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Declaration

I hereby declare I have written this doctoral thesis independently and quoted all the
sources of information used in accordance with methodological instructions on ethical
principles for writing an academic thesis. Moreover, I state that this thesis has neither
been submitted nor accepted for any other degree.

In Prague, 2024

............................................
Ing. Vojtěch Illner
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Abstract

Early identification of Parkinson’s disease (PD) during its prodromal stage is crucial
for the advancement of neuroprotective therapies. Unfortunately, accurate biomarkers
for prodromal PD are lacking, hindering early detection. Speech dysfunction typically
emerges early in PD, suggesting potential for vocal assessments in patients with isolated
rapid eye movement sleep behavior disorder (iRBD), a prodromal PD condition, and PD.
This approach could serve as a diagnostic and progressive biomarker for PD and related
synucleinopathies, with the opportunity of a remote, passive monitoring via smartphones.
However, challenges remain, such as developing reliable automated algorithms to assess
speech features and ensuring robustness against poor microphone quality or background
noise.

The current study encompasses multiple investigations into using smartphones to cap-
ture speech as a biomarker for PD. Firstly, reliable automated methods were established
to assess various physiological aspects of speech production. These methods demonstrated
deficits in pathological utterances, including impairments in phonation, prosody, speech
timing, and articulation. Secondly, a smartphone application and data acquisition sys-
tem were developed to monitor subjects’ speech unobtrusively through calls and active
tasks. Finally, a cross-sectional study involving iRBD and PD patients was conducted
using the developed system, supporting the use of smartphones to detect speech abnor-
malities. This approach not only aids in diagnosis but also has potential applications in
enhancing current treatment strategies for diagnosed PD patients, providing feedback in
neuropsychiatry, mitigating speech-related side effects of deep brain stimulation through
parameter optimization, population screening, and more.

Keywords: Prodromal synucleinopathy biomarker, Parkinson’s disease, speech, voice,
dysarthria, smartphone, telehealth, machine learning
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Abstrakt

Včasná identifikace Parkinsonovy nemoci (PN) v jej́ım prodromálńım stadiu má zásadńı
význam pro rozvoj neuroprotektivńı léčby. Bohužel, v součastnosti nejsou známy žádné
přesné biomarkery prodromálńı PN, což bráńı jej́ımu včasnému odhaleńı. Dysfunkce řeči
se obvykle objevuje v brzkém stadiu PN, což naznačuje potenciál pro hodnoceńı řeči u
pacient̊u s izolovanou poruchou chováńı ve fázi spánku s rychlými očńımi pohyby (iRBD),
což je prodromálńı stav PN, a PN. Tento př́ıstup by mohl sloužit jako diagnostický a
progresivńı biomarker pro PN a př́ıbuzné synukleinopatie s možnost́ı pasivńıho moni-
torováńı na dálku prostřednictv́ım chytrých telefon̊u. Přetrvávaj́ı však výzvy, jako je
vývoj spolehlivých automatizovaných algoritmů pro hodnoceńı fyziologických řečových
vzorc̊u a zajǐstěńı odolnosti proti špatné kvalitě mikrofonu nebo šumu na pozad́ı.

Tato studie zahrnuje několik výzkumů vedoućıch k využit́ı chytrých telefon̊u k zachyceńı
řeči jako biomarkeru PN. Nejprve byly ustanoveny spolehlivé automatizované metody pro
výpočet r̊uzných fyziologických aspekt̊u produkce řeči. Tyto metody prokázaly deficity
v patologické řeči, zahrnuj́ıćı poruchy fonace, prozodie, časováńı řeči a artikulace. Za
druhé byla vyvinuta aplikace pro chytré telefony a systém sběru dat, který umožňuje
neinvazivně a eticky nahrávat řeč subjekt̊u prostřednictv́ım hovor̊u a aktivńıch úloh.
Nakonec byla pomoćı vyvinutého systému provedena pr̊uřezová studie zahrnuj́ıćı pacienty
s iRBD a PN, která podpořila využit́ı chytrých telefon̊u k detekci řečových abnormalit.
Tento př́ıstup může pomoci nejen při brzké diagnostice, ale má také potenciálńı využit́ı
při vývoji současných léčebných metod pro pacienty diagnostikované s PN, poskytováńı
zpětné vazby v neuropsychiatrii, zmı́rňováńı vedleǰśıch účink̊u hluboké mozkové stimulace
pomoćı optimalizace parametr̊u, populačńım screeningu a daľśıch.

Kĺıčová slova: Biomarker prodromálńı synucleinopatie, Parkinsonova nemoc, řeč, hlas,
dysarthrie, smartphone, telehealth, strojové učeńı

vi



Acknowledgements

I express my gratitude to my supervisor, Doc Ing. Jan Rusz PhD., for his support
and insightful research guidance throughout my doctoral studies. Additionally, I am
appreciative of the entire Signal Analysis and Modeling team at the Faculty of Electrical
Engineering, Czech Technical University in Prague, for their assistance, support, and
companionship. Special thanks go to my former classmates, now colleagues, for our daily
lunches and coffee breaks, despite the messy office environment. Their valuable insights
greatly contributed to my doctoral journey. Furthermore, I extend my thanks to Prof.
Ing. Pavel Sovka CSc. for his support in teaching the Adaptive Signal Processing course
and for providing comprehensible technical explanations.

I would also like to express my thanks to my girlfriend and family for their support
and understanding. Lastly, I am thankful to my friends for being themselves.

vii



Foreword

This dissertation, submitted to fulfill the requirements for the Ph.D. degree in Bioengi-
neering at the Czech Technical University of Prague, Faculty of Electrical Engineering,
is the culmination of six studies conducted at the Department of Circuit Theory. Four
articles have been published in impacted journals, one is currently in a peer review, and
one was presented at a conference of a rank A1. Additionally, one study unrelated to the
thesis topic was presented at a conference of a rank A.

List of author’s publications related to the doctoral

thesis

Articles in impacted journals

Smartphone voice calls provide early biomarkers of parkinsonism in REM
sleep behaviour disorder (2024)
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Chapter 1

Introduction

Parkinson’s disease (PD) is a neurological condition marked by the loss of dopaminergic
neurons in the brain’s substantia nigra [1]. It affects approximately 1.8% of individuals
over 65 years old, and the figure is expected to rise due to longer life expectancy [2],
[3]. Currently, there are no treatments capable of halting or slowing PD’s progression;
available pharmacological and surgical interventions only alleviate specific symptoms. Di-
agnosis typically occurs when key motor symptoms manifest, such as severe tremor, by
which time up to half of the substantia nigra’s neurons may already be irreversibly dam-
aged [4]. Unfortunately, reliable biomarkers for PD are lacking, hindering both diagnosis
and the assessment of experimental treatments’ effectiveness in slowing disease progres-
sion. Similarly, there’s no dependable method for identifying individuals at high risk of
developing PD. Developing such biomarkers would represent a significant breakthrough,
greatly impacting diagnosis and treatment strategies in PD research [5].

Isolated rapid eye movement sleep behavior disorder (iRBD) is a type of parasomnia
characterized by dream-enactment behaviors, occurring during REM sleep but without
the usual muscle atonia [6]. This disorder serves as an early warning sign or prodromal
marker for neurodegenerative synucleinopathies, particularly Parkinson’s disease (PD)
and dementia with Lewy bodies [7]. Individuals with iRBD have an exceptionally high risk
(>80%) of developing a neurodegenerative condition [8], [9]. Given that iRBD symptoms
precede the onset of Parkinsonism, research into this disorder is crucial for developing
therapies that can protect against synucleinopathy, as no other preclinical marker holds
predictive significance comparable to iRBD [10].

The emergence of digital health introduces the possibility of remotely and noninva-
sively identifying and monitoring early indicators of PD using technologies like smart-
phones [11]–[14]. However, many current tests, such as finger tapping or walking pre-
determined distances, require active, instructed participation [15]. An optimal digital
biomarker should be measured passively, without any additional effort from the subject
or investigator. In this context, speech analysis presents intriguing potential advantages,
as a significant portion of the population communicates via smartphones daily. Therefore,
analyzing speech patterns from smartphone calls in real world scenarios offers a unique
opportunity to establish a passive biomarker. This approach enables continuous assess-
ment of experimental treatment effectiveness in natural settings and opens the door to
large-scale screening possibilities.

The complex coordination of speech involves a elaborate interplay of over 100 muscles,
making it particularly susceptible to alterations in neural structures governing motor
functions [16]. Hypokinetic dysarthria, a collection of speech and voice disorders, affects

1



CHAPTER 1. INTRODUCTION 2

up to 90% of individuals diagnosed with PD, resulting in a diminished voice quality,
hypokinetic articulation, hypophonia, monopitch, monoloudness and deficits in timing and
phrasing [17]. Based on the findings of a recent multilanguage, multicentric study using an
objective acoustical analysis of 150 patients with iRBD, it is evident that speech disorders
are one of the earliest motor signs of PD [18]. Specifically, dysprosody and imprecise vowel
articulation have been detected in iRBD subjects with impaired olfactory function but
still largely functional nigrostriatal dopaminergic transmission [19], [20]. Studies utilizing
a murine model of PD have identified deficits in ultrasonic vocalizations as among the
initial signs of motor dysfunction [21]. In humans, longitudinal observations indicate that
alterations in voice characteristics may manifest as the earliest motor symptoms, emerging
up to a decade before formal diagnosis and preceding typical PD symptoms like rigidity
and gait abnormalities [22].

Unfortunately, these findings rely on speech recordings actively conducted with a pro-
fessional condenser microphone within controlled laboratory environments, significantly
constraining the wider usability of speech evaluation [23]. Furthermore, in current prac-
tice, evaluation of PD is often subjective, rater-dependent, based on a lengthy and ex-
pensive manual labelling [24]. Given that the amount of data acquired in-the-wild is in
principle impossible to evaluate manually, assessing the symptoms via robust, automated
methods is recognized as the future direction of the research [25]. However, numerous
challenges must be addressed, such as an inferior quality of microphone, ambient noise
prevalent in everyday surroundings, and the unstable direction and distance of micro-
phone from the mouth caused by diverse holding positions, in order to facilitate remote
monitoring of speech [26], [27]. Moreover, the reliability of smartphones in detecting pro-
dromal PD (that is, iRBD) via smartphone calls in realistic scenarios has not yet been
investigated.

1.1 Aims of the study

The development of a fully automated vocal evaluation brings many substantial challenges,
such as finding sensitive acoustic vocal biomarkers to neurodegeneration, automatizing
their analysis process based on digital signal processing and machine learning techniques,
estimating their precision via statistical analysis, and testing their robustness against
corruptive noise, recording device, and conditions.

Therefore, the study aims to (i) establish suitable automated digital biomarkers that
will accurately monitor selected, physiologically interpretable speech patterns, which can
be deployed from any recording device and thus allow both in-clinic and remote assess-
ment. Next (ii), to develop a system which can reliably, remotely, unobtrusively, and
in accordance to ethical guidelines measure these features. And lastly (iii), use such a
system in a remote, cross sectional study to monitor prodromal parkinsonism through
speech in a real word setting. Such a tool has the potential for a broadly application
in neuroprotective trials, deep brain stimulation optimalization, neuropsychiatry, speech
therapy, population screening, and beyond.



Chapter 2

Methods & Results

2.1 Study design & literature

Hypokinetic dysarthria arises from dysfunction within the basal ganglia motor circuit.
The impairment results in difficulties regulating the initiation, amplitude, and velocity of
movements [16], [17]. Consequently, specific acoustic features associated with the motor
aspects of speech, which have a clear link to Parkinson’s disease pathophysiology [15],
align with perceptual descriptions of hypokinetic dysarthria as outlined by Darley et al
[28]. These features are the prime candidates for automated voice analysis and include:

1. Disruptions in phonation caused by dysfunctions in the vocal folds. The impairment
can be captured using acoustic measures such as Cepstral Peak Prominence, which
correlates with the auditory perception of decreased voice quality/breathiness [27].

2. Dysprosody is reflected by the reduced amplitude of vocal cord movements, corre-
lating with reduced pitch variability, called monopitch [18].

3. Timing deficits, represented by a decreased ability to maintain the speech motor
sequence or to alternate quickly between responses. The dysfunction can be reflected
by the acoustic measures of Net Speech Rate and Duration of Pause Intervals, which
reflect the perceived auditory timing of speech and may describe deficits such as a
slow articulation rate and a reduced ability to intermit and initiate speech [29].

4. Articulation deficits are perceived as a decrease in intelligibility. Most often, they
are described using metrics related to vowel production triangle, such as the Vowel
Space Area [30]. Articulation characteristics are also partially described by complex
speech parametrizations primarily used in speech recognition. These might include
Mel Frequency Cepstal Coefficients (MFCCs) or deep neural network embeddings.
Insight into the detailed network behavior would be supportive and could reveal
critical physiological details [31].

Several methods for the automatic analysis of the mentioned key dimensions of speech
in patients with PD have already been developed [29]. However, many methods have been
tailored for brief, specific tasks with predetermined content, such as sustained phonation,
syllable repetition, or reading text. Consequently, these algorithms may struggle when
confronted with spontaneous speech, as they weren’t originally intended for such a pur-
pose [27]. Moreover, techniques adapted for spontaneous speech often falter in noisy
environments and when recording quality is inferior [26]. Hence, both existing and newly

3



CHAPTER 2. METHODS & RESULTS 4

Figure 2.1: Structure of the thesis.

developed methods must undergo experimental and theoretical testing to ascertain their
robustness against noise and their overall reliability, thereby confirming their practical
utility.

The thesis comprises a collection of published articles aligned with the study’s objec-
tives (see Figure 2.1). Each article is presented in the following sections preceded with a
brief introduction, contextual background, and its significance. These articles include:

• A study focused on automated assessment of prosody in PD (section 2.3, page 5).

• A study evaluating automated approach of measuring speech rate in PD and pro-
dromal PD (section 2.4.2, page 20).

• A study focused on automated estimation of articulation deficits in a wide range of
neurological diseases (section 2.5, page 38).

• A study exploiting the clinical interpretability of changes in Mel Frequency Cepstral
Coefficients (section 2.5.1, page 61).

• A protocol of a developed smartphone application for remote monitoring and data
acquisition (section 2.6, page 67).

• A cross-sectional study on capturing speech impairment in prodromal PD using a
remote, automated approach, currently in a peer review (section 2.7, page 79).
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2.2 Phonation dysruptions

Measures like jitter, shimmer, and harmonic-to-noise ratio are frequently employed to
screen for voice impairments, serving as established diagnostic biomarkers indicating a
decline in vocal fold function [32]. However, these perturbation measures are primarily
used during sustained vowel phonation tasks, as they tend to be less accurate and robust
in the context of spontaneous speech. In contrast, cepstral patterns emerge as more
suitable markers for detecting phonation disruptions across various tasks and recording
conditions, given their greater resilience against adverse effects [33].

Cepstral peak prominence (CPP) and its smoothed variant (CPPS) have emerged
as key markers in acoustic analysis for evaluating voice quality in relation to dysphonia
[34]. Studies have demonstrated a strong correlation between CPP/CPPS values and
the severity of dysphonia and breathiness across various languages [35]–[37]. Widely ac-
cepted within the speech-language and acoustic communities, CPP was recognized by the
American Speech-Language-Hearing Association in 2018 as a general acoustic measure of
dysphonia, indicating the overall level of noise in the vocal signal [37]. Previous research
has examined the effects of CPP/CPPS measurements both before and after voice treat-
ments, as well as the influence of Parkinson’s disease tremor phenotype on the parameter
[38].

Previously, evidence of disruptions in CPPs primarily showed in advanced-stage Parkin-
son’s disease (PD) patients undergoing dopaminergic medication [39]. Only one study has
reported significant differences in CPPs between early-stage PD patients and controls [40].

Recently, in [27], the sensitivity of the CPPs across a wide range of disease severity,
the dependency of the patterns on speech tasks (sustained vowel phonation, reading pas-
sages, and monologues), and robustness against additive non-stationary urban noise were
investigated. The results showed significant differences in CPPs between controls and
early-stage PD for sustained phonation and monologue tasks. Nevertheless, no contrast
was demonstrated to capture possible prodromal dysphonia in iRBD and, additionally,
the presence of corruptive noise substantially influenced the measures. Hence, the results
showed that CPPs patterns might prove vital for early-stage PD assessment but only for
a scenario where the recording conditions can be controlled.

2.3 Dysprosody

A comprehensive study from 2020 has thoroughly investigated the state-of-the-art meth-
ods for capturing dysprosody in patients with PD, focusing on their in-the-wild conditions
reliability and practical utility [26].

Specifically, the focus of the study was on a parameter calledmonopitch, which refers to
reduced intonation, indicating lower variability in the fundamental frequency of the voice.
Previous research has consistently identified monopitch as a fundamental characteristic
of hypokinetic dysarthria, even in the early stages of the disease [41], [42]. Numerous
automated speech processing methods have been developed over time to track fundamental
frequency (pitch detection algorithms, PDAs), each with its own design. Some studies
have concentrated on monopitch in individuals with PD, using automated methods to
analyze short prepared utterances [42]–[44]. While it’s been confirmed that monopitch
measure is robust across different recording devices, it’s unclear if there’s a universal
PDA for measuring it that isn’t significantly influenced by thr nature of spontaneous
speech, background noise, or severe dysarthria. Therefore, this study aimed to assess
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and compare the effectiveness of various PDAs when applied to connected natural speech
from PD patients recorded using a smartphone. The study also evaluated the robustness
of these trackers against different levels of non-stationary background noise commonly
found in urban and household environments by adding varying signal-to-noise levels to
the original recordings.

In total, 20 PDAs were identified and studied on a cohort of 60 PD patiens matched
with healthy controls. Ten PDAs were subjected to further analysis. From the methods,
one outperformed the others in terms of precise accuracy in measuring fundamental fre-
quency, even in detrimental conditions with a low signal-to-noise levels. The method [45]
estimates the fundamental frequency contour which maximize a normalized inner product
of a warped spectrum of the input signal and a created kernel with given spectral char-
acteristics. A decaying weigh factor is applied to the kernels. The results showed that
fundamental frequency estimation from connected speech can be accurate and reliable
even when a smartphone is used for recording in an urban environment with the presence
of noise.

The findings presented several novel opportunities. Previous research was mostly
focused on highly functional vocal paradigms such as sustained phonation. However,
tracking pitch changes from connected speech may provide a very natural digital biomarker
of disease progression as connected speech reflects the complexity of speech production
including a combination of speech motor execution and cognitive-linguistic processing, and
has been shown to be superior in capturing subtle PD-related speech changes compared
to functional vocal tasks [42]. Monitoring disease progression over time using monopitch
as a specific biomarker can thus be done remotely, in the subjects natural environments
suing their smartphones. The preprint of the article is attached below.
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a  b  s  t  r  a  c  t

Measuring  the  fundamental  frequency  of the vocal  folds  F0 is  recognized  as  an  important  parameter  in  the
assessment  of  speech  impairments  in  Parkinson‘s  disease  (PD).  Although  a number  of  F0 trackers  currently
exist, their  performance  in smartphone-based  evaluation  and  robustness  against  background  noise  have
never been  tested.  Monologues  from  30 newly-diagnosed,  untreated  PD  patients  and  30  matched  healthy
control  participants  were  collected.  Additive  non-stationary  urban  and  household  noise  at  different  SNR
levels  was  added  to the  recordings,  which  were  subsequently  assessed  by 10 freely-available  and  widely-
used  pitch-tracking  algorithms.  According  to the comparison  of  all  investigated  pitch  detectors,  sawtooth
inspired  pitch  estimator  (SWIPE)  was  the  most  robust  and  accurate  method  in estimating  mean  F0 and
its  standard  deviation.  However,  at a low  6 dB  SNR  level,  a combination  of more  algorithms  may  be
needed  to achieve  the  desired  precision.  Monopitch,  calculated  as F0 standard  deviation  and  estimated  by
SWIPE, proved  to be robust  in  distinguishing  between  the  PD  and  healthy  control  groups  (p  <  0.001).  We
anticipate  that  monopitch  may  serve  as a  quick  and  inexpensive  biomarker  of disease  progression  based
on longitudinal  data  collected  via  smartphone,  without  any  logistical  or time  constraints  for  patients  and
physicians.

© 2020  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Parkinson‘s disease (PD) is the second most common neurode-
generative disease after Alzheimer‘s disease [1]. It is estimated that
the incidence of PD is roughly 1.8 % in persons 65 years of age and
older [2], and the incidence is expected to grow due to prolonged
life expectancy [3]. The disease is characterized by the loss of vul-
nerable neuronal populations in the brain including dopaminergic
neurons in the substantia nigra. As a consequence, bradykinesia and
other motor disorders such as rigidity, resting tremor and postu-
ral instability occur in PD [1]. Although neuroprotective therapies
are under development, there is currently no treatment which can
fully stop or slow disease progression. Currently available pharma-
cotherapy methods offer alleviation of PD motor manifestations but
do not treat the actual disease process. The cardinal motor mani-
festations leading to the establishment of diagnosis arise relatively
late in the course of neurodegeneration, i.e., at the time when up

∗ Corresponding author at: Department of Circuit Theory, Czech Technical Uni-
versity in Prague, Technická 2, 160 00, Praha 6, Czech Republic.

E-mail address: rusz.mz@gmail.com (J. Rusz).

to 50 % of the neurons in the substantia nigra have already been
irretrievably damaged and up to 80 % of striatal dopamine has been
depleted [4,5]. The main reason why neuroprotective therapy can-
not be developed may  be that PD progresses over many years before
the appearance of evident motor manifestations and diagnosis, and
it is simply too late for intervention. Thus, the recognition of PD
early, within its prodromal stages, is crucial for the further devel-
opment of neuroprotective therapy [6,7]. However, no biomarker is
available that allows the measurement of experimental treatment
efficacy with regard to slowing disease progression.

Speech, the most complex motor skill involving over 100 mus-
cles, is highly sensitive to detrimental changes in neural structures
controlling motor abilities [8]. Up to 90 % of people diagnosed with
PD develop speech and voice disorders which are collectively called
hypokinetic dysarthria [9]. A decrease of voice quality, imprecise
articulation, monopitch, monoloudness or deficits in timing and
phrasing are typical [9]. Therefore, speech disorders may  repre-
sent one of the earliest motor signs of PD. In the murine model of
PD, ultrasonic vocalization deficits are among the first prodromal
markers of motor dysfunction [10]. In humans, longitudinal voice
changes in subjects at high risk for developing PD were estimated to
be the first motor signs, developing up to 10 years before diagnosis,

https://doi.org/10.1016/j.bspc.2019.101831
1746-8094/© 2020 Elsevier Ltd. All rights reserved.
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well before the appearance of rigidity, gait abnormalities and limb
bradykinesia [11]. In addition, pilot cross-sectional studies com-
paring vocal performance in subjects at high risk of developing PD
and healthy controls using quantitative and objective acoustic voice
analysis confirmed that speech impairment represents a sensitive
prodromal marker of neurodegeneration [12,13]. Thus, the vocal
assessment provides intriguing advances as it is inexpensive, non-
invasive, and simple to administer. As the recording and processing
of human speech is an area that has been extensively investigated,
speech changes represent an excellent candidate as a preclinical
diagnostic and progressive biomarker of PD.

Voice recordings in PD-related research typically take place in
a quiet room with a guiding clinician and are obtained with a pro-
fessional condenser microphone. This limits a broader and more
quantitative vocal assessment in PD. Conversely, speech assess-
ment using a recording obtained by smartphone offers a potentially
simple-to-administer and inexpensive solution, scalable to the
entire population. Moreover, speech assessment can be performed
anywhere, including the patient‘s home, without the need to visit
a clinic. The recordings can then be sent via the wireless network
and processed on a remote server, or even directly processed by
the smartphone, with fully automated acoustic analysis [13,14]. In
both cases, recordings can be processed without signal frequency
content degradation. Given that smartphone technology is rapidly
advancing, collecting data through mobile devices continues to be
a growing focus not only for speech biomarkers in PD [15–17].

Measuring connected speech via smartphone would represent
a significant breakthrough as it does not require any additional
effort by the investigated subjects. However, several important
issues must be resolved before pursuing a further detailed inves-
tigation in smartphone-evaluated speech biomarkers in PD. The
application brings challenges as the quality of the smartphone
microphone is much lower compared to a professional condenser
microphone and differs from device to device.  Moreover, the pres-
ence of background noise, such as traffic, voices of other speakers or
surrounding sounds, limits the use of PD-related speech assessment
in common environments. Therefore, it is crucial to determine the
appropriate features that are robust in this setting and determine
their accuracy in terms of detecting PD.

One feature of interest is monopitch (or reduced intonation),
which is represented by lower variability of the fundamental fre-
quency (F0). In 1969, Darley et al. [18] were the first to identify
monopitch as the most prevalent aspect of hypokinetic dysarthria
in PD. Subsequently, a number of studies confirmed the findings
of Darley et al. [18] and reported monopitch as a core feature of
hypokinetic dysarthria, present from the early stages of the disease
[19]. Recently, from various investigated features of hypokinetic
dysarthria, Rusz et al. [20] showed that monopitch is the most sen-
sitive feature to the presence of speech disorder even in patients
at high risk for developing PD. In the same study [20], monopitch
assessed through connected speech was also the most resistant fea-
ture with respect to low microphone quality. Interestingly, similar
findings were reported by Uloza et al. [21] in healthy subjects, but
only on short segments of sustained vowel sounds. Maryn et al.
[22] also showed that F0 is robust with respect to both the record-
ing system and environmental noise, but again only for sustained
vowel segments. Admittedly, features based on F0 estimation are
frequently used as patterns of expert systems designed for both
early PD detection or PD severity evaluation via acoustic voice anal-
ysis (for example see [23–27]).

Currently, a number of methods for F0 estimation, termed “Pitch
Determination Algorithms” (PDAs), have already been developed.
However, their reliability in the detection of monopitch in PD across
various noise conditions has not yet been tested. Only one previous
study by Tsanas et al. [28] compared 10 widely-used PDAs and their
adaptive fusion via very short sustained vowel segments recorded

by a professional microphone. Also, robustness against noise was
tested for just one signal-to-noise ratio (SNR) with the inclusion
of Gaussian noise, which may  be inadequate in representing real
environments [28].

Therefore, the present study aimed to examine and compare the
performances of several PDAs tested on connected natural speech
obtained with a smartphone device. Robustness against additive
non-stationary urban and house background noise was evaluated
by adding various SNR levels to the original signals. For compar-
ison, we selected only freely-available PDAs, allowing easy and
rapid transcription of our findings to clinical practice and voice
research. Our results provide information about the robustness of
PDAs in detecting the mean and standard deviation (SD) of the F0
contour, with future potential to provide progressive smartphone-
based speech biomarkers in PD to assess experimental treatment
efficacy.

2. Methods

2.1. Participants

During 2015–2017, a total of 60 Czech native speakers was
recruited. The study was  approved by the Ethics Committee of the
General University Hospital in Prague, Czech Republic and a writ-
ten, informed acquiescence was  provided by all the participants.
Thirty attendees (26 men  and 4 women) with a mean age of 62 (SD
11, range 41–79) years were diagnosed with de-novo PD based on
the Movement Disorders Society clinical diagnostic criteria [29].
As a healthy control (HC) group, 30 participants (26 men  and 4
women), with a comparable mean age of 65 (SD 10, range 41–79,
t -test: p = 0.42) years, were without a record of any neurological
of communication disorder. The investigated subjects also partici-
pated in a former study focused on a detailed assessment of speech
disorder through a smartphone [20]. However, the comparison of
the performance of different PDAs and their reliability against noise
was not previously investigated.

Disease duration was estimated based on the self-reported
occurrence of first motor symptoms. All patients were rated accord-
ing to the Hoehn and Yahr disability scale (comprised of stages
1 through 5, where 5 is most severe) as well as motor score
of the Movement Disorder Society – Unified Parkinson‘s disease
rating scale (MDS–UPDRS III) which ranges from 0 (no motor dis-
order) to 132 (severe motor disturbance) [30]. The MDS–UPRDS
III speech item was used for the clinical description of speech
severity, ranging from 0 to 4 where 0 marks normal and 4 unin-
telligible speech. The evaluation and diagnosis of these scales were
performed by a neurologist with experience in movement disor-
ders. All the participants were examined before the start of any
symptomatic treatment and none of them had a record of a ther-
apy with antiparkinsonian medication involved. As a result, PD
patients manifested disease duration of 1.9 (SD 1.3, range 0.5–6)
years, Hoehn and Yahr score of 2.1 (SD 0.4, range 1–3), MDS-UPDRS
III of 29.4 (SD 12.8, range 8–63), and MDS-UPDRS III speech item of
0.60 (SD 0.56, range 0–2). See Table 1 for PD subject details.

2.2. Speech assessment

The recordings took place in a closed room with a low ambient
noise level (< 50 dB). The data were gathered using a smartphone
Sony Xperia Z1 Compact (amplitude and the polar response was
reported previously [20]). The participants were instructed to hold
the device close to their ear as it would be the case during a regular
call. The sampling frequency of 48 kHz and the resolution 16-bit
were used as these are the highest setting available by the smart-
phone system. For the recording, a basic application was developed
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Table  1
List of PD subjects with clinical characteristics.

PD patient ID Gender Age Disease duration MDS-UPDRS III MDS-UPDRS III

(years) (years) speech item
1  M 75 2.0 29 0
2  M 61 1.0 63 1
3  M 60 2.0 32 1
4  M 73 1.0 38 1
5  M 58 0.5 35 1
6  M 60 0.5 49 1
7  M 43 6.0 14 0
8  M 70 1.0 20 0
9  F 75 2.5 28 0
10  F 73 2.0 32 1
11  F 66 1.5 8 0
12  M 52 2.0 24 1
13  M 51 1.5 17 0
14  M 73 2.0 40 1
15  M 61 1.0 25 0
16  M 41 3.0 56 1
17  F 71 5.0 36 1
18  M 76 2.0 42 0
19  M 58 1 26 0
20  M 63 0.5 32 0
21  M 41 1.5 14 0
22  M 61 1 29 1
23  M 63 1 26 1
24  M 43 2.5 16 1
25  M 52 1 42 2
26  M 73 4.0 14 1
27  M 79 1.0 29 0
28  M 66 4.0 22 1
29  M 71 2.0 28 0
30  M 60 1.0 16 1
PD  = Parkinson’s disease, MDS-UPDRS = Movement Disorders Society - Unified Parkinson’s Disease Rating
Scale.

running on an Android 5.1 system. No other settings were adjusted
during the recording.

Each participant was recorded in a single session accompanied
by a speech specialist who guided through the standardized pro-
tocol. The participants were instructed to perform a monologue
lasting approximately 90 (mean 92.6, SD 12.1) seconds where they
narrated a short fictional story.

2.3. Signal-to-noise ratio

To evaluate the robustness of PDAs against the environmental
additive noise we added five types of non-stationary noises to each
recording on SNR levels 20, 10 and 6 dB, respectively. The boundary
of 6 dB was chosen as it represents the worst scenario that is likely
possible to occur in a common environment. Lower levels are more
unlikely due to processing in the actual device as a quick investi-
gation showed. The first noise was recorded close to a street with
heavy traffic - including cars, trams and motorcycles (hereafter,
Noise condition 1). The second one is from a busy shopping mall
with amplified music, passing-by people talking and kids shouting
(hereafter, Noise condition 2). These two noises were chosen as they
contain the most typical sources of disruptive non-white noise in an
urban environment differing in the rate of frequency changes and
the content of reverberations. The third noise consisted of another
speaker present in the room, talking about a different topic (here-
after, Noise condition 3). Fourth noise was a recording of a vacuum
cleaner (Noise condition 4) and fifth a sound of an ambulance siren
(Noise condition 5). These three additional noises were chosen
to represent a possible home or hospital environment, where an
older adult with PD might typically spend considerable time. This
approach resulted in 16 types of signals with different level and
type of noise per one speech record including the original record-

ing (clear signal without noise) and 3 noisy signals on 20, 10, and
6 dB SNRs per each of the 5 noise types.

2.4. PDAs search and selection strategy

A systematic literature search of articles written in English
before March 2019 was  conducted in the Web  of Science. In addi-
tion, we  explored Google Scholar and IEEE Xplore as these typically
indexes more studies focused on PDAs. A wide range of keywords
was used: pitch, tracking, PDA, fundamental frequency , F0 esti-
mation, glottal closure instants. . . By combining these keywords,
we identified and studied 20 freely available PDAs [31–47]. We
excluded PDA from analysis if it: (i) used very similar computational
principle as another available algorithm, (ii) the authors recom-
mended its use for short voiced segments only, (iii) the authors
directly stated that the algorithm is not robust against noise, (iv)
the method performed comparably worse then the others in first
conducted trial testing. As a result, we identified 10 widely used and
freely available PDAs that were subsequently included in testing.
Table 2 shows all the PDAs we studied altogether with links to the
software and reasons why the particular algorithm was  excluded.

2.5. Tested PDAs

Here we did a review of 10 selected PDAs that were the subjects
of our testing. Several algorithms represent longstanding stan-
dards used in speech processing, whereas others represent recently
introduced methods based on new approaches. The computations
mostly took place in MATLAB (MathWorks, Natick, MA)  environ-
ment although in some cases an interface to other programs, such
as PRAAT [33], was utilized.

There have been many attempts of categorizing PDAs mainly for
methodological reasons [32]. Popular way  is to group them accord-
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ing to the domain they are working in including time-domain
approaches (for example PRAAT or RAPT) and frequency-domain
approaches using spectral or cepstral characteristics (for example
BaNa or SWIPE). However, such categorization is limited with some
methods falling to either category.

Most of the algorithms have similar general scheme follow-
ing the stages including (1) – pre-processing, (2) – the actual
calculation of F0 estimates, and (3) – post-processing. The pre-
processing usually shapes the signal to match the inner mechanism
of the estimator and reduces error, for example by low-pass
filtering for decreasing the effects of formants. Post-filtering typ-
ically smooths the estimated F0 contour such as removal of
sudden jumps in consecutive estimates which is not physiologi-
cally possible, for example by using Viterbi algorithm (PRAAT or
BaNa).

Default parameters were used in all cases. The timestep duration
was set to 10 ms,  where the adjustment was possible, for detailed
F0 contour. The estimates were allowed to attain values between
60–400 Hz, covering the majority of the population. Most of the
algorithms were equipped with voiced/unvoiced speech detectors.
These detect whether the current timeframe contains voiced or
unvoiced segment and therefore decide if F0 is to be estimated
or not. For those algorithms without voiced/unvoiced decision, we
used the detector which is a part of the WORLD speech system [48]
and was found previously to provide robust results [49].

2.5.1. Harvest
A  high-performance fundamental frequency estimator from

speech signals (Harvest) Proposed by Morise [31] Harvest is a
frequency-domain PDA which obtains the candidates using a band-
pass filter bank with different center frequencies. The estimates are
then scored and refined using instantaneous frequency. In the sec-
ond step, a connection algorithm using neighboring F0 candidates
is deployed to smooth the contour and eliminate errors. Harvest is
part of the WORLD speech system.

2.5.2. RAPT
A  Robust Algorithm for Pitch Tracking (RAPT) is a time-

domain PDA developed by Talkin [32]. It utilizes a normalized
cross-correlation function of frames of the original signal and its
sub-sampled version, given by Eq. (1):

Fi,k =
∑m+n−1

j=m s [j] s [j  + k]
√

emem+k
,

k = 0, . . .,  K − 1; m = iz; i = 0, . . .,  M − 1, (1)

where s is the sampled speech signal, k is the lag index, i is the frame
index, z is the frame length, M is the total number of frames, n is
the size of cross-correlation window, K is the length of the cross-
correlation, e is a sum of squared samples of the signal, and s in the
given window. Then maxima of the cross-correlation with mutual
delay close to 1 are searched for, first in the case of Fi,k being com-
puted from the sub-sampled signal and then for the original data.
After the F0 candidates are computed, a dynamic programming
approach is used to determine the most probable estimates.

2.5.3. PRAAT
PRAAT [33] from Dutch [pra:t] (i.e., “talk“) is one of the standard-

ized and most widely used PDAs. Originally proposed by Boersma
[33] it divides the signal into frames using appropriate window
function and using autocorrelation the F0 estimates are computed.
The autocorrelation is normalized by the division of the autocor-
relation of the window function. Boersma later indicated that a
Gaussian window produces better results than the originally used
Hanning one [50]. In this study, we used PRAAT using a Gaussian

window. In the end, a Viterbi algorithm is applied to reduce errors
in F0 contour.

2.5.4. SHS
Sub-harmonic summation (SHS) proposed by Hermes [34] SHS

estimates F0 for each frame as a frequency that maximizes the sum
of the spectrum harmonics H (f ),  given as Eq. (2):

H (f ) =
∑N

n=1
hnP (nf ) , (2)

where P is a smoothed, filtered amplitude spectrum, and n is the
number of harmonics. Usually, around 5–11 harmonics are used
and a decay factor h is applied as this prevents choosing the subhar-
monics as a F0 candidate. We  used SHS implementation in PRAAT
software.

2.5.5. REAPER
Robust Epoch And Pitch EstimatoR (REAPER) developed by

Talkin [35], estimates the position of glottal closure instants
(GCI) using autocorrelation and then determines F0 candidates
as an inverse of the time between successive GCI cycles.
Dynamic programming is then used in post-processing to reduce
errors.

2.5.6. YANGSAF
Yet ANother Glottal Source Analysis Framework (YANGSAF) pro-

posed by Kahawara et al. [36], this method time-warps the speech
signal to remove F0 fluctuations and process it by a filter bank that
decomposes the signal by harmonics. For each harmonic instanta-
neous frequency and aperiodicity features are extracted. F0 contour
is estimated and then smoothed according to candidate variances
computed from the aperiodicity features.

2.5.7. SHRP
Subharmonic-to-Harmonic Ratio Pitch algorithm (SHRP), devel-

oped by Sun [37], works in the frequency domain where it uses
sub-harmonics to harmonics ratio to determine F0 estimates, given
by Eqs. (3–4):

SHR (f ) = SH (f )
SS (f )

, (3)

where SH is similar to (2) and SS is defined as

SS (f ) =
∑N

n=1
P
((

n − 1/2
)

f
)

. (4)

To increase the algorithm effectivity, the frequency is logarith-
mically scaled, and the spectrum-shifting technique is applied to
match the human perception of pitch.

2.5.8. SWIPE
Sawtooth inspired pitch estimator (SWIPE) proposed by Cama-

cho and Harris [38] works as well in the frequency domain. It
estimates the F0 candidates as those which maximize a normal-
ized inner product of a warped spectrum of the input signal and a
created kernel with given spectral characteristics. A decaying weigh
factor is applied to the kernels. In this study, we  used the algorithm
SWIPE‘, an extension of the original method where only first and
prime harmonics are used to estimate the pitch, but refer to it as
SWIPE for simplicity.

2.5.9. BaNa
A noise resilient F0 detection algorithm (BaNa) is a recently pro-

posed method by Yang et al. [39] which especially aims to achieve
robust results even in environments with a high noise level. It uses
harmonic ratios and Ceptral analysis to gather F0 candidates and
their score. A Viterbi algorithm is then used to choose the most
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Table  2
List of the freely-available PDAs.

Abbreviation

Authors
[reference]

Link to software Reason for exclusion

Used for the analyses
HARVEST M. Morise [31] http://www.kisc.meiji.ac.jp/

∼mmorise/world/english/
RAPT D. Talkin [32] https://www.phon.ucl.ac.uk/resource/

sfs/
PRAAT AC P. Boersma [33] http://www.fon.hum.uva.nl/praat/
PRAAT SHS D. J. Hermes [34] http://www.fon.hum.uva.nl/praat/
REAPER D. Talkin [35] https://github.com/google/REAPER
YANG H. Kawahara et al.

[36]
https://github.com/google/yang
vocoder

SHRP X. Sun [37] https://www.mathworks.com/
matlabcentral/fileexchange/1230-
pitch-determination-algorithm

SWIPE A. Camacho, J. G.
Harris [38]

https://github.com/kylebgorman/
swipe

BANA N. Yang et al. [39] http://www2.ece.rochester.edu/
projects/wcng/code.html

YAAPT K. Kasi, S. A.
Zahorian [40]

http://www.ws.binghamton.edu/
zahorian/yaapt.htm

Excluded
BPT L. Shi et al. [41] https://github.com/LimingShi/

Bayesian-Pitch-Tracking-Using-
Harmonic-model

Poor results in trial
testing.

DIO  M. Morise et al.
[42]

http://www.kisc.meiji.ac.jp/
∼mmorise/world/english/

Not suitable for noisy
signals, a similar
approach as REAPER,
poor results in trial
testing.

FXAC Mark Huckvale https://www.phon.ucl.ac.uk/resource/
sfs/

A similar approach as
PRAAT AC, poor results
in trial testing.

FXANAL B. Secrest, G.
Doddington [43]

https://www.phon.ucl.ac.uk/resource/
sfs/

A very similar approach
as PRAAT AC, poor
results in trial testing.

FXCEP  L.C.Whitaker et al. https://www.phon.ucl.ac.uk/resource/
sfs/

Similar to a part of
BaNa algorithm, poor
results in trial testing.

DYPSA  P. A. Naylor et al.
[44]

http://www.ee.ic.ac.uk/hp/staff/dmb/
voicebox/voicebox.html

Similar to REAPER, only
for short voiced
segments, not robust
against noise.

PEFAC S. Gonzalez, M.
Brookes [45]

http://www.ee.ic.ac.uk/hp/staff/dmb/
voicebox/voicebox.html

Poor results in trial
testing.

PRAAT CC P. Boersma http://www.fon.hum.uva.nl/praat/ A very similar
approach to PRAAT AC,
using cross-correlation
instead, similar results.

YIN  A. de Cheveigné, H.
Kawahara [46]

http://audition-backend.ens.fr/adc/ Not suitable for noisy
signals and connected
speech, poor results in
trial testing.

MBSC L. N. Tan, A. Alwan
[47]

http://www.seas.ucla.edu/spapl/
shareware.html

Poor results in trial
testing.

likely trajectory between the estimates. The authors even created
an app for android platform running this algorithm which suggests
motivation exactly matching our case.

2.5.10. YAAPT
Yet another algorithm for pitch tracking (YAAPT) developed by

Kasi [40] has a similar approach as Talkin with RAPT using normal-
ized cross-correlation function to determine the F0 estimates. The
differences are that here both the original and nonlinearly warped
signals are processed to restore weak F0 components, application
of more sophisticated peak picking methods and incorporation of
robust pitch contours obtained from smoothed versions of low-
frequency parts of spectrograms. Dynamic programming is then
used to find the best F0 trajectory.

2.6. The reference values

The performance of the algorithms was evaluated with respect
to the mean and standard deviation of the output F0 contour from
the current speech.

The reference values for F0 trajectory (Gold standard) were esti-
mated by manual analysis obtained using PRAAT software with the
standard autocorrelation method (algorithm described in 2.5.3).
We  used the original smartphone recordings for the calculation of
F0 parameters (description in 2.2.). The maximum and minimum
value allowed for the pitch to be manually adjusted per each record-
ing to avoid pitch doubling and halving. Subsequently, a visual and
listening verification was done for each recording and individual F0
segments were manually corrected as necessary to obtain reliable
F0 sequence estimates.
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Table 3
Performance of F0 estimation algorithms on original speech without the presence of noise.

Clear speech

HARVEST RAPT PRAAT AC PRAAT SHS REAPER YANGsaf SHRP SWIPE BANA YAAPT
Mean  MAE  0.31 0.49 0.56 0.52 0.90 0.12 1.07 0.24 0.48 0.42

NRMSE 0.03 0.08 0.06 0.07 0.10 0.01 0.14 0.02 0.05 0.08
Spearman r 0.99 0.92 0.96 0.96 0.93 0.99 0.90 0.99 0.97 0.92

SD  MAE  0.96 0.78 0.84 1.13 1.06 0.20 2.63 0.16 0.65 0.32
NRMSE 0.29 0.22 0.22 0.29 0.31 0.09 0.67 0.06 0.23 0.13
Spearman r 0.89 0.75 0.50 0.82 0.81 0.93 0.55 0.95 0.73 0.85

MAE  = mean absolute error, NRMSE = normalized root mean square error, SD = standard deviation. All correlations reached significance p < 0.001.

Table  4
Performance of F0 estimation algorithms with the presence of additive noise at SNR 20 dB.

SNR 20 dB

HARVEST RAPT PRAAT AC PRAAT SHS REAPER YANGsaf SHRP SWIPE BANA YAAPT
Noise  condition 1
Mean MAE 0.33 0.53 0.56 0.85 1.13 0.13 1.08 0.32 0.46 0.41

NRMSE 0.03 0.08 0.06 0.09 0.12 0.01 0.15 0.03 0.04 0.08
Spearman r 0.99 0.92 0.96 0.96 0.91 0.99 0.91 0.99 0.97 0.92

SD  MAE 1.15 0.71 0.75 1.21 1.23 0.31 2.54 0.22 0.59 0.31
NRMSE 0.40 0.23 0.22 0.35 0.35 0.16 0.84 0.09 0.22 0.12
Spearman r 0.88 0.76 0.54 0.77 0.75 0.84 0.69 0.96 0.74 0.85

Noise  condition 2
Mean MAE 0.33 0.51 0.80 0.60 1.07 0.14 1.08 0.29 0.68 0.41

NRMSE 0.03 0.08 0.11 0.07 0.12 0.01 0.14 0.03 0.06 0.08
Spearman r 0.99 0.92 0.92 0.95 0.92 0.99 0.90 0.99 0.96 0.93

SD  MAE 1.16 0.78 1.02 1.10 1.17 0.30 2.64 0.18 0.94 0.31
NRMSE 0.36 0.24 0.25 0.31 0.34 0.15 0.91 0.07 0.36 0.13
Spearman r 0.88 0.74 0.45 0.82 0.79 0.85 0.63 0.96 0.59 0.86

Noise  condition 3
Mean MAE 0.32 0.50 0.57 0.55 0.91 0.13 1.03 0.23 0.46 0.40

NRMSE 0.03 0.08 0.06 0.07 0.11 0.01 0.13 0.02 0.04 0.08
Spearman r 0.99 0.92 0.96 0.96 0.93 0.99 0.92 0.99 0.97 0.93

SD  MAE 0.99 0.80 0.84 1.08 1.04 0.20 2.53 0.17 0.56 0.30
NRMSE 0.30 0.22 0.22 0.30 0.31 0.09 0.69 0.06 0.22 0.13
Spearman r 0.88 0.75 0.49 0.82 0.82 0.93 0.56 0.96 0.73 0.85

Noise  condition 4
Mean MAE 0.28 0.50 0.62 0.48 0.79 0.12 0.98 0.24 0.53 0.41

NRMSE 0.02 0.08 0.07 0.06 0.09 0.01 0.12 0.02 0.05 0.08
Spearman r 0.99 0.92 0.95 0.97 0.93 0.99 0.93 0.99 0.97 0.93

SD  MAE 0.92 0.72 0.88 0.98 0.94 0.20 2.50 0.17 0.49 0.30
NRMSE 0.25 0.22 0.23 0.26 0.28 0.09 0.68 0.07 0.21 0.12
Spearman r 0.85 0.75 0.47 0.84 0.84 0.93 0.55 0.95 0.71 0.87

Noise  condition 5
Mean MAE 0.31 0.49 0.62 0.50 0.90 0.12 1.08 0.23 0.52 0.40

NRMSE 0.03 0.07 0.07 0.07 0.10 0.01 0.14 0.02 0.05 0.08
Spearman r 0.99 0.93 0.96 0.96 0.92 0.99 0.91 0.99 0.97 0.92

SD  MAE 0.99 1.24 0.89 1.15 1.06 0.21 2.65 0.16 0.70 0.31
NRMSE 0.30 0.32 0.23 0.32 0.32 0.09 0.67 0.06 0.23 0.13
Spearman r 0.89 0.62 0.47 0.81 0.80 0.93 0.54 0.95 0.74 0.85

MAE  = mean absolute error, NRMSE = normalized root mean square error, SD = standard deviation. All correlations reached significance p < 0.001.

To minimize the effects of differences in pitch between indi-
vidual speakers the received F0 values were converted into the
logarithmic tonal scale (semitones). This way, for instance, different
pitch ranges such as 100–200 Hz and 200–400 Hz will be repre-
sented by equal semitone intervals [51].

2.7. The performance validation and statistical analysis

Three performance measures were used for evaluation: a)
mean absolute error (MAE), b) normalized root mean square error
(NRMSE), and c) Spearman correlation coefficient r. As NRMSE is
particularly sensitive to the presence of large errors, we expect the
difference between MAE  and NRMSE to grow larger as the variabil-
ity of errors increases. The metrics are defined by (5–6) as follows

MAE  = 1
N

∑N

i=1

∣∣x̂i − xi

∣∣ , (semitones) (5)

NRMSE =

√
1
N

∑N
i=1

(
x̂i − xi

)2

max
(

x̂
)

− min
(

x̂
) , (−) (6)

where N is the number of speech utterances (N = 60) and x̂i, xi

represent a computed statistical value (mean or SD) of the esti-
mated F0 trajectory in semitones of a given speech and its respective
reference (Gold standard).

Mann-Whitney U test was applied to evaluate between-group
differences (PD vs HC) for the F0 algorithm with the most robust
performance in detecting F0. The use of the non-parametric statis-
tics was preferred as it produces more reliable results for random
variables without normal distribution and is less vulnerable to the
possible presence of outliers.

We anticipate that a robust performance of PDA is particularly
represented by a very strong correlation and reliability obtained
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Table  5
Performance of F0 estimation algorithms with the presence of additive noise at SNR 10 dB.

SNR 10 dB

HARVEST RAPT PRAAT AC PRAAT SHS REAPER YANGsaf SHRP SWIPE BANA YAAPT
Noise  condition 1
Mean MAE  0.55 0.79 0.70 1.44 2.25 0.41 1.81 0.56 0.61 0.78

NRMSE 0.06 0.10 0.08 0.18 0.23 0.04 0.29 0.05 0.05 0.12
Spearman r 0.99 0.91 0.94 0.94 0.87 0.98 0.90 0.98 0.97 0.86

SD  MAE  1.53 1.14 0.63 1.67 2.06 1.30 2.82 0.31 0.75 0.64
NRMSE 0.58 0.33 0.21 0.39 0.53 0.76 0.72 0.12 0.26 0.20
Spearman r 0.77 0.64 0.66 0.65 0.50 0.64 0.60 0.93 0.69 0.70

Noise  condition 2
Mean MAE  0.44 0.53 1.27 0.81 1.92 0.52 1.46 0.55 1.62 0.47

NRMSE 0.04 0.09 0.14 0.11 0.20 0.04 0.26 0.05 0.13 0.08
Spearman r 0.99 0.92 0.90 0.95 0.85 0.99 0.87 0.99 0.91 0.92

SD  MAE  1.63 1.28 1.38 1.65 1.89 1.18 3.03 0.29 2.11 0.37
NRMSE 0.56 0.32 0.30 0.50 0.50 0.45 0.98 0.11 0.55 0.14
Spearman r 0.78 0.64 0.46 0.78 0.58 0.54 0.62 0.83 0.25* 0.80

Noise  condition 3
Mean MAE  0.41 0.53 0.63 0.76 1.04 0.13 0.99 0.24 0.41 0.40

NRMSE 0.04 0.08 0.08 0.09 0.12 0.01 0.13 0.02 0.08 0.08
Spearman r 0.99 0.92 0.95 0.96 0.92 0.99 0.94 0.99 0.92 0.93

SD  MAE  1.06 0.77 0.88 1.09 1.06 0.22 2.37 0.17 0.30 0.30
NRMSE 0.33 0.21 0.23 0.32 0.32 0.10 0.74 0.07 0.13 0.13
Spearman r 0.88 0.76 0.49 0.80 0.80 0.91 0.63 0.96 0.84 0.85

Noise  condition 4
Mean MAE  0.25 0.48 0.63 0.41 0.67 0.12 0.91 0.28 0.66 0.40

NRMSE 0.02 0.08 0.06 0.05 0.09 0.01 0.11 0.02 0.06 0.08
Spearman r 0.99 0.92 0.96 0.97 0.93 0.99 0.95 0.99 0.96 0.92

SD  MAE  0.87 0.61 0.71 0.88 0.79 0.20 2.35 0.20 0.48 0.29
NRMSE 0.23 0.20 0.22 0.23 0.25 0.09 0.70 0.07 0.22 0.12
Spearman r 0.90 0.74 0.52 0.82 0.85 0.94 0.57 0.96 0.65 0.89

Noise  condition 5
Mean MAE  0.35 1.28 1.08 0.50 1.14 0.13 1.08 0.23 0.82 0.41

NRMSE 0.03 0.12 0.12 0.07 0.13 0.01 0.14 0.02 0.07 0.08
Spearman r 0.99 0.88 0.90 0.96 0.92 0.99 0.91 0.99 0.95 0.92

SD  MAE  1.17 3.50 1.50 1.15 1.32 0.22 2.65 0.16 1.18 0.31
NRMSE 0.37 0.48 0.33 0.32 0.35 0.10 0.67 0.06 0.33 0.12
Spearman r 0.84 0.29 0.31 0.81 0.72 0.92 0.54 0.95 0.53 0.85

MAE  = mean absolute error, NRMSE = normalized root mean square error, SD = standard deviation. All correlations reached significance p < 0.001 except for * which refers to
p  < 0.01.

between Gold standard and a given speech signal (Spearman’s r ≥
0.90 and NRMSE ≤ 0.10).

3. Results

3.1. Performance of PDAs

Table 3 shows the results for original speech without the pres-
ence of any additive noise. A considerable difference in estimating
the mean and SD of the F0 contour can be seen. In the case of the
mean F0, all algorithms achieved very good correlation with refer-
ence labels (r > 0.90, p < 0.001), with very low NRMSE ≤ 0.03 in
some cases (Harvest, YANGsaf and SWIPE). However, the perfor-
mance of the algorithms dropped significantly for the estimation
of the F0 SD. Only YANGsaf and SWIPE reached NRMSE < 0.10, with
strong correlations between estimated and manual labels (r = 0.93,
p < 0.001 and r = 0.95, p < 0.001, respectively).

Table 4 shows results with an SNR level of 20 dB. With respect to
mean F0 estimation, the accuracy was nearly the same as for clear
speech for all types of noise, with NRMSE mostly below 0.10 (all r ≥
0.90, p < 0.001). For F0 SD, accuracy decreased in some cases only
slightly, for example in the performance of RAPT where NRMSE
dropped to 0.23 (r = 0.76, p < 0.001), 0.24 (r = 0.74, p < 0.001), 0.22
(r = 0.75, p < 0.001), 0.22 (r = 0.75, p < 0.001), 0.32 (r = 0.62, p
< 0.001) for Noise conditions 1–5, respectively. The decrease was
more rapid for instance in the case of SHRP with NRMSE of 0.84 (r =
0.69, p < 0.001), 0.91 (r = 0.63, p < 0.001), 0.69 (r = 0.56, p < 0.001),
0.68 (r = 0.55, p < 0.001), 0.67 (r = 0.54, p < 0.001) for Noise condi-
tions 1–5, respectively. Only SWIPE was able to reach NRMSE < 0.10

(r = 0.95-0.96, p < 0.001) for all noise conditions. YANGsaf reached
similar results as YAAPT with an NRMSE of 0.16 (r = 0.84, p < 0.001),
0.15 (r = 0.85, p < 0.001), 0.09 (r = 0.93, p < 0.001), 0.09 (r = 0.93, p
< 0.001), 0.09 (r = 0.93, p < 0.001) for Noise conditions 1–5, respec-
tively. No other algorithm achieved NRMSE < 0.20. Except in special
cases such as BaNa and RAPT, differences in performance for the all
noise types were generally low at the 20 dB SNR level.

Table 5 shows results with an SNR level of 10 dB, where devia-
tion from the results in clear speech became more apparent. These
differences were not as evident for mean F0 estimation, where most
algorithms still performed well with an NRMSE around 0.10 (r ≥
0.90, p < 0.001). In F0 SD, the difference was  substantial as most
of the algorithms showed serious deficiencies with noise at this
power. Only a few algorithms showed NRMSE < 0.30, with only
SWIPE and YAAPT reaching NRMSE < 0.20. Differences in perfor-
mance for the noise types became more striking. YANGsaf was no
longer accurate at the 10 dB noise level with an NRMSE of 0.76
(r = 0.64, p < 0.001) for Noise condition 1 and 0.45 (r = 0.54, p
< 0.001) for Noise condition 2, although maintained satisfactory
results for Noise conditions 3–5 with NRMSE 0.10 (r = 0.91, p <
0.001), 0.09 (r = 0.94, p < 0.001) and 0.10 (r = 0.92, p < 0.001),
respectively. Similar behavior was manifested by HARVEST, SHS
and REAPER. Also, Noise condition 5 led to worse performance,
for example RAPT with mean NRMSE 0.27 for Noise condition 1–4
increased to 0.48 for Noise condition 5. Algorithms that reached
similar performances for all noises were PRAAT AC, SWIPE and
YAAPT.

Table 6 shows results with the lowest SNR level of 6 dB. When
estimating mean F0, most algorithms showed an NRMSE < 0.20 (r >
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Table 6
Performance of F0 estimation algorithms with the presence of additive noise at SNR 6 dB.

SNR 6 dB

HARVEST RAPT PRAAT AC PRAAT SHS REAPER YANGsaf SHRP SWIPE BANA YAAPT
Noise  condition 1
Mean MAE  0.75 1.32 0.88 1.87 3.21 0.76 2.38 0.64 0.80 1.82

NRMSE 0.09 0.17 0.10 0.27 0.37 0.07 0.43 0.05 0.07 0.22
Spearman r 0.98 0.90 0.93 0.93 0.85 0.97 0.90 0.98 0.97 0.82

SD  MAE  1.87 1.72 0.69 1.96 2.47 1.75 3.02 0.29 0.98 1.51
NRMSE 0.58 0.34 0.21 0.43 0.55 1.08 0.77 0.10 0.31 0.33
Spearman r 0.72 0.52 0.64 0.59 0.42 0.65 0.55 0.92 0.58 0.59

Noise  condition 2
Mean MAE  0.60 0.72 1.79 0.97 2.98 0.94 1.81 0.75 2.54 0.89

NRMSE 0.07 0.11 0.21 0.15 0.36 0.07 0.39 0.06 0.20 0.12
Spearman r 0.99 0.92 0.88 0.95 0.82 0.98 0.86 0.98 0.86 0.88

SD  MAE  1.92 1.82 1.70 2.01 2.41 1.50 3.25 0.50 2.98 0.46
NRMSE 0.58 0.42 0.35 0.57 0.52 0.60 1.04 0.19 0.65 0.12
Spearman r 0.66 0.55 0.33* 0.74 0.43 0.55 0.57 0.68 0.02* 0.83

Noise  condition 3
Mean MAE  0.48 0.56 0.66 0.91 1.17 0.14 1.01 0.25 0.40 0.42

NRMSE 0.05 0.08 0.08 0.11 0.14 0.01 0.14 0.02 0.04 0.08
Spearman r 0.99 0.92 0.95 0.95 0.92 0.99 0.95 0.99 0.98 0.92

SD  MAE  1.11 0.76 0.93 1.13 1.10 0.25 2.27 0.19 0.53 0.28
NRMSE 0.36 0.21 0.24 0.34 0.31 0.12 0.74 0.07 0.20 0.12
Spearman r 0.87 0.76 0.48 0.78 0.77 0.90 0.65 0.95 0.78 0.87

Noise  condition 4
Mean MAE  0.26 0.49 0.66 0.39 0.65 0.12 0.87 0.32 0.74 0.38

NRMSE 0.02 0.08 0.06 0.05 0.09 0.01 0.11 0.03 0.06 0.07
Spearman r 0.99 0.92 0.96 0.97 0.93 0.99 0.95 0.99 0.97 0.93

SD  MAE  0.89 0.54 0.56 0.85 0.74 0.21 2.29 0.23 0.55 0.31
NRMSE 0.24 0.20 0.20 0.23 0.24 0.09 0.68 0.08 0.23 0.11
Spearman r 0.87 0.76 0.60 0.81 0.85 0.93 0.61 0.96 0.55 0.88

Noise  condition 5
Mean MAE  0.37 2.25 2.01 0.49 1.25 0.13 1.90 0.25 1.09 0.43

NRMSE 0.04 0.21 0.17 0.07 0.14 0.01 0.24 0.02 0.09 0.07
Spearman r 0.99 0.85 0.85 0.95 0.91 0.99 0.90 0.99 0.93 0.92

SD  MAE  1.26 4.70 2.79 1.48 1.49 0.24 3.39 0.15 1.58 0.29
NRMSE 0.38 0.56 0.49 0.39 0.39 0.11 0.86 0.06 0.33 0.12
Spearman r 0.82 0.16* 0.10** 0.75 0.69 0.92 0.31* 0.95 0.35 0.87

MAE  = mean absolute error, NRMSE = normalized root mean square error, SD = standard deviation. All correlations reached significance p < 0.001 except for * and ** which
refers to p < 0.01, respectively p < 0.1.

0.80, p < 0.001). Even under these conditions we  were able to get
very close to the Gold standard with Harvest, YANGsaf and SWIPE.
When estimating F0 SD, the only acceptably accurate results were
achieved by SWIPE with an NRMSE of 0.10 (r = 0.92, p < 0.001)
for Noise condition 1. The performance of NRMSE dropped to 0.19
for Noise condition 2 (r = 0.68, p < 0.001) but remained reliable for
Noise conditions 3–5 with NRMSE 0.07 (r = 0.95, p < 0.001), 0.08
(r = 0.96, p < 0.001), and 0.06 (r = 0.95, p < 0.001), respectively. Con-
versely, YAAPT showed sufficient accuracy for Noise conditions 2–5
with an NRMSE of 0.12 (r = 0.83, p < 0.001), 0.12 (r = 0.87, p < 0.001),
0.11 (r = 0.88, p < 0.001), and 0.12 (r = 0.87, p < 0.001) but failed
for Noise condition 1 with an NRMSE of 0.33 (r = 0.59, p < 0.001).
YANGsaf showed the same accuracy as in the case of 10 dB SNR sce-
nario with satisfactory results for Noise conditions 3–5 with mean
NRMSE 0.11 (r = 0.90-0.93, p < 0.001), but insufficient for Noise con-
ditions 1–2 with mean NRMSE 0.84 (r = 0.55-0.65, p < 0.001). Other
algorithms were beyond these results with NRMSE usually much
greater than 0.30 (r = 0.50-0.60, p < 0.05). Differences in perfor-
mance for the noise types were substantial and differed between
algorithms.

SWIPE was the least affected algorithm by different noise types
through all the SNR levels. To make the orientation within a num-
ber of comparisons more straightforward, the results listed in
the Tables 3–6 were also visualized by Figs. 1 and 2 for mean
F0 and F0 SD where the individual points represent mean MAE
and NRSME across all the noise conditions for different SNR lev-
els.

3.2. SWIPE performance evaluation on the distinction between
study groups

According to the results of comparisons (Table 2–6), SWIPE was
found to be the most robust algorithm for the detection of F0 SD
in different noise conditions. Fig. 3 demonstrates statistically sig-
nificant group differences between the PD and HC groups for F0 SD
across all investigated noise conditions (p < 0.01). No statistically
significant differences were found for the mean F0 across various
noise conditions (Fig. 4).

4. Discussion

Our results show that F0 estimation from connected speech
can be accurate and reliable even when a smartphone is used for
recording in an urban environment with the presence of noise.
While previous methods were mostly designed for highly func-
tional vocal paradigms such as sustained phonation [52,53], our
current findings present several new opportunities. Tracking pitch
changes from connected speech may  provide a very natural dig-
ital biomarker of disease progression based on longitudinal data
acquired without any cost or burden to the patient and inves-
tigator. Moreover, connected speech reflects the complexity of
speech production including a combination of speech motor exe-
cution and cognitive-linguistic processing, and therefore has been
shown to be superior in capturing subtle PD-related speech changes
compared to functional vocal tasks [20]. Observing disease progres-
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Fig. 1. Mean F0 MAE  and NRMSE results for the algorithms on different SNR levels. For 20, 10, and 6 dB SNR, each point corresponds to mean MAE or NRMSE across all the
noise  types for a given level.

Fig. 2. F0 SD MAE  and NRMSE results for the algorithms on different SNR levels. For 20, 10, and 6 dB SNR, each point corresponds to mean MAE  or NRMSE across all the noise
types  for a given level.
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Fig. 3. Group differences in SWIPE F0 SD estimation between the HC and PD set with ** referring to p < 0.01 and *** to p < 0.001. Red bars represent the median of F0 SD,
rectangles represent interquartile range. Maximum and minimum values are by error bars. Outliers are marked as red crosses. Captions: PD = Parkinson’s disease, HC = healthy
controls,  SNR = signal-to-noise ratio.

sion over a short period using well-defined and disease-specific
biomarkers such as monopitch may  thus significantly aid in the
recruitment of appropriate cases into large studies of innovative
therapies for prodromal PD, and in the future may  also bolster early
presymptomatic diagnosis and enable rapid access to neuroprotec-
tive therapy once available. Quick, inexpensive, and non-invasive
vocal assessment by smartphone may  also allow for personalized
implementation of therapeutic strategies providing (i) rapid feed-
back after exercise, (ii) monitoring the effects of pharmacological
therapies including advanced drug delivery systems and making
it possible to modify medication doses according to immediate
needs, or (iii) modification of effects and speech-related side-effects
of deep brain stimulation by re-programming and optimizing
stimulation parameters [54]. In addition, it could be extended to
improve diagnosis and monitoring disease progression in other dis-
orders affecting the fundamental frequency such as in Huntington’s
disease, amyotrophic lateral sclerosis, and even various neuropsy-
chiatric disorders [55–57]. In the future, as computational power
has enabled a higher level of automation, PDA can be implemented
directly to smartphones and speech data analyzed on the device.
Thus, only statistical trends related to pitch performance would be
stored and available for interested patients or their neurologists,
whereas no personal data need to be shared or transferred.

The estimation of mean F0 was very accurate across all SNR lev-
els and almost independent of the type of noise for most of the
PDAs. This is in agreement with a previous study by Maryn et al.
[22], where mean F0 was accurately estimated across various SNR

levels (mean 31.84 dB, SD 10.66 dB), which were however higher
compared to those used in the present study. The performances in
measuring F0 SD heavily rely on which PDA is used particularly for
lower SNR levels. To recommend the most robust PDA for all situa-
tions, the choice would clearly be SWIPE. Harvest, YAAPT and YANG
were also sufficiently accurate. These outperformed the other algo-
rithms mainly in terms of high resistance to the effects of noise and
reliable SD estimates. In addition, algorithms such as REPAER were
sufficiently accurate for clear speech but failed in noisy scenarios.

Considering F0 SD estimation by SWIPE, the process was highly
independent of the presence of non-stationary noise with almost no
difficulties even at 10 dB SNR. At the lower 6 dB SNR level (Table 6),
the presence of noise substantially decreased the accuracy of
SWIPE, especially for Noise condition 2 captured in an acoustically
enclosed space. We  might assume that such decreased accuracy is
caused particularly by two factors including (i) similarity between
F0 contours estimated from monologue and background speech
and (ii) reverberations involved in noise due to the acoustically-
enclosed space. Improvement of final PDA accuracy might be
achieved by a fusion of more algorithms as was  done in a previous
study by Tsanas et al. [28]. However, the SWIPE-estimated F0 SD
marker was  still able to separate between PD and healthy control
groups at a high level of statistical significance for all noise levels.
In agreement with our findings, the previous study by Tsanas et al.
[28] recommended SWIPE as an accurate F0 estimator of pitch con-
tours from sustained vowels in environments without the presence
of noise.
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Fig. 4. Group differences in SWIPE mean F0 estimation between the HC and PD set. No statistically significant differences were found between the groups. Red bars represent
the  median of F0 SD, rectangles represent interquartile range. Maximum and minimum values are by error bars. Outliers are marked as red crosses. Captions: PD = Parkinson’s
disease, HC = healthy controls, SNR = signal-to-noise ratio.

As we found high statistically significant differences between
our PD and HC groups for F0 SD using SWIPE across various
noise levels, reduced intonation variability can be considered as
a reliable marker of early speech disorder in PD suitable for the
smartphone application. Further support to measure intonation
variability comes from previous literature, showing the occurrence
of monopitch even in patients with rapid eye movement sleep
behavior disorder [20], which is considered one of the most impor-
tant clinical phenotypes for predicting future conversion to PD
[11]. In addition, the previous study reported cases with reduced
intonation variability detectable several years before the onset of
the first PD motor manifestations [19]. From a practical point of
view, features such as intonation variability extracted from longer
connected speech material better ensure the stability of speech
assessment compared to short and functional vocal tasks [58]. Yet,
the stability of speech assessment is important to highlight even
small speech changes due to neurodegeneration or effects of ther-
apy introduction during longitudinal monitoring. Also, previous
research documented that analysis of spontaneous utterances is
the best way to assess the impact of PD on speech [59,60]. Consid-
ering mean F0, we did not find any significant differences between
PD and HC groups in our cohort. This finding is in agreement with
a previous study by Holmes et al. [61], which demonstrated that
a higher speaking F0 was associated with advanced PD only in
males. It is noteworthy that our dataset was composed primarily of

male participants and thus we cannot exclude the possibility that
the observed monopitch and no differences in mean pitch may  be
influenced by gender-specific aspects.

The present study has certain limitations. Only freely-available
F0 estimation algorithms were tested, allowing easy transcription
into clinical practice. Some promising methods previously recom-
mended by Tsanas et al. [28] were not part of this study and their
sensitivity to connected speech in a noisy environment should be
tested in future studies. Only one type of smartphone was used for
the recordings and thus differences between various devices could
not be evaluated. Although high reliability between professional
condenser and low-quality smartphone microphones for pitch esti-
mation has already been shown [20], future studies are encouraged
to confirm our findings and test new solution, preferably using
different devices and other languages (for example using freely-
available datasets such as Ïtalian Parkinson’s Voice and Speech
Dataset[̈62]). In addition, albeit several types of additive noise were
used, they do not contain all possible noise sources and noise types
in a natural environment. However, based on research conducted
using smartphones, Lebacq et al. [63], Jannets et al. [64] and Man-
fredi et al. [65] showed that F0 measures are sufficiently robust
with respect to the recording device. In addition, Maryn et al. [22]
showed that measuring F0 contour is robust with respect to both the
recording system and environmental noise, as well as their combi-
nation. It should also be noted that we  did not evaluate the influence
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of convolutive noise on PDA performance as speech recorded with
a smartphone does not need to undergo signal frequency content
attenuation via transmission and processing.

5. Conclusion

This work represents a further step in using smartphones to
evaluate speech disorders due to the presence of PD. We found
that monopitch can be reliably measured by the SWIPE algorithm
even when a smartphone device is used for the recording and non-
stationary urban noise up to 10 dB SNR is present. At a lower SNR
level, a combination of more algorithms may  be needed to achieve
sufficient robustness. Monopitch estimated by SWIPE was able to
significantly distinguish between PD and healthy control groups
and may  serve as a useful digital biomarker in monitoring the effec-
tiveness of speech therapy or experimental treatments on slowing
the progression of PD. Future longitudinal studies should show
the sensitivity of tracking pitch changes through smartphones as
a potential diagnostic and progressive digital biomarker of PD.
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2.4 Speech timing

2.4.1 Speech pauses

Considering speech pauses, both development of automated methods and the effect of
parkinsonism has been thoroughly investigated [29], [46]. From the motor side, prolon-
gation of pauses was associated with dysrhythmia patterns in iRBD and PD cohorts and
partially with a decreased ability to stop voicing properly, which may reflect weak abduc-
tion of the vocal folds due to bradykinesia and rigidity of laryngeal muscles. Furthermore,
prolonged pauses might be a sign of a mild cognitive decline, a risk factor of conversion
into a synucleinopathy such as PD or dementia with Lewy bodies [47], [48].

Detecting speech pauses has been a longstanding engineering challenge, leading to
the development of various robust techniques over the years. These range from tradi-
tional power spectrum processing to more recent advancements like deep neural network
approaches [49], [50].

2.4.2 Speech rate

Considering the rate of speech, it represents of key dimensions in dysarthria. In PD,
disparate findings have been reported, including no changes in the speech rate, decreased
speech rate, or even an accelerated speech rate [51]–[53]. Nonetheless, most patients are
expected to develop more severe articulation rate abnormalities as the disease progresses
[54]. In people with iRBD, evidence is limited to the trend toward a slower rate [18].

Several methods for measuring speech rate have been developed, ranging from manual
annotation to fully automatic techniques. However, the reliability of automated methods
in analyzing spontaneous speech has not been thoroughly explored, with most of the
research focusing on read text utterances. Since speech production of patients with PD was
even more affected during extemporaneous speech than it was in nonspontaneous speech
tasks, a comprehensive study was conducted to evaluate several automated approaches
for estimating spontaneous speech rate in PD, iRBD, and multiple system atrophy, a rare,
severe parkinsonism [55].

A variety of approaches for estimating NAR and NSR are available; apart from meth-
ods that classify the speech rate according to discrete categories such as slow and fast
[56], most algorithms assess the articulation rate in terms of speech units per time. A
widely used metric is the words per minute measurement [57], but this approach has sev-
eral disadvantages, such as a specific word spanning from a single isolated speech sound
to a multisyllabic expression or combination to two or more words to produce a compos-
ite form (such as “work” and “man” to produce “workman”). Given the variations in a
word’s acoustic and syllabic complexity, the words per minute measurement appears to
be suitable for a short, functional vocal task but not for a real-world scenario in which the
input may vary substantially in terms of length or content. As a result, counting syllables
per minute has become popular and is currently perceived as a standard measurement
[58].

The speech rate evaluation can thus be considered as a syllable detection task. How-
ever, automating the process has several challenges. Syllable localization techniques are
not fully established, and none of the developed algorithms is universally applicable [59].
Usually, the methods are developed for a specific, short context only, for healthy speech
without the presence of dysarthria [60]. Therefore, this study aimed to evaluate the re-
liability of different approaches for estimating the articulation rates in connected speech
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of Parkinsonian patients with different stages of neurodegeneration compared to healthy
controls.

In total, 21 different approaches were identified and tested in a cohort of 25 PD, 25
multiple system atrophy patients, and 25 healthy controls. The results showed that the
speech rate features of connected speech using syllables as units in time could be mea-
sured accurately based on data from patients with different synucleinopathies and various
degrees of severity of speech disorders. The estimation accuracy heavily depends on the
particular method used. It was found that the most precise estimates produce a developed
framework of speech recognition tool followed by hyphenation procedure. Moreover, the
speech recognition tools, such as Whisper, are extensively robust across various conditions
and languages [61]. However, a minor deterioration in accuracy was observed in multiple
system atrophy group, probably due to the algorithm’s lack of familiarity with highly
dysarthric speech. If the study cohort contains subjects with severe dysarthria condi-
tions, or there are ethical or technical issues that prohibit the use of automated speech
recognition a method based on intensity characteristic function followed by a balanced
peak pruning [62] might be used instead.

Using the validated methods, measures of speech rate can be obtained remotely and
automatically from the subjects. The findings suggest that the automatic evaluation and
tracking of changes in the speech rate of both reading passages and spontaneous speech
may be able to provide a natural biomarker of disease progression. The preprint of the
article is provided below.
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A B S T R A C T

Purpose: This study aimed to evaluate the reliability of different approaches for
estimating the articulation rates in connected speech of Parkinsonian patients
with different stages of neurodegeneration compared to healthy controls.
Method: Monologues and reading passages were obtained from 25 patients
with idiopathic rapid eye movement sleep behavior disorder (iRBD), 25 de novo
patients with Parkinson’s disease (PD), 20 patients with multiple system atrophy
(MSA), and 20 healthy controls. The recordings were subsequently evaluated
using eight syllable localization algorithms, and their performances were com-
pared to a manual transcript used as a reference.
Results: The Google & Pyphen method, based on automatic speech recognition
followed by hyphenation, outperformed the other approaches (automated vs.
hand transcription: r > .87 for monologues and r > .91 for reading passages, p <
.001) in precise feature estimates and resilience to dysarthric speech. The Praat
script algorithm achieved sufficient robustness (automated vs. hand transcription:
r > .65 for monologues and r > .78 for reading passages, p < .001). Compared to
the control group, we detected a slow rate in patients with MSA and a tendency
toward a slower rate in patients with iRBD, whereas the articulation rate was
unchanged in patients with early untreated PD.
Conclusions: The state-of-the-art speech recognition tool provided the most
precise articulation rate estimates. If speech recognizer is not accessible, the
freely available Praat script based on simple intensity thresholding might still
provide robust properties even in severe dysarthria. Automated articulation rate
assessment may serve as a natural, inexpensive biomarker for monitoring dis-
ease severity and a differential diagnosis of Parkinsonism.

Parkinson’s disease (PD) is a neurological disorder
characterized by the abnormal accumulation of aggregates
of alpha-synuclein protein in the neurons, nerve fibers, or
glial cells (McCann et al., 2014; Poewe et al., 2017). At
present, the available pharmacotherapy methods only mit-
igate PD motor symptoms and do not treat the actual
process of the disease. Although neuroprotective therapies
are currently being developed (Devos et al., 2021), no
treatment can stop or slow the progression of the disease
at the moment. The diagnosis is typically made with the

appearance of cardinal motor manifestations, including
bradykinesia, rigidity, and resting tremor (Poewe et al.,
2017). The fact that PD progresses over many years
before the appearance of obvious motor manifestations
may be the main reason that neuroprotective therapy has
not been discovered because, when a formal diagnosis is
made, it is simply too late for an intervention. Therefore,
early identification of PD in its prodromal stages is crucial
for the development of future therapies (Högl et al., 2018;
Schenck et al., 2013).

Idiopathic rapid eye movement sleep behavior disor-
der (iRBD) is characterized by the loss of physiologic
muscle atonia and abnormal behavior during rapid eye
movement sleep, such as significant, uncontrolled body
movements and vocalizations (St Louis et al., 2017). The
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patients have a high risk (> 80%) of developing a neurode-
generative disease in the synucleinopathy group, predomi-
nantly PD or dementia with Lewy bodies, but possibly also
multiple system atrophy (MSA; Arnaldi et al., 2017). In peo-
ple with MSA, alpha-synuclein aggregates spread into the
glial cells as well as into the neurons, and affect the brainstem,
the cerebellum, the basal ganglia, and the cortex (Longo
et al., 2015). The initial symptoms may be similar to PD, but
the progression of the disease is faster, the symptoms are less
responsive to dopaminergic therapy, and the patients develop
severe autonomic nervous system dysfunctions and postural
disorders at an early stage (Longo et al., 2015).

Speech Rate Impairment in PD, MSA,
and iRBD

As the most complex acquired human motor skill
entailing over 100 muscles, speech is highly sensitive to
degenerative processes in the brain’s motor system (Duffy,
2019). Speech and voice disorders, referred to as hypoki-
netic dysarthria, develop in up to 90% of patients with PD
(Ho et al., 1999). Typical characteristics of hypokinetic
dysarthria are decreased voice quality, imprecise articula-
tion, monopitch, monoloudness, and rhythm deficits in
timing and phrasing (Ho et al., 1999). Compared to PD,
MSA typically manifests more severe dysarthria with
mixed hypokinetic, ataxic, and spastic features. Voice
changes in patients with iRBD have been suggested to be
the first motor signs of the disease and may appear up to
10 years before the cardinal motor symptoms (Postuma
et al., 2012). The findings of a recent multilanguage study
based on an objective acoustic analysis of 150 patients
with iRBD indicated that subliminal speech dysfunction
may be a potential prodromal and progressive biomarker
of Parkinsonism (Rusz et al., 2021). As vocal assessments
have intriguing advantages because they are inexpensive,
noninvasive, and easy to administer, changes in speech are
promising candidates as preclinical diagnostic and pro-
gressive biomarkers of Parkinsonism.

A hallmark of dysarthric speech is alterations in the
rate of speech. Due to more widespread neurodegenera-
tion, patients with MSA usually exhibit substantial slow-
ness of articulation rate (Rusz et al., 2015; Skrabal et al.,
2020). In PD, no speech rate alterations were observed in
early stages (Rusz et al., 2011, 2021), whereas disparate find-
ings have been reported in the later stages, including no
changes in the speech rate, decreased speech rate, or even an
accelerated speech rate (Delval et al., 2016; Konstantopoulos
et al., 2021; Skodda & Schlegel, 2008). Nonetheless, most
patients are expected to develop more severe articulation
rate abnormalities as the disease progresses (Skodda &
Schlegel, 2008; van Nuffelen et al., 2009). In people with
iRBD, evidence is limited to the trend toward a slower
rate (Rusz et al., 2021).

Most importantly, knowledge about speech rate
impairments in PD and other synucleinopathies is based
mainly on read text utterances, whereas little is known
about patterns of timing deficits in spontaneous speech. It
has been found that the speech production of patients with
PD was even more affected during extemporaneous speech
than it was in nonspontaneous speech tasks (Kempler &
Lancker, 2002; Rusz et al., 2013). For example, simple
speech tasks such as reading sentences or a diadochoki-
netic test (e.g., producing the /pa/, /ta/, /ka/ sequence) do
not require the patient’s full attention because the produc-
tion is more automatic than are the complex procedures
involved in spontaneous speech.

Moreover, most speech pathologists currently evalu-
ate the articulation rate by hand-labeling or using percep-
tual tests in their medical practices (Sussman & Kris,
2012). Since hand-labeling is time consuming and subjec-
tive, it does not allow for the assessment of spontaneous
recordings with arbitrary content and length (Kent, 1996).
Therefore, the design of a system allowing the automatic
assessment of speaking rate is necessary.

Toward Automated Assessment
of Speech Rate

Concerning timing deficits, the net articulation rate
(NAR) or net speech rate (NSR) are speech features that
are consistently affected in dysarthria (Delval et al., 2016;
Konstantopoulos et al., 2021; Rusz et al., 2021; Skodda &
Schlegel, 2008). While NSR describes the rate of speech
computed from the entire utterance, NAR is defined as the
total number of speech units (such as words and syllables)
divided by the speech duration after the removal of pauses.
Both features capture respiration and articulation impair-
ments in dysarthria; these elements significantly affect the
form of speaking, such as a gradual slowing of the speech
tempo, stuttering, or sudden acceleration (Skodda &
Schlegel, 2008; van Nuffelen et al., 2009). These lead to
unintelligible parts of speech and unfinished words.

A variety of approaches for estimating NAR and
NSR are available; apart from methods that classify the
speech rate according to discrete categories such as “slow”
and “fast” (Zellner, 1998), most algorithms assess the
articulation rate in terms of speech units per time. A
widely used metric is the words per minute measurement
(Maclay & Osgood, 2015), but this approach has several
disadvantages. Notably, a specific word can span from a
single isolated speech sound (such as the first person sin-
gular “I”) to a multisyllabic expression. Moreover, most
languages allow for two or more words to be combined to
produce a composite form (such as “work” and “man” to
produce “workman”), and this form is considered to be a
single word in the words per minute approach. Given the
variations in a word’s acoustic and syllabic complexity,
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the words per minute measurement appears to be suitable
for a short, functional vocal task such as reading a sen-
tence with fixed, predescribed content, but not for a real-
world scenario in which the input may vary substantially
in terms of length or content. As a result, a method for
counting syllables per minute, called mrate, was developed
(Morgan & Fosler-Lussier, 1998). This approach has
become popular and is currently perceived as a standard
and putatively language-independent measurement. There-
fore, we focused on the techniques that use syllable counts
in this study.

The NAR and NSR evaluation tasks can, thus, be
considered to be syllable detection tasks. However, auto-
mating the process has several challenges. Syllable localiza-
tion techniques are not fully established, and none of the
developed algorithms is universally applicable (Jiao et al.,
2015). Typically, a particular algorithm is designed to work
reasonably well in a specific scenario (e.g., short utterances
with fixed content; Huici et al., 2016), but might not per-
form adequately in a different context. The presence of dys-
arthria might be a notable disruptive factor; for example,
the algorithm may struggle with dysarthria-specific impair-
ments such as phonatory disruptions, imprecise articulation,
hypernasality, or low voice intensity (Kent et al., 1999).
However, almost all the existing methods were developed
based on healthy speech, with only a few studies (Martens
et al., 2015; Huici et al., 2016; Jiao et al., 2015;
Carmichael, 2017) focusing on patients with dysarthria.
Moreover, only one study (Carmichael, 2017) has analyzed
a speech task involving more than 20 words. To the best of
our knowledge, no research related to the reliability of
automatic speech rate estimations using a monologue and a
broader range of dysarthria severity has been conducted.

Aims of This Study

This study aimed to evaluate the reliability of different
approaches for estimating the articulation rates in connected
speech of Parkinsonian patients with different stages of neuro-
degeneration compared to healthy controls (HCs). We
hypothesized that automated assessment of articulation rate
in Parkinsonian with reliable performance as compared to
human annotation would be possible. We also hypothesized
that altered articulation rate would be detectable from pro-
dromal to advanced stages of neurodegeneration.

Method

Participants

This article represents the observational, cross-
sectional research study. Ninety-five native Czech speakers
were recruited. The research was approved by the Ethics

Committee of the General University Hospital in Prague,
Czech Republic, and written, informed consent was pro-
vided by each participant.

Twenty-five de novo, drug-naive patients with PD
(10 women and 15 men) with a mean age of 60.8 (SD =
11.5, range: 41–75) years were diagnosed based on the
Movement Disorders Society’s clinical diagnostic criteria
(Postuma et al., 2015). The inclusion criteria for PD were
as follows: (a) native Czech language speaker, (b) no his-
tory of therapy with antiParkinsonian medication, (c) no
history of significant communication or neurological dis-
orders unrelated to PD, and (d) no current or past
involvement in any speech therapy. Twenty-five partici-
pants with iRBD (nine women and 16 men) with a mean
age of 61.8 (SD = 8.3, range: 40–73) years were diagnosed
according to the diagnostic criteria in the third edition of
the International Classification of Sleep Disorders based
on video-polysomnography (Sateia, 2014). The inclusion
criteria for iRBD were as follows: (a) native Czech lan-
guage speaker, (b) no history of therapy with antiparkin-
sonian medication, and (c) no history of significant com-
munication or neurological disorders. Twenty patients
with MSA and the Parkinsonian subtype (10 women, 10
men) with a mean age of 61.2 (SD = 7.4, range: 45–72)
years were diagnosed using the consensus diagnostic cri-
teria for MSA (Gilman et al., 2008). The inclusion criteria
for MSA were as follows: (a) native Czech language
speaker, (b) no history of therapy with antipsychotic medi-
cation, (c) no history of significant communication or neu-
rological disorders unrelated to MSA, (d) no current or
past involvement in any speech therapy, and (e) no severe
cognitive decline that would interfere with recording pro-
cedure. A movement disorder specialist (Jiří Klempíř and
Petr Dušek) performed the diagnosis and clinical evalua-
tion. For the iRBD and PD groups, the severity of the dis-
ease was rated (Petr Dušek) according to the Movement
Disorder Society–Unified Parkinson’s Disease Rating Scale
(MDS-UPDRS III) motor part (which ranges from 0 to
132, with 0 indicating no motor manifestations and 132 rep-
resenting severe motor disturbance; Goetz et al., 2008). The
patients with MSA were scored (Jiří Klempíř) using Neuro-
protection and Natural History in the Parkinson Plus Syn-
dromes Scale (ranging from 0 indicating no manifestations
to 309 representing severe dysfunction; Payan et al., 2011);
interrater reliability for the total score has been shown to
be high (intraclass coefficient = 0.94; Payan et al., 2011).
Patients with MSA had been treated with levodopa, either
on its own or with dopamine agonists and/or amantadine.
The clinical descriptions of the severity of the speech disor-
ders of the individuals with iRBD, PD, and MSA were
determined perceptually based on speech Item 3.1. in the
MDS-UPDRS III, which ranges from 0 to 4 with 0 indicat-
ing normal and 4 unintelligible speech. All the patients with
PD were recruited consecutively during their first visit to
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the clinic and were examined before symptomatic treatment
began. The duration of the disease was estimated based on
the self-reported evidence of the first motor symptoms. See
Table 1 for the clinical characteristics of the patients.

The HC group consisted of 25 age- and gender-
matched (10 women, 15 men) participants with a mean
age of 62.0 (SD = 8.5, range: 40–74) years. The inclusion
criteria for HC were as follows: (a) native Czech language
speaker and (b) no history of significant communication
or neurological disorders.

Speech Assessment

The recordings were captured in a closed room with
a low ambient noise level. A head-mounted condenser
microphone (Beyerdynamic Opus 55) was used to record
the data. The sampling frequency was set to 48 kHz and
the resolution to 16-bit. Each participant was accompa-
nied by a guiding speech specialist (Tereza Tykalová,
Michal Novotný, and Jan Rusz), and the recordings were
made in a single session. The participants were asked to
present a monologue about an arbitrary topic of approxi-
mately 90 s in duration and perform a reading passage
task of a standardized text of 80 words. The same settings
applied to subjects in all groups.

The monologues were not altered significantly dur-
ing the processing, although it was necessary to make
minor modifications. In the event that the examiner’s
speech was recorded, it was carefully removed from the
waveform. In the case of one of the participants with
MSA, isolated short segments that contained speech so
severely unintelligible as to make a direct transcription
impossible had to be removed; the extracted percentage of

the removed text did not exceed 5% of the recorded dura-
tion. The average final duration of the monologues used
for the analyses, given in seconds, was 125.4 (SD = 13.3)
for the HC, 129.5 (SD = 16.4) for the iRBD, 122.1 (SD =
17.0) for the PD, and 130.8 (SD = 44.5) for the MSA
groups. The reading passages were not necessary to mod-
ify in any way, and the average duration was 33.4 (3.9)
for the HC, 36.9 (SD = 5.3) for the RBD, 35.7 (SD = 5.1)
for the PD, and 42.9 (SD = 11.5) for the MSA groups.

Speech Rate Algorithm Search and Selection
Strategy

A systematic search of English articles written
before December 2020 was conducted on the Web of Sci-
ence, IEEE Xplore, and Google Scholar for more relevant
studies of speech rate estimation. Multiple keywords were
used for the search, namely, “speech rate,” “articulation
rate,” “speech rhythm,” “syllable detection,” “dysarthria,”
“syllable count estimation,” and “word count estimation.”
Two methods by Dekens et al. (2014) and Martens et al.
(2015) as well as Huici et al. (2016), aimed specifically at
speech rate estimation in dysarthria, were identified. In
addition, we identified and analyzed 19 different methods
(Aharonson et al., 2017; Carmichael, 2017; de Jong &
Wempe, 2009; Heinrich & Schiel, 2011; Jiao et al., 2015,
2016; Mannem et al., 2020; Morgan & Fosler-Lussier,
1998; Nayak et al., 2019; Pfitzinger et al., 1996; Räsänen ,
Doyle, & Frank, 2018; Schwarz & Černocký, 2008;
Seshadri & Räsänen, 2019; Villing, 2004; Wang &
Narayanan, 2007; Yarra et al., 2016, 2019; Yuan &
Liberman, 2010; Zhang & Glass, 2009). A particular
method was excluded from further consideration if

(i) the algorithm was designed for functional tasks only
(i.e., it would not be suitable for connected speech),
(ii) its computation principle was very similar to another
selected algorithm,
(iii) the authors had subsequently published a more
advanced algorithm that outperformed the initial one,
(iv) the authors did not compare the performance of
their algorithm to any other approaches,
(v) the published platform did not offer a sufficient
description of the method used to allow for its proper
implementation,
(vi) the algorithm delivered a substantially worse perfor-
mance than did the others in the trials that were con-
ducted, or
(vii) the method required training or tuning data sets
that were not available.

Moreover, we added one extra procedure employing
an automatic speech recognition system as a proof of the
concept. In total, we identified eight methods that were

Table 1. List of the clinical characteristics of the groups.

iRBD (n = 25; 9 women and 16 men) M/SD (range)

Age (years) 61.8/7.4 (40–73)
Symptom duration (years) 5.4/4.2 (1–20)
MDS-UPDRS III total 7.6/5.8 (0–24)
MDS-UPDRS III speech item 0.0/0.2 (0–1)
PD (n = 25; 10 women and 15 men)
Age (years) 60.8/11.5 (41–75)
Symptom duration (years) 3.0/2.4 (1–11)
MDS-UPDRS III total 31.1/12.0 (10–56)
MDS-UPDRS III speech item 0.8/0.4 (0–1)
MSA (n = 20; 10 women and 10 men)
Age (years) 61.2/7.4 (45–72)
Symptom duration (years) 4.0/1.8 (2–7)
NNIPPS total 76.9/33.9 (35–123)
MDS-UPDRS III speech item 1.5/0.7 (0–3)

Note. iRBD = idiopathic rapid eye movement sleep behavior disor-
der; MDS-UPDRS III = Movement Disorder Society–Unified Parkin-
son’s Disease Rating Scale; PD = Parkinson’s disease; MSA = multi-
system atrophy; NNIPPS = Neuroprotection and Natural History in
the Parkinson Plus Syndromes Scale.
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subsequently included in the testing. See Table 2 for the
list of selected and excluded methods with links to their
sources and the reasons for their exclusion.

Tested Methods for Estimating Speech Rate

A review of the eight selected techniques is provided
in this section. Some algorithms were a popular choice for
comparison and were used frequently in the related stud-
ies, such as in the work of Wang and Narayanan (2007),
whereas others represent methods with novel approaches
that were introduced very recently, such as in the work
of Seshadri and Räsänen (2019). The computations were
performed in MATLAB (MathWorks) and Python envi-
ronments, although an interface to other programs, such
as Praat (Boersma, & Weenink, 2001), was employed in
some cases.

Google and Pyphen
This straightforward strategy employs automatic

speech recognition for estimating the speech rate, as sug-
gested previously (Wang & Narayanan, 2007; Yuan &
Liberman, 2010). However, its potential has not been
explored because the speech rate is commonly used as a
parameter to improve the performance of automatic speech
recognition systems (Heinrich & Schiel, 2011; Nayak et al.,
2019). One particular service, Google Speech-to-Text
(Google Speech-to-Text, 2013), was chosen because it is in
the top-tier of speech recognition software and employs
complex neural structures; it also has comparably the larg-
est training database and can be used for most of the
world’s languages.

In the procedure, the data are sent to the service,
where the online processing occurs. The outputs are recog-
nized words with given timestamps. The single words are
then divided into syllables using Hunspell hyphenation
libraries (Németh, 2002), a widely used hyphenation tool
across many platforms and languages. We used a Python
implementation module in Hunspell called Pyphen
(Berendsen, 2015).

Since the only timestamps available were the start
and the end of each word, the syllable locations (nuclei) were
determined based on their equal distribution throughout a
given word. For example, when a word spanned 600 ms and
contained three syllables, its nuclei timestamps were allo-
cated as three 200-ms intervals.

Praat Script
The algorithm (de Jong & Wempe, 2009), named

after the environment it was created in, uses intensity as
the characteristic function from which the syllable position
candidates are derived. The intensity contour is computed
as a convolution of a squared input signal and a Gaussian
type window of a length L. L was set to 3.2 · fs/fmin where

fs was the sampling frequency and fmin corresponded to
minimal signal periodicity, which was set to 50 Hz.

Peaks in the intensity contour with a more extensive
value than the intensity median were marked as syllable
candidates. Their height was checked relative to the pre-
ceding valley, followed by pitch verification using the
Praat autocorrelation method (Boersma, 1993).

Phoneme Recognizer
This approach was inspired by Yuan and Liberman

(2010), in which a broad phonetic class recognizer was
used to estimate the speech rate. Here, we used a phoneme
recognizer based on split temporal context feature extrac-
tion classified by a neural network with a Viterbi algo-
rithm applied in the decoding phase (Schwarz &
Černocký, 2008). The algorithm was trained on the
SpeechDat-E database (SpeechDat-E database, 1999)
available for multiple languages. The output phoneme
stream was then processed via a phonologic classifier to
determine the eventual syllables based on a set of fixed
patterns.

SylNet
The SylNet (Seshadri & Räsänen, 2019) algorithm is

a syllable count estimator that uses a neural network
approach. It employs the WaveNet (Oord et al., 2016)
model used for speech synthesis in conjunction with a long
short-term memory (LSTM) method to predict the aggre-
gated syllable count based on the log-Mel spectrogram
(25-ms window with 10-ms time steps) features of speech.
The input features pass through an input layer with 128
channels, each consisting of a gated convolutional unit
followed by another 10 layers utilizing similar units. The
outputs, together with the residual and skip connections,
are then fed into a PostNet layer with a layer-specific
affine transform. The PostNet gathers all the information
via summation. Finally, the sum is sent via a rectified lin-
ear unit to an LSTM layer that has 128 cells and a dense
layer at its output, thus accumulating syllable count esti-
mation over time.

SylNet was trained on Estonian (Lippus et al., 2013)
and Korean (Yun et al., 2015) corpora of spontaneous
speech with manually annotated syllable counts. Three other
corpora, FinDialog (Lennes, 2009; in Finnish), C-PROM
(Avanzi et al., 2010; in French), and Switchboard (Godfrey
et al., 1992; in English), were used for testing and further
adaptation. We used SylNet in its original pretrained form
without any adaptations.

WN
The method, developed by Wang and Narayanan

(Wang & Narayanan, 2007), usually referred to as WN
(the authors’ initials) in the literature, utilizes a speech
subband correlation approach. The speech waveform is
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Table 2. A list of the identified Net Articulation Rate and syllable detection algorithms.

Algorithm Authors (reference) Software available (link) Reason for exclusion

Used for the analyses
Google + Pyphen V. Illner Yes (https://github.com/vojtaiii/google_speech_to_

syllables)
—

Praat script N. H. de Jong, T. Wempe (de Jong &
Wempe, 2009)

Yes (https://sites.google.com/site/speechrate) —

Phoneme recognizer P. Schwarz, J. Černocký (Schwarz &
Černocký, 2008)

Yes (https://speech.fit.vutbr.cz/software/phoneme-
recognizer-based-long-temporal-context)

—

SylNet S. Seshadri, O. Räsänen (Seshadri &
Räsänen, 2019)

Yes (https://github.com/shreyas253/SylNet) —

WN D. Wang, S. Narayanan (Wang &
Narayanan, 2007)

No (supplied by the authors on request) —

ThetaSeg O. Räsänen et al. (Räsänen, Doyle,
& Frank, 2018)

Yes (https://github.com/orasanen/thetaOscillator) —

LFME T. Dekens et al. (Dekens et al., 2014) No (was replicated) —
Landmark-based H. D. Huici et al. (Huici et al., 2016) No (was replicated) —

Excluded
Mode-shape classificator C. Yarra et al. (Yarra et al., 2016) No (ii), (iii)
A real-time phoneme counting algorithm V. Aharonson (Aharonson et al., 2017) No (i), (iv)
Automatic blind syllable segmentation R. Villing (Villing, 2004) No (i), (ii), (iv)
Convex weighting criteria for speech rate estimator Y. Jiao et al. (Jiao et al., 2015) No (i), (iii), (v)
Enhanced speech rate estimation technique J. N. Carmichael (Carmichael, 2017) No (commercial) (ii)
Rhythmicity parameters speech rate estimator C. Heinrich, F. Schiel (Heinrich &

Schiel, 2011)
No (iv)

Noise robust speech rate estimator C. Yarra et al. (Yarra et al., 2019) No (ii), (v)
Online speech rate estimation using RNNs Y. Jiao et al. (Jiao et al., 2016) No (v), (vii)
Broad phonetic class recognition for speech rate
estimator

J. Yuan, M. Liberman (Yuan & Liberman,
2010)

No (ii), (v)

Speech rate estimator using RNN representations R. Mannem et al. (Mannem et al., 2020) Yes (https://github.com/mannemrenuka/sr-cdnn-
conv1D)

(i), (ii)

Speech rhythm guided syllable nuclei detection Y. Zhang, J. R. Glass (Zhang & Glass,
2009)

No (i), (iv)

Syllable detector in read and spontaneous speech H. R. Pfitzinger et al. (Pfitzinger et al.,
1996)

No (iv), (vii)

Zero resource speech rate estimator S. Nayak et al. (Nayak et al., 2019) No (iv), (vii)
Combining multiple estimators of speech rate N. Morgan, E. Fosler-Lussier (Morgan &

Fosler-Lussier, 1998)
No (ii), (vi)

Note. Dashes indicate not applicable. (i) the algorithm was designed for functional tasks only (i.e., it would not be suitable for connected speech), (ii) its computation principle was
very similar to another selected algorithm, (iii) the authors had subsequently published a more advanced algorithm that outperformed the initial one, (iv) the authors did not compare the
performance of their algorithm to any other approaches, (v) the published platform did not offer a sufficient description of the method to allow for its proper implementation, (vi) the algo-
rithm delivered a substantially worse performance than did the others in the trials that were conducted, and (vii) the method required training or tuning data sets that were not available.
WN = Wang and Narayanan; LFME = low-frequency modulated energy; RNN = recurrent neural network.
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transformed into a 1-D envelope through a process consist-
ing of several stages. First, a spectral 19-subband procedure
is performed with only the top M bands considered by sub-
band energy. The energy is then weighted in the time
domain, and the temporal correlation is computed from the
subband energies vector using a length of the frame K.

Subsequently, a spectral subband correlation is applied
to the selected bands, and the result is smoothed by Gauss-
ian window filtering to obtain the characteristic function.
The syllabic positions are then derived using a threshold-
based peak localization aided by pitch verification.

The authors initially used a pitch estimation algo-
rithm based on a normalized cross-correlation and dynamic
programming (Talkin, 1983). In this study, we applied the
sawtooth waveform-inspired estimator (Camacho & Harris,
2008), which was previously found to provide superior
results (Illner et al., 2020). The parameter M was set to 12
and K to 11, as suggested by the authors.

ThetaSeg
The ThetaSeg algorithm (Räsänen, Doyle, & Frank,

2018) utilizes sonority as a characteristic function and is based
on the sonority sequencing principle (Bertoncini & Mehler,
1981). The sonority trajectory is computed using a Gamma-
tone filter bank and a set of harmonic oscillators, as these
closely resemble the human hearing apparatus. The cth band
output of the filter bank was down-sampled to fs = 1000 Hz
and fed as an input to the harmonic oscillator system.

The sonority trajectory S[n] was obtained by taking
eight oscillator amplitudes with the most considerable
energy and computing their logarithmic sum, S[n]. The
S[n] trajectory was then normalized to the range [0, 1],
and a peak-picking mechanism was applied to search for
the syllabic boundaries.

Low-Frequency Modulated Energy
The low-frequency modulated energy (LFME) algo-

rithm (Dekens et al., 2014; Martens et al., 2015) targets
explicitly dysarthric speech. It assumes that substantial
information about syllable distribution lies in the low-
frequency bands.

The number of bands was chosen as four, and the
energy for each band was computed from the input speech
signal using the short-time Fourier transform (STFT). The
lowest frequency band spanned the range of 50–800 Hz,
and the other bands were logarithmically distributed up to
4 kHz. The LFME trajectory was computed as a product
of the squared lowest frequency band energy and the sum
of the remaining bands.

As the peaks in the LFME[n] trajectory are not
caused solely by syllables but also by other speech events,
the algorithm applies a complex thresholding and peak-
picking algorithm to select only those candidates that are
most likely to belong to a syllable segment.

Landmark-Based Detector
This approach is based on a speech landmark detec-

tor (Huici et al., 2016; Liu, 1996). The landmarks repre-
sent abrupt signal changes and are classified as glottis,
sonorants, and bursts. The detector uses six spectral bands
ranging from 0 to 8 kHz, which are analyzed via STFT.
The STFT outputs are processed by the six-band rate-of-
rise (ROR) trajectory detector, which uses the estimation
of the first difference in each band’s dB energy. Additional
smoothing is then applied, and thresholding is performed
to identify candidates for the peaks. The ROR detection is
performed in two parallel threads for fine and coarse reso-
lution, differing only in their settings. The final set of can-
didates is an aggregate of the fine and coarse peak candi-
date subsets.

The candidates serve as inputs to the glottis detec-
tor, where additional thresholding and pitch verification
are performed using the average magnitude difference
function method. The sonorant landmarks are localized
using the identified glottis positions and the energy
bands’ peak-picking structure. Syllable locations are then
estimated as segments containing glottis intervals, and
sonorant segments are only located inside the glottis
segments.

Speech Rate Features

The speech rate features were computed as

NSR ¼ Nsyll

ts
;NAR ¼ Nsyll

ts � tp
; syll=sð Þ; (1)

where Nsyll refers to the total number of syllables, ts is the
time span of the utterance, and tp is the duration of
pauses (nonspeech segments).

The Reference Values

The reference values for NSR and NAR were calcu-
lated in the same way, with the exception that Nsyll and ts
values were obtained using a manually annotated tran-
script of each recording. The value of tp was determined
using an automatic segmentation tool for connected
speech (Hlavnička et al., 2017).

The Performance Validation and
Statistical Analysis

The normalized root-mean-square error (NRMSE)
and the Spearman correlation coefficient r were used for
the validation. The NRMSE enables a description of sev-
eral variables by describing the error as a fraction of the
observed variable range. The NRMSE is defined as
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NRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1 x̂i � xið Þ2

q

max x̂ið Þ � min x̂ið Þð Þ ; �ð Þ; (2)

where N is the number of utterances, x̂i represents an esti-
mated feature, and xi is its respective reference. The r coeffi-
cient was computed as a nonparametric measure of the rank
correlation between the estimated and reference values in each
group. A one-way analysis of variance with Fisher’s least sig-
nificant difference type post hoc tests were applied as a stan-
dard tool to evaluate group differences based on the auto-
mated estimation provided by the algorithm with the most
robust NSR and NAR assessment performance.

Data normality was verified via the Shapiro–
Wilcoxon and Bartlett (equality of variance) tests. If the
conditions of normality were not met, the Kruskal–Wallis

test was applied as a form of nonparametric analysis of
variance.

Results

Evaluation of the Algorithms’ Performances

Table 3 shows the performance results of the algo-
rithms for NSR and NAR estimated from monologues in
each group. The best overall precision was achieved using
the Google & Pyphen methods, which outperformed the
others for the HC, iRBD, and PD groups, respectively, with
NRMSE 0.11 (r = .99, p < .001), 0.17 (r = .95, p < .001),
0.13 (r = .97, p < .001) for NSR, and 0.15 (r = .98, p < .001),

Table 3. Algorithm performance results for the NSR and the NAR estimated from monologues in each group.

NSR NAR

HC NRMSE r p NRMSE r p

Google & Pyphen 0.11 .99 < .001 0.15 .98 < .001
Praat script 0.22 .85 < .001 0.30 .82 < .001
Phon. recognizer 0.31 .86 < .001 0.82 .77 < .001
SylNet (not adapted) 0.90 .76 < .01 1.28 .56 < .01
WN 0.51 .69 < .001 0.66 .59 < .01
ThetaSeg 0.54 .75 < .001 0.55 .64 < .01
LFME 0.81 .17 .42 0.98 .11 .61
Landmark-based 1.21 −.11 .60 1.35 −.22 .29

iRBD NRMSE r p NRMSE r p

Google & Pyphen 0.17 .95 < .001 0.22 .92 < .001
Praat script 0.29 .69 < .001 0.36 .65 < .001
Phon. recognizer 0.38 .76 < .001 0.69 .73 < .001
SylNet (not adapted) 0.56 .82 < .001 0.66 .67 < .001
WN 0.47 .71 < .001 0.64 .72 < .001
ThetaSeg 0.49 .56 < .01 0.52 .57 < .01
LFME 1.24 .14 .50 1.46 .06 .79
Landmark-based 1.23 .17 .43 1.56 .16 .43

PD NRMSE r p NRMSE r p

Google & Pyphen 0.13 .97 < .001 0.17 .98 < .001
Praat script 0.31 .85 < .001 0.43 .84 < .001
Phon. recognizer 0.34 .87 < .001 0.59 .87 < .001
SylNet (not adapted) 0.84 .77 < .001 1.24 .61 < .01
WN 0.66 .46 < .1 0.94 .46 < .1
ThetaSeg 0.71 .69 < .001 0.85 .48 < .1
LFME 0.90 .24 .25 1.10 .12 .55
Landmark-based 1.04 .03 .90 1.22 .01 .96

MSA NRMSE r p NRMSE r p

Google & Pyphen 0.35 .87 < .001 0.47 .90 < .001
Praat script 0.28 .91 < .001 0.38 .82 < .001
Phon. recognizer 0.41 .91 < .001 0.69 .82 < .001
SylNet (not adapted) 0.57 .90 < .001 0.70 .70 < .001
WN 0.52 .83 < .001 0.80 .74 < .001
ThetaSeg 0.48 .85 < .001 0.53 .64 < .01
LFME 1.06 .56 < .1 1.40 .16 .49
Landmark-based 1.27 −.29 .22 1.40 −.22 .35

Note. NSR = net speech rate; NAR = net articulation rate; HC = healthy controls; NRMSE = normalized root-mean-square error; WN =
Wang and Narayanan; LFME = low-frequency modulated energy; iRBD = idiopathic rapid eye movement sleep behavior disorder; PD = Par-
kinson’s disease; MSA = multisystem atrophy.
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0.22 (r = .92, p < .001) and 0.17 (r = .98, p < .001) for NAR.
The Google & Pyphen methods were only outperformed by
the Praat script for the MSA group, with NRMSE 0.35 (r =
.87, p < .001) compared to 0.28 (r = .91, p < .001) for NSR
and 0.47 (r = .90, p < .001) compared to 0.38 (r = .82, p <
0.001) for NAR. Praat script was the second-best algorithm
overall, with solid results for the HC, PD, and MSA groups,
aggravated only for the iRBD group for which the algorithm
performance dropped to NRMSE 0.29 (r = .69, p < .001) for
NSR and to 0.36 (r = .65, p < .001) for NAR.

With regard to the other methods, the phoneme rec-
ognizer also provided acceptable results for NSR with a
mean NRMSE of 0.36 (r = .76 − 0.91, p < .001). For
NAR, it maintained a high correlation coefficient, but the
NRMSE rose notably with a mean value of 0.70 (r = .73–

0.87, p < .001). SylNet, WN, and ThetaSeg produced a
markedly worse performance with occasional exceptions;
for example, ThetaSeg attained NRMSE 0.48 (r = .85, p <
.001) for NSR and 0.53 (r = .64, p < .01) for NAR in the
MSA group. LFME and landmark-based did not produce
satisfactory results in any group.

Table 4 shows the performance results estimated
from reading passages. The outcomes are very similar or
slightly better compared to the results from monologue
task; that is, Google & Pyphen had the highest precision
across HC, iRBD, PD, and MSA groups with NRMSE 0.13
(r = .98, p < .001), 0.11 (r = .99, p < .001), 0.10 (r = .99, p <
.001) and 0.21 (r = .95, p < .001) for NSR, and 0.15 (r = .98,
p < .001), 0.13 (r = .99, p < .001), 0.12 (r = .99, p < .001)
and 0.30 (r = .91, p < .001) for NAR. Praat script showed

Table 4. Algorithm performance results for the NSR and the NAR estimated from reading passages in each group.

NSR NAR

HC NRMSE r p NRMSE r p

Google & Pyphen 0.13 .98 < .001 0.15 .98 < .001
Praat script 0.34 .82 < .001 0.45 .86 < .001
Phon. recognizer 0.80 .84 < .001 1.03 .87 < .001
SylNet (not adapted) 1.87 −.72 < .001 2.35 −.45 < .1
WN 0.61 .55 < .01 0.76 .56 < .01
ThetaSeg 0.65 .63 < .001 0.84 .62 < .01
LFME 0.94 .07 .72 1.09 .15 .47
Landmark-based 1.75 .02 .93 2.08 −.15 .48

iRBD NRMSE r p NRMSE r p

Google & Pyphen 0.11 .99 < .001 0.13 .99 < .001
Praat script 0.34 .80 < .001 0.41 .78 < .001
Phon. recognizer 0.93 .79 < .001 1.09 .77 < .001
SylNet (not adapted) 1.63 −.48 < .1 1.95 −.46 < .1
WN 0.63 .78 < .001 0.80 .75 < .001
ThetaSeg 0.79 .54 < .01 0.91 .39 < .1
LFME 1.37 .25 .22 1.68 .32 .12
Landmark-based 1.47 −.04 .86 1.75 −.08 .71

PD NRMSE r p NRMSE r p

Google & Pyphen 0.10 .99 < .001 0.12 .99 < .001
Praat script 0.31 .80 < .001 0.37 .91 < .001
Phon. recognizer 0.85 .74 < .001 0.85 .74 < .001
SylNet (not adapted) 1.78 −.73 < .001 2.18 −.59 < .01
WN 0.52 .77 < .001 0.59 .82 < .001
ThetaSeg 0.70 .69 < .001 0.79 .74 < .001
LFME 0.97 .15 .46 1.16 .18 .40
Landmark-based 1.24 .07 .73 1.44 .11 .60

MSA NRMSE r p NRMSE r p

Google & Pyphen 0.21 .95 < .001 0.30 .91 < .001
Praat script 0.25 .93 < .001 0.35 .90 < .001
Phon. recognizer 0.70 .89 < .001 0.86 .89 < .001
SylNet (not adapted) 1.37 −.08 .75 1.62 −.48 < .1
WN 0.59 .85 < .001 0.78 .68 < .01
ThetaSeg 0.44 .85 < .001 0.59 .75 < .001
LFME 1.25 .49 < .1 1.47 .37 .11
Landmark-based 1.39 −.33 .15 1.63 −.40 < .1

Note. NSR = net speech rate; NAR = net articulation rate; HC = healthy controls; NRMSE = normalized root-mean-square error; WN =
Wang and Narayanan; LFME = low-frequency modulated energy; iRBD = idiopathic rapid eye movement sleep behavior disorder; PD =
Parkinson’s disease; MSA = multisystem atrophy.
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second-best performance in all groups with a maximum
NRMSE value of 0.45 (r = 0.86, p < .001) for NAR in the
HC group. The other methods did not reach sufficient per-
formance across reading passages.

Group Differences

Based on the results presented in Table 3 and
Table 4, Google & Pyphen and Praat script were found to
be reliable estimation methods for NSR and NAR both from
monologues and reading passages. Figure 1 demonstrates

statistically significant group differences among the HC, PD,
iRBD, and MSA groups for the NSR and NAR features esti-
mated by Google & Pyphen and Praat script from mono-
logues. Substantial differences were found between the HC
and MSA groups (p < .001 for NSR, NAR, Google &
Pyphen estimated, p < .001 for NSR and p < .01 for NAR,
Praat script estimated). Moreover, the MSA group was differ-
entiated from the iRBD group (p < .001 for NSR, p < .01 for
NAR, Google & Pyphen estimated, p < .05 for NSR, Praat
script estimated) and from the PD group (p < .001 for NSR
and NAR, Google & Pyphen estimated and p < .05 for NSR,

Figure 1. Group differences for NSR (net speech rate) and NAR (net articulation rate) features estimated from arbitrary monologues by two
most accurate approaches including Google & Pyphen and Praat script methods with ***, **, * referring to p < .001, p < .01, and p < .05.
Middle bars represent median, rectangles represent interquartile range. Maximum and minimum values are by error bars. Outliers are marked
as crosses. HC = healthy controls; iRBD = idiopathic rapid eye movement sleep behavior disorder; PD = Parkinson’s disease; MSA = multi-
system atrophy.
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Praat script estimated). The iRBD group demonstrated a sig-
nificant difference compared to the HC in the Praat script
NSR and NAR estimates (p < .05).

Figure 2 shows significant differences for NSR and
NAR features estimated by Google & Pyphen and Praat
script from reading passages. A notable NSR decrease can
be observed in the MSA group compared to HC, iRBD,
and PD groups (p < .001) based on Google & Pyphen,
and to HC (p < .001), iRBD (p < .05), and PD (p < .01)
based on Praat script. Moreover, the iRBD group demon-
strated a significant NSR decline compared to the HC
estimated by both Google & Pyphen (p < .05) and Praat
script (p < .01). For NAR, only a significant difference
between HC and MSA was observed (p < .001) estimated
by both Google & Pyphen and Praat script methods.

Discussion

Our results showed that the speech rate features of
connected speech using syllables as units in time could be
measured accurately based on a large sample of data from
patients with different synucleinopathies and various
degrees of severity of speech disorders. In general, the
detection performance of algorithms was similar or
slightly better in reading passage compared to the mono-
logue task. Using a fully automated approach, we cap-
tured a slow speech rate in patients with MSA and a ten-
dency toward a slower speech rate in patients with iRBD
from both arbitrary monologues and reading passages.
Most of the previous studies have focused on specific
vocal tasks such as reading a carefully selected short

Figure 2. Group differences for NSR (net speech rate) and NAR (net articulation rate) features estimated from reading passages by two most
accurate approaches including Google & Pyphen and Praat script methods with ***, **, * referring to p < .001, p < .01, and p < .05. Middle
bars represent median, rectangles represent interquartile range. Maximum and minimum values are by error bars. Outliers are marked as
crosses. HC = healthy controls; iRBD = idiopathic rapid eye movement sleep behavior disorder; PD = Parkinson’s disease; MSA = multisys-
tem atrophy.
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utterance lasting a few seconds (Mannem et al., 2020;
Mendoza Ramos et al., 2020; Zhang & Glass, 2009); how-
ever, our current study proposed a general approach that
allowed for more possibilities and advances in the estima-
tion of speech rates. Our findings suggest that the auto-
matic evaluation and tracking of changes in the speech
rate of both reading passages and spontaneous speech
may be able to provide a natural biomarker of disease
progression. Importantly, as spontaneous speech encom-
passes the complexity of human speech production,
including motor execution and cognitive–linguistic pro-
cessing, it has likely been shown to be superior for captur-
ing subtle PD-related speech disruptions than functional
vocal tasks (Rusz et al., 2013, 2018). Moreover, when a
wearable device, such as a smartphone or a recorder, is
used for the recordings of connected speech, the data may
be acquired by the patients themselves at home, without
any further cost or time burden on either the patients or
the investigators. Using well-defined and disease-specific
biomarkers such as the speech rate during a short-time
observation of disease progression might help to recruit
carefully selected subjects to participate in studies exam-
ining prodromal PD. Such biomarkers would facilitate
an early presymptomatic diagnosis, as well as rapid
access to neuroprotective therapy once it is available.

The estimation accuracy of NSR and NAR relies
heavily on the particular method used. Google & Pyphen
outperformed the other approaches in terms of reliable
feature estimates and resilience to dysarthric speech. To
the best of our knowledge, this study is the first to use the
Google & Pyphen approach to assess the speech rate of
the natural, connected speech of dysarthric patients. For
monologues, the results, based on the NSR and NAR
estimation by Google & Pyphen for the HC, PD, and
iRBD groups, were extremely precise compared to other
approaches that followed a similar scenario (Abdelwahab
& Busso, 2014; Dekens et al., 2007; Heinrich & Schiel,
2011; Pfitzinger et al., 1996; Räsänen , Sesadri, & Casillas,
2018). However, this method had a minor deterioration in
accuracy for syllable detection in the MSA group, also
observed in the performance for the reading passage task.
In agreement with Dekens et al. (2007), we might assume
that the decreased precision was caused by the algorithm’s
lack of familiarity with highly dysarthric speech; in other
words, it had difficulty recognizing words that were on
the border of intelligibility, as the data on which it is
trained are not as comprehensive as they could be. This
factor might indicate the algorithm’s level of sensitivity
to the input data, such as nonstandard speech and other
aggravating conditions in the scenario. However, the
results for the automatic speech rate features estimated
via Google & Pyphen showed a correlation with manual
hand-labeling that was greater than 0.91 for reading pas-
sages and 0.87 for monologues across all the groups of

interest. This fact is crucial for clinical practice, as it is
more important to achieve a correct estimation of the
patient’s speech performance than it is to obtain the pre-
cise position of individual syllables.

The Praat script method was sufficiently accurate,
considering its simplicity. This finding is in accordance
with other studies scrutinizing its performance (Jiao et al.,
2016; Nayak et al., 2019). The method achieved similar
results across all the investigated groups, regardless of the
dysarthria severity degree, and demonstrated the best pre-
cision of all the examined methods for the monologue task
in the MSA group. This might be attributed to a consid-
ered choice of an advantageous intensity characteristic
function and balanced peak pruning that showed robust
properties even in highly dysarthric speech. It should be
noted that the Google & Pyphen and Praat script methods
are likely to be able to be applied to different languages,
or even to multilanguage studies, in a straightforward way
without exhaustive tuning and data set preparation.

The performance of the phoneme recognizer was also
within acceptable boundaries for practical use. However,
adjusting the procedure to be incorporated into a compre-
hensive, multilanguage system might be challenging due to
extensive database preparation and model development.
The SylNet algorithm demonstrated lesser robustness of a
direct neural net approach for connected speech tasks.
Apart from the training process, adapting the algorithm to
a given language, vocal tasks, and different conditions
seems necessary for the precise estimation of the results.
The other tested methods failed to provide sufficient
accuracy in both monologue and reading passage tasks
due to inappropriate design for the given scenario.

Considering the methods’ outcomes and their stability
across the given conditions, we anticipate that an automatic
articulation rate assessment system that is suitable for wide-
spread use must be designed based on automatic speech
recognition, such as the Google & Pyphen algorithm, to
achieve the best accuracy possible. Nevertheless, if ideal cir-
cumstances, such as sufficient computational power and
online processing, are not available, or the analysis of
severely dysarthric patients is of interest, the Praat script
algorithm might be an adequate substitute due to its sim-
plicity and greater robustness in varying conditions.

With regard to the group differences among the
iRBD, PD, and MSA groups, similar trends were
observed for spontaneous speech and reading passages.
The speech of people with MSA was characterized as hav-
ing the slowest rate, which may have been caused by the
more widespread neuronal atrophy and occurrence of
spastic dysarthria elements (Rusz et al., 2015; Skrabal
et al., 2020). Our findings concerning the unchanged
speech rate in monologues and reading passages produced
by early PD patients are in agreement with those of previ-
ous studies that have investigated only the reading passage
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task (Rusz et al., 2011, 2021). It would appear that char-
acteristic changes in the articulation rate appear later in
PD progression. Both slower and faster speech rates can
be observed in advanced stages of PD (Skodda &
Schlegel, 2008); faster speech is likely to reflect a physio-
logical tendency to accelerate speech due to the impaired
motor planning (oral festination) that is frequent in early
stage PD patients (Delval et al., 2016). The tendency
toward a slower speech rate may be theoretically attrib-
uted to the degeneration of nondopaminergic pathways
(Skodda et al., 2009). Of interest, we also observed a ten-
dency for speech to slow in patients with iRBD, mainly
from the NSR feature. A slower rate represents a typical
speech change due to mild cognitive impairment (De
Looze et al., 2018) and has been reported previously in
patients with dementia with Lewy bodies (Ash et al.,
2012). Thus, the tendency toward a slower articulation
rate in our patients with iRBD may reflect the fact that
approximately 40% of iRBD patients later convert to
dementia with Lewy bodies.

It must be admitted that this study has limitations.
First, the current findings are based solely on the Czech lan-
guage; thus, the language independence of the applied
methods should be verified in future studies. Nonetheless,
most of the state-of-the-art automatic speech recognition
systems support the majority of the world’s languages; Praat
script has been evaluated using different language data sets
(de Jong & Wempe, 2009; Jiao et al., 2016; Nayak et al.,
2019) and has produced comparable performances. Finally,
patients in the early stage of PD were compared to patients
who had been treated and who had more advanced MSA.
Thus, it is not certain whether the differences in the articula-
tion rates would also apply to the differential diagnosis of
de novo patients with MSA and PD.

Conclusions

This study represents a further step toward the auto-
matic evaluation of speech disorders in PD and other
synucleinopathies. We found that features of the speech
and articulation rates could be reliably estimated from
reading passages and spontaneous speech using a state-of-
the-art speech recognition system and hyphenation rules.
For robust results in more severe conditions, such as in
the advanced stages of dysarthria, the Praat script algo-
rithm might be a reasonable choice. This study also sheds
light on the mechanisms that underlie potential speech
rate differences in Parkinsonian speech production. Speech
rate metrics may thus provide an applicable digital bio-
marker for the assessment of the severity of the disease, to
monitor the effects of speech therapy, to differentiate
among synucleinopathy subtypes, or to assess the efficacy
of experimental disease-modifying treatments for PD.

Future longitudinal studies should confirm changes related
to speech rates as a potential diagnostic and progressive
biomarker of PD.
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2.5 Articulation deficits

The imprecise articulation of vowels is a key factor contributing to reduced speech intel-
ligibility, resembling characteristics often seen in dysarthric speech [63]. This impairment
reflects a decrease in both the amplitude and velocity of articulators such as the lips,
tongue, and jaw, resulting in what is termed undershooting of articulatory gestures [64].
Vowel articulation abnormalities have been observed across various progressive neuro-
logical diseases, particularly in PD [65]. While previous studies have documented these
abnormalities, their interpretation and comparability are limited due to small sample
sizes and variations in methodologies used for analysis. Nonetheless, these findings sug-
gest that assessing vowel articulation may potentially serve as a surrogate marker for
neurodegeneration.

However, most current methods for evaluating vowel articulation in dysarthria patients
rely on precise yet time-consuming manual labeling of predefined speech utterances [66].
Only two attempts have been made to automate this analysis using acoustic methods
[67], [68]. However, these attempts were constrained by their focus on analyzing prede-
termined reading sentences from predominantly healthy controls and PD patients with
mild hypokinetic dysarthria.

Therefore, a novel, fully-automated method had been designed to analyze vowel ar-
ticulation impairment from spontaneous speech and assessed in a wide range of synu-
cleinopathies with distinct dysarthria subtypes and severities, including PD and iRBD
[69].

A novel method was developed, utilizing phoneme recognition and segmentation, to-
gether with formant computation algorithm. The output was combined and refined using
outliers detection strategy and k-means clustering. The result were formant frequencies
of distinguished corner vowels. The approach was validated in a cohort of 459 of patients
with various neurodegenerative disorders and 306 healthy controls. The algorithm reached
a resulting accuracy of 77%, based on F-score, a promising result given a large number
of etiologies and dysarthria severities involved. A novel, complex features based on the
formant ratios of corner vowels were proposed. These features demonstrated imprecise
vowel articulation in a broad spectrum of progressive neurodegenerative diseases, in all
dysarthria subtypes such as hypokinetic, hyperkinetic, ataxic, spastic, and their mixed
variants, including the flaccid–spastic subtype, and was influenced by dysarthria severity.

The study established a proper methodology and confirmed that objectively analyzing
vowel articulation using developed measures could offer a universally applicable approach
to screening articulation impairment in neurological diseases that affect movement abili-
ties. This method can be applied using everyday speech, without restricting analysis to
short, guided speech tasks. The preprint of the article is provided below. The supple-
mentary material to the article is displayed in the Appendix A.
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Purpose: Although articulatory impairment represents distinct speech character-
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mated assessments of articulation deficits from the connected speech are scarce. 
This study aimed to design a fully automated method for analyzing dysarthria-
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Results: Articulatory undershoot of vowels was presented in a broad spectrum 
of progressive neurodegenerative diseases, including Parkinson’s disease, pro-
gressive supranuclear palsy, multiple-system atrophy, Huntington’s disease, 
essential tremor, cerebellar ataxia, multiple sclerosis, and amyotrophic lateral 
sclerosis, as well as in related dysarthria subtypes including hypokinetic, hyper-
kinetic, ataxic, spastic, flaccid, and their mixed variants. Formant ratios showed 
a higher sensitivity to vowel deficits than vowel space area. First formants of 
corner vowels were significantly lower for multiple-system atrophy than cerebel-
lar ataxia. Second formants of vowels /a/ and /i/ were lower in ataxic compared 
to spastic dysarthria. Discriminant analysis showed a classification score of up 
to 41.0% for disease type, 39.3% for dysarthria type, and 49.2% for dysarthria 
severity. Algorithm accuracy reached an F-score of 0.77. 
Conclusions: Distinctive vowel articulation alterations reflect underlying pathophysi-
ology in neurological diseases. Objective acoustic analysis of vowel articulation has 
the potential to provide a universal method to screen motor speech disorders. 
Supplemental Material: https://doi.org/10.23641/asha.23681529

Imprecise vowels represent one of the core articula-
tory deficits contributing to reduced intelligibility due to 
dysarthria (H. Kim, Hasegawa-Johnson, & Perlman, 
2011). Impairment of vowel articulation reflects reduced 
amplitude and velocity of articulators, including lips, 
tongue, and jaw (the so-called undershooting of articula-
tory gestures; Robertson & Hammerstad, 1996). Previous 

studies have documented the presence of vowel articula-
tion abnormalities in a number of progressive neurological 
diseases (Whitfield, 2019), particularly in Parkinson’s dis-
ease (PD; Lam & Tjaden, 2016; Skodda et al., 2011; 
Tjaden et al., 2013; Whitfield & Goberman, 2014; 
Whitfield & Mehta, 2019) and sporadically in progres-
sive supranuclear palsy (PSP), multiple-system atrophy 
(MSA), Huntington’s disease (HD), essential tremor (ET), 
cerebellar ataxia (CA), multiple sclerosis (MS), and amyotro-
phic lateral sclerosis (ALS; Rusz et al., 2014, 2015; Tjaden 
et al., 2005; Tykalova et al., 2016; Yunusova et al., 2013). 
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In addition, distinctive progressive neurological dis-
eases typically comprehend differing subtypes of dysar-
thria, with the most prevalent hypokinetic, hyperkinetic, 
spastic, ataxic, or flaccid variant (Duffy, 2019). These dys-
arthria subtypes reflect the underlying pathophysiology of 
the disease and may give us clues for differential diagnosis 
(Duffy, 2019). In some cases, such as PD, where most 
patients develop pure hypokinetic dysarthria (Ho et al., 
1999), there is good correspondence between the type of 
disease and type of dysarthria. Contrary, the correspon-
dence might be weaker in other cases as multiple dysar-
thria subtypes may occur for a single disease type due to 
more than one component of the motor system being 
affected. For instance, patients with atypical parkinsonism 
such as MSA or PSP typically manifest various combina-
tions of hypokinetic, spastic, and ataxic dysarthria compo-
nents (Rusz et al., 2015). However, previous studies have 
not addressed whether the vowel articulation impairment 
is differentially valuable by directly comparing several dis-
ease etiologies or dysarthria subtypes. Moreover, the pre-
vious evidence is limited due to the small sample sizes 
available and different methodologies used for analysis 
(Lam & Tjaden, 2016; Rusz et al., 2014, 2015; Skodda 
et al., 2011; Tjaden et al., 2005; Tykalova et al., 2016; 
Whitfield & Goberman, 2014; Whitfield & Mehta, 2019; 
Yunusova et al., 2013). 

Additionally, dysarthria severity varies across neuro-
logical diseases depending on their stage and rate of pro-
gression (Y. Kim, Kent, & Weismer, 2011). In particular, 
higher dysarthria severity could be expected in disorders 
with faster disease progression (Rusz et al., 2015). Never-
theless, there is no standard measure of speech severity in 
dysarthria. Estimates of speech intelligibility are frequently 
used to estimate the extent to which neurological disease 
affects the speech mechanism (Y. Kim, Kent, & Weismer, 
2011). Since the relationships between the severity of 
vowel articulation impairment and the perceptual impres-
sion of unintelligibility in dysarthric speakers have been 
widely documented (H. Kim, Hasegawa-Johnson, & Perlman, 
2011; H. M. Liu et al., 2005; Weismer et al., 2001), auto-
mated vowel articulation analysis may have a potential to 
provide such a measure of speech severity in dysarthria. 
However, there is a lack of relevant vowel articulation 
studies with a sufficiently large number of dysarthric 
speakers on various levels of severity. 

A reliable and automatic method applicable to natu-
ral, spontaneous speech without any cost or burden to the 
patient or investigator is necessary to facilitate the use of 
vowel articulation assessment in common clinical practice. 
The intelligibility and quality of each vowel can be deter-
mined particularly by the distinct acoustic energy peak of 
the first (F1) and second (F2) formant frequency. The 
acoustic–articulatory relationship is defined such that the 

F1 frequency varies inversely with tongue height and the 
F2 frequency varies directly with tongue advancement 
(Kent et al., 1999). The limited articulatory range of 
motion due to dysarthria may result in various shifts in 
formant frequencies; most typically, formants with natu-
rally higher frequencies tend toward lower frequencies, 
whereas formants with naturally lower frequencies tend 
toward higher frequencies (Kent & Kim, 2003; Roy et al., 
2009; Shimon et al., 2010). However, most current 
methods for evaluating vowel articulation via formants in 
dysarthrias rely on precise and time-consuming hand-
labeling of predefined speech utterances (Shimon et al., 
2010; Skodda et al., 2011). Only two attempts have been 
made to evaluate vowel articulation employing automated 
acoustic analysis (Y. Liu et al., 2021; Sandoval et al., 
2013); these were limited by analysis of only predefined 
reading sentences obtained from a sample predominantly 
composed of healthy controls (HCs) and PD patients with 
mild severity of hypokinetic dysarthria. 

Therefore, we aimed to design a fully automated 
method for analyzing vowel articulation impairment due 
to dysarthria via detecting formant frequencies from cor-
ner vowels. Based on this approach and a large sample of 
patients with various progressive neurological diseases, we 
quantitatively assessed the sensitivity of imprecise vowel 
articulation to different (a) types of neurological disease, 
(b) types of dysarthria, and (c) severity of dysarthria. 

Method 

Subjects 

Each participant provided written informed consent. 
This study was approved by the Ethics Committee of the 
General University Hospital in Prague, Czech Republic, 
in accordance with the ethical standards established in the 
1964 Declaration of Helsinki. 

Between 2011 and 2021, a total of 459 successive 
native Czech speakers with Central Bohemia accent were 
recruited for this study. Considering progressive neurode-
generative diseases, 20 patients with PD (10 women, 10 
men; de-novo PD examined before antiparkinsonian treat-
ment was started), 15 with PSP (five women, 10 men; 11 
with Richardson’s syndrome, two with PSP-parkinsonism, 
and two with PSP-pure akinesia with gait freezing), 20 
with MSA (12 women, eight men; 17 with parkinsonian 
and three with cerebellar variant), 20 with HD (10 women, 
10 men), 20 with ET (10 women, 10 men), 18 with CA 
(eight women, 10 men; 11 with sporadic late-onset CA 
other than MSA, seven with spinocerebellar ataxia [Type 
1, 2, 7, or 8]), 20 with MS (11 women, nine men; 10 with 
relapsing–remitting MS, five with primary progressive
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MS, five with secondary progressive MS), and 20 with 
ALS (14 women, six men) were recruited (see Table 1). 
All patients were examined by a neurologist with an expe-
rience in movement, demyelinating, or neuromuscular dis-
orders. The diagnosis of PD was established by the 
Movement Disorders Society clinical diagnostic criteria 
(Postuma et al., 2015); PSP by the Movement Disorder 
society diagnostic criteria for PSP (Höglinger et al., 2017); 
MSA by the consensus diagnostic criteria for MSA 
(Gilman et al., 2008); HD by clinical and genetic testing 
(Huntington Study Group; 1996); ET by published clinical 
research criteria (Louis et al., 2007); CA by genetic testing 
or results of neurological, neuropsychological, and mag-
netic resonance imaging testing; MS by the revised 
McDonald Criteria (Thompson et al., 2018); and ALS 
according to the El Escorial Criteria from the World Fed-
eration of Neurology (Brooks et al., 2000). Additionally, 
306 healthy subjects (158 women, 148 men) with a mean 
age of 59.1 (SD = 13.2, range: 31–87) years with no his-
tory of neurological or communication disorders partici-
pated as HCs to match the wide age and gender range of 
investigated neurodegenerative diseases. 

Clinical Evaluation 

The disease severity of PD was assessed according 
to the motor score of the Movement Disorders Society– 
Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) 
Part III (Goetz et al., 2008), PSP and MSA by The Natu-
ral History and Neuroprotection in Parkinson Plus 
Syndromes–Parkinson Plus Scale (NNIPPS-PPS; Payan 
et al., 2011), HD by the motor score of the Unified 
Huntington’s Disease Rating Scale (UHDRS; Huntington 
Study Group, 1996), ET by the Tremor Research Group 
Essential Tremor Rating Assessment Scale (TETRAS; 
Elble et al., 2012), CA by the Scale for the Assessment 
and Rating of Ataxia (SARA; Schmitz-Hübsch et al., 
2006), MS by the Expanded Disability Status Scale 
(EDSS; Kurtzke, 1983), and ALS by the ALS Functional 
Rating Scale–Revised (ALSFRS-R; Cedarbaum et al., 
1999). Disease duration was estimated based on the self-
reported occurrence of the first motor symptoms. 

Speech Examination 

Each subject was recorded during a single session 
accompanied by a speech specialist who guided through 
the standardized protocol. No time limits were imposed 
during the recording. All participants were willing to 
cooperate and could repeat their performance if necessary. 
The participants were instructed to present a monologue 
about an arbitrary, emotionally neutral topic for at least 
90 s (M = 128.3, SD = 27.5, range: 74–312). In addition, 
all subjects performed a reading passage task of a 

standardized text of 80 words (Supplemental Material S1). 
The same settings were applied to subjects in all groups. 
Speech recordings were performed in a quiet room with a 
low ambient noise level using a head-mounted condenser 
microphone (Beyerdynamic Opus 55) placed approximately 
5 cm from the subject’s mouth. Speech signals were sam-
pled at 48 kHz with a 16-bit resolution. 

Auditory–Perceptual Estimates of Dysarthria 
Presence, Type, and Severity 

The dysarthria presence and type, including severity, 
were made by the consensus auditory–perceptual judgment 
of two speech-language pathologists with more than 
10 years of experience in movement disorders who were 
aware of each patient’s medical diagnosis. The judgment 
was based on offline audio recordings following the per-
ceptual criteria outlined by Darley et al. (1969a, 1969b). 
The dysarthria types identified across eight neurological 
conditions included hypokinetic, hyperkinetic, ataxic, 
spastic, flaccid–spastic, spastic–ataxic, hypokinetic–spastic, 
hypokinetic–ataxic, and hypokinetic–spastic–ataxic (see 
Table 1). In addition, the severity of dysarthria was rated 
on a 4-point scale (0 = none, 1 =  mild, 2 =  moderate, 3 =  
severe). The lower average dysarthria severity with a dom-
inant occurrence of mild dysarthria was observed only for 
PD and MS groups (see Table 1). Potential participants 
without the presence of perceptual severity of dysarthria, 
with the presence of language disorders or apraxia of 
speech, or with a speech dysfunction not related to the 
diagnosed neurological disorder were excluded from this 
study. 

Automatic Algorithm for Vowel 
Articulation Features 

The algorithm utilizes a formant tracker in combina-
tion with a phoneme recognizer and subsequent signal 
processing analysis (see Figure 1). It processes the con-
nected speech utterance for reading passages and mono-
logues separately, and estimates F1 and F2 formant values 
for each corner vowel /a/, /i/, and /u/. These corner vowels 
are essential to form a vowel triangle (i.e., triangular F1– 

F2 vowel space), which reflects extreme placements of the 
tongue. (H. Kim, Hasegawa-Johnson, & Perlman, 2011; 
Rusz et al., 2013; Skodda et al., 2011). 

Formants and Phonemes Estimation (Step A) 
The speech input was processed in parallel by a for-

mant tracker and a phoneme recognizer (see Figure 1A). 
Burg algorithm (Childers, 1978) implementation in Praat 
(Boersma, 2001) was used for the first two formants con-
tour estimation resulting in F1 and F2 vectors over the 
utterance. After the trial testing, the window length was
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Table 1. Clinical characteristics of the investigated subjects. 

Disease Sex 

Motor score 
(disease severity) 
M/SD (range) 

Age (years) 
M/SD (range) 

Symptom duration 
(years) 

M/SD (range) 
Dysarthria type 

(auditory–perceptual) 
Dysarthria severity 

(auditory–perceptual) 

PD F = 10 38.7/14.7a 63.5/8.9 1.6/1.3 Hypokinetic (n = 20) Mild (n = 13) 

M = 10 (18–70) (42–79) (0.3–5.9) Moderate (n = 7)  
Severe (n = 0)  

Mean severity: 1.35h 

PSP F = 5 65.7/28.9b 66.0/5.1 4.7/2.7 Hypokinetic (n = 3) Mild (n = 3)  

M = 10 (19–132) (54–71) (2.0–11.0) Hypokinetic–spastic 
(n = 4)  

Moderate (n = 5)  

Hypokinetic–ataxic (n = 3) Severe (n = 7)  
Mean severity: 2.27 

Hypokinetic–spastic–ataxic 
(n = 5)  

MSA F = 12 79.1/21.1b 62.0/7.0 4.4/1.8 Hypokinetic (n = 3) Mild (n = 1)  

M = 8 (35–115) (45–73) (2.0–7.5) Spastic–ataxic (n = 1) Moderate (n = 12) 

Hypokinetic–spastic (n = 8) Severe (n = 7)  

Hypokinetic–ataxic (n = 3) Mean severity: 2.30 

Hypokinetic–spastic–ataxic 
(n = 5)  

HD F = 10 24.8/9.9c 53.1/11.0 5.2/3.6 Hyperkinetic (n = 20) Mild (n = 1)  

M = 10 (8–42) (34–69) (1.0–16.0) Moderate (n = 13) 

Severe (n = 6)  
Mean severity: 2.25 

ET F = 10 17.5/7.6d 64.3/11.1 28.9/17.5 Hyperkinetic (n = 18) Mild (n = 5)  

M = 10 (6–35) (40–82) (3.0–60.0) Hypokinetic (n = 1) Moderate (n = 9)  

Spastic (n = 1) Severe (n = 6)  
Mean severity: 2.05 

CA F = 8 13.9/4.8e 54.7/12.6 11.0/8.5 Ataxic (n = 5) Mild (n = 5)  

M = 10 (4–24) (34–72) (0.5–28.0) Spastic (n = 1) Moderate (n = 7)  

Spastic–ataxic (n = 11) Severe (n = 6)  
Mean severity: 2.06 

Hypokinetic–ataxic (n = 1)  

MS F = 11 4.6/0.8f 52.2/10.1 17.8/8.6 Ataxic (n = 7) Mild (n = 16) 

M = 9 (4–7) (33–74) (6.0–32.0) Spastic (n = 3) Moderate (n = 3)  

Spastic–ataxic (n = 10) Severe (n = 1)  
Mean severity: 1.25h 

ALS F = 14 35.6/6.5g 62.1/11.1 1.9/1.2 Spastic (n = 4) Mild (n = 5)  

M = 6 (22–45) (37–85) (0.5–5.0) Flaccid–spastic (n = 16) Moderate (n = 6)  

Severe (n = 9)  
Mean severity: 2.20 

Total F = 80 59.7/9.6 9.4/5.7 Hypokinetic (n = 27) Mild (n = 49) 

M = 73 (33–85) (0.3–60.0) Hyperkinetic (n = 38) Moderate (n = 62) 

Ataxic (n = 12) Severe (n = 42) 

Spastic (n = 9) Mean severity: 2.09 

Flaccid–spastic (n = 16) 

Spastic–ataxic (n = 22) 

Hypokinetic–spastic (n = 12) 

Hypokinetic–ataxic (n = 7)  

Hypokinetic–spastic–ataxic 
(n = 10) 

Note. PD = Parkinson’s disease; F = female; M = male; PSP = progressive supranuclear palsy; MSA = multiple system atrophy; HD = Hun-
tington’s disease; ET = essential tremor; CA = cerebellar ataxia; MS = multiple sclerosis; ALS = amyotrophic lateral sclerosis; MDS-
UPDRS = Movement Disorders Society–Unified Parkinson’s Disease Rating Scale; NNIPPS-PPS = Natural History and Neuroprotection in 
Parkinson Plus Syndromes–Parkinson Plus Scale; UHDRS = Unified Huntington’s Disease Rating Scale; TETRAS = Tremor Research Group 
Essential Tremor Rating Assessment Scale; SARA = Scale for the Assessment and Rating of Ataxia; EDSS = Expanded Disability Status Scale; 
ALSFRS-R = Amyotrophic Lateral Sclerosis Functional Rating Scale–Revised. 
a MDS-UPDRS Part III total scale. b NNIPPS-PPS total scale. c UHDRS total scale. d TETRAS score scale. e SARA total scale. f EDSS total scale. 
g ALSFRS-R total scale. h This group was found to have significantly lower disease severity compared to PSP, MSA, HD, ET, CA, and ALS 
groups with p < .01.
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Figure 1. Illustrative schema of the automated method for formants estimation. F1 = first formant frequency; F2 = second formant frequency; 
VSA = vowel space area; FRI = formant ratio index; SFRI = second formant ratio index.
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set to 50 ms with a 1-ms overlap and the formant ceiling 
was set to 5250 Hz, as these values achieved the best pre-
cision of the estimates. The maximum number of formants 
was set to 5 as recommended by the method documenta-
tion, even though only the first two formants were subse-
quently extracted. A phoneme recognizer was employed 
based on split temporal context feature extraction (Schwarz 
& Černocký, 2008), pretrained on the Czech version of the 
SpeechDat-E database (Pollak et al., 2000). The recognizer 
is available pretrained for several languages with an error 
rate of 24.2% for both Czech and English (Schwarz et al., 
2022). The recordings were subsampled to 8 kHz before-
hand to match the training data. The output is represented 
by recognized phonemes with timestamps marking the cor-
responding speech segment.

Outlier Detection Across Individual Phonemes 
Segments (Step B) 

The consecutive phoneme segments were further 
analyzed (see Figure 1B). If the frame was classified as 
corresponding to either /a/, /i/, or /u/ vowel, the F1 and F2 

values within were extracted. These might be burdened 
with formant tracker errors, and thus, an outlier analysis 
is performed in each segment. Outliers were identified and 
discarded based on Mahalanobis distance (Mahalanobis, 
1936), which calculates the distance of a given point from 
a chosen distribution. For normally distributed data, the 
squared distance follows χ2 distribution. The procedure 
consists of two phases and is as follows. 

First, normalized versions of each formant vector 
were computed by extracting the mean and dividing by 
the standard deviation. Then, the Mahalanobis distance 
was computed between each point on the normalized [F1, 
F2] grid and χ

2 distribution with two degrees of freedom 
since we have two formant contours. If the distance was 
greater then χ2 (q), where q is a chosen quantile value, it 
was marked as an outlier. In the second phase, the non-
outlier points formed a new distribution, and Mahalanobis 
distance was calculated between previously identified out-
lier points. If the distance was less than χ2 (q + 0.1), the 
corresponding point was withdrawn from the outliers set. 
After the conducted trial testing, the value of q was set to 
0.8, making the procedure more benevolent in the outlier 
decision. It achieved higher effectiveness yet not suffering 
a decrease in accuracy than choosing harsher settings, that 
is, lower values of q. 

The procedure ensures that the extreme outliers are 
correctly recognized while preserving most of the informa-
tion around the formant contour. From each segment, a 
median value was computed from the first and second for-
mants of the nonnormalized, nonoutlier points resulting in 
F1med and F2med vectors over the whole utterance with 
information about the particular vowel on each index. 

Outlier Detection Across All /A/, /I/, and /U/ 
Vowels (Step C) 

The medians from the segments might still contain 
false values, for example, when the phoneme recognizer 
misclassifies a consonant as a vowel. Therefore, the F1med 

and F2med values are grouped to either /a/, /i/, or /u/ set, 
and another outlier analysis was performed in each group 
(see Figure 1C). 

The procedure is the same as described in the previ-
ous section; however, the value of the quantile q is set to 
0.5, making the method less benevolent to any deviations, 
which was found to provide more accurate outcomes 
while maintaining a reasonable throughput. The nonout-
liers for each vowel were then put together for final cluster 
analysis. 

Vowels Clustering (Step D) 
The described method is still prone to error when 

the phoneme recognizer misclassifies the vowel as another, 
for example, /u/ as /i/. The misclassified vowel might have 
the formant frequencies close to the original one and thus 
will not be detected in the outlier analysis. 

For this reason, the vowel points were partitioned 
using the k-means algorithm into three clusters representing 
the single vowels (see Figure 1D). The distance metric was 
set to square Euclidean distance, and initial cluster centroid 
positions were chosen as the maximum value of F1 and 
median of F2 of the vowel /a/ (hence, cluster /a/), the mini-
mum of F1 and maximum of F2 of the vowel /i/ (hence, 
cluster /i/), and the minimum of F1 and the minimum F2 of 
the vowel /u/ (hence, cluster /u/). The resulting clusters /a/, 
/i/, and /u/ then consisted of [F1a, F2a], [F1i, F2i], and [F1u, 
F2u] points, respectively. The misclassified vowel should be 
included in its corresponding cluster in this process. 

In the final step, one pair of F1 and F2 values was 
calculated from the points of each cluster. For the /a/ clus-
ter, F1 was calculated as an upper (0.75) quantile of the 
F1a values and F2 as the median of the F2a values. For the 
/i/ cluster, F1 was computed as a lower (0.25) quantile of 
the F1i values and F2 as an upper quantile of the F2i 

values. For the /u/ cluster, F1 and F2 were selected as 
lower quantiles of F1u and F2u values, respectively. The 
choice of the particular quantiles was designed to reflect 
the corner vowel characteristics (Y. Liu et al., 2021), and 
the values were tuned in pretesting to achieve maximum 
estimates precision. 

Vowel Articulation Features (Step E) 
The outcome of the process is the pair of F1 and F2 

values for each vowel from which the vowel articulation 
features were derived (see Figure 1E). Subsequently, the 
most commonly used features that represent complex
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vowel articulation characteristics are vowel space area 
(VSA) and measures representing various shifts in formant 
frequencies (Kent & Kim, 2003; Roy et al., 2009; Shimon 
et al., 2010; Skodda et al., 2011). VSA, expressed in Hz2 , 
was calculated using the Euclidean distances between the 
F1 and F2 coordinates of the corner vowels /a/, /i/, and /u/ 
in the triangular [F1, F2] vowel space as 

VSA = 1 
2 
F1i F2a − F2u( ) + F1a F2u − F2i( ) + F1u F2i − F2a(| )|. 

(1) 

Formant ratio index (FRI) reflects the shift in for-
mant frequencies based on all corner vowels and can be 
expressed using the following formula (i.e., expected trend 
is lowering of F1a, F1i, F1u, F2a, and F2i and rising of F2u 

due to the presence of dysarthria): 

FRI = F1a + F1i + F1u + F2a + F2i 

F2u 
. (2) 

Finally, the second formant ratio index (SFRI) 
reflects the shift of the second formants only and was 
computed using the following formula (i.e., expected trend 
is lowering of F2a and F2i and rising of F2u due to the 
presence of dysarthria) 

SFRI = F2a + F2i 

F2u 
. (3) 

All  analyses were conducted in MATLAB 
(MathWorks). 

Reference Hand Labels 

The hand-labeled reference values of F1 and F2 for-
mant frequencies and time event of the vowel occurrence 
for each corner vowel were obtained from 20 randomly 
selected recordings of the reading passage (1,760 vowels; 
660 vowels of /a/, 720 vowels of /i/, and 380 vowels of /u/) 
with the representative distribution regarding gender, etiol-
ogy, and dysarthria severity (11 men and nine women; 
four HC, two PD, two PSP, two MSA, two HD, two ET, 
two CA, two MS, and two ALS speakers; four none, 
seven mild, five moderate, and four severe dysarthria sever-
ity). All corner vowels of /a/, /i/, and /u/ were selected; the 
position of the selected vowel for the reading passage is in 
bold in Supplemental Material S1. Formants were 
extracted according to widely accepted previously pub-
lished methodology validated in several languages (Roy 
et al., 2009; Rusz et al., 2013; Shimon et al., 2010; Skodda 
et al., 2011); F1 and F2 frequencies were determined by 
employing a 30-ms segment at the temporal midpoint of 
the stable part of each vowel (in order to avoid the 

influence of vowels preceding or following). The corre-
sponding timestamps including the start and end times of 
the segment were recorded. The formant frequencies were 
not possible to extract in 23 cases of /a/, 43 of /i/, and 77 
of /u/ due to (a) coarticulation with other phonemes lead-
ing to the indistinct formants in the target band (68%), (b) 
coarticulation with other phonemes leading to too many 
formants in the target band (10%), (c) the word with tar-
get vowel is not pronounced properly (16%), and (d) the 
vowel duration is shorter than 30 ms (6%). All analyses 
were performed in the Praat software (Boersma, 2001) 
using both the combined wideband spectrographic display 
and the power spectral density. 

Algorithm Performance Metrics 

F-score was used as the primary outcome to assess 
the algorithm accuracy and was defined as 

F = 2 × precision × recall 
precision + recall 

, (4) 

where 

precision = true positives 
true positives + false positives 

, (5) 

and 

recall = true positives 
true positives + false negatives 

. (6) 

In other cases, normalized root-mean-square error 
(NRMSE) and the Spearman correlation coefficient r were 
utilized. The NRMSE enables a description of several var-
iables by describing the error as a fraction of the observed 
variable range and is defined as 

NRSME = 

----------------------------------
1 
N 

∑N 
i=1 x̂l − xi( )2 

√ 

max x̂l( ) − min x̂l( )( ) , (7) 

where N is the number of utterances, x̂i represents an esti-
mated feature, and xi is its respective reference. The r coeffi-
cient was computed as a nonparametric measure of the rank 
correlation between the estimated and reference values. 

Algorithm Validation Steps 

The algorithm incorporates several steps in its proce-
dure. In each step, it can make a different type of error. 
Therefore, to uncover potential error sources for each step 
separately, a three-step validation that corresponds to the 
steps in algorithm design is provided: (a) validation of 
vowel identification via phoneme recognizer and indepen-
dent parallel validation of formant values estimation via
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formant tracker (the result of the algorithm’s Step A), (b) 
validation of combined accuracy via phoneme recognizer 
and formant tracker based on outlier detection and vowel 
clustering (the result of the algorithm’s mutual Steps B– 
D), and (c) validation of algorithm total accuracy via 
resulting formant features (the result of the algorithm’s 
Step E). 

First, the performances of the phoneme recognizer 
and the formant tracker (the result of the algorithm’s Step 
A) were compared to reference hand labels. The validation 
was performed across the corner vowels of /a/, /i/, and /u/. 
The vowel from automatic recognition was searched for 
within the 30-ms segment corresponding to manual time-
stamps with a 5-ms tolerance for the start and the end. To 
evaluate the reliability of phoneme recognizer, the accu-
racy was evaluated in terms of F-score. True positive cases 
were if the vowel was correctly detected (e.g., /a/ was 
detected as /a/). False positive cases were if the vowel was 
incorrectly detected (e.g., /a/ was detected as /i/). False 
negative case was if the vowel was not detected (e.g., /a/ 
was missed). To evaluate the reliability of the formant 
tracker, a median formant frequency was calculated from 
automatically obtained formant estimates via a 30-ms win-
dow corresponding to the start and end of the hand-label 
timestamps. These medians were compared to reference 
hand values in terms of NRMSE and Spearman correlation. 

Second, the accuracy of the combination of pho-
neme recognizer and formant tracker (the result of the 
algorithm’s mutual Steps B–D) was validated using F-
score; this evaluation corresponds with the mutual outlier 
detection and vowel class correction mechanism per-
formed by the algorithm. True positive cases were if (a) 
the vowel was correctly detected (e.g., /a/ was detected as 
/a/), (b) the vowel was detected as another vowel but auto-
matically corrected (e.g., /a/ was detected as /i/ but cor-
rected back to /a/), and (c) formants were found impossi-
ble to estimate by both hand-labeling and automated 
detection (e.g., formants of /a/ were impossible to deter-
mine by hand labels and the automated algorithm was not 
able to estimate them as well). False positive cases were if 
(a) the vowel was incorrectly detected and not corrected 
(e.g., /a/ was detected as /i/ and not corrected), (b) the 
vowel was correctly detected but incorrectly reclassified to 
a different vowel (e.g., /a/ was detected as /a/ but corrected 
to /i/), and (c) vowel formants were found impossible to 
estimate by hand-labeling but were still calculated auto-
matically (e.g., formants of /a/ were impossible to deter-
mine by hand labels but automated algorithm produced 
an estimate). False negative case was if the vowel was not 
detected (e.g., /a/ was missed). 

Third, the final averaged formant estimates (i.e., one 
F1a, F2a, F1i, F2i, F1u, and F2u value per subject/speaking 

task), as well as complex formant features (i.e., one VSA, 
FRI, and SFRI value per subject/speaking task) by both 
automated (the result of the algorithm’s step E) and man-
ual analysis were compared using NRMSE and Spearman 
correlation. 

Statistical Analysis 

Data extracted from reading passages and mono-
logues were analyzed separately; data related to mono-
logues are presented within the article, whereas data for 
reading passages can be found in Supplemental Material 
S1. Data normality was verified via the Shapiro–Wilcoxon 
and Bartlett (equality of variance) tests. One-way analysis 
of covariance with post hoc Fisher’s least significant dif-
ference test was applied to evaluate group differences. All 
analyses were controlled for age and sex (covariates); 
intergroup differences among diseases and dysarthria types 
were in addition controlled for dysarthria severity. 

Prompted by primary hypothesis results, we per-
formed a classification experiment based on the discrimi-
nant analysis followed by a leave-one-out cross-validation 
scheme to assess whether the vowel articulation features 
are best suited to differ between (a) type of neurological 
disease, (b) type of dysarthria, or (c) severity of dysarthria. 
In addition, to identify the probability of correct factor 
identification by chance, we generated a random vector of 
values ranging from 0 to 100 to substitute vowel articula-
tion features across 459 hypothetical speakers; the average 
performance was calculated across 100 repetitions. 

Results 

Algorithm Performance 

Compared to manual hand labels (based on 1,760 
vowels), the phoneme recognizer attained an F-score of 
0.84, whereas the formant tracker achieved 1-NRMSE of 
0.93 for F1 and 0.84 for F2 across all vowels (see Figure 2, 
the results of the algorithm’s Step A). After combining the 
error rate of the phoneme recognizer and formant tracker 
(based on 1,760 vowels), the F-score for all vowels was 
0.77 (see Figure 2, the results of the algorithm’s Steps B– 
D). Concerning the final averaged vowel articulation fea-
tures (based on 20 utterances), the estimation of individual 
formants achieved 1-NRMSE of 0.88 for F1a, 0.85 for F2a, 
0.73 for F1i, 0.89 for F2i, 0.72 for F1u, and 0.67 for F2u, 
leading to the 1-NRMSE of 0.84 for VSA, 0.71 for FRI, 
and 0.71 for SFRI (see Figure 2, the results of the algo-
rithm’s Step E). In summary, considering the final shape 
of vowel areas (see Figure 2, VSA plots), the most notable 
difference between automated and manual labels is due to
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Figure 2. Illustrative scheme depicting step-by-step performance results between automated and manual analysis based on 1,760 hand-
labeled vowels. NRMSE = normalized root-mean-square error; F1 = first formant frequency; F2 = second formant frequency; VSA = vowel 
space area; FRI = formant ratio index; SFRI = second formant ratio index.
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lower estimates of F1 frequencies of vowel /i/ and /u/ and 
F2 of /u/ by the automated approach.

Effect of Neurological Disease Type 

Compared to controls, the change in vowel articula-
tion due to neurodegeneration in monologues was primarily 
demonstrated by trends toward the shift of formants across 
vowels /i/ and /u/, including an increase in F2u and decrease 
in F1i, F1u, and  F2i frequencies across PD, PSP, MSA, HD, 
and ALS (see Figure 3 and Table 2). Among diseases, 
MSA tended to decrease F1 and CA tended to increase F1 
compared to other neurological diseases, leading to a signif-
icantly lower F1 for MSA than CA across all corner vowels 
(see Figure 4). Considering complex formant measures, 
compared to controls, VSA was significantly decreased for 
MSA, whereas FRI and SFRI were decreased for all neu-
rological diseases except ET and MS (see Figure 5). 

Effect of Dysarthria Type 

Compared to controls, the trends toward the shift of 
formants across vowels /i/ and /u/ including increase in F2u 

and decrease in F1i, F1u, and F2i frequencies in mono-
logues were demonstrated mainly for hypokinetic and 
hyperkinetic dysarthria, mixed dysarthrias involving hypo-
kinetic components, and flaccid–spastic subtype (see Fig-
ure 6 and Table 3). Among dysarthrias, there was a par-
ticular difference between ataxic dysarthria manifested by 
the decrease of F1a, F2a, and F2i compared to spastic dys-
arthria (and its mixed variants with ataxic and flaccid ele-
ments) and in addition by a trend toward increase of F1u 

to hypokinetic dysarthria (see Figure 7). Additionally, 
spastic–ataxic dysarthria showed a trend toward increase 
of F1a, F1i, and F1u compared to hypokinetic dysarthria 
(and its mixed variants with spastic elements). 

Considering complex formant measures, compared 
to controls, VSA was significantly decreased for ataxic 
and hypokinetic–spastic dysarthria (see Figure 8). FRI 
was decreased for hypokinetic, hyperkinetic, ataxic, flaccid– 
spastic, spastic–ataxic, hypokinetic–spastic, and hypokinetic– 
spastic–ataxic dysarthria. Finally, SFRI was decreased for 
hypokinetic, hyperkinetic, ataxic, flaccid–spastic, spastic– 
ataxic, and hypokinetic–spastic. Among dysarthrias, VSA of 
ataxic dysarthria was significantly lower than in spastic or 
spastic–ataxic dysarthria. FRI and SFRI of hypokinetic–spastic 
dysarthria were lower compared to hyperkinetic, flaccid–spastic, 
spastic–ataxic, and hypokinetic–ataxic dysarthria. 

Effect of Dysarthria Severity 

Compared to controls, the shift of formants across 
vowels /i/ and /u/ in dependence on auditory–perceptual 

dysarthria severity in monologues was observed, includ-
ing an increase in F2u and a decrease in F1i, F1u, and  F2i 

frequencies (see Figure 9 and Table 4). Considering com-
plex formant measures, both measures of FRI and 
SFRI were reduced across all dysarthria severities (see 
Figure 10). 

Classification Analysis 

The classification analysis among vowel articulation 
features in monologues manifested accuracy of up to 
39.7% for disease type, 37.3% for dysarthria type, and 
49.2% for dysarthria severity (see Table 5); the probability 
of correct factor identification by chance using a random 
vector showed 5.3% accuracy for disease type, 4.2% for 
dysarthria type, and 19.8% for dysarthria severity. Acous-
tic metrics reflecting the shift in formant frequencies of 
FRI and SFRI were more sensitive to capturing the 
change of vowel articulation than VSA. 

Effect of Speaking Task Type 

The trends toward decrements in complex measures 
of VSA, FRI, and SFRI in reading passages were demon-
strated similarly to those observed in monologues, except 
for the PD group where imprecise vowels articulation was 
not affected in reading passages (Supplemental Material 
S1); the classification experiment showed similar accuracy 
of up to 41.0% for disease type, 39.3% for dysarthria type, 
and 47.4% for dysarthria severity. 

Discussion 

This study is the first to demonstrate a fully auto-
mated objective approach to assessing the quality of vowel 
articulation in a large cohort of 459 speakers, including 
controls and patients with various neurological diseases 
and different types and severity of dysarthria, using the 
natural, unconstrained speech recordings. Based on com-
plex formant measures, we showed that imprecise vowel 
articulation was presented in a broad spectrum of progres-
sive neurodegenerative diseases, including PD, PSP, MSA, 
HD, ET, CA, MS, and ALS. Similarly, vowel articulation 
impairment was presented in all dysarthria subtypes such 
as hypokinetic, hyperkinetic, ataxic, spastic, and their 
mixed variants, including the flaccid–spastic subtype. In 
addition, the extent of vowel articulation impairment was 
influenced by dysarthria severity. However, we still 
observed divergent patterns of vowel articulation abnor-
malities across certain etiologies and dysarthria types inde-
pendent of dysarthria severity. F1 of all corner vowels 
were significantly lower for MSA than CA. In addition, 
F2 of vowel /a/ and /i/ was lower in ataxic compared to
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Figure 3. Corner vowel production triangles estimated from monologues for individual neurological disease types compared to healthy con-
trols. The arrows indicate significant differences in the values to healthy controls adjusted by age and sex, with three, two, and one arrows 
referring to p < .001, p < .01, and p < .05, respectively. To minimize the effects of sex between individual speakers, the estimated formant 
frequencies were converted into a logarithmic tonal scale (semitones). F1 = first formant frequency; F2 = second formant frequency; PD = 
Parkinson’s disease; PSP = progressive supranuclear palsy; MSA = multiple system atrophy; HD = Huntington’s disease; ET = essential 
tremor; CA = cerebellar ataxia; MS = multiple sclerosis; ALS = amyotrophic lateral sclerosis. 

Table 2. Formant frequencies of corner vowels estimated from monologues for individual neurological disease types compared to healthy 
controls. 

Neurological 
disease type 

/a/ 
M (SD) 

Semitones 

/i/ 
M (SD) 

Semitones 

/u/ 
M (SD) 

Semitones 

F1 F2 F1 F2 F1 F2 

Controls 41.91 (2.6) 53.92 (2.1) 29.93 (2.3) 62.37 (1.6) 30.96 (1.6) 46.60 (1.8) 

PD 41.25 (2.9) 54.16 (2.9) 28.76 (2.9) 61.75 (1.6) 29.72 (2.5) 47.95 (1.7) 

PSP 40.72 (4.0) 53.97 (1.5) 28.32 (2.6) 61.61 (1.8) 29.13 (2.3) 48.02 (2.3) 

MSA 40.76 (3.1) 54.03 (2.0) 28.06 (2.2) 61.48 (1.7) 28.30 (2.5) 48.13 (2.8) 

HD 41.71 (3.2) 53.64 (2.0) 28.89 (2.6) 61.88 (1.7) 29.86 (2.3) 48.57 (2.6) 

ET 41.97 (3.5) 53.91 (1.7) 28.92 (2.5) 62.08 (1.7) 30.26 (1.7) 46.83 (1.9) 

CA 42.14 (3.1) 53.50 (1.7) 29.82 (1.6) 61.72 (1.5) 31.17 (1.6) 48.05 (1.9) 

MS 41.72 (2.9) 53.88 (1.8) 29.38 (2.5) 61.89 (1.5) 30.94 (1.7) 47.39 (2.0) 

ALS 42.35 (3.8) 54.99 (1.2) 30.15 (2.2) 62.17 (1.4) 30.24 (2.0) 47.86 (2.2) 

Note. To minimize the effects of sex between individual speakers, the estimated formant frequencies were converted into a logarithmic 
tonal scale (semitones). Hertz to semitone formula: f(semitone) = 12*((log*f(Hz)/60)/log(2)). F1 = first formant frequency; F2 = second formant 
frequency; PD = Parkinson’s disease; PSP = progressive supranuclear palsy; MSA = multiple system atrophy; HD = Huntington’s disease; 
ET = essential tremor; CA = cerebellar ataxia; MS = multiple sclerosis; ALS = amyotrophic lateral sclerosis.
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spastic dysarthria. Therefore, objective analysis of vowel 
articulation has the potential to provide a universally 
applicable method to screen neurological diseases affecting 
movement abilities that can be obtained from everyday 
speech without any cost or burden to the patient and 
investigator. In the future, vowel articulation deficits could 
be analyzed via smartphone calls (Kouba et al., 2022), 
thus significantly aiding in improving innovative neuro-
protective therapies’ stratification and monitoring effect.

Figure 4. Corner vowel production triangles estimated from monologues across two pairs of neurological disease types. The double-headed 
arrows indicate significant differences across diseases adjusted by age, sex, and dysarthria severity with ***, **, * referring to p < .001, p < 
.01, and p < .05. To minimize the effects of sex between individual speakers, the estimated formant frequencies were converted into a loga-
rithmic tonal scale (semitones). F1 = first formant frequency; F2 = second formant frequency; MSA = multiple system atrophy; MS = multiple 
sclerosis; HD = Huntington’s disease; ET = essential tremor; PD = Parkinson’s disease; ALS = amyotrophic lateral sclerosis; CA = cerebellar 
ataxia; PSP = progressive supranuclear palsy. 

Effect of Neurological Disease Type 

Our results confirmed that vowel articulation impair-
ment is exhibited in multiple types of neurological diseases. 
This finding follows previous acoustic studies (Rusz et al., 
2014, 2015; Tjaden et al., 2005; Tykalova et al., 2016; 
Yunusova et al., 2013), although these have described 
vowel articulation pertaining to a specific disease rather 
than comparing these characteristics across diseases. In fact, 
the presence of vowel articulation deficits across various 
neurological diseases is not surprising because articulatory 
impairments represent the most common and distinct char-
acteristics of most dysarthrias (Darley et al., 1969b). How-
ever, in this study, certain disease-specific patterns of 

imprecise vowel articulation have been observed. In gen-
eral, vowel articulation impairment appeared to be more 
pronounced in parkinsonian disorders and HD. We might 
thus assume that the greater extent of vowel articulatory def-
icits due to tongue movement restriction, reflected mainly by 
the decrease of F2i and the increase of F2u, is associated with 
bradykinesia, which represents a common motor sign not 
only in parkinsonism but also in HD (Reilmann, 2019). 
Indeed, the previous study on a rat PD model has shown 
that even unilateral deficits to the nigrostriatal dopamine 
system leading to bradykinesia substantially contribute to 
tongue movement restriction responsible for imprecise 
vowel articulation (Ciucci et al., 2011). Interestingly, the 
parallel decrease in F1 of all corner vowels was able to 
statistically separate MSA from CA even after adjustment 
for dysarthria severity, presumably as a consequence of 
damage to basal ganglia structures in addition to cerebel-
lar dysfunction that is typical in both diseases. This find-
ing might have important clinical implications as the dif-
ferentiation of the cerebellar variant of MSA from idio-
pathic late-onset CA early in the disease course remains a 
major diagnostic challenge (Lin et al., 2016). However, 
although the extent of articulatory disorder appeared to 
be similar for both MSA subtypes (Rusz et al., 2019), the
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utility of vowel articulation analysis as such a potential 
diagnostic marker has to be verified in future studies as 
the current sample was composed dominantly of the par-
kinsonian variant of MSA. 

Figure 5. Statistically significant group differences for estimated 
articulation features in monologues among the different types of 
neurological disease types compared to healthy controls adjusted 
by age and sex with ***, **, * referring to p < .001, p < .01, and p < 
.05, respectively. # indicates significant differences to MSA (p < 
.05) after adjusting for age, sex, and dysarthria severity. Middle 
bars represent median, and rectangles represent the interquartile 
range. Maximum and minimum values are by error bars. Outliers 
are marked as dots. VSA = vowel space area; PD = Parkinson’s 
disease; PSP = progressive supranuclear palsy; MSA = multiple 
system atrophy; HD = Huntington’s disease; ET = essential tremor; 
CA = cerebellar ataxia; MS = multiple sclerosis; ALS = amyotro-
phic lateral sclerosis; FRI = formant ratio index; SFRI = second for-
mant ratio index. 

Effect of Dysarthria Type 

In line with findings across multiple types of neuro-
logical diseases, vowel articulation impairment was 
observed across various dysarthria types. This result is 
not surprising as dysarthria type is frequently linked with 
disease type, and vowel articulation impairment was 
found in all investigated etiologies. The shift in formants 
for vowels /i/ and /u/ showed strong similarities for all 
investigated dysarthrias. This finding follows previous 
research demonstrating that complex formant-based mea-
sures are not sensitive to distinguishing between dysar-
thria subtypes (Lansford & Liss, 2014). However, one 
potential phenomenon that might be helpful in the differ-
ential diagnosis of dysarthrias is a shift in vowel frequen-
cies for vowel /a/. While both formants of vowel /a/ 
remained relatively unchanged in patients with hypoki-
netic or hyperkinetic dysarthria, they tend to be decreased 
in ataxic dysarthria and increased in spastic dysarthria (as 
well as in mixed dysarthrias involving spastic elements). 
However, this finding should be interpreted with caution 
due to the relatively low number of samples for pure spas-
tic and ataxic speakers in this study. Although the studies 
on vowel articulation in spastic and ataxic dysarthrias are 
rare, the shift toward higher vowel /a/ formants in spastic 
dysarthria seems to align with previous research on 
patients with poststroke spastic dysarthria (Ge et al., 
2021; Mou et al., 2018). This shift might be hypothesized 
as a consequence of spasticity or weakness of tongue mus-
cles, leading to lower tongue advancement. In addition, a 
decrease of F2 for vowel /a/ has been previously reported 
in patients with spinocerebellar ataxia (Skodda et al., 
2014), which might be hypothesized to be a result of 
inconsistency over the range of tongue movement (Saigusa 
et al., 2006). 

Effect of Dysarthria Severity 

Our findings showed that auditory–perceptual dysar-
thria severity was another factor contributing to the extent 
of vowel articulation impairment. The result agrees with 
previous research demonstrating a strong relationship 
between vowel formant measures and perceptual ratings 
of dysarthria severity (Fletcher et al., 2017). Further sup-
port comes from a recent study that showed a progressive 
pattern of vowel articulation impairment from the prodro-
mal stages of parkinsonism (Skrabal et al., 2022). Com-
pared to VSA, formant indexes were more effective in 
capturing dysarthria severity, which follows the previous 
study showing that vowel articulation index based on 
changes in individual formants was more stable and reli-
able over repeated assessments compared to VSA (Caverlé 
& Vogel, 2020). The effectiveness of formant indexes in 
contrast to the low sensitivity of VSA suggests that
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articulatory deficits are due mainly to alterations of the 
vowel /u/, followed by the vowel /i/, with the vowel /a/ 
remaining most resistant to change due to dysarthria. This 
behavior might be a result of different tongue positions 

and lip posture during individual corner vowels produc-
tion, where the tongue is positioned low for the vowel /a/, 
high and forward for the vowel /i/, and high and back-
ward for the vowel /u/, whereas lip posture is spread for

Figure 6. Corner vowel production triangles estimated from monologues for different dysarthria types compared to healthy controls. The 
arrows indicate significant differences in the values to healthy controls adjusted by age and sex, with three, two, and one arrows referring to 
p < .001, p < .01, and p < .05, respectively. To minimize the effects of sex between individual speakers, the estimated formant frequencies 
were converted into a logarithmic tonal scale (semitones). F1 = first formant frequency; F2 = second formant frequency. 

Table 3. Formant frequencies of corner vowels estimated from monologues for different dysarthria types compared to healthy controls. 

Dysarthria type 

/a/ 
M (SD) 

Semitones 

/i/ 
M (SD) 

Semitones 

/u/ 
M (SD) 

Semitones 

F1 F2 F1 F2 F1 F2 

Controls 41.91 (2.6) 53.92 (2.1) 29.93 (2.3) 62.37 (1.6) 30.96 (1.6) 46.60 (1.8) 

Hypokinetic 41.23 (2.9) 54.24 (2.7) 28.63 (2.8) 61.87 (1.5) 29.14 (2.7) 47.92 (2.3) 

Hyperkinetic 41.93 (3.3) 53.79 (1.9) 28.87 (2.6) 62.02 (1.7) 30.05 (2.0) 47.88 (2.3) 

Ataxic 40.24 (2.9) 52.73 (2.0) 28.76 (2.2) 60.81 (1.3) 30.96 (1.8) 47.64 (1.6) 

Spastic 42.71 (3.5) 54.68 (1.1) 29.45 (2.3) 62.34 (1.7) 30.63 (1.4) 47.75 (2.8) 

Flaccid–spastic 42.22 (4.0) 55.09 (1.3) 30.06 (2.3) 61.95 (1.2) 30.13 (2.1) 48.00 (2.3) 

Spastic–ataxic 42.60 (2.4) 54.10 (1.4) 30.03 (2.3) 62.24 (1.4) 31.01 (1.9) 47.7 (1.9) 

Hypokinetic–spastic 40.32 (3.8) 53.77 (2.0) 28.46 (2.0) 61.09 (1.7) 29.11 (2.8) 49.25 (2.8) 

Hypokinetic–ataxic 40.82 (3.1) 53.54 (2.2) 28.45 (1.7) 61.57 (1.7) 29.48 (1.5) 45.87 (1.6) 

Hypokinetic–spastic–ataxic 40.70 (3.9) 53.94 (1.5) 28.25 (2.6) 61.65 (1.9) 28.96 (2.1) 47.46 (2.1) 

Note. To minimize the effects of sex between individual speakers, the estimated formant frequencies were converted into a logarithmic 
tonal scale (semitones). Hertz to semitone formula: f(semitone) = 12*((log*f(Hz)/60)/log(2)). F1 = first formant frequency; F2 = second formant 
frequency.
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both the /a/ and /i/ vowels and rounded for the vowel /u/ 
(Hasegawa-Johnson et al., 2003). Therefore, we might 
assume that the production of the vowel /a/ is less 
demanding than the production of the vowels /i/ and /u/. 
Moreover, in comparison to the vowel /i/, the articulation 
of the vowel /u/ requires more challenging involvement of 
the orofacial muscles to produce and maintain a tightly 
rounded lip posture (Hasegawa-Johnson et al., 2003), and 
its restrictions might also be linked to swallowing deficits 
in dysarthria (Sapir et al., 2008; Tjaden, 2008).

Figure 7. Corner vowel production triangles estimated from monologues across two pairs of dysarthria types. The double-headed arrows 
indicate significant differences across dysarthria types adjusted by age, sex, and dysarthria severity with ***, **, * referring to p < .001, p < 
.01, and p < .05, respectively. To minimize the effects of sex between individual speakers, the estimated formant frequencies were converted 
into a logarithmic tonal scale (semitones). F1 = first formant frequency; F2 = second formant frequency. 

Effect of Speaking Task Type 

The results showed that both monologue and read-
ing speech are appropriate for assessing articulation defi-
cits in neurological diseases with similar sensitivity. One 
notable difference was that only reading passages showed 
a significant difference between dysarthria severities, 
although the classification accuracy for dysarthria severity 
across both tasks was similar. We may thus hypothesize 
that standardized reading passages might be a better 
speaking material if capturing speech progression via 
vowel articulation is the primary endpoint. Considering 

individual diseases, the only evidence available is from 
PD, where previous studies have reported the occurrence 
of a more notable alteration of vowel articulation perfor-
mance in spontaneous speech compared to nonsponta-
neous speech (Kempler & Lancker, 2002; Rusz et al., 
2013; Weismer, 1984). Indeed, PD was the only group in 
this study that showed considerably better performance in 
vowel articulation in reading than monologues. In fact, 
persons with PD are often highly intelligible in prepared 
utterances but significantly less intelligible in spontaneous 
speech, whereas persons with other types of neuromotor 
disease might be equally intelligible in both forms of utter-
ance (Y. Kim, Kent, & Weismer, 2011). Therefore, this 
finding might have important implications for future clini-
cal trials in which PD participants should be assessed via 
spontaneous speech if vowel articulation represents an 
outcome measure. 

Which of the Factors Most Contributes to the 
Vowel Articulation Impairment? 

One of this study’s goals was to answer whether 
vowel articulation impairment is most sensitive to disease
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type, dysarthria type, or dysarthria severity. The discrimi-
nant analysis classification showed a score of up to 41.0% 
for the type of neurological disease, 39.3% for dysarthria 
type, and 49.2% for dysarthria severity. One might thus 
assume that vowel impairment appears to be more distinc-
tive to dysarthria severity compared to a specific diagnosis 
of disease or dysarthria subtype. However, these results 
need to be put in context with the probability of correct 
factor identification by chance, which showed 5.3% accu-
racy for disease type, 4.2% for dysarthria type, and 19.8% 
for dysarthria severity (i.e., approximately equal to the 
number of groups across each investigated factor). Bearing 
this in mind, the best ratio between correct classification 
and identification by chance could be obtained for dysar-
thria type, although none of the three factors gained supe-
rior classification performance. Despite some differences 
observed in this study that might contribute to the differ-
ential diagnosis of dysarthria or disease etiology, we may 
assume that imprecise vowels represent a universal sign of 
articulatory disorder showing severity-related variations 
within several different types of dysarthria. This finding is 
perhaps not surprising as acoustic similarity across etiolo-
gies and types of dysarthria has already been assumed not 
only for vowel space but also for other acoustic measures 
such as speaking rate or voice onset time (Weismer, 2006). 
Indeed, accumulating evidence supports the view that vari-
ous neuropathologies might similarly affect neuromotor 
control of speech production, leading to similar manifesta-
tions for certain speech aspects at the acoustic surface 
(Y. Kim, Kent, & Weismer, 2011). On the other hand, the 
combination of vowel articulation characteristics with 
other distinct cues that are pathognomic for a specific type 
of dysarthria, such as strained-strangled voice, slow rate, 
and reduced loudness variability in spastic dysarthria or 
normal rate and excessive loudness variability in ataxic 
dysarthria, might considerably increase correct classifica-
tion to dysarthria type or disease etiology. 

Figure 8. Statistically significant group differences for estimated 
articulation features in monologues among the different dysarthria 
types compared to healthy controls adjusted by age and sex 
with ***, **, * referring to p < .001, p < .01, and p < .05, respec-
tively. # indicates significant differences to hypokinetic–spastic 
dysarthria (p < .05), whereas $ indicates significant differences to 
ataxic dysarthria (p < .05) after adjusting for age, sex, and dysar-
thria severity. Middle bars represent median, and rectangles repre-
sent the interquartile range. Maximum and minimum values are by 
error bars. Outliers are marked as dots. VSA = vowel space area; 
FRI = formant ratio index; SFRI = second formant ratio index; 
Hypo-spast-atax = Hypokinetic–spastic–ataxic dysarthria. 

Algorithm Performance 

Although articulatory deficits represent the main 
speech impairment characteristic of most dysarthrias, 
automated methods for assessing articulatory deficits from 
connected speech are scarce. In this study, we provided a 
fully automated approach to assessing the “undershoot of 
vowels” applicable across various neurological diseases, 
different dysarthrias, and a wide range of severity, from 
healthy speech to severe dysarthria. In particular, there 
are two main sources of errors including incorrect pho-
neme recognition (16% error based on 1–F-score) and 
incorrect formant tracking (7% error for F1 and 16% error 
for F2 based on NRMSE). However, the combination of 
both these error sources leads to an even lower accuracy 
of the algorithm. Therefore, to provide reliable vowel
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articulation metrics, our algorithm involved multiple levels 
of error correction such as outlier exclusion and correction 
of vowel identification by clustering. As a result, we 
reached the resulting accuracy of 77% (i.e., 23% error 
based on 1–F-score), which we believe is a very promising 
accuracy given a large number of etiologies and dysarthria 
severities involved. In addition, there are limitations in the 
accuracy of available technologies for phoneme recogni-
tion and formant tracking, even for healthy speech. For 
instance, it might be assumed that the solution toward 
better accuracy would be to change the formant tracker, 
yet all available open-source formant trackers were found to 
have similar detection performance (Schiel & Zitzelsberger, 
2018). Considering the shape of the resulting vowel areas, 
the most considerable discrepancy between automated and 
manual labels was for F1 estimation across vowels /i/ and 

/u/. Whereas the automated method tended to capture 
lower F1 of vowels /i/ and /u/ with increasing dysarthria 
severity, the hand-labeled method did not find any change 
in F1 or even increased F1 due to dysarthria (Roy et al., 
2009; Rusz et al., 2013; Skodda et al., 2011). Therefore, in 
comparison to the vowel articulation index that is most 
widely used in the literature (Roy et al., 2009; Rusz et al., 
2013; Skodda et al., 2011), we proposed an alternative FRI 
that reflects the dysarthria-related lowering of F1 in vowels 
/i/ and /u/ as captured by automated method. The inconsis-
tency between manual and automated labels might be 
caused by an incidental formant tracker confusion of F1 as 
the fundamental frequency and its harmonics close to F1 of 
vowel /i/ and /u/. The SFRI, based only on F2 values 
showed similar classification accuracy to detect neurological 
disease type or dysarthria type and even slightly better

Figure 9. Corner vowel production triangles estimated from monologues for different dysarthria severities compared to healthy controls. The 
arrows indicate significant differences in the values to healthy controls adjusted by age and sex, with three, two, and one arrows referring to 
p < .001, p < .01, and p < .05, respectively. To minimize the effects of sex between individual speakers, the estimated formant frequencies 
were converted into a logarithmic tonal scale (semitones). F1 = first formant frequency; F2 = second formant frequency. 

Table 4. Formant frequencies of corner vowels estimated from monologues for different dysarthria severities compared to healthy controls. 

Dysarthria 
severity 

/a/ 
M (SD) 

Semitones 

/i/ 
M (SD) 

Semitones 

/u/ 
M (SD) 

Semitones 

F1 F2 F1 F2 F1 F2 

Controls 41.91 (2.6) 53.92 (2.1) 29.93 (2.3) 62.37 (1.6) 30.96 (1.6) 46.60 (1.8) 

Mild 41.71 (2.9) 53.90 (1.6) 29.26 (2.0) 61.84 (1.6) 30.36 (1.6) 47.47 (2.2) 

Moderate 41.41 (3.2) 54.03 (2.3) 29.05 (2.6) 61.89 (1.7) 29.86 (2.5) 48.09 (1.9) 

Severe 41.78 (3.9) 54.15 (1.8) 28.84 (2.8) 61.73 (1.5) 29.72 (2.4) 47.93 (2.6) 

Note. To minimize the effects of sex between individual speakers, the estimated formant frequencies were converted into a logarithmic 
tonal scale (semitones). Hertz to semitone formula: f(semitone) = 12*((log*f(Hz)/60)/log(2)). F1 = first formant frequency; F2 = second formant 
frequency.

2616 Journal of Speech, Language, and Hearing Research Vol. 66 2600–2621 August 2023

55



Complimentary Author PDF: Not for Broad Dissemination

accuracy to detect dysarthria severity compared to FRI 
based on both F1 and F2, suggesting SFRI as a suitable 
alternative to measure vowel articulation deficits. Thus, 
impairment of vowel articulation in neurodegenerative 

diseases can be tracked solely by changes in F2 frequencies 
that are related to particular deficits in frontward/backward 
tongue movements. However, automated method achieved 
an increased inaccuracy in F2 estimation of vowel /u/, with 
tendency to capture lower values compared to hand-label-
ing. Since the observed effects of etiology, dysarthria sub-
type, and severity were largely reflected by shifts in both 
formants of vowel /u/, we cannot exclude that these 
changes could be partially attributed to artifacts related to 
inaccurate formant tracking rather than actual disease 
effects. On the other hand, we believe that the automated 
method’s error bias is not specific for etiology or dysarthria 
subtype and is generally the same for dysarthric and 
healthy speech, therefore not significantly accounting for 
the group differences.

Figure 10. Statistically significant group differences for estimated 
articulation features in monologues among the different dysarthria 
severities compared to healthy controls adjusted by age and sex 
with ***, **, * referring to p < .001, p < .01, and p < .05, respec-
tively. Middle bars represent median, and rectangles represent the 
interquartile range. Maximum and minimum values are by error 
bars. Outliers are marked as dots. VSA = vowel space area; FRI = 
formant ratio index; SFRI = second formant ratio index. 

Limitations of This Study 

This study has certain limitations. Eight groups of 
patients were selected to cover a wide range of the com-
mon movement disorders associated with different patho-
physiology responsible for the occurrence of vowel articu-
lation impairment. Several of these etiologies showed dif-
ferent types of mixed dysarthria, leading to a smaller sam-
ple size for specific dysarthria subtypes. Additional better-
sampled investigations with participants having different 
disease types, and possibly different dysarthria types, are 
required to confirm and further extend our findings. The 
study is based solely on the Czech language; thus, the lan-
guage independence of the applied methods should be ver-
ified in future studies. Nonetheless, a recent multilanguage 
trial in PD revealed broadly similar profiles of dysarthria 
across multiple languages (Rusz et al., 2021). In addition, 
the formant tracker utilizing Burg’s algorithm is consid-
ered language independent. The phoneme recognizer used 
in this study can be easily substituted for a universal rec-
ognizer that supports most of the world’s languages (Li 
et al., 2020; Y. Liu et al., 2021). Subsequently, it is note-
worthy to point out that shifts in formant frequencies and 
reductions in vowel space might occur due to other condi-
tions than dysarthria such as differing dialect (Williams & 
Escudero, 2014), behavioral accent (Kamiloğlu et al., 
2020), or stuttering-like behavior (Blomgren et al., 1998). 
We strived to minimize these effects by investigating sub-
jects of the same dialect via an emotionally neutral con-
text of monologue. From the etiologies investigated, the 
stuttering-like behavior is common only in PSP and very 
rare in de-novo PD (Rusz et al., 2015; Tykalová et al., 
2015). However, the severity of vowel articulation impair-
ment in PSP was not principally different from MSA, 
which is also atypical parkinsonism without the occur-
rence of dysfluency but with a similar dysarthria type and 
severity (Rusz et al., 2015), suggesting that affected vowels 
are mainly a consequence of dysarthria itself. Finally, our
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algorithm was tested only with data acquired via a profes-
sional microphone without any disruptive noise. There-
fore, future studies should evaluate the vowel articulation 
algorithm performance via a low-quality microphone, such 
as within smartphones in natural environments (Rusz 
et al., 2018). 

Table 5. Classification analysis for the formant features for monologues. 

% VSA FCI SFCI Random vector 

Neurological disease type 5.0 39.7 38.8 5.3 

Dysarthria type 5.0 37.0 37.3 4.2 

Dysarthria severity 39.9 46.8 49.2 19.8 

Note. The numbers indicate the percentage of subjects correctly identified by the discriminant analysis as original groups. Bold numbers 
indicate the best accuracy across neurological disease type, dysarthria type, and dysarthria severity. Random vector refers to the experi-
mental results regarding probability of correct factor identification by chance. VSA = vowel space area; FRI = formant ratio index; SFRI = 
second formant ratio index. 

Conclusions 

This study represents an insight into the imprecise 
vowel articulation as a consequence of impairment of fine 
voluntary movements in a wide range of progressive neu-
rological diseases with various etiologies and stages. We 
found that an automatized approach could reliably esti-
mate vowel articulation features from natural connected 
speech regardless of the disease localization in the nervous 
system (pyramidal tract, basal ganglia, cerebellum, and 
cranial nerves), etiology (neurodegeneration and autoim-
mune disorder), and different degrees of disability. How-
ever, the specific tongue movement reflected by formant 
measures differed across some etiologies and dysarthria 
types independently on dysarthria severity. Therefore, 
acoustic analysis of vowel articulation may provide a 
practical tool not only for monitoring the efficacy of 
future experimental disease-modifying treatments and 
speech therapy but also for delivering clues for differential 
diagnosis. Future longitudinal studies should corroborate 
the sensitivity of vowel articulation deficits to disease pro-
gression among progressive disorders. 
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2.5.1 Exploitation of speech parametrizations

Speech can be parametrized by sets with low interpretability, but high performance, such
as MFCCs and their derivatives [70], Relative Spectral Transform - Perceptual Linear
Prediction parameters [71], and deep neural networks embeddings [72]. These sets are
often used in complex frameworks such as speech recognition where the undisclosed ex-
planation poses no problem. However, it limits the use in clinically related studies and,
most notably, in clinical trials [73].

Nonetheless, in recent years, MFCCs specifically have gained interest in studies fo-
cused on speech impairments in neurological diseases due to their capacity to capture
considerable information from the speech waveform [74]. However, the complete relation-
ship between the MFCCs and particular speech dysfunctions remains unclear. Therefore,
a study has been conducted to explore potential links between MFCCs and particular
speech impairments [75].

A cohort of 23 individuals with PD who were treated with bilateral Deep Brain Stim-
ulation of the Subthalamic Nucleus (STN-DBS) were recruited for the study, together
with 23 healthy controls. The examination in the PD group was held in two conditions,
including STN-DBS switched OFF and STN-DBS switched ON, and selected, physiolog-
ically interpretable features were calculated from recordings in each condition, together
with MFCCs. The stimulation alters several aspects of speech production [76]. The study
linked the differences in the features to the differences in MFCCs induced by ON and
OFF conditions, hinting which aspects are related to the change.

It was found that changes in lower (2nd to 4th) cepstral coefficients significantly re-
flect changes in CPP, representing voice quality measure. Higher MFCCs (4th to 9th)
highly correlated with measures describing a dynamical ability of articulatory movement.
A global parameter, calculated by averaging the individual MFCCs, incorporated the
captured speech characteristics from corresponding individual parameters and demon-
strated higher sensitivity to distinguish PD and STN-DBS conditions than the standard
physiological features.

The findings may shed light on interpreting outcomes from speech assessment for
future clinical trials. The preprint of the article is provided below.
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Abstract
One of the most popular speech parametrizations for dysarthria
has been Mel Frequency Cepstral Coefficients (MFCCs). Al-
though the MFCCs ability to capture vocal tract characteristics
is known, the reflected dysarthria aspects are primarily undis-
closed. Thus, we investigated the relationship between key
acoustic variables in Parkinson’s disease (PD) and the MFCCs.
23 PD patients were recruited with ON and OFF conditions
of Deep Brain Stimulation of the Subthalamic Nucleus (STN-
DBS) and examined via a reading passage. The changes in
dysarthria aspects were compared to changes in a global MFCC
measure and individual MFCCs. A similarity was found in 2nd
to 3rd MFCCs changes and voice quality. Changes in 4th to 9th
MFCCs reflected articulation clarity. The global MFCC param-
eter outperformed individual MFCCs and acoustical measures
in capturing STN-DBS conditions changes. The findings may
assist in interpreting outcomes from clinical trials and improve
the monitoring of disease progression.
Index Terms: Mel Frequency Cepstral Coefficients, Parkin-
son‘s disease, speech disorder, dysarthria, acoustic analysis

1. Introduction
Speech represents the most complex quantitative marker of mo-
tor function, vastly sensitive to damage to the brain’s neural
structures [1]. Speech dysfunctions presence has been docu-
mented in a number of progressive neurological diseases, such
as Parkinson’s disease (PD) [2]. In recent years, due to techno-
logical and computational advances, there has been an increas-
ing interest in the use of speech for monitoring disease progres-
sion, symptoms severity, and a potential diagnostic aid [1, 3].
Improved ease in obtaining voice recordings using either smart-
phones [4, 5, 6], or telemonitoring homecare systems [7] offers
intriguing advances as speech evaluation is inexpensive, non-
invasive, simple to administer, and scalable to a large popula-
tion.

Analysis of the acquired speech data and potential pathol-
ogy is primarily interpreted using physiological speech patterns
describing vocal tract abilities, such as articulation, pitch vari-
ability, loudness, rhythm, and phonation [8]. However, speech
can also be parametrized by sets with low interpretability, but
high performance, such as Mel Frequency Cepstral Coefficients
(MFCCs) and their derivatives [9, 10, 11], Relative Spectral
Transform - Perceptual Linear Prediction parameters [12], and
deep neural networks embeddings [13]. The undisclosed ex-

planation poses no problem for complex frameworks such as
speech recognition but limits the use in clinically related stud-
ies and, most notably, in clinical trials [14].

Nevertheless, as one of the most popular speech
parametrizations, MFCCs remain highly relevant due to their
capacity to capture considerable information from the speech
waveform. While being a long-standing essential part of frame-
works for speech recognition [15], speaker detection [16],
speech synthesis [17], and many others, in the last decade, they
also gained interest in studies focused on speech impairments
in neurological diseases [5, 9, 10, 11, 18]. However, the com-
plete relationship between the MFCCs and particular speech
dysfunctions remains clouded. In [9], authors comment that the
coefficients detect subtle changes in the motion of the articula-
tors (tongue, lips). Nonetheless, such an assumption has never
been validated, while MFCCs can be easily influenced by other
factors such as age, gender, speaking style, or recording pro-
cedure/microphone quality [19]. Most recently, in Roche’s PD
Mobile application designed for clinical trial measures in PD
[5, 20], the speech performance of the patients was analyzed
on a sustained phonation task using only the second coefficient,
MFCC2, representing a low-to-high frequency energy ratio [8].

Although the MFCCs are emerging as one of the princi-
pal features in assessing speech impairments in neurological
diseases, their interpretability remains limited. Therefore, we
tested the sensitivity of MFCCs in a scenario covering Parkin-
sonian patients with ON and OFF conditions of Deep Brain
Stimulation of the Subthalamic Nucleus (STN-DBS). Since the
STN-DBS might substantially alter the patient’s speech abilities
[21], we expect to discover changes in MFCCs that might corre-
spond to changed acoustical patterns of hypokinetic dysarthria.

2. Methods
2.1. Participants

A total of 23 individuals with PD (four females), with a mean
age of 61.7 years (SD = 5.0, range: 53–72), who were treated
with bilateral STN-DBS in combination with dopaminergic
medication, were recruited for the study. The examination in
the PD group was held in two conditions, including STN-DBS
switched OFF (hereafter, the DBS OFF condition) and STN-
DBS switched ON (hereafter, the DBS ON condition). Detailed
clinical characteristics (clinical scores and DBS settings across
individuals with PD) and experimental procedure description
can be found in previous study [22]. As a healthy control
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(HC) group, 23 age- and sex-matched (four females) volun-
teers, a mean age of 61.5 years (SD = 5.6, range: 52–72), with
no history of neurological or communication disorders, were
recruited. All participants were native Czech speakers. The
study complied with the Helsinki Declaration and was approved
by the Ethics Committee of the General University Hospital,
Prague, Czech Republic. Each participant provided written in-
formed consent.

2.2. Speech examination

The patients were recorded after the individual therapeutical
setting and were asked to perform phonetically balanced read-
ing passage task of a standardized text of 313 words with a fa-
miliar, up-to-date vocabulary and grammatical structure. The
audio recordings were conducted in a quiet room with a low am-
bient noise level using a head-mounted condenser microphone
(Beyerdynamic Opus 55, Heilbronn, Germany) placed approx-
imately 5 cm from the subject’s mouth. Speech signals were
sampled at 48 kHz with 16-bit resolution.

2.3. MFCCs computation

After the trial testing, the following procedure was established
to calculate the first 16 MFCCs. The number 16 was set, simi-
larly to [11, 23], as a tradeoff between studies using fewer coef-
ficients, such as 12 or 13 [9, 24], and longer coefficients vectors,
such as 20 [10]. The computations were conducted in MAT-
LAB, Natick, USA.

Similarly, as in [10, 25], the audio input was first downsam-
pled to 16 kHz with lowpass pre-filtering to guard against alias-
ing. Next, a pre-emphasis filter was applied to the samples with
α = −0.95. MFCCs were computed using MATLAB Auditory
Toolbox functions. The entire signal is processed in frames us-
ing a Hamming window of a length 25ms with 5% overlap. The
frame‘s FFT magnitude is converted into Mel filterbank outputs
using 13 linearly spaced filters followed by 27 log-spaced filters
ranging from approximately 133 Hz to 6864 Hz. Next, a cosine
transform of the log10 of the output is computed. The result is a
vector of c0-c16 MFCCs standard deviations across frames. The
0th coefficient, c0, representing signal energy, is discarded.

Necessarily, a voice activity detector has to be applied, so
the coefficients are used only in the segments of speech. In
this study, dynamical thresholding of the spectral distance of
the computed coefficients is utilized to mark segments without
speech presence [26]. Coefficients in such segments are dis-
carded.

Apart from analyzing individual c1-c16, a global MFCC
measure is established, inspired by [24], as a mean of the stan-
dard deviation (std) of c1-c16. It is designed to represent the
overall dynamic movement ability of individual vocal tract el-
ements, as the individual MFCCs overlap the partitions of the
frequency domain.

2.4. Physiological acoustic markers

To link the MFCCs to key dysarthria elements of PD, five acous-
tic variables with well-known pathophysiological interpretation
were extracted from the speech waveform using the framework
developed in [8].

Speech impairments in PD can be, for the most part, char-
acterized by decreased voice quality, imprecise articulation,
monoloudness, monopitch, deficits in speech timing, and in-
appropriate pauses [27]. A decrease in voice quality can be
reflected by a lower Cepstral Peak Prominence (CPP) measure

[28]. Aspects of imprecise articulation can be represented by a
decrease in resonant frequency attenuation (RFA) measure, de-
fined as the ratio between local second formant region maxima
and local valley region minima. RFA is mainly sensitive to ar-
ticulatory decay but may also be partly influenced by abnormal
nasal resonance [8]. Monoloudness corresponds to a lower std
of the speech energy (stdPWR) and monopitch to a lower std of
estimated pitch contour (stdF0). Deficits in speech timing and
rhythm, such as slowing or accelerating tempo, are reflected by
the net speech rate (NSR) measure. Since the information about
the length and occurrence of pauses is uncapturable by MFCCs,
the measure representative for the description of pauses was
omitted.

2.5. Statistical analysis

The following two experiments were conducted to assess the
physiological nature of MFCCs.

First, the differences in the variables between DBS ON and
OFF, called ∆ON

OFF, were calculated, representing the change in
speech characteristics:

∆ON
OFFvi = vON

i − vOFF
i , (1)

where vON
i , vOFF

i are the variables (MFCCs, global MFCC
parameter, acoustical features) from DBS ON and DBS OFF
groups, respectively. Then, Spearman correlation was com-
puted between ∆ON

OFF MFCC variables and ∆ON
OFF acoustical

variables.
Subsequently, the individual variables were compared in

the three groups (HC, DBS ON, DBS OFF) using repeated mea-
sures analysis of variance (RM-ANOVA) followed by Bonfer-
roni post-hoc correction, where the HC group is age- and sex-
aligned with the DBS subjects and treated as associated mea-
surement.

3. Results
The results from the first experiment are shown in Figure 1.
Change in CPP was correlated with changes in lower MFCCs
(c2-c3), ρ > 0.48, p < 0.05. Change in RFA correlated with
c4-c9 coefficients changes, ρ > 0.45, p < 0.05. Changes in the
global MFCC parameter achieved significant correlations with
changes in CPP and RFA, ρ = 0.46, p < 0.05, partly also
reflecting changes in stdF0 and NSR, ρ = 0.41, p = 0.06, resp.
ρ = −0.40, p = 0.06.

The results from RM-ANOVA for c1-c16 and global MFCC
are shown in Figure 2. According to F (1, 22) statistics, the
global MFCC parameter achieved the highest overall signifi-
cance in between-group differences (F (1, 22) = 53.1, p <
0.001 for HC vs. DBS OFF, F (1, 22) = 19.1, p < 0.001 for
HC vs. DBS ON, F (1, 22) = 8.4, p < 0.05 for DBS ON
vs. DBS OFF). Lower coefficients (c1-c5) demonstrate signifi-
cant differences between HC and DBS ON or DBS OFF groups
(F (1, 22) > 8.0, p < 0.05). However, significant contrast be-
tween DBS ON and OFF is present in higher coefficients, c5-c8
(F (1, 22) > 5.8, p < 0.05).

Figure 3 shows boxplots for the global MFCC parame-
ter and acoustical features. Only the global MFCC parameter
achieved a significant difference between DBS ON and OFF
(F (1, 22) = 8.4, p < 0.05). RFA and stdF0 demonstrated
significant contrast between HC and both DBS ON and OFF
(F (1, 22) > 11.7, p < 0.01). NSR and stdPWR showed signif-
icant differences only between HC and DBS OFF (F (1, 22) >
6.8, p < 0.05).
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Figure 1: Spearman correlation of ∆ON
OFF, differences in variables between DBS ON and DBS OFF, for individual c1-c16 Mel Frequency

Cepstral Coefficients (MFCC) and global MFCC parameter (mean standard deviation of c1-c16) to acoustical variables. Dashed lines
represent the boundary of significant correlation with p < 0.05. Captions: CPP=Cepstral Peak Prominence, RFA=Resonant Frequency
Attenuation, stdPWR=signal energy standard deviation, stdF0=pitch contour standard deviation, NSR=Net Speech Rate.

4. Discussion
The present study explored the relationship between individ-
ual c1-c16 MFCCs and physiologically interpretable acoustic
features, including a global MFCC parameter composed of all
the coefficients. Based on changes in speech characteristics be-
tween DBS ON and DBS OFF, we could relate the alterations of
individual coefficients to specific acoustical markers. Moreover,
the global parameter as well as some individual MFCCs were
able to capture significant differences in speech production be-
tween the HC group and PD groups, and even between DBS ON
and OFF, outperforming the traditional acoustical measures.

4.1. Relationship between MFCCs and acoustical measures

Changes in lower cepstral coefficients (∆ON
OFFc2, ∆ON

OFFc3) sig-
nificantly reflect changes in CPP, representing voice quality
measure. CPP has been shown to strongly correlate with the
increase in the severity of dysphonia and breathiness in various
languages [28]. CPP integrates multiple acoustical measures re-
lated to lower speech frequencies, such as first rahmonic, pitch,
waveform deviations, and noise perturbations [28]. Since both
c2 and c3 are related to the signal energy, covering the corre-
sponding range (approximately 200 - 500 Hz), the relationship
with CPP and the ability to capture such characteristics become
apparent.

Higher MFCCs, starting from ∆ON
OFFc4 to ∆ON

OFFc9, signif-
icantly correlate with the changes in RFA measure. RFA rep-
resents the second formant to anti-formant based system [8],
i.e., special case of MFCC limited to frequency regions around
the second formant. Therefore, RFA obviously provides com-
parable results to the MFCC system, although MFCCs cover
more wide frequency range and are not dependent on the cor-
rect estimation of the position of the second formant. Both
these MFCCs and RFA metrics (at least considering the fre-
quency range between 4th to 9th cepstral coefficients) might
thus provide a measure of the dynamical ability of articulatory
movement. Such a measure might supplement the traditional
formant-based approaches reflecting the range of movement of

articulators, which particularly vary with tongue placement po-
sition.

The changes in the global MFCC parameter, designed to
represent the overall dynamic movement ability of individual
vocal tract elements, are significantly correlated to changes in
CPP and RFA as well, thus incorporating the captured speech
characteristics from corresponding individual MFCCs. The
pitch variability is mildly related and would likely significantly
contribute to observed results with increasing sample size. In-
terestingly, NSR is negatively correlated with the global mea-
sure meaning that with an increased articulation rate, the artic-
ulation ability and the quality of voice decrease; however, the
trend is not significant.

4.2. Capacity of individual MFCCs to capture within-
group differences

Individual MFCCs expressed within-group speech characteris-
tics differences with a high significance. Especially lower co-
efficients (c1-c5) achieved an excellent score in distinguishing
HC and PD cohorts (including DBS ON and OFF groups). The
results might be explained by the close connection between the
coefficients and measures of CPP and stdF0, explored in the
previous section. On the other hand, higher c5-c9 MFCCs, re-
lated to the RFA measure, outperformed the lower ones in terms
of capturing changes between DBS ON and DBS OFF. The
evidence is that distinctive and eminently recognizable speech
changes between speech in HC and PD are represented by lower
MFCCs, whereas higher (approximately c5-c9) reflect subtle
changes in articulation ability and formant structure, present be-
tween DBS ON and DBS OFF conditions. High coefficients,
c10-c16, do not appear to have a significant effect on the group
differences between PD and HC groups. However, the statis-
tics are much more powerful between DBS ON and OFF than
their comparison to HC. Sporadic significant differences be-
tween DBS ON and DBS OFF in coefficients c10, c14, and c15
might be due to correspondence with particular high formant
structures but also due to noise which is more present in higher
frequencies.

5029

64



c
1

c
2

c
3

c
4

c
5

c
6

c
7

c
8

c
9

c
1
0

c
1
1

c
1
2

c
1
3

c
1
4

c
1
5

c
1
6

g
lo

b
a

l0

10

20

30

40

50

60

Figure 2: Computed F (1, 22) statistics for individual c1-
c16 Mel Frequency Cepstral Coefficients (MFCC) and global
MFCC parameter (mean standard deviation of c1-c16) accord-
ing to repeated measures ANOVA. Dashed line represent bound-
ary of significant difference of p < 0.05 based on Bonferroni
post-hoc correction. Captions: ANOVA=analysis of variance,
HC=healthy controls, DBS=deep brain stimulation.

4.3. The use of the global MFCC parameter

Interestingly, the global MFCC measure demonstrated the most
significant overall within-group difference. It achieved the
highest score in separating HC and DBS OFF and a comparable
score between HC and DBS ON and DBS ON and DBS OFF
with the best-achieving coefficients. The fact that the global
parameter comprehends the properties of the individual coeffi-
cients while maintaining high robustness might prove beneficial
for its use in practice. For example, the c2 coefficient demon-
strated a significant, comparable score to the global measure
between HC and both DBS states. However, it achieved poor re-
sults distinguishing between DBS ON and DBS OFF. The same
can be analogously applied to, for example, c6.

Additionally, compared to acoustical variables used in this
study, the global MFCC demonstrates the highest overall sig-
nificance between the DBS ON and DBS OFF conditions. The
evidence might be due to the ability to reflect CPP and RFA,
and partly stdF0 and NSR, altogether with capturing additional
information about the individual vocal tract elements.

4.4. Limitations of the study

Only Czech-speaking subjects in a small cohort were part of
the study. Further investigations should include other languages
and larger sample sizes to confirm the findings. Additionally,
it has been found that microphone quality and position highly
influence amplitude-based features such as RFA [4]. Since we
showed that MFCCs work on the same principle, the sensitivity
of MFCCs to different experimental recording settings should
be recognized and considered for large-scale use [29].
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Figure 3: Statistically significant group differences for the
global Mel Frequency Cepstral Coefficients parameter (mean
standard deviation of c1-c16) and acoustical variables with with
***, **, * referring to p < 0.001, p < 0.01, and p < 0.05 ac-
cording to repeated measures analysis of variance with Bonfer-
roni post-hoc correction. Middle bars represent median, and
rectangles represent the interquartile range. Maximum and
minimum values are by error bars. Outliers are marked as
dots. Captions: DBS=deeb brain stimulation, CPP=Cepstral
Peak Prominence, RFA=Resonant Frequency Attenuation, std-
PWR=signal energy standard deviation, stdF0=pitch contour
standard deviation, NSR=Net Speech Rate.

5. Conclusions
The present study investigated the relationship between c1-c16
MFCCs and five physiologically interpretable acoustical vari-
ables of hypokinetic dysarthria. In addition, a global MFCC
parameter was established as mean std of c1-c16. A high cor-
relation was shown between changes in low c1-c3 coefficients
and changes in voice quality and signal envelope. Changes in
coefficients from approximately c4-c9 reflect subtle changes in
articulation ability and lower formants structures. The global
MFCC measure comprehended the properties of the individ-
ual coefficients while maintaining high robustness and achiev-
ing significant between-group differences, outperforming all the
single coefficients and acoustical measures. The findings may
shed light on interpreting outcomes from speech assessment for
future clinical trials.
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in rapid eye movement sleep behavior disorder and parkinson dis-
ease,” Annals of Neurology, vol. 90, pp. 62–75, 2021.

[4] J. Rusz, J. Hlavnicka, T. Tykalova, M. Novotny, P. Dusek,
K. Sonka, and E. Ruzicka, “Smartphone allows capture of speech
abnormalities associated with high risk of developing parkinson’s
disease,” IEEE Transactions on Neural Systems and Rehabilita-
tion Engineering, vol. 26, pp. 1495–1507, 2018.

[5] F. Lipsmeier, K. I. Taylor, T. Kilchenmann, D. Wolf, A. Scot-
land, J. Schjodt-Eriksen, W. Y. Cheng, I. Fernandez-Garcia,
J. Siebourg-Polster, L. Jin, J. Soto, L. Verselis, F. Boess,
M. Koller, M. Grundman, A. U. Monsch, R. B. Postuma,
A. Ghosh, T. Kremer, C. Czech, C. Gossens, and M. Lindemann,
“Evaluation of smartphone-based testing to generate exploratory
outcome measures in a phase 1 parkinson’s disease clinical trial,”
Movement Disorders, vol. 33, pp. 1287–1297, 2018.

[6] T. Kouba, V. Illner, and J. Rusz, “Study protocol for using a smart-
phone application to investigate speech biomarkers of parkinson’s
disease and other synucleinopathies,” BMJ Open, vol. 12, 2022.

[7] C. L. Payten, D. D. Nguyen, D. Novakovic, J. O’Neill, A. M. Cha-
con, K. A. Weir, and C. J. Madill, “Telehealth voice assessment
by speech language pathologists during a global pandemic using
principles of a primary contact model: an observational cohort
study protocol,” BMJ Open, vol. 12, 2022.
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R. Čmejla, E. Růžička, and J. Roth, “Objective acoustic quantifi-
cation of phonatory dysfunction in huntington’s disease,” PLoS
ONE, vol. 8, 2013.
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2.6 Smartphone application for remote monitoring

The preceding sections outlined the methods for effectively extracting significant insights
from spontaneous, everyday speech to assess the severity and progression of potential
neurodegenerative diseases through interpretable physiological patterns. The following
section details the design of a developed system capable of unobtrusively, ethically, and
securely recording calls and other data using modern smartphones [77].

The application consists of two parts. First part works in the background and records
the subject voice calls. After either an incoming or outgoing call was concluded, the user
was presented with a screen containing an option to delete or sent the call to research
analysis. If the second option was selected, the recording was immediately filtered using
a distant-speaker filtering algorithm, and saved to the private application folder on the
device. It was possible to replay or delete each recording within the following 24 hours.
After 24 hours, the recording was sent to a secured server. The original call was then
deleted from the device. Due to ethical reasons and the General Data Protection Reg-
ulation law, the subjects’ speech partners were needed to be removed entirely from the
recordings, which was accomplished by employing a real-time adaptive filtering of the
input audio. Specifically, the computational complexity needed to be optimised because
intensive background processes tend to be eventually suppressed by the phone’s operat-
ing system. The algorithm utilized a cross-channel thresholding using smoothed energy
estimates from a specific spectral bands, and was based on the Neumann-Pearson Crite-
rion. Once the data arrived to the server a gateway validation was executed. A speaker
recognition framework confirmed that the recording contained the right participant and
rejected it otherwise, for cases where the participant handed the phone to someone else,
the recording was significantly corrupted, or did not contain speech content at all.

The second part of the application consisted of a module that invited participants to
record active motor and functional vocal tasks every specified period. The tasks were
selected as commonly used in the PD research [78] and included sustained phonation,
syllables repetitions, reading a passage, tapping, alternated tapping, writing a sentence,
resting hand tremor task, and gait with a turnaround.

The developed framework may serve as a reliable, unobtrusive tool to remotely collect
participant‘s spontaneous everyday speech data, together with functional vocal and motor
tasks. The tool can be used for cross sectional or longitudinal studies evaluating the
severity and progression of parkinsonism via distinguished speech patterns. The preprint
of the protocol is provided below.
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ABSTRACT
Introduction  Early identification of Parkinson’s disease 
(PD) in its prodromal stage has fundamental implications 
for the future development of neuroprotective therapies. 
However, no sufficiently accurate biomarkers of prodromal 
PD are currently available to facilitate early identification. 
The vocal assessment of patients with isolated rapid eye 
movement sleep behaviour disorder (iRBD) and PD appears 
to have intriguing potential as a diagnostic and progressive 
biomarker of PD and related synucleinopathies.
Methods and analysis  Speech patterns in the 
spontaneous speech of iRBD, early PD and control 
participants’ voice calls will be collected from data 
acquired via a developed smartphone application over 
a period of 2 years. A significant increase in several 
aspects of PD-related speech disorders is expected, and 
is anticipated to reflect the underlying neurodegeneration 
processes.
Ethics and dissemination  The study has been approved 
by the Ethics Committee of the General University Hospital 
in Prague, Czech Republic and all the participants will 
provide written, informed consent prior to their inclusion 
in the research. The application satisfies the General Data 
Protection Regulation law requirements of the European 
Union. The study findings will be published in peer-
reviewed journals and presented at international scientific 
conferences.

INTRODUCTION
Parkinson’s disease (PD) is a neurodegenera-
tive disorder characterised by the loss of dopa-
minergic neurons in the substantia nigra.1 
The incidence of PD is approximately 1.8% 
in persons older than 65 years.2 There is no 
treatment that halts or slows the progression 
of PD, and the pharmacotherapy and neuro-
surgical interventions that are available only 
mitigate specific symptoms. A PD diagnosis 
is typically made when cardinal motor mani-
festations appear; by this point, up to 50% 
of the neurons in the substantia nigra may 
already be irrecoverably damaged.3 Unfortu-
nately, no sufficiently accurate biomarkers of 

PD are currently available, although the exis-
tence of such biomarkers would allow for the 
measurement of the effectiveness of experi-
mental treatments in slowing the progres-
sion of the disease. Furthermore, no reliable 
method for identifying people who are at 
high risk of developing PD exists at present. 
Thus, establishing a suitable biomarker would 
be a crucial breakthrough that would impact 
on diagnoses and future PD treatments, 
and is one of the most important topics in 
PD-related research.4 In particular, motor-
related dysfunctions are strong predictors of 
conversion to synucleinopathy, and have one 
of the most significant hazard ratios of 3.16 
among the available predictive markers to 
date.5

Isolated rapid eye movement sleep 
behaviour disorder (iRBD) is a para-
somnia characterised by dream-enactment 
behaviours associated with REM sleep without 
muscle atonia,6 and represents a prodromal 
marker of neurodegenerative synucleinop-
athies, mainly PD and dementia with Lewy 
bodies.7 The risk of developing a neuro-
degenerative disease is exceptionally high 
(>80%) in subjects with iRBD.8 9 Since symp-
toms of iRBD precede Parkinsonism, research 

STRENGTHS AND LIMITATIONS OF THIS STUDY
	⇒ This study aims to employ the remote longitudinal 
speech monitoring of prodromal and early-stage 
patients with Parkinson’s disease via smartphone 
calls.

	⇒ An additional set of active speech and motor tasks 
will be captured.

	⇒ The results of this study will be based solely on the 
Czech language.

	⇒ This study will be implemented in one type of 
smartphone, and the impact of different devices on 
speech outcomes is yet to be determined.
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focused on iRBD is essential for the development of a 
neuroprotective therapy to counter synucleinopathy,10 as 
no other preclinical marker has a predictive value that is 
comparable to iRBD.11

As the most complex acquired human motor skill, and 
involving over 100 muscles, speech is a sensitive marker of 
damage to neural structures engaged in the brain’s motor 
system control.12 Up to 90% of PD patients develop distinc-
tive speech and voice abnormalities, collectively termed 
hypokinetic dysarthria, which are mainly characterised by 
a decrease in the quality of the voice, hypokinetic artic-
ulation, hypophonia, monopitch, monoloudness and 
deficits in timing and phrasing.13 Based on the recent 
findings of a multilanguage, multicentric study using an 
objective acoustical analysis of 150 patients with iRBD, 
it is clear that speech disorders are one of the earliest 
motor signs of PD.14 Thus, vocal assessment appears to 
have intriguing potential as a preclinical diagnostic and 
progressive biomarker of PD and related neurodegener-
ations; it is also inexpensive, non-invasive, easy to admin-
ister and has the potential to being conducted remotely 
from the patient’s home (eg, by using a smartphone15).

In current practice, measures of PD are primarily subjec-
tive, rater-dependent and require in-clinic assessments.16 
The trials using these measures are lengthy and expensive 
and, as they are usually based on a once-off assessment, 
might produce false results. Given the technical and acces-
sibility advancements in smartphone technologies, evalu-
ating motor symptoms of PD via mobile devices continues 
to be an increasing focus among the research commu-
nity.17–19 The potential of smartphones has already been 
demonstrated in quantifying the severity of PD based on 
the remote assessment of five tasks (voice, finger tapping, 
gait, balance and reaction time) using an application 
that was developed for this purpose.20–22 However, such 
an assessment requires the patients (or research subjects) 
to repeatedly perform a set of predefined activities. It is 
thus reasonable to expect that most patients will not be 
willing to perform such artificially constructed activities 
on a daily basis for several years.

By contrast, the extraction of speech patterns from 
smartphone calls would provide a natural, passive 
biomarker that does not require additional effort on the 
part of the subjects. Moreover, such a speech-based appli-
cation could easily be scaled to a larger population, thus 
allowing for high-throughput screening, followed by a 
more detailed analysis if the screen is abnormal. However, 
the reliability of smartphones in detecting prodromal 
PD (ie, iRBD) via smartphone calls in realistic scenarios 
with ambient noise level environments has not yet been 
investigated.

Therefore, the aim of this study is to develop a fully 
automated and noise-resistant smartphone-based system 
that is able to monitor the distinctive speech patterns of 
neurodegeneration on a daily basis using acoustic data 
obtained in various environments (SMARTSPEECH). 
Such a system would have tremendous potential to revo-
lutionise the diagnostic process of PD and could provide 

a robust biomarker of the progression of the disease. 
To fully exploit the possibilities of smartphones, a set of 
active speech and motor tasks is included for sensitivity 
analysis and for comparison.

METHODS
Objectives
The main objective of the study is to demonstrate that, 
using the SMARTSPEECH system, speech performance 
elicited during regular phone calls through a smartphone 
can provide principal biomarkers for diagnosis and moni-
toring the progression of prodromal PD.

The specific objectives are to:
1.	 Develop a smartphone application that will be able to 

capture the subjects’ data,
2.	 Collect up to 2-year longitudinal speech data from 

subjects with iRBD, patients with early-stage PD and 
healthy control subjects of comparable age.

3.	 Collate existing approaches and develop novel meth-
ods allowing assessment speech markers of neurode-
generation in PD, including tests of their robustness 
against noise and recording conditions and selecting 
the most appropriate parameters for smartphone-
based monitoring.

4.	 Build the concept of a complex system (SMART-
SPEECH) for detection of speech abnormalities in PD 
and other synucleinopathies, including its statistical 
power evaluation in differentiation between PD, iRBD 
and control groups and identify its relationship to es-
sential clinical markers reflecting disease progression 
such as the Movement Disorder Society-Unified Par-
kinson’s Disease Rating Scale.

5.	 Analyse the sensitivity of a set of active speech and mo-
tor tasks and compare the outcomes to data acquired 
through SMARTSPEECH passive calls monitoring.

Collection of speech data
To avoid potential conflicts due to different microphone 
characteristics across various manufacturers, the speech 
data will be collected using the same smartphone device, 
HONOR 9X Lite (Shenzhen Zhixin New Information 
Technology), operating on the Android V.9 system. The 
application will record the subject’s telephone speech 
with a high degree of quality using a sampling frequency 
of 44.1 kHz and 16-bit quantification.

The distant-speaker filtering algorithm
Due to ethical reasons and the General Data Protection 
Regulation law, the subjects’ speech partners will need to 
be removed entirely from the recordings, which will be 
accomplished by employing real-time adaptive filtering 
of the input audio. The audio will be collected via two 
different microphones, representing two channels in 
the stereo mix (see figure 1). The primary microphone 
(MIC 1) is the closest to the speaker’s mouth and thus 
captures the subject’s speech with absolute power domi-
nance. However, the distant speaker’s talk might still be 
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present, such as in segments in which the subject is silent 
or speaks quietly, or when the distant speaker is speaking 
very loudly. The secondary microphone (MIC 2) mainly 
captures the speech of the subject, but also captures the 
distant speaker (coming from a call speaker nearby, hence 
at a greater power than via MIC1) and surrounding noise. 
However, these settings are valid only if the loudspeaker 
is not activated. In this case, the power of both speakers is 
more or less equal in the channels. Since the algorithm is 
not guaranteed of functioning properly in such scenario, 
the recording process will be cancelled immediately when 
the user activates the loudspeaker.

In order to remove the distant speaker from the final 
mix completely, a real-time adaptive algorithm was 
designed based on the hardware and software settings 
of the smartphone. Specifically, the computational 
complexity needed to be optimised because intensive 
background processes tend to eventually be suppressed 
by the phone’s operating system. The principle, which 
is cross-channel thresholding using smoothed energy 
estimates from a specific spectral band, is based on the 
Neumann-Pearson Criterion. The algorithm’s illustrative 
schema is displayed in figure 2, and the procedure is as 
follows:

The input is a stereo call recording ‍s
[
n
]
‍ consisting of 

channel 1 (from MIC 1), ‍s1
[
n
]
‍, and channel 2 (from MIC 

2), ‍s2
[
n
]
‍ . Both are processed in subsequent windows of 

a given length of ﻿‍ L‍ seconds. In the current frame, the 
signals are decimated by two, thus reducing the computa-
tional burden of the entire procedure while maintaining 
adequate resolution. The signals are then processed 
through a Butterworth band-pass filter with a range of 
300–8000 Hz, as this is the range in which the funda-
mental speech information is expected to be found. A 
power estimate is computed from the filtered channels 

using the L-1 norm, which is simply the sum of the abso-
lute values of the samples in a given segment with a length 
of ‍w‍. The estimated power trajectory is then smoothed 
using a normalised integrator with a forgetting factor ﻿‍λ
‍, producing ‍S1

[
n
]
‍ and ‍S2

[
n
]
‍ . The segments containing 

the subject’s speech are then detected when the following 
condition is met:

	﻿‍ S1
[
n
]

> k · mean
(
S2

[
n
])

,‍� (1)

where ﻿‍k‍ represents the extent of the channels’ power 
difference as a ratio of the ‍s1

[
n
]
‍ and ‍s2

[
n
]
‍ SD, calculated 

as ‍k =
√
std

(
s1

[
n
])
/std

(
s2

[
n
])

‍. The SD and the mean 
in equation (1) are both computed per window. At the 
end of the window processing section, the timestamps 
are shifted to compensate for the delay introduced by 
the normalised integrator. The segments that are not 
considered to consist of the subject’s speech are masked 
by zeros, and only the output from the first channel is 
subject to further processing.

A final check is made to ensure that the end of the 
window does not conflict with the subject’s speech 
segment, which might produce disruptive artefacts. If 
the result is positive, the output from the current window 
is discarded, and the process is rerun with an adjusted, 
shorter ﻿‍L‍ to avoid the conflict. The final output is a mono 
audio recording containing only the subject’s speech.

After the trial testing was conducted, the default value 
for ﻿‍ L‍ was set to 30 s as the optimal value for reduced 
computational power, more precise results and lower 
possibilities of conflicts at the end of the window. The 
segment length for the L-1 norm was set to ‍w = 128‍ 
samples with an overlap of 50%, which resulted in fast 
processing with sufficient precision. The forgetting factor 
was set to ‍λ = 0.99,‍ producing the optimal smoothing 
effect for the given scenario.

SMARTSPEECH application for monitoring passive speech via 
regular smartphone calls
After either an incoming or outgoing call is concluded, 
the user will be presented with a screen containing an 
option to delete or save the call (figure 3A). If the second 
option is selected, the recording will be filtered immedi-
ately using a distant-speaker filtering algorithm, and will 
be saved to the private application folder on the device. 
It will be possible to replay or delete each recording from 
the recent calls list (figure 3B) in the application within 
the following 24 hours. After 24 hours, the recording will 
be compressed and sent to a secured server using SSH 
and REST API. The original call will then be deleted from 
the device. The aim is to record at least four 5 min record-
ings per month from each participant. A setting section 
on which the user can configure the application to suit 
their needs will be included (figure 3C).

Active tasks
The application has a module that invites participants to 
record three active functional vocal tasks once every 14 
days; the participants are instructed to capture the data 

Figure 1  Schematics of the HONOR 9X smartphone audio 
inputs and outputs.
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in everyday environments with a low ambient noise level. 
In addition, the participants are asked to perform five 
motor tasks that are commonly used in PD research.20–23 
These tasks will be used to compare the sensitivity of 
the active and the passive data. On launching the active 
tasks protocol the users are presented with the guide-
lines and elapsed time since last run (figure 3D). Before 
each task, the user will be presented with short, written 
instructions, including an option to replay an audio or 
video example of the given task. In the voice section, the 

recordings can be replayed after being recorded. If the 
user is dissatisfied with the result, an option to repeat the 
task is available.

The entire set of active tasks consists of prolonged 
phonation (figure 4A), /pa/-/ta/-/ka/ syllable repetition 
(figure 4B), reading a passage (figure 4C,D), a tapping 
game (figure  5A,B), alternated tapping (figure  5C,D), 
a writing task (figure  5E,F), resting hand tremor 
(figure 6A,B) and a gait with turnaround (figure 6C,D). 
Each task will be executed twice, and the motor tasks are 

Figure 2  An illustrative schema of the distant-speaker filtering algorithm.
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to be executed first using the right hand and then the left 
hand.

Data validation and monitoring
Once the call and task data arrive on our server, they are 
saved on a database and the basic information becomes 
visible on the web interface to allow the data parameters 
to be reviewed for the quality, frequency and recording 
duration. In the event that the participant does not make 
any calls or perform passive tasks within the required 

period, the participant will be notified via a push notifica-
tion sent to their email address.

A gateway validation of the incoming data needs to be 
performed before the data are stored securely on the 
database to minimise the possibility of corrupted, irrel-
evant data entering the system, which would produce 
misleading results.

First, recordings that are shorter than two seconds 
will be discarded because they do not contain much 

Figure 3  (A) Option screen to delete or save the recently completed call for speech analysis. (B) List of calls from the previous 
24 hours with details and the options of replaying and deletion. (C) The setting screen of the app. (D) the active task introduction 
screen, which shows a guide to performing the active tasks and the time elapsed since the last active task run.
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information that is relevant and often contain errors. 
Subsequently, the speaker-detection algorithm will be 
employed to prevent data contamination when the user 
hands the smartphone to someone else for the call. The 
Kaldi toolkit24 was used to construct the procedure. 
We employed a high-order Gaussian mixture model 
trained on the Czech section of the GLOBALPHONE 
database25 using a set of mel-frequency cepstral coef-
ficients. New subjects in the study will be enrolled in 
the model once a sufficient amount of data has been 

collected. I-vectors are extracted on detection, and are 
used to compute the probabilistic linear discriminant 
analysis score. Using this score, a classificator decides 
whether the recording belongs to the correct subject. 
The data that will be assessed as not originating from 
the given subject will be moved to a specific folder and 
are not included in the data analysis.

Note that the purpose of the algorithm is also a form 
of quality control, as it excludes recordings that are of 
poor quality, such as utterances that are significantly 

Figure 4  (A) Prolonged phonation task instruction screen (task duration ~15 s). (B) Sequential motion rates instruction screen 
(task duration 7 s). (C) Reading passage instruction screen. (D) Reading passage sample text that is chosen randomly from six 
samples and contains approximately 80 words (task duration ~40 s).
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Figure 5  (A) A tapping game introduction screen. (B) A tapping game task. The delay between spawning the circle and a 
successful tap is measured. The action takes place 20 times (task duration ~20 s). (C) An alternated tapping introduction 
screen. (D) An alternated tapping task. The timestamps of the individual taps are measured (task duration 15 s). (E) Writing 
task instruction screen. (F) A writing task. The time spent rewriting each word is measured. The patient is shown five words in 
each run. Eight different datasets that are assembled in the same manner are chosen randomly in each run. Examples include 
the Czech words ‘SESTRICKA’, ‘NEJLEPSI’, ‘LECENI’, ‘ZABAVA’ and ‘PREDSTAVA’. The task can be skipped after 80 s have 
elapsed (task duration ~40 s).
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affected by disruptive noise at a low signal-to-noise 
ratio (SNR). In these cases, the subject’s speech is so 
corrupted that the computed features have little simi-
larity to the subject’s model. In addition, an SNR esti-
mator based on minimum statistics26 is employed in 
the last validation phase. Segments with an instanta-
neous SNR lower than the preselected threshold will 
be excluded from the analysis because the methods 
for extracting speech features cease to be reliable at 

certain very low SNR levels (such as pitch detection 
algorithms at SNR less than 6 dB27).

A voice activity detector is applied to the samples that 
have passed the validation procedure. The output indi-
cates long calls during which the subject only speaks 
for a tiny fraction of the overall duration. This allows 
to have a better grasp of the amount of speech data 
gathered via the system and to notify the subject if the 
amount of data is insufficient.

Figure 6  (A) Rest tremor instruction screen. (B) A rest tremor task (task duration 15 s). The patient’s hand tremor is measured 
using an accelerometer in all three axes. The z-axis is live plotted for user feedback. (C) A gait task instruction screen. (D) A 
gait task (task duration ~30 s). The z-axis rotation is measured and plotted on the screen for user feedback via an internal 
gyroscope.
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Extraction of acoustic speech and motor features
Hypokinetic dysarthria is due to dysfunction in the basal 
ganglia motor circuit, leading to impairments in the regu-
lation of the initiation, the amplitude and the velocity of 
movements.12 28 Therefore, this project aims to collect, 
develop and extract different acoustic features describing 
motor aspects of speech that have well-defined PD patho-
physiology17 and correspond to the perceptual descrip-
tion of hypokinetic dysarthria defined by Darley et al.29

The following features represent the most anticipated 
candidates for the final analysis:
1.	 Disruptions in phonation caused by dysfunctions in the 

vocal folds can be captured using the acoustic measure 
of Cepstral Peak Prominence, which correlates with 
the auditory perception of decreased voice quality/
breathiness.30

2.	 Articulation deficits, which are perceived as a decrease 
in intelligibility, can be described using metrics such as 
the vowel space area.31

3.	 Dysprosody is captured by the reduced amplitude of 
vocal cord movements, which correlates with the im-
pression of monopitch, and can be assessed using the 
acoustic measure of pitch variability.14

4.	 Decreased ability to maintain the speech motor se-
quence or to alternate quickly between responses can 
be reflected by the acoustic measures of the net speech 
rate and duration of pause intervals, which reflect the 
perceived auditory timing of speech and may describe 
deficits such as a slow articulation rate and a reduced 
ability to intermit and initiate speech.32

5.	 Linguistic deficits, including limited vocabulary and a 
decrease in its range, which might indicate potential 
underlying mild cognitive impairment, can be assessed 
using a set of lexical features such as content density.33

6.	 To assess the overall degree of speech impairment, 
powerful deep neural networks could be employed, 
including spectrogram analysis to evaluate specific fea-
tures when traditional methods might be insufficient. 
Insight into the detailed method behaviour would 
be supportive, and would reveal critical physiological 
details.34

Several methods for the automatic analysis of key 
dimensions of speech in patients with PD have already 
been developed.32 35 36 However, all the methods need to 
undergo experimental and theoretical testing for noise 
robustness and reliability to validate their usefulness.27 A 
set of features commonly used in the existing literature 
will be extracted from the active motor tasks20–22; the set 
includes tapping velocity, intratap duration variability, 
reaction time, tremor acceleration skewness and velocity.

Endpoints
The primary endpoint will be represented by composite 
dysarthria index, reflecting the severity of speech impair-
ment, which will be based on a combination of several 
distinct acoustic speech features associated with hypoki-
netic dysarthria in PD. Secondary endpoints will be repre-
sented by individual acoustic speech features associated 

with hypokinetic dysarthria in PD and linguistic features 
associated with potential cognitive decline.

Study design and participants
During this project, each participant will be given a full 
explanation of the project’s purpose and aims, will be 
informed about the procedure, and will be given the 
opportunity to ask questions before deciding whether 
to sign the informed consent form. In total, we plan to 
recruit 25 iRBD subjects, 25 early-stage patients with PD 
and 25 healthy controls as part of this longitudinal study. 
As we expect a drop-out rate of about 20% per year,17 up to 
50 patients with iRBD and the same number of early-stage 
patients with PD will be recruited at the baseline. These 
data might be used for a better-sampled cross-sectional 
study. All the iRBD subjects will fulfil the criteria listed in 
the International Classification of Sleep Disorders, third 
edition diagnostic criteria,37 including confirmation of 
REM sleep without atonia via polysomnography. The 
inclusion criteria for iRBD will be
1.	 Onset of iRBD after 50 years of age.
2.	 No history of major neurological disease (such as 

epilepsy or strokes) or other significant diseases that 
could affect study participation or voice analysis (eg, 
active cancer, drug abuse or diseased vocal cords).

3.	 No significant cognitive decline or severe depression.
4.	 No history of therapy with antiparkinsonian 

medication.
All the patients with PD will meet the Movement Disor-

ders Society’s clinical diagnostic criteria for PD,38 and 
will be investigated during the on-medication state. The 
inclusion criteria for PD will be:
1.	 Onset of PD after 50 years of age.
2.	 Hoehn and Yahr stage 1–2 in the on-medication state.
3.	 Disease duration more than 5 years after diagnosis.
4.	 No history of a major neurological disease other than 

PD (such as epilepsy or strokes) or other significant 
diseases that could affect study participation or voice 
analysis (eg, active cancer, drug abuse, or diseased vo-
cal cords).

5.	 No significant cognitive decline or severe depression.
6.	 No involvement in any speech therapy during the du-

ration of the project.
The inclusion criterion for controls will be that the 

participants have no history of neurological or communi-
cation disorders, and no history of parasomnias or other 
sleep disorders. PD and healthy control subjects will be 
age-matched and gender-matched to the iRBD group.

Each participant will be required to perform passive 
speech recordings and active tasks using the provided 
smartphone for 2 years. In addition, each of the subjects 
will undergo three examinations at the clinic: at the 
baseline, after 1 year and after 2 years (at the end of the 
project). The clinical examinations will consist of taking a 
structured personal history, quantitative testing of motor 
and non-motor symptoms of PD based on the Movement 
Disorder Society-Unified Parkinson’s Disease Rating 
Scale,16 cognitive testing using the Montreal Cognitive 
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Assessment,39 autonomic testing using the Scales for 
Outcomes in Parkinson’s Disease-Autonomic Dysfunc-
tion,40 the evaluation of depressive symptoms using the 
Beck Depression Inventory II,41 and speech examina-
tions according to the dysarthria research guidelines for 
acoustic analyses.23 Recruitment of the participants will 
begin in October 2021.

Patient and public involvement statement
Most of the patients have been involved in previous 
studies and are familiar with the team, the research 
topic and the methods. The SMARTSPEECH protocol 
was designed with the aid of a short questionnaire that 
was completed by a selected representative group of 33 
patients with iRBD or PD, which provided insight into 
their requirements (eg, a dual-SIM phone and mone-
tary compensation for mobile phone tariffs), doubts and 
motivations (such as understanding how to operate the 
phone and data security) and the expected frequency of 
phone usage and calls.

Sample size estimation
For the primary endpoint of the project, an ad hoc 
power analysis for a given large effect size (Cohen’s d of 
0.8), with the type I error probability (α) set at 0.05 and 
power of 80%, based on a three-group analysis of vari-
ance with one covariate (group), determined a minimum 
sample size of 66 subjects with at least 22 subjects in each 
subgroup (ie, 22 patients with iRBD, 22 patients with PD 
and 22 controls).

Statistical analysis
A one-way analysis of variance with a group (PD vs iRBD vs 
controls) as a between-subject factor will be used to calcu-
late the differences for each parameter of interest. The 
Pearson correlation coefficient will be applied to search 
for correlations among the variables. The minimum 
level of significance will be set at p<0.05 with an appro-
priate Bonferroni adjustment. In addition, a binary 
logistic regression followed by a leave-one-subject-out 
cross-validation will be used to assess the sensitivity/spec-
ificity of the proposed features to differentiate the iRBD 
subjects from controls, patients with PD from controls 
and patients with PD from iRBD subjects.

ETHICS AND DISSEMINATION
The study has been approved by the Ethics Committee 
of the General University Hospital in Prague, Czech 
Republic (no. 30/19 Grant AZV VES 2020 VFN), and will 
be performed in accordance with the ethical standards 
laid down in the 1964 Declaration of Helsinki and its later 
amendments. All the participants will provide written, 
informed consent prior to their inclusion.

The following steps will be taken to mitigate potential 
ethical concerns: The researchers performing the anal-
yses will have no known relationship with the research 
subjects, and the recordings will be deidentified to the 

extent possible. The analyses of audiorecordings will 
be automated to avoid the recordings being listened 
to by a human; furthermore, the audiorecordings will 
be encrypted, will only be available to the authorised 
researchers, and will be deleted at the request of any 
participant without the need for justification. All the steps 
will be conducted according to the directive on personal 
data protection legislation in the Czech Republic and 
the approval of the Ethics Committee. Any amendments 
will be agreed on by the research steering committee 
and submitted for ethics committee approval prior to 
implementation.

This project may provide a natural digital biomarker of 
disease progression based on longitudinal data acquired 
without any cost or time burden on the patients and 
investigators. Observing disease progression over a short 
period using well-defined and disease-specific speech 
biomarkers may significantly aid in recruiting appropriate 
cases into large clinical trials for disease-modifying drugs 
and allows monitoring possible disease-modifying effects 
of treatment in prodromal PD.42 43 In the future, speech 
biomarkers may also bolster early presymptomatic diag-
nosis and enable rapid access to neuroprotective therapy 
once available. Results will be presented at national and 
international conferences, published in peer-reviewed 
journals, and disseminated to the researchers and Parkin-
son’s community.
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2.7 Capturing speech impairments in prodromal PD

using a remote, automated approach

The following section describes a conducted cross sectional study in 22 iRBD, 25 PD
and 25 control participants using the developed data acquisition application described in
section 2.6 and methods developed or evaluated in sections 2.2 through 2.5. The study is
currently in a peer review (Movement Disorders, Q1).

Over a period of up to three months following the in-person clinic visit and assessment,
data from voice calls were collected from participants, along with periodic recordings of
reading passages. The study sought to assess the reliability of passively collected acous-
tic speech features via everyday smartphone calls for detecting prodromal parkinsonism
in individuals with iRBD. It aimed to compare the sensitivity of passive voice monitor-
ing with that of active speech tasks performed using smartphones at home and with a
professional microphone in clinical laboratory settings. Additionally, the study aimed
to determine the necessary sample duration to achieve optimal sensitivity for detecting
prodromal parkinsonism through smartphone-captured speech in real-world conditions.

During the three months of data collection, a total of 3525 calls (mean 49.0, SD 61.1
per participant) were recorded and analyzed. From these, 5990 minutes (mean 83.2, SD
119.7 per participant) of preprocessed speech were extracted for the analysis. On aver-
age, one call contained 2.26 minutes (SD 1.96) of preprocessed speech useful for analysis.
Considering active assessment, 950 (mean 13.2, SD 7.0 per participant) reading tasks
were acquired. 18 minutes of speech (corresponding to approximately 9 calls) was found
sufficient to capture prodromal voice changes in-the-wild using smartphones. Interest-
ingly, the results suggested that the higher the severity of dysarthria, the less data is
needed. Among the most prominent features of iRBD were monopitch in reading passage
and imprecise vowel articulation in phone calls. The combination of passive and active
smartphone data captured distinct yet complementary voice information, reaching a high
area under curve of 0.85 between iRBD and controls and 0.86 between PD and controls.

The study is the first to evaluate speech characteristics collected in-the-wild in individ-
uals with iRBD and early PD. It revealed that voice calls provide prodromal biomarkers
of parkinsonism in iRBD with sensitivity levels comparable to or even exceeding those
of laboratory examination using high-quality equipment. Enhancing sensitivity through
a combination with active speech tasks amplifies its potential. The findings endorse the
feasibility of employing a fully automated and noise-resistant smartphone-based system
for passive speech monitoring in real-world scenarios. In the future, the tool might be
broadly applied in neuroprotective trials, neurodegeneration screening deep brain stimu-
lation optimalization, neuropsychiatry, speech therapy, population screening, and beyond.
The original manuscript is provided below.



1 
 

Smartphone voice calls provide early biomarkers of parkinsonism in REM sleep 
behaviour disorder 
 
Vojtěch Illner,1 Michal Novotný,1 Tomáš Kouba,1 Tereza Tykalová,1 Michal Šimek,1 Pavel 
Sovka,1 Jan Švihlík,1,2 Evžen Růžička,3 Karel Šonka,3 Petr Dušek,3 Jan Rusz1,3* 
 
1Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University 
in Prague, Prague, Czech Republic 
2Faculty of Chemical Engineering, University of Chemistry and Technology, Prague, Czech 
Republic 
3Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, 
Charles University, Prague, Czech Republic 
 
*Corresponding author address:  
Jan Rusz, MSc, Ph.D., Department of Circuit Theory, Czech Technical University in Prague, 
Technická 2, 160 00, Praha 6, Czech Republic. 
E-mail: rusz.mz@gmail.com 
Phone: (+420) 224-352-287 
Fax: (+420) 224-311-081 
 
Word count: 3594  
Abstract count: 250 
 
Running title: Smartphone calls screening in iRBD. 
 
Keywords: Prodromal synucleinopathy biomarker; Parkinson’s disease; speech; wearables; 
machine learning.   
 
Financial Disclosure/Conflict of Interest: All authors report no conflict of interest 
concerning the research related to the manuscript. 
 
Funding sources for study: This study was supported by the Czech Ministry of Health 
(grants no. NU20-08-00445 and MH CZ–DRO-VFN64165), National Institute for 
Neurological Research (Programme EXCELES, ID Project No. LX22NPO5107) - Funded by 
the European Union – Next Generation EU, and by the Czech Technical University in Prague 
(grant no. SGS23/170/OHK3/3T/13). 
 

 

 

 

  

80



2 
 

Abstract 
 
Background: Speech dysfunction represents one of the initial motor manifestations to develop 
in Parkinson's disease (PD) and is measurable through smartphone.  
 
Objective: To develop a fully automated and noise resistant smartphone-based system that can 
unobtrusively screen for prodromal parkinsonian speech disorder in subjects with isolated rapid 
eye movement sleep behaviour disorder (iRBD) in a real-world scenario.  
 
Methods: This cross-sectional study assessed regular, everyday voice calls data from 
individuals with iRBD compared to early PD and healthy controls via a developed smartphone 
application. The participants also performed an active, regular reading of a short passage on 
their smartphone. Smartphone data was continuously collected for up to three months after the 
standard in-person assessments at the clinic. 
 
Results: A total of 3525 calls that led to 5990 minutes of preprocessed speech were extracted 
from 73 participants, including 22 iRBD, 25 PD and 25 controls. With a high area under curve 
of 0.85 between iRBD and controls, the combination of passive and active smartphone data 
provided a comparable or even more sensitive evaluation than laboratory examination using a 
high-quality microphone. The most sensitive features to induce prodromal neurodegeneration 
in iRBD were monopitch in reading (p=0.05) and imprecise vowel articulation in phone calls 
(p=0.03). Eighteen minutes of speech corresponding to approximately nine calls were optimal 
to obtain the best sensitivity for the screening.   
 
Conclusion: We consider the developed tool widely applicable to dense longitudinal digital 
phenotyping data with future applications in neuroprotective trials, deep brain stimulation 
optimization, neuropsychiatry, speech therapy, population screening, and beyond. 
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INTRODUCTION 
 
Early recognition of Parkinson's disease (PD) has crucial implications for the future 
development of neuroprotective therapy, as prodromal stages of the disease offer the best 
opportunity to intervene.1–3 Therefore, establishing a suitable biomarker effective in prodromal 
stages would be a game-changing milestone that would impact the diagnosis and future 
treatments of PD.4 Isolated rapid eye movement sleep behaviour disorder (iRBD) is now 
considered an essential prodromal stage of synucleinopathies; patients develop into an overt 
neurodegenerative disease, particularly PD or dementia with Lewy bodies, after a decade or 
more.5–8 Such a long prodromal window provides a unique opportunity to study disease 
development and design suitable biomarkers.  

With the emergence of digital health, there is the potential to remotely and non-
invasively detect and track early signs of PD using tools such as smartphones.9–13 However, 
many available tests, such as finger tapping or walking a predefined distance, rely on active, 
instructed involvement,14 while an ideal digital biomarker should be passively measured 
without additional effort on the side of the investigated subject or investigator. In this regard, 
speech analysis has intriguing potential advantages as a large part of the population speaks 
through smartphones daily. Thus, extracting speech patterns from smartphone calls in a real-
world setting has a unique opportunity to provide a passive biomarker, allowing us to 
continuously measure the effectiveness of experimental treatments in a natural environment, as 
well as the possibility of large-scale screening.  

Since speech represents the most complex quantitative marker of motor function that is 
highly sensitive to damage to neural structures,15 it is unsurprising that speech dysfunction has 
been found to be one of the first motor signs to develop in PD.16 Specifically, dysprosody and 
imprecise vowel articulation have been detected in iRBD subjects with impaired olfactory 
function but still largely functional nigrostriatal dopaminergic transmission,17,18 that is, in Braak 
stage 2 before the substantia nigra is affected by synucleinopathy.19 Unfortunately, these 
findings are based on actively performed speech recordings obtained using a professional 
condenser microphone in laboratory settings, which considerably limits the broader 
applicability of speech assessment.20 Several challenges must be overcome, including typically 
lower quality of smartphone microphone, background noise in everyday environments, and the 
unstable direction and distance of the smartphone from the lips due to various holding positions, 
to allow passive smartphone speech monitoring.21,22 

We developed a fully automated and noise-resistant smartphone-based system that can 
unobtrusively monitor speech in a real-world scenario. We aimed to (i) test the reliability of 
passively obtained acoustic speech features via everyday smartphone calls to detect prodromal 
PD in subjects with iRBD, (ii) compare the sensitivity of passive voice monitoring with active 
speech tasks performed using smartphones at home and professional microphone in the 
laboratory settings, and (iii) estimate the necessary sample length to reach the optimal 
sensitivity for the detection of prodromal parkinsonism through speech in a real world setting.    
 
SUBJECTS AND METHODS 
 
Study Design and Participants 
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From 2021 to 2023, we enroled native Czech iRBD, de novo PD, and healthy control subjects. 
Patients with iRBD were diagnosed according to the diagnostic criteria of the third edition of 
the International Classification of Sleep Disorders, including video polysomnography.23 The 
exclusion criteria for iRBD were: (i) iRBD onset before 50 years of age; (ii) history of therapy 
with antiparkinsonian medication, and (iii) iRBD onset within 12 months of introduction of 
antidepressant treatment. The PD patients were diagnosed based on the Movement Disorder 
Society clinical diagnostic criteria for PD.24 The exclusion criteria for PD were: (i) disease 
duration from diagnosis ≥5 years, (ii) current involvement in any speech therapy and (iii) not 
on a stable dose of medication over the previous 4 weeks prior start of the study. Exclusion 
criteria for healthy controls were history of parasomnias or other sleep disorders in adulthood, 
neurological disorders, or the diagnosis of iRBD on video polysomnography. The exclusion 
criteria for all groups included: (i) history of communication disorders unrelated to 
parkinsonism (i.e., problems in speech comprehension or expression) or other neurological 
disorders, and (ii) unwillingness to achieve at least 10 minutes of phone calls in a month.  

The clinical evaluation of each subject included the following: (i) medical history, 
history of drug and substance intake, and current drug usage; (ii) quantitative testing of motor 
and nonmotor symptoms of PD with the Movement Disorders Society-Unified Parkinson's 
Disease Rating Scale, Parts III (MDS-UPDRS);25 (iii) cognitive testing with the Montreal 
Cognitive Assessment (MoCA);26 and (iv) autonomic testing with the Scales for Outcomes in 
Parkinson's Disease–Autonomic Dysfunction scale.27 Perceptual speech severity was estimated 
using the speech item score from the MDS-UPDRS, Part III. Symptom duration was estimated 
based on the self-reported first occurrence of iRBD/PD symptoms. 

Each participant provided written informed consent. The study was approved by the 
Ethics Committee of the General University Hospital in Prague, Czech Republic, in accordance 
with the ethical standards established in the 1964 Declaration of Helsinki. 

 
Smartphone speech examination 
 
Each subject received a smartphone with preinstalled application,28 which worked in the 
background and recorded subject's voice during calls, removing the content from the distant 
speaker by adaptive filtering (Figure 1A). After each incoming or outgoing call, the user was 
prompted with a screen containing an option to delete the call or send it to confidential analysis. 
Upon agreement, the audio recording was kept on the device for 24 hours to allow participants 
to replay and eventually delete it. After 24 hours, the recording was sent to a secure server and 
validated by a speaker recognition framework. Comprehensive technical details of the 
application were previously described in the protocol.28 In addition, the application contained 
an active part. Subjects were prompted to read a passage twice, selected randomly from six 
samples of approximately 80 words, displayed on the application screen every 14 days (mean 
duration 35.1, SD 5.5 seconds). All data was collected from the smartphone during a period of 
up to three months after the clinic visit. Acquisition and secure data transfer have been carried 
out in accordance with the directive on the legislation on personal data protection of the 
European Union. 
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All subjects possessed HONOR 9X Lite (Shenzhen Zhixin New Information 
Technology) phone, operating on the Android V.9 system. The phone was chosen as a 
mainstream product (i.e., commercially available and a relatively inexpensive mid-range 
smartphone) among the smartphones available in Czechia in 2021. The recordings were 
sampled at 44.1 kHz with 16-bit quantification. 

Laboratory speech examination 
 
Speech recordings were performed in a quiet room with a low ambient noise level using a high-
quality head-mounted condenser microphone (Beyerdynamic Opus 55, Heilbronn, Germany) 
placed approximately 5 cm from the subject's mouth. Speech signals were sampled at 48 kHz 
with 16-bit quantification. Each subject was recorded during a single session accompanied by 
a speech specialist who guided the standardized protocol. Participants were instructed to present 
a monologue about an arbitrary topic of at least 90 seconds (mean duration 123.6, SD 19.3 
seconds) and perform a reading passage task twice of a standardized text of 80 words (mean 
duration 35.7, SD 5.1 seconds).  
 
Smartphone calls preprocessing 
 
The incoming calls contained non-speech periods with no relevant information due to the 
dialogue nature of a conversation on the phone. Hence, the recordings were stripped of any non-
speech segments longer than 0.7 seconds. The threshold was set to preserve natural pauses as a 
significant aspect of speech production. Subsequently, to normalize the calls in terms of 
duration, the recordings were partitioned into time frames of equal length, each treated as an 
individual recording. The frame length was chosen as 20, 30, 45, and 60 seconds to evaluate 
the impact of different durations. If there was a remainder, it was considered only if longer than 
50% of the corresponding segment length (e.g., if a 20 second window was selected for a 32 
second call, both 20 and 12 second segments were analysed). 
 
Acoustic speech features 
 
We selected 7 representative acoustic speech features (Figure 1B), following three main 
criteria: (i) representing a unique aspect of speech (the features were found to be only weakly 
correlated [Pearson: |r| < 0.48]), aligning with the perceptual description of the primary patterns 
of hypokinetic dysarthria.29, (ii) enabling automated analysis of connected speech, (iii) proven 
sensitivity in iRBD or early PD in previous studies.18,30 We limited the number of acoustic 
parameters included in the experiment to reduce the probability of a Type I error and to reduce 
potential overfitting for the regression analysis.  
 Monopitch was assessed by a standard deviation of pitch contour (F0sd),21 imprecise 
vowel articulation by a formant ratio index (FRI),31 voice quality was captured by cepstral peak 
prominence (CPP),22 articulatory decay by a standard deviation of mel-frequency cepstral 
coefficients (global MFCC) ,32 monoloudness by a standard deviation of intensity contour after 
removal of pauses (INTsd),33 prolonged pauses by median duration of pause intervals (DPI),34 
and articulation rate through net speech rate (NSR) acquired via automatic speech recognizer 
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followed by hyphenation.35,36 All analyses were performed in MATLAB (MathWorks, Natick, 
MA) and Python. 
 
Speech sample length estimation 
 
A unified, sufficient speech sample from each participant as well as the most optimal call frame 
duration (e.g., whether to analyse 10 or 30 minutes of cumulative calls per participant, in 20 or 
30 second frames) was determined. A binary logistic regression followed by a leave-one-out 
cross-validation using a combination of all acoustic features was utilized to determine the 
classification accuracy. The speech sample was then chosen based on group classification 
accuracy, at the point when the average accuracy across call frames reached 95% of its 
maximum value in the cumulative analysed interval. The largest sample length across the three 
classifications (controls vs. iRBD, controls vs. PD, iRBD vs. PD) was chosen for the statistical 
analysis. The effect of call frames length was assessed based on accuracy of the selected speech 
sample. In active speech assessment, the number of reading tasks required for analysis was 
determined analogously to sample length determination via calls.  
 
Statistical analysis 
 
An ad hoc power analysis for a given large effect size (Cohen's d of 0.8), with the Type I error 
probability (α) set at 0.05 and power of 80%, based on a three­group analysis of variance with 
one covariate (group), determined a minimum sample size of 66 subjects (i.e., 22 per group). A 
one-way analysis of variance with Bonferroni post-hoc test was applied to analyse group 
differences. The relationships between features were evaluated using Spearman correlation 
coefficient. To assess the sensitivity between groups, a binary logistic regression model 
followed by leave-one-out cross-validation was utilized. The features used were determined 
based on an exhaustive search, providing the best outcome across spontaneous speech (calls 
and laboratory monologue) and reading tasks (smartphone and laboratory) and their 
combination, and we compared the receiver operating curve along with its area under the curve 
(AUC). 

 
RESULTS 
 
Collected data 
 
In this single-centre study, of 52 available iRBD subjects, 22 (42%) met the inclusion criteria 
and were willing to participate. The main reason for rejection to participate was that subjects 
(i) made only exceptional phone calls, (ii) were unwilling to use smartphone, and (iii) did not 
like the purpose of the project and/or the need to share personal voice calls. Additionally, we 
recruited 25 healthy controls and 25 early PD patients (Table 1).  
During the three months of data collection, a total of 3525 calls (mean 49.0, SD 61.1 per 
participant) were recorded and analyzed. From these, 5990 minutes (mean 83.2, SD 119.7 per 
participant) of preprocessed speech were extracted for the analysis. On average, one call 
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contained 2.26 minutes (SD 1.96) of pre-processed speech useful for analysis. Considering 
active assessment, 950 (mean 13.2, SD 7.0 per participant) reading tasks were acquired.  

Table 1. Clinical data of the participants. 

Captions: Data are the mean/SD (range) or the number (%). 
aPresence of RBD was diagnosed by videopolysomnography. 
bSignificant difference between PD and controls. 
cSignificant difference between iRBD and PD. 
dSignificant difference between iRBD and controls. 
iRBD = idiopathic rapid eye movement sleep behavior; PD = Parkinson’s disease; MDS-UPDRS = Movement Disorder Society Unified 
Parkinson's Disease Rating Scale; MoCA = Montreal Cognitive Assessment; SCOPA-AUT = Scales for Outcomes in Parkinson's Disease-
Autonomic Dysfunction. 

 
Speech sample length estimation 
 
For smartphone calls, the best accuracy reached the threshold at 15 minutes in differentiating 
between PD and controls, 18 minutes between iRBD and controls, and 3 minutes between iRBD 
and PD (Figure 2A). However, from 8 minutes of sample duration, the performance between 
iRBD and controls remained stable and continuously increased. Regarding call frame durations, 
no specific option exhibited notable advantages in accuracy. Since the 20-second time frame 
provides enhanced flexibility given its brief duration, the analysis was carried out using 18 
minutes of calls, pre-processed in 20-second frames. 
 For active reading tasks, the threshold was reached in 2 tasks (one trial) in differentiating 
between PD vs. controls, 3 tasks between iRBD and controls, and 1 task between iRBD and PD 
(Figure 2B). As a result, an average of 3 reading tasks were considered for the analysis. 
 
Speech differences  
 
The features demonstrating statistically significant impairment in iRBD and controls were 
monopitch in laboratory reading task (p=0.049) and imprecise vowels in calls (p=0.03) (Figure 
3). Compared to controls, PD impairment was captured in monopitch in laboratory reading task 
(p<0.001), imprecise vowels in calls (p=0.01), articulatory decay in laboratory monologue  
 

 controls (n=25) iRBD (n=22) PD (n=25) p value 
Men 24 (96%) 21 (95%) 24 (96%) 0.99 
Age (yr) 67.1/7.3 (55-84) 68.3/8.6 (53-86) 58.5/8.6 (45-76) <0.001b,c 
Symptom duration 
(yr) - 10.3/6.7 (2-29) 5.5/2.1 (2-11) - 

MDS-UPDRS III 
total 6.5/2.7 (2-11) 9.8/2.5 (5-15) 25.9/9.8 (10-51) <0.001b,c 

MDS-UPDRS III 
speech item 0.3/0.5 (0-1) 0.4/0.5 (0-1) 1.0/0.3 (0-2) <0.001b,c 

MoCA 26.2/2.6 (22-30) 25.9/2.2 (21-30) 26.8/2.8 (18-30) 0.46 
SCOPA-AUT 7.3/5.1 (1-24) 13.0/8.7 (3-39) 10.0/6.0 (1-24) <0.05d 
Antidepressant 
therapy 1 (4%) 2 (9%) 4 (16%) 0.40 

Levodopa equivalent 
(mg/day) 0 0 621.3/329.5 (0-

1440) <0.001b,c 

Clonazepam therapy 
(mg/day) 0 0.2/0.2 (0-0.5) 0 <0.001c,d 

RBD presencea 0 (0%) 22 (100%) 10 (40%) <0.001b,c,d 
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Figure 1. The principal speech analysis scheme.  

A)  Illustrative diagram of the smartphone data acquisition system. B) Illustrative table of speech dimensions described in the study, their definition, and example of healthy and dysarthric speaker.  
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(p<0.001), prolonged pauses in laboratory monologue (p<0.001), and increased articulation rate 
in calls (p=0.01) and both reading tasks (p<0.001). Voice quality and monoloudness did not 
reach significance between the groups. No significant relationships were observed between 
individual acoustic features and MDS-UPDRS part III and MoCA in PD, iRBD, or controls.  

 
Correlations among data from different sources 
 
Between calls and laboratory monologue, a high correlation coefficient was achieved only in 
imprecise vowels (r=0.67, p<0.001) (Figure 3). Between reading tasks, the correlations were 
generally stronger, with a high correlation coefficient demonstrated in monopitch (r=0.70, 
p<0.001), voice quality (r=0.66, p<0.001), and articulation rate (r=0.70, p<0.001). 
 
Sensitivity analysis 
 
Based on the exhaustive search, the optimal combination of features for spontaneous speech 
was monopitch, imprecise vowels, articulatory decay, prolonged pauses, and articulation rate, 
while for reading tasks monopitch, articulatory decay, monoloudness, and articulation rate. The 
best AUC between iRBD and controls was 0.79 via calls compared to an AUC of 0.66 via 
laboratory monologue (Figure 4). Between PD and controls, similar AUCs of up to 0.87 were 
found for both the smartphone and the laboratory setting. In reading, a better AUC of up to 0.83 
was obtained in laboratory settings compared to smartphone in separation between controls and 
both PD and iRBD. In general, the accuracy of prodromal speech disorder detection via 
smartphone improved to an AUC of up to 0.85 when both passive calls and active reading were 
combined.  
 
DISCUSSION 
 
The present study is the first to evaluate speech characteristics collected in-the-wild in iRBD 
and early PD. It revealed that voice calls provide prodromal biomarkers of parkinsonism in 
iRBD at a level comparable to or even more sensitive than laboratory examination with high-
quality equipment. The combination of passive and active smartphone data captured distinct 
yet complementary voice information, reaching a high AUC of 0.85 between iRBD and 
controls. Among the most prominent features of iRBD were monopitch in reading and 
imprecise vowel articulation in phone calls. Our findings support the possibility of employing 
a fully automated and noise-resistant smartphone-based system that can passively monitor 
speech in real-world scenarios for future clinical trials. 
 
Speech sample length 
 
The effect of speech sample length on biomarker performance has rarely been investigated. 
Although not systematically researched, a previous study suggested that 50 smartphone call 
sessions lasting between 15 and 75 seconds (corresponding to approximately 13 to 65 minutes) 
are sufficient to detect PD-related speech impairment.37 The amount is greater than in the 
current study, where we found 18 minutes of speech (corresponding to approximately 9 calls)  
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Figure 2. Sample length estimation.  
 

 
Accuracy of a binary logistic regression followed by a leave-one-out cross-validation using a combination of all the acoustic features for 
increasing sample size of (A) speech from calls for different frame durations and their average value and (B) smartphone reading tasks. The 
dashed line corresponds to the point when the average accuracy across call frames reached 95% of its maximum value in the cumulative 
analysed interval. Below each plot is a percentage of participants able to reach such a sample size. Captions: iRBD - isolated rapid eye 
movement sleep behaviour disorder, PD – Parkinson’s disease. 

 
optimal to capture prodromal voice changes in-the-wild using smartphones. Interestingly, it 
takes a lesser amount to capture voice impairment in PD, suggesting that the higher the severity 
of dysarthria, the less data is needed. However, stable but lower accuracy for separating 
between iRBD and controls was achieved already for 8 minutes of calls.  

Considering active smartphone data collection, three reading tasks are sufficient to fully 
capture prodromal voice characteristics in iRBD, demonstrating that guided tasks require a 
smaller sample size for effective analysis.38 This is principally in agreement with previous study 
showing that at least 120 words are necessary to obtain stable results during reading in 
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controlled settings.39 In general, the need for a high-quality of microphone can be replaced by 
a longer sample size.  
 
Speech biomarkers 
 
In agreement with previous studies,17,18,30 speech disorder in iRBD was mainly characterized 
by monopitch and imprecise vowel articulation. The novel observation is that vowel articulation 
was particularly affected during spontaneous speech, while intonation was reduced only during 
reading. This behaviour can likely be explained by different compensatory mechanisms 
involved.40 The low intonation pattern that is admissible during a reading of a prepared neutral 
passage is likely compensated in dialogue to make the speech more compelling for second-side 
listeners. On the contrary, deficits in internal cueing specific for PD might lead to higher 
intelligibility in prepared utterances compared to spontaneous speech.41 The quality of vowel 
articulation is highly related to intelligibility.42 Since vowel articulation is a demanding process 
of articulatory coordination and intelligibility is preserved in the early stages of the disease, it 
may be difficult or unnecessary for patients to compensate during spontaneous speech. 
Considering our early PD cohort, the observed trend for worse voice quality, articulatory decay, 
and prolonged pauses is consistent with previous literature.30,43 Interestingly, spontaneous 
speech assessment during phone calls led to the finest sensitivity in increased speech rate in 
PD, which is presumably a precursor of oral festination.44 Contributing to palilalia, this is one 
of the most debilitating and challenging symptoms to assess with no available therapies,45 
leading to social isolation and degradation of interpersonal interactions. Since laboratory speech 
material is typically short and not representative of everyday situations, it might not be 
sufficient for advanced analyses. Therefore, spontaneous speech evaluation through calls in the 
natural environment may provide a novel way to identify markers to predict which patients 
develop events such as oral festination, potentially leading to better personalized therapies.  
 
Effect of smartphone assessment on individual speech biomarkers 
 
The characteristics of the microphone, environmental noise, position of the microphone, and 
hardware filtering can all influence the robustness of speech assessment.46 Many relationships 
were still surprisingly strong considering that smartphones and laboratory microphone 
recordings were not done in parallel but at different times and situations. In accordance with 
previous research,21 the acoustic measurement of fundamental frequency variability reflecting 
monopitch demonstrated high resistance against device effect. This is likely due to the nature 
of the fundamental frequency, which represents a major trend in the frequency domain of a 
speech signal, and thus can be detected accurately despite the influence of detrimental factors. 
Imprecise vowels, reflecting the position of resonant frequencies (so-called formants),31 
represent another frequency measure that had good robustness to analysis via smartphone. The 
voice quality measure was unsurprisingly robust only in a controlled environment without 
substantial noise.22 Articulatory decay calculated from MFCCs represents, in principle, an 
amplitude measure. It demonstrated little resistance against the device effect, as the coefficients 
tend to be impacted by microphone position and type,47 and, therefore, is unsuitable for phone 
screening. Another amplitude measure, monoloudness, was robust only in reading text,  
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Figure 3. Group differences between speech features in individual tasks and correlations of 
features between tasks. 
 

 
 
The calls measure is taken from 18 minutes of speech. Horizontal line represents median, the box lower and upper quartiles, the bars minimum 
and maximum values that are not outliers, the circles outliers. ***, **, and * represent significant differences with p < 0.001, 0.1, and 0.5, 
respectively, after Bonferroni adjustment. Captions: HC – healthy controls, iRBD - isolated rapid eye movement sleep behaviour disorder, PD 
– Parkinson's disease, r – Spearman correlation coefficient.  

 
probably because of varying conditions in calls. Due to the dialogue nature of calls, pauses 
cannot be directly compared to those from uninterrupted monologue. In reading, pauses were 
moderately correlated between the smartphone and the high-quality microphone, which could 
be due to the insufficient accuracy of speech-pause detection.34 Articulation rate, calculated as 
the number of syllables per time, reached high reliability between both devices, indicating the 
high robustness of the automatic speech-to-text transcription independent of the microphone 
quality.35  
 
Strengths and limitations 
 
Some participants struggled to reach enough speech data from calls, likely due to not sharing 
all the speech calls or older age leading to potential problems operating the smartphone. 
However, most of the participants achieved at least the estimated 18 minutes of call speech for 
optimal sensitivity to detect prodromal voice impairment. In the future scenario, smartphone 
skills are likely to be widespread among the older population. Additionally, the software can be 
implemented directly on the smartphone and immediately process a given recording after 
completion, computing selected features as anonymised numbers. Thus, no audio transfer will 
be necessary, with only speech features' values stored, thus maintaining the maximum level of 
privacy.  
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Figure 4. Sensitivity analysis.  
 

 
 
Receiver operating characteristics curves of a binary logistic classification of optimal features based on an exhaustive search. For spontaneous 
speech, the optimal features were monopitch, imprecise vowels, articulatory decay, prolonged pauses, and articulation rate, whereas for reading 
task monopitch, articulatory decay, monoloudness, and articulation rate. The calls measure is taken from 18 minutes of speech. Captions:  
iRBD - isolated rapid eye movement sleep behaviour disorder, PD – Parkinson’s disease, AUC – area under curve. 

 
The detection accuracy between the iRBD and PD groups was higher than between the 

controls and iRBD. Furthermore, our iRBD participants were similar in cognitive performance 
compared to controls, while the presence of RBD in PD is typically associated with a more 
impaired cognitive profile.48 We can thus hypothesise that iRBD participants willing to 
participate in this study were rather those further away from the disease phenoconversion. This 
would mean that our diagnostic accuracy of AUC 0.85 between iRBD and controls has the 
potential to improve. In particular, a very similar diagnostic accuracy of AUC 0.86 was 
observed between PD and controls. This could be associated with the fact that all PD patients 
were on stable dopaminergic therapy, which has been shown to ameliorate several speech 
manifestations in the early stages of the disease.49 Furthermore, we were unable to recruit 
enough older PD volunteers with less than 5 years of disease duration, resulting in a 10-year 
younger PD group on average than the iRBD and controls groups. The inclusion of an older 
control group likely also negatively affected the reported accuracy of the PD diagnostics. 
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CONCLUSION 

This study has revealed that phone calls provide a novel passive biomarker of prodromal and 
early parkinsonism and has established a pipeline for the capture of speech biomarkers in real-
world settings. Enhancing sensitivity through a combination with active speech tasks amplifies 
its potential. In the future, our tool might be broadly applied in neuroprotective trials, deep brain 
stimulation optimalization, neuropsychiatry, speech therapy, population screening, and beyond. 
Future longitudinal studies should aim to validate the efficacy of phone calls analysis in tracking 
disease progression. 
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Chapter 3

Conclusions

The study represents a further step towards sensitive, remote, and unobtrusive monitoring
of specific motor and cognitive impairments through everyday phone calls in patients with
prodromal PD (i.e. iRBD), PD, or other synucleinopathies. Numerous challenges needed
addressing and thorough investigation, particularly regarding the appropriate method-
ology for automatically measuring physiological speech patterns from recordings of po-
tentially low quality and unguided content. Areas without a thorough research, such as
automated measuring of dysprosody in noise, vowel articulation, rate of speech, or physio-
logical explanation of MFCCs were investigated in studies published in impacted journals
or a conference proceeding. Once reliable, robust, and precise automated approaches
were developed or determined for each feature, a data acquisition software was designed
to run on the subject’s phone. The application, operating discreetly in the background,
was equipped with necessary components, such as algorithms for adaptive filtering of the
other call side and speaker verification. Additionally, it included a set of active motor
tasks, such as sustained phonation, syllables repetition, reading a text, finger tapping, or
walk with a turnaround. Technical details of the application were described in a proto-
col published in a impacted journal and the design could be directly utilized in clinical
practice for further trials.

Finally, a cross-sectional study involving subjects with iRBD and PD was conducted,
utilizing data gathered through mobile monitoring over a three-month period. The study,
currently in a peer review, evaluated the sensitivity and specificity of proposed features
in distinguishing between iRBD subjects and controls, PD patients and controls, and
PD patients and iRBD subjects. Results showed that specific speech patterns observed
during calls could serve as a biomarker for early parkinsonism, with articulation features
notably affected during the calls. Furthermore, combining these passive call observations
with active tasks measures, particularly dysprosodic ones, could enhance the sensitivity
in detecting subtle voice alterations associated with neurodegeneration. It was revealed
that monitoring through phone is at a level comparable to or even more sensitive than
laboratory examination with a high-quality equipment.

The validated approach could be applied not only for a diagnosis but also for already
diagnosed PD patients to enhance the current treatment strategies. Quick, inexpen-
sive, and non-invasive vocal assessments using smartphones may allow for a personal-
ized implementation of therapeutic strategies by providing rapid feedback after exercise,
monitoring the effects of pharmacological therapies (including advanced drug delivery
systems and modifying medication doses according to immediate needs), feedback in neu-
ropsychiatry, modification of speech-related side-effects of deep brain stimulation via the
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re-programming and optimization of stimulation parameters, population screening and
beyond.

Understandably, this approach is not confined to Parkinsonism and could similarly be
applied to conditions such as multiple sclerosis, Alzheimer’s disease, and other neurode-
generative disorders.

3.1 Future aims

Given the significant benefits of phone call analysis, future studies should validate the
findings and monitor disease progression through longitudinal studies in PD and prodro-
mal PD, and extending to other disorders such as multiple sclerosis. Additionally, there
should be an focus on exploring the emotional aspects of speech and developing reliable
methods for their capture as remote approach in neropsychiatry might offer further ad-
vances. Emotional behavior is profoundly influenced by neurodegenerative disorders and
could offer valuable insights into disease progression and mechanisms.

Once the connections between physiological, cognitive, and emotional patterns and
the mechanism of the disorder are thoroughly understood and sufficient screening data
has been collected, a robust disease model can be developed. This model might employ
modern deep neural approaches, machine learning, and artificial intelligence to provide
optimized personalized treatment for patients and serve as a valuable tool for diagnosis.
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“Use of cepstral analyses for differentiating normal from dysphonic voices”, Journal
of Voice, vol. 28, pp. 282–286, 3 2014.

[37] R. R. Patel, S. N. Awan, J. Barkmeier-Kraemer, et al., “Recommended protocols for
instrumental assessment of voice”, American Journal of Speech-Language Pathology,
vol. 27, pp. 887–905, 3 2018.

[38] G. G. Alharbi, M. P. Cannito, E. H. Buder, and S. N. Awan, “Spectral/cepstral
analyses of phonation in parkinson’s disease before and after voice treatment”, Folia
Phoniatrica et Logopaedica, vol. 71, pp. 275–285, 5-6 2019, issn: 1021-7762.

[39] S. Jannetts and A. Lowit, “Cepstral analysis of hypokinetic and ataxic voices”,
Journal of Voice, vol. 28, pp. 673–680, 6 2014.
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A detailed description of the results based on reading passage 
 
S1. Reading passage recording 
 
All participants were instructed to present a reading passage of 80 words with a mean duration 
of 33.9 seconds (SD 4.6, range 23-69). Each reading passage task was performed twice. The 
performance across both repetitions was averaged for subsequent statistical analyses. The 
reading passage with the noted position of the selected vowel for the manual analysis in bold 
is shown in Figure S1.  
 
Figure S1. The text of the reading passage task with highlighted /a/, /i/, and /u/ corner vowels 
used for manual analysis in bold.  
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S2. Effect of neurological disease type 
 
Compared to controls, the change in vowel articulation due to neurodegeneration in reading 
passages was primarily demonstrated by trends toward shift of formants across vowels /i/ and 
/u/, including an increase in 𝐹𝐹2𝑢𝑢 and decrease in 𝐹𝐹1𝑖𝑖, 𝐹𝐹1𝑢𝑢 and 𝐹𝐹2𝑖𝑖 frequencies across PSP, MSA, 
HD, and ALS (Figure S2, Table S1). Among diseases, there was a particular difference 
between atypical parkinsonism of MSA or PSP compared to other neurological conditions that 
was mainly demonstrated by trends towards decrease of 𝐹𝐹1𝑎𝑎, 𝐹𝐹1𝑖𝑖 and 𝐹𝐹1𝑢𝑢 in MSA and decrease 
of 𝐹𝐹1𝑢𝑢 and increase of 𝐹𝐹2𝑎𝑎 in PSP (Figure S3). 

Considering complex formant measures, compared to controls, VSA was significantly 
decreased for PSP, MSA, and MS (Figure S3). Both FRI and SFRI were decreased for all 
neurological diseases except for PD.  
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Figure S2. Corner vowel production triangles estimated from reading passages for individual neurological disease types compared to healthy 
controls. The arrows indicate significant differences in the values to healthy controls adjusted by age and sex, with three, two, and one arrows 
referring to p < 0.001, p < 0.01, and p < 0.05, respectively.  To minimize the effects of sex between individual speakers, the estimated formant 
frequencies were converted into a logarithmic tonal scale (semitones).  𝐹𝐹1 = first formant frequency, 𝐹𝐹2 = second formant frequency, PD =  
Parkinson’s disease, PSP = progressive supranuclear palsy, MSA = multiple system atrophy, HD = Huntington’s disease , ET = essential tremor, 
CA = cerebellar ataxia, MS =  multiple sclerosis, ALS =  amyotrophic lateral sclerosis. 
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Table S1. Formant frequencies of corner vowels estimated from reading passages for 

individual neurological disease types compared to healthy controls. To minimize the effects 

of sex between individual speakers, the estimated formant frequencies were converted into a 

logarithmic tonal scale (semitones). 

 
/a/ 

mean (SD) 
semitones 

/i/ 
Mean (SD) 
semitones 

/u/ 
mean (SD) 
semitones 

Neurological disease type 𝐹𝐹1 𝐹𝐹2 𝐹𝐹1 𝐹𝐹2 𝐹𝐹1 𝐹𝐹2 

controls 41.44 (2.4) 55.26 (1.9) 28.79 (2.2) 63.48 (1.5) 30.42 (1.6) 44.68 (1.6) 

PD 40.63 (2.5) 54.87 (1.7) 28.54 (2.7) 63.00 (1.5) 29.83 (2.2) 44.95 (1.2) 

PSP 39.93 (2.8) 55.18 (1.8) 27.85 (2.5) 62.37 (1.7) 28.69 (2.6) 46.37 (2.9) 

MSA 40.59 (2.6) 55.47 (1.8) 27.38 (2.4) 62.63 (1.1) 28.87 (2.2) 46.52 (2.1) 

HD 41.23 (3.0) 54.44 (2.3) 28.25 (2.7) 62.77 (2.0) 30.35 (2.5) 45.97 (2.4) 

ET 41.50 (3.2) 55.14 (2.0) 28.50 (1.7) 62.83 (1.6) 29.96 (1.8) 45.21 (1.7) 

CA 41.39 (2.9) 54.52 (1.4) 28.98 (2.0) 62.66 (1.3) 30.54 (1.6) 45.42 (1.4) 

MS 40.68 (2.9) 55.01 (1.8) 28.95 (2.3) 62.88 (1.7) 30.50 (1.7) 45.41 (2.1) 

ALS 42.31 (3.7) 55.52 (1.1) 29.33 (2.2) 63.20 (1.8) 30.59 (1.4) 46.40 (2.4) 

Captions: SD = standard deviation, 𝐹𝐹1 = first formant frequency, 𝐹𝐹2 = second formant frequency, PD 

=  Parkinson’s disease, PSP = progressive supranuclear palsy, MSA = multiple system atrophy, HD = 

Huntington’s disease , ET = essential tremor, CA = cerebellar ataxia, MS =  multiple sclerosis, ALS =  

amyotrophic lateral sclerosis. 
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Figure S3. Corner vowel production triangles estimated from monologues across two pairs of neurological disease types. The double-headed 
arrows indicate significant differences across diseases adjusted by age, sex, and dysarthria severity with *** p < 0.001, ** p < 0.01, and * p < 0.05.  
To minimize the effects of sex between individual speakers, the estimated formant frequencies were converted into a logarithmic tonal scale 
(semitones). 𝐹𝐹1 = first formant frequency, 𝐹𝐹2 = second formant frequency, PD =  Parkinson’s disease, PSP = progressive supranuclear palsy, MSA 
= multiple system atrophy, HD = Huntington’s disease , ET = essential tremor, CA = cerebellar ataxia, MS =  multiple sclerosis, ALS =  amyotrophic 
lateral sclerosis. 
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Figure S4. Statistically significant group differences for estimated articulation features among 
the different types of neurological disease types compared to healthy controls adjusted by age 
and sex with ***, **, * referring to p < 0.001, p < 0.01, and p < 0.05. # indicates significant 
differences to MSA (p < 0.05) after adjusting for age, sex and dysarthria severity. Middle bars 
represent the median, and rectangles represent the interquartile range. Maximum and minimum 
values are by error bars. Outliers are marked as dots. PD = Parkinson’s disease, PSP = 
progressive supranuclear palsy, MSA = multiple system atrophy, HD = Huntington’s disease, 
ET = essential tremor, CA = cerebellar ataxia, MS = multiple sclerosis, ALS = amyotrophic 
lateral sclerosis, VSA = vowel space area, FRI = formant ratio index, SFRI = second formant 
ratio index. 
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S3. Effect of dysarthria type 
 
Compared to controls, the trends toward formants shift across vowels /i/ and /u/ including 
increase in 𝐹𝐹2𝑢𝑢 and decrease in 𝐹𝐹1𝑖𝑖, 𝐹𝐹1𝑢𝑢 and 𝐹𝐹2𝑖𝑖 frequencies in reading passages were 
demonstrated mainly for hypokinetic and hyperkinetic dysarthria and all mixed dysarthrias 
(Figure S5, Table S2). Among dysarthrias, there was a particular difference between ataxic 
dysarthria manifested mainly by increase of 𝐹𝐹1𝑢𝑢 compared to hypokinetic dysarthria (and its 
mixed variants with ataxic and spastic elements) (Figure S6).  Additionally, the hypokinetic-
spastic dysarthria showed particularly increase of 𝐹𝐹2𝑢𝑢 compared to hypokinetic, hyperkinetic 
and spastic ataxic dysarthrias.  

Considering complex formant measures, compared to controls, VSA was significantly 
decreased for hypokinetic, ataxic, flaccid-spastic, spastic-ataxic, hypokinetic-spastic, and 
hypokinetic-spastic-ataxic in reading passage (Figure S7).  FRI was decreased for hypokinetic, 
hyperkinetic, flaccid-spastic, spastic-ataxic, hypokinetic-spastic, and hypokinetic-spastic-
ataxic dysarthria. Finally, SFRI was decreased for hypokinetic, hyperkinetic, flaccid-spastic, 
spastic-ataxic, hypokinetic-spastic, and hypokinetic-spastic-ataxic dysarthria.  
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Figure S5. Corner vowel production triangles estimated from reading passages for different dysarthria types compared to healthy controls. The 
arrows indicate significant differences in the values to healthy controls adjusted by age and sex, with three, two, and one arrows referring to p < 
0.001, p < 0.01, and p < 0.05, respectively.  To minimize the effects of sex between individual speakers, the estimated formant frequencies were 
converted into a logarithmic tonal scale (semitones).  𝐹𝐹1 = first formant frequency, 𝐹𝐹2 = second formant frequency. 
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Table S2. Formant frequencies of corner vowels estimated from monologues for different dysarthria 

types compared to healthy controls. To minimize the effects of sex between individual speakers, the 

estimated formant frequencies were converted into a logarithmic tonal scale (semitones). 

 
/a/ 

mean (SD) 
semitones 

/i/ 
mean (SD) 
semitones 

/u/ 
mean (SD) 
semitones 

Dysarthria type 𝐹𝐹1 𝐹𝐹2 𝐹𝐹1 𝐹𝐹2 𝐹𝐹1 𝐹𝐹2 

controls 41.44 (2.4) 55.26 (1.9) 28.79 (2.2) 63.48 (1.5) 30.42 (1.6) 44.68 (1.6) 

Hypokinetic 40.76 (2.4) 54.97 (1.6) 28.31 (2.7) 62.96 (1.3) 29.53 (2.2) 45.12 (1.6) 

Hyperkinetic 41.59 (3.1) 54.82 (2.1) 28.36 (2.2) 62.81 (1.8) 30.16 (2.2) 45.70 (2.1) 

Ataxic 40.82 (3.3) 54.50 (1.6) 29.38 (2.0) 62.84 (1.3) 31.06 (1.0) 45.05 (1.4) 

Spastic 40.86 (3.5) 55.30 (1.8) 28.37 (1.8) 63.47 (1.8) 30.38 (1.6) 45.46 (1.4) 

Flaccid-spastic 42.46 (3.9) 55.50 (1.0) 29.56 (2.3) 62.90 (1.7) 30.53 (1.5) 46.66 (2.4) 

Spastic-ataxic 41.24 (2.6) 54.92 (1.6) 28.76 (2.3) 62.81 (1.6) 30.29 (1.8) 45.56 (2.1) 

Hypokinetic-spastic 40.00 (3.6) 55.54 (1.9) 27.71 (2.6) 62.40 (1.4) 29.22 (2.3) 47.10 (2.6) 

Hypokinetic-ataxic 40.03 (2.3) 55.04 (2.4) 27.74 (2.2) 62.65 (1.2) 28.67 (2.4) 45.04 (1.9) 

Hypokinetic-spastic-ataxic 40.09 (1.8) 55.09 (1.8) 27.60 (2.8) 62.16 (1.7) 28.66 (2.6) 46.77 (2.7) 

Captions: SD = standard deviation, 𝐹𝐹1 = first formant frequency, 𝐹𝐹2 = second formant frequency. 
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Figure S6. Corner vowel production triangles estimated from monologues across two pairs of neurological disease types. The double-headed 
arrows indicate significant differences across diseases adjusted by age, sex, and dysarthria severity with *** p < 0.001, ** p < 0.01, and * p < 0.05.  
To minimize the effects of sex between individual speakers, the estimated formant frequencies were converted into a logarithmic tonal scale 
(semitones). 𝐹𝐹1 = first formant frequency, 𝐹𝐹2 = second formant frequency. 
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Figure S7. Statistically significant group differences for estimated articulation features among 
the different dysarthria types compared to healthy controls adjusted by age and sex with ***, 
**, * referring to p < 0.001, p < 0.01, and p < 0.05. # indicates significant differences to 
hypokinetic-spastic dysarthria (p < 0.05) after adjusting for age, sex and dysarthria severity. 
Middle bars represent the median, and rectangles represent the interquartile range. Maximum 
and minimum values are by error bars. Outliers are marked as dots. VSA = vowel space area, 
FRI = formant ratio index, SFRI = second formant ratio index, Hypo-spast-atax = Hypokinetic-
spastic-ataxic dysarthria. 
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S4. Effect of dysarthria severity 
 
Compared to controls, the formants shift across vowels /i/ and /u/ in dependence on dysarthria 
severity in reading passages was observed, including an increase in 𝐹𝐹2𝑢𝑢 and a decrease in 𝐹𝐹1𝑖𝑖, 
𝐹𝐹1𝑢𝑢, and 𝐹𝐹2𝑖𝑖 frequencies (Figure S8, Table S3). Considering complex formant measures, 
mainly measures of FRI and SFRI were progressively reduced with increasing dysarthria 
severity (Figure S9).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Supplementary Information 1 

13 
 

Figure S8. Corner vowel production triangles estimated from reading passages for different dysarthria severities compared to healthy controls. 
The arrows indicate significant differences in the values to healthy controls adjusted by age and sex, with three, two, and one arrows referring to p 
< 0.001, p < 0.01, and p < 0.05, respectively.  To minimize the effects of sex between individual speakers, the estimated formant frequencies were 
converted into a logarithmic tonal scale (semitones).  𝐹𝐹1 = first formant frequency, 𝐹𝐹2 = second formant frequency. 
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S3. Formant frequencies of corner vowels estimated from monologues for different dysarthria 

severities compared to healthy controls. To minimize the effects of sex between individual speakers, 

the estimated formant frequencies were converted into a logarithmic tonal scale (semitones). 

 
/a/ 

mean (SD) 
semitones 

/i/ 
mean (SD) 
semitones 

/u/ 
mean (SD) 
semitones 

Dysarthria severity 𝐹𝐹1 𝐹𝐹2 𝐹𝐹1 𝐹𝐹2 𝐹𝐹1 𝐹𝐹2 

controls 41.44 (2.4) 55.26 (1.9) 28.79 (2.2) 63.48 (1.5) 30.42 (1.6) 44.68 (1.6) 

Mild 40.97 (2,6) 55.04 (1.7) 28.77 (2.0) 63.00 (1.6) 30.32 (1.5) 45.21 (1.7) 

Moderate 41.04 (3.1) 55.04 (1.9) 28.27 (2.5) 62.93 (1.5) 29.81 (2.3) 45.59 (2.0) 

Severe 41.33 (3.2) 54.96 (1.8) 28.48 (2.6) 62.38 (1.5) 29.74 (2.3) 46.68 (2.5) 

Captions: SD = standard deviation, 𝐹𝐹1 = first formant frequency, 𝐹𝐹2 = second formant frequency. 
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Figure S9. Statistically significant group differences for estimated articulation features in 
reading passages among the different dysarthria severities compared to healthy controls 
adjusted by age and sex with ***, **, * referring to p < 0.001, p < 0.01, and p < 0.05. # indicates 
significant differences to severe dysarthria (p < 0.05) after adjusting for age and sex. Middle 
bars represent the median, and rectangles represent the interquartile range. Maximum and 
minimum values are by error bars. Outliers are marked as dots. VSA = vowel space area, FRI 
= formant ratio index, SFRI = second formant ratio index. 
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S5. Classification analysis 
 

The classification analysis among vowel articulation features manifested accuracy of up to 
41.0% for disease type, 39.3% for dysarthria type and 47.4% for dysarthria (Table S4). 
Acoustic metrics of FRI and SFRI were more sensitive to capturing the change of vowel 
articulation than VSA. 

 

Table S4. Classification analysis for the formant features in reading passages. The numbers 
indicate the percentage of subjects correctly identified by the discriminant analysis as original 
groups. Bold numbers indicate the best accuracy across neurological disease type, dysarthria 
type, and dysarthria severity. 

% (monologue / reading passage) VSA FRI SFRI 
Neurological disease type 4.4 41.0 40.2 
Dysarthria type 25.8 39.3 39.3 
Dysarthria severity 39.5 46.7 47.4 

Captions: VSA = vowel space area, FRI = formant ratio index, SFRI = second formant ratio 
index. 
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