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Abstract

This thesis delves into the problems related to the lack of robustness in the percep-
tion of autonomous mobile robots, focusing on the advancement of perceptual re-
siliency under diverse sources of degradations in GNSS-restricted environments and
the applicability on-board robots with limited computational capabilities, such as
multi-rotor Unmanned Aerial Vehicles (UAVs). The lack of resiliency of perception
and autonomy is an ongoing challenge that hinders the use of autonomous robots in
extreme environments containing geometrical symmetricity, featureless structures,
variable lighting, fog, and whirling dust, as well as many other sources of perceptual
degradation. Devising robustness to extreme conditions is of the utmost importance
for the applicability of autonomous robots in the unforgiving conditions of the real
world, in which autonomous robots yield immense potential not only in assisting
human personnel in repetitive and hazardous tasks. The threefold objectives of this
thesis lie in I) advancing the perceptual capabilities of resource-constrained robots
in degraded environments, II) distributing perceptual capabilities among the mem-
bers of a multi-robot team, and III) transferring theoretical advancements beyond
the laboratory. The first objective is contributed to by novel methods in LiDAR-
based perception. These methods include maximizing observability in localization,
redundancy-minimizing sampling of LiDAR data for real-time pose estimation, and
robust dust filtering in extreme conditions. Contributions to the second objective in-
clude novel models for decentralized perception-aware swarming of communication-
free UAV teams. The theoretical contributions and interdisciplinary branches cul-
minate in real-world settings, focusing on the multi-robot tasks of search and res-
cue in the DARPA Subterranean Challenge (SubT), as well as in the inspection
and documentation of the priceless interiors of historical monuments in the Dronu-
ment project. With the former, these contributions were integral to the UAV stack
that proved to be the best-performing and most resilient aerial autonomy deployed
in the harsh and diversified conditions of the renowned DARPA SubT competition.
The latter transfers these contributions to the world-unique utilization of multi-
UAV teams in the interiors of eighteen historical structures, including two sites on
the UNESCO World Heritage list. This thesis is a compilation of six journal pub-
lications, each contributing to the defined objectives and focusing on the complex
aspects of robust real-world perception and autonomy of UAV teams.

Keywords Mobile Robotics · Localization · Perception · Perceptual Degeneracy ·
Unmanned Aerial Vehicles · Multi-UAV Teams · Autonomy in Real-World · Aerial
Swarming · Operational Research · DARPA Subterranean Challenge · Dronument
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Abstrakt

Tato práce se zabývá problémy nedostatečné robustnosti vńımáńı autonomńıch a
mobilńıch robot̊u a zaměřuje se na výzkum odolnosti robotické percepce pod vli-
vem percepčńı degradace v prostřed́ıch bez př́ıstupu ke GNSS a aplikovatelnosti
na palubě robot̊u s omezenými výpočetńımi zdroji, jako jsou v́ıcerotorové bezpi-
lotńı prostředky (UAVs). Nedostatečná odolnost robotické percepce a autonomie
je stávaj́ıćım výzkumným problémem, který bráńı využit́ı autonomńıch robot̊u v
extrémńıch prostřed́ıch, jenž jsou geometricky symetrické a obsahuj́ı bezpř́ıznakové
struktury, proměnlivé osvětleńı, mlhu a v́ı̌ŕıćı prach a mnoho daľśıch zdroj̊u percepčńı
degradace. Výzkum odolnosti v̊uči extrémńım podmı́nkám je nesmı́rně d̊uležitý
pro aplikovatelnost autonomńıch robot̊u v neĺıtostných podmı́nkách reálného světa,
ve kterém autonomńı roboti nab́ızej́ı obrovský potenciál ne jenom při asistenci
lidskému personálu v často opakovaných a nebezpečných úlohách. Tři hlavńı ćıle této
práce spoč́ıvaj́ı v I) pokroku percepce v degradovaných prostřed́ıch u robot̊u s ome-
zenými výpočetńımi zdroji, II) distribuci percepčńıch schopnost́ı mezi členy týmu
v́ıcera robot̊u a III) převodu základńıho výzkumu mimo laboratoř. Mezi výstupy
prvńıho ćıle tato práce přisṕıvá novými percepčńımi metodami využ́ıvaj́ıćımi lase-
rové senzory. Tyto metody zahrnuj́ı lokalizaci s maximálńı pozorovatelnost́ı, mini-
malizaci redundance laserových dat pro odhad polohy v reálném čase a robustńı
filtrováńı prachu z laserových dat v extrémńıch podmı́nkách. Výstupy druhého
ćıle zahrnuj́ı nové modely pro decentralizované roje UAV, jež se koordinuj́ı bez
komunikace pouze na základě palubńı percepce. Teoretické př́ınosy a interdisci-
plinárńı přesahy této práce jsou posunuty do podmı́nek reálného světa, kde se
zaměřuj́ı na v́ıcerobotické úlohy search and rescue (S&R) v DARPA Subterranean
Challenge (SubT) a na inspekci a dokumentaci neocenitelných interiér̊u historických
památek v projektu Dronument. V úlohách S&R byly př́ıspěvky práce ned́ılnou
součást́ı palubńıho systému bezpilotńıch UAV, který se ukázal jako nejlépe funguj́ıćı
a nejodolněǰśı leteckou autonomíı nasazenou v drsných a r̊uznorodých podmı́nkách
prestižńı soutěže DARPA SubT. V úlohách projektu Dronument jsou př́ınosy této
práce aplikovány do světově unikátńıho využit́ı týmů autonomńıch UAV v interiérech
osmnácti historických památek, z nichž dvě jsou zařazeny na seznamu UNESCO.
Tato práce je složena z šesti článk̊u publikovaných v odborných časopisech, z nichž
každý přisṕıvá k definovaným ćıl̊um a zaměřuje se na komplexńı aspekty robustńı
percepce a autonomie týmu bezpilotńıch prostředk̊u v reálném světě.

Kĺıčová slova Mobilńı Robotika · Lokalizace · Percepce · Percepčńı Degenerace ·
Bezpilotńı Letecké Prostředky · Týmy Bezpilotńıch Prostředk̊u · Autonomie Robot̊u
v Reálném Světě · Roje Bezpilotńıch Prostředk̊u · Operačńı Výzk̊um · DARPA
Subterranean Challenge · Dronument
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1 Introduction

The research field of mobile robotics has reached a stage where autonomous mobile
robots are being deployed to a limited extend in applications within the industrial sector,
namely for automation, logistics, and periodic inspection. However, this trend predominantly
applies to ground-based mobile robots (e.g., ANYmal by ®ANYbotics [20]), which are subject
to relatively nominal safety requirements during interactions with both their environment
and nearby humans. In ground-based robotics, the safety requirements can be relaxed due to
the feasibility of deactivating the robots quickly and safely in the event of a malfunction. In
contrast, the safety requirements for autonomous aerial robots are significantly more strict
due to potential risks to human personnel, valuable assets in the environment, and the robots
themselves. Such demands on aerial-robotic safety hinder the current applicability of UAVs,
as theoretical and algorithmic challenges in resiliency and reliability in their autonomous
functions persist, especially when operated indoors without access to global systems.

The primary motivation of this thesis delves into the problems of insufficient robust-
ness, reliability, and resiliency of resource-constrained aerial robots and teams containing
them, especially in settings devoid of Global Navigation Satellite System (GNSS) availabil-
ity. This thesis explores the obstacles to achieving reliable and replicable UAV autonomy and
presents the author’s contributions in overcoming them, from enhancing robot localization
in perceptually-aliased environments, to advancing multi-robot decision-making in minimum-
information scenarios. All presented contributions are based on the single premise — re-
search methods that yield minimal operational latency and are capable of operating in real-
time and on-board robots with constrained computational resources. These aspects are par-
ticularly crucial for small-factor multi-rotor UAVs with inherently unstable dynamics, where
minimizing the size and weight without compromising computational efficiency and real-time
properties is paramount, especially for rapid and agile 3D deployment. This premise builds
upon challenges defined first in [21] and confirmed as an ongoing challenge in the recent
work [7a] (co-authored by the author of this thesis together with authors from most of the
leading laboratories in the field), which builds upon the experience from the extreme environ-
ments in the SubT robotic competition organized by the Defense Advance Research Projects
Agency (DARPA). Both works [7a, 21], authored by leading experts in field robotics, spec-
ify the need for developing perceptual systems robust towards perceptual degeneracies (such
as geometrical symmetry and variable lighting) and capable of operating onboard resource-
constrained robots. Given the premise, we specify below the primary challenges related to the
motivations of the thesis and define the research objectives for tackling them.

Challenge (1): fast and resilient onboard perception. Since a robot’s ability to
perceive and act within its environment is fundamental to mobile robotics, challenges in these
areas significantly impede the broader adoption of autonomous UAVs. A moderately opti-
mistic perspective on the current state-of-the-art robotics might mistakenly assume that chal-
lenges in multi-rotor UAV stabilization and control, state estimation, localization, mapping,
navigation, motion planning, and communication have been solved, thereby enabling full on-
board deployment even in environments devoid of GNSS. This assumption might be valid to
some extent, but only under the assumption of a perfectly functioning, precise, non-drifting,
real-time, and resilient on-board perception of the robot. The robot’s perception precedes all
reliant modules of its autonomy, ranging from state estimation to control, motion planning,
navigation, mapping, and decision making. This makes the perception, alongside state estima-
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tion, the critical bottleneck of aerial autonomy, especially in GNSS-denied environments. Nev-
ertheless, this misconception emerges from recent advances in sensory and computational ca-
pabilities, leading to remarkable levels of progress in perceptual systems over the past decade.
Under optimal conditions, robots are capable of accurately localizing themselves in a dynamic
environment [7a, 21, 22], mapping their surroundings (e.g., topologically [23, 24], semanti-
cally [25, 26], volumetrically [27, 28]), detecting and tracking moving objects [29, 30], and gen-
erally performing tasks, that would be classified as science fiction just a few decades ago. Yet,
these capabilities are often computationally expensive and vulnerable to various perceptual
degradations, which yield an ongoing challenge for the resilience and robustness of robotic sys-
tems [7a]. The causes and effects of these perceptual degradations are linked to multiple fac-
tors, including noise in LiDAR-based and vision-based perception in dusty environments or the
emergence of drift in pose estimation of LiDAR-based simultaneous localization and mapping
(SLAM) in geometrically symmetrical environments, as well as in dark and texture-less envi-
ronments for systems reliant on visual information. This thesis addresses the issues of percep-
tual degradation and aliasing, highlighting their implications for UAV autonomy [1c–4c, 6c].

Objective (1): advance LiDAR-based methodology tackling perceptual de-
generacy in GNSS-restricted and geometrically symmetrical environments. Many natural and
man-made environments are geometrically structureless and symmetrical. Such environments
contain a few geometrical landmarks or features, which can be exploited by onboard percep-
tion. A lack of geometrical features makes it difficult to distinguish, if even possible, a robot
pose change from on-board LiDAR data. Note that in visual methods, featureless images (such
as white planes in urban areas) are equivalent to geometrical non-structurality in LiDAR-
based methods. If a robot obtains two identical measurements at two different places in an en-
vironment, the perception is denoted as aliased and the environment degenerate. Examples of
degenerate environments include long narrow tunnels (e.g., metros), urban or industrial corri-
dors, and large historic buildings (e.g., cathedrals and churches), which are typically unstruc-
tured along the vertical axis (see Figure 1.1). Given our premise, this objective challenges the
problems of robustness and scalability of SLAMs defined in [21] — the vulnerability of opti-
mization solvers in the presence of outliers, lack of awareness of imminent failures due to per-
ceptual degeneracies, and adaptation of the methodologies to resource-constrained platforms.
In other words, the problems include the rejection of spurious features and their accurate tem-
poral and spatial association as well as detection, prediction, and minimization of degraded
perception on-board lightweight platforms, such as small-scale UAVs. Our contributions to this
objective are proposed in core publications in Chapter 3 and are summarized in Section 2.1.

Challenge (2): safe and reliant multi-robot coordination. State-of-the-art re-
search in S&R [3c, 4a, 7a, 8, 31], the documentation of historical buildings [1c, 2a, 9a, 10a], in
industrial inspection [32, 33], cinematographic filming [34, 35], and many other robotic sub-
fields utilize teams of cooperating autonomous robots in their respective tasks. Apart from the
bottleneck of non-resilient perception, the robots cooperating within compact teams usually
rely on a centralization element, global positioning, and continuous communication in order to
sense and act within their shared environment. However, these design choices serve as critical
points of failure and introduce major vulnerabilities into the multi-robot scheme. A methodol-
ogy proposing to remove these critical points of possible failures emerges in the field of decen-
tralized perception-aware swarming. In this field, the decentralized architecture follows the def-
inition of an autonomous swarm as defined in [36] — a multi-agent team that is scalable to large
groups, has high redundancy and fault tolerance, is usable in tasks unsolvable by a single robot,
and has locally limited sensing. In contrast to typical architectures, a multi-robot system sat-
isfying the definition of [36] is robust to the single points of failure, which makes it resilient to
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Figure 1.1: Demonstrations of the author’s theoretical contributions as actualized in the
perceptually-challenging conditions of real-world 3D space. The selected showcases relate to
fully autonomous multi-rotor UAV (or teams of such) deployments in tasks of inspecting and
documenting historical and industrial interiors, exploring diverse and demanding subterranean
environments, and perception-aware swarming in communication-less settings.

the common bottlenecks of the current state of the art, especially in relation to tightly cooper-
ating multi-UAV teams. In other words, substituting the critical system-design characteristics
(i.e., centralization, global perception) with decentralization and information retrieval from
direct perception improves the system’s overall reliability and increases its scalability bound.

Objective (2): research distributed multi-robot sensing and acting for the
communication-free coordination of a multi-UAV team employing direct relative localization
among its members. Compact multi-robot teams require synchronized and accurate decision
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making in order to coordinate safely and efficiently. Removing the centralization and commu-
nication elements makes such coordination challenging. Nevertheless, safety and independence
on the single points of failure in cooperative tasks can be achieved with decentralized swarm-
ing models designed for sensing and acting on the basis of local information. Despite such
models being studied in relation to modeling behavior of biological systems (such as flocks of
birds or schools of fish), we propose to investigate their potential in serving as a fast, drift-free,
perception-aware, and communication-independent navigation of a multi-UAV team. Such in-
vestigations shall study the effects of retrieving local information from onboard perception,
especially in environments filled with obstacles and in scenarios where global systems (such as
localization) and multi-robot communication are not available or are subject to malfunction.
The research objective needs to investigate and integrate novel methods for relative localiza-
tion of nearby robots (such as Ultraviolet Detection and Ranging (UVDAR) [37, 38]) as a
mechanism for local-information retrieval in multi-robot systems. With the primary objective
being the maximization of robustness in multi-robot systems, the safety and resiliency mar-
gins need to be derived from theoretical and experimental analyses, especially with respect
to the errors and delays in the perceptual systems of individual robots cooperating within a
compact team moving in 3D space. The author’s contributions to this objective are proposed
in core publications in Chapter 4 and are summarized in Section 2.2.

Challenge (3): advancing fundamental research outside the laboratory. Theo-
retical contributions in modern robotic research require thorough experimental validations in
challenging real-world conditions to objectively validate their applicability. This is especially
important in mobile robotics, where theoretical hypotheses and their evaluation and compari-
son in simulation, laboratory, and offline datasets are seldom enough. Thus, thorough analyses
in real-world scenarios are crucial, particularly in using affordable hardware onboard the robots
as well. Real-world experimental analyses provide valuable information about the deployability
of the robotic methodology and support theoretical contributions proposed in a robotic work.
This is rooted in the fact that many simplifying assumptions do not hold in the real world,
including hard-to-model constraints composed of sensory noise, inaccuracies, approximations,
and time delays, among other factors. When coupled with other onboard systems, the appli-
cability of theoretical contributions may consequently prove to be limited. The critical need
for field testing is visible in the amount of robotic competitions funded by private and public
organizations with the common goal of pushing the state of the art in field robotics and real-
world deployment of autonomous robots. Among the most notable competitions are Mohamed
Bin Zayed International Robotics Challenge (MBZIRC), which challenges aerial robotics in di-
verse tasks requiring precise coordination of robots, and the DARPA SubT. The challenges of
DARPA SubT ranged from resilient perception to on-the-run mapping, decision-making, and
cooperation of a heterogeneous team, all inside closely designed subterranean environments,
such as man-made mines, natural caves, and urban structures. In addition, multiple past and
ongoing research projects in aerial robotics (such as multi-disciplinary documentation of his-
torical interiors by multi-UAV teams [2c]) have shown that even modern contributions require
further fundamental research in obtaining sufficient aerial reliability in real-world conditions.

Objective (3): transfer of fundamental research of (1) and (2) to real-world
tasks, including single UAV deployments and multi-robot tasks that can not principally be
performed with a single UAV. The objective aims to include validation of the theoretical con-
tributions in diversified scenarios of the real 3D world, verifying the direct applicability of the
research. This objective is connected with the multi-disciplinary motivation of utilizing fast,
resilient, and repeatable autonomy in challenges requiring distributed coordination, primarily
for the purposes of maximum-information coverage [4c], efficient environment exploration [8a],
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and cooperative documentation using heterogeneous robots [2c]. This objective aims to push
the state of the art in mobile robotics by applying the results of theoretical research in variable
real-world tasks that require UAVs of minimal size with limited computational and sensory
resources on board. This objective builds upon the common avenue of the MRS laboratory at
CTU and its MRS UAV System [39], which provides a modular framework for controlling and
deploying multi-rotor UAVs in both virtual and real environments. Selected illustrations of our
contributions to this objective are showcased in Figure 1.1. The list of objective-related contri-
butions, especially in S&R and interior documentation by autonomous UAV teams, is summa-
rized in Section 2.3 and is part of our core publications described in Chapter 3 and Chapter 4.

1.1 Thesis Organization

This thesis is a compilation of 6 included core publications, referenced as [*c]. However,
the thesis is supported by an additional 13 authored and co-authored publications, referenced
as [*a]. The remainder of this thesis is organized as follows.

Chapter 2 describes the current state of the art related to the research objectives and
incorporates a short summary of the author’s contributions in the field,
Chapter 3 introduces the publications related to objectives (1) and (3) on developing
LiDAR-based methods for resource-constrained UAVs in environments containing per-
ceptual degeneracy,
Chapter 4 presents the publications related to the objectives (2) and (3) on distributed
sensing and acting of multi-agent teams,
Chapter 5 discusses the achieved results,
Chapter 6 concludes the thesis,
Appendix A lists all of the author’s publications, including the author’s contributions
and the credit author statement, and
Appendix B lists the citations referencing the author’s publications.
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2 Contributions and Related Work

This chapter summarizes the relevant state of the art in mobile robotics and its relation
to the author’s contributions. The summary includes the contributions presented within the
core publications [1c–6c] (six journal publications), which comprise the core of this thesis, as
well as contributions of other author’s research works [7a–19a] (eight impacted journal pub-
lications, three conference proceedings in Web of Science, and two secondary research activ-
ities), which extend the spectra of contributions. We refer to and describe the core publica-
tions individually in Chapter 3 and Chapter 4. Note that, with respect to the premise defined
in Chapter 1, the goal of the contributions is to enhance the robustness, reliability, and safety
of aerial systems with limited computation and communication resources on board. This in-
cludes removing points of possible system failures and designing lightweight solutions mini-
mizing the computational latency and degradation of perception-based localization.

This chapter is divided into three sections, each relating to one of the challenges and
objectives listed in Chapter 1. Section 2.1 describes the current state of LiDAR-based methods
in robot state estimation while breaking it down into the subtopics of perceptual degradation,
multi-modality, and point cloud sampling. Section 2.2 summarizes the state of the art in aerial
swarming and focuses on distributed architectures, independence in communication, and the
adoption of mutual perception among UAVs within a swarm. Section 2.3 briefly discusses
the state of field robotics and summarizes the author’s contributions to challenge (3) and
objective (3) on robotic experimentation.

2.1 LiDAR-based Robot Perception

The first set of contributions of this thesis focuses on the LiDAR-based perception of
an autonomous robot for the purposes of localization, odometry, and SLAM. In localization,
a robot estimates its state given a map of the environment. In SLAM, however, the objective
is to localize the robot in a priori unknown environment, while simultaneously building a
map of the environment using an available sensory apparatus onboard the robot and passive
or active landmarks present in the robot’s observable proximity. Furthermore, we use the
term odometry as a subfield of SLAM in which loop closing (i.e., global map and trajectory
optimization when revisiting known places) is omitted. Since the research field in this area is
broad1, the following discussion covers the methods compliant with the premise of this thesis.
The focus hereafter is simultaneously put on LiDAR-based methodology and the challenges
of ill-defined optimization problems, perception degradation, and lightweight solutions for
resource-constrained robots.

Due to the recent technological advance in modern LiDAR technology (such as Velo-
dyne Puck, which launched in the public market in 2014), the research focus of LiDAR-based
SLAM is greatly on the rise in the last decade. The related literature within this field has since
converged to utilizing three primary correlating techniques for reasoning over LiDAR data —
scan matching, filtering for estimation, and graph-based optimization. The scan matching re-
lies on scan-to-scan and/or scan-to-map registration, either in the point cloud space or in a
feature space, with the latter being the most frequent and, herein, the primary scenario dis-
cussed (unless specified otherwise). The graph-based optimization (also referred to in the liter-
ature as bundle adjustment (BA)) is utilized in most modern approaches on both the local and

1Tens of related papers are published every year in the most impacted journals and conference proceedings.
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the global scale to solve the problem commonly classified as pose graph optimization (PGO).
This optimization benefits from the concepts of pose-graph or factor-graph representations of
the problem. It primarily utilizes one of the two main optimization frameworks in the field —
g2o [40] for pose-graph and Georgia Tech Smoothing and Mapping (GTSAM) [41] for factor-
graph optimization. Although some state-of-the-art methods do not employ filtering for state
estimation and rather substitute the filtering by creating recurrent factors during factor-graph-
based optimization, the filtering methods are still commonly applied when working with asyn-
chronous data sources with differing uncertainty. Nevertheless, most of the current state-of-
the-art methods contain multifold sequential and/or parallel processing layers that often apply
all three techniques to reduce the cumulative error of state estimation in the SLAM problem.

2.1.1 LiDAR-based Localization, SLAM, and Odometry

The majority of state-of-the-art LiDAR SLAMs (L-SLAMs) are related to the method-
ology proposed in Lidar Odometry and Mapping in Real-time (LOAM) [42]. The authors of
LOAM [42] proposed extracting plane and edge features from raw 3D LiDAR data, followed by
a two-step optimization process working within the feature space. These two steps include fast
local odometry that utilizes scan-to-scan matching and slow mapping employing local scan-
to-map optimization. Both optimization processes match salient feature points using a non-
linear iterative closest point (ICP) algorithm, while considering the intrinsic motion of a fast-
rotating LiDAR by compensating for the single-axis rotation with a constant angular velocity
model. Although LOAM does not provide global optimization in the form of loop detection and
loop closure, the method has been shown to yield minimum drift on the KITTI dataset [43],
where it still holds first place2 among LiDAR-based methods. Highlighted among the LOAM-
inspired methods (i.e., methods employing the LOAM feature extraction) is LeGO-LOAM [44],
which is designed for use on-board ground vehicles by utilizing ground segmentation during
the proposed two-step Levenberg–Marquardt (LM) optimization. The LeGO-LOAM method
was further extended with scan context to LeGO-LOAM-SC [45], applying global descrip-
tors extracted by scan context for loop detections. The scan context is an algorithm utilizing
global descriptors of non-histograms to enable searching for correlations between current and
previous LiDAR scans [46]. Another LOAM-inspired SLAM designed for ground vehicles was
proposed in [47], where the authors introduced global optimization using ground-plane con-
straints, non-ground scan matching, and SegMatch-based loop detection based on matching
segmented clusters of points. Local BA on a sliding window of keyframes was applied to LOAM
in BALM [48], where the authors proposed to overcome the feature sparsity by formulating the
BA on a sparse feature map and directly minimizing the distances of the feature points to entire
edges or planes, and not to other feature points directly. The sliding window of keyframes is an
effective method of visual SLAMs (V-SLAMs) not commonly applied to V-SLAMs as sparse
feature points make the exact point matching challenging. Utilizing the information about
the intensity of light beams reflected back to a LiDAR was proposed in Intensity-SLAM [49],
which supplies geometric features with an intensity map and intensity residuals to increase
pose estimation accuracy. The improvements to the odometry stage of the two-stage LOAM
optimization were introduced in [50], where the authors proposed processing individual pack-
ets of the LiDAR data stream instead of the full-revolution scan in order to minimize delays
and lower the odometry drift. A LiDAR-inertial (LI) odometry FAST-LIO [51] improves the
accuracy of the odometry stage of LOAM by fusing the inertial measurements and the fast-
odometry feature-matching optimization utilizing iterated extended Kalman filter (IEKF).

2Ranking available at cvlibs.net/datasets/kitti/eval odometry.php (accessed on March 27, 2024).

https://www.cvlibs.net/datasets/kitti/eval_odometry.php
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Among the state-of-the-art L-SLAMs not employing the geometric features of LOAM
are the stand outs methods of KISS-ICP [52], FAST-LIO2 [53], Point-LIO [54], and SuMa [55]
(with its improved version SuMa++ [56]). KISS-ICP [52] is a modern and parallelized imple-
mentation of the original ICP algorithm minimizing the point-to-point metric. FAST-LIO2 [53]
and Point-LIO [54] directly register the 3D points while employing a kinematic model for prop-
agating each point via IEKF using integrated inertial measurements. This per-point forward
approach allows for fast and agile 6-DoF estimation. In contrast to other methods, it is suit-
able for sensors that retrieve a single point or irregular batches of points at a time. The SuMa
methods [55, 56] utilize surfel-based mapping with integrated semantic information extracted
by a deep-learning convolutional neural network (CNN) in semantic ICP. Another highly ef-
ficient method, LiTAMIN2 [57], applies geometric surfel-based approximation to reduce the
number of points, thereby speeding up the scan-to-scan registration for which the authors pro-
posed a novel ICP metric. This metric contains symmetric Kullback-Leibler divergence (KLD)
to cope with the differences between the distribution shapes of the geometric approximation.
An algorithm favoring high accuracy over real-time performance was recently proposed in [58]
for offline data processing by tightly-coupling computationally-heavy processes of error-state
Kalman filter (ESKF), graph optimization framework g2o, and generalized ICP together with
normal distributions transform (NDT) for accurate point cloud registration.

2.1.2 Geometrical Degeneracy

Although the field of LiDAR-based estimation has made great leaps in the recent decade
(see Section 2.1.1), the performance of the methods is reliable only in well-structured envi-
ronments. As shown in the DARPA SubT [7a], the ongoing challenges emerge in environ-
ments containing little to no amounts of salient geometrical structures. The lack of structure
challenges LiDAR-based methods, as these methods exploit the local and global geometry of
the environment. These scenarios most notably emerge in geometrically symmetrical environ-
ments, such as subterranean tunnels [4c, 32], caves [3c], and urban structures [8a, 31], as well
as in historical monuments symmetrical along the vertical axis [1c, 2a, 10a] (see Figure 2.2).
Such settings where the LiDAR point cloud contains few to no exploitable features (for at
least one DoF that it is being optimized for) are denoted as degenerate. We further distin-
guish weak and strong variants of such degeneracy, as shown in Figure 2.1.

a) b)

Figure 2.1: Simplified case of (a) strong and (b) weak geometrical degeneracy arising in
robot-pose estimation problems. (a) Estimating motion along the blue axis is impossible using
only the LiDAR point cloud given in red. (b) Only a handful of structures can be exploited
for one of the DoFs (here in the horizontal translation axis). It is imperative that the area
highlighted in blue is not classified as noise or as an outlier and is exploited in the optimization.

Apart from the lack of geometrical structures in the environment, the degeneracy also
emerges from the limited field-of-view (FoV) of the LiDAR sensors3, especially when employ-
ing spinning-LiDAR technology. The narrow FoV reduces the perceptual observability of the

330◦ vertical FoV for Velodyne Puck (velodynelidar.com/products/puck, accessed on March 27, 2024) and
22.5◦ for Ouster OS2 Rev7 (ouster.com/products/scanning-lidar/os2-sensor, accessed on March 27, 2024).

https://velodynelidar.com/products/puck/
https://ouster.com/products/hardware/os2-lidar-sensor
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Figure 2.2: Geometrical degeneracy emerging in large historical monuments. By observing the
left arc, the data in green are well-conditioned in all 6 DoF. However, the data in red con-
tain only limited information (in the lower right part) that is exploitable for constraining the
vertical axis. This problem, classified as weak degeneracy, is challenged in the core publica-
tions [1c, 6c].

geometric structures, even when these structures are present in the environment. The lack of
observability then leads to drift in the ego-motion estimation. This is related to ill-conditioned
directions in the context of solving the optimization problem, even when the environment is
not inherently degenerate. This bottleneck has been tackled by the LiDAR manufacturers,
which addressed the problem by developing wide-FoV hardware4. Although a wider FoV im-
proves (but does not provide full) observability, it does not improve estimation in degenerate
environments per se. In the related scientific literature, three main research branches tackle
the problem of degeneracy — optimization for narrow LiDARs, the introduction of other sen-
sory modalities, and the detection and mitigation of weak degeneracy.

Among the approaches optimizing for the narrow FoV of LiDARs is the LOAM-Livox [59],
wherein the authors showed an improved performance if the points for feature extraction are
selected in certain regions of the FoV with respect to the incident, intensity, and occlusion
constraints. LoLa-SLAM [60] proposes to actuate the narrow-FoV LiDAR around two body
axes to increase the space coverage while also compensating for the motion with a multi-
threaded pipeline for matching scan slices. The challenges of spinning narrow LiDARs simi-
larly also apply to solid-state LiDARs, for which the authors in [61] proposed one-stage odom-
etry employing the scan-to-map methodology coupled with probabilistic mapping. The latter
two approaches in tackling degeneracy through the introduction of other sensory modalities
and weak-degeneracy detection are discussed in more detail in Sections 2.1.3–2.1.5.

490◦ vertical FoV for Ouster OS0 Rev7 (ouster.com/products/scanning-lidar/os0-sensor, accessed on March
27, 2024).

https://ouster.com/products/hardware/os0-lidar-sensor
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2.1.3 Multimodal SLAM

It is clear from Figure 2.1 that estimating the full robot state under strong degeneracy
is impossible using just a single modality. Therefore, it has been proposed to introduce other
sensor modalities complementing LiDARs in the estimation to tackle both the weak and strong
degeneracy variants. These sources of modalities range from inertial measurements through
cameras, wheel encoders, radars, and acoustic signals to radio-based ranging.

Among the related methods utilizing inertial measurements is LIO-mapping [62], which
tightly couples LiDAR and inertial measurement unit (IMU) through joint-optimization and
introduces a rotation-constrained mapping method to optimize the final poses and maps at
the cost of computationally-heavy constraint construction and batch optimization. A similar
tightly-coupled LI method LIOSAM [63] proposed smoothing over a factor graph to achieve
highly accurate state estimation and mapping in real-time with efficient IMU pre-integration,
bias correction, old scan marginalization, and keyframe selection. LINS [64] proposes extending
LOAM with an iterated ESKF and an egocentric formulation in the odometry stage to reduce
the drift, thereby improving the long-term state estimation. High accuracy is achieved by F-
LOAM [65], employing the exact two-stage computation as in LOAM. In contrast to LOAM,
the local feature maps in F-LOAM are proposed to be split for individual features (planes and
edges) in order to include local smoothness in a proposed iterative optimization. A solution to
overcome the geometrical-features degeneracy is applied in GR-LOAM [66]. Therein, a wheel
encoder and an IMU of a ground robot were used to correct LiDAR-estimated ego-motion
that tends to fail as the optimization problem is ill-conditioned from measurement aliasing.
The fusion of features extracted from multiple non-overlapping LiDARs has been proposed
to mitigate the geometrical degeneracy in the perception of LI-SLAM in MILIOM [67] and in
LOCUS [68]. Both works employ similar techniques of graph-based optimization applied after
time synchronization and the merging of data arriving from different sources.

Fusing LiDAR data with inertial information improves performance; however, it can-
not be relied on long term if the LiDAR perception is degraded. This is because the drift in
inertial data will inevitably accumulate from the integration of stochastic noise and the in-
ability to correct biases with backpropagation of the state estimate that is obtained by a re-
liable source. To cope with this issue, the related literature increases the sensory modality
with systems capable of state estimation independent of LiDAR information. Although these
systems also suffer from perceptual degradation, the complementary information may im-
prove the robustness of the entire estimation pipeline, as differing modalities suffer from dis-
tinct cases of degradation. Apart from inertial measurements, visual information in LiDAR-
visual-inertial (LVI) methods is the most common modality. State-of-the-art literature com-
monly runs an instance of LiDAR-odometry and visual-odometry fusing the odometries to-
gether with inertial measurements to produce a state estimate. In contrast, high-level global
optimization utilizes the odometries’ information to compensate for their drift. Examples of
such an approach include MIMOSA [69] and the method proposed in [70, 71], which applies a
sequential multilayer coarse-to-fine processing with IMU-based motion prediction, a coupled
visual-inertial (VI) method for motion estimation, and a scan matching for refinement and
map registration. The sensor degradation (dark, texture-less for vision; geometrically struc-
tureless for LiDAR) is proposed to be bypassed with an arbiter that reconfigures the fusion
pipeline with respect to a failure mode detection. The LVI methods of [70, 71] were recently
extended with smoothing and mapping over an on-the-run built factor graph in LVI-SAM [72].
In R2LIVE [73], the authors proposed to lower the computational load of LVI methods by
fusing fast LiDAR-odometry with efficient vision-based global optimization in the iterated
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ESKF. Authors of LIC-Fusion [74] and its newer version LIC-Fusion 2.0 [75] had introduced
plane-feature tracking in sliding-windows fashion, relying on a proposed online calibration of
plane extraction and outlier rejection within data association. Reducing the computational
load of LVI methods was proposed in [76], where the authors leverage GPU parallelization
to match sequential data frames to the entire map using a dense factor graph (instead of a
sparse pose graph) and utilize the generalized ICP metric efficient for its parallelization.

Accurate and computationally-heavy VIRAL-SLAM [77] performs BA over a local and
a global factor graph with loop constraints, while utilizing LVI sensors and radio-based ultra-
wideband (UWB) ranging. UWB ranging is also utilized in LIRO [78], where the authors
leverage ranging to fixed landmarks in the environment during optimization. Lastly, deep
learning methodology has been applied in LIO-CSI [79] to supply LIOSAM [63] with semantic
information generated with a pre-trained neural network, and in SLOAM [80] to classify and
parametrize trees in a forest used as semantic information in pose optimization.

Contributions: When designed well, multimodal approaches complement the advan-
tages and disadvantages of the used modalities, thereby increasing robustness to the degrada-
tion of individual modalities. Nevertheless, such methodology yields three significant disad-
vantages. First, the methods run with increased computational costs emerging from process-
ing other modalities, particularly in the case of visual sensors. Second, the detection of degen-
eracies needs to be implemented and tuned for each given modality, as a degenerate modal-
ity counteracts the overall estimation and negatively influences the final estimate. Lastly, the
system is unable to accurately estimate when all of the modalities are simultaneously degen-
erate. For these reasons, our contributions advocate and propose two approaches for single-
modal minimization of degeneracy effects. First, our proposed method for localizing a UAV in
vertically-symmetrical historical monuments [1c] complements a low-FoV 3D LiDAR by im-
proving observability along the degenerated axis with cheap and lightweight point-distance
LiDAR sensors. Second, our redundancy-minimizing point cloud sampling [6c] proposes to
maximize the quality of the extracted information from the LiDAR modality [6c] in order to
lower the effects of weak degeneracy on the pose estimation performance (see Section 2.1.5).
Moreover, in [1c] and our other works [2c–4a, 7a–12a], the proposed methodologies fuse the
outputs of LiDAR-based methods with the inertial measurements to support the estimation
pipeline running on-board a UAV. The fusion includes smoothing over a short history of mea-
surements to cope with time delays in the pipeline using [81]. Although inertial measurements
are noisy and subject to dynamic biases, they supply unstable long-term but high-rate in-
formation in-between frames of low-frequency LiDAR measurements (typically at 10–20 Hz).
Therefore, the presence of inertial modality in these works is not a way to handle degeneracy,
but to support the stability and control of a dynamically unstable multi-rotor UAV.

2.1.4 Degeneracy-aware Sampling

The most common method to detect the degeneracy level of the LiDAR modality was
introduced in [82]. In [82], the authors relate the geometrical degeneracy to information the-
ory and define a degeneracy factor calculated from the eigenvalues of an information matrix
of the optimization problem. This factor is used in quantifying the degeneracy in each opti-
mized DoF. Moreover, this factor was also proposed in [82] to be used in analyzing the geo-
metric structure of the problem constraints, thereby mitigating the convergence degeneracy
by remapping the ill-constrained DoFs to another modality (typically inertial). Another fac-
tor is the localizability vector, which was proposed in [83] to evaluate the quality of the opti-
mization problem with respect to the current measurements of a LiDAR and UWB ranging.
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The method [83] utilizes the localizability vector in multi-modal sensor fusion to minimize the
estimation drift within tunnel-like environments.

The factor introduced in [82] is utilized throughout the related literature to detect the
per-DoF degeneracy and is used in lowering the effects of the degeneracy. The main branch
of approaches proposes to sample (i.e., select, filter) the residuals used in the optimization in
order to balance the optimization problem. The greedy-based method [84] defines the problem
as a combinatorial optimization under a cardinality constraint. The method in [84] preserves
the spectral attributes of the information matrix while applying greedy approximations to
achieve computations in real time. The method in [84] selects the residuals such that the log-
determinant of the approximate Hessian of the optimization problem is maximized up to a
pre-specified threshold. KFS-LIO [85] does so similarly but maximizes the inverse trace of the
approximate Hessian while one-by-one deleting the residuals from the problem’s Jacobian. The
selection of a constant-size residual subset is proposed in [86] by buffering random-selected
residuals for which the map correspondence leads to maximum enhancement of the objective,
the log-determinant of the information matrix. X-ICP [87] filters out residuals with non-
parallel plane normals per each DoF. The simplified version Xs-ICP [87] does this similarly
to X-ICP but reuses the residuals computed in the first iteration as a prior in subsequent
iterations. In particular, [84, 85, 87] utilize the eigenspace of the information matrix to quantify
the degeneracy in the optimization, as introduced in [82]. The advantage of informed sampling
(being performed at the optimization level) is the possibility of formulating awareness of
degeneracy in the optimization. However, residual-space sampling requires the correspondence
pairings to be known and is sensitive to noise in these correspondences, as well as to variability
in point density. It also comes at the cost of re-sampling in every iteration of an estimation
pipeline, as shown in Figure 2.3.

Contributions: On this note, our contributions propose an uninformed input-space
sampling [6c], where the sampling is performed just once and without knowledge about the
correspondence pairings. Without the correspondences, such sampling cannot relate to the
information about the optimization problem as it is non-causal. Nevertheless, we discuss in
Section 2.1.5 that input-space sampling can lower the effects of geometrical degeneracy in
real-time systems, even when the correspondence pairings are unknown.

Correspondence
search

Residual computation
& linearization

Residual
sampling

Iterative
optimization
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θ0 θi

Figure 2.3: General architecture of an iterative estimation pipeline with sampling in the resid-
ual space. P,Q are two LiDAR point clouds and θ (typically θ ∈ SE (3)) is the optimized
variable (θ0 is the initial estimate, θi is the iteration estimate, and θ∗ is the output estimate).
Sampling in the residual space requires the correspondences and their residuals and lineariza-
tions to be known. Computing all these iteratively is expensive, especially when the optimiza-
tion gradients are low, resulting in high iteration counts (such as in point-to-point ICP, where
high tens of iterations are common). In Section 2.1.5, the use of methods sampling prior to
the iterative pipeline is advocated to remove this principal bottleneck.
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2.1.5 Point Cloud Sampling for Degeneracy Mitigation

Point cloud sampling preceding an iterative estimation pipeline is a common technique
for reducing the complexity of the estimation problem. The typical architecture of such a
pipeline is shown in Figure 2.4. Since the sampling reduces the cloud’s cardinality, the entire
iterative pipeline is faster and more energy efficient. In theory, reducing the input point
cloud cardinality lowers the number of required correspondence searches, which leads to fewer
residuals and, thus, fewer linearizations and constraining factors in the optimization problem.
Given that these expensive tasks are part of an iterative process, the overall computational
gain can be significant (and even decisive) for mobile robots. However, this applies only when
the point cloud sampling is computationally fast and preserves the quality of the points. While
the former is subject to algorithm efficiency and available computational resources, the latter
must preserve the overall information available in the point cloud. The latter, in particular,
remains an ongoing research challenge.

Since modern 3D LiDAR sensors produce a huge amount of data (up to five million
points per second), uninformed point cloud sampling is utilized in almost every state-of-the-art
pipeline. The current approaches include point-density normalization [52] (i.e., voxelization),
feature extraction [42, 88], normal-space sampling [89, 90], and learning-based inference [91].
The advantages and disadvantages of these methods are compared in detail in Section II.
Related Work in [6c], which comprises the core of this thesis and is described in detail in
Chapter 3. It has been shown that a point cloud sampling can improve the performance of
real-time pipelines in well-conditioned settings [42, 52] if the sampling is fast and removes
noise and outliers. Although sampling at the input of an estimation pipeline cannot relate to
the optimization problem (i.e., degeneracy-aware factors [82, 83] cannot be used to quantify
the contribution of an input point), it has been shown that uninformed methods may improve
performance under weak geometrical degeneracy. This was first shown in [89, 90], where the
authors utilize point normals to guide the sampling.

Contributions: Our novel method proposed in [6c] minimizes point redundancy within
the point cloud and offers a novel alternative to typical point cloud sampling methods. By
balancing the translational space, [6c] preserves the overall quality of points within the point
cloud, even with no need for computing the point normals. In contrast to the state of the
art, [6c] samples the least amount of points while yielding superior performance in well-
conditioned settings, shows the highest drift reduction under weak degeneracy, speeds up the
estimation pipeline the most, and preserves the highest amount of information. In contrast to
other methods, [6c] adapts seamlessly to numerous diverse environments and is parametriz-
able by a single parameter, which relates to the estimation pipeline. It is also invariant on the
environment, sensor, and the robot. Additionally, our contributions show that the sampling
can be successfully applied in feature space (e.g., plane and line features [42]), complement-
ing the verified and field-tested methods with novel research. Furthermore, the methodology
proposed in [4c] includes a sampling of point clouds containing a high level of noise emerging
from the clouds of dust whirling around the sensor. This novel method mitigates this degen-
eracy source by local sampling in the light-intensity field of modern 3D LiDARs. Our funda-
mental advances in point cloud sampling offer a quick, plug-in improvement to all existing
methods employing rotating 3D LiDARs, even under degraded sensing.
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Figure 2.4: General architecture of an iterative estimation pipeline sampling in the input
space. P,Q are two LiDAR point clouds (P is the LiDAR point cloud and Q is a target point
cloud, such as a map), P̄ ⊆ P is the sampled source point cloud, and θ (typically θ ∈ SE (3))
is the optimized variable (θ0 is the initial estimate, θi is the iteration estimate, and θ∗ is the
output estimate).

2.2 Distributed Multi-Robot Sensing and Acting

Sharing an environment with a team of fast-flying UAVs requires synchronized coor-
dination for precise and effective navigation. The research of this thesis focuses on two fun-
damental approaches to coordinating such aerial teams — decentralized swarming exploit-
ing local perception and distributed coordination with wireless information sharing. The for-
mer tackles multi-robot coordination models utilizing solely local on-board perception of both
homogeneous and heterogeneous robots as a substitute for centralized and computationally-
heavy perceptual systems. The latter category then focuses on the effective and reliable use of
multi-robot teams in tasks requiring multiple robots, such as S&R and aerial documentation.

2.2.1 Perception-Aware Swarming

In recent years, several private companies (e.g., Intel®, DAMODA) have aroused public
interest in aerial teams by presenting visually attractive artistic light shows. However, the
structural arrangement of robots in these artistic shows is centralized, with a ground station
as the central element operating and supervising the show. Each robot follows a pre-computed
trajectory in this configuration while relying on GNSS. This methodology originated from
early literature within the research field of aerial swarming, such as [92]. Therein, the authors
showed that a centralized computation unit could optimize the trajectories of 20 UAVs in
order to reshape the swarm to a feasible (collision-free) formation given the states measured
by a motion capture (MOCAP) system. Recent work [93] has also shown that this exact
methodology can also be applied to a swarm where each agent employs a local state estimation
(i.e., visual-inertial odometry (VIO)) if the central computation can transform all of the
local state estimates into a global coordination system to align the pre-computed trajectories.
Although the alignment in [93] was performed using a static MOCAP system, the state of
the art in a collaborative SLAM [94, 95] shows that the swarm agents can co-localize without
MOCAP systems by utilizing computations of map merging, BA, and location detection on a
centralized server. However, the bottleneck of such architectures is the centralization element
(i.e., ground station, server, communication), which serves as a single-point-of-failure.

A feasible methodology for removing this single-point-of-failure lies in the decentral-
ization of the perception, computation, task reasoning, and sensory equipment. The research
field of aerial coordination with purely decentralized architectures can be divided into method-
ologies of sharing or not sharing information among the team agents via a communication
channel. Although communication brings advantages to team cooperation (e.g., sharing non-
observable states, plans, and intentions), it reduces the system’s fault tolerance and limits the
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scalability of dense teams where the robots need to sense and act in real time. To reduce the
point of failure in communication, our focus lies on the methods acting solely upon local per-
ceptual inputs. This motivation emerges from the field of perception-aware swarming, which
follows the definition of an autonomous swarm as defined in [36] — a multi-agent team that
is scalable for large groups, has high redundancy and fault tolerance, is usable in tasks un-
solvable by a single robot, and has locally limited sensing.

Only a few works have developed and analyzed swarm systems following this exact
definition [36]. In the past, the state of the art within this field was explored exclusively
for 2D systems and, to this day, emphasizes self-organizing behaviors of simple units with
minimal sensory capabilities, as introduced first in [96] for dimensionless particles and later
summarized in [97]. One of these 2D self-organizing approaches is the Beeclust [98] algorithm,
which utilizes probabilistic finite state machines and a primitive motion model to mimic the
collective behavior of honeybees. The Beeclust algorithm has been verified in simulation as
applicable to complex tasks not requiring information exchange among agents, such as in an
underwater exploration of a seabed [99]. Another 2D approach [100] has shown that agents
with limited sensing properties are capable of aggregation towards a common spatial goal
while avoiding inter-agent collisions, similar to methods employing complete pose information.
These communication-free decentralized algorithms, systematically described in [101, 102],
require some form of mutual relative localization (even limited to binary detections) among
the agents. Three-dimensional swarming in the real world has been achieved in [103–105]. In
these works, the authors proposed decentralized flocking models utilizing local information
and constraints on self-organization under the influence of communication, perturbations, and
action delays in known confined environments. As a part of their analysis, the authors show
that numerically optimizing the large set of parameters in their force-based flocking model
may improve the stability of the swarm in real-world conditions, even for large flock sizes.
However, the architecture in [103–105] lacks local perception and instead utilizes robot-to-
robot communication to share the global states. Although recent improvement to multi-UAV
navigation has been proposed in [106] by integrating localization and mapping onto small-
factor robots, the methodology in [106] still communicates the planned trajectories.

The absence of accurate, robust, and reliable robot-to-robot perception techniques has
hindered the research focus on aerial swarming in the real world. This has agitated the devel-
opment of methods capable of localizing neighboring UAVs, which would enable perceptually-
aware methods. Ranging from UWB radio signal has been proposed to obtain relative informa-
tion among UAVs in [107]. From vision-based methods, multiple publications have employed
active and passive infrared (IR) markers [108–111] since markerless perception in the visible
spectrum is challenging. Machine learning methods utilized CNNs in detecting and localizing
markerless agents in the visible spectrum [112–114]. Significant research on relative localiza-
tion was also done at the MRS laboratory at CTU (affiliation of the author of this thesis),
which began with an onboard vision-based methodology using passive circular markers [115]
applied for stabilization of a formation of aerial agents in [116]. The preliminary research grew
into the current state-of-the-art relative localization named UVDAR [37, 38], which proved
to be a robust, reliable, and sufficiently accurate method enabling further state-of-the-art re-
search in decentralized aerial swarming relying on direct localization of proximal agents.

Contributions: Our research in this area has utilized the UVDAR [37, 38] localization
system in proposing swarming models capable of dynamic aggregation, navigation, and ob-
stacle avoidance. In [5c], we have proposed a biologically-inspired swarming model designed
for communication-free use on-board UAVs cooperating tightly in real-time within an envi-
ronment filled with obstacles. The perception-aware model respects the constraints of a visual
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system for relative localization (such as UVDAR [37, 38]) and proposes a set of local actions,
which on the basis of local information yield self-organizing navigation of the aerial swarm.
At the time of publishing, [5c] presented the first real-world UAV swarm capable of cohesive
navigation without communication, all while respecting the definition of swarming from [36].
As part of our analyses, [5c] has also presented a study on the relation between the accuracy
of position estimation and swarm stability. We showed that a zero-mean normal error in lo-
calization accuracy induces oscillations with an exponentially growing magnitude correlating
with the deviation of the error. Although no information is shared among UAVs in [5c], the
work utilized GNSS to self-localize each UAV in the world. Later contributions of the author
and his colleagues then built upon [5c] by introducing novel swarming and flocking models to
improve the obstacle [15a, 117] and predator [11a] avoidance, to enhance the cohesive [14a]
and navigation [118] properties, and to apply proximal-control theory [16a] studied in the field
of formation control. These contributions enhance the reliability of UAV-team deployments
in safety-critical applications, such as the documentation of historic monuments [1c, 2c] dis-
cussed further in Section 2.2.2.

2.2.2 Information-based Cooperation

In contrast to Section 2.2.1, the focus of this section lies in distributed multi-robot co-
operation under continuous or intermittent communication. Given the spectra of the author’s
contributions, emphasis is put on tasks of subterranean S&R and coordinated documentation
of GNSS-restricted interiors by an autonomous team of ground and aerial robots.

The specified needs of S&R include a set of heterogeneous robots cooperating efficiently
in exploring, assessing, and mapping devastated subterranean sites, such as collapsed mines
and demolished buildings. The primary objective of such teams lies in assisting first responders
by minimizing the risks of endangering their lives while providing a quick assessment and data
intelligence from inside the surveyed site. The robot autonomy in this task must be capable
of efficient (possibly optimal) operation in unknown, degraded, and dynamic environments.
This includes autonomy in sensing, acting, decision making, coordination, and information
retrieval, all under intermittent communication. The primary contributions in the related
literature originate from the DARPA SubT, which was a robotic competition advancing the
field robotics in S&R scenarios beyond the state of the art. The selected robotic systems
developed during this competition are listed below in Section 2.3. A thorough summary of
related work in this field is also part of our core work [4c], with emphasis on the particular
subsystems of robotic autonomy.

On the other hand, inspecting interiors of a known environment by multi-UAV teams
is another demanding task with its own challenges and caveats. This task requires accurate
autonomous operation of a UAV in a known and safety-critical environment. Moreover, the
nature of documentation techniques practiced within the field of cultural preservation requires
autonomous teams of heterogeneous UAVs to operate synchronously, accurately, predictably,
and safely in badly lit and confined areas high above the ground. In the related literature, a
few approaches targeted single-robot autonomy utilizable for the specified domains, ranging
from mobile ground robots [119] and solutions exploiting the known profiles of tunnels [32]
and structured warehouses [120] to assistive systems [121]. However, before the contributions
proposed in our publications, there was no robotic autonomy capable of autonomous multi-
UAV operation in the interiors of industrial and historical settings for the purpose of their
inspection and documentation. The related works in this field, including solutions proposed
in the commercial sector, are summarized in our core work [2c].
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Contributions: For the former task of S&R, our contributions include a top-performing
stack for multi-UAV exploration of the targeted environments, described primarily in our
core [3c, 4c] and other publications [8a]. In addition to the LiDAR-based perception described
in Section 2.1.1, the contributions of this stack include novel methods for multi-UAV hom-
ing maximizing the limited flight time of robots, topometric map representations shareable
among robots over a low-bandwidth intermittent network, full UAV-team autonomy in real-
world and virtual environments, local [8a] and global path planning, and perception-aware
exploration strategies. The contributions to the latter task of documenting historical monu-
ments are part of our core works [1c, 2c] and preceding works [9a, 10a]. The works introduce a
novel methodology for documentation tasks being performed by teams of autonomous UAVs
in challenging safety-critical environments. In particular, the contributions include optimal
coordination of heterogeneous robots (such as camera-equipped and light-equipped UAVs) in
tasks requiring multiple robots in principle. The spectra of contributions of the author’s pub-
lications regarding this research problem are summarized in detail in Chapter 3 while further
describing the core works of this thesis [1c, 2c].

2.3 Theory to Practice: Validation of Fundamental Robotic Research

Field testing and experimentation are imperative to the field of mobile robotics. Real-
world experimental analyses provide valuable information about the deployability of the
robotic methodology and support the theoretical contributions proposed in a robotic work.
This need for testing and experimentation is rooted in the fact that the applicability of the pro-
posed methods may consequently prove to be limited when coupled with other systems since
common theoretical assumptions often do not hold in the real world. This is especially true for
real-time systems connected to UAV autonomy, where an overlooked detail can lead to catas-
trophic outcomes for the robot, human operators, and the environment. Although research in
mobile robotics has commonly been limited to simulation analyses [121] and testing on offline
datasets [63], there have been recent advances in real-world experimentation in state-of-the-
art robotics. Field robotics has been advanced by individual works in the field [32, 33] but has
also been greatly accelerated by the robotic competitions that aim to progress the boundaries
of the entire robotic state of the art. The two most notable competitions are MBZIRC (held
periodically every 3 years since 2017) and the DARPA SubT (2019–2021). MBZIRC focuses
primarily on aerial robotics and pushes the boundaries of tasks unique to teams of UAVs,
such as cooperative wall construction [122, 123], fire fighting [124, 125], capturing fast-flying
objects [126, 127], and others. On the other hand, the DARPA SubT aimed to push the en-
tire field of robotics by targeting the fully autonomous cooperation of heterogeneous robotic
teams in completely unknown subterranean environments for the purposes of assisting first
responders by providing situational awareness in disastrous scenarios. Targeting human-made
tunnels, natural cave systems, and urban environments, the DARPA SubT led to the develop-
ment of robotic stacks by the best robotic institutions. These stacks include [31] (winning so-
lution by team Cerberus led by ETH Zürich), Nebula [128] (team CoSTAR led by Jet Propul-
sion Laboratory, NASA), [129] (team CSIRO Data61 led by the University of Queensland),
and [4c, 12a] (team CTU-CRAS-NORLAB led by CTU, author’s team). The outcomes of the
SubT in the perceptual domain are summarized in [7a], which concludes challenges persist in
the state-of-the-art methodology, especially those related to perceptual degradations and so-
lutions suited for resource-constrained robots. Both challenges are addressed in this thesis.

Contributions: Given the need for field testing and verifications, each of the papers
published by the author (listed in Appendix A) has been actualized and validated in the real
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world outside the laboratory. This unique approach shows the transferability of fundamental
research into tasks applicable in unforgiving real-world conditions. The contributions to the
real-world autonomy of UAV systems are highlighted for their imperative importance to field
robotics, as they verify that the proposed theoretical ideas are robust, reliable, and accurate
when interconnected with other onboard systems, each of which induces delays, errors, and as-
sumptions. It also shows that the author’s contributions are sufficiently robust and reliable for
direct use in the real world, even in safety-critical applications of autonomous aerial inspection
and documentation in historical structures [2c], as supported by utilization of the methodol-
ogy in 18 historical monuments (including two sites on the UNESCO World Heritage list).
This is supported by ongoing research in modular hardware solutions [13a, 17a] and software
framework for reproducible research in the field of autonomous UAVs. The software frame-
work of the MRS UAV System [39] (open-source at github.com/ctu-mrs/mrs uav system) is
a shared project developed at the MRS laboratory at CTU that has been used worldwide for
accelerating research and education as well as for minimizing the simulation-to-world bottle-
neck in aerial robotics. The author’s contributions include additions to the open-source MRS
UAV System, especially in 3D LiDAR-related methodologies, such as processing, sensor fu-
sion, odometry, localization, SLAM, and mapping.

https://github.com/ctu-mrs/mrs_uav_system
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3 LiDAR-based Perception in Demanding Real-

World Conditions

[1c] P. Petracek, V. Kratky, and M. Saska, “Dronument: System for Reliable De-
ployment of Micro Aerial Vehicles in Dark Areas of Large Historical Monuments,”
IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 2078–2085, 2020

The initial contributions to the established research problems have been introduced
in [1c], a core work of this thesis. The work, published in the IEEE Robotics and Automation
Letters and presented virtually at IEEE ICRA 2020, was motivated by the lack of robust and
reliable localization for safety-critical purposes of documenting historical monuments with au-
tonomous aerial vehicles. The work has proposed a then unique and novel method for equip-
ping UAVs with lightweight 1D and 2D LiDARs for 6-DoF localization within a bounded
3D environment. The proposed method relied on onboard sensors and a 3D point cloud of
the environment that was easily obtained from ground locations, with no need for a static
localization infrastructure. The reliance on an apriori map of the environment allowed for
the use of lightweight sensors while still keeping the system computationally undemanding
enough to process data on-board UAVs with limited resources in real time. The allowance for
lightweight sensors was essential at that time, as compact 3D LiDAR solutions without pre-
posterous price tags were lacking presence on the market. Finances aside, lightweight sensors
also allowed for the minimization of the robots. Although minimization would be optimally
implemented with cameras, active LiDARs cope naturally with adverse and uncertain lighting
conditions, require much less processing power as the data are sparser than camera images,
and allow for easier, faster, and more precise geometrical mapping. The proposed localization
method employed a multi-layered global-to-local localization with four asynchronous sensors
— a 2D LiDAR, two 1D point rangefinders, and an IMU. The point rangefinders (oriented
downwards and upwards on the UAV body) improve the sensory observability, and thus help
in constraining the geometrical degeneracy along the vertical axis, which is common for tall
historical monuments such as large cathedrals and churches. The performance of the proposed
method was verified to reach the sufficient level of robustness and high precision required for
accurate and repeatable documentation.

The localization method instantly found its applicability in [9a], where it served as an
integral part of the novel task of reflectance transformation imaging (RTI) being performed
by a team of autonomous UAVs. RTI is a photographic method for capturing an object’s sur-
face shape and color, enabling interactive re-lighting of its virtual model from an arbitrary
direction of illumination. This method is widely used in the field of restoration and cultural
preservation, where the two works [1c, 9a] initiated their interdisciplinary overreach, later
achieving successful scientific [2c, 10a], societal [130], and cultural [18a] achievements. In par-
ticular, [9a] has introduced an important contribution in transferring the previously resource-
exhaustive RTI from the laboratory into the real world, where it was formerly inapplicable in
large-scale settings and in areas not easily accessible by humans. Since RTI requires poses of
all the UAVs to be known with respect to the documented object of interest, the localization
method [1c] served a pivotal part of the aerial-RTI methodology. In [1c], the method also mo-
tivated the use of light-independent LiDAR technology since it benefits from minimum para-
sitic illumination and is optimally performed in total darkness, as later achieved in [2c].
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Dronument: System for Reliable Deployment of
Micro Aerial Vehicles in Dark Areas of

Large Historical Monuments
Pavel Petráček , Vı́t Krátký , and Martin Saska

Abstract—This letter presents a self-contained system for
robust deployment of autonomous aerial vehicles in environments
without access to global navigation systems and with limited
lighting conditions. The proposed system, application-tailored
for documentation in dark areas of large historical monuments,
uses a unique and reliable aerial platform with a multi-modal
lightweight sensory setup to acquire data in human-restricted
areas with adverse lighting conditions, especially in areas that
are high above the ground. The introduced localization method
relies on an easy-to-obtain 3-D point cloud of a historical building,
while it copes with a lack of visible light by fusing active laser-
based sensors. The approach does not rely on any external
localization, or on a preset motion-capture system. This enables
fast deployment in the interiors of investigated structures while
being computationally undemanding enough to process data
online, onboard an MAV equipped with ordinary processing
resources.

The reliability of the system is analyzed, is quantitatively
evaluated on a set of aerial trajectories performed inside a real-
world church, and is deployed onto the aerial platform in the
position control feedback loop to demonstrate the reliability of the
system in the safety-critical application of historical monuments
documentation.

Index Terms—Aerial Systems: Applications, Aerial Systems:
Perception and Autonomy, Localization

I. INTRODUCTION

IN recent years, massive advances have been made in the
technology of aerial vehicles capable of vertical landing

and takeoff, in terms of control, reliability, and autonomy.
These multirotor vehicles, which we will refer to as Micro
Aerial Vehicles (MAVs), have become extremely popular for
their flexibility, diversity, and potential for applicability and
amusement. The broad application spectrum of MAV systems
ranges from 3-D mapping and deployment in search & rescue
scenarios to wildlife & nature conservation.

This letter presents a unique self-localization system for a
specialized use of MAV teams - autonomous documentation of
historical monuments - derived from the interest expressed by
end-users with expertise in restoration and conservation. The
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Fig. 1: Demonstration of the presented system during documentation
of the parliamentary hall of the UNESCO castle in Kroměřı́ž, Czech
Republic, with an example of onboard sensory data registration into
the object map

current procedure used during regular studies for restoration
works requires a large scaffold to be constructed in order to
monitor the condition of a building and its artifacts. An MAV
platform can supply the same documentation and inspection
techniques as those provided by the experts, but in locations
unreachable by people except with the use of a large and
expensive scaffolding installation, or in locations which had
never been documented before during an initial survey. The
MAV platform significantly speeds up the duration and sig-
nificantly scales down the cost of the restoration works, and
offers data acquisition from previously impossible angles and
unreachable locations.

The proposed system is designed for deployment in histor-
ical monuments, such as ancient or modern, war-damaged,
dilapidated or restored cathedrals, chapels, churches, mau-
soleums, castles, and temples with dimensions varying from
small chapels up to large cathedrals. The deployment of robots
in these operational environments is a challenging task due to
the absence of a global navigation satellite system (GNSS),
the adverse lighting conditions, and numerous other challenges
summarized later on in Sec. III. An aerial system that handles
all the challenges has to provide exceptional robustness, which
we propose to achieve by introducing a precise model-based
control approach, reliable real-time state estimation, a high
level of sensor & actuator redundancy, and feasible mission
planning & navigation.

In this letter, we also address in detail the problem of
real-time state estimation acting as a state observer for
MAV control and mission navigation modules in the tackled
GNSS-denied environments of large historical buildings. The
proposed system relies on a lightweight sensory setup com-
posed of a 2-D laser-scanner and two point-distance rangefind-
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ers, and on a map of a historical site pre-generated in the form
of a 3-D point cloud provided by a terrestrial laser scanner
(TLS). Our laser-inertial approach to indoor localization fuses
an onboard IMU and a locally refined global state estimation,
while it processes the data onboard an MAV and estimates the
global state in real-time.

A. Related Work

Until now, documentation of interiors and exteriors of
buildings and facilities has generally been performed manually
by generating a 3-D site model using a TLS, together with
scan registration post-processing [1] or photogrammetry [2]
requiring geo-reference information. The emergence of au-
tomation procedures has speeded up the scanning processes.
Examples are the Zebedee [3] and the LIPS [4] hand-held
mobile 3-D laser mapping systems, and even ground robot
mapping approaches [5].

Using aerial systems introduces the advantage of rapid
documentation even in human-unreachable locations. These
systems are being employed for documentation purposes [2],
[6], but most of them are deployed manually outdoors and
require GNSS to obtain geo-referenced data.

Although the lack of GNSS can be bypassed by exploiting a
preset external localization system capable of a high accuracy
localization, this approach is not scalable for documentation of
large structures with limited access time. Other approaches for
GNSS-denied localization include visual-inertial simultaneous
localization and mapping (VI-SLAM), whose recent advances
are well described in [7] and [8]. A mono- or stereo-camera
SLAM is a thoroughly studied problem for an MAV, due
to the lightweight of ubiquitous cameras. One example of a
system that attempts to integrate online SLAM is the Open
Vision Computer [9], which is an embedded off-the-shelf
FPGA module that handles a visual SLAM independent of
other onboard subsystems. The state-of-the-art vision-based
ORB-SLAM2 [10] was tested in real conditions with lighting
conditions similar to the desired environments. However,
it was found to be ineffective, and it was disregarded for
reasons described in Sec. III. The lighting issues motivated
the development of the system presented here, which works
under the specified conditions.

The authors in [11]–[13] have presented applications, which
share a considerable number of common characteristics with
indoor documentation of historical structures. A laser-inertial
system for inspecting chimneys is presented in [11], while
a laser-visual-inertial system for inspecting penstocks and
tunnels is presented in [12]. In comparison to our application,
environments tackled in [11] and [12] are well-structured and
homogeneous for onboard sensors, which makes it possible
to tune the system for these specific conditions. On the
contrary, our task requires a much higher level of complexity.
The authors in [13] focused on inventory applications in
warehouses. Their laser-visual-inertial setup is suited for fast
flights in complex dynamic environments in order to speed
up a periodic inventory audit. However, our targeted scenario
requires minimalist MAV dimensions, and slower and more
accurate operation with respect to a variable onboard payload.
In contrast to our lightweight sensory setup, the systems

in [11]–[13] employ a heavyweight 3-D lidar. Moreover,
the systems in [12] and [13] fuse visual information from a
set of onboard cameras, which is not suitable for the tackled
environments with adverse lighting conditions.

Apart from that, only one work using MAV in the context
of documentation of historical buildings has been found [14].
This work evaluates the performance of several SLAM and
SFM methods during a 3-D model reconstruction of a single
historical site. However, the authors of [14] perform only
an offline evaluation of their methods on an outdoor aerial
trajectory and do not deploy these methods in GNSS-denied
environments nor in a position control loop of an MAV.

Documentation systems often extend their applications with
a TLS to assist with the digital preservation of the scanned
sites [15], which we likewise propose in our system archi-
tecture to boost the robustness of the system. In [16], map-
based 3-D Monte Carlo localization (MCL) using an RGB-
D camera provides a global state estimate. In contrast to
this manuscript, our method utilizes a 2-D scanner instead of
an RGB-D camera. This provides planar 360◦ information,
making it independent from orientation. Our method goes
further by refining the global estimate on a local map by a
scan matching technique to yield faster and more accurate
results. The authors of manuscripts [17], [18] fuse scan
matching output, IMU, and a down-oriented rangefinder. Our
proposed method extends the setup with global initialization
and fusion of an up-oriented rangefinder. The importance of
the up-oriented measurements rises significantly during flights
over heterogeneous objects (church benches), where vertical
estimate exploits the homogeneous nature of ceilings.

B. Contributions

This letter addresses problems of the deployment of aerial
systems in the safety-critical application of historical monu-
ment documentation. The stability of the system originates
from carrying out tests in real-world historical objects in
the course of two years of a research and culture project
in close cooperation with the National Heritage Institute of
the Czech Republic. The insights into developments for real-
world deployment presented here tackle the motivations and
constraints of the highly challenging environments guided
by end-users from outside the robotic community. The main
contributions of this letter are:

(i) It introduces a unique, highly reliable system for de-
ployment in environments with low feature density and
atrocious lighting conditions.

(ii) It develops a unique hardware and software aerial plat-
form designed in close consultation with restorers and
conservationists, using experience from deployment of
the system in numerous individual historical objects.

(iii) It presents and shares the experience of what we believe
to be the most comprehensive project in the field of
autonomous documentation of historical monuments by
an aerial system.

(iv) It presents a robust light-independent localization system
for interiors of historical buildings relying on 2-D lidar
as its primary sensor.
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The 3-D localization offers precise full 6 degrees-of-
freedom estimation, providing fast and robust state estimation
integrated into a feedback loop of an MAV position control.
Based on a quantitative analysis evaluated on aerial ground-
truth data in Sec. VI, our approach reaches persistent RMSE
precision below 0.23 m. The drift-free system that is presented
yields greater accuracy than map-based localization for au-
tonomous cars [19] and comparable accuracy to a drift-prone
method [20] employing a 3-D scanner on a ground vehicle.

II. MOTIVATION

The Dronument (Drone & Monument) project sets out to
deploy MAVs for autonomous data acquisition in human-
unreachable areas. The self-contained system presented here
can be deployed in three modes (manual, semi-autonomous,
and fully autonomous), as allowed by the heritage institute
and/or the superintendent of the structure. These modes are
specified as follows:

(i) manual: a human operator controls all aspects of the
flight using an operating transmitter, while the MAV is
autonomously localized in the environment to associate
gathered data with the 3-D map,

(ii) semi-autonomous: a human operator commands the flight,
while onboard systems control the sensory data acquisi-
tion and provide control feedback with respect to obsta-
cles in a 3-D neighborhood, and

(iii) autonomous: a human only specifies objects-of-interest
(OoI) for documentation, and the system handles each
stage of the entire mission - takeoff, stabilization &
control, localization, navigation, trajectory optimization,
data acquisition, and landing.

In addition to the deployment of a single MAV, the system
is prepared for use in cooperative multi-MAV scenarios, as
required for some documentation tasks. Typical non-invasive
documentation consists of a multiple spectrum survey to
obtain specific information valuable for various restoration
purposes. For example, the use of different spectra contributes
to more precise dating of paintings, as the glow of pigment
combinations is unique to a certain period. Examples of single
(S) and cooperative (C) tasks are:

• Direct lighting (S)∗: lighting of the scene from an on-
board light with the illumination axis collinear with the
optical axis of the camera.

• Reflectance Transformation Imaging (C): a photographic
technique for capturing the shape of a surface and the
color of an object by combining photographs of the
objects taken from a semi-static camera on an MAV under
various illumination provided by a different MAV [21].

• Three-point & strong-side lighting (C)∗: filming tech-
niques [22] in which 1-3 sources of light are used in dif-
ferent locations relative to the optical axis of the camera.
In our previous work [23], a Model Predictive Control
(MPC) approach is proposed for controlling a formation
of MAVs with respect to the lighting techniques during
an aerial deployment of cooperative teams in this task.

• Radiography & UV screening (C): a method for viewing
the internal structure of an object (e.g., a statue) by
exposing it to X-ray or UV radiation (emission source

onboard the first MAV) captured behind or in front of
the object by a detector (the second MAV).

• 3-D reconstruction (S/C)∗: a method for aggregating the
shape and the appearance of an object by combining
laser- and/or vision-based information into a 3-D model.

• Photogrammetry (S/C)∗: a method for extracting mea-
surements of real objects from photographs.

Examples of the tasks marked with (∗) can be found within
the additional multimedia materials available in [24].

III. EXPERIENCE GAINED

Over the last two years, more than 10 objects (mainly
in Moravia, Czech Republic) were documented during the
ongoing development phase of the presented system. Outputs
of these documentation deployments supplied restorers and
conservationists with valuable information in state assessment
of multiple artifacts within the structures during the initial
survey phase. Although some of the documented structures
are shown in Figures 1, 2, and 5, the complete list, together
with additional multimedia materials, can be found in [24].
During the experimental phase, many lessons from the robotic
as well as the restoration point of view have been learned.
The acquired experiences for objects of various sizes, shapes,
and structures have influenced the system throughout the
development and are herein shared.

The indoor surveys are conducted in the close vicinity of
heavy-structure buildings. As a consequence, either GNSS is
not available at all, or the system is not reliable enough,
leading to GNSS-denied operations. In order to overcome the
absence of GNSS, a local localization system must be used.
This is true even when exteriors are being documented, with
the intention to document facades in their close proximity in
order to capture details of artifacts from various points of view
(see exteriors documentation in [24]).

Insufficient lighting conditions in a surveyed object is an
impediment for two main reasons. First, it degrades the per-
formance of vision-based odometry and SLAM systems, which
have been heavily researched over the last three decades.
Second, it lowers the quality of the photographs taken in the
visible spectrum, as they require decent lighting of the scene.
These two issues motivated research in the Dronument project,
leading to the development of a novel robust localization
system (see Sec. V-B) purposely designed for autonomous
flying in specific environments of this kind.

Experience has shown that vision-based localization is lim-
ited also by feature extraction shaped by two main character-
istics. First, it is a common occurrence to fly along protracted
segments of white wall lacking any visual features at all.
Second, old religious buildings include extensive symmetric
and repetitive visual patterns, such as grid flooring and artistic
elements. A common example of such an artistic element are
repetitive ledge supports shown on the right side of Fig. 2.
Together with the lighting conditions, these considerations
make most vision-based systems ineffective.

The use of a prior knowledge in the form of a global map
obtained prior to the deployment of an MAV is extremely
beneficial for three main reasons. First, it facilitates the robotic
problem, supplies additional robustness to the system and
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supports system reliability by serving as a baseline. Second,
it yields an opportunity to associate captured onboard data
with a 3-D map, which provides well-arranged data output for
the end-user. Third, the visualization of the flight plan in a
3-D model is comprehensible for everyone - robotic experts,
restorers, filmmakers - and it is necessary for confirmation
purposes by an aviation authority, the heritage institute, and/or
the administrator of the structure.

The proposed use of an MAV requires us to consider the
diversity of environments in which it will operate. These envi-
ronments contain distinct features - cluttered spaces, symmet-
ric blueprints, balconies, stairs, glass windows, vault ceilings,
and hanging strings. This forced the system design to include
sensor and actuator redundancy, the use of a global map,
and mechanical protection of the propellers. The test flights
showed that the 2-D lidar that was used is ineffective for
detecting thin obstacles, such as chandelier ropes and lighting
cables. For this specific reason, a 3-D camera is employed to
detect these obstacles in front of an MAV.

Even when MAVs are deployed in historical buildings,
the presence of wind gusts ascribed to the stack effect
(opened windows, doors) is non-negligible. To maximize the
robustness of the system, particular emphasis must be laid on
handling the aerodynamic influence of the MAV itself, and
the wind gusts. First, the control subsystem must be resistant
to these aerodynamic disturbances, in order to provide control
stability (we rely on low-level stabilization designed in our
team for flying in demanding desert conditions [25]). Second,
perception modules must maintain their sensory properties
when flying in low lighting conditions and in dust clouds,
which originate when previously settled dust starts whirling.

An obvious constraint arises from the particular historical
value of the surveyed objects and their invaluable character,
which is the key reason for undertaking the documentation and
restoration work. To avoid potential damage to fragile artifacts
or to their surroundings at all costs, the MAV has to maximize
the reliability and robustness attributes of the hardware and
the software systems. The introduction of redundancy, system
fault detectors, and safety procedures is a critical requirement
for such a safety-challenging environment.

Last but not least, the system has to provide high payload
modularity, in order to tackle all the documentation tasks in
various environments. During documentation works, it may be
necessary to document vertical walls and also the ceiling, even
with multiple types of payload. For this reason, the hardware
platform must be capable of rapidly changing the payload,
its position, and the stabilization axes, in order to provide an
effective solution to these end-user requirements.

IV. AERIAL PLATFORM

A specialized multi-MAV platform was developed to survey
dark areas of historical monuments. This system is distributed
to the primary MAV carrying the mission payload and a couple
of lighter MAVs carrying additional mission equipment, such
as lights. The primary MAV, shown in Fig. 2, is designed
to minimize its dimensions, since the task assumes flights
in narrow passages close to obstacles. Simultaneously, it is
designed to maximize its payload weight capacities, since the
payload is defined by the end-users, is interchangeable, and

often cannot be optimized for employment on aerial platforms.
In its default configuration, the primary MAV carries an
autopilot, an onboard computer, a down-oriented camera, two
laser rangefinders, a 2-D laser scanner, a 3-D camera for
obstacle detection, and the payload (an onboard light and a
2-axes stabilization hinge with a professional camera with its
lens and a first-person view (FPV) system). The total weight
is 5 kg, with a payload weight of 1.5 kg. To provide an extra
level of safety, the platform is equipped with a mechanical
propeller guard system to isolate the propellers from the
external environment. The lighter MAVs carry a light with a
digitally-controlled pitch angle (a degree-of-freedom required
for formation trajectory optimization in [23]), light intensity,
and color warmth.

Fig. 2: An application-tailored MAV carrying sensory and mission
equipment during documentation of the Klein mausoleum in Sobotı́n,
Czech Republic

V. SYSTEM ARCHITECTURE

The overall system architecture is composed of four main
subsystems, which are hereafter described. The high-level
pipeline of the system is outlined in Fig. 3.

A. Control Architecture
An MAV disturbance-resistant control pipeline was devel-

oped in the previous work of our group [25]–[28]. Beyond
others, the MPC-based approach [26] was tested in the harsh
environment of the desert in the United Arab Emirates during
the MBZIRC 2017 competition, where it outperformed 147
registered teams [25], [28]. The system architecture presented
in Fig. 3 is based on experience gained during this competition,
which posed similar requirements of reliability, and resistance
to wind disturbance and omnipresent dust. However, the task
presented here is considerably different due to absence of
GNSS and the density of the obstacles, and therefore goes
beyond the work presented in [25] and [28].

B. Localization
For 6 degrees-of-freedom state estimation, we propose to

rely on three laser-based sensors. First, a rigidly-mounted
lightweight 2-D scanner produces data in the horizontal
plane of the vehicle. Second, two point-distance laser sensors
(rangefinders) measure the distance to the ground and ceiling
objects. Together with an onboard IMU and a sparse 3-D
map, the laser-inertial approach manages to estimate the global
position and the attitude in light-independent conditions and
without any heavyweight sensory equipment. The whole local-
ization pipeline is summarized in Fig. 4, and will be described
in detail in this section.
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Fig. 3: High-level system pipeline of a single MAV. The stabilization & control pipeline [26] takes reference trajectory rd, ψd (points sequence
of the desired 3-D position and yaw) as a setpoint for the MPC in the MPC tracker, which outputs a command r̈d, ψ̈d for the acceleration
tracking SO(3) controller. The acceleration controller produces the desired angular rate ωd and thrust reference Td for the embedded attitude
rate controller. The localization pipeline is described in detail in Sec. V-B.

1) Global Map: The localization system proposed in this
work is designed to operate with a partially-known map regis-
tered from multiple 3-D intensity/color point clouds produced
by a terrestrial laser scanner (TLS). The necessary granularity
of the map (10 cm in our experiments) depends on the onboard
computational resources and on the structural complexity
of the documented building. Nonetheless, a modern TLS is
capable of producing a scan with millimeter-level granularity,
which makes the map subject to data reduction.

A raw map is processed by a set of filters (median filter, out-
lier rejection, uniform sampling) and is transformed to octree
representation in order to employ optimized map operations,
such as node traversal, integration of sensor measurements,
data access, and tree node queries. During the preprocessing
phase, artificial ground data is injected into the map to
cope with missing data due to occlusions during scanning.
Assuming that the ground is a cavity-free plane, the ground
data is augmented by a set of points uniformly sampled from a
plane. The parameters of this sampled plane are obtained from
fitting it on a set of points withdrawn from the undermost parts
of the available map using the RANSAC algorithm. Missing
non-ground data is augmented in midair during a mission by
the map refinement module.

A smaller structure requires < 5 scans, where a single full-
dome scan (360◦ horizontal and 300◦ vertical field of view)
takes approximately 3 min. During a field operation, there is
enough time to produce a map of the object during the prepa-
ration of the equipment required for the mission. Example of
a map is shown on the right side of Fig. 1 and in Fig. 7.

2) State Estimation: An MAV is assumed to have first-
order dynamics for a short period of time during hovering and
slow flights with negligible tilts (these flight characteristics
are required in the confined areas in historical monuments
for safety reasons). The linear stochastic discrete state-space
model is used as

x[k] = A[k]x[k−1] +B[k]u[k] + η[k], (1)
z[k] = H[k]x[k] + υ[k]. (2)

The state x[k], system input u[k], measurements z[k] and
random noises of the system at time k are given as

x[k] =
(
pT[k], Ω

T
[k]

)T
, u[k] =

(
vT[k], ω

T
[k]

)T
, (3)

z[k] = x̂[k], η[k] ∼ N (0, Q[k]), υ[k] ∼ N (0, R[k]), (4)

where the state x[k] is comprised from global position p[k] =(
x[k], y[k], z[k]

)T
and attitude Ω[k] =

(
ψ[k], θ[k], φ[k]

)T
consisting of the yaw, pitch, and roll angles; v[k] is the linear

and ω[k] is the angular velocity of the IMU frame; x̂[k] is the
measured global state; and S[k] and Q[k] are the covariance
matrices of the process and the measurement noise at time k.
The state-transition model A[k], the control-input model B[k],
the observation model H[k], and the covariance matrices S[k]

and Q[k] are defined as

A[k] =
[
I6×6

]
,Q[k] = ∆t[k]

[
Σmcl

6×6 06×6

06×6 Σicp
6×6

]
, (5)

B[k] = ∆t[k]

[
R(ψ[k], θ[k], φ[k])3×3 03×3

03×3 R(ψ[k], θ[k], φ[k])3×3

]
,

S[k] = ∆t[k]

[
σ2
pI3×3 03×3

03×3 σ2
ΩI3×3

]
, H[k] =

[
I6×6 I6×6

]T
,

where In×n ∈ Rn×n is an identity matrix and 0n×n ∈ Rn×n
is an empty matrix, Σ•

6×6 ∈ R6×6 is the covari-
ance matrix of the global and local state estimation,
∆t[k] = t[k] − t[k−1] is the time elapsed since the last KF
update, and R(ψ[k], θ[k], φ[k]) ∈ R3×3 is the 3-D attitude.
The presence of the rotation matrix in the control-input model
copes with the differing global and IMU frames. The input of
the system consists of inertial measurements coming at 100 Hz,
and observations are produced by two estimation processes
running in parallel, incoming at 5 and 20 Hz, which will be
described below. The output of the KF correction step is equal
to the output of the whole localization process.

3) Monte Carlo Localization: The configuration space of
a robot inside an a-priori known map of a historical object is
immense. This restricts the straight registration of sensory data
to the extensive map due to the unknown initial conditions,
which MCL provides in the form of a slow global state
estimate. Concisely, MCL determines the posterior probability
p(x|y,u) of an unobservable state x given sensor observations
y and control inputs u by computing it on the state space
subset in the form of hypotheses, yielding an approximation of
the probability density function. The posterior probability can
be obtained by employing the Bayes filter, which recursively
computes the previous equation in the form of a belief Bel(x)
of the posterior probability as

Bel(x) = η p(y|x)
∫
p(x|x̂,u)Bel(x̂)dx̂, (6)

where η is a normalization constant. The derivation of
the equation holds under the initial condition p(x0) =
p(x0|y0,u0) and Markov independence assumptions.

Motion model: An odometry-based model for 2-D mobile
robots employing the dead-reckoning principle is expanded to
3-D. In comparison with [29], our application requires slow
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and the absolute mean square error ǫicp of the scan matching.

movement of an airborne vehicle up to 0.5 m s−1, making the
variations in roll and pitch negligible and therefore allowing us
to reduce the kinematic DoF to 4 (3-D position and heading).

Adaptive sampling: To improve performance, KLD-
sampling [30] estimates the sufficient number of hypotheses
M by bounding the error introduced by the sample-based
representation of the MCL. The estimate is based on drawing
from a discrete distribution with p different bins, and for

M ≈ p− 1

2ǫ

(
1 +

2

9(p− 1)
+

√
2

9(p− 1)
z1−δ

)3

, (7)

guarantees with probability 1 − δ that the Kullback–Leibler
distance between the maximum likelihood estimate (MLE) and
the true distribution is less than ǫ, with z1−δ being the upper
1− δ quantile of the normal N (0, 1) distribution.

To prevent convergence to an erroneous local minimum, a
subset of hypotheses with the lowest weights is replaced in
each resampling step with a dynamic-size set of new randomly
generated hypotheses over the whole sampling space and a
static-size set of new hypotheses matching the position of the
latest state estimate with randomly sampled heading. The ratio
of newly injected hypotheses is regulated by Augmented-MCL
[31], which compares the short-term and long-term likelihood
of observations as

Mnew =M max

{
0, 1− wfast

wslow

}
, (8)

where wslow = wslow + αslow(w − wslow) and wfast =
wfast + αfast(w − wfast) for w being the weighted average
over the whole set of hypotheses, and 0 ≤ αslow ≪ αfast are
the decay rates.

4) Local Refinement: To obtain precise and fast local-
ization, local map registration is performed in a decoupled
manner. The decoupling emerges from the sensory setup due to
the vast difference between the data volume in the horizontal
and in the vertical plane. In contrast to the vertical plane,
where only two point-distance measurements are obtained,
the horizontal sensor generally provides a greater number
of samples (e.g., 16K samples per second for RPLIDAR
A3), which needs to be reduced. The vast difference in the
data volumes requires decoupling, otherwise the horizontal
estimation would heavily overweigh the vertical estimation.

Lateral estimation employs a variant of the Iterative Closest
Point (ICP) algorithm. Given a reference set of points P
and a target set of points Q, the optimization process finds
a transformation T, which minimizes the weighted point-to-
point error metric

E(T) =
1

N

N∑

i=1

(wi ||Tpi − qi||2) (9)

over the set of N correspondence pairs (pi,qi, wi),
pi ∈ P, qi ∈ Q, wi ∈ R, ∀i ∈ 〈1, N〉 , N ∈ Z.
An initial solution to Eq. 9 is given by the dead-reckoning
principle. Determining of the correspondence pairs involves
closest distance pairing and a median filter, duplicate reference
matches, and RANSAC-based pairs rejectors. Implementation
of the ICP is based on the Point-Cloud library [32].

The reference scan P is obtained onboard from a 2-D laser
scanner, and its data are prepared according to Fig. 4. To
provide improved robustness, a short history of the measure-
ments is bundled together using short-time IMU-based dead-
reckoning odometry, and is used as the reference scan P for
3-D scan matching. An example of the scan bundle, registered
into a map in the form of a 3-D point cloud, is displayed on
the right side of Fig. 1. The target scan Q = Qpla r Qocc,
Qpla ∈ Qmap, Qocc ∈ Qpla, is derived from Qmap and
state estimate from the previous time step x[k−1]. The subset
Qpla represents points of the map located in between two
planes parallel to the x-y plane of the 2-D sensor frame at
distance ±dpla on the z axis of the same frame. The subset
Qocc ∈ Qpla represents all visually occluded points for which
the linear path of a laser beam from a sensor position (rigidly
defined by x[k−1]) to q ∈ Qocc is collision-free. A ray-casting
algorithm, implemented over an octree representation of the
map, is employed to determine the collision status.

During vertical estimation, a lateral estimate of the x, y
axes, an attitude estimate, and the up- and down-oriented
point-distance measurements are used to define a quadratic
least squares problem

z∗ = argmin
z∈R

(
α↑(p̂(z), y

r
↑) ||ym↑ (p̂(z))− yr↑||2+ (10)

+ α↓(p̂(z), y
r
↓) ||ym↓ (p̂(z))− yr↓||2

)

to find vertical z axis position z∗, where p̂(z) = (x, y, z)T ,
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yr• are real sensor data, and ym• are map measurements
found by map ray-casting. Bear in mind that the attitude and
the rigid IMU-sensor transformations are neglected here to
maintain simplicity. The validity coefficients α• are defined as

α•(p̂(z), y
r
•) =

{
0, if ym• (p̂(z)) or yr• is invalid,
1, otherwise.

(11)

Data invalidity emerges directly from invalid sensor measure-
ments or from the absence of a map reference. In addition,
the down-oriented sensor detects dynamic obstacles, such as
people or map changes, which are observable from an identi-
fiable discrepancy between real and map-based observations.
These detections likewise classify the observations as invalid.
In the case of α↑ = α↓ = 0, the z axis prediction at time k is
given as

z[k] = z[k−1] + zimu[k] − zimu[k−1], (12)

where zimu represents the integrated z axis position derived
from the IMU-based dead-reckoning odometry.

C. Mission Navigation

To maximize robustness of the system, a visibility-
constrained navigation is employed such that an MAV is
allowed to maneuver only to obstacle-free areas visible from
a front-facing depth camera. This approach supervises lidar-
based perception by a redundant check for local obstacles in
the camera field-of-view. An MPC-based control for naviga-
tion and trajectory optimization for MAV formations in the
documentation task is introduced in our previous work [23].

D. System Fault Detection

In parallel to the mission controller, a tightly coupled fault
detection system supervises all aspects of the mission. That
includes supervision of the sensors and battery life status, of
the state estimation covariance, or of the divergence from a
preplanned trajectory. The whole system is implemented as
a centralized high-level state machine capable of overriding
the mission with an appropriate reaction to fault scenarios.
Examples of these safety procedures are enforced controlled
landing, trajectory execution termination, or manual take over
of the control by a human operator. These safety responses
can be likewise triggered by a mission operator, who is
required to supervise the mission by an aviation authority.

VI. EXPERIMENTAL EVALUATION

To prove concept of the proposed method, the system was
thoroughly verified in simulation (Gazebo 9 coupled with ROS
Melodic), before it was deployed in position control feedback
loop of an MAV. The main intention of the simulation was to
estimate suitability of the developed system for deployment in
safety-critical environments of historical buildings, to reduce
probability of failures, and to obtain a qualitative analysis
of the system behavior. Although the simulation results are
omitted here due to lack of space, they can be found in [24].

A. Localization Precision Analysis

This section presents quantitative results of the localization
system evaluated inside real church of St. Mary Magdalene
in Chlumı́n, using a prototype MAV with the same sensory
setup as is carried by the presented project platform. To obtain
ground truth data, two Leica multi-stations were employed to
track movement of the MAV equipped with the Leica GRZ101
360◦ Mini Prism reflector, as shown in 5a, which the stations
are able to lock and track throughout 3-D space. Due to
the lightweight and miniature dimensions of the particular
reflector, the stations were capable to provide only the 3-D
position of the reflector relative to a coordinate system of
the stations at frequency of 5 Hz. The reference attitude was
determined offline by ICP algorithm with parameters set to
maximize accuracy. During short occlusions between a station
and the target, a predicted trajectory of the target is followed in
order to focus back once the occlusions disappear. Hence, the
data further used as a ground truth reference contain short time
period outages as the stations initialized re-locking procedure.

(a) Reflector-mounted platform (b) Automatic tracking demonstration

Fig. 5: An MAV platform equipped with onboard sensors and a
reflector tracked by two Leica multi-stations measuring its 3-D
position with precision of 1.5 mm at 5 Hz

From multiple experimental flights tracked by an outer
reference system, three particular trajectories are presented for
which the quantitative results are given in Table I. Besides the
table, outputs of the distinctive state estimation processes are
outlined in Fig. 6 for the first two trials. The analysis of the
localization system in real-world conditions exhibits estima-
tion accuracy with translational RMSE less than 0.23 m during
each experiment. The experiments also demonstrate minimal
time delay, smoothness, and robustness of the state estimation.
These attributes are important for reliable deployment as their
absence could lead to destabilization of the MAV control. The
proposed localization system proves to be a reliable and robust
source with sufficient precision of the position estimate.

Trajectory Trial 1 Trial 2 Trial 3

length [m] 24.055 45.812 21.163
avg linear velocity [m s−1] 0.361 0.485 0.505
max linear velocity [m s−1] 1.586 2.294 1.734

RMSE translation [m] 0.179 0.140 0.230
RMSE absolute orientation [◦] 2.381 2.460 2.747
max translation error [m] 0.385 0.522 0.594
max absolute orientation error [◦] 6.807 6.928 11.302

TABLE I: Quantitative results of the 3-D position and absolute
yaw orientation ψ accuracy based on real data taken during real
deployment in church of St. Mary Magdalene in Chlumı́n
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(a) Trial 1: verification containing takeoff phase of the flight, where global
estimation convergence and scan matching pipeline initialization is visible
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(b) Trial 2: verification containing ground truth reference interruptions
around 15 s, 30 s and 35 s due to visual occlusions between the multi-
stations and the tracked target

Fig. 6: State variables x, y, z, ψ for ground truth (5 Hz), global
(3 Hz) and local (15 Hz) localization, and fused state estimation
(100 Hz) during real deployment in church of St. Mary Magdalene
in Chlumı́n

Fig. 7: Single-scan octree map
of church of St. Mary Magda-
lene in Chlumı́n

Fig. 8: Documentation in church
of St. Anne and St. James in
Stará Voda

VII. CONCLUSION

This letter presents the first comprehensive study on the use
of autonomous MAV systems as an assistive technology for
documentation of historical structures. The study shares the ex-
perience obtained during developing of the technology in close
cooperation with team of restorers and conservationists, and
discusses challenges of a robotic deployment. The proposed
approach is validated and tuned on a set of identified tasks
through extensive experimental flights aimed at collecting of
exploitable data from the end-users.

To provide state estimate in GNSS-denied environments,
an application-tailored localization system is presented, which
was identified as the most important and challenging task in
this application. This system provides local 3-D position and
attitude without access to GNSS, and with the use of laser-
inertial sensory setup copes with bad lighting conditions. That
makes it feasible for deployment in indoor areas high above
the ground, which are characteristic for historical monuments.
The presented analysis of the localization system proves it to
be a reliable and robust source of information with sufficient
precision, which enabled its deployment into the feedback
loop of the position control system.
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Another core publication [6c] of this thesis is currently under the review process in
the IEEE Robotics and Automation Letters (first decision Revise and Resubmit received on
January 29, 2024). The work [6c] tackles the problem of uninformed point cloud sampling
(reduction) by defining and quantifying point redundancy in a 3D point cloud. Sampling point
clouds is a necessary task that provides computational tractability in real-time estimation
pipelines since the typical 3D LiDARs produce measurements (point clouds) with an abundant
amount of data which have to be reduced. Such reduction has two main objectives — preserve
the information extractable from the points and be computationally fast.

Our method [6c] brings novelty in defining redundancy in a point cloud and in the fast
quantification and optimal minimization of such redundancy. This method is rooted in the de-
rived theory, which shows that hyperplane surfaces generate redundant residuals in the trans-
lational space of the optimization. The theoretical and practical contributions of this method
balance the translational input space of an estimation pipeline while preserving the infor-
mation exploitable in the estimation task. Analyzing this method on data from UAVs, au-
tonomous cars, and handheld devices has shown that in contrast to the state of the art, [6c]
adapts seamlessly to divergent environments and outperforms the baseline methods in all rel-
evant aspects. It is also parametrizable by a single parameter, which relates to the estimation
pipeline (e.g., ICP, LOAM) and is invariant on the environment, sensor, and robot. It also
samples the least amount of points, yet still yields superior performance in well-conditioned
settings, shows the highest drift reduction under weak degeneracy (see Figure 3.1), and speeds
up the estimation pipeline the most. Our contributions also show that the sampling can be
successfully applied in feature space (e.g., plane and line features [42]), complementing the ver-
ified and field-tested methods with novel research. This fundamental advance in point cloud
sampling offers a quick and plug-in improvement to all existing real-time estimation pipelines
employing rotating LiDARs on-board any robot, including UAVs and self-driving cars. Since
the method improves the speed and accuracy of real-time pipelines, it is of particular impor-
tance to our premise and the field of resource-constrained robotics. The method is available
open-source at github.com/ctu-mrs/RMS together with a description video.

Figure 3.1: Performance of LOAM [42] in an environment illustrated in Figure 2.2 when pre-
ceded by three different point cloud sampling methods: voxelization (left), normal-space sam-
pling [89] (middle), and proposed [6c] (right). While the proposed method reduces the esti-
mation drift to a minimum, the estimation pipeline is also 122 % faster than with voxelization
and 96 % faster than with normal-space sampling [89].

https://github.com/ctu-mrs/RMS
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RMS: Redundancy-Minimizing Point Cloud Sampling
for Real-Time Pose Estimation

Pavel Petracek∗, Kostas Alexis•, and Martin Saska∗

Abstract—The typical point cloud sampling methods used
in state estimation for mobile robots preserve a high level of
point redundancy. This redundancy unnecessarily slows down
the estimation pipeline and may cause drift under real-time con-
straints. Such undue latency becomes a bottleneck for resource-
constrained robots (especially UAVs), requiring minimal delay for
agile and accurate operation. We propose a novel, deterministic,
uninformed, and single-parameter point cloud sampling method
named RMS that minimizes redundancy within a 3D point cloud.
In contrast to the state of the art, RMS balances the translation-
space observability by leveraging the fact that linear and planar
surfaces inherently exhibit high redundancy propagated into
iterative estimation pipelines. We define the concept of gradient
flow, quantifying the local surface underlying a point. We also
show that maximizing the entropy of the gradient flow minimizes
point redundancy for robot ego-motion estimation. We integrate
RMS into the point-based KISS-ICP and feature-based LOAM
odometry pipelines and evaluate experimentally on KITTI, Hilti-
Oxford, and custom datasets from multirotor UAVs. The ex-
periments demonstrate that RMS outperforms state-of-the-art
methods in speed, compression, and accuracy in well-conditioned
as well as in geometrically-degenerated settings.

Index Terms—Localization, Range Sensing, Aerial Systems:
Perception and Autonomy
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The paper is supported by code and multimedia materials
available at github.com/ctu-mrs/RMS.

I. INTRODUCTION

For the accurate and real-time ego-motion estimation of a
resource-constrained robot, the amount of data provided in a
3D LiDAR point cloud is plentiful. To achieve convergence
under real-time constraints (i.e., number of iterations, comp.
time, convergence rate), the point clouds must be reduced.
Apart from cardinality reduction, the objectives of such point
cloud sampling are twofold — preserve the quality of the
points and be computationally fast. While the latter is subject
to algorithm efficiency and available computational resources,
the former must preserve the overall information available
in the point cloud. In the task of point cloud matching, the
contribution (i.e., information) of a point has been shown
to be quantifiable via its point-map correspondence and the
shape of the loss function [1]–[4]. However, information-aware
sampling of an input point cloud without the knowledge of
these point-map correspondences (uninformed sampling) is
non-causal and remains an ongoing challenge.

The work was supported by [to be added upon acceptance].
Authors are with the Department of Cybernetics, Faculty of Electrical

Engineering, Czech Technical University (CTU) in Prague, Czech Republic
(∗) and the Autonomous Robots Lab, Norwegian University of Science and
Technology (NTNU), O. S. Bragstads Plass 2D, 7034, Trondheim, Norway
(•). Corresponding author: pavel.petracek@fel.cvut.cz.
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Fig. 1: A fast and noise-filtering 3D point cloud sampling can speed up real-
time estimation pipelines. (a) An example of a single-frame sampling at the
crossroad highlighted in (b) by each of the given methods (input point cloud
in black). (b–c) Although sampling in the input space is uninformed about
point-map correspondences, such sampling can improve performance if the
sampling is fast and preserves the quality of the points (e.g., removes non-
informative points). (b) Trajectory estimated by KISS-ICP [7] odometry on
KITTI seq. #00 when preceded by one of the sampling methods (ground truth
in black). Similarly, (c) shows trajectory estimated on-board a UAV using
LOAM [8] odometry in a vertically self-symmetrical church in Stará Voda [6].
In LOAM, the plane and line features are sampled instead of the points.

The typical uninformed point cloud sampling methods in-
clude feature extraction [8], [9], point-density normaliza-
tion [7], [10], normal-space sampling [11], [12], and learning-
based inference [13]–[17]. With the individual advantages and
disadvantages of these widely used methodologies, the overall
challenges remain in their effectiveness, latency minimization,
and environment adaptability. The experimental part of this pa-
per shows that finding optimal parameters of such methods is
often a balance between speed and accuracy. Our analyses also
show that the optimal parameters are rarely adaptable to dif-
ferent LiDAR sensors, estimation pipelines, and environment
types; and need to be exhaustively tuned for every instance.

Lastly, fast and noise-removing uniformed sampling has
been shown to improve the performance of real-time pipelines
in well-conditioned settings [7], [8]. However, it has also been
shown that uninformed methods may improve performance in
environments with a low amount of salient geometrical struc-
tures if these salient structures are part of the sampled data.
We denote these settings, where the point cloud contains only
a handful of exploitable structures, weakly degenerate. These
settings most notably emerge in geometrically symmetrical en-
vironments, such as subterranean tunnels [18] and caves [19],
and vertically-symmetrical historical monuments [6].
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II. RELATED WORK

A ubiquitous point cloud sampling method is uniform sam-
pling (voxelization), which discretizes space into fixed-sized
cubes, each containing N (typically 1) points at maximum.
Typical voxel-filter implementations employ an octree struc-
ture [20] or use a simple numerical discretization, such as that
implemented in PCL [10]. The feature extraction methods con-
sist of learning-based solutions (such as PointNet++ [9]) and
hand-crafted feature (most commonly plane and line features
defined in LOAM [8]) extractors. Although these methods
perform reasonably well in geometrically rich settings when
tuned properly, they are sensitive to parametrization. More-
over, learning-based methods lack sampling guarantees and
require each environment to be part of the training data.

A deterministic sampling method [11] selects points such
that their normals uniformly fill the normal-vector space. The
covariance-based sampling (CovS) [12] iteratively selects the
points, which maximize the expected normal-based contribu-
tion to the DoF least constrained in the eigenspace of the
sampled set. Both methods [11], [12] have shown that point
normals can be a helpful mechanism in guiding the sampling
under weak geometrical degeneracy. However, obtaining the
point normals cheaply, correctly, and reliably is challenging,
especially given the projection nature of modern 3D LiDARs
that generate data with uneven density and surface occlusions.
PFilter [21] and ROI-cloud [22] are designed for use in a robot
ego-motion estimation by employing previous LiDAR scans.
PFilter [21] assigns each point a persistency-index, quantifying
how persistent the point is over a short history of measure-
ments. Static points, favorable in correspondence matching,
tend to score higher in persistence. The ROI-cloud [22] divides
space into cubes weighted by the amount of inlying geometri-
cal features. [22] then propagates virtual particles representing
past measurements and fuses them with the weighted cubes.
Points are then sampled in areas where the weighted cubes
align with the particles’ distribution.

Among data-based sampling methods lies SampleNet [13],
which learns task-specific sampling for object classification
and geometry reconstruction. The method in [14] learns fea-
tures and selects the points with the greatest contribution to
the global max-pooling. DGCNN [15], FoldingNET [16], and
KCNET [17] convert the point cloud into a graph and resample
based on graph-based max-pooling, which takes the maximum
features over the neighborhood of each vertex using a pre-
built k-NN graph. The disadvantage of these methods is the
absence of deterministic guarantees that the sampling will be
invariant to the type of environment, and that it will maximize
point relevancy in estimation.

Among the relevant redundancy-minimizing methods
is [23]. Therein, the authors show that fewer correspondences
are better in global registration, given that the correspondences
are accurate. A map-compressing method [24] then applies
concepts of feature similarity to select only one of the nearby
features, marking the rest redundant and removing them. How-
ever, being formulated for expensive global registration and
map compression, [23], [24] are inapplicable in front end of
a real-time ego-motion estimation of a robot.

It has also been proposed that sampling is to be performed at
the optimization level once the point-to-map correspondences
are found. The greedy-based method [2] selects the optimiza-
tion residuals such that the log-determinant of the approxi-
mate Hessian of the optimization problem is maximized. KFS-
LIO [3] does so similarly, but maximizes the inverse trace of
the Hessian. X-ICP [4] filters out residuals with non-parallel
plane normals per each DoF, similarly to the normal-space
equalization proposed in [11]. Simplified version Xs-ICP [4]
does similarly to X-ICP but reuses the residuals computed
in the first iteration as a prior in subsequent iterations. The
advantage of sampling at the optimization level (informed) is
the possibility to relate to the information theory, allowing to
formulate awareness to degeneracy in the optimization. In par-
ticular, [2]–[4] utilize the eigenspace of the information matrix
to quantify the degeneracy in the optimization, as introduced
in [1]. However, residual-space sampling is sensitive to noise
in correspondences and variability in point density and comes
at a cost of re-sampling in every iteration of an estimation
pipeline (see Fig. 2). Uninformed input-space sampling is
computed only once per point cloud, but cannot directly relate
to the degeneracy without the correspondence pairings.

The contributions of this paper include a novel out-of-the-
loop 3D point cloud sampling named Redundancy-Minimizing
Sampling (RMS). The method minimizes point redundancy
within a point cloud by maximizing the entropy of the gradient
flow in the sampled set. It builds upon the fact that hyperplane
surfaces (i.e., linear and planar surfaces) contain a high level of
redundancy propagated into the iterative estimation pipeline.
Instead of classifying points into surface types, we propose a
gradient flow heuristic (GFH) quantifying the potential of a
point to lie on a hyperplane surface based on its local point
distribution. The method is fast, uninformed, and deterministic
and does not need point-normals to be known, is independent
on the environment, is effectively parametrizable by a sin-
gle parameter only, and is integrable into most state-of-the-
art LiDAR-based odometries and SLAMs, both dense (using
entire point clouds) and feature-based.

III. PROBLEM DEFINITION

The underlying problem of a six DoF robot ego-motion
estimation from LiDAR data is scan matching. Scan match-
ing can be formulated as finding the parameters θ ∗ ∈ SE(3),
minimizing the squared sum of the residual functions r ∈ R3

over two point sets P = {p ∈ R3} and Q= {q ∈ R3}
argmin
θ∈SE(3)

gθ (P ,Q) = argmin
θ∈SE(3)

∑
(p,q)∈CP

Q

ρ
(
||r(θ ,p,q)||22

)
, (1)

where CP
Q represents the set of correspondence pairs from P

to Q and ρ is a robust kernel with outlier rejection properties.
Formulated as a pose estimation task, θ = {t,R} consists of a
translation t∈R3 and a rotation R∈ SO(3) of the pose change
from P to Q. Note that, P and Q can be entire LiDAR scans
in dense or extracted features in feature-based formulations,
and that the most prevalent r functions in common iterative
scan matchers are the point-to-point, point-to-plane, and point-
to-line metrics, which are for a pair (p,q) ∈ CP

Q given as

r• = θp−q, r� = (n⊺r•+d)n, r| = r•− ((r•)⊺ v)v, (2)
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Residual computation
& linearization

CP̄Q = {pi ,qi}
Iterative

optimization

CP̄Q = {pi ,qi ,ri ,Ji}
b)

P

Q
θ∗

θ0 θk Iterative estimation pipeline of reduced complexity

Fig. 2: Pipeline of an iterative pose estimation pipeline extended with (a) in-
the-loop residual sampling and (b) a single-shot input data sampling. (a) The
formulation (used in [2]–[4]) utilizes the full point cloud P and introduces a
significant overhead in each iteration. (b) The proposed architecture includes
a single-shot out-of-the-loop sampling, which lowers the overall complexity
by reducing the input size.

where (n, d) is the parametrization of a plane that q lies on
(n is a unit surface normal), v is a unit direction of a line that
q lies on, and θp = Rp+ t.

In the related correspondence selection methods [2]–[4],
the selection is formulated as finding a minimum-information
correspondence subset that improves the performance of an
iterative matching process in degenerate scenarios. Commonly,
these works formulate the problem as a minimization task

minimize
θ∈SE(3)

∑
(p,q)∈C̄P

Q

ρ
(
||r(θ ,p,q)||22

)
, (3)

subject to C̄P
Q ⊆ CP

Q, C̄P
Q 6= /0, (4)

where C̄P
Q is a fixed-cardinality subset of correspondences

selected from CP
Q with respect to the log determinant [2] or

inverse trace [3] of the information matrix, and as a sum of
constraints per optimization direction in the objective func-
tion [4]. Finding point-map correspondences CP

Q and then
identifying the optimal subset C̄P

Q is expensive, especially
when repeatedly computed within iterative algorithms.

Proposed formulation decreases the problem dimensionality
by selecting points in the input scan P before the iterative
process of correspondence search, linearization, residual sam-
pling, and optimization. We formulate the pose estimation as

argmin
θ∈SE(3),
P̄⊆P

gθ (P̄ ,Q) = argmin
θ∈SE(3),
P̄⊆P

∑
(p,q)∈CP̄

Q

ρ
(
||rθ (p,q)||22

)
, (5)

where CP̄
Q is a set of correspondence pairs from P̄ to Q and

P̄ = argmin
Ω∈{Θ |Θ⊆P ,Θ6= /0}

|Ω|, (6)

subject to argmin
θ∈SE(3)

gθ (P ,Q) = argmin
θ∈SE(3),P̄⊆P

gθ (P̄ ,Q). (7)

In other words, we formulate the problem as finding a
minimum-cardinality subset P̄ ⊆ P over which the minimiza-
tion problem converges to the same optimum as in the original
formulation. Differences in iterative pipelines using formula-
tions in Eq. (3) and Eq. (5) are shown in Fig. 2.

IV. INFORMATION REDUNDANCY MINIMIZATION

The problem formulated in Eq. (5)–(7) requires finding
a minimal-cardinality non-empty subset of points P̄ ⊆ P
over which the estimation converges to the optimum without
prior knowledge about the correspondences among point sets
P and Q. This makes the formulation NP-hard and non-causal
as the information about a point contribution to the optimiza-
tion is unknown without its target correspondence. When a

correspondence (pi,qi) is known, the related works [2]–[4]
define its contribution in relation to the eigenspace of the
information matrix iJ⊺θ

iJθ , where

iJθ =

[
∂rθ (pi, qi)

∂ t
,

∂rθ (pi, qi)

∂R

]
(8)

is the Jacobian of the residual function rθ (e.g., r�θ from
Eq. (2) in [2]), or with relation to the approximate Hessian
of the opt. problem [1] given as (PJθ )

⊺PJθ , where PJθ =

∑
|CP

Q|
i=1

iJθ . Although this makes the problem causal, finding
the optimal minimum-cardinality subset is still NP-hard; and
remains an open challenge.

To tackle this problem, we propose to approximate the so-
lution to the problem formulated in Eq. (5)–(7) by defining,
finding, and removing redundancy within a point set without
knowledge about the correspondences. When applied to a
typical iterative process of a robot’s ego-motion estimation,
the proposed solution inherently removes noise and lowers
the computational latency. When under real-time termination
criteria (e.g., number of iterations, rate of change), the lowered
cost improves the rate and accuracy of convergence.

A. Redundancy in a Point Set

Every perceived environment can be decomposed into a set
of S atomic surfaces S=

⋃
s∈〈1,S〉Ss of arbitrary complexities,

ranging from linear and planar to quadratic and other non-
linear areas. In this work, the environment is assumed to be
decomposable into linear and planar (hyperplane) surfaces. An
input point set P can then be understood as a discretization
of the observed hyperplane surfaces P =

⋃
s∈〈1,S〉Ps, where Ps

represents a set of points observed on the surface Ss.

Definition 1. A single-surface point set Ps contains informa-
tion redundancy if removing one or multiple points from the
set does not change its rate of information (average entropy)
regarding the optimization problem.

Remark 1. In the optimization task defined in Eq. (1)-(5), the
redundancy represents points that generate identical (parallel
and of the same magnitude) residuals, whose removal does not
alter the loss function, nor does it change the global optimum
of the objective function.

Without the loss of generality, the robust kernel in Eq. (1)-
(5) can be omitted for now, and a set-residual function (the
objective function) can be defined as the sum of the point
residuals

rθ (P) = ∑
(p,q)∈CP

Q

||rθ (p,q)||22 (9)

to be minimized. Given the set of atomic surfaces S and
their corresponding point sets Ps, Eq. (9) can be equivalently
defined as a sum of surface-subset residuals

rθ (S) = ∑
Ps∈S

∑
(p,q)∈CPs

Q

||rθ (p,q)||22. (10)

Definition 2. Without altering the translational optimum, the
objective function can be defined as a sum of set-residual rates

r̄θ (S) = ∑
Ps∈S

rθ (Ps) = ∑
Ps∈S

1∣∣∣CPs
Q
∣∣∣

∑
(p,q)∈CPs

Q

||rθ (p,q)||22. (11)
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Proof. The Jacobian of the obj. function defined in Eq. (9) is

PJθ =
∂
(

∑(p,q)∈CP
Q
||rθ (p,q)||22

)

∂θ

= ∑
(p,q)∈CP

Q

∂ ||rθ (p,q)||22
∂θ

= 2 ∑
(p,q)∈CP

Q

rθ (p,q) (12)

and the Jacobian of Eq. (10) is given as

SJθ =
∂
(

∑Ps∈S ∑(p,q)∈CPs
Q

||rθ (p,q)||22
)

∂θ

= ∑
Ps∈S

|Ps|
∂ || srθ (p,q)||22

∂θ
= 2 ∑

Ps∈S
|Ps| srθ (p,q), (13)

where srθ is a common residual for the redundant surface s.
As each hyperplane surface s contains |Ps| identical residuals
(see Def. 3), the simplification ∑(p,q)∈CPs

Q
||rθ (p,q)||22 = |Ps| ·

|| srθ ||22 makes the Jacobians in Eq. (12) and Eq. (13) identical,
assuming perfect point-to-surface associations. The Jacobian
of Eq. (11) is derived similarly as in Eq. (12) and (13) as

SJ̄θ =
∂
(
∑Ps∈S r̄θ (Ps)

)

∂θ
= ∑

Ps∈S

1
|Ps|

∂
(

∑(p,q)∈CPs
Q

||rθ (p,q)||22
)

∂θ

= ∑
Ps∈S

1
|Ps|

∂
(
|Ps| · || srθ ||22

)

∂θ
= 2 ∑

Ps∈S
srθ . (14)

The Hessian matrices of all three formulations are given as

PHθ = 2
|P |
∑
i=1

iJθ ,
SHθ = 2

|Ps|
∑
s=1

|Ps| sJθ ,
SH̄θ = 2

|Ps|
∑
s=1

sJθ , (15)

where sJθ is the Jacobian of srθ , as per Eq. (16)–(18) below.
The Jacobians of the residual functions (defined in Eq. (2))

are given analytically according to Eq. (8) as
iJ•θ = [I, −R[pi]×] , (16)
iJ�θ =

[
n⊺

i ni, −n⊺
i niR[pi]×

]
, (17)

iJ|θ =
[
I−viv

⊺
i , −

(
I−viv

⊺
i
)

R[pi]×
]
, (18)

given that I ∈ R3×3 and ∂
∂R (Rpi) = −R[pi]×, where [pi]× ∈

R3×3 is the skew-symmetric matrix of pi. It is clear that in
the translational space (the ∂/∂ t part of the Jacobians), the
change in residuals is, for the most common metrics, either
constant or a function of the surface parameters. Since the
translational change depends only on the surface s, selecting a
single residual rs per surface preserves the basis of the trans-
lational eigenspace of both the Jacobian and Hessian matrices.
Thus, the global optimum in the translational space of the
objective function remains unchanged. �
Remark 2. Although this reformulation does not alter the
translational optimum, it reshapes the respective part of the ob-
jective func. gθ to ḡθ without changing its monotonic intervals

∀x,y ∈ RD, gθ (x)⊙gθ (y)⇒ ḡθ (x)⊙ ḡθ (y), (19)

where ⊙ is any linear inequality operator and D is the problem
dimensionality.

Remark 3. When constrained to an ego-motion estimation
task, we can assume the rotation changes to be small. Under
this assumption, the first-order linearization of R is given as

R ≈ I+ [b]×, where b = [α,β ,γ]⊺ is vector of the three ro-
tational DoFs. Then, the rotational space in Eq. (16)–(18) re-
duces to a function of surface parameters and [pi]×, which de-
notes that sensitivity to rotations increases with point distance.
This means that two points are also redundant in the rotational
space if they belong to the same surface and have equal [pi]×.

Definition 3. Assuming zero noise, every hyperplane surface
Ss generates |Ps|−1 redundant residuals.

Proof. Given the hyperplane surfaces and their point-set obser-
vations Ps, the set-residual rate r̄θ (Ps) = r̄θ (Π) applies for all
Π ∈ {π |π ⊂Ps,π 6= /0}. Eq. (14) then shows that reducing the
cardinality of Ps from |Ps| to 1 preserves the translational opti-
mum, which implies that |Ps|−1 residuals are redundant. �

Fig. 3 shows an idealized case demonstrating redundancy
in surface-point sets, as defined in Def. 2 and 3.

Definition 4. Assuming the presence of noise, Def. 2 and
3 can be generalized to find the min-cardinality non-empty
subset P̂s ⊆Ps whose set-residual rate matches the one of its
superset

P̂s = argmin
Ω∈{Θ |Θ⊆Ps,Θ 6= /0}

|Ω| (20)

subject to r̄θ (Ω) = r̄θ (Ps) , (21)

for each set of surface points Ps. Given this formulation, each
surface contains |Ps \ P̂s| redundant residuals. Substituting
Eq. (20) into Eq. (11) yields the obj. function in the form of

rθ (S) = ∑
Ps∈S

rθ (P̂s). (22)

Remark 4. The reformulation is feasible since the Def. 2 main-
tains the convergence properties exploitable by the nonlinear
solvers. The optimum consistency further satisfies Eq. (7).

In practice, the data are usually unstructured and are sub-
jected to noise, making it expensive to segment the input
point set P into a set of surfaces, even trivially. Instead of
finding and segmenting the underlying surfaces (as defined in
Def. 3 and 4), we propose in Sec. IV-B a heuristic for the
direct quantification of the redundancy without point-surface
associations. In Sec. IV-C, we then propose a redundancy-
minimizing algorithm robust towards noise, independent of
correspondence matching, and invariant to small rotations.

B. Quantifying the Redundancy

As discussed at the beginning of Sec. IV, our objective
is to find redundancy within a point set P without knowing
the correspondences CP

Q beforehand. We tackle this by intro-
ducing a gradient flow heuristic quantifying the uniqueness
of a point by local flow of a geometric gradient. The GFH
maximizes the potential of points in bringing unique informa-
tion to the optimization once their correspondences are found.
Instead of expensive segmentation of the set P into surface
observations Ps (as formulated in Def. 3 and 4), the GFH
quantifies whether a point is locally a part of any hyperplane.
Since generating multiple residuals on a single hyperplane is a
source of the redundancy (as defined in Def. 1–4), this opens
a way to the redundancy minimization discussed in Sec. IV-C.
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Fig. 3: Simplistic case of point redundancy (Def. 2 and 3) for a robot
translating from the position tk−1 ( points) to tk ( points). (a) The point-
to-point metric generates identical residuals, which makes the residual rate
constant for any positive number of residuals used, e.g., a single residual
generates r̄(P) = ∗r•. (b) The point-to-hyperplane metrics generate identical
residuals per surface (in this example, the surfaces comprise three planes
and a single line). The minimized objective function remains constant if any
positive number of points is sampled per each surface. In this case, using the
minimum amount of samples yields the residual rate r̄(P) =

∗
r|1 +∑3

i=1
∗r�i .

This example assumes perfect correspondences, which is unrealistic under
noise and rotation. The point sampling method proposed in Sec. IV-B is
designed to be robust to cases where this assumption is not met.

a)

p j1
j2

∆p = 1
2
(
j1 + j2 −2p

)

ji

∆p = 1
6 ∑6

i=1
(
ji −p

)
= 0

b) P̂ =
{

p |∆p > 0,p ∈Pν
} c) P̂ =

{
p |∆p > ε∆ ,p ∈Pν

}

Fig. 4: Proposed gradient flow heuristic for quantifying redundancy in a point
set. (a) GFH is computed for each point in a voxelized point set Pν . (b) Points
on the perceived borders have generally non-zero ∆p, whereas (c) corner
points yield the maximum ∆p (herein thresholded by an abstract value ε∆).
Keeping the max-∆p subset (c) ensures that all directions remain constrained,
as shown by the black axes representing which translational directions the
points constraint.

The GFH emerges from Def. 2 and 3, which define that
identical (in orientation and magnitude) residuals are redun-
dant in structuring the objective function and that on a single
hyperplane, the residuals are identical inherently. To quantify
the uniqueness of points (and thus, the potential of future
residuals), the GFH finds the neighbors of each point p ∈ P
within a spherical neighborhood with radius λp (m)

Np = {j | ||j−p||2 < λp, j 6= p, j ∈ P}, (23)

and defines the gradient flow (in meters) as

∆p =
1

|Np| ∑
j∈Np

j−p. (24)

As demonstrated in Fig. 4, the GFH scores high for points
lying on the borders of a surface and low for points lying
inside the borders (inliers). Maximizing GFH thus leads to pri-
oritizing the borders of surfaces rather than the surface inliers,
which is important for two reasons. First, the borders in P have
the largest potential for correct correspondence matching with
the borders of the corresponding physical surface. Second, the
inliers can generate erroneous local minima and resist sliding
along the directions of a hyperplane when using the point-
to-point metric. As discussed in [25], the point-to-hyperplane
metrics do not suffer from this deficiency, but it is still valuable
to remove the redundancy to increase efficiency.

Every point-set matching algorithm more or less voxelizes
the input set by a constant voxel size factor ν in order to reduce
the cardinality of the input point set to Pν ⊂P . We exploit this
by setting λp = 2ν for unstructured point sets. In structured

point sets coming from a rotating 3D LiDAR (e.g., Ouster), the
neighborhood radius instead respects the projective properties
of these sensors as

λp = 2max
[

ν , ||p||2 max
(

sin
2π
C

, sin
θv

R−1

)]
, (25)

where θv is vertical and 2π is a horizontal field of view of
the sensor, which data are generated in a matrix form with R
rows and C columns.

The neighborhood search of Eq (23) is the only expensive
part of the proposed methodology. We construct a KD-tree
from the voxelized point set Pν to lower the cost. Using
Pν lowers the construction cost of the KD-tree and reduces
the number of KD-tree queries to |Pν |. With construction
complexity O (n logn) and worst-case complexity of n-query
radius search being O

(
n2 logn

)
(where n is |P| in the full and

|Pν | in the voxelized case), the overall complexity is reduced
since |Pν | < |P|. We show in Sec. V that the overhead for
computing the GFH for all the points lowers the complexity
of the ego-motion estimation and accelerates the full pipeline.

C. Removing the Redundancy

Although a redundancy might be beneficial for reducing the
effects of noise and outliers, it makes the iterative process
of correspondence finding, residual generation, linearization,
and optimization more expensive. Under the presence of ter-
mination criteria, the process may be undesirably hindered by
accurate in-time convergence.

To find a solution to the NP-hard problem formulated in
Eq. (20)-(22), we could propose to solve an optimization task

P̂ = argmin
Ω∈{Θ |Θ⊆Pν ,Θ 6= /0}

Γ∆(Ω), subject to |Ω|= NΩ, (26)

minimizing redundancy Γ∆ in the gradient flow of the subset
Ω under a constraint on fixed cardinality of the output set
NΩ ∈ (1, |Pν |〉. Although the concept of a fixed-cardinality
constraint is common within the related works [2], [3], the
notion of redundancy allows for a more rigorous formulation.
Since minimizing redundancy in data can be understood as
maximizing the data entropy, we instead define a dual task

P̂ = argmax
Ω∈{Θ |Θ⊆Pν ,Θ6= /0}

H∆(Ω), subject to H̄∆(Ω)≤ λH̄ , (27)

maximizing the entropy of information H∆ in the gradient
flow of the subset Ω under the termination criteria on the
relative information rate H̄∆ (defined in Eq. (30)), given a max-
imum relative entropy rate λH̄ (%). The termination criteria in
Eq. (27) replaces the constraint on a fixed cardinality, which
allows the selection to emergently adapt to the distribution
of the points, making this method invariant to the type of
environment. By thresholding the relative information rate via
λH̄ , a certain level of redundancy is introduced into the system,
possibly increasing robustness towards noise and outliers.

Let an entropy rate be an average entropy per point in set Ω

µ̄∆(Ω) =
1
|Ω|H∆(Ω), (28)

where the entropy of the set is given as

H∆(Ω) =− ∑
p∈Ω

p(∆p) log p(∆p), (29)
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and p represents the probability of observing the GFH value
∆p. The relative entropy rate (conditioned in Eq. (27)) is
defined as the normalized entropy rate

H̄∆(Ω) =
1

µ̄∗
∆(Ω)

µ̄∆(Ω), (30)

where
µ̄∗

∆(Ω) = max
Ψ∈{Θ |Θ⊆Ω,Θ6= /0}

µ̄∆(Ψ) (31)

represents the maximum entropy rate of all non-empty subsets
Ψ ⊆ Ω. Note that the entropy rate is an inverse function to
redundancy within the data, which allows us to formulate the
dual task in Eq. (27).

The probability function p is a function of the data Pν ,
which are a function of the environment. To maintain invari-
ance to the environment, p can not be modeled with a probabil-
ity density function. Instead, we propose to use a frequentist’s
approach to approximate the probability function p. First, the
GFH of each point in Pν is converted to its normalized norm

∆̄Pν =

{ ||∆p||2
max ||∆Pν ||2

∣∣∣∣p ∈ Pν

}
, (32)

where max ||Pν ||2 represents the maximum ||∆p||2 of any point
p ∈ Pν . Second, a histogram H∆ with K bins bounded in
interval 〈0,1〉 is created out of the normalized GFH norms
∆̄Pν , where each bin k ∈ 〈1,K〉 holds a point set kH∆. The
probability of a bin k is then approximated by pk =

| kH∆|
|Pν | .

In Alg. 1, we propose a point sampling routine following
formulation in Eq. (27). Given the fact that the uniform dis-
tribution function yields a maximum entropy, Alg. 1 maxi-
mizes uniformity in the GFH by normalizing GFH values in
histogram H∆. The routine constructs an empty histogram Ĥ∆
and iteratively moves points from H∆ to Ĥ∆. This is done by
per-row sampling from H∆ via cyclic iterative selection, going
from greater to lower bins and moving a single point in each
of the bins k (if there is any) to the corresponding bin k in Ĥ∆.
The primary and secondary keys of sampling from a bin k are

pk = argmax
p∈kH∆

∆p, pk = argmax
p∈kH∆

||p||2. (33)

RMS does not balance rotation-space observability but exploits
the fact that the rotational rate of residuals is a function of
||p||2, as defined in Rem. 3. This is done via the secondary key
in Eq. (33), which values points by their potential for being
part of a large-magnitude residual in the later correspondence-
matching part of the estimation. Note that when the assump-
tion of small rotations in Rem. 3 is not met, the invariance to
rotations no more applies, leading to suboptimal sampling.

The iterative sampling process is terminated once the ter-
mination criteria in Eq. (27) is satisfied and i ≥ K. Since the
entropy reaches its maximum at K steps, the maximum entropy
rate µ̄∗

∆ is guaranteed to be found at K steps at maximum. The
i ≥ K condition thus allows redefining Eq. (31) as

µ̄∗
∆(Pν ) = max

i={1,...,K}

(
µ̄∆

(
iP̂
))

, (34)

where
iP̂ is the sampled point-set at iteration i. After terminat-

ing the routine at iteration i ≥ K, the sampled points P̂ =
iP̂

equal to all the points sampled up to iteration i.

This entropy-maximizing approach normalizes the spectrum
of ∆, and thus introduces a certain level of redundancy defined
in Sec. IV-A (by including points with low ∆). A certain
level of redundancy helps in maintaining the original spatial
distribution of the points (similar to voxelization), which is
beneficial in reducing the effects of noise and outliers. It has
been verified experimentally that the entropy maximization of
GFH is more resilient than maximizing the cumulative sum
of GFH, which tends to under-constrain the problem and is
sensitive to noise and outliers.

Algorithm 1 Information-maximizing point selection
1: Input:
2: P = {p} , p ∈ R3 ⊲ input point set
3: ν ∈ R+ ⊲ voxel size in meters
4: K ∈ Z+ ⊲ number of histogram bins
5: λH̄ ∈ 〈0,1〉 ⊲ entropy-rate termination criteria (Eq. (27))
6: C,R ∈ Z+ ⊲ number of columns and rows (if P in matrix form)
7: θv ∈ R+ ⊲ vertical field of view of the sensor (if P in matrix form)
8: Output:
9: P̂ ⊆P ⊲ point subset maximizing GFH entropy, Eq. (27)

10: Begin:
11: Pν = voxelize(P ,ν)
12: Kν = KDTree(Pν ) ⊲ construct KD-tree for efficient NN search
13: ∆Pν = GFH(Pν ,Kν ,C,R,θν ) ⊲ Eq. (23)-(25)
14: ∆̄Pν = normalizeGFH(∆Pν ) ⊲ Eq. (32)
15: ◮ Construct a histogram of GFH values
16: H∆ = histogram

(
∆̄Pν ,K

)
⊲ discretize ∆̄Pν into K fixed-sized bins

17: Ĥ∆ = histogram( /0,K) ⊲ empty histogram of K fixed-sized bins
18: ◮ Compute maximum entropy rate µ̄∗

∆
19: µ̄∗

∆ = 0
20: for each k ∈ 〈1,K〉 do ⊲ iterate each bin exactly once
21: kH∆ = sort

(kH∆
)

⊲ sort bin k in desc. order by Eq. (33)
22: kĤ∆ =

kĤ∆ ∪
{kH∆.pop()

}
⊲ move highest-value point between bins k

23: µ̄∗
∆ = max

{
µ̄∗

∆, µ̄∆
(
Ĥ∆

)}
⊲ Eq. (34)

24: ◮ Entropy-maximizing selection
25: k = K ⊲ current bin-lookup index
26: while |H∆|> 0 and µ̄∆

(
Ĥ∆

)
/µ̄∗

∆ > λH̄ do ⊲ terminating via Eq. (27) and (30)
27: kĤ∆ =

kĤ∆ ∪
{kH∆.pop()

}
⊲ move first point in bin k

28: k = k−1 if k > 1 else K ⊲ cyclic right-left iteration
29: P̂ =

⋃
k∈〈1,K〉

kĤ∆ ⊲ extract all selected points

V. EXPERIMENTAL ANALYSES

Let us compare the proposed approach with three state-of-
the-art point cloud sampling methods:

• V•: uniform sampling1 with voxel size ν = • cm,
• NS•: normal-space voxelization [11] with angular reso-

lution π = • ◦ in both azimuth and elevation, and
• CovS•: covariance-based sampling2 [12] with sampled-

to-all point ratio of ρ = • %.
All the state-of-the-art methods and the proposed approach

were integrated into two state-of-the-art odometry (no loop
closures) pipelines: KISS-ICP [7] and LOAM [8]. KISS-ICP
is a state-of-the-art implementation of the ICP algorithm, a
typical case of a dense method utilizing the point-to-point
metric. LOAM is a feature-based odometry method extracting
plane and line features. LOAM represents a basis for the
majority of the feature-based state-of-the-art methods. Since
the proposed sampling method is algorithm-independent, it has
the potential for positively improving all the other LiDAR-
based odometry and SLAM methods building upon ICP and
LOAM algorithms. To remain close to the core principles and
to reduce the effects of any additional concepts, these two

1Open-source implementation taken from KISS-ICP [7].
2Open-source implementation taken from PointMatcher [26].
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representative odometry pipelines have been chosen for their
minimalism on purpose.

To ensure a fair comparison, the best parametrizations bal-
ancing convergence and real-time processing were fine-tuned
manually for all methods, both odometry pipelines, and all
datasets. These parametrizations are given in Tab. IV. All the
experiments were performed on AMD Ryzen 7 PRO 4750U
(comparable performance verified on Intel® Core i7-10710U).

A. Datasets

The datasets used in evaluation are summarized in Tab. I.
Their selection includes custom data from UAVs (D1-D3) cov-
ering full six-DoF movements in different degraded contexts,
and KITTI (D4) and Hilti-Oxford (D5) as two of the most
prevalent datasets used in evaluating LiDAR-based methods
in the related literature. Only 3D LiDAR data are used.

TABLE I: Table of used datasets.

ID Dataset Work Platform Real world Point count

D1 X-ICP [4] Drone ✗ 64×1024 @ 10 Hz
D2 Dronument [6]3 Drone X 16×1024 @ 10 Hz
D3 DARPA SubT [27]3 Drone X 64×512 @ 10 Hz
D4 KITTI [5] Car X 16×1024 @ 10 Hz
D5 Hilti-Oxford [28] Handheld X 32×2000 @ 10 Hz

B. Parametrization of RMS

It has been validated empirically that out of the three sensor-
agnostic parameters in Alg. 1, K and ν have limited effect
on the performance. Thus, K = 10 remains fixed in all the
presented experiments and ν is selected such that uniform
sampling V• is the most accurate and computes in real time
in the given dataset. Tab. II presents an ablation study on the
maximum relative entropy rate λH̄ . The table demonstrates that
the algorithm is stable once λH̄ lies in a reasonable interval,
here 0.2-0.7 %. Based on Tab. II, we use λH̄ = 0.4% in all
our KISS-ICP [7] experiments as a balance between runtime,
accuracy, and stability. Since the stable interval is pipeline-
dependent, similar grid-search has been done to find optimal
λH̄ for the feature-based LOAM [8] estimation pipeline used in
Sec. V-D. In LOAM, one instance of Alg. 1 runs independently
for each of the feature types, with λH̄ being fixed to λH̄ = 0.8%
for plane and λH̄ = 15% for line features.

TABLE II: Influence of the maximum relative entropy rate λH̄ on performance
of the proposed method in experiment presented in Fig. 5.

λH̄(%) 0.1 0.2 0.3 0.4 0.5 0.7 1.0

RMSE (m) 0.31 0.22 0.25 0.24 0.27 0.29 0.43
avg. time (ms) 42 37 32 29 27 24 23
compr. rate (%) 95.3 97.0 97.8 98.2 98.5 98.9 99.2

C. Convergence Analysis

Fig. 5 demonstrates an experiment designed to compare
performance of the four sampling techniques (all fine-tuned
to the environment). In the experiment, a UAV performs a
loop inside a challenging simulation world (D1) designed to
contain various geometrical degeneracies (translational along
narrow corridors and rotational within a circular room). The
experiment shows that the proposed method outperforms the
baseline methods in terms of speed, accuracy, and robustness
(even to geometrical degeneracies), all while sampling the

3Dataset available at github.com/ctu-mrs/slam_datasets.
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(a) UAV trajectory in a virtual world (inspired
by [4]) containing geom. degeneracies (A-G).
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(c) APE, compression rate, total runtime, and eigenvalue of the opt. problem (corre-
sponding to body-frame z-axis rotation) per point sampled at the input (higher is better).

Fig. 5: Output of KISS-ICP [7] 6-DoF odometry when preceded by different
point cloud sampling methods. Parametrization: best performing for each
method, robot: multirotor UAV, sensor range: 30 m, sensor noise: none. (a)
Shows areas of translational (A, C, F) and body-frame z-axis rotational (B,
D, E, G) degeneracy. At D and G, the degeneracy arises (see low values of
the Rz eigenvalue) from large UAV tilt, which orients the LiDAR such that
its data are degenerate around the z-axis. At G, a "loop closing" emerges
naturally (see APE). (b) Due to the high compression rate and by balancing
the translational space, RMS samples points such that they yield the fastest
optimization convergence. (c) RMS yields the lowest drift, removes the largest
amount of points, produces stable and lowest runtime, and preserves the
highest information rate for optimization (only Rz shown).
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Fig. 6: Rel. entropy, rel. entropy rate, and rel. redundancy of GFH at time
60 s of experiment in Fig. 5. V40+RMS sampled about 2% of points out of
65k total. Dashed lines represent the non-sampled points.

least amount of points. The data show superior timing and
compression consistency of the proposed method, with both
reaching almost constant values with a limited number of out-
liers. This is a particularly important attribute for deployment
of small and agile resource-constrained robots with real-time
constraints, such as UAVs. Fig. 5c shows that information rate
(measured as eigenvalue per point sampled on input) extracted
in the optimization from the problem Hessian is highest in
RMS (only z-axis rotational eigenvalue Rz is shown). Addi-
tionally, Fig. 6 showcases a single-frame sampling of Alg. 1.

D. Quantitative analysis

Tab. III presents a quantitative analysis comparing the ef-
fects of the sampling methods on the two odometry pipelines.
Together with Tab. IV, the two tables show that the fixed
parametrization adapts well to various different sensors, envi-
ronments, and conditions. This is a significant practical advan-
tage, which improves the method’s applicability by reducing
the need for tuning the proposed method to every domain. The
data show superior performance of the proposed method in

• improving performance in well-conditioned settings,
• reducing odometry drift in degenerated conditions,
• sampling the least amount of points in general, and
• computing the fastest while being the most accurate.

35



© IEEE ROBOTICS AND AUTOMATION SOCIETY (RAS), 2024. PREPRINT. SUBMITTED TO IEEE RA-L. 8

TABLE III: Quantitative performance of KISS-ICP and LOAM pose estima-
tion pipelines when preceded by four different 3D LiDAR point cloud sam-
pling techniques: uniform sampling V•, normal-space sampling V•+NS• [11],
covariance sampling V•+CovS• [12], and redundancy-minimizing sampling
V•+RMS (proposed). Metrics: APE |δ | (m), RPE ∆δ (m), total runtime
τ (ms), and compression rate χ (%). The best results are in bold. Trajectories
of experiments D2 and D4: KITTI #00 are shown in Fig. 1.
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#0

0 |δ |rmse

failed in estimating
vertical motion

0.85 0.31 0.19 0.12
|δ |mean 0.39 0.18 0.15 0.09
|δ |max 2.56 0.91 0.45 0.39
∆δrmse 0.06 0.02 0.01 0.02
∆δmean 0.01 0.01 0.01 0.01
∆δmax 1.57 0.39 0.12 0.18
τmean 69.0 61.4 37.9 31.0
τmax 109.6 138.8 74.3 69.7
χmean 74.8 82.0 90.9 95.7

D
3:

ur
ba

n
co

rr
id

or

|δ |rmse 0.59 0.63 0.67 0.42 1.20 2.01 0.75 1.20
|δ |mean 0.50 0.52 0.63 0.38 1.14 1.78 0.69 1.16
|δ |max 1.24 1.34 1.11 0.86 1.84 4.00 1.41 1.78
∆δrmse 0.04 0.04 0.04 0.04 0.03 0.04 0.03 0.03
∆δmean 0.03 0.03 0.04 0.03 0.02 0.03 0.03 0.02
∆δmax 0.23 0.29 0.24 0.23 0.12 0.18 0.17 0.12
τmean 13.5 18.1 24.1 16.7 13.0 15.1 11.0 13.0
τmax 61.3 56.8 77.9 55.7 36.3 32.7 24.9 28.6
χmean 95.8 96.2 93.4 95.9 94.8 99.0 99.1 98.5

D
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K
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#0
0

|δ |rmse 248.60 14.31 56.01 8.35 20.72 25.11 12.28 12.76
|δ |mean 205.97 11.27 45.29 7.48 16.34 21.05 9.50 9.78
|δ |max 458.96 32.59 116.34 16.20 49.87 51.82 29.96 29.45
∆δrmse 1.41 1.27 1.27 1.27 1.27 1.27 1.27 1.27
∆δmean 1.26 1.17 1.17 1.17 1.17 1.17 1.17 1.17
∆δmax 14.86 14.71 14.64 14.67 14.79 14.72 14.70 14.69
τmean 43.3 57.1 34.2 35.7 83.0 76.3 74.9 66.9
τmax 769.1 270.8 88.4 87.7 180.8 196.9 168.1 159.6
χmean 96.6 97.2 99.2 99.3 89.4 99.2 99.1 99.4

D
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9

|δ |rmse 481.02 17.48 25.66 15.76 16.08 21.15 12.64 10.77
|δ |mean 418.98 13.89 19.31 13.12 11.94 15.72 9.18 8.07
|δ |max 772.04 46.24 68.67 32.61 38.86 50.01 31.49 25.59
∆δrmse 2.19 1.65 1.75 1.58 1.58 1.58 1.58 1.58
∆δmean 1.71 1.57 1.62 1.52 1.52 1.52 1.52 1.52
∆δmax 25.22 4.28 7.72 3.58 3.60 3.60 3.62 3.65
τmean 71.3 67.0 59.8 42.8 70.2 59.1 59.33 50.8
τmax 1748.3 811.3 700.5 118.0 143.4 119.2 127.3 92.7
χmean 95.9 96.4 97.1 98.8 87.1 99.0 98.5 99.4
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0.34 0.63 0.29 0.23
|δ |mean 0.30 0.59 0.26 0.21
|δ |max 0.74 1.08 0.67 0.58
∆δrmse 0.14 0.14 0.14 0.14
∆δmean 0.10 0.10 0.10 0.10
∆δmax 0.56 0.61 0.54 0.51
τmean 67.9 55.7 54.1 42.8
τmax 138.5 133.9 120.0 77.1
χmean 90.5 95.4 95.3 97.7

D
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#1
4 |δ |rmse

failed in estimating
quick rotational motions

2.22 2.85 0.84 0.76
|δ |mean 1.86 2.35 0.62 0.62
|δ |max 3.69 4.82 2.06 1.64
∆δrmse 0.16 0.16 0.16 0.16
∆δmean 0.09 0.09 0.09 0.09
∆δmax 1.91 1.91 1.91 1.91
τmean 20.7 18.2 17.3 17.2
τmax 45.1 47.6 40.4 30.3
χmean 97.9 98.7 98.7 98.8

The reported timings are for the entire pipeline, including point
or feature sampling, and the optimization. The accuracy gains
are associated with lower comp. time enabling use of all data
in real-time as well as with high noise and outlier removal.
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Our interdisciplinary overreach into the field of restoration and cultural preservation
began initially in [1c, 9a, 131], followed by [10a, 132], and culminated into a core publication
summarizing the research in documenting large interiors by autonomous UAV teams [2c]. The
work, developed in close cooperation with the Czech National Heritage Institute, was pub-
lished in the IEEE Robotics and Automation Magazine and presented physically at IEEE
IROS 2023. Although targeting a general public audience, this work proposed a principal three-
phased robotic methodology to the task of documenting large historical monuments with co-
operating autonomous aerial robots, as visualized in Figure 3.2. Nevertheless, the developed
methodology is not limited to historical monuments and is transferable into general interior
environments, including industrial plants. Among the contributions is the LiDAR-based local-
ization and mapping pipeline suited for UAVs, which has been in development since [10a]. The
methodology employs an on-board 3D LiDAR as the main source of information used in esti-
mating the UAV state with a LI odometry. It also utilizes a sparse ground-based map of the en-
vironment, which is easily available or obtainable with a terrestrial LiDAR scanner. However,
in contrast to [1c], the map is not used in localization but is used for three different other rea-
sons. First, the map is used in the proposed coarse-to-fine initial alignment of the UAVs within
the interior in order to obtain a global reference frame used in accurate UAV synchronization
and the targeting of objects of documentation interest. This allows the UAVs to be deployed
within a shared environment and effectively coordinate within the scope of the documentation
mission. Second, it serves as a baseline, allowing one to specify, plan, visualize, and simulate
the optimal documentation mission. Last and most importantly, the map is used as a safety
and robustness measure, allowing the quantification of drift of onboard pose estimation and
thus detecting the presence and effects of emerging geometrical degeneracy. Since the targeted
missions inside historical monuments require a critical level of safety, the deployments in this
task are halted when geometrical degeneracy negatively influences a robot’s pose estimation.

In addition, the outcomes of [2c] extend beyond the field of robotics by contributing to
the fields of historical conservation and cultural preservation. The outcomes of [2c] are listed
in detail in Section 5.3.

Figure 3.2: Virtual (left) and real-world (right) documentation of a historical monument by a
synchronized team of autonomous UAVs, with one UAV taking high-resolution photographs
whilst the rest highlight details in the documented scene by serving as dynamic lighting.
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Cooperative Aerial Autonomy for Fast Digitalization of Difficult-to-Access Interiors of Historical Monuments
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Abstract—Digital documentation of large interiors of historical
buildings is an exhausting task since most of the areas of interest
are beyond typical human reach. We advocate the use of au-
tonomous teams of multi-rotor Unmanned Aerial Vehicles (UAVs)
to speed up the documentation process by several orders of mag-
nitude while allowing for a repeatable, accurate, and condition-
independent solution capable of precise collision-free operation
at great heights. The proposed multi-robot approach allows for
performing tasks requiring dynamic scene illumination in large-
scale real-world scenarios, a process previously applicable only
in small-scale laboratory-like conditions. Extensive experimental
analyses range from single-UAV imaging to specialized lighting
techniques requiring accurate coordination of multiple UAV. The
system’s robustness is demonstrated in more than two hundred
autonomous flights in fifteen historical monuments requiring
superior safety while lacking access to external localization. This
unique experimental campaign, cooperated with restorers and
conservators, brought numerous lessons transferable to other
safety-critical robotic missions in documentation and inspection
tasks.

I. AUTONOMOUS AERIAL ROBOTICS FOR
HERITAGE DIGITALIZATION

Digital documentation of large interiors of historical build-
ings is an exhausting task since most of the areas of interest
are beyond typical human reach. We advocate the use of
fully-autonomous teams of cooperating multi-rotor Unmanned
Aerial Vehicles (UAVs) to speed up the documentation process
by several orders of magnitude while allowing for a repeatable,
accurate, and condition-independent solution capable of pre-
cise collision-free operation at great heights. In particular, we
present a universal autonomy for UAVs cooperating aerially
within a team while documenting the interiors of historical
buildings for the purposes of restoration planning and docu-
mentation works, as well as for assessing the structural state
of aging historical sites. We show that the proposed approach
of active multi-robot cooperation enables performing docu-
mentation tasks requiring dynamic scene illumination in large-
scale real-world scenarios, a process previously applicable
only manually in areas easily accessible by humans.

The presented system was developed in cooperation with
cultural heritage institutions as part of the Dronument
project [1] and was deployed fully autonomously in numerous
characteristically diverse historical monuments, as exhibited
in Fig. 1 and Table III. The included experimental evaluation
utilizes UAVs in multiple real-world documentation tasks, and

∗ Authors are with the Department of Cybernetics, Faculty of Electrical
Engineering, Czech Technical University in Prague, Czech Republic.
× Pavel Petracek and Vit Kratky are co-first authors.
Corresponding author: pavel.petracek@fel.cvut.cz

discusses the quality of the obtained results used in subsequent
restoration works, as well as suitability of particular techniques
for UAVs. The analyses demonstrate the framework’s robust-
ness in single and multi-robot deployments in more than two
hundred fully-autonomous flights in fifteen historical monu-
ments. In these experiments, the aerial robots rely solely on
onboard sensors without access to external localization such
as global navigation satellite systems (GNSSs) or motion cap-
ture systems, which significantly increases deployability of the
system. This unique, extensive, experimental campaign, which
cooperated with restorers and conservators, brought numerous
lessons learned that are transferable to other safety-critical
robotic missions in documentation and inspection tasks. The
system also serves as a large part of an official methodological
study approved by the Czech National Heritage Institute for
its high added value in heritage protection. The methodology
(available at [1]) describes the proper usage of UAVs in histor-
ical structures for the first time and so prescribes the proposed
system to be a standard in this application.

II. BACKGROUND

Often serving educational, cultural, or social purpose, the
preservation of cultural heritage as a valuable reminder of our
history is in the greater interest of society. Cultural manage-
ment and preservation of historical monuments became a rele-
vant topic in the late 19th and 20th centuries when many valu-
able historical monuments were destroyed while establishing
modern infrastructure. By introducing cultural heritage preser-
vation into legislation, the monuments gained protection from
human interference. However, being exposed to real-world
conditions continually degrades historical buildings and arti-
facts within. This has initiated the endeavor to actively prevent
the irreversible damage of cultural heritage by monitoring its
condition and performing restoration and conservation works.

Conservation work on a historical artifact comprises four
consecutive phases: the initial survey, the choice of restoration
steps and costs evaluation, the actual restoration works, and
continued monitoring of the restoration. Both the initial survey
and monitoring phase require providing information about the
artifact in digital form (usually camera imaging). Thus, these
phases are considered a data collection task for which an
aerial vehicle, capable of gathering data in a cost-effective
and fast manner, can be of great help. This is especially true
for areas of interest which are located beyond typical human
reach, a situation often arising in tall historical buildings such
as churches and cathedrals. Apart from planning restoration
works, gathered digital materials can support the reconstruc-
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(a)

(b)

(c)

(d)

(e)

Fig. 1: Illustration of deployment of the presented methodology in selected historical buildings located in the Czech Republic — (a) Church
of the Exaltation of the Holy Cross in Prostějov, (b) St. Anne and St. Jacob the Great Church in Stará Voda by Libavá, (c) Church of St.
Maurice in Olomouc, (d) Church of the Nativity of the Virgin Mary in Nový Malı́n, and (e) Church of St. Bartholomew in Zábřeh. Center
images show the interiors of the churches with highlighted objects of documentation interest. Side images show actual deployment of UAVs
in the particular settings together with example images (highlighted in blue) captured by an onboard camera.
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tion of a structure in the event of its sudden accidental destruc-
tion (e.g., the burning of the Notre-Dame Cathedral in 2019).

III. ROBOTICS AND AUTOMATION IN CULTURAL
HERITAGE PRESERVATION

Documentation and digitalization of historical objects re-
quires gathering various types of data, e.g., camera images
in visible, infrared (IR) and ultraviolet (UV) spectra, and 3D
models. The data gathering is demanding in both time and hu-
man resources, particularly in large buildings. This motivates
the endeavor to automate data gathering by introducing mo-
bile robotic solutions capable of fast autonomous documenta-
tion.The first level of mobile-robot automation can be achieved
by applying Unmanned Ground Vehicles (UGVs) as carriers
of the documentation sensors. A UGV equipped with a laser
scanner and capable of autonomous navigation in constrained
environments can sequentially visit several locations to collect
a set of scans covering the entire operational space [2]. An
advantage of this approach lies primarily in reducing necessary
human participation in the scanning process, allowing for the
collection of scans from potentially dangerous areas. Several
systems applying such an approach were already developed
and deployed for scanning historical monuments [3], [4].

Whereas the operational space of UGVs usually does not
exceed typical human reach, multi-rotor UAVs capable of 3D
navigation in confined environments can be applied for data
collection tasks in difficult-to-access areas. In exteriors, UAV
solutions abundantly utilize predefined GNSS poses for navi-
gation [5]. In contrast to exteriors, the applicability of UAVs
in interiors imposes additional challenges — lack of GNSS
localization, navigation in a confined environment, and non-
negligible aerodynamic effects. Because of that, UAV systems
deployed for indoor data gathering are mainly limited to in-
dustrial inspections, with only a few works targeting UAV-
based documentation of historical buildings. The specifics of
such an application are targeted in this work.

For industrial inspections, the literature typically exploits
the environment structure, such as known profiles of tun-
nels [6] or structured and well-lit warehouses [7]. More general
solutions were introduced in the commercial sector introducing
semi-autonomous UAV inspection systems1— DJI Mavic 3,
Elios 3, or Skydio 2+™. In interiors, DJI provides image-based
UAV stabilization, Elios allows for human-operated flight
with LiDAR and camera-based stabilization and mapping with
guarantees of environmental and mechanical protection, and
Skydio™ offers automated camera-stabilized flight for interac-
tive 3D reconstruction. Although all these solutions provide an
assistive level of autonomy in UAV stabilization, the first two
require human-in-the-loop navigation. None of the mentioned
solutions offer full interior autonomy, repeatability, modularity,
rotor nor sensory redundancy, imaging focusing on capturing
high-quality details, and cooperative multi-robot deployment.

As mentioned, aerial data gathering inside historical build-
ings is rare. A specialized platform for assisting in cultural
heritage monitoring called HeritageBot was introduced in [8].

1DJI Mavic 3: dji.com/cz/mavic-3, Elios 3: flyability.com/elios-3, Sky-
dio 2+™: skydio.com/skydio-2-plus.

However, no evidence of the deployment of this platform in
historical monuments is presented. In [9], the authors propose
an assistive system to manual control of the UAV during in-
spection tasks with the experimental deployment of the system
inside and outside historical sites.

Among introduced solutions, the most advanced UAV-based
systems with the high level of autonomy required for the
interiors of historical buildings were introduced in our re-
cent works [10]–[13]. In these publications, we introduced
a preliminary application-tailored autonomous UAV system
allowing for safe localization and navigation inside histori-
cal structures [10], the methodology and algorithms for the
realization of advanced documentation techniques found in
reflectance transformation imaging (RTI) [11] and raking light
(RAK) [12], and an autonomous single-UAV system for real-
ization of documentation missions [13]. All works provide a
fully autonomous solution and the possibility of performing
documentation techniques in difficult-to-access areas without
using mobile lift platforms or scaffolding installation. Here,
we progress beyond previous works by introducing a full 3D
simultaneous localization and mapping (SLAM) methodology
for indoor localization of robots; by advancing robustness to
localization drifts and hard-to-detect obstacles with additional
sensory redundancy; by improving path, trajectory, and mis-
sion planning; by using a UAV team to realize documentation
techniques that could not be realized with only a single robot
in principle; and by presenting the complete set of results
achieved in the Dronument project that are summarized in
numerous lessons learned during the unique experimental cam-
paign within highly safety-critical missions.

IV. DOCUMENTATION TECHNIQUES AND ASSOCIATED
CONSTRAINTS

The documentation techniques applied in the field of
restoration and cultural heritage preservation aim to capture
the current state of the object, survey a potential structural
or artistic damage, and determine the age, author and possi-
ble dimensions of the elements by identifying the materials
and techniques that have been used. For this purpose, diverse
methods combining conventional photography in the visible
spectrum, photography in invisible spectra making use of dif-
ferent reflective properties of materials, specialized lighting
techniques applied for revealing structural details, and even
invasive methods based on the collection of material samples
are applied. In robotic context, all these methods are associ-
ated with varying requirements on sensory equipment, amount
of cooperation, and external conditions (mainly illuminance).
These relations are summarized in Table I, together with the
studied documentation techniques.

The most common documentation technique providing ini-
tial information about the studied subject is standard visible
spectrum photography (VIS). This technique is applicable to
all types of studied objects, ranging from flat paintings and
frescoes to 3D structures, including statues and altars. Since
the documented areas of historical buildings are often dark,
the obtained images suffer from insufficient lighting condi-
tions. Hence, the VIS method often requires additional ex-
ternal lighting to locally increase illuminance, allowing for
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TABLE I: Recapitulative table of documentation tasks selected as realizable by aerial vehicles in interiors of historical structures. The squared
check marks

(
❑X
)

identify the realizable documentation methods which were experimentally applied in historical structures, as summarized
in section VIII. The last column marks methods for which the ambient light is either required (X), forbidden (✗), or arbitrary (unmarked).

Realizable by Required equipment and lighting conditions

Documentation technique Single robot Multiple robots Onboard camera Onboard light Ambient light

visible spectrum: photography (VIS) ❑X X X X
transmitography (VISTR) X X X
raking light (RAK) ❑X X X X
three point lighting (TPL) ❑X X X
reflectance transformation imaging (RTI) ❑X ❑X X X ✗

light-induced luminescence (VIVL) X X
UV spectrum: reflectography (UVR) ❑X X ✗

fluorescent photography (UVF) ❑X X X X
false-color reflectography (UVRFC) X X ✗

IR spectrum: reflectography (IRR) ❑X X ✗

transmitography (IRRTR) X X ✗

Sp
ec

tr
al

an
al

ys
is

fluorescent photography (IRF) ❑X X X X
false-color reflectography (IRRFC) X X ✗

X-ray: radiography X

3D reconstruction ❑X X X
photogrammetry X X X X

O
th

er
s

environmental monitoring X X

the decreased exposure times required to avoid motion blur
from instabilities of a multi-rotor vehicle.

Similar to aesthetic photography, light plays a significant
role in restoration documentation. Documentation techniques
capturing data in the visible spectrum make use of varying
lighting intensity and illumination angles to enhance the qual-
ity and amount of information that can be derived from the
gathered data. The main group of lighting techniques appli-
cable during documentation tasks aims to highlight the 3D
characteristics of captured objects, with three point lighting
(TPL) being the most routine. TPL illuminates the object with
several sources of luminance, each with different intensity and
orientation with respect to the camera’s optical axis, in order
to provide an aesthetically pleasant and realistic view of the
3D object. Another widely used lighting technique is raking
light (RAK), which focuses on revealing the surface details of
flat objects. While TPL employs several light sources to avoid
overshadowed areas, RAK applies a single light as parallel to
the scene as possible. The illumination angle in RAK exploits
the shadows to highlight the roughness of the surface.

A highly specialized documentation technique used in the
field of restoration is the reflectance transformation imaging
(RTI) — an image-based rendering method used for obtaining
a representation of an image that enables displaying the image
under an arbitrary direction of illumination. The necessary
inputs of this method include a set of images of an object taken
by a static camera, with each image being under illumination
from a different but known direction. The captured images and
the corresponding lighting vectors are then used for the com-
putation of a polynomial texture map (PTM) representation
of the image that enables an interactive illumination and view
of the object. Another specialized documentation technique
is visible spectrum transmitography (VISTR) which requires
a light source to be positioned behind an object of interest

(OoI) to transmit the light through this object. However, this
method is mainly applied for canvas paintings and thus is
rather impractical for realization by UAVs.

Multiple techniques exploit UV and IR lumination and its
effects. While the methods based on the visible light focus
on revealing structural characteristics and colors, the UV and
IR methods aim primarily to identify the materials and hid-
den layers of artworks. The use of different spectra allows
more precise dating of the paintings, as the glow of pig-
ment combinations are unique to certain periods. The first
group of methods applying UV and IR lights is based on
capturing the fluorescent light in the visible spectrum emit-
ted by an object after absorbing UV or IR radiation en-
ergy. These methods are called UV fluorescent photography
(UVF) and IR fluorescent photography (IRF) and are used
for, e.g., detecting zinc and titanium white (UVF) or cad-
mium red and Egyptian blue (IRF). The second group of
methods applying UV and IR lights captures the reflected
light in the corresponding spectra. These methods are called
UV reflectography (UVR) and IR reflectography (IRR) and
are applicable for, e.g., detecting restored areas, highlighting
repairs and re-touchings, enhancing faded paintings (UVR) or
reaching the underdrawing layer of paintings (IRR).

Except for VIS, all the above-mentioned methods require
positioning the light at a certain angle with respect to the cam-
era. Therefore, these methods are not fully realizable by a sin-
gle UAV and require a multi-robot coordination. The particular
methods can be realized in three different configurations de-
pendent on the requirements of the task. The first configuration
employs an autonomous multi-robot team consisting of a UAV
carrying a documentation sensor and a set of supporting UAVs
providing dynamic lighting of the documented scene. The
second configuration applies the UAV as a carrier of the sensor
whilst the light is provided by external sources. The third
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TABLE II: Typical exposure times of the selected documentation
techniques.

Technique Spectrum Exposure time (s)

visible spectrum photography visible ≤ 0.2
raking light visible ≤ 0.2
three point lighting visible ≤ 0.2
reflectance transformation imaging visible ≤ 0.2
UV fluorescent photography UV ≤ 2.0
UV reflectography UV 2.0
visible spectrum transmitography visible 2.0
IR reflectography IR 4.0
IR transmitography IR 20.0
light-induced luminescence visible 25.0
IR fluorescent photography IR 30.0
radiography X-ray ≥ 30.0

configuration uses the UAV for positioning the light whereas
the data are captured by a static sensor from the ground.

The largest problem in realization of the techniques relying
on a UAV carrying a camera is the exposure time required for
sharp and detailed imaging. Table II summarizes that the expo-
sure times for some of the methods reach tens of seconds. With
constraints on image sharpness, such long times and natural
nonstaticity of highly dynamical multi-rotor UAVs prevent the
realization of these techniques in the camera-carrier mode with
satisfactory results. Instead, imaging with a static camera and
aerial lighting was investigated for some of these techniques.

The non-spectral tasks applied in the field of preservation
mostly focus on the 3D reconstruction and environment mon-
itoring through static sensors measuring physical quantities
(e.g., temperature, humidity). The most common techniques
applied in 3D reconstruction use visible spectrum images (pho-
togrammetry) or scans produced by laser sensors. From the
perspective of the proposed system, the data gathering process
for 3D reconstruction does not differ from the realization of
VIS and collection of raw data from onboard sensors used for
localization and mapping. Monitoring the physical quantities
in an environment requires attaching a sensor to the UAV
frame and navigating it to the required area. If the measure-
ment process requires permanent monitoring, the sensor must
be attached at a specific position in the environment (e.g.,
adhered to a wall or placed on a mantel). This process is also
realizable by UAVs but requires fine control, state estimation,
and a mechanism for physical robot-to-environment interac-
tion, as closely tackled in [12].

V. UAV-BASED FRAMEWORK FOR DOCUMENTATION OF
CULTURAL HERITAGE INTERIORS

The overall pipeline of the UAV-based framework for in-
terior documentation in historical monuments is showcased
in Fig. 2. The framework is composed of three main phases —
the pre-deployment phase incorporating pre-flight data gather-
ing and mission planning, the actual deployment of the system
in interiors of historical buildings, and post-deployment phase,
including processing and utilization of the collected data.

A. Pre-deployment Phase

The first step preceding the entire documentation process is
obtaining a model of the environment used for safe navigation
of the UAV, as well as for the specification of OoIs that should
be scanned during documentation missions. For this purpose,
a precise terrestrial 3D scanner Leica BLK360 is employed to
obtain a set of scans that are later used for building a complete
3D representation of the target environment, both in form of a
global point cloud and a 3D model with a colored texture. The
colored 3D model serves for precise specification of the de-
sired camera viewpoints and for presenting the documentation
outputs to the public and the end users. The camera viewpoints
specifications are made by experts of restoration or historical
science who position a virtual camera within the 3D model
of the environment using a viewpoint-selection tool shown
in Fig. 3a. This tool shows a camera and its view and enables
to save the camera viewpoint pose in the global coordinate
frame. The optical properties of the camera can be parame-
terized with respect to the equipment available for real-world
documentation, thus allowing for visualizing the desired photo
to be captured from a given pose in the colored 3D model.

Given the point cloud representation of the environment
and the set of to-be-captured images represented by the re-
spective camera viewpoints in the global coordinate frame,
the documentation mission plan is generated as follows. First,
the problem of finding an optimal sequence σ∗ of camera
poses minimizing the overall traveled distance is defined and
solved as the Traveling Salesman Problem (TSP). Considering
the possible dimensionality of the problem, a solver using an
efficient Lin-Kernighan heuristics [14] is employed for the
solution of TSP to enable on-site plan generation. Constrained
by available computational time, the mutual distance between
particular pairs of poses within the solution of TSP are given
either by the Euclidean distance or by the length of the
collision-free path between the poses. Second, the consequent
poses in σ∗ are connected by the collision-free paths gener-
ated with the use of a grid-based planner [15]. This process
creates a path connecting all the poses which can be generally
unfeasible if limited flight time of a UAV is taken into account.
Hence, the final set of plans P= {P1,P2, . . . ,Pn} is obtained
by splitting σ∗ to a set of subsequences Σ = {σ1,σ2, . . . ,σn},
where σ∗ = σ1 ∪σ2 ∪ . . .∪σn, Pi ∈ P is a collision free path
connecting the initial pose with a sequence of poses in σi, and
equation t(Pi)< tmax holds, ∀i ∈ {1, . . . ,n}, for tmax being the
maximum flight time of the UAV, and t(Pi) being the time
needed for following path Pi.

To increase the mission safety, the final step of the pre-
deployment phase verifies the paths planned for the docu-
mentation mission. First, each plan is verified by humans as
collision-free by visualizing it in the 3D model of the envi-
ronment. Second, the plan feasibility is verified by simulating
the entire mission in the realistic Gazebo simulator using the
virtual model of the environment with the same software and
sensory plugins used during real-world missions. The goal of
this two-stage process is to verify that all the generated paths
are collision-free and do not traverse potentially risky parts of
the environment. The mission specification and plan validation
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Primary UAV (camera-equipped)

2nd UAV (light-equipped)

Autonomy stack of supporting UAV
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Ground station (mission supervision)
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Fig. 2: High-level diagram of the three-phase architecture of the system designed for multi-UAV documentation of interiors of historical
buildings. The 3D model of the environment and the mission plan are used as an a-priori generated input for the realization of the
documentation mission itself. After the deployment phase, the data gathered during the mission are processed and provided to the end users.

is showcased in Fig. 3.

B. UAV Deployment

The actual system deployment is influenced by the appli-
cation’s specificity imposing strict safety-guarantee require-
ments. After the necessary hardware checks, all software com-
ponents are initialized on the onboard computer of each UAV.
After successful initialization, all the UAVs automatically align
their reference frame with the common frame of coordination
by matching their sensory data to the sparse interior map avail-
able to each UAV. The outputs of this phase are visually veri-
fied by the operator, who checks the correctness of the frames’
alignment and validates the mission plan for the last time.

During the following autonomous mission, an automatic
centralized supervisor (a ground station) checks the state of all
the UAVs in real-time. This supervisor reacts to faults and al-
lows for revealing many possible failures, even preventatively.
Available safety actions include stopping all the airborne UAVs
at the place at once, navigating them cooperatively to takeoff
locations, and landing them at safe locations. Apart from the
automatic supervisor, all these actions can be triggered by a
human operator supervising the mission in parallel using the
ground station. At last, a human operator serves as the final
safety measure capable of landing the UAVs manually. The
autonomy stack is described in section VI.

C. Post-deployment Phase

To increase the quality and range of the outputs, the data
collected during autonomous flights in historical buildings are
processed before being provided to the end users. This includes

post-processing of onboard sensory data to increase accuracy
of pose referencing associated with the captured data frames,
stitching images into photomaps, or building a 3D model of
the environment in areas occluded in ground-located scans.
The generated data then serve for digitalization and archiva-
tion, pre- and post-restoration analyses, state assessment and
monitoring, material analyses, photogrammetry, and for digital
presentation to the public.

VI. FULLY AUTONOMOUS, COOPERATING UAVS

To benefit from extensively tested and field-verified meth-
ods, the proposed multi-UAV system is based on the open
source MRS UAV system2 developed within the authors’ re-
search group. In this section, let us summarize novel scien-
tific results achieved within the presented project Dronument,
whilst the MRS UAV system is described in detail in [16].

A. Reference Frame Alignment

The reference frames of the robots are aligned once during
a pre-takeoff phase with each robot performing the alignment
independently in four automated phases. This alignment pro-
cess is mandatory for each robot as the supervising controller
does not allow any robot to takeoff unless all robot frames are
aligned with the global coordination frame (i.e., the map).

In the data loading phase, each robot loads the global map
M and a single 3D LiDAR data-frame D to its memory, applies
voxelization to both the objects for dimensionality reduction,
and removes outliers in D using radius outlier filter. The z-
axis of both the point clouds M and D is assumed to be

2github.com/ctu-mrs/mrs uav system
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(a) (b) (c)

61 s

108 s

150 s

187 s

206 s

Reference trajectory
Actual trajectory

Fig. 3: Pre-deployment phase of the proposed framework — (a) specification of the documentation task by selecting a set of camera viewpoints
within the 3D model of the environment, (b) planning trajectory of the robot (in red) which visits all the specified viewpoints (in green),
and (c) verification of the mission plan in Gazebo simulator employing identical software that is used during real-world missions.

approximately parallel to the gravity vector. During global
correlation phase, the origins and orientations of M and D
are approximately matched. First, convex 3D-space hulls HM
and HD are computed using Qhull [17] with a hull being
represented as a set of undirected edges H = {(va,vb)i} (set
of vertex pairs). Translation tM

D ∈ R3 of D to M is given
as tM

D = bM −bD, where bX ∈ R3, X ∈ {M,D}, represents a
polyline barycenter of an edge set X as

bX =
∑(va,vb)∈X [va +(vb −va)/2] ||vb −va||2

∑(va,vb)∈X ||vb −va||2
. (1)

The UAV is assumed to be taking off from ground locations,
hence the grounds are coupled by setting z-axis translation to
tM
D (z) = minp∈M p(z)−minp∈D p(z), where p(z) denotes the z

coordinate of point p. Initial transformation to the consequent
optimization phases is then given as

TI = T(tM
D )T(tD,z,θ) , (2)

where T ∈ R4×4 is a general 3D transformation in the matrix
form and T(tD,z,θ) is the matrix form of a z-axis rotation at
a point tD ∈ R3 (the origin of D) by angle θ . The rotation
angle is given as θ = θM −θD, where θX = arctanξ X

y /ξ X
x ,

ξ X =
(
ξ X

x ,ξ X
y ,ξ X

z
)
= argmaxξ∈Ξ(X)

√
ξ 2

x +ξ 2
y , and Ξ(X) is

the set of covariance matrix eigenvectors of the point cloud X.
The following global registration phase copes with

the lateral symmetry of the environments as typical of
large historical structures. Several Iterative Closest Point
(ICP) routines ICP(T) are performed in this phase,
each with different initializations T and loosely set pa-
rameters for point association and convergence require-
ments. Given a number of desired initializations k, this
phase selects θ ∗ = argminθ∈Θ ICP(TIT(tD,z,θ)) where
Θ = {2πi/k | i ∈ {0,1, . . . ,k−1}}. Final fine-tuning optimiza-
tion phase estimates robot origin in the global coordinate
frame TM

D by running ICP(TIT(tD,z,θ ∗)) optimization set
with high-accuracy parameters and strict convergence criteria.

B. State Estimation, Localization, and Mapping

Estimating the 3D state of a UAV (i.e., pose and its deriva-
tives) in real-time is crucial for the UAV mid-air control
and 3D navigation. To keep the robot steady while airborne,
follow reference trajectories, and avoid obstacles, the envi-
ronment needs to be perceived with robot’s onboard sensors
(e.g., cameras, LiDARs). As state estimation, localization,
and mapping are critical for collision-free flight, the utilized
algorithms are based on well-tested works with implementa-
tion validated in differing real-world scenarios. To estimate
the robot state, a bank of Kalman filters [16] extended with
smoothing over a short past-measurements buffer fuses on-
board inertial measurements with localization outputs, provid-
ing real-time feedback to the position control loop [16]. The
localization and mapping systems utilize low-drift pose esti-
mation LOAM [18]. An extensive evaluation in [15] showed
that fusing LOAM efficiently with [16] provides sufficient ac-
curacy and robustness even in safety-critical applications. The
architecture of the control, state estimation, and localization
pipelines is analogous to [15]. In contrast to [15], the mapping
pipeline uses an a-priori map of the environment to derive a
global frame for the robots’ missions (see its calibration in sub-
section VI-A). The a-priori shared map enables multi-robot
coordination and global mission planning, but also provides
an additional safety level by allowing robust online analysis of
localization drift and cross-checking of sensory measurements.

C. Navigation and Trajectory Tracking

The navigation of the UAVs during the mission fol-
lows a mission plan P ∈ P generated in the pre-
deployment phase, described in subsection V-A. This
collision-free plan is represented by a sequence of triplets
P =

[
(puav,pooi,I)1 , . . . , (puav,pooi,I)|P|

]
, where I ∈ {0,1}

is the acquisition flag. The triplets with I= 1 specify the UAV
poses puav in which capturing an image or illuminating the
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OoI at pose pooi is required. The reference trajectory R is
generated by uniform sampling of the collision-free path given
as sequence of puav ∈ P such that the sampling step respects
the required velocity. The UAV is requested to stop at each
pose puav ∈ P where I = 1 to improve the quality of data
acquisition by minimizing deviation from the desired pose and
reducing the motion blur that would occur in case of non-zero
velocity during image capturing. The reference trajectory R
then serves as an input to the trajectory tracking module using
model predictive control (MPC). This module, described in
our previous works [11], [19], produces a smooth collision-
free trajectory while penalizing deviations from the original
reference trajectory and respecting dynamic constraints of the
UAV. The smooth-sampled reference trajectory is then passed
into a feedback controller (implemented within the MRS UAV
system [16]) handling tracking of the trajectory.

D. Multi-robot Coordination and Cooperation

Since the characteristics of the expected environment enable
reliable use of standard communication channels, the cooper-
ation algorithms rely on the information shared through a Wi-
Fi interface among the UAVs and a ground station. Namely,
the UAVs share their current poses, planned trajectories, and
individual statuses based on the information from their on-
board sensors. The same communication channel is utilized
for commanding the UAVs from the ground station in case of
emergency or a change in the mission plan, and for sharing
specific messages among the UAVs during the realization of
cooperative documentation techniques. The algorithms han-
dling the autonomous flight are computed on board the UAVs.

During the cooperation, the reference trajectories of the
UAVs are generated in a distributed manner on a short horizon
corresponding to the optimization horizon used in the MPC-
based trajectory tracking module [16]. By applying concepts
of leader-follower architectures, the reference trajectories of
supporting UAVs are generated with respect to the optimized
trajectory of the primary UAV (leader), to the position and the
desired distance of the UAV from the OoI, and to the desired
lighting angle with respect to the optical axis of the documen-
tation sensor on board the primary UAV. The coordination
of the UAVs is part of trajectory optimization (see subsec-
tion VI-C) where both the current poses of the UAVs and their
planned trajectories are considered to be part of constrained
unfeasible space [19]. To prevent the downwash effect, this
optimization is also constrained to not allow two nearby UAVs
to fly above each other.

VII. AERIAL PLATFORMS

Two custom-made UAV platforms were designed specifi-
cally for the proposed application of deployment in interiors
of buildings. Both the platforms, as shown in Fig. 4 and
described in more detail in [20], support fully autonomous
deployment within the tackled domain by carrying sensors for
local environment perception together with a powerful com-
putational unit handling the entire autonomous aerial mission.
The primary platform is a heavy-weight (5.5 kg without pay-
load) octo-rotor with dimensions of 78×81×40 cm, capable

of carrying up to 1.5 kg payload — enough for a mirrorless
interchangeable-lens (MIL) camera with a suitable lens and 2-
axis gimbal stabilization, as well as an onboard light source.
This platform minimizes its dimensions while maximizing
the payload capacities, is equipped with mechanical propeller
guards, and carries sensory redundancy for active obstacle
avoidance. The secondary platform is a lightweight (3 kg fully
loaded) quad-rotor with dimensions of 68×68×30 cm suited
for assisting the primary UAV throughout a documentation
process by providing the scene illumination, thus increasing
the quality of the gathered digital materials. While cooper-
ating, the supporting UAVs assist in performing tasks inex-
ecutable by a single UAV in principle. As the primary pay-
load, the secondary platform carries a set of high-power light
sources. Both the platforms support flights in close proximity
to obstacles and to other UAVs. However, relative distances
are limited to a minimum of 2 m to limit the aerodynamic in-
fluence of downwash, ceiling, and ground effects on the UAV,
and the contrary effect of the UAV on the environment (possi-
ble damage of not firmly attached objects and fragile plasters).

A. Sensors for Autonomy

For autonomy in GNSS-denied environments, both plat-
forms rely on onboard sensors only. The primary sensor is
a 3D light detection and ranging (LiDAR) Ouster OS0-128
with 50 m detection range and 90◦ vertical FOV supported
by a thermally-stabilized triple-redundancy inertial measure-
ment unit, downward and upward looking point-distance sen-
sors Garmin LiDAR Lite, and front-facing (primary UAV) or
downward and upward-facing (secondary UAV) color-depth
cameras Intel® Realsense D435 for sensory cross-checking in
active obstacle avoidance. All the sensory data are processed
by an Intel® NUC-i7 onboard computer which utilizes data
in real-time algorithms handling the autonomous aerial mis-
sion. The low-level control (attitude stabilization) is handled
by Pixhawk 2.1, an open-source autopilot used frequently by
the robotic community. For safety reasons, the primary UAV
carries a visible diagnostic RGB LED which indicates a pos-
sible failure to an operator who is authorized to override UAV
autonomy for manual landing.

B. Payload

The payload equipment mountable on board the platforms
is modular — cameras, lenses, and light sources can be easily
interchanged for the purposes of a specific task. For general
purposes, the primary UAV carries a 2-axis gimbal FlyDrotec
capable of stabilizing up to 850 g payload. The stabilized
axes are controllable, a feature useful mainly for controlling
the pitch angle of a camera. Throughout our experiments, a
MIL camera, the Sony Alpha A6500 with varying lenses, has
been used for its integrated image-sensor stabilization, further
minimizing the negative effect of mid-flight vibrations on the
output image quality. Triggering image capture is automated
via the onboard computer, whereas real-time imaging is trans-
mitted to the ground for online visualization for the operator.
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Camera Sony Alpha A6500

Intel® Realsense D435

2-axis gimbal

Propeller guards

FPV transmitter

Garmin rangefinder

RC module

Flight control unit

Computer Intel® NUC-i7Central elements guard3D LiDAR Ouster OS0-128

Diagnostic board

Light

(a) Primary custom-made UAV application-tailored for documentation and inspection tasks in building interiors. The platform carries onboard sensors required
for autonomous flight with equipment for acquiring high-quality documentation data, as well as a processing unit for handling autonomous flight, reasoning
over the sensory data, obstacle avoidance, and the documentation mission.

Adjustable LED panel

LEDs

Intel® Realsense D435

Servo

Flight control unit

Comp. Intel® NUC-i7

Central elements guard

3D LiDAR
Ouster OS0-128

(b) Secondary UAV tailored for supporting documentation tasks in building
interiors. In contrast to the primary UAV (a), this platform is smaller and
carries a high-power light instead of sensors for the documentation task.

(c) Comparison of the custom-made UAV platform (a) with lightweight
commercial drone DJI Mavic Air 2, which carries a small camera sensor and
does not support complex mission planning in building interiors.

Fig. 4: Aerial platforms used for documentation tasks in the Dronument project — primary UAV carrying documentation sensors (a),
secondary UAV assisting in cooperative documentation (b), and commercial drone used for qualitative comparison (c). Both (a) and (b) carry
environment-perception sensors and computational resources allowing fully autonomous deployment in interiors with poor lighting conditions.

VIII. EXPERIMENTS AND RESULTS

The extreme requirements on safety imposed by the nature
of the application requiring the deployment of UAVs in price-
less historical buildings imply thorough validation of all the
developed software and hardware solutions prior to their de-
ployment in real-world missions. The software solutions rang-
ing from the state estimation and control algorithms to high-
level mission control were intensively tested with the use of
Gazebo simulator and the MRS simulation package3 providing
realistic behavior of the UAVs. Running the same software
with identical parametrization in simulation and on real hard-

3github.com/ctu-mrs/simulation

ware significantly simplifies the transfer of algorithms from the
virtual environment to real-world applications. The 3D models
built from the obtained 3D scans are directly used as the simu-
lation environments for algorithms’ testing. Together with sim-
ulated sensory noises and model inaccuracies, this makes the
simulation as analogous to real-world conditions as possible.
This methodology proves to be especially useful for discover-
ing possible failures correlated with specific environments and
validating the entire autonomous missions in an approximate
copy of the real-world scenarios. Although the simulator is
highly realistic, running the system in the real world introduces
additional constraints. Therefore, even after thorough testing
in virtual environments, the first deployments of the system
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TABLE III: Overview of three-phase UAV deployment in historical buildings within the Dronument project. The first phase focused on
specifying the use cases, developing the methodology, designing the system, and performing preliminary experiments, including manually
controlled flights. The second phase investigated autonomous multi-robot coordination in cooperative documentation and experimented with
imaging outside the visible spectrum and with the physical interaction of UAVs with the environment. The third phase deployed the system in
a full-operation mode for gathering data valuable to end users and for validating the methodology and overall performance of the autonomy.
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Klein Family Mausoleum
in Sobotı́n (30 m2) 7 274 0:17:37 120 3.8 1.6 ✗ VIS

Rondel at State Chateau and Castle
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Chapel of All Saints at Chateau
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were preceded by test flights in mock-up scenarios and test-
ing interiors in order to reveal potential problems related to
transfer of the system from simulation to real hardware.

The final version of the system, as presented in this
manuscript, builds on preliminary versions and architectures of
both software and hardware stacks and integrates experience
from over a year and a half period of experimental deploy-
ments. During the experimental campaigns, remaining sources
of potential failures were identified and the UAV system up-
graded to reach the desired performance and reliability while
increasing the number of realizable documentation techniques.
The entire system was, to this day, deployed in real-world mis-
sions in fifteen historical buildings of various characteristics
(summarized in Table III), including one of the largest Baroque
halls in the Czech Republic at State Chateau Vranov nad Dyjı́
and the UNESCO World Heritage Sites, Archbishop’s Chateau
in Kroměřı́ž and Chateau Telč. Almost twelve airborne hours
in more than two hundred flights have been performed for pur-
poses of documentation missions in the given structures. Such

an extensive experimental campaign provides an exhaustive
validation of the system in real-world conditions and supports
its applicability in GNSS-denied environments by identifying
and overcoming challenges imposed by specific scenarios.
The following sections describe the documentation techniques
realized by the system in these structures. The OoIs of the
presented documentation missions are showcased in Fig. 1.

A. Visible Spectrum Photography

Imaging in the visible spectrum is the most frequently ap-
plied technique as it includes methods providing the widest
range of practical information while being relatively easy to
perform. Within the fifteen historical structures, OoIs of var-
ious characteristics have been imaged by autonomous UAVs.
These OoIs range from artistic elements, such as paintings,
stained-glass windows, mosaics, stuccoes, and murals located
in the most upper parts of the main naves, to complex 3D
structures, such as window frames and altars up to 20 m high.
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Fig. 5: An example documentation mission in the Church of the Nativity of the Virgin Mary in Nový Malı́n. The documentation mission
was divided into two separate flights (a) focused on documenting the upper part of the altar (d) and baldachin of the pulpit (e). When going
from the top, the rows in (d) and (e) show the minimal distance from the UAV frame to an obstacle, the 3D position error with image
acquisition times (green vertical lines and red dots), and the height above ground. The desired imagery specified in the 3D model and the
images captured on board are compared in (b) and (c). The simulation data are averaged from 5 runs each.

Additionally, objects may include structural damage, such as
crevices, cracks, or fractures.

An example of fully-autonomous documentation of a single
interior is provided in Fig. 5 depicting the documentation of
a baroque church. The specified viewpoints were focused on
documentation of two OoIs — the upper part of the altar
reaching a height of 10 m and the baldachin of the pulpit.
The automated process of viewpoints’ specification and au-
tonomous navigation has enabled fast realization of the docu-
mentation process in just two single-UAV flights lasting only
366 s in total. With mission specification being part of the pre-
deployment phase, the overall time required for in-site deploy-
ment reached only 80 min, including equipment unpacking,
flight test, mission validation and execution, and packing. Such
a high level of autonomy in the process demonstrates supe-
riority via fast, safe, effective, and repeatable data capturing
when compared to the slow, imprecise, and dangerous manual
control of the UAV in obstacle-filled environments by even
a highly trained human operator. Even with assistive systems
(stabilization and collision prevention) guiding the human in

navigation, manual operation is unsafe in losses of line of
sight in the presence of obstacles and inefficient in time and
accuracy required to reach the desired viewpoints. Apart from
higher efficiency and safety of autonomy in contrast to human-
controlled flying, a fully autonomous system allows flight in
close proximity to obstacles, enlarging the operational space of
the UAV. This is advantageous particularly when documenting
elevated OoIs where the inaccuracy in estimating the UAV’s
distance to the ceiling is proportional to the distance from
the human eye, thus making manual navigation in these areas
unsafe.

The VIS method can be performed with commercially
available products (e.g., DJI Mavic) offering semi-autonomous
solutions in small and lightweight packages. However, the
limited level of autonomy and sensory modularity makes the
realization of the missions in large interiors prolonged (the
proposed system is on average ten times faster in the same
task), non-repeatable, or even impossible in conditions unfa-
vorable to onboard perception or the desired documentation
technique. In Fig. 6, the images obtained by the proposed
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35 mm, f/5.0, ISO 1000, 1/320s 35 mm, f/5.0, ISO 1000, 1/320s 35 mm, f/5.0, ISO 1000, 1/320s 35 mm, f/5.0, ISO 1000, 1/320s

4.5 mm, f/2.8, ISO 3200, 1/80s 4.5 mm, f/2.8, ISO 3200, 1/60s 4.5 mm, f/2.8, ISO 3200, 1/80s 4.5 mm, f/2.8, ISO 3200, 1/60s

7 cm 7 cm 18 cm 18 cm 19 cm 19 cm 12 cm 12 cm

Fig. 6: Image outputs of VIS methodology as taken by the onboard MIL camera Sony Alpha A6500 (a) and commercial solution DJI Mavic
Air 2 (b). Direct comparison of details of the images in the middle row shows that the proposed solution is superior in capturing high-
quality details. This highlights the last column in which a hole in the painting is visible in top and absent in bottom image. Although the
commercial solution is small and lightweight, its small sensor size of 6.4×4.8mm hinders usability in interior documentation.

system are qualitatively compared to the ones obtained with
a commercial product DJI Mavic Air 2. The figure highlights
the superior performance of MIL camera imaging allowing for
capturing high-resolution details of the OoIs while maintaining
a safer distance from the obstacles.

Although VIS realized by a single UAV is a powerful
technique, a multi-robot approach is often unavoidable if the
lighting conditions are insufficient or documentation of an
OoI requires non-direct lighting. An example OoI requiring
additional lighting is the mural of St. Christopher in the late
Gothic Church of St. Maurice in Olomouc, the documentation
of which is shown in Fig. 7. Insufficient external lighting on
the mural did not allow capturing bright, high-quality images
without the motion blur effect arising from deviations in the
reference pose over a long exposure time. Thus, to improve the
quality of the images, a secondary UAV provides side lighting
(approximately 45◦ with respect to the camera optical axis),
lowering exposure times and highlighting details on the mural,
such as small crevices invisible to the human eye from the
ground. In the same church, 23 stained-glass windows (each
about 8–34 m2 large) were able to be documented with a single
UAV as the windows were well illuminated by the outdoor
light and could be captured with short exposure times without
additional lighting. The individual images of the mural and the
stained-glass windows were rectified and stitched together to
compose singular high-resolution orthophotos of each object.
The orthophotos were used to assess the state of the OoIs for

subsequent restoration works and for enhancing the texture
of the 3D model of the church4. As compared well in [13],
the aerial-based orthophotos outperform the ground-based or-
thophotos in terms of quality of detail, quality of rectification
due to perpendicular optical angles, and absence of occlusions.

B. Reflectance Transformation Imaging

RTI method requires a static camera and a dynamic light
with a known history of poses. To validate whether the pro-
posed system is feasible for RTI, it was applied to document a
vault located 11 m above ground in St. Anne and St. Jacob the
Great Church in Stará Voda (see Fig. 1b). This OoI was specif-
ically selected as it can be photographed from a balcony on the
opposite side of the central nave, thus allowing for the realiza-
tion of the RTI technique in two comparable configurations:
1) with the camera (with telephoto lens) mounted on a static
tripod with a clear, but misaligned view on the vault and 2)
with the camera mounted on board the primary UAV. In both
configurations, the light was carried on board the secondary
UAV, with the directions of illumination being derived from
the poses of this UAV, as estimated on board during the flight.

The comparison of results obtained in each configuration
is presented in Fig. 8. The image representation produced
from images captured by the tripod-mounted camera yields

4Selected OoIs and mapping and 3D reconstruction examples of docu-
mented historical structures can be found at mrs.felk.cvut.cz/3d-model-viewer.
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Fig. 7: Deployment of a multi-robot formation for detailed documentation of the late Gothic mural of St. Christopher using additional lighting
for enhancing the quality of gathered data. The graphs show mutual distance of the UAVs during the cooperative flight and the angle between
the camera optical axis and light, together with the time occasions of image capturing (green lines and circles). The red horizontal line
denotes the required angle of lighting. The red areas mark parts of the mission in which the UAVs are not required to maintain the formation.

higher quality, as the choice of the OoI and usage of a tele-
photo lens fully compensate for the main disadvantages of the
methodology in this particular case. These disadvantages are
primarily smaller operational space, lower detail resolution of
the resulting image caused by the large distance of the camera
from the OoI, and often unavoidable occlusions. Although the
fully UAV-based approach yields lower image quality since
the camera’s pose is not static over time, it has wider oper-
ational space and enables imaging from appropriate angles,
as was verified for other OoIs in the church that could not
be reasonably captured by a static camera at all. The non-
staticity of the camera’s reference pose misaligns the images;
thus, their sub-pixel post-alignment is required to avoid blur
in the resulting PTM. The experiment shows that the fully
UAV-based approach yields comparable results to the single-
UAV approach, which is favorable when the OoI can be pho-
tographed from the ground — an impossible scenario for most
OoIs in difficult-to-reach areas of historical buildings.

C. Raking Light and Environmental Monitoring

A common feature of raking light documentation and mon-
itoring of environmental conditions with UAVs stands in the
need for robot-environment interaction. In the former, a light
is attached to the wall illuminating a planar OoI from a di-
rection perpendicular to the optical axis of the camera. This
method is known to highlight even the smallest crevices and
cracks in the planar surface. For the latter, a wireless sensor
(e.g., for measuring humidity or temperature) is attached to
the wall to measure the environmental conditions over longer
periods of time. For the purpose of physical environment-UAV
interaction itself, we researched a UAV equipped with a system
for admittance-based control allowing for stabilization while

being attached to a planar surface (and possibly interacting
with it) [12]. Before using this technology, the involved risks
must be compared to the payoff, particularly inside historical
buildings. To minimize the risks, it is more convenient to
interact with structural (not artistic) parts of the buildings. The
system was successfully tested in real-world mock-up scenar-
ios (see Fig. 9c) with walls of sufficiently good condition.

D. IR and UV Photography

Realization of UVF and IRF (fluorescent photography) is
methodically similar to VIS with the equipment being a stan-
dard MIL camera and a source of light at appropriate fre-
quency. In contrast to VIS, the light emitted by the object
illuminated by an IR or UV light source in the visible spectrum
is lower. Thus, these methods require higher exposure times,
as specified in Table II. The higher exposure times put stricter
requirements on image stabilization in the presence of onboard
vibrations, inaccuracies, and disturbances that cause UAVs to
deviate from their reference pose.

Realization of the UV and IR reflectography requires a
camera without UV and IR filters and exposure times of tens of
seconds. This makes the use of UAVs for imaging in UV and
IR reflectography unfeasible. However, supporting ground-
based imaging with aerial lighting is applicable. The UAVs can
carry (relatively close to the OoI) high-power LEDs radiating
in the desired spectrum. The IR and UV-based methods were
tested in St. Anne and St. Jacob the Great Church, Stará Voda
(see Fig. 9) and in Church of the Holy Trinity, Běhařovice.
The experiments showed that the proposed system can be used
in realization of the UV and IR-based methods in historical
structures, even in limited lighting conditions.
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Fig. 8: Comparison of polynomial texture maps (PTM) obtained with a fully UAV-based RTI approach with camera carried by a UAV (a)–
(i) and PTM obtained from images taken by a camera mounted on a static tripod (j)–(l). In both cases, the dynamic positioning of light is
provided by the secondary UAV. The bottom row shows the normal maps encoded in RGB for fully UAV-based approach (m) and a single
UAV approach (n).
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(a) (b)

(c)

Fig. 9: Deployment of UAVs carrying IR (a) and UV (b) source of
light, and a frame-extension mechanism for physical attachment and
interaction with static planar surfaces (c).

E. Mapping and 3D Reconstruction
The capacities of UAVs allow capturing the interior under

difficult-to-reach angles, not only for imaging purposes, but
also for spatial mapping of the structures. Although terrestrial
laser scanners yield the most accurate maps, these devices can-
not, in principle, document occluded spaces, whereas the larger
operational space of UAVs allows for minimizing these occlu-
sions. This advantage is showcased in Fig. 10 where above-
ledge areas could not be reconstructed from scans captured at
ground. The potential for accurate 3D mapping using UAVs
is immense; however, is not the main purpose of the proposed
system which outputs dense 3D maps only as a byproduct to
the photo-documentation task. The onboard-UAV-built maps
contain larger amounts of noise as the mobile laser-scanning
technology is less accurate (lightweight, low-power, and mov-
ing while scanning) than static scanners, making it harder to
align the captured scans, even in post-processing. To achieve
the best results for 3D reconstruction, we recommend lever-
aging the advantages of both methodologies simultaneously.

IX. DISCUSSION

The proposed UAV-based system for documenting histori-
cal monuments of differing structures, dimensions, and com-
plexity has demonstrated its wide applicability in real-world
documentation tasks, ranging from RGB photography and 3D
mapping to multi-robot RTI in areas high above the ground.
The high level of autonomy, the ability to fly beyond the
visual line of sight between the UAV and a human opera-
tor, and the deployability in low lighting conditions (using a
worldwide unique method of dynamic illumination by a coop-
erating UAV team) enable to gather crucial data for heritage
protection and documentation that was not possible before.
This universally novel system has been used in the very first
fully-autonomous multi-robot real-world deployments in such
complex and safety-demanding interior structures.

However, deploying mobile robots inherently poses risks to
the environment, humans, and equipment therein. This requires

(a)

(b)

Fig. 10: 3D reconstruction of the altar at the Church of the Nativity
of the Virgin Mary in Nový Malı́n, Czech Republic. The altar re-
constructions were done using scans obtained by (a) terrestrial laser
scanner Leica BLK360 and (b) Ouster OS0-128 mounted on board an
autonomous UAV during the deployment shown in Fig. 5. The meshes
were created with the Poisson surface reconstruction and colored
using the panoramic RGB images captured by the terrestrial scanner.

careful justification of the UAVs’ use that, in our experience,
tends to be needlessly overused — conventional technology
provides a safer and better quality solution in many documen-
tation tasks. A common example is imaging the interior ceiling
or low-height OoIs, where using a static camera with a long-
focus lens was identified to be a more appropriate solution.
Manual-control UAV solutions are also sufficient if the task is
small-scale, the lighting conditions are feasible, repeatability
is not required, and the OoIs are few. The need for multi-
UAV teams in tasks achievable with sufficient quality by a
single UAV, such as the selected example of single-UAV RTI
presented in Fig. 8, should also be considered prior a full-
scale deployment.

X. CONCLUSION

This work has presented a universally novel study on an
autonomous multi-robot UAV-based system for realization of
advanced documentation techniques in culturally valuable en-
vironments. The system showcases the immense potential of
mobile robots for fast, accurate, and mobile digitalization of
difficult-to-access interiors. The hardware and software archi-
tectures of the self-contained autonomous-UAV-based system
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were introduced and experimentally validated through almost
twelve hours of flight time in more than two hundred real-
world flights of single-UAVs and multi-UAV teams in fifteen
historical monuments of varying structures. The system design
has emerged from close cooperation with a team of restorers,
and the data collected during the autonomous missions has
been used by the end users in successive restoration works.

The study also assists in identifying the current challenges
and future directions of research in aerial documentation and
inspection. Based on the high added value for heritage pro-
tection, the system has been approved by the Czech National
Heritage Institute for indoor usage and is accompanied by an
official methodology (available at [1]) describing the proper
usage of UAVs in historical structures. It is the first methodol-
ogy of this authority for using UAVs in historical buildings and
so prescribes the system to be a standard in this application.
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Our fruitful research endeavors in the autonomous exploration of subterranean environ-
ments began in [3c, 8a, 12a, 133] and resulted in another core work of this thesis [4c], which
was published in Field Robotics. The work is motivated by the Subterranean Challenge robotic
competition1, which was organized to test and push the limits of state-of-the-art field robotics
by developing robotic solutions for assisting first responders in their dangerous work. The work
proposes a state-of-the-art, self-contained, and heavily field-tested stack for autonomous and
distributed stabilization, control, perception, multi-sensor mapping, and communication of a
team of autonomous robots with the main objective of cooperative navigation and exploration
in harsh, challenging, and unknown subterranean environments. Within the scope of the task,
the proposed solution is capable of fast 3D exploration in vast, unknown, dynamic, and com-
plex environments containing large open spaces as well as narrow passages. The stack utilizes
small-factor UAVs capable of fast 3D navigation with distributed sensors and computational
power in perceptually degraded and constrained environments, which are a priori unknown.

Given our premise defined in Chapter 1 and the extreme constraints of the DARPA
SubT, emphasis is put on verifying the algorithms’ robustness concerning the challenging real-
world conditions and real-time performance of all of the tightly-coupled algorithms running
on-board resource-constrained UAVs (shown in Figure 3.3). The tight coupling of the entire
stack enables fast reactions to changes in the environment, thereby enabling the effective
use of the limited flight time of UAVs. The proposed autonomy stack allows for seamless
cooperation in efficient exploration between aerial and ground vehicles if intermittent robot-
to-robot communication is provided. The contributions include achievements in solving the
full autonomy in a heterogeneous workspace and the transition between varying environments
of human-made tunnels [133], urban buildings [8a], and cave systems [3c].

Among others, the author’s contributions presented in [4c] include a novel method for
preventing LiDAR-perception degeneracy of a UAV flying in whirling dust clouds, which
are a common source of perceptual degradation in a plethora of subterranean environments,
as well as in urban and historical buildings with low humidity. Due to wind gusts and the
aerodynamic effects of the UAV, the dust particles circulate and noise the neighborhood
around the UAV. These particles degrade the perception of the UAV and may lead, apart
from map degeneration, to crashes as a result of unfeasible or noisy state estimation. The
contributions of [4c] include filtering of dust particles from a 3D point cloud. The method
builds on the fact that the energy of a light beam reflected back to the LiDAR sensor is
only partial when a dust particle is hit. Given this, the reflected light beams with the lowest
energy are most likely to be the measurements of noise. As the aerodynamic influence of the
UAV is limited locally and energy from distant measurements is assumed to dissipate in the
environment, a local threshold-based filtration is applied on the intensity field of the sensor’s
raw data. This method has proved reliable even in the harshest dust conditions of subterranean
environments, where cameras were completely blinded by whirling dust. When using the
proposed method, the processed LiDAR perceived the environments without degradation and
measurement noise.

1The author was a member of team CTU-CRAS-NORLAB comprised of members from Czech Technical
University and Université Laval, Canada.
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As part of the contributions, the author of this thesis has introduced and integrated
methods of 3D perception (LiDAR data processing, mapping, SLAM) to a state-of-the-art
open-source2 system for UAV control — the MRS UAV System [39]. The pipelines for these
methods were prepared for deploying teams of UAVs in various indoor and outdoor envi-
ronments given an arbitrary number of onboard sensors measuring spatial information. This
modular methodology was and still is in use for various research and industrial projects and
robotic competitions within the MRS laboratory, as well as by international users of the open-
source system. These contributions include adaptation, parallelization, and optimization of
the state-of-the-art LiDAR odometry LOAM [42] for its use in real-time on-board UAVs and
coupling it with inertial modality and probabilistic volumetric mapping for generating dense
metric maps. This dense mapping enabled further research of path and trajectory planning
and complex-environment navigation and exploration in [4c, 8a, 23, 134]. The contributions
to this method lie in open-sourcing its optimized mapping-coupled version, as well as its thor-
ough qualitative and quantitative analysis in [4c] and in [3c, 8a, 10a, 12a, 134].

Figure 3.3: Aerial platform used by team CTU-CRAS-NORLAB in the final event of the
DARPA SubT in the virtual (left column) and real-world (right column) environments.

2MRS UAV System is openly available at github.com/ctu-mrs/mrs uav system.

https://github.com/ctu-mrs/mrs_uav_system
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mrs_uav_system. The SLAM datasets are available at github.com/ctu-mrs/slam_datasets. The
visual detection datasets are available at github.com/ctu-mrs/vision_datasets.

1. Introduction
The research of new robotic technologies and solutions is accelerating at an unprecedented rate
mainly in case of aerial robotics. Technological development is improving many areas of our lives
and, hopefully, even the future of humanity. The authors of (Shakhatreh et al., 2019) reviewed
current research trends and future insights on potential Unmanned Aerial Vehicle (UAV) use for
reducing risks and costs in civil infrastructure. The survey of UAV applications is accompanied by
a discussion of arising research challenges and possible ways to approach them.

This paper focuses on a robotic system developed to autonomously search subterranean en-
vironments. The motivation behind searching subterranean environments is to gain situational
awareness and assist specialized personnel in specific missions. Such missions may include: assessing
the structural integrity of collapsed buildings, tunnels, or mines; exploration of a newly discovered
branch in a cave network; or searching for lost persons. These tasks can often be life-threatening
to human workers as many hazards are present in subterranean environments. In order to reach
survivors quickly in unstable caves or partially collapsed burning buildings, first responders, such as
emergency rescuers and firefighters, may potentially put their lives at risk. In firefighting tasks, fires
can be either localized and reported to personnel by robots or the robots can even directly begin
extinguishing flames if the presence of human firefighters is too risky (Spurny et al., 2021; Pritzl
et al., 2021; Martinez-Rozas et al., 2022). In such scenarios, ceilings can suddenly collapse, toxic gas
can appear in a mine, flames can extend to an escape corridor, or a cave cavity can flood with water.
In distress situations, it is essential to swiftly coordinate the rescue operation as the survivors of a
catastrophe might need acute medical assistance or have a limited amount of resources available,
namely oxygen and water. However, without conducting a proper reconnaissance of the environment
and assessing the potential risks prior to the rescue mission, the involved rescuers are exposed to a
much higher probability of injury.

To reduce the possibility of bodily harm or to avoid risks altogether, a robotic system can be
sent on-site before the rescuers in order to either quickly scout the environment and report any
hazards detected by the onboard sensors, or directly search for the survivors. The rescue mission
can be further sped up by deploying a team of robots capable of covering larger areas and offer
redundancy in case of losses of some robot units in harsh environments. Multirobot teams can
also consist of heterogeneous agents with unique locomotion modalities to ensure traversability of
various terrains, including muddy ground, stairs, and windows, which is discussed in the overview of
collaborative Search and Rescue (S&R) systems (Queralta et al., 2020). Similarly, sensing modalities
can be distributed among individual robots to detect various signs of hazards, such as increased
methane levels or the potential presence of survivors deduced from visual or audio cues. Mounting
all sensors on a single platform would negatively affect its dimensions and, consequently, its terrain
traversability as it may not be able to fit into narrow passages, such as crawlspace-sized tunnels or
doorways. It would also mean a single point of failure for the rescue operation. On the other hand,
the operation of a single robot can be managed by just one person, while commanding a robot team
may be unfeasible for a single operator. Assigning each robot to an individual operator would also
be an ineffective allocation of resources. Moreover, the range of the robot would be limited by the
communication link to the operator. To provide a valuable tool for the rescue team, the robots must
be able to move through the environment on their own and infer about the environment using their
sensor data. The rescuer can then also act as an operator, providing only high-level inputs to the
robotic system to bias their behavior based on a priori information (e.g., someone was last seen
on the east side of the third floor). The research and development of such autonomous systems for
assisting first responders is the primary focus of the S&R robotics, and also the motivation for the
S&R UAV system presented in this paper.

The robotic platforms typically considered for S&R tasks are categorized into wheeled, tracked,
legged, marine, and aerial platforms (Delmerico et al., 2019). Among these locomotive modalities,
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aerial robots are considered to have the highest traversal capabilities since they can fly over most
obstacles which are untraversable by other platforms. One example of an autonomous aerial research
platform for S&R is found in (Tomic et al., 2012). The mobility of UAVs also surpasses other
robot types thanks to its dynamic flight which can achieve large velocities and accelerations. These
qualities make UAVs ideal for swift environmental scouting for gaining initial knowledge about a
situation. As such, the aerial platform is predetermined to be deployed as the first robot during the
first minutes of the rescue operation. A team deployed in an outdoor multi-UAV disaster response
task (Alotaibi et al., 2019) can effectively cover a large search area and minimize the time to find
and reach survivors. On the other hand, UAVs cannot operate for extended periods of time due
to their limited flight time, and the sensory equipment is limited by the maximum payload of the
UAV. Some sensing modalities might even be unsuitable for the use on aerial robots due to their
propulsion system, e.g., detecting gas due to the aerodynamic effects of the propellers, or sound
detection due to noisy operation. Due to the aforementioned pros and cons of UAV platforms, it is
convenient to combine the capabilities of other robot types to form a heterogeneous robotic team.

This manuscript proposes an autonomous cooperative UAV approach for S&R. The approach used
by Unmanned Ground Vehicles (UGVs) is not presented here because it is vastly different from the
UAV system and as such would not fit into the scope of this article, which is already moderately
extensive as we did not want to omit any details about the deployed system. The UGV solution
was developed by our colleagues who are acknowledged at the end of this article. The proposed
UAV together with legged, wheeled, and tracked UGVs formed the CTU-CRAS-NORLAB team,
which participated in the Defense Advanced Research Projects Agency (DARPA) Subterranean
Challenge (SubT). The team consisted of Czech Technical University in Prague (CTU) and Laval
University.

1.1. DARPA SubT challenge
After major success in accelerating the development of self-driving cars in the Grand Challenges of
2004 and 2005 and the Urban Challenge in 2007, DARPA announced the Subterranean Challenge
(SubT) (Orekhov and Chung, 2022) for the years 2017-2021 to advance the state of the art of S&R
robotics. Participants had to develop robotic solutions for searching subterranean environments for
specific objects that would yield points if reported with sufficient accuracy. To achieve the task
at hand, the competitors had to develop complex multirobot systems spanning nearly all research
areas of mobile robotics, from design of the robotic platforms to high-level mission planning and
decision-making.

The rules of the competition can be summarized in a few points. Each team has a dedicated time
slot, or run, to send their robots into a previously unvisited course and search for specific objects,
referred to as artifacts (Figure 1). Each run starts at a predefined time and ends exactly one hour
later. A single team is present on the course at a time during which they can deploy an unconstrained
number of robots of arbitrary size. The movement of team personnel and their handling of robots
is allowed only in the area in front of the entrance to the course, as shown in Figure 2. Only robots
can enter the course and only one human operator/supervisor can command the robots and access

Figure 1. All 10 artifacts searched for in the Final Event of DARPA SubT (image courtesy of DARPA). The
operator had to submit the position of the identified artifact with accuracy better than 5 m. While the first three
artifacts (survivor, cellphone, and backpack) were present in all circuits, the drill and the fire extinguisher were
tunnel-specific. Similarly, the gas and vent were located in the urban environment, and the helmet with rope
could be found in the caves. The last artifact (the cube) was introduced only for the Final Event.

Field Robotics, January, 2023 · 3:1–68

58



4 · Petrlík et al.

Figure 2. The bounded staging area (image courtesy of DARPA) is the only place where the human crew
members can handle the robots. The person sitting behind the displays is the operator who is the only one
allowed to issue commands to the team of robots, and also to view and interpret mission data.

Table 1. The prize money awarded for achieving the
first three places in the Final Event.
Place Systems Track Virtual Track
1. $2M $750K
2. $1M $500K
3. $500K $250K

the data they acquire during the run. These conditions should mimic the conditions of a real S&R
robotic mission. The operator can report the type and position of an artifact. If the type was correct
and the reported position was not further than 5 m from the true position, the team was awarded
one point. The team with the highest score wins the prize according to Table 1. For a more detailed
description of the challenge, see (Orekhov and Chung, 2022).

To encourage the development of high-level components without worrying about the resilience of
the hardware in harsh subterranean conditions and also to enable teams without many resources
and/or physical robots to compete, a virtual version (Virtual Track) of the competition was run in
parallel to the physical Systems Track. The solutions of the Virtual Track were uploaded as Docker
images (one image per robot) to the Gazebo-based Cloudsim simulation environment, where the
entire run was simulated. Every team could use the Cloudsim simulator to test their approaches in
practice worlds prior to the actual competition.

The competition was further subdivided into individual circuits, which were events in the specific
subterranean environments of a tunnel, cave, and urban space. Examples of each environment are
shown in Figure 3. The surroundings were chosen to correlate with typical real S&R sites to assure
the applicability of the systems developed during the competition. Every type of environment differs
in size, geometric dimensions, traversability conditions, and requirements on perception modalities.
The specifics of tunnel-like environments are summarized in (Tardioli et al., 2019) with 10 years
of experience in S&R ground robots research. The role of mobile robots in rescue missions after
mine disasters is discussed in (Murphy et al., 2009). The Final Event combined all of the previous
environments for the ultimate challenge.

We participated in the competition first as a nonsponsored team. In the Tunnel Circuit, we won
1st place among the nonsponsored teams and 3rd place in total, which earned us $200 000. The
aerial robots explored 340 m of tunnels and found 3 artifacts out of the 10 artifacts discovered by
all our robots (Petrlik et al., 2020). This success was repeated in the Urban Circuit with the same
place achieved but this with time larger prize money $500 000. The UAVs proved their suitability
for quick scouting of the environment thanks to their advantage in mobility when the first deployed
UAV managed to travel 93 m inside the building in just 200 s while it took about half an hour to
reach the same area with the semi autonomously operated ground robots as reported in (Kratky
et al., 2021a). One of the deployed UAVs also served as a retranslating station for other robots
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Figure 3. Three types of subterranean environments found in the competition, each challenging for the robot
team in a different way. From left to right: tunnel, urban, and cave. The top row shows examples of environments
from the Systems Track of the Final Event, while the virtual worlds are pictured in the bottom row.

after navigating to and landing at a strategic position. Thanks to consistent performance in both
circuits, DARPA awarded our team the funding for the Final Event, which allowed us to acquire
more capable hardware. In the Virtual Track, the UAVs were used as the primary platform for
finding artifacts thanks to their high travel speed and the ability to fly over terrain untraversable by
UGVs. The ground robots supported longer flights of the UAVs by extending the communication
network with breadcrumbs. In total, 215 artifacts were found by the UAVs in the competition
worlds (8 artifacts less than the winner). The performance of UAVs in the confined environment
of the Systems Track was worse than in the Virtual Track. Nevertheless, while the UGVs detected
5 out of 7 scored artifacts, the aerial robots managed to add 2 unique artifacts not seen by other
robots but 1 of them had the wrong class and image and thus could not score. The last point was
scored manually by the operator by matching a detection from a UGV that had inconsistent map
with the same position in a correct map. The approach presented in this paper is the result of UAV
research, development, and testing over the whole 3-year-long period.

2. Related work
The state of the art in rescue robotics is coherently summarized in the survey (Delmerico et al., 2019),
which concerns both hardware and software. On the hardware side, different robot morphologies,
locomotion types, and platform designs are categorized. Regarding software, the survey concerns
perception and control algorithms. The authors interviewed experts on disaster response and
humanitarian aid to understand the situation and needs of rescuers.

Here, we provide an overview of the solutions for perception in adverse conditions of the
underground environments, methods of localization and mapping for precise and reliable navigation,
and techniques for safe traversal of narrow corridors. A summary of systems deployed in previous
circuits of DARPA SubT follows. Finally, relevant datasets are referenced in order to prompt further
research effort in the S&R area.

2.1. Degraded sensing
Perception in subterranean environments faces constant degradation of the sensor outputs due to
the harsh conditions of such places. The underground climate is often filled with impervious dust
(particularly in mines), where any movement agitates the settled layer of fine dirt and mineral
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particles. On the other hand, caves are typically humid ecosystems, where dense mud replaces the
dust layer found in mines. However, the elevated humidity forms droplets of fog, which corrupt the
measurements of most visible or Near Infrared (NIR) light-based sensor modalities, and also causes
frequent reflections on wet surfaces. Radars can reliably penetrate smoke, dust, and fog, and after
postprocessing using, e.g., Generative Adversarial Networks (GANs) (Goodfellow et al., 2014), a 2D
occupancy grid for navigation (Lu et al., 2020) can be constructed. Another reliable sensing modality
for when images from color (RGB) cameras are polluted by dust or fog is thermal imaging, which,
in (Khattak et al., 2019), is used for the localization of robots in areas with airborne obscurants.
Our approach goes beyond these works by employing intensity-based filtering of the Light Detection
and Ranging (LiDAR) data, and thus no additional sensors are necessary even in dense clouds
of dust.

2.2. Localization and mapping
Recent developments in S&R robotics sparked the research of more precise local pose estimation
algorithms (also referred to as odometry), as well as long-term globally consistent trajectory and
multirobot map fusion of all agents of the robotic team. The state-of-the-art methods were published
in (Cadena et al., 2016), where the challenges and future direction of the Simultaneous Localization
and Mapping (SLAM) development are also identified. The demands on low control error and
robustness to degraded sensor data in the narrow subterranean environments present in the DARPA
SubT pushed all contesting teams to either adapt and improve an existing method to be usable in
the extreme conditions, or to develop a new SLAM tailored to this specific domain. SLAM methods
used by the teams in the Final Event are summarized in (Ebadi et al., 2022) along with expert
opinions about the present maturity and future outlook of the field.

Team CoSTAR developed a LiDAR odometry solution (Palieri et al., 2020) based on Generalized
Iterative Closest Point (GICP) matching of LiDAR scans with initialization from Inertial Measure-
ment Unit (IMU) and wheel odometry, including the possibility of extension to other odometry
sources, such as Visual-Inertial Odometry (VIO). The method is shown to outperform state-of-the-
art localization methods on the datasets from Tunnel and Urban circuits. An ablation study presents
the influence of individual components on the total Absolute Position Error (APE). The second
improved version (Reinke et al., 2022), which was released as open-source is less computationally
demanding, less memory intensive, and more robust to sensor failures. All presented experiments
are conducted with ground robots. The localization of aerial vehicles is handled by a resilient HeRo
state estimation system (Santamaria-Navarro et al., 2019). The state estimation stack considers
heterogeneity and redundancy in both sensing and state estimation algorithms in order to ensure safe
operation, even under the failure of some modules. Failures are detected by performing confidence
tests on both data and algorithm health. If a check does not pass successfully, the resiliency logic
switches to the algorithm with the best confidence, similar to our previous solution published
in (Baca et al., 2021). The local odometry of (Palieri et al., 2020; Santamaria-Navarro et al., 2019)
is accompanied by loop closure detection and pose graph optimization locally on each robot, as
well as globally on the base station. This optimizes the trajectories of all robots for a multirobot
centralized SLAM solution (Ebadi et al., 2020). After improving the performance of the multirobot
loop closure generation and pose estimation, especially in large-scale underground environments, the
solution was open-sourced (Chang et al., 2022) and released together with a multirobot dataset from
the subterranean environment. A technique for loop closure prioritization (Denniston et al., 2022)
improves the Absolute Trajectory Error (ATE) of the multirobot SLAM by prioritizing loop closures
based on observability, graph information, and Received Signal Strength Indicator (RSSI) criteria.
A decentralized SLAM solution for UAVs (Lajoie et al., 2020) performs distributed outlier-resilient
pose graph optimization when another agent is within communication range. This method can be
used with either a stereo camera or a LiDAR, and is evaluated on a dataset from the Tunnel Circuit.

The long, featureless corridors that are often present in man-made tunnels lead to unobservability
of the motion along the degenerate direction, which leads to significant drift. Promising approaches,
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such as (Shan et al., 2020; Xu et al., 2022), constrain the solution of the optimization problem using
the preintegrated IMU measurements. This helps to reduce the localization drift under unfavorable
environmental geometry. Nevertheless, the vibrations induced by spinning propellers degrade the
inertial measurements, and can thus negatively affect the localization precision. Approaches, such
as those seen in (Ebadi et al., 2021), detect the geometrical degeneracy using the ratio of the most
observable and the least observable directions. This ratio is then used to determine loop closure
candidates to reduce the drift along the degenerate direction. Similarly, (Zhang et al., 2016) handles
environment degeneracy in state estimation by not updating the solution in detected degenerate
directions. Another possibility is to combine the 3D LiDAR method with a direct visual odometry
method [e.g., (Alismail et al., 2016)], which tracks image patches by minimizing the photometric
error. This approach, which is shown in (Shin et al., 2020), has the advantage over feature-based
methods like that of (Zhang and Singh, 2015) in that it provides low drift, even when salient image
and geometric features are lacking. The disadvantage is that localization performance is worsened
when whirling dust is present in the camera image, as reported in (Petrlik et al., 2020).

Team CERBERUS developed a complementary multimodal sensor fusion (Khattak et al., 2020).
The odometry estimated by visual/thermal inertial odometry is used as a prior for LiDAR scan-
to-scan and scan-to-map matching. The VIO/TIO priors constrain the scan matching optimization
problem, thus reducing drift in a degenerate environment significantly, which is demonstrated in an
experiment conducted in a self-similar environment.

Another multimodal approach is the Super Odometry (Zhao et al., 2021) of team Explorer,
which was deployed on aerial robots in the tunnel and urban circuits of DARPA SubT. The core
of the method is the IMU odometry with biases constrained by VIO and LiDAR-Inertial Odometry
(LIO), which are initialized with preintegrated inertial measurements of the constrained IMU. The
relative pose factors of VIO and LIO are weighted based on the visual and geometrical degradation,
respectively.

Team MARBLE first relied on visual SLAM (Kramer et al., 2021), but after Subterranean
Integration Exercise (STIX), they transitioned to the LiDAR-based Cartographer (Hess et al.,
2016) due to unstable tracking of motion under poor illumination, reflections, dust, and other visual
degradation.

Wildcat SLAM (Hudson et al., 2022) of the CSIRO Data61 team is a multiagent decentralized
solution, where each agent computes a global map using the currently available data shared among
the robots. The odometry of each agent is based on the work of (Bosse et al., 2012).

Our approach is similar to the other teams’ as we also use primarily LiDAR for localization and
mapping. An improvement over the state of the art is the compensation of the delay (Pritzl et al.,
2022a) caused by the LiDAR scan processing and the delay of the localization itself.

2.3. Mobility
Deploying aerial robots has one great advantage over ground robots due to their full terrain
traversability. A UAV can fly over terrain that would compromise the safety of an UGV, e.g., steep
decline, mud, water, etc. This allows to neglect the traversability problem necessarily tackled in
solutions to UGV navigation (Fan et al., 2021), as the only movement constraint of aerial platforms
flying through an enclosed environment is the minimum size of a passage that the robot can safely
pass through. The dimensions of such passages depend largely on the size of the UAV, but also
on the precision of the pose estimation, the control error of onboard regulators, the map quality,
and the reactive behavior in close vicinity of obstacles. Some platforms also tolerate contact with
obstacles in the sense that the contact does not endanger the continuation of the mission (Huang
et al., 2019). Other types of platforms adapt their morphology and/or locomotion modality to their
current surroundings and obstacles (Fabris et al., 2021). In voxel-based map representations, the
size of a narrow passage is represented too conservatively, i.e., the size of the narrow passage in the
voxel map is the lower bound of the true size. However, in practice, the narrow passage can be up
to twice the map resolution larger than its voxel representation, which prevents traversing passages
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that are well within the physical limits of the UAV. To better approximate the true shape of the
narrow passage, (O’Meadhra et al., 2018) propose continuous representation based on Gaussian
Mixture Models (GMM) (Reynolds, 2009), which is converted to a voxel map of arbitrary resolution
when queried. However, the information about the exact structure of the environment is lost due to
the approximation by Gaussian distribution. We took another approach of locally increasing the
resolution of the occupancy voxel map when the size of the environment requires it, which preserves
all details.

To fully exploit the capabilities of UAV’s full terrain traversability, the path planning and
trajectory generation algorithms have to work with a full 3D representation of the environment
and fulfil the real-time requirements. Although several excellent works on planning in constrained
environments were recently published (Zhou et al., 2021a; Tordesillas et al., 2022), they focus
primarily on generating fast trajectories while the presented application requires maximizing the
reliability of the system in the presence of uncertainties imposed by a harsh dynamic environment.
In addition, deploying the planning algorithm as part of the complex system running on board UAV
with limited computational resources motivates the use of computationally undemanding algorithms.
Similarly to team Explorer (Scherer et al., 2022), we make use of a multistage approach consisting
of extensively validated computationally undemanding algorithms well-integrated into presented
system (Baca et al., 2021; Kratky et al., 2021a).

2.4. DARPA SubT approaches
This paper primarily focuses on the approach developed for and experimentally verified in the Final
Event of DARPA SubT. As mentioned, these results are built upon the experience in using the
approaches developed for the tunnel and urban circuits. The practical verification of the developed
solutions in challenging environments justifies the robustness of these algorithms. Valuable insights
on the future of S&R robotics can be drawn from lessons learned by the teams.

Team CoSTAR relied on their uncertainty-aware framework, NeBula, in the tunnel and urban
circuits (Agha et al., 2021). The framework supports multimodal perception and localization
including radar, sonar, and thermal cameras. Aerial robots were part of their heterogeneous team
in STIX and the tunnel circuit, mainly for exploring areas inaccessible to ground robots and data
muling with distributed data sharing (Ginting et al., 2021; Saboia et al., 2022). A reactive autonomy
approach COMPRA (Lindqvist et al., 2021) was also proposed for UAV underground S&R missions.
Their solution gained 2nd and 1st place in the tunnel and urban circuits respectively.

Team Explorer developed a system (Scherer et al., 2022) that achieved 1st place in the tunnel
circuit and 2nd place in the urban circuit. Their collision-tolerant platform “DS” with flight time
of 13 min was carried on top of a UGV and could be launched by the operator when needed.
The authors identified the challenge of combined exploration and coverage problem when their
UAVs with limited camera Field Of View (FOV) missed some artifacts along their flight path. The
frontier-based exploration pipeline used a custom OpenVDB mapping structure (Museth, 2013) for
sampling frontier-clearing viewpoints. Paths to found viewpoints were planned using bidirectional
RRT-Connect.

Team CERBERUS deployed legged ANYMAL robots and aerial DJI Matrice M100 robots
in the tunnel circuit. Their graph-based system for the autonomous exploration of subterranean
environments called GBPlanner was deployed in multiple locations. The exploration of Edgar mine
during STIX and the National Institute for Occupational Safety & Health (NIOSH) mine during the
tunnel circuit are documented in (Dang et al., 2020b). Specifically, the exploration method for aerial
robots (Dang et al., 2019a) consists of a local fast-response layer for planning short collision-free
paths and a global layer that steers the exploration towards unvisited parts of the map. This method
is part of the solution for underground search by aerial robots found in (Dang et al., 2020a). A
mapping and navigation approach (Papachristos et al., 2019a) for autonomous aerial robots based
on the next-best-view planner (Papachristos et al., 2017; Bircher et al., 2016) was also proposed,
but was later outperformed by the GBPlanner (Dang et al., 2020b). The uncertainty in localization
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and mapping is taken into account during the planning in (Papachristos et al., 2019b) in such a way
that among all trajectories arriving to the reference waypoint, the one that minimizes the expected
localization and mapping uncertainty is selected. To unify the exploration framework across both
legged and aerial platforms, (Kulkarni et al., 2021) have revised (Dang et al., 2020b) and added a
cooperation framework that identifies global frontiers in a global graph built from the sub-maps of
individual robots. The unified strategy for subterranean exploration using legged and aerial robots
in tunnel and urban circuits is presented in (Tranzatto et al., 2022b). Team CERBERUS won in
the Systems Track of the Final Event and (Tranzatto et al., 2022a) describes their approach that
led to this success.

Team MARBLE presents their system deployed to STIX, the tunnel circuit, and the urban circuit
in (Ohradzansky et al., 2021). The aerial robots relied on direct vision-based local reactive control
and map-based global path planning. Global path planning is common with ground and aerial robots.
Viewpoints are selected based on the frontier voxels covered by the camera FOV and the approximate
travel time. In the tunnel circuit, the local reactive control generates velocity commands by steering
the UAV towards a look-ahead point from the global path, while being repulsed by nearby obstacles.
With this planner, traversing narrow passages was problematic due to noise in the depth image.
Thus a new planner was developed for the urban circuit based on voxel-based probabilistic tracking
of obstacles (Ahmad et al., 2021). In the Systems Track of the Final Event, team MARBLE gained
3rd place.

A heterogeneous team of robots including UAVs was also deployed by team CSIRO Data61 (Hud-
son et al., 2022), both in the tunnel and urban circuits. The aerial part of the team consisted
of a DJI M210 equipped with the commercially available payload of Emesent Hovermap, and a
custom gimballed camera. To explore the environment of the urban circuit, the autonomy utilized
an approach based on the direct point cloud visibility (Williams et al., 2020). Team CSIRO Data61
achieved 2nd place in the Systems Track of the Final Event.

Although team NCTU did not participate in the Final Event, their solution (Chen-Lung et al.,
2022) to the tunnel and urban circuit showcased originality in the form of autonomous visually
localized blimps (Huang et al., 2019). Their navigation was based on policies learned by deep
reinforcement learning with simulation-to-world transfer.

Our CTU-CRAS-NORLAB team first participated in the STIX event with a hexarotor platform
localized by optic flow (Walter et al., 2018) of the downward-facing camera. The reactive navi-
gation used LiDAR scans to stay in the middle of the tunnel and move forward in a preferred
direction at an intersection. The predictive controller (Baca et al., 2016) was forgiving to imprecise
localization caused by strenuous optic flow estimation in the whirling dust of the tunnels. The
heterogeneous team that secured 3rd place in the tunnel circuit (Roucek et al., 2019) consisted
of wheeled, tracked, and aerial robots with different sensor payloads. Instead of unreliable optic
flow, the localization of the UAV system (Petrlik et al., 2020) was revamped to rely on 2D LiDAR,
HectorSLAM (Kohlbrecher et al., 2011), and state estimation (Petrlik et al., 2021). The hardware
platform was also downscaled to a 450 mm diameter quadrotor. The vertical element of the urban
circuit called for upgrading the LiDAR to a 3D one, which consequently required a redesign of the
whole navigation pipeline (Kratky et al., 2021a) to allow for six Degrees of Freedom (DOF) mobility
through the 3D environment. Physically, the platform was based on the same frame as what was
used in the tunnel circuit, however prop guards were added to reduce the chance of destructive
collision while flying through doors. The CTU-CRAS-NORLAB approach to the urban circuit,
which we completed in 3rd place, is described in (Roucek et al., 2020). Although the cave circuit
was canceled, extensive preparations were still performed in the sizable Bull Rock cave in South
Moravia (Petracek et al., 2021). The exploration depth of the UAV team was greatly extended by a
multirobot coordinated homing strategy that focused on extending the communication range of the
base station by landing the returning UAVs on the edge of the signal. Based on the lessons learned
during these competition and testing deployments (during the 3 years of development UAVs of the
CTU-CRAS-NORLAB team achieved > 400 flights and traveled > 50 km in demanding real world
environments) the new approaches presented in this paper were designed.
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2.5. Datasets
Due to the challenging nature of the subterranean environments, such as narrow passages, degenerate
geometry, and perception degradation, datasets that were collected by the competing teams are
valuable to the community as the algorithms can be evaluated on demanding data degraded by the
previously mentioned issues. In contrast to the verification often conducted under artificially ideal
lab conditions, these datasets present a fair way to compare algorithms in realistic conditions. A
SLAM dataset (Rogers et al., 2020a) collected during the tunnel circuit and STIX consists of LiDAR
scans, images from a stereo camera and thermal camera, IMU measurements, and RSSI, together
with a professionally surveyed ground truth map and measured artifact positions. The dataset from
the urban circuit (Rogers et al., 2020b) was recorded using the same sensors with the exception of
an added carbon dioxide (CO2) sensor and the lack of a thermal camera. Data from sensors used
for autonomous navigation including color-depth (RGBD) camera, event camera, thermal camera,
2D and 3D LiDARs, IMU, and Ultra-Wide Band (UWB) positioning systems were collected (Koval
et al., 2022) by a mobile robotic platform moving through a subterranean environment. Another
dataset (Kasper et al., 2019) for comparison of VIO methods contains outdoor, indoor, tunnel, and
mine sequences, with ground truth poses obtained by laser tracking the sensors rig. Aerial datasets
consisting of unsynchronized LiDAR scans and IMU measurements from UAVs flying in the cave,
tunnel, and mine environments are included in this paper,1 with ground truth poses estimated using
a professionally surveyed ground truth map. We also publish the labeled visual detection datasets2

consisting of images from both UAV and UGV cameras that were used for training of the artifact
detection Convolutional Neural Network (CNN). Images from the Tunnel and Urban circuits, Bull
Rock Cave, and industrial buildings are included.

3. Contributions
An approach for cooperative exploration of demanding subterranean environments by a team of
fully autonomous UAVs in S&R tasks is presented in this paper. Deployment of this approach in
the DARPA SubT virtual competition was awarded by 2nd place. The simulation model of the UAV
platform designed by our team was used by seven out of nine teams. The crucial contributions of
the developed system can be summarized in the following list:

• A complex approach that can serve as a guide for building a system for Global
Navigation Satellite System (GNSS)-denied operations. The proposed approach was
extensively verified in numerous simulated worlds and real physical environments ranging from
vast caves, industrial buildings, tunnels, and mines to large outdoor openings. Most importantly,
the UAVs were deployed into the intentionally harsh conditions of the DARPA SubT to push
them to their limits. The experience gained from hundreds of flights in such conditions are
condensed into the lessons learned presented in this paper, which we deem valuable for the
field robotics community.

• Novel mapping structures are proposed for safety-aware reactive planning over large
distances, for compact volumetric inter-robot information sharing, for storing coverage of
surfaces by onboard sensors, and for finding a suitable landing spot.

• Maximization of the probability of detecting a nearby artifact by searching not only
the unexplored space, but also visually covering known surfaces while respecting the limited
field of view of the onboard sensors. The detection is coupled with probabilistic estimation of
artifact positions based on multitarget tracking and detection-to-hypothesis association, which
improves the precision of artifact localization while the robot is moving around the artifact.

• A novel safety-aware approach to planning that considers the risk of planned trajectories
in addition to the path length in the optimized cost function. In contrast to the state-of-the-art

1 github.com/ctu-mrs/slam_datasets
2 github.com/ctu-mrs/vision_datasets
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Figure 4. The diagram shows individual modules of the UAV system architecture (as deployed on the hardware
platform) grouped into logical categories. Hardware modules are filled with gray, and red distinguishes open source
modules not developed by us. The modules marked by dashed lines were used only in Systems Track but not in
Virtual Track.

methods, longer paths are selected if the estimated risk of collision is lower than the risk of a
shorter path.

• Full autonomy of the UAV allows for scalability of the size of the deployed fleet without
placing additional workload on the operator. Nevertheless, the operator can override the
autonomy with one of the available special commands to change the default search behavior
when the UAV is in communication range.

• The multirobot autonomous search benefits from a higher number of deployed UAVs that
share their topological representations of the environment to cooperatively cover a larger area
by biasing the search towards parts unvisited by other agents.

4. System architecture overview
The whole autonomous system of a single UAV consists of software modules, each with different
inputs, outputs, and purpose. These modules and their interconnections are depicted in Figure 4
with the individual modules grouped into more general logical categories. The first category includes
the physical Sensors (Section 5) of the UAV—the IMU, LiDAR, RGB, and RGBD cameras. The
description of the important parameters of the used sensors is available in Section 12. Measurements
from IMU and LiDAR enter the Localization group (Section 6), where a full-state estimate of the
UAV is obtained. LiDAR is also used in combination with the RGBD camera for building maps in
the Mapping module group (Section 7). The Perception (Section 10) category focuses on detection
and localization of artifacts using all the available sensor data.

Autonomous search through the environment is governed by the Mission control category (Sec-
tion 11), which selects goals (Section 8) based on the current state of the state machine, models of
the environment from the Mapping group, and possibly also commands from the operator. A coarse
path consisting of waypoints to the selected goals is found by the Navigation (Section 9.1) and
further refined and time-parametrized in the Planning modules (Section 9) in order to produce
a safe and dynamically feasible trajectory. The Control blocks (Baca et al., 2021) track the
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trajectory and generate attitude rate references for the low-level Autopilot that controls the actuators
(Section 12).

The operator receives crucial mission status data, topological maps, and, most importantly,
detected artifacts through the Communication layer (Roucek et al., 2020). This also allows the
operator to influence or override the autonomous behavior of the UAV. All transmitted data are
received by other UAVs (or other robots, in the case of a heterogeneous team) in the communication
range, which serves two purposes: one, the receiving agent can propagate the message further down
the network, and, two, the topological maps allow penalizing goals already visited by other robots
to better allocate resources over a large area.

5. Spatial perception
The equipment on board UAV platforms within our research group is modular and replaceable to
support a wide spectrum of research areas (Hert et al., 2022). In the proposed system for agile
subterranean navigation, however, the aerial platform is fixed to ease fine-tuning of the on-board-
running algorithms. From the point of perception, it relies heavily on 3D LiDAR from Ouster
(SLAM, dense mapping, and artifact localization), and utilizes vertically oriented RGBD cameras
for filling space out of FOV of the primary LiDAR sensor, and uses two RGB Basler cameras for
artifact detection, supported by powerful LEDs illuminating the scene. The flow of sensory data
within the entire system are shown directly in Figure 4.

5.1. Sensors calibration
The intrinsics of LiDAR sensor and RGBD cameras are factory-calibrated whilst monocular RGB
cameras are calibrated with standard OpenCV calibration tools, assuming the pinhole camera model.
The extrinsics of the sensors (cameras-to-LiDAR and LiDAR to the flight control unit) are given
by the CAD model of the robot. To mitigate the effects of inaccuracies in 3D printing, modeling,
and assembly, all the camera-to-LiDAR extrinsics are fine-calibrated using a checkerboard camera
calibration pattern with known dimensions. The fine-calibration pipeline detects the pattern in
both modalities (LiDAR data and RGB image), finds mutual correspondences, and estimates the
extrinsics by defining the problem as perspective-n-point optimization minimizing the reprojection
error of the mutual correspondences with Levenberg-Marquardt method.

5.2. Filtering observation noise
The aerodynamic influence of a multirotor UAV on the environment is not negligible, particularly in
confined settings. The fast-rotating propellers generate airflow lifting up light particles of dust and
whirling them up in clouds. In environments where the clouds are not blown away but are rather
rebounded back to the UAV, the effect on sensory performance might be crippling. To minimize
deterioration in perception and its dependent systems (e.g., mapping, localization), the incident
noise is filtered out from local LiDAR data.

The idea of robust filtering of dust is based on the method presented in (Kratky et al., 2021a)
in which LiDAR data are sorted by the intensity field (measured intensity of the reflected light for
a given point) and 10 % of the lowest-intensity data in a local radius from the sensor are removed.
In contrast to the baseline method, simpler thresholding is adopted such that a subset PF ⊆ P of
LiDAR data P is preserved. The absence of data sorting lowers the computational load and reduces
delay in data processing. The set is given as PF = PD ∪ PI , where

PD = {p | ‖p‖ ≥ κ, p ∈ P} , (1)
PI = {p | I(p) > Υ, p ∈ P \ PD} . (2)

I(p)
(
W m−2)

is the intensity of the reflected light from a point p, κ (m) is a local radius of a filtering
sphere with LiDAR data origin at its center, and Υ

(
W m−2)

is the minimal intensity of preserved
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(a) Dense cloud dust around
the UAV as viewed in onboard
RGB camera at time 330 s.
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(b) Top view on the UAV trajectory.
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(c) Performance of noise classification in
LiDAR data in 3 m local radius from the
sensor. Average recall reached 99 %.

Figure 5. LiDAR-data noise filtration running onboard a UAV during a 154 m flight in the mine part (the dustiest
part) of the DARPA SubT finals environment. The true positive classification in (c) denotes the ratio of correctly
classified noise whereas the false negative represents the ratio of noise preserved after the filtration process (i.e.,
the unfiltered noise) to the size of the point cloud. The data for the classification analysis (c) were obtained by
spatially comparing the sensor measurements with the map of the environment provided by the organizers.

data points. With n data points within a radius κ, the computational complexity is reduced to
O (n) from baseline O (n log(n)). Although to achieve optimal performance the method requires
calibration to given environmental conditions, a set of reasonable parameters (κ = 5 m and Υ =
30 W m−2 throughout many of our real-world deployments in the harshest dust conditions) suffices
in the majority of applications. The performance of the dust filtering is analyzed in Figure 5 on an
example UAV flight in the mine part (the dustiest zone) of the DARPA SubT finals environment.

The above method is utilizable only for sensory data containing information about the intensity
of the reflected light. The rest of the sensors (RGBD cameras) are not processed, but their fusion
and utilization are controlled by the amount of filtered noise in the primary LiDAR. Having the
cardinality of the point sets defined in (2), the estimated amount of noise can be represented as

rd = 1 − |PI |
|P \ PD| , (3)

where rd ∈ 〈0, 1〉 is the ratio of the filtered-out observations to all the observations within the local
radius κ. The RGBD cameras are then classified as unreliable (and not used in mapping or for
detecting landing feasibility, as marked in Figure 4) if

rd > λd, (4)

where λd ∈ 〈0, 1〉 is a unitless user-specified threshold. The lower value of λd the less amount of noise
is integrated into mapping, while greater λd lets the connected modules handle the noise themselves.
We empirically set the threshold high to λd = 0.4 in our final setup, since our probabilistic mapping
pipeline is quite robust to the stochastic noise.

5.2.1. Detecting artificial fog in the virtual environment
The virtual competition contained a fog emitter plugin (see Figure 6) to mimic environmental
perception degradation arising from observing smoke, dust, and fog. The plugin spawned a fog
cloud when a robot reached the proximity of the emitter. Although our localization pipeline was
able to cope with local noise, the inability to filter out the fog particles in a robust way led to
a degradation of the local DenseMap, and consequently to blocking local planning which respects
strict requirements on collision-free path planning. Thus, in our setup for the virtual challenge, the
navigation stack did not try to enter through the fog areas but detected them, maneuvered out of
them, and blocked the areas for global planning.

To detect the presence of the UAV within such a fog cloud, a discretized occupancy voxel grid is
built from a set of data within a local radius (example data within a radius are shown in Figure 6c).
Within this radius is compared the occupancy ratio r (number of occupied voxels to all voxels in
the local grid) with maximum occupancy R given by the field of view of the sensor producing the
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(a) Visualization of virtual fog in
Ignition Gazebo.

(b) Example 3D LiDAR data outside
fog.

(c) Example 3D LiDAR data inside
fog (fog colored locally in red).

Figure 6. Simulated fog and its effect on sensory perception in the virtual environment. A fog cloud (a) spawns
when a robot reaches its proximity. The cloud then affects the sensory inputs such that a uniform-distribution
noise emerges in LiDAR data corresponding to the fog (c).

data. For each LiDAR or depth sensor, the sensor is classified as being in fog if

rf > λf R, (5)

where λf ∈ 〈0, 1〉 is a unitless multiplier converting λf R to a maximal occupancy ratio threshold.
The multiplier was set empirically to λf = 0.7 in our final setup.

For depth cameras that are not used for self-localization of the UAV, the in-fog classification
solely controls whether the depth data are integrated within the mapping pipeline. However, if a
localization-crucial 3D LiDAR is classified to be in fog, a backtracking behavior is triggered within
the mission supervisor (see Section 11). The primary purpose of the backtracking is to prevent
being stuck in fog and thus the UAV is blindly navigated out of the fog through the recent history
of collision-free poses, ignoring occupied cells in the DenseMap (including possible noise from fog
measurements). Lastly, detection of fog in a 3D LiDAR blocks the area in global planning.

5.3. Detecting spots safe for landing
For purposes of artifact detection and spatial mapping, the UAV carries a downward-facing RGBD
camera, shown in Figure 7a. Apart from mapping the space below the UAV, the depth data of
this camera are used in locating areas safe for landing throughout the UAV flight. If the sensor is
marked as reliable according to (4), its depth-data frames are continuously fitted with a plane model
whose coefficients are used in the binary classification of safe or unsafe landability respecting the
plane-fit quality and deviation of its normal vector from the gravitational vector. The process of
deciding on safe landability given a single depth-data frame is visualized in Figure 7 and described
in Algorithm 1. The classification assumes that the data frame can be transformed into a gravity-
aligned world coordinate frame. Inputs to Algorithm 1 are the square size of safe landing spots
s (m), the minimal ratio of inliers in RANSAC plane fitting Imin ∈ 〈0, 1〉, and the minimal z-axis
component of unit plane-normal vector Nz

min ∈ 〈0, 1〉. The square size s specifies the width of an
area on which a UAV can land safely. Selection of s constraints the minimal height above the ground
in which a safe landing spot detection may occur. Having a sensor with the minimal field of view
θmin observing an even planar surface, the condition on line 12 in Algorithm 1 will be true for
distance of the camera from the surface d > dmin, where

dmin = s

2 tan
(

θmin
2

) . (6)

The maximal distance dmax is then given by the maximal range of the sensor. In our setup, we
utilized Realsense D435 camera with θmin = 58◦ and set s = 1.2 m to be marginally greater than the
dimensions of our UAV platform (approximately 0.8 m wide). According to (6), the given parameters
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Algorithm 1. Detecting spots safe for UAV landing in downward-facing RGBD camera.
1: Input:
2: D ⊲ Depth-data frame in sensor coordinate frame
3: Output:
4: L ⊲ Binary classification for landing: {SAFE, UNSAFE}

5: pW ⊲ Position of landing area in the world coordinate frame
6: Parameters:
7: s ⊲ Square-size of safe landing spot in meters
8: Imin ⊲ Minimal ratio of inliers in plane fitting
9: Nz

min ⊲ Minimal z-axis component of the normalized plane-normal vector
10: Begin:
11: S := cropFrameAtCenter (D, s ) ⊲ Crop frame-centered square with size s
12: if height (S) < s or width (S) < s then
13: return: {L = UNSAFE, pW = N/A} ⊲ Not safe to land: too close to the ground to decide
14: P := fitPlaneWithRANSAC (S) ⊲ Fit data with plane using RANSAC
15: if inliers (P ) / count (S) < Imin then
16: return: {L = UNSAFE, pW = N/A} ⊲ Not safe to land: data are not planar
17: PW := transformToWorldFrame (P ) ⊲ Transform plane to gravity-aligned frame
18: if |normal (PW ) .z | < Nz

min then
19: return: {L = UNSAFE, pW = N/A} ⊲ Not safe to land: ground is too steep for landing
20: SW := transformToWorldFrame (S)
21: pW := centroid (SW ) ⊲ Express landing spot as the centroid of the depth data in the world
22: return: {L = SAFE, pW }

Realsense D435 camera

(a) Downward-facing RGBD cam-
era used for landability detection
mounted on our UAV platform.

(b) Even planar sur-
face: safe for landing.

(c) Nonplanar surface
(rails): unsafe for land-
ing.

(d) Uneven surface: un-
safe for landing.

Figure 7. Deciding on landability of a UAV from downward-facing depth data—binary classification to safe (b)
and unsafe [(c) and (d)] landing areas. In [(b)–(d)], the UAV is represented by Cartesian axes whereas the depth
data are colored in black. The blue sphere in the safe classification (b) denotes the centroid of the plane inliers
(colored in green) passed as a feasible landing position to LandMap (see Section 7.5).

yield the minimal distance of the sensor from the ground in detecting the landability to dmin =
1.08 m, with dmax = 10 m specified by the manufacturer. If the input data frame D contain noise
with nonplanar distribution, the condition on line 15 will classify the data as unsafe. The plane-fit
and landability classification parameters Imin = 0.9 and Nz

min = 0.7 were found empirically for
the given sensory setup. Positions classified as safe for landing on line 21 are passed to LandMap
described in Section 7.5.

6. Localization
Accurate and reliable localization is critical for most other parts of the system. The ability of
the reference controller to track the desired state depends largely on the quality of the available
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Table 2. Approximate distribution of the environ-
ment cross-section as announced by the organizers
before the Final Event.
Cross-section (m2) Distribution
<5 65%
5-100 20%
>100 15%

Figure 8. The diagram shows the flow of data among individual localization modules for the Systems Track
(left) and Virtual Track (right). The 3D LiDAR supplies A-LOAM or LIO-SAM with the laser scans in the point
cloud form P. Assisted by the orientation R from the IMU, A-LOAM produces a position estimate r = [x , y, z ]T
that is fed into the State estimation block, which outputs the full state estimate. In the case of the virtual pipeline,
the IMU data fusion is executed in LIO-SAM, and thus the state estimation module is not needed thanks to the
sufficient accuracy of both lateral and heading components.

state estimate. In the narrow environments which are often present in subterranean environments
(see Table 2 for cross-section distribution in the Final Event), minimizing the control error is crucial
to avoid collisions. Multirobot cooperation assumes the consistency of maps created by individual
robots. If the maps of two robots are not consistent due to errors in localization, the multirobot
search might be suboptimal. For example, an unvisited goal can be rejected as already reached by
a robot with an inconsistent map. Moreover, the localization accuracy influences the position error
of a reported artifact. A UAV with localization drift over 5 m can detect and perfectly estimate the
position of an artifact. Nevertheless, the report may never score a point since the position of the
UAV itself is incorrect.

Our approach relies on a LiDAR sensor for localization as the laser technology proved to be more
robust to the harsh conditions of the subterranean environment than the vision-based methods. We
have been using LiDAR since the Tunnel circuit (Petrlik et al., 2020) where a lightweight 2D LiDAR
aided by a rangefinder for measuring above ground level (AGL) height was sufficient for navigation
in tunnels with a rectangular cross-section. The more vertical environment of the urban circuit
required redesigning the localization system to use 3D LiDAR for navigating in 3D space (Kratky
et al., 2021a).

The localization system deployed in the Final Event and presented in this manuscript builds upon
the solution proposed in (Kratky et al., 2021a) and is divided into two modules: the localization
algorithm and the state estimation method. Figure 8 shows the data flow in the localization pipeline.
We have based the localization on the A-LOAM implementation of the LiDAR Odometry and
Mapping (LOAM) algorithm (Zhang and Singh, 2014) for the Systems Track and the LiDAR
Inertial Odometry via Smoothing and Mapping (LIO-SAM) (Shan et al., 2020) for the Virtual
Track. Our implementation3 has been tested in a real-time UAV control pipeline throughout multiple
experimental deployments as part of our preliminary works (Kratky et al., 2021a; Petracek et al.,
2021) and in the DARPA SubT competition.

3 github.com/ctu-mrs/aloam

Field Robotics, January, 2023 · 3:1–68

71



UAVs beneath the surface: Cooperative autonomy for subterranean search and rescue in DARPA SubT · 17

6.1. A-LOAM
The A-LOAM implementation of the LOAM (Zhang and Singh, 2014) algorithm utilizes the laser
scans from a multiline LiDAR to obtain its 6-DOF pose. To achieve real-time performance and
accurate pose estimation at the same time, the method is divided into two parts.

The first part of the algorithm processes the incoming data at the rate of their arrival and
estimates the rigid motion between the consecutive point clouds Pk and Pk+1 obtained at the
timestamps tk and tk+1, respectively. The process starts with finding geometric features in the
input point cloud Pk+1. The points are first sorted by the smoothness of their local neighborhood,
and then those which are the least and most smooth are selected as edge and planar features,
respectively. To achieve a more uniform distribution of features, the point cloud is divided into
regions of the same size, and each region can contain only a limited number of edge and planar
feature points. A point cannot be chosen as a feature point if there is already a feature point in its
local neighborhood. A correspondence is found in Pk for each edge/planar point from Pk+1. These
correspondences are then weighted by their inverse distance, and correspondences with the distance
larger than a threshold are discarded as outliers. Finally, the pose transform TL

k+1 between Pk+1
and Pk is found by applying the Levenberg-Marquardt method to align the correspondences.

The second part estimates the pose of the sensor in the map Mk, which is continuously built from
the feature points found by the first part of the algorithm. First, Pk+1 is projected into the map
coordinate system to obtain PW

k+1. Then, feature points are searched similarly to as is done in the
first part, with the difference being that 10 times more features are found. Their correspondences
are found in Mk, which is divided into cubes with 10 m edges. The correspondences are searched
for only in the cubes intersected by the PW

k+1 to keep the run-time bounded. The transform TW
k+1

between PW
k+1 and Mk is obtained with the same steps as in the first part. Due to the 10-times

greater amount of correspondences and search through a potentially larger map, this is a much
slower process than the first part.

Thanks to the combination of both parts, the algorithm outputs the pose estimate of the rate of
the LiDAR, with drift bounded by slower corrections that snap the pose to the map.

6.2. State estimation
For precise and collision-free navigation through a cluttered narrow environment, which typically
appears in subterranean S&R scenarios, the control stack requires a smooth and accurate state
estimate at a high rate (100 Hz). The State estimation module provides such an estimate through
the fusion of data from Advanced implementation of LOAM (A-LOAM) and IMU. It also does this
by applying filtering, rejection, and prediction techniques. We provide only a brief description of the
estimation process as it is not viewed as the primary contribution and has already been presented
in (Baca et al., 2021).

The state vector of the UAV is defined as x = [r, ṙ, r̈, R, Ṙ]T . The position r = [x, y, z]T , its
first two derivatives of ṙ and r̈, the orientation in the world frame R, and the angular velocities
Ṙ include all the dynamics required by other onboard algorithms. Even though the position r is
provided by the A-LOAM algorithm, the rate of the position updates is too low for the control loop.
Furthermore, the velocity and acceleration vector is not known, and must thus be estimated. A
Linear Kalman Filter (LKF) of a point mass model with position, velocity, and acceleration states
is employed to estimate the unknown variables at the desired rate.

While the IMU of the onboard autopilot provides the orientation R, the heading4 η is prone
to drift due to the bias of the gyroscopes in Micro-Electromechanical Systems (MEMS) IMUs. We
correct this drift in a standalone heading filter, which fuses Ṙ gyro measurements with A-LOAM

4 Heading is the angle between the heading vector and the first world axis. The heading vector is the direction of the
forward-facing body-fixed axis projected onto the plane formed by the horizontal axes of the world frame, as formally
defined in (Baca et al., 2021).
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Figure 9. The computation time of the most demanding parts of the A-LOAM algorithm is plotted with respect
to the time in the mission that was conducted in simulation. The total time is the sum of all three parts. The
darkest colors depict moving mean, the medium dark bands represent the moving standard deviation, and raw
data are shown by the lightest colors. The moving statistics are calculated over 1 s long time window. On average,
the feature extraction takes 1 ms, the laser odometry 19 ms, the map optimization 91 ms, and, in total, the pose
estimate is obtained in 111 ms.

Figure 10. The left time sequence shows the situation in the filter after the arrival of delayed correction zt0−τ at
time t0. The green arrows represent corrections applied at the correct time. The delayed zt0−τ would be fused at
t0 in a traditional filter, resulting in a suboptimal state estimate. However, thanks to the buffering of state and
correction history, it is fused into the correct state at time t0 − τ . The states after t0 − τ had to be recalculated
to reflect the correction zt0−τ , which is shown by the blue color in the right time sequence.

η corrections. Corrections from the magnetometer are not considered, due to the often-occurring
ferromagnetic materials and compounds in subterranean environments.

The processing of a large quantity of points from each scan and matching them into the map
takes 111 ms on average (see Figure 9 for run time analysis) for the onboard Central Processing
Unit (CPU). The empirical evaluation shows that the controller of the UAV becomes increasingly less
stable when the state estimate is delayed for more than 300 ms. To reduce the negative effect of the
delay on the control performance, we employ the time-varying delay compensation technique (Pritzl
et al., 2022a). We define the delay as τ = tTk+1 − tPk+1 , i.e., the time it took LOAM to compute
the pose transform after receiving the point cloud from LiDAR. The core of the method is a buffer
Qx containing the past states x〈t0−τmax,t0〉, and buffer Qz having the past corrections z〈t0−τmax,t0〉
of the filter. The length of the buffer is not fixed, but data older than the expected maximum delay
τmax are discarded to keep the buffer size bounded. When a new delayed measurement zt0−τ arrives
at time t0, it is applied as a correction to the state xt0−τ in Qx. The corrected state x̄t0−τ replaces
xt0−τ . All subsequent states x(t0−τ,t0〉 are discarded from Qx, and replaced by the states x̄(t0−τ,t0〉
propagated from x̄t0−τ , using regular prediction steps of the filter with all corrections from Qz.
Figure 10 visualizes the sequence of performed actions. Thus we acquire a time-delay compensated
state estimate which, when used in the feedback loop of the UAV controller, allows for stable flight
with a delay of up to 1 s. The effect that increasing the delay has on the control error is plotted
in Figure 11.

6.3. LIO-SAM
LIO-SAM (Shan et al., 2020), used in the Virtual Track approach, utilizes IMU integration on top
of dual factor-graph optimization. The first factor-graph optimization is similar to the A-LOAM
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Figure 11. The box plot shows the median with lower and upper quartiles of the control error with respect to
the delay of the position estimate used in the feedback loop. The data were obtained in simulation by artificially
increasing the delay of ground truth position in 50 ms increments. Without compensation, the system becomes
unstable after exceeding 300 ms delay, which results in oscillation-induced control error at 350 ms. The control
error for the longer delay is not shown, because the high amplitude of oscillations led to a collision of the UAV.
The highest delay with compensation is 1000 ms when the system has over a 5 cm control error, but is still stable.
The UAV stability is lost at 1050 ms delay.
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Figure 12. The performance of A-LOAM and LIO-SAM during a single flight within Finals Prize Round World
01 (see Figure 46) of the DARPA SubT virtual environment. A-LOAM does not fuse the inertial measurements
which assist LIO-SAM during LiDAR-scan matching in areas of the environment where such matching suffers
from geometric degeneration, in the context of solving optimization problems. The selected environment contains
a variety of narrow vertical passages where the performance of narrow-FOV LiDAR perception is limited, leading
to drift in the ego-motion estimation that is clearly visible in the A-LOAM method. The LIO-SAM method was
shown to achieve sufficient accuracy and low drift during long-term and arbitrary 3D navigation within a simulated
environment.

mapping pipeline as it first extracts geometrical features out of raw LiDAR data and registers them
to a feature map, with the motion prior given by the second optimization pipeline. The second
factor-graph optimization fuses the mapping output with IMU measurements and outputs fast
odometry used in the state estimation pipeline. The first graph is maintained consistently throughout
the run, whereas the second graph optimization is reset periodically to maintain real-time properties.

In a simulated environment, LIO-SAM yields greater accuracy than A-LOAM for its fusion of
inertial measurements with precisely modeled and known characteristics. A comparison of both
the methods within the simulated environment is summarized in Figure 12. In the real world,
the measurements of an IMU rigidly mounted on board a UAV contain a wide spectrum of large
stochastic noise. During empirical testing, the integration method in LIO-SAM was shown to not be
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(a) (b) (c) (d)

Figure 13. Top view of the used mapping structures from the intersection of the virtual Final Event map.
DenseMap (a) is used for short-distance planning, SphereMap (b) for safety-aware long-distance planning,
FacetMap (c) for storing surface coverage, and LTVMap (d) for compact topological information sharing among
robots.

robust towards the unfiltered noise while frequency-band and pass filters induced significant time
delays, destabilizing the pipeline completely. For the inability to accurately model the noise, real-
world laser-inertial fusion is done manually by smoothing over a short history of past measurements
(see Section 6.2).

7. Mapping
In this section, we present our approach to mapping the explored environments. As each task has spe-
cific requirements on the map properties, we designed multiple spatial representations, each of which
is structured for a particular task. In particular, DenseMap (Figure 13a) is utilized for short-distance
path planning; FacetMap (Figure 13b) for surface coverage tracking; SphereMap (Figure 13c) for
fast and safe long-distance path planning; lightweight topological-volumetric map (LTVMap) (Fig-
ure 13d) for compressed, topological, and mission-specific information sharing between robots in low
bandwidth areas; and LandMap (Figure 15) for representing feasible spots for safe UAV landing.
These maps and the methods for building them are presented in this section.

7.1. DenseMap
Local information of the UAV is combined within a dense map to serve as the basis for the entire
navigation stack, as described in (Kratky et al., 2021a). The map integrates information in a dense,
probabilistic manner using an efficient octree structure implemented within the OctoMap (Hornung
et al., 2013) library. During the map update, the data of each input modality producing spatial
measurements are used to update the map with respect to the pose estimate correlating to the
timestamp of the respective measurement. The data to be integrated are first cleared of any
observation noise (see Section 5). The ray of each remaining spatial measurement is integrated within
a discretized representation of the environment using the Bayes rule and ternary classification to the
unknown, free, and occupied voxels. The output of dense mapping is convertible to other navigation
representations and serves as the fundamental structure for local planning and dynamic obstacle
detection.

To retain maximum information under constraints on real-time performance, the voxelization
resolution is selected such that a scan insertion is processed at 5 Hz, at worst. The resolution can
be locally increased if path planning demands a decrease in discretization errors. This is a useful
feature for improving safety and repeatability in navigating highly narrow passages. To maintain
the map structure, the local resolution is controlled by a factor n such that the local resolution
equals r/2n with r being the default resolution of the dense map. In our sensory and computation
setup, the default resolution is empirically set to 20 cm, reduced by a factor of n = 2 to 5 cm
for navigating narrow passages, if required. The integrated data consist of LiDAR measurements
and depth estimates of two RGBD cameras. These sensors are mounted on-board UAVs so that
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the spatial observations cover roughly all directions around the robot, enabling almost arbitrary
UAV-motion planning in collision-free 3D space.

7.2. SphereMap
To enable the UAV to quickly evaluate the travel time and risk caused by flying near obstacles
while also pursuing any given goal, we developed a multilayer graph structure that uses volumetric
segmentation and path caching, called SphereMap (Musil et al., 2022). All three layers of the
SphereMap are updated near the UAV in every update iteration, which runs at approximately 2 Hz.

Path planning in the SphereMap depends on only one parameter cR, which we call risk avoidance.
It is used to trade path safety for path length. For long-distance planning, we disregard UAV
dynamics and only take into account the path length and obstacle clearance along the path. We
define the path cost between points p1 and p2 as

D(p1, p2) = L + cRR, (7)

where L is the path Euclidean length summed over all edges of the path in the sphere graph, and
R ∈ [0, L] is a risk value computed by examining the radii of the spheres along the path. For
example, a path with all spheres with radii at the minimal allowed distance from obstacles would
have R = L, and a path through open space with large sphere radii would have R = 0.

The lowest layer of the SphereMap is a graph of intersecting spheres, shown in Figure 13b. It is
constructed by filling the free space of an obstacle k-d tree built from the DenseMap with spheres
at randomly sampled points. The graph is continuously built out of intersecting spheres, and then
by pruning the spheres that become unsafe or redundant. The radii of the spheres carry obstacle
clearance information, which is used for path risk evaluation.

The second layer of the SphereMap is a graph of roughly convex segments of the sphere-graph.
It is updated after every update of the sphere graph by creating and merging segments until every
sphere in the graph belongs to a segment.

The third and last layer of the SphereMap is a navigation graph. For every two adjacent segments,
we store one sphere-sphere connection, which we call a portal between the segments, as in (Blochliger
et al., 2018). These portals form the vertices of the navigation graph. At the end of every SphereMap
update iteration, we compute which paths are optimal according to the path cost from (7) between
all pairs of portals of a given segment. The paths are computed only inside that given segment. If
the segments are kept small (tens of meters in length), the recomputation is reasonably fast. The
optimal portal-portal paths form the edges of the navigation graph. The UAV uses the navigation
graph to quickly find long-distance paths between any two points in the known space by planning
over the edges of the navigation graph, and then by only planning over the sphere graph in the first
and last segments of the path.

7.3. FacetMap
The occupancy octree and SphereMap maps are sufficient for volumetric exploration. However, the
goal of the DARPA SubT challenge was to locate artifacts, most of which could be detected only
from cameras. Because the FOV of our UAVs’ cameras did not cover the entire FOV of the LiDAR
and depth cameras, not all occupied voxels in the occupancy map could be considered as “covered
by cameras.” For this reason, we developed another map, called FacetMap, illustrated in Figure 14.
This map is a simple surfel map, with the facets stored in an octree structure, each having an
orientation, a coverage value, and a fixed size. The FacetMap is built by computing the normals of
the occupancy map at sampled occupied points, and creating facets with a set resolution if there
are no existing facets with a similar normal nearby. The facets are updated (i.e., added or deleted)
periodically at approximately 2 Hz in a cube of pre-defined size around the UAV.

Each facet holds a coverage value that is, for simplicity, defined as binary. A facet is marked
as covered if the facet center falls into the FOV of any camera, and the ray from the camera to
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Figure 14. Illustration of the FacetMap in simulation as described in Section 7.3. The map is built from
the DenseMap (left) by finding normals of sampled points. The orientation of the visualization discs (right) is
determined by the facet’s normal, and the color by whether the facet was covered by the UAV’s front-facing
cameras or not.

the facet center is at an angle lower than a defined threshold from the facet’s normal, so as to not
mark surfaces as covered if they are viewed at a very skewed angle. The angle threshold was set
empirically to 78◦ in the competition. Angles larger than the threshold reduced the probability of
successfully detecting artifacts. The covered facets stay in the map even if the underlying occupancy
map shifts (e.g., when an obstacle moves). As described in Section 8.2.3, one strategy used in our
system uses this map to cover as much of the surface as possible while flying between volumetric
exploration viewpoints. The strategy in Section 8.2.2 uses this map to completely cover surfaces
of a dead-end corridor before backtracking to search a different area. Coverage of entire regions
of the SphereMap can also be easily computed and then stored in the LTVMap, as described
in Section 7.4.

7.4. LTVMap
Distributing all of the maps described in this chapter among the UAVs would be highly demanding
for the communication network. As such, we have developed the lightweight topological-volumetric
map (LTVMap), which combines the necessary mission-related information from the other maps
and can be quickly extracted from the SphereMap and sent at any time.

This map consists of an undirected graph, where each vertex is created from a free-space segment
in the original SphereMap and the edges are added for all of its adjacent segments. Each vertex
holds an approximation of the segment’s shape. In our implementation, we use four DOF bounding
boxes (with variable size and rotation along the vertical axis) for shape approximation, though any
other shape could be used.

For cooperative exploration purposes, the frontier viewpoints (described in Section 8.1) found
by a given UAV are also sent in the LTVMap, with each viewpoint being assigned an information
value and segment from which the viewpoint is reachable. For surface coverage purposes, every
segment in the LTVMap also holds a single numerical value representing the percentage of relevant
surfaces covered in that segment. This value is computed by projecting points from the facets of the
FacetMap and counting the points that fall into every segment. Further description and analysis of
LTVMaps can be found in (Musil et al., 2022). These LTVMaps are shared among robots, and are
used for cooperative search planning onboard UAVs, as described in Section 8.3.

7.5. LandMap
As described in Section 5.3, a downward-facing RGBD camera detects areas safe for landing. These
areas are continuously collected within an unconnected set and stored in a sparse point-cloud manner
with minimum mutual distance 5.0 m, low enough for avoiding unnecessary long paths to the nearest
landing spot while keeping the LandMap memory-light even for large environment. An example of
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Figure 15. Example of the LandMap with resolution of 5 m built in the beginning of the DARPA SubT systems
Final Event after 70 s of a UAV flight. The UAV is represented by the Cartesian axes with its trajectory colored in
red. The LandMap incorporates the spots classified as safe for UAV landing (green circles) which are used during
the UAV homing phase of the mission to ensure safety during the landing procedure.

the LandMap is shown in Figure 15. During the homing phase of the mission, the UAV navigates to
an area connected to the ground station via the communication network (see Section 11.4). After
reaching this area, the UAV navigates towards a safe landing spot as indicated by the LandMap,
which is closest to its current pose (see mission state machine in Figure 27). While flying towards
the LandMap-selected spot, the UAV lands sooner if the ground below the UAV is classified as
safe-for-landing in the current RGBD data. The landing spots previously identified as safe are, once
more, verified before landing in order to ensure safety in dynamic environments. If the spot is no
longer safe for landing, it is invalidated and the UAV is navigated to the next closest landing spot.

8. Autonomous search
Since communication between robots in subterranean environments can never be ensured, the UAVs
in our system operate completely autonomously and only use information from other robots to
update their goal decision (e.g., blocking frontiers leading to areas explored by other robots). The
system can also be controlled at a very high level by the human operator, which is described
in Section 11.2. This section describes the high-level search autonomy of our system.

8.1. Informative viewpoint computation and caching
For exploration purposes, the UAVs in our system do not consider the information gain along
trajectories, but rather sequences of discrete viewpoints, so that we can have a unified goal
representation for both local and global search planning. These viewpoints are divided into places at
which a UAV could obtain some volumetric information, called frontier viewpoints, and the points
at which a UAV could cover some not-yet-covered surfaces with its cameras, called surface coverage
viewpoints. Each viewpoint ξ, comprising of position pξ and heading ϕξ, is therefore assigned some
information value I(ξ). In our approach, the information gain of frontier viewpoints ξF and surface
viewpoints ξS is computed as

I(ξF ) = cF
nunk
nrays

, I(ξS) = cSnunc, (8)

where nunk/nrays is the ratio of rays cast in the UAV’s depth cameras’ and LIDAR’s FOVs that
hit an unknown cell of the occupancy map before hitting an occupied one or going out of range.
Similarly, nunc is equal to the number of uncovered facets of the FacetMap, hit by rays that are
cast in the UAV’s RGB cameras’ FOVs. The constants cF and cS are empirically tuned to alter the
UAV’s next viewpoint selection and hence, its behavior. Additionally, a positive or negative bias
cF S can be added to the information value of either function to make the UAV prefer one type of
viewpoints more.

Field Robotics, January, 2023 · 3:1–68

78



24 · Petrlík et al.

The UAV does not sample and evaluate viewpoints on-demand after reaching some viewpoint,
rather it continually samples viewpoints in its vicinity at a given rate and stores them into a map of
cached viewpoints. Only viewpoints that have I(ξ) above some threshold, are safe, not too close to
another informative viewpoint, and not blocked by mission control are stored. The viewpoints are
also pruned from the map if they become uninformative or if a better viewpoint is nearby. Lastly,
viewpoints that were found in a previous update and are now outside the local update box, are kept
as global goals and are pruned more aggressively than the local goals. This approach continually
produces a map of informative viewpoints that is denser near the UAV and sparse in the rest of the
environment.

8.2. Single-UAV autonomous search planning
In our approach, the UAV can be in three states of autonomous search—locally searching, traveling
to goal or returning, and the goal planning and evaluation is divided into local and global planning,
as in (Dang et al., 2019b). In all of these states, reachability determination and path planning to
any given goal is performed using the rapid long-range path finding provided by the SphereMap,
described in Section 7.2. The transitions between the three states are fairly simple—if there are
informative and reachable viewpoints near the UAV, the UAV is in the locally searching state and
tries to always keep a sequence of two viewpoints. These are given to the trajectory planning pipeline
so that the UAV doesn’t stop at each viewpoint and compute the next best one. This is done by
performing a local replanning of the sequence whenever the UAV is getting close to a viewpoint.

When there are no reachable viewpoints near the UAV or when new information is received from
the operator or other robots, a global replanning is triggered.

The global replanning, inspired by (Dang et al., 2020b), computes paths to all stored informative
viewpoints (not only in the local search box) and evaluates them. The best viewpoint is then set
as a goal to the long-distance navigation pipeline described in Section 9.1. Finally, the returning
state is triggered when the global planning does not find any reachable goals, or if the operator
demands it, or if thome < cHtbattery, where thome is the estimated time of flight needed to return
to the base station, tbattery is the estimated remaining flight time, and cH is an empirically tuned
constant. The value of thome is computed from the UAV’s average flight speed, and a path found
through the SphereMap to the base station. If there is no path to the base station, the UAV will
instead try to return along a tree of visited positions, which is built specifically for this purpose, so
that for example if a path is only temporarily blocked, the UAV will fly to the roadblock, and if
it is removed, will continue flying to the base station. The UAV can also recover from this state, if
it is returning due to having found no reachable goals, and suddenly some goals become reachable
again. When the UAV gets close to the goal, it switches back to the locally searching state.

The reward functions used to evaluate goals govern the behavior of the UAV while searching
the environment, and as such, they define the search strategy of the UAV. For simplicity, we made
the local planner and global planner use the same reward function in a given strategy, with only
one difference, that the local planner can add a penalty to local goals, based on the UAV’s current
momentum and heading, to allow for smoother local search, which is a highly simplified version of the
local viewpoint tour planning done by (Zhou et al., 2021b). These strategies and their corresponding
reward functions were utilized in the challenge:

8.2.1. Greedy search strategy (GS)
The chosen reward function for selecting the next best viewpoint ξ from the current UAV viewpoint
ξUAV (the UAV’s current position and heading) can be written as

RGS(ξUAV, ξ) = I(ξ) − D(ξUAV, ξ), (9)

where I(ξ) is the information value of the viewpoint (described in Section 8.1) and D is the best
path cost computed in the SphereMap (described in Section 7.2). This type of reward was selected
for its simplicity, which allows easy debugging and tuning of UAV behavior. It is also easier to
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extend this reward function to the multi-UAV cooperation reward functions in Section 8.3. This
reward function for controlling the next best goal selection thus depends on the constants cF , cS ,
cF S described in Section 8.1 and the risk-awareness constant cR used in path planning, which
can be used to tune the search based on the desired behavior. The constants cF , cS , cF S control
whether and how much the UAV prefers frontier viewpoints or surface viewpoints, while cR is set
according to the desired risk avoidance. This reward function is very simple and can take the UAV
in various directions, leaving behind uncovered surfaces in faraway places. The next strategy aims to
solve this.

8.2.2. Dead end inspection strategy (DEI)
A more thorough reward function can be written as

RDEI(ξUAV, ξ) = I(ξ) − D(ξUAV, ξ) + (D(pHOME, ξ) − D(pHOME, ξUAV)). (10)

This strategy adds the difference in path costs to the base station position pHOME from the evaluated
viewpoint and from the UAV. This greatly increases the value of viewpoints that are deeper in the
environment, relative to the UAV. Using this reward function, the UAV will most likely first explore
frontiers until reaching a dead-end, and then thoroughly cover surfaces from the dead end back to
the base, analogous to a depth-first search.

8.2.3. Viewpoint path enhancement strategy (VPE)
The third strategy used on the UAVs is not a change of the reward function, but rather a simple
way to increase surface coverage when the UAV is flying through long stretches of explored but not
perfectly covered space, either in the DEI or GS strategy. If VPE is enabled and the UAV is flying
to a distant goal, then we periodically take the short-distance trajectory from the local path planner
(described in Section 9), sample it into multiple viewpoints, and try to perturb these viewpoints to
increase surface coverage, while not increasing the flight time too much. Thus we fully utilize the
agility of quadcopter UAVs, as they can easily turn from side to side while flying in a given direction.

8.2.4. Comparison of the strategies
During pre-competition testing, the three strategies mentioned above proved to be nearly identical
in the total amount of covered volume and surfaces. However, there are serious differences in the
overall behavior and what it means for cooperation. The GS strategy on average covers the most
volume and surfaces but leaves behind many patches of surfaces or frontiers in very far-away places,
due to its greedy nature. The VPE strategy just slightly alters the GS strategy to cover more
surfaces in total at the cost of less explored volume but also leaves unfinished goals behind. This has
generally been very useful in areas with long corridors that have a high amount of short branches
leading off from the main corridor, such as in tunnels or cramped urban areas because the VPE
strategy will force the UAV to peek into the corridors, but not to rigorously explore them as with
the DEI strategy. The DEI strategy usually covers less space and surfaces in total, but what is most
important—it does not leave uncovered and unexplored parts of the environment behind, meaning
that for cooperative missions, no other UAV needs to go to that space again, as that space has
been completely covered. This is essential in longer missions to ensure complete coverage of the
environment.

8.3. Probabilistic cooperative search planning
Our approach to multi-UAV search planning was to make the UAVs completely autonomous and
decentralized by default, while also being able to share important information and use it for their
own planning. Each UAV always keeps the latest version of the LTVMap (described in Section 7.4)
received from a given UAV. When a new LTVMap is received, every newest received map currently
being stored onboard the UAV is updated by every other newest received map, as well as by the
LTVMap constructed from the UAV’s own SphereMap.
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The updating is done so that the frontier viewpoints, sent along with each LTVMap, which
fall into explored space in other LTVMaps, are blocked. This is difficult to do in a deterministic
manner due to map drift and other inaccuracies. Therefore, we approached this problem similarly
as in (Burgard et al., 2005) by gradually decreasing the reward of frontier viewpoints whenever
the viewpoint falls into the explored space of any segment’s bounding box in a received LTVMap.
Because the LTVMap bounding boxes are a very rough approximation of the segments’ true shape,
this reward decreasing is weaker at the edges of the bounding boxes and strongest when the viewpoint
lies deep inside the bounding box. Each frontier viewpoint in any LTVMap is assigned a likelihood
l(ξ ∈ Vexp) to represent how likely it is that the viewpoint has already been visited by any other
UAV. The l(ξ ∈ Vexp) of any viewpoint is the maximum of a function describing the likelihood
that the point lies in a given segment’s bounding box, computed over all segments of all the other
received LTVMaps. This likelihood function can be selected arbitrarily; for our approach, we selected
a function, which is equal to 0 outside of the segment’s bounding box, and grows linearly to 1 the
closer it is to the center of the bounding box. The updates of these l(ξ ∈ Vexp) values for a three
UAV mission can be seen in Figure 17.

For a frontier viewpoint ξL in the UAV’s local map, which has l(ξL ∈ Vexp) > 0, the reward
function changes into

R(ξUAV, ξL,M) = l(ξL ∈ Vexp)RR(ξUAV, ξL,M) + (1 − l(ξL ∈ Vexp))RL(ξUAV, ξL), (11)

where RL is the reward function defined by the employed single-UAV search strategy described
in Section 8.2. This does not take into account any information from other UAVs. RR is a reward
function which takes into account other frontiers in received LTVMaps that could be reachable
through ξL, as illustrated in Figure 16. If l(ξ ∈ Vexp) = 0, it means that the viewpoint does not
fall into the space of any received LTVMap and the UAV only decides based on its own maps. If
l(ξ ∈ Vexp) = 1, the viewpoint surely lies in explored space of another UAV, hence it does not
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Figure 16. Diagram illustrating the computation of the cooperative exploration reward function, as described
in (12). The image shows a UAV evaluating a frontier viewpoint ξL (orange) in its local occupancy map (black
lines). The UAV has received two LTVMaps M1, M2 from two other UAVs. As the local map frontier ξL falls into
one of the free space segments σML,M1 of M1, it is assigned as belonging to that segment and acts as an edge in
planning paths between the local map and the received map M1. Therefore, the frontier viewpoints ξ1,M1, ξ2,M2
should be reachable through ξL. A path to them is estimated across the centroids of the segments of M1. The
viewpoints ξ3,M1, ξ1,M2 (black) are marked as having l (ξ ∈ Vexp) = 1, since they fall deep into the explored space
of the other received map, and are therefore not considered.
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(a) (b) (c) (d)

Figure 17. Illustration of LTVMap sharing and utilization during a cave exploration mission in simulation with
three UAVs running the DEI strategy (described in Section 8.2.2). The heatmap color of the LTVMap segments
shows surface coverage of the individual segments, with purple signifying complete coverage. The colors of the
exploration viewpoints signify their l (ξ ∈ Vexp) value, with white having a value equal to 1 and black being 0.
Image (a) shows the LTVMap sent by UAV1 after returning to communication range with the base station. This
map is given to UAV2, which then launches and chooses to explore the nearest unexplored frontier in the map
of UAV1. Image (b) shows the LTVMap sent by UAV2 when it is returning. Image (c) then shows how the maps
are co-updated onboard UAV3, which launches after receiving the LTVMap from UAV2. The only nonexplored
viewpoint remaining is in the top part of the image. Image (d) shows the maps received by the base station from
all three UAVs at the end of the mission with no unexplored viewpoints remaining.

bring any volumetric information to the team, so the UAV considers whether exploring it would
eventually lead it to globally unexplored viewpoints. Figure 17 illustrates how sharing the LTVMap
helps UAVs to not explore already explored parts of the environment. The function RR that achieves
this behavior was designed as

RR(ξUAV, ξL,M) = max
M∈M

max
ξR∈M

I(ξR) − D(ξUAV, ξL) − DR(ξL, ξR, σML,M )
1 − l(ξR ∈ Vexp) , (12)

where M is the set of all received LTVMaps, and σML,M is the most likely segment that ξL belongs
to in a map M . The function DR is a special path cost function computed as a sum of Euclidean
distances of segment centers in a given map, spanning from ξL, through the center of σML,M , and
towards a given frontier viewpoint ξR. The value of DR is also scaled by a user-defined parameter.
This is done so as to increase the cost of viewpoints in received maps as there is more uncertainty
about the path to these viewpoints. The division by 1 − l(ξR ∈ Vexp) serves to gradually decrease
the reward of exploring the viewpoint up to −∞ when the viewpoint was surely explored by another
UAV. Computation of this reward function is illustrated in Figure 16.

The percentage of covered surfaces inside segments received in the LTVMap is used for blocking
the surface coverage viewpoints in segments, where the percentage is above a user-defined threshold.
The segments with low surface coverage could be used as additional goals in a similar manner as
shared frontiers in Figure 16. However, for simplicity, this was not implemented.

8.4. Autonomy robustness enhancements
One important problem is that in the case of dark and nonreflective surfaces (common in the DARPA
SubT Finals course) the LiDAR beam does not return with enough energy. Such surfaces will not be
marked as occupied and essentially become permanent frontiers, which means that some informative
viewpoints, as defined in Section 8.2, are noninformative. To solve this, the UAV builds a map of
visited positions. With time spent near a visited position, we linearly decrease the value of nearby
viewpoints. After some time, the sampling is blocked near those positions completely.

Another problem arising is due to highly dynamic obstacles in the occupancy map, such as other
robots, fog, or very narrow corridors where the discretization of occupancy can oscillate. As such,
the reachability of a given viewpoint can oscillate. This was solved by putting a timeout on trying to
reach a given viewpoint and was triggered if the UAV did not get closer to the goal within a defined
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time. After this timeout, an area around the viewpoint is blocked until the end of the mission, or
until a manual reset by the operator. This approach may cause the UAV to block some goals that
are only temporarily blocked by another robot in narrow passages, but it was deemed preferable
rather than having the UAV permanently oscillate in such passages.

The autonomy system can be easily controlled by operator commands (described in Section 11.2)
which can block viewpoints in a set cylinder in space, force the UAV to explore towards some goal,
or simply move to a given position and stay there. In this way, problematic situations not covered by
our solution, such as organizing multiple robots in a tight corridor, can be resolved by the operator.

9. Path planning, trajectory generation and tracking
Planning collision-free paths and generating dynamically feasible trajectories is another vital
component of the presented UAV system operating in a constrained environment. The sequence of
waypoints (a waypoint in this context is either only a point in space, when we do not care about the
heading, or a point in space and heading, for example when using the VPE strategy in Section 8.2.3,
that the local planner should move the UAV through) that efficiently guides the UAV through the
environment is produced by the long-distance navigation module, described in Section 9.1. Given
the navigation waypoints, a computationally undemanding multistage approach is applied to obtain
a trajectory lying at a safe distance from obstacles, while also respecting dynamic constraints
(limits on velocity, acceleration, and jerk) and minimizing the time of trajectory following. In
particular, the solution can be divided into three modules: path planning to obtain the local reference
path, path processing to increase the safety margin of the path, and the trajectory generation
to obtain a time-parametrized trajectory respecting the dynamic constraints of the UAV. The
diagram illustrating connections and data transfer between particular modules in path planning and
trajectory generation pipeline is shown in Figure 18. The long-distance path found in SphereMap,
the local path found in DenseMap, the postprocessed path, and the dynamic trajectory are depicted
in Figure 19.

9.1. Safety-aware long-distance navigation
When a goal, or a sequence of goals, is set to the navigation stack, the long-distance navigation
module computes a path through the SphereMap, optimal according to (7). The module then keeps
this path and utilizes the trajectory planning and tracking modules to follow it. This is done simply
by a “carrot and stick” approach, where the trajectory planning module is given a near waypoint
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Figure 18. A diagram of the path planning and trajectory generation pipeline. Given 3D map M provided by
Mapping module, the Local path planner produces path P connecting a start position for planning derived from
full state reference χd provided by Reference tracker, with the viewpoints ξ supplied by Long distance navigation
module. Trajectory generator produces feasible trajectory along the collision-free path P and supplies the position
and heading reference (rd , ηd ) to a Reference tracker. Reference tracker creates a smooth and feasible reference
for the reference feedback controllers. The Local path planner is triggered by a new set of goals, periodic signal
or by an interrupt I generated by Collision checker responsible for detection of collisions with respect to most
recent map of the environment.
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Figure 19. A two-view visualization of the path produced by all stages of the planning pipeline. The cached
long-distance paths ( ) between portals ( ) are found in the SphereMap. A geometric path ( ) is found
in the DenseMap to the next waypoint given by the SphereMap. This path is then postprocessed ( ) to be
further away from obstacles, and a time-parametrized trajectory respecting the dynamics of the UAV is sampled
(small axes). The small axes represent samples from the trajectory with constant time step, so axes further away
from each other mean that the velocity of that part is higher. The current UAV pose is shown as large axes.

(approx. 20 m away from the UAV at maximum, to keep planning time short) on the path. This
temporary goal waypoint is then slid across the path towards the goal.

If the trajectory planning and tracking modules cannot advance along the SphereMap path for
a specified amount of time, which can be caused by a dynamic obstacle such as a rockfall, fog, or
another robot, the SphereMap path following is stopped and an unreachability flag is raised. The
UAV then chooses a different goal or tries to find a new path to the same goal based on the current
state of mission control.

When the search planning requires the UAV to fly through multiple nearby goal viewpoints, such
as when covering the surfaces in a room with cameras or when visiting multiple viewpoints while
traveling and using the VPE strategy described in Section 8.2.3, the local path planning module
is instead given a sequence of waypoints (containing both the goal viewpoints for surface coverage,
which require heading alignment, and waypoints that do not require heading alignment and only
serve to guide the local path planning). Thus the output of this module is always a sequence of one
or more waypoints, which may or may not require heading alignment, and through which the local
path planning module should find a path in a short time, which we can control by changing the
look-ahead distance.

9.2. Local path planning
The grid-based path planner coupled with iterative path processing was adopted from (Kratky
et al., 2021a) to obtain the primary reference path. The proposed approach presents a path planning
and processing algorithm, which is based on the traditional A* algorithm applied on a voxel grid
with several modifications to decrease the computational demands. The first modification lies in
avoiding the computationally demanding preprocessing of the map representation (e.g., obstacle
dilation by Euclidean distance field), which often requires more time than the actual planning on
the grid. This holds true especially for shorter direct paths that leave a significant portion of the
previously processed environment unexploited. For this reason, the presented approach builds a k-d
tree representation of the environment which is then used to conclude the feasibility of particular
cells, based on their distance to the nearest obstacle. As a result, the computational demands
are partially moved from the preprocessing phase to the actual planning phase. This approach
is particularly efficient in the case of paths that do not require exploiting a significant part of the
environment. The second important modification is applying node pruning, similar to the jump point
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search algorithm (Harabor and Grastien, 2011). This modification helps to decrease the number of
unnecessarily expanded nodes. As such, it lowers the computational time required for obtaining the
solution. A detailed analysis of the influence of particular modifications on the performance of the
planning algorithm is provided in (Kratky et al., 2021a).

To allow the generated paths to lead through narrow passages, the limits on safety distance are
set to the dimension of the narrowest opening that is supposed to be safely traversable by the
UAV. However, setting this distance to a value that ensures safety in the event of the maximum
possible deviation from the path caused by any external or internal source would lead to the
preclusion of entering narrow passages of the environment. On the contrary, setting this distance
to a minimum value without considering safety margins would increase the probability of collision
along the whole path. To balance the traversability and safety of the generated path, the minimum
required UAV-obstacle distance applied in the planning process is set to the lowest traversability
limit, and iterative path postprocessing is applied to increase the UAV-obstacle distance in wider
parts of the environment. The employed postprocessing algorithm proposed in (Kratky et al., 2021a)
iteratively shifts the path towards the free part of the environment, while continually maintaining
the path’s connectivity. As such, this anytime algorithm increases the average UAV-obstacle distance
throughout the flight, which significantly improves the reliability of the navigation with respect to
imprecisions in the reference trajectory tracking.

The generated path is periodically replanned at a rate of 0.5 Hz to exploit the newly explored
areas of the environment and handle dynamic obstacles. The continuous path following is achieved
by using the predicted reference generated by the MPC tracker (Baca et al., 2018) to identify the
starting position for the planner at time Ts in the future. Apart from the periodic replanning, the
planning is also triggered by the detection of a potential collision on the prediction horizon of the
trajectory reference produced by the MPC tracker. The potential collisions are checked at a rate
of 5 Hz by comparing the distance of particular transition points of the predicted trajectory to the
nearest obstacle in the most recent map of the environment. Depending on the time left to the time
instant of a potential collision, the UAV is either requested to perform a stopping maneuver or to
trigger replanning with the most up-to-date map.

9.3. Trajectory generation
The path generated by the path planning pipeline is a series of waypoints, each consisting of a 3D
position and heading. A trajectory (a series of dense time-parameterized waypoints) is generated
for each new path, so that the motion of the UAV satisfies translational dynamics and dynamic
constraints up to the 4th derivative of position. The dynamics of the trajectory can be changed
according to the current safety distance limit. However, in the Final Event, this feature was disabled,
as the UAV was already constrained to 1 m s−1 and further slowdown would unnecessarily prolong
the time spent in a narrow passage, where the risk of collision is higher. The trajectory generation
system is based on the polynomial trajectory generation approach (Richter et al., 2016; Burri et al.,
2015), but it was significantly extended to perform in a constrained, real-world environment (Baca
et al., 2021). This approach was modified to minimize the total flight time while still satisfying
the dynamic constraints. Furthermore, an iterative sub-sectioning algorithm was added to force the
resulting trajectory into a feasible corridor along the original path. Moreover, a fallback solver was
added to cope with invalid QP solver results caused by numerical instabilities or in case of the
solver timeout. The QP solver sometimes fails to produce a feasible trajectory, e.g., by violating the
dynamic constraints, or by violating the corridor constraints. In such cases, we find an alternative
solution by linearly sampling each original path segment. The time duration for each segment
is estimated heuristically as an upper bound using the same method as in the initialization of
the polynomial trajectory generation (Baca et al., 2021). Although the trajectory produced by
this method violates the dynamics in each waypoint, the underlying MPC Trajectory tracking
mechanism provides smooth control reference even at these points. Most importantly, despite the
fallback solution not being optimal, it is tractable and is guaranteed to finish within a fraction of the
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Figure 20. A diagram of the system architecture (Baca et al., 2021): Trajectory generation supplies the position
and heading reference (rd , ηd ) to the MPC tracker. The MPC tracker creates a smooth and feasible reference
for the Reference controller. The Reference controller produces the desired angular velocities and thrust (ωd , Td )
for the embedded Attitude rate controller, which sets the desired speed of the motors τd .

time of the polynomial optimization. Finally, a dynamic initialization mechanism and a time-outing
system were added to cope with the nonzero trajectory generation and path planning computation
times. Even though the path planning and the trajectory generation can last for several hundreds of
milliseconds, the resulting trajectory always smoothly connects to the currently tracked trajectory.
Therefore, no undesired motion of the UAV is produced. The updated trajectory generation approach
was released and is maintained as part of the MRS UAV System (Baca et al., 2021).

9.4. Trajectory tracking and feedback control
The low-level guidance of the UAV is provided by a universal UAV control system, as developed by
the authors of (Baca et al., 2021). The onboard control system supports modular execution of UAV
reference generators, feedback controllers, and state estimators. During the SubT Finals, the system
exclusively utilized the geometric tracking control on SE(3) (Lee et al., 2010) to follow the desired
states generated by the MPC Tracker (Baca et al., 2018). First, the MPC Tracker is supplied with a
time-parametrized reference trajectory, from which a smooth and feasible reference state consisting
of position, velocity, acceleration, jerk, heading, and heading rate is generated by controlling a
virtual model of the UAV. Second, the feedback controller minimizes the control error around the
generated reference state and produces an attitude rate reference for the low-level attitude rate
controller embedded in the Flight Control Unit (FCU). Figure 20 depicts the pipeline diagram of
the control system with data flow among individual modules.

10. Artifact detection, localization, and reporting
Objects of interest (artifacts) in the explored area are detected visually using a CNN that processes
images from several onboard RGB cameras covering the frontal, top, and bottom sectors of the UAV.
The CNN detector is trained on our manually labeled dataset and outputs predicted bounding boxes
and corresponding classes of the artifacts in the input images. To estimate the 3D positions of the
detections, we have leveraged the onboard 3D LiDAR sensor and the mapping algorithm described
in Section 7. These positions are processed by an artifact localization filter based on our previous
work (Vrba et al., 2019), which fuses the information over time to filter out sporadic false positives
and improve the localization precision. The artifact detection, localization, and filtering pipeline is
illustrated in Figure 21.

Our approach consolidated into a similar principle of early recall and late precision proposed by
(Lei et al., 2022). The CNN generates a high amount of detections to not miss any artifact at the
cost of a high false positive rate. The false positives are later filtered out by the localization filter
and the resulting hypotheses are further pruned by the human operator to improve the precision of
the pipeline as a whole.

10.1. Artifact detection
The artifact detection is executed in parallel on image streams from all cameras at the same time,
which would require a dedicated Graphical Processing Unit (GPU) onboard the UAV. Therefore,
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Figure 21. Schematic of the artifact detection and localization pipeline.

(a) (b) (c)

Figure 22. Training images containing artifacts captured by the onboard cameras in cave (a), tunnel (b), and
urban (c) environments.

we have chosen the lightweight MobileNetV2 CNN (Sandler et al., 2018), in order to achieve a high
detection rate and keep the load on the onboard computer as low as possible.

The CNN is running on the Intel UHD GPU that is integrated within the onboard CPU of the
UAV. The integrated Intel GPU interfaces with our pipeline using the OpenVino5 framework. The
OpenVino framework together with the Intel GPU achieves more than 5 Hz detection rate on 4
cameras in parallel but due to fixed resource allocation, we are locking the camera rates to 5 Hz.
This artificial throttling of the detection rate avoids issues when the integrated GPU locks the
memory resources for the CPU, which might lead to lag in the control pipeline.

The MobileNetV2 base model is modified for training using the OpenVino open-source tools. The
evaluation of the model is based on the mean average precision metric (mAP) and recall. The mAP
metric is a standard metric for object detection models since it provides information about how
accurate the prediction is. Recall provides an understanding what is the ratio between true positive
predictions and the total number of positive samples in the dataset.

The main challenge for the model is to adapt to different domains—mine, urban, and cave
environments have different lighting and backgrounds (see Figure 22), which affect the detection
performance. Moreover, the angle from which the images were taken is different as part of the images
in the dataset were taken by ground vehicles and the rest by UAVs.

As the whole dataset was initially not available, we had to train the model incrementally whenever
we gathered data from a new type of environment or camera angle to ensure we represented all cases
uniformly in the training data. The incremental training was more time-efficient than retraining on
the whole dataset each time new data was added. Training from scratch or checkpoints took us 2–3
days using our GPU capabilities, while incremental training produced good results in only 4–6 hours

5 docs.openvino.ai/latest/index.html
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of training. Having the possibility to relatively quickly update the model was critical when we were
doing practical experiments or hot-fixing some false-positive detections during competition days or
our experimental campaign.

For training the model on a growing dataset, we used a variety of learning schedulers from the
MMdetection toolbox (Chen et al., 2019). The Cosine scheduler designed by (Loshchilov and Hutter,
2016) is used for warm-restarts of the training pipeline to overcome the loss of learned features. The
main challenge of transfer learning is to overcome the loss of learned distribution on the previous
dataset when training the model on the new dataset (in this case the new dataset is a combination
of the previous dataset and newly collected data).

In our experience, different learning rate schedulers should be used depending on the size of newly
added data:

• Cosine scheduler (Loshchilov and Hutter, 2016) is used during clean model training on the
initial dataset.

• Cyclic scheduler (Smith, 2015) is used when the size of new data is more than 15 % of the size
of the initial dataset.

• Step decay scheduler is used when less than 15 % of the initial dataset size is added.

The model was trained using NVIDIA GeForce RTX 3090 video card with 24 GB of RAM, with
64 images per batch. The training size initially contained around 13 000 images and incrementally
increased to 37 820 as new backgrounds and false negative samples were gradually added. Out of the
37 820 images 31 000 were labeled artifacts and 6820 were background images without any artifact to
reduce the false positive rate. The train and validation split was 70 % to 30 % per training size. We
open-sourced our training pipeline to facilitate replicating the achieved results by the community:
github.com/ctu-mrs/darpa_subt_cnn_training. This method resulted in a score of 49.1 % mAP
on the whole dataset. Such a value is acceptable on the onboard computation unit with limited
resources, due to which a trade-off between accuracy and detection was necessary.

The dataset was collected using the off-the-shelf objects that were specified by the organizers,
see Figure 1. The data have been recorded from the onboard cameras on the UAVs and UGVs, in
particular:

• Intel RealSense D435,
• Basler Dart daA1600,
• Bluefox MLC200w.

The Basler cameras do not have an IR filter installed to maximize the amount of captured captured
light. Altogether the dataset has 37820 images, sometimes with multiple objects in one frame. An
example of images from the dataset is shown in Figure 22.

We publish the labeled detection datasets that were used for training of the neural network at
github.com/ctu-mrs/vision_datasets. In addition, we also publish the tools to convert it into
PASCAL VOC or COCO formats for immediate usage on most of the open-source models.

10.2. Estimation of 3D position of detections
Positions of the detected objects are estimated using data from the onboard LiDAR sensor and
the mapping algorithm. Each detection is represented by four corner points c1, c2, c3, c4 of its
bounding rectangle in the image plane of the corresponding camera, as estimated by the detector
(see Figure 23a). These points are expressed as undistorted pixel coordinates in the image frame I.

The mathematical projection model of the camera fproj : R3 → R2 is assumed to be known. In
our case, we have used the standard pinhole camera model formulated as

k
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(b) Model of the camera and the point cloud-based sampling method. Rays r1, r2, r3, r4
are projections of c1, c2, c3, c4, respectively. Only the points within the area defined
by these rays are selected. The selected points are colored based on their weight.
Nonselected points are not drawn for clarity.

Figure 23. Illustration of the point sampling for 3D position estimation of detected artifacts with an example
detection of a backpack.

where fu, fv, u0, v0 are parameters of the model (focal length and image center),
[
x, y, z

]⊺ is a 3D
point in the camera coordinate frame C, and u, v are distortion-free pixel coordinates in the image
frame I, corresponding to the 3D point (see Figure 23b for illustration). To model the distortion of
the real-world camera, we have used a standard radial-tangential polynomial distortion model. It is
worth noting that the output of f−1

proj is a 3D ray and not a single point, which is represented in the
model by the free scaling factor k ∈ R.

The input LiDAR scan is represented as a set of 3D points S = {pi} expressed in the camera
coordinate frame C. The occupancy map is represented using the DenseMap data structure that is
described in Section 7, and which provides a raycasting function fraycast : R → R3 where R is the
set of all 3D rays. The function fraycast returns the point, corresponding to the first intersection of
the specified ray with an obstacle in the environment (or nothing if there is no such intersection).

The position of each detected object is estimated from a number of points that are sampled
using two methods: a primary one that utilizes the latest available point cloud from the LiDAR
and a secondary backup method using the latest DenseMap estimated by the mapping algorithm.
The primary method is more accurate and less computationally intensive, but for artifacts lying
outside of the FOV of the LiDAR scan, it may not provide enough samples for accurate 3D position
estimation, which is when the secondary method is employed. For each sampled point si ∈ S, its
weight wi is calculated. The position estimate d and its corresponding uncertainty covariance matrix
Qd are obtained as a weighted mean of the sampled points:

d =
|S|∑

i=1
siwi, Qd = 1

1 − ∑|S|
i=1 w2

i

|S|∑

i=1
wi (si − d) (si − d)⊺ , (14)

where S is the set of sampled points and the weights wi are normalized so that
∑S

i=1 wi = 1.
The weight of a point s is obtained based on the distance of its reprojection to the image

coordinates s′ =
[
su, sv

]⊺ = fproj (s) from the center of the detection’s bounding box c0 =
[
cu, cv

]⊺
using the function

fw (s′, c0) =
(

1 − 2 |su − cu|
wbb

)2 (
1 − 2 |sv − cv|

hbb

)2
, (15)

where wbb, hbb are the width and height of the bounding box, respectively. The weighting function
serves to suppress points further from the center of the bounding box. This is based on our empirical
observation that the center provides the most reliable estimate of the detected object’s position,
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Algorithm 2. Algorithm for the estimation of a detection’s position and covariance.
1: Input:
2: D = {c1, c2, c3, c4} , ci ∈ R2 ⊲ undistorted coordinates of the detection’s bounding box
3: fproj : R2 → R ⊲ the projection model of the camera
4: P =

{

p1, p2, . . . , p|P|

}

, pi ∈ R3 ⊲ the latest point cloud from the LiDAR
5: fraycast : R → R3 ⊲ the raycasting function of the occupancy map
6: ndesired ∈ N ⊲ the desired number of sampled points
7: Output:
8: d ∈ R3 ⊲ estimated position of the detection
9: Qd ∈ R3×3 ⊲ covariance matrix of the position estimate

10: Begin:
11: ⊲ First, the desired number of points is sampled using the primary and secondary methods.
12: r1 := f −1

proj (c1) , r2 := f −1
proj (c2) , r3 := f −1

proj (c3) , r4 := f −1
proj (c4) ⊲ project the corners of the bounding box to 3D rays

13: S1 := {pi ∈ P | pi within the area defined by edges r1, r2, r3, r4} ⊲ try to sample ndesired points using the primary method
14: nremaining := max (ndesired − |S1|, 0) ⊲ calculate the remaining number of points to be sampled
15: S2 := sampleRectangle ({c1, c2, c3, c4} , nremaining, fproj, fraycast) ⊲ sample any remaining points from the occupancy map
16: S := S1 ∪ S2 ⊲ complement S1 with the remaining points from S2
17: ⊲ Then, the weight of each sampled point is calculated using the weighting function fw.
18: c0 := mean (c1, c2, c3, c4) ⊲ calculate the center of the bounding box
19: for each si ∈ S do
20: s′

i := fproj (si ) ⊲ project the point back to the image frame I
21: wi := fw (s′

i , c0) ⊲ calculate its weight
22: ⊲ Finally, the position and its uncertainty are calculated as a weighted mean and covariance and returned.
23: d :=

∑|S|

i=1 si wi
24: Qd = 1

1−
∑|S|

i=1 w2
i

∑|S|

i=1 wi (si − d) (si − d)⊺

25: return d, Qd

while the bounding box’s corners typically correspond to the background and not the object, as
illustrated in Figure 23a. The whole 3D position estimation algorithm is presented in Algorithm 2.
The sampleRectangle routine used in Algorithm 2 is described in Algorithm 3.

The estimated positions and the corresponding covariance matrices serve as an input to the
artifact localization filter described in the next section (refer to Figure 21). To avoid bias and
numerical singularities in the filter, some special cases of the covariance calculation have to be
handled. Namely, these are the following.

1. All extracted points lie on a plane. This happens, e.g. when all the cast rays of the secondary
position estimation method intersect the same voxel of the DenseMap. The covariance matrix
is then singular, which causes numerical problems with integrating the measurement.

2. All extracted points are too close to each other. This typically happens when the detected
object is too far or too small. The covariance matrix’s eigenvalues are then too small, biasing
the fused position estimate of the artifact.

To avoid these problems, the estimated covariance matrix is rescaled, so that all eigenvalues conform
to a specified minimal threshold before being processed by the artifact localization filter.

10.3. Artifact localization filter
Artifact detections are filtered using an approach based on our previous work, where a multi-
target tracking algorithm was employed for detection, localization, and tracking of micro aerial
vehicles (Vrba et al., 2019). The filtering serves to improve the precision of the artifacts’ estimated
positions and to reject false positives. Only artifacts that are consistently detected multiple times
with sufficient confidence are confirmed, and only the confirmed artifacts are then reported to the
operator to save the limited communication bandwidth. A single step of the algorithm is illustrated
in Figure 24.
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Algorithm 3. The sampleRectangle routine for sampling a number of 3D points from the occupancy map.
1: ⊲ This routine samples points within a rectangle in the image plane I by raycasting pixels on inscribed ellipses with

an increasing radius.
2: Routine sampleRectangle:
3: Input:
4: {c1, c2, c3, c4} , ci ∈ R2 ⊲ corners of the rectangle to be sampled in the image frame I
5: nremaining ∈ N ⊲ the desired number of samples
6: fproj : R2 → R ⊲ the projection model of the camera
7: fraycast : R → R3 ⊲ the raycasting function of the occupancy map
8: Output:
9: S = {si } ⊲ a set of sampled points in the image frame I such that |S| ≤ nremaining

10: Parameters:
11: nr ∈ N, nα ∈ N ⊲ number of radial sampling steps and number of circumferential steps per unit circumference
12: Begin:
13: w := c1,u − c3,u, h := c1,v − c3,v ⊲ calculate the width and height of the rectangle
14: rstep := 1/nr
15: for r ∈

{

0, rstep, 2rstep, . . . , 1
}

do
16: αstep := r/nα

17: 1α := u, u ∼ U (−π, π ) ⊲ generate a random angular offset to avoid biasing some directions
18: for α ∈

{

0, αstep, 2αstep, . . . , 2π
}

do
19: s′ :=

[

wr cos (α + 1α) /2, hr sin (α + 1α) /2
]⊺

⊲ calculate a sample point on an ellipse
20: r := fproj (s′) ⊲ project the point to a 3D ray
21: S := S ∪ fraycast (r ) ⊲ find an intersection of the ray with an obstacle and add it to S
22: if |S| = nremaining then
23: return S
24: return S

−10 −5 0 5 10
−10

−5

0

H1

D1

D3

H2

H3

D2

x (m)

y
(m

)

(a) Situation before the update step. The detections
D1 and D2 are associated to the hypotheses H1 and
H3, respectively. The detection D3 is not associated to
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(b) Situation after the update step. The detections D1
and D2 updated the hypotheses H1 and H3, respec-
tively. The detection D3 initialized a new hypothesis
H4 and the hypothesis H2 remained unchanged.

Figure 24. Illustration of one step of the artifact localization filter (a top-down view). Hypotheses Hi are shown
as covariance ellipsoids with the mean x̂i marked by an “×” symbol. Detections Di are represented in the same
way using dashed lines. Associations between hypotheses and detections are highlighted using color.

The filter keeps a set of hypotheses about objects in the environment. Each hypothesis H is
represented by an estimate of the object’s position x̂, its corresponding covariance matrix P, and a
probability distribution of the object’s class pH : C → [0, 1], where C is the set of considered classes.
For every hypothesis H, up to one detection DH is associated according to the rule

DH =
{

argmaxD l (D | H) , if maxD l (D | H) > lthr,

∅, else,
(16)
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where l (D | H) is the likelihood of observing D given that it corresponds to H, and lthr is a
likelihood threshold. The associated detections are used to update the corresponding hypotheses.
The detections that are not associated initialize new hypotheses.

The position estimate x̂ of a hypothesis H and its covariance P are updated using the Kalman
filter’s update equation and an associated detection DH at time step t as

K[t] = P[t]H⊺ (
HP[t]H⊺ + Qd[t]

)−1
, (17)

x̂[t+1] = x̂[t] + K[t]
(
d[t] − Hx̂[t]

)
, (18)

P[t+1] =
(
I − K[t]H

)
P[t], (19)

where K[t] is a Kalman gain, I is an identity matrix, H is an observation matrix (in our case, equal
to I), d[t] and Qd[t] are the estimated position of DH[t] and its corresponding covariance matrix,
respectively. The class probability distribution pH is updated as

pH[t+1] (c) =
ndets[t]pH[t](c) + pDH[t](c)

ndets[t] + 1 , (20)

where c ∈ C is an object’s class and ndets[t] is the number of detections, associated to H thus far.
Because the artifacts are assumed to be immobile, the Kalman filter’s prediction step is not

performed, which has the effect that the uncertainty of a hypothesis (represented by P) can decrease
without bounds. This can cause the likelihood l (D | H) of new measurements corresponding to the
same object to be below the association threshold, breaking the association algorithm. To avoid
this, the covariance matrix P is rescaled after each update so that its eigenvalues are larger than a
specified minimal value, which enforces a lower bound on the position uncertainty of the hypotheses.

10.3.1. Association likelihood
To calculate the likelihood l

(
D[t] | H[t]

)
of observing a detection D ≡ {d, Qd} given that it

corresponds to a hypothesis H = {x̂, P} at time step t, we use a measurement model

d[t] = Hx + ξ[t], ξ[t] ∼ N
(
0, Qd[t]

)
, (21)

where H is the observation matrix, x is a hidden state (the real position of the artifact), ξ[t] is
measurement noise, and N

(
0, Qd[t]

)
denotes the Gaussian probability distribution with zero mean

and covariance matrix Qd[t]. Using this model, the probability density function of the expected
measurement given x is

p
(
d[t] | x

)
= f

(
d[t] | Hx, Qd[t]

)
, (22)

where f ( · | µ, Σ) denotes the density function of the Gaussian distribution with mean µ and
covariance matrix Σ.

The Kalman filter described by equations (17) to (19) can be interpreted as an estimator of the
probability density of the hidden state given previous measurements. This probability density is
represented as a random variable with a Gaussian distribution:

p
(
x | d[1], . . . , d[t]

)
= f

(
x | x̂[t], P[t]

)
. (23)

The likelihood l
(
d[t]

)
of observing a new measurement d[t] given previous measurements

d[1], . . . , d[t−1] is the value of a probability density function p
(
d | d[1], . . . , d[t−1]

)
at d[t]. By

combining equations (21) and (23), the likelihood may be expressed as

l
(
d[t]

)
= p

(
d[t] | d[1], . . . , d[t−1]

)
=

∫
p

(
d[t] | x

)
p

(
x | d[1], . . . , d[t−1]

)
dx

=
∫

f
(
d[t] | Hx, Qd[t]

)
f

(
x | x̂[t−1], P[t−1]

)
dx

= f
(
d[t] | Hx̂[t−1], Qd[t] + HP[t−1]H⊺)

,

(24)
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Figure 25. Illustration of the automatic reporting process from the Virtual Track.

which is the value of the probability density function of a Gaussian distribution with mean Hx̂[t−1]
and covariance Qd[t] + HP[t−1]H⊺ at d[t]. This expression is used to determine the detection-
to-hypothesis association at each step according to equation (16), as described in the previous
section.

10.4. Arbiter for artifact reporting
In contrast to the system part of the competition, the Virtual Track requires substituting the
human operator with an autonomous arbiter for artifact reporting. The main functionality of the
autonomous base station resides in collecting the hypotheses from the robots and reporting the
location of artifacts. The number of reports in each run is limited and usually lower than the
number of hypotheses collected from all robots. Therefore, a subset of hypotheses needs to be chosen
so that the expected score is maximized. The implemented reporting strategy is based on filtering
the collected hypotheses by considering their location and artifact type, followed by evaluating the
performance index of particular hypotheses. The entire workflow is illustrated in Figure 25.

The autonomous base station collects the hypotheses from individual robots throughout the entire
run. The predefined reporting scheme specifies the maximum allowed number of reports at particular
time instants of the mission. Most of the reports are saved to the last minutes of the mission when
the base station holds most of the information collected from the robots. However, some reports are
allowed sooner during the mission to tackle the problem of unreliable communication and prevent a
failure to report all hypotheses before the time limit exceeds. When the reporting scheme allows for
submitting a report, the collected hypotheses are processed to obtain the best available hypothesis
h∗ in a set of all collected hypotheses H. First, the hypotheses are filtered using information about
previous reports, their validity, location, and per robot limits on the number of reports and minimum
success rate. The final set of filtered hypotheses is obtained as

Hf = H \ {Harea ∪ Hsucc ∪ Hunsucc ∪ Hr}, (25)

where Harea stands for the hypotheses located outside of the competition course, Hsucc stands
for hypotheses in the vicinity of the successful reports of the same artifact class, Hunsucc contain
hypotheses in the vicinity of the unsuccessful reports of the same artifact class, and Hr represents
the hypotheses of robots that have exceeded their own limit on reports and concurrently have
a low success rate of their submitted hypotheses. The performance index for a hypothesis hi is
computed as

P (hi) = αpr + βpc + γpn + δpa, (26)

where the values pr, pc, pn, pa represent the percentile of particular performance indices of hypothesis
hi among all hypotheses in Hf , and α, β, γ, δ are the weight coefficients. The particular performance
indices are related to the number of robots with a similar hypothesis (pr), the overall confidence of
the detections assigned to the hypothesis (pc), the number of detections assigned to the hypothesis
(pn), and the apriori probability of detection of a particular object (pa). The next hypothesis to be
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Figure 26. The distribution of successful reports over particular reporting attempts during all runs of the SubT
Virtual Track Prize Round. The lower success rate of the first attempt in comparison to later attempts is caused
by the early time of the first report, which was allowed 100 s after the start of the mission. By this time, only a
single UAV had already entered the course, and thus the number of available hypotheses to choose from was low.

reported h∗ is chosen based on the following equation:

h∗ = arg max
hi∈Hf

P (hi). (27)

The distribution of successful reports over particular reporting attempts during all runs of the SubT
Virtual Track Prize Round is shown in Figure 26. In the Systems Track, the autonomous arbiter
was not used as the decision-making of the human operator regarding which hypotheses to report
was superior to the autonomous arbiter, which operated based on a fixed set of rules.

11. Mission control
The proposed system is designed for fully autonomous operation, so that the rescue team can benefit
from the autonomous reconnaissance of the UAV without the need for any additional personnel
operating the UAV. The DARPA SubT competition reflects this requirement on autonomy by
allowing only robots without human operators to enter the course. In theory, the robots could be
teleoperated (Moniruzzaman et al., 2022). However, this is not scalable with the number of robots.
Moreover, for teleoperation, a reliable communication link between the robot and the operator
is required, but is often not available, especially deeper in the subterranean environment where
impenetrable walls diminish signal propagation. Thus the correct execution of an autonomous
mission relies on a state machine that governs the high-level actions of the UAV.

11.1. State machine
The state machine applied in the SubT System Finals consists of 12 fundamental states. In the first
state, the status of components that are vital to the mission is checked to ensure that the mission will
be accomplished. Both the software components (localization, mapping, planning, artifact detection,
artifact localization, database) and hardware components (LiDAR, RGB cameras, depth cameras,
mobilicom unit) are checked prior to the mission. This component health check is crucial as, while
still in the staging area, any potential component failures can be addressed, but it is not possible
when the UAV is already flying.

When all components are running correctly, the UAV enables the output of the reference
controller, transits to WAITING FOR TAKEOFF state, and waits for approval from the safety
operator to start the mission. The approval required to guarantee the safety of the personnel moving
in the vicinity of the UAV is given by arming the UAV and transferring the control of the UAV fully
to the onboard computer by toggling the Radio Controller (RC) switch. After the approval to start,
the UAV waits for a specified safety timeout in the READY FOR TAKEOFF state while signaling
the imminent takeoff by flashing LEDs. In this state, the approval can be taken back by the safety
operator. After the timeout elapsed, the PERFORMING TAKEOFF state is entered, during which
the UAV ascends until reaching the desired takeoff height.
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Figure 27. Simplified version of the state machine governing the autonomous mission in SubT Systems Track.

In the next state (FLYING THROUGH GATE), the UAV is navigated to a position inside the
area to be explored. Once this position is reached, the space behind the UAV is virtually closed to
prevent flight back towards the rescue personnel. If the rescuers have some prior knowledge about
the environment, e.g., they see a door to which they want to send the UAV, they can optionally
specify this first position to steer the UAV in that direction. After reaching this first position or if
the flight to the first position is not requested, the UAV enters the EXPLORATION state. In this
state, the UAV fulfills the primary mission goals until the upper bound of the estimated time to
return is equal to the remaining flight time. Then the UAV initiates returning to the takeoff position
in the state FLYING BACK TO START.

The return position is the takeoff position by default, but the operator can request any other po-
sition (e.g., to serve as a communication retranslation node) to which the UAV tries to return. After
the position is reached, the UAV flies to the nearest safe landing spot as described in Section 5.3, and
the LANDING state is entered. The landing is also triggered when the flight time is elapsed during
the FLYING BACK TO START or FLYING TO LANDING SPOT states. When the UAV lands,
it enters the FINISHED state, in which it turns off the motors, Light-Emitting Diodes (LEDs),
LiDAR, and other components except the communication modules to conserve battery power for
retranslating communications.

The required communication between the UAV and its operator during the start of the mission
is limited to signals provided by the RC and visual signals provided by flashing LEDs. This enables
very fast deployment of the UAV that automatically starts all necessary software components once
the onboard computer is powered on and provides the information about being prepared to start by a
single long flash of LEDs. After that, the operator can approve the mission by the remote controller
without the need for any additional communication or commanding of the UAV. Following this
automated procedure, the UAVs are prepared to start one minute after the battery is plugged in.

A FAULT state (not shown in the simplified diagram in Figure 27) can be entered from all states
in which the UAV is in the air (all states except the ones colored red in Figure 27). The FAULT
state is entered only when it is detected that the mission cannot continue safely. In such a case, a
controlled emergency landing is initiated if a position estimate is available. When a position estimate
cannot be provided the emergency landing escalates into the failsafe landing, during which the UAV
gradually lowers its thrust, while maintaining zero tilt. After contact with the ground is detected,
the motors are turned off and the UAV is disarmed. The FAULT state is final, i.e., the mission
cannot continue due to the failures, which triggered the transition into this state. The conditions
for entering the FAULT state are the following.

• Data from a sensor critical for localization are not available for 1 s. This situation can happen
in case of a hardware failure, detached cable, power supply failure, sensor driver bug, etc.
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• The control error exceeds 2 m, which can occur with a diverging state estimate, overloaded
CPU, or insufficient thrust.

• The state estimate is not available for 0.1 s, which can be caused by a bug in the state estimation
module or an overloaded CPU.

• The innovation of the state estimation exceeds 2 m. Innovation is the difference between current
state and a correction coming from a localization algorithm. Large innovation indicates a
discrete step in the localization algorithm.

• A maximum thrust threshold of 80 % is exceeded for 1 s. This condition is triggered when a
discharged battery cannot provide enough current to perform the desired motion. A faulty or
older battery with many discharge cycles might struggle to provide sufficient current sooner
than is the expected flight time.

• A tilt over 75◦ is detected, which can happen if a discrete step appears in the state estimate
or when the UAV collides with an obstacle.

The state machine applied in the Virtual Track of the SubT Challenge differs only in a few
states given by the specifics of the simulation environment. First, it does not contain the operator
commands states that are not available in a virtual environment. Second, it contains two additional
states, BACKTRACKING and AVOIDING COLLISIONS. The BACKTRACKING state is entered
when the UAV is stuck in a fog and tries to escape from it by backtracking to the most recent
collision-free poses, ignoring the occupied cells in the current map (see Section 5.2.1 for details).
In the AVOIDING COLLISIONS state, the UAV is avoiding collision with the UAVs of higher
priority by stopping the lateral motion and decreasing its altitude. We have decided against using
collision avoidance in the Systems Track due to the low probability of collision, and high probability
of deadlocks in narrow corridors.

11.2. Operator commands
While the UAV is capable of carrying out the mission on its own in the fully autonomous mode,
the operator can intervene by issuing an operator command to influence the behavior of the UAV.
All operator commands can be activated only in the EXPLORATION state and in the operator
command states, in which the UAV performs its primary goal. Allowing operator commands in
other states would interfere with the takeoff, returning, and landing processes. The commands are
transmitted from the operator’s base station to the UAV through the available communication
modalities described in Section 11.4. The following commands are available for the operator:

• Explore to position. The operator can bias the automatic goal selection process by issuing the
Explore to position command. After the command is received by the UAV, the currently used
reward function for evaluating viewpoints is extended by a term that penalizes the Euclidean
distance of the viewpoint from the desired position pD. The term added to the reward function
for a viewpoint ξ is simply

∆R(ξUAV, ξ, pD) = −coc |pξ − pD| . (28)

Such modification of the reward function causes the viewpoints closer to the desired positions
to be preferred over farther viewpoints. The assertiveness of reaching the desired position can
be controlled by the coefficient coc. If this is set too high, it might force the viewpoints with a
minimal distance from obstacles and low information value to be selected.

• Plan to position. The Plan to position command bypasses the viewpoint selection process
and requests the planner to find a path directly to the specified position. When the requested
position is not reachable, i.e., it is in an occupied or unknown space, the planner will find the
path to the closest point using the Euclidean distance heuristic function. Thus this command
should be used primarily for reaching an already visited position, e.g., to land there and
retranslate communication from robots that are already further in the environment, or to
approach a stuck robot to retrieve its data.
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• Set return position. Under normal operation, the UAV returns to the staging area when
its battery is depleted. The operator can change the return position by issuing the Set return
position command. This can save valuable flight time of the UAV when a communication chain
is already established.

• Stop. The operator can also halt the movement of the UAV by issuing the Stop command.
This command is useful when the operator wants to inspect an interesting area in more detail,
prevent the UAV from going into a noninformative or dangerous area, or temporarily retranslate
communications. Moreover, this command is a prerequisite for calling the Land command.

• Land. It is possible to land the UAV prematurely before the end of the mission by issuing the
Land command. The expected use case involves landing the UAV at a position advantageous for
extending the communication network. Before calling the Land command, the Stop command
must be called to prevent an accidental landing at an incorrect location, due to the arbitrary
delay of the command sent through an unreliable network. The system does not guarantee
landing at the exact specified position, as a safe landing spot is found in the vicinity of the
requested position.

• Return home. The Return home command switches the UAV to the returning state, as defined
in Section 8.2. In this state, the UAV uses the navigation module to get as close as possible to
the specified return position.

• Resume autonomy. The last operator command cancels the behavior that was forced by
previous operator commands (except Land and Set return position). This causes the UAV to
resume autonomous exploration, start its return, or land (depending on the flight time left).

11.3. Operator interface
Only a single human (operator) could view the mission-specific data sent by the robots to the base
station. His main task was to analyze the artifact hypotheses and report ones that seemed correct
to the DARPA server to score points. He could also influence the behavior of the robots by issuing
high-level operator commands (Section 11.2).

To facilitate his responsibility, each of the two tasks has a dedicated interface. Commands are
issued from the RViz-based interface with each command mapped to a unique keyboard shortcut.
The operator also often used live camera streams from the robots to get contextual information
about the environment. This information was essential for deciding where each robot should be sent
(e.g., quadrupeds to urban sections) and also for quick assessment of why a robot could be stuck.

The second interface for artifact hypotheses management is also based on RViz with a custom rqt
plugin for viewing the details of each hypothesis including the image, number of detections, class
probabilities, and position. These properties help the operator decide whether to send the hypothesis
to the DARPA scoring server or decline it. Manual refinement of hypotheses poses is also possible
by dragging them on the map.

The GUI was displayed on a semi-mobile workstation with 3 integrated displays and one external
monitor standing on top of the workstation. The arrangement of the 4-displays is shown in Figure 28.
From our experience, the more the operator sees without keyboard and mouse interaction, the better
for his performance.

Apart from the human operator who could view all mission data, the rules also allowed the other
staging area personnel to view status data. We have thus set up a diagnostics console on a computer
outside the staging area. This console showed useful diagnostics information that could be relayed
via voice to the human operator.

11.4. Communication
The developed system assumes an unreliable bidirectional low-bandwidth communication network
with intermittent dropouts. It should be mentioned that two meshing-capable wireless technologies
are used on the hardware level—2.3 GHz Mobilicom and 868 or 915 MHz motes, with details of
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Figure 28. The operator interface display arrangement. Top screen shows live views of cameras from 3 UGVs.
In bottom row, left to right, are screens with another 3 live UGV streams, the control GUI and artifact reporting
GUI. The bottom left screen could also show a terminal window that was used for direct execution of scripts
on the robots (as a fallback for a failure case that was not handled by the control GUI). Figure 2 illustrates the
physical look of the setup of the workstation with 4 displays.

both available in (Roucek et al., 2020). The motes are also dropped by UGVs as deployable
range-extending battery-powered modules (Bayer and Faigl, 2020) similarly to (Ginting et al., 2021;
Saboia et al., 2022) to build a communication mesh network. Our custom-made motes have lower
bandwidth (100 B s−1) than (Ginting et al., 2021; Saboia et al., 2022), which is compensated by
sending only necessary compressed data. Moreover, bandwidth-intensive data are sent through a
1 MB s−1 Mobilicom network. This multimodal communication approach is robust to the failure of
either Mobilicom or motes as both are able to transfer mission-critical data.

This paper focuses on high-level usage of the communication network, which is used as a black
box, and as such the low-level layers of the communication protocol are not discussed.

The developed system benefits from available connections to other agents and the base station in
multiple ways. First, when a robot detects an artifact, the detection with its estimated position is
shared over the network instead of returning physically to the base station, thus saving time valuable
for the success of the mission. Second, the individual agents can share the information about the
already explored volume in the form of a topological-volumetric map (LTVMap) introduced in
Section 7.4. The knowledge of other agents’ topological-volumetric maps penalized regions already
explored by other robots, which encourages splitting of the robot team and covering a larger volume
over the same time period as shown in Figure 29. Third, each robot shares its position with the
base station, so that the operator has an overview of where all robots are located. The operator
can then influence the future behavior of any robot in the communication range by sending an
operator command (Section 11.2). Last, positions of the communication nodes (breadcrumbs or
landed UAVs), which form the communication network shown in Figure 30, are sent to be used for
returning to the communication range when the remaining flight time is low.

11.5. Calibrating global reference frame
The entire navigation system of heterogeneous robots within the CTU-CRAS-NORLAB team is
decentralized under the assumption of a shared coordinate frame—the world coordinate frame OW .
To obtain the transformation of a robot’s local origin within the world frame, the staging area of
the competition environment provides a set of visual tags and a set of reflective markers, both with
precisely known poses within the world (see the markers mounted on the entrance to the environment
in Figure 31). The reflective markers are used within our 6-DOF calibration procedure in which a
Leica TS16 total station is employed to measure 3D points with sub-millimeter accuracy. The origin
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Figure 29. Example of the dispersed exploration of a tunnel system during the first run in world 1 of the virtual
track. Only LTVMap from UAV1 is shown for clarity, other UAVs received this map and maps from the other
UAVs. Instead of exploring again the same places as UAV1, both UAV2 and UAV4 explore previously unvisited
corridors. Dark parts of LTVMap in this figure are not yet fully explored, so UAV3 flies to inspect these areas to
not miss any potentially hidden artifacts.
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Figure 30. A communication network consisting of a base station and 8 breadcrumbs (black) deployed by the
UGVs and 2 UAVs from the 3rd run in world 1 of the virtual track. UAV3 with its trajectory shown in blue could
explore further thanks to the deployed communication nodes. Without the communication network, the UAV
would have to return to the staging area, thus traveling additional 500 m from its final landing position.

TW
T S of the total station in the world is derived from measuring known in-world marker poses and

used in deriving TW
B of a robot B.

To calibrate the pose of a single robot B after TW
T S is known, 4 known points on the robot’s

frame need to be measured, used in estimating TW
B , and sent to the information database (see

Section 11.4) or directly to the robot. As the number of robots in the CTU-CRAS-NORLAB team
deployments reached up to 9 robots per run (see Figure 31), the overhead for robots-to-world
calibration decelerated the rate of robot deployments as well as limited the possibilities for quick
in-situ decision-making. To speed up the calibration pipeline for UAVs with limited flight distance
(and hence with greater room for calibration errors), just a single UAV A needs to be calibrated
with the total station wherein the initial pose of the remaining UAVs B is estimated from on-board
LiDAR data. The known transformation TW

A and pre-takeoff LiDAR data DA of a robot A are shared
throughout the robots and used to estimate TW

B . The transformation TA
B is estimated by registering

source LiDAR data DB onto target data DA using Iterative Closest Point (ICP) with extremely
tight constraints in matching the rotation component of the transformation. The tight rotation
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Figure 31. Example robot distribution (7 UGV robots in blue, 2 UAV robots in green) of team CTU-CRAS-
NORLAB within the staging area of Systems Track environment of DARPA SubT Challenge, 2021. The Right
figure highlights the reference frames of interest—the world origin OW together with the origin of the Leica total
station OT S used for calibrating local robot origins OA and OB within the world.
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Figure 32. The interconnection of hardware components that were used is the Systems Track.

constraints are important as frame-orientation misalignments are the largest source of absolute
error during deep deployments. The pose of robot B in the world is then given by TW

B = TA
BTW

A .

12. Hardware platform
The components of our S&R UAV were carefully selected to optimize the flight time and perception
capabilities based on years of experience with building aerial robots for research (Ahmad et al.,
2021), competitions (Walter et al., 2022), inspection (Silano et al., 2021), documentation (Kratky
et al., 2021b) and aerial filming (Kratky et al., 2021). All platforms we have designed for diverse
tasks and purposes including DARPA SubT are presented in (Hert et al., 2022).

Our platform is built upon the Holybro X500 quadrotor frame. The 500 mm frame is made
entirely of carbon fiber, therefore it is stiff and light. Moreover, the arm length can be changed to
accommodate different propellers. A description of all components that are mounted on the UAV
frame follows. The connections of the components are depicted in Figure 32. Our team designed and
manufactured a custom Printed Circuit Board (PCB) that replaced the top board of the X500 frame.
This PCB (see Figure 34) supplies battery power to individual Electronic Speed Controllers (ESCs),
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integrates several independent power supplies and provides a communication interface among the
main computer, the Pixhawk flight controller, and MRS Modules. MRS Modules are small expansion
boards that provide additional functionality and have a standardized electrical and mechanical
interface. The UAV can be configured with different MRS Modules depending on the required
capabilities. The PCB is connected to the main flight 4S lithium-polymer battery, which provides
14.0 V–16.8 V depending on the state of charge. The battery voltage is used to directly power the
ESCs and the Intel NUC main computer. The board then integrates three independent 5 V/3 A
buck converters, two to provide redundant power for the Pixhawk flight controller and one to power
the MRS Modules. One 24 V/2 A boost converter is used to power the Ouster OS0-128 3D LiDAR
scanner. The board has two slots for MRS Modules, one is used to control 12 V LED strips which
provide illumination for the onboard RGB cameras. The second module is an interface for an XBee
radio module, used as an e-stop receiver. Communication among the main computer, Pixhawk,
and MRS Modules is provided by FT4232 Quad USB-UART bridge, which is integrated into the
PCB. We selected MN3510 KV700 motors from T-motor and paired them with 13-inch carbon fiber
propellers for large payload capacity and propulsion efficiency. The motors are driven by Turnigy
Bl-Heli32 51A ESCs, as they are lightweight and easily configurable.

The 3D LiDAR was upgraded to the OS0-128 model, which features 128 scanning lines and
wide 90◦ vertical field of view, which allows for perceiving the surroundings of the UAV in the
challenging underground environments. Despite the wide coverage of the LiDAR sensor, there are
still blind spots above and below the UAV when mounted horizontally. To cover these spots, we use
two Intel Realsense D435 RGBD cameras, facing up and down. This enables the UAV to fly directly
upwards, even in cluttered vertical shafts, without risking collision. Both of the RGBD cameras
are also used for mapping and artifact detection. Additionally, the bottom facing RGBD camera
is used for landing site detection. The platform is equipped with two (left and right) dedicated
artifact detection cameras, the Basler Dart daA1600 with 97◦ horizontal FOV lens, and sufficient
lighting provided by LED strips. All algorithms run on the onboard Intel NUC i7-10710U CPU with
6 physical cores and the detection CNN utilizes the integrated Intel UHD GPU.

The high-power Mobilicom MCU-30 Lite wireless communication module provides long-range
connection between robots and the base station while keeping low weight of 168 g. In some
topologically complex areas, even the high-power Mobilicom cannot assure reliable connection
between the units, so it is supported by smaller communication motes, which are also dropped
as breadcrumbs by the UGVs to improve the signal range. These motes are compact communication
modules based on the RFM69HCW transceiver working at 868 MHz or 915 MHz with 100 mW
transmission power and 100 B s−1 data bandwidth. The performance of the motes was analyzed in
the Bull Rock cave (Bayer and Faigl, 2020) and first deployed at the Urban Circuit (Roucek et al.,
2020). The WiFi unit of the onboard Intel NUC computer was not used for any communication.

Finally, the large payload capacity of the UAV allowed us to extend the flight time by using a
larger battery. We used two 4S 6750 mA h Li-Po batteries in parallel. Instead of a larger battery,
two smaller batteries were used due to the 100 W h limit for aircraft transportation. This gave the
UAV a flight time of 25 min with a total mass of 3.3 kg.

The X500 platform (Figure 33) is capable of flying in dense indoor environments, even in tight
vertical shafts, while being able to localize itself with the required accuracy. It has four different
cameras for artifact detection, is able to communicate and form mesh networks with other robots,
and possesses a long flight time.

Furthermore, this platform was also replicated in the virtual competition with the same param-
eters as the physical counterpart. All of the teams except for two used the X500 platforms in the
Virtual Track due to its long flight time, substantial sensor suit, and agile dynamics.

13. Technical details of hardware deployment
With a few exceptions, the components of the UAV software stack deployed in the Virtual and
Systems tracks are equal, yet the available processing powers are not. The Virtual Track yields a
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Figure 33. X500 platform used in the Systems Track (left) and Virtual Track model counterpart (right).
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Figure 34. Custom PCB replacing the top board of the X500 frame from the front (left) and back (right). The
FCU is powered by a dual redundant 5 V power supply, while the Intel NUC computer is powered directly from the
4-cell battery at 14.0 V–16.8 V. The battery is connected using the XT60 connector and the status of individual
modules of the PCB are signalized by 6 status LEDs. The ESCs are also connected to our PCB.

low real-time simulation factor. Together with the computational capacities of each simulated robot,
it provides almost unlimited computational resources for running all algorithms with any desired
resolution or maximal settings. On the other hand, the simulation-to-world transition requires
the algorithms to run on the onboard processing units. This imposes hard requirements on the
algorithms’ optimization, as well as on minimization of the amount of data transfers and their
latency. These requirements force us to

• compromise between accuracy and real-time performance in the system design (i.e., cutting
out global optimization in on-board running SLAM),

• ensure real-time properties for systems handling critical factors of the mission (i.e., UAV
control),

• optimize the data flow and the priorities of processing order within the software stack, and
• prevent any possible deadlocks from arising from outages of both synchronous, and asyn-

chronous data.

Ensuring real-time settings for all systems of a robotic deployment is implausible, particularly in
complex robotic-research projects where the stack design must allow for the system to function as
a whole under limited real-world conditions. We summarize the specific aspects of the proposed
ROS-based software stack, allowing us to transfer all components to on-board processing capacities.
Thus providing full decentralization within a UAV team.

Software based on ROS 1 allows for connecting components under a nodelet manager in order to
group nodelet plugins. In contrast to node configuration, the nodelets under a manager have shared
memory and do not require copying data, a tool useful particularly in the case of passing large
maps within the navigation stack. Our deployment stack consists of several managers, each of which
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Figure 35. The CPU load of onboard computers of individual UAVs (red , green, blue) during the prize round of
SubT Systems Track. The highlighted parts of the graph correspond to the start of processing onboard images
by the object detection pipeline.

handles a distinctive part of the system. These include UAV control, preprocessing of LiDAR data
and SLAM, preprocessing of RGBD data and dense mapping, navigation and path planning, and
perception. The data flowing between these managers are copied, and thus the rate of sharing is
subject to maximal reduction. To decrease the temporal and memory demands of algorithms, the
resolution of input data and the output maps is decreased as much as possible within the scope and
requirements of the desired application. The rate of saving data for after-mission analyses is also
limited as much as possible, with no postreconstructable data being recorded at all.

In contrast to the system designs for UGV platforms, the delays in state estimation and control
inputs are a critical subject for reduction. This is because excessive delays lead to destabilization
of a multirotor aerial platform (see analysis on delay feasibility in Figure 11) as it is a dynamically
unstable system requiring frequent feedback, even for simple hovering. The nodelet managers
handling such critical parts of the system are prioritized at the CPU level, utilizing the negative
nice values that prioritize the related processes during CPU scheduling. To decrease asynchronous
demands on the CPU, nonprioritized components are penalized with positive nice. Furthermore,
their scheduling is restricted on a predetermined set of threads in a multithreaded CPU. The primary
subject of scheduling restriction is the perception pipeline containing a computationally heavy CNN,
where static allocation reduces its asynchronous influence on the rest of the system at the cost of
a limited processing rate. The effect of switching on the perception pipeline is visible in Figure 35,
showing the CPU load of the three deployed UAVs during the DARPA SubT Systems Track. In other
validation tests, the CPU load reached up to 90 % in 1500 s long missions within vast underground
environments. Such an overloaded CPU results in frequent asynchronous delays, culminating to
unpredictable and destructive behavior.

To limit the power consumption and hence, increase the maximum flight time, unsolicited
hardware and software components can be temporarily powered off. These include switching off
on-board lights in meaningless settings, disabling CNN processing when not needed, or powering
off the LiDAR in the after-landing phase when the UAV is serving solely as a retranslation unit for
communication.

14. System deployment
Throughout the development of the system presented in this paper, the individual components
were extensively tested before integration. Deployments of the whole system were less frequent, but
allowed testing the interaction of individual modules and verifying the ability to fulfill the primary
objective of finding objects of interest in subterranean environments.
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(a) (b)

(c) (d) (e)

Figure 36. The verification of localization and perception in the following scenarios: data degraded by insufficient
lighting and whirling dust (a), traversal of vertical narrow passage (b), performance in humid caves (c), multirobot
exploration (d), and scalability with the environment size (e).

14.1. Continuous field verification
The S&R UAV system was continuously tested to empirically verify the correctness and reliability
of the developed algorithms, strategies, and hardware. The UAVs were deployed into diverse types
of environments, including historical and industrial buildings of varied levels of disintegration, in
humid unstructured caves, a decommissioned underground military fortress, and vast outdoor rural
areas. Some of these environments are shown in Figure 36. Such tests are critical for evaluating
the performance under the stochastic influence of real-world conditions, which are typically not
modeled in simulations. In particular, each perception mode is more or less degraded by ambient
lighting or the lack of it, the fog with microscopic condensed droplets of water, smoke or dust
particles, reflections on water or smooth surfaces, etc. The filtration of LiDAR and depth data
from Section 5.2 therefore had to be tuned correctly to prevent the integration of false positives
into the map, while keeping the actual obstacles. Moreover, the artifact detection system needed to
work under a wide range of visibility conditions and chromatic shifts, for which it was necessary to
collect artifact datasets from the mentioned environments.

14.2. DARPA SubT Final Event Systems Track
The Final Event, which was the culmination of the DARPA SubT competition, was organized in
the Louisville Mega Cavern in Kentucky on September 23, 2021. The course consisted of all three
environments from the previous circuits and contained all artifacts from previous events plus the
cube, which was a new artifact for the Final Event. This section reports on the results achieved
by the aerial part of the CTU-CRAS-NORLAB team. A total of 40 artifacts were distributed over
880 m long course, which was divided into 28 smaller sectors to track the team’s progress. Every
robot starts in the staging area, from which a single corridor leads to an intersection that branches
into three ways. Each of the branches leads to one of the three specific environment types (tunnel,
urban, and cave).
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Figure 37. All robotic platforms used in the Prize Round. (From left to right) X500, Spot, Husky, TRADR,
Marmotte.

Table 3. The summary of deployed robots in the Final Event sorted by deployment times. Operable time means
how long the robot was operable, i.e., its computers were running and it could move. Motion time is the time
the robot was moving faster than 0.1 m s−1. The row Artifacts shows the number of confirmed hypotheses as
defined in Table 5.
Robot Spot 1 Red Spot 2 Marmotte Husky Spot 3 TRADR Blue Green
Locomotion Legged Aerial Legged Tracked Wheeled Legged Tracked Aerial Aerial
Deploy time 0:20 2:00 4:00 7:20 12:40 17:32 28:20 36:00 46:30
Operable time 6:00 3:00 7:00 44:00 20:00 11:00 32:00 22:25 6:10
Motion time 3:00 2:32 2:00 6:00 5:00 9:00 4:00 15:22 4:33
Traveled 111 m 69 m 47 m 181 m 131 m 195 m 97 m 304 m 119 m
Artifacts 4 1 2 1 2 0 3 3 3
Sectors explored 4 2 2 2 2 5 4 4 4

Our team deployed a heterogeneous lineup of robots. A total of 3 legged robots (Spots), 2 tracked
robots (TRADR, Marmotte), 3 aerial robots (X500), and 1 wheeled robot (Husky) robot were
deployed in the Final Event Prize Round (see Figure 37). The Husky robot is a fast wheeled
platform (3.6 km h−1 max. speed) for exploration of easy terrain. Tracked Marmotte was also
fast (4 km h−1 max. speed) but could overcome obstacles larger than Husky could. Spots were
the universal ground platform thanks to the ability to pass most terrain except slippery surfaces
(max speed 5 km h−1). The highest traversability among the ground platforms was offered by the
tracked TRADR robot thanks to its controllable flippers (however, maximum speed is approximately
2 km h−1). The primary role of the aerial robots was to explore areas unreachable by ground robots
such as vertical shafts or paths blocked by obstacles. The detailed composition of the team is
summarized in Table 3 together with deployment times and mission statistics. The payload of all
UGVs consisted of Ouster OS0-128, 5–6× Basler Ace 2 or 1× PointGrey Ladybug 2 cameras, Xsens
MTI-30 IMU, Mobilicom MCU-30 Lite, Nvidia Jetson Xavier AGX, Intel NUC 10i7FNK, LED
illumination, SDC30 gas sensor, and communication motes.

14.2.1. UAV deployment summary
Three UAVs in total (red, green, and blue) were deployed in the 60 min long run. All UAVs
used the Greedy strategy (Section 8.2.2) without VPE for the simplicity of its reward function,
which made it easier to fine-tune the reward function coefficients for the competition environment
and debug the UAVs’ behavior. The UAV performance is summarized in Table 4 and the flight
trajectories are plotted in Figure 44. The first UAV (red) took off just after the first UGV, arrived
to the first intersection, explored 10 m of the tunnel section, returned to the intersection, flew to
the cave branch where it collided with the Spot UGV (Figure 42a). The chronologically second
deployed UAV was blue, which went into the urban branch where it traveled to a vertical alcove
with a phone artifact. Then it returned to the start of the urban section, where it hovered until
exhausting the battery (Figure 42c), because all viewpoints were blocked in its map corrupted
by drift in the featureless urban corridor. The last deployed UAV was green that explored the
tunnel section, where it was blocked by a dynamically added artificial wall (Figure 41). After
flying through a cluttered tunnel corridor, the UAV collided with a metal rod protruding from
the wall (Figure 42b).
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Table 4. The mission statistics from the prize round of the Final Event. The localization accuracy was not
evaluated for UAV blue. Obtaining the ground truth position using scan matching would have been extremely
strenuous due to the degenerate geometry of LiDAR scans in the urban tunnel. This degeneracy also caused the
onboard localization to drift several meters.
UAV Red Green Blue
Localization accuracy:

avg|max error in translation (m) 0.38 | 0.63 0.97 | 2.66 -
avg|max error in heading (◦) 0.64 | 4.06 1.48 | 5.37 -

Safety clearance 0.4 m 0.11 m 0.21 m
Landing cause Collision with UGV Collision with a metal

rod protruding from
the wall

Depleted battery after
being trapped in degraded

map

A B C D

E

F

A

B
C

D

E

F

Figure 38. UAV trajectories and on-board-built maps of the environment from all flights during the prize round
(colored in red) and the postevent testing (colored in blue) overlaid over the ground truth map (colored in black).
The photos from on-board camera highlight the diversity and the narrow confines of the environment.

The maps and the trajectories of all our UAV flights during the prize round and the postevent
testing are shown in Figure 38, together with summary of the mapping errors from these flights
in Figure 39. The distance of the UAVs from the nearest obstacle during all flights in the prize
round are shown in Figure 40.

14.2.2. Artifact detection discussion
The performance of the artifact detection and localization system is summarized in Table 6, and
the number of artifacts detected by each UAV in Table 5. A total of seven artifacts appeared in
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Figure 39. Distribution of mapping errors throughout the prize round and the postevent testing flights (colored
in red and in blue in Figure 38) of DARPA SubT. The absolute mapping error denotes the distance between
the ground truth map and concatenation of DenseMaps built with resolution of 20 cm on-board during particular
UAV flights. The error metric is the Euclidean distance between a point from the on-board maps to its closest
point in the ground truth map.
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Figure 40. Distance between the center of the UAVs and the measured nearest obstacle during the prize round of
the SubT Systems Track. The moving mean and standard deviation are computed over a 10 s long time window.

the camera images, and six artifacts were detected by the CNN. The detections with estimated
bounding boxes from all UAVs are shown in Figure 45. The survivor s2 was seen in three frames
of the bottom camera. However, only a small part of the survivor sleeve was visible and the images
were further degraded by motion blur, as can be seen in Figure 43. Thus the CNN did not manage to
detect the artifact. From the six detections, the cellphone artifact p1 was detected only on one image
frame when the UAV blue peeked into the vertical shaft in the urban part. However, as explained
in Section 10, a total of four detections are necessary to create a hypothesis and to confirm the
position, and thus this single detection was discarded. Another missed point was the survivor s1,
which was detected and localized within the 5 m limit, but the artifact was labeled as a cube instead
of a survivor. The hypothesis was merged with a high number of false positives and, consequently,
the correct image was not sent to the operator, who could not determine the correct class to report.
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(a) (b)

Figure 41. The artificial wall that blocked the way back for UAV green in the map (a) and in the camera image
(b).

(a) (b) (c)

Figure 42. The landing events of all three UAVs. The UAV red (a) collided with the Spot UGV, UAV green (b)
hit a metal rod protruding from the wall, and UAV blue (c) landed after its battery was exhausted by hovering
while being trapped in a map corrupted by drift in the featureless corridor.

Figure 43. The only three image frames of the survivor s2 captured by the downward-facing camera. The
artifact was not detected as there is only a small part of the survivor’s sleeve visible in the image, which is also
degraded by motion blur.

Both vent v1 and drill d1 were detected, localized, and correctly labeled. The drill d4 was incorrectly
classified as a backpack, nevertheless, the operator reported the correct class based on the detection
image. All three UAVs detected the d4 drill, but UAV green provided the highest accuracy, which
is reported in Table 6. In total, four artifact hypotheses arrived to the base station with sufficient
information for obtaining a point for the report.
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Table 5. Statistics of artifact detection for each deployed UAV from the prize round
of the Final Event. The seen column yields the number of artifacts that appeared in
the image of one of the on-board cameras. If the artifact was detected by the CNN, it
is listed in the detected column and the detection is shown in Figure 45. Artifacts that
were confirmed had enough consistent detections to establish a hypothesis. Confirmed
unique artifacts were not detected by another robot, including UGVs.

Artifacts
UAV seen detected confirmed confirmed unique
Red 1 1 1 0
Green 4 3 3 1
Blue 4 4 3 1

Table 6. Unique artifacts detected by lightweight CNN running on-board UAVs in real time. The total error etot
of the artifact position is the sum of the UAV localization drift error eloc and the error of estimating the artifact
position eest from the detected bounding box. Artifacts detected by more UAVs are listed only once with values
from the most accurate hypothesis among the UAVs. The hypothesis was Confirmed when more than four
images were associated with it. Some artifacts were correctly detected and localized, but the wrong label was
assigned to them. This is documented in the Correct class column. Even with a wrong label, the operator could
still deduce the correct class by looking at the image sent with the hypothesis. Only one image was sent with
each hypothesis, and if it was possible to deduce the correct class, then the image was listed as Correct image.
Artifact Frames detected Confirmed Correct class Correct image eloc (m) eest (m) etot (m)
v1 27 X X X 1.94 4.61 3.08
s1 60 X × × 2.93 4.57 2.89
p1 1 × × × - - -
d4 11 X × X 0.77 1.61 1.30
f1 13 X X X 0.85 1.33 1.31
d1 9 X X X 1.46 2.30 1.55

meters
0 10 20 30 40

Figure 44. The map of the Final Event course was obtained by the organizers by scanning the course with a
laser scanner station. The paths traveled by all three UAVs (red , green, and blue) during the Final Event are
depicted by their respective colors. The ground truth positions of artifacts are surrounded by a yellow sphere in
order to visualize the 5 m limit for the reported artifact to be counted as a point in the competition. The five
artifacts that were detected and localized within this 5 m limit are shown as squares colored by the detecting
UAV and highlighted in the magnified sections with red arrows.
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Figure 45. Images of artifacts detected by the UAVs in the Final Event. The color of the rectangle shows which
UAV detected the artifact and at what mission time as shown in the bottom right corner.

14.3. DARPA SubT Final Event Virtual Track
In parallel to the Systems Track, the competition was also running in the simulated form of the
Virtual Track. The teams had to submit a solution consisting of docker images of a robotic team
put together within a limited budget to buy the robots and their sensory packages.

The Systems Track included a single run (with two preliminary rounds) conducted in a single
world and was therefore focused on the reliability of the robots, which had to overcome challenging
terrain with narrow passages and adverse conditions for perception. On the other hand, the virtual
teams were deployed three times in each of the eight worlds, ranging from vast models of artificially
created environments to scanned courses from the previous events, including the Final Event course.
Moreover, in the Virtual Track, the whole mission must be fully autonomous and no human interven-
tions are possible. The purpose of the virtual event was to evaluate the high-level planning, coopera-
tion, decision-making, and efficient coverage of the large worlds. As the cooperative searching strat-
egy is one of the core contributions of this work, we have presented the results from the virtual course
here as most of the worlds allowed for efficient deployment and cooperation of the multirobot teams.

14.3.1. Differences from the Systems Track
The simulation model of the IMU provides much better data compared to the real sensor with
the same parameters. Thus is due to the measurements in the simulation not being corrupted by
propeller-induced vibrations, wind gusts, or saturation, as well as having the IMU rigidly attached
to the UAV body with known extrinsic parameters. The higher quality of the simulated data
allows for the use of LiDAR-inertial odometry. In addition to the LiDAR, it also relies on the IMU
preintegration in its optimization process, thus providing a smooth and drift-free position estimate,
even when there are few geometrically rich features present. Specifically, the LIO-SAM (Shan et al.,
2020) algorithm was chosen for its low drift and high precision over the A-LOAM deployed in the
Systems Track. Both algorithms are detailed in Section 6.

The computation power available for artifact detection in the Virtual Track was not constrained
by the weight of the onboard computation hardware as was the case in the Systems Track. As a
result, compromises of the performance/weight ratio had to be made on the detector in the Systems
Track, as reported in Section 10.
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Reporting of the found artifacts is handled by the operator in the Systems Track, which is not
possible in the fully autonomous Virtual Track. A virtual artifact reporter algorithm was developed
to gather artifact hypotheses from all robots and decide which hypotheses are the most likely to
score a point (described in detail in Section 10.4).

The control interface of the simulated UAV was also different from the real one. While the FCU
of the real UAV accepted attitude rate commands generated by the Special Euclidean group of
dimension 3 (SE(3)) controller, the simulated UAV was controlled on a higher level by velocity
commands. This did not allow for precise control of the UAV motion, as was the case for the
low-level attitude rate control.

The deployment sequence of individual robots in the Systems Track could be decided by the
operator based on the requirements of locomotion modality, dynamics, and sensory payload during
the progress of the mission. In contrast, the sequence in the Virtual Track was fixed before the start
of the run.

LandMap introduced in Section 7.5 was not used in the Virtual Track where the UAV was not
destroyed even after a rough landing. As long as the UAV landed in the communication range of the
network it could send its hypotheses to the base station and further retranslate messages from/to
other robots.

14.3.2. Virtual Track results
In the virtual deployment, our team consisted of five UAVs and two UGVs. The UAVs were the
superior platform in the Virtual Track due to their greater movement speed, smaller form-factor,
and better mobility to fly over terrain untraversable by the UGVs. We deployed two UGVs to build
a communication network consisting of breadcrumbs dropped at the edges of the wireless signal
range. This allowed for the UAVs to maximize the time for searching for artifacts as they could
return to the nearest breadcrumb instead of to the base station back at the staging area. Both
UGVs were deployed at the start of the run. The deployment times and exploration strategies of
individual UAVs are listed in Table 7. Our solution achieved 2nd place with a total of 215 scored
points. Table 8 summarizes the points scored by the top three teams on each world of the Virtual
Track (Figure 46). The lower number of points on worlds 4, 5, 6, and 8 can be explained by the fact
that these worlds were not made of the tiles that were used in the qualification and practice worlds.
The details on traveled distance and collected hypotheses by particular UAVs during all runs of the
SubT Virtual Finals are provided in Figure 47 and Figure 48, respectively.

Table 7. The times of deployment and assigned strategies from Section 8.2 in the
Virtual Track. The second UAV was scheduled to take off after the first UAV returned
to communication range so that it can take advantage of the LTVMap of the first
UAV. Both DEI and Greedy strategies were used as DEI guarantees covering dead-end
corridors at the cost of lower average velocity and lower total surface covered. The
first UAV used DEI so that the rest of the team did not need to return to where the
first UAV already had been. The next two UAVs maximize the searched volume with
the Greedy strategy and the last two UAVs cover any missed surfaces with DEI.
UAV 1 2 3 4 5
Start (s) 60 1560 1680 1800 1920
Strategy DEI Greedy Greedy DEI DEI

Table 8. The score achieved by the top three teams on each world of the Virtual Track. The
reported values are the sums of three runs on each world.
World 1 2 3 4 5 6 7 8 total
Dynamo 21 52 48 18 15 11 44 14 223
CTU-CRAS-NORLAB 31 39 45 16 18 13 36 17 215
Coordinated Robotics 44 41 27 23 17 14 26 20 212
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1 2 3 4
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Figure 46. All eight worlds used in the Virtual Track of the DARPA SubT Finals. The worlds 1, 2, 3, and 7
are built from tiles that were used in the preliminary and practice rounds. World 4 is the model of the NIOSH
research mine, where the tunnel circuit was held. Similarly, world 5 corresponds to the model of the location of
the urban circuit—the unfinished Satsop nuclear power plant. World 6 is a model of a narrow cave system. World
8 is modeled based on the Systems Track Finals.

15. Lessons learned and future work
In this section, we present our view on the state of the S&R UAVs, the lessons learned, which
problems are solved, and what areas require more research to achieve reliable performance suitable
for deployment as a tool for assisting rescue workers. These findings were collected throughout the
preparation for as well as during the DARPA SubT Competition, which aimed to push the state of
the art of S&R robotics. Furthermore, this discussion should be of some interest to the community
as we highlight aspects that could be explored in future research and development. In general, most
of the individual subproblems, such as localization, mapping, detection, and communication, are
solved to the point of being capable of performing an autonomous mission in extremely challenging
conditions. The developed algorithms are now used in actual field deployment instead of just
laboratories and simulations, which introduces disturbances, noise, dust, and other detrimental
effects that negatively impact the algorithms’ performance and reliability. It is essential to focus on
the reliability of the employed methods to make the UAVs a valuable asset to the S&R team.

The role of the aerial robot in a heterogeneous S&R robotic team is a quickly deployable agent that
can provide swift situation awareness, environment type, and topology information that allows for
informed decision-making about the rest of the mission. Furthermore, areas such as caves, collapsed
buildings or high openings can often be reached only by UAVs. On the other hand, ground robots
have the advantage of higher payload capacity, which results in improved perception capabilities
compared to UAVs.

The localization method based on 3D LiDAR provides precise position estimates, even under
severe degradation by dust. However, as proved by the UAV blue, the estimate can begin to
drift when the solved optimization is ill-conditioned due to low-variance geometry, typically in
long corridors with straight walls. The unpredictable nature of subterranean environments requires
a localization method that is reliable and drift-free under arbitrary conditions. Solutions based
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Figure 47. Overall traveled distance, time of active motion, and average velocity of particular UAVs in all runs
of the SubT Virtual Finals. The maximum traveled distance throughout all runs was achieved by UAV5 in run 1c
(3560 m). The maximum active time was achieved by UAV2 in run 5b (1539 s). The presented average velocity
incorporates the entire flight, including hovering states.

on detecting geometrical degeneracy, and multimodal fusion of LiDAR and visual methods were
described in Section 2.2. The results seem promising but due to high unpredictability and challenges
of subterranean environments more research in localization algorithms is still required for truly
robust pose estimation in arbitrary conditions.

In addition to map drift caused by errors in the localization, the volumetric occupancy grid did
not contain the smaller obstacles like ropes, cables, and thin poles, which led to the collision of UAV
green as seen in Figure 42b. Although some LiDAR rays hit these thin obstacles, the occupied cells
generated by these rays were often changed to free when multiple rays that passed through these
cells hit the wall behind them. As a result, the navigation pipeline planned a path through these
cells that appeared free, but contained a thin metal pole, causing a collision. The ability to traverse
narrow passages is also impaired since the passages appear narrower than they really are due to grid
discretization. We propose to locally increase the resolution of the grid of DenseMap on demand
to approximate the free space more accurately, while keeping the scan integration times bounded.
This approach is however only a partial solution as the need for a more granular resolution might
not always be reliably detected. Consequently, the need arises for a flexible map that is not bound
by fixed cell size, similarly to the SphereMap, possibly based on surfel mapping as seen in (Behley
and Stachniss, 2018), or based on GMM (O’Meadhra et al., 2018).
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Figure 48. Distribution of successful reports among the UAVs in particular runs of SubT Virtual Finals (top) and
the number of valid hypotheses collected throughout particular runs by individual robots (bottom). The number
of successful reports of individual robots is mostly influenced by the ordering of robots and their delayed starts
in the mission.

Related to the narrow passage traversal was also the decision to not include prop guards in the
platform design. With the experience from Urban Circuit (Kratky et al., 2021a) where our platform
featured prop guards, we decided against prop guards in the Final Event as they further increase the
size and mass of the UAV. The advantage of the prop guards is uncertain as they do not automatically
allow the UAV to continue operation after a collision. The control and localization software needs
to be designed to handle these dampened collisions and even then it is not guaranteed that the
UAV will continue in flight as the collision is caused by a failure of a module (perception failure to
detect an obstacle, localization error, etc.), which cannot be solved by prop guards. Nevertheless,
platforms with prop guards were deployed successfully by other teams [e.g., (Scherer et al., 2022;
Agha et al., 2021)] so a consensus on this design choice has not been reached yet.

We experienced a surprising issue when our UAV equipped with the Ouster OS0-128 LiDAR
was passing around a UGV with LeiShen C16 LiDAR. The rays emitted by the LeiShen corrupted
some of the Ouster measurements, which manifested as points in random distance within the FOV
of the LiDAR. These false positives were not filtered out by the intensity filter from Section 5.2,
because the intensities fall into the same range of values as true positives. As a result, the points
get integrated into the map, as shown in Figure 49. Nevertheless, the performance of the UAV was
not degraded as the navigation pipeline is robust to such sparse noise. This experience highlights
the importance of testing the compatibility of robotic platforms deployed in heterogeneous teams.

The flight time of the UAV over 20 min was achieved as the payload was limited only to crucial
components. However, the presence of only a single computational unit without CNN acceleration
or dedicated GPU led to compromises in the artifact detection CNN. Large-size models such as
YOLOv3 (Redmon and Farhadi, 2018) were too slow for achieving satisfactory frame rates on the
CPU, so lighter models had to be used. As explained in Section 10, the lightweight MobileNetV2
CNN allowed for lightweight models (7 MB) that could fit into the cache of the CPU. Furthermore,
the OpenVino framework supports accelerating the CNN on the GPU integrated with the CPU,
which helped to achieve sufficient frame rates. Although the lightweight model successfully detected
all artifact types, the labeling was not very reliable and many false positives were detected.
This impacted the artifact localization process, as the false positives were fused into the artifact
hypotheses, which shifted the estimate further from the true position. Also, the images of these false
positives were sometimes sent as the representative image of the hypothesis. Thus the operator could
not correctly decide the artifact class when the label produced by the CNN was incorrect. When
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(a) (b) (c)

Figure 49. DenseMap before (a) approaching the UGV with LeiShen C16 LiDAR (b) and (c) when it gets
corrupted by random points in the FOV of the LiDAR mounted on the UAV after flying in close vicinity (≈ 1 m)
to the UGV. Notice, a few false positives were integrated into the map even when the UAV was 8 m away from
the UGV (a).

payload capacity prevents the use of more capable hardware, the issue must be compensated by the
sensing strategy. In contrast to UGVs the mobility of UAVs allows reaching closer to the artifact
to verify the detection. Approaches of perception-driven navigation can improve the performance of
the lightweight detector by planning a trajectory to inspect the artifact from a closer distance and
other angles after the initial detection.

Although our platform is quite compact (500 mm without propellers), it could not pass through
all of the narrow passages, even during the postevent testing. Apart from the discrete map and
conservatively set distance from obstacles (see Table 4), the size of the UAV prevented flying through
some of the narrower passages of the circuit. As even smaller passages are to be expected during
deployment of robots in real S&R scenarios, the UAV platforms should be further miniaturized to
allow safe traversal of narrow passages. Deployment of visually localized UAVs could decrease the
size significantly but the capabilities of visual navigation pipelines still underperform compared to
the LiDAR solutions, which was the preferred approach of most teams. A possible workaround that
compensates for the lower flight time of smaller platforms is the marsupial deployment (Lindqvist
et al., 2022; De Petris et al., 2022). When such miniaturization is not possible due to, e.g., insufficient
payload of smaller platforms, a heterogeneous aerial team consisting of both large and small
platforms can be deployed, In such case, the large platform carrying a LiDAR can command and
send position corrections to smaller visually localized UAV that can inspect tight narrow passages
that are unreachable by the large UAV (Pritzl et al., 2022b).

A mutual collision avoidance module is a necessity for any application where multiple robots share
the same workspace. The developed priority-based module uses the already shared information about
the robots’ positions when communication is available, as it should since the risk of collision arises
when robots are in close proximity. This module prevented collisions in the Virtual Track, where
despite the vastness of most of the worlds, the collisions happened often in the practice runs before
implementing the collision avoidance. We decided against using the collision avoidance module in
the Systems Track. This was done as the robots could easily become deadlocked in tight corridors
and also due to the collision probability being reasonably low because of the delay between each
UAVs launch. Additionally, the operator could override the full autonomy to prevent collision, if
necessary. Nevertheless, the UAV red collided with a Spot UGV shortly after the start of the run,
which could have been prevented if collision avoidance was enabled. A deadlock-free solution based
on agent theory approaches can be devised for situations when communication is available, and
behavior prediction methods can provide a backup when communication is not possible.

Even though the organizers did a great job at providing a realistic simulation environment for
the Virtual Track, many phenomena, unexpected situations, and issues from the real world are
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not present in the simulation. Moreover, the rules of the competition are different for the two
tracks. For example, the absence of a human operator in the virtual team changes the approach
drastically as all decision-making needs to be automated. For details about the differences between
the Systems and Virtual tracks see Section 14.3.1. As a team that participated in both Systems
and Virtual tracks, we want to list the greatest hurdles encountered in the simulation to real-world
transfer:

• Degraded sensor output. The output of real-world sensors is corrupted by various negative
effects. On the other hand, the imperfections in simulated sensors are typically modeled only
by an additive noise, which most algorithms can cope with by smoothing or filtering. The
performance of such algorithms severely deteriorates with input data degraded by the harsh
conditions of underground environments. In the case of laser-based sensors, rays get reflected by
small airborne particles such as dust, smoke, and fog to produce false measurements. Although
the fog was modeled in the simulation, the distribution of fog points in the point cloud did not
coincide with the distribution in the real world, and thus we implemented different approaches
for Virtual and Systems tracks, which are detailed in Section 5.2. Cameras in addition to the
airborne particles suffer from insufficient illumination, high-contrast scenes, motion blur, and
rolling shutter aliasing. Using neural networks for object detection proved to be robust to these
effects when trained on datasets with similar data.

• Environment scale. The scale of the environment was much smaller in the Systems Track than
in the Virtual Track. Most of the simulation worlds spanned several-kilometers-long corridors
with vast caves to challenge the cooperative exploration abilities of the teams. The vastness
and openness of the worlds favored fast flights to cover as much space as possible during flight
time. In contrast, the Systems Track was narrow from the beginning of the course (see the
cross-section distribution in Table 2) and the UAV was closer than 1 m from obstacles for most
of the flight (see the distance to obstacle plot in Figure 40). To minimize the chance of collision,
the velocity of the UAV was constrained to 1 m s−1 instead of 5 m s−1 in simulation and the
control was tuned for low error by commanding the UAV in attitude rates instead of linear
velocities.

• Safety. In simulation, the robots cannot harm anyone and to perform another run after a
collision it is sufficient to restart the simulation. Contrary to that, in the real world, special
care must be taken to make the robots, especially fast aerial robots with quickly spinning
propellers, safe for the environment, operators, and any other humans in the vicinity. To assure
maximum safety during takeoff, status checks are performed automatically but then the safety
operator has to approve the takeoff by toggling a switch on the RC as described in Section 11.1.
During the flight, health checks of the rate of crucial data streams are performed, control errors
are monitored, and innovation of state estimation corrections are analyzed. When any of the
monitored values exceeds a critical threshold, an emergency landing is initiated to minimize the
damage to the platform. A technique based on data from the downward-facing depth camera
was developed to assure safe regular (not emergency) landing on planar low-slope surfaces
stored in LandMap (Section 7.5).

• Decision-making in artifact reporting. Due to the limited payload of the UAV, a
lightweight CNN was used for artifact detection, which forced us to choose a compromise
between precision and recall. Having a human operator to verify the artifact hypotheses allowed
us to maximize recall to not miss any artifact at the cost of a higher false positive count. A
correctly detected but misclassified artifact could still score a point if the operator correctly
deduced the class from the image (see Table 6). This would not have been possible using the
autonomous arbiter and thus the flexibility of a human operator overperforms the autonomous
arbiter, which optimizes a fixed criterion when reporting an artifact hypothesis.

• Computational resources The simulated run in Virtual Track was running only at a fraction
of real time and thus the employed algorithms had more computation time available. In the
Systems Track, the developed algorithms had to run on the onboard processing units in real
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time. Thus, for the simulation to real-world transfer, the algorithms need to be optimized,
critical systems prioritized, and often a compromise between accuracy and computation time
has to be found. We discuss all modifications and optimizations in Section 13.

16. Conclusion
This paper has presented the complex UAV system deployed in the final round of the DARPA SubT
Challenge after 3 years of development and testing in numerous real world demanding environments
(including gold mine, coal mine, abandoned nuclear power plant, caverns, military fortress, natural
caves, old factory hall, subway station, etc.). Based on these unique opportunities and experience,
we have designed both the hardware UAV platform and the multi-UAV software with a focus on
the exploration of such vast, complicated, and varying environments.

In the Systems Track of DARPA SubT Challenge, three UAVs were deployed alongside ground
robots into the competition course consisting of a heterogeneous environment of the tunnel, urban,
and cave sections, where the aerial team detected and localized four artifacts and traveled 492 m in
total. The austere conditions of the circuit, such as narrow passages, dust, featureless corridors, and
dynamic obstacles, tested the reliability of the system as a whole, including the hardware design of
a compact platform with a considerable flight time of 25 min. Most of the testing was realized in
environments where it performed exceptionally well, including a former brewery where the UAV had
to explore an abandoned building with partially collapsed floor and ceiling, or during the exploration
of Byci Skala (Bull Rock Cave) in the Moravian Karst cavern system. Compared to ground robots
the UAVs could search a larger volume of space because they could easily fly over any encountered
problematic terrain such as mud, water, and rubble and thus had an advantage in the exploration
of unknown terrains with unexpected obstacles. Furthermore, the worlds of the Virtual Track of
the competition were also very large; even with our UAV possessing a 25 min flight time and fast
dynamics, they were not able to reach the furthest parts of some worlds. Although our system was
designed primarily for these large-scale environments, its performance in the challengingly tight
corridors of the prize round was also impressive. The difficulty of UAV deployment in such adverse
environments motivated numerous achievements beyond the state of the art that are summarized
in this paper. Many lessons were learned in the process that could facilitate and support designing
complex robotic systems in similar applications in the future.

A larger team of five aerial robots was deployed in the Virtual Track, alongside two UGVs.
By employing the proposed cooperative exploration strategies based on topological map sharing,
the exploration effort of our team was spread out over a wider area. Together with dynamic flight
and reliable artifact detection/localization, this helped to achieve the 2nd place with 215 scored
points. Moreover, seven out of the nine participating teams used our X500 UAV, which was modeled
according to the specification of the physical platform thanks to its long flight time, a wide array
of sensors, modest size, and reasonable price.

Based on the successful deployment in the DARPA SubT, which focused on providing challenging
conditions typically encountered during rescue missions in underground environments, we conclude
that the presented UAV system is a valuable addition to teams of first responders, as it can provide
situational awareness and even find survivors after a catastrophe without risking the lives of rescuers
in dangerous environments.
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4 Distributed Perception-Aware Multi-Robot Co-

ordination

[3c] P. Petracek, V. Kratky, M. Petrlik, T. Baca, R. Kratochvil, and M. Saska,
“Large-Scale Exploration of Cave Environments by Unmanned Aerial Vehicles,”
IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 7596–7603, 2021

Another interdisciplinary overreach was made into the field of speleology in a core pub-
lication [3c] focusing on multi-robot exploration. This work was developed in close cooper-
ation with the Institute of Geodesy at the Brno University of Technology. It was published
in the IEEE Robotics and Automation Letters and was presented virtually at IEEE CASE
2021. Building on our previous works [8a, 12a], the work [3c] proposed a highly optimized self-
contained UAV framework assisting human explorers, first responders, and speleologists in the
mapping of natural cave systems. The contributions include full-stack LI-based UAV auton-
omy capable of autonomous operation in an arbitrary exploratory task within an unknown
and unstructured subterranean environment for the purposes of accurate mapping. The ex-
perimental analyses achieved deep-exploratory flights up to a distance of 470 m in a single
fully autonomous deployment in the Bull Rock Cave system (located in the central Moravian
Karst, Czech Republic), requiring just 2 flights to map the entire cave system. Such long ex-
ploratory flights are rare, even in modern systems capable of autonomous real-world operation.

Apart from aerial autonomy, one of the primary contributions of the work [3c] is a
novel strategy for distributed multi-robot homing. The strategy maximizes the flight time in
tasks where homing of the deployed robots to an initial base location is not required. The
proposed strategy is suitable for tasks where the possible information gain is superior to the
cost of the robots, such as in S&R scenarios. To effectively use the limited flight time, the
robots utilize intermittent local communication to plan the homing path, such that a group
of robots can build up a communication tree with the base station (an initial takeoff position)
as the root communication node. Each robot constructs a navigation homing tree using nodes
created from its past poses, where a single tree node models a local sphere-modeled source of
omnidirectional communication. The edges of the online-built tree are valued by the required
flight time between two connected nodes, wherein the edge value is used to estimate the
required homing time to the proximity of a communication node during exploration. The
homing trees of different aerial explorers are integrated in a distributed manner once two
robots are within the range of local communication. The homing-tree integration minimizes
the homing time and maximizes the time capacity for the exploration task for robots that gain
new information from the tree merging. The communication nodes are exclusively connected
to build a retranslation chain. In contrast, the pose nodes are connected such that each path
from a leaf to a communication node is the shortest with respect to the required flight time.
Quantitative comparison of the results with a state-of-the-art baseline solution [135] has shown
that a fifth deployed robot has a 21 % increase in the exploration time. The proposed method
was deployed as the homing method of the UAV team during the DARPA SubT competition.
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Abstract—This paper presents a self-contained system for the
robust utilization of aerial robots in the autonomous exploration
of cave environments to help human explorers, first responders,
and speleologists. The proposed system is generally applicable
to an arbitrary exploration task within an unknown and un-
structured subterranean environment and interconnects crucial
robotic subsystems to provide full autonomy of the robots.
Such subsystems primarily include mapping, path and trajectory
planning, localization, control, and decision making. Due to the
diversity, complexity, and structural uncertainty of natural cave
environments, the proposed system allows for the possible use of
any arbitrary exploration strategy for a single robot, as well as
for a cooperating team. A multi-robot cooperation strategy that
maximizes the limited flight time of each aerial robot is proposed
for exploration and search & rescue scenarios where the homing
of all deployed robots back to an initial location is not required.
The entire system is validated in a comprehensive experimental
analysis comprising of hours of flight time in a real-world cave
environment, as well as by hundreds of hours within a state-
of-the-art virtual testbed that was developed for the DARPA
Subterranean Challenge robotic competition. Among others, ex-
perimental results include multiple real-world exploration flights
traveling over 470 m on a single battery in a demanding unknown
cave environment.

Index Terms—Aerial Systems: Applications; Field Robots;
Aerial Systems: Perception and Autonomy; Multi-Robot Systems;
Mapping

MULTIMEDIA MATERIALS

The paper is supported by the multimedia materials avail-
able at mrs.felk.cvut.cz/papers/ral-2021-caves. The implemen-
tation is also publicly available at github.com/ctu-mrs.

I. INTRODUCTION

HUMAN exploration of complex cave systems has oc-
curred for thousands of years. However, there are still

entire cave systems and individual subterranean voids, shafts,
and cavities that are yet uncovered. This is primarily due
to the dangerous nature of subterranean exploration in en-
vironments like natural caves, although man-made cellars,
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Fig. 1: Robotic exploration of the Bull Rock Cave (central Moravian Karst,
Czech Republic) by a fully autonomous aerial vehicle.

drainages, and mines pose similar risks. These environments
contain sediments such as debris, rocks, sand, clay, ice, decom-
posed organic matter, human waste, and even various forms
of speleothems in limestone caves. Considering the absolute
darkness, lack of GNSS signals, flowing and dripping water,
humid air, and the possible presence of poisonous gases, wind
gusts, hanging ropes, and wildlife, there is excessive risk to
the lives of human explorers in the exploration of new envi-
ronments, as well as in search & rescue missions. Given the
current state-of-the-art technology in robotics, many danger-
ous areas of subterranean systems are safely reachable using
mobile robots, with the greatest focus being on vertical explo-
ration using aerial vehicles. In contrast to human exploration,
the use of such technology presents several advantages in the
form of accessibility, safety, speed, instantaneous environment
visualization, and precise quantification. On the other hand,
challenges to the operation of mobile robots in such an envi-
ronment lies in the uncertainty, lack of light, high humidity,
and diversity of space in the form of narrow and/or low pas-
sages, canyons, large domes, high chimneys, and deep abysses.

The challenges to deployment of aerial vehicles in subter-
ranean environments with respect to robot control, communi-
cation, sensor fusion, and positioning are described thoroughly
in [1]. These specific challenges continue to be relevant even
after substantial progress in the field of mobile robotics. How-
ever, in contrast to [1], our motivation includes minimizing
the need for communications required for operator control and
instead focuses on the full autonomy of robots and autonomous
cooperation among members of a robotic team. The restriction
of communication in subterranean environments introduces
challenges to the maximization of system robustness and the
use of efficient decision making in the form of adaptable
exploration strategies in harsh unknown environments.
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A. Related work

In a non-robotic context, wild caves are explored by mod-
ernly termed cavers. However, the human surveying and map-
ping of caves is known to have existed for thousands of years
for purposes ranging from dwelling to speleology. The signif-
icance of cave exploration and cave mapping to scientific re-
search is a thoroughly studied inquiry in literature, e.g., in [2].

In the work presented here, we focus mainly on the robotic
point of view within the scope of the application domain. One
of the first cave-mapping approaches using robotic solutions
was proposed in [3], where the authors employed hand-held
laser scanners, which are limited in speed, accuracy, and safety.
In the context of mobile robotics, topics like the automatic
control of an unstable dynamic system such as an aerial multi-
rotor vehicle [4], the fusion of inertial, visual, and laser in-
formation for localization and mapping [5], and path planning
in dynamic environments [6] have been addressed in order to
achieve faster and safer methodology than mapping done with
hand-held devices, as proposed in [3].

Within the scope of subterranean environments, the DARPA
Subterranean Challenge competition has pushed the state of
the art of autonomous exploration in human-made mines [7]–
[10]. Although these systems have provided interesting solu-
tions with great potential, the authors of [7]–[10] rely on the
predictable structure of underground mines, such as using the
protraction of human-made tunnels to mark the furthest depth
data as frontiers or predefining turns at junctions in [9]. Since
the complexity and diversity of natural caves is extensive, more
robust solutions with a minimum number of environmental
assumptions are required. This was tackled in [11] where the
authors introduced a possible way for applying autonomous
drones as a technology to assist speleologists and archaeolo-
gists. Although an interesting read, the proposed methods only
constitute a preliminary discussion that presents neither novel
technology nor applied results. A similar discussion focusing
on the state of robotic problems within the application of sub-
terranean exploration with UAVs is presented in [12]. In con-
trast to [11], the authors of [12] present a set of preliminary ex-
periments in laboratory conditions and two dimensional space.
Unfortunately, the assumption of a planar world is highly
restrictive within the scope of real-world deployment due to
the complex character of natural subterranean environments.

The precise localization of mobile robots is crucial to au-
tonomous navigation in such complex environments. Among
existing state-of-the-art literature, the LOCUS algorithm [13]
achieves the lowest localization error at the cost of high com-
putational demands. Unlike with ground robots, this method
might be unsuitable for aerial robots as the computational
resources on lightweight UAVs are scarce due to their limited
payload. In [14], the authors demonstrated that localization
performance can be further improved by dropping range bea-
cons. This is a viable strategy for heterogeneous robotic teams,
but unfeasible for teams of only lightweight UAVs.

The use of robotic teams for cooperative exploration has
been addressed mostly in planar worlds with recurrent connec-
tivity constraints [15] or with the requirement of a centralized
element [16]. A similarly defined task to our problem of team
homing — respecting intermittent communication, need for

decentralization, and limited operation time of aerial robots
— is proposed in [17], where the robots gather and share
data during the mission and return all the way back to the
base before their operation times out. In contrast to [17], we
propose homing coordination that lands each aerial robot at
a position expanding a communication relay graph, thereby
increasing the time for mere exploration in tasks where return
to the starting position is not required. Related to the scope
of search & rescue, the authors in [18] propose to re-posi-
tion robots in a relay-chain formation to enable data trans-
mission over longer distances once an object of interest is
found. Our solution reports the position of the objects once
the explorer robot connects to the relay graph during hom-
ing. The recently developed fast exploration technique in [19]
maximizes explored volume over battery-limited flight time.
The method is based on data only from an RGBD camera
with a limited field of view (FoV). In comparison to LiDAR-
based methods, we have experimentally verified that RGBD
cameras are sub-optimal sensors for the exploration of large-
scale caves due to their limited range and FoV.

B. Contributions

First, we propose a fully autonomous system enabling multi-
modal mapping, fast and efficient planning with sensoric field-
of-view constraints for safe movement in 3D, robust localiza-
tion, and adaptable decision making. Second, a multi-robot
cooperation for the efficient homing of a team of autonomous
explorer robots is proposed. Third, the system has been vali-
dated through hundreds of hours of testing in a state-of-the-
art virtual testbed developed for the DARPA Subterranean
Challenge robotic competition, as well as through hours of
flight time in the real world. To the best of our knowledge, the
presented large-scale experimental deployment of autonomous
aerial robots in a natural cave environment goes beyond the
current state of the art in autonomous robotics. Lastly, we
present and share the experience obtained during this compre-
hensive experimental deployment that was carried out in close
cooperation with speleologists.

II. EXPERIENCE GAINED

A. Speleology motivation

From the speleological point of view, aerial systems are
crucial for pushing exploratory state-of-the-art methods to pro-
vide assistance in efficient scouting of difficult-to-access areas
in vertical environments, as well as for the quick inspection
of known areas using onboard sensors only. These systems
minimize risks for humans by reducing the need to climb or to
swim in cold water reservoirs, and also through the detection
of poisonous gases or even radioactive waste. Furthermore,
this enables the preservation and protection of natural envi-
ronments against human influence, including ancient sediment
forms, floor dripstone formations, paleontological and archae-
ological sites, and sources of potable water.

In contrast to well-established methods of subterranean doc-
umentation (i.e., theodolite and level/distance meter, compass,
and clinometer), modern technology employs stationary and
mobile laser scanners to produce a dense 3D model of the
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environment. Due to the complexity of natural environments,
the use of stationary scanners is time-consuming because of
the necessity of eliminating occluded spaces. Although hand-
held mobile scanners are more time-efficient in this context,
their use is limited to areas accessible to humans. This limita-
tion opens the door for mobile robotics which is able to tackle
this challenge and to provide optimized 3D mapping. State-of-
the-art mapping in such environments reaches decimeter level
precision, which is less precise than stationary scanners, yet
sufficient for the majority of speleological needs. Moreover,
the common issue of mapping drift accumulation in long-
corridor spaces can be minimized using reference measure-
ments by precise stationary scanners or man-measured control
points to obtain accurate results.

B. System requirements
The primary prerequisite of a team of aerial explorers that

can be deployed in caves involves the ability to adapt to di-
verse, unknown environments lacking sources of light and ac-
cess to GNSS. This general description requires the abilities to
• be deployed in constrained cavities, as well as in open

caverns of natural caves,
• map and visualize the environment in a fast, quantified

manner in the form of dense point clouds and image
streams,

• seamlessly infuse an arbitrary exploration strategy for
more efficient mission operation within the scope of
individual environments (policy selection is discussed
in Sec. IV),

• return to the mission operator and promptly visualize the
environment for human supervision, and

• maximize operation capabilities in terms of coverage
when a team of robots is employed.

C. Depth estimation in high humidity
The performance of the PMD pico flexx time-of-flight (ToF)

camera and the Intel Realsense D435 stereo camera have been
analyzed as complementary sensors to the primary LiDAR for
the purpose of improving the sensory FoV coverage. Although
ToF cameras generally outperform stereo cameras in terms of
distance measurement precision and density of measurement
points [20], the high humidity typically present in natural caves
causes dispersion of light emitted from ToF cameras by small
water droplets. This effect significantly degrades the acquired
measurements. As was verified empirically, ToF cameras can
produce false-negative measurements of obstacles situated be-
hind clouds of water droplets. The use of stereo cameras (e.g.,
Realsense) is recommended for its robustness to environmental
conditions within natural caves. Nevertheless for large cave
systems, such a sensor needs to be combined with 3D LiDARs
in order to comply with the requirements of speleologists and
first responders.

III. SYSTEM ARCHITECTURE

The system of the proposed autonomous explorer robot
is divided into multiple groups of individual interconnected
modules to be described in this section. All components and
their relations are visualized in Fig. 2.
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Fig. 2: Individual interconnected modules form the system architecture of
the autonomous explorer robot. The High-level planning modules focus on
achieving the mission objectives by generating references for the Tracking &
control modules based on the map built by the Perception modules. This also
provides a state estimate for closing the control feedback loop. All modules
except the Autopilot group are handled by the main onboard computer.

A. Perception

The perception of the proposed system is based on a multi-
channel LiDAR sensor that is used for both building the spatial
representation of the surrounding environment in the Mapping
module, as well as for the motion estimation in the LOAM
module. Obtaining the full-state estimate is realized within the
State estimation module, where multiple sources of incom-
plete state measurements are fused together using a bank-of-
filters estimator.

The vertical navigation capabilities of the system can be
greatly improved by equipping the robot with vertically-facing
RGBD cameras that are able to fill in the blind spots in the
limited vertical FoV of the LiDAR. Apart from navigation,
these optional sensors may be used for detecting objects of
interest in caves in search & rescue scenarios or for visual
documentation of newly explored cave systems.

1) LiDAR: Even though our system is not tied to a specific
LiDAR model, there are certain important parameters that can
affect the performance and capabilities of the platform.

To reliably stabilize the UAV, the time delay of the estimated
state must stay below the threshold of a certain critical value
depending on the type of controller and gains. When this
threshold is exceeded, the UAV begins oscillating and even-
tually automatically lands when the control error is too large
to continue the mission safely. We have found experimentally
that for most combinations of localization methods and con-
trollers, the critical value ranges from 100 ms to 200 ms. Thus,
10 Hz is the lowest rotation frequency that can be used without
employing methods of delay compensation.

The typical values of a vertical field of view (VFoV) of 3D
LiDARs are in the 30◦ to 90◦ range. The higher VFoV values
improve vertical mobility in constrained spaces, however with
a low VFoV, it is impossible to safely navigate narrow vertical
shafts as it is not known whether the space above the UAV is
free and safe to fly through, or whether it contains an obstacle.

2) RGBD: The regions above and below the UAV that are
not covered by the LiDAR can be captured using a depth
camera or by spinning the LiDAR sensor around a vector
that is orthogonal to the axis of scanning, as seen in [21].
However, such a solution adds additional weight to the sensor,
which decreases the available flight time. A blind spot also
still remains as part of the laser rays is blocked by the frame
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of the UAV. Alternatively, lightweight depth cameras can be
mounted on opposite sides of the body frame in order to cover
most blind spots of the LiDAR. Additional sensing modality
is gained by combining an RGB and depth camera in a single
sensor (RGBD) with a slight weight increase.

3) Localization: For localization of the UAV, we have
adapted the LOAM algorithm [22]. This state-of-the-art
method is very precise (0.55 % translation error [23]) while
attaining real-time performance. In our adapted version of the
open-source implementation, the algorithm is optimized on
CPU and employs parallel computing, which enables us to
deploy and use the localization in the real-time position control
feedback loop onboard fast-moving aerial vehicles.

4) Mapping: The LOAM-based algorithm builds a sparse
internal representation of the environment consisting of edge
and planar features. However, this sparse map is unsuitable
for navigation purposes. Additionally, the LOAM map does
not consider the probabilistic nature of the sensor, nor does
it distinguish free and unknown space. Both of these factors
are necessary in exploration techniques for reliable navigation
and consistent frontier selection.

In the proposed system, the environment is represented by
a dense probabilistic volumetric map, which consists of cubic
cells with one of 3 states: free, occupied, or unknown. The
map is kept in the octree structure to facilitate the Bayesian
integration of new measurements and efficient access to indi-
vidual cells of the probabilistic map. The high-level systems,
such as grid-based path planning or inter-robot map registra-
tion, also benefit from quick access to the dense environment
representation. This approach is capable of multi-modal fusion
by integrating the data from all available onboard sensors
and outputting point-cloud measurements. If high-level path
planning is constrained by the field of view of onboard sensors
(tackled in [24] and also in Sec. III-C), the multi-modality of
mapping enables arbitrary movement in 3D.

5) Sensor processing: The targeted subterranean environ-
ments may have high humidity or may contain large clouds
of whirling dust. The water and dust particles can then pro-
duce erroneous measurements for the LiDAR-based sensors.
Assuming a partial reflection from water or dust particles and a
large energy dissipation of distant reflections, these erroneous
measurements can be filtered with respect to the measured in-
tensity of returning light rays. As has been empirically verified,
a simple threshold-based filtration over the intensity channel
within the local neighborhood of the sensor is sufficient for
filtering out false-positive measurements. The idea of the local
filtration is to filter out particles gusting through the surround-
ing air due to the aerodynamic influence of the propellers.
Although the cutoff threshold of the intensity magnitude is
environment-specific, filtering out measurements below the
10th percentile of the intensity distribution per each laser scan
proved to be a reliable solution, even in the dustiest real-world
environments. Such processing is unavailable for camera-
based systems that may require thorough, computationally-
expensive solutions to overcome these challenges.

6) State estimation: The reference controller (see
Sec. III-B2) requires a position estimate of the UAV body
frame in the world frame r = (x, y, z), the velocity of the

body frame ṙ, rotation R from the UAV body frame to the
world frame, and angular velocity ω in the body frame in order
to close the feedback loop. The LOAM localization method
provides 6-DoF pose estimate, i.e., rLOAM, RLOAM, which
are fused in the State estimation block with interoceptive
measurements from the IMU of the Autopilot to obtain the
rest of the state variables.

The details about the estimation process are described
in [25]. Nevertheless, it is worth highlighting the importance
of the fusion of orientation RIMU and RLOAM in cave envi-
ronments. While RIMU is very precise and without delay, the
heading of the UAV (i.e., the measured direction of the body-
fixed, forward-facing axis) is unreliable due to the presence of
ferromagnetic ores in the cave rocks that cause deviations in
the magnetometer measurements. By correcting these errors
with the heading from RLOAM in the estimation process, the
resulting orientation R is robust to changes in the erratic
magnetic field in subterranean environments.

B. Tracking & control

The safe navigation of constrained environments with low
obstacle clearance imposes the requirements of precise trajec-
tory tracking with minimal control error, as any deviation from
the desired state could potentially result in a collision. The
Reference controller is responsible for minimizing the control
error around the desired control reference that is provided
by the Reference tracker. The controller outputs an attitude
rate reference for the low-level Attitude rate controller in the
Autopilot.

1) Reference tracker: The Reference tracker is essential in
providing the Reference controller with smooth and feasible
references to ensure a safe flight. The tracker based on the
model predictive control (MPC) simulates an ideal virtual
model of the UAV with constrained translational states up to
jerk, together with heading and heading rate. The input can be
either a single pair of desired 3D position pd and heading ηd,
or a trajectory Td in the form of a sequence of such pairs with
a specified sampling rate. The full state of the virtual model is
then sampled at 100 Hz, and rd, ṙd, r̈d, ˙̈rd, ηd, η̇d are passed
to the Reference controller as reference xd.

2) Reference controller: The agile SE(3) geometric state
feedback controller [26] minimizes the position and velocity
errors. To compensate imperfect calibration and external forces
acting upon the UAV, the controller is extended with the body
and world disturbance terms described in [25]. The output
attitude rate reference ωd is tracked by the Autopilot.

C. Path planning

The planning approach used to safely navigate through apri-
ori unknown environments must fulfill requirements of real-
time responsiveness and efficient global planning in order to
fully exploit the limited flight time of UAVs. For this pur-
pose, fast iterative post-processing is applied to the output of
an optimal grid-based planner in order to increase the UAV-
obstacle distance above a minimum threshold [27]. The grid-
based planner and the iterative post-processing do not apply
an optimistic assumption that the unknown space is collision-
free. Although this visibility-constrained precondition requires
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high sensory coverage around the robot to allow for arbitrary
movement in 3D, it consequently prevents collisions of the
trajectory being followed, even if replanning would fail. This
methodology improves safety and robustness of the overall
flight, allows for deployment in completely unknown environ-
ments without any apriori information, and permits seamless
navigation in open spaces, as well as safe movement through
narrow passages.

Common grid-based planning methods require pre-
processing of an employed map representation, such as deter-
mining and applying the 3D distance transform for obstacle
growing. This may introduce significant computational over-
head by bottle-necking system performance, as the map must
then be processed in every planning step. Such a computation-
ally expensive task contradicts the requirements for respon-
siveness within evolving dynamic environments. To minimize
the overall time required for a single planning iteration, a
local KD-tree representation of the environment is used to
decide the feasibility of particular cells within a voxel grid.
This approach shifts the largest load from the pre-processing
phase to the planning phase, which is beneficial especially to
shorter plans that require searching only a small part of the
environment. The low computational demands of the applied
planning approach enable frequent replanning the global plan,
which is also crucial for the efficient use of newly-discovered
collision-free space.

To effectively exploit the limited flight time of aerial ex-
plorers, all mid-flight stops are eliminated by computing in
parallel the next exploration goal during path following. The
path to the next goal is efficiently appended to the rest of the
current reference trajectory Td using the prediction horizon of
the MPC (see Sec. III-B). The need for precise locomotion
control in complex natural caves makes uniform path-sampling
unfeasible with respect to the dynamic constraints of a UAV
and fast, collision-free trajectory tracking. Therefore, the ref-
erence trajectory Td provided by the Navigation & planning
module to the Reference tracker is computed based on the
following process.

Given the dynamical constraints of the robot, the generated
path is uniformly sampled with a sampling distance adapted
to the maximum velocity magnitude vmax of the UAV. Based
on this initial trajectory Ti, the required acceleration magni-
tudes an between consequent transition points are computed
by velocity differentiation as

an(k) =
||vi(k + 1)− vi(k)||2

ts
, (1)

where vi(k) is the required velocity vector for transition from
a transition point ti(k) to ti(k+1) on the initial trajectory Ti

and ts is a constant sampling period. The new velocity for a
k-th segment is then given by

vk =

{
max

(
vmax

amax

an
, vmin

)
if an(k) > amax,

vmax if an(k) ≤ amax,
(2)

where the minimum velocity vmin serves as a parameter bal-
ancing the precision and the time needed for trajectory track-
ing. By this step, the velocities for particular segments are set
so that the maximum velocity is applied in straight segments,
while lower velocities are applied in curved segments of any

given path.
To further improve trajectory sampling and to achieve

smoother changes in velocities, the sampling distance on par-
ticular segments is computed so that the motion along each
segment has the constant acceleration

ak =
|vk+1 − vk|

tacc,k
, (3)

where tacc,k is the time available for acceleration on the k-th
segment. The time tacc,k is obtained from the length lk of
the segment k and the required change of the velocity. The
number of transition points Nk on the k-th segment of the
initial trajectory Ti is given as

Nk =





⌈
lk

vkts

⌉
if ak = 0,

⌈
tacc

ts

⌉
if ak > 0,

(4)

where the desired constant acceleration is adapted to meet the
velocity vk+1 at the end of each segment as

ak =
ak

Nkts
. (5)

The sequence of sampling distances for the k-th segment of
Ti is then given by

dk,i = vkts + iakts
2, i ∈ {1, · · · , Nk}. (6)

The trajectory sampled with sampling distances defined
by (6) is passed to the Reference tracker [25] as a reference
trajectory Td in order to generate a feasible reference xd for
the Reference controller. Despite its simplicity, the described
sampling method achieves better results within the scope of
the proposed application than the optimization-based trajectory
generation methods proposed in [28], [29]. In contrast to the
proposed method, the problem in [28], [29] is defined in such
a way that the exact positions of all the path waypoints must
be visited, generating significantly slower trajectories.

IV. EXPLORATION POLICY

Cave environments are naturally diverse and require various
different mission strategies suitable for specific environments.
Deriving the optimal policy is thereby dependent on various
factors, such as the expected mission output, mission-specific
constraints, the complexity and the specifics of the environ-
ment, and the number of available robots. For this reason, our
system is designed so that any arbitrary policy can be utilized
within the scope of an autonomous mission.

Nevertheless, two exploratory mission types are of the most
use in practice: deep cave exploration and full-coverage ex-
ploration. These missions are used for scouting previously
uncovered areas in order to obtain a general overview of
the environment, monitor environmental changes such as gas
leaks, detect natural water reservoirs, discover new possible
passages, or assess the structural state of cavern walls and
other objects of interest. The former approach maximizes the
explored volume of space in the entire environment, while the
latter minimizes the blind spots missed by onboard cameras
with a constrained FoV.

The capabilities of a robotic mission are furthered with the
use of multiple cooperating robots. To show an example of
such improvement using a team of agents as opposed to a
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single agent, a homing strategy that maximizes the flight time
of aerial robots during a multi-robotic mission is proposed
in the following subsection. During the proposed coordina-
tion, continuous exploration is not assumed and distance-con-
strained ad-hoc communication is used. The robots are homo-
geneous and generate their behaviors in a decentralized man-
ner based on their current state and the available information
from other robots (only positions in a shared frame are re-
quired).

A. Multi-robot homing strategy

A cooperative operation maximizing the flight time of a
multi-robot team is proposed for applications where homing
all the deployed robots to an initial location is not required.
This strategy is suitable for tasks where the possible gained
information is superior to the cost of the robots, such as in
search & rescue scenarios. This method assumes there is ac-
cess to a low-bandwidth communication link among any two
robots within an omnidirectional communication radius.

To maximize the flight time, the robots utilize local commu-
nication to plan the homing path such that a group of robots
is able to build up a communication tree with the base station
as the root communication node. This allows the robots to
optimize their flight time by navigating back to a location in
the proximity of another communication node (a landed robot,
base station, or self-sustaining communication node deployed
by other robots) when the battery capacity becomes drained.
This entire homing strategy is showcased in an example sce-
nario for two independent robots in Fig. 3.

In the proposed strategy, each robot constructs a navigation
homing tree using nodes created from the set of past poses
of the robot. This online-built tree has edges valued by the
required flight time between two nodes and is used to estimate
required homing time to the proximity of a communication
node. The pose nodes are connected such that each path leaf-
to-communication is the shortest (see Fig. 3a). A homing path
is constructed recursively as a sequence of tree nodes from the
current robot position (a leaf) to the nearest communication
node, with the landing position being within communication
range of the nearest communication node (see Fig. 3b). The
tree is shared among the robots deployed in the same mission.
The knowledge from the previous explorers is integrated to
prolong their flight time (see Fig. 3c), thus causally maximiz-
ing the time capacity for the exploration task. When a commu-
nication node (e.g., a robot landing pose) is integrated into the
homing tree, it is linked exclusively to another communication
node to join the retranslation chain (see Fig. 3d). Consequently,
the parents of neighboring pose nodes are updated so that
each pose node has a parent with the minimal accumulated
cost to any communication node (see Fig. 3b and Fig. 3d).
The process of inserting pose nodes as well as communication
nodes into the homing tree is described in Alg. 1.

V. EXPERIMENTAL ANALYSIS

The entire proposed system has been validated through
hours of flight time in the real world, as well as in hundreds of
hours in various virtual subterranean environments. The results
of these experimental analyses are presented hereafter.

B a) B

C1

b)

B

C1

c) B

C1

C2

d)

B base station C communication node (range incl.) homing tree

Fig. 3: An example scenario of the homing strategy for two robots (red and
blue) that maximizes flight time by landing at feasible positions while building
a communication chain to a base station.

Algorithm 1: Insertion of a node into the onboard-built homing tree. Function
cost(na, nb) returns an estimate of flight time among nodes na and nb,
function accumulatedCost(na) returns the required flight time from node na

to the nearest communication node, and function freeRay(na, nb) returns true
if a linear path between nodes na and nb is collision-free in 3D.

1: procedure INSERTNODETOHOMINGTREE
2: Input:
3: N ⊲ Node to be inserted
4: C,P ⊲ Sets of communication and pose nodes
5: de ⊲ Minimum edge length
6: if N.type == COMMUNICATION then
7: N.parent← argminc∈C cost(N, c)
8: for p ∈ P do ⊲ Update parents of neighboring pose nodes
9: if cost(N, p) < accumulatedCost(p) then

10: p.parent← N

11: C ← C ∪ N
12: else
13: V ← C ∪ P
14: if minv∈V (||N− v||2) ≥ de then
15: V = {v | freeRay(N, v), ∀v ∈ V}
16: if V 6= ∅ then
17: N.parent← argminv∈V [cost(N, v) + accumulatedCost(v)]
18: P ← P ∪ N

A. Real-world environment

To analyze the properties of the system, a fully autonomous
aerial robot (see Fig. 4) was deployed for several hours of
flight time in the Bull Rock Cave located in the central Mora-
vian Karst of the Czech Republic (see Fig. 1 and the attached
multimedia materials).

During multiple autonomous exploratory missions, a single
explorer (see the hardware components of the robot in Fig. 4)
was deployed to validate the proposed system in various ex-
ploratory scenarios. The flight trajectories from all missions
are visualized in Fig. 5a and the mission statistics and perfor-
mance metrics of the mapping module are summarized in Ta-
ble I. A greedy frontier-navigation policy was employed such
that the frontier closest to the lateral direction of flight (A,
B), the highest frontier (C), and frontier with the largest ratio
of unknown to free cells in a bounded area (D) was selected
as the next goal. With respect to these experiments in a harsh
subterranean environment, we have
• validated the performance of the system by flying in large

cave domes, as well as in narrow corridors just 70 cm
wider than the dimensions of the robot,
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Mapping accuracy

Trial
Flight

time (s)

Trajectory
length (m)

Explored
volume

(
m3

) µ (m) σ (m)

A 731 476 7463 0.57 0.59
B 935 473 11 403 0.53 0.56
C 359 71 551 0.23 0.26
D 749 602 3756 0.33 0.38

E 386 233 3055 0.39 0.39
F 633 256 2579 0.21 0.22
G 638 261 3650 0.27 0.33
H 297 142 1682 0.25 0.41
I 129 121 3326 0.19 0.22
J 425 233 4388 0.25 0.29

TABLE I: Quantitative evaluation on multiple autonomous exploratory mis-
sions within the Bull Rock Cave system. The flight trajectories and qualitative
analysis of the mapping accuracy are shown in Fig. 5.

• validated the real-time performance and robustness of the
system in multiple autonomous horizontally-deep flights
longer than 470 m using just a single battery and reaching
a maximal velocity up to 2 m s−1,

• validated the ability to autonomously explore natural
domes in terms of vertical depth,

• verified the ability to perform a full mission and return
to an initial location with the obtained information,

• quantified the accuracy of the onboard-built maps with
respect to a ground truth map of the environment, and

• obtained feedback from speleologists in order to design
the system following their requirements.

The dense onboard-built maps (20 cm resolution) from all
the experiments were merged (manual global registration with
local ICP refinement) during post-processing to obtain the map
of the environment M. The reference ground truth map Mgt

was built by registering over 100 largely overlapping scans
taken by a Leica BLK360 terrestrial 3D scanner. The mapping
accuracy over all the experiments reached mean µ = 0.37m
and standard deviation σ = 0.46m using the point-to-point
Euclidean error metric between each point in M and the
corresponding closest point in Mgt. The distribution of the
mapping errors throughout all flights is visualized in Fig. 5b.
As specified by the end-users, the decimeter-level mapping
precision achieved over the course of these exceptionally fast
and extensive flights is sufficient for the majority of speleo-
logical needs.

Ouster OS1-16

Intel RealSense D435

Pixhawk autopilot
LED lights

RGB cameras

Intel NUC i7

Fig. 4: General hardware components of an autonomous explorer robot. All
data are processed and reasoned over with an onboard processing unit. The
main source of data comes from the top-mounted LiDAR.

B. Virtual environment
To validate the proposed methodology for multi-robot coor-

dination using a local low-bandwidth communication network,
a team of aerial robots was deployed for hundreds of hours
of flight in a virtual environment using a virtual testbed de-
veloped for the DARPA Subterranean Challenge competition.

x (m)

y
(m

)
z

(m
)

A B C D others

(a) Overview of the cave environment with the trajectories of all exploration
missions (see Table I) performed within Bull Rock Cave. The figure shows
deep cave missions (A, B), vertical flight (C), and the thorough exploration of
a bounded area (D).

x (m)
y

(m
)

z
(m

)

(b) Visual analysis on the mapping accuracy – the distribution of mapping
errors during all autonomous exploration tasks as summarized in Table I. The
color bar legend represents the mapping error in meters using the point-to-point
euclidean error metric.

Fig. 5: Full-coverage exploration of the Bull Rock Cave system (located in the
central Moravian Karst, Czech Republic) with autonomous aerial explorers.
Full resolution figure is available within the attached multimedia.

This state-of-the-art testbed consists of several large-scale cave
environments containing dynamic obstacles and models of
real-world interference, such as sensor discrepancies, commu-
nication schemes, and battery longevity.

In contrast to real-world experiments, the virtual environ-
ment is larger and allows for the seamless verification of multi-
robotic cooperation. To demonstrate the performance of the
proposed homing strategy, a selected example scenario of such
an operation is presented in Fig. 6. This experiment highlights
the positive influence of the homing strategy in a search & res-
cue scenario where the three explorers were able to exploit the
increased flight time. With a 50 m communication range and
1.2 m s−1 average velocity for each robot, the homing coopera-
tion increased the available flight time for exploration by 40 s
and 80 s, respectively. Moreover, the experiment shows the
influence of multi-sensor mapping, which allowed the black
robot to single-handedly explore the upper floor of the virtual
environment. The final exploratory trajectories of the cooper-
ating robots during the presented mission reached lengths of
715 m, 1349 m, and 1405 m.

The influence of the homing strategy on the time available
for mere exploration is also quantitatively analyzed in Table II.
The results were averaged over six separate deployments,
each with five cooperating robots. Identical mission parameters
were set to all the robots for the baseline [17], as well as for
the proposed method. The data show an increasing trend in
the available mission time for belated explorers for which the
effective exploration phase is consequently prolonged during
their entire operation time.

VI. CONCLUSION

This letter presents a comprehensive study on the use of
autonomous aerial explorers as an assisting technology for
the exploration of natural cave environments. This study also
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Fig. 6: Three autonomous explorers deployed in a virtual cave world within
the DARPA simulation testbed. The robots finished their missions by building
a communication tree with maximal edge length of dc = 50m.

Robot 1st 2nd 3rd 4th 5th

Exploration time before homing (secs) 316 330 360 380 389
Exploration time increase (%) −1.5 2.8 12.2 18.4 21.0

TABLE II: Influence of the homing strategy on the flight time available for
mere exploration. Comparison with a baseline time of 321 s (averaged over
10 flights) where a robot returned to base before its operation timed out.

shares the experience acquired during the technology’s de-
velopment in close cooperation with a team of speleologists,
cavers, and first responders.

The proposed self-sustaining system interconnects solutions
for all crucial robotic tasks in order to enable full autonomy in
complex unknown subterranean environments without access
to GNSS. Among others, this includes laser-data processing
which copes with high humidity and dustiness within subter-
ranean environments and robust path-planning for unknown
dynamic environments to allow for flights in constrained cav-
ities, as well as in open caverns of natural caves. Moreover,
a multi-robot cooperation is proposed for the efficient hom-
ing of a team of robots for applications where the possible
information gain is superior to the costs of the robots, such as
search & rescue scenarios in cave systems. The performance of
the entire applicable system was validated in one of the most
large-scale experimental analyses ever conducted, consisting
of hours of flight time in Bull Rock Cave (Czech Republic,
Moravian Karst) and in hundreds of hours in the state-of-
the-art virtual testbed developed for the DARPA Subterranean
Challenge. This presented analysis of the entire system proves
that it is a robust solution capable of reliable planning with
sensoric field-of-view constraints and accurate mapping. The
accuracy of localization and mapping was evaluated with re-
spect to a ground-truth map of the cave environment and
reached mean precision below 40 cm in real-world conditions.
This performance has satisfied the requirements of speleolo-
gists and first responders.
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Our endeavor in improving robustness and fault tolerance in multi-robot teams has cul-
minated in the core publication [5c], which was published in Bioinspiration & Biomimetics. To
tackle the challenges, the work extends theoretical and practical contributions in the field of
perceptually-aware swarming. The contributions include a tightly coupled perception-action
flocking method capable of local self-organization and global navigation of an arbitrary num-
ber of UAVs which do not communicate among themselves and sense only locally in an envi-
ronment with or without obstacles. The work proposes a decentralized framework built on a
biologically-inspired swarming model capable of dynamic aggregation, separation, alignment,
navigation, and obstacle avoidance, while requiring only local relative information. In a dis-
tributed manner, each agent reacts exclusively to its current perceptual input by computing
an action based on a combination of carefully designed rules — one for each of the desired
global behaviors. The cohesion, separation, and alignment rules are inspired by one of the
first models in the field [96], which was designed for dimensionless particles. The model was
adapted for real-world use with nonlinear weighting functions and scale factors derived from
the rates of real-time systems applied in the control feedback loop of a UAV. The obstacle
avoidance utilizes ideas of virtual agents similar to [97] but classifies proximal obstacles to
two geometric classes (circles and lines) detectable by a lightweight 2D LiDAR on board. The
applicability of the work in the real world is achieved with the UVDAR [37, 38] relative lo-
calization system, which perceives relative positions of UAVs in a robot’s proximity.

The work [5c] is unique for its achievement of fundamental swarm properties as de-
fined in [36] in not only in simulation analyses but also in real-world non-laboratory condi-
tions. At the publication date, this research included the first experimental deployments and
performance studies of decentralized compact swarms of UAVs capable of navigation through
obstacle-filled environments without any communication or information sharing. Beyond these
contributions, [5c] presents a theoretical discussion on the framework’s swarm scalability (i.e.,
on the upper limit of the number of agents) and defines general scalability maximization in
visually-aware swarms. The theoretical contributions of [5c] also include an analysis of the
relationship between the accuracy of relative position estimation and swarm stability. These
results show that a zero-mean normal error in the estimated position induces robot-to-robot
oscillations with an exponentially growing magnitude correlating with the deviation of the er-
ror distribution.

The developed ideas, designs, and methods of [5c] have served and continue to serve
as a base to the state-of-the-art research of fully decentralized swarming within the MRS
laboratory. To this day, this research topic has resulted in several publications written in the
MRS laboratory and published in impacted journals and conference proceedings [11a, 14a–
16, 117, 118, 136].
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Abstract

This article presents a unique framework for deploying decentralized and infrastructure-
independent swarms of homogeneous aerial vehicles in the real world without explicit
communication. This is a requirement in swarm research, which anticipates that global knowledge
and communication will not scale well with the number of robots. The system architecture
proposed in this article employs the ultraviolet direction and ranging technique to directly perceive
the local neighborhood for direct mutual localization of swarm members. The technique allows for
decentralization and high scalability of swarm systems, such as can be observed in fish schools, bird
flocks, or cattle herds. The bio-inspired swarming model that has been developed is suited for
real-world deployment of large particle groups in outdoor and indoor environments with
obstacles. The collective behavior of the model emerges from a set of local rules based on direct
observation of the neighborhood using onboard sensors only. The model is scalable, requires only
local perception of agents and the environment, and requires no communication among the
agents. Apart from simulated scenarios, the performance and usability of the entire framework is
analyzed in several real-world experiments with a fully-decentralized swarm of unmanned aerial
vehicles (UAVs) deployed in outdoor conditions. To the best of our knowledge, these experiments
are the first deployment of decentralized bio-inspired compact swarms of UAVs without the use of
a communication network or shared absolute localization. The entire system is available as
open-source at https://github.com/ctu-mrs.

1. Introduction

Use of a team instead of a single robot may yield

several general advantages in tasks that either benefit

from the multi-robot configuration or are altogether

unsolvable by a single robot. The main advantages

of robot teams are reduced task execution time, im-

proved robustness, redundancy, fault tolerance, and

convenience of cooperative abilities, such as increased

precision of measurements with a stochastic element

(e.g. localizing ionizing radiation sources [1]), dis-

tributing the application payload, and dynamic col-

laboration (e.g. cooperative object transport [2]).

Deployment of a single unmanned aerial vehicle

(UAV) requires a complex system composed of sev-

eral intricate subsystems handling the vehicle control,

environment perception, absolute or relative local-

ization, mapping, navigation, and communication. A

system scaled to a set of tightly cooperating UAVs

must additionally introduce decentralized behavior

generation, fault detection, information sharing in an

often low-to-none bandwidth communication net-

work, and detection and localization of inter-swarm

members. Furthermore, the characteristic environ-

ments in the context of aerial swarms suited for real-

world challenges may be unknown in advance, they

incorporate high density of complex obstacles, they

provide none-to-low access to mutual intercommu-

nication between the team agents, and they allow

either no access or unreliable access to a global navi-

gation satellite system (GNSS). Each of these concepts

is a complex challenge on its own. However, over-

coming all the challenges opens the way to applica-

tions requiring distributed sensing and acting, such

as cooperative area coverage for search & rescue,

exploration, or surveillance tasks.

© 2020 IOP Publishing Ltd
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In this article, we present a complete swarm

system framework, which respects the swarm and

environment characteristics. The properties of the

framework presented here correspond closely with

the definition of autonomous swarms, as listed in

[3]. The properties are: scalability for large groups,

high redundancy and fault tolerance, usability in tasks

unsolvable by a single robot, and locally limited sens-

ing and communication abilities. Inspired by the self-

organizing behavior of large swarms of homogeneous

units with limited local information that is found

among biological systems, our framework goes even

further beyond the swarm requirements from [3] by

dealing with all centralized and decentralized com-

munication with the use of the ultraviolet direction

and ranging (UVDAR) local perception method. The

elimination of communication is particularly impor-

tant in dense swarms of fast-moving aerial vehi-

cles, where time-based delays in mutual localization

might disturb the collective behavior of swarms and

thus may induce mutual collisions. The independence

from communication makes the system also applica-

ble as a backup solution for swarm stabilization in sce-

narios where communication is required, but suffers

from outages.

This allows us to employ a fully decentral-

ized system architecture not limited by scalability

constraints. This decentralization is advantageously

robust towards a single-point of failure, reduces the

hardware demands for individuals, and distributes

the sensing and acting properties. We have been

inspired mainly by ordinary representatives of bio-

logical systems: common starlings Sturnus vulgaris,

which exhibit a remarkable ability to maintain cohe-

sion as a group in highly uncertain environments and

with limited, noisy information [4]. Similarly to star-

lings (and numerous other biological species), the

proposed swarming system relies on sensing organs

that look on two sides (cameras in our case), observ-

ing close-proximity neighbors only and responding

to these sensory inputs by a local behavior which

together forms a swarm intelligence that reaches

beyond the abilities of a single particle.

The UVDAR method tackles the problem of

mutual perception of swarm particles by localizing the

bearing and the relative 3D position of their artificial

ultraviolet (UV) light emission in time, using passive

UV-sensitive cameras. The method is deployable in

indoor and outdoor environments with no need for

mutual communication or for a heavy-weight sen-

sory setup. In addition, it is real-time, low-cost, scal-

able, and easy to plug into existing swarm systems.

To verify the feasibility of the UVDAR technique

in an aerial communication-less swarm system,

we employed UVDAR to generate a decentralized

bio-inspired swarming behavior employing local

information about neighboring agents and close-

proximity obstacles in real-world conditions. As ver-

ified in real-world experiments, the proposed system

for relative localization is accurate, robust, and reli-

able for use in decentralized local-information based

swarming models (figure 1).

1.1. Related work

1.1.1. Relative localization

In most recent work concerning swarms and forma-

tion flight [5], the proposed algorithms have only

been validated either in simulation or in laboratory-

like conditions with the presence of absolute

localization. This was merely converted to relative

measurements virtually, using systems such as real-

time kinematic (RTK)-GNSS or motion capture

(mo-cap). It is well known that mo-cap is impractical

for real-world deployment of mobile vehicles (either

outdoors or indoors), as it requires the installation

of an expensive infrastructure. These absolute local-

ization sources can provide the full pose of tracked

objects, which oversimplifies the whole task with

respect to the reality of practical deployment. Even

if only partial information derived from absolute

measurements is passed to the UAVs (e.g. distance

or bearing), the continuous stream of such informa-

tion is produced without realistic errors, which is

unrepresentative of real-world conditions.

Some more practical approaches consider infras-

tructure/less sensing such as ranging based on a radio

signal [6]. This only allows for distance-based fol-

lowing, without any orientation information, and

requires a specific motion for sufficient state observ-

ability. Another approach [7], for the 2D case, wire-

lessly communicates the intentions of the leader. This

proves to be feasible since there are fewer degrees

of freedom and there is less drift than in a gen-

eral 3D case. These two approaches rely on radio

transmission, which is subject to the effects of net-

work congestion and interference. For this reason, we

consider vision-based approaches more suitable for

multi-robot groups, especially in uncontrolled out-

door environments.

This approach has previously been explored by

the authors’ research group, relying on true outdoor

relative localization, see [8]. The source of the rela-

tive localization was an onboard vision-based system

using passive circular markers, as described in [9].

There were, however, drawbacks: high sensitivity to

the external lighting conditions and to partial occlu-

sion, and substantial size for an acceptable detection

range.

The use of active infrared (IR) markers has also

been explored (see [10–12]) for the ability to suppress

backgrounds using optical filtering. These methods

are however suitable solely for indoor, laboratory-like

conditions, since solar radiation excessively pollutes

the IR spectrum, and subsequently the signal tends to

deteriorate. In [12], the authors employed IR mark-

ers with blinking frequency in the kilohertz range,

which required event-based cameras to detect micro-

scale changes. These cameras are capable of detecting

2
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Figure 1. A compact aerial swarm of three UAVs in a controlled outdoor environment filled with artificial obstacles, as viewed by
an outside observer. The decentralized approach, described in detail in section 4, applies a set of local rules contributing to safe
navigation and self-organization of the swarm structure among obstacles. The UAVs are homogeneous units with solely local
sensing.

micro-scale changes. However, they typically do not

provide sufficiently high field of view and resolution,

and they are not suitable for scalable swarms due to

their size and cost. The IR spectrum has also been

utilized in a passive manner [13], but this approach,

though simple, is even less robust to the outdoor

conditions and distances applicable to UAVs.

It is also feasible to visually detect and localize

unmarked UAVs using machine learning (ML) meth-

ods such as convolutional neural networks. However,

these approaches require meticulously annotated

datasets with a specific UAV and with an environment

similar to the intended operational space [14, 15].

The computational complexity and the dependency

on satisfactory lighting conditions of such ML sys-

tems precludes their deployment onboard lightweight

UAVs suitable for swarming. This motivated the

development of the UVDAR system, which is more

robust to real-world conditions, because it reduces the

computational load by optically filtering out visual

information that is not of interest. In contrast to

[14, 15], UVDAR also provides target identities. The

whole sensor is small, lightweight, and does not

depend on the external lighting conditions.

1.1.2. System architecture

To date, deployments of real-world aerial teams

have not used any of the methodologies of direct

localization described here in order to deal with

the mesh-communication between the team mem-

bers or with the communication link with a cen-

tralization element. The record in terms of the

number of UAVs cooperating at the same time is

currently held by Intel® [16] with its fleet of shoot-

ing star quad-rotors. Intel’s centralized solution per-

forms spectacular artistic light shows. However in

Intel’s arrangement, each team member follows a

pre-programmed trajectory, relying on GNSS and a

communication link with a ground station. A simi-

lar methodology is employed in [17–19], where the

authors deployed swarms of UAVs in order to ver-

ify bio-inspired flocking behaviors in known confined

environments. In comparison with [16], their meth-

ods are decentralized; however, the UAVs still com-

municate their global states obtained by GNSS within

a radio-frequency mesh network. This is not a realistic

assumption in most application scenarios.

Recent successful real-world deployments are

summarized in table 1. Observe that some kind of

communication (either ground station to unit or

unit-to-unit) is employed in most of the related work.

The dependency on a communication network low-

ers the upper limit for swarm scalability, due to the

bandwidth limitations, and significantly reduces the

fault tolerance of the entire system. The UVDAR rel-

ative visual perception system, described in detail in

section 3, is designed to remove this dependency. Its

use may allow working swarm systems to mimic the

local behavioral mechanisms found in biological sys-

tems, ranging from general flocking to leader-follower

scenarios.

1.1.3. Swarm stabilization

To enable short-term stabilization of an autonomous

UAV, an onboard inertial measurement unit (IMU)

directly measures its linear acceleration, the atti-

tude and the angular rate, using a combination of

accelerometers, gyroscopes, and magnetometers. To

obtain long-term stabilization of an UAV, however, it

is not sufficient to use only the onboard IMU, due

to the inevitable measurement noises and drifts. It

is common practice to provide an additional esti-

mate of the state vector variables (typically position

or velocity), which is fused together with all the iner-

tial measurements. The most common approach is to

estimate the global position using a GNSS. However,

3
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Table 1. A brief comparison of aerial swarm systems with successful recent deployments

outside of laboratory-like conditions. Methods marked with (∗) employ communication

with a centralized ground station.

Work Decentralized Communication Relative localization

Intel® [16] No Yes∗ Shared global position (WiFi)

EHang, Inc. [20] No Yes∗ Shared global position (WiFi)

Hauert et al [21] Yes Yes Shared global position (WiFi)

Bürkle et al [22] Yes Yes Shared global position (WiFi)

Kushleyev et al [23] No Yes∗ Shared global position (ZigBee)

Vásárhelyi et al [17–19] Yes Yes Shared global position (XBee)

Weinstein et al [24] No Yes∗ Shared global position (WiFi)

Stirling et al [25] Yes Yes IR ranging

Nguyen et al [6] N/A Yes Ultra-wideband ranging

Nägeli et al [26] Yes Yes Visual markers

This work Yes No UVDAR

GNSS signal availability is limited strictly to outdoor

environments, and the accuracy of GNSS is affected

by an error of up to 5 m [27]. Although the accu-

racy can be improved to 2 cm with the use of RTK-

GNSS, this makes aerial swarms deployable solely in

controlled environments and is in contradiction with

the bio-mimicking premise, since precise global local-

ization is uncommon in biological systems. Other

common methods of state estimation are local, and

they typically employ onboard laser- or vision-based

sensors to produce local estimates of the state vari-

ables. Vision-based methods may compute the optical

flow to estimate the velocity of the camera relative to

the projected image plane [28], or may apply algo-

rithms of simultaneous localization and mapping to

visual data [29]. Laser-based sensors are mostly used

to estimate the relative motion between two frames of

generated point-cloud data [30].

There are structurally two approaches for sta-

bilizing a swarm in a decentralized manner. The

first group of methods distributes the state estimates

determined for individual self-stabilization through-

out the swarm (see table 1). In addition to restrict-

ing the communication infrastructure, this method-

ology has a major dependency between the swarm

density and the accuracy of the global localization

(e.g. GNSS). In addition, it requires knowledge of

individual transformations amid the coordination

frames for distributed local state estimation meth-

ods. The second group of methods does not adopt a

communication network to distribute the state esti-

mates, but rather estimates the states directly from

the relative onboard observations. This approach

makes the swarm independent from the infrastruc-

ture, but it makes direct detection, estimation, and

decision making with limited information more chal-

lenging. As further shown in section 5, the devel-

oped framework is part of the second group, per-

ceiving the local neighborhood with visual organs

and deploying a swarm of UAVs in fully-decentralized

manner.

1.1.4. Swarming without communication

Decentralized swarming models accounting for com-

plete or partial absence of communication were

explored exclusively for 2D systems in the past (this

is also implied in table 1). The majority of the state-

of-the-art works within this field are biologically-

inspired and emphasize self-organizing behavior of

large-scale swarms of simple units with highly lim-

ited sensory capabilities. Highlighted is the Beeclust

[31] approach, which uses probabilistic finite state

machines and a primitive motion model to mimic the

collective behavior of honeybees. The Beeclust can be

applied to complex tasks where information exchange

among units is not required, such as in underwater

exploration using a swarm of underwater robots [32].

A different method [33] analyzes the aggregation of

agents towards a common spatial goal while avoid-

ing inter-agent collisions. The authors of [33] show

that their method with limited sensing properties of

the agents performs similarly to methods employing

complete pose information. All of these decentral-

ized algorithms require some form of mutual relative

localization (even limited to binary detections), mak-

ing them suitable for the use of UVDAR localization.

Overall review of the 2D approaches is systematically

described in [34], which further highlights the lack of

research focus in the field of aerial swarming in 3D

space.

1.2. Contributions

This article addresses problems of the deployment of

real-world aerial swarms with no allowed commu-

nication or position sharing. This potential problem

is overcome with the use of the novel vision-

based UVDAR system for direct mutual percep-

tion of team members. The stability of the UVDAR

system for use in aerial swarming is the out-

come of thorough real-world experimental verifica-

tion in an outdoor environment with and without

obstacles. The main features of this article are as

follows:

4
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(a) It provides an enabling technology for swarm

research, often bio-inspired, by introducing a

system that achieves fundamental swarm prop-

erties, as defined in [3].

(b) It introduces the UVDAR system as an off-the-

shelf tool for relative localization and identifi-

cation of teammates suited for mutual percep-

tion of agents in robotic systems, such as aerial

swarms.

(c) It introduces a decentralized bio-inspired

swarming approach suited for obstacle-filled

real-world environments, which requires only

local relative information and no mutual

communication.

(d) It verifies the feasibility and analyses the usabil-

ity of aerial flocking relying on direct localiza-

tion, which is the most frequent mechanism in

biological systems.

(e) It is based on several real-world deployments of

aerial swarms.

(f) It presents, to the best of our knowledge, the

first autonomous deployments of aerial swarms

with no centralized element and no mutual

communication.

(g) It discloses the entire system as open source at

https://github.com/ctu-mrs.

2. Motivation

The lack of a communication-independent approach

has put a constraint on much of the work done until

now in the field of deploying teams of unmanned

vehicles in challenging environments. Our work here

is motivated by the need for a communication-

independent approach, and presents solutions that we

have developed. The insights into the development

of the real-world deployments presented here tackle

the motivations and constraints of the vast majority

of related work restrained by the heretofore lack of

communication-independent approaches.

Focusing on dense swarms of UAVs with short

mutual distances, most of the swarming approaches

reported in the literature have not been tested in real-

world conditions. Theoretical derivations, software

simulations, and occasional experiments in labora-

tory conditions have formed the target for most of

the related literature, as analyzed in [5, 35]. However,

this research milestone is far away from a meaning-

ful real-world verification needed for an applicabil-

ity of aerial swarms. Real world interference cannot

be neglected, as the integration of a swarming intel-

ligence onto a multi-robot system yields constraints

that need to be characterized directly in models of

swarming behavior.

Instigated by biologically-inspired swarming

models [35, 36] capable of achieving complex tasks

(e.g. navigation, cohesion, food scouting, nest guard-

ing, and predator avoidance) with a team of simple

units, our aim was to imitate these models with the

use of local information, as is widely observed in

nature. To allow the deployment of an infrastructure-

independent (communication, environment) model,

we had identified the most crucial factor impeding

this type of deployment of a decentralized architec-

ture—the mutual relative localization between team

members, which is also the most crucial information

for animals in flocks in nature. This motivated the

development of the UVDAR system (see section 3),

designed as a light-weight off-the-shelf plugin pro-

viding the local localization of neighboring swarm

particles. The usability of UVDAR in dense swarms is

analyzed in detail in section 6.

3. UVDAR

Inspired by our extensive prior experimental experi-

ence with vision-based relative localization of UAVs

(see [9, 37]), we developed a novel relative local-

ization sensor that tackles various limitations of

previous solutions, namely the unpredictability of

outdoor lighting and limits on the size and weight of

onboard equipment. The sensor, named UVDAR, is

a UV vision-based system comprising a UV-sensitive

camera and active UV light-emiting diode (LED)

markers. These lightweight, unobtrusive markers,

attached to extreme points of a target UAV, are seen

as unique bright points in the UV camera image (see

figure 2). This allows computationally simple detec-

tion [38] and yields directly the relative bearing infor-

mation of each marker from the perspective of the

camera. The fish-eye lenses that are used with the UV

camera provide a 180◦ horizontal overview of the sur-

roundings. Known camera calibration, together with

the geometrical layout of the markers on the target,

allows us also to retrieve an estimate of the distance

(see [38, 39] for details).

In order to provide specific markers that would

be distinguishable from others, and also to provide a

further increase in robustness with respect to outliers,

we set the markers to blink with a specific sequence.

Using our specialized implementation of the 3D time-

position Hough transform (see [38] for details), we

can retrieve this signal for each observed marker, giv-

ing them identities. In this project, we use these IDs

to simplify the separation of multiple observed neigh-

bor UAVs, but they can also be used to retrieve the

relative orientation of the neighbors [39]. In addi-

tion to the swarming application described in this

paper, UVDAR may be used for e.g. a directed leader-

follower flight [39], where the use of the retrieved

orientation is essential. In addition, the neighbors’

orientation estimate can be exploited for automatic

generation of a dataset for training ML vision for UAV

detection, as applied in [40], where UVDAR was used

for annotating color camera images.

In swarms and in multi-UAV systems in general,

the blinking frequency of the onboard LEDs can be

5
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Figure 2. An example of the unprocessed view from the UV-sensitive camera as a part of UVDAR in a member of an aerial
swarm. Note the extreme contrast of the LED markers in comparison to the background. A combination of the specific blinking
frequency of the LED markers and the high contrast makes them simple to extract from background for processing.

configured to encode information for optical data

transmission between swarm units, in addition to

using LED blinking directly for relative localization.

An example of such an application is in exploration,

where a scouting unit can indicate the presence and

the relative position of a discovered target to other

units by combining various blinking signals and the

unit’s own orientation. A further use is in coopera-

tive voting in a group, where each unit expresses the

current selection with blinking signals, and adjusts its

vote on the basis of observing the selections of others.

In this paper, we go beyond our preliminary works

with UVDAR [38–40], and also beyond other state-

of-the-art literature, by incorporating direct mutual

localization of UAVs into the position control feed-

back loop of a fully-decentralized swarming system

without any kind of communication and external

localization. To the best of our knowledge, this paper

presents the first real-world deployments of fully-

decentralized bio-inspired swarms of UAVs using

direct local localization for collective navigation in an

uncontrolled environment. This is what UVDAR was

intended for.

3.1. Safety

The use of UV radiation in the system has under-

standably raised some health concerns in the past.

We have verified the safety of this application by

consulting the International Commission on Non-

Ionizing Radiation Protection (ICNIRP) ‘guidelines

on limits of exposure to UV radiation of wavelengths

between 180 nm and 400 nm’ [41]. According to these

guidelines, the exposure to UV radiation (both to the

eyes and to the skin) should not exceed 30 J m−2

weighted by the relative spectral effectiveness (unit-

less wavelength-specific factor). In our case of 395 nm

radiation, this factor equals to 0.000 036, making the

actual limit 8.3 × 105 J m−2. This means that our

LEDs, producing 230 mW of total radiated power

[42] at the given driving current, can be safely viewed

from the distance of 1 m from the frontal direction

(with the highest intensity in its Lambertian radia-

tion pattern) for over 3000 h, making it effectively

harmless.

3.2. Scalability

In the context of a robotic swarm, scalability of the

whole system is an important factor. Using a com-

munication network in large groups of robots lim-

its the scalability by an upper bound defined by the

total bandwidth, by the number of available chan-

nels, by the network architecture, or by the required

data flow. Employing a local perception method such

as UVDAR, the state of swarm particles (team mem-

bers, swarm units) is shared via direct observations,

as is common in swarms in nature. This system there-

fore does not need an explicit radio communication

network.

As a vision-based method, UVDAR suffers from

natural restrictions, namely visual occlusions, camera

resolution, and the detection, separation, and identi-

fication of image objects. The upper scalability bound

is determined by the ability to filter out the UV mark-

ers belonging to a given swarm agent. If the markers

of all UAVs in the swarm are set to blink with the same

frequency, individual agents have to be distinguished

by separating their positions in the UV image and in

the constellations that they form. In this case, we esti-

mate that each agent should be capable of distinguish-

ing up to 30 neighboring agents within the range of

the UVDAR system, bounded by the computational

limitations. This is however not the ideal mode of

operation, as it becomes problematic when there are

occlusions between agents, or when the agents are in

close proximity in the observed image.

To tackle this challenge, we apply different blink-

ing frequencies to different agents. The UVDAR sys-

tem in its current configuration can accommodate up

to six different frequencies of blinking that can be

reliably distinguished from each other. This allows us

6
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to mitigate the issue of overlapping agents—indeed,

even agents that are directly behind each other can

often be separated, if extreme markers of the further

agent protrude into the image. However, since the

number of usable blinking frequencies is limited, we

need to devise a method for spreading them evenly

in the swarm, such that the likelihood of image sep-

aration of overlapping agents based on different fre-

quencies between them is maximized for the whole

swarm. This has to be done in a decentralized manner,

in order not to violate the swarming paradigm.

One way to solve this for dense UAV swarms is to

have each agent dynamically re-assign its blinking fre-

quency to differ as much as possible from the neigh-

bors that it observes. This challenge definition can be

likewise defined as the constraint satisfaction problem

solved within a decentralized swarm of UAVs using

direct observations only. The idea of this method is to

maximize the local frequency diversity and addition-

ally to allow all of the agents to initiate with the same

ID (encoded by the blinking frequency of onboard

markers). This opposes the current methodology of

manually pre-setting the frequencies before deploy-

ment (see section 6). The analysis and the theoret-

ical limits on the convergence of such an approach

towards a stable final state maximizing the scalability

bound is still underway.

Another approach to increase the scalability

bound, while carrying the identical ID on all the

agents, lies in the design of UVDAR itself. It is pos-

sible to introduce an additional omnidirectional UV

source on top of each agent. This additional source

is called a beacon and it blinks with a specific fre-

quency unique to the rest of the onboard markers on

an agent. This allows for the separation of pixels in

the image stream based on their image distance as well

as their association with the singular beacon marker.

The presence of at least two beacons in one region of

the observer’s image clearly implies a partial mutual

occlusion. The use of beacons hence provides a lim-

ited ability to separate even agents in partial mutual

occlusion relative to an observer if the beacons of both

agents are visible.

The maximum range of detection should be taken

into account for scalability in the geometrical sense.

With the current UVDAR setup, detection is possible

for targets up to 15 m away from the sensor. However,

for improved reliability and robustness, a maximum

range of 10 m is recommended. For determining the

theoretical accuracy and range limitations, see [38].

For a quantitative analysis on real-world accuracy, see

section 6.3. Filtering out distant targets, the limited

detection range makes the method suitable for dense

swarms, which place emphasis on a number of entities

in a local neighborhood rather than on the swarm as

a whole. In biological systems, this perception charac-

teristic allows for swarms of utmost magnitude, such

as fish schools [43] with thousands of entities.

4. Swarming intelligence

In this article, we follow the swarm concept defined in

section 1, in which the group is composed of swarm

units with limited computational power and a short-

term memory. The concept is decentralized and uses

autonomous self-organizing groups of homogeneous

aerial vehicles operating in a 3D space.

The proposed flocking approach works entirely

with local information, with no requirement for any

form of radio communication between the homoge-

neous swarm particles, and in an environment with

convex obstacles. The approach is inspired by biolog-

ical systems, where global cooperative behavior can be

found to emerge from elementary local interactions.

We will show that this phenomenon of cooperative

behavior may yield collision-free stabilization in clut-

tered environments, self-organization of the swarm

structure, and an ability to navigate in tasks suited

for real UAVs. The proposed swarming framework

is founded on previously developed models [44, 45],

which have been enhanced to suit the demands of

real-world interference by extending them with con-

cepts of obstacle avoidance, perception, and naviga-

tion. The introduction of such extension concepts is

highly important as the assumptions of dimension-

less particles and an ideal world as in [44, 45] do not

apply in the real world. The main idea of the swarm-

ing behavior presented here is to verify the feasibil-

ity, to perform an analysis, and to derive the prop-

erties of the UVDAR system for use in swarm sys-

tems. Bear in mind that UVDAR is a general system

and any swarming model [17, 33, 46], formation con-

trol approach [47], or obstacle/predator avoidance

method [48] utilizing local relative information can

be employed to generate intelligent behavior when

employing the UVDAR system.

4.1. Behavior generation

The behavioral model used throughout this article is

defined in discrete time step k for a homogeneous

swarm unit i with an observation radius Ri
n ∈R>0, an

obstacle detection radius Ri
o ∈R>0, a swarming veloc-

ity vi
[k] ∈ R3×1, and a set of locally detected neigh-

borsN i
[k] within the observation radius Ri

n, as follows.

Bear in mind that all the relative observations in par-

ticle i are given in the body frame of particle i at time

step k.

The individual detected neighbor particles j ∈
N i

[k] are represented by vectors of relative position

x
ij
[k] ∈ R3×1 and relative velocity v

ij
[k] ∈ R3×1, ∀ j ∈

{1, . . . , |N i
[k]|}, defined as

x
ij
[k] =

[
x

ij
[k], y

ij
[k], z

ij
[k]

]T

, (1)

v
ij
[k] =

1

∆t
ij
[k]

(
x

ij
[k] − x

ij
[k−1]

)
− vi

[k−1], (2)
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where x
ij
[k], y

ij
[k], z

ij
[k] are Cartesian coordinates of a

neighbor particle j represented in the body frame of

agent i in time step k, ∆t
ij
[k] = t

ij
[k] − t

ij
[k−1] is the time

elapsed since the last direct detection of neighbor j,

andvi
[k=0] = v

ij
[k=0] = 0. The swarming model is then

defined as a sum of elementary forces

f i
[k]

(
N i

[k],Oi
[k]

)
= f b,i

[k]

(
N i

[k]

)
+ f n,i

[k]

(
N i

[k],Oi
[k]

)
,

(3)

where f b,i
[k] (·) ∈ R3×1 embodies the baseline forces as

an interpretation of the Boids model [44] flocking

rules cohesion, alignment, and separation, modified

for real UAVs as

f b,i
[k]

(
N i

[k]

)
=

1∣∣N i
[k]

∣∣

∣∣∣N i
[k]

∣∣∣∑

j=1

×
[

x
ij
[k] +

v
ij
[k]

λ
− κ

(
x

ij
[k], Ri

n

)
x

ij
[k]

]
.

(4)

The scalar λ (Hz) is the update rate of direct localiza-

tion (camera rate) and the weighting function

κ(x, r) = max

(
0;

√
‖x‖2

‖x‖2

−
√

r

r

)
(5)

represents a nonlinear weight coefficient scaling the

repulsion behavior by the mutual distance between

two neighbors. As the original model [44] was

designed for swarms of dimensionless particles, func-

tion κ(·) is particularly important for a swarm of

real UAVs, in order to prevent mutual collisions while

maintaining flexibility of the swarm as a whole. The

force f n,i
[k](N i

[k],Oi
[k]) ∈ R3×1 in (3) is an extension

to the simple model [44] in the form of an addi-

tional navigation rule in an environment composed

of N i
[k] and a set of obstacles Oi

[k] detected within the

detection radius Ri
o.

The navigation rule can exploit any local multi-

robot planning method [49–51] in order to optimize

the swarm motion parameters and to prevent a dead-

lock situation, or can include an obstacle avoidance

mechanism and a navigation mechanism by introduc-

ing them as additional simplistic rules. To provide an

example of the system performance, we introduce a

simple attraction force vn,i
[k] ∈ R3×1 towards a speci-

fied goal, together with a local reactive obstacle avoid-

ance rule. To represent the obstacles, we introduce

the concept of a virtual swarm particle, which effi-

ciently replaces a general geometric obstacle by a vir-

tual entity. This dimensionless particle is represented

by a state comprised of a position and velocity rela-

tive to particle i, similarly as defined in (1) and (2).

The methodology for finding the state of a virtual

swarm particle is derived in the following section. The

navigation rule is then derived as

f n,i
[k]

(
Oi

[k]

)
=

1∣∣Oi
[k]

∣∣

∣∣∣Oi
[k]

∣∣∣∑

v=1

×
[
viv

[k]

λ
− κ

(
xiv

[k], Ri
o

)
xiv

[k]

]
+

vn,i
[k]

λ
,

(6)

where the vectors of the relative position xiv
[k] ∈ R3×1

and the relative velocity viv
[k] ∈ R3×1 constitute the

state of a vth virtual swarm particle.

The swarming model defined in (3) represents the

steering force of a particle i, which is used to compute

the swarming velocity of particle i as

vi
[k] = γ

(
f i

[k]

(
N i

[k],Oi
[k]

)) f i
[k]

(
N i

[k],Oi
[k]

)
∥∥f i

[k]

(
N i

[k],Oi
[k]

)∥∥
2

,

(7)

where

γ
(

f
)
= min {vm; λ‖f ‖2} (8)

bounds the magnitude of the velocity below the maxi-

mum allowed speed vm (m s−1). The swarming veloc-

ity is then used in real-world applications to compute

the desired position setpoint as

rd,i
[k] =

vi
[k]

λ
(9)

represented in the body frame of UAV i.

4.2. Obstacle detection

To achieve flocking in the targeted environment (e.g. a

forest environment and an indoor environment), the

obstacles in the local neighborhood are generalized

into two geometrical classes (circles and lines), based

on their cross-sections with the horizontal plane of

a particle, as portrayed in figure 3. This assumption

allows us to model more complex settings (e.g. a for-

est or an office-like environment) on the grounds

of these two geometrical classes, while it throttles

down the perception and the computational com-

plexity onboard a lightweight UAV. Detection of these

obstacles is assumed to be provided for a particle i

from any kind of an onboard sensor with an obstacle

detection distance Ri
o.

Having in time step k a detected circular obstacle

v with a radius rv[k] ∈ R>0 and a center at civ
[k] ∈ R3×1

referenced in the body frame of particle i, the state of

a vth virtual swarm particle is derived as

xiv
[k] =

(
1 − rv[k]

‖civ
[k]‖2

)
civ

[k], (10)

viv
[k] =

rv[k]

‖civ
[k]‖2

(
I − µiv

[k]

(
µiv

[k]

)T
)
vi

[k], (11)

where ‖·‖2 is the L2 norm, I ∈ R3×3 is an iden-

tity matrix, and µiv = civ

‖civ‖2
. By analogy, the virtual

swarm agent state can be derived for a linear obstacle

8
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Figure 3. An autonomous UAV navigating among artificial obstacles according to the swarming model described in section 4.
The UAV flies in the Gazebo robotic simulator (upper row), while it continuously detects geometrical obstacles represented as
circles and lines in the onboard 2D laser-scanner data with a limited obstacle detection radius (gray circle). The states of virtual
particles, consisting of position xiv

[k] (red dots) and velocity viv
[k] (blue arrows) relative to UAV i, are visualized in the bottom image

row. The steering force f i
[k] (red arrow) of the swarming model represents the desired velocity.

defined by its normal vector niv
[k] ∈ R3×1 and a set of

observed points P iv
[k] as

xiv
[k] = (I − Piv

[k]) p̂iv
[k] (12)

viv
[k] =

1

‖p̂iv
[k]‖2

Piv
[k] v

i
[k], (13)

where

Piv
[k] = I − niv

[k]

(
niv

[k]

)T
, (14)

p̂iv
[k] = arg min

p∈P iv
[k]

{‖p‖2}. (15)

The state of a virtual swarm particle for both geo-

metrical classes is visualized in figure 3, where an

autonomous UAV navigates among artificial obsta-

cles within an environment of the Gazebo robotic

simulator.

5. System architecture

In addition to the method for direct onboard local-

ization presented in section 3 and the decentralized

swarming approach presented in section 4, we will

now present here system architecture of the entire

UAV system, supplemented by the concepts of UAV

stabilization, control, and state estimation. These

concepts are based on our previous research (see [1,

37, 52]) focused on cooperation among autonomous

aerial vehicles. They have been adapted for swarming

research described in this article. The control pipeline,

suited for stabilizing and controlling UAV swarms

using linear model predictive control (MPC) and the

non-linear SO(3) state feedback controller [53], is

depicted in the high-level scheme in figure 4. The sta-

bilization and control pipeline is based entirely on

[52].

In addition, a decentralized collision avoidance

system [55] is adapted in the proposed system for safe

research on compact aerial swarms. A long predic-

tion horizon of linear MPC is used to detect collisions

among trajectories of robots. The known collision tra-

jectories are then altered prior their execution. This

allows us to implement the collision avoidance sys-

tem in a decentralized manner. Decentralized colli-

sion avoidance is necessary for safe verification of bio-

inspired swarming models in the real world. Although

the use of mutual communication for collision avoid-

ance is in contradiction with the system architecture

presented in this article, it can be used as a low-level

safety supervisor with no direct dependency on the

architecture of the tested swarming model. This may

prevent inadmissible collisions when there is unde-

sired demeanor of dense swarm members, and there-

fore protect the hardware during the initial phases of

experimental swarm deployment. However, the use

of collision avoidance is not mandatory and its use is

appropriate only during the initial testing phase.

To stabilize UAVs using the system in figure 4, the

individual UAVs estimate their state vector

x = [r, ṙ, r̈, R, ω]T, (16)

where R ∈ SO(3) is the attitude and r =
[
xw , yw , zw

]T

is the position in the world coordinate frame. The

vector ṙ ∈ R3×1 is the linear velocity, r̈ ∈ R3×1 is the

linear acceleration, and ω ∈ R3×1 is the angular rate

with respect to the UAV body coordinate frame. The

PixHawk autopilot [56] is embedded to handle the

low-level attitude rate and actuator control, and an

IMU is used to directly measure the linear accelera-

tion r̈, the attitude R, and the angular rate ω, using a

combination of accelerometers, gyroscopes, and mag-

netometers. The embedded autopilot integrates the

9
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Figure 4. The high-level system pipeline (the schematic is based on the system pipeline diagram published in [54]) of a single
homogeneous UAV swarm unit i in time step k. The stabilization & control pipeline [52] takes reference position setpoint r[k] for
the MPC in the MPC tracker, which outputs a command r̈d , ψ̈d (ψ̈ is the heading acceleration) for the acceleration tracking
SO(3) controller [53]. The acceleration controller produces the desired angular rate ωd and thrust reference Td for the embedded
attitude rate controller. A state estimation pipeline outputs the current state estimate x based on the sensory data y and the
onboard measurements of linear velocity ṙ, angular rate ω, and attitude R. Note that the time indices of the stabilization &
control and the state estimation pipelines are omitted in the diagram, since their timeline matches the rate of the inertial
measurements (typically 100 Hz), which differs from the timeline of the detection cameras (10–20 Hz). Local perception of
neighboring units using the UVDAR sensor is described in detail in section 3, while the decentralized swarming approach is
described thoroughly in section 4.

measurements of r̈ to ṙ and employs the extended

Kalman filter to produce optimal estimates of the spe-

cific state variables with respect to the measurement

noise.

To self-localize an individual UAV, its global posi-

tion measured by GNSS is fused together with the

inertial measurements in order to stabilize the flight

of this dynamically unstable system. However, the

global state is not shared to other swarm agents

throughout our final experimental analysis presented

in section 6. Instead, the framework uses UVDAR

to directly observe the relative position and the rel-

ative velocity (see (1) and (2)) of particles in the local

neighborhood, and it generates a navigation decision

based on the set of simple rules described in section 4.

Although the use of GNSS for self-localization limits

the system exclusively to outdoor environments, this

dependency can be replaced by any local state esti-

mation method with respect to the desired applica-

tion and environment—e.g. the deployment of our

decentralized system in a real-world forest, which was

highlighted by the IEEE spectrum2.

5.1. Properties

The combination of the system decentralization and

the local perception of individual agents makes the

system as a whole robust towards failures of individu-

als. In the swarming model (see section 4), each agent

decides on its actions in real time only from current

observations or a short-past history of observations.

This makes the system robust towards a single-point

of failure, such as a failure of some centralized con-

trol element or the communication infrastructure.

Unless the employed local perception method gen-

erates false negative detections, the swarming model

(see section 4) ensures no mutual collisions between

2 https://spectrum.ieee.org/automaton/robotics/drones/video-

friday-dji-mavic-mini-palm-sized-foldable-drone.

the agents. The rate of false negative detections in

UVDAR is minimal as there are no objects blinking

at specific rates in the given near-visible UV spectrum.

In case of a hardware failure of an aerial agent (e.g. the

agent lands unexpectedly), the agent disappears from

the visibility field of other units resulting in emergent

self-organization of the collective configuration.

As UVDAR is a vision-based system, it naturally

suffers from visual occlusions generating blind spots

in overcrowded situations. As discussed in section 3.2,

the number of visual occlusions in UVDAR is mit-

igated with the use of different blinking frequencies

of overlapping UAVs. As the neighborhood for per-

ception is also locally limited in the swarming model

(see section 4), the distant blind spots are filtered

out in principle. The remaining occluded agents are

neglected. This is feasible in the employed model, as

the information about the units’ presence is propa-

gated through direct observations of the motion of

the middle agents (i.e. the agents causing the occlu-

sions). Based on our empirical experience, this does

not destabilize the swarm, but rather rearranges the

agents to positions where the number of visual occlu-

sions is reduced.

The navigational features of the system as a whole

are controlled in a decentralized manner. A decen-

tralized navigation is possible with a swarming model

capable of navigational decision making using only

the perceived data onboard the units. This is the

case of our swarming model (see section 4), which

employs a simple steering towards a pre-specified

set of global positions, hence eliminating the need

for navigation managed by a centralized controller.

Although our later experiments (see section 6) nav-

igate each UAV individually, the model may navigate

only a single unit with the rest of the swarm naturally

following the leader—a behavior emerging from the

cohesion and the alignment premises.

10
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Figure 5. Two distinct multi-rotor (hexa- and quad-rotor) UAV platforms, here equipped with UV-sensitive cameras (red) and
with active UV markers (green), comprising the hardware components of the UVDAR system for relative localization of
neighboring UAVs. The diagonal dimension (without propellers) of the platforms are 550 mm (left) and 450 mm (right). The
hexa-rotor platform was used throughout our experimental verification presented in section 6.

Figure 6. A fully-decentralized swarm of homogeneous units in a simulated 3D environment with static obstacles. The swarming
model yields enough flexibility for the compact team to deviate from its aggregated structure in order to pass safely through a
narrow gap (a) or to avoid an obstacle in an efficient and fast manner (b).

5.2. Hardware platform

The use of UVDAR is not dependent on the dimen-

sions or the configuration of a multi-rotor platform.

The payload (onboard equipment) requirements of a

single-UAV unit employing UVDAR are: an autopi-

lot, a self-localization source (e.g. a GNSS receiver),

1–2 UV-sensitive cameras, computational power to

control the flight and to process the data (one camera

at 20 Hz requires approximately a 30% single-thread

load on Intel-Core i7 7567U, 3.5 GHz), and a set of

UV LED markers placed at known extreme points of

the UAV.

To verify this statement, an axiomatic functional-

ity validation of UVDAR was performed on two inde-

pendent multi-rotor platforms as shown in figure 5.

The general hardware configuration of UAVs exhib-

ited in the figure consists of

11

© IOP Publishing. Reproduced with permission. All rights reserved. 2020. DOI: 10.1088/1748-3190/abc6b3

144



Bioinspir. Biomim. 16 (2021) 026009 P Petráček et al

Figure 7. Navigation of a decentralized swarm of nine homogeneous UAVs in a forest-like environment with a high density of
circular obstacles—tree trunks (a). The experiment showcases the cooperative steering within the environment and the emerging
properties of mutual long-term cohesion (b), safe mutual separation (c), and reliable obstacle avoidance (d).

• the Pixhawk 4 autopilot,

• onboard computer Intel NUC i7 7567U,

• ProLight Opto PM2B-1LLE near-UV LEDs radi-

ating at 390–410 nm wavelength [42],

• mvBlueFOX-MLC cameras with

∗ a MidOpt BP365 near-UV band-pass filter

and

∗ Sunnex DSL215 fish-eye lenses,

•a GNSS receiver (the hexa-rotor platform

only), and

•the Slamtec RPLiDAR-A3 laser scanner

(the quad-rotor platform only).

The weight of this hardware configuration is 370 g

(or 540 g with the laser scanner required either

for an obstacle detection or for a local localization

replacing the GNSS dependency). The onboard Intel

NUC computer weighing 225 g provides exaggerated

processing power useful particularly in our case for

general research purposes. For use in highly special-

ized applications, a feasible replacement of this pay-

load with a microprocessor technology would allow

for even further minimization of the aerial platform

dimensions and cost expenses.

Further miniaturization of infrastructure/inde-

pendent UAVs is limited by current technology

required for local self-localization. Vision-based

algorithms employ lightweight cameras minimizing

the weight; however, it comes at the cost of high

processing power and thus increased weight of

the processing unit. On the other hand, laser-

based localization generally requires less processing

12
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Figure 8. Aerial swarm of three homogeneous UAVs in a real-world forest-like environment filled with artificial obstacles.

power, but the sensors are heavier than cam-

eras—approximately 170 g for planar scanners and

475 g for 3D LiDARs.

6. Experimental analysis

The primary aim of the experimental analysis is

to verify the general functionality and to evaluate

the performance of the entire framework exploiting

direct localization rather than communication. The

objectives of the experiments are focused primarily on

determining the accuracy of the UVDAR direct local-

ization, and on the stabilization and spatial navigation

of an aerial swarm in real-world environments with

and without obstacles. The entire experimental anal-

ysis is supported by multimedia materials available at

http://mrs.felk.cvut.cz/research/swarm-robotics.

6.1. Swarming model analysis

To rule out the influence of UVDAR in a position

control feedback loop of an aerial swarm, the Boids-

based swarming intelligence (see section 4) is ana-

lyzed independently from the direct localization. For

this purpose, the UAVs replace direct visual localiza-

tion by sharing their global GNSS positions in an

ad-hoc network in order to determine the relative

arrangement in the local neighborhood. This config-

uration was necessary in order to deploy UAVs with-

out direct localization using UVDAR, as discussed

in section 1.1. The analysis showcases the usability

of the proposed fully-decentralized swarming frame-

work both in simulations and in real-world scenarios,

and in environments with and without obstacles. The

global positions of the obstacles are a priori available

to the UAVs.

First, the collective dynamics of the swarming

model are analyzed thoroughly in the Gazebo robotic

simulator [57], shown in figure 3, coupled with the

robot operating system [58]. This simulation envi-

ronment emulates real-world physics, and allows us

to use identical low-level controllers and state esti-

mation methods (see section 5) for the real UAVs

and also for the simulated UAVs, without simplify-

ing assumptions. This makes the configuration ideal

for effortless deployment of theoretical bio-inspired

swarming approaches onto a group of real-world

robots. Simulation deployment of a swarm of homo-

geneous units in a 3D environment with obstacles (see
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Figure 9. A fully-decentralized swarm of four homogeneous UAVs navigating through an obstacle-less environment with
UVDAR integrated into the position control feedback, as outlined by the scheme in figure 4.

figure 6) verifies the qualitative performance of the

reactive obstacle avoidance methodology presented in

section 4. The emerging collective dynamics show the

properties of the 3D shape flexibility during naviga-

tion through a narrow passage and in collision-free

bypassing of static obstacles. The properties of safe

navigation and high flexibility are also showcased dur-

ing the simulation deployment of a compact swarm

of nine homogeneous units in a dense 3D forest-like

environment, according to figure 7.

Second, an aerial swarm of three UAVs was exper-

imentally deployed in a real-world forest-like envi-

ronment similar to figure 7, in order to verify the

abilities of the fully-decentralized swarming model

to stabilize a set of UAVs in a decentralized man-

ner, provide self-organizing behavior, and to navigate

through an obstacle-filled environment. As explicitly

shown in figure 8, even such a simplistic swarming

model with only local information yields collision-

free navigation (the minimum distance to an obstacle

or to another UAV was 2.2 m) throughout the envi-

ronment, and self-organizing compactness of the

whole swarm during the entire flight. The experiment

likewise shows the ability of the model to divide the

group when overcoming an obstacle and to unite back

again afterwards. This level of flexibility is impor-

tant for fast and safe navigation within more com-

plex environments in order to maximize the motion

effectiveness. The flexibility is highlighted by dotted

triangles, which represent the geometric configura-

tion of the swarm in time. Let us call this flock

geometry an α-lattice according to [45] and use it

to represent a self-organizing structure, where indi-

vidual inter-particle distances converge to a common

value. This geometric configuration allows for small

deviations from the expected structure (especially for

particles in an environment with obstacles), which

can be further quantified by deviation energy and can

be used to evaluate the swarming model convergence.

The deviation energy is derived in [45] and represents

a non-smooth potential function of a set of parti-

cles, where theα-lattice configuration lies at its global

minimum.

6.2. UVDAR in control feedback

To verify the feasibility of the complete system

defined in figure 4, UVDAR vision-based mutual rel-

ative localization is deployed in the position con-

trol feedback loop of each homogeneous swarm

agent. Throughout the experiment, the individual

UAVs employ GNSS for self-state estimation. This is
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Figure 10. Onboard detection of three UAVs in the UV spectrum using UVDAR in a member of the aerial swarm. The method
directly localizes the neighbors within a swarm in indoor and outdoor environments. Here, the method detects neighbors in an
outdoor environment affected by a powerful source of ambient UV radiation. The processing is possible due to periodic blinking
of the members with a specific frequency, here with 6 Hz, 15 Hz and 30 Hz.

Figure 11. Dependency of the direct localization accuracy on the stability of an aerial swarm. The plot shows exponential decline
of the minimum distance amid the swarm units with a growing degree of the localization error. The localization error is modeled
as a multivariate normal distribution with uncorrelated zero-mean variables: the radial distance (standard deviation σr) and the
relative azimuth (standard deviation σΨ).

required to stabilize the flight of each dynamically

unstable UAV mid-flight in a large open-space, where

the swarm was deployed. However, the agents do

not share any information through a communication

network and instead they directly perceive the neigh-

boring particles using UVDAR. The blinking frequen-

cies of the UAVs (IDs) within the experiment were

static and unique. This improves the performance of

the UVDAR localization as unique IDs in the image

stream help to separate occluded detections and track

the units in time. To the best of our knowledge,

this is the first deployment of a fully decentralized

aerial swarming system in a real environment (out-

side laboratory-like conditions) with direct localiza-

tion and with no communication or position sharing

allowed.

As explicitly shown in figure 9, use of a local sens-

ing method maintains the abilities of the bio-inspired

swarming model, namely self-organizing behavior,

together with collision-free and cohered navigation.

The swarm is capable of navigation throughout the

environment in a compact structural constellation

without any external interference to a sequence of

global navigation goals. The figure shows the ability

to preserve a compact structure emerging from local

UVDAR-based perception (figures 2 and 10 show the

perceived data of a single swarm agent in this particu-

lar experiment) and the elementary rules presented in

section 4, while the homogeneous units do not share

any information among themselves.

6.3. Analysis on direct observation accuracy

In real-world conditions, all estimation subsystems

are incorporated with various measurements con-

taining a stochastic noise element. The origin of this

stochastic part is of numerous types (e.g. vibrations,

discretization, approximations, sensor non-linearity,

time desynchronization, lack of motion compen-

sation, or optical discrepancies) and most of these

inaccuracies need to be accounted for. For example,

the stabilization and control system of UAVs requires

a continuous stream of inertial measurements to
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Figure 12. Quantitative accuracy of UVDAR direct localization with respect to GNSS positioning in real-world conditions. The
figure shows error histograms and their normalized normal distribution N (µ,σ) approximations of the directly estimated relative
distance, the relative azimuth, and the global 3D position.

cope with hardware-based and synchronization

inaccuracies, in order to stabilize the dynamically

unstable system in mid-flight. The influence of these

inaccuracies needs to be carefully analyzed, and the

results of the analyses must be incorporated into the

design of a swarming model in order to compensate

for the uncertainties of real-world systems.

As discussed in the review of the related litera-

ture (see section 1.1), dense robotic swarms candidly

communicate either external positioning estimates

or individual global state estimates amid the swarm

units. In addition to the requirements of the commu-

nication infrastructure, this methodology imitates the

bio-inspired design of mutual localization by estab-

lishing the relative relations from the global data.

This incorporates the global self-localization error,

and can lead to dangerous decision making, and

also to communication-based failures. However, our

approach imitates biological systems by relying solely

on direct localization without the need for known

global states of the neighbors or of the unit itself. This

bounds the overall performance of the system solely

to the accuracy of the direct localization. It entirely

removes the need for a communication infrastruc-

ture, and allows for full decentralization of the system

architecture.

To analyze the impact of direct localization accu-

racy on the overall performance of our swarming

framework, we present two inquiries: the influence

of the error degree on the stability of a decentral-

ized swarm, and the data-based accuracy of UVDAR

in real-world conditions. As our focus applies to

vision-based direct localization, the error of 3D

relative localization can be expressed in spherical

coordinates—radial distance, azimuth, and eleva-

tion—separately. Bear in mind that due to the vision-

based nature of UVDAR discussed in section 3, the

statistical characteristics of the elevation error are

assumed to be identical with the azimuthal error. To

maintain simplicity, the elevation error is therefore

omitted from the presentation of the results.

The impact of a direct localization error on the

stability of a swarm was analyzed on a set of com-

putational simulations. A decentralized swarm of

UAVs with simulated dynamics, control & state

estimation disturbances, and sensory inaccuracies,

was deployed in scenarios with various degrees of

the direct localization error according to figure 11.

Although the data show the minimum influence of

the error on the average distance among the swarm

units, the stochastic element induces oscillations of

the mutual distances. These deviations from a con-

sensual mutual distance arise directly from the inac-

curacy of direct localization and from time-based and

dynamics-based delays. This has a negative impact

on the stability properties of the entire swarm, as

shown by the exponential decline of the minimal

distance amid the swarm units with the increasing

degree of the radial distance and the relative azimuth

error in figure 11. In real-world systems, a suit-

able swarm density must be thoroughly considered

with respect to the accuracy and the reliability of

the direct localization in order to prevent undesired

collisions.
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Figure 13. Real-world accuracy of UVDAR direct localization in a controlled environment—tracking of a single mid-flight UAV
relative to a static ground UV camera. The UVDAR localization is compared to ground-truth data obtained with the use of
RTK-GNSS. The absolute RMSE of the relative 3D localization in this experiment reached 1.11 m (the median is 0.81 m).

The accuracy of UVDAR in real-world conditions

during the deployment of the decentralized swarm of

four UAV units in an open environment (see figure 9)

is expressed by the error histograms in figure 12.

During this experiment, the self-localization of

the individual UAVs was arranged by GNSS. The

statistical analysis uses global positioning for a

quantitative evaluation of the direct localization accu-

racy. Although global positioning yields a relatively

high error, the state estimation module (see section 5)

fuses this global state estimate with inertial mea-

surements, which makes the output estimate robust

towards sudden short-term changes. The positioning

is still prone to long-term drift, which is minimal in

terms of GNSS and therefore does not significantly

impact the evaluation of the direct localization within

a dense swarm. The fused global estimate is therefore

used as ground truth data for the quantitative evalu-

ation in figure 12. This evaluation on real-world data

shows the ability of UVDAR to estimate the relative

distance with 1.16 m root mean square error (RMSE)

and the relative azimuth with RMSE of 0.17 rad. These

separated errors then combine together with the ele-

vation estimate to anticipate the relative 3D position

of the neighboring particles within a moving aerial

swarm with RMSE of 1.7 m.

The accuracy of UVDAR in real-world conditions

is further analyzed in a controlled outdoor environ-

ment. During an independent experiment, a position

of a single mid-air UAV was tracked in data from a

static ground camera equipped with UVDAR and was

compared to a precise RTK-GNSS (2 cm accuracy)

serving as a ground-truth. The comparison of the

relative localization with the ground-truth data is

shown in figure 13. The data show the property of

UVDAR to localize an aerial unit with RMSE of

1.11 m.

The concluded accuracy is particularly impor-

tant for the design of bio-inspired systems employ-

ing the UVDAR sensor as a source of direct localiza-

tion of neighboring units. The quantitative results of

this analysis allow for appropriate compensation of

the inaccuracies and credible verification of swarm-

ing models in a simulator, which necessarily precede

real-world applications.

7. Conclusion

This article has presented a framework for deploying

fully-decentralized aerial swarms in real-world condi-

tions with the use of vision-based UV mutual relative

localization of neighboring swarm units. The frame-

work architecture, as well as the off-the-shelf UVDAR
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system for direct localization within an aerial swarm,

has been thoroughly discussed, has been deployed on

a decentralized swarm of UAVs in real-world environ-

ments, and its performance has been analyzed. The

experimental analysis verified the stability of UVDAR

as an input into a fully-decentralized swarming archi-

tecture, which embodies the communication-free and

local-information swarming models that are com-

monly found among biological systems. The set of

real-world experiments is, to the best of our knowl-

edge, the first deployment of a decentralized swarm

of UAVs with no use of a communication network

or of external localization. The system is provided as

open source, and is designed for simple integration

and verification of flocking techniques (often bio-

inspired), respecting the requirements of the swarm-

ing paradigm.

Acknowledgments

This work was supported by the Czech Science
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Nepusz T and Vicsek T 2014 Flocking algorithm for

autonomous flying robots Bioinsp. Biomim. 9 025012

[18] Vásárhelyi G, Virágh C, Somorjai G, Tarcai N, Szöŕenyi T,
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5 Discussion and Summary of Results

In this chapter, we summarize and discuss the author’s overall contributions with respect
to the research challenges and objectives defined in Chapter 1.

5.1 LiDAR-based Perception and UAVAutonomy in Demanding Real-
World Conditions

Challenge (1) and objective (1) have been addressed in five out of six of the core pub-
lications and in a plethora of other co-authored works. In parallel, all of these publications
also contribute to challenge (3) and objective (3). These challenges and objectives empha-
size that state-of-the-art aerial robotics is hindered by unsatisfactory perceptual robustness
in challenging real-world conditions devoid of GNSS. The two main challenges related to the
objectives (1) and (3) have been defined and focused on throughout the thesis — operating
under perceptual degeneracy and developing methods for resource-constrained robots. In this
regard, the proposed contributions summarized below go beyond the state-of-the-art LiDAR-
based perception by introducing novel methods for achieving satisfactory robustness and per-
ceptual resiliency of aerial systems.

Given the projective nature of modern 3D LiDARs, the perceptual measurement can
be structured such that the estimation of the ego-motion of the robot is challenging, if even
possible. This perceptual degeneracy is connoted as perceptual (or geometrical) aliasing and
emerges in geometrically symmetrical and structureless environments. In these environments,
the degeneracy is the main source of estimation drift. As demonstrated in Figure 2.1, such de-
generacy can then be classified as weak and strong. In the core publication [1c], we have tack-
led the harder problem of strong degeneracy in environments that are geometri-
cally symmetrical along the vertical axis. In particular, we focused on the interiors of large
historical monuments, such as cathedrals and churches. To fight the vertical degeneracy, we in-
troduced additional constraints to increase perceptual observability along the degenerate axis.
Although grounded on cheap and lightweight 1D and 2D LiDARs, the enhanced observability
of the proposed multi-sensor scheme allowed for fast and reliable 6-DoF pose estimation in the
3D world. The low amount of data from the lightweight sensors allowed for pose estimation
on-board small-factor UAVs, leading to the first-ever autonomous mission of UAVs perform-
ing a documentation technique RTI [9a] in areas high above ground in a historic structure.

The challenging task of [1c] has been extended to multi-UAV configurations in core [2c]
and co-authored [10a] publications. Building on experience gained in [1c, 9a, 131], these works
rework the perceptual capabilities of [1c] into multi-sensor design, fusing a 3D LiDAR, LiDAR
rangefinder, and inertial measurements. The primary source of pose estimation relies on a 6-
DoF odometry utilizing the 3D LiDAR data. Although not fully coping with the challenge
of strong degeneracy, the proposed methodology utilizes a map of the environment to detect
drift in the estimation. This approach is not completely robust to the drift but introduces
awareness to geometrical degeneracy, allowing for on-the-go alteration of the aerial mis-
sion to maximize safety. The methodology is designed for decentralized multi-UAV teams co-
operating within a known environment full of obstacles. The work [2c] is not limited to his-
torical settings, although it has been investigated in them due to the need for multi-robot so-
lutions in the field of cultural preservation. As part of [2c], we have investigated and listed
documentation techniques practicable by UAV teams and advanced the selected methods to
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large-scale settings outside of the laboratory. The outcomes of [2c, 9a] include achievements
in full real-world autonomy, as well as the first ever fully-autonomous inspection and docu-
mentation missions of a multi-UAV team in historical monuments, while performing tasks in-
feasible for a single UAV in principle (e.g., RTI [9a] and three-point lighting). Selected docu-
mentation missions from five different historical structures are demonstrated in Figure 5.1.

Figure 5.1: Selected illustrations of the theoretical contributions of [1c, 2a, 9a, 10a] as actu-
alized to the real-world robotic autonomy, Dronument [137]. During the development and in-
vestigation phases, the research was applied for autonomous documentation of the interiors of
18 historical monuments, including two sites on the UNESCO World Heritage list. The work
is supported by multimedia available at youtu.be/Gx-mBklSbYc.

Motivated by a lack of degeneracy-aware perception and the need for minimizing com-
putational delay in pose estimation pipelines running on-board robots with limited computa-
tional resources, the core publication [6c] proposed a novel method for sampling points
measured by rotating 3D LiDAR sensors. Rooted in theory stating that hyperplane sur-
faces generate residuals redundant in a pose estimation task, the method [6c] quantifies and
minimizes redundancy in the point cloud by removing uninformative points together
with noise and outliers. Since sampling at the input space of an estimation pipeline cannot
relate to information theory, the method is unable to directly quantify the degree of degen-
eracy. Nevertheless, it outperforms the baseline state-of-the-art methods in well-conditioned
settings as well as under weak degeneracy. It samples the least amount of points, yields the
highest computational gains, and preserves the highest ratio of information extractable from
the point cloud. Although [6c] is of principal importance to resource-constrained robots, this
fundamental advance has the potential to improve all existing real-time estimation pipelines
employing rotating 3D LiDARs, whether it is applied on-board an autonomous car or a UAV.
This core work is supported by multimedia available at github.com/ctu-mrs/RMS.

On-board aerial perception and autonomy are challenging, even when the type and
parameters of the environment are known beforehand (e.g., in [2c]). As motivated by the
DARPA SubT (one of the most important competitions in mobile robotics), a main challenge
in our other core and co-authored publications [3c, 4a, 8a] has been to push the state of the
art beyond known environments to unpredictable, harsh, and unknown settings.
Starting in [3c, 8a], we have advanced the fundamental theory of [39] into the real 3D world,
providing a UAV the ability to perceive, plan, and act in the real world only on the basis
of its own onboard sensors. The advancement removed any severe restrictions and 2D world

https://www.youtube.com/watch?v=Gx-mBklSbYc
https://github.com/ctu-mrs/RMS
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assumptions; thus, allowing to fully exploit the potential of agile multi-rotor UAVs. The
perceptual capabilities of UAVs in these works build on the contributions related to the
methodology of inspecting historical interiors [2c]. Nevertheless, the methodology of [3c, 4a,
8a] was exceedingly challenged by the variety of unpredictable difficulties of a dynamic 3D
environment, as illustrated in Figure 5.2. The contributions of [3c] include a full-stack,
field-tested, and open-source LI-based UAV odometry and optimal multi-UAV
homing capable of autonomous operation in an arbitrary exploratory task within an unknown
and unstructured subterranean environment. The experimental investigations in [3c] achieved
deep-exploratory flights up to a length of 470 m in a single fully autonomous deployment in
the Bull Rock Cave system, which is an extreme performance, even by today’s standards
in field robotics. The work describing our research endeavor in S&R [4c] summarizes our
contributions, including novel methods for robust dust and mist filtering from LiDAR data,
thin-obstacle avoidance, tight coupling of all autonomy modules running on-board a UAVs
(an important, yet often underestimated quality), and a multi-robot navigation stack capable
of optimal multi-UAV exploration of unknown and dynamic environments. Deploying our top-
performing UAV stack [3c, 4a, 8a] in DARPA SubT served as the ultimate test on the author’s
contributions to the field related to the resiliency of UAV perception and autonomy.

Figure 5.2: Selected illustrations of the theoretical contributions on UAV autonomy of [3c, 4a,
8a, 39] as actualized in the real-world robotic system deployed in the DARPA SubT by team
CTU-CRAS-NORLAB. A wide range of unpredictable real-world environments (narrow corri-
dors, large caverns, tight openings, vertical shafts, dark, dusty and misty conditions, and many
others) requires a high level of adaptability, resiliency, and robustness in on-board perception
and autonomy. The work is summarized in multimedia available at youtu.be/8rLxX3kS9Qo.

https://www.youtube.com/watch?v=8rLxX3kS9Qo
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5.2 Distributed Perception-Aware Multi-UAV Coordination

The challenge (2) and objective (2) on distributed coordination of multi-UAV teams are
laid in one core and four co-authored works. These works emphasize research on coordinating
real-world decentralized teams in which the robots decide their actions based on local percep-
tual information. The objective (2) targets increasing the robustness of UAV teams to single
points of failure, such as centralization and communication. The core work [5c] proposed a
biologically-inspired self-organizing swarming model respecting the swarming princi-
ple defined in [36]. Our investigations show that the model is capable of navigating a team of
non-communicating UAVs in an outdoor environment filled with obstacles on just the basis
of local vision-based and LiDAR-based perception. The work [5c] served as a baseline method
for further research, improving upon this work by researching novel models introducing:

local path planning in GNSS-restricted environments (such as forests) [15a, 117],
evasion to dynamic and hostile objects [11a],
splitting and cohesive merging maneuverability [14a],
proximal-control theory [16a] previously studied in relation to non-holonomic differential
drive robots, and
path persistence and similarity features for improving collective navigation [118].

The works, including the core publication [5c], build upon the UVDAR [37, 38] localization
system (developed at the MRS laboratory at FEE, CTU), which provides perceptual vision-
based feedback in the form of relative position and bearing of friendly and visible neighboring
UAVs. At the time of publishing, [5c] presented the first real-world UAV swarm capable of co-
hesive navigation among obstacles without communication. Although further research on this
topic is required, these contributions have the potential to provide reliability in tasks requir-
ing multi-UAV teams, such as the safety-critical documentation of historical monuments [2c].

5.3 Highlights, Interdisciplinary Results, and Secondary Activities

The author’s contributions are heavily motivated by existing challenges of real-world
applicability. Since some of these challenges require interdisciplinary methodology, the con-
tributions reach beyond the field of robotics. The first interdisciplinary overreach was made
into the field of speleology in [3c], developed together with the Institute of Geodesy at Brno
University of Technology. In [3c], we defined the potential use of UAVs for the mapping, ex-
ploration, and disaster response in natural cave systems. The developed system was used to
map the Bull Rock Cave system located in the central Moravian Karst of the Czech Republic.
The second interdisciplinary contribution of the author lies in the field of cultural preser-
vation. The mutual work on the Dronument project [2c] with the Czech National Heritage
Institute led to several achievements beyond standard doctoral work. In particular, the high
societal impact of this project includes the following.

A detailed methodology for the safe use and deployment of autonomous UAVs in the
field of cultural preservation was specified as part of [2c]. The Czech Ministry of Culture
authorized and published this methodology as an official hardware and software solutions
rulebook in the related fields.
The functional sample (see Figure 5.3) of this work was awarded in the M17+ 2022
evaluation [130] for excellent scientific achievements in the Czech Republic.
The work [2c] describes and lists documentation tasks realizable and inapplicable by
aerial vehicles. The list serves as a future reference for interdisciplinary work and includes
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techniques, such as multi-spectral imaging, 3D reconstruction, photogrammetry, three-
point lighting, raking light, reflectance transformation imaging, and many others.
Part of the work was published in the Czech journal Památky, sharing the findings
among experts in the field of cultural preservation in [18a].
The developed technology has been used to document 18 historical monuments around
the Czech Republic. These structures include two objects contained on the UNESCO
World Heritage list. To this day, this technology remains the most comprehensive project
in the field of autonomous documentation of historical monuments by an aerial system.

The work is also supported by results and multimedia materials available at [137]. These results
contain the methodology, functional sample, and 3D models of selected structures documented
by the developed technology. Note that the developed technology is not limited to historical
settings and is easily adaptable to other scenarios, especially in industrial settings.

Figure 5.3: Functional sample of project Dronument awarded in the M17+ 2022 evalua-
tion [130] for excellent scientific achievements in the Czech Republic.

The author participated in the renowned DARPA SubT as a member of team CTU-
CRAS-NORLAB, which won the following.

First place (third overall) among non-funded teams in the Tunnel Circuit (US$200k)1.
Second place (third overall) among non-funded teams in the Urban Circuit (US$500k).
Second place among all teams in the Virtual Track of the Final Circuit (US$500k).

The author’s work on LiDAR-based perception and multi-robot S&R tasks contributed to
the receipt of 2 million US$ of funding for the Center for Robotics and Autonomous Systems
(CRAS) from the US DARPA for further research on the field-robotics methodology applicable
to S&R tasks.

Figure 5.4: Team CTU-CRAS-NORLAB at the Urban Circuit (left) and the Final Circuit
(right) of the DARPA Subterranean Challenge.

1Author of this thesis did not participate in this round.
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Additionally, the co-authored high-impact work [7a] builds upon the experience gained
by top teams during the DARPA SubT and summarizes the current state of the art and
ongoing challenges in field robotics regarding perception and SLAM in extreme environments.
Together with other works [6c, 14a], the work [7a] shows the capabilities of the author of this
thesis to cooperate internationally with the leading experts in the field of mobile robotics.

The author’s secondary academic activities include the following workshop presentations
at IEEE International Conference on Intelligent Robots and Systems 2018 and 2023.

P. Petracek, V. Kratky, M. Petrlik, and M. Saska, “Cooperative UAV Autonomy of Dronument:
New Era in Cultural Heritage Preservation,” in IEEE IROS (Workshop on Integrated Perception,
Planning, and Control for Physically and Contextually-Aware Robot Autonomy), 2023.
P. Petracek, N. Khedekar, M. Nissov, K. Alexis, and M. Saska, “Importance Sampling: Degradation-
Aware Alternative to Voxelization in Robot Pose Estimation,” in IEEE IROS (Workshop on
Robotic Perception and Mapping: Frontier Vision & Learning Techniques and Workshop on In-
tegrated Perception, Planning, and Control for Physically and Contextually-Aware Robot Auton-
omy), 2023.
P. Petráček and M. Saska, “Decentralized Aerial Swarms Using Vision-Based Mutual Localiza-
tion,” in IEEE IROS (Second Workshop on Multi-robot Perception-Driven Control and Plan-
ning), 2018.

The author’s work during his doctoral studies also supported the community through
academic endeavors, contributing to the open-source educational MRS UAV System [39] and
co-organizing an international 2021 Dronument workshop attended by 80 people, as well as
the 2022 IEEE Robotics and Automation Society (RAS) Summer School on Multi-Robot
Systems, which was attended by 180 international students [19a] (see Figure 5.5).

Figure 5.5: Participants of the 2022 IEEE RAS Summer School on Multi-Robot Systems [19a],
which was motivated by the results achieved in [2c] and [4c].

Lastly, the authored contributions have factored into considerable public interest, no-
tably popularizing scientific endeavors in mobile robotics at CTU among general audiences.
A standout project, Dronument, has attracted significant media attention (full list available
in [137]), with coverage including 11 television reports, some of which aired during prime time
on Czech national television, along with over 35 newspaper articles showcasing our research
methodologies and outcomes. Additionally, the involvement of CTU in the DARPA SubT has
led to coverage in at least 2 television reports and over 15 newspaper articles in Czech media
outlets, further enhancing the public’s awareness to the field.
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6 Conclusion

This thesis has addressed the topic of degraded perception as the primary bottleneck in
reliable autonomy of small-factor UAVs. The impediment factors have been linked to percep-
tual degeneracy arising in environments that are geometrically symmetrical and structureless.
To challenge this bottleneck, the contributions of this thesis include novel LiDAR-based solu-
tions, including localization that maximizes observability in structures requiring critical safety,
redundancy-minimizing sampling of 3D point clouds for drift-reducing robot-pose estimation
in real-time, and robust filtering of whirling dust clouds emerging from the aerodynamic influ-
ence of a multi-rotor UAV in extreme settings. Additionally, centralization and communica-
tion were identified as points of failure in compact multi-UAV teams. Novel perception-aware
swarming models were proposed to substitute these points of failure in order to maximize
safety in tasks requiring multiple closely-cooperating robots. All the contributions yield mini-
mal computational latency and are capable of operating onboard robots with constrained com-
putational resources, as supported by a variety of demonstrations in unforgiving real-world
settings. Furthermore, we highlight the actualization of theoretical contributions in UAV au-
tonomy that was field-tested inside extreme subterranean environments during the search and
rescue tasks of DARPA SubT, in natural cave systems as driven by the needs of speleology
experts, and in interiors of large historical monuments as motivated by the interdisciplinary
project Dronument. The proposed contributions served as an integral part in both the top-
performing UAV-based autonomy stack in the SubT and the Dronument project, the latter
of which has since been used to document 18 historical monuments, including two structures
on the UNESCO World Heritage list. Furthermore, the contributions are part of high-impact
publication [7a] defining the current and future directions of perception in mobile robotics.
The thesis builds upon six core and thirteen co-authored publications that have contributed to
the specified objectives and challenges of the current state of the art in mobile aerial robotics.
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A Author’s List of Publications

All of the author’s peer-reviewed publications are listed below. The core publications of
the thesis are referenced with [*c] and other author’s publications with [*a]. The publications
are listed together with the following information.

Journal Impact Factor (JIF) at the time of publishing a journal article as by the Jour-
nal Citation ReportsTM, Clarivate. Categorization in Science Citation Index Expanded
(SCIE) is listed unless specified otherwise.
Percentage of the author’s contributions as agreed among authors upon publication.
Credit author statement defined as Contributor Roles Taxonomy (CRediT) by Elsevier1.
Only the CRediT statements of the author of this thesis are included.
Number of citations (including self-citations) based on Web of Science (WoS) (if in-
dexed), Scopus (if indexed), and Google Scholar (GS) gathered on March 27, 2024. A
summary and full list of citations (excluding self-citations) is given in Appendix B.

A.1 Core peer-reviewed publications

A.1.1 Core journal articles with Journal Impact Factor

[1c] P. Petracek, V. Kratky, and M. Saska, “Dronument: System for Reliable Deployment of Micro
Aerial Vehicles in Dark Areas of Large Historical Monuments,” IEEE Robotics and Automation
Letters, vol. 5, no. 2, pp. 2078–2085, 2020.

JIF 3.7 (Q2 in Robotics)

Contributions PP: 70%, VK: 20%, MS: 10%

CRediT conceptualization, methodology, software, validation, formal analysis, in-
vestigation, writing, visualization

Citations 22 in WoS, 22 in Scopus, 46 in GS

[2c] P. Petracek, V. Kratky, T. Baca, M. Petrlik, and M. Saska, “New Era in Cultural Heritage
Preservation: Cooperative Aerial Autonomy for Fast Digitalization of Difficult-to-Access Interi-
ors of Historical Monuments,” IEEE Robotics and Automation Magazine, pp. 2–19, 2023. Equal
contribution of the first two co-authors.

JIF 5.7 (Q1 in Automation and Control Systems)

Contributions PP: 41%, VK: 41%, TB: 6%, MP: 6%, MS: 6%

CRediT conceptualization, methodology, software, validation, formal analysis, in-
vestigation, data curation, writing, visualization, project administration

Citations 1 in WoS, 2 in Scopus, 9 in GS

[3c] P. Petracek, V. Kratky, M. Petrlik, T. Baca, R. Kratochvil, and M. Saska, “Large-Scale Ex-
ploration of Cave Environments by Unmanned Aerial Vehicles,” IEEE Robotics and Automa-
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terranean Challenge,” Field Robotics, vol. 2, pp. 1779–1818, 2022.
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Contributions TA: 45%, TN: 20%, PP: 20%, GM: 5%, EF: 5%, MS: 5%

CRediT software, validation, investigation, writing (review and editing)

Citations 9 in Scopus, 13 in GS

[17a] D. Hert, T. Baca, P. Petracek, V. Kratky, V. Spurny, M. Petrlik, M. Vrba, D. Zaitlik, P.
Stoudek, V. Walter, P. Stepan, J. Horyna, V. Pritzl, G. Silano, D. Bonilla Licea, P. Stibinger,
R. Penicka, T. Nascimento, and M. Saska, “MRS Modular UAV Hardware Platforms for Sup-
porting Research in Real-World Outdoor and Indoor Environments,” in International Confer-
ence on Unmanned Aircraft Systems, 2022, pp. 1264–1273.

Contributions PP: 5%

CRediT methodology, software, validation, investigation, writing
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B Citations of Authors’ Publications

Table B.1 summarizes all citations of the author’s peer-reviewed publications. The ci-
tation data were gathered on March 28, 2024 using the three primary citation databases —
WoS, Scopus, and GS. The citations range throughout the author’s doctoral studies between
the years 2019–2024.

Citations count

Platform H-index total excl. 1st-order SF excl. 2nd-order SF

Web of Science 7 138 105 65
Scopus 8 164 130 82
Google Scholar 13 450 N/A N/A

Table B.1: Citations of the author’s publications. Citations are included
with and without self-citations (SFs) of the first (excluding SF of the au-
thor) and second order (excluding SF of all authors).

B.1 List of Citations
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exclude self-citations of both first and second order. The citations were exported from the
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