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Abstract

In the last decades, the amount of data generated has seen exponential
growth. The rapid growth of data led the data mining techniques to play a
significant role in establishing baselines, benchmarks, objectives, analyzing
and better understanding concepts. However, mining useful information in
data requires relevant techniques and procedures. In contrast, the process
of pattern identification in the raw data entities becomes more challenging.
Patterns are the key to understanding, analyzing, predicting and decision
making. On the other hand, finding patterns needs first data analysis, ma-
chine learning, artificial intelligence, and statistical models. This process is
called predictive analytics, which is the process of employing data to fore-
cast future outcomes. In this thesis, different novel case studies have been
introduced using different datasets. Each dataset has gone through prepro-
cessing. Data preprocessing includes data extraction, collection, profiling,
reduction, wrangling, enrichment and validation before being studied. Every
case study introduces certain problems and provides solutions, brings in bet-
ter analytical understanding, system enhancement, outcomes and accuracy
improvement. In addition, several statistical and machine learning algo-
rithms and models have been employed to address the trends and patterns
in the data. Furthermore, we provide a statistical analysis using different
methodologies to identify traffic patterns, indicate the network performance
and quality of service. Moreover, we projected anomaly behavior, detection
and prediction that helps network operators to understand and forecast such
network behaviors. All these studies have been evaluated and assessed using
several performance metrics and parameters.

Keywords : data mining, machine learning, Call Detail Record, Rainfall
forecasting, mobile network, statistical models, pattern identification, pre-
dictive analytics.
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Abstrakt

V posledńıch desetilet́ıch zaznamenalo množstv́ı generovaných dat ex-
ponenciálńı r̊ust. Rychlý r̊ust dat vedl techniky dolováńı dat k tomu,
aby hrály významnou roli při stanovováńı základńıch liníı, měř́ıtek, ćıl̊u,
analýzy a lepš́ıho porozuměńı koncept̊um. Źıskáváńı užitečných informaćı
v datech však vyžaduje př́ıslušné techniky a postupy. Naproti tomu proces
identifikace vzoru v entitách nezpracovaných dat se stává náročněǰśı.
Vzorce jsou kĺıčem k porozuměńı, analýze, předpov́ıdáńı a rozhodováńı. Na
druhou stranu, hledáńı vzorc̊u vyžaduje nejprve analýzu dat, strojové učeńı,
umělou inteligenci a statistické modely. Tento proces se nazývá prediktivńı
analytika, což je proces využ́ıváńı dat k předpov́ıdáńı budoućıch výsledk̊u. V
této práci byly představeny r̊uzné nové př́ıpadové studie s použit́ım r̊uzných
datových sad. Každá datová sada prošla předzpracováńım. Předzpracováńı
dat zahrnuje extrakci dat, sběr, profilováńı, redukci, hádky, obohaceńı a
validaci před t́ım, než jsou studována. Každá př́ıpadová studie představuje
určité problémy a poskytuje řešeńı, přináš́ı lepš́ı analytické porozuměńı,
vylepšeńı systému, zlepšeńı výsledk̊u a přesnosti. Kromě toho bylo k řešeńı
trend̊u a vzorc̊u v datech použito několik statistických algoritmů a model̊u a
algoritmů strojového učeńı. Dále poskytujeme statistickou analýzu pomoćı
r̊uzných metodologíı k identifikaci vzorc̊u provozu, indikaci výkonu śıtě
a kvality služeb. Kromě toho jsme navrhli chováńı, detekci a predikci
anomálíı, které pomáhaj́ı provozovatel̊um śıt́ı porozumět a předv́ıdat takové
chováńı śıtě. Všechny tyto studie byly vyhodnoceny a posouzeny pomoćı
několika výkonnostńıch metrik a parametr̊u.

Kĺıčová slova : dolováńı dat, strojové učeńı, záznam podrobnost́ı o
hovoru, předpověď srážek, mobilńı śı̌t, statistické modely, identifikace vzor̊u,
prediktivńı analytika.
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Chapter 1

Introduction

1.1 Thesis overview

The interaction between data and Artificial Intelligence (AI) provides the in-
frastructure of the most sophisticated systems nowadays. AI builds models
through machine learning using the generated data from the systems. Ma-
chine learning is considered a subset of AI that requires often large amounts
of data to accurately identify patterns, make predictions, and continuously
refine the models. The quality and quantity of the data directly impact the
effectiveness of machine learning applications. This symbiotic relationship is
often referred to as the ”training” phase, where a model learns from historical
data to make predictions on new, unseen data. The combination of data and
machine learning has transformative implications across various industries.
From predictive analytics in finance, mobile networks or meteorological data
to image recognition in healthcare, these technologies are revolutionizing how
organizations extract insights, automate decision-making processes, and en-
hance overall efficiency. In a nutshell, data are the lifeblood that fuel machine
learning algorithms, and machine learning is the engine that extracts mean-
ingful insights and knowledge from the vast sea of data. Together, they form
the backbone of contemporary artificial intelligence applications, driving in-
novation and advancement in numerous fields. The major contribution to my
data comes from mobile networks along with the other types of datasets such
as precipitation, population, distance, etc. I introduce and explain briefly the
environment/structure of each contribution in my study in the followings:

2



1.1.1 Mobile Networks

Mobile networks, also known as cellular networks, are a crucial part of mod-
ern telecommunications systems that allow mobile devices, such as smart-
phones and tablets, to communicate wirelessly with one another and access
various services. These networks provide the infrastructure for voice and
data communication over long distances, through base stations. Neverthe-
less, communication can be held internationally either using satellite systems
or optical fiber (transoceanic or underground cabling).

Mobile networks consist of various elements, including switching centers
denoted as core network, air interface or access system, and data centers
(Fig. 1.1 shows a simple mobile network architecture) [1]. These elements
work together to route calls and data between users and services. These
calls are recorded and stored as CDR in the CDR database that is located at
the core network. For any call establishment, management, and clearing, a
signaling is exchanged among the network elements. The signaling is respon-
sible for controlling calls, managing the network, monitoring the performance
and network status, network services, etc. [2].

Figure 1.1: International voice call flow through a carrier network.

Mobile networks use specific radio frequency bands allocated by regula-
tory authorities. Different frequency bands are used for various purposes,
such as voice communication (1G, 2G, 3G), and data in case of Long-Term
Evolution (LTE), 4G, 5G, and more. This technology has evolved through
generations offering improvements in speed, capacity, capabilities and fea-
tures. Common mobile network generations include 2G (second generation),

3



3G (third generation), 4G (fourth generation), and 5G (fifth generation) [3].
Each generation has different features and specifications and 5G is the latest
generation deployed with higher capabilities in terms of bandwidth, user mo-
bility, data transfer (upload, download), better performance, etc. (Fig. 1.2
shows the evolution of mobile networks).

Figure 1.2: Evolution of mobile networks.

1.1.2 Machine Learning

Machine learning is a subset of artificial intelligence that focuses on devel-
oping algorithms and models that enable computers to learn from data and
improve their performance on a specific task over time. One of the major
advantages of machine learning is that it grows better and improves with ex-
perience [4]. Machine learning is generally a common tool to use to conduct
data mining, pattern identification and predictive analytics.

Data mining is introduced as a result of the natural evolution of informa-
tion technology. It is the process of discovering and extracting knowledge out
of large amounts of data [5]. The data source is usually one of the most im-
portant parts in data mining as it provides a full understanding of the data.
In general, we might be in need to combine multiple data sources to fortify
a goal. First, the data should be cleaned from irrelevant and inconsistent
arrays as it is illustrated in Fig. 1.3 that shows the process of mining useful
information from mobile networks data along with other sources of data.
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Figure 1.3: Data Mining Process.

The selection of data is made based on the objectives of mining. Then
the data are transformed and merged into appropriate formulae for mining,
which is a crucial step for retrieving the required data patterns. Such patterns
in my study are later used to optimize the system and other data sources.
Once the data optimization is done to find anomalies and ready for prediction
and forecasting, further work is done like patterns identification, predictive
analytics or predictions from the analyzed data.

We often talk about patterns when it comes to mining data or employing
machine learning, but we probably know a simple definition of it. Patterns
can be found everywhere and in every aspect around the globe. Beginning
with the patterns on our clothes, through maps, streets, buildings, products
to technologies. However, the usual question that comes up is, what does
pattern mean? Almost comprises everything or anything, and how the tech-
nology is implementing it for everyday use? The answer is quite simple for
those who think of a long and complicated answer. Somehow back when we
were kids used to receive tasks with identifying a sequence of numbers or to
join dots to complete a figure. The expected figure or sequence of numbers
to complete the task is the pattern identification in machine learning.

The process or method in identifying a trend or regularities in data using
machine learning algorithms is called pattern identification or recognition
[6]. These patterns can be recognized mathematically or empirically using
the proper tools like algorithms. The major three components of identify-

5



ing any pattern come to feature extraction, classification, and clustering [7].
Feature extraction is about extracting useful information out of raw data like
specific attributes or characters in the raw data for certain tasks or objec-
tives. Classification or supervised learning with labeled dataset is the process
to classify elements into various categories. It divides the data into training
set and test set, using the training set to teach the model and the test set
to examine the model. In return, clustering is a method to group items in
a dataset with similar traits. On the other hand, predictive analytics is the
process of using past and present data to forecast futuristic values and out-
comes. That includes data analysis, statistical models, artificial intelligence
and machine learning to explore patterns and identify correlations for future
behavior predictions.

Figure 1.4: Machine Learning types.

Machine learning applications are categorized into four major groups
(Fig. 1.4 shows examples for each category) [8]:

1. Supervised learning - it is a task of learning, which maps an input to
an output with data being labeled and expected output. Classification
and regression are considered supervised learning problems.

2. Unsupervised learning – includes algorithms that come with finding
the relationship between the input and output from unlabeled datasets
and no supervision. Clustering is one of the examples of unsupervised
learning.
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3. Semi-supervised learning – it is a combination of supervised and unsu-
pervised learning. This technique uses a small amount of labeled data
and plenty of unlabeled data for predictive model training. It is about
merging clustering and classification algorithms.

4. Reinforcement Learning – it is about finding the optimal behavior in
an environment to achieve the maximum reward. It is like having an
agent trained based on reward and punishment strategies.

1.1.3 Data Structure

Data refers to a collection of individual facts, statistics, or information that
can be in various forms, such as numbers, text, images, sounds, or any other
representations of facts or ideas. The singular form of data is called da-
tum. In general, data are raw and unprocessed and typically lacks context or
meaning on its own. It becomes valuable when it is collected, organized, and
analyzed to derive insights and make informed decisions. Data are generated
every day from various sources and systems such as mobile networks, sensors,
meteorological systems, satellites, finance, etc. (see Fig. 1.5).

Figure 1.5: Types of data.

There are two main types of data:

1. Structured Data: This type of data is highly organized and typically fits
into predefined formats [9]. Structured data is often found in databases,
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spreadsheets, and tables. Examples include numerical values, dates,
and categorical data. It’s easy to process and analyze, making it suit-
able for many data science and analysis tasks.

2. Unstructured Data: Unstructured data lacks a specific format or struc-
ture [10]. It can be textual, such as emails, social media posts, or
documents, as well as non-textual, including images, videos, and au-
dio recordings. Unstructured data requires more advanced techniques,
like natural language processing (NLP) and computer vision, to ex-
tract meaningful information from it. In my thesis, the majority of the
research is using unstructured data or about 90%.

Data are the foundation of many fields, including data science, analyt-
ics, and business intelligence. They play a crucial role in decision-making,
research, and problem-solving across various industries. The process of col-
lecting, cleaning, analyzing, and interpreting data is essential to turn raw
data into actionable insights and knowledge.

In this thesis, there are several types and sources of datasets being used.
However, they needed to be collected, prepared and preprocessed. Beside the
mobile networks data (both traffic and signaling), there are other data types
used in my study such as population of countries, distance among countries,
great circle distance, rainfall, areas and centroids of countries:

• Population data: They refer to information and statistics related to a
specific group of people living in a particular geographic area or coun-
try. The data that have been collected per each country are back to
2016. Population data is vital for various fields, including demography,
sociology, economics, public policy, healthcare, and urban planning,
as it helps researchers, policymakers, and businesses make informed
decisions and understand the dynamics of a population.

• Great-circle distance: It is also known as the orthodromic distance, is
the shortest distance between two points on the surface of a sphere [11].
It is most commonly used to measure distances on the Earth’s surface,
as the Earth is approximately spherical in shape (see Fig. 1.6). The
great-circle distance is determined along with the arc of the great circle
that connects the two points, rather than along with a straight line,
because the Earth’s surface is curved. I use the haversine formula that
takes into account the latitude and longitude coordinates of the two
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points and calculates the arc length of the circle that connects them
on the sphere’s surface [12]. I use great-circle distance to measure the
distance between one reference point/country to the rest of countries
around the globe.

Figure 1.6: Great-circle distance.

• Centroid of countries: A centroid is a geometric concept that represents
the center or the mean of a set of points, whether in a two-dimensional
or three-dimensional space. The countries around the globe are geo-
graphically and geometrically in irregular shapes. This leads to a chal-
lenge when it comes to calculating the distance between two countries
since any point taken on the area of a country would make a difference
in distance calculation. However, I use centroids of countries to over-
come this obstacle (see Fig. 1.7). The centroid is calculated using First
Moment Integral, which is a mathematical approach to calculate the
coordinates of the centroid or center of mass of that shape [13].

• Rainfall data: It is the amount of precipitation, specifically rain, that
falls over a particular area during a specified period of time measured in
(mm). It is an essential component of weather and climate data that
plays a crucial role in various fields, such as meteorology, hydrology,
agriculture, environmental science, and urban planning. Rainfall data
provide insights into precipitation patterns, helps in monitoring and
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Figure 1.7: Centroid.

predicting weather conditions, and supports in decision-making in a
wide range of applications.

Figure 1.8: Rainfall data from the rain gauges.

Rainfall data are collected using instruments called rain gauges, which
can be of various types, including standard rain gauges, tipping bucket
rain gauges, and radar systems. There are many research centers that
distribute rain gauges over a specific region or location to measure the
amount of rain and use the accumulated data to forecast the weather as
shown in Fig. 3.9 from one of my studies on rainfall forecasting using
pluviometer/rain gauges. However, there are additional parameters
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along with the rain gauges that can be utilized to make the prediction
more accurate such as clouds using image recognition, temperature,
wind speed and direction, humidity, etc.

1.2 Motivation

Over the last few decades, data have gradually increased in volume, value,
variety, velocity, and veracity. In return, management and preprocessing
of big data became more challenging and tough to deal with. Besides, it is
quite crucial and vital to provide complex and comprehensive analytics in this
complicated world. Nonetheless, data analytics is often a complex process
to uncover knowledge like hidden patterns, correlations, market trends and
customer preferences. More importantly, studying the environment of the
data source may help in providing results with higher accuracy and efficiency.

Uncovering hidden patterns often necessitates an understanding of the
object behavior. However, meticulously selecting the appropriate statistical
algorithms and predictive models for a specific study case demands significant
effort and time.

The process of achieving accurate predictive analytics to forecast future
outcomes needs reliable and trustworthy data sources along with statistical
algorithms and machine learning techniques. In addition, it is essential to
choose the algorithms and models based on several performance and evalua-
tion parameters. Every significant study initially provides a concrete analysis
of the available datasets before employing the models. However, many times
authors ignore theoretical approaches and deep analysis, which makes huge
difference in understanding data structure and thus affecting the final con-
clusions.

There are three major difficulties/problems that can affect any study.
Firstly, the availability of the data since many data sources nowadays tend
to be inaccessible for privacy reasons that firms and companies hide from
the public. The second problem is the size of the available data as less data
mean less accurate studies, and finally the number of attributes that the data
provide sometimes lead to poor analysis, prediction and modeling.

Data can consist of a lot of outliers and trivial information in any system
that might mislead the researchers. In contrast, anomaly detection can be
part of the objective since it is about certain conditions that occur due to
specific events and generally do not correspond to a well-defined notion of
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normal behavior. Therefore, it is important to differentiate between a trivial
outlier and an anomaly that occurs due to an event. It is quite crucial to
detect such anomalies in a trice since they have negative impacts on the
system. There are several available techniques to handle such anomalies in
terms of detection and prediction, but it is necessary to understand and study
first the normal profile and image of the system.

1.3 Aim of the thesis

My thesis deals with pattern identification from several sources of data and
providing predictive analytics. The main part of the thesis focuses on mobile
networks data with the latest network generation deployment. The aim is to
identify the user mobility and behavior in the network to detect and predict
the anomalies. With the population growth followed by network expansion
and development to contain the needs of users, more data are generated
at enormous speed. That makes understanding and identifying the normal
pattern in any data hard and challenging, more importantly, to detect and
predict anomalies, especially with several data sources combined. Thus, one
of the aims is to build and develop models to extinguish a normal behavior
first and then be able to detect and predict abnormal events. My thesis can
be summarized but not limited to the following contributions:

1. Statistical analysis and deep understanding of voice traffic profiles in
mobile networks.

2. Dependency between distance and voice traffic in international voice
traffic.

3. Influence of neighboring countries on wholesale voice termination.

4. Impacts of other related data sources combined with mobile networks
data.

5. Queuing theory approach on call arrivals and voice traffic distribution.

6. Empirical and mathematical study of interarrival, service and waiting
time.

7. Modeling voice traffic profiles to identify user patterns in mobile net-
works.
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8. Building models for peak hours and call duration profiles identification.

9. Building four models for anomaly detection and prediction.

10. Time series models used for weather forecasting and influence of his-
torical data.

1.4 Organization of the thesis

This section describes the organization of the thesis.
Chapter 2 – State of the art provides an insight into the recent studies

that have been published in the area of the thesis. I deliver a comprehen-
sive overview of the challenges and limitations along the methodologies and
approaches being used. In section 2.1, I discuss the aims of exploitation of
mobile network data. Section 2.2 describes the available techniques for data
analytics and the present frameworks for data preprocessing. Then, I depict
the data characteristics and their applications in section 2.3. I present in
section 2.4 the current status of the use of machine learning algorithms and
models. The chapter concludes the discussion with time series data forecast-
ing in section 2.5.

Chapter 3 – The data are presented in this chapter including the structure
and preprocessing. I start with CDR data and the call flow description,
followed by signaling data and the use of population data of the globe for
each country. Then, I present distance and centroid data along with the
Great-Circle Distance formulas. The last section describes the rainfall data
and the structure of the sensors and their locations.

Chapter 4 – Consists of the CDR data analysis of local and international
voice traffic, the influence of the neighboring countries, voice traffic patterns
per date and time, the changes during the weekends, weekdays and holi-
days that can have impact on overall traffic. Moreover, the CDR data are
used proportionately with their corresponding country population around
the globe, and the distance between the reference country and the rest of the
world based on centroid of countries utilizing great-circle distance.

Chapter 5 – Proposes a theoretical and practical framework of queueing
theory based on the signaling and voice traffic data. The influence of Poisson
and Exponential distributions on the traffic characteristics. In addition, the
characteristics of interarrival, waiting and service time are explained theo-
retically as well as empirically.
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Chapter 6 – Focuses on using machine learning algorithms and models
for pattern identification, anomaly detection and prediction. I use linear re-
gression function, statistical visualization, Gaussian Mixture Models (GMM)
and Mean Shift (MS) clustering to understand behavior of users in the mo-
bile network, then I employ Z-score, Isolation Forest, K-means and Density-
Based Spatial Clustering of Applications with Noise (DBSCAN) algorithms.
I evaluate each of these algorithms via several performance metrics.

Chapter 7 – Presents a multi-sensory precipitation forecast study through
three time series forecasting algorithms. The research studies the rainfall
prediction based on historical data from 2009-2021. However, I propose also
that 67 percent of the sensors deployed can still deliver similar accuracy in
results and performance by relocating and redistributing.

Chapter 8 – Concludes and summarizes the thesis along the research
contribution and future works.
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Chapter 2

The state of the art

This chapter depicts the current and latest works being presented in this field
as well as the limits and challenges. I go through the existing and relevant
research topics published. Furthermore, I discuss their structures, the ar-
chitecture, and the conceptual framework such as the methodology that has
been used along with their objectives and capabilities. I aim here to synthe-
size the research, not summarize it. In general, finding useful information
and trends in the data needs analysis and modeling according to the area
of study. Thus, the majority of the works have data involvement to serve a
certain aim or goal using machine learning algorithms and models.

2.1 Mobile Networks

Recently, there have been done a lot of works in the area of exploitation
of mobile networks data for different purposes. That may include network
optimization or network statistics, whether the data generated via the core
network or the air interface/radio access network. However, there is a good
use of user data through the generated data from the smartphones for mea-
surements to allocate radio resources and to adapt parameters of radio link
[14], to estimate the location of users using specific tools [15] or certain in-
vestigation analysis like crime records investigation [16].

Each network component is responsible of certain tasks, and in return,
huge amounts of data generated whether concerning data/voice traffic data
such as CDR, real-time statistical reports, monitoring systems or signaling
information for various services to have the network works as one entity
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(Fig. 2.1 illustrates the components of the mobile networks with the latest
network generations deployment) [17].

Figure 2.1: Mobile network services.

Analyzing such data either through using various tools or machine learn-
ing models [18][19], is crucial to define many profile categories such as user
behaviors through voice calls and data usage for different date and time
profiles.

In contrast, the system needs to be evaluated regarding reliability, sur-
vivability and quality of service, thus it is essential to classify the network
usability rate profiles [20] and introduce characteristics of mobile network
behavior. The longer the period is covered in the data, the more accurate
results are achieved. Though, there are usually big chunks of useless lines
coming with every collected data. Thus, there are new techniques and strate-
gies introduced every year to reduce the amount of data through filtering out
trivial information and cleaning the data from unwanted/undesired data [21].
These techniques and strategies are based on either software tools, machine
learning models, or network built-in applications.

2.2 Data analytics and insights

In the last decade, the role of data for different sorts of purposes is gradu-
ally increasing. They are mainly implemented to analyze and optimize the
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network performance (internet data, user data, radio access, core networks,
charging and billing systems, etc.), or to evaluate the impacts of implemented
company policies. Nevertheless, authors often present a framework first to
process large and complex raw CDR datasets [22]. The suggested framework
is then applied to efficiently manage raw data to help improve communication
service provider data management and processing.

There are systems, which are built to analyze mobile network metadata.
For instance, exerting CDR data and Internet Protocol Detail Records to de-
tect potential criminal activities over end-to-end encryption messaging such
as WhatsApp, Facebook messenger, etc. [23]. In return, the data cleaning
process would be one of the essential steps for this sort of analysis, espe-
cially for large datasets. One of the works includes 2.5 million CDRs to filter
anomalies is proposed in [24]. The proposal uses social network analysis to
analyze behaviors and relationships between customers through their call-
ing profiles. It is also possible to utilize Hadoop based mobile big data [25]
processing platform to find out user mobility behaviors.

The analyzed data usually can go up to hundreds of gigabytes in size.
There are times a network can be partially analyzed including only a spe-
cific region or location, especially in large, populated areas. This can help
to improve, evaluate or analyze the network performance or diagnose for a
particular issue only affecting certain areas, like a study was recently pre-
sented [26] based on CDR dataset of 27604 mobile network base stations
from 75 zones in Beijing. The research proposes the use of CDR data for
traffic distribution and location update analysis. Likewise, there is also the
possibility to concentrate only on a particular group or class of subscribers
to study their profiles, behaviors and activities in the network [27]. Further-
more, there are developed schemes to store CDRs in a data warehouse and
process them to categorize user profiles to understand customers’ behaviors
according to marketing offers (i.e.: offering special rates, deals, bonus, etc.)
per a region or location. That can include also time patterns such as daily,
weekly [28] or monthly to identify human mobility based on classifications of
user profiles.

2.3 Data characteristics and applications

Data characteristics and their applications are main topics of interest nowa-
days in the data community. New technologies always lead to exponential
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growth of the amount of carried out data. There are many case studies
that have been recently presented such as queueing theory applications, data
characteristics and distribution including traffic load characteristics. In re-
cent years, there is use of the lognormal distribution of interarrival time and
service time with exponential distribution in the queueing system [29]. The
analysis shows the influence of the keep-alive mechanism on the queue pro-
cess. However, it is declared that the waiting time and the queue length
are shorter than what is proposed by 3rd Generation Partnership Project
organization (3GPP). In contrast, the discrete time Markovian chain model
based has shown promising results [30] to analyze Carrier Sensing Multiple
Access (CSMA) mechanism of MAC layer of IEEE 802.15.4 and investigate
the interarrival time distribution for network queue model and yet, to detect
anomalies in the network. On the other hand, traffic congestion model is one
of the case scenarios for computer network environment that can be classified
as one of the major queuing issues. There are researches being published [31]
using the continuous-time finite-state homogeneous bivariate Markov chain
to evaluate the performance of protocols and applications in a network. In
general, traffic congestion can occur due to random path delays and packet
losses. Similarly, the performance of mobile networks is also possible to be
analyzed and evaluated mathematically and numerically using Markov Mod-
ulated Poisson Process call arrivals (MMPP) [32]. In return, exponential
process model shows significant results for the traffic variance [33] based on
analytical expression to estimate the byte loss probability for a single server
queue system alongside multifractal traffic arrival.

The problem of modelling voice traffic in mobile networks, considering
inter-arrival time and holding time characteristics is usually addressed [34]
through defining a mathematical model that complied with experimental
data provided by a mobile operator. In contrast, there are cases of using
the queuing theory to design a model simulating the Internet Protocol (IP)
Multimedia Subsystem (IMS) service, including the Voice over IP (VoIP)
[35]. In general, the developed model includes a single server following the
Poisson distribution of arrivals and the exponential distribution of service
time. Conversely, it is possible to provide a scheme to transmit a message by
means of a queue timing channel [36]. The message is encoded in a sequence
of additional delays in service time. However, Poisson distribution shows
better QoS when it comes to base stations in mobile networks [37]. This
is normally done through evaluating a natural class of typical-user service
characteristics (including path-loss, interference, signal-to-interference ratio,
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spectral efficiency). The challenges that researchers usually face is when
it comes to traffic characteristics of mobile networks with big data. There
are several applications and models for that purpose to help overcome such
difficulties. Of course, there are also improved models to handle large data in
mobile networks, such as Zipf-like model for large data use [38] to characterize
the distributions of traffic, subscribers, and requests among service providers.

2.4 Use of machine learning models

The significance of data and exploitation of inside parameters lies in its role
as a key to better optimizing and dimensioning systems. In recent years,
there have been many articles published on the use of data to resolve many
problems and enhance performance as well as the quality of service. In
mobile networks, the need to understand the user behavior in the network is
essential for better network accessibility and usability. Many algorithms and
models have been offered to improve the network functionality and plans for
future expansions and challenges. However, big data in mobile networks is
still one of the challenges that need powerful tools and models for analysis
and extracting meaningful insights.

I have seen previously gradual increase in employing K-means hierarchical
clustering for anomaly detection in the mobile network [39]. The proposed
idea is to train the data with and without anomalies in the network. How-
ever, it is a hard and long procedure to isolate anomalies, especially in the
case of large data. Furthermore, K-means is not among the most efficient
algorithms to handle outliers in big data as the algorithm needs a lot of en-
hancement before being utilized. Similarly, studies [40][41] aim generative
adversarial networks (GAN) with long short-term memory (LSTM) neural
networks to shape an anomaly detection framework and K-means to authenti-
cate and verify the anomalies with Autoregressive integrated moving average
(ARIMA) respectively. The framework utilizes the original dataset without
changing the distribution of the data while correlating the user activities and
data expansion.

The ability to process big data in real-time is a challenge in terms of vol-
ume and velocity, which makes it problematic for many algorithms to handle
the characteristics of the data properly. Though, LSTM shows in many cases
study promising results. Furthermore, Convolutional Neural Network (CNN)
model has shown promising results to outline the anomalous data, which is
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also an encouraging model for outliers detection and prediction. There is a
study [42] lately published based on 100 base stations in the mobile network
to provide a framework of a multi-label vector identifying anomalous cell
output. The experiment is regionally based to focus on users that might lead
to a loss of revenue. One of my studies also deals with anomalies but on a
larger scale and for a longer period of time. I similarly suggest that most
of the anomalies in the network have reasons. Hence, they might be rather
periodic than a one-time occurrence.

Many researchers in recent years have used CDR data to analyze and
detect fraudulence in mobile networks. For instance, there is an ideal solution
to use Latent Dirichlet Allocation (LDA) to outline users and Maximum
Mean Discrepancy (MMD) to assess the distribution of samples to fit roaming
fraudsters [43]. According to the results, the proposal appears encouraging,
would’ve been interesting to see the results on a larger scale over a longer
period of time though. Nevertheless, validation of the accuracy with different
time periods is important since it deals with a very sensitive topic.

In general, mobile networks data can be categorized into user and network-
oriented. There are several ways to do so, such as employing Erlang mea-
surement with CDR data to analyze the behavior of base stations during a
certain time [44]. One of studies proposes the K-means algorithm to separate
daily patterns. This study shows impressive results to understand the influ-
ence of nighttime traffic. However, the extension of this study to use other
network generations would be remarkable since it is done using only Global
System for Mobile Communications (GSM) networks.

Lately, with the growth of population and advances in mobile networks
technology, enormous amount of data are being generated on a daily basis,
especially in large cities that can reach several million CDRs within a couple
of weeks. For example, an enormous amount of data consisting of 800 million
CDR records have been studied in [45] to identify 12 weeks profile. The
study aims to analyze the geographical profiles of territories. The idea is
important for public transportation in addition to urban planning. However,
this might be good for short-term mobility rather than long-term. The result
can drastically vary for the long-term period as this is a case of user mobility,
which I see higher accuracy over a long period of time. With the latest
network generation of 5G, authors in [46] introduce the Pseudo Code of
Orthogonal Subspace Projection algorithm based on CDR data to minimize
the complexity of the classification algorithm, which is needed to obtain key
information about network use analysis such as detecting network anomalies,
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human mobility, or network activities.
The CDR record generally offers several attributes, but only certain at-

tributes might be used more frequently based on the needs of the study. In
addition, certain models and algorithms can be seen more frequently uti-
lized. Sometimes, this leads to similar results that might not necessarily be
required as it is already considered a duplicate. In [47] input-output hid-
den Markov models (HMM) to understand travelers’ activity patterns were
developed from CDR data. The research is done in the San Francisco Bay
area. According to the study, the model is applied to the data collected
from a network carrier that serves millions of users. The results come from
different locational data sources. The advantage of using HMM is to resolve
several internal states that are hard to observe, which makes it an optimal
approach to use. Yet, validating with three different locational data sources
can lead to high accuracy results, but may not be quite practical as all those
sources are not always available. In contrast, there are studies applying CDR
data for minimizing energy consumption and increased inter-cell interference
(ICI) caused by densification in ultra-dense 5G networks [48]. The notion
is to develop a scheme to proactively schedule radio resources and small cell
sleep cycles producing substantial energy savings and thus reduced ICI. This
is achieved without conceding the quality of service. Although the scheme
needs regular supervision and updates, the results can be promising and
provide outstanding performance in terms of saving energy.

In recent years, there has been growth in the usage of mobile data, espe-
cially user-oriented data like CDR for various usages [49][50]. Each study has
enhanced the network performance, availability, and quality of experience at
certain locations and times or within the entire network for the long term.
The available Machine Learning models and algorithms nowadays with access
to thousands of sources online made it easier for researchers and enthusiasts
to achieve their objectives. In return, I introduce a new approach to detect
network congestion and anomalies. A multi-algorithm approach where each
algorithm targets a specific area of the data and groups the outcome of the
algorithm as a model. I aim to use GMM and Mean Shift clustering to study
voice traffic patterns and user behavior in the network based on CDR data,
and then use Z-score, Isolation Forest and DBSCAN to detect and predict
anomalies in the network using 37 million of one-year CDR data.
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2.5 Time series data forecasting

Time series data study provides crucial insights about economy, marketing,
traffic pattern analysis, stock market, weather forecast such as rainfall. I
focus in one of my studies on rainfall forecasting since it is essential to study
the flood and drought conditions monitoring, landslide activities, soil mois-
ture conditions, and freshwater availability, especially with the latest trends
in global warming and climate shifts. Yet, rainfall has a huge impact on wa-
ter supply reservoirs, underground water, crops, and farms. Therefore, there
have been always many articles in the past years about rainfall data analysis
and forecasting using different models and techniques. In return, machine
learning models made handling the forecasting of rainfall data easier. How-
ever, accuracy has always been one of the hardest targets to achieve. Thus,
understanding and analyzing the quality of these models are very important
to ensure they fit into the objectives with least errors, higher accuracy, and
best performance. Another important factor, or might be the most impor-
tant, is the quality and the quantity of the data as the model relies strongly
on the data to provide forecasting.

The rainfall data depends often on the type of the rain gauge that has
been deployed. In addition, the amount of rainfall collected by the rain gauge
influences the measurement that has been done. Tipping bucket rain gauges
that include radar stations have been indicated as one of the most used rain
gauges around the globe [51] since it is very straight forward device, quite
practical and easy to use.

Various studies engage different models. As stated, it is always better to
have more than one model handy for more accurate results achievement, ei-
ther for comparison or to build a robust model. In the last few decades, many
models have been proposed and built to provide more robust and reliable re-
sults. For rainfall data forecasting, there are many models that have proven
to provide consistency over longer period of time forecasting with low error
values and high direction accuracy and correlation such as M5P [52]. In con-
trast, a shorter period of time rainfall forecast can be achieved using several
available models like using Moving Average (MA) utilizing Evolving Neural
Network (ENN), support vector machine, Fuzzy system based on Genetic
Algorithm (GA) and hybrid climate learning model (HCLM) [53][54][55].
Nevertheless, Artificial Neural Networks (ANN) such as Support Vector Re-
gression (SVR), Decision Tree (DT), Random Forest Algorithm (RFA), and
LSTM models have also shown impressive results for rainfall data forecasting
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as shown in Fig. 2.2 illustrating how specific algorithms work [56][57][58].

Figure 2.2: Different algorithms comparison.

In recent years, the complexity of the data and extension in the number of
parameters included in building the models have led to model improvements.
It is the same model but modified in order to fit into the study or research
like an improved Radial Basis Function Neural Network (RBFNN) [59] model
to realize the match of the weather radar data and the rain gauge data in
time.

On the other hand, there is increase of open-source algorithms in the
last decade since they are freely available for use and show quite substantial
performance in modeling time series data including univariate data such as
the Prophet model by Facebook [60]. Numerous studies nowadays propose
the Prophet model due to its high reliability, efficiency, and accuracy.

The Prophet model shows considerable results in terms of low Mean For-
ward Error (MFE) and shorter time needed to be executed. It can handle
missing values and outliers as well as seasonality and holiday effects since
it is easily tunable. In contrast, Seasonal Auto-Regressive Integrated Mov-
ing Average (SARIMA) model is still one of the oldest and most reliable
time series forecasting models. It is one of the major and well-known models
that has been used for almost a century to forecast the amount of rain-
fall. However, the data must be stationary, and the model is selected based
on the Autocorrelation function (ACF) and Partial Autocorrelation function
(PACF). This model does a great job in time series forecasting and with high
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accuracy outcomes including the research which developed the model before
implementing [61][62].

The time series models usually go through certain metric performance
evaluation based on their needs. There are plenty of metrics available to
value the efficiency of the model and provide crucial results to approve the
validity of the model whether it is good to employ or not. Many studies have
used root-mean-square error (RMSE), lower Mean Absolute Percent Error
(MAPE), Mean Forecast Error (MFE) and Mean Absolute Error (MAE) to
enhance the accuracy of the results in their models [63][64].
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Chapter 3

Data description and
preprocessing

3.1 Call Detail Record

3.1.1 Introduction

A CDR is a type of data record that is generated by the mobile networks
to file call scenario details [65]. These records are parsed and stored in the
core network of mobile networks, mainly in the CDR database server (see
the architecture of mobile networks and CDR database store in Fig. 3.1).

The metadata in CDRs include various attributes such as call date/time,
call direction, duration, location, calling and called party numbers, etc.

There are many other attributes that can be perceived in a single call
CDR. Each one of them may contribute to a specific study or analysis. These
attributes are crucial for network evaluation, efficiency, performance studies,
and providing robust statistical analysis. CDR data can also be a strong
indicator in defining the dimensions and service availability in mobile net-
works.
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Figure 3.1: Mobile network architecture.

CDR record is mainly written to a flat file (text file) in the mobile core
network for every call scenario before being stored in the database. These
specialized databases usually store enormous amounts of CDR data every
day. In general, there are two different forms of storing such data for each
voice call established as well as attempts in the database:

1. Text-based data, which consist of several lines at the time of the voice
call being recorded. Every line specifies the call status, including rel-
evant attributes and information. Additionally, the line states when a
call starts with call setup timestamp until the call is released in case of
a successful call attempt.

2. CDR file that holds hundreds of entire voice call scenario records (text-
based data). This file is commonly created every 15 minutes by default
and stored in the database or depends on the system configuration.

CDR data are typically represented through attributes and terminologies
(i.e. Session Initiation Protocol (SIP), Time Division Multiplexing (TDM),
etc.) that detail call scenario steps and their status. TDM has been the
traditional and the most common type of voice infrastructure for a very
long time. However, SIP has taken over this classic voice calls establishment
nowadays, and it is used by the latest technologies in mobile networks such
as VoLTE (voice over 4G/LTE), Vo5G (voice over 5G), and Rich Commu-
nication Services (RCS). SIP is a signaling protocol for controlling commu-
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nication sessions (initiating, maintaining, and terminating) as in VoIP voice
calls including voice, video and messaging applications. SIP is based on
request/response transactions, in a similar manner to the Hypertext Trans-
fer Protocol (HTTP)[66]. Each transaction consists of a SIP request (one
of several request methods), and with at least one response. These re-
quest/response codes are identifying the status of the call, and they are
specified as follows [67]:

• 1xx - Provisional of information, such as status 100 Trying, 180 Ringing
or 181 Call is Being Forwarded.

• 2xx – Success, the most common response is 200 OK that indicates the
request was successful.

• 3xx – Redirection, it informs the requesting client that further measures
are demanded.

• 4xx - Client error, which means the request contains bad syntax or
cannot be fulfilled.

• 5xx - Server error, it states that the server failed to fulfill an apparently
valid request.

• 6xx - Global failure, it indicates the destination does not wish to par-
ticipate in the call.

3.1.2 Call Flow Process

The scenario is generally similar for an international as for a local phone call.
Fig. 3.2 illustrates a SIP phone call scenario. A completed process of a call,
starting from the Connecting status to the End of Call status, is declared
as a successful call. A call is established through a SoftSwitch (SSW) in my
study. The SSW is basically a computer specialized software, representing
the IMS part in the core network, i.e., the switching system element in the
network. The SSW typically handles the call processing control and call
routing using SIP protocol [68]. Among others, it also converts a voice bit
stream into packets and recto-verso.
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Figure 3.2: A successful voice call flow.

At the initial stage, a Calling party (A party) sends an INVITE message
to a Called party (B party) through the network. The INVITE message
initializes the Connecting status of the call, which means that the A party is
trying to setup a connection and reaching the B party.

In the next phase, the SSW creates an incoming call-leg (in other words an
incoming channel) for the A party and tries to find out a route that would
interconnect the A and B parties. Afterwards, Media Gateway (MGW)
inside the SSW is activated and it begins to handle the SIP call and creates
an outgoing call-leg for the B party.

A channel for both A and B parties is assigned, and both incoming call-
leg and outgoing call-leg are specified, and identified in the system via a
unique ID [69].

As soon as the INVITE message reaches the B party, 18x ringing response
message (Alerting) is sent back to the SSW and to the A party. The SIP
18x message is usually sent to indicate the status of B party, either ringing,
additional information needed, or call is being forwarded. If the B party is
ready to accept the call, it sends back to the A party the 200 OK message to
establish the call [69]. Once the call connection is established, a Connected
status is assigned to both sides of the call. The created CDR file details the
whole call scenario (e.g., the time and date of call, the connection type: SIP
or TDM, the channel ID, etc.).

The call is terminated once the SSW receives another 200 OK message.
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As next, the BYE message and Disconnecting request status are issued to the
A and B parties by network. The call session is ended, and the Disconnected
status is regularly sent by network till the MGW is deactivated [70]. The call
session profile is successfully released if all aspects of the call are correctly
recorded in the CDR.

3.1.3 Data preprocessing

The exploitation of CDR data is done in the following steps until it is ready
for use to be implemented in the algorithms and then modeling (see Fig. 3.3):

Figure 3.3: Data preprocessing.

1. Data extraction and collection: I first extract the data and collect them
from the CDR database.

2. Profiling: I examine and review the quality of the data. I study the
content to identify the major attributes of my study.

3. Scrubbing and filtration: indicating and eradicating irrelevant, incon-
sistent, duplicate, and missing data.

4. Data reduction: this involves data cube aggregation, attributes subset
selection, numerosity, and dimensionality reduction.
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5. Data wrangling: at this point, the data is still unstructured, I need to
transform and convert it into a structured and valuable format.

6. Enrichment: I enhance the quality of my data with knowledge from
external sources. This also includes a preliminary understanding of the
geographical location of the study.

7. Validation: I divide the data into three sets; training data that are
used to train my models, validating set and testing data that I use to
help us find any flaws or weaknesses in the pool of my hypothesis and
assess the performance of the models.

8. Evaluation: this is to evaluate the models used to avoid overfitting and
achieve an unbiased estimation.

3.1.4 The CDR dataset in this thesis

In my research I use CDR datasets. The collected CDR data are generated
by the mobile network from July 2016 to June 2017. The CDR data are
stored in the CDR database server located at the core of the mobile network
as shown in Fig. 3.4.

Figure 3.4: CDR database server.

The total amount of investigated CDRs corresponds to over 39 million
phone calls of SIP and TDM voice calls. The file size stored in the database
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varies based on the number of calls recorded within 15 minutes that can go
up to a few hundred megabytes.

At the start, I extracted the information by transforming the raw data
into a dataset shown in Fig. 3.5. Next, data attributes are filtered out that
are appropriate for the study. Finally, the datasets are rearranged by adding
missing entries and dropping the unnecessary data. Many statistical analysis
approaches can be delivered such as (number of calls during working days
and weekends, morning, noon and evening comparison, mean and variance
of the calls on hourly, daily, monthly and yearly basis).

Figure 3.5: Research CDR data preprocessing.

The data processing is done by understanding the environment of the
business environment and users’ behaviors from the data that are given (see
Fig. 3.5, it shows how raw CDR data look like in the early stage). In the CDR
files, different parameters are given to provide the status of the phone call
scenario. I perform data observation and preparation to put them in the right
form for transformation. Once the data are transformed, the visualization
is done via using proper scales and graphs. Finally, the data are analyzed
according to the given parameters and business requirements.

Data selection and preparation steps are typically the most time-consuming
phases in data preprocessing. I have a vast pool of attributes in the dataset.
The only attributes that lead to the required goals and knowledge have to
be adequately selected.

In addition, there are many attributes and terminologies per every line
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that have to be jointly interconnected with attributes and terminologies in
other lines. Furthermore, missing, inconsistent or erroneous records in an
analyzed dataset are typically other issues that I have to face while prepro-
cessing the data, and which take a lot of time to satisfyingly resolve them.

In real-world, there are many reasons why the stored raw data in a net-
work system can be incorrect, invalid, or certain attributes even missing (e.g.,
incorrect data recording, fraud calls, network misconfiguration, device mal-
functioning, etc.). Finally, the data have to be transformed into a structure
that is suitable for the final presentation and visualization, and then analysis
and modeling.

A decision tree model in my study is built to verify whether a phone call
session is a successful or an unsuccessful call (shown in Fig. 3.6). There are
several parameters in the CDR datasets that can define the accomplishment
of a phone call. For instance, the duration as well as the cause value of the
call are the keys to give the status of the phone call. The cause value is a
code, which is provided to state that the session either ended successfully or
not as described earlier in this chapter.

Figure 3.6: Decision tree model.
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3.2 Signaling data

Signaling is defined as the use of messages to control the communications
between network components. The signaling in the mobile networks are
responsible for:

• User connection and call establishment.

• Location services.

• Communication between the user and the network.

• User status in the network.

• Network elements status.

CDR data can contribute to providing signaling data as described in CDR
research data in the previous section for voice call establishment. The data
are collected through daily generated log files with several extensions, each log
file details certain data for a specific purpose. There are several parameters
in each log file that play a vital role in a variety of network analysis and
optimization. For such investigations, I exploit selected parameters such as
waiting, service and interarrival time. These three parameters are essential
to analyze the response of the network delivering services to its customers in
terms of voice traffic.

The waiting time represents the time period between the connecting and
the connection phase of call. It is usually the sum of ringing and network
call processing time. The ringing time period depends on several aspects
such as the calling party patience, the called party awareness of the call,
time zone difference, etc. On the other hand, the network time period goes
through different processing phases before connecting the two parties. It
also depends on how the two interconnected networks handle the call (e.g.,
system configuration, routing path, called party location area, etc.).

The service time is the total duration of the call. It refers generally to
the interval between the time period when the phone is picked up (connec-
tion time) and hung up (disconnection time). Finally, the interarrival time
is the time period between two consecutive call arrivals [71]. The average
time between two calls is a key indicator of the traffic amount between two
interconnected networks or users that is used for resource and/or network
dimensioning purposes.
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3.3 Population dataset

An important factor that should be taken into account when investigating
the voice traffic is the number of habitants per country.

Highly populated countries naturally generate more traffic than the lower
populated countries. For instance, a country of 1 million habitants with
10000 voice calls per time unit makes no difference in the voice traffic from a
country of 10 million population with 10000 voice calls per time unit. That
is, at first sight both countries would be seen similarly important from the
traffic point of view. However, by considering the difference in population of
both countries, the first one would be considered to have a higher number of
calls than the second one.

To avoid this population effect and to obtain relative values, I apply
normalization to the voice traffic according to the population datasets. The
population datasets of countries are in form of comma separated values and
have been collected and used from [72]. The source of population estimation
is based on the official website of the United Nation of 2016 to match with
the year of my CDR datasets. The coefficient of normalization for a country
j, denoted as c, is used to determine the number of calls per 103 inhabitants
and I calculate it as:

cj =
nj

pj
∗ k (3.1)

where the nj represents the total number of calls for the given coun-
try j per three-month period, pj indicates the population of country j, and
the parameter k = 103. In the equation, I propose k = 103 as more rea-
sonable results for both populations of countries and number of calls can
be obtained. For instance, k = 102 is relatively small for higher populated
countries, whereas k = 104 is relatively high for the least populated countries
in my analyzed dataset.

3.4 Distance and Centroid of countries

The distance among countries in favor of finding the dependency of voice
traffic on distance between two interconnected countries. It is an impor-
tant factor influencing voice traffic characteristics. Technically speaking, the
actual call routing path (number of routing points, distance between two
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routes, locations of routes, network media, etc.) defines the real distance
between two interconnected calls (see Fig. 3.7). However, such information
is hardly available. Therefore, to calculate theoretical distance between two
countries, I use the great-circle distance approach [73], which is specified as
the shortest distance between two points on the surface of a sphere.

Figure 3.7: Great-Circle Distance path.

When calculating distance between two countries, I encounter 3 main
issues: i) two reference location points have to be assigned ii) a country is
not represented as a point but a highly irregular polygon, and iii) the major
cities are sporadically located within countries, mainly in case of countries
with large areas. To overcome these issues, I consider the country centroid
as the reference point, i.e. I assume the distance between two countries to
be the distance among their centroids [74] (see Fig. 3.8).

Geographic coordinate system allows every single location to point on
earth to be defined by latitude (the north-south position of a location point on
the earth), resp. longitude (the east-west position of the same location point).
Geographical coordinates are exerted to measure the distance between two
countries.
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Figure 3.8: Mapping centroids of countries on spherical coordinates of earth.

To determine the great-circle distance between the centroids of origin, i
and the destination countries, j, the haversine formula is applied [75]:

aij = sin2(
∆φij

2
) + cosφi. cosφj. sin

2(
∆λij

2
) (3.2)

cij = 2. arctan 2(
√
aij,
√

(1 − aij) (3.3)

dij = R.cij (3.4)

where φ(λ) is the latitude (longitude) of country centroid, ∆ is the dif-
ference between φ and λ, and d is the distance between centroids. The earth
radius, R, is set to 6371 km [76].

Notice that the dij represents the theoretical distance between two coun-
tries i and j, as in the reality, the distance is given by the physical commu-
nication routing path.

3.5 Rainfall data

In meteorology, precipitation or rainfall is any outcome of the condensation
of atmospheric water vapor that falls from clouds due to gravitational pull.
There are several forms of precipitation include drizzle, rain, sleet, snow, hail,
etc.
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Figure 3.9: Sample of my rainfall data.

In my study, the rainfall data are provided by French public services from
18 pluviometers from 2009 to 2021 [77]. They are available to the public
either through (.json) or (.csv). I choose the .csv file, which is structured
in DateTime and pluviometer values. The dataset is a collection of two
components: rows and columns (a sample of the data is shown in Fig. 3.9).
Each row comprises one observation measured by a gauge per unit of time.

It is a conventional practice to split the data into two parts when I select
the models: training and test data. Training data aim to estimate forecasting
parameters and train the models for forecasting. Meanwhile, test data is used
to evaluate the accuracy and indicate how the model performs on new data.

The absence of a measurement due to a fault or technical problem causes
an empty or zero cell value. These zero values are removed while preprocess-
ing the data to avoid data averaging issues.

The rainfall data analysis and forecasting have a significant role in many
fields such as identifying potential flooding conditions, agricultural plans and
strategies.
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Figure 3.10: The spatial distribution of rain gauges.

Rainfall data are considered a matter of public safety and help the govern-
ments to track trends and forecast the climate. The data are measurements
of 18 rain gauges deployed in the Hauts-de-Seine region, the western part of
Paris, France (see Fig. 3.10).

This region is located at an elevation of 76.57 meters above sea level. It
has a marine west coast with a warm summer climate. Hauts-de-Seine has
a yearly temperature of around 11.7 centigrade, which is a bit higher than
France’s average temperature. This part of France annually receives around
641 mm of precipitation. Therefore, it is crucial to understand the irregular
and seasonal rainfall along with the amount that the region receives every
year.

The used rain gauge for the rainfall measurement is Pluviometer (see
Fig. 3.11) is a tipping bucket rain gauge with tilting speeds that tends to
record cumulative rainfall.
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Figure 3.11: The rain gauge sensor.

Each gauge consists of a small bucket with a receiving cone. When the
maximum capacity (0.2mm) of the bucket is reached, the pivot switches. The
lever counting system has a tipping point. The total number of switches is
then continuously transmitted by the acquisition and teletransmission equip-
ment connected to the pluviometer. The system, therefore, has an accuracy
of 0.2 mm [78].

The rain gauges are equipped with acquisition and teletransmission equip-
ment that continuously transmits collected data to satellite stations. The
data are transmitted from the satellite stations via ADSL (Asymmetric Dig-
ital Subscriber Line) to the central supervision in Suresnes, Paris. The system
consumes between 300 and 500 kWh (kilowatt hour) per year and most of
the electricity consumption comes from the electrical cabinet to which the
rain gauge is connected.

In Fig. 3.12, the matrix shows that all the rain gauges are in agreement.
On the left y-axis and x -axis, the rain gauges are represented. According
to the analysis, when it rains in one place in the Hauts-de-Seine, it tends to
rain everywhere in the region.
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Figure 3.12: Correlation among all rain gauges.

This information, therefore, allows to tell that it is not necessarily use-
ful to use many rain gauges in an area to know the overall rainfall in the
region. Furthermore, reallocating the rain gauges offers covering a broader
area to study. Hence, the reduction of the number of the current rain gauges
used along with redistribution still provides similar analysis and forecasting
results.
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Chapter 4

Analysis of CDR data

4.1 Introduction

The telecommunications industry is witnessing rapid growth in the mobile
network sector [79], driven by the adoption of advanced technologies, the
introduction of novel services, and the expanding user base. With a rising
number of subscribers and heightened engagement in activities like online
gaming, social networking, and video streaming, the volume of user and op-
erational data is experiencing exponential growth. Consequently, mobile op-
erators are facing increasingly intricate challenges in managing data storage
and processing [80].

Besides the storing/processing data issues, extracting useful information
and its proper interpretation represents another big challenge for operators.
That is why nowadays Telco companies dedicate a decent budget to hire data
analysts and specialists in this field, aiming to maximize the utility derived
from their data [81].

In this chapter, I deal with CDR data analysis. The definitions and details
of the CDR data were explained in the previous chapter. These operational
data have a crucial importance as they characterize connections in mobile
networks by providing metadata about these connections [82]. Every CDR
file contains information such as a phone call scenario (connection time, re-
lease time, duration, date, calling and called parties, etc.), information about
incoming and outgoing call-legs, and addresses of the switching systems at
both sides of connections or identification of the connection type.

A CDR is created for every single phone call ([80][82]), whether it’s a
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local or an international call. Providing details about an entire phone call
connection makes the call easily traceable, especially for the reason of network
statistics or system routine health check (drops, silent calls, etc.). I analyze
a short/long-term traffic evolution. The study focuses on international call
scenarios by analyzing CDRs of these calls in terms of daily, weekly, monthly
and yearly traffic profile. In addition, statistics of working and weekend days
per year are presented as well. Finally, I analyze the original and destination
countries of these calls and the total amount of traffic distribution among
these countries.

This sort of analysis is usually quite sensitive to the analyzed timestamp
as the investigated time frame should be carefully chosen based on the net-
work, and/or customers’ aspects. For instance, selecting an ordinary working
day versus weekends, holidays or a month with no holidays, events versus a
month with many holidays, etc.

Additionally, when analyzing and interpreting such data in telecommuni-
cation networks, there are usually terminology issues as various Telco compa-
nies, vendors and technologies apply different terminologies when presenting
their outcomes or products. Though, they all refer to the same meaning.
For instance, the terminologies used in 2G, 3G and 4G are different to the
terminologies used in a VoIP network [83], e.g., termination/origination vs.
incoming/outgoing, or using INVITE message in SIP vs. channel request in
TDM to setup a call.

The major contribution of this chapter can be summarized as followings:

• Analysis of CDR data per different periodical scenarios.

• Voice traffic distribution among the countries.

• Peak hours during the day and week.

• Cumulative Traffic Distribution function.

• Correlation between voice traffic to population and distance.

• Dependency between the volume of traffic and the destination countries
to the reference network.
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4.2 Analysis of voice traffic data

4.2.1 Daily voice traffic

This section describes obtained results. Fig. 4.1 shows a daily evolution of
outgoing call traffic. The daily profile analysis is done for four consecutive
Wednesdays in October (5, 12, 19, and 26. 10. 2016). I have selected
Wednesdays for the daily traffic analysis as it is a typical working day in
the middle of a working week; in the studied geographical region, and in
majority regions all over the world. Similarly, October also represents an
ordinary month, without any specific holidays or events.

Figure 4.1: Daily outgoing traffic (Wednesdays, October 2016).

The number of calls (y-axis) is counted on a minute basis, i.e. the number
of calls that begins in a given minute. If a call takes n minutes, the call is
counted only once, which is at the starting minute.

As can be observed, the traffic follows the daily human behavior and
activities. During the night and early morning, from 0:00 to 05:00, the users’
activities are very low, as the majority of people are sleeping, and therefore
the traffic is nearly zero. From 05:00, the traffic progressively starts to grow,
as people wake up and start their daily activities and routines, such as going
to work, school, etc. The traffic keeps growing until it reaches the peak,
which occurs on average around 11:30.

From noon onward, the traffic slightly goes down due to lunches/afternoon
break times. Afternoon traffic is momentarily constant, followed by a slight
change, until reaching the evening. The traffic gradually grows around 18:00
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and hits the second peak around 19:30. This traffic increase reflects the call-
ing of people to their friends and relatives, who live abroad. In general, these
certain habits depend on the location. The second peak, or evening peak
usually takes around 2-3 hours until the traffic slowly goes down with almost
none after midnight.

There are two obvious abnormalities seen in the graph. The first one,
October 5th (drawn in discrete red color, in Fig. 4.1), reflects higher calling
activities of people in the evening than usual. The second abnormality, Octo-
ber 26th (which is discrete green color in Fig. 4.1), is due to technical issues
faced at the reference network around 11:00. This applies also to incoming
traffic abnormalities for those two mentioned specific hours (Fig. 4.2).

Figure 4.2: Daily incoming traffic (Wednesdays, October 2016).

Otherwise, as can be observed from the figure, there are typically two
peaks in the daily traffic: midday and evening peak. The midday peak
occurs around noon (due to people’s working obligations), and the evening
peak is in the evening (which is more related to people personal activities).

The incoming traffic profile is very similar to the outgoing traffic as shown
in Fig. 4.2. During the night the traffic is nearly non-existent. From 05:00,
the traffic starts to grow and keeps growing till reaches the peak on average
at about 12:00. Since that moment, the traffic is somehow stable until the
evening, at about 19:00, then it again starts to decrease.

By comparing Fig. 4.1 and Fig. 4.2, I can notice a higher spread in the
incoming traffic, compared to the outgoing traffic. During the analysis of the
dataset for this specific period of time, no specific network technical issues,
events, or policies were observed. Thus, I assume this spread is due to the
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fact that the incoming traffic comes from all around the world, i.e., the pool
of hypothesis is much larger, compared to the users of the reference network
and their generated (outgoing) traffic.

As can be observed from Fig. 4.1 and Fig. 4.2, the daily profiles follow a
very similar pattern, regardless of selected weekdays.

In both outgoing and incoming traffic, the season plays an important role
in the midday and evening’s peaks. These are shifting according to the season
as well as daylight saving time and country of origin. The midday peak is
slightly affected, but the evening peak usually occurs around 19:00-20:30,
while in winter the peak is around 17:30-18:30.

4.2.2 Weekly and monthly voice traffic

Fig. 4.3 illustrates the weekly traffic, from Monday to Sunday. The analyzed
week is the first week of May 2017, that can be considered a regular week of
the month without any abnormal behavior of people. The number of calls
(y-axis) indicates the unique number of calls in a given day. In case a call
takes place over a midnight, the call is counted into the day when the call
begins.

Figure 4.3: Weekly traffic (1st – 7th of May).

The traffic is constant from Tuesday to Thursday, which are typical work-
ing days in all regions of the world. The Friday traffic drop is due to the
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official day off in the studied region (in the studied geographical region, the
weekends are Fridays and Saturdays).

On Saturday, traffic begins to increase until reaches the maximum on
Tuesday. The reason of the lower Monday traffic compared to Tuesday-
Thursday traffic is a fact that Monday is the first working day of week in
many countries around the world, and people are just back to their work
after the weekend.

As can be seen from Fig. 4.3, the incoming and outgoing weekly traffic
profiles are almost the same. Both incoming and outgoing depend on working
days and days-off, origin of calling and called parties. People typically respect
each other’s timezone when calling each other.

Fig. 4.4 shows the monthly traffic, where I again have selected May 2017
for the analysis. Obviously, the monthly traffic consists of the weekly traffic
repetition, and the traffic is higher during the weekdays and lower during
the weekends. Similarly, to the weekly profile, both incoming and outgoing
monthly traffic is nearly the same.

Figure 4.4: Monthly traffic (May 2017).

The first two weeks show a higher number of calls compared to the third
and fourth week. This is due to the fact that May is the last academic month
(in the studied geographical region) followed by summer holiday. Usually
during summer holidays, less traffic is expected because of holidays, many
people travel and have vacations.
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4.2.3 Yearly voice traffic

Finally, Fig. 4.5 illustrates yearly traffic, from July 2016 to June 2017.

Figure 4.5: Yearly traffic (July 2016-June 2017).

During the first four months, from July 1st to November 30th, i.e., days
1-123 in Fig. 4.5, the incoming traffic is lower than the outgoing. This is
due to company’s policy and restrictions on the incoming traffic, from the
End-user networks.

In Fig. 4.5, I can observe 3 peaks that match reported events in the
analyzed region. The 1st peak (day 6), reflects religious holidays in Islamic
countries, celebrating the end of Ramadan, which usually results in high
traffic during that time. The 2nd peak (day 74) represents the feast days
in Islamic countries, where the traffic is doubled compared to normal days.
Finally, the 3rd peak (days 138-148) corresponds to a regional holiday where
the incoming traffic is more affected than the outgoing traffic.

For such scenarios, I notice rapid increment in traffic. Sometimes, It is
expected for some recurrent events. In contrast, there are some high traf-
fic moments that are out of scope. For that, the network cannot handle
such huge traffic, which leads to network congestion. In this case, these
unpredicted incidents should be studied in order to avoid future network
congestion, and mark them as anomalies.

Fig. 4.6 depicts linear regression for the yearly traffic. The incoming traf-
fic is quite stable with no changes expected, except the predicted peaks as
explained previously. On the other hand, the outgoing traffic shows notice-
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Figure 4.6: Linear Regression of yearly traffic (July 2016-June 2017).

able changes in the beginning and then gradually goes back to the level of
incoming traffic. As already mentioned, the decrease is due to the operator’s
policy.

4.2.4 Weekdays and Weekends

The traffic changes during the whole year (July 2016-June 2017) for each day
per week is illustrated in Fig. 4.7 and Fig. 4.8.

Figure 4.7: Weekdays outgoing traffic during the year.
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Figure 4.8: Weekdays incoming traffic during the year.

The figures describe how the traffic changes during 52x Saturdays to
Thursdays, and 53x Fridays. In the figures, I can observe the abnormalities
as explained above (religious holidays, and the decrease of outgoing traffic in
the first part of the year).

Table 6.1 summarizes the total number of calls per year for each day
(from Monday to Sunday). The mean (µ) and standard deviation (σ) for
each day are provided as well.

Table 4.1: Statistics of calls per year.

Days Total calls per year µ [calls] σ [calls]

Monday 5725454 108027 18898
Tuesday 5590481 105481 14609

Wednesday 5624193 106117 16934
Thursday 5401519 101915 13508

Friday 4625490 87273 11869
Saturday 5066378 95592 14301
Sunday 5065466 95575 10340

The lowest, resp. highest, µ are for Fridays (weekend day), resp. Monday
(working day). In the table, I see Monday has the highest number of calls
among other days. This is due to two of the major holidays in the studied
geographical region occurred on Mondays, which have huge impact on the
number of calls. If I discard these exceptional calls due to those two events,
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Tuesdays and Wednesdays are the days with the highest number of calls,
which corresponds to the above discussion when describing the weekly traffic
profile.

4.2.5 Peak hours

An example of noon/evening peaks movement for the incoming and outgoing
traffic within a 3-month period (October-December 2016) is illustrated in
Fig. 4.9 and Fig. 4.10. The peaks are calculated with a 60-minute window,
which is shifted minute by minute to find out the maximum values at noon
and in the evening for each day. The points in Fig. 4.9 and Fig. 4.10 show
the beginning of the max. 60-minute window.

Figure 4.9: Outgoing traffic peaks of October-December 2016.

In case of the outgoing scenario (Fig. 4.9), the obtained results show
oscillations around 12:00h, resp. 19:15h, with a slow movement towards
13:00h, resp. 19:00h, by the end of December. Similar values can be observed
in the incoming traffic (Fig. 4.10), the initial oscillations occur around 12:15h,
resp. 19:00h, with a slow movement towards 13:15h, resp. 19:15h, by the
end of December.
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Figure 4.10: Incoming traffic Peaks of October-December 2016.

4.2.6 Cumulative Traffic Distribution

Apart from traffic profiles for different time profiles, an operator also needs to
know the traffic distribution among the end-user networks and the countries
with the highest traffic for incoming/outgoing. Such information helps the
operator better plan for its network capacity and dimensions.

Fig. 4.11 represents the traffic distribution among all interconnected net-
works, more precisely countries, for 4 months (April-July 2017); similar re-
sults can be observed during these months per year.

Figure 4.11: Cumulative traffic distribution of April-July 2017.
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In this study, the reference network is interconnected in total to 204
countries. I lay out the countries based on their traffic, from the highest to
lowest one, and I count the Cumulative Traffic Distribution function using
the following formula:

CTD =
c∑

i=1

Traffic of countryi

Total traffic of countries
(4.1)

In Fig. 4.12, I show the top 10 countries with the highest traffic. All
10 countries, and their order, are the same for the analyzed 4 months. By
analyzing the whole year, I observe that the given top 10 countries, and their
orders, are approximately identical throughout the year.

Figure 4.12: Number of calls per top 10 countries, for April-July 2017.

As can be seen, the top 10 countries in total take over 80 percent of the
total amount of traffic, where about 60 percent represents the outgoing and
40 percent the incoming traffic. It means, there is 0.8 probability that an
international call comes from one of the top 10 countries. On the other hand,
the majority of countries only show 1-2 calls per month (see Fig. 4.11).

As expected, the largest impact on the total number of calls comes from
the neighboring countries. This is typically occurs due to strong relation-
ships among the neighboring countries in terms of business, culture, trading,
tourism, etc.
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4.3 Voice traffic to distance dependency

In this section, I investigate the international outgoing/incoming voice traf-
fic dependency based on three-month Call Detail Records dataset analysis.
The distance between countries, more precisely the distance between cen-
troids of countries, is calculated by using the great-circle distance approach.
Additionally, the voice traffic parameters are normalized in respect of the
population of countries to obtain comparable outcome independently. For
that, I employ different types of datasets that contribute to the CDR data
analysis. However, these datasets need to be merged before employing.

4.3.1 Merging datasets

The dataset merging is illustrated in Fig. 4.13. At first, the voice traffic
data of countries are exploited from the CDR dataset. Then, I normalize
the populations of countries to voice traffic distribution to eliminate the
population effect as mentioned in the previous chapter. Furthermore, I utilize
the centroid data to determine the great-circle distance among the centroids
of countries. Finally, the results from the calculated distance are ordered
from the nearest to the furthest to the country of origin with the normalized
data.

Figure 4.13: Merging and processing of data sources.
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4.3.2 Voice traffic parameters

The analyses are done in two steps. In the first step, I determine and ana-
lyze the parameters of outgoing/incoming international voice traffic: i) the
waiting time, ii) the service time, and iii) the interarrival time.

Figure 4.14: Outgoing traffic parameters.

The mean values of these parameters are shown in Fig. 4.14 and Fig. 4.15
in accordance with the total number of calls per 3-month period and per
country.

In the figures, I jointly show all the three parameters for the outgoing
and incoming traffic.

On x -axis, the countries are ordered from the highest number of calls to
the lowest ones, i.e., the last country has only a few calls per 3-month period.
On right (resp. left) y-axis, the total number of calls per country (resp. the
mean values of waiting, service and interarrival time) are illustrated. From
the figures, the mean values of waiting time and service time are nearly
independent of the number of calls. Whereas the interarrival time manifests
dependency on the number of calls.
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Figure 4.15: Incoming traffic parameters.

When comparing Fig. 4.14 and Fig. 4.15, the incoming waiting time shows
higher stability over the outgoing one. This is due to the fact that a calling
party usually experiences different waiting times according to the destination.
In other words, the outgoing traffic fits the habits of each country around
the world individually, while the whole world traffic behavior is with respect
to the reference network.

4.3.3 Cumulative distribution function

In the second step, I demonstrate the influence of the destination countries on
the generated outgoing/incoming international voice traffic. In Fig. 4.16 and
Fig. 4.17, the countries are ordered based on the distance (x-axis); from the
nearest to the farthest destinations from the reference country. On the right
y-axis, the cumulative distribution function (CDF) of outgoing/incoming
traffic ratio is shown.

The ratio is calculated by considering the number of calls per 103 pop-
ulations unit of countries (as explained in the previous chapter). The CDF
is applied to investigate the voice traffic distribution among countries based
on the ordered distance. On the left y-axis, the distance of countries (in
kilometers) to the reference country is indicated.

As can be observed from Fig. 4.16, there can be three major regions
distinguished where the traffic significantly grows: a) 0 - 1500 km, b) 3000 -
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Figure 4.16: Outgoing traffic based on ordered distance.

5000 km, and c) 5000 - 6000 km.
The major outgoing traffic increasing is quite noticeable for the first 15

nearest destinations to the reference one, where most of these destinations
are neighboring countries, directly or indirectly connected via their borders;
these countries generate more than 60 percent of the total traffic.

These countries geographically share many cultural behaviors; common
relating ethnicities or tribes that only political border separates them. Po-
litically speaking, business, tourism and economic relations are among the
most important factors that neighboring countries share. Indirect neighbors
are those countries that the neighboring countries lie in between. Those
countries are also tightly linked through their business, tourism, or economic
sectors.

The countries lying in the second region, 3000 - 5000 km, take about 20
percent of the total traffic. These countries feasibly share historical (e.g., mi-
gration) or trading, business and tourism aspects with the reference country.

In the third region, 5000 - 6000 km, countries produce about 10 percent
of the total traffic. This portion can be seen as relatively high compared
to more distant countries, but a closer inspection reveals that only a few
countries contribute to this traffic. The relationship of such countries with
the reference country can be either due to tourism or business.

The remaining countries, above 6000 km, contribute to the total traffic in
about 5 percent. Those countries are typically out of major interest for the
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Figure 4.17: Incoming traffic based on ordered distance.

reference country, where the traffic is mainly due to short-term visits (e.g.,
tourism).

4.4 Conclusion

This chapter covered two different approaches based on CDR data. Firstly,
I analyzed one-year CDR dataset (July 2016-June 2017), presenting interna-
tional traffic of incoming and outgoing calls, for which I describe different
traffic profiles based on their periodicity.

The studied area covered a geographical region, comprised of several coun-
tries, Statistics of working and weekend days per year are provided as well.
Furthermore, I depicted the incoming/outgoing calls distribution among end-
user networks, and determined the countries with the highest traffic. The
obtained results show a long-term traffic stability and a daily/weekly traffic
periodicity that reflects human activities. Additionally, as expected, I ob-
served that a major part of the incoming/outgoing traffic comes mainly from
neighboring countries.

In the second half of the study, I investigated in international voice traffic
dependency per destination. The analysis was done based on a three-month
CDR dataset, which consists of about 9 million CDRs of outgoing/incoming
international voice traffic. The countries are in polygon/irregular shapes
or large areas, which makes it hard to calculate the distance between two
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countries. Hence, I was using centroids of countries for references when
calculating the distance between two countries.

The distance among countries, more precisely the distance among coun-
tries’ centroids, was determined by using the great-circle distance approach.
To avoid the population traffic effect, data normalization is applied to struc-
ture the relational voice traffic data to countries populations.

From the CDR as well as signaling data, I extracted voice traffic param-
eters such as waiting, service and interarrival time for each country. The
obtained results show dependency of voice traffic parameters on the des-
tinations. The nearby countries are responsible for more than 60 percent
(resp. 50 percent) of outgoing (resp. incoming) traffic. This is mainly due
to historical, cultural, business, tourism and economic factors.
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Chapter 5

Voice Traffic Load
Characteristics

5.1 Introduction

Mobile networks generate enormous amounts of data every moment, such
as signaling and user data (paging, location update, CDR, Short Message
Service (SMS), etc.). By analyzing such data, the network performance can
be improved, and a better Quality of Services (QoS) to users can be ensured.
Additionally, the data can be also utilized for other purposes, such as pub-
lic transportation planning, public health analysis, social behavior studies,
crime investigations, etc. [84]. One of data usage in mobile networks is tele-
traffic. The teletraffic in telecommunications represents the application of
probability theory that is used to support network planning, dimensioning,
performance evaluation, operation and maintenance [85]. The objective is to
make the traffic measurable, and to quantify the relation between grade-of-
service and system capacity [85].

In teletraffic theory, the word “traffic” is usually denoted as the traffic
intensity, i.e. the number of calls carried by the network per time unit [86].
International Telecommunication Union (ITU-T) defines the traffic intensity
as “the instantaneous traffic intensity in a pool of resources, which is the
number of busy resources at a given instant of time” (ITUT B.18).

This chapter is based on CDR and signaling data that are collected from
a voice traffic carrier. The topology of the studied scenario is illustrated in
Fig. 5.1.
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Figure 5.1: Voice call flow through a carrier network.

The topology consists of home network (hereafter referred as the refer-
ence network) that is located in one country while a destination network can
be located in any country around the world. Both reference and destination
networks are mobile operators. A third network can be involved in communi-
cation, and it is called a carrier network. The carrier network interconnects
two networks and can be part of a mobile network operator.

5.2 Theoretical approach

In this section, I discuss the theoretical background. Fig. 5.2 illustrates
different time phases of a call. Once a call request arrives, denoted as the
arrival time tA the waiting time period, ∆tw is initialized. The ∆tw represents
the time interval between the Connecting and Connected status of a call as
described in chapter 3.

At this phase, the A party, denoted as x in Fig. 5.2 is at idle state while
waiting to setup the call. Once the A party is connected to the B party, at a
moment, which is denoted as connection time tC , the connection enters the
active state.

The active call continues until one of the parties clears the call at the
moment tD (disconnect time). The interval between tC and tD is referred
as a serving time, ∆ts. Thus, the whole call time period, ∆tx, consists of
two periods ∆tw and ∆ts [87]. The time tA and period ∆ts are among key
parameters when analyzing the performance of a queueing system.

Having two consecutive call arrivals, x1 and x2, the call arrival x2 at t2
does not depend on the call arrival x1 at t1 and vice versa (Fig. 5.3). The
time period between two consecutive calls is denoted as the interarrival time
∆ti, i.e. ∆ti = t2 − t1.
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Figure 5.2: Waiting and service time phases.

Figure 5.3: Interarrival time process.

The interarrival time basically captures the importance of the destination;
the lower the average time between two consecutive calls, the more important
the destination is in terms of traffic amount.

In this study, the system is considered to be ideal, i.e. a call arrival, x,
starts to be served once arriving to the system. In other words, the call does
not have to wait in a queue to be served by system. A delay is only due to
the ringing period and the network call processing.

The ringing period in networks varies from a few seconds and can go
as high as tens of seconds and has a strong influence on the waiting time.
Typically, a maximum ringing time period threshold is configured by the
mobile operator; for example, in our reference network, the ringing threshold
is set to 30 seconds. The ringing time period depends on several aspects such
as the calling party patience, the called party awareness of the incoming call,
the importance of the call, the time of the call, etc.
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The network call processing time consists of all partial periods before the
ringing period starts; e.g., paging, processing, transmission and propagation
delay, etc. The network may also perform other tasks such as the security
check, the user credential check, the B party availability, finding the route
and resources, etc., which increase the total network call processing time.

The number of calls within a time unit follows the Poisson distribution,
i.e. the time between two consecutive calls follows the exponential distri-
bution and call arrivals are independent of each other [88][89]. The Poisson
distribution indicates the probability that a call arrival may occur in the next
given time unit:

[h]Pj =
λj

j!
e−λ (j = 0, 1, ...). (5.1)

where j is the number of call occurrences in a time unit, and λ represents
the mean value of call arrivals.

The service time ∆ts is modeled using the exponential distribution with
the service time mean value represented as β. The probability density func-
tion of the exponential distribution is given by following equation [90]:

[h]f(t) =

{
1
β
e−

1
β
n if n ≥ 0

0 if n < 0
(5.2)

where n is the number of call occurrences in a unit of time. As shown
in section VI, the interarrival time and service time are exponentially dis-
tributed.

5.3 Results

As mentioned above, I analyze 3-month CDR dataset files, which cover the
period October, 2016 - December, 2016. The datasets were collected via a
CDR mediation server in the switching center and consists of about 9 million
records.

For the analyses, I consider incoming and outgoing traffic of one short-
distance and three long-distance international call scenarios: i) one neighbor-
ing country to the reference network (country C in the following figures), ii)
one European country (country B in the figures), and finally iii) two Asian
countries (countries A and D in the figures). A detailed study of traffic
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distribution among different countries were presented in previous chapter.
Additionally, results of the whole world traffic were provided as well, includ-
ing the empirical and theoretical calculated values.

Notice that the incoming traffic consists of network traffic originating from
the whole world while the outgoing traffic only includes traffic originating
from one country, i.e. the reference network. In other words, the incoming
traffic pool is much larger than the outgoing one.

Table 5.1 indicates mean values theoretically calculated for the outgoing
and incoming traffic in the whole world case scenario. The outgoing traffic
shows a higher mean value of waiting time with a lower mean value of service
time than the incoming traffic. One of the main reasons is the cost of an
outgoing international call, which is generally higher than a local call. More-
over, internet services are nowadays globally available, which can be used as
an alternative to traditional voice call scenario. As to the interarrival time,
the mean value of outgoing traffic is higher as more traffic is generated in
the world compared to the amount of traffic originating from the reference
network.

Table 5.1: Mean values of the analyzed parameters for the world scenario
Traffic direction Waiting time(λ)[s] Service time(β)[s] Interarrival time(β)[s]

Outgoing 16.26 132.29 0.62
Incoming 13.46 154.06 0.52

Fig. 5.4 shows the probability of service time occurrences. On the right
(resp. left) y-axis, the probability of occurrences for the world scenario (resp.
selected countries) is presented. The graphs illustrate the frequency of oc-
currences for the given service time, i.e. the sum of all probabilities when
the service time goes to infinity equals to 1 for each country, resp. the world.

As can be observed from Fig. 5.4, the service time is exponentially dis-
tributed for all considered scenarios; the figure also specifies the theoretical
result for the world traffic scenario.

The majority of considered scenarios show the maximum for the value
around 5 seconds and then the probability rapidly decreases as the service
time increases. In our case, the service time is affected by many factors, such
as the type of calls (private, business calls), the network operator price policy
(distant calls are typically cheaper), the distance between the reference and
destination network, etc.
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Figure 5.4: Service time, outgoing traffic.

Compared to the long-distance call scenarios, the probability of occur-
rences of the short-distant call scenario (country C ) is smaller, but the prob-
ability is relatively constant, up to 60 seconds. In other words, the probability
of having a longer call duration is higher for the short-distance call scenarios
than for the long-distance ones. This is typically due to the strong business
and/or personal relationships among the neighboring countries.

In Fig. 5.5, the waiting time outcome is shown. Correspondingly to
Fig. 5.4, the right y-axis illustrates the probability of occurrences for the
world scenario case, whereas the left y-axis, for the 4 selected countries.
Based on the scenario, the peaks occur between 6 to 21 seconds.

The waiting time in case of neighboring countries (country C ), and the
country A, follows roughly the world scenario. Whereas in case of countries
B and D, a slightly different curve progress is observed, with the peak around
3 seconds. This is possibly due to:

• A user intentionally clears the call after the called party is being rung,
as the ringing is only used to notify the called party.

• The called party relatively quickly hangs up as the party knows in
advance about the incoming call and expects the ringing.
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Figure 5.5: Waiting time, outgoing traffic.

The theoretical world traffic scenario shows a higher waiting time within
the interval 10 to 20 seconds and a lower one within the interval 30 to 60
seconds compared to the real values. Such variations between the empirical
and theoretical values are due to the nature of human behavior around the
world; for instance, lifestyle, network policies, time zone difference, cultural
differences, etc.

Fig. 5.6 shows the interarrival time, where the description of x-y axes is
analogous to the previous figures. I can see in the graph that the peak of
interarrival time for the world scenario is very small, close to 0s. According
to table 1, the probability of having 2 consecutive calls in the world scenario
within 1 second is about 0.6.

The lowest interarrival time manifests the neighboring country C, which is
due to the strong relationships among the neighboring countries as explained
previously. The interarrival time grows as destinations are farther and farther
(see countries A, B and D). For example, the interarrival time between two
calls in case of a faraway destination could reach even as high values of 106

seconds.
Additionally, based on the daily/weekly traffic profiles, I can deduce the

country relationship nature, i.e. if the relationship is much more business or
personal oriented.
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Figure 5.6: Interarrival time, outgoing traffic.

Fig. 5.7 illustrates the service time for the incoming traffic case. In gen-
eral, the probability of occurrences is higher for the incoming traffic than for
the outgoing one (shown in Fig. 5.4).

As the incoming calls are from a much larger pool of users (the whole
word, or all network operators in the given countries), a call with a longer
service time typically occurs more frequently.

The waiting time of incoming traffic is illustrated in Fig. 5.8. The waiting
time of incoming traffic for countries A-D manifests higher peaks compared to
the outgoing traffic case (Fig. 5.5). In case of world scenario, the theoretical
values are, similarly to the outgoing scenario, higher than the real ones. The
reason is the same as explained in Fig. 5.5.
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Figure 5.7: Service time, incoming traffic.

Figure 5.8: Waiting time, incoming traffic.
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As to the interarrival time, the probability of occurrences shows similar
behavior for the outgoing (Fig. 5.6) and incoming traffic (Fig. 5.9), where
the probability is higher for the incoming interarrival time (due to the larger
pool of users). However, compared to Fig. 5.6, the incoming interarrival time
peaks are shifted to right, resp. left (around 500s, resp. 10s) for the countries
A and D, resp. B and C.

Figure 5.9: Interarrival time, incoming traffic.

5.4 Conclusion

In this chapter, I proposed a study on characteristics of the interarrival,
waiting, and service time for outgoing and incoming traffic of an international
voice traffic carrier. The analyzed CDR dataset covers 3 months (October-
December 2016).

For both traffic, outgoing and incoming, the interarrival, and service time
follow the exponential distribution. The interarrival time increases as the
destination to the reference network becomes less important. A longer service
time can be observed from the nearby countries to the reference country.

The waiting time follows the Poisson distribution, and it varies based on
the network configuration, the user resilience, or the call importance.
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In the world scenario case, the theoretical values show higher peaks than
the real measurements. Such difference is due to the nature of human be-
havior around the world; for instance, lifestyle, network policies, time zone
difference, cultural differences, etc.
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Chapter 6

Modeling Voice Traffic Patterns

6.1 Introduction

MObile network data are constantly used nowadays for better understand-
ing of users’ needs and improving the quality of services. Meanwhile, the
demand for user data is increasing due to the importance of the content that
offers crucial information about users’ behaviors and mobility in the network.
However, telco networks generate on daily basis a huge amount of data orig-
inating either from users or the network itself through signaling messages.
Signaling is the process of using the signal to control communications among
the mobile network elements as well as documenting the network activities
and user details. One of the important data that are provided by users is
CDR.

Dimensioning of mobile networks usually depends on the number of users
and their demands. The number of users is a measure of telco marketing
success, available services, offers, and quality of services. In contrast, user
demand is an indicator of overall user satisfaction improvement. Alterna-
tively, there are two main criteria that designate the network services avail-
ability (i.e., voice calls); the number of calls and the average call duration.
Though, the duration of calls can also signify the quality of the call. The
longer call duration implies a better quality of the call [91]. Nonetheless,
there are several problems that the network faces while handling the needs
of users such as peak hours throughout the day. This is happening when the
highest traffic load hits the network that might lead to network congestion
when the network cannot handle more traffic, or critical incidents such as
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events that users request to use the network intensively. Another network
issue can be low coverage, which increases with the city and urban expansion
along with population growth, and that leads to low quality of services and
poor signal reachability.

The outliers or anomalies in the mobile network are also among the major
issues that the network encounters, possibly at any time. Network anomalies
can come from a network malfunction (per specific location or cell), defects,
misconfiguration, power outage or software errors, which leads to network
outage. Consequently, the network fails to satisfy the users’ needs.

In this chapter, I discuss the modelling of voice traffic patterns and profiles
from CDR data in mobile networks to address user’s behavior and network
anomaly detection. The metadata is provided by a mobile network that has
deployed numerous network generations including the latest network gener-
ations.

I propose a novel study using multi-algorithm approach to achieve quali-
tative outcomes. The workload comes with two phases. First phase derives
the definition of ordinary or normal voice traffic behaviors and patterns out
of the data in the mobile network using Gaussian Mixture model (GMM)
[92] and Mean shift clustering. The technique is to target certain attributes
separately using different unsupervised learning algorithms. Unsupervised
learning [93] is the method of structuring points into groups that are similar
in certain ways or determining the procedure of data distribution in the space
known as density estimation [94].

In the second phase I introduce four distinct algorithms to detect and
predict anomalies. I deseasonalize the data to obtain a higher accuracy fol-
lowed by the distribution function to comprehend the patterns in the data.
The first algorithm is Z-score thresholding, which is the representation of
standard deviations from the mean value whether it is above or below in the
data that are normally distributed.

The second algorithm is Isolation Forest. This is an unsupervised learning
algorithm based on decision tree algorithm. It uses isolation of anomalies
through selecting a feature in a provided set randomly, and then chooses a
separate value between maximum and minimum values of that feature. This
leads to generate shorter paths in the trees to values that are presumably
considered outliers or anomalies. The third algorithm is density-based spatial
clustering of applications with noise (DBSCAN). This algorithm identifies the
groups of data based on their density in a set of features. The concept of
DBSCAN requires certain parameters and types of data points. The fourth
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algorithm is the K-means clustering.
I evaluate the results from each algorithm based on six criteria: i) Re-

call score is defined as the number of true positives divided by the sum of
true positives and false negatives. ii) Precision is in return the true positives
divided by the sum of true positives and false positives. iii) F1-score is com-
bination of recall and precision scores in a model. iv) Receiver Operating
Characteristic-Area Under the ROC Curve (ROC-AUC) represents the per-
formance of a model. v) Accuracy score is the evaluation metric to measure
the correct predictions to the total number of predictions. vi) Efficiency of
the algorithm that consists of computational time and memory usage.

6.2 Research Methodology

This section discusses the methodology used in this study. I exploit one year
of CDR data that hold 37 million calls. After the data are preprocessed.
The study goes through two phases. In the first phase, I get familiarized
with the voice traffic profiles and attributes, followed by the linear function
between call duration and the number of calls, and then I represent normal
voice traffic patterns in the network by using certain algorithms to target
certain parts or attributes in the data.

GMM is used to define the clusters of call duration that users intend to
select. Mean Shift clustering on the other hand is employed to identify the ex-
pected daily peak-hour patterns from abnormal traffic spikes that might hap-
pen due to network issues (misconfiguration, malfunction, mismatch, etc.),
incidents on national or regional level, malicious intent, etc.

In the second phase of the study, I visualize the data of the entire dataset.
However, at this point, I deseasonalize the data for higher accuracy achieve-
ment, trend and irregular component exploring (see Fig. 6.1). Then, the
normal distribution of number of calls and total call duration along with av-
erage call duration are illustrated to comprehend the patterns in the data.
Next, Z-score, Isolation Forest and DBSCAN algorithms are used to detect
and predict anomalies and outliers. Finally, I evaluate the outcome from the
algorithms based on several performance metrics to measure the accuracy of
each algorithm.
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Figure 6.1: Research methodology.

6.3 Theory of Algorithms

In this section, I explain the mathematical approach behind the algorithms
used in this study along with the steps that are used to achieve the final
output of the algorithm.

6.3.1 Gaussian Mixture Model

In real-world data, a single Gaussian distribution cannot handle a mixture
of several stochastic processes [95]. Besides, I don’t use K-means clustering
since it relies on only one component, which is the mean of the cluster.
Subsequently, there is a problem when it comes to multiple clusters with
overlapping means and different covariance matrices. Therefore, GMM is
used to explain K Gaussian distribution.

GMM is a probabilistic semi-parametric distribution-based soft clustering
model. It assumes all data points are generated from a mixture of a finite
number of Gaussian distributions with unknown parameters. GMM builds on
three parameters [96]: the number of clusters K, mean, and covariance. The
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parameters are determined by maximum likelihood, normally utilizing the
Expectation Maximization (EM) algorithm [97]. EM consists of two steps:
E-step and M-step. At any given GMM, the objective is to maximize the
likelihood function.

To theoretically explain this model, I assume I have a dataset of d-
dimensional data that a multivariate Gaussian distribution can be used. In
that case, the probability density function will be [98]:

N(x;µ,Σ) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(6.1)

Where:
x represents N sets of multi-dimensional data
µ is the mean of each dimension∑

is the covariance.
Let’s assume there is a training set of N points in a dataset where:

x = x1, x2, . . . , xi, . . . , xN

However, xi is a multi-dimensional in our case, then I need to employ
multivariate GMM:

p(x | Θ) = αk
1√

(2π)d |Σk|
exp

[
−1

2
(x− µk)T

−1∑
k

(x− µk)

]
(6.2)

Θ represents all parameters and αk is the prior probability of kth Gaussian
model.

In order to estimate the GMM parameters as I assumed the dataset is a
mixture of K Gaussian distributions, I use Maximum Likelihood Estimation
(MLE). The objective is to maximize the likelihood to achieve the best set
of parameters (αk, µk,Σk ). The likelihood function and MLE respectively
are [99]:

p(x | Θ) =
∏
i

p (xi | Θ) (6.3)

Θ = argmaxΘ

∏
i

p (xi | Θ) (6.4)
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Then, the likelihood function for multivariate after MLE is:

p(x | Θ) =
∏
i

p(x | Θ) =
∏
i

[∑
k

αkN (xi | µk,Σk)

]
(6.5)

At this point, I use EM algorithm to simplify the GMM likelihood func-
tion. Firstly, I take the log of the likelihood function as monotonically max-
imizing function of its argument:

L(x | Θ) =
∑
i

ln [p (xi | µk, σk)] =
∑
i

ln

[∑
k

αkN (xi | µk, σk)

]
(6.6)

This is when I reach a point where the single Gaussian reaches its limit
after taking the derivatives with respect to the k th mean to 0 . Therefore,
the EM introduces latent parameter z and provides a new set of parame-
ters for GMM to explain the probability of p (z | xi, µk, σk). The probability
distribution of xi with introduction of z is:

p (xi | Θ) =
∑
k

p (xi | z = k, µk, σk) p(z = k) (6.7)

I introduce the latent parameter into the log likelihood function:

L(x | Θ) =
∑
i

ln
∑
k

p (z = k | xi, µk, σk)
p (xi | z = k, µk, σk) p(z = k)

p (z = k | xi, µk, σk)

(6.8)
To simplify the likelihood function, I recall Jensen’s inequality [100] to

simplify a function in an EM process:

f [E(x)] ≥ E[f(x)] (6.9)

Therefore, Jensen’s inequality and the posterior probability derived by
the Bayes’ law:

L(x | Θ) ≥
∑
i

∑
k

ωt
i,k ln

αkN (xi | µk, σk)

ωt
i,k

(6.10)

Here, I specify the iterative function with denoted t for the EM algorithm.
This will result in Θt and latent ωt

i,k. With the latent parameters applied in
the iterative function Q (Θ,Θt) and using maximization to update Θt+1.
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Now, I employ the EM for multivariate GMM [101]. The E-step is to
estimate the latent parameters:

ωt
i,k =

αt
kN (xi | µt

k,Σ
t
k)∑

k α
t
kN (xi | µt

k,Σ
t
k)

(6.11)

The M-step is maximization step with iteration t + 1 to update the pa-
rameters (αt

k, µ
t
k,Σ

t
k) :

αt+1
k =

∑
i ω

t
i,k

N
(6.12)

µt+1
k =

∑
i ω

t
i,kxi∑

i ω
t
i,k

(6.13)

Σt+1
k =

∑
i ω

t
i,k

(
xi − µt+1

k

) (
xi − µt+1

k

)T∑
i ω

t
i,k

(6.14)

The final step is to evaluate the log likelihood function and I investigate
the convergence of the parameters or the log likelihood function. If the
convergence criterion is not satisfied, I return back to E and M steps and
again log likelihood function evaluation.

6.3.2 Mean Shift Clustering

Mean Shift (MS) is a non-parametric density-based unsupervised learning
clustering algorithm through allocating the data points to the clusters iter-
atively, shifting the points to the mode, which is with highest data points
intensity. The shifting is done until the points converge to a local maximum
of the density function. Mean Shift is also known as mode-seeking algorithm.
follows:

1. Set a sliding window for the data points.

2. Every sliding window is shifted towards higher density of distributed
points through shifting the centroids to the mean. I repeat until no
more shifts can generate a higher density.

3. I delete overlapping windows. However, when there are several over-
lapping occurrences, I keep the window with highest data points, and
I delete the rest.
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4. Allocating the data points to the belonging sliding window.

Mean Shift is built based on the Kernel Density Estimation (KDE) [102],
which is a method to indicate the underlying probability density functions.
xi is a finite number of data points and h is size of window.

f̃(x) =
1

nhd

n∑
i=1

K

(
x− xi

h

)
(6.15)

And the Mean Shift vector:

m(x) =

∑n
i=1 xigi∑n
i=1 gi

− x (6.16)

gi = g

(∥∥∥∥(x− xi)

h

∥∥∥∥2
)

(6.17)

g(r) = k′(r) (6.18)

Then, the succeeding location of the kernel is [103]:

yi+1 =
n∑

i=1

xig

(∥∥∥∥yi − xi

h

∥∥∥∥2
)
/

n∑
i=1

g

(∥∥∥∥yi − xi

h

∥∥∥∥2
)

(6.19)

6.3.3 Z-Score

Z-score [104] is also known as the standard score that provides the positions
of data points from the mean and how they are related to each other. It is
measured based on the standard deviation from the mean value. It can be
formulated as follows:

z =
(x− µ)

σ
(6.20)

z = Z-score
x = the value being evaluated
µ = the mean
σ = the standard deviation
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6.3.4 Isolation Forest

Isolation Forest algorithm [105] is a technique that uses an assortment of
isolation or binary trees to detect anomalies. It is constructed using data
recursive segmentation. Each segmentation split is made by selecting a fea-
ture and a splitting value randomly within the array of available features.
The isolation of individual data points and/or reaching a predefined max tree
height process is done by iteratively splitting the data. Then, the anomalies
isolation is achieved through association with the path-length since anomalies
require less splits to be isolated as they are only few and different.

The mathematical approach is attained via the construction of trees and
calculation of path lengths. The path length is about the depth of a data
point in an isolation tree. As mentioned, the shorter the path length, the
data point is more probably an anomaly score. The mean path length can
be calculated of n data points as follows:

c(n) = 2H(n− 1) − 2(n− 1)

n
(6.21)

The H(i) is the harmonic number that can be estimated as:

H(i) = ln(i) + γ (6.22)

where γ is the Euler-Mascheroni constant (γ ≈ 0.5772156649).
The anomaly score can be determined after constructing the isolation

trees. The formula goes as following:

s(x, n) = 2−E(h(x))
c(n) (6.23)

where x is an anomaly score for a data point, and E(h(x)) is the average
path length of x throughout the isolation trees. c(n) is the average path
length for a failed search in a randomly created isolation tree.

The score range of an anomaly is between 0 and 1 . A higher value shows
a higher probability of being an anomaly.

6.3.5 K-means

In this section, I discuss first the K-means clustering algorithm adaptation.
Then, I go through the theory and concepts of the algorithm.
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Algorithm Adaptation

Adapting k-means clustering algorithm for anomaly detection and prediction
with CDR data has involved several key modifications and considerations:

1. Feature Selection: Instead of using all available features and attributes
in the CDR dataset, I carefully select relevant attributes that capture
characteristics indicative of anomalous behavior in the mobile network.
This includes attributes and features such as call duration, frequency
of calls, geographical locations, date and time, etc.

2. Normalization: Since the features in the CDR dataset may have differ-
ent scales or units, normalization technique has been added to ensure
that all features contribute equally to the clustering process.

3. Distance Metric: Since I deal with numerical data, and anomaly de-
tection, common metrics like Euclidean metric is not ideal for anomaly
detection due to their susceptibility to biases from duplicate features
or irrelevant features that do not effectively predict target attributes. I
selected Mahalanobis metrics since it measures the distance of a point
from the mean along each principal component in terms of standard
deviations.

4. Outlier Handling: Annotations have been provided by network experts
for the previously reported incidents along with the historical data to
enhance the identification, handling and introducing outlier detection
mechanisms.

5. Thresholding: In anomaly detection, it’s common to define a threshold
to distinguish between normal (hourly/daily/weekly traffic behavior)
such as peak hours, recurrent events and anomalous clusters. I intro-
duce thresholding techniques to identify clusters that deviate signifi-
cantly from the expected behavior, indicating potential anomalies.

6. Iterative Refinement: Given the dynamic nature of mobile networks
and evolving security threats, I iteratively refine our adapted algorithm
based on feedback from real-world observations and ongoing monitoring
of network behavior.
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The theory of the algorithm

The K-means clustering algorithm is a popular method for partitioning a
given dataset into K distinct, non-overlapping clusters. Mathematically, the
K-means algorithm can be described as follows [106]:

• K: Number of clusters

• n: Number of data points

• d: Number of dimensions (features)

• xi: Data point i (where i = 1, 2, . . . , n)

• ck: Centroid of cluster k (where k = 1, 2, . . . , K)

Objective: The objective of K-means clustering is to minimize the
within-cluster variance, also known as inertia or distortion. It is defined
as the sum of squared distances between each data point and its assigned
centroid within the cluster.

Mathematical Representation [107]:

1. Initialization:

• Randomly initialize K centroids ck for each cluster.

2. Assignment Step (Expectation):

• Assign each data point xi to the nearest centroid based on Eu-
clidean distance:

argmink||xi − ck||2 (6.24)

3. Update Step (Maximization):

• Update the centroids ck by computing the mean of all data points
assigned to cluster k:

ck =
1

|Sk|
∑
xi∈Sk

xi (6.25)

where Sk is the set of data points assigned to cluster k.

4. Repeat Steps 2 and 3 until Convergence:
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• Iterate Steps 2 and 3 until the centroids no longer change signifi-
cantly, or a predefined number of iterations is reached.

Objective Function: The objective function of K-means clustering is
to minimize the within-cluster sum of squares (WCSS), given by:

WCSS =
K∑
k=1

∑
xi∈Sk

||xi − ck||2 (6.26)

where Sk is the set of data points assigned to cluster k.
Convergence Criteria: K-means clustering typically converges when

one of the following conditions is met:

• The centroids do not change significantly between iterations.

• The maximum number of iterations is reached.

Algorithm 1 k-means clustering

1: Initialise Cluster Centroids
2: for every iteration l do
3: Compute rnk:
4: for for every data point xn do
5: Assign every data point to a cluster:
6: for every cluster k do
7: if k == argmin

∥∥xn − µl−1
k

∥∥ then
8: rnk = 1
9: else

10: rnk = 0
11: end if
12: end for
13: end for
14: for every cluster k do
15: Update cluster centroids as the mean of each cluster:
16: µl

k =
∑

rnkxn∑
rnk

17: end for
18: end for

The final output of K-means clustering is a set of K clusters, each repre-
sented by its centroid ck, and each data point assigned to one of the clusters
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based on proximity to its centroid. The pseudo-code for K-means clustering
is presented in Algorithm 1.

The algorithm aims to minimize the within-cluster variance, also known
as inertia or sum of squared distances, by iteratively assigning data points to
the nearest cluster centroid and updating the centroids to the mean of the
data points in each cluster.

6.3.6 DBSCAN

The DBSCAN algorithm [108] stands for Density-Based Spatial Clustering of
Applications with Noise. It is a densitybased algorithm marking anomalies
that do not lie in any cluster. The idea is to group densely congregated data
points into a single cluster.

The algorithm requires two parameters to identify outliers or anomalies.
The first parameter is Epsilon ( ε ), which is the radius of circle that is
created around densely clustered data points, and minPoints, which is the
minimum number of data points.

A point in the circle can be classified under three categories: Core, Border
and Noise. The DBSCAN algorithm locates the data points using Euclidean
distance. However, two major concepts are considered before making deci-
sions on any data point: Reachability and Connectivity.

Reachability is about the position of a data point whether it is accessible
by another data point (directly or indirectly). Connectivity is to know if two
data points lie in the same cluster.

6.4 Performance Metrics

This section is about the evaluation metrics that are applied in the study.
These parameters are used specifically in the second phase, which is about
anomalies and outlier detection and prediction. These metrics evaluate each
algorithm individually. The algorithms are Z-score, Isolation Forest and
DBSCAN.

Before I start explaining the parameters, I need to know the confusion
matrix, which is the base for defining the assumptions for the evaluation
metrics.
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6.4.1 Confusion Matrix

It is simply the combination of all possible hypotheses for a predicted and
actual value in a matrix form (see Fig. 6.2). There are four criteria in the
matrix for both actual and predicted values: True Positives, False Positives,
False Negatives and True Negatives.

Figure 6.2: Confusion Matrix.

Precision

Precision is the ratio of the true positives to all the positives. It is a useful
measure to evaluate the accuracy and performance of algorithms. The metric
can be formulated as follows:

P =
TP

TP + FP

(6.27)

Recall

It is the measurement of the algorithm correctly identifying the True Posi-
tives. This metric can be considered as True Positive Rate to avoid incor-
rectly identified True Positives. The formula is as follows:

P =
TP

TP + FN

(6.28)

83



F1-Score

This metric is a decision-making presumption that a tradeoff is needed be-
tween Precision and Recall metrics based on the needs of a model.

In our case, I would prefer high Recall than high Precision since every
detected anomaly should be taken into account and checked further since the
possibility of having an anomaly correctly identified will affect the business
and huge loss in revenue especially in large voice traffic carriers or mobile
operators. For that, I use the Harmonic mean of Precision and Recall, which
is called F1-Score.

F1Score = 2 ∗ Precision ∗ Recall

Precision + Recall
(6.29)

ROC-AUC

ROC stands for Receiver Operating Characteristic curve, while AUC stands
for Area Under ROC Curve. They are both performance measurements.
ROC is the probability curve that depends on two parameters: True-Positive
Rate (TPR) and False-Positive Rate (FPR). I can define them as following:

TPR =
TP

TP + FN

(6.30)

FPR =
FP

FP + TN

(6.31)

On the other hand, AUC is the measure of separability. It measures the
entire area under the ROC curve. The higher the AUC is, the better is the
model at predicting TP and TN. The graph below (Fig. 6.3) explains both
ROC and AUC.

Accuracy

The accuracy score evaluates the performance of the algorithm and provides
the percentage of the correct predictions made by the algorithm. The more
formal formula goes as following:

Accuracy =
TN + TP

TP + FP + TN + FN

(6.32)
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Figure 6.3: ROC-AUC graph.

6.5 Results and discussion

I discuss in this section the results from the algorithms are provided and
discuss them further. The results are separately treated based on the input
of the algorithms, and that is done in two phases. In the first phase, I discuss
the normal behavior of voice traffic profiles based on two algorithms. GMM
is used to provide the call duration profiles that customers intend to have
throughout the day. MS on the other hand, takes care of finding the peak
hours on a daily basis. Furthermore, I provide samples of the usual daily
number of calls as well as the monthly number of calls and call duration.
In addition, I present the linear function between number of calls and call
duration.

In the second phase, I show the distribution function of number of calls,
call duration and mean call duration. Finally, I demonstrate the results from
the algorithms used to detect and predict anomalies based on annotations
made during extracting the CDR data along with the evaluation metrics.

6.5.1 Phase One

In Fig. 6.4, an hourly basis of a normal daily traffic in the network is illus-
trated. The number of calls is presented on y-axis and the time on x-axis.
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Figure 6.4: Hourly basis number of calls.

I can see that the traffic slowly goes down starting from midnight until
early in the morning due to sleeping hours and no working hours. The traffic
noticeably goes back up starting from 6:00 morning until it encounters the
first peak hour from 13:0014:00 afternoon. There is slightly lower traffic than
the peak hours from 16:00-17:00 afternoon. However, that is for a short time,
which can be due to the end of working hours. I encounter the second peak
hour in the evening around 18:0020:00. Then, the traffic starts to decrease
until the next morning.

In Fig. 6.5, I present a three-month based traffic sample to explain the
monthly traffic patterns. The number of calls is presented on y-axis and
the days on x-axis. Here I can see the effects of weekdays and weekends
along with seeing two major anomalies in the graph annotated. A strong
seasonal pattern can be seen in the graph, and that is due to having lower
traffic during the weekends and higher during the weekdays. Additionally,
the traffic shows rhythmic patterns that reflect the customers’ behavior on a
long-term daily basis.
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Figure 6.5: Monthly number of calls.

In contrast, the two major spikes in the graph are anomalies that can be
differentiated from the rest of the peaks. Anomalies are defined as devia-
tions from the normal behavior in the network. There are various reasons
that can cause such conducts like network issues, events, malicious attacks,
etc. Detecting and/or predicting such behaviors in time saves the network
from huge impact on revenue and business loss. However, anomalies can be
negative, which means lower traffic than usual that can be seen on 23rd day.

Table 6.1 shows the statistics of our entire CDR data. In the table I
have weekdays and weekends number of calls along with mean and standard
deviation per each day. I can see the majority of traffic lies on weekdays and
least on weekends.
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Table 6.1: Statistics of daily voice calls
Days Total calls per year µ [calls] σ [calls]

Monday 5725454 108027 18898
Tuesday 5590481 105481 14609

Wednesday 5624193 106117 16934
Thursday 5401519 101915 13508
Friday 4625490 87273 11869

Saturday 5066378 95592 14301
Sunday 5065466 95575 10340

In Fig. 6.6, the duration of calls is presented for the same selected days
in Fig. 6.5. On y-axis I have call duration, and the days are presented on the
x -axis. Similar pattern can be noticed in Fig. 6.6 as seen in Fig. 6.5. Hence,
I calculate the function between the number of calls and the call duration to
understand the relation between call duration and the number of calls.

Figure 6.6: Monthly total call duration.
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Figure 6.7: The linear function between call numbers and duration.

A linear function is determined when I try to find the function between
the number of calls and call duration as seen in Fig. 6.7. I can say based
on Fig. 6.7 that the number of calls are proportional to the call duration.
The majority of findings are all placed linearly with the expection of a few
outliers.

As now I are familiar with the traffic patterns, I use GMM to calculate
the clusters of call duration that majority of customers have in the network.
In Fig. 6.8, I see there are four major clusters of call duration.

The four major clusters of call duration are the mean call duration, and
they are ordered from short to long:

• The first cluster shows 125.35 seconds, which can be defined as a stan-
dard average call duration. It is indicated as blue in Fig. 10.

• The second cluster is 142.81 seconds, which is the second highest per-
centage of call duration that customers have.

• The third cluster is 154.13 seconds. This is the lowest percentage
among all other clusters.
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• The final cluster shows 188.67 seconds with the third highest per-
centage of call mean call duration.

Figure 6.8: GMM for call duration cluster determination.

There are calls with more than 60 minutes duration. However, the calls
cannot go beyond 120 minutes duration due to the settings made in the
network. Other than that, there are outliers of course as can be seen in the
Fig.

In Fig. 6.9, I have MS algorithm presented to determine the peak hours
during the day for a hundred days-based data. On xaxis, the days are pre-
sented, and y-axis shows the time of the day. Based on the study, the average
peak hours mainly are located around two different timestamps. The first
one occurs 11:00-14:00, and the second one around 18:00-20:00.
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Figure 6.9: MS algorithm for peak hours.

6.5.2 Phase Two

Now, I have basic understanding of the normal voice traffic behavior and
patterns in the network based on phase one.

It is essential to have the background of normal voice traffic forms in
order to extinguish the abnormal forms and behaviors. Moreover, I want to
detect them and predict them using certain algorithms. The parameters that
are used at this phase are: Date, Time, number of calls, call duration and
average call duration. I visualize first the data in Fig. 6.10.

The top graph shows the average call duration per day, the data as men-
tioned are one-year based on July 2017-June 2016. The second graph displays
the number of calls per day for the entire year. The bottom graph is the total
call duration.
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Figure 6.10: Data visualization.

However, the data is seasonal based. To avoid complexity and have
higher accuracy results, I deseasonalize the data or seasonal adjustment (see
Fig. 6.11). This is a statistical method to remove seasonal components since
our main objective is to detect and predict anomalies.

Deseasonalization is a process used to remove the seasonal patterns or
fluctuations from a time series dataset. These seasonal patterns often repeat
in a regular and predictable manner over a specific period, such as daily,
weekly, monthly, or yearly cycles. Deseasonalization aims to isolate the un-
derlying trend and irregular components of the data, making it easier to
analyze and interpret.

To deseasonalize our data, the following steps have been followed:

1. Identification of Seasonal Patterns: Initial examination of the time
series data to identify recurring seasonal patterns or fluctuations. There
are certain patterns in our data that are following daily, weekly and
monthly trends.

2. Estimation of Seasonal Component: Application of appropriate tech-
niques, such as moving averages or seasonal decomposition methods,
to estimate the seasonal component of the data.
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3. Using Additive Model: Additive model decomposes a time series into
three components: trend, seasonal, and residual (or irregular). The
seasonal component is estimated by averaging the values of the data
over each seasonal period (e.g., monthly averages for monthly data) and
subtracting these seasonal averages from the original data to obtain
the deseasonalized series. Additive model explicitly separates trend,
seasonal, and irregular components, providing a clearer understanding
of underlying patterns. In addition, it can handle different types of
seasonal patterns, including multiplicative ones.

4. Subtraction of Seasonal Component: Removal of the estimated seasonal
component from the original data to obtain the deseasonalized data.

5. Analysis of Deseasonalized Data: Examination of the deseasonalized
data to identify the underlying trend and any remaining irregular com-
ponents.

Overall, deseasonalization is a critical preprocessing step in time series
analysis that helps to isolate and analyze the underlying trend and irregular
components of the data by removing the seasonal patterns or fluctuations.
It allows for a clearer understanding of the underlying patterns in the data
and facilitates more accurate analysis and modeling.

Figure 6.11: Data deseasoanlization.

Once I have the data deseasonalized, I visualize the distribution of the
data. Data distribution deals with the frequency of the event occurrences
within a certain interval. In Fig. 6.12, I have the distribution of average call
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duration, number of calls and total call duration respectively. The distribu-
tion shows Poisson distribution, which determines the likelihood of an event
occurring over a period of time or distance. The events are independent
of each other, with no limit on the time of occurrence as stated in Poisson
distribution.

The distribution of data can be visualized using graphical representations
such as histograms, box plots, and probability density functions. In Fig. 6.12,
I present the distributions of average call duration, number of calls, and total
call duration, respectively. These visualizations help in assessing the shape,
spread, and skewness of the data distribution.

Data distribution is a fundamental aspect of data understanding that pro-
vides insights into central tendency, variability, shape, outliers, relationships
between variables, and modeling assumptions.

Analyzing data distribution helps in summarizing the dataset, identifying
patterns and trends, detecting outliers, and making informed decisions about
data analysis and modeling techniques. In addition, it helps to understand
the spread of data values around the mean, helping to assess the stability
and consistency of the data distribution.

In Fig. 6.12, I can see the mean values of average call duration, number
of calls, and total call duration. On the y-axis, I have the frequency. On the
x-axis, the distribution of data is presented. This tells us how the majority of
calls along with their duration are spread over time to provide a meaningful
insight into the normal traffic distribution versus outliers.

The distributions exhibit a Poisson distribution pattern, which assesses
the probability of an event occurring over a period of time or distance. In
Poisson distribution, events are independent of each other, and there is no
restriction on the timing of their occurrence.
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Figure 6.12: Data distribution.

I carry out the experiments with the first algorithm, which is Z-score to
detect and predict anomalies in the data based on factual annotations. To
add one extra information in the graphs, I use both original and deseason-
alized data for accuracy comparison along with the evaluation metrics. In
Fig. 6.13, the orange lines show the agreement between the detected and
predicted anomalies, while the yellow lines tend to reveal more anomalies
predicted that actual data annotations don’t detect.
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Figure 6.13: Z-score algorithm.

The performance evaluation for Z-score algorithm based on the metric
scores is presented in Fig. 6.14. As mentioned earlier, the metric scores are
Precision, Recall, F1-score, ROC-AUC and Accuracy. The figure manifests
the evaluation of original and deseasonalized data. In the left column, the
metrics show better performance and higher accuracy when the data is de-
seasonalized.
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Figure 6.14: Z-score evaluation metrics.

The performance metrics show how well the algorithm is performing as
well as the efficiency. However, the Precision, Recall and F1-score do not
show promising results. The algorithm made promising results when it comes
to high detection of anomalies but failed with low F1-score, which is the
harmonic mean of Precision and Recall.

I move to the second algorithm in our study to detect and predict anoma-
lies, which is Isolation Forest. This algorithm is specifically developed for
data anomaly detection. The respectable feature of this algorithm is low
memory requirement, which makes it work well with large dataset.

In Fig. 6.15, the algorithm with deseasonalized data is located on the
right side and on the left side, I have the original data. The darker orange is
where the actual and predicted anomalies meet, while the yellow lines show
possibilities of anomalies predicted that actual annotations don’t mark them.
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Figure 6.15: Isolation Forest algorithm.

The performance metrics of this algorithm appear to be higher than the
ones of Z-score algorithm (see in Fig. 6.16). The accuracy is about 98% with
the deseasonalized data, higher than when using original data. In addition,
I see also all other metrics showing higher percentages in measurements.
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Figure 6.16: Isolation Forest evaluation metrics.

I perform experiments employing the K-means clustering algorithm for
anomaly detection and prediction in the data, relying on factual annotations.

I utilize the silhouette score [109], which is a metric used to measure
the goodness of a clustering technique. It quantifies how well-defined the
clusters are in the data. The score ranges from -1 to 1. For each data point,
the silhouette score measures how similar it is to its own cluster compared to
other clusters. Higher silhouette scores indicate better-defined clusters. This
metric helps in selecting the optimal number of clusters for techniques like
K-means clustering and evaluating the overall quality of clustering results.
The obtained result of silhouette score is about 0.54.

The number of clusters that maximizes the silhouette score is typically
chosen as the optimal number of clusters. Th number of clusters were found
to be 5 in my study.

I incorporate both original (on the left) and deseasonalized (on the right)
data for accuracy comparison to enhance the graphs with additional insights
along with performance metrics. In Figure 6.17, the grey lines show agree-
ment between detected and predicted anomalies, while the yellow lines depict
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instances where more anomalies are predicted compared to those detected by
the actual data annotations.

Figure 6.17: K-means clustering algorithm..

The evaluation of the K-means algorithm’s performance, based on metric
scores, is shown in Figure 6.18. As mentioned earlier, the metrics include
Precision, Recall, F1-score, ROC-AUC, and Accuracy. The figure represents
the evaluation of both original and deseasonalized data. In the left column,
the metrics indicate better performance and higher accuracy when the data
is deseasonalized.

While the performance metrics manifest insights into the algorithm’s ef-
fectiveness and efficiency, the Precision, Recall, and F1-score do not exhibit
promising results. Although the algorithm demonstrates a high detection
rate for anomalies, it falls short in achieving a satisfactory F1-score, which

100



represents the harmonic mean of Precision and Recall. However, the algo-
rithm fits well in providing a high accuracy results in detecting the annotated
anomalies along with the future prediction and possibilities of additional out-
liers that may not be easily apparent to the factual annotations.

Figure 6.18: K-means clustering evaluation metrics.

The final algorithm in our study is DBSCAN, which is quite robust to
anomalies and has a high notion of noise. Another advantage is that the
algorithm does not need to specify the number of clusters in advance.

In Fig. 6.19, the deseasonalized data used in the algorithm on the left
side, and the original data graphs are on the right side. I see similarity
between Isolation Forest and DBSCAN algorithms when it comes to accuracy.
Though, the DBSCAN algorithm tends to find more anomalies than Isolation
Forest and with higher accuracy.
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Figure 6.19: DBSCAN algorithm.

The evaluation metrics in Fig. 6.20 show high accuracy of 98% with de-
seasonalized data. The other metrics also indicate the efficiency and effec-
tiveness of the DBSCAN algorithm. Yet, I notice significantly similar results
with the Isolation Forest algorithm. That means both algorithms equally
show promising results for anomaly detection and prediction.
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Figure 6.20: DBSCAN evaluation metrics.

6.6 Conclusion

In this chapter, research about characteristics of voice traffic profiles and pat-
terns using CDR data is presented. The data cover 37 million CDR records of
one-year data. The study consists of two phases. To understand the anomaly
and outlier behavior, I have to know first how the normal behavior of voice
traffic looks like.

In the first phase, I manifest the normal voice traffic profiles using linear
regression function, GMM and MS algorithms to identify the call duration
groups and peak hours respectively. In addition, I represent data samples of
daily and monthly traffic along with the linear function between call num-
bers and duration. The first phase is about defining a set of boundaries to
isolate a daily normal traffic behavior from outliers that the network might
face throughout the year. This borderline between normal and abnormal
behaviors is crucial for reference and annotations for the second phase of this
study in terms of number of calls, call duration, peak hours and daily traffic
profiles. Moreover, it helps us to understand and choose the right attributes
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for the modeling.
The second phase, I visualize the whole dataset and deseasonalize them

for higher accuracy results. Then, I show the normal distribution of the
available attributes. The distribution shows Poisson distribution, which de-
termines the likelihood of an event occurring over a period of time or dis-
tance. The events are independent of each other, with no limit on the time
of occurrence as stated in Poisson distribution.

Afterwards, I employ three known algorithms in detecting and predicting
anomalies. Z-score (standard score), Isolation Forest, K-means and DBSCAN
algorithms. Z-score is well-known in identifying outliers but it fails when it
comes to crucial and extreme outlier values. On the other hand, Isolation
Forest shows promising results in detection and prediction of anomalies in
my study with accuracy results. However, poorly selected hyperparameters
may result in lower accuracy.

In contrast, the K-means clustering algorithm exhibits a notably high
performance, achieving an accuracy rate of 96% in effectively detecting and
predicting underlying anomalies. Moreover, this performance is particularly
enhanced when the dataset has undergone deseasonalization, a process aimed
at removing seasonal patterns or variations from the data. In retun, DB-
SCAN shows great performance at splitting high-density clusters from low-
density clusters. The DBSCAN algorithm provides higher accuracy, compu-
tational time and efficiency than other algorithms with 98%. I evaluate them
based on several performance metrics. This level of accuracy holds true even
when applied to datasets sourced from the latest mobile network generations,
including those involving 5G Call Detail Record (CDR) data.

104



Chapter 7

Multi-sensory precipitation
forecast

7.1 Introduction

Time series data forecasting utilizes models to fit historical data. The data
are commonly a sequence measured at consecutive equally spaced points in
time. These measurements are tracked, monitored, and aggregated over time.
This is opposed to cross-sectional data that evaluate individuals at a single
point in time. In addition, time series data may have an internal structure
like autocorrelation, trend, or seasonal deviation [110].

Numerous objectives can be achieved in studying and analyzing such
data since they generate mechanisms, understanding, and forecasting future
events.

Time series data analysis takes place in a range of fields. For instance,
it is used in agriculture for annual production. It also unveils considerable
results in business and economics in terms of stock prices recorded daily or
sales over a certain period of time. In meteorology that signifies for instance
daily, monthly, or annual amounts of rainfall data [111]. These instances
manifest the importance of unit of time in time series data analysis.

In this work, I use time series models to analyze and forecast the collected
rainfall data over the region for a better understanding of the climate changes
throughout the years. I implement three time series models to forecast the
amount of rainfall to achieve more accurate results. The selected models
are i) SARIMA model, which is a statistical analysis model used to model
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univariate time series data that may contain trend and seasonal components
[112]. ii) a CNN model for univariate time series, a class of deep neural
networks that was originally developed for image analysis and recognition.
Nevertheless, CNN can be used successfully to model univariate time series
forecasting. iii) Prophet model, which is an additive regression model. The
model is an open source introduced by Facebook to cover several forms of
seasonal/univariate data and can be implemented as an additive time series
forecasting model.

In Fig. 7.1, I exhibit the process of rainfall time series forecasting in our
study. A common assumption that is used in time series techniques is sta-
tionarity. Stationarity is a process when the mean, variance, and covariance
do not change over time. In addition, I go through the time series compo-
nents, which can be decomposed into trend, seasonality, and irregularity in
the data. The trend is the time series long-term pattern whether it is increas-
ing or decreasing. The seasonality is an event when the time series shows
regular variations over the same period of time. In contrast, irregularity is
about unpredicted events which makes it a random variable.

Figure 7.1: Rainfall forecasting process.

The models are tested and evaluated based on several performance pa-
rameters. These parameters are used for accuracy measurement. The per-
formance parameters that are used are Forecast Error, Mean Forecast Error,
Mean Absolute Error, Mean Square Error, Root Mean Square Error, and
runtime. The error implies here the unpredictable part of an observation.
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7.2 Theory of the models

In this section, I discuss the theory behind the models and their methods
of implementation. Furthermore, the requirements and components of each
model are presented. I also show the formulation of these components along
with their procedure on how they are composed.

7.2.1 SARIMA model

Seasonal Autoregressive Integrated Moving Average (SARIMA) is a statis-
tical analysis model and direct modeling of seasonal components as it is an
extension of the ARIMA model. It is a time series forecasting technique that
deals with univariate data including trends and seasonality. The reason for
using SARIMA rather than ARIMA is that ARIMA does not model seasonal
data.

There are requirements in SARIMA configuration for both trend and
seasonal components [113]:

SARIMA(p, d, q)(P,D,Q)s (7.1)

Three trend components are involved as they are similar to the ARIMA
model, and four seasonal components are involved in SARIMA.

p and seasonal P : autoregression order, or lag order d and seasonal D :
difference order/degree

q and seasonal Q : moving average order
s : time steps for a one seasonal period
However, the SARIMA model is composed of several models combined to

build SARIMA [114]:
Auto-Regressive (AR) model: The model works as the previous values

influence future values. p is a parameter used to consider the number of
lagged observations.

Yt = α + β1Yt−1 + β2Yt−2 + · · · + βpYt−p + ϵ1 (7.2)

Moving Average (MA) model: It is utilized to define the stationarity of
a time series. It is the result of dependency between observed values and
residual error applied on lagged observations. It is usually indicated as q and
stated as:
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Yt = α + ϵt + ϕ1ϵt−1 + ϕ2ϵt−2 + · · · + ϕqϵt−q (7.3)

Auto-Regressive Moving Average (ARMA) model: The combination of
AR and MA models. Forecasting of a time series is based on the impact of
residuals and previous lags.

Yt = c + ϵt +

p∑
i=1

ϕiYt−i +

q∑
i=1

θiϵt−i (7.4)

Auto-Regressive Integrated Moving Average (ARIMA): This model de-
scribes the autocorrelations in the data. It is a combination of several dif-
ferences already applied to the model to have it stationary, the number of
previous lags along with residuals errors to forecast future values.

Yt = α + β1Yt−1 + · · · + βpYt−p + ϵt + ϕ1ϵt−1 + · · · + ϕqϵt−q (7.5)

7.2.2 CNN model

CNN model was developed for 2-D image data, but it can also be used to
model univariate time series data. CNN is a class of deep learning and has
a convolutional hidden layer, which runs over a one-dimensional sequence.
The convolutional and pooling layers are followed by a dense fully connected
layer that interprets the features extracted using the convolutional section of
the model [115].

The use of the model is done as following steps [116]:

1. The spatial and temporal dependencies are captured by the neural net-
work in the input feature map by utilizing a convolutional kernel on
this input tensor.

2. Each element within the input feature map is parsed iteratively by the
layer through a sliding convolutional kernel.

3. A convolved output feature map at this phase is produced that models
the translational invariance nature of the input feature map.

4. The convolved feature map is down-sampled by the pooling layer. Ten-
sor operations along with a sliding window are applied for this process.
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Moreover, the pooling is either maximum or average. The pooling layer
is used to reduce the number of parameters and therefore, reduces the
overfitting risk.

5. Epoch in neural networks is defined as one cycle through a full train-
ing dataset. Every training of a neural network usually takes several
epochs. In other words, I feed a network the training data for more
epochs so that the network is given a chance to see the data history and
readjust the model parameters. The model then is not biased toward
a few data points, especially in large training sets.

7.2.3 Prophet model

It is an open-source tool, introduced by Facebook and used for time series
data forecasting. The Prophet model is based on an additive model where
non-linear trends fit with seasonality including holidays. The advantage of
using the Prophet model is the robustness of missing data as well as the
outliers.

The Facebook model is founded on the curve fitting technique that be-
longs to the Bayesian model. The technique is a perfect fit when there is a
strong seasonality attribute in the time series data as an influencing factor.
The model deals with four major components as a procedure that is based
on an additive regression model [117]:

1. A piecewise linear, which can be interpreted as a logistic growth curve
trend. In general, the model finds the changes in trends automatically,
selecting changepoints from the data.

2. Fourier series is being used to model yearly seasonal components.

3. Dummy variables for weekly seasonal components.

4. Holidays that are provided which I do not consider for our study.

The model function is formed as follows:

f(t) = g(t) + s(t) + h(t) + e(t) (7.6)

Where: f(t) is the forecast function based on the additive regression
model. g(t) represents the trend, and it models non-periodic changes. s(t)
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stands for seasonality, and it describes the periodic changes. h(t) is used to
show the effects of holidays. e(t) refers to the error term that reports odd
changes not adjusted by the model.

7.3 Performance Evaluation

The performance of each model can be tested and evaluated using a set of
different forecast accuracy measurement parameters including the executing
time of each model [118]:

7.3.1 Forecast Error (FE)

It is defined as the difference between the actual value and forecast value of
a time series. It is usually calculated as below:

e = y − ŷ (7.7)

Where y is the observation and ŷ denotes the forecast value from all
previously observed values.

7.3.2 Mean Forecast Error (MFE)

It is a measure of forecasting accuracy. Forecast error is the difference be-
tween actual and forecast values for a given time. A value other than zero
tends to over-forecast (negative error) or under-forecast (positive error).

MFE =

∑n
i=1 yi − ŷi

n
=

∑n
i=1 ei
n

(7.8)

7.3.3 Mean Absolute Error (MAE)

Absolute error is the difference between measured values and true values. On
the other hand, the mean absolute error is the average of all absolute errors.
A mean absolute error of zero shows no error. Below is the MAE formula:

MAE =

∑n
i=1 |yi − ŷi|

n
=

∑n
i=1 |ei|
n

(7.9)
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7.3.4 Mean Square Error (MSE)

It is a mean square deviation. MSE is the average of squared forecast error
values. When the forecast error values are squared, this will force the values
to be positive. A zero value indicates the best skill or no error, as shown in
the below equation:

MSE =

∑n
i=1 (yi − ŷi)

2

n
=

∑n
i=1 e

2
i

n
(7.10)

7.3.5 Root Mean Square Error (RMSE)

It is the square root of the mean square error and the values are in the same
units of prediction. RMSE is the difference between forecast values. A zero
RMSE shows no error. The formula can be represented as follows:

RMSE =
√
MSE =

√∑n
i=1 (yi − ŷi)

2

n
(7.11)

7.3.6 Runtime

It is executing time for a script to run on an operating system. The lower
the value is, the faster the model implementation. The script is processed,
read, and then compiled into bytecodes. Finally, the bytecodes are executed
to run the program.

7.4 Results and discussion

In this section, I discuss the results of implementing the models. I show the
forecast along with the actual precipitation through the graph to explain the
behavior of the models. Furthermore, I present performance parameters for
each model to demonstrate the accuracy measurement values.

7.4.1 SARIMA model

In this section, I discuss the methodology of forecasting with SARIMA. Be-
fore modeling, there are a few assumptions that need to be considered.
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Stationarity

Stationarity states that the statistical properties and parameters of a stochas-
tic process are constant through time [119]. Stationary is an important as-
sumption in time series analysis to enable forecasting since it has a pre-
dictable probability distribution. Thus, the mean, variance, and covariance
should have time dependency characteristics.

As a first step to ensure that our data is time series stationary, I perform
a test to determine if the process has a unit root. This test is called the
Dickey-Fuller test [120]. The results from the Dickey-Fuller test are shown
in Fig. 7.2.

Figure 7.2: Dickey-Fuller test results.

A unit root presence in the time series data indicates the non-stationarity
of the data and it is represented as a null hypothesis. According to the test
on our data, the null hypothesis is rejected ( p-value < 0.05), which means
the data do not have a unit root. Therefore, the data are stationary.

Autocorrelation Function

ACF is a measure of a linear relationship among variables, and it calculates
the correlation between lagged values of a time series [121]. From a mathe-
matical point of view, I apply ACF to find the right q parameter from the
MA of the model. From our analysis of the data, I select q = 3 for the MA
parameter as shown in Fig. 7.3.

Partial Autocorrelation Function

PACF is the correlation between observations at two given time points, which
I consider both observations to be correlated to observations at other time
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Figure 7.3: Autocorrelation Function.

points [121]. According to PACF, I can see that the parameter corresponding
to the Autoregressive (AR) part is p = 5 as shown in Fig. 7.4.

Figure 7.4: Partial Autocorrelation Function.

SARIMA Function

In this section, I try different values for the Integrated (I) part after choosing
the AR and MA parameters. The values usually are d = 0 or d = 1. Based
on testing all possible values, I find out the value that fits better is d = 1.

Once the values of AR, MA, and I are found, I need to find the seasonal
values, which can be found after several iterations. As to the available data,
the seasonal length is to be s = 12 due to the annual period (12 months).

SARIMA(5, 1, 3)(0, 1, 1)12 (7.12)
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On the other hand, I try several iterations, and I find the parameters with
the best Akaike Information Criterion (AIC) as the following:

The Akaike information criterion is an estimator of prediction error and
thereby the relative quality of statistical models for a given set of data.

As the appropriate parameters were found, I can state the function in
our Python script through the SARIMA library. I can plot the output of the
model including the next 12 months’ prediction in Fig. 7.5.

Figure 7.5: SARIMA model.

I have on the y-axis the amount of precipitation in [mm]. On the x-axis,
the unit of time is exhibited in [year] from 2009. The blue line represents the
actual amount of rainfall, and the red line shows the prediction. Once the
model is defined, I evaluate the model using forecast evaluation parameters
as indicated in Table 7.1 below:

Table 7.1: SARIMA Forecast Evaluation
Model runtime (s) MFE MAE MSE RMSE

SARIMA 7,962 0,003 0,721 0,930 0,965

The runtime of the script takes 7, 962 s to forecast the rainfall data. Based
on the recorded parameters, the SARIMA model does not perform well as
they are supposed to be close to zero to achieve the best performance.
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In addition to presenting and fitting the model, I can check using resid-
uals diagnostic tools (shown in Fig. 7.6) whether the model has adequately
captured the information in the data. In a time series model, residuals are
left over after fitting the model and it is characterized as the difference be-
tween the observations and the corresponding fitted values. I can divide the
residual diagnostic [122] findings into 4 parts with their correspondents: i)
Standardized residual or residual errors fluctuate around zero mean and with
a uniform variance. ii) Histogram, density plot suggests normal distribution
with zero mean. iii) Normal Q-Q, which tells that all the dots fall roughly
in line with the red line. iv) Correlogram (ACF), the plot shows the residual
errors are not autocorrelated. Any autocorrelation would imply that there
are some patterns in the residual errors which are not explained in the model.

Figure 7.6: Residual diagnostics.
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7.4.2 CNN model

In this section, I work on the CNN model for the univariate dataset. The
model has a convolutional hidden layer that works over a 1-D sequence. The
convolutional and pooling layers are followed by a dense fully connected layer
that interprets the features extracted by the convolutional part of the model.

I almost always have multiple samples; therefore, I have to re-shape the
input component of the training data to fit with the requests from the model:
samples, timesteps, and features.

I can define the CNN model with the correct corresponding input shape.
The key in the definition is the shape of the input, which is specified in
the input shape argument on the definition of the first hidden layer. Now
that I have the correct input shape, I can define the CNN model as follows
(Fig. 7.7):

Figure 7.7: Defining the CNN model.

The model must meet the expectation of input for every sample with
steps = 12, and in terms of the number of features = 1. The proposed CNN
model consists of 5 layers.

The output model forecast is plotted in Fig. 7.8. I present on the y-
axis the precipitation in [mm] and on the x-axis the time in [year ]. The
year represents the measurements since 2009 and the leading forecast of 12
months.

The model is tested with two epochs, the first experiment is with 100
epochs and then with 1000 epochs. They are both evaluated with the selected
forecast evaluation parameters as shown in Table 7.2 for forecast evaluation
per 100 and 1000 epochs respectively.

I can see that 100 epochs performs less accurately than 1000 epochs. The
only downside is that running the training set 1000 times (epochs) takes
longer than 100 epochs. The parameters for 1000 epochs show that it is very
likely with higher performance forecasting compared to the SARIMA model
and CNN model with 100 epochs.
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Figure 7.8: CNN model with 1000 epoch.

Table 7.2: CNN Forecast Evaluation
Model runtime (s) MFE MAE MSE RMSE

CNN 100epoch 5,759 −0, 083 0,646 0,710 0,843
CNN 1000

epoch
12,246 0,008 0,246 0,128 0,357

7.4.3 Prophet model

The Prophet model [123] requires a dataset with a date and time column and
a sample values column, which is the precipitation. Once I have the input
ready, I can define the model components.

In the Prophet model, I fit the trend component flexibly which allows us
to model the seasonality more accurately and the result is a more accurate
forecast (see Fig. 7.9). On the left side, I present in the three figures the trend,
yearly and monthly respectively. In the trend graph, the y-axis displays the
precipitation, and the x-axis the trend on a yearly basis for our entire data.
By default, Prophet provides uncertainty intervals for the trend component
by simulating the future trend changes to our time series.

The trend graph shows an increment in the precipitation in 2013 and
rapidly decreasing in 2015. The precipitation is increasing gradually in 2017
and 2018 respectively, then diminishing slowly with a sign of stabilizing trend.
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Figure 7.9: Prophet model components.

I find negative values in yearly and monthly components due to variations
in the results. The yearly component varies between the mid and the end
of the year. In contrast, the monthly component varies between the month’s
beginning and end.

On the right side of Fig. 11, the model is presented. On the y-axis, (y)
represents the precipitation, and (ds) on the x-axis represents the years of
forecasting. The dots are the historical data, while the deep blue line is the
rainfall forecasting model. The light blue shadow is a 95% confidence interval
around the forecasting (deep blue line).

In Fig. 7.10, I represent the Prophet forecast model against the actual
data including the next 12 months’ prediction. On the y-axis, I have the
precipitation in [mm], and on the x axis, the time is presented on a yearly
basis. The prediction with the Prophet model indicates good accuracy based
on the forecast evaluation shown in Table 7.3.

Table 7.3: Prophet Forecast Evaluation
Model runtime (s) MFE MAE MSE RMSE
Prophet 1,992 0,001 0,640 0,644 0,803

The runtime spent executing the model was better compared to CNN and
SARIMA models. On the other hand, I have almost perfect MFE compared
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Figure 7.10: Prophet model.

to the other models but with higher MAE and MSE than the CNN and
SARIMA.

7.5 Conclusion

The objective of this study is to implement three different models for rainfall
time series forecasting. There are two major aims this study achieved, I
manifest the importance of rain gauge distribution and numeral reduction
over certain areas, and I conclude that SARIMA is not an ideal time series
forecasting with univariate data compared to neural network models. The
reduction of the number of rain gauges to 67% still provides high accuracy
forecasting results as shown in Fig. 7.11.

The forecasting is built on the classic statistical analysis model SARIMA,
a neural network based on the CNN model, and the additive regression
Prophet model. SARIMA is a direct modeling of seasonal components, deal-
ing with univariate time series data. On the other hand, CNN is a feedfor-
ward neural network model and has a convolutional hidden layer running on
one-dimensional sequences of time series data. Prophet is Facebook’s open-
source tool for time series forecasting. It is a procedure based on an additive
model as the non-linear trends are fit on data with seasonality components.
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Figure 7.11: Rain gauges reduction and redistribution.

The results show that SARIMA is not a good option for rainfall forecast-
ing with an error ratio slightly higher than the other two models. In addition,
it needs an intensive analysis of the dataset to find its parameters, thus, a
longer execution time is required. In contrast, the CNN model delivers lower
Mean Absolute Error and Mean Square Error than the other two models.
Therefore, it provides more accurate results for forecasting with low errors.
Finally, the Prophet model shows significant results in terms of Mean For-
ward Error, and a shorter time is needed to be executed. However, it shows
a higher Mean Absolute Error and Mean Square Error than the CNN model.

Based on our study, I see the importance of reallocating the rain gauges
and/or using fewer number of rain gauges since I see agreement in rainfall
amount recorded from all rain gauges distributed over the area of study.
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Chapter 8

Conclusion

This chapter concludes the studied cases and summarizes the thesis through
providing the works that have been done on the available datasets, offering
new approaches and understanding. Finally, it is followed by the research
contribution based on the presented work.

8.1 Thesis summary

This thesis aims to propose machine learning models for pattern identification
and predictive analytics delivering several case studies. Each study is based
on different datasets and novel approaches.

The first chapter introduced the entire thesis, thesis objectives and or-
ganization. Chapter two discussed the state of the art and present works
related to our studies. The work that I have done throughout the study was
confirmed to be up to date and even novel according to the current proposed
studies in nowadays research fields.

In chapter three, I explained in detail the datasets being used for our
studies. Some of the studies have involved using different datasets with
various forms and structures, each needed to be preprocessed and cleansed
for use according to the models’ requirements.

Various attributes were discussed and even eliminated from the data since
there was no use in our research. In addition, several hypotheses were pro-
posed and proven through data analytics. I did a novel analysis on CDR data
for both local and international voice traffic for various scenarios including
daily, weekly, monthly and yearly data based. Furthermore, I have proved
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how weekdays and weekends, even holidays, influence traffic patterns. On
the other hand, the influence of the neighboring countries and the distance
to the reference network in terms of countries affecting the overall volume of
traffic when it comes to international voice calls.

The study was based on four different datasets and merging all four
sources of data was challenging. Chapter four is purely based on mathe-
matical approach of queueing theory using both signaling and voice traffic
data. I researched and discussed theoretically the current mobile network
traffic patterns following a hundred-year-old queuing theory and probability
distribution. The proposal has mathematically and practically proven that
each customer is independent of the number of arrivals. The waiting time
follows the Poisson distribution and varies based on the system. Service and
interarrival time are exponentially distributed.

In chapter five, I studied the normal patterns in voice traffic and propos-
ing different models to determine and predict anomalies. I described the
normal behavior of voice traffic via various attributes using certain mod-
els to target specific attributes in the data. Then, I used three models for
anomaly prediction. Unlike other data sources, a forecast study and time
series data have been proposed in chapter six for rainfall forecasting based
on many sensors in a particular region. The research discussed the poten-
tial elimination and relocation of several sensors and employing the correct
models providing similar accuracy and efficiency.

The study indicates using 67 percent of the current used sensors to be able
to offer similar results. However, I can also recommend redistribution of the
sensors based on their coordinates, and that is one of my future objectives.

In general, there were of course challenges along the way struggling with
finding a reliable sources of data as well as fulfilling the requirements of our
studies. Another challenge was the ability to provide high accuracy and
efficiency in results to be competitive in the related fields since there are
hundreds of researches published on a daily basis.

8.2 Contribution of thesis

This thesis is based on several studies combining data analysis and modeling.
Each study serves in specific fields including different understanding, perfor-
mance improvement, cost reduction, accuracy in detection and prediction
anomaly.
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There are novel machine learning models used for the first time in spe-
cific fields and comparing the outcomes using several performance metrics to
evaluate the accuracy and effectiveness of each model. I deliver a detailed
analysis of CDR data for many different scenarios, including the distance in-
fluence on the international voice traffic as well as the traffic distribution. In
addition, a novel approach is proposed to study the voice traffic that provides
different views and understanding.

I split the study into two phases, a novel approach by studying the normal
voice traffic patterns and trends using three different models targeting certain
attributes in the data for more accurate outcomes, then using three known
models to detect and predict anomalies.

Furthermore, I theoretically constructed the applied queueing theory us-
ing signaling and user data in mobile networks. This is to validate that the
obtained results still follow the expected Poisson and Exponential distribu-
tions.

Moreover, I provide a novel study of multi-sensory precipitation forecast
is presented using time series models. The study suggests that the reduction
of rain gauge numbers to 67 percent of currently distributed over the area
with reallocating, would provide similar accuracy in forecasting results. In
general, the sensor distribution phase is done at an early stage of the study,
that needs to be reconsidered over a long period of time.

Many times, reduction and relocation are needed after deep analysis of
the area of study and comparing the results of both cases using the right
models and performance parameters.

8.3 Future Works

In the future, this work can be put into practice in live systems since all the
data are real and generated from live systems. It can also be extended to
cover more algorithms and models. Another scenario is to test under diverse
environments such as other locations where the data were generated from
and evaluate the results to see if the models work the same way and provide
similar results and high accuracy. This way I can understand whether they
are only applicable for specific scenarios or environments. Alternatively, to
see how the performance parameters perform under certain conditions.
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