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4 A tight lower bound on the minimal dispersion

M. Trödler∗†, J. Volec∗‡, and J. Vyb́ıral∗§

Abstract

We give a new lower bound for the minimal dispersion of a point
set in the unit cube and its inverse function in the high dimension
regime. This is done by considering only a very small class of test
boxes, which allows us to reduce bounding the dispersion to a problem
in extremal set theory. Specifically, we translate a lower bound on
the size of r-cover-free families to a lower bound on the inverse of the
minimal dispersion of a point set. The lower bound we obtain matches
the recently obtained upper bound on the minimal dispersion up to
logarithmic terms.

1 Introduction and the Main Result

For a given subset of the d-dimensional unit cube X ⊂ [0, 1]d, there are
various different ways how to measure whether X is well spread over the
unit cube. Based on the previous work of Hlawka [7] and Niederreiter [14],
Rote and Tichy [15] introduced in 1996 a concept called the dispersion of X.
The dispersion of X is the volume of the largest axis-parallel box in [0, 1]d,
which does not intersect X, i.e.,

disp(X) = sup
B:B∩X=∅

|B|,

where the supremum runs over all the boxes B =
∏d

i=1(ai, bi), where 0 ≤
ai < bi ≤ 1 for all i ∈ {1, . . . , d}, and |B| stands for the volume of B.
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Intuitively, the smaller the dispersion of a point set is, the better spread
over the unit cube the points have. We are therefore interested in point sets
that have simultaneously small cardinality and small dispersion.

Given n ∈ N, we denote the minimal dispersion of a point set that has
cardinality n by

disp∗(n, d) = inf
X⊂[0,1]d

#X=n

disp(X).

For a fixed d ∈ N and ε ∈ (0, 1), we define the inverse function of the minimal
dispersion in [0, 1]d by

N(ε, d) = min{n ∈ N : disp∗(n, d) ≤ ε}
= min{n ∈ N : ∃X ⊂ [0, 1]d with #X = n and disp(X) ≤ ε}.

The study of the minimal dispersion disp∗(n, d) as well as its inverse
function N(ε, d) recently attracted a remarkable attention in the mathe-
matical community. The pigeonhole principle implies the trivial lower bound
disp∗(n, d) ≥ 1

n+1 , which translates into

N(ε, d) ≥ 1

ε
− 1.

This bound was complemented in [15] and then further improved by Bukh
and Chao [4] to

N(ε, d) ≤ C · d
2 log d

ε
. (1)

Let us note that further upper and lower bounds for different regimes of ε
and d were obtained also in [5, 11, 12, 13, 16], and the dispersion of certain
specific sets was studied in [3, 6, 8, 9, 10, 19, 20].

The first non-trivial lower bound on N(ε, d) that exhibits a growth if d
increases was achieved by Aistleitner, Hinrichs and Rudolf [1]. Specifically,
they showed that

N(ε, d) ≥ log2 d

8ε
(2)

for every d ≥ 2 and every 0 < ε < 1/4. The results mentioned so far suggest
that N(ε, d) depends linearly on 1/ε and it only remains to determine the
d-dependence.

In another line of research, Sosnovec [18] showed that N(ε, d) ≤ Cε log d.
The dependence of Cε was not optimized in [18], and a brief inspection of
the proof reveals that it is actually super-exponential in 1/ε. Nevertheless,
it matches (2) when it comes to the dependence on d. Let us mention that
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the point set with small dispersion was generated in [18] by sampling the
coordinates of the points independently at random from a uniform grid in
[0, 1]. An improved analysis of the same method was given in [21], which
together with a further improvement due to Litvak [11] yields

N(ε, d) ≤ C · log d · log(
1
ε )

ε2
. (3)

The comparison between (1) and (3) is not easy. Depending on the relation
between d and 1/ε, one or the other might perform better. Although the
analysis in [11, 21] regarding the dependence on 1/ε was much finer than
the one in [18], it was quite natural to assume that the second power of
1/ε in (3) is an artefact of the proof method and that the bound could be
potentially further improved even when ε is moderately large.

The main result of this work is to show that, surprisingly, this is not
the case and the second power of 1/ε in (3) is optimal when ε is sufficiently
large.

Theorem 1. There is an absolute constant c > 0, such that the following

statement is true. For any integer d ≥ 2 and any real ε satisfying 1
4 ≥ ε ≥

1
4
√
d
, it holds that

N(ε, d) >
c log d

ε2 · log 1
ε

. (4)

The proof of this result is motivated by the insight gained by a detailed
inspection of the proof given in [21]. For a fixed box B, the sampling from
a finite grid, which is bounded away of zero and one, naturally splits the
individual coordinates into two groups — those, where the corresponding in-
terval (ai, bi) is large enough and covers the whole grid, and the coordinates,
where this is not the case. It turned out in [21] that the boxes with a large
number of the coordinates inside the second group are the most difficult to
hit by a randomly generated point. Therefore, we choose a very small class
of test boxes when compared to the number of all the axis-parallel boxes,
and consider any point set that hits all these test boxes. This naturally
reduces the question under study to a well-known combinatorial problem
called r-cover-free systems, see Section 2 for the definition. The key tool in
our proof is a lower bound of Alon and Asodi [2] on the minimum size of
r-cover-free system.

Reformulated in the language of minimal dispersion, Theorem 1 states
the following.
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Corollary 2. There are two absolute constants c1, c2 > 0 such that for every

positive integers d and n with d ≥ 2 and 2 log d ≤ n ≤ c1d it holds that

disp∗(n, d) ≥ c2

(

log d

n

)1/2

·
(

log
( n

log d

)

)−1/2

.

Before we present our proof of Theorem 1, let us add a few remarks.

Remark. 1. It follows from the proof of Theorem 1 that one can actually

choose c = 1/1920, but we did not attempt to optimize this constant.

2. The essentially tight factor 1/ε2 in the lower bound for N(ε, d) in (4)
is rather surprising. It seems that a logarithmic dependence on d and

a linear dependence on 1/ε exclude each other. What might be even

more surprising, this lower bound is obtained by considering only a

very small class of axis-parallel test boxes.

3. We leave it as an open problem whether the proof method can be further

improved, possibly extending (4) to smaller values of ε.

2 Proof of Theorem 1

We start by fixing some notation that will be used in the proof. For a finite
set X, we denote its size by #X. For a positive integer d, we denote by
[d] the set {1, 2, . . . , d}. Additionally, for a non-negative integer k, we write
([d]
k

)

to denote the collection of all the k-element subsets of [d]. Given a
point x ∈ [0, 1]d and an integer i ∈ [d], we denote by (x)i the i-th coordinate
of x.

By focusing on a very specific set of axis-parallel boxes of volume at
least ε, we are able to translate bounding N(ε, d) from below to a question
in extremal set theory. We say that a family F of subsets of a ground set X is
r-cover-free if no F ∈ F is contained in the union of any r sets from F \{F}.
Based on a previous work of Ruszinkó [17], Alon and Asodi [2] proved the
following lower-bound on the size of the ground set of an r-cover-free family.

Theorem 3 ([2, Lemma 2.8]). Let F be a family of d subsets of a ground

set X. If F is r-cover-free, where 2 ≤ r ≤ 2
√
d, then

#X >
1

10
· r

2 log
(

d− r
2

)

log r
.
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We now proceed with the proof of Theorem 1. Fix d ≥ 2 and ε such that
1
4 ≥ ε ≥ 1

4
√
d
, and let k be the unique integer satisfying 2−(k+1) < ε ≤ 2−k.

Note that k ≥ 2.
Our plan is to define a collection B of

( d
2k−2

) (

d− 2k−2
)

boxes such that
each box has one coordinate where all its points are close to zero, while in
some other 2k−2 coordinates all the points of the box are bounded away from
zero. Next, we will sort out the points of X with at least one coordinate
close to zero into (not necessarily disjoint) sets F1, F2, . . . , Fd. All of this
is done in such a way that the sets F1, F2, . . . , Fd are 2k−2-cover-free, thus
Theorem 3 yields the desired lower bound on X.

We now give all the details. For a given set A ⊆ [d] and j ∈ [d] \ A, let
BA,j ⊆ [0, 1]d be the axes-parallel box defined as

BA,j := I1 × I2 × · · · × Id, where











Ij = (0, 21−k),

Ii = (21−k, 1) for i ∈ A,

Ii = (0, 1) for i ∈ [d] \ (A ∪ {j}) .

Let B :=
{

BA,j : A ∈
( [d]
2k−2

)

and j ∈ [d] \ A
}

. The following claim yields

that any set of points from [0, 1]d with dispersion at most ε must have at
least one point inside every B ∈ B.

Claim 1.
∣

∣BA,j
∣

∣ ≥ ε for any A ⊆ [d] of size at most 2k−2 and any j ∈ [d]\A.

Proof. Since 2−2x is convex, it holds that (1−x) ≥ 2−2x for every x ∈ [0, 1/2].
Therefore,

∣

∣BA,j
∣

∣ =
(

1− 21−k
)#A

· 21−k ≥
(

2−22−k
)#A

· 21−k ≥ 2−k ≥ ε ,

which finishes the proof of the claim.

Fix a finite set of points X ⊆ [0, 1]d that intersects every B ∈ B. For
every j ∈ [d], we define an auxiliary set Fj of the points with a small j-th
coordinate. Specifically, let Fj := {x ∈ X : (x)j < 21−k}. In order to lower
bound #X using Theorem 3, we establish the following claim.

Claim 2. The family {F1, F2, . . . , Fd} is 2k−2-cover-free.

Proof. Suppose there is a set A ∈
( [d]
2k−2

)

and an integer j ∈ [d]\A such that

Fj ⊆
⋃

i∈A
Fi .
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However, there must exist a point x ∈ X ∩ BA,j. Since (x)j < 21−k and
(x)i > 21−k for all i ∈ A, we conclude that x is an element of Fj \

⋃

i∈A Fi,
which is a contradiction.

If k = 2, then ε ∈ (1/8, 1/4] and #X ≥ log2(d) >
3
64 · log d

ε2·log(1/ε) by the

1-cover-freeness. For k ≥ 3, we have that 2k−2 ≤ 1
4ε ≤

√
d, thus Theorem 3

applied to the family {F1, . . . , Fd} and r = 2k−2 readily yields that

#X >
1

10
· 2

2k−4 · log
(

d− 2k−3
)

log (2k−2)
≥ 1

10
·
22k−4 · log

(

d−
√
d/2

)

log (2k−2)
.

Since 1
8ε < 2k−2 < 1

ε and log(d −
√
d/2) ≥ log d

3 for all d ≥ 2, we conclude
that

#X >
1

1920
· log d

ε2 · log 1
ε

.

This finishes the proof of Theorem 1.
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