
CZECH INSTITUTE OF INFORMATICS
ROBOTICS AND CYBERNETICS

INDUSTRIAL INFORMATICS DEPARTMENT

Automated placement of analog integrated
circuits using priority-based constructive
heuristic
Josef Grus, Zdeněk Hanzálek

DOI: https://doi.org/10.1016/j.cor.2024.106643
Cite as: J. Grus and Z. Hanzálek. Automated placement of analog integrated
circuits using priority-based constructive heuristic. Computers & Operations
Research, 167:106643, 2024

© 2024. This manuscript version is made available under the CC-BY-NC-ND 4.0 license, see
http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.cor.2024.106643
http://creativecommons.org/licenses/by-nc-nd/4.0/

Highlights

Automated Placement of Analog Integrated Circuits using Priority-

based Constructive Heuristic

Josef Grus, Zdeněk Hanzálek

• Optimization of area and wire length of analog integrated circuits

• Constructive heuristic guided by metaheuristics

• Improved and non-dominated solutions on MCNC dataset

• Comparison with manual designs on real-life instances

Automated Placement of Analog Integrated Circuits
using Priority-based Constructive Heuristic

Josef Grusa,b,∗, Zdeněk Hanzálekb

aDCE, FEE, Czech Technical University in Prague, Technická 2, Praha, 160 00, Czech
Republic

bIID, CIIRC, Czech Technical University in Prague, Jugoslávských
partyzán̊u 1580/3, Praha, 160 00, Czech Republic

Abstract

This paper presents a heuristic approach for solving the placement of Analog

and Mixed-Signal Integrated Circuits. Placement is a crucial step in the physi-

cal design of integrated circuits. During this step, designers choose the position

and variant of each circuit device. We focus on the specific class of analog place-

ment, which requires so-called pockets, their possible merging, and parametriz-

able minimum distances between devices, which are features mostly omitted in

recent research and literature. We formulate the problem using Integer Linear

Programming and propose a priority-based constructive heuristic inspired by al-

gorithms for the Facility Layout Problem. Our solution minimizes the perimeter

of the circuit’s bounding box and the approximated wire length. Multiple vari-

ants of the devices with different dimensions are considered. Furthermore, we

model constraints crucial for the placement problem, such as symmetry groups

and blockage areas. Our outlined improvements make the heuristic suitable to

handle complex rules of placement. With a search guided either by a Genetic

Algorithm or a Covariance Matrix Adaptation Evolution Strategy, we show the

quality of the proposed method on both synthetically generated and real-life

industrial instances accompanied by manually created designs. Furthermore,

we apply reinforcement learning to control the hyper-parameters of the genetic

∗Corresponding author
Email addresses: josef.grus@cvut.cz (Josef Grus), zdenek.hanzalek@cvut.cz (Zdeněk

Hanzálek)

Preprint submitted to Computers & Operations Research July 24, 2023

algorithm. Synthetic instances with more than 200 devices demonstrate that

our method can tackle problems more complex than typical industry examples.

We also compare our method with results achieved by contemporary state-of-

the-art methods on the MCNC dataset, showing that our method is competitive

and/or surpasses previous results.

Keywords: Combinatorial optimization, Analog circuit placement, Rectangle

packing, Genetic algorithm

1. Introduction

1.1. Motivation

Most Integrated Circuits (ICs) today consist of analog and digital compo-

nents. Their physical design is highly complex, but the sources of complexity

differ between analog and digital ICs [1]. Digital designers have to deal with a

large number of rectangular devices, but all the devices share the same height

and are placed in rows rather than freely, which resembles 1D Bin Packing

Problem [2]. On the other hand, Analog and Mixed-Signal (AMS) ICs usually

contain fewer devices, which may have different sizes and voltage levels and can

be freely placed on the canvas. As a result, designers must consider a complex

set of rules and constraints to mitigate the negative effects of noise and process

variations. The lack of automation tools means that most of the work is still

done manually, leading to a time-consuming and error-prone workflow. In ad-

dition, a slight change in requirements, such as an increase in amperage, leads

to cumbersome redesigning due to an increase in the sizes of the devices. The

importance of the studied problem is also demonstrated by the recent DARPA

IDEA initiative [3], whose goal is to automate the design of AMS ICs.

1.2. Outline

The physical design, or layout, is usually divided into placement and rout-

ing. Each rectangular device is assigned its position and orientation during

the placement, and interconnections between connected devices are determined

2

during the routing phase. In this paper, we specifically deal with the placement

phase. Thanks to the rectangular shapes of the devices, we tackle the problem

as an extension of the rectangle packing. Usually, designers want to minimize

the total area and approximated wire length of the IC, and they need to sat-

isfy common requirements such as proximity constraints (e.g., various minimum

distances between devices) and symmetry constraints. Additional constraints

depend on the chosen IC technology. In order to support influential BCD tech-

nology (combines analog, digital, and high-voltage components), we also need

to model so-called pockets - an additional empty space among the devices that

can be merged when the devices have the same voltage levels; this leads to

more compact designs, but it adds another level of complexity to the already

complicated combinatorial problem.

In this paper, we formulate and solve the problem of the placement of AMS

ICs using combinatorial optimization methods. The rest of the paper is or-

ganized as follows. The previous works related to the placement of ICs are

presented in Section 2. In Section 3, the placement problem is formalized, and

Integer Linear Programming (ILP) model is formulated. In Section 4, a con-

structive heuristic is proposed. We propose to use metaheuristics, Genetic Algo-

rithm (GA) and Covariance Matrix Adaptation Evolution Strategy (CMA-ES),

to perform the search. We also describe local search approaches to further im-

prove the found placement. In Section 5, we describe our approach of applying

reinforcement learning for parameter control of GA. In Section 6, results are pre-

sented, including a comparison of automated and manual placements provided

by industry partner STMicroelectronics, and finally, in Section 7, conclusions

are drawn, discussing the applicability of this approach.

2. Related Work

2.1. Literature overview

The placement phase of the physical design is a problem of placing a given

set of devices, described by the netlist input file and represented by rectangles,

3

in such a way that all the design rules are satisfied. Designers usually try to

minimize the chip’s area and the estimated wire length.

There are two main categories of problem representation prevalent in liter-

ature. The first category encodes the solution using topological representation,

which determines the relative positions between devices. Afterward, a packing

procedure is required to obtain the actual placement. While the search space

contains only feasible solutions, encoding constraints such as symmetry is more

complicated. The representation commonly used in the literature is sequence-

pairs, originally proposed in [4]. It utilizes two permutations of devices, which

encode the placement. Authors of [5] extend this representation to handle cru-

cial features such as symmetry groups, thus making it much more suitable for

solving placement problems. The sequence pair representation was further ex-

tended to handle general constraints such as abutment (two devices are placed

exactly next to each other) in [6], and this work finally became the core of the

placer of the open-source tool ALIGN [7]. Additionally, the sequence pairs also

found their place in the domain of strip packing; the authors of [8] found an

efficient algorithm for transforming the representation to the actual packing.

Another topological representation is B*-trees. Used in [9], the solution is

represented by a binary tree, with each device stored in a node. The device’s

position is determined from its parent’s, with a device in the root node placed at

position (0,0). Simulated Annealing (SA) is often used to guide the search with

topological representations. On the other hand, the B*-trees-based approach in

[10] is deterministic. The method exploits the hierarchical structure of the ICs,

which guides the bottom-up enumeration of the parts of the circuit.

The second category of problem representation is absolute representation,

which describes each device by its coordinates, i.e., absolute position. Thus,

symmetry and other constraints can be easily formulated. Nevertheless, place-

ments with illegal overlaps are part of the search space and must be dealt with.

To navigate the search to feasible solutions, overlap and symmetry violations

are penalized in a cost function. The absolute representation approach was

used early in [11], which used SA to find the best solution. Experimentally

4

chosen costs of the criterion function lead to feasible placements comparable to

high-quality manual designs. More recent work of [12] utilizes the constrained

multi-objective metaheuristic. Other absolute representation approaches often

build on works similar to [13]. Solution of [13] firstly determines the global

placement, where illegal overlaps are allowed, and then the feasible solution is

obtained by legalization and detailed placement steps. Many recent works build

upon a similar pipeline. In [14], different manufacturing layers were considered,

so the devices that do not share the same layer can arbitrarily overlap.

While the achievements of the mentioned approaches cannot be underesti-

mated, we cannot directly apply their results to our problem. The main reasons

are various minimum allowed distances and pockets. Such features are critical

for BCD technology and are only partly covered, e.g., in [14]. However, we can

compare the performance of our approach with both topological and absolute

representation methods on instances that do not rely on such constraints.

ILP was previously used to solve the placement problem. The formulation

essentially combines the advantages of both previously mentioned approaches.

The authors of [15] utilized hierarchical decomposition of the problem to achieve

an acceptable computation time. They minimized the half perimeter rather than

an area of the placement due to the limitations of the linear criterion of ILP,

which also corresponds to our previous ILP approach [16]. However, the ILP

solvers usually struggle with larger instances, even when using decomposition

and other techniques. An end-to-end pipeline [17] used reinforcement learning

to place macros of IC one by one. Another reinforcement learning agent [18]

was used to swap parts of the previously created placement to improve the

connectivity of the result even further.

Due to their similarity, we also mention related problems and their respective

solution approaches. First are the problems related to rectangle packing - we

can interpret the placement problem as an extension of rectangle packing with

connectivity and other features. Exact approaches for 2D rectangle packing

are known from [19, 20], where ILP and Constraint Programming (CP) models

were shown. The CP search was strengthened with domain-specific branching.

5

Another approach to 2D rectangle packing is an iterative heuristic of [21]. The

heuristic utilizes corner-occupying actions; the current rectangle is placed to

corners and other highly restricted parts of the emerging packing. There is also

a plethora of efficient constructive and improvement heuristics thoroughly re-

searched for rectangle and strip packing [22]. In [23], the Bottom-Left packing

heuristic was successfully combined with GA. The fitness-based packing heuris-

tic was paired with SA for a 2-D knapsack packing in [24]. Finally, authors of

[25] modified the packing heuristic to perform look-ahead to improve the results

obtained on strip packing instances. They also praised the performance of the

GRASP metaheuristic in the domain of strip packing. However, due to mini-

mum allowed distances, symmetry groups, and connectivity, we cannot simply

apply the previous results in the domain of AMS IC placement.

Facility Layout Problem (FLP) is especially noteworthy since its goal is to

assign positions of the machines within the factory and to minimize the travel

distance between related machines, similar to the wire length minimization.

Exact solutions using custom branch and bound [26] or general ILP solver [27]

were successful. The latter work even incorporated the aisle design directly into

the layout phase, which resembles simultaneous placement and routing in an

IC domain. In [28] and more recently in [29], FLP was solved using GA with

a priority-based constructive heuristic, considering different variants for each

facility. The authors also presented results of multi-objective optimization that

demonstrated differences in travel distance-oriented and area-oriented layouts.

An evolutionary approach for solving FLP was presented in [30]. The ILP solver

solved a sequence of increasingly more complex models derived from the actual

problem instance until the final solution was found. To conclude, we drew

inspiration from methods for FLP due to their focus on both the area and the

travel distances, features relevant to our studied problem.

2.2. Contributions

While the research on automation of the placement of the AMS ICs has

greatly improved in recent years, there are still areas that need to be thoroughly

6

investigated. BCD technology still needs to be addressed since it requires var-

ious minimum allowed distances between devices, isolated pockets, and their

merging. These features are critical for placement due to the different voltage

levels of the devices. However, they were mostly omitted in the past (merging

was mentioned in [11], and a similar concept was shown in [14]).

We build on our previous conference paper [16], rectangle packing [19], and

FLP [28]. We re-use our conference paper problem statement and ILP for-

mulation with Force-Directed Graph Drawing (FDGD) warm start [16] as a

baseline solution for comparison, and we tackle the placement problem using

the priority-based constructive heuristic. We use the proposed heuristic as a

black-box function and optimize it using GA and CMA-ES metaheuristics to

find high-quality placement for large instances.

We summarize the main contributions of this paper as follows:

• Solution to an industry-relevant placement problem formulated in [16].

To the best of our knowledge, this problem with associated constraints

has not been addressed before. Pockets, variants, and minimum allowed

distances are all considered.

• Priority-based constructive heuristic inspired by [28] maps each indirect

representation to a feasible placement. Search for a high-quality solution

is guided by the GA and CMA-ES metaheuristics. The method can solve

instances with around 200 devices, improving the results of [16].

• Proposal and evaluation of reinforcement learning parameter control for

GA above, which dynamically modifies the GA’s hyper-parameters con-

trolling the selection of parents and crossover.

We evaluate our solution on synthetically generated instances, which we use

to compare the heuristic approach with ILP results of [16]. We also compare our

solution with the placer of ALIGN [7], and with relatively recent papers solving

MCNC benchmarks [31], which highlight the competitiveness of our solution,

even though our problem statement is more general than needed for the MCNC

7

Figure 1: Illustrative example of automatically generated placement of real-life netlist, with

the increased minimum allowed distances to simplify the visualization.

instances. Finally, we compare placements found by our algorithm with manual

designs provided by industry partner STMicroelectronics.

3. Analog Placement Model

3.1. Problem formulation

The placement problem assigns the exact positions and orientations to the

devices (transistors, resistors, etc.) described by provided netlist so the devices

do not overlap, and the placement area and connectivity are minimized. In

addition to single devices, there are higher-level design blocks called topological

structures, such as current mirrors and differential pairs. They consist of devices

that need to be packed in a regular pattern to function properly. Lists of devices

that belong to each structure are provided as additional input for the problem.

Finally, placement constraints and technological requirements are provided as

well. Example placement created from real-life instance provided by industry

partner STMicroelectronics is shown in Fig. 1.

Each device or topological structure is modeled and further denoted as a

rectangle and is associated with its set of width-and-height variants Ri. These

variants refer simply to rotation in the case of a single device or multiple differ-

ent aspect ratio configurations in the case of topological structures. The sizes

8

of the configurations depend on the arrangement of the structure’s internal de-

vices. These configurations are enumerated beforehand, and thus we are only

interested in their width and height, not in the actual arrangement. Arbitrary

minimum allowed distance, or spacing, is defined between each pair of rectangles

depending on the chosen technology process and the designer’s requirements.

The concept of pockets - additional free space around the devices - also needs

to be considered to accommodate the BCD process. Pockets and additional

spacing ensure that devices with different voltage do not negatively affect each

other. However, the pockets of devices with the same voltage level can be

merged if it is allowed by the designer; this concept is called pocket merging.

Additionally, several devices can be part of the symmetry group - each sym-

metry pair and self-symmetric device of the group needs to respect their com-

mon axis of symmetry. Blockage areas restrict the placement of specific devices

within a specific part of the canvas. Furthermore, pairs of devices that should

be placed as close, or conversely as far from each other as possible can be defined

as well. Finally, we also model connectivity with external components, so the

optimized placement will fit with the other parts of the overall design.

3.2. ILP model

3.2.1. Main constraints and criteria

The placement model was formulated using ILP in our previous work [16],

which we extended to include additional features. Therefore, we could use a

general ILP solver as a baseline for comparison. While the CP approaches were

discussed in [19, 20], we opted to use ILP after initial experimentation, as it

offered better performance. We suspect the reasons were the complex criterion

function and constraints extending the rectangle packing problem.

Let I = {1, . . . , n} be a set of indices of rectangles. Each rectangle is rep-

resented by coordinates variables of its bottom-left corner (xi, yi) and chosen

width-and-height variant (wi, hi) ∈ Ri, |Ri | = mi. When the pocket of the

device is considered, the width and height of the rectangle’s variants are appro-

priately enlarged. Variants are selected using binary variables ski ; k-th variant

9

Figure 2: Examples of different variants produced by scheduling-based enumeration [32], with

internal devices shown in a darker color and outer pocket encompassing them. The left variant

is used in Fig. 1.

is selected if ski = 1. Different variants of each structure are exhaustively enu-

merated beforehand, either using matrix-array pattern enumeration when the

internal devices have the same size or scheduling-based enumeration [32] when

the devices of the structure only share a single dimension. Examples of the

variants created by the scheduling-based approach are shown in Fig. 2.

Variables W, H define the width and height of the placement’s bounding

box. Minimum allowed distances are enforced by binary variables rki,j and in-

equalities (4) - (8), forming the OR-constraint. At least one of the inequalities,

which corresponds to the relationship (left/right/over/under) between rectan-

gles, must be valid (rki,j = 1) without the big-M term [33]. Parameter ai,j

defines the minimum allowed distance between rectangles. By appropriately

shifting the value of ai,j to negative, pocket merging becomes available.

10

xi + wi ≤W, yi + hi ≤ H ∀i ∈ I (1)

mi∑
k=1

ski = 1 ∀i ∈ I (2)

wi =

mi∑
k=1

wk
i · ski , hi =

mi∑
k=1

hk
i · ski ∀i ∈ I (3)

4∑
k=1

rki,j ≥ 1 ∀i∀j ∈ I : i < j (4)

xi + wi + ai,j ≤ xj +M(1− r1i,j) ∀i∀j ∈ I : i < j (5)

yi + hi + ai,j ≤ yj +M(1− r2i,j) ∀i∀j ∈ I : i < j (6)

xj + wj + ai,j ≤ xi +M(1− r3i,j) ∀i∀j ∈ I : i < j (7)

yj + hj + ai,j ≤ yi +M(1− r4i,j) ∀i∀j ∈ I : i < j (8)

xi, yi, wi, hi ≥ 0 ∀i ∈ I (9)

W, H ≥ 0 (10)

ski ∈ {0, 1} ∀i ∈ I ∀k ≤ mi (11)

rki,j ∈ {0, 1} ∀i∀j ∈ I : i < j

∀k ∈ {1, 2, 3, 4} (12)

Symmetry groups consist of symmetry pairs and self-symmetric devices. It

is required that both rectangles of the symmetry pair use the same variant and

that there is a common (horizontal or vertical) axis of symmetry for the entire

group. Consider the symmetry group G, with the vertical axis of symmetry, p

symmetry pairs, and q self-symmetric rectangles. Each pair or self-symmetric

rectangle are described by their indices:

G = {(i1, j1), . . . , (ip, jp), (i1,−), . . . , (iq,−)} (13)

With the variable xG ∈ R encoding the position of the axis of symmetry, the

11

symmetry constraint is enforced using the equations:

xi + xj + wi = 2 · xG ∀(i, j) ∈ G (14)

yi = yj ∀(i, j) ∈ G (15)

wi = wj ∀(i, j) ∈ G (16)

hi = hj ∀(i, j) ∈ G (17)

2 · xi + wi = 2 · xG ∀(i,−) ∈ G (18)

Blockage area requirement is handled simply by introducing the dummy

rectangles. These dummy rectangles have fixed coordinates; additional binary

variables are needed to model the relative position constraints (4) - (8).

The aspect ratio of the placement, defined by its width and height W , H, is

constrained using the user-defined bounds lR, uR, such that:

0 ≤ lR ≤ R ≤ uR ≤ 1 (19)

where R = min{W,H}
max{W,H} is the aspect ratio of the design. Therefore, the following

inequalities and additional binary variable are used:

lR ·W ≤ H ≤ uR ·W +M · (1− rR) (20)

lR ·H ≤W ≤ uR ·H +M · rR (21)

rR ∈ {0; 1} (22)

To minimize the area defined by expression W ·H within the ILP framework,

we approximate it using the half perimeter of the placement Larea = W +H.

Nets describe connectivity between the devices. Each net e of the set of nets

E is associated with its set of connected devices Le and its cost ce > 0. We use

the half-perimeter wire length (HPWL) metric to model the connectivity. For

brevity, let xc
i = xi + wi/2, yci = yi + hi/2 be coordinates of the centroids of

the rectangles. The final connectivity criterion element is formed as:

Lconn =
∑
∀e∈E

ce · (max
i∈Le

xc
i − min

i∈Le

xc
i +max

i∈Le

yci − min
i∈Le

yci) (23)

12

The definition is simplified by placing the pins of the devices into their center,

as in [14]. See Fig. 3 for an illustration of connectivity. To formulate this connec-

tivity metric using ILP, we add four continuous variables XM
e , Xm

e , Y M
e , Y m

e ∈

R, per each net e. Then we add the following constraints:

XM
e ≥ xi + wi/2 ∀i ∈ Le ∀e ∈ E (24)

Xm
e ≤ xi + wi/2 ∀i ∈ Le ∀e ∈ E (25)

Y M
e ≥ yi + hi/2 ∀i ∈ Le ∀e ∈ E (26)

Y m
e ≤ yi + hi/2 ∀i ∈ Le ∀e ∈ E (27)

Lconn =
∑
∀e∈E

ce ·
(
XM

e −Xm
e + Y M

e − Y m
e

)
(28)

We also calculate the normalization constant Sconn, which we use in the final

criterion. We define it using the cost of each net e as:

Sconn =
∑
∀e∈E

ce (29)

The mentioned features are demonstrated in Fig. 3, where the shown place-

ment consists of 18 devices and topological structures with allowed pocket merg-

ing (see the bottom-right corner with yellow and orange rectangles overlapping).

The blockage area occupies the bottom-left corner. The symmetry group with

a vertical axis consisting of two symmetry pairs and two self-symmetric rectan-

gles is shown in the top-left corner. Each net of the design is visualized as the

dashed contour, which corresponds to the smallest bounding box containing all

centroids of the net’s rectangles. Two such nets are highlighted in Fig. 3.

3.2.2. Optional criteria

We may want to urge the solver to put specific pairs of rectangles close or

far from each other without explicitly defining the distance. We achieve this by

introducing the proximity criterion. For each such concerned pair of rectangles,

we define their associated cost ci,jprox, which can be either positive (to decrease

their respective distance) or negative (to increase it). If a pair of rectangles is

13

Figure 3: The left figure illustrates design features, with a large blockage area located in the

bottom-left corner. Nets are highlighted as dashed contours. Two nets and their rectangles

are highlighted in the right figure.

associated with ci,jprox = 0, it will not affect the criterion at all, and therefore we

omit such pairs. Then, we form the proximity criterion as follows:

Lprox =
∑

∀(i,j):ci,jprox ̸=0

ci,jprox · di,j (30)

where di,j is variable associated with the distance between rectangles i and j.

The distance can be formulated as Manhattan or Quasi-Euclidean, and between

centroids or two closest points, as we have shown in our previous work [16].

However, when used with a negative cost, we need to introduce additional binary

variables. We demonstrate it with the Manhattan distance. For example, to

constrain variable dxi,j to contain the horizontal distance between the rectangles’

centroids, the following constraints are needed, where bxi,j ∈ {0, 1}.

xi + wi/2− xj − wj/2 ≤ dxi,j ≤ xi + wi/2− xj − wj/2+M · bxi,j (31)

xj + wj/2− xi − wi/2 ≤ dxi,j ≤ xj + wj/2− xi − wi/2+M · (1− bxi,j)

(32)

This way, dxi,j = |xi +wi/2− xj −wj/2|. With variables dxi,j , d
y
i,j , we obtain

the Manhattan distance as di,j = dxi,j + dyi,j . However, when ci,jprox is positive,

14

we may omit the right-hand inequalities containing the binary variables. Due

to the minimization of the overall criterion, the variables dx,yi,j are forced to be

equal to their respective distances.

Since the optimized design is often just a single component of a larger IC,

we need to consider its connectivity with other components too. To do so,

we form the interface connectivity criterion Linter. The designer can define

the side of the placement where the interface net entry point is. The entry

point is modeled as a dimensionless point attached to a specified side, but its

exact position on the side is not fixed. We account for this with an additional

continuous variable. Then, we optimize the distance between the entry point

and connected rectangles to account for routing between different components

of the IC. We define the distance in a point-to-point manner. Similar to the

proximity criterion, each connection between the entry point and rectangle is

associated with its cost, and the total criterion Linter is obtained by summing

weighted distances.

Both the proximity criterion Lprox and the interface connectivity criterion

Linter are normalized with Sprox, Sinter respectively. We obtain these constants

by summing the costs of the criteria elements. In the case of the Sprox, we

sum the absolute values to account for the possible negative costs: Sprox =∑
∀(i,j) | ci,jprox |.

The final criterion is obtained by combining all the criterion elements to-

gether with controllable costs ccost:

L = carea · Larea +
cconn
Sconn

· Lconn +
cprox
Sprox

· Lprox +
cinter
Sinter

· Linter (33)

Normalization constants are used to make the tunable costs less sensitive to

varying numbers of nets, proximity pairs, and interface connections. Further

in the text, we do not consider the optional criteria Lprox, Linter during ex-

periments. While they offer more control, we focus on the half perimeter and

HPWL, which are common and important metrics in literature and industry.

However, blockage areas and symmetry groups were considered in the experi-

ments since they have a direct effect on placement being feasible rather than

15

being an additional element of the criterion. Furthermore, the ILP solver used

as a baseline is warm-started using the FDGD-based method described in [16].

4. Proposed Solution

4.1. Constructive heuristic

4.1.1. Outline of the heuristic

The core of our solution is a constructive heuristic that transforms the input

vector of numbers, denoted as a chromosome consisting of genes, to the individ-

ual solution (placement). This mapping is a crucial part of metaheuristics and

local search. Our constructive heuristic is based on the mapping procedure of

[28]. It uses an indirect representation of the placement. Each rectangle of the

problem is associated with a triple of genes:

• position - constructive heuristic places rectangles one by one; position

genes are used to sort the rectangles for this procedure - the lower the

value of the gene, the earlier the rectangle is placed

• variant - encodes a specific variant of the rectangle; the chosen variant is

used within the particular solution, similarly to [29]

• direction - influences the selection of the placement point

Therefore, we need 3 · n genes to represent n rectangles. Furthermore, a

single additional gene, which is used to perform priority modulation described

later, can be appended to the chromosome as well; thus, the total length of the

chromosome would be 3 · n + 1. Each gene is a real number from the interval

between 0 and 1, as in [34].

Now, we describe the proposed constructive procedure. Firstly, the initial

point set P is created, only containing the origin point (0,0). Each pre-placed

rectangle (e.g., the blockage area) adds its corners’ coordinates to P during

the initialization phase. In each iteration of the main loop, the not yet placed

rectangle with the lowest value of the position gene is selected, and the placement

16

(a) New points generated by placing the red

rectangle

(b) Sliding procedure performed on the

red rectangle, starting at green point

Figure 4: Visualization of the point generation and alternative coordinate calculation. Note

that the calculation of the alternative coordinates is done for each point in P .

direction and the rectangle variant are determined from their respective genes.

Then we investigate each point of P if the currently selected rectangle can be

placed nearby (how we find a feasible position is described later). Unlike in

[28], where the first feasible point is chosen, we evaluate each feasible point and

greedily place the rectangle in the position which increases the criterion value

of the partial placement the least.

After placing the rectangle, we generate new points to expand P . Whenever

a new rectangle is placed at coordinates (x, y), only up to 5 new points are

added to point set P . Rectangle’s corners (except the bottom-left one) are

always added. We also add the intersection with the nearest obstacle while

moving from points (x+ w, y), (x, y + h) in a vertical, respectively, horizontal

direction, with coordinates (x + w, y′), (x′, y + h). An example of new points

added to P is shown in Fig. 4a.

4.1.2. Rectangle sliding

Let c be the rectangle that needs to be placed in the current iteration of

the constructive heuristic. We investigate each point in P and try to place

the rectangle in its vicinity. Firstly, we compensate for the fact the points

of P are generated with an assumption that the minimum allowed distance

between rectangles is 0. Whenever the minimum allowed distance ac,r between

the current rectangle c and the rectangle which generated the point r is ac,r >

17

0, we move the point vertically or horizontally by ai,j so at least these two

rectangles do not collide. If ai,j < 0 (i.e., pocket merging), we do not modify

the coordinates. Let (xp, yp) be the point’s updated coordinates after this step.

Then, a method based on bottom-left packing heuristic [23] finds a near

feasible point around the (xp, yp). The method works in two phases; firstly, we

modify the xp while fixing the value of yp, and then vice versa. If the value of

the rectangle’s direction gene is greater than 0.5, we start with yp modification

instead. We refer to this as rectangle sliding.

Now we describe rectangle sliding with a fixed value of yp. Firstly, we filter

out already placed rectangles that could not collide with the current rectangle

c thanks to the coordinate yp alone. The rest of the placed rectangles is split

into two sets, RL and RR. Rectangle r belongs to RL if xr +wr/2 ≤ xp+wc/2;

otherwise, it belongs to RR. Then we try to place the current rectangle so it

has rectangles from RL to its left and those from RR to its right. This is done

by computing:

xL =max {{xr + wr + ac,r | r ∈ RL} ∪ {0}} (34)

xR =min {{xr − wc − ac,r | r ∈ RR} ∪ {∞}} (35)

If xL > xR, we recognize the situation as infeasible. Otherwise, we set

xp = xL and continue with the modification of yp. If both phases succeed, we

are left with feasible coordinates to place the rectangle c.

An example of the sliding procedure is shown in Fig. 4b. The green starting

point was moved first horizontally until the obstacle was reached and then ver-

tically. However, always picking the bottom-left position could be detrimental

to connectivity. Thus, the temporary point created after the first phase of the

sliding procedure is also considered for placing the rectangle c.

4.1.3. Priority modulation

As described until this point, connectivity does not directly influences the

heuristic. However, when the focus is put on minimizing connectivity, it is useful

to modify the heuristic to account for it. We do this using priority modulation.

18

The priority modulation factor pm can either be fixed beforehand or its value

is set by the appended priority modulation gene, see Section 4.1.1. After a

rectangle is placed, we iterate through its nets and multiply each of its connected

rectangles’ position genes by pm. Since pm ≤ 1, the connected rectangles can be

placed sooner. The intuition is that when the connected rectangles are processed

one after another, there should be enough space to put them close to each other.

4.1.4. Symmetry groups

To handle the symmetry groups, we first place the symmetry group in a sep-

arate empty space. The same placement heuristic is used, with the modification

that ensures that the axis of symmetry of the group is respected. Then, the sym-

metry group is returned to the main placement procedure as a single cohesive

unit. Different symmetry group configurations can be explored by modifying

associated position and variant genes of the group’s rectangles.

4.1.5. Fitness of the individuals

The individual’s fitness is determined from the placement, following the def-

inition of criterion (33) of Section 3. We use the half perimeter approximation

of placement’s area to compare our results directly with the ILP baseline of

Section 3.2; however, we could easily compute the area directly. The procedure

creates a placement that satisfies the constraints of the problem. An exception

is the aspect ratio constraint, which is not directly enforced. Instead, when the

aspect ratio constraint is violated, we multiply the final criterion value by 2.5,

which makes the search algorithms prefer placements that respect the constraint.

4.1.6. Complexity and visualization

The proposed constructive heuristic has cubic complexity O(n3), given n

rectangles to be placed. This is comparable with the complexity of the Bottom

Left Fill (BLF) constructive heuristic [22]. However, [35] has shown quadratic

time complexity implementation of BLF. Nevertheless, we could not exploit the

more effective implementation due to the differences between our problem and

plain rectangle packing.

19

(a) Partial placement with 25 % of rectangles (b) Partial placement with 50 % of rectangles

(c) Partial placement with 75 % of rectangles (d) Completed placement

Figure 5: Partial placements created during the run of the constructive heuristic.

The heuristic is visualized in Fig. 5. Each figure corresponds to the partial

placement, Fig. 5a contains 25 % rectangles with the lowest value of the position

gene, and Fig. 5d is the complete placement, containing 100 % of rectangles.

The construction starts from the origin (0,0) and iteratively fills the canvas.

4.2. Metaheuristics

Our proposed constructive heuristic maps chromosomes to feasible place-

ments. However, a search must be performed to find a chromosome associated

with a high-quality solution.

4.2.1. Genetic Algorithm

GA [36] is a well-known population-based metaheuristic for solving black-

box optimization problems. We utilized the GA’s pipeline derived from [28],

20

Algorithm 1 Genetic algorithm for IC layout [28]

initialize & evaluate population

generation← 0

while generation < max generations do

new population ← {}

while |new population| < population size do

select parent1 from population

if rand() ≤ PC then

select parent2 from population

child ← crossover of parent1 and parent2

if rand() ≤ PM then

mutate child

end if

else

child ← mutation of parent1

end if

evaluate child

add child to the new population

end while

new population ← new population ∪ elite part of population

population ← best population size individuals of new population

generation← generation + 1

end while

return best individual

21

which is shown in Algorithm 1. We start with a randomly generated initial

population, and part of the population is optionally modified in the following

way. Each rectangles’ variant gene is set to select the most square-like variant,

and their position genes are multiplied by a factor of ki/n, where ki is the index

of the rectangle i, if we sorted them in descending order of area. Thus, larger

rectangles should be placed earlier than the smaller ones.

Then, we apply evolutionary operators in each generation. The selection pro-

cedure implements deterministic tournament selection with tournament size T .

Two-point crossover is used, each time producing a single child. Each rectangle

randomly modifies its genes during mutation with a probability of 0.1. These two

operators are linked to a pair of algorithm’s hyper-parameters PC , PM ∈ ⟨0; 1⟩,

which control the evolutionary pipeline. Finally, the elite part of the current

population (we use the best 5 %) is propagated to the next generation directly.

The selected values of hyper-parameters are discussed in Section 6.3.3. Fig. 6

documents the behavior of the GA over time. Both figures were obtained during

the same computation experiment on a small instance with 20 rectangles. Fig. 6a

tracks the average criterion value across the population and its subsets. In

Fig. 6b, an illustration of the search space is shown. Each point corresponds

to the chromosome, projected to 2D space (u, v) by the Principal Component

Analysis (PCA). The vertical axis corresponds to the criterion value of the

associated placement. The color of the points corresponds to the generation

the associated chromosome was created. We can see the criterion value of the

points with the same color gets lower in the latter generations, which matches

the trend shown in Fig. 6a.

4.2.2. Covariance Matrix Adaptation Evolution Strategy

CMA-ES [37] is a metaheuristic mostly used for continuous optimization

problems. CMA-ES and its derivatives are considered state-of-the-art in the case

of black-box optimization [38], especially when non-separable or ill-conditioned

criterion functions are considered.

Starting with the initial individual (its chromosome), CMA-ES samples new

22

(a) Value of criterion across the population for each generation of GA

(b) Chromosomes from each generation, projected using PCA to two dimensions u, v, with the

criterion on vertical axis

Figure 6: Illustrative charts of the GA for single optimization run.

23

individuals (i.e., their chromosomes) based on the mean vector and covariance

matrix. The mean vector and covariance matrix are updated as the algorithm

progresses, and the change is determined by the quality of the newly sampled

individuals. The advantage from the user’s perspective is the lack of tunable

hyper-parameters of the CMA-ES. We only need to supply starting individual

and initial step size σ, which controls how far from the mean the new individuals

are sampled; other parameters can be determined automatically.

The behavior of the CMA-ES is illustrated in Fig. 7. Again, both figures were

obtained during the same computation experiment, on the same instance as in

Fig. 6. In Fig. 7a, we can see how the step size σ changes as the algorithm pro-

ceeds. Also, the criterion value of the best-so-far and best-in-current-iteration

individuals is shown. The values were sampled every 50 iterations. Fig. 7b

captures the same information as Fig. 6b, with the colors corresponding to the

iterations of the CMA-ES in which the individuals were sampled. Both the

decreasing value of σ and the more compact distribution of individuals in the

latter iterations demonstrate how the algorithm thoroughly searches the close

neighborhood of the best-so-far solution.

4.3. Local search and detailed optimization

We propose the following pipeline to further optimize the solution. Based

on the nomenclature and ideas of [22], the first phase in the pipeline performs

the local search over sequences (i.e., over chromosomes). We modify the chro-

mosome of the best solution, trying other variants of each rectangle one by one,

and use the constructive heuristic to evaluate the new solution. For less complex

instances, we perform a 2-opt-like position local search as well by trying to swap

the values of position genes between pairs of rectangles.

The second phase performs the local search directly over the layout as in [25].

We do this by fixing the placement and constructing a new point set P given the

placed rectangles’ corners. Then, for a selected rectangle, we use the rectangle

sliding approach of Section 4.1 to try to find a new position that would lower

the criterion. We do this iteratively for each rectangle (and its variants), and

24

(a) Value of criterion of the best individuals, and value of σ parameter during

optimization, sampled every 50 iterations

(b) Chromosomes from each iteration, projected using PCA to two dimensions u, v, with the

criterion on vertical axis

Figure 7: Illustrative charts of the CMA-ES for single optimization run.

25

(a) Placement before local search over

layout, Lconn = 15135.

(b) Placement after local search over

layout, Lconn = 14752.

Figure 8: Illustration of the importance of the local search over the layout. The green rectangle

was previously sub-optimally placed with respect to its nets (black dashed contours).

each point of P . This makes it possible for rectangles to be placed in positions

otherwise inaccessible due to the iterative nature of the constructive heuristic.

While the changes in the placement are subtle, they may reduce the HPWL

significantly, as shown in Fig. 8.

Finally, Linear Programming (LP) detailed optimization based on [14] is

performed. We modify the ILP formulation of Section 3.2 to not contain binary

variables. To achieve this, we set the variant variables ski to only consider the

variant currently used in the placement. Then we determine for each pair of

rectangles which relative position constraint (5) - (8) has the largest amount

of slack, and we set rki,j = 1 for the corresponding relative position variable.

With these actions, we are left with the LP model. The solver can only slightly

change the coordinates of rectangles since their relative positions are fixed. We

can solve it efficiently, potentially improving the quality of the solution.

5. Reinforcement Learning Parameter Control

We used reinforcement learning, specifically Deep Q-Network (DQN), to

control the hyper-parameters of the GA. Unlike CMA-ES, which adapts its pa-

rameters, our GA remains static, which may cause, e.g., premature convergence.

26

The chosen approach utilizes reinforcement learning to create an agent that

modifies hyper-parameters of the pure variant of the GA algorithm during op-

timization to yield, on average, better results [39]. The agent interacts with

an environment, collects rewards, samples observations, and chooses its next

action.

This was investigated before in [40], where Q-learning was used to select

search operators of GA. Since Q-learning handles only discrete input space (e.g.,

a fixed number of states in a card game), its generalization is needed to capture

the continuous state representation (e.g., the continuous position of the car).

DQN uses a neural network to approximate Q-values, the expected reward for

choosing a specific action in a given state. Each available action is associated

with a Q-value.

DQNs are trained offline before the evaluation. As in [41], the ϵ-greedy

approach is used to handle the exploration-exploitation dilemma. Tuples (state,

action, reward, next state, done) are saved into replay memory. Together with

the target network, the replay memory is used to achieve better stability during

training [42].

5.1. Integrating DQN into the placement GA

We chose to control the tournament ratio tT and crossover probability PC

of the GA during evolution. Other parameters, such as elite size, could be

considered as well. We modified the hyper-parameters of GA periodically, with

a period called environment-step. Whenever the number of generations equal to

the environment-step passes, the agent performs an action to modify the hyper-

parameters. Based on previous experiments, we set the environment-step to 4

to shorten the number of transitions between starting and terminal states; with

a shorter period, we were not able to train the network properly.

Environment represents the GA population for a specific placement problem.

Whenever the environment is restarted, a new placement problem and initial

GA population are generated. The state representation was based on [41], but

only population features are considered. Twelve features in total are used, each

27

normalized to the interval from 0 to 1. Features describe the size of the instance,

chosen connectivity cost, the current generation’s average criterion value and

its standard deviation, the number of generations that have already evolved,

the number of generations without the improvement, and statistics about the

instance’s rectangle sizes.

We set the reward returned by the environment to:

rt =
bestt−1 − bestt

best1
(36)

where bestt denotes the criterion value of the best individual in generation t.

When an environment-step larger than one is considered, the reward is accu-

mulated for each in-between generation. One episode of the environment refers

to the whole run of the single problem instance until the final generation.

Action space was hand-picked, limited to the total number of 8 actions. Sets

of action values were:

• tournament size ratio tT - {0.02, 0.05, 0.1, 0.2}

• crossover probability PC - {0.3, 0.8}

Note that the actual tournament size T used during selection is equal to:

T = ⌈population size · tT ⌉ (37)

A fully connected neural network with a single hidden layer was used. The

input layer was connected to the hidden layer with 40 neurons, and the hidden

layer was connected to the output layer, with each neuron corresponding to

one of the actions. Non-linearity was introduced with ReLU. The output layer

served as a Q-value estimator.

The training pipeline was based on [43]. Experiments were carried out with

1000 episodes - thus, 1000 random synthetic examples were generated. The

population size was set to 300, and the population evolved for a random number

of generations, with the upper bound being 300. Each time 2500 new transition

samples were obtained and added to the replay memory, the target network

was updated. Discount factor γ was set to 0.99, thus ensuring the rewards

28

acquired in later generations still propagate to the earlier. The Adam optimizer

and Huber loss between current and estimated Q-values were used to train the

network.

6. Experimental Evaluation

6.1. Methodology

This project was implemented in Python 3.8, with the computation-intensive

constructive heuristic implemented in C. We utilized the Gurobi solver v9.5.1

[44] to solve the LP and ILP models. We used TensorFlow [45] for machine

learning and CMA-ES implementation of PyCMA library [46]. The experiments

were performed on Intel Core i7-1255U. As a baseline solution, utilized only for

comparison, we used the ILP model warm-started by our FDGD approach [16].

6.2. Overview of the synthetically generated instances

To compare our developed approach and its modifications easily, we created

several sets of synthetically generated instances inspired by real-life problems.

Each instance contains a number of rectangles, half of which were defined with

multiple variants; the other half only allowed rotation. For a subset of instances,

symmetry groups and blockage areas were generated as well. The minimum

distance between each pair of rectangles was randomly generated, including the

negative distances, to model the pocket merging. Afterward, a number of nets

were generated to model the connectivity between devices.

Each problem dataset and its key properties are described in Table 1. Note

that instances of sets Sdouble and Stetra were generated by combining multiple

copies of the identical smaller instance to create a larger one; connectivity within

each copy was preserved, and no additional nets were introduced.

6.3. Analysis and comparison of our approaches

In the rest of this section, we experimented with synthetically generated

instances to study our proposed solution. In the following experiments, the

29

dataset # instances # rectangles symmetry # nets

S50 60 20 - 50 No 5 - 12

S100 20 100 No 25

Sdouble 20 200 No 50
2 copies of

S100 instances

Stetra 20 200 No 48
4 copies of

S50 instances

Ssym
50 60 34 - 85 Yes 5 - 12

Ssym
200 20 226 - 285 Yes 100

Table 1: Description of synthetically generated datasets

criterion costs were set to carea = 1 (which remained the same across all exper-

iments), and cconn = 8. We chose these values to primarily study the scenario

when the connectivity is prioritized.

6.3.1. Constructive heuristic parameters

Firstly, we determined the constructive heuristic parameters by a limited

computational study. Our point evaluation, described in Section 4.1, is crucial

since the original approach of [28] places rectangles using the first point that

would not increase the size of the bounding box without assessing the effect on

connectivity. This has a negative effect for larger values of cconn. For cconn = 8,

our approach led to a 10 % decrease of the overall criterion for instances of S50.

The priority modulation was necessary since large separable instances of

Sdouble and Stetra were otherwise hard to solve - it was difficult for metaheuris-

tics to find the correct sequence of priorities, that would bundle each separate

group together in the final placement. When priority modulation with a suffi-

ciently small coefficient was used, the better value of the criterion was achieved.

We employed the priority modulation gene as a part of the chromosome to be

adapted on the run. While we could achieve slightly better results by manually

tuning its value depending on the instance, the self-adapted approach worked

30

Figure 9: Nets (dashed contours) of the final placement of Stetra instance. The color of the

net matches the color of the corresponding separate group.

sufficiently well across all datasets.

Fig. 9 shows how well the priority modulation technique distributes the sep-

arate groups of rectangles of dataset Stetra. Each separate group is represented

by a single color, with the nets of the given group shown as contours of the same

color plotted above. When the priority modulation was not utilized, the result

contained rectangles from different color groups mixed together, increasing the

overall connectivity.

6.3.2. Effect of the local search and detailed optimization

As described in Section 4.3, we use three consecutive improvement tech-

niques to improve solutions found by our proposed methods: local search over

sequences, local search over layout, and LP-based detailed optimization.

We compared the quality of the initial solution found using the GA and

the solution after we used the improvement techniques. In Table 2, we present

the percentage decrease of the criterion, averaged for each dataset. We also

report improvement produced by each technique separately, relative to the GA’s

output criterion; thus, the individual improvement percentages should add up

to the overall improvement. The local search over sequences dominates with

31

improvement per technique (%)

dataset seq LS layout LS LP opt overall improvement (%)

S50 1.00 0.87 0.78 2.65

S100 3.26 1.46 0.24 4.96

Sdouble 2.42 2.33 0.20 4.95

Stetra 2.49 2.98 0.41 5.88

Ssym
50 2.64 0.66 0.44 3.74

Ssym
200 2.38 2.07 0.13 4.57

Table 2: Average effect of each improvement technique and average total improvement per

dataset. Note that improvement of the individual technique is calculated with respect to its

input solution, either the output of the GA or the output of the previous technique.

the most major improvements. However, this is expected, as it consumes most

of the computation time reserved for improvement techniques. The local search

over layout and LP detailed optimization also led to a noticeable improvement.

Overall, the improvement phase leads to the criterion being better by 2-5 %.

However, this is true only for tested costs carea = 1, cconn = 8. For example,

with cconn = 0, LP-based detailed optimization would have essentially no effect.

6.3.3. Metaheuristics comparison

We investigated the suitability of both discussed metaheuristics by evaluat-

ing them on datasets described in Section 6.2. To make the results comparable

with the baseline ILP solution, each experiment ran for a specific amount of

time. In case of instances of S50, S
sym
50 for 10 minutes, in case of S100 for 20

minutes, and for 40 minutes otherwise. Then, the local search pipeline followed.

Chosen hyper-parameters of the metaheuristics are shown in Table 3; we

determined their values during initial experimentation. The population size of

GA varied depending on the dataset, with up to 250 generations to be evolved.

If time was left, the population was reinitialized, and computation continued

until the time limit was reached. Furthermore, 20 % of the initial population

was seeded as described in Section 4.2.1. Other values were re-purposed from

32

GA

tournament ratio 0.02

elite ratio 0.05

PC 0.8

PM 0.1

seed ratio 0.2

CMA-ES

initial σ 0.25

initial solution
best solution by GA

after 10 generations

Table 3: Metaheuristics settings

[28]. The population size of CMA-ES was selected automatically by the imple-

mentation of PyCMA [46].

Results are evaluated using the average relative difference (aRD) of the cri-

terion, calculated for method m and dataset S, defined as:

aRDm
S =

1

|S|
·
∑
i∈S

Li,m − Li,best

Li,best
· 100 [%] (38)

where Li,m is the value of criterion achieved on instance i by method m, and

Li,best is the value of criterion of the best-known solution (among studied meth-

ods). Therefore, aRD refers to the ratio of the method’s and best-known solu-

tion’s criterion values averaged over the entire dataset. The best hits metric (#

best) tells us how many times a method achieved the best value of the criterion.

Results of this experimentation are shown in Table 4. On average, our

heuristic algorithm outperformed the ILP baseline. ILP came closest in the

case of Stetra dataset. This is the direct consequence of the properties of this

dataset - attractive forces of the FDGD warm-start easily separate the instance

into the connectivity-separate groups.

When we compare the results of GA and CMA-ES, we see they are com-

petitive. On smaller instances, CMA-ES outperforms the GA. The main reason

is probably its ability to perform the local search around the initial solution

efficiently. Also, the number of variables is still relatively low for these small

instances. While the differences based on values of aRD are not as significant

in the case of larger instances, GA seems to outperform CMA-ES. We suspect

33

dataset ILP CMA-ES GA

name # instances aRD # best aRD # best pop size aRD # best

S50 60 7.11 8 0.74 43 300 4.18 9

S100 20 4.81 0 0.52 12 500 1.56 8

Sdouble 20 4.17 3 0.68 12 500 0.51 10

Stetra 20 3.35 6 1.11 5 500 0.78 10

Ssym
50 60 28.10 0 0.08 56 300 4.15 4

Ssym
200 20 35.44 0 0.47 9 500 0.22 16

Table 4: Averaged results obtained on synthetically generated instances, comparing meta-

heuristics and baseline ILP approach.

the main reason for this is the increasing number of variables and the complex

criterion landscape.

6.3.4. Effect of the parameter control

We present our two best-performing parameter control models, described in

Section 5. The first model, whose results are denoted as DQN-GA1, used all

features outlined in Section 5, while DQN-GA2 had its instance size feature

set to 0 for each training problem instance to study its effect on the overall

results. We evaluated both models on each dataset, using the same metrics as

in Section 6.3.3. Averaged results are shown in Table 5.

On average, DQN-GA1 outperformed the original GA with fixed parameters,

even though large instances were under-represented in training. DQN-GA2

outperformed both fixed-parameter GA and DQN-GA2 on several sets, but

especially on Ssym
200 , it behaved rather worse. An example of the control pattern

of both reinforcement learning models is shown in Fig. 10. While the patterns

were obtained on a single instance, they are typical for their respective DQN

models across instances with varying sizes. In both cases, the value of the

crossover parameter PC is predominantly set to 0.3, which contrasts with our

fixed value of 0.8, used in previous experiments. In the case of DQN-GA1,

the model uses smaller values of tournament ratio tT during initial generations,

34

dataset GA DQN-GA1 DQN-GA2

name # instances aRD # best aRD # best aRD # best

S50 60 1.85 13 1.39 23 1.12 24

S100 20 1.98 6 1.88 6 2.18 8

Sdouble 20 0.66 8 1.36 7 1.10 8

Stetra 20 1.12 9 1.07 6 1.03 5

Ssym
50 60 1.84 12 1.60 20 1.03 28

Ssym
200 20 1.01 7 0.66 8 1.27 5

Table 5: Averaged results obtained on synthetically generated instances, comparing baseline

GA and DQN-controlled GAs.

(a) DQN-GA1 (b) DQN-GA2

Figure 10: Hyper-parameter values during evolution, controlled by DQN agent.

increasing it later to value 0.2. Thus, at the beginning, almost any individual

can be chosen during selection, but later, individuals with worse quality are more

penalized. In the case of DQN-GA2, we observed that the action overwhelmingly

selected is tT = 0.05, PC = 0.3. Thus, the model’s behavior corresponds more

to parameter selection rather than control.

We can observe that using single settings of hyper-parameters may be detri-

mental, as the comparison between the fixed GA and DQN-GA2 shows. Also,

the results of DQN-GA1 show that a more advanced control scheme can be

beneficial and can be discovered using the proposed reinforcement learning ap-

35

[12] [9] [15] CMA-ES cconn = 0 CMA-ES cconn = 2

area time area HPWL time area HPWL time area HPWL time area HPWL time

apte 46.92 2 47.90 - 3 47.08 297.12 6 46.92 615.66 2 48.44 205.28 2

hp 9.35 3 10.10 - 16 9.57 74.38 32 9.35 170.27 2 9.46 82.36 2

ami33 1.21 19 1.29 47.23 39 1.26 45.05 348 1.23 91.63 30 1.25 40.39 30

ami49 38.17 44 41.32 769.99 96 39.52 763.93 559 37.64 1269.71 120 40.49 718.32 120

Table 6: MCNC benchmark instances results, area in mm2, HPWL in mm, time in s. [12]

utilized Intel i7 2.3 GHz, [9] utilized Pentium4 3.2GHz, [15] utilized Intel E5-2690 2.9GHz and

our CMA-ES utilized Intel Core i7-1255U. HPWL values of [9] for apte and hp were omitted

due to discrepancies outlined in [15].

proach. However, potential improvement seems to be largely limited, given the

long training. As is shown in Table 5, the achieved improvement varied between

0.1 and 1.0 %, depending on the dataset.

6.4. MCNC benchmark set

The MCNC benchmark set [31] consists of 4 problem instances, namely

apte (9 rectangles, 4 symmetric pairs), hp (11 rectangles, 4 symmetric pairs),

ami33 (33 rectangles, 3 symmetric pairs) and ami49 (49 rectangles, 2 symmet-

ric pairs). Due to the lower number of rectangles in instances, we use CMA-ES

as a metaheuristic to solve MCNC benchmarks (and benchmarks in the follow-

ing sections). We compare our solution with the following methods: absolute

representation approach of [12], topological representation approach of [9], and

ILP-based approach of [15]. Since there are no non-zero minimum distances

between devices, features of our more general approach are not fully utilized.

Therefore, we aim to show our solution’s competitiveness even given a more

specific problem statement.

When two smaller instances apte and hp are concerned, our solution is neg-

atively affected by the rigid handling of symmetry groups of Section 4.1. How-

ever, when the remaining rectangle was considered as a self-symmetric member

of the symmetry group in case of apte, or when additional points defined by

each rectangle of the symmetric group were generated in case of hp, we were

able to find competitive solutions, as we report in the table.

36

(a) Solution for cconn = 0 (b) Solution for cconn = 2

Figure 11: Solutions found by CMA-ES for instance ami33.

(a) Solution for cconn = 0 (b) Solution for cconn = 2

Figure 12: Solutions found by CMA-ES for instance ami49.

37

As is shown in Table 6, we performed two experiments with two values of

cconn. Approach [12] considered only the placement area; therefore, the experi-

ment with connectivity cost cconn = 0 is suitable for comparison. Our method

either outperformed or tied the results of [12], except for ami33. HPWL opti-

mization was included in [9, 15], so we investigated whether we were able to find

overall better or at least non-dominated solutions. We found a non-dominated

solution in each case and an overall better solution for instance ami33. Solu-

tions for instances ami33 and ami49 are shown in Figs. 11 and 12.

6.5. ALIGN placer and open-source instances

ALIGN [7] is a contemporary open-source layout system. The system con-

tains circuit annotation, placement, and routing tools. We used the ALIGN

annotation tool to discover symmetry groups and topological structures in the

input instances to make the comparison between the solvers as fair as possible.

Due to the additional features outlined in our paper, we could not evaluate

the ALIGN placer on our instances. Therefore, the test instances were two

Operational Transconductance Amplifiers (OTA), a Double Tail Sense Amplifier

(DTS-A), a Switched Capacitor Filter (SCF), and a Linear Equalizer (LE), each

accessible from ALIGN repository. The instances contained symmetry groups

and topological structures. We manually retrieved minimum distances between

devices from the reference solutions and sanitized the input data; this was done

due to the differences in problem formulations and data format, making the

results rather illustrative. Together with ALIGN and baseline ILP solutions,

the best results produced by CMA-ES are shown in Table 7.

We could approximately match the quality of both ALIGN and baseline ILP

solutions; however, the comparison with ALIGN is rather illustrative due to

the issues with problem formulation. Furthermore, we limited it to use approx-

imately the same amount of computation time as the ILP solver used. The

ALIGN placer ran until it terminated, and its computation time was longer

than ours in all cases. Finally, we outperformed our ILP baseline solution on in-

stance SCF, which contained the largest number of devices, demonstrating that

38

ALIGN [7] ILP CMA-ES

instance area HPWL area HPWL time area HPWL time

CC-OTA 73.2 132.2 58.3 141.4 6.0 59.4 142.1 6.8

T-OTA 16.9 28.7 18.6 28.5 0.3 18.7 29.8 1.0

DTS-A 52.8 69.4 44.7 90.0 0.5 50.8 101.3 3.5

SCF 1995.6 478.4 1963.4 485.7 13.8 1808.9 479.3 10.9

LE 58.2 47.0 56.5 56.2 6.7 57.5 55.4 5.5

Table 7: Comparison of our approach with ALIGN [7] and baseline ILP. Area in µm2, HPWL

in µm, time in s. Results obtained on Intel Core i7-1255U.

our approach is suitable for larger problems where exact approaches cannot

sufficiently explore the search space.

6.6. Real-life benchmarks

Finally, we evaluated our solution against the baseline ILP and manual place-

ments on a batch of real-life problem instances. In total, 17 instances were ob-

tained from STMicroelectronics company. Since the real-life instances contained

up to 60 independent rectangles, we again selected CMA-ES as a metaheuristic.

We ensured that the same computation time was given to CMA-ES and baseline

ILP, up to 8 minutes per problem instance. However, several instances were so

simple the Gurobi solver actually found the optimal solution.

Three experiments were performed for each instance, with carea = 1 and

cconn ∈ {0.1, 1, 8}. Aggregated results are shown in Table 8. In the table,

data for both scenarios, with and without pocket merging, are present, thus

increasing the number of tested instances from 17 to 34. We can see that except

for the cconn = 8 setting, CMA-ES performed better on average. On the other

hand, ILP found more overall better solutions. However, most of the real-life

benchmarks contained only up to 40 rectangles (and half of them contained less

than 20), so the good results reported by the ILP are expected. When only

benchmarks with more than 20 rectangles are considered, CMA-ES was better

for each value of cconn and for both metrics.

39

ILP CMA-ES

cconn aRD # best aRD # best

0.1 1.57 18 0.60 16

1 1.27 24 1.20 10

8 1.64 25 5.06 9

Table 8: Values of aRD and (# best) metrics for baseline ILP and CMA-ES, for three values

of cconn, on 34 experiments of STMicroelectronics real-life benchmarks.

manual CMA-ES

cconn = 0.1 cconn = 1 cconn = 8

instance W+H area HPWL W+H area HPWL W+H area HPWL W+H area HPWL

1 158 6118 1850 156 6023 2153 157 6117 1843 172 7340 1630

2 116 2710 1784 88 1906 1385 93 2143 935 117 3043 852

3 106 2650 906 87 1818 868 87 1807 770 99 2326 619

4 129 4096 812 112 3117 782 112 3117 782 124 3762 725

5 207 8972 13797 159 6329 9377 159 6352 9199 175 7606 8166

6 178 7698 4039 161 6460 3904 165 6643 3869 166 6828 3744

7 168 6580 2908 162 6512 3607 165 6776 2830 172 7391 2441

8 173 7294 1501 160 6371 1658 162 6402 1233 181 8176 1143

9 243 14129 4705 223 12414 6114 226 12731 4720 250 15541 4263

10 205 10214 28386 194 9362 40209 197 9703 37539 207 10759 30611

11 225 9922 28527 200 9994 22737 208 9432 17437 215 9821 17003

12 155 5953 3824 123 3803 2668 128 4100 2172 134 4443 2031

13 162 6511 2061 153 5851 2537 153 5869 2103 174 7561 1854

14 247 15235 2399 185 8534 2249 190 8989 1563 211 10931 1352

15 123 3758 1619 114 3233 1923 114 3250 1803 116 3385 1679

16 232 12397 2676 214 11405 2906 223 12373 2384 231 13315 2046

17 247 12525 4586 218 11792 4817 220 12015 3750 239 14201 3404

avg ratio 1.00 1.00 1.00 0.88 0.83 1.03 0.90 0.85 0.87 0.97 1.00 0.77

Table 9: Values of W +H in µm, area in µm2, HPWL in µm, and an average ratio of design

generated using CMA-ES metaheuristic and manual designs for real-life instances. Highlighted

triples correspond to solutions dominating manual ones.

40

We also compare CMA-ES results with the manual designs in Table 9. We

allowed or forbid the use of pocket merging depending on the corresponding

manual design to make the comparison fair. For each solution, the half perime-

ter of the bounding box, area, and HPWL metrics are reported, with results

averaged and related to the manual designs in the last row. Furthermore, for

12 out of 17 instances, our approach found a solution dominating the manual

design in all studied metrics. The results were verified by the industry experts

of STMicroelectronics.

7. Conclusion

In this paper, we modeled the placement process of the AMS ICs, trying to

automate it for BCD technology, which includes complex proximity constraints,

pockets, and their merging, as well as more standard constraints, like symmetry

groups and blockage areas. We proposed a constructive placement heuristic to

handle the mentioned constraints, and we used GA and CMA-ES metaheuristics

to find high-quality solutions. We also presented the local search pipeline to

improve the found solutions. Finally, we described the reinforcement learning

method for control of the GA’s parameters during optimization, which also

improved the results.

We evaluated our methods on synthetically generated instances, well-known

benchmarks, and real-life instances, considering both the HPWL and the place-

ment area. From results obtained on synthetically generated instances, we de-

termined the best parameter settings and how well the improvement techniques

and the parameter control work. We also compared both metaheuristics with

our baseline ILP solution.

We were competitive with successful contemporary approaches on the MCNC

dataset (which does not consider proximity constraints and pockets). We also

compared our methods with the contemporary open-source ALIGN placer to

show the competitiveness for slightly different problem formulations. Finally,

we evaluated our algorithm using a set of real-life instances with associated

41

manual designs. For 12 out of 17 instances, our approach found a solution that

outperformed the manual one regarding both the final area and HPWL connec-

tivity. Finally, our industrial partner STMicroelectronics will be able to use our

approach as a fast prototyping tool in production to reduce the cumbersome

manual work.

Acknowledgments

We want to thank STMicroelectronics, namely Dalibor Barri and Patrik

Vacula, for their help regarding the problem formulation and for providing us

the real-life industrial instances.

This work was supported by the Grant Agency of the Czech Republic under

the Project GACR 22-31670S.

References

[1] J. Scheible, J. Lienig, Automation of analog IC layout: Challenges and

solutions, in: Proceedings of the 2015 Symposium on International Sympo-

sium on Physical Design, ISPD ’15, Association for Computing Machinery,

New York, NY, USA, 2015, p. 33–40. URL: https://doi.org/10.1145/

2717764.2717781. doi:10.1145/2717764.2717781.

[2] C. Munien, A. E. Ezugwu, Metaheuristic algorithms for one-dimensional

bin-packing problems: A survey of recent advances and applications, Jour-

nal of Intelligent Systems 30 (2021) 636–663. URL: https://doi.org/10.

1515/jisys-2020-0117. doi:doi:10.1515/jisys-2020-0117.

[3] A. Olofsson, Intelligent Design of Electronic Assets (IDEA) & Posh Open

Source Hardware (POSH), https://www.darpa.mil/attachments/eri_

design_proposers_day.pdf, 2017. Accessed: 2023-07-19.

[4] H. Murata, K. Fujiyoshi, S. Nakatake, Y. Kajitani, VLSI module placement

based on rectangle-packing by the sequence-pair, IEEE Trans. Comput.

Aided Des. Integr. Circuits Syst. 15 (1996) 1518–1524.

42

https://doi.org/10.1145/2717764.2717781
https://doi.org/10.1145/2717764.2717781
http://dx.doi.org/10.1145/2717764.2717781
https://doi.org/10.1515/jisys-2020-0117
https://doi.org/10.1515/jisys-2020-0117
http://dx.doi.org/doi:10.1515/jisys-2020-0117
https://www.darpa.mil/attachments/eri_design_proposers_day.pdf
https://www.darpa.mil/attachments/eri_design_proposers_day.pdf

[5] F. Balasa, K. Lampaert, Module placement for analog layout using the

sequence-pair representation, in: Proceedings 1999 Design Automation

Conference (Cat. No. 99CH36361), 1999, pp. 274–279. doi:10.1109/DAC.

1999.781325.

[6] Q. Ma, L. Xiao, Y.-C. Tam, E. F. Y. Young, Simultaneous handling of

symmetry, common centroid, and general placement constraints, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Sys-

tems 30 (2011) 85–95. doi:10.1109/TCAD.2010.2064490.

[7] T. Dhar, K. Kunal, Y. Li, M. Madhusudan, J. Poojary, A. K. Sharma,

W. Xu, S. M. Burns, R. Harjani, J. Hu, D. A. Kirkpatrick, P. Mukherjee,

S. Yaldiz, S. S. Sapatnekar, ALIGN: A system for automating analog

layout, IEEE Design & Test 38 (2021) 8–18. doi:10.1109/MDAT.2020.

3042177.

[8] D. Pisinger, Denser packings obtained in o(n log log n) time, IN-

FORMS Journal on Computing 19 (2007) 395–405. URL: https:

//doi.org/10.1287/ijoc.1060.0192. doi:10.1287/ijoc.1060.0192.

arXiv:https://doi.org/10.1287/ijoc.1060.0192.

[9] P.-H. Lin, Y.-W. Chang, S.-C. Lin, Analog placement based on symmetry-

island formulation, IEEE Transactions on Computer-Aided Design of Inte-

grated Circuits and Systems 28 (2009) 791–804. doi:10.1109/TCAD.2009.

2017433.

[10] M. Strasser, M. Eick, H. Grab, U. Schlichtmann, F. M. Johannes, Deter-

ministic analog circuit placement using hierarchically bounded enumeration

and enhanced shape functions, in: 2008 IEEE/ACM International Confer-

ence on Computer-Aided Design, 2008, pp. 306–313. doi:10.1109/ICCAD.

2008.4681591.

[11] J. Cohn, D. Garrod, R. Rutenbar, L. Carley, KOAN/ANAGRAM II: new

tools for device-level analog placement and routing, IEEE Journal of Solid-

State Circuits 26 (1991) 330–342. doi:10.1109/4.75012.

43

http://dx.doi.org/10.1109/DAC.1999.781325
http://dx.doi.org/10.1109/DAC.1999.781325
http://dx.doi.org/10.1109/TCAD.2010.2064490
http://dx.doi.org/10.1109/MDAT.2020.3042177
http://dx.doi.org/10.1109/MDAT.2020.3042177
https://doi.org/10.1287/ijoc.1060.0192
https://doi.org/10.1287/ijoc.1060.0192
http://dx.doi.org/10.1287/ijoc.1060.0192
http://arxiv.org/abs/https://doi.org/10.1287/ijoc.1060.0192
http://dx.doi.org/10.1109/TCAD.2009.2017433
http://dx.doi.org/10.1109/TCAD.2009.2017433
http://dx.doi.org/10.1109/ICCAD.2008.4681591
http://dx.doi.org/10.1109/ICCAD.2008.4681591
http://dx.doi.org/10.1109/4.75012

[12] R. Martins, N. Lourenço, N. Horta, Multi-objective optimiza-

tion of analog integrated circuit placement hierarchy in abso-

lute coordinates, Expert Systems with Applications 42 (2015)

9137–9151. URL: https://www.sciencedirect.com/science/article/

pii/S0957417415005655. doi:https://doi.org/10.1016/j.eswa.2015.

08.020.

[13] T.-C. Chen, Z.-W. Jiang, T.-C. Hsu, H.-C. Chen, Y.-W. Chang, NTU-

place3: An analytical placer for large-scale mixed-size designs with pre-

placed blocks and density constraints, IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems 27 (2008) 1228–1240.

doi:10.1109/TCAD.2008.923063.

[14] B. Xu, S. Li, C.-W. Pui, D. Liu, L. Shen, Y. Lin, N. Sun, D. Z. Pan,

Device layer-aware analytical placement for analog circuits, in: Proceed-

ings of the 2019 International Symposium on Physical Design, ISPD ’19,

Association for Computing Machinery, New York, NY, USA, 2019, p.

19–26. URL: https://doi.org/10.1145/3299902.3309751. doi:10.1145/

3299902.3309751.

[15] B. Xu, S. Li, X. Xu, N. Sun, D. Z. Pan, Hierarchical and analytical place-

ment techniques for high-performance analog circuits, in: Proceedings

of the 2017 ACM on International Symposium on Physical Design, ISPD

’17, Association for Computing Machinery, New York, NY, USA, 2017, p.

55–62. URL: https://doi.org/10.1145/3036669.3036678. doi:10.1145/

3036669.3036678.

[16] J. Grus., Z. Hanzálek., D. Barri., P. Vacula., Automatic placer for analog

circuits using integer linear programming warm started by graph drawing,

in: Proceedings of the 12th International Conference on Operations Re-

search and Enterprise Systems - ICORES,, INSTICC, SciTePress, 2023,

pp. 106–116. doi:10.5220/0011789300003396.

[17] A. Mirhoseini, A. Goldie, M. Yazgan, J. W. Jiang, E. Songhori, S. Wang,

44

https://www.sciencedirect.com/science/article/pii/S0957417415005655
https://www.sciencedirect.com/science/article/pii/S0957417415005655
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2015.08.020
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2015.08.020
http://dx.doi.org/10.1109/TCAD.2008.923063
https://doi.org/10.1145/3299902.3309751
http://dx.doi.org/10.1145/3299902.3309751
http://dx.doi.org/10.1145/3299902.3309751
https://doi.org/10.1145/3036669.3036678
http://dx.doi.org/10.1145/3036669.3036678
http://dx.doi.org/10.1145/3036669.3036678
http://dx.doi.org/10.5220/0011789300003396

Y.-J. Lee, E. Johnson, O. Pathak, A. Nazi, J. Pak, A. Tong, K. Srini-

vasa, W. Hang, E. Tuncer, Q. V. Le, J. Laudon, R. Ho, R. Carpenter,

J. Dean, A graph placement methodology for fast chip design, Nature 594

(2021) 207–212. URL: https://doi.org/10.1038/s41586-021-03544-w.

doi:10.1038/s41586-021-03544-w.

[18] U. Mallappa, S. Pratty, D. Brown, RLPlace: Deep RL guided heuristics

for detailed placement optimization, in: 2022 Design, Automation & Test

in Europe Conference & Exhibition (DATE), 2022, pp. 120–123. doi:10.

23919/DATE54114.2022.9774684.

[19] M. Berger, M. Schröder, K.-H. Küfer, A constraint-based approach for

the two-dimensional rectangular packing problem with orthogonal orienta-

tions, in: B. Fleischmann, K.-H. Borgwardt, R. Klein, A. Tuma (Eds.),

Operations Research Proceedings 2008, Springer Berlin Heidelberg, Berlin,

Heidelberg, 2009, pp. 427–432.

[20] R. Korf, M. Moffitt, M. Pollack, Optimal rectangle pack-

ing, Annals of Operations Research 179 (2010) 261–295. URL:

https://ideas.repec.org/a/spr/annopr/v179y2010i1p261-29510.

1007-s10479-008-0463-6.html. doi:10.1007/s10479-008-0463-6.

[21] W. Huang, D. Chen, R. Xu, A new heuristic algorithm for rectangle pack-

ing, Computers & Operations Research 34 (2007) 3270–3280. URL: https:

//www.sciencedirect.com/science/article/pii/S0305054805004016.

doi:https://doi.org/10.1016/j.cor.2005.12.005.

[22] J. F. Oliveira, A. N. Júnior, E. Silva, M. A. Carravilla, A survey on heuris-

tics for the two-dimensional rectangular strip packing problem, Pesquisa

Operacional 36 (2016) 197–226.

[23] E. Hopper, B. Turton, A genetic algorithm for a 2D industrial packing prob-

lem, Computers & Industrial Engineering 37 (1999) 375–378. URL: https:

//www.sciencedirect.com/science/article/pii/S0360835299000972.

doi:https://doi.org/10.1016/S0360-8352(99)00097-2.

45

https://doi.org/10.1038/s41586-021-03544-w
http://dx.doi.org/10.1038/s41586-021-03544-w
http://dx.doi.org/10.23919/DATE54114.2022.9774684
http://dx.doi.org/10.23919/DATE54114.2022.9774684
https://ideas.repec.org/a/spr/annopr/v179y2010i1p261-29510.1007-s10479-008-0463-6.html
https://ideas.repec.org/a/spr/annopr/v179y2010i1p261-29510.1007-s10479-008-0463-6.html
http://dx.doi.org/10.1007/s10479-008-0463-6
https://www.sciencedirect.com/science/article/pii/S0305054805004016
https://www.sciencedirect.com/science/article/pii/S0305054805004016
http://dx.doi.org/https://doi.org/10.1016/j.cor.2005.12.005
https://www.sciencedirect.com/science/article/pii/S0360835299000972
https://www.sciencedirect.com/science/article/pii/S0360835299000972
http://dx.doi.org/https://doi.org/10.1016/S0360-8352(99)00097-2

[24] S. C. Leung, D. Zhang, C. Zhou, T. Wu, A hybrid simulated annealing

metaheuristic algorithm for the two-dimensional knapsack packing prob-

lem, Computers & Operations Research 39 (2012) 64–73. URL: https:

//www.sciencedirect.com/science/article/pii/S0305054810002510.

doi:https://doi.org/10.1016/j.cor.2010.10.022.

[25] R. Alvarez-Valdes, F. Parreño, J. Tamarit, Reactive GRASP

for the strip-packing problem, Computers & Operations Re-

search 35 (2008) 1065–1083. URL: https://www.sciencedirect.

com/science/article/pii/S030505480600150X. doi:https://doi.org/

10.1016/j.cor.2006.07.004.

[26] W. Xie, N. V. Sahinidis, A branch-and-bound algorithm for the

continuous facility layout problem, Computers & Chemical En-

gineering 32 (2008) 1016–1028. URL: https://www.sciencedirect.

com/science/article/pii/S0098135407001354. doi:https://doi.org/

10.1016/j.compchemeng.2007.05.003.

[27] A. Klausnitzer, R. Lasch, Optimal facility layout and material handling

network design, Computers & Operations Research 103 (2019) 237–

251. URL: https://www.sciencedirect.com/science/article/pii/

S0305054818302879. doi:https://doi.org/10.1016/j.cor.2018.11.

002.

[28] J. Kubaĺık, P. Kadera, V. Jirkovský, L. Kurilla, Š. Prokop, Plant layout

optimization using evolutionary algorithms, in: Industrial Applications

of Holonic and Multi-Agent Systems, Springer International Publishing,

Cham, 2019, pp. 173–188.

[29] J. Kubaĺık, L. Kurilla, P. Kadera, Facility layout problem with alternative

facility variants, Applied Sciences 13 (2023). doi:10.3390/app13085032.

[30] Y. Xiao, Y. Xie, S. Kulturel-Konak, A. Konak, A problem evolu-

tion algorithm with linear programming for the dynamic facility lay-

46

https://www.sciencedirect.com/science/article/pii/S0305054810002510
https://www.sciencedirect.com/science/article/pii/S0305054810002510
http://dx.doi.org/https://doi.org/10.1016/j.cor.2010.10.022
https://www.sciencedirect.com/science/article/pii/S030505480600150X
https://www.sciencedirect.com/science/article/pii/S030505480600150X
http://dx.doi.org/https://doi.org/10.1016/j.cor.2006.07.004
http://dx.doi.org/https://doi.org/10.1016/j.cor.2006.07.004
https://www.sciencedirect.com/science/article/pii/S0098135407001354
https://www.sciencedirect.com/science/article/pii/S0098135407001354
http://dx.doi.org/https://doi.org/10.1016/j.compchemeng.2007.05.003
http://dx.doi.org/https://doi.org/10.1016/j.compchemeng.2007.05.003
https://www.sciencedirect.com/science/article/pii/S0305054818302879
https://www.sciencedirect.com/science/article/pii/S0305054818302879
http://dx.doi.org/https://doi.org/10.1016/j.cor.2018.11.002
http://dx.doi.org/https://doi.org/10.1016/j.cor.2018.11.002
http://dx.doi.org/10.3390/app13085032

out problem—a general layout formulation, Computers & Opera-

tions Research 88 (2017) 187–207. URL: https://www.sciencedirect.

com/science/article/pii/S0305054817301648. doi:https://doi.org/

10.1016/j.cor.2017.06.025.

[31] T. W. Manikas, MCNC benchmark netlists for floorplanning and place-

ment, 2012. URL: https://s2.smu.edu/~manikas/Benchmarks/MCNC_

Benchmark_Netlists.html, accessed: 2023-03-14.

[32] F. Della Croce, R. Scatamacchia, The longest processing time rule for

identical parallel machines revisited, Journal of Scheduling 23 (2020)

163–176. URL: https://doi.org/10.1007/s10951-018-0597-6. doi:10.

1007/s10951-018-0597-6.

[33] J. D. Camm, A. S. Raturi, S. Tsubakitani, Cutting Big M down to

Size, Interfaces 20 (1990) 61–66. URL: http://www.jstor.org/stable/

25061401.

[34] J. Mendes, J. Gonçalves, M. Resende, A random key based genetic

algorithm for the resource constrained project scheduling problem,

Computers & Operations Research 36 (2009) 92–109. URL: https:

//www.sciencedirect.com/science/article/pii/S0305054807001359.

doi:https://doi.org/10.1016/j.cor.2007.07.001.

[35] B. Chazelle, The bottom-left bin-packing heuristic: An efficient im-

plementation, IEEE Transactions on Computers C-32 (1983) 697–707.

doi:10.1109/TC.1983.1676307.

[36] K. Sastry, D. Goldberg, G. Kendall, Genetic Algorithms, Springer

US, Boston, MA, 2005, pp. 97–125. URL: https://doi.org/10.1007/

0-387-28356-0_4. doi:10.1007/0-387-28356-0_4.

[37] N. Hansen, A. Ostermeier, Completely derandomized self-adaptation in

evolution strategies, Evolutionary Computation 9 (2001) 159–195. doi:10.

1162/106365601750190398.

47

https://www.sciencedirect.com/science/article/pii/S0305054817301648
https://www.sciencedirect.com/science/article/pii/S0305054817301648
http://dx.doi.org/https://doi.org/10.1016/j.cor.2017.06.025
http://dx.doi.org/https://doi.org/10.1016/j.cor.2017.06.025
https://s2.smu.edu/~manikas/Benchmarks/MCNC_Benchmark_Netlists.html
https://s2.smu.edu/~manikas/Benchmarks/MCNC_Benchmark_Netlists.html
https://doi.org/10.1007/s10951-018-0597-6
http://dx.doi.org/10.1007/s10951-018-0597-6
http://dx.doi.org/10.1007/s10951-018-0597-6
http://www.jstor.org/stable/25061401
http://www.jstor.org/stable/25061401
https://www.sciencedirect.com/science/article/pii/S0305054807001359
https://www.sciencedirect.com/science/article/pii/S0305054807001359
http://dx.doi.org/https://doi.org/10.1016/j.cor.2007.07.001
http://dx.doi.org/10.1109/TC.1983.1676307
https://doi.org/10.1007/0-387-28356-0_4
https://doi.org/10.1007/0-387-28356-0_4
http://dx.doi.org/10.1007/0-387-28356-0_4
http://dx.doi.org/10.1162/106365601750190398
http://dx.doi.org/10.1162/106365601750190398

[38] N. Hansen, A. Auger, R. Ros, S. Finck, P. Poš́ık, Comparing results of

31 algorithms from the black-box optimization benchmarking BBOB-2009,

in: Proceedings of the 12th Annual Conference Companion on Genetic

and Evolutionary Computation, GECCO ’10, Association for Computing

Machinery, New York, NY, USA, 2010, p. 1689–1696. URL: https://doi.

org/10.1145/1830761.1830790. doi:10.1145/1830761.1830790.

[39] A. Eiben, R. Hinterding, Z. Michalewicz, Parameter control in evolutionary

algorithms, IEEE Transactions on Evolutionary Computation 3 (1999)

124–141. doi:10.1109/4235.771166.

[40] Y. Sakurai, K. Takada, T. Kawabe, S. Tsuruta, A method to control pa-

rameters of evolutionary algorithms by using reinforcement learning, in:

2010 Sixth International Conference on Signal-Image Technology and In-

ternet Based Systems, 2010, pp. 74–79. doi:10.1109/SITIS.2010.22.

[41] M. Sharma, A. Komninos, M. López-Ibáñez, D. Kazakov, Deep rein-

forcement learning based parameter control in differential evolution, in:

Proceedings of the Genetic and Evolutionary Computation Conference,

GECCO ’19, Association for Computing Machinery, New York, NY, USA,

2019, p. 709–717. URL: https://doi.org/10.1145/3321707.3321813.

doi:10.1145/3321707.3321813.

[42] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Belle-

mare, A. Graves, M. A. Riedmiller, A. Fidjeland, G. Ostrovski, S. Petersen,

C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra,

S. Legg, D. Hassabis, Human-level control through deep reinforcement

learning, Nature 518 (2015) 529–533.

[43] J. Chapman, M. Lechner, Keras Documentation: Deep Q-learning

for atari breakout, https://keras.io/examples/rl/deep_q_network_

breakout/, 2020. Accessed: 2023-07-19.

[44] Gurobi Optimization, LLC, Gurobi Optimizer Reference Manual, https:

//www.gurobi.com, 2021. Accessed: 2023-07-19.

48

https://doi.org/10.1145/1830761.1830790
https://doi.org/10.1145/1830761.1830790
http://dx.doi.org/10.1145/1830761.1830790
http://dx.doi.org/10.1109/4235.771166
http://dx.doi.org/10.1109/SITIS.2010.22
https://doi.org/10.1145/3321707.3321813
http://dx.doi.org/10.1145/3321707.3321813
https://keras.io/examples/rl/deep_q_network_breakout/
https://keras.io/examples/rl/deep_q_network_breakout/
https://www.gurobi.com
https://www.gurobi.com

[45] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Cor-

rado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,

G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Lev-

enberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster,

J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke,

V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke,

Y. Yu, X. Zheng, TensorFlow: Large-scale machine learning on hetero-

geneous systems, 2015. URL: https://www.tensorflow.org/, accessed:

2023-07-19.

[46] N. Hansen, Y. Akimoto, P. Baudis, CMA-ES/pycma on Github, Zenodo,

DOI:10.5281/zenodo.2559634, 2019. URL: https://doi.org/10.5281/

zenodo.2559634. doi:10.5281/zenodo.2559634, accessed: 2023-07-19.

49

https://www.tensorflow.org/
https://doi.org/10.5281/zenodo.2559634
https://doi.org/10.5281/zenodo.2559634
http://dx.doi.org/10.5281/zenodo.2559634

	Introduction
	Motivation
	Outline

	Related Work
	Literature overview
	Contributions

	Analog Placement Model
	Problem formulation
	ILP model
	Main constraints and criteria
	Optional criteria

	Proposed Solution
	Constructive heuristic
	Outline of the heuristic
	Rectangle sliding
	Priority modulation
	Symmetry groups
	Fitness of the individuals
	Complexity and visualization

	Metaheuristics
	Genetic Algorithm
	Covariance Matrix Adaptation Evolution Strategy

	Local search and detailed optimization

	Reinforcement Learning Parameter Control
	Integrating DQN into the placement GA

	Experimental Evaluation
	Methodology
	Overview of the synthetically generated instances
	Analysis and comparison of our approaches
	Constructive heuristic parameters
	Effect of the local search and detailed optimization
	Metaheuristics comparison
	Effect of the parameter control

	MCNC benchmark set
	ALIGN placer and open-source instances
	Real-life benchmarks

	Conclusion

