+
1 〉+ h−1 |χ−1 〉+ h+2 |χ+

2 〉+ h−2 |χ−2 〉.

We present the correspondence between the amplitudes in the suitable basis hi and in the standard basis qi in the
Appendix C. In the following subsections we illustrate that the change of the basis allows us to identify various
interesting regimes of dynamics which are otherwise hidden in the standard basis description.

A. Limit density

Let us first discuss the limit density. As for the four-state walk of Section V, the total limit density (6) is a sum of
two densities

ν(2)(v) = ν(2,1)(v) + ν(2,2)(v),

corresponding to a slower walk

ν(2,1)(v) =
1

2
µ
(v

2
; ρ
)
M(2,1)

(v
2

)
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and a faster walk

ν(2,2)(v) =
1

4
µ
(v

4
; ρ
)
M(2,2)

(v
4

)
.

The weight functions M(2,m)(v) are polynomials of degree four in v

M(2,m)(v) =

4∑

i=0

M(2,m)
i vi,

with coefficients M(2,m)
i determined by the initial coin state and the coin parameter ρ. Their explicit form in the

standard basis of the coin space can be evaluated using the procedure of [42]. In the Appendix C we express them in
terms of the coefficients in the suitable basis.

Let us now illustrate the role of individual vectors of the suitable basis {|χ0〉, |χ±1 〉, |χ±2 〉} on the dynamics of the
five-state Wigner walk. Using the explicit form of the weight functions (C3) and (C4) one can show that each of the
basis states eliminates two peaks, either in the slower walk described ν(2,1)(v) or in the faster walk given by ν(2,2)(v).
In FIG. 10 we display the probability distribution for the initial state |χ0〉. We find that both peaks of the slower
walk vanishes. In addition, both densities ν(2,1)(v) and ν(2,2)(v) tend to zero at the origin, since both weight functions

M(2,m)(v) miss the constant termM(2,m)
0 . In FIG. 10 this corresponds to the significant dip of the red curve around

the origin. However, the total probability distribution does not vanish at the origin due to the trapping effect, which
is illustrated by the blue curve in FIG. 10.
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|ψC〉 = |χ0〉

ρ = 0.4

FIG. 10: (Color online) Probability distribution after 100 steps of the five-state Wigner walk. The initial coin state was chosen
as |χ0〉. The coin parameter is ρ = 0.4

In FIG. 11 we have chosen the initial state as |χ+
1 〉. For this particular state both outer peaks vanishes. FIG. 12

displays the probability distribution for the initial state |χ−1 〉. In this situation both inner peaks vanishes and, in
addition, the trapping effect disappears. In FIG. 13 we have chosen the initial state as |χ+

2 〉. For this initial state
both inner peaks vanishes. However, unlike in FIG. 12 the trapping effect is present. Finally, in FIG. 14 we display
the probability distribution for the initial state |χ−2 〉. In such a case the outer peaks vanishes. Moreover, the trapping
effect is absent, similar to the FIG. 12.

Let us now determine the sets of states for which both peaks of either the slower walk or the faster walk disappear.
To achieve this the weight function has to be of the form

M(2,m)(v) = (ρ2 − v2)(a+ bv + cv2),

for some arbitrary a, b, c. This is satisfied provided that

M(2,m)
1 + ρ2M(2,m)

3 = 0,

M(2,m)
0 + ρ2M(2,m)

2 + ρ4M(2,m)
4 = 0. (34)
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FIG. 11: (Color online) Probability distribution after 100 steps of the five-state Wigner walk. The initial coin state was chosen
as |χ+

1 〉. The coin parameter is ρ = 0.6
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FIG. 12: (Color online) Probability distribution after 100 steps of the five-state Wigner walk. The initial coin state was chosen
as |χ−1 〉. The coin parameter is ρ = 0.3

Concerning the slower walk described by the limit density ν(2,1)(v), from the explicit form of the weight function
M(2,1)(v) given in (C3) we obtain the conditions

h+1 h
−
2 + h+1 h

−
2 = 0,

|h+1 |2 + |h−2 |2 = 0,

which are satisfied for

h+1 = h−2 = 0. (35)

Thus we have a three-dimensional subspace of initial coin states

|ψ(1)
C 〉 = h0|χ0〉+ h−1 |χ−1 〉+ h+2 |χ+

2 〉
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FIG. 13: (Color online) Probability distribution after 100 steps of the five-state Wigner walk. The initial coin state was chosen
as |χ+

2 〉. The coin parameter is ρ = 0.8
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FIG. 14: (Color online) Probability distribution after 100 steps of the five-state Wigner walk. The initial coin state was chosen
as |χ−2 〉. The coin parameter is ρ = 0.5

for which both divergencies in ν(2,1)(v) disappear.
For the faster walk described by the limit density ν(2,2)(v) the condition (34) for the weight M(2,2)(v) leads us to

the relations

h−1 (
√

3h0 − h+2 ) + h−1 (
√

3h0 − h+2 ) = 0,

|
√

3h0 − h+2 |2 + 4|h−1 |2 = 0.

This is satisfied provided that

h−1 = 0, h+2 =
√

3h0. (36)
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Hence, we find a three-dimensional subspace of initial states

|ψ(2)
C 〉 = h0|χ0〉+ h+1 |χ+

1 〉+
√

3h0|χ+〉+ h−2 |χ−2 〉

for which the density ν(2,2)(v) has no divergencies.
In contrast to the four-state walk which we have treated in the previous Section, it is now possible to satisfy both

conditions (35) and (36) simultaneously, i.e. we can eliminate all four divergencies in both densities. The state for
which this situation occurs is given by

|ψC〉 =
1

2
|χ0〉+

√
3

2
|χ+

2 〉. (37)

We point out that this is the only coin state for which the probability distribution of the five-state Wigner walk has
only one peak. This peak arises due to the trapping effect which we address in the following subsection. We illustrate
this feature in FIG. 15.
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FIG. 15: (Color online) Probability distribution after 100 steps of the five-state Wigner walk. The coin parameter is ρ = 0.5.
The initial coin state was chosen according to (37), which satisfies both conditions for eliminations of peaks of the slower walk
(35) and the faster walk (36) simultaneously. The resulting probability distribution has only one peak at the origin due to the
trapping effect.

Finally, we note that the slower walk described by the limit density ν(2,1)(v) can vanish completely. Indeed, for the
state

|ψC〉 =
1

2
|χ0〉 −

√
3

2
|χ+

2 〉, (38)

all termsM(2,1)
i are equal to zero. In such a case the spreading of the five-state Wigner walk is described only by the

limit density ν(2,2)(v). We illustrate this effect in FIG. 16.

B. Trapping probability

Let us now turn to the trapping probability. We leave the details of calculations for the Appendix C and focus on
the dependence of the trapping probability on the initial coin state. As we discuss in more detail in the Appendix C,
the trapping effect does not occur when the initial state is a linear combination of vectors |χ−1 〉 and |χ−2 〉. This
feature was illustrated already in FIGs. 12 and 14. It implies that in the suitable basis {|χ0〉, |χ±1 〉, |χ±2 } the trapping
probability depends only on three amplitudes of the initial coin state, namely h0, h+1 and h+2 . However, the explicit

form of p
(2)
∞ (x) is still rather involved. Nevertheless, this can be overcome by an additional change of basis in the
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FIG. 16: (Color online) Probability distribution after 100 steps of the five state Wigner walk. The coin parameter is ρ = 0.7.

The initial state was chosen according to (38). For this particular initial coin state the limit density ν(2,1)(v) describing the
slower walk vanishes.

subspace spanned by {|χ0〉, |χ+
1 〉, |χ+

2 } which affects the trapping effect. Similarly as for the three-state model, which
we have treated in Section IV, there are coin states for which the trapping effect appears only for x ≥ 0, respectively
x ≤ 0. We find that the state resulting in trapping of the particle only at non-negative positions is given by

|λ+〉 =

√
3

8
|χ0〉+

1√
2
|χ+

1 〉+
1√
8
|χ+

2 〉.

The second state, which traps the particle only at positions x ≤ 0 is orthogonal to |λ+〉 and reads

|λ−〉 =

√
3

8
|χ0〉 −

1√
2
|χ+

1 〉+
1√
8
|χ+

2 〉.

We find that the orthogonal complement of |λ±〉 within the subspace spanned by {|χ0〉, |χ+
1 〉, |χ+

2 } is given by the
vector (38), which we now denote as |λ0〉. The triplet {|λ0〉, |λ±〉} forms an orthonormal basis in the subspace
affecting the trapping effect, and together with the vectors |χ−1 〉 and |χ−2 〉 it forms an orthonormal basis of the whole
coin space. When we express the initial state in the new basis according to

|ψC〉 = l0|λ0〉+ l+|λ+〉+ l−|λ−〉+ h−1 |χ−1 〉+ h−2 |χ−2 〉,

we find that the trapping probability for positive x reads

p(2)∞ (2x) = Q2x 3(1− ρ2)

2ρ4
(
|l0 + f(x)l+|2 + |l+|2

)
, (39)

and similarly for negative x we find

p(2)∞ (2x) = Q2|x| 3(1− ρ2)

2ρ4
(
|l0 + f(x)l−|2 + |l−|2

)
. (40)

Here we have used the notation

f(x) =

√
6

ρ2

(
ρ2 − 2 + 2|x|

√
1− ρ2

)
.
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Directly at the origin the trapping probability has a more complicated form

p(2)∞ (0) =
9(1− ρ2)

4ρ4
Q2
(
|l+|2 + |l−|2

)
+

+
3

8
Q2|l+ + l−|2 +

2− ρ2 −
√

1− ρ2
4ρ2

Q|l0|2 −

−
√

6
(

2− ρ2 + 1
2

√
1− ρ2

)

8ρ2
Q2 ×

×
(
(l+ + l−)l0 + (l+ + l−)l0

)
. (41)

The results (39) and (40) indicate that the decay of the trapping probability with distance from the origin is not purely
exponential like for the three-state Wigner walk (23). Nevertheless, the correction to the exponential decay becomes
negligible for large x. The state |λ0〉 is an exception, since for l± = 0 the terms involving the position-dependent
function f(x) vanish and the behaviour of the trapping probability is exactly exponential. Moreover, the decay rate
determined by Q is the same as for the three-state Wigner walk.

For illustration, we display in FIG. 17 the probability distribution of the five-state Wigner walk with the initial
coin state |λ+〉. Clearly, the trapping effect appears only for x ≥ 0. Moreover, the plateau formed by the first three
point indicates that the decay of the trapping probability deviates from a pure exponential, in accordance with (39).

-

10−1

10−3

10−5

0 1010

x

p
(2

)
(x
,t
)

|ψC〉 = |λ+〉

ρ = 0.6

FIG. 17: (Color online) Probability distribution after 10000 steps of the five-state Wigner walk. The initial state was chosen
as |λ+〉. The coin parameter is ρ = 0.6. Only a small vicinity of the origin is displayed to emphasize that for |λ+〉 the trapping
effect appears only for x ≥ 0. Higher number of steps in comparison with other figures was chosen so that the trapping effect is
sufficiently pronounced further from the origin. Notice the plateau formed by the first three points exemplifying the fact that
for |λ+〉 the decay of the trapping probability (39) is not purely exponential.

VII. CONCLUSIONS

We have investigated in detail quantum walk models on a line with coin operators given by Wigner rotation matrices
R̂(j)(α, β, γ). We have shown that this three-parameter set of walks is equivalent to a single parameter family R̂(j)(ρ),
as far as the shape of the probability distribution and its moments are concerned. The parameter ρ has a simple
physical interpretation since it determines the position of the peaks in the probability distribution and its width.

Next, we have simplified the results of [42] by turning to a more suitable basis of the coin space. Unlike for the
three-state Grover walk [35], the suitable basis is not directly given by the eigenvectors of the coin operator, however,
we have found a recipe which allowed us to construct the suitable basis from them. We presented the explicit form of

173



22

Initial state Properties Figure

|χ0〉 density tends to zero at the origin FIG. 2

|χ+〉 only one peak due to the trapping FIG. 3

|χ−〉 no trapping effect FIG. 4

|λ−〉 no trapping on the positive half-line FIG. 5

TABLE I: Summary of figures for the three-state model.

Initial state Properties Figure

|χ+
1 〉

only one peak in the slower walk
FIG. 6

only one peak in the faster walk

|χ+
2 〉

only one peak in the slower walk
FIG. 7

only one peak in the faster walk

√
3|χ−1 〉 − |χ−2 〉

no peaks in the slower walk
FIG. 8

only one peak in the faster walk

|χ+
1 〉+

√
3|χ+

2 〉
no peaks in the faster walk

FIG. 9
only one peak in the slower walk

TABLE II: Summary of figures for the four-state model.

the limit densities for Wigner walks up to j = 2. Expressing them in the suitable basis allowed us to identify various
interesting regimes which are otherwise hidden in the standard basis description. As an example, we have shown that
the number of peaks in the probability distribution can be reduced to one. Moreover, the suitable basis reveals that
ρ is a scaling parameter, since varying the value of ρ while keeping the same amplitudes of the initial state in the
suitable basis simply changes the width of the probability distribution without distorting its shape.

The Wigner walks with integer j show the trapping effect, which was not explicitly evaluated in [42]. We presented
the explicit form of the trapping probability for j = 1 and j = 2. Our results show that the trapping probability can
be highly asymmetric and, moreover, is not purely exponential for j = 2.

For clarity the Tables I, II and III summarize the main effects and its graphical representation in the text for three-,
four- and five-state Wigner walks.

Based on our explicit results for Wigner walks up to j = 2 we make the following conjecture on the suitable basis for
models with greater j. For half-integer j the coin operator R̂(j)(ρ) has

⌊
2j+1
2

⌋
pairs of eigenvectors |ψ±n 〉 corresponding

to eigenvalues of the form e±iϕn . The suitable basis {|χ±n 〉} can be constructed according to the recipe

|χ+
n 〉 =

1√
2

(
e−i

ϕ
2 |ψ+

n 〉+ ei
ϕ
2 |ψ−n 〉

)
,

|χ−n 〉 =
i√
2

(
e−i

ϕ
2 |ψ+

n 〉 − ei
ϕ
2 |ψ−n 〉

)
.

For integer j there is an additional eigenvector |ψ0〉 ≡ |χ0〉 with eigenvalue 1, which we include as the last vector of
the suitable basis.

The vectors of the suitable basis were selected among those which result in non-generic probability distribution of
the Wigner walk. They point out the extremal regimes in which these quantum walks can be operated. Moreover,
they indicate ways in which wave-packet could be shaped using quantum walks with higher-dimensional coins. We
assume that this approach will be useful in analyzing the properties of other quantum walk models, especially on
higher dimensional lattices.
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Initial state Properties Figure

|χ0〉 no peaks in the slower walk
FIG. 10

density tends to zero at the origin

|χ+
1 〉 no peaks in the faster walk FIG. 11

|χ−1 〉
no peaks in the slower walk

FIG. 12
no trapping effect

|χ+
2 〉 no peaks in the slower walk FIG. 13

|χ−2 〉
no peaks in the faster walk

FIG. 14
no trapping effect

|χ0〉+
√

3|χ+
2 〉 only one peak due to the trapping FIG. 15

|χ0〉 −
√

3|χ+
2 〉 slower walk vanishes FIG. 16

|λ+〉 no trapping on the negative half-line FIG. 17

TABLE III: Summary of figures for the five-state model.
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APPENDIX A: THREE-STATE MODEL

1. Suitable basis

For the three-state model the explicit form of the eigenvectors of the coin R̂(1)(ρ) reads

|ψ±〉 =
1

2
(±i|1〉+

√
2|0〉 ∓ i| − 1〉),

|ψ0〉 =
1√
2

(|1〉+ | − 1〉). (A1)

The eigenvectors satisfy the equations

R̂(1)(ρ)|ψ±〉 = e±iϕ|ψ±〉,
R̂(1)(ρ)|ψ0〉 = |ψ0〉,

where the phase ϕ is given by

ϕ = arccos (2ρ2 − 1).

The suitable basis is then constructed according to the formula (21). We find that the vectors of the suitable basis
{|χ0〉, |χ±〉} are in terms of the standard basis given by

|χ0〉 =
1√
2

(|1〉+ | − 1〉),

|χ+〉 =

√
1− ρ2

2
|1〉+ ρ|0〉 −

√
1− ρ2

2
| − 1〉,

|χ−〉 = − ρ√
2
|1〉+

√
1− ρ2|0〉+

ρ√
2
| − 1〉.
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This leads us to the following relations between the coefficients of the initial state when expressed in the standard
basis (qi) and the suitable basis (hi)

q1 =
1√
2
h0 +

√
1− ρ2

2
h+ − ρ√

2
h−,

q0 = ρh+ +
√

1− ρ2h−,

q−1 =
1√
2
h0 −

√
1− ρ2

2
h+ +

ρ√
2
h−. (A2)

2. Weight function

The individual terms of the weight M(1,1)(v) are in the standard basis of the coin space given by [42]

M(1,1)
0 =

1

2

(
|q1|2 + 2|q0|2 + |q−1|2 − q1q−1 − q1q−1

)
,

M(1,1)
1 = −|q1|2 + |q−1|2 +

+

√
1− ρ2√

2ρ
(q1q0 + q1q0 + q0q−1 + q0q−1),

M(1,1)
2 =

1

2
(|q1|2 − 2|q0|2 + |q−1|2)−

−
√

1− ρ2√
2ρ

(q1q0 + q1q0 − q0q−1 − q0q−1) +

+
2− ρ2

2ρ2
(q1q−1 + q1q−1).

Using the relations (A2) we find that in the suitable basis {|χ0〉, |χ±〉} the weight function simplifies into

M(1,1)
0 = |h+|2 + |h−|2,

M(1,1)
1 =

1

ρ
(h0h− + h0h

−),

M(1,1)
2 =

1

ρ2
(|h0|2 − |h+|2).

3. Trapping probability

The trapping effect arises from the fact that the evolution operator of the three-state Wigner walk has an infinitely
degenerate eigenvalue 1. The overlap of the corresponding localized eigenvectors with the initial state leads to the
non-vanishing trapping probability (10). The overlap is simple to evaluate in the Fourier picture [47]. Indeed, the
Fourier transformation diagonalizes the step operator (2) and the evolution operator (1) reduces into a 3× 3 matrix

Ũ(k) = Diag(e2ik, 1, e−2ik) ·R(1)(ρ),

where k is a continuous quasi-momentum ranging from 0 to 2π. The matrix Ũ(k) has an k-independent eigenvalue 1
with the eigenvector

v(k) =
1√

4− 2ρ2(1 + cos 2k)



√

2
√

1− ρ2(
1− e2ik

)
ρ√

2e2ik
√

1− ρ2


 . (A3)

The overlap of the eigenvector with the Fourier transformed initial state

ψ̃C = (q1, q0, q−1)
T
, (A4)
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where qi are expressed in (A2), yields the limiting probability amplitude at position x

ψ(1)
∞ (x) =

2π∫

0

dk

2π
e−ixk(v(k), ψ̃C)v(k). (A5)

Direct evaluation of the scalar product (v(k), ψ̃C) reveals that it vanishes when the initial coin state is |χ−〉. Hence,
for this particular state the trapping effect does not occur. For other initial states the limiting amplitude can be
decomposed into integrals of the form

I(1)(x) =

2π∫

0

e−ixk

4π(2− ρ2(1 + cos k))
dk.

Using the substitution z = eik one can turn I(1)(x) to a contour integral over a unit circle in the complex plane,
which can be evaluated explicitly by the method of residues. We find that the result reads

I(1)(x) =
Q|x|

4
√

1− ρ2
,

where the factor Q is given in (24). Finally, the trapping probability p
(1)
∞ (x) is given by the square norm of the

amplitude (A5). The final result is presented in (23)

APPENDIX B: FOUR-STATE MODEL

1. Suitable basis

For the four-state model the coin operator R̂(3/2)(ρ) has two pairs of eigenvectors

|ψ±1 〉 =
1√
8

(
√

3|3/2〉 ∓ i|1/2〉+ | − 1/2〉 ∓ i
√

3| − 3/2〉),

|ψ±2 〉 =
1√
8

(|3/2〉 ± i
√

3|1/2〉 −
√

3| − 1/2〉 ∓ i| − 3/2〉),

(B1)

with conjugated pairs of eigenvalues

R̂(3/2)(ρ)|ψ±1 〉 = e±iϕ1 |ψ±1 〉,
R̂(3/2)(ρ)|ψ±2 〉 = e±iϕ2 |ψ±2 〉.

The phases of the eigenvalues are given by

ϕ1 = arccos ρ,

ϕ2 =





arccos
(
ρ(4ρ2 − 3)

)
, 0 < ρ ≤ 1

2

2π − arccos
(
ρ(4ρ2 − 3)

)
, 1

2 < ρ ≤ 1
.

The suitable basis is then constructed according to (25). Using the explicit form of the eigenvectors (B1) we can
obtain direct relation between the standard basis {|3/2〉, |1/2〉, | − 1/2〉, | − 3/2〉} and the suitable basis {|χ±1 〉, |χ±2 〉}.
From this we find the following correspondence between the coefficients of the initial state in the standard basis (qi)
and in the suitable basis (hi)
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q3/2 =

√
3(1 + ρ)

2
√

2
h+1 +

√
3(1− ρ)

2
√

2
h−1 +

√
1 + ρ

2
√

2
(1− 2ρ)h+2 +

√
1− ρ
2
√

2
(1 + 2ρ)h−2 ,

q1/2 = −
√

1− ρ
2
√

2
h+1 +

√
1 + ρ

2
√

2
h−1 +

√
3(1− ρ)

2
√

2
(1 + 2ρ)h+2 −

√
3(1 + ρ)

2
√

2
(1− 2ρ)h−2 ,

q−1/2 =

√
1 + ρ

2
√

2
h+1 +

√
1− ρ
2
√

2
h−1 −

√
3(1 + ρ)

2
√

2
(1− 2ρ)h+2 −

√
3(1− ρ)

2
√

2
(1 + 2ρ)h−2 ,

q−3/2 = −
√

3(1− ρ)

2
√

2
h+1 +

√
3(1 + ρ)

2
√

2
h−1 −

√
1− ρ
2
√

2
(1 + 2ρ)h+2 +

√
1 + ρ

2
√

2
(1− 2ρ)h−2 . (B2)

2. Weight function

The weight functions M(3/2,1/2)(v) and M(3/2,3/2)(v) for the four-state model in terms of the standard basis
coefficients qi were given explicitly in [42], we do not reproduce it since it is rather long. With the help of the relations
(B2) we can express them in terms of the suitable basis amplitudes hi. We find that the individual terms of the weight
function M(3/2,1/2)(v) obtain the form

M(3/2,1/2)
0 = |h+1 |2 + |h−1 |2,

M(3/2,1/2)
1 = −1

ρ

[
2(|h+1 |2 − |h−1 |2) +

√
3

2
(h+1 h

+
2 + h+1 h

+
2 − h−1 h−2 − h−1 h−2 )

]
,

M(3/2,1/2)
2 = −

√
3

4ρ2

[√
3(|h+1 |2 + |h−1 |2 − |h+2 |2 − |h−2 |2)− (h+1 h

+
2 + h+1 h

+
2 + h−1 h

−
2 + h−1 h

−
2 )
]
,

M(3/2,1/2)
3 =

3

4ρ3

[
(3|h+1 |2 − 3|h−1 |2 + |h+2 |2 − |h−2 |2) +

√
3(h+1 h

+
2 + h+1 h

+
2 − h−1 h−2 − h−1 h−2 )

]
. (B3)

Similarly, the coefficients of the weight function for M(3/2,3/2)(v) read

M(3/2,3/2)
0 = |h+2 |2 + |h−2 |2,

M(3/2,3/2)
1 =

√
3

2ρ
(h+1 h

+
2 + h+1 h

+
2 − h−1 h−2 − h−1 h−2 ),

M(3/2,3/2)
2 =

√
3

4ρ2

[√
3(|h+1 |2 + |h−1 |2 − |h+2 |2 − |h−2 |2)− (h+1 h

+
2 + h+1 h

+
2 + h−1 h

−
2 + h−1 h

−
2 )
]
,

M(3/2,3/2)
3 = − 1

4ρ3

[
(3|h+1 |2 − 3|h−1 |2 + |h+2 |2 − |h−2 |2) +

√
3(h+1 h

+
2 + h+1 h

+
2 − h−1 h−2 − h−1 h−2 )

]
. (B4)

APPENDIX C: FIVE-STATE MODEL

1. Suitable basis

The eigenvectors of the coin operator R̂(2)(ρ) for the five-state model are given by

|ψ±1 〉 =
1

2
(±i|2〉+ |1〉+ | − 1〉 ∓ i| − 2〉),

|ψ±2 〉 =
1

4
(|2〉 ± 2i|1〉 −

√
6|0〉 ∓ 2i| − 1〉+ | − 2〉),

|ψ0〉 =

√
3

8
|2〉+

1

2
|0〉+

√
3

8
| − 2〉. (C1)
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They satisfy the eigenvalue equations

R̂(2)(ρ)|ψ±1 〉 = e±iϕ1 |ψ±1 〉,
R̂(2)(ρ)|ψ±2 〉 = e±iϕ2 |ψ±2 〉,
R̂(2)(ρ)|ψ0〉 = |ψ0〉,

with phases determined by

ϕ1 = arccos
(
2ρ2 − 1

)
,

ϕ2 =





arccos
(
8ρ4 − 8ρ2 + 1

)
, 0 < ρ ≤ 1√

2

2π − arccos
(
8ρ4 − 8ρ2 + 1

)
, 1√

2
< ρ < 1

.

The suitable basis {|χ0〉, |χ±1 〉, |χ±2 〉} for the five-state model is then constructed according to the formula (33). Using
the explicit form of the eigenvectors (C1) we can obtain the relation between the vectors of the standard basis and
the suitable basis, which leads us to the correspondence between the coefficients of the initial state in the standard
basis and the suitable basis

q2 =

√
3

2
√

2
h0 +

√
1− ρ2

2
h+1 −

ρ√
2
h−1 +

1− 2ρ2

2
√

2
h+2 + ρ

√
1− ρ2

2
h−2 ,

q1 =
ρ√
2
h+1 +

√
1− ρ2

2
h−1 + ρ

√
2(1− ρ2)h+2 −

1− 2ρ2√
2

h−2 ,

q0 =
1

2
h0 −

√
3

2
(1− 2ρ2)h+2 − ρ

√
3(1− ρ2)h−2 ,

q−1 =
ρ√
2
h+1 +

√
1− ρ2

2
h−1 − ρ

√
2(1− ρ2)h+2 +

1− 2ρ2√
2

h−2 ,

q−2 =

√
3

2
√

2
h0 −

√
1− ρ2

2
h+1 +

ρ√
2
h−1 +

1− 2ρ2

2
√

2
h+2 + ρ

√
1− ρ2

2
h−2 . (C2)

2. Weight function

The weight functions M(2,1)(v) and M(2,2)(v) for the five-state model in the standard basis of the coin space can
be evaluated using the procedure of [42]. Using the relations (C2) we can transform them into the suitable basis. We
find that the coefficients of the weight function M(2,1)(v) obtain the form

M(2,1)
0 = |h+1 |2 + |h−1 |2,

M(2,1)
1 =

1

ρ

[
h+1 h

−
2 + h+1 h

−
2 + h+2 h

−
1 + h+2 h

−
1 +
√

3(h0h
−
1 + h0h

−
1 )
]
,

M(2,1)
2 =

1

ρ2

[
3|h0|2 − 4|h+1 |2 − |h−1 |2 + |h+2 |2 + |h−2 |2 +

√
3(h0h

+
2 + h0h

+
2 )
]
,

M(2,1)
3 = − 1

ρ3

[
2(h+1 h

−
2 + h+1 h

−
2 ) + h+2 h

−
1 + h+2 h

−
1 +
√

3(h0h
−
1 + h0h

−
1 )
]
,

M(2,1)
4 = − 1

ρ4

[
3|h0|2 − 4|h+1 |2 + |h+2 |2 +

√
3(h0h

+
2 + h0h

+
2 )
]
. (C3)
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Similarly, the coefficients of the weight function M(2,2)(v) in the suitable basis are easily found to be

M(2,2)
0 = |h+2 |2 + |h−2 |2,

M(2,2)
1 = −1

ρ

[
h+1 h

−
2 + h+1 h

−
2 + h−1 h

+
2 + h−1 h

+
2

]
,

M(2,2)
2 =

1

ρ2

[
|h+1 |2 + |h−1 |2 − |h+2 |2 − |h−2 |2 −

√
3

2
(h0h

+
2 + h0h

+
2 )

]
,

M(2,2)
3 =

1

2ρ3

[
2(h+1 h

−
2 + h+1 h

−
2 ) + (h−1 h

+
2 + h−1 h

+
2 ) +

√
3(h0h

−
1 + h0h

−
1 )
]
,

M(2,2)
4 =

1

4ρ4

[
(3|h0|2 − 4|h+1 |2 + |h+2 |2) +

√
3(h0h

+
2 + h0h

+
2 )
]
. (C4)

3. Trapping probability

The trapping probability for the five-state Wigner walk can be evaluated using the same method described in
Appendix A for the three-state model. The asymptotic value of the amplitude at position x is given by

ψ(2)
∞ (x) =

2π∫

0

dk

2π
e−ixk(v(k), ψ̃C)v(k), (C5)

where ψ̃C is the Fourier transformation of the initial state

ψ̃C = (q2, q1, q0, q−1, q−2)
T
,

where the coefficients qi are given by (C2). The vector v(k) is the eigenstate of the evolution operator in the Fourier
picture

Ũ(k) = Diag(e4ik, e2ik, 1, e−2ik, e−4ik) ·R(2)(ρ),

corresponding to the eigenvalue 1. Its explicit form is given by

v(k) =
1

n(k)




e2ik
(
1− ρ2

)

−
(
1− e2ik

)
ρ
√

1− ρ2√
2
3

(
ρ2 cos(2k)− 2ρ2 + 1

)
(
1− e−2ik

)
ρ
√

1− ρ2
e−2ik

(
1− ρ2

)



,

where we have denoted by n(k) the normalization factor which reads

n(k) =

√
2

3
(2− ρ2(1 + cos(2k))).

One can show by direct calculation that if the initial state is a linear combination only of vectors |χ−1 〉 and |χ−2 〉 then

ψ̃C is orthogonal to v(k). In such a case, the limiting amplitude vanishes and the trapping effect does not occur.
Otherwise, the limiting amplitude (C5) can be decomposed into integrals of the form

I(2)(x) =

2π∫

0

e−ixk

4π(2− ρ2(1 + cos k))2
dk,

which is turned into the contour integral over a unit circle in the complex plane and evaluated by the method of
residues. We find that the result reads

I(2)(x) = Q|x|
2− ρ2 + 2|x|

√
1− ρ2

16(1− ρ2)
3
2

,
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where Q is given by (24). The trapping probability p
(2)
∞ (x) is then obtained by the square norm of the amplitude

(C5). The final result for positive x, negative x and the origin is presented in (39), (40) and (41).
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2

initial conditions. The rate of the transport depends on the size of the ring and the coin operator which determines
the spreading of the excitation’s wave-packet. This case will serve as the reference for the more involved lazy walk.
When we consider the transport described by a lazy quantum walk where the particle is allowed to stay at its actual
position, the situation becomes more interesting. Indeed, certain lazy quantum walks are able to trap part of the
wave-function in the vicinity of the origin [40, 41], i.e. the probability of finding the excitation at finite positions does
not vanish in the limit of infinite number of steps. This feature crucially depends on the choice of the coin operator
[42, 43]. The consequence of the trapping effect is that the transport of excitation in the lazy quantum walk is not
fully efficient. Nevertheless, we show that dynamical percolations [44, 45] of the ring can eliminate the trapping effect
and improve the transport efficiency.

The paper is organized as follows: In Section II we describe the model of excitation transport based on a discrete-
time quantum walk. The two-state walk model is analyzed in Section III. Section IV is devoted to the lazy walk
model. The effect of dynamical percolations on the transport efficiency is discussed in Section V. We conclude and
present an outlook in Section VI. More technical details of calculating the survival probability for a two-state walk
are left for A.

II. TRANSPORT OF EXCITATION IN DISCRETE-TIME QUANTUM WALK

In this Section we formally describe our model. We consider the transport of excitation to the sink on a finite-size
ring described by a discrete-time quantum walk. The vertices of the ring have labels from −N + 1 to N . The sink,
which takes the excitation away from the ring, is located at the vertex N . Note that this configuration is equivalent
to a finite line from −N to N with sinks at both ends. The Hilbert space of the quantum walk has the tensor product
structure

H = HP ⊗HC ,
where HP is the position space spanned by the vectors |m〉, with m = −N + 1, . . . N , corresponding to the excitation
being at the vertex m. By HC we denote the coin space which describes the internal degree of freedom of the
excitation. The excitation enters the ring exactly opposite the sink with some coin state |ψC〉 ∈ HC , i.e. the initial
state is

|ψin〉 = |0〉|ψC〉.

A single time-step consists of a quantum walk evolution Û

Û = Ŝ · (ÎP ⊗ Ĉ),

where the step operator Ŝ and the coin operator Ĉ will be specified later. This is followed by a projection

π̂ =
(
ÎP − |N〉〈N |

)
⊗ ÎC ,

corresponding to the effect of the sink. Hence, the complete time evolution is not unitary and the state of the
excitation after t steps is described by vector

|ψ(t)〉 =
(
π̂ · Û

)t
|ψin〉,

with norm generally less than unity.
In the following we analyze the properties of the survival probability P(t), i.e. the probability that the excitation

remains on the ring until time t, which is given by

P(t) = 〈ψ(t)|ψ(t)〉,
and the asymptotic transport efficiency η which we define as

η = 1− lim
t→∞

P(t).

In Section III we consider the two-state quantum walk model, while in Section IV we focus on the lazy model. Before
we turn to these models we first derive an asymptotic estimate of the survival probability P(t). We begin with the
estimate

P(t) ≤
∥∥∥∥
(
π̂ · Û

)t∥∥∥∥
2

= exp

(
2t ln

(∥∥∥∥
(
π̂ · Û

)t∥∥∥∥
1
t

))
.
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For large t the argument of the logarithm can be estimated according to

∥∥∥∥
(
π̂ · Û

)t∥∥∥∥
1
t

≈ |λl|,

where λl is the leading eigenvalue of π̂ · Û , i.e. the largest eigenvalue in absolute value. When |λl| is close to unity
(but less than one) we make the first-order Taylor expansion of the logarithm

ln

(∥∥∥∥
(
π̂ · Û

)t∥∥∥∥
1
t

)
≈ ln |λl| ≈ −(1− |λl|).

Hence, when the absolute value of the leading eigenvalue λl of π̂ · Û is smaller then one we find that the survival
probability behaves in the asymptotic limit as an exponential

P(t) ∼ e−γt, (1)

where the decay rate γ reads

γ = 2(1− |λl|). (2)

In such a case, the asymptotic transport efficiency η is unity. However, when |λl| = 1 the survival probability does not
vanish and the transport is not efficient. We will see in Section IV that such situation occurs in certain lazy quantum
walks.

III. TWO-STATE WALK MODEL

Let us begin with the two-state walk model, i.e. the particle has to move in each time step from the vertex m to the
nearest neighbours m− 1 or m+ 1. The coin space HC is two-dimensional, we denote the basis vectors corresponding
to the steps to the left and right as |L〉 and |R〉. The step operator of the two-state quantum walk is then given by

Ŝ(2) =

N∑

m=−N+1

|m− 1〉〈m| ⊗ |L〉〈L|+ |m+ 1〉〈m| ⊗ |R〉〈R|, (3)

where we consider periodic boundary condition N ≡ −N . As for the coin operator Ĉ, for simplicity we consider a
one-parameter family which is in the standard basis of the coin space given by the matrix

C(2) =

(
ρ

√
1− ρ2√

1− ρ2 −ρ

)
, ρ ∈ (0, 1). (4)

Nevertheless, this choice in fact covers all U(2) matrices due to unitary equivalence which was recently found in [46].
The coin parameter ρ determines the rate at which the excitation spreads through the ring [47]. The choice of ρ = 1√

2

corresponds to the familiar and extensively studied case of the Hadamard walk.
In Figure 1 we present the numerical simulation of the survival probability P(t) for the Hadamard walk (ρ = 1√

2
)

on the ring consisting of 10 vertices, i.e. N = 5. The left plot shows the survival probability for the first 100 steps.
Due to the symmetries of the model we consider, i.e. the excitation enters the ring exactly opposite the sink, the
survival probability is exactly the same for all initial coin states |ψC〉. This follows from the results of [34], as we
show in A. The right plot displays the survival probability on a longer time scale of 1000 steps. To unravel the
asymptotic behavior of P(t) we use logarithmic scale on the y axis. The plot indicates that the survival probability

decays exponentially (1) with the decay rate (2) determined by the leading eigenvalue of π̂ · Û .
The decay rate γ depends crucially both on the coin parameter ρ and the size of the ring N . We plot the decay

rate γ as a function of the coin parameter ρ in Figure 2. For ρ approaching zero the decay rate vanishes. Indeed, for
ρ = 0 the coin operator (4) turns into a permutation matrix. In such a case, the excitation never leaves the vertices
-1, 0 and 1, i.e. it never reaches the sink and the asymptotic transport efficiency η is zero, except for N = 1 when
the ring consists only of the source and the sink. On the other hand, for ρ approaching unity the decay rate increases
rapidly. In the limiting case of ρ = 1 the coin operator (4) reduces to an identity with an additional phase shift of π
on the |R〉 state. Hence, the excitation is fully transported into the sink after N steps and the survival probability is
a step function, with P(t) = 1 for t < N and P(t) = 0 for t ≥ N .
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FIG. 1: On the left we display the survival probability P(t) for the Hadamard walk (i.e. ρ = 1√
2
). Due to the symmetries of the

model the survival probability P(t) is independent of the initial coin state. On the right we show the asymptotic behavior of
the survival probability P(t) for the Hadamard walk. The log-scale reveals that the survival probability decays exponentially.
The red curve is given by (1). The size of the ring is given by N = 5, i.e. 10 vertices.
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1
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ρ
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FIG. 2: The decay rate γ as a function of the coin parameter ρ. The size of the ring is given by N = 5.

In Figure 3 we consider the decay rate γ as a function of the size of the ring N . For the plot on the left we have
chosen the coin parameter ρ = 1√

2
corresponding to the Hadamard walk, while in the right plot we have considered

ρ = 0.8. The log-log scale reveals that the decay rate obeys a power law

γ ∼ N−3, (5)

independent of the coin parameter ρ.
We point out that for large N the decay rate γ is very small. Hence, it takes a considerable number of steps for the

exponential behaviour of the survival probability (1) to set in. As was established and explained at length in Section
4.6 of [35], repeated reflections from the sink (or, in fact, from the adjacent points) slow the decay of the survival
probability in the intermediate regime to a power law

P(t) ∼ t− 1
2 . (6)

Nevertheless, after an order of N3 steps the survival probability begins to deviate from the power law (6) and tends
to follow the exponential dependence on the number of steps (2). We illustrate this property in Figure 4.
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FIG. 3: The decay rate γ as a function of the size of the ring N . Left plot shows the choice ρ = 1√
2

corresponding to the

Hadamard walk, while in the right plot we have chosen ρ = 0.8. The plots indicate that the decay rate rate obeys a power law
(5). This behaviour is independent of the coin parameter ρ.
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FIG. 4: Survival probability for the Hadamard walk on a ring with 100 vertices, i.e. N = 50. On the left we display P(t) on
a log-log scale. The green line corresponds to the power law behavior of (6). We observe that it fits well in the intermediate
regime, however, it deviates on the long time scale. Indeed, the plot on the right, where we display the survival probability on
a log-scale, shows that in the asymptotic regime the behavior of P(t) follows the exponential (1) depicted by the red line.

To summarize this section, for the two-state model the survival probability P(t) is independent of the initial coin
state and decays exponentially. Hence, the asymptotic transport efficiency η is unity.

IV. LAZY WALK MODEL

We now turn to the lazy walk model. Let us denote the basis coin states corresponding to the step to the left, stay,
and the step to the right as |L〉, |S〉 and |R〉. The step operator of a lazy quantum walk on a ring is then given by
the following extension of the step operator for a two-state walk (3)

Ŝ(3) = Ŝ(2) +

N∑

m=−N+1

|m〉〈m| ⊗ |S〉〈S|.

Next, we choose the coin operator which exhibits the trapping effect. The complete set of such coins for a lazy walk
was determined in [43]. For simplicity, we consider a two-parameter set of coins which are in the standard basis of
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the coin space {|L〉, |S〉, |R〉} given by the matrix

C(3) =




−ρ2 ρ
√

2− 2ρ2 e−iα
(
1− ρ2

)

ρ
√

2− 2ρ2 2ρ2 − 1 e−iαρ
√

2− 2ρ2

eiα
(
1− ρ2

)
eiαρ

√
2− 2ρ2 −ρ2


 (7)

where ρ ranges from zero to one and the phase α from 0 to 2π. The parameter ρ has the same interpretation as for
the two-state walk of Section III. The phase α will not play a role in this Section, however, it will be crucial when we
consider percolations in Section V.

The trapping effect arises when the evolution operator of the quantum walk has a highly degenerate eigenvalue and
the corresponding eigenstates are spatially localized [40, 41]. One can show by direct calculation that this is the case

for the lazy walk on ring with the coin (7). Indeed, the evolution operator Û has an eigenvalue λ = 1 with 2N -fold
degeneracy and the corresponding eigenvectors (linearly independent but overlapping) read

|sn〉 = |n〉
(√

1− ρ2|L〉+
ρ√
2
|S〉
)

+

+|n+ 1〉
(
ρ√
2
|S〉+ eiα

√
1− ρ2|R〉

)
, (8)

where n ranges from −N + 1 to N . Notice that only two of these vectors, namely |sN−1〉 and |sN 〉, have support on
the vertex N where the sink is located. Hence, the vectors |sn〉 with n ∈ {−N + 1, . . . , N − 2} are not affected by

the sink and they are eigenvectors of π̂ · Û with eigenvalue one. Consequently, the trapping effect remains even in
the presence of the sink, the survival probability has a non-vanishing limit and the excitation transport is not fully
efficient.

Let us now evaluate the transport efficiency η. Using the Gram-Schmidt procedure one can form an orthonormal
basis in the degenerate subspace from the eigenstates (8). We denote the basis vectors by |φn〉. The probability of
trapping the excitation on the vertex m, i.e. the probability of finding the excitation at position m in the limit of
infinite number of steps, is obtained from

pT (m) =
∑

i=L,S,R

∣∣∣∣∣〈m|〈i|
(∑

n

|φn〉〈φn|
)
|ψin〉

∣∣∣∣∣

2

. (9)

The limiting value of the survival probability is then given by summing the trapping probabilities over all vertices of
the ring excluding the sink

lim
t→∞

P(t) =

N−1∑

m=−N+1

pT (m),

which can be simplified into

lim
t→∞

P(t) =

N−2∑

n=−N+1

|〈ψin|φn〉|2.

Hence, the asymptotic transport efficiency reads

η = 1−
N−2∑

n=−N+1

|〈ψin|φn〉|2.

The evaluation of η is readily done for small N . We present the results for N = 2, . . . , 5 in Table I.
In order to reduce the complexity of the formulas we have expressed the initial coin state |ψC〉 in terms of a more

suitable basis of the coin space. Following [48] we have chosen the basis formed by the eigenvectors of the coin operator
(7)

|σ+〉 =

√
1− ρ2

2
|L〉+ ρ|S〉+

√
1− ρ2

2
eiα|R〉,

|σ−1 〉 =
ρ√
2
|L〉 −

√
1− ρ2|S〉+

ρ√
2
eiα|R〉,

|σ−2 〉 =
1√
2

(|L〉 − eiα|R〉). (10)
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N η

2 1− 2(1−ρ2)
4−3ρ2

|h2|2 − 2
4−ρ2 |h+|2

3 1− 4(2− ρ2)
(

(1−ρ2)|h2|2
16−20ρ2+5ρ4

+
|h+|2

16−12ρ2+ρ4

)

4 1− 2(16− 16ρ2 + 3ρ4)
(

(1−ρ2)|h2|2
64−7ρ2(ρ2−4)2

+
|h+|2

64−ρ2(ρ4−24ρ2+80)

)

5 1− 8
(
2− ρ2

) (
ρ4 − 8ρ2 + 8

)( (1−ρ2)|h2|2

(3ρ2−4)(3ρ6−36ρ4+96ρ2−64)
+

|h+|2
ρ8−40ρ6+240ρ4−448ρ2+256

)

TABLE I: Asymptotic transport efficiency η for small rings up to N = 5.

The initial coin state is in the eigenbasis decomposed according to

|ψC〉 = h+|σ+〉+ h1|σ−1 〉+ h2|σ−2 〉.

There are several advantages of using the basis (10). First, η is independent of the amplitude h1, as can be seen
from Table I. Indeed, for h1 = 1 and h+ = h2 = 0 the trapping effect vanishes [48]. Hence, the initial coin state
|σ−1 〉 is the only one for which the transport efficiency η is unity. Next, η does not depend on the phase α which
was absorbed into the definition of the eigenbasis (10). Thus, the coins with different values of α are equivalent[? ].
Finally, the amplitudes h+ and h2 enter the formula for the transport efficiency η only as probabilities |h+|2 and |h2|2
of finding the particle initially in the coin state |σ+〉 or |σ−2 〉. Hence, the efficiency of transfer is given by incoherent
contributions from the two relevant basis states. It is then straightforward to show that the worst transport efficiency
arises when the initial coin state is chosen as |σ+〉.

To illustrate our results we display in Figure 5 the survival probability for the Grover walk (i.e. ρ = 1√
3

and α = 0),

when the initial coin state is chosen as |σ−1 〉 (left plot) or |σ+〉 (right plot). For |σ−1 〉 the trapping effect disappears
and the survival probability decays exponentially (1), similarly to the two-state walk of Section III. The decay rate

γ can be estimated using the sub-leading eigenvalue λsl of π̂ · Û according to

γ = 2(1− |λsl|). (11)

Nevertheless, for all other initial coin states the trapping effect results in non-vanishing limit of the survival probability.
For |σ+〉 the trapping effect is the strongest. The right plot indicates that the survival probability does not drop

below the value
N−1∑

m=−N+1

pT (m) ≈ 0.55, which is depicted by the red line.

For larger rings the Gram-Schmidt procedure becomes tedious and, moreover, the resulting formula for the transport
efficiency η is rather lengthy. Nevertheless, we can estimate the transport efficiency following the analysis of the walk
on an infinite line. We approximate the trapping probability at position m (9) using the results obtained for infinite
line in [48] where it was found

pT (m) =





2−2ρ2
ρ4 Q2m|h+ + h2|2, m > 0,

Q
ρ2

{
|h+|2 + (1− ρ2)|h2|2

}
, m = 0.

2−2ρ2
ρ4 Q2|m||h+ − h2|2, m < 0

(12)

Here the quotient Q reads

Q =
2− ρ2 − 2

√
1− ρ2

ρ2
.
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|ψC〉 = |σ−
1 〉
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FIG. 5: Survival probability for the Grover walk on a ring with 10 vertices, i.e. N = 5 in dependence on the number of steps.
On the left we have chosen the initial coin state as |σ−1 〉 for which the trapping effect disappears. In such a case the survival
probability P(t) vanishes exponentially. This is highlighted by the log-scale. The red line corresponds to the decay rate γ
determined by (11). The right plot shows the survival probability when the initial coin state is |σ+〉 for which the trapping

effect is the strongest. The survival probability approaches the red line given by
N−1∑

m=−N+1

pT (m) ≈ 0.55.

Hence, the asymptotic transport efficiency for a ring of size 2N can be estimated by

η ≈ 1− Q
ρ2

(√
1− ρ2

(
1−Q2(N−1)

) (
|h2|2 + |h+|2

)
+

+(1− ρ2)|h2|2 + |h+|2
)
.

Since the trapping probability (12) decays very fast (exponentially) with the distance from the origin, this approx-
imation is quite good even for small rings. The difference is most profound for the coin parameter ρ close to one.
With increasing size of the ring the differences become negligible. This result also confirms that the worst transport
efficiency is obtained for the initial coin state |σ+〉.

V. DYNAMICAL PERCOLATION OF THE RING

In this Section we analyze the effect of dynamical percolation of the ring on the transport efficiency of the lazy
quantum walk. Percolation can be viewed as a special (but realistic) noise source and hence the problem at hand can
be cast under the headline of noise assisted excitation transfer. Improving transport by allowing the edges to break
randomly seems to be a bit counterintuitive at the first sight. However, percolations can in some situations eliminate
the localized eigenstates (8) and thus improve the asymptotic transport efficiency to unity.

The evolution of the percolated quantum walk can be described within the framework of random unitary channels
[49, 50]. The density matrix of the excitation evolves according to the formula

ρ̂′(t+ 1) =
∑

K
pKÛKρ̂(t)Û†K ,̂ (13)

where K denotes the possible edge configuration, pK is the probability of the configuration K and ÛK is a quantum
walk on a ring with edge configuration K. The random unitary channel (13) is followed by the projection

ρ̂(t+ 1) = π̂ρ̂′(t+ 1)π̂†, (14)

which corresponds to the action of the sink. For simplicity, we consider that every edge occurs with the same
probability p independent of its position. The probability of the edge configuration K is then given by

pK = p|K|(1− p)2N−|K|,
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where |K| denotes the size of the set K, i.e. the number of edges present in that configuration. The evolution operator

ÛK of the walk on a percolated ring with edge configuration K has the form

ÛK = ŜK · (ÎP ⊗ Ĉ),

where ŜK is the step operator on the percolated ring. If the edge between m and m + 1 is broken then the jumps
from m to m+ 1 and from m+ 1 to m cannot occur. Instead, the coin states corresponding to the jumps undergoes
a reflection, i.e.

|m〉|R〉 → |m〉|L〉, |m+ 1〉|L〉 → |m+ 1〉|R〉. (15)

Hence, the step operator ŜK on the percolated ring is given by

ŜK =
∑

(m,m+1)∈K
|m〉〈m+ 1| ⊗ |L〉〈L|+ |m+ 1〉〈m| ⊗ |R〉〈R|+

+
∑

(m,m+1)/∈K
|m〉〈m| ⊗ |L〉〈R|+ |m+ 1〉〈m+ 1| ⊗ |R〉〈L|+

+
∑

m

|m〉〈m| ⊗ |S〉〈S|.

The evolution of a dynamically percolated quantum walk is rather involved. Nevertheless, it simplifies considerably
in the asymptotic regime where it is described by the attractors satisfying

ÛKX̂Û
†
K = λX̂, ∀K, with |λ| = 1.

Moreover, substantial part of the attractor space is spanned by the so-called p-attractors [49, 50], which can be

constructed from the common eigenstates of all ÛK’s. The common eigenstate |ξ〉 has to satisfy the equations

ÛK|ξ〉 = β|ξ〉,

for all possible configurations K. We search for the common eigenstates in the form

|ξ〉 =
∑

m

|m〉|ξm〉,

where the coin state at position m is given by

|ξm〉 = ξmL |L〉+ ξmS |S〉+ ξmR |R〉.

Following [49, 50] we find that the amplitudes of the common eigenstate have to fulfill the shift conditions

ξmL = ξm+1
R , ∀m. (16)

Moreover, the common eigenstates have to fulfill the coin conditions

R̂Ĉ|ξm〉 = β|ξm〉, ∀m, (17)

where R̂ is the reflection operator which performs the operation (15). In the standard basis of the coin space it is
given by the matrix

R =




0 0 1
0 1 0
1 0 0


 .

Let us now test when the stationary states of the non-percolated (ideal) walk satisfy the common eigenstates conditions.
Form (8) it follows that the amplitudes of the stationary state |sn〉 are given by

ξmL = δm,n
√

1− ρ2,
ξmS = (δm,n + δm,n+1)

ρ√
2
,

ξmR = δm,n+1

√
1− ρ2eiα.
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Hence, we find that the shift conditions (16) are fulfilled only for α = 0. One can check that the coin conditions (17)
are also satisfied only in this case. Hence, for α = 0 the percolations do not eliminate the stationary states (8) - they

remain as common eigenstates of all ÛK’s. Moreover, the stationary states |sn〉 with n ∈ {−N + 1, . . . , N − 2} are
not affected by the projection π̂ corresponding to the effect of the sink. Therefore, for α = 0 the trapping effect is
preserved in the percolated walk and the efficiency of transport to the sink is not improved, i.e. η depends on the
initial coin state in the same way as for the ideal walk. On the other hand, for α 6= 0 the stationary states (8) do
not satisfy the common eigenstates conditions and they are sensitive to percolations. Hence, for α 6= 0 dynamical
percolations of the ring eliminate the trapping effect and the transport of excitation is efficient, i.e. η = 1 for all
initial coin states. We see that percolations nullify the equivalence of coins with different values of α which holds for
ideal walks.

For illustration we display in Figure 6 the survival probability for one random realization of dynamically percolated
quantum walk. On the left we have chosen α = 0, for which the stationary states (8) are unaffected by percolations.
We find that the survival probability levels at the same value as for the ideal walk (see the right plot of Figure 5 for
comparison). The plot on the right shows the survival probability when α = π. In this case percolations cancel the
trapping effect and the survival probability decays exponentially.

|ψC〉 = |σ+〉

α = 0

900

0.5

0
500100

1

t

P
(t
)

|ψC〉 = |σ+〉
α = π

900500100

10−1

10−4

10−7

10−10

t

P
(t
)

FIG. 6: Survival probability for percolated quantum walk. The initial coin state was chosen as |σ+〉. The probability of edge
presence is p = 1

2
. On the left we have considered the phase α = 0. In this case, percolations do not eliminate the trapping

effect and the survival probability does not drop below the same value as for the non-percolated walk (see the right plot of
Figure 5). On the other hand, for α = π, which we display in the right plot, the trapping effect vanishes. The survival
probability decreases exponentially, which we highlight with the log-scale. The deviations from the straight line stem from the
fact that the plot corresponds to a single random realization of the percolated walk.

The decay rate γ of the survival probability depends on both parameters of the coin ρ and α and also on the
probability of edge presence p. The numerical simulations indicates that the decay rate can be estimated according
to

γ = 1− |λl|, (18)

where λl is the leading eigenvalue of the superoperator

Φ =
∑

K
pK
(
π̂ÛK

)
⊗
(
π̂Û∗K

)
, (19)

which describes the evolution of the density matrix consisting of the random unitary channel (13) and the projection
onto the sink (14). Compared to Eq. (2) the factor 2 is missing due to the use of the superoperator formalism. In
(19) star denotes the complex conjugation.

For illustration we display in Figures 7, 8 and 9 the decay rate as a function of the phase α, coin parameter ρ and
the edge presence probability p, respectively. The size of the ring is given by N = 5. The red curves are given by the
formula (18) while the black dots are obtained from numerical simulation where we fit the exponential decay (1) to
the survival probability averaged over 1000 random realizations of percolated quantum walk.

In Figure 7 we plot the decay rate as a function of the phase α while fixing the coin parameter ρ = 1√
3

and the

edge presence probability p = 1
2 . For small values of α the decay rate tends to zero, as can be expected. Notice that

maximal decay rate is not obtained for α = π, but rather for α ≈ 47
50π. We have not found a simple explanation for
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this effect. The numerical simulations indicate that the position of the peak drifts further away from π
2 , however, very

mildly. For α ∈ (π, 2π) the plot would be the mirror image of the presented one.

ρ = 1√
3

p = 1
2

0.02

0.01

0
0

π
2

π

α

γ

FIG. 7: Decay rate as a function of the phase α. The other parameters have been chosen as ρ = 1√
3

and p = 1
2
. The maximal

decay rate is reached for α ≈ 47
50
π.

The decay rate in dependence on the coin parameter ρ is displayed in Figure 8. The remaining parameters were
chosen as p = 1

2 and α = π.

p = 1
2

α = π0.02

0.01

0
0 1

2
1

ρ

γ

FIG. 8: Decay rate as a function of the probability of the coin parameter ρ. We have considered p = 1
2

and α = π.

Figure 9 shows the decay rate as a function of the edge presence probability p for fixed ρ = 1√
3

and α = π. Notice

the asymmetry of the curve. The maximal decay rate is reached for p ≈ 0.55. The numerical simulations indicate
that with increasing N the position of the maximum tends to p = 0.5

In summary, percolations eliminate the trapping effect provided that the coin parameter α is non-zero. This leads
to exponential decay of the survival probability with the decay rate determined by the leading eigenvalue of the
superoperator (19). However, for α = 0 the trapping effect is robust to percolations and the transport efficiency is
not improved.
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ρ = 1√
3

α = π

0.02

0.01

0
0 1

2
1

p

γ

FIG. 9: Decay rate as a function of the probability of edge presence probability p for fixed ρ = 1√
3

and α = π. The maximal

decay rate is obtained for p ≈ 0.55.

VI. CONCLUSIONS

We have analyzed the absorption problem for discrete-time quantum walks on a ring. Using both numerical as
well analytic methods we determined several properties of this model of transport. For a two-state quantum walk
the transport of excitation to the sink is efficient and the survival probability decays exponentially independent of
the initial coin state. The decay rate is determined by the coin operator and the size of the ring. In this respect we
completed the analysis presented previously.

Next, we have considered a two-parameter set of lazy quantum walk which exhibits the trapping effect. Compared
to the two state quantum walk the lazy walk shows a much richer dynamics. Indeed, the survival probability has a
non-vanishing lower bound and the excitation transport is inefficient, except for a particular initial coin state. We
have determined the dependency of the transport efficiency on the initial coin state, the coin operator and the size of
the ring.

Finally, we have shown that the trapping effect can be eliminated by dynamical percolations of the ring provided that
the phase parameter α of the coin operator is non-zero. In such a case, the survival probability decays exponentially
independent of the initial condition. The decay rate is determined by the parameters of the coin and percolations.
However, for α = 0 the stationary states are resilient to percolations and the trapping effect is preserved. We note
that in the framework of continuous-time quantum walks similar effects have been found in [51–54].

The trapping effect is present also in quantum walks on more complicated graphs driven by higher dimensional
coins. It would be interesting to find conditions under which it is robust under percolations, or, on the contrary, what
type of percolation is sufficient to eliminate the trapping effect and allow for efficient transfer. In this way studies of
percolated quantum walk could contribute to our understanding of transport along complicated molecular structures
and ways how to control it.

Finally, let us briefly comment on the possible physical implementations of the lazy walk model. Since the model
requires three internal states, usual optical implementations based on polarization are not applicable, at least not
in a straightforward way. However, one may employ optical angular momentum [55] or interferometric multiports
[56]. Additional candidates might be realizations of quantum walk in phase space [57, 58] or using trapped three-level
atoms [59, 60].
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APPENDIX A: SURVIVAL PROBABILITY FOR A TWO-STATE WALK

In this appendix we show that the survival probability for a two-state quantum walk model which we have discussed
in Section III is independent of the initial coin state. The key ingredients of the proof are the results of [34] and the
fact that we consider a highly symmetric situation. Namely, the excitation enters the ring exactly opposite of the
sink.

In [34] the authors have studied the absorption problem for a two-state quantum walk on a finite line with vertices

{0, . . . , n} with sinks on both ends 0 and n. In particular, they have focused on the probability P
(n)
k (t, ψC) that the

excitation starting the walk at the vertex k with the initial state ψC = (ψL, ψR)
T

is absorbed at the vertex 0 after t
steps of the walk. By ψL,R we have denoted the amplitudes of the initial coin state in the standard basis, i.e.

|ψC〉 = ψL|L〉+ ψR|R〉.
It is straightforward to see that the survival probability P(t) for the two-state walk on a ring of size 2N can be written
equivalently as

P(t) = 1−
(
P

(2N)
N (t, ψC) + P̃

(2N)
N (t, ψC)

)
, (A1)

where we have denoted by P̃
(2N)
N (t, ψC) the probability of absorption at the vertex 2N . We now prove that the sum

P
(2N)
N (t, ψC) + P̃

(2N)
N (t, ψC) is independent of the initial coin state ψC . It was shown in [34] that the probability of

absorption at 0 can be expressed in the form

P
(2N)
N (t, ψC) = C1(t)|ψL|2 + C2(t)|ψR|2 + 2Re (C3(t)ψ∗LψR) . (A2)

The coefficients Ci(t) are determined by the coin operator. For the choice of the coin (4) they read

C1(t) =
∣∣∣ρp(2N)

N (t) +
√

1− ρ2r(2N)
N (t)

∣∣∣
2

,

C2(t) =
∣∣∣
√

1− ρ2p(2N)
N (t)− ρr(2N)

N (t)
∣∣∣
2

,

C3(t) =
(
ρp

(2N)
N (t) +

√
1− ρ2r(2N)

N (t)
)∗ (√

1− ρ2p(2N)
N (t)− ρr(2N)

N (t)
)
.

The quantities p
(2N)
N (t) and r

(2N)
N (t) were analyzed in [34]. They also depend on the coin operator and for the choice

of the coin (4) they are real valued. Hence, we can omit the complex conjugation in the formula for C3(t) since all
terms involved are real.

Let us now turn to the probability of absorption at the vertex 2N . This was not considered in [34], however, it is
straightforward to map it to the probability of absorption at the vertex 0. Indeed, by interchanging the coin states |L〉
and |R〉 we can express P̃

(2N)
N (t, ψC) as the probability of absorption at 0 in a quantum walk with the coin operator

C̃(2) =

(
−ρ

√
1− ρ2√

1− ρ2 ρ

)
,

starting with the initial coin state

|ψ̃C〉 = ψR|L〉+ ψL|R〉.
Here we also use the symmetry of the problem, i.e. the fact that the distance from the starting point of the walk to
sinks at 0 and 2N is the same. Modifying the formula (A2) accordingly we find that the probability of absorption at
the vertex 2N reads

P̃
(2N)
N (t, ψC) = C̃1(t)|ψR|2 + C̃2(t)|ψL|2 + 2Re

(
C̃3(t)ψLψ

∗
R

)
,

with coefficients C̃i(t) given by

C̃1(t) =
∣∣∣−ρp̃(2N)

N (t) +
√

1− ρ2r̃(2N)
N (t)

∣∣∣
2

,

C̃2(t) =
∣∣∣
√

1− ρ2p̃(2N)
N (t) + ρr̃

(2N)
N (t)

∣∣∣
2

,

C̃3(t) =
(
−ρp̃(2N)

N (t) +
√

1− ρ2r̃(2N)
N (t)

)(√
1− ρ2p̃(2N)

N (t) + ρr̃
(2N)
N (t)

)
.
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Following [34] we find that the quantities p̃
(2N)
N (t), r̃

(2N)
N (t) are related to p

(2N)
N (t), r

(2N)
N (t) through the formula

p̃
(2N)
N (t) = (−1)N−1p(2N)

N (t),

r̃
(2N)
N (t) = (−1)Nr

(2N)
N (t).

It is then straightforward to show that

C̃1(t) = C1(t),

C̃2(t) = C2(t),

C̃3(t) = −C3(t).

Hence, the sum of the probabilities of absorption at vertices 0 and 2N reads

P
(2N)
N (t, ψC) + P̃

(2N)
N (t, ψC) = C1(t) + C2(t) +

+2Re (C3(t) (ψ∗LψR − ψLψ∗R)) , (A3)

where we have used the normalization condition of the initial coin state

|ψL|2 + |ψR|2 = 1.

Moreover, since C3(t) is real and ψ∗LψR−ψLψ∗R is purely imaginary the last term in (A3) vanishes. Hence, we find that
(A3) is independent of the initial coin state and through the relation (A1) the same holds for the survival probability
P(t). This completes our proof.
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We analyze the asymptotic scaling of persistence of unvisited sites for quantum walks on a line. In
contrast to the classical random walk there is no connection between the behaviour of persistence and
the scaling of variance. In particular, we find that for a two-state quantum walks persistence follows
an inverse power-law where the exponent is determined solely by the coin parameter. Moreover,
for a one-parameter family of three-state quantum walks containing the Grover walk the scaling of
persistence is given by two contributions. The first is the inverse power-law. The second contribution
to the asymptotic behaviour of persistence is an exponential decay coming from the trapping nature
of the studied family of quantum walks. In contrast to the two-state walks both the exponent of
the inverse power-law and the decay constant of the exponential decay depend also on the initial
coin state and its coherence. Hence, one can achieve various regimes of persistence by altering the
initial condition, ranging from purely exponential decay to purely inverse power-law behaviour.

I. INTRODUCTION

Quantum walks [1–3] represent a versatile tool in quantum information processing with applications ranging from
search algorithms [4–7], graph isomorphism testing [8–10], finding structural anomalies in graphs [11–13] or perfect
state transfer [14–18]. Moreover, quantum walks were shown to be universal tools for quantum computation [19, 20].

One fundamental characterization of classical random walks on infinite lattices [21] is recurrence or transience.
Random walk is said to be recurrent when the probability to return to the starting point at some later time (so-called
Pólya number) is unity, and transient otherwise. In fact, recurrence ensures that any lattice point is visited with
certainty. Pólya has shown [22] that for unbiased random walks this property depends on the dimension of the lattice.
In particular, random walks are recurrent in dimensions 1 and 2 and transient on cubic and higher dimensional lattices.
This result originates from the diffusive behaviour of a classical random walk.

Since measurement has a non-trivial effect on the state of the quantum system, one has to specify a particular
measurement scheme to extend the concept of recurrence to the domain of quantum walks. One possibility is to
consider a scheme [23] where the quantum walk is restarted from the beginning after the measurement, and in each
iteration one additional step is performed. In this way the effect of measurement on the quantum state is minimized.
Within this measurement scheme the Pólya number of a quantum walk depends not only on the dimension of the
lattice, but also on the coin operator which drives the walk, and in some cases also on the initial coin state [24]. The
ballistic nature of quantum walks implies that most of them are transient already in dimension 2. However, some
quantum walks, such as the Grover walk [25–29], show the so-called trapping effect (or localization). This feature can
be employed to construct recurrent quantum walks in arbitrary dimension [24].

Another scheme is to continue with the quantum walk evolution after the measurement [30]. The effect of frequent
measurement is that the quantum walks are transient already on a one-dimensional lattice, as follows from [31].
Recurrence of quantum state within this measurement scheme has been analyzed for general discrete time unitary
evolution in [32]. The authors have found that the expectation value of the first return time is quantized, i.e. it is
either infinite or an integer. More recently, it was shown [33] that this property is preserved even in iterated open
quantum dynamics, provided that the corresponding superoperator is unital in the relevant part of the Hilbert space.
Moreover, the notion of monitored recurrence was extended to a finite-dimensional subspace in [34]. In such case the
averaged expected return time is a rational number.

Persistence describes the probability that a given site remains unvisited until certain number of steps. As such,
it can be viewed as a complementary event to that of recurrence. For classical random walks on a line and a plane
persistence of any site tends to zero for large number of steps. In particular, on one-dimensional lattice persistence
obeys an inverse power-law with exponent 1/2, which follows in a straightforward way from the diffusive behaviour
of a random walk [35].

In the context of quantum walks persistence was first introduced in [36]. The authors have analyzed persistence
for two-state Hadamard walk on a line within the measurement scheme of [23], i.e. when the quantum walk is
restarted after the measurement. It was found that persistence of any site follows an inverse power-law with exponent
determined numerically as λ ≈ 0.318. In contrast to the classical case, no clear connection of the exponent to the
spreading properties of the quantum walk was found.

In the present paper we give analytical explanation of the results found in [36]. The study of persistence is extended
to a one-parameter set of two-state quantum walks on a line. We confirm that persistence obeys an inverse power-
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law. The exponent is determined solely by the parameter of the coin operator. Hence, there is no connection of the
exponent to the scaling of variance like in the classical random walk. Moreover, we analyze persistence of sites for a
set of three-state quantum walks [37–39] which involves the familiar Grover walk [26–28] as a special case. We find
that persistence exhibits a more complicated asymptotic behaviour. In addition to the inverse power-law there is also
an exponential decay which arises from the trapping effect. The analytical results are obtained using the suitable basis
of the coin space formed by the eigenvectors of the coin operator [39]. Both the exponent of the inverse power-law
and the decay rate of the exponential decay depend on the coin parameter and, in contrast to the two-state walk, on
the initial coin state and its coherence. Hence, it is possible to obtain various regimes of persistence, ranging from
pure inverse power-law to pure exponential decay, by choosing different initial condition. Moreover, we find that for
some initial coin states persistence behave differently for lattice sites on the positive and negative half-lines.

The paper is organized as follows: In Section II we review the definition of persistence of site m within a particular
measurement scheme of [23, 36]. We provide an estimate of the asymptotic behaviour of persistence based on the
limit density. Section III is dedicated to the analysis of persistence in two-state quantum walks. In Section IV we
perform similar analysis for a set of three-state quantum walks. More technical details are left for Appendices A and
B. We conclude and present an outlook in Section V.

II. PERSISTENCE OF UNVISITED SITES

In this Section we briefly introduce persistence of a given site and provide and estimate of its asymptotic behaviour.
We follow the measurement scheme used in [23, 36], where the quantum walk is restarted from the beginning after
each measurement. By persistence of a site m we understand the probability that the particular lattice point remains
unvisited until T steps. Since the walk starts at the origin of the lattice we only consider persistence of sites m 6= 0.
We find that this probability is given by [36]

Pm(T ) =

T∏

t=1

(1− p(m, t)), (1)

where p(m, t) denotes the probability to find the quantum particle at position m after t steps of the quantum walk.
Let us now turn to the approximation of persistence for large T . For this purpose we re-write (1) in the exponential

form

Pm(T ) = exp

(
ln

(
T∏

t=1

(1− p(m, t))
))

= exp

(
T∑

t=1

ln(1− p(m, t))
)
.

We replace the logarithm by the first order Taylor expansion and arrive at

Pm(T ) ≈ exp

(
−

T∑

t=1

p(m, t)

)
. (2)

Next, we use the limit density w(v) derived from the weak-limit theorem [40] to estimate the exact probability p(m, t)
by

p(m, t) ≈ 1

t
w
(m
t

)
.

Finally, we estimate the sum in (2) with an integral

Im(T ) =

T∫

1

1

t
w
(m
t

)
dt (3)

and obtain the approximation of persistence

Pm(T ) ≈ exp (−Im(T )) . (4)

In the following we analyze persistence of unvisited sites for two- and three-state quantum walks on a line. Detailed
evaluations of the integral (3) are left for the Appendices.
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III. TWO-STATE WALK ON A LINE

Let us start our analysis with the two-state quantum walk on a line with the coin operator

C(ρ) =

(
ρ

√
1− ρ2√

1− ρ2 −ρ

)
, 0 < ρ < 1.

The coin parameter ρ determines the speed of propagation of the wave packet on the line [41]. For ρ = 1/
√

2 we
obtain the familiar Hadamard walk [31].

Suppose that the initial coin state of the particle was

|ψC〉 = a|L〉+ b|R〉.

The limiting probability density for the two-state quantum walk is given by [42, 43]

w(v) =

√
1−ρ2
ρ (1− vΛ(a, b))

π (1− v2)
√

1− v2

ρ2

,

where Λ is determined by the initial coin state and the coin parameter

Λ(a, b) = |a|2 − |b|2 +

√
1− ρ2
ρ

(
ab+ ba

)
.

Before we turn to the persistence we first simplify the dependence on the initial coin state Λ by changing the basis of
the coin space. Following the idea of [44] we consider the basis formed by the eigenvectors of the coin operator

|χ+〉 =

√
1 + ρ

2
|L〉+

√
1− ρ

2
|R〉,

|χ−〉 = −
√

1− ρ
2
|L〉+

√
1 + ρ

2
|R〉, (5)

which satisfy the relations

C(ρ)|χ±〉 = ±|χ±〉.

We decompose the initial coin state of the walk into the eigenvector basis as

|ψC〉 = h+|χ+〉+ h−|χ−〉.

From (5) we find that the coefficients of the initial coin state in the standard basis a and b are related to the eigenbasis
coefficients h± by

a =

√
1 + ρ√

2
h+ −

√
1− ρ√

2
h−,

b =

√
1− ρ√

2
h+ +

√
1 + ρ√

2
h−.

In the new basis the factor Λ(a, b) becomes

Λ(h+, h−) =
2|h+|2 − 1

ρ
.

The asymptotic probability density thus simplifies into

w(v) =

√
1−ρ2
ρ

(
1− v

ρ (2|h+|2 − 1)
)

π (1− v2)
√

1− v2

ρ2

(6)
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Let us now turn to persistence. We leave the details of evaluation of the integral (4) for Appendix A. We find that
for large T the function Im(T ) grows like a logarithm

Im(T ) ∼ λ ln

(
T

|m|

)
,

where the pre-factor reads

λ =

√
1− ρ2
ρπ

. (7)

Hence, we find that in the asymptotic regime persistence of site m follows an inverse power-law

Pm(T ) ∼
(
T

|m|

)−λ
, (8)

The exponent λ is independent of the initial coin state. It is determined solely by the coin operator, i.e. by the value
of ρ. Note that for ρ = 1/

√
2, i.e. the Hadamard walk, we find that λ = 1

π ≈ 0.318, which is in agreement with the
numerical result obtained in [36].

Our results are illustrated in Figures 1-3. In Figure 1 we show the influence of the initial coin state. In the first
two plots we display the probability distribution of the two-state quantum walk with the coin parameter ρ = 1/

√
2,

i.e. the Hadamard walk. In all Figures grey circles represent the data-points obtained from numerical simulation.
The red curves correspond to the asymptotic probability density given by (6). For the upper plot we have chosen the

initial coin state |ψ(1)
C 〉 = |χ−〉. The resulting probability density shows only one peak on the right. In the middle plot

the initial coin state was chosen according to |ψ(2)
C 〉 = 1√

2
(|χ+〉+ |χ−〉). This state leads to a symmetric distribution.

Despite the differences in the probability distributions the persistence shows the same asymptotic scaling, as we
illustrate in the last figure. Here we display the persistence of site m = 2 as a function of the number of steps T . To
unravel the inverse power-law behavior we use log-log scale. The grey circles correspond to the numerical simulation
and the red curves show the inverse power-law (8).

In Figure 2 we illustrate the influence of the coin parameter ρ. In the first two plots we show the probability
distribution of the two-state quantum walk with the initial coin state |ψC〉 = 1√

2
(|χ+〉 + |χ−〉). For the upper plot

the coin parameter is ρ1 = 0.2. In the middle plot we have chosen the coin parameter ρ2 = 0.8. We see that the
coin parameter directly affects the speed at which the walk spreads through the lattice [41]. The lower plot shows
the difference in the scaling of persistence of site m = 2 for different values of ρ. We use log-log scale to unravel the
scaling of persistence. We find that the exponent of the inverse power-law decreases with increasing value of ρ, in
accordance with (7).

Finally, Figure 3 illustrates that the asymptotic behaviour of persistence is independent of the actual position m.
The upper plot displays the probability distribution of the two-state walk with coin parameter ρ = 0.5 and the initial
coin state |ψC〉 = |χ+〉. This initial condition leads to a density which is the most biased towards left, as indicated by
the presence of only one peak. In the lower plot we show persistence of sites m = 2 and m = −2 on a log-log scale.
Despite the differences in the intermediate regime, the slope of both curves is the same, in agreement with (8).

To conclude this Section, we have found that for the two-state quantum walk on a line persistence of unvisited sites
obeys an inverse power-law (8) with exponent (7) determined only by the coin parameter.

IV. THREE-STATE WALK ON A LINE

Let us now turn to the three-state walk on a line. Here the particle is allowed to move to the left, stay at its
position or move to the right. We denote the corresponding orthogonal coin states by |L〉, |S〉 and |R〉. As for the
coin operator we consider the one which was studied in [37–39]. In the standard basis {|L〉, |S〉, |R〉} the coin operator
is given by the matrix

C(ρ) =




−ρ2 ρ
√

2− 2ρ2 1− ρ2
ρ
√

2− 2ρ2 2ρ2 − 1 ρ
√

2− 2ρ2

1− ρ2 ρ
√

2− 2ρ2 −ρ2


 , (9)

with parameter ρ ∈ (0, 1). Quantum walks with such a coin operator represent a one-parameter extension of the

familiar three-state Grover walk [26–28], which corresponds to the choice of ρ = 1/
√

3. Indeed, the results of [39]
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FIG. 1: Probability density and persistence in dependence on the choice of the initial coin state for the Hadamard walk
(ρ = 1/

√
2). The first two plots show the probability distribution of the Hadamard walk after t = 100 steps for two different

initial coin states |ψ(1,2)
C 〉 on a semi-log scale. In the lower plot we display persistence of site m = 2 as a function of the number

of steps T on a log-log scale. Despite the differences in the probability distributions the asymptotic scaling of persistence is
independent of the initial state, in accordance with (8).
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FIG. 2: Probability density and persistence in dependence on the choice of the coin parameter ρ. The first two plots show the
probability distribution of the two-state quantum walk on a semi-log scale. In both situations the initial coin state was chosen
as |ψC〉 = 1√

2
(|χ+〉+ |χ−〉), which leads to symmetric probability distribution. In the upper plot the coin parameter is ρ1 = 0.2

while in the middle plot we have chosen ρ2 = 0.8. The lower plot shows scaling of persistence of site m = 2 for different values
of ρ1,2 on a log-log scale. The exponent of the inverse power-law (8) decreases with increasing value of ρ, as predicted by (7).202
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FIG. 3: The first plot shows the probability distribution for the two-state walk with ρ = 0.5. The initial coin state is |ψC〉 = |χ+〉,
which results in density with only one peak on the left. The lower plot illustrates the behaviour of persistence of sites m = 2
and m = −2. Both curves have the same slope (7) which is determined solely by the coin parameter ρ.

have shown that the considered quantum walks share the same features and the coin factor ρ is a scaling parameter
which determines the rate of spreading of the three-state quantum walk across the line.

To evaluate persistence of unvisited sites we estimate the exact probability distribution p(m, t) for large number of
steps t. In contrast to the two-state walk, the properties of the probability distribution are not fully captured by the
limit density w(v). Indeed, the three-state quantum walk leads to the trapping effect [26–28, 38, 39], which means
that the probability of finding the particle at position m has a non-vanishing limit for t approaching infinity. We
denote the limiting value

lim
t→∞

p(m, t) = p∞(m),

as the trapping probability. Hence, for large t we approximate the probability to find the particle at position m at
time t with the sum

p(m, t) ≈ 1

t
w
(m
t

)
+ p∞(m).

The limit density w(v) and the trapping probability p∞(m) were analyzed in [38, 39]. We follow the results of [39]
since they have simpler form due to the use of a more suitable basis of the coin space. In particular, the basis of the
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coin space was constructed from the eigenvectors of the coin operator (9) which reads

|σ+〉 =

√
1− ρ2

2
|L〉+ ρ|S〉+

√
1− ρ2

2
|R〉,

|σ−1 〉 =
ρ√
2
|L〉 −

√
1− ρ2|S〉+

ρ√
2
|R〉,

|σ−2 〉 =
1√
2

(|L〉 − |R〉).

The vectors satisfy the eigenvalue equations

C(ρ)|σ+〉 = |σ+〉, C(ρ)|σ−i 〉 = −|σ−i 〉, i = 1, 2.

We decompose the initial coin state into the eigenstate basis according to

|ψC〉 = g+|σ+〉+ g1|σ−1 〉+ g2|σ−2 〉.

The limiting probability density then reads [39]

w(v) =

√
1− ρ2

π(1− v2)
√
ρ2 − v2

(
1− |g2|2 − (10)

−(g1g2 + g1g2)
v

ρ
+ (|g2|2 − |g+|2)

v2

ρ2

)
.

The trapping probability is given by [39]

p∞(m) =





2−2ρ2
ρ4 Q2m|g+ + g2|2, m > 0,

Q
ρ2

{
|g+|2 + (1− ρ2)|g2|2

}
, m = 0,

2−2ρ2
ρ4 Q2|m||g+ − g2|2, m < 0

(11)

where Q depends on the coin parameter ρ

Q =
2− ρ2 − 2

√
1− ρ2

ρ2
.

Let us estimate the persistence of site m. We approximate the sum in (2) with

T∑

t=1

p(m, t) ≈ Im(T ) +

T∑

t=d |m|
ρ e

p∞(m),

where Im(T ) is defined in (3). The sum on the right hand side is trivial

T∑

t=d |m|
ρ e

p∞(m) =

(
T −

⌈ |m|
ρ

⌉)
p∞(m).

Here dxe denotes the ceiling of x, i.e. the smallest integer not less than x. The integral Im(T ) is evaluated in
Appendix B. We find that Im(T ) asymptotically grows like a logarithm

Im(T ) ∼ λ ln

(
T

|m|

)
,

where the pre-factor reads

λ =

√
1− ρ2
πρ

(
1− |g2|2

)
.
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We conclude that for the three-state quantum walk on a line persistence of site m behaves asymptotically like

Pm(T ) ∼
(
T

|m|

)−λ
e−p∞(m)T . (12)

We see that there are two contributions to persistence. Similarly to the two-state walk there is an inverse power-
law. In addition, the trapping effect contributes with the exponential decay. However, the behavior of persistence
depends on the initial state, in contrast to the two-state walk. Indeed, both λ and the trapping probability p∞(m) are
determined by the initial condition. The exponent λ depends only on the probability |g2|2 to find the initial coin state
|ψC〉 in the eigenstate |σ−2 〉. On the other hand, the rate of the exponential decay is determined by the interference
of the amplitudes g+ and g2. In the following we discuss various initial conditions to illustrate our result.

Let us first consider the initial coin state |ψC〉 = |σ+〉. In such a case the general formula (12) for the asymptotic
behaviour of persistence turns into

P(g+)
m (T ) ∼

(
T

|m|

)−λ
e−γ(m)T , (13)

with the exponent given by

λ =

√
1− ρ2
πρ

, (14)

and the decay constant

γ(m) =
2(1− ρ2)

ρ4
Q2|m|. (15)

We see that both contributions, namely the inverse power-law and the exponential decay, are present. For illustration
of this result, we show in Figure 4 the probability distribution and persistence for the three-state walk with the coin
parameter ρ = 0.8. The first plot displays the probability distribution after t = 100 steps. The grey circles corresponds
to the numerical simulation, the red curve depicts the asymptotic probability density (10) and the blue dashed curve
corresponds to the trapping probability (11). The second plot illustrates persistence of sites m = 2 and m = 10 on
the log-log scale. For m = 2 the decay of persistence is faster than inverse power-law. Indeed, for large number of
steps the exponential decay starts to play a dominant role. On the other hand, for m = 10 we do not observe any
deviation from the inverse power-law at the considered time-scale. This is due to the fact that the decay constant
(15) itself decreases exponentially with the distance from the origin. The last plot, where we display persistence of
site m = 2 on the logarithmic scale, illustrates that Pm(T ) decays exponentially in the long-time limit.

Let us now turn to the initial coin state |ψC〉 = |σ−2 〉. The general formula for persistence of site m (12) for g2 = 1
reduces into purely exponential decay

P(g2)
m (T ) ∼ e−γ(m)T , (16)

where the decay rate γ(m) is given by (15). To illustrate this effect, we display in Figure 5 the probability distribution

and persistence for the Grover walk, i.e. ρ = 1/
√

3. The first plot shows the probability distribution after t = 100
steps. The second plot displays persistence of sites m = 1, m = 2 and m = 5. The decay rate (15) decreases
exponentially with the growing distance from the origin. Hence, already for m = 5 persistence essentially saturates
on the considered time-scale. The last plot shows persistence of site m = 2 on a log-scale. The figure illustrates that
the decay of persistence is indeed purely exponential.

Next, we consider the initial coin state |ψC〉 = |σ−1 〉. In such a case the expression (12) reduces to a pure inverse
power-law

P(g1)
m (T ) ∼

(
T

|m|

)−λ
, (17)

with the exponent λ given by (14). To illustrate this feature, we show in Figure 6 the probability distribution
and persistence for the three-state walk with the coin parameter ρ = 0.6. The upper plot displays the probability
distribution after 100 steps. We find that for the particular initial state |ψC〉 = |σ−1 〉 the trapping effect disappears.
Indeed, according to (11) we find that p∞(m) vanishes if g+ = g2 = 0. The lower plot displays persistence of sites
m = 2 and m = 5. The log-log scale unravels that the scaling is given only by the inverse power-law (17).
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FIG. 4: Probability distribution and persistence for the three-state walk with ρ = 0.8 starting with the coin state |ψC〉 = |σ+〉.
In the first plot we show the probability distribution after t = 100 steps. The second plot displays persistence (13) of sites
m = 2 and m = 10 on the log-log scale. For m = 2 the decay of persistence is faster than the inverse power-law. The deviation
is due to the exponential decay which starts to play a dominant role for large T . We do not observe this effect for m = 10,
since the decay constant decreases exponentially with the distance from the origin. The third plot, which shows persistence of
site m = 2 on the log-scale, confirms that Pm(T ) decays exponentially.206
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FIG. 5: Probability distribution and persistence for the three-state Grover walk starting with the coin state |ψC〉 = |σ−2 〉. In the
upper plot we show the probability distribution after t = 100 steps. The middle plot displays persistence (16) of sites m = 1,
m = 2 and m = 5. The decay is exponential but the rate drops down very fast with the growing distance from the origin. The
lower plot with the log-scale on the y-axis illustrates that the decay of persistence is indeed purely exponential (16).
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FIG. 6: Probability distribution and persistence for the three-state walk with ρ = 0.6 starting with the coin state |ψC〉 = |σ−1 〉.
The upper plot shows the probability distribution after t = 100 steps. For this particular initial state the trapping effect
disappears. The lower plot displays persistence of sites m = 2 and m = 5 on a log-log scale. We find that the scaling is given
by the inverse power-law (17).

Finally, let us point out that the dependence of the trapping probability (11) on the initial coin state can be different
for positive and negative m. This leads to different behavior of persistence for sites on positive and negative half-lines.
As an example, consider the initial coin state

|ψC〉 =
1√
2

(
|σ+〉+ |σ−2 〉

)
. (18)

We find that persistence of sites on positive half-line (m > 0) behaves like

P+
m(T ) ∼

(
T

m

)−λ
e−γ(m)T , (19)

where the exponent reads

λ =

√
1− ρ2
2πρ

, (20)
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and the decay rate is given by

γ(m) =
4(1− ρ2)

ρ4
Q2m.

Hence, for positive m persistence decays exponentially in the asymptotic regime. However, for sites on the negative
half-line (m < 0) persistence obeys only the inverse power-law

P−m(T ) ∼
(
T

|m|

)−λ
, (21)

with the exponent λ given by (20). We point out that coherence of the initial coin state is crucial for this effect.
Indeed, consider the initial coin state given by an incoherent mixture of the basis states

ρC =
1

2
|σ+〉〈σ+|+ 1

2
|σ−2 〉〈σ−2 |.

In such a case persistence is given by the sum of the expressions (16) and (17) with the corresponding exponent
(14) and decay rate (15), independent of the sign of the position m. Hence, there is no asymmetry between negative
and positive m and persistence of all lattice sites decays exponentially in the asymptotic regime. Compared to the
coherent superposition (18) the exponent (14) is larger by a factor of two while the decay rate (15) is smaller by a
factor of two.

We illustrate the results for the initial coin state (18) in Figure 7 where we consider the three-state quantum walk
with the coin parameter ρ = 0.5. In the upper plot we display the probability distribution after 100 steps of the
walk. Notice that the trapping probability, highlighted by the dashed blue curve, is non-zero only on the positive
half-line. The lower plot illustrates the difference in the scaling of persistence for sites on the positive or negative
half-lines. Here we show persistence of sites m = 2 and m = −2 on the log-log scale. We find that for m = −2 the
behavior of persistence is determined only by the inverse power-law (21). On the other hand, for m = 2 the decrease
of persistence is faster. Indeed, for positive m the behavior of persistence is dominated by the exponential decay (19)
in the long-time limit. This is illustrated in the last plot, where we show persistence of site m = 2 on the log-scale.

V. CONCLUSIONS

In the present paper persistence of unvisited sites for two- and three-state quantum walks on a line was analyzed.
We have found that in contrast to the classical random walk there is no connection between the asymptotic behavior of
persistence and scaling of the variance with the number of steps. Concerning the two-state walk, we have analytically
confirmed the numerical result obtained in [36] for the Hadamard walk. Moreover, we have extended the analysis
to a one-parameter set of two-state quantum walks. In particular, we have shown that persistence of unvisited sites
obeys an inverse power-law independent of the initial condition and the actual position of the site. The exponent of
the inverse power-law is determined by the parameter of the coin operator.

The main result of the paper is the behaviour of persistence for three-state quantum walks. We have focused on
a one-parameter family of walks which includes the familiar three-state Grover walk. Due to the trapping effect
displayed by the considered set of quantum walks, the behaviour of persistence is more involved than for the two-state
quantum walks. In particular, we have shown that the asymptotic scaling of persistence is in general determined by a
combination of an inverse power-law and an exponential decay. However, both the exponent of the inverse power-law
and the decay rate of the exponential decline depend on the initial coin state. Therefore, it is possible to obtain various
asymptotic regimes of persistence by choosing proper initial conditions. Moreover, one can employ the asymmetry of
the trapping effect to achieve different asymptotic scaling of persistence for sites on the positive and negative half-line.
All obtained results have been facilitated by using a suitable basis formed by the eigenvectors of the coin operator.
This allows to express persistence in closed and compact form and trace back the ways it is influenced by the initial
state and its coherence.

The present study is limited to the quantum walks on a line. A natural extension is to consider persistence of
unvisited sites in quantum walks on higher-dimensional lattices. It would be interesting if similar effects, such as the
dependency of persistence on the initial condition and various regimes of persistence for different lattice sites, can be
found on more complicated lattices.
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FIG. 7: Probability distribution and persistence for the three-state walk starting with the coin state (18). The coin parameter
was chosen as ρ = 0.5. In the upper plot we display the probability distribution after t = 100 steps. Note that the trapping
probability is non-zero only on the positive half-line. The lower plot shows persistence of sites m = 2 and m = −2 on the
log-log scale. For m = −2 the behavior of persistence is determined only by the inverse power-law (21). However, for m = 2
the decrease of persistence is exponential (19), as we illustrate in the last plot with the logarithmic scale.210
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APPENDIX A: INTEGRAL Im(T ) FOR A TWO-STATE WALK

We dedicate this appendix to evaluating integral Im(T ) defined in (3) for the two-state walk. The limit density
w(v) is given by the formula (6). Since the limit density (6) is non-zero only for |v| ≤ ρ, we replace the lower bound
in the integral (3) with |m|/ρ. With the substitution u = m

ρt we rewrite Im(T ) into the form

Im(T ) =

√
1− ρ2
ρπ

1∫

|m|
ρT

1− sgn(m)u(2|h+|2 − 1)

u (1− ρ2u2)
√

1− u2
du.

Evaluating the integral we obtain

Im(T ) =

√
1− ρ2
ρπ

ln

(
ρT

|m|

(
1 +

√
1− m2

ρ2T 2

))
+

1

π
arctan

(
ρ√

1− ρ2

√
1− m2

ρ2T 2

)
+

+sgn(m)
2|h+|2 − 1

ρ

(
1

π
arctan

(
|m|
ρT

√
1− ρ2

1− m2

ρ2T 2

)
− 1

2

)
.

Moreover, for large number of steps T this function tends to

Im(T ) ≈
√

1− ρ2
ρπ

ln

(
2ρT

|m|

)
− arcsin ρ

π
+ sgn(m)

2|h+|2 − 1

2ρ
.

Therefore, for large T the function Im(T ) grows like a logarithm

Im(T ) ∼ λ ln

(
T

|m|

)
,

where the pre-factor reads

λ =

√
1− ρ2
ρπ

.

APPENDIX B: INTEGRAL Im(T ) FOR A THREE-STATE WALK

In this appendix we evaluate the integral (3) for a three-state quantum walk, i.e. the limit density is given by (10).
Using the substitution u = m

ρt we rewrite Im(T ) into the form

Im(T ) =

√
1− ρ2
ρπ

1∫

|m|
ρT

1− |g2|2 − (g1g2 + g1g2)u+ (|g2|2 − |g+|2)u2

u(1− u2)
√

1− u2
du.
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Evaluating the integral we obtain the following result

Im(T ) =

√
1− ρ2
πρ

(
1− |g2|2

)(
ln

(
ρT

|m|

)
+ ln

(
1 +

√
1− m2

ρ2T 2

))
−

− 1

2π

(
1− |g2|2

)
arctan




2ρ

√(
1− m2

ρ2T 2

)
(1− ρ2)

(
2− m2

ρ2T 2

)
ρ2 − 1


+

1

πρ2

(
|g2|2 − |g+|2

)
arctan


ρ

√
1− m2

ρ2T 2

1− ρ2


−

− 1

2πρ
(g1g2 + g1g2)


π − 2 arctan



|m|
ρT

√
1− ρ2

√
1− m2

ρ2T 2




 .

For large number of steps T this function approaches

Im(T ) ≈
√

1− ρ2
πρ

(
1− |g2|2

)
ln

(
2ρT

|m|

)
+

1

2π

(
1− |g2|2

)
arctan

(
2ρ
√

1− ρ2
1− 2ρ2

)
+

+
1

πρ2

(
|g2|2 − |g+|2

)
arctan

(
ρ

√
1

1− ρ2
)
− 1

2ρ
(g1g2 + g1g2)

Wee see that Im(T ) asymptotically grows like a logarithm

Im(T ) ∼ λ ln

(
T

|m|

)
,

where the pre-factor reads

λ =

√
1− ρ2
πρ

(
1− |g2|2

)
.
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[22] G. Pólya, Mathematische Annalen 84, 149 (1921).
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Limit density of 2D quantum walk: zeroes of the weight function
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Properties of the probability distribution generated by a discrete-time quantum walk, such as the
number of peaks it contains, depend strongly on the choice of the initial condition. In the present
paper we discuss from this point of view the model of the two-dimensional quantum walk analyzed
in K. Watabe et al., Phys. Rev. A 77, 062331, (2008). We show that the limit density can be
altered in such a way that it vanishes on the boundary or some line. Using this result one can
suppress certain peaks in the probability distribution. The analysis is simplified considerably by
choosing a more suitable basis of the coin space, namely the one formed by the eigenvectors of the
coin operator.

I. INTRODUCTION

Quantum walks [1–3] were proposed as extensions of the concept of a classical random walk to the unitary evolution
of a quantum particle on a discrete graph or lattice. They have found promising applications in quantum information
processing, e.g. in search algorithms [4], graph isomorphism testing [5], finding structural anomalies in graphs [6],
and perfect state transfer [7]. Moreover, quantum walks were shown to be universal tools for quantum computation
[8].

Suitable tools for the analysis of homogeneous quantum walks on infinite lattice are the Fourier transformation [9]
and the weak-limit theorems [10]. While the properties of many quantum walks on a line are well understood [11–14],
less is know about quantum walks on higher-dimensional latices. Indeed, there are many technical difficulties, e.g.
diagonalization of the evolution operator. One of the few models of 2D quantum walks which is well understood is the
one analyzed in [15]. This model is a one-parameter extension of the 2D Grover walk which preserves its key feature,
namely the trapping effect (or localization) [16]. The coin parameter controls the area covered by the quantum walk,
which in general is an elliptic disc and reduces to a circle for the 2D Grover walk.

In the present paper we focus on the role of the initial conditions on the shape of the probability distribution
resulting from the 2D quantum walk of [15]. We are interested in initial states which lead to non-generic probability
distributions, such as those with reduced number of peaks. In order to find them we first simplify the results of [15]
by converting them to a more suitable basis of the coin space. Following [14] we choose the basis formed by the
eigenvectors of the coin operator. We then discuss various initial coin states which result in non-generic probability
distribution. In particular, we show that the limit density can be set to zero on some line. This can be used to
suppress peaks in the probability distribution.

The paper is organized as follows: First, in Section II the results of [15] are briefly reviewed. Next, we convert
them into more suitable basis to simplify the following analysis. In Section III various initial states which lead to
non-generic probability distributions are discussed. We conclude and present an outlook in Section IV.

II. 2D QUANTUM WALK

Let us first briefly review the results of [15]. The authors have considered a quantum walk on a two-dimensional
square lattice where the particle can in each step move from its present position (x, y) to the nearest neighbours
(x ± 1, y) and (x, y ± 1). These displacements correspond to the four states |R〉 , |L〉, |U〉 and |D〉 which form the
standard basis of the coin space HC . In this standard basis the coin operator is given by the following matrix

C =




−p 1− p
√
p(1− p)

√
p(1− p)

1− p −p
√
p(1− p)

√
p(1− p)√

p(1− p)
√
p(1− p) p− 1 p√

p(1− p)
√
p(1− p) p p− 1


 , (1)

where the parameter p ranges from 0 to 1. For p = 1
2 the coin operator (1) reduces to the familiar 4×4 Grover matrix.

This particular model was analyzed in detail in [16]. Using the Fourier analysis and the weak limit theorem [10] the
authors have derived the limit density ν(vx, vy) of the 2D quantum walk. This allows one to evaluate the asymptotic
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values of all moments of re-scaled position (or pseudo-velocity) through the formula

lim
t→+∞

〈(x
t

)m (y
t

)n〉
=

∫
vmx v

n
y ν(vx, vy)dvxdvy.

The limit density of the 2D quantum walk is given by [15]

ν(vx, vy) = µ(vx, vy)M(vx, vy) + ∆δ0(vx)δ0(vy). (2)

Here µ(vx, vy) denotes the fundamental density which reads [15]

µ(vx, vy) =
2

π2(1− vx + vy)(1 + vx − vy)(1− vx − vy)(1 + vx + vy)
1E , (3)

where 1E denotes the indicator function of the elliptic disc

E =

{
(vx, vy)

∣∣∣∣∣
v2x
p

+
v2y

1− p ≤ 1

}
.

The function 1E equals 1 if the point (vx, vy) belongs to E and zero otherwise. The symbol M(vx, vy) denotes the
weight function which is a second order polynomial in vx and vy

M(vx, vy) =M1 +M2vx +M3vy +M4v
2
x +M5v

2
y +M6vxvy, (4)

with coefficients Mj determined by the coin parameter p and the initial coin state. Its explicit form in the standard
basis is given in [15]. Finally, δ0 denotes the Dirac delta function and ∆ corresponds to the localization probability
around the origin. The second term in (2) ensures that the limit density is properly normalized

∫

E

ν(vx, vy)dvxdvy = 1.

As we illustrate in Fig. 1, generic probability distribution w(x, y, t) resulting from the studied 2D quantum walk
has five characteristic peaks. Four of them are propagating and after t steps of the quantum walk they are located at
positions

x = ±pt, y = ±(1− p)t. (5)

The propagating peaks correspond to the divergencies of the limit density (2) at points

vx = ±p, vy = ±(1− p). (6)

These points lie at the boundary ∂E of the elliptic disc. In addition, the probability distribution w(x, y, t) contains
a stationary peak located at the origin. On the level of the limit density (2) the stationary peak is described by
the Dirac delta function. The peak does not vanish in the asymptotic limit t → +∞. Hence, this feature is usually
called trapping (or localization), since the particle has a non-zero probability to remain close to the origin even in the
limit of large number of steps. The trapping effect arises from the fact that the evolution operator of the studied 2D
quantum walk has, apart from the continuous spectrum, two eigenvalues ±1 with infinite degeneracy [15]. The exact
form of the trapping probability is not know, however, it decays rapidly (exponentially) with the distance from the
origin. However, we will not analyze this feature in the present paper, since we focus on the properties of the limit
density (2).

In the following we consider various initial conditions resulting in non-generic probability distributions. We show
that the weight function (4) can be altered such that it vanishes on the boundary ellipse ∂E or on some line in the
vx, vy plane. Using this result we can suppress certain peaks in the probability distribution. Before we turn to the
detailed analysis of the weight function we first simplify it by turning into a more suitable basis of the coin space.
For this purpose we consider the orthonormal basis formed by the eigenvectors of the coin operator (1), which can be
expressed in the following form

|σ+〉 =

√
1− p

2
(|R〉+ |L〉) +

√
p

2
(|U〉+ |D〉),

|σ1〉 =

√
p

2
(|R〉+ |L〉)−

√
1− p

2
(|U〉+ |D〉),

|σ2〉 =
1√
2

(|R〉 − |L〉),

|σ3〉 =
1√
2

(|D〉 − |U〉). (7)
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FIG. 1: 2D quantum walk with the initial coin state 1/2(|R〉 + |L〉 + |U〉 + |D〉). The coin parameter was chosen as p = 0.8.
On the left we display the probability distribution after 50 steps. The right plot shows the limit density (2). Notice the four
peaks in the probability distribution located at positions given by (5) which correspond to the divergencies of the limit density
(6). The central peak in the left figure corresponds to the trapping probability which is not discussed in the present paper.

The eigenvectors satisfy the relations

C|σ+〉 = |σ+〉,
C|σj〉 = −|σj〉, j = 1, 2, 3. (8)

The initial coin state is decomposed into the eigenvector basis according to

|ψC〉 = g+|σ+〉+ g1|σ1〉+ g2|σ2〉+ g3|σ3〉. (9)

Simple algebra reveals that the coefficients of the weight function in terms of the amplitudes gj are given by

M1 = |g+|2 + |g1|2,

M2 =
1√
p

(g1g2 + g1g2),

M3 =
1√

1− p (g1g3 + g1g3),

M4 =
1

p
(|g2|2 − |g+|2),

M5 =
1

1− p (|g3|2 − |g+|2),

M6 =
1√

p(1− p)
(g2g3 + g2g3). (10)

We see that the termsM1,M4 andM5 are determined by pairs of probabilities, whileM2,M3 andM6 depend on
the interference of a pair of amplitudes, i.e. the coherences between the |σj〉 states. The simple form of (10) allows
us to identify initial coin states which lead to non-generic probability distributions in a straight-forward way.

III. NON-GENERIC PROBABILITY DISTRIBUTIONS

Let us now discuss the role of the initial coin state on the shape of the probability distribution. We begin with the
eigenstate |σ+〉. In such a case the weight function reduces to

M(vx, vy) = 1− v2x
p
− v2y

1− p , (11)
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which vanishes on the boundary ellipse ∂E . Hence, the divergencies of the limit density are suppressed and all
propagating peaks will be absent in the resulting probability distribution. We illustrate this effect in Fig. 2, where
we choose the coin parameter p = 0.4.

FIG. 2: 2D quantum walk with the initial coin state |σ+〉. The coin parameter was chosen as p = 0.4. On the left we display
the probability distribution after 50 steps. Notice the absence of the peaks on ellipse. Indeed, the limit density vanishes at the
boundary, which we illustrate on the right. The central peak corresponds to the trapping effect.

Next, we consider the eigenstate |σ1〉. For this particular initial coin state the trapping effect vanishes, as was
identified already in [15]. We illustrate this feature in Fig. 3 where we take the coin parameter p = 0.6.

FIG. 3: 2D quantum walk with the initial coin state |σ1〉. The coin parameter was chosen as p = 0.6. The left plot shows
the probability distribution after 50 steps. Notice the absence of the central peak. Indeed, for the initial coin state |σ1〉 the
trapping effect vanishes. The right plot illustrates the limit density.

Let us now consider the eigenstate |σ2〉 as the initial coin state. We find that the weight function reduces to

M(vx, vy) =
v2x
p
. (12)

Hence, the limit density vanishes on the line vx = 0. This effect is illustrated in Fig. 4 for the coin parameter p = 0.8.
In a similar way, the choice of the initial coin state |ψC〉 = |σ3〉 leads to the weight function of the form

M(vx, vy) =
v2y

1− p . (13)
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FIG. 4: 2D quantum walk with the initial coin state |σ2〉. The coin parameter was chosen as p = 0.8. On the left we display
the probability distribution after 50 steps of the quantum walk. Notice the suppression of the probability near the line x = 0.
Indeed, the limit density vanishes for vx = 0, as we illustrate in the right plot.

Therefore, for |σ3〉 the density vanishes for vy = 0. This feature is depicted Fig. 5.

FIG. 5: 2D quantum walk with the initial coin state |σ3〉. The coin parameter was chosen as p = 0.7. On the left we display
the probability distribution after 50 steps of the quantum walk. The probability distribution is considerably suppressed along
the y = 0 line, as predicted by the limit density which is present in the right figure.

More generally, when we choose the initial coin state of the form

|ψC〉 = g2|σ2〉+ g3|σ3〉,

the weight function reduces into

M(vx, vy) =

∣∣∣∣
g2√
p
vx +

g3√
1− pvy

∣∣∣∣
2

.

Hence, when both g2 and g3 are real the weight functions vanishes on the line determined by

g2√
p
vx = − g3√

1− pvy. (14)
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We can use this fact to suppress two peaks of the probability distribution. Indeed, choosing the initial coin state as

|ψC〉 =
√

1− p|σ2〉+
√
p|σ3〉, (15)

eliminates the peaks at vx = p, vy = −(1− p) and vx = −p, vy = 1− p. Similarly, for the initial coin state

|ψC〉 =
√

1− p|σ2〉 −
√
p|σ3〉,

the peaks at vx = p, vy = 1− p and vx = −p, vy = −(1− p) vanishes. For illustration of this effect we display in Fig. 6
the probability distribution of the 2D quantum walk with the initial coin state (15) and the coin parameter p = 0.3.

FIG. 6: 2D quantum walk with the initial coin state given by (15). The coin parameter was chosen as p = 0.3. On the left we
display the probability distribution after 50 steps of the quantum walk. Notice that there are only two peaks on the boundary
ellipse. The remaining two are suppressed since they lie on the line (14) where the limit density vanishes. This is illustrated in
the right plot.

Finally, we consider a situation when the weight function reduces to a polynomial only in one variable, either vx or
vy. We find that for g+ = g3 = 0 the weight function reduces to

M(vx, vy) =

∣∣∣∣g1 +
g2√
p
vx

∣∣∣∣
2

.

This means that the weight function vanishes on the line

vx = −g1
g2

√
p,

provided that both g1 and g2 are real. Hence, we can eliminate the peaks on the line vx = ±p by choosing the initial
state

|ψC〉 =
1√

1 + p
(
√
p|σ1〉 ∓ |σ2〉).

Similarly, when we choose g+ = g2 = 0 the weight function reduces to

M(vx, vy) =

∣∣∣∣g1 +
g3√
1− pvy

∣∣∣∣
2

.

This means that the weight function vanishes on the line

vy = −g1
g3

√
1− p,
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provided that both g1 and g3 are real. Hence, we can eliminate the peaks on the line vy = ±(1− p) by choosing the
initial state

|ψC〉 =
1√

2− p (
√

1− p|σ1〉 ∓ |σ3〉).

We illustrate this feature in Fig. 7 where we consider the 2D quantum walk with the initial coin state

|ψC〉 =
1√

1 + p
(
√
p|σ1〉+ |σ2〉), (16)

and the coin parameter p = 0.5.

FIG. 7: 2D quantum walk with the initial coin state given by (16). The coin parameter was chosen as p = 0.5. On the left we
display the probability distribution after 50 steps of the quantum walk. Notice that there are only two peaks on the right-hand
side of the probability distribution. The remaining two are suppressed since they lie on the line vx = −p where the limit density
vanishes. This is illustrated in the right plot.

IV. CONCLUSIONS

We have discussed in detail the role of the initial conditions on the shape of the probability distribution generated
by the 2D quantum walk model analyzed in [15]. The analysis is simplified considerably by converting the results of
[15] into the basis formed by the eigenvectors of the coin operator. It was found that the weight function can vanish
on a certain line in the vx, vy plane. Using this fact one can eliminate a pair of peaks in the probability distribution
with a proper choice of the initial coin state. Moreover, the weight function can vanish on the boundary which leads
to elimination of all propagating peaks.

The properties of the trapping effect were not discussed in the present contribution and remain an open question.
In principle, the explicit form of the trapping probability can be obtained using similar methods as for quantum walks
on a line. There it was found that the trapping probability can be highly asymmetric [13, 14]. In fact, it might be
present on one half-line and vanish completely on the other. It would be interesting to see if similar features can be
found in the present 2D quantum walk model.
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Perfect state transfer by means of discrete-time quantum walk search algorithms on
highly symmetric graphs
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Perfect state transfer between two marked vertices of a graph by means of discrete-time quantum
walk is analyzed. We consider the quantum walk search algorithm with two marked vertices, sender
and receiver. It is shown by explicit calculation that for the coined quantum walks on star graph
and complete graph with self-loops perfect state transfer between the sender and receiver vertex is
achieved for arbitrary number of vertices N in O(

√
N) steps of the walk. Finally, we show that

Szegedy’s walk with queries on complete graph allows for state transfer with unit fidelity in the limit
of large N .

I. INTRODUCTION

Quantum walks [1] have emerged as quantum analogues of a classical random walk on a discrete lattice or a
graph. Both discrete-time [2] and continuous time [3] quantum walks were proposed. Soon, the potential of quantum
walks in quantum information processing was identified [4]. In fact, it was found that both continuous-time [5] and
discrete-time [6] quantum walks are universal models of quantum computation.

One of the most prominent application of quantum walks in quantum information processing is the spatial search
of the unsorted database of N items represented by a graph with a marked vertex. Marking the vertex corresponds
to different dynamics on that node, i.e. different coin operator in the discrete-time quantum walk or different on-site
energy in the continuous-time quantum walk. Discrete-time quantum walk search algorithm was shown to be optimal
for hypercube [7] and for lattices [8] of dimensions d greater than 2, i.e. it finds the marked node after O(

√
N) steps

of the walk. Continuous-time quantum walk was shown to be optimal [9] for search on the complete graph, hypercube
and lattices with d > 4. Moreover, including the coin degree of freedom the continuous-time quantum walk search is
optimal for lattices with d > 2 [10]. Later it was found that high symmetry or connectivity of the graph is in fact not
required for the optimal runtime of the continuous-time quantum walk search algorithm [11–13]. In fact, Chakraborty
et al. [14] have shown that continuous-time quantum walk search algorithm is optimal for almost all graphs. Another
variant of discrete-time coinless quantum walk capable of optimal search was proposed by Szegedy [15]. Szegedy’s
walk on complete graph finds the marked vertex with probability 1/2. Recently, Santos [16] have found that adding
queries to the Szegedy’s walk on the complete graph increases the probability of finding the marked vertex to 1 in the
limit of large N .

Another promising application of quantum walks is the perfect state transfer between two vertices of a graph or
a lattice. There exist two different approaches to the problem. In the first one defines dynamics at each individual
vertex in order to achieve state transfer between two selected vertices. This approach was pursued by Kurzynski and
Wojcik [17], who have designed the local coin operators to achieve perfect state transfer with discrete-time quantum
walk on a circle. The method of [17] is essentially the discrete-time variant of the engineered coupling protocol [18]
in spin chains. In a similar way, Zhan et al. [19] have designed paths using local coin operators of discrete time
quantum walk, either identity matrices or tensor product of Pauli σx, which leads to state transfer on a square lattice.
Yalcinkaya and Gedik [20] have analyzed the state transfer on a circle with fixed coin operator. They have shown that
only identity or Pauli σx achieves state transfer with unit fidelity over arbitrary distance, while Hadamard operator
or other mixing coins allow for perfect state transfer over finite distances only. In these models [17, 19, 20] the
transfer of the internal coin state is also possible. Second approach, where one modifies the dynamics only at vertices
which want to communicate the quantum state, was proposed by Hein and Tanner [21]. The authors have considered
discrete-time quantum walk search algorithm on a lattice with two marked vertices, sender and receiver, and showed
that initializing the algorithm on the sender vertex the walk will reach the receiver vertex with high probability.
In this scenario only the transfer of particle from one vertex to the other is considered, instead of the transfer of
arbitrary internal coin state. For finite graphs, especially cycles and their variants, this approach was analyzed by
[22, 23] in both discrete-time and continuous-time models. More recently, Chakraborty et al. [14] have shown that in
the continuous-time quantum walk scenario it is possible to achieve perfect state transfer for almost any graph in the
limit of large size of the graph N .

In the present paper we follow the idea of Hein and Tanner [21] for perfect state transfer by means of discrete-time
quantum walk on highly symmetric graphs. We focus on such graphs where the discrete-time quantum walk search
algorithm succeeds in finding the marked vertex with certainty, namely the star graph and complete graph with self-
loops [8, 25]. We also consider Szegedy’s walk with queries on the complete graph [16] where unit success probability
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is reached in the limit of large size of the graph N . We explicitly show that the algorithms are capable of state transfer
between the sender and the receiver vertices in O(

√
N) steps. The method is analogous to the analysis of the search

algorithms on the corresponding graphs [8, 16, 24, 25]. Namely, we determine the invariant subspace of the evolution
operator of the walk which includes the sender and the receiver states. Since the distance between the sender and the
receiver vertices in the models discussed in the present paper is independent of the size of the graph N the dimension
of the invariant subspace is also independent of N . Similar dimensional reduction due to the high symmetry of the
graph [26] was also applied previously in analysis of anomaly identification on star graphs [27, 28] and continuous-time
quantum walk search algorithms [12]. In particular, the invariant subspace has dimension 3 for the star graph, 5 for
the complete graph with self-loops and 7 for the Szegedy’s walk with queries on the complete graph. This fact greatly
reduces the complexity of the problem. Indeed, we only have to deal with the effective evolution operator which is
a fixed size matrix with matrix elements depending on the size of the graph N . For star graph and complete graph
with self-loops the effective evolution operator can be diagonalized analytically and the problem of state transfer can
be solved exactly. We show that for both graphs the quantum walk achieves perfect state transfer, i.e. the particle is
transferred with unit probability, for arbitrary size of the graph N . In the case of the Szegedy’s walk with queries on
complete graph we show that the particle is transferred with unit probability in the limit of large N .

Our manuscript is organized as follows: In Section II we analyze the perfect state transfer in the coined quantum
walk on the star graph. Section III is devoted to perfect state transfer in the coined quantum walk on the complete
graph with self-loops. Finally, state transfer in the Szegedy’s walk with queries on the complete graph is discussed in
Section IV. We summarize our results in the conclusions of Section V.

II. STAR GRAPH

Let us begin with the state transfer between two vertices of a star graph by means of a discrete-time quantum walk.
Discrete-time quantum walk search algorithm on the star graph is exactly equivalent to the Grover search algorithm
[29], hence, it finds the marked vertex with unit probability. We show by explicit calculation that the algorithm also
achieves perfect state transfer.

Star graph consists of a central vertex labeled as 0 which is connected to N external vertices with labels 1 to N .
Discrete-time quantum walk on the star graph can be defined as a scattering walk [27, 28] or as the usual coined
quantum walk. Both models are equivalent [30, 31], and since the coined walk will be used in the following Section III
we pursue this approach. We consider a quantum walk where the particle jumps from the external vertices to the
central vertex and back. The position space is spanned by the vectors |j〉p, with j = 0, . . . , N , corresponding to the
particle being at the vertex j. The coin space has to be defined separately for the external vertices and for the central
vertex. At the external nodes the coin space is one-dimensional, since the particle can jump only to the central vertex
0. We denote the coin state as |0〉c. At the central node the coin space has a dimension N , as the particle is allowed
to jump to any external vertex j, with j = 1, . . . , N . We denote the corresponding coin states as |j〉c. The complete
Hilbert space of the discrete-time quantum walk on the star graph is therefore spanned by vectors

|j〉p ⊗ |0〉c ≡ |j, 0〉,
|0〉p ⊗ |j〉c ≡ |0, j〉,

where j runs from 1 to N . The first index corresponds to the vertex and the second index corresponds to the coin
state.

The evolution operator of a single step of the walk can be written as a product of the step operator S and the coin
operator C

U = S · C. (1)

The walk describes the particle hopping between the external vertices and the central node. Hence, the step operator
is given by

S =

N∑

j=1

(|j, 0〉〈0, j|+ |0, j〉〈j, 0|) .

Let us now turn to the coin operator. At the external nodes, where the coin space is one-dimensional, we choose the
coin operator to act as identity. However, for the sake of state transfer, we have two marked vertices s (sender) and r
(receiver), where the coin acts as a phase shift of π. At the central node the states |j〉c form an N -dimensional space,
and we choose the coin operator to act there as the Grover diffusion operator

G = 2|ψS〉c〈ψS | − IN , (2)
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where |ψS〉c denotes the symmetric superposition of all basis states |j〉c

|ψS〉c =
1√
N

N∑

j=1

|j〉c, (3)

and IN is the identity operator on the Hilbert space of dimension N . Hence, the coin operator is defined as

C = (IN − 2|s〉p〈s| − 2|r〉p〈r|)⊗ |0〉c〈0|+ |0〉p〈0| ⊗G.

After some algebra we find that the evolution operator (1) can be re-written as

U =

N∑

j=1

|0, j〉〈j, 0| − 2|0, s〉〈s, 0| − 2|0, r〉〈r, 0|+

+
2

N

N∑

i,j=1

|i, 0〉〈0, j| −
N∑

j=1

|j, 0〉〈0, j|. (4)

We start the walk in the sender vertex, i.e. the initial state is

|ψ(0)〉 = |s, 0〉.

The state of the walk after t steps is given by

|ψ(t)〉 = U t|ψ(0)〉.

We will show that after O(
√
N) steps the particle will be on the receiver vertex, i.e. in the state |r, 0〉. Clearly, the

walk is bipartite, since in the odd steps the particle is at the central node and in the even steps it is at the external
nodes. Since we want to analyze the possibility of state transfer between two external nodes s and r we focus only
on the square of the evolution operator. From the expression (4) the action of U2 on the states |j, 0〉 is then easily
found to be

U2|j, 0〉 =
2

N

∑

i6=j
|i, 0〉 −

(
1− 2

N

)
|j, 0〉, j 6= s, r

U2|s, 0〉 = − 2

N

∑

i 6=s
|i, 0〉+

(
1− 2

N

)
|s, 0〉,

U2|r, 0〉 = − 2

N

∑

i 6=r
|i, 0〉+

(
1− 2

N

)
|r, 0〉. (5)

Using these expressions one shows that the following three orthogonal states

|α1〉 = |s, 0〉,
|α2〉 = |r, 0〉,

|α3〉 =
1√
N − 2

∑

j 6=s,r
|j, 0〉, (6)

form an invariant subspace with respect to U2. Indeed, from (5) we find

U2|α1〉 =

(
1− 2

N

)
|α1〉 −

2

N
|α2〉 −

2
√
N − 2

N
|α3〉,

U2|α2〉 = − 2

N
|α1〉+

(
1− 2

N

)
|α2〉 −

2
√
N − 2

N
|α3〉,

U2|α3〉 =
2
√
N − 2

N
(|α1〉+ |α2〉)−

(
1− 4

N

)
|α3〉.
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Hence, the time evolution of the walk for the fixed initial state |α1〉 is described by the effective evolution operator
Ueff , which is in the |αi〉 basis (6) given by the following 3x3 matrix

Ueff =




1− 2
N − 2

N
2
√
N−2
N

− 2
N 1− 2

N
2
√
N−2
N

− 2
√
N−2
N − 2

√
N−2
N 1− 4

N


 .

Diagonalization of Ueff is straightforward. We find that it has an eigenvector

|χ0〉 =
1√
2

(|α1〉 − |α2〉) , (7)

corresponding to the eigenvalue λ = 1. The remaining two eigenvectors have the form

|χ±〉 =
1

2
(|α1〉+ |α2〉)±

i√
2
|α3〉. (8)

They correspond to a pair of conjugated eigenvalues

λ± = e±iω,

where the phase ω is given by

ω = arccos

(
N − 4

N

)
. (9)

Let us now analyze the evolution of the initial state |α1〉 under the effective evolution operator Ueff . We find that
the initial condition |α1〉 and the desired target state |α2〉 can be decomposed into the eigenbasis of Ueff as

|α1〉 =
1√
2
|χ0〉+

1

2

(
|χ+〉+ |χ−〉

)
,

|α2〉 = − 1√
2
|χ0〉+

1

2

(
|χ+〉+ |χ−〉

)
.

After t applications of the effective evolution operator Ueff , i.e. after 2t steps of the walk, we obtain

|ψ(2t)〉 =
1√
2
|χ0〉+

eiωt

2

(
|χ+〉+ e−2iωt|χ−〉

)
. (10)

For ωt = π the state reduces to −|α2〉, i.e. the receiver state up to an irrelevant global phase factor. We conclude
that the walk achieves (almost) perfect state transfer between the sender and receiver vertices after T steps, provided
that we choose T as the closest integer to 2π/ω, i.e.

T ≈ 2π

arccos
(
N−4
N

) . (11)

With the Taylor expansion we find that the number of steps required for the state transfer scales with the size of the
star graph according to

T ∼ π√
2

√
N +O(N−

1
2 ).

For illustration we display in Figure 1 the fidelity between the state of the walk (10) and the target state |α2〉 as a
function of the number of steps. From (10) we find that it is given by

F(2t) = |〈ψ(2t)|α2〉|2 = sin4

(
ωt

2

)
. (12)

Note that for odd time steps the fidelity is zero since the walk is bipartite. In Figure 1 the number of vertices of the
star graph was chosen as N = 100. As follows from (11) the first maximum of the fidelity is reached after 22 steps of
the walk.
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FIG. 1: Fidelity between the state of the walk (10) and the target state |α2〉 for the walk on the star graph as a function of
the number of steps t. The black dots correspond to the numerical simulation and the red line is given by (12). Fidelity is
plotted only at even number of steps, since it vanishes when t is odd. We have considered the star graph with N = 100 external
vertices. The first maximum of fidelity is reached after 22 steps, in accordance with (11).

III. COMPLETE GRAPH WITH SELF-LOOPS

Let us now turn to the state transfer on the complete graph of N vertices with additional self-loop on each vertex.
The reason we consider the additional self-loops is that the discrete-time quantum walk search algorithm on the
complete graph does not find the marked vertex with unit probability. Nevertheless, it was shown [8, 25] that adding
self-loops makes two steps of the discrete-time quantum walk equivalent to the Grover search algorithm and increases
probability of finding the marked vertex to one. In the following we show explicitly that the algorithm achieves state
transfer with unit fidelity independent of the size of the graph.

The Hilbert space of the walk is given by

H = HP ⊗HC ,

where both position space and coin space have dimension N . We denote the basis vectors of HP as |1〉p, . . . , |N〉p.
Similarly, the basis vectors of HC are denoted as |1〉c, . . . , |N〉c. The basis of H is then formed by the vectors
|i〉p⊗ |j〉c ≡ |i, j〉, where the first index corresponds to the position (vertex), and the second index corresponds to the
coin state.

The evolution operator of the walk is given by the product of the step operator and the coin operator

U = S · C.

The step operator reads

S =

N∑

i,j=1

|j, i〉〈i, j|.

As for the coin operator, we choose it to act as the Grover operator (2) on all non-marked vertices, with an additional
phase shift of π on the marked vertices s and r. Hence, C can be written as

C = (IN − 2|s〉p〈s| − 2|r〉p〈r|)⊗G,

where G is given in (2).
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Concerning the initial state of the walk, we choose the particle to be localized on the sender vertex s with the equal
weight superposition of all coin states (3), i.e.

|ψ(0)〉 = |s〉p ⊗ |ψS〉c =
1√
N

N∑

j=1

|s, j〉.

We again denote this state as |α1〉 since it will be the first basis vector of the invariant subspace. We now show that

after O(
√
N) steps of the walk the particle will be in the state

|α2〉 = |r〉p ⊗ |ψS〉c =
1√
N

N∑

j=1

|r, j〉,

i.e. localized on the receiver vertex r. Similarly like for the star graph, it is sufficient to consider U2, since [8, 25]
have shown that two steps of the walk are equivalent to one iteration of the Grover search algorithm on the position
Hilbert space HP . First, let us determine the invariant subspace of U2 which includes |α1,2〉. Simple algebra reveals
that the following four orthonormal vectors

|α′3〉 =
1√

2(N − 2)

∑

i6=s,r
(|i, s〉+ |i, r〉) ,

|α′4〉 =
1

N − 2

∑

i,j 6=s,r
|i, j〉, (13)

|α′5〉 =

√
2

N − 2
|α1〉 −

√
N

2(N − 2)
(|s, s〉+ |s, r〉),

|α′6〉 =

√
2

N − 2
|α2〉 −

√
N

2(N − 2)
(|r, s〉+ |r, r〉),

complement |α1,2〉 to the invariant subspace of U2. However, we can reduce the dimension of the invariant subspace
further from 6 to 5. Indeed, one can show that U2 has an eigenvector

|χ〉 =
1√
N
|α′3〉+

√
N − 2

2N
|α′4〉+

1

2
|α′5〉+

1

2
|α′6〉,

corresponding to the eigenvalue 1, which is orthogonal to |α1,2〉. Hence, |χ〉 is also orthogonal to U2|α1,2〉, and thus it
can be subtracted from the invariant subspace. The orthogonal complement of |χ〉 in the subspace spanned by vectors
(13) then completes |α1,2〉 to the invariant subspace of of U2. We choose the orthonormal basis as

|α3〉 =

√
N − 2

N
|α′3〉 −

√
2

N
|α′4〉 =

1√
2N

N∑

i=1

(|i, s〉+ |i, r〉)−
√

2

(N − 2)
√
N

∑

i,j 6=s,r
|i, j〉,

|α4〉 =
1√
2
|α′5〉 −

1√
2
|α′6〉 =

1√
N(N − 2)

∑

j 6=s,r
(|s, j〉 − |r, j〉) +

√
N − 2

4N
(|r, r〉+ |r, s〉 − |s, s〉 − |s, s〉) ,

|α5〉 =
1√
N
|α′3〉+

√
N − 2

2N
|α′4〉 −

1

2
|α′5〉 −

1

2
|α′6〉

=
1√

2N(N − 2)


 ∑

i,j 6=s,r
|i, j〉+

∑

i 6=s,r
(|i, s〉+ |i, r〉)−

∑

j 6=s,r
(|s, j〉+ |r, j〉)


+

+

√
N − 2

8N
(|s, r〉+ |s, s〉+ |r, s〉+ |r, r〉) .
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The effective evolution operator in the |αi〉 basis is given by the matrix

Ueff =




(N−4)(N−2)
N2 − 2(N−4)

N2

4
√

2(N−2)
N2 − 2

√
N−2
N

2
√

2(N−4)
√
N−2

N2

− 2(N−4)
N2

(N−4)(N−2)
N2

4
√

2(N−2)
N2

2
√
N−2
N

2
√

2(N−4)
√
N−2

N2

4
√

2(N−2)
N2

4
√

2(N−2)
N2

(N−4)2

N2 0 − 4(N−4)
√
N−2

N2

2
√
N−2
N − 2

√
N−2
N 0 N−4

N 0

− 2
√

2(N−4)
√
N−2

N2 − 2
√

2(N−4)
√
N−2

N2

4(N−4)
√
N−2

N2 0 N2−16N+32
N2




We find that the spectrum of Ueff consists of eigenvalues

λ0 = 1,

λ±1 = e±iω,

λ±2 = e±2iω, (14)

where the phase ω is given in (9). The corresponding eigenvectors are found to be

|χ0〉 =
1

2
|α1〉+

1

2
|α2〉+

1√
2
|α3〉,

|χ±1 〉 =
1

2
|α1〉 −

1

2
|α2〉 ∓

i√
2
|α4〉, (15)

|χ±2 〉 =
1

2
√

2
|α1〉+

1

2
√

2
|α2〉 −

1

2
|α3〉 ±

i√
2
|α5〉.

The initial state of the walk |α1〉 and the desired target state |α2〉 are decomposed into the eigenbasis (15) of effective
evolution operator according to

|α1〉 =
1

2
|χ0〉+

1

2

(
|χ+

1 〉+ |χ−1 〉
)

+
1

2
√

2

(
|χ+

2 〉+ |χ−2 〉
)
,

|α2〉 =
1

2
|χ0〉 −

1

2

(
|χ+

1 〉+ |χ−1 〉
)

+
1

2
√

2

(
|χ+

2 〉+ |χ−2 〉
)

After 2t steps of the walk the state can be written as

|ψ(2t)〉 = U teff |α1〉

=
1

2
|χ0〉+

eiωt

2

(
|χ+

1 〉+ e−2iωt|χ−1 〉
)

+

+
e2iωt

2
√

2

(
|χ+

2 〉+ e−4iωt|χ−2 〉
)
. (16)

We find that for ωt = π the state reduces to the desired target state |α2〉. Hence, to achieve perfect state transfer
we have to choose the number of steps T as the closest integer to 2π

ω , which is exactly the same as for the star graph
(11). We note that the perfect state transfer in this model is possible for arbitrary N thanks to the perfect matching
of the spectrum (14), i.e. the fact that the phases of eigenvalues λ±2 are exactly twice the phases of the eigenvalues of
λ±1 .

For illustration we display in Figure 2 the fidelity between the state of the walk (16) and the target state |α2〉 as a
function of the number of steps, which is given by

F(2t) = |〈ψ(2t)|α2〉|2 = cos2(ωt) sin4

(
ωt

2

)
. (17)

In comparison to the result for the star graph (12) we find that there is an additional modulation with cos2(ωt)
arising from the eigenvectors |χ±2 〉 that oscillate at double frequency. In Figure 2 the number of vertices was chosen
as N = 30. The first maximum of fidelity is reached after 12 steps of the walk, in agreement with the analytical
prediction of (11).
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FIG. 2: Fidelity between the state of the walk (16) and the target state |α2〉 for the walk on the complete graph with self-loops
as a function of the number of steps t. The black dots correspond to the numerical simulation and the red line is given by (17).
Fidelity is plotted only at even number of steps. We have considered the complete graph with self-loops with N = 30 vertices.
The first maximum of fidelity is reached after 12 steps, in accordance with (11).

IV. SZEGEDY’S WALK WITH QUERIES ON THE COMPLETE GRAPH

Finally, let us consider the state transfer in Szegedy’s walk, which is a coinless discrete-time quantum walk model
driven by reflection operators in a bipartite graph [32]. In the original proposal of the Szegedy’s walk [15] the search
algorithm finds the marked vertex of the complete graph with probability 1

2 . However, Santos [16] have shown that
adding phase shifts of π on the marked vertices (i.e. queries), increases the success probability to one in the limit of
large number of vertices N . Therefore, we consider the Szegedy’s walk with queries on the complete graph with two
marked vertices s and r. We show that in the limit of large N the walk achieves perfect state transfer between the
sender and the receiver.

Let us briefly review the definition of the Szegedy’s walk [15] on the graph G(X,E), where X = {1, . . . , N} is the
set of vertices and E is the set of edges. We turn it to bipartite graph of N + N vertices, i.e. duplicate the graph
G, remove all edges in the original graph and its copy, and add edges between the vertices in the two sets as in the
original graph. The Hilbert space of the Szegedy’s walk is given by tensor product of two N -dimensional Hilbert
spaces HN

H = HN ⊗HN ,

corresponding to the vertices of the original graph and its copy. We denote the vectors of computational basis of H
as

|i〉 ⊗ |j〉 ≡ |i, j〉, i, j = 1, . . . , N,

where the first index corresponds to the vertex of the original graph and the second index denotes the vertex in the
copy. Szegedy’s walk [15] is driven by reflections around subspaces generated by vectors |Φi〉 and |Ψj〉

RA = 2

N∑

i=1

|Φi〉〈Φi| − IN2 ,

RB = 2

N∑

j=1

|Ψj〉〈Ψj | − IN2 ,
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which are defined as

|Φi〉 = |i〉 ⊗


∑

j

√
pij |j〉


 ,

|Ψj〉 =

(∑

i

√
pij |i〉

)
⊗ |j〉. (18)

Here pij denotes components of a stochastic matrix associated to the graph G. We consider G to be the complete
graph and for simplicity take the stochastic matrix as

pij =
1

N − 1
(1− δij) .

Hence, in our model the vectors (18) are given by

|Φi〉 =
1√
N − 1

∑

j 6=i
|i, j〉,

|Ψj〉 =
1√
N − 1

∑

i 6=j
|i, j〉.

Santos [16] has extended the evolution of the Szegedy’s walk with queries, i.e phase shift of π on the marked vertices.
Since we have two marked vertices s and r, the action of the queries is described by the following operator

RM = (IN − 2|s〉〈s| − 2|r〉〈r|)⊗ IN .
The complete evolution operator of the Szegedy’s walk with queries is then given by [16]

U = RBRARM . (19)

We show that for large N , starting the walk in the state

|α1〉 = |Φs〉 =
1√
N − 1

∑

j 6=s
|s, j〉,

and performing O(
√
N) steps we will obtain with high probability the state

|α2〉 = |Φr〉 =
1√
N − 1

∑

j 6=r
|r, j〉.

Notice that in the first vector the first index is s, while in the second vector the first index r. In this sense, we achieve
the state transfer from the vertex s to vertex r.

First, we determine the invariant subspace which includes the initial and the final states |α1〉 and |α2〉. Using
the definition of the evolution operator (19) we find that the invariant subspace includes five additional orthonormal
vectors

|α3〉 =
1√

(N − 2)(N − 3)

∑

i, j 6= s, r
i 6= j

|i, j〉,

|α4〉 =
1√

(N − 1)(N − 2)

∑

j 6=s,r
|s, j〉 −

√
N − 2

N − 1
|s, r〉,

|α5〉 =
1√

(N − 1)(N − 2)

∑

j 6=s,r
|r, j〉 −

√
N − 2

N − 1
|r, s〉,

|α6〉 =
1√
N − 2

∑

i 6=s,r
|i, s〉,

|α7〉 =
1√
N − 2

∑

i 6=s,r
|i, r〉.

230



10

The effective evolution operator is in the |αi〉 basis given by the following 7x7 matrix

Ueff =




N−3
N−1 − 2(N−2)

(N−1)2
2(N−3)3/2

√
N−2

(N−1)5/2
0 2

√
N−2

(N−1)2
4(N−2)3/2

(N−1)5/2
2(N−3)

√
N−2

(N−1)5/2

− 2(N−2)
(N−1)2

N−3
N−1

2(N−3)3/2
√
N−2

(N−1)5/2
2
√
N−2

(N−1)2 0 2(N−3)
√
N−2

(N−1)5/2
4(N−2)3/2

(N−1)5/2

−2
√

(N−3)(N−2)
(N−1)3 −2

√
(N−3)(N−2)

(N−1)3
(N−5)2

(N−1)2
2
√
N−3

(N−1)3/2
2
√
N−3

(N−1)3/2
2(N−5)

√
N−3

(N−1)2
2(N−5)

√
N−3

(N−1)2

0 − 2
√
N−2

(N−1)2 − 2
√
N−3(N+1)
(N−1)5/2

−N−3
N−1

2
(N−1)2 − 4

(N−1)5/2
2(N−3)N
(N−1)5/2

− 2
√
N−2

(N−1)2 0 − 2
√
N−3(N+1)
(N−1)5/2

2
(N−1)2 −N−3

N−1
2(N−3)N
(N−1)5/2

− 4
(N−1)5/2

0 −2
√

N−2
(N−1)3

2(N−3)3/2

(N−1)2 0 − 2(N−2)
(N−1)3/2

− (N−3)2

(N−1)2
2(N−3)
(N−1)2

−2
√

N−2
(N−1)3 0 2(N−3)3/2

(N−1)2 − 2(N−2)
(N−1)3/2

0 2(N−3)
(N−1)2 − (N−3)2

(N−1)2




.

Direct diagonalization of Ueff is rather difficult, however, the eigenvalues can be determined analytically. Indeed, the
characteristic equation

det
(
Ueff − eiωI7

)
= 0

can be written in the form

(
5 +N(N − 4) + (N − 1)2 cosω

) (
−N2 + 8N − 17 + 2(N − 4) cosω + (N − 1)2 cos2 ω

)
sin
(ω

2

)
= 0.

We find the solutions

ω0 = 0,

ω1 = arccos

(
4−N + ∆

(N − 1)2

)
,

ω2 = arccos

(
4−N −∆

(N − 1)2

)
,

ω3 = arccos

(
4N −N2 − 5

(N − 1)2

)
, (20)

where ∆ is given by

∆ =
√
N4 − 10N3 + 35N2 − 50N + 33.

The spectrum of the effective evolution operator Ueff is then given by

λ0 = eiω0 = 1,

λ±1 = e±iω1 ,

λ±2 = e±iω2 ,

λ±3 = e±iω3 .

The eigenvector corresponding to the eigenvalue λ0 = 1 can be also determined analytically. We find that it reads

|χ0〉 =
1√
2

√
N(N − 3) + 2

N(N − 3) + 3
(|α1〉 − |α2〉) +

+
1√

2(N(N − 3) + 3)
(|α6〉 − |α7〉).

We point out that this eigenvector has a large overlap with the initial state of the walk |α1〉 and the desired target
state |α2〉. Indeed, for large N we can write

|χ0〉 =
1√
2

(|α1〉 − |α2〉) +O(N−1). (21)

Notice that for N → ∞ the vector (21) has the same shape as the eigenvector of the walk on the star graph (7)
corresponding to the eigenvalue λ = 1.
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The explicit form of the eigenvectors |χ±i 〉 is quite lengthy. However, it turns out that for large N only |χ+
1 〉 and

|χ−1 〉, i.e. the eigenvectors corresponding to λ±1 = e±iω1 , are relevant, since the overlaps of |α1,2〉 with |χ±j 〉 vanishes

as O(N−
1
2 ) for j = 2, 3. We find that for large N the eigenvectors |χ±1 〉 are given by

|χ±1 〉 =
1

2
(|α1〉+ |α2〉)±

i√
2
|α3〉+O(N−

1
2 ). (22)

Again, for N → ∞ the eigenvectors (22) have the same shape as the eigenvectors of the walk on the star graph (8).
Moreover, we find that the phase ω1 (20) approaches (9) as N tends to infinity, i.e. also the corresponding eigenvalues
coincides with those for the star graph. Hence, in the limit of large N the dynamics of the Szegedy’s walk with
queries on the complete graph reduces to the dynamics of the coined walk on the star graph. Since we have shown in
Section II that the latter model achieves perfect state transfer, the same applies to the former, however, only in the
limit of large N . We conclude that the Szegedy’s walk with queries on the complete graph achieves almost perfect
state transfer between the sender and the receiver vertex when we choose the number of steps T as the closest integer
to π

ω1
, i.e.

T ≈ π

arccos
(

4−N+∆
(N−1)2

) , (23)

which approaches half the value (11) required for the star graph and complete graph with self-loops as N tends to
infinity.

For illustration we display in Figure 3 the fidelity between the state of the walk and the target state |α2〉 for the
Szegedy’s walk with queries on the complete graph with N = 30 vertices. Within the approximations made in (21),
(22) the fidelity is given by

F(t) = |〈ψ(t)|α2〉|2 ≈ sin4

(
ω1t

2

)
. (24)

For the complete graph with N = 30 vertices the first maximum of fidelity is reached after 6 steps of the walk, in
agreement with the analytical prediction of (23).

0 205 10 15 25
0

0.5

1

t

F

FIG. 3: Fidelity for the Szegedy’s walk with queries on the complete graph as a function of the number of steps t. The black
dots correspond to the numerical simulation and the red line is given by (24). We have considered the complete graph with
N = 30 vertices. The first maximum of the fidelity is reached after 6 steps, in accordance with (23).

V. CONCLUSIONS

State transfer between two vertices of a graph by means of discrete-time quantum walk search algorithm with two
marked vertices was analyzed. In particular, we have shown that the coined quantum walk on a star graph and
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complete graph with self-loops achieve perfect state transfer between the sender and receiver vertex for arbitrary
number of vertices N . On the other hand, Szegedy’s walk with queries on complete graph achieves perfect state
transfer only in the limit of large N . All three algorithms require O(

√
N) steps.

The present model does not allow for the transfer of the internal coin state of the particle which is possible in other
discrete-time models [17, 19, 20]. Indeed, there is either no non-trivial internal state as for the walk on the star graph,
or it has to be fixed as for the coined walk on the complete graph with self-loops and Szegedy’s walk on the complete
graph. On the other hand, the present method requires less control over the system, since we only have to adjust the
coin at the sender and receiver vertex.

It is of interest to determine additional graphs where perfect state transfer is possible by means of discrete-time
quantum walks. Our preliminary numerical analysis indicates that the modification of the Szegedy’s walk where the
receiver vertex is in the copy of the original graph also achieves state transfer with high fidelity. This result suggests
that discrete-time quantum walks are suitable for perfect state transfer on complete bipartite graphs. We plan to
thoroughly investigate this model in the near future.

Finally, let us point out that in the continuous-time quantum walk scenario Chakraborty et al. [14] have shown
that state transfer with fidelity approaching unity is achieved for almost all graphs in the limit of large number of
vertices N . It would be interesting to prove similar statement in the discrete-time case. Moreover, Chakraborty et
al. [14] have also considered entanglement generation between two vertices. The protocol uses a non-adjacent third
party vertex, which has to tune its nearest neighbor couplings. We plan to identify the discrete-time counterpart of
this protocol.
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Perfect state transfer by means of discrete-time quantum walk on complete bipartite
graphs
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Czech Technical University in Prague, Břehová 7, 115 19 Praha 1 - Staré Město, Czech Republic

We consider a quantum walk with two marked vertices, sender and receiver, and analyze its
application to perfect state transfer on complete bipartite graphs. First, the situation with both the
sender and the receiver vertex in the same part of the graph is considered. We show that in this
case the dynamics of the quantum walk is independent of the size of the second part and reduces to
the one for the star graph where perfect state transfer is achieved. Second, we consider the situation
where the sender and the receiver vertex are in the opposite parts of the graph. In such a case the
state transfer with unit fidelity is achieved only when the parts have the same size.

I. INTRODUCTION

Quantum walks [1] were proposed as quantum mechanical extensions of classical random walks on a graph or
lattice. The time evolution of the quantum walk can be either continuous [2] or discrete [3]. The relation between the
continuous-time and discrete-time quantum walks was studied intensively [4–6].

In continuous-time quantum walk [2, 7] the evolution of the particle is governed by the Schrödinger equation where
the Hamiltonian is given by the discrete Laplacian of the graph. Continuous-time quantum walks have found promising
applications in quantum search algorithms [8, 9] and modeling of coherent transport on graphs and networks [10–12].
Moreover, continuous-time quantum walks were shown to be universal tools for quantum computation [13]. While
the original continuous-time quantum walk search algorithms were analyzed on symmetric lattices or graphs, such as
hypercube or a complete graph, later it was found [14–16] that high symmetry is not required for the optimal runtime
of the algorithm. More recently, it was shown [17] that the continuous-time quantum walk search algorithm is optimal
for almost all graphs.

For discrete-time quantum walks Meyer has shown [3] that in order to obtain a non-trivial evolution the system
cannot be scalar. A straight-forward way to overcome this constraint is to embed the particle with an additional
internal degree of freedom, usually called the coin, which governs the displacements of the particle [18, 19]. However,
several variants of coinless discrete-time quantum walks were proposed. In scattering quantum walks [20–22], which
were introduced following the analogy with interferometers, the states of the quantum particle corresponds to the
directed edges of the graph. Equivalence between the scattering and coined quantum walks was analyzed in detail
[23, 24]. Szegedy [25] proposed a construction of discrete-time quantum walks based on quantization of classical
Markov chains. In the staggered quantum walk model [26–31] the evolution of the particle is governed by reflections
that correspond to tessellations of the underlying graph. The staggered quantum walk model was recently proven to
be more general than both the coined and the Szegedy’s walk [32, 33]. Discrete-time quantum walks were applied to
various quantum information tasks including quantum search [25, 34–39] or detecting anomalies in graphs [40–42],
and were shown to be universal models of quantum computation [43].

Quantum walks were also applied to the problem of perfect state transfer [44] between two vertices of a graph or
lattice, which we call sender and receiver. One approach relies on defining the dynamics at each individual vertex
in order to achieve state transfer between the sender and the receiver. This method was analyzed in discrete-time
quantum walks on a circle [45, 46] and a square lattice [47]. Another possibility is to modify the dynamics only at the
sender and the receiver. This method was proposed for wave communication on regular lattices [48] and was further
analyzed on various types of finite graphs in [49–51]. Typically, it does not allow for the transfer of the internal state
of the particle which is possible in other discrete-time models [45–47]. On the other hand, the method requires less
control over the system, since we only have to adjust the coin operators at the sender and the receiver vertices. In
the continuous-time quantum walk framework it was shown [17] that this protocol achieves perfect state transfer for
almost any graph.

In the present paper we extend the results of [51], where we have among others considered the perfect state transfer
on a star graph by means of discrete-time quantum walk, to complete bipartite graphs. Indeed, star graph is a
particular example of a complete bipartite graph where one of the parts has only one vertex. Two different scenarios
are considered, namely the sender and the receiver vertex are either located in the same part or in the opposite parts.
We show that when both the sender and the receiver vertex are located in the same part the dynamics of the walk is
independent of the size of the second part. Hence, the effective evolution operator is the same as for the star graph,
where the perfect state transfer is achieved with unit fidelity [51]. Next, we analyze the situation where the sender
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and the receiver vertex are in the opposite parts. We show that in such a case the perfect state transfer with unit
fidelity is achieved only when the parts are of the same size.

The rest of the paper is organized as follows: In Section II we introduce the notation and review the basic ideas of
state transfer by means of discrete-time quantum walk. The case where both the sender and the receiver vertex are
located in the same part is considered in Section III. In Section IV the situation where the sender and the receiver
vertex are in the opposite parts is analyzed. We summarize our results and present an outlook in the conclusions of
Section V.

II. PRELIMINARIES

In this Section we introduce the notation that will be used later on in the paper. We analyze the state transfer
between two vertices of a complete bipartite graph of m plus n vertices Km,n by means of a discrete-time quantum
walk. We consider the coined quantum walk model. Alternatively, one can employ the scattering quantum walk
formalism [20–22]. Nevertheless, both models are equivalent [23, 24] and lead to exactly the same dynamics. To
distinguish between the vertices of different parts of the complete bipartite graph we label them with latin letters in
the first part and greek letters in the second.

Let us begin with the definition of the Hilbert space of the quantum walk we consider. Since the graph is bipartite
the Hilbert space can be written as a direct sum

H = H(1) ⊕H(2),

where the states from H(1) (H(2)) corresponds to the particle located in the first (second) part accompanied with
some coin state. The Hilbert spaces H(i) have the form of tensor product

H(i) = H(i)
P ⊗H

(i)
C ,

of the position space H(i)
P and the coin space H(i)

C . In the first part, which has m vertices, the position space H(1)
P is

spanned by vectors |i〉p with i ranging from 1 to m. The coin space H(1)
C is determined by the neighboring vertices, i.e.

the vertices where the particle can move in a single step. Since we consider complete bipartite graph, the neighbors of

any vertex from the first part are all vertices from the second part. Hence, the coin space H(1)
C is n-dimensional and

we denote the basis vectors as |α〉c with α ranging from 1 to n. To shorten the notation we denote the basis vectors
of H(1) by |i, α〉 ≡ |i〉p ⊗ |α〉c. The state |i, α〉 corresponds to the particle located at the vertex i that will move to
the vertex α after the application of the shift operator, which will be defined later. Similarly, for the second part the

position space H(2)
P is spanned by vectors |α〉p with α ranging from 1 to n and the coin space H(2)

C is spanned by

vectors |i〉c with i ranging from 1 to m. We denote the basis vectors of H(2) by |α, i〉 ≡ |α〉p ⊗ |i〉c.
The evolution operator which propagates the quantum walk by one step can be decomposed into a sum of two

operators

U = U1 + U2 (1)

where Ui acts nontrivially only on the states from H(i). The operators Ui have the form

Ui = Si · Ci,

where Si denotes the shift operator and Ci is the coin operator. The shift operators displace the particle from one
part of the complete bipartite graph to the other according to its coin state. We define them by

S1 =
∑

i

∑

α

|α, i〉〈i, α|,

S2 =
∑

i

∑

α

|i, α〉〈α, i| = S†1,

where the summation over i runs from 1 to m and the summation over α runs from 1 to n. This will hold throughout
the paper unless otherwise specified.

Let us now turn to the coin operators Ci which alter the internal coin states before the shift itself. For the purpose
of state transfer we consider two marked vertices, sender and receiver, between which we want to communicate the
quantum state. On the marked vertices the coin operator will act in a different way then on the non-marked vertices.
In the present paper we consider the coin operator on the non-marked vertices to act as a Grover diffusion operator
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[52] of appropriate dimension, while on the marked vertices it will act as minus identity. The explicit form of the coin
operators C1 and C2 will be given latter depending on the location of the marked vertices. The sender vertex will be
always located in the first part and we label it as s. The receiver vertex will be either in the same part as the sender
vertex, in which case we label it as r, or in the second part and we label it as ρ.

In the following Sections we analyze the transfer of the particle from the sender vertex to the receiver vertex by
means of the discrete-time quantum walk defined above. We start the walk in the initial state

|init〉 =
1√
n

∑

α

|s, α〉, (2)

i.e. the particle is located at the sender vertex with equal-weight superposition of all basis coin states. We analyze
its evolution towards the target state, where the particle is located at the receiver vertex. The explicit form of
the target state will be given latter depending on the location of the receiver vertex. Our analysis is based on the
determination of the invariant subspace of the effective evolution operator which greatly reduces the complexity of
the problem. Similar dimensional reduction due to the high symmetry of the graph [53] was applied previously in
both discrete-time [40, 41, 51] and continuous-time quantum walks [15].

III. SENDER AND RECEIVER IN THE SAME PART

Let us begin our analysis with the situation where both the sender and the receiver vertex are in the first part. The
coin operator C1 is then given by

C1 = −(|s〉p〈s|+ |r〉p〈r|)⊗ In +
∑

i6=s,r
|i〉p〈i| ⊗Gn,

where In denotes the identity and Gn is the Grover diffusion operator

Gn =
2

n

∑

α,β

|α〉c〈β| −
∑

α

|α〉c〈α|, (3)

both acting on the n-dimensional coin space H(1)
C . Hence, we find that the part of the evolution operator acting on

H(1) reads

U1 =
2

n

∑

i 6=s,r

∑

α,β

|α, i〉〈i, β| −
∑

i

∑

α

|α, i〉〈i, α|.

On the second part, which does not contain any marked vertices, the coin operator is given by

C2 =
∑

α

|α〉p〈α| ⊗Gm,

where Gm is the Grover diffusion operator on the m-dimensional coin space H(2)
C

Gm =
2

m

∑

i,j

|i〉c〈j| −
∑

i

|i〉c〈i|. (4)

The part of the evolution operator acting on H(2) then reads

U2 =
2

m

∑

i,j

∑

α

|i, α〉〈α, j| −
∑

i

∑

α

|i, α〉〈α, i|.

We start the walk in the state (2) and analyze its evolution towards the target state

|target〉 =
1√
n

∑

α

|r, α〉. (5)
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Note that both states (2) and (5) belong to H(1). Since the walk is bipartite, it is sufficient to consider only the square
of the evolution operator, and in fact we can restrict to the part which acts non-trivially on the initial state. We find
that the effective two-step evolution operator is given by

Ueff = U2 · U1 =
4

mn

∑

i

∑

j 6=s,r

∑

α,β

|i, α〉〈j, β| − 2

m

∑

i,j

∑

α

|i, α〉〈j, α| −

− 2

n

∑

i 6=s,r

∑

α,β

|i, α〉〈i, β|+
∑

i

∑

α

|i, α〉〈i, α| (6)

In the following we show that the evolution of the quantum walk on the complete bipartite graph Km,n is the same
as for the star graph Km,1 where the perfect state transfer is achieved [51].

First, we determine the invariant subspace of the effective evolution operator (6) which contains the initial (2) and
target (5) states. Clearly, the initial and target states are orthogonal and can be used as the first two basis states of
the invariant subspace

|φ1〉 = |init〉, |φ2〉 = |target〉.

To complete the invariant subspace we choose the last basis state as

|φ3〉 =
1√

n(m− 2)

∑

i 6=s,r

∑

α

|i, α〉.

Simple algebra reveals that the action of the effective evolution operator (6) on the basis states |φj〉 is given by

Ueff |φ1〉 =

(
1− 2

m

)
|φ1〉 −

2

m
|φ2〉 −

2
√
m− 2

m
|φ3〉,

Ueff |φ2〉 = − 2

m
|φ1〉+

(
1− 2

m

)
|φ2〉 −

2
√
m− 2

m
|φ3〉,

Ueff |φ3〉 =
2
√
m− 2

m
|φ1〉+

2
√
m− 2

m
|φ2〉+

(
1− 4

m

)
|φ3〉.

Hence, in the invariant subspace spanned by |φj〉 the evolution operator (6) reduces to the following matrix

Ueff =




1− 2
m − 2

m
2
√
m−2
m

− 2
m 1− 2

m
2
√
m−2
m

− 2
√
m−2
m − 2

√
m−2
m 1− 4

m


 , (7)

which is independent of the size of the second part. In fact, the effective evolution operator (7) is exactly the same as
for the star graph Km,1 where it was shown [51] that perfect state transfer is achieved when we choose the number of
steps of the quantum walk as the closest even integer to

T =
2π

arccos
(
m−4
m

) .

IV. SENDER AND RECEIVER IN OPPOSITE PARTS

Let us now turn to the case where the sender and the receiver vertices are in the opposite part. To be specific, we
consider the sender vertex (labeled s) located in the first part and the receiver vertex (labeled ρ) in the second part.
The coin operator C1 is given by

C1 = −|s〉p〈s| ⊗ In +
∑

i 6=s
|i〉p〈i| ⊗Gn,

where Gn is given in (3). The part of the evolution operator acting on H(1) then reads

U1 =
2

n

∑

i 6=s

∑

α,β

|α, i〉〈i, β| −
∑

i

∑

α

|α, i〉〈i, α|.
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Similarly, the coin operator C2 reads

C2 = −|ρ〉p〈ρ| ⊗ Im +
∑

α

|α〉p〈α| ⊗Gm,

where Im denotes the identity on the m-dimensional coin space H(2)
C and Gm is given in (4). The part of the evolution

operator acting on H(2) then reads

U2 =
2

m

∑

i,j

∑

α6=ρ
|i, α〉〈α, j| −

∑

i

∑

α

|i, α〉〈α, i|.

We again begin the walk in the initial state (2) and analyze its evolution towards the target state, which now reads

|target2〉 =
1√
m

∑

i

|ρ, i〉. (8)

Since the sender and the receiver vertices are located in the opposite parts of the graph the initial state (2) and the
target state (8) do not belong to the same subspace of H. Hence, it is suitable first to apply the evolution operator
of the walk (1) once on the initial state (2). The state of the walk after one step is given by

|init2〉 = U |init〉 = − 1√
n

∑

α

|α, s〉, (9)

which belongs to H(2), i.e. the same subspace as the target state (8). From now on we can again employ the
bipartitness of the walk and consider the effective two-step evolution operator

Ueff = U1 · U2 =
4

mn

∑

i 6=s

∑

j

∑

α6=ρ

∑

β

|β, i〉〈α, j| − 2

n

∑

i 6=s

∑

α,β

|β, i〉〈α, i| −

− 2

m

∑

i,j

∑

α 6=ρ
|α, i〉〈α, j|+

∑

i

∑

α

|α, i〉〈α, i|. (10)

In the following we analyze how close we can get from the state (9) towards the target state (8) by successive
applications of the effective evolution operator (10).

We begin with the determination of the invariant subspace of (10) which includes the vectors (8) and (9). In
contrast to the previous Section, these two vectors are no longer orthogonal and therefore they cannot be directly
used as basis vectors of the invariant subspace. One possibility to choose the basis of the invariant subspace is given
by [54]

|φ1〉 = |ρ, s〉,

|φ2〉 =
1√
m− 1

∑

i6=s
|ρ, i〉,

|φ3〉 =
1√
n− 1

∑

α 6=ρ
|α, s〉,

|φ4〉 =
1√

(m− 1)(n− 1)

∑

i 6=s

∑

α 6=ρ
|α, i〉. (11)

Clearly we find

|init2〉 = − 1√
n
|φ1〉 −

√
n− 1

n
|φ3〉,

|target2〉 =
1√
m
|φ1〉+

√
m− 1

m
|φ2〉,
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i.e. both the target state (8) and the state (9) are included in the subspace spanned by |φj〉. Simple algebra reveals
that the action of the effective two-step evolution operator (10) on the basis states (11) is given by

Ueff |φ1〉 = |φ1〉,

Ueff |φ2〉 =

(
1− 2

n

)
|φ2〉 − 2

√
n− 1

n
|φ4〉,

Ueff |φ3〉 = 4

√
(m− 1)(n− 1)

mn
|φ2〉+

(
1− 2

m

)
|φ3〉+

+2
(n− 2)

√
m− 1

mn
|φ4〉,

Ueff |φ4〉 = 2
(m− 2)

√
n− 1

mn
|φ2〉 − 2

√
m− 1

m
|φ3〉+

+
(m− 2)(n− 2)

mn
|φ4〉.

Hence, the effective evolution operator (10) is in the invariant subspace spanned by the vectors |φj〉 given by the
matrix

Ueff =




1 0 0 0

0 1− 2
n 4

√
(m−1)(n−1)

mn 2 (m−2)√n−1
mn

0 0 1− 2
m −2

√
m−1
m

0 −2
√
n−1
n 2 (n−2)√m−1

mn
(m−2)(n−2)

mn


 . (12)

Let us now determine the eigenvalues and eigenvectors of the matrix (12). We find that the eigenvalues are 1 which
has a two-fold degeneracy and e±iω, where the phase ω is given by

ω = arccos

(
mn− 2m− 2n+ 2

mn

)
.

The eigenvectors corresponding to eigenvalue 1 are given by

|χ1〉 = |φ1〉,

|χ2〉 =
1√

m+ n− 1

(√
n− 1|φ2〉+

√
m− 1|φ3〉 − |φ4〉

)
.

Eigenvectors corresponding to λ3,4 = e±iω are given by

|χ3〉 = a|φ2〉+ b|φ3〉+ c|φ4〉,
|χ4〉 = a|φ2〉+ b|φ3〉+ c|φ4〉,

where the coefficients a, b and c read

a = − mn−m− n+ 1√
2n(m− 1)(n− 1)(m+ n− 1)

− i√
2n
,

b =

√
n

2(m+ n− 1)
,

c =
m− 1√

2n(m− 1)(m+ n− 1)
− i
√
n− 1

2n
.

Let us now analyze the evolution of the state (9) towards the target state (8) under the effective evolution operator
(12). The decomposition of the state (9) into the eigenbasis |χi〉 is given by

|init2〉 = − 1√
n
|χ1〉 −

√
mn−m− n+ 1

n(m+ n− 1)
|χ2〉 −

−
√

n− 1

2(m+ n− 1)
(|χ3〉+ |χ4〉) .
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Hence, the state of the walk after t iterations of the effective two-step evolution operator, i.e. after 2t+ 1 steps of the
quantum walk, reads

|ψ(2t+ 1)〉 = − 1√
n
|χ1〉 −

√
mn−m− n+ 1

n(m+ n− 1)
|χ2〉 −

−
√

n− 1

2(m+ n− 1)

(
eiωt|χ3〉+ e−iωt|χ4〉

)
. (13)

We find that the decomposition of the target state (8) into the eigenbasis |χi〉 is given by

|target2〉 =
1√
m
|χ1〉+

√
(m− 1)(n− 1)

m(m+ n− 1)
|χ2〉+

+

√
m− 1

m
(a|χ3〉+ a|χ4〉) .

Therefore, the fidelity between the state of the particle after 2t + 1 steps of the quantum walk (13) and the desired
target state equals

F(2t+ 1) = |〈ψ(2t+ 1)|target2〉|2

=
1

mn(m+ n− 1)2
[mn− (m− 1)(n− 1) cos (ωt)+

+
√

(m− 1)(n− 1)(m+ n− 1) sin (ωt)
]2
. (14)

Note that for even number of steps the particle is located in the first part of the graph and hence the fidelity vanishes.
We find that the first maximum of the fidelity is reached for

ωt = arccos

(
−
√

(m− 1)(n− 1)

mn

)
,

i.e. in order to achieve the state transfer with highest possible probability we have to choose the number of steps of
the quantum walk equal to odd integer closest to

T = 2t+ 1 =

2 arccos

(
−
√

(m−1)(n−1)
mn

)

arccos
(
mn−2m−2n+2

mn

) + 1. (15)

The maximal value of fidelity is given by

Fmax =

(√
(m− 1)(n− 1) +

√
mn

m+ n− 1

)2

. (16)

We note that the maximal fidelity is less than one unless m = n, i.e. perfect state transfer with unit probability can
be achieved only when both parts have the same number of vertices.

We illustrate these results in Figures 1-4. In Figure 1 we consider state transfer on the complete bipartite graph
K100,100. The plot shows the fidelity as a function of the number of steps. Since the parts of the graph have the same
number of vertices it is possible to achieve perfect state transfer with unit fidelity.

In Figure 2 we show the fidelity as a function of the number of steps for state transfer on the complete bipartite
graph K100,50, i.e. the parts have different number of vertices. In such a case it is not possible to achieve state transfer
with unit fidelity. According to (16) the maximal attainable value of fidelity is Fmax ≈ 0.89.

In Figure 3 we display the maximal value of fidelity (16) as a function of the size of the parts m and n of the
complete bipartite graph Km,n.

Finally, in Figure 4 we show the maximal value of fidelity for the complete bipartite graph K100,n as a function of
the size of the part containing the receiver vertex n.
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1 20 40 60 80
0

0.5

1

t

F

FIG. 1: Fidelity as a function of the number of steps t for state transfer on the complete bipartite graph K100,100. The red
line denotes the analytical expression (14) and the black dots corresponds to the numerical simulation. The black dots are
plotted only for odd time steps, since for even steps the fidelity vanishes. Since m = n perfect state transfer with unit fidelity
is possible. The number of steps required to achieve unit fidelity is given by T = 23 steps, in accordance with the analytical
results of (15).

1 20 40 60
0

0.4

0.8

t

F

FIG. 2: Fidelity as a function of the number of steps for state transfer on the complete bipartite graph K100,50. The red line
denotes the analytical expression (14) and the black dots corresponds to the numerical simulation. Fidelity reaches the maximal
value of Fmax ≈ 0.89 after T = 19 steps of the walk, in accordance with the analytical results of (16) and (15).

V. CONCLUSIONS

State transfer between two vertices of a complete bipartite graph by means of discrete-time quantum walk was
analyzed. We have shown that when the sender and the receiver vertices are located in the same part the perfect state
transfer is achievable independent of the size of the second component. However, when the sender and the receiver
vertices are located in the opposite parts of the graph the state transfer with unit fidelity is achieved only when the
two parts of the graph have exactly the same number of vertices. The maximal value of fidelity of state transfer in
dependence on the number of vertices of the respective parts of the complete bipartite graph was determined.

In the present model we have discussed state transfer in a closed system, where the dynamics is purely unitary.
However, one can consider interactions of the particle with environment, i.e. open quantum dynamics which inevitably
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FIG. 3: Maximal value of the fidelity (16) in dependence on the size of the parts m and n of the complete bipartite graph
Km,n.

1 100 200 300 400 500
0

0.5

1

n

F m
a
x

FIG. 4: Maximal value of fidelity (16) in dependence on the size of the part which contains the receiver vertex n. The size of
the part which contains the sender vertex is taken as m = 100. We see that Fmax reaches unity for m = n = 100 and then
declines gradually.

leads to decoherence. It would be interesting to analyze how strong interaction one can tolerate in order to achieve
state transfer with a desired fidelity. We plan to investigate the effects of decoherence on the state transfer efficiency
in the near future.
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[36] V. Potoček, A. Gábris, T. Kiss and I. Jex, Optimized quantum random-walk search algorithms, Phys. Rev. A 79, 012325

(2009)
[37] B. Hein and G. Tanner, Quantum search algorithms on the hypercube, J. Phys. A 42, 085303 (2009)
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