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Abstract

In the MULTIAGENT PATH FINDING problem, we focus on
efficiently finding non-colliding paths for a set of k agents
on a given graph G, where each agent seeks a path from its
source vertex to a target. An important measure of the qual-
ity of the solution is the length of the proposed schedule ℓ,
that is, the length of a longest path (including the waiting
time). In this work, we propose a systematic study under the
parameterized complexity framework. The hardness results
we provide align with many heuristics used for this problem,
whose running time could potentially be improved based on
our Fixed-Parameter Tractability (FPT) results.
We show that MAPF is W[1]-hard with respect to k (even if k
is combined with the maximum degree of the input graph).
The problem remains NP-hard in planar graphs even if the
maximum degree and the makespan ℓ are fixed constants. On
the positive side, we show an FPT algorithm for k + ℓ.
As we continue, the structure of G comes into play. We give
an FPT algorithm for parameter k plus the diameter of the
graph G. The MAPF problem is W[1]-hard for cliquewidth
of G plus ℓ while it is FPT for treewidth of G plus ℓ.

Introduction
In this paper, we study the MULTIAGENT PATH FINDING
(MAPF) problem. MAPF has many real-world applica-
tions, e.g., in warehouse management (Wurman, D’Andrea,
and Mountz 2008; Li et al. 2021), airport towing (Morris
et al. 2016), autonomous vehicles, robotics (Veloso et al.
2015), digital entertainment (Ma et al. 2017), and computer
games (Snape et al. 2012). In MAPF the task is to find non-
colliding paths for a set of k agents on a given graph G,
where each agent seeks a path from its source vertex to a
target.

This important problem has been, to the best of our
knowledge, formally introduced about 20 years ago and at-
tracted many researchers since then. Nowadays, there are
numerous variants of the formal model for the problem;
see (Stern et al. 2019). It is not surprising that the MAPF
problem is in general NP-complete (Surynek 2010); the
hardnes holds even in planar graphs (Yu 2016). There-
fore, there are numerous heuristic approaches that allow
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us to efficiently obtain a useful solution for the given in-
put; see, e.g., the survey (Stern 2019) for overview of
such results. A multitude of techniques was used to tackle
MAPF—A*-based algorithms (Hart, Nilsson, and Raphael
1968), SAT-based algorithms (Surynek et al. 2017), schedul-
ing approach (Barták, Švancara, and Vlk 2018), SMT-
solvers (Surynek 2019, 2020), to name just a few. Our work
focuses on exact algorithms, that is, the aim is to return an
optimal solution and the central question is on which kinds
of inputs this can be done in an efficient way and where
this is unlikely. While doing so, we initiate parameterised
analysis of the MULTIAGENT PATH FINDING problem with
the focus on natural and structural parameters. Note that
the MAPF problem features two natural parameters—the
number of agents k and the total length of the schedule ℓ
(also called makespan). It is worth noting that two versions
of MAPF are usually studied in the literature—one allows
swapping two agents along an edge while this is prohibited
in the other. Roughly speaking, the first version treats the
input topology as a bidirected graph while the other as undi-
rected. Most of our algorithmic results are independent of al-
lowing or forbidding swaps; therefore, we reserve the name
MULTIAGENT PATH FINDING for the version where we do
not care about swaps. If the result holds only with swaps
allowed, we use MULTIAGENT PATH FINDING SWAPS to
refer to that specific version fo the problem while we use
MULTIAGENT PATH FINDING NO SWAPS for the version
where we explicitly do not allow swaps.

Our Contribution
It is well-known that MAPF can be reduced to a shortest-
path problem in a graph known as the k-agent search space.
Then, one can apply any algorithm to find a shortest path
in this graph to find a solution to the original problem, e.g.,
using A*. The main downside of this approach is the size of
the search space. We first show that it is unlikely to desing
an efficient pruning algorithm for the k-agent search space:

Theorem 1. The MULTIAGENT PATH FINDING problem
is W[1]-hard parameterised by the number of agents k
plus ∆(G) the maximum degree of the graph G.

Indeed, the above observation yields the following.

Theorem 2. The MULTIAGENT PATH FINDING problem is
in XP parameterised by the number of agents k.
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We continue the study of classical complexity of MAPF
with focus on the structure of the input graph G. Driven
by some applications, one is interested in specific graph
classes such as planar graphs or trees. Sadly, we show that
the MAPF problem remains intractable in both these classes
even if some other parts of the input are fixed constants.
Theorem 3. The MULTIAGENT PATH FINDING SWAPS
problem remains NP-complete even if the input graph G is
planar, ℓ = 3, and ∆(G) = 4.

It was known (Ma et al. 2016) that MULTIAGENT PATH
FINDING is NP-complete when ℓ = 3 (in general graphs).
The NP-hardness for planar graphs (Yu 2016) was recently
improved to constant degree (Eiben, Ganian, and Kanj
2023); there ℓ = 26 and ∆(G) = 4. However, Theorem 3
features all three of these properties. Furthermore, we be-
lieve that our reduction is simpler than the one of Eiben et
al. It is not hard to see that instance with makespan 2 and
swaps are allowed can be solved in polynomial time via a
reduction to Hall’s Marriage Theorem (which is used to find
suitable middle point of all of the paths from sources to des-
tinations). Thus, with the above theorem we get a tight di-
chotomy result in classical complexity.

Moreover we observe that, surprisingly, when swapping
is not allowed, the problem becomes hard even for ℓ = 2.
Note that for ℓ = 1 it is trivial.
Theorem 4. The MULTIAGENT PATH FINDING NO SWAPS
problem remains NP-complete even if the input graph G is
planar, ℓ = 2 and ∆(G) = 5.

The proof of Theorem 4 is achieved by slightly adjusting
the gadgets used in the proof of Theorem 3.
Theorem 5. The MULTIAGENT PATH FINDING NO SWAPS
problem remains NP-complete even if G is a tree of maxi-
mum degree ∆(G) = 5.

Note that the MULTIAGENT PATH FINDING SWAPS was
recently shown to be NP-complete for trees when the num-
ber of agents is equal to the number of vertices of that
tree (Aichholzer et al. 2022). Our Theorem 5 differs from
this work as, apart from treating the non-swapping version,
it also tackles the problem for an arbitrary number of agents.

At this point, we see that none of the standard
parameters—k or ℓ—is a good parameter alone. We com-
plement this by showing that the combination of the two pa-
rameters results in fixed-parameter tractability.
Theorem 6. The MULTIAGENT PATH FINDING problem is
in FPT parameterised by the number of agents k plus the
makespan ℓ.

In the rest of the paper, we seek a good structural com-
panion parameters to either of these. We begin with a very
restrictive parameter—the vertex cover number that consti-
tutes a rather simple starting point for our more general re-
sults. Here, we exploit the fact that many agents behave in
a same way, i.e., they are almost anonymous. Furthermore,
we can prune the input graph G, so that its size is bounded
in terms of parameters (i.e., we provide a kernel).
Theorem 7. The MULTIAGENT PATH FINDING problem is
in FPT parameterised by the number of agents k plus the
vertex cover number vc(G).

It is known, that graphs of bounded vertex cover number
have bounded diameter–the length of a longest shortest path
in the graph (in a connected component). We strengthen the
above result by proving that diameter is a strong companion
to k. This yields tractability for many structural parameters
including MIM-width as it implies bounded diameter. The
proof uses the fact that if a graph has many vertices (un-
bounded in terms of k and the diameter) and small diameter,
it must contain a vertex of large degree. We use such a ver-
tex as a hub and prove that if we first route all agents to the
neighborhood of that vertex and then to their respective des-
tinations, we obtain routes with makespan O(k · d), where d
is the diameter. The theorem then follows from Theorem 6.

Theorem 8. The MAPF problem is in FPT parameterised
by the number of agents k plus the diameter of G.

Note that the vertex cover number vc(G) also bounds the
number of agents that can move simultaneously. This can
be generalized to a number of locally moving agents or, in
other words, the size of separators in G. It is well-known
that the size of vertex separators in a graph is related to a
graph parameter treewidth. However, in view of our Theo-
rem 5, there is little hope to conceive an efficient algorithm
parameterized just by the treewidth of the input graph. To
remedy this, we additionally parameterize by ℓ.

Theorem 9. The MULTIAGENT PATH FINDING problem
is in FPT parameterised by the treewidth tw(G) plus the
makespan ℓ.

Cliquewidth is a parameter further generalizing both
vertex cover number and treewidth (Courcelle and Olariu
2000). However, the same additional parameterization as
above leads here to intractability.

Theorem 10. The MULTIAGENT PATH FINDING problem is
in W[1]-hard parameterised by the cliquewidth cw(G) plus
the makespan ℓ.

Preliminaries
For integers m and n, we denote [m : n] the set of all inte-
gers between m and n, that is, [m : n] = {m,m+1, . . . , n}.
We use [n] as a shorthand for [1 : n].

Formally, in the MULTIAGENT PATH FINDING problem
we are given a graph G = (V,E), a set of agents A, a posi-
tive integer ℓ, and two functions s0 : A → V and t : A → V
such that for any pair a, b ∈ A where a ̸= b, s0(a) ̸= s0(b)
and t(a) ̸= t(b). Initially, each agent a ∈ A, is placed on the
vertex s0(a). At specific times, called turns, the agents are
allowed to move to a neighboring vertex, but are not obliged
to do so. The agents can make at most one move per turn and
each vertex can host at most one agent at a given turn. The
position of the agents in the end of turn i (after the agents
have moved) is given by a function si : A → V .

We consider two versions of the problem; in MULTIA-
GENT PATH FINDING SWAPS (MAPFS) we allow swaps,
i.e., two agents to move through the same edge during
the same turn, while in MULTIAGENT PATH FINDING NO
SWAPS (MAPFNS) we do not allow swaps. In the first case,
given si−1(a) for every agent a ∈ A, i.e., the positions of the
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agents at the turn i − 1, the positions si are considered fea-
sible if si(a) is a neighbor of si−1(a) in G, for every agent
a ∈ A. In the second case, the positions si are feasible if, in
addition to the previous, there is no pair of agents a, b ∈ A
such that si(a) = si−1(b) and si(b) = si−1(a).

We say that a sequence s1, . . . , sℓ is a solution of
⟨G,A, s0, t, ℓ⟩ if si is considered feasible for all i ∈ [ℓ] and
sℓ = t. Also, a feasible solution s1, . . . , sℓ has makespan ℓ.
Our goal is to decide if there exists a solution of makespan ℓ.

Parametrized Complexity. Parametrized complexity is a
computational paradigm that extends classical measures of
time (and space) complexity, aiming to examine the com-
putational complexity of problems with respect to a sec-
ondary measure—the parameter. Formally, a parameterized
problem is a set of instances (x, k) ∈ Σ∗ × N, where k is
called the parameter of the instance. A parameterized prob-
lem is fixed-parameter tractable if it can be determined in
f(k) · poly(|x|) time for an arbitrary computable function
f : N → N. Such a problem then belongs to the class FPT.
A parameterized problem is slicewise polynomial if it can
be determined in |x|f(k) time for a computable function
f : N → N. Such a problem then belongs to the class XP. A
problem is presumably not in FPT if it is shown to be W[1]-
hard (by a parameterized reduction). We refer the interested
reader to now classical monographs (Cygan et al. 2015; Nie-
dermeier 2006; Flum and Grohe 2006; Downey and Fellows
2013) for a more comprehensive introduction to this topic.

Structural Parameters. Let G = (V,E) be a graph. A set
U ⊆ V is a vertex cover if for every edge e ∈ E it holds that
U ∩ e ̸= ∅. The vertex cover number of G, denoted vc(G),
is the minimum size of a vertex cover of G.

A tree-decomposition of G is a pair (T , β), where T is a
tree rooted at a node r ∈ V (T ), β : V (T ) → 2V is a func-
tion assigning each node x of T its bag, and the following
conditions hold:

• for every edge {u, v} ∈ E(G) there is a node x ∈ V (T )
such that u, v ∈ β(x) and

• for every vertex v ∈ V , the set of nodes x with v ∈ β(x)
induces a connected subtree of T .

The width of a tree-decomposition (T , β) is
maxx∈V (T ) |β(x)| − 1, and the treewidth tw(G) of a
graph G is the minimum width of a tree-decomposition of
G. It is known that computing a tree-decomposition of mini-
mum width is fixed-parameter tractable when parameterized
by the treewidth (Kloks 1994; Bodlaender 1996), and even
more efficient algorithms exist for obtaining near-optimal
tree-decompositions (Korhonen and Lokshtanov 2023).

Algorithms
For all the results presented in this section, we give a precise
running time which was not given in the introduction.

Few Agents and Short Trips
Let G = (V,E) be an undirected graph and ℓ a positive in-
teger. We capture the movement of agents through G via a
directed graph with vertices representing positions in both

(a) G. (b) GT (3).

(c) G⋆
T (3). The black vertices correspond to the edges of G.

Figure 1: An example of a graph G, together with GT (3)
and G⋆

T (3).

place and time. A time-expanded graph of G with respect
to ℓ, denoted GT (ℓ), is a directed graph with one copy of
each vertex v ∈ V for each time step i ∈ [0 : ℓ], i.e., its
vertex set is {vj | v ∈ V, j ∈ [0 : ℓ]}. The set of vertices
{vj | v ∈ V } for any fixed j, is called a layer. For every
edge {u, v} ∈ V and every i ∈ [ℓ], the graph GT (ℓ) con-
tains two arcs (ui−1, vi) and (vi−1, ui). Moreover for each
vertex v ∈ V and i ∈ [ℓ], the graph GT (ℓ) contains an arc
(vi−1, vi). Vertex-disjoint paths in GT (ℓ) capture exactly the
valid movements of agents when swaps are allowed.

We also introduce a modified version of this graph for
the swap-free version of MULTIAGENT PATH FINDING. A
swap-free time-expanded graph of G with respect to ℓ, de-
noted G⋆

T (ℓ), is a directed graph consisting of 2ℓ+1 layers,
that we again distinguish using subscripts. It contains a copy
vi of vertex v ∈ V for every i ∈ [0 : 2ℓ]. Moreover G⋆

T (ℓ)
contains a vertex e2i−1 for every edge e ∈ E and every
i ∈ [ℓ]. Similarly to GT (ℓ), G⋆

T (ℓ) contains an arc (vi−1, vi)
for every vertex v ∈ V and every i ∈ [2ℓ]. And finally for ev-
ery edge e = (u, v) in E and every i ∈ [ℓ], there are four arcs
(u2i−2, e2i−1), (v2i−2, e2i−1), (e2i−1, u2i) and (e2i−1, v2i)
in G⋆

T (ℓ). Again, it is straightforward to see that vertex-
disjoint paths in G⋆

T (ℓ) capture exactly the valid movements
of agents when swaps are disallowed.

Observation 1. Let I = ⟨G,A, s0, t, ℓ⟩ be an instance of
MAPF. Then I is a yes-instance of MAPFS (MAPFNS
resp.) if and only if there exists a set of directed pairwise
vertex-disjoint paths in GT (ℓ) (G⋆

T (ℓ) resp.) connecting all
pairs {(s0(a)0, t(a)ℓ) | a ∈ A} ({(s0(a)0, t(a)2ℓ) | a ∈
A} resop.), where the second index is used to denote the
corresponding layer of GT (ℓ) (G∗

T (ℓ) resp.).

Theorem 11. The MULTIAGENT PATH FINDING problem
can be solved by an FPT-algorithm parameterised by the
number of agents k plus the makespan ℓ in O(2O(k·ℓ) · m ·
log n) time.

Proof. We reduce to the BOUNDED VERTEX DIRECTED
MULTI-TERMINAL DISJOINT PATHS (BVDMP) problem.
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Its input consists of a directed graph G, two positive inte-
gers k, d, and k pairs of vertices {(si, ti) | i ∈ [k]} in G;
and the task is to decide whether there is a set of k di-
rected vertex-disjoint paths of length at most d connecting
all pairs {(si, ti) | i ∈ [k]}. The BVDMP problem can be
solved by an FPT-algorithm parameterised by k plus d in
O(2O(k·d) ·m · log n) time (Golovach and Thilikos 2011).

Let ⟨G,A, s0, t, ℓ⟩ be an instance of MAPF. Due to Ob-
servation 1, it is sufficient to test whether there exists a set of
k directed pairwise vertex-disjoint paths either in GT (ℓ) or
in G⋆

T (ℓ) depending on whether we allow swaps or not. No-
tice that such paths have length exactly ℓ in GT (ℓ) and 2ℓ in
G⋆

T (ℓ). Thus for MAPFS, it suffices to invoke the FPT algo-
rithm for BVDMP on the graph GT (ℓ) with the pairs of ver-
tices {(s0(a)0, t(a)ℓ) | a ∈ A} and setting d = ℓ. While for
MAPFNS, we run the same algorithm on the graph G⋆

T (ℓ)
with the pairs of vertices {(s0(a)0, t(a)2ℓ) | a ∈ A} and
d = 2ℓ. The resulting algorithms run in O(2O(k·ℓ) ·m·log n)
time since both GT (ℓ) and G⋆

T (ℓ) have O(ℓ ·m) edges.

Tree-like Topology and Short Trips
Lemma 1. For an undirected graph G and a non-negative
integer p, the treewidth of both graphs GT (ℓ) and G⋆

T (ℓ) is
at most O(ℓ · tw(G)).

Proof. Let (T, β) be a tree decomposition of G = (V,E)
of optimal width. First, let us consider the graph GT (ℓ). Let
(T, β′) be the tree decomposition obtained by replacing ev-
ery occurrence of a vertex v in any bag with its ℓ+ 1 copies
v0, . . . , vℓ. Clearly, |β′(x)| = (ℓ+1)·|β(x)| for every node x
and it is easy to check that all the properties of tree decom-
positions hold.

Now, let us consider G⋆
T (ℓ). We first modify the tree de-

composition (T, β) into (T ′, β′) such that each edge e has
a unique associated node x′

e in T ′ such that both endpoints
of e lie in β′(x′

e). That is easily achieved by first choos-
ing an arbitrary such node xe for each edge and then creat-
ing its new copy x′

e attached to xe as a leaf. We construct
a tree decomposition (T ′′, β′′) of G⋆

T (ℓ) by the following
modification of (T ′, β′). As before, we replace every oc-
currence of a vertex v in any bag with its 2ℓ + 1 copies
v0, . . . , v2ℓ. Moreover, for each edge e ∈ E, we add the
vertices e1, e3, . . . , e2ℓ−1 to the bag β′′(x′

e). Observe that
|β′′(x)| ≤ (2ℓ + 1) · |β(x)| + ℓ for every node x in T ′′. It
is again straightforward to verify the required properties of
tree decompositions.

Theorem 12. The MULTIAGENT PATH FINDING problem
can be solved by an FPT-algorithm parameterised by the
treewidth w of G plus the makespan ℓ in (ℓ · w)O(ℓ·w) · n
time.

Proof. Let ⟨G,A, s0, t, ℓ⟩ be an instance of MAPF. First, let
us consider the variant MAPFS where swaps are allowed.
Due to Observation 1, it suffices to check whether there ex-
ists a set of directed pairwise vertex-disjoint paths in GT (ℓ)
connecting all pairs {(s0(a)0, t(a)ℓ) | a ∈ A}. Moreover by
Lemma 1, the treewidth of GT (ℓ) is at most O(ℓ · tw(G)).
Finding vertex-disjoint paths in a directed graph GT (ℓ) is

in FPT parameterised by the treewidth GT (ℓ) via a sim-
ple modification of the undirected case (Scheffler 1994) ac-
counting for the orientation of the arcs. The algorithm runs
in (w′)O(w′) · n time, where w′ is the treewidth of GT (ℓ).
Thus, we can solve the MULTIAGENT PATH FINDING prob-
lem in (ℓ · w)O(ℓ·w) · n time, where w is the treewidth of G.

For the swap-free variant MAPFNS, the algorithm fol-
lows via the same argument simply by using the swap-free
time-expanded graph G⋆

T (ℓ) instead of GT (ℓ). Observe that
G⋆

T (ℓ) has O(ℓ · (n+m)) vertices and O(ℓ · (n+m)) edges
where n, m is the number of vertices and edges in G, respec-
tively. However, we can bound m by O(w · n) since graphs
of bounded tree-width are sparse (Kloks 1994) and thus the
asymptotic bound on the runtime remains unchanged.

Few Agents and Small Vertex Cover
Theorem 13. The MULTIAGENT PATH FINDING problem,
admits a kernel of size O(2vck), where vc is the size of a
minimum vertex cover of the given graph and k the number
of agents.

Sketch of proof. Let ⟨G,A, s0, t, ℓ⟩ be an instance of MULTI-
AGENT PATHFINDING problem and U ⊆ V (G) be a mini-
mum vertex cover of G. For each subset S ⊂ U we denote
with VS the subset of V (G) \U where v ∈ VS if and only if
N(v) = S. Notice that any pair of vertices u, v that belong
in the same set VS for some S ⊂ U are twins. For each S,
we will select a set of vertices, which will be called repre-
sentative set and denoted by US , as follows: if |VS | ≤ 3k
then US = VS , otherwise we select the US that satisfies the
following properties:

• US ⊆ VS ,
• US ⊇ VS ∩ {s0(a), t(a) | a ∈ A} and
• |US \ {s0(a), t(a) | a ∈ A}| = k.

The new instance is ⟨H,A, s0, t, ℓ⟩, where H = G[U ∪⋃
S⊆U US ] and |V (H)| = |U ∪

⋃
S⊆U US | = vc+2vc3k.

The equivalence of the two instances follows from the fact
that we have included enough vertices in the sets US . Intu-
itively, the vertices of the independent set V (G) \U are par-
titioned into the sets VS using their neighborhood S. Then
we have included a sufficient number of vertices from each
VS , i.e., the sets US , for each S ⊆ U , so whenever an agent
needs to move to a vertex v ∈ V (G) \ U ∪ {s0(a), t(a) |
a ∈ A} we can guarantee that there is always a twin of v,
u ∈ UNG(v), that can replace v in the new graph. ⋄

Few Agents and Bounded Diameter Topology
Theorem 14. The MAPF problem can be solved by an FPT-
algorithm parameterised by the diameter d of G plus the
number of agents k in 2O(k2·d·log d) ·m · log n time.

The result is a consequence of the fact that in any suffi-
ciently large graph G, there is always a feasible swap-free
solution with makespan at most O(d · k).
Lemma 2. Let ⟨G,A, s0, t, ℓ⟩ be an instance of MAPF
such that for every a ∈ A, the vertex t(a) is reachable from
s0(a) and G has at least (5 ·d ·k)d+1 vertices where d is the
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diameter of G and k is the number of agents. There exists a
swap-free feasible solution of makespan O(d · k).

Proof. Let us assume that G is connected as otherwise, the
claim follows by considering each connected component
separately. Any graph with maximum degree ∆ > 2 and
diameter d has its number of vertices bounded by the Moore
bound 1 + ∆ (∆−1)d−1

∆−2 , see (Hoffman and Singleton 1960).
Therefore, there is a vertex v of degree at least 5 · d · k in G.

Without loss of generality, let A = [k] be the set of agents.
For each agent i ∈ A, let Pi be an arbitrary shortest path be-
tween s0(i) and t(i) and let H be the subgraph of G obtained
as the union

⋃
i∈[k] Pi. First, observe that H contains at most

k · (d + 1) vertices since each Pi is a shortest path in G. If
H is disconnected, it consists of at most k connected com-
ponents and we keep connecting disconnected components
using shortest paths until we make it connected. Thereby, we
obtain a connected graph on at most 2 · k · (d + 1) vertices
including the starting and target vertices of all agents.

Next, we construct a graph H ′ from H in the following
way. If H does not contain the high-degree vertex v, we
connect it by adding an arbitrary shortest path between v
and H . In doing so, we increase the number of vertices by
at most d−1. Moreover, we add to H ′ arbitrary k neighbors
w1, . . . , wk of v that are contained neither in H nor in the
added shortest path between H and v. This is possible since
there are at most 2 ·k ·(d+1)+d−1 ≤ 4 ·d ·k such vertices
and v has at least 5 · d · k neighbors. In total, H ′ contains at
most O(d · k) vertices.

Let T be an arbitrary spanning tree of H ′ and let
i1, . . . , ik be an ordering of the set of agents [k] such that
distT (s0(ij), v) ≤ distT (s0(ij+1), v) for every j ∈ [k − 1]
where distT (x, y) is the distance between x and y in T . In
other words, we order agents in increasing order with respect
to the distance between their starting positions and v in T .

We construct a feasible solution with short makespan in
the following way. We choose to describe the movements
of all agents instead of tediously defining all the functions
s1, s2, . . .. For j ∈ [k], the agent ij starts moving at time j
and follows the shortest path from s0(ij) to wij in T without
any further delay. We claim that there cannot be any con-
flicts. Assume for a contradiction that there exist j, j′ ∈ [k]
such that the agents ij and ij′ collide at time p. Let us
assume that j < j′. Observe that such a collision must
occur only once the agents start moving and before they
reach the vertex v because of the ordering by distances
from v. In particular the agent ij is at time p in distance
distT (s0(ij), v)− p+ j − 1 from vertex v and the agent ij′
is at distance distT (s0(ij′), v) − p + j′ − 1. However, we
have distT (s0(ij), v) ≤ distT (s0(ij′), v) due to the way we
defined the ordering and j < j′ by assumption. Therefore,
the distance of the agent ij is strictly smaller than that of
agent ij′ and we reach contradiction.

Once we stashed every agent i ∈ [k] in the leaf wi, we use
the same strategy in reverse with respect to their target posi-
tions. In the first half of the process, it takes k turns before all
the agents start moving and afterwards, they must all arrive
at the leaves w1, . . . , wk in at most O(d·k) turns since that is

the total number of vertices in T . The same bound holds for
moving the agents from w1, . . . , wk to their target positions
and thus, the total makespan of this solution is O(d · k).

Proof of Theorem 14. Let n denote the number of vertices
of G. If n < (5 · d · k)d+1, we simply search the k-agent
search space of size (d · k)O(kd) using any of the stan-
dard graph searching algorithms (BFS, A*, etc.). Otherwise,
we distinguish two cases. Either ℓ < C · d · k where the
constant C is given by Lemma 2, and we invoke the FPT-
algorithm of Theorem 6 on the given instance. Otherwise,
we invoke the same FPT-algorithm on a modified instance
with ℓ = C · d · k which is guaranteed to be equivalent by
Lemma 2.

Corollary 1. Let G be a class of bounded treedepth, mod-
ularwidth, shrubdepth, or MIM-width. The MAPF problem
is in FPT parameterised by the number of agents k if G ∈ G.

Proof. In each case, the diameter of G is bounded by some
function of the respective parameter and thus, the result fol-
lows directly from Theorem 14. In fact, we show that in
each case the respective parameter implies non-existence
of long (induced) paths. A graph with treedepth w cannot
contain path of length 2w even as a subgraph, see (Nesetril
and de Mendez 2012). Any graph class with bounded shrub-
depth cannot contain arbitrarily long induced paths, see (Ga-
nian et al. 2019). Modularwidth is monotone under taking
induced subgraphs, and a path of n vertices has modular-
width n. Therefore, a graph with modularwidth k cannot
contain an induced path of length k. Finally, the MIM-width
of a graph G is defined as the size of the largest induced
matching in G. Thus clearly, there cannot be an induced
path of length more than 2w + 1 in any graph with MIM-
width w.

Hardness
Theorem 1. The MULTIAGENT PATH FINDING problem
is W[1]-hard parameterised by the number of agents k
plus ∆(G) the maximum degree of the graph G.

Sketch of proof. The reduction is from the k-DISJOINT
SHORTEST PATHS (k-DSP) problem, which was shown to
be W[1]-hard parameterised by k in (Lochet 2021), even
when the graph given in the input is directed and acyclic.
The input of this problem consists of a graph G and a set
of pairs of vertices P = {(si, ti) : i ∈ [k]}; the question
is whether there exists a set of (si, ti)-paths hat are of mini-
mum length and pairwise vertex-disjoint.

We construct an instance ⟨G,A, s0, t, L⟩ of MULTIA-
GENT PATH FINDING which is a yes-instance if and only
if the given instance ⟨D,P ′⟩ of the k-DSP problem is also a
yes-instance. The value of L depends solely on the structure
of ⟨D,P ′⟩ and is defined below.

To construct G, we first consider a topological ordering of
the vertices of D. Through this ordering, we define layers,
each one containing exactly one vertex of G′, the underlying
(undirected) graph of D. To simplify our sketch, we will re-
fer to the vertices of D and G′ using the same names. Then,
for each (s′, t′) pair in P ′, we attach a leaf s (t resp.) to s′ (t′
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s′1 s′2 t′1 t′2

(a) A topological ordering of a directed acyclic graph D.

s2

s1

t1

t2

(b) The graph G constructed based on D.

Figure 2: An example for the construction used in the proof
of Theorem 1. The color white denotes the original vertices,
while the auxiliary vertices are colored black. The colors red
and blue denote the two vertex-disjoint paths of D in sub-
figure (a), and the corresponding trajectories of G that the
two agents will follow in subfigure (b). Vertices lying on the
same vertical line in (b) belong in the same (sub-)layer.

resp.), and define an agent a with s0(a) = s and t(a) = t.
Then, we subdivide these newly added edges, so that each
layer that lies before (after resp.) the layer of s′ (t′ resp.)
receives exactly one additional vertex. We then replace the
edges of the resulting graph that are incident to vertices of
degree strictly greater than four, by a pair of binary trees (see
Figure 2), and subdivide the newly added edges as before. In
the resulting instance of MAPFNS, the starting positions of
all the agents have the same distance from their ending po-
sitions, which is exactly equal to L. The main idea of the
rest of the proof is that the agents will be able to reach their
terminal positions in L turns if and only if they all move at
each turn through k disjoint paths of G, which correspond to
k disjoint paths of D. ⋄

Theorem 5. The MULTIAGENT PATH FINDING NO SWAPS
problem remains NP-complete even if G is a tree of maxi-
mum degree ∆(G) = 5.

Sketch of proof. We present a reduction from MAPFS,
which was recently shown to be NP-hard on trees where the
number of agents equals the order of the input graph (under
the name of PARALLEL TOKEN SWAPPING in (Aichholzer
et al. 2022)) to MAPFNS, where the input graph is a tree of
maximum degree 5. Let ⟨T ′, A′, s′0, t

′, ℓ′⟩ be an instance of
MAPFS, where |A′| = |V (T ′)| and T ′ is a tree. We con-
struct an instance ⟨T,A, s0, t, ℓ⟩ of the MAPFNS problem
and T is a tree of maximum degree 5, which is a yes-instance
if and only if the starting instance is also yes-instance.

For the construction of T , we start with T ′, and for each
non-leaf vertex v, we replace the set of edges that are lead-
ing to children of v by a binary tree, in a similar fashion as
in the proof of Theorem 1. This results in a tree T of max-
imum degree 3. Let us say that the vertices of T that also
belong to T ′ are the original vertices of T ′. The agents of
A are, for the moment, the same as those of A′, with the
same starting and ending positions. Then, we add two long
blocking paths to each newly added vertex, resulting in T

s t

(a) The graph G.

s1

s2

t1

t2

(b) The graph G′′ constructed based on G.

Figure 3: An example for the construction used in the proof
of Theorem 10 on a yes-instance ⟨G, s, t, 2, 3⟩ of BEUP. In
subfigure (a), the colors red and blue distinguish two edge-
disjoint paths of length 3. In subfigure (b), they denote the
corresponding trajectories followed by the two path agents.

having maximum degree equal to 5. These paths are almost
filled with blocking agents, which have starting and finish-
ing positions on these paths. The purpose of these blocking
agents is two-fold. First, in any solution of ⟨T,A, s0, t, ℓ⟩,
these agents must move during each turn towards their end-
ing positions, following a shortest path (along the blocking
paths). Secondly, their initial placement allows us to have
complete control over which turns these agents will block
the original vertices of T ′. Exploiting this control, we are
then able to show the claimed equivalence. ⋄

Theorem 10. The MULTIAGENT PATH FINDING problem is
in W[1]-hard parameterised by the cliquewidth cw(G) plus
the makespan ℓ.

Sketch of proof. We reduce from the problem BOUNDED
EDGE UNDIRECTED (s, t)-DISJOINT PATHS (BEUP): the
input consists of a graph G with two distinct vertices s, t
and two positive integers k, d; the question is whether there
are k edge-disjoint (s, t)-paths of length at most d in G. The
BEUP is W[1]-hard when parameterised by the treewidth
of G for every fixed d ≥ 10 (Golovach and Thilikos 2011).

Let ⟨G, s, t, k, d⟩ be an instance of BEUP where G =
(V,E). First, we subdivide each edge e ∈ E with a new
vertex ve. Afterwards, we add a path Pe on 4d − 3 vertices
v1e , v

2
e , . . . , v

4d−3
e such that its middle vertex v2d−1

e is iden-
tified with ve and all other vertices are disjoint from the rest
of the graph. Finally, we replace each original vertex v ∈ V
with an independent set of k twins v1, . . . , vk. Let G′′ be
the constructed graph, see Figure 3 for an example. It can be
shown that the cliquewidth of G′′ is at most exponential in
the treewidth of G.

The set of agents A consists of a set of path agents A0 =
{ai | i ∈ [k]} and a set of 2d − 2 edge agents Be = {bie |
i ∈ [2d − 2]} for every edge e ∈ E. We set s′0(ai) = si,
t′(ai) = ti for every path agent ai ∈ A0. In other words,
the starting and ending positions of path agents lie in the
independent sets corresponding to the original vertices s and
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vx1,6
vx1,1

vx1,2

vx1,3
vx1,4

vx2,6

vx1,5

vx2,1

vx2,2

vx2,3

vx2,4

vx2,5

vxm,5

vxm,6

vxm,1
vxm,2

vxm,3

vxm,4

(a) Variable gadget Gx, m =
m(x).

vc1,5

vc1,4

vc1,3
vc1,2

vc1,1

vc2,2

vc2,3 vc2,4 vc2,5

vc2,1

vc3,2
vc3,3

vc3,4

vc3,5

vc3,1vct

(b) Clause gadget HC .

Figure 4: The two gadgets used in the proof of Theorem 3. In
subfigure (a), the color red (blue resp.) is used on the vertices
that may be incident to clause gadgets, in which x appear as
a negative (positive resp.) literal.

t, respectively. For every e ∈ E and every i ∈ [2d − 2], we
set s′0(b

i
e) = vie and t′(bie) = v2d+i−1

e .
Let us sketch the main idea of the equivalence between

⟨G, s, t, k, d⟩ and ⟨G′′, A, s′0, t
′, 2d⟩. For every original edge

e ∈ E, each edge agent in Be is exactly 2d − 1 steps away
from its target and as a result, the edge agents of Be can-
not leave Pe nor change their order along it. It follows that
throughout the whole process, at most one path agent can
pass through the vertex ve. On the other hand, we replaced
every original vertex v ∈ V with k twins and thereby, we
simulate that any subset of path agents can occupy the ver-
tex v at the same time. As a consequence, any set of k edge-
disjoint paths of length at most d in G correspond precisely
to the trajectories of path agents in G′′ given by some feasi-
ble solution of makespan 2d. ⋄

Theorem 3. The MULTIAGENT PATH FINDING SWAPS
problem remains NP-complete even if the input graph G is
planar, ℓ = 3, and ∆(G) = 4.

Sketch of proof. We present a reduction from the PLANAR
3-SAT problem which is known to be NP-complete (Garey
and Johnson 1979). In that problem, a 3CNF formula ϕ on n
literals and m clauses is given as an input. We construct an
instance ⟨G,A, s0, t, 3⟩ of MAPFS which is a yes-instance
if and only if ϕ is satisfiable. For each variable x, let m(x)
be the number of times that x appears either as a positive or
as a negative literal in ϕ.

We start the construction of G by defining a variable and
a clause vertex for each variable and clause, respectively,
that appears in ϕ. We add an edge between a variable and
a clause vertex if the corresponding variable appears in the
corresponding clause; let G′ be the resulting graph. First,
we replace each clause vertex c by Hc, which is a copy of
the clause gadget H (illustrated in Figure 4(a)). Then, we
replace each variable vertex x by Gx, a copy of the the vari-
able gadget Gx (illustrated in Figure 4(b)). Note that all the

edges of G′ have been removed at this stage. So, for each
edge xc in G′, we add two new edges connecting vertices
of Gx and Hc. In particular, to each xc ∈ E(G′), we as-
sign an i ∈ [m(x)] that hasn’t already been assigned to a
different appearance of x ϕ. Let x be in the j-th literal of
C. If this literal is a positive one, then we add the edges
vxi,1v

c
j,1 and vxi,1v

c
j,5. Otherwise, we add the edges vxi,3v

c
j,1

and vxi,3v
c
j,5. Let G be the resulting graph. Observe that, by

carefully choosing and placing these edges, and since G′ is
planar, we can make sure that G is also planar.

We continue by defining the set of agents A and the func-
tions s0 and t. First, for each clause C, we create four clause
agents, three of them denoted as aci , i ∈ [3], and the final as
ac. For i ∈ [3], we set s0(aci ) = vci,1 and t(aci ) = vci,4. Also,
s0(a

c) = vc1,2 and t(ac) = vct . Next, for each variable x,
we create m(x) variable agents axi , i ∈ [m(x)]. For each
i ∈ [m(x)], we set s0(axi ) = vxi,2 and t(axi ) = vxi,5. This
completes our construction.

We are now ready to show that ϕ is a yes-instance of PLA-
NAR 3-SAT if and only if ⟨G,A, s0, t, 3⟩ is a yes-instance
of MAPFS as well. First, assume that we have a satisfy-
ing assignment σ for ϕ. We define a feasible solution for
⟨G,A, s0, t, 3⟩. The variable agents move through the vari-
able gadgets in a counter-clockwise (clockwise resp.) fash-
ion if σ(x) = true (σ(x) = false resp.). Next, for each
clause C, we deal with the agents aci , i ∈ [3], and ac. Since
σ is a satisfying assignment, for each clause C there exists
at least one literal x in C that satisfies it. The clause agent
that corresponds to x moves through a variable gadget Gx.
The other agents travel inside Hc.

The reverse direction follows directly from the fact that
if the agents of Hc move only through edges of Hc, then
any feasible solution will have a makespan of at least 4. In
other words, at least one clause agent of each clause must
move through the vertices of a variable gadget. We define
an assignment of ϕ by taking into account the clockwise or
counter-clockwise movement of the variable agents that sat-
isfy the literal corresponding to the aforementioned clause
agent. This is a satisfying assignment of ϕ. ⋄

Conclusion
In this paper we studied the parameterised complexity of the
MULTIAGENT PATH FINDING problem. The main takeaway
message is that the problem is rather intractable. Indeed, the
problem remains hard even on trees. Hence, the treewidth
of the input graph is highly unlikely to yield an efficient al-
gorithm (under standard theoretical assumptions). This sug-
gests that the current heuristic-oriented approach followed
by the community is, in some sense, optimal. On the posi-
tive side, we showed that there are various combinations of
parameters that lead to efficient algorithms, such as the num-
ber of agents plus the makespan. These positive results could
potentially lead to improvements in practice, which should
be the subject of a dedicated future study. The first step to-
wards this direction is to check whether our algorithms can
be utilised in tandem with some state-of-the-art heuristic al-
gorithm, in order to obtain an improved result.
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Surynek, P.; Švancara, J.; Felner, A.; and Boyarski, E. 2017.
Integration of Independence Detection into SAT-based Op-
timal Multi-Agent Path Finding - A Novel SAT-based Opti-
mal MAPF Solver. In van den Herik, H. J.; Rocha, A. P.; and
Filipe, J., eds., Proceedings of the 9th International Confer-
ence on Agents and Artificial Intelligence, ICAART 2017,
Volume 2, Porto, Portugal, February 24-26, 2017, 85–95.
SciTePress.

Veloso, M. M.; Biswas, J.; Coltin, B.; and Rosenthal, S.
2015. CoBots: Robust Symbiotic Autonomous Mobile Ser-
vice Robots. In Yang, Q.; and Wooldridge, M. J., eds., Pro-
ceedings of the Twenty-Fourth International Joint Confer-
ence on Artificial Intelligence, IJCAI 2015, Buenos Aires,
Argentina, July 25-31, 2015, 4423. AAAI Press.
Wurman, P. R.; D’Andrea, R.; and Mountz, M. 2008. Coor-
dinating Hundreds of Cooperative, Autonomous Vehicles in
Warehouses. AI Mag., 29(1): 9–20.
Yu, J. 2016. Intractability of Optimal Multirobot Path Plan-
ning on Planar Graphs. IEEE Robotics Autom. Lett., 1(1):
33–40.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

17388


