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Abstract

We study the computational complexity of fairly allocating a
set of indivisible items under externalities. In this recently-
proposed setting, in addition to the utility the agent gets from
their bundle, they also receive utility from items allocated to
other agents. We focus on the extended definitions of envy-
freeness up to one item (EF1) and of envy-freeness up to
any item (EFX), and we provide the landscape of their com-
plexity for several different scenarios. We prove that it is
NP-complete to decide whether there exists an EFX alloca-
tion, even when there are only three agents, or even when
there are only six different values for the items. We com-
plement these negative results by showing that when both
the number of agents and the number of different values for
items are bounded by a parameter the problem becomes fixed-
parameter tractable. Furthermore, we prove that two-valued
and binary-valued instances are equivalent and that EFX and
EF1 allocations coincide for this class of instances. Finally,
motivated from real-life scenarios, we focus on a class of
structured valuation functions, which we term agent/item-
correlated. We prove their equivalence to the “standard” set-
ting without externalities. Therefore, all previous results for
EF1 and EFX apply immediately for these valuations.

1 Introduction
The allocation of a set of indivisible resources, e.g., objects,
tasks, responsibilities, in a fair manner is a question that
has received a lot of attention through history. In the last
decades though, economists, mathematicians, and computer
scientists have systematically started studying the problem
with the aim of providing formal fairness guarantees (Lip-
ton et al. 2004; Bouveret and Lang 2008; Budish 2011; Cara-
giannis et al. 2019); for an excellent recent survey on the
topic see (Amanatidis et al. 2023). However, despite the
significant efforts on this quest, the nature of the problem,
i.e., the indivisibility, has not allowed yet for a universally
adopted solution concept.

Typically, an instance of the fair division problem consists
of a set of indivisible items, and a set of agents each of whom
has their own valuation function. The task is to partition the
items into bundles and allocate each bundle to an agent such
that from the point of view of every agent this allocation is
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“fair”. Here, the “fair” part is a mathematical criterion that
has to be satisfied by the valuation function of every agent.

Traditionally, in the majority of previous works, the math-
ematical criterion of fairness for each agent depends only on
a pairwise comparison between bundles. Put simply, each
agent cares, i.e., derives value, only about the bundle they
receive, and they compare it against the bundle of any other
agent. However, in many real-life situations this assumption
is not sufficient due to inherent underlying externalities.

Consider for example the scenario where there is a set
of admin tasks that have to be assigned to the faculty mem-
bers of a CS department. There could exist certain tasks such
that some faculty members are objectively better qualified
for them – and would even enjoy doing them – while other
faculty members are not that suited for them. Here, every
faculty member evaluates the allocation as a whole, since
they are affected, either positively or negatively, by the qual-
ity of completion of (almost) all tasks.

As a different example, assume that the agents are a pri-
ori partitioned into two teams, Team A and Team B, that
compete against each other and consider a specific agent
in Team A. Then, for any resource the agent considers as
good, they will get positive value if it is allocated to Team A
– maybe the value is discounted compared to the value the
agent would get if they got the item – while they get zero, or
even negative, value if the resource is allocated to Team B.
At the same time, for any resource/task that the agent con-
siders that will decrease the efficiency of the team, i.e. they
view it as a chore, they would get negative value if it is allo-
cated to some other agent from Team A.

Motivated by real-life scenarios like the two above, Aziz
et al. (2023b) recently proposed a new model suitable to cap-
ture the situations where externalities occur; interestingly,
for divisible items, the first models that incorporate exter-
nalities were proposed many years ago (Brânzei, Procaccia,
and Zhang 2013; Li, Zhang, and Zhang 2015). The founda-
tional principle of their model is that the agents have addi-
tive valuations over the items where, for every item a, agent
i derives value Vi(j, a) if agent j gets the item; here j can
be equal to i. This way, every agent evaluates the entire allo-
cation and not just their bundle. Furthermore, in view of the
more general valuation functions Aziz et al. appropriately
extended the most prominent fairness concepts for indivis-
ible items: envy-freenes (EF), envy-freeness up to one item
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(EF1) (Lipton et al. 2004; Budish 2011), and envy-freeness
up to any item (EFX) (Caragiannis et al. 2019). Intuitively,
they are defined as follows.

An allocation is EF1 if for agent i that prefers the alloca-
tion where they swap bundles with agent j, there exists one
item in either of the bundles of agents i and j (depending
on whether it is a good or a chore), such that by remov-
ing it agent i does not longer prefers the allocation with the
bundles swapped. An allocation is EFX if instead of remov-
ing some item from the bundles of agents i and j in order
to eliminate agent’s i preference towards the allocation with
swapped bundles, it suffices to remove any item from the
same bundles that strictly decreases the envy of agent i to-
wards the allocation.

In contrast to the basic setting without externalities, where
EF1 allocations always exist and EFX allocations are guar-
anteed to exist for a few settings, Aziz et al. (2023b) showed
that things become significantly more complicated in the
presence of externalities. While it is currently unknown, and
a major open problem, whether in the basic setting EFX allo-
cations always exist1, Aziz et al. (2023b) show that there ex-
ist instances with externalities without any EFX allocation!
However, for those instances where existence of an EFX al-
location is not guaranteed, Aziz et al. do not provide any re-
sults for the associated computational problem, i.e., decide
whether a fair allocation exists or not. We resolve this open
problem and we deep dive into the uncharted waters of the
computational complexity of fair division with externalities.

Our Contribution
We begin our study of the complexity of fair division
with externalities by proving that it is intractable to de-
cide whether a given instance admits an EFX allocation,
even for very restricted settings. Firstly, we show that it
is NP-complete to solve the problem, even when there
are only three agents. This paints a clear dichotomy be-
tween tractable and intractable cases, as Aziz et al. (2023b)
showed that for two agents an EFX allocation can always
be found in polynomial time. This result also shows that
fair division with externalities is significantly harder com-
pared to the standard setting without externalities, where
pseudo-polynomial algorithms are known, for instance with
three (Chaudhury, Garg, and Mehlhorn 2020) and partly
with four agents (Berger et al. 2022; Ghosal et al. 2023).

Next, we restrict the problem at a different dimension and
we turn our attention to instances with valuations that use
only a small number of values. We prove that the problem
remains NP-complete even if the domain of the valuation
function consists of 6 different values. It is also worth men-
tioning that in our hardness constructions we do not exploit
the presence of chores, as is common in standard fair divi-
sion settings (Hosseini, Mammadov, and Was 2023).

In light of our hardness lower bounds, we use the
framework of parameterized complexity (Niedermeier 2006;
Downey and Fellows 2013; Cygan et al. 2015) to reveal at
least some tractable fragments of the problem. It should be

1The problem is open only for goods or only for chores. Re-
cently, Hosseini et al. (2023) resolved the problem for mixed items.

pointed out that this framework has become de facto stan-
dard approach when dealing with NP-hard problems in AI,
ML, and computer science in general (Kronegger et al. 2014;
Igarashi, Bredereck, and Elkind 2017; Bredereck et al. 2019;
Ganian and Korchemna 2021; Deligkas et al. 2021; Blažej
et al. 2023). Roughly speaking, in this framework, we study
the complexity of a problem not merely with respect to the
input size n, but also assuming additional information about
the instance captured in the so-called parameter.2

We start our algorithmic journey with the combined pa-
rameter: the number of item types and the number of agents.
Intuitively, two items are of the same type if all agents value
them the same if they are allocated to a distinct agent j; this
parameter was recently initiated by Gorantla, Marwaha, and
Velusamy (2023) for goods and by Aziz et al. (2023a) for
chores. As our results indicate, the combination of these two
parameters is necessary in order to achieve fixed parame-
ter tractability; our first negative result holds just for three
agents, and our second result produces an instance with just
three different item types. Hence, our algorithm is the best
possible one could hope for, and actually it is capable of
finding also EF and EF1 allocations, if they exist.

Moreover, our algorithm serves as the foundation for our
second positive result, which is an efficient procedure de-
ciding the existence of an EFX/EF1/EF allocation for the
combined parameter the number of agents and the number
of different values in agents’ preferences. The latter parame-
ter naturally captures widely studied binary valuations (Bar-
man, Krishnamurthy, and Vaish 2018; Freeman et al. 2019;
Halpern et al. 2020; Babaioff, Ezra, and Feige 2021; Suk-
sompong and Teh 2022), bi-valued valuations (Ebadian, Pe-
ters, and Shah 2022; Garg, Murhekar, and Qin 2022), and
was previously used by Amanatidis et al. (2021) and Garg
and Murhekar (2023).

Next, we move to instances with structured valuations.
Following the approach of Aziz et al. (2023b), we start with
binary valuations, i.e., they have {0, 1} as domain. First, we
show that instances where every agent uses only two differ-
ent values (which can be different for every agent) are, in
fact, equivalent to binary valuations. Additionally, and more
importantly, we show that for binary valuations EFX and
EF1 allocations coincide. Thus, using the existential result
of Aziz et al., we establish the existence of EFX allocations
for three agents with binary valuations and no chores.

Finally, we introduce and study a different class of struc-
tured valuations which we term agent/item-correlated valua-
tions. Intuitively, under agent-correlated valuations, an agent
i ∈ N receives utility vi,a if an item a is given to her, and τi,j
fraction of vi,a if the item is allocated to agent j. Item-
correlated valuations are similar; however, the fractional co-
efficient depends on the item which is allocated not the
agent who gets it. We show that instances with agent/item-
correlated valuations can be turned into equivalent instances
of fair division without externalities with the same sets of
agents and items. To conclude, we show how the agent- and
item-correlated preferences capture many real-life scenarios
such as team preferences (Igarashi et al. 2023).

2We provide formal definitions in Preliminaries.
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All omitted proofs can be found in the full version of the
paper (Deligkas et al. 2023).

2 Preliminaries
We will follow the model and the notation of Aziz
et al. (2023b). There is a set of indivisible items A =
{a1, a2, . . . , am} and a set of agents N = {1, 2, . . . , n}. An
allocation π = (π1, π2, . . . , πn) is a partition of the items
into n possibly empty sets, i.e., πi ∩ πj = ∅ for every i ̸= j
and

⋃
i∈N πi = A, where set πi is allocated to agent i. Let Π

denote the set of all allocations. For any item a ∈ A, denote
π(a) the agent who receives item a in allocation π.

We assume that the agents have valuation functions with
additive externalities. More formally, every agent i has a
value Vi(j, a) for every item a ∈ A and every agent j ∈ N ;
put simply, agent i gets value Vi(j, a) if item a is allo-
cated to agent j. The value of agent i from allocation π is
Vi(π) =

∑
a∈A Vi(π(a), a).

Let a ∈ A be an item. We define the item-type as a vector(
V1(1, a), . . . , V1(|N |, a), V2(1, a), . . . , V|N |(|N |, a)

)
. That

is, two items are of the same item-type if the associated vec-
tors are the same; intuitively, these items are “indistinguish-
able” from the point of view of every agent. By Υ we denote
the number of different item-types in an instance.

We will focus on envy-freeness and its relaxations, EF1
and EFX, in the presence of externalities. Since now every
agent evaluates the whole allocation and not just their bundle
like in the no-externalities case, the idea of swapping bun-
dles needs to be deployed. We use πi↔j to denote the new
allocation in which agents i and j swap their bundles in π
while the bundles of the other agents remaining the same.

Definition 1 (EF (Velez 2016)). An allocation π is envy-
free (EF), if for every pair of agents i, j ∈ N it holds that
Vi(π) ≥ Vi(π

i↔j).

Definition 2 (EF1 (Aziz et al. 2023b)). An allocation π is
envy-free up to one item (EF1), if for every pair of agents
i, j ∈ N there exists an item a ∈ A and an allocation λ
such that: (i) λℓ = πℓ \ {a}, for all ℓ ∈ N ; and (ii) Vi(λ) ≥
Vi(λ

i↔j).

Definition 3 (EFX (Aziz et al. 2023b)). An allocation π is
envy-free up to any item (EFX), if for every pair of agents
i, j ∈ N , if Vi(π) < Vi(π

i↔j), then for any item a ∈ A and
allocation λ with the properties

1. λℓ = πℓ \ {a}, for all ℓ ∈ N ;
2. Vi(λ)− Vi(λ

i↔j) > Vi(π)− Vi(π
i↔j),

it holds that Vi(λ) ≥ Vi(λ
i↔j).

Observe that the second property of Definition 3 above
implies that we have to remove an item from πi ∪ πj with
strictly non-zero value for agent i; depending from which
bundle we remove the item, it can be either a good, or a
chore. This definition is equivalent to EFX in the absence
of externalities, when we have to remove items of non-zero
value from a bundle an agent envies. A different, more con-
strained version, termed EFX0, requires that envy should be
eliminated by removing any item, even if the agent has zero
value for it (Plaut and Roughgarden 2020).

For allocation π and two agents i, j ∈ N , we say that i
envies j or alternatively that there is envy from i towards j if
Vi(π

i↔j) > Vi(π). We will use the following simple obser-
vation in our hardness proofs.

Observation 1. If an agent i does not envy agent j, then the
pair i, j satisfies Definition 3 for every item a ∈ A.

Finally, we are ready to define the computational prob-
lems we will study.

Definition 4. Let ϕ ∈ {EF, EF1, EFX}. An instance I =
(N,A, V ) of ϕ−FAIR DIVISION WITH EXTERNALITIES
consists of a set of items A and a set of agents N with val-
uation functions V with additive externalities. The task is
to decide whether there exists an allocation that is fair with
respect to solution concept ϕ.

Normalized Valuations. Valuations with externalities al-
low us to consider only non-negative values in the valua-
tions, i.e. we can “normalize” them as follows. Let i ∈ N
be an agent. For each item a ∈ A we compute xi,a :=
minj∈N Vi(j, a) and we set Vi(j, a)← Vi(j, a)− xi,a.

Proposition 1. Let I be an instance of
ϕ−FAIR DIVISION WITH EXTERNALITIES. Then, we
can get an instance I ′ with normalized valuations such that
any solution for instance I ′ corresponds to a solution for I.

Chores. While in the standard setting the definition of
chores is straightforward, in the presence of externalities
they can be defined in more than one way; Aziz et al.
(2023b) defined them informally. Below, we define strong-
chores and weak-chores. Intuitively, a strong-chore is an
item that an agent does not want to have at all; this resembles
the “standard” chore-definition. On the other hand, an item
is a weak-chore, if the agent does not mind having it, but
there exist some other agents that it would be better for him
if they get it; so, weak-chores capture positive externalities.
A strong-chore is a weak-chore, but not vice versa. Hence,
negative results with respect to weak-chores carry over to
strong-chores.

Definition 5. An item a is a strong-chore for agent i if
Vi(i, a) ≤ Vi(j, a) for all j ̸= i, where for at least one j
the inequality is strict. An item a is a weak-chore for agent i
if there exists an agent j such that Vi(i, a) < Vi(j, a).

Parameterized Complexity. An instance of a parameter-
ized problem Q ⊆ Σ × N, where Σ is fixed and finite al-
phabet, is a pair (I, k), where I is an input of the prob-
lem and k is parameter. The ultimate goal of parameterized
algorithmics is to confine the exponential explosion in the
running time of an algorithm for some NP-hard problem to
the parameter and not to the instance size. In this line of
research, the best possible outcome is the so-called fixed-
parameter algorithm with running time f(k) · |I|O(1) for
any computable function f . That is, for every fixed value of
the parameter, we have a polynomial time algorithm where,
moreover, the degree of the polynomial is independent of
the parameter. For a more comprehensive introduction to pa-
rameterized complexity, we refer the interested reader to the
monograph of Cygan et al. (2015).
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3 General Valuations
In this section, we focus on the case of general valuations
for the agents. Our first negative result shows that it is in-
tractable to decide whether there is an EFX allocation even
when there are three agents and there are no chores.

Theorem 2. EFX-FAIR DIVISION WITH EXTERNALITIES
is NP-complete, even if there are three agents and there are
no weak-chores.

Proof sketch. Firstly, it is not hard to see that we can verify
in polynomial time whether an allocation is EFX, since for
any agent we can simply calculate whether they envy an al-
location where we swap two bundles and whether this can
be eliminated by removing each item that satisfies the prop-
erties form Definition 3.

Next, we prove hardness by providing a polyno-
mial reduction from the NP-hard EQUAL-CARDINALITY-
PARTITION problem (Garey and Johnson 1979) in which,
given a sequence S = (s1, s2, . . . , s2n) of 2n integers for
some n ∈ N, the goal is to find a subset I ⊆ [2n] of size n
such that

∑
i∈I si =

∑
i∈[2n]\I si. Let smin and smax be the

minimum and the maximum integers in S respectively, and
let M = (smax−smin)·n2. We can assume that M > 0, oth-
erwise all the numbers in S are equal and hence any subset
of size n forms a solution.

We construct a new instance S′ = (s′1, s
′
2, . . . , s

′
2n) of

EQUAL-CARDINALITY-PARTITION by shifting all the num-
bers in S by a constant: s′i = M + si − smin. Then for any
I ⊆ [2n] of size n it holds that

∑
i∈I s

′
i =

∑
i∈[2n]\I s

′
i

if and only if
∑

i∈I si =
∑

i∈[2n]\I si. Let us now denote
B = 1

2

∑
i∈[2n](si − smin), then EQUAL-CARDINALITY-

PARTITION asks to find I ⊆ [2n] of size n such that∑
i∈I

s′i =
1

2

∑
i∈[2n]

s′i =
1

2

∑
i∈[2n]

(M +si−smin) = Mn+B.

In addition, note that

B =
1

2

∑
i∈[2n]

(si − smin) ≤
1

2

∑
i∈[2n]

(smax − smin) =

= n · (smax − smin) < n2 · (smax − smin) = M,

so B < M . By construction, M ≤ s′i ≤ M + smax − smin

for every i ∈ [2n]. Therefore, for any set I ⊆ [2n] we have
M ·|I| ≤

∑
i∈I s

′
i ≤ |I|·(M+smax−smin) < M ·(|I|+1).

We now create an equivalent instance of EFX-FAIR DI-
VISION WITH EXTERNALITIES with three agents and no
chores, where the set A = {ai | i ∈ [2n + 2]} consists of
2n+ 2 items, first 2n associated with integers in S and two
auxiliary items. The valuations are defined as follows:

• Vi(i, aj) = s′j for i ∈ [3] and j ∈ [2n];
• V1(1, a2n+1) = V2(2, a2n+2) = Mn+B;
• V1(1, a2n+2) = V2(2, a2n+1) = 1;
• V1(2, a2n+2) = V2(1, a2n+1) = −M2;
• V3(3, a2n+1) = V3(3, a2n+2) =

Mn+B
2 ;

• all remaining values are zeros.

We start by showing how to obtain an EFX allocation π
from any I ⊆ [2n] such that

∑
i∈I s

′
i =

∑
i∈[2n]\I s

′
i. We

set π = ({ai | i ∈ I}, {ai | i ∈ [2n] \ I}, {a2n+1, a2n+2}).
First, observe that V1(π) = V2(π) = V1(π

1↔2) =
V2(π

1↔2) = V3(π) = V3(π
1↔3) = V3(π

2↔3) = Mn + B
and V1(π

1↔3) = V2(π
2↔3) = Mn + B + 1. There-

fore, the only envy is from the agents 1 and 2 towards the
agent 3. Since there are no chores, removing items from
π1 or π2 does not decrease the envy. Moreover, removing
a2n+1 from π3 eliminates the envy. Indeed, if λ is such that
λℓ = πℓ \ a2n+1, then V1(λ) = V2(λ) = Mn + B, while
V1(λ

1↔3) = 1 and V2(λ
2↔3) = Mn+B. Similarly, remov-

ing a2n+2 from π3 eliminates the envy. Hence, π is EFX.
On the other hand, assume that π = (π1, π2, π3) is EFX.

For every j ∈ [3], let Ij = {i | ai ∈ πj}∩[2n]. We will show
that I1 is a solution to EQUAL-CARDINALITY-PARTITION
instance S. For this, we will distinguish all possibilities de-
pending on where a2n+1 and a2n+2 belong and show that
the only possible case is {a2n+1, a2n+2} ⊆ π3, since in rest
of the cases, the assignment π cannot be EFX.

Next we restrict the problem at a different dimension and
we constrain the valuation function. As our next theorem
shows, the problem remains hard even if we severely limit
the different values in the valuation functions of the agents
and the number of different item types.
Theorem 3. EFX-FAIR DIVISION WITH EXTERNALITIES
is NP-complete even if the valuation function uses only 6
different values, 3 item types, and there are no weak-chores.

Proof sketch. We prove the statement by providing a poly-
nomial reduction from MIN BISECTION problem on cubic
graphs (Bui et al. 1987), i.e., the graphs where every vertex
has degree precisely three. In MIN BISECTION we are given
a graph G = (V,E) on 2n vertices and an integer k and the
question is whether there exists a partition (X,Y ) of V such
that |X| = |Y | = n and there are at most k edges in E with
one endpoint in X and the other endpoint in Y . We can as-
sume that no partition of V into two equal parts has only at
most k − 1 edges across.

Note that if G = (V,E) is a cubic graph with 2n vertices
and (X,Y ) is a partition of V into two subsets of size n
such that there are precisely k edges with one endpoint in
X and the other in Y , then there are 3n−k

2 edges with both
endpoints in X and 3n−k

2 edges with both endpoints in Y .
We are now ready to describe our reduction to EFX-FAIR
DIVISION WITH EXTERNALITIES.

• The set of agents is N = {1, . . . , 3n}, where each agent
i ∈ [3n] is associated with an edge ei ∈ E;

• The set of items A is split into three sets (item types):
– set X of 3n+k

2 items;

– set Y of 3n−k
2 items;

– set Z of 3n− k items.

Intuitively, we want to link any potential solution (X ′, Y ′)
of MIN BISECTION to the following allocation π of items.
Agent i, associated with edge ei, receives some item from Y
only if ei has both endpoints in Y ′. Otherwise, i receives
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some item from X . In addition, i receives an item from Z if
and only if ei does not belong to the cut (X ′, Y ′). To make
such an allocation EFX, we define the valuations as follows.

• For all items x ∈ X , all i ∈ [3n], Vi(i, x) = 10n2.
• For all items x ∈ X , all i, j ∈ N such that ei and ej do

not share an endpoint Vi(j, x) = 10n2 − 4n.
• For all items y ∈ Y , all i ∈ [3n], Vi(i, y) = 5n2.
• For all items y ∈ Y , all i, j ∈ N such that ei and ej do

not share an endpoint Vi(j, y) = 5n2 − 4n.
• For all items z ∈ Z and all i ∈ [3n] we have Vi(i, z) = 1.
• All the remaining values are zero.

Note that the valuation function only uses six values
0, 1, 5n2 − 4n, 5n2, 10n2 − 4n, 10n2 and 3 different item-
types.

First, let’s assume (X ′, Y ′) is a partition of V into equal
size parts such that there are exactly k edges with one end-
point in X ′ and one endpoint in Y ′. Let π be the allocation
described above. To see that π is EFX, we first consider the
case when edges ei, ej ∈ E do not share an endpoint. If in
addition the agents i and j receive equal numbers of items
from Z, we have Vi(π) = Vi(π

i↔j). Indeed, i values items
from X and Y by exactly 4n more on itself than on j, and
since both i and j have exactly one such item, the value does
not change after swap. In particular, there is no envy already.
Similarly, if one of the agents, say i, is not assigned any item
from Z, the envy Vi(π

i↔j) − Vi(π) is at most one. So, by
removing any item that decreases the envy, we eliminate it.

It remains to consider the case when the edges ei and ej
share an endpoint. Again, there are two possibilities. If πi

and πj contain equal numbers of items from Z, then since ei
and ej share a vertex, it is straightforward to see that the
unique item in πi \Z and the unique item in πi \Z are either
both from X or both from Y . Hence Vi(π) = Vi(π

i↔j) =
Vj(π) = Vj(π

i↔j) and there is no envy.
If only πj contains an item from Z, then πi = {x} for

some item x ∈ X . Since all the items are goods, removing x
from π makes πi empty and clearly removes envy from j
towards i if there was any envy to begin with. For agent i, if
πj = {y, z} for some y ∈ Y and z ∈ Z, then Vi(π

i↔j) =
Vi(π) − 10n2 + 5n2 + 1 < 0, so there is no envy from i
towards j. Finally, if πj = {x′, z} for some x′ ∈ X and
z ∈ Z, then Vi(π

i↔j) − Vi(π) = 1. Hence, if removal of
some item decreases the envy, it completely eliminates it.

For another direction, let π be an EFX assignment. We
observe that |πi∩(X∪Y )| = 1 for all i ∈ N : otherwise there
would be two agents i and j such that |πi ∩ (X ∪ Y )| = 0
and |πj∩(X∪Y )| ≥ 2. Then removal of any item from πj∩
(X ∪ Y ) would decrease, but not eliminate the envy from i
towards j. By similar arguments, there are precisely k agents
without any item in Z, while all the other agents receive
exactly one item from Z. Next, we consider the subset EI

of edges ei such that Y ∩πi ̸= ∅ and show that if ei ∈ EI and
ej ̸∈ EI share an endpoint, then πj ∩ Z = ∅. In particular,
there are at most k edges that touch EI , and we use them as
a base to obtain our solution to MIN BISECTION.

Our negative results strongly indicate that in order to de-
rive some positive results for general valuations, we have to

further restrict ourselves. Interestingly, we show that if we
combine the two parameters for which the problem is in-
tractable, when we consider them independently, the prob-
lem becomes fixed-parameter tractable. Hence, we provide
a dichotomy with respect to this combination of parameters.

We start our journey for the first algorithmic results with
instances, where the number of agents and the number of
item types is bounded.

Theorem 4. The ϕ-FAIR DIVISION WITH EXTERNALITIES
problem, where ϕ ∈ {EF,EF1,EFX}, is fixed-parameter
tractable when parameterized by the number of different
item types Υ and the number of agents |N | combined.

Proof sketch. As the first step of our algorithm, we partition
the items according to their types T = {T1, . . . , TΥ} and
compute the size nT1 , . . . , nTΥ of each partition. For the rest
of this proof, we will use the notion of bundle-types. The
bundle-type is defined by the subsets of different item types
that has at least one representative in the bundle. It is easy to
see that there are at most 2O(Υ) bundle-types in total.

Now, we guess for each agent its bundle-type. There
are 2Υ

O(|N|)
such guesses and for each guess, we construct

an ILP that verifies whether the guess satisfies the given no-
tion of fairness; in what follows, we assume envy-freeness
(EF), but later we show how to tweak the construction to
handle also the other notions. We denote by B(i) the set of
item types present in the agent’s i ∈ N bundle according to
our guess. In addition, we extend the definition of valuation
to types and use Vi(j, t) to denote how agent i ∈ N values
the item of type t ∈ T assigned to agent j ∈ N .

Our ILP contains O (|N | ·Υ) variables xt,i representing
the number of items of type t assigned to the agent i. The
constraints are then as follows. The first set of O (Υ) con-
straints of type

∑
i∈N xt,i = nt, where t ∈ T , ensures that

all items are allocated. The second set of constraints of size
O (|N | ·Υ) secures that the items allocated to each agent
correspond to the guessed bundle. Finally, the third set of
O
(
|N |2

)
constraints is to verify that the outcome is envy-

free – this can be done by definition of EF.
For EF1 and EFX, we can determine using the guessed

bundle-type for every pair of agents i, j ∈ N the item that
decreases envy the most and the item that decreases envy the
least (but still by a positive value), respectively. The item to
be removed can then easily be incorporated into the third
type of constraints.

It is well known that ILPs with parameter-many variables
can be solved by a fixed-parameter algorithm (Lenstra Jr.
1983; Kannan 1987; Frank and Tardos 1987), and the theo-
rem follows.

Theorem 4 above can be used to almost immediately give
us the following corollary. The key ingredient here is to
show that whenever the number of different values and the
number of agents is bounded, so is the number of different
item-types.

Corollary 5. The ϕ-FAIR DIVISION WITH EXTERNAL-
ITIES problem, where ϕ ∈ {EF,EF1,EFX}, is fixed-
parameter tractable when parameterized by the number of
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agents |N | and the number of different values d in agents’
preferences.

We conclude this section with a property that could be of
independent interest. Specifically, we show that there are in-
stances where no allocation maximizing Nash social welfare
is EFX, even if there are 3 agents, 4 items of the same type,
and binary valuations. This contrasts the setting of fair divi-
sion without externalities and additive preferences, as shown
by Amanatidis et al. (2021).
Proposition 6. Let I be an instance of Fair Division with
Externalities and π∗ be an allocation maximizing Nash so-
cial welfare. Then π∗ is not necessarily EFX.

Proof sketch. Let I be an instance with A =
{a1, a2, a3, a4}, |N | ≥ 3, the valuation function for
agent i ∈ {2, . . . , |N |} and every item a ∈ A be defined as

Vi(j, a) =

{
1 if i = j or j = 2,

0 otherwise,

and for every item a ∈ A let V1(1, a) = 1 and 0 otherwise.
First, observe that the items are, from the perspective of

the agents, indistinguishable, and the only thing that matters
for utilities is the number of items allocated to each agent.
Therefore, in the rest of this proof, we assume two alloca-
tions with the same number of items allocated to the same
agents as equivalent. Based on this, we can easily compute
the Nash social welfare for an allocation π using the function

NW(π) = |π1| · |π2| ·
∏

i∈{3,...,|N |}

(|π2|+ |πi|),

subject to the two constraints:
∑

i∈N πi = 4 and
∀i ∈ N : πi ∈ {0, 1, 2, 3, 4}. This clearly attains its global
maximum in |π1| = 1 and |π2| = 3. It can be shown ei-
ther analytically or by a simple argumentation: there has to
be at least one item allocated to agent 1 and at least one
item allocated to agent 2. Moreover, agents 3 . . . N do not
care whether an item is allocated directly to them or to the
agent 2, while agent 2 only benefits from items allocated
to him. Therefore, the only allocation π∗ maximizing Nash
social welfare gives one item to agent 1 and three items to
agent 2. On the other hand, this allocation is clearly not EFX
as the agent 1 benefits from swapping bundle with agent 2
even if we remove any item from π∗

2 – as stated before, the
items are anyway indistinguishable.

4 Binary Valuations
In this section, we study the special case of
FAIR DIVISION WITH EXTERNALITIES when all the
valuations are binary, i.e., all Vi have domain {0, 1}. We
would like to stress here that, in the setting without external-
ities, the domain for binary valuations is usually {−1, 0, 1};
{0, 1} for goods and {−1, 0} for chores (Aziz et al. 2023a).
However, in the presence of externalities, there can exist
chores even without negative values, so Aziz et al. (2023b)
defined binary valuations only using the domain {0, 1}.

In our first result, we show that, in fact, binary valuations
allow us to capture any scenario where every agent has at
most two different values.

Proposition 7. Let I = (N,A, V ) be an instance
of ϕ−FAIR DIVISION WITH EXTERNALITIES, where ϕ ∈
{EF, EF1, EFX}. Assume that for every agent i, there
exist two numbers xi and yi such that Vi(j, a) ∈
{xi, yi} for every agent j and item a. Then I can be
transformed in linear time in the equivalent instance of
ϕ−FAIR DIVISION WITH EXTERNALITIES with the same
sets of agents and objects and binary valuations.

Next, we show that the notions of EFX and EF1 alloca-
tions coincide for binary valuations.
Proposition 8. Let I be an instance of Fair Division with
Externalities with binary valuations and let π be some allo-
cation of items. Then π is EFX if and only if π is EF1.

Proof. Observe that every EFX allocation is EF1 by defini-
tion, even for general valuations. For another direction, as-
sume that π is EF1 allocation. If agent i envies j, there must
be some item a such that removal a from π eliminates the
envy. Since the valuations are binary, removal of any item
can decrease the envy by at most one, from which we con-
clude that Vi(π) − Vi(π

i↔j) = 1. But then the removal of
any other item, decreasing Vi(π)−Vi(π

i↔j), eliminates the
envy as well. Hence, π is EFX allocation.

Aziz et al. (2023a) showed that for instances with three-
agents, no chores, and binary valuations, an EF1 allocation
always exists and can be found in polynomial time. There-
fore, by Proposition 8, we obtain the same guarantee also
for EFX.
Theorem 9. Every instance of Fair Division with Exter-
nalities with three agents, binary valuations, and no weak-
chores, admits an EFX allocation which can be computed in
polynomial time.

5 Correlated Valuations
One of the special cases of valuations with externalities are
so-called agent-correlated valuations, where an agent i ∈ N
receives for an item a ∈ A:
• the best value vi,a if a is allocated to i and
• some part (1− τi,j)vi,a of the best value, τi,j > 0, if a is

allocated to another agent j.
One can imagine that the coefficient τi,j indicates the de-
gree of friendship between i and j. We extend this model
by adding item-correlations, represented by coefficients µi,a

for each agent i and item a, so the valuations have the fol-
lowing form: V = {Vi(j, a) : i, j ∈ N, a ∈ A} such that for
every pair of agents i, j ∈ N and item a ∈ A,

Vi(j, a) =

{
vi,a if i = j,

(1− τi,jµi,a) · vi,a otherwise,

for some vi,a and µi,a, where τi,j > 0. We call such valua-
tions agent-item-correlated. Intuitively, µi,a shows how im-
portant it is for the agent i that they and no one else receives
the item a. Surprisingly, it turns out that agent-correlated
valuations and even their item-correlated generalizations can
be reduced to the valuations without externalities and, there-
fore, we can use classic algorithms and guarantees from the
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theory of fair division without externalities (Lipton et al.
2004; Caragiannis et al. 2019; Aziz et al. 2021). In particu-
lar, we get that in these settings EF1 allocations always exist
and can be found in polynomial time.

Theorem 10. Let ϕ ∈ {EF, EF1, EFX}. Any instance I
of ϕ−FAIR DIVISION WITH EXTERNALITIES with agent-
item-correlated valuations can be transformed in linear time
into the equivalent instance I ′ of ϕ−FAIR DIVISION (with
no externalities) with the same sets of items and agents.

Proof. Let I = (N,A, V ), we construct the instance I ′ =
(N,A,U) of ϕ−FAIR DIVISION with Ui(a) = µi,avi,a for
every agent i ∈ N and every item a ∈ A. To see the equiv-
alence of I and I ′, fix arbitrary allocation of items π. For
every pair of agents i and j, we have Vi(π

i↔j) − Vi(π) =∑
a∈πj

(Vi(i, a)−Vi(j, a))+
∑

a∈πi
(Vi(j, a)−Vi(i, a)) =∑

a∈πj
τi,jµi,avi,a −

∑
a∈πi

τi,jµi,avi,a, or in terms of U

it is Vi(π
i↔j) − Vi(π) = τi,j(Ui(π

i↔j) − Ui(π)). Since
τi,j > 0, i envies j in I if and only if i envies j in I ′. In
particular, the allocation π is envy-free for I ′ if and only if
it is envy-free for I. The same holds for any allocation ob-
tained from π by removing one item. Therefore, I and I ′
are equivalent as instances of EF or EF1.

For EFX, it remains to show that whenever i envies j, the
removal of any item from π decreases the envy in I if and
only if it decreases the envy in I ′. Let λ be the allocation
obtained from π by removing some item a0 that decreases
envy of i towards j in I, then we have:

Vi(λ
i↔j)− Vi(λ) < Vi(π

i↔j)− Vi(π) ⇐⇒
τi,j(Ui(λ

i↔j)− Ui(λ)) < τi,j(Ui(π
i↔j)− Ui(π))

⇐⇒ Ui(λ
i↔j)− Ui(λ) < τi,jUi(π

i↔j)− Ui(π),

since τi,j > 0, which concludes the proof.

Examples of Agent-Item-Correlated Valuations
For one real-life scenario, imagine that our agents are parti-
tioned into t teams T1, . . . , Tt. Let c < 1 be some constant.
The valuation of every agent is defined as follows: for an
item a ∈ A, Vi(i, a) = vi,a. Moreover, Vi(j, a) = c · vi,a if
j ̸= i is a teammate of i and Vi(j, a) = 0 otherwise. We call
such valuations team-based.

Therefore, in team-based valuations, agents always want
to receive items themselves, but otherwise they prefer items
to be given to their teammates. This situation can be cap-
tured by setting µi,a = 1 along with τi,j = 1 − c if i and j
are in the same team and τi,j = 1 otherwise.

Corollary 11. For any instance I of Fair Division with Ex-
ternalities with team-based valuations, an EF1 allocation
always exists and can be found in polynomial time.

For another example of agent-item-correlated valuations,
assume that the agents form a graph G = (N,E), which we
will call a network. For each item a and agent i, if i receives
a, this also contributes to the values of any other agent j, and
the contribution depends on the distance di,j between i and
j in the network G, namely, Vi(j, a) = (1− di,jµi,a) · vi,a.
We call such valuations network-based.

Corollary 12. For any instance I of Fair Division with Ex-
ternalities with network-based valuations, an EF1 alloca-
tion always exists and can be found in polynomial time.

For instance, network-based valuations would capture the
following scenario: a fixed amount of new transport stops
(which will be items) should be added, and there are few
possible locations (corresponding to agents) for them. The
goal is to ensure that from every location one can reach stops
that are not too far. To bring µi,a into play, imagine that some
stops are more important to have nearby then the others. For
instance, it is not crucial to have a railway connection in the
vicinity, but highly recommended to ensure that there are
underground stations close enough.

6 Conclusions
In this work, we continue the line of research on fair divi-
sion of indivisible items with externalities initiated by Aziz
et al. (2023b). In contrast to previous work, we study the
problem from the perspective of computational complexity.
To this end, we provide strong intractability results for var-
ious restrictions of the problem. On the other hand, we pro-
vide several fixed-parameter algorithms that, together with
previously mentioned hardness, paint a complete complex-
ity picture of fair division with externalities with respect to
its natural parameters. Later, we additionally focus on re-
stricted valuations, providing many properties that lead to
previously unknown existence guarantees.

Our algorithmic results leave open a very intriguing ques-
tion. What is the complexity of deciding whether an EF (or
even EF1/EFX) allocation exists when |N | > |A| and we
parameterize by the number of items? In the absence of ex-
ternalities the answer to this is trivial; there is no EF allo-
cation! With externalities though, there is a very easy XP
algorithm, but for fixed-parameter tractability the problem
becomes very thought provoking.

It is very common in the fair division literature to com-
bine fairness of the outcome with its efficiency. Arguably,
the most widely studied efficiency notions in the context of
fair division are Pareto optimality (PO) and social welfare.
In our last result, we show that these two notions on their
own are easy to compute even under the presence of exter-
nalities. Therefore, it is natural to ask for a complexity pic-
ture of different combinations of fairness and efficiency.
Proposition 13. Given an instance I of Fair Division with
Externalities, there is a polynomial-time algorithm that finds
an allocation which is Pareto optimal and maximizes utili-
tarian social welfare.

Nevertheless, the most appealing question for future re-
search is the (non-)existence of EF1 allocations under binary
or general valuations, even if we have only three agents. We
conjecture that for binary valuations, EF1 allocation always
exists – and, therefore, due to our results, also EFX alloca-
tions always exist in this setting. However, despite many at-
tempts, the proof seems highly non-trivial as already with
the no-chores assumption, Aziz et al. (2023a) used many
branching rules, ramified case distinction, and even com-
puter program to verify some branches. For general valua-
tions, we are more skeptical.
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